Java Programming
on Linux

WAITE GROUP

Release Team[oR] 2001
[x] java [x] linux

Java Programming on Linux
Java Programming by Nathan Meyers ISBN: 1571691669

Waite Group Press © 2000, 907 pages

r L
: This extensive reference will introduce you to the myriad
TSN tools, technologies, and techniques that you'll need for
programming Java on Linux.

~Table of Contents

wBack Cover

Synopsis by Rebecca Rohan

This book is neither a course in Java programming nor a manual for the Linux
OS. While the well-written text provides overviews of both Java and Linux, it's
really a compendium of information you'll want on hand once you've chosen
Java-on-Linux. Coverage includes: configuring your Linux desktop, a list of the
Java core classes, a rundown of compilers, the Kaffe cleanroom, tidbits about
Linus Torvalds and Richard Stallman, the Open Source movement, when JIT
compilers are a benefit, threads, GNU, what's supported where, decompilers
and obfuscators, and improved graphical rendering. This must-have book will
answer your questions and provide enjoyable browsing for a long time

Table of Contents

Java Programming on Linux - 5

Linux and Java - The Choice of a New Millennium - 7

PartI A Brief Introduction to Java

Chapter 1 - What Is Java? - 12

Chapter 2 - Moving from C++ to Java - 19

Chapter 3 - A Look at the Java Core Classes - 36

Chapter 4 - Additional Sun Java Class Library Specs - 149
Part IT A Brief Introduction to Linux

Chapter 5 - What Is Linux? - 155

Chapter 6 - How to Obtain and Install Linux - 162

Chapter 7 - Configuring Your Linux Desktop - 168

Chapter 8 - Installing Additional Linux Software - 173

Part ITI Setting Up for Java Development and Deployment on Linux
Chapter 9 - Setting Up a Linux Development Environment - 178
Chapter 10 - Java Components for Linux - 191

Chapter 11 - Choosing an Environment: 1.1 or 1.2? - 196
Chapter 12 - Software Licensing - 201

Part IV The Blackdown Port: A Sun Java SDK for Linux

Chapter 13 - Blackdown: The Official Linux Portx - 205
Chapter 14 - Configuring the Linux SDK/JRE Environment - 213

.

Chapter 15
Chapter 16
Part V
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Chapter 23
Chapter 24
Part VI
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Chapter 32
Part VII
Chapter 33
Chapter 34
Chapter 35

Part VIII
Chapter 36
Chapter 37
Chapter 38
Chapter 39
Chapter 40
Part IX
Chapter 41
Chapter 42
Chapter 43
Chapter 44
Chapter 45
Part X
Chapter 46
Chapter 47
Chapter 48
Part XI
Chapter 49

- Troubleshooting the Blackdown JRE/JSDK Installation - 238
- Participating in the Blackdown Community - 247

Tools in the Blackdown JSDK

- The Java Application Launchers: java, jre, and oldjava - 250
- The Java Applet Viewer: appletviewer - 256

- The Java Compiler: javac - 260

- The Java Debugger: jdb - 263

- The Java Archiver: jar - 268

_The Java Native Code Header and Stub File Generator:
javah - 270

- The Java Documentation Generator: javadoc - 272

- Miscellaneous JSDK Development Tools - 281
Additional Java Runtime Environments

- The IBM JSDK Port - 292

- Kaffe: A Cleanroom Java Environment - 293

- Japhar: A Cleanroom JVM - 299

- GNU Classpath: Cleanroom Core Class Libraries - 304

- Mozilla ElectricalFire: A New JVM - 305

- Sun HotSpot Performance Engine - 309

- gcj: A Compiled Java Solution - 311

- Tower: A Server-Side Hybrid Java Environment - 316

Additional Java Runtime Components
- Just-In-Time Compilers - 325
- Java3D Extension - 330

_JavaComm, JCL, and RXTX: Serial Communications from
Java - 340

Compilers and Debuggers
- The Jikes Compiler - 345
- KJC: Kopi Java Compiler - 348
- Generic Java Compilers - 351
- The Jikes Debugger - 362
- DDD: The Data Display Debugger - 366
IDEs, GUI Builders, and RAD Tools
- vTcLava: A tcl-Based Java GUI Builder - 372
- Korfe: A Python-Based Java GUI Builder - 379
- PlaceHoldr IDE - 384
- The Emacs JDE - 395
- ArgoUML Modeling Tool - 405

Miscellaneous Development Tools

- Jad: A Java Decompiler - 412

- DumpClass: A Tool for Querying Class Structure - 416

- JMakeDepend: A Project Build Management Utility - 419
Java Application Distribution

- Distributing Java Applications and JREs - 426

_3-

Chapter 50 - Deploying Applets with Java Plug-in - 429

Chapter 51 _ Crossing Platform Component Models: Bringing Java to
ActiveX - 439

Chapter 52 - InstallShield: Creating Self-Installing Java Applications - 456

Chapter 53 - DashO: Optimizing Applications for Delivery - 459

Part XII Linux Platform Issues

Chapter 54 - Java, Linux, and Threads - 469

Chapter 55 - JNI: Mixing Java and Native Code on Linux - 477
Chapter 56 - X Window System Tips and Tricks - 493

Part XIII Java Performance

Chapter 57 - Why Is Java Slow? - 508

Chapter 58 - A Heavy Look at Lightweight Toolkits - 519

Chapter 59 _An Approach to Improving Graphical Rendering
Performance - 529

Chapter 60 - PerfAnal: A Free Performance Analysis Tool - 543
Chapter 61 - Heap Analysis Tool: Understanding Memory Utilization - 551
Chapter 62 - Optimizelt: Live Performance Analysis - 554

Chapter 63 - Understanding Linux Kernel Performance - 560

Chapter 64 - Profiling User-Space Native Code - 568

Part XIV Java and Linux on Servers

Chapter 65 - Java on the Web: Java Servlets and Apache JServ - 574
Chapter 66 - Java from Web Pages: JSSI and JSP - 588

Chapter 67 - Java, Linux, and Three-Tiered Architectures - 560

Part XV Appendixes

Appendix A - Index of Tools and Programs - 607

Appendix B - Miscellaneous Program Listings - 611

Appendix C - Important Information Resources - 727

Appendix D - Tools Not Covered - 729

Back Cover

Java Programming on Linux is your guide to using the Java programming
language on the Linux platform. Written by an experienced Java and Linux
developer, this book introduces you to the many Java technologies available
today for you to use under Linux -- from proprietary Sun technologies to fully
Open Source solutions. Filled with practical, hands-on advice, Java
Programming on Linux will help you get the most out of Java and Linux, as an
applications platform, a development environment, and an enterprise server.

With Java Programming on Linux, you will learn:

o How to install, configure, troubleshoot, and use Sun’s Java
Development Kit on the Linux operating system.

e How to use many of the Java runtime and development environments
(from Sun and elsewhere) available for Linux.

o How to develop on Linux and distribute your applications to users on
all operating systems.

e How to access the unique capabilities of Linux and the X Window
System from Java.

e How to identify performance bottlenecks that are slowing down your
Java applications on Linux and other platforms.

o How to deploy Java on Linux servers to support three-tier application
architectures.

About the Author

Nathan Meyers spent 20 years as a software developer and architect with
Hewlett-Packard Company, working on platforms ranging from embedded
systems to large UNIX servers. His development background includes
operating systems, development tools, device drivers, tools for performance
tuning, graphics applications, and GUIs. Nathan was part of the HP team that
did pioneering work on the X Window Systems, the Motif Toolkit, and the
Common Desktop Environment. He has been working with Linux since 1995
and with Java on Linux since the early Linux JDK1.1 platform releases.

Java Programming on Linux

Nathan Meyers

Associate Publisher: Michael Stephens
Acquisitions Editor: Don Roche

Development Editor: Robyn Thomas

Managing Editor: Charlotte Clapp

Copy Editor: Geneil Breeze

Indexer: Joy Dean Lee

Proofreaders: Tony Reitz, Wendy Ott

Technical Editors: Luke Jones, Michael Jarvis, Juan Jose Sierralta P.
Team Coordinator: Pamalee Nelson

Media Developer: Todd Pfeffer

Interior Design: Gary Adair

Cover Design: Alan Clements

Copy Writer: Eric Borgert

Layout Technicians: Steve Geiselman. Brad Lenser

Copyright © 2000 by Waite Group Press

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 1-57169-166-9

Library of Congress Catalog Card Number: 99-65624

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Waite Group Press cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an "as is" basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

About the Author

Nathan Meyers spent 20 years in the corporate software trenches, as a developer and
architect for Hewlett-Packard Company, working in handheld calculators, UNIX
workstations, and inkjet printers. His experience includes development of embedded
systems, device driver implementation, creation of development tools, definition and
implementation work on the X Window System and the Common Desktop Environment,
development of 2D and 3D graphics applications, UNIX application performance tuning,
design of evolutionary algorithms, and implementation of financial algorithms.

Nathan left HP in 1999 to pursue other opportunities in the worlds of Linux and Java.
Besides books like this, he has published in the Hewlett-Packard Journal, The X Resource
Journal, and the Linux Journal. He participates actively in the Java/Linux community and
manages this book's Web site at http://www. javalinux.net—uvisit the site for
information, updates, errata, or just to send email to the author.

Dedication

To Vicki.

Acknowledgments

It takes a village to make a book, and this book has benefited from the talents of many
important contributors.

First, I'd like to thank Margot Maley of Waterside Productions and Don Roche of
Macmillan Computer Publishing, who worked together to bring this project into existence.
Development editor Robyn Thomas and project editor Charlotte Clapp coordinated the
complex logistics required to turn my words into a real book. Copy editor Geneil Breeze

-6-

kept my use of the language honest, and technical editors Luke Jones, Michael Jarvis,
and Juan Jose Sierralta P. checked my work on the technical side. To anyone else I've
neglected to mention: My sincere gratitude and my apologies for the oversight.

Beyond the efforts that went into creating this book, | must also acknowledge the heroic
efforts in the Java, Linux, and Open Source communities that have made this book both
possible and of value. To the many brilliant developers behind the Blackdown organization,
Transvirtual Technologies, Cygnus Solutions, IBM AlphaWorks, and many other
organizations mentioned in the book: Thank you for making Java on Linux a great place to
do software and a great place to do business.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

You can fax, email, or write me directly to let me know what you did or didn't like about
this book—as well as what we can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book's title and author as well as your
name and phone or fax number. | will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770
E-mail: mstephens@mcp.com
Mail: Michael Stephens

Associate Publisher

Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

Linux and Java: The Choice of a New
Millennium

Welcome to Java. Welcome to Linux. Welcome to the five-year revolution.

Five years ago, as Microsoft Windows 95 swept the world, Linux and Java were tiny blips
on the radar. In 1995, The term "Open Source" had not yet been coined, Linux was an
underground movement, and Java was struggling to prove itself a working technology.

What a difference five years makes!

In the past few years of explosive Internet growth, both Linux and Java have assumed
crucial roles in advancing network technologies and shaping the Web. Both have had to
mature quickly, and, with the recent releases of the Linux 2.2 kernel and the Java 2
Platform, both demand to be taken seriously as technologies and as businesses.

Which brings us to this book.

Linux and Java go together like, well... cream and coffee. Linux offers a powerful, stable,
efficient operating system; Java offers a powerful and portable applications platform of
huge and growing popularity. You've probably already used the two together—if you've
ever run Netscape Navigator on Linux. But there is much more to Java than applets and
browsers. This book will help you take the next step: to the world of Java applications,
Java development, and Java Web services.

Who Is This Book's Intended Audience?

If you need to use Java and Linux together, this book is for you. The book has a strong
focus on development tools and techniques, but we also cover topics of use to
nondevelopers (for example, Java installation and configuration) and administrators (for
example, Java Web services).

What Do You Need to Know Prior to Reading This Book?

Some previous exposure to both Java and Linux will be helpful, although we do include
introductions to both technologies. This book does not try to feach you Java or Linux (many
other fine books already do so)—it focuses on how you can use the two together.

What Will You Learn from This Book?

This book will teach you how to install and use a Java environment under Linux, how to
develop Java under Linux, and how to deploy your Java applications to Linux and other
platforms.

What Software Will You Need?

You will need a Linux distribution and a Java Software Development Kit—both are
available for free online. You can also buy reasonably priced Linux distributions on CD-
ROM. This book will tell you how to get all the software you need.

How This Book Is Organized

This book is organized into 15 parts, first introducing the technologies and then covering
installation, configuration, development, and deployment of Java on Linux.

The parts of the book are as follows:

» Part I: A Brief Introduction to Java—If you're new to Java, this part takes you on a
brief tour of the language and the environment.

« Part ll: A Brief Introduction to Linux—If you're new to Linux, this part gives you a
brief introduction to the operating system and helps you get started setting up a Linux
system.

+ Part lll: Setting Up for Java Development and Deployment on Linux—This part
describes the pieces you need to enable Java deployment and development in your
Linux environment.

» Part IV: The Blackdown Port: A Sun Java SDK for Linux—The Blackdown
organization is the group responsible for porting Sun's Java software to Linux. This
part of the book describes how to obtain and install Java runtime and development
software from Blackdown.

» Part V: Tools in the Blackdown JSDK—The Java Software Development Kit (JSDK)
from Blackdown includes all the pieces you need to develop, test, and run Java. Here
we describe the tools and how to use them.

-8-

+ Part VI: Additional Java Runtime Environments—The Sun software distributed by
Blackdown is not the last word in running Java on Linux. This part describes
alternative Java environments you can use under Linux.

« Part VIl: Additional Java Runtime Components—This part of the book describes
additional components to make your Java environment faster, better, and more
capable.

» Part Vlll: Compilers and Debuggers—You have many Java development tool
choices beyond the SDK. Here we present some alternative compilers and debuggers
you can use.

+ Part IX: IDEs, GUI Builders, and RAD Tools—This part explores advanced
development tools—integrated development environments, user interface builders,
and rapid application development tools—available for use on Linux. One such tool,
Inprise JBuilder, is bundled on the accompanying CD-ROM.

+ Part X: Miscellaneous Development Tools—Here we explore some tools that can
assist your Java development efforts under Linux.

+ Part XI: Java Application Distribution—This part of the book helps you distribute
your Java applications to the rest of the world, including users on other operating
systems.

+ Part XlI: Linux Platform Issues—This part discusses issues specific to using Java on
the Linux platform, such as accessing native platform capabilities and dealing with the
X Window System.

+ Part Xlll: Java Performance—This part explores Java performance: why it's slow,
why it's improving, and how you can tune your own applications for better
performance.

« Part XIV: Java and Linux on Servers—Java and Linux both have important roles on
three-tier applications servers and Web servers. This part of the book discusses using
Linux and Java for server applications.

+ Part XV: Appendixes—Here you'll find an index of programs provided in the book,
some code listings, and some pointers to additional resources.

Visit Our Web Site

This book has its own Web site: http://www.javalinux.net. Please visit the site for
the latest updates, errata, and downloads.

Conventions Used in This Book

This section describes the important typographic, terminology, and command
conventions used in this book.

Typographic Conventions Used in This Book
The following typographic conventions are used in this book:

» Code lines, commands, statements, variables, and any text you type or see onscreen
appears in a mono typeface. Bold italic mono typeface is often used to represent
the user's input.

+ Command syntax descriptions use the following notation to describe commands and
arguments:

— monospaced text—This represents the literal text of a command or option.

— <monospaced italics in angle-brackets>—Angle-brackets and italic text
represent placeholders in a command description. These placeholders are replaced
by commands or options described in the text.

— [<optional arguments>]—Brackets surround optional arguments. A vertical
stroke may separate multiple choices for an optional argument.

— {on|off}—Curly braces surround a required multiple-choice argument, with
choices separated by a vertical stroke.

For example, a syntax description like this

java [-green|-native] [<options>] <class>
could result in the command

java —green -classpath . MyClass

» Long listings of code or output are printed with line numbers to aid in reading. If a line
is too wide to fit on the page, the remainder appears in the following line without a line
number.

+ The book also contains Subtleties sidebars that explore a topic in more detail. The
information here may not be of immediate use but is helpful in better understanding
the topic or solving difficult problems.

Naming Conventions Used in This Book

The naming of Sun Java releases has been a matter of some confusion over the years.
This book adopts a convention consistent with Sun's most recent practices:

+ JDK—A JDK is a Java technology release, such as JDK1.0, JDK1.1, and JDK1.2. (lts
original meaning was "Java Development Kit," but common usage has broadened it to
mean an entire technology release. This is discussed in more detail in Chapter 10,
"Java Components for Linux," in the section on "A Glossary of Sun Java

Terminology.")

+ SDK—AnN SDK is a Software Development Kit. Every Java technology release is
accompanied by an SDK that includes tools, such as compilers and debuggers, for
Java development.

+ JRE—A JRE is a Java Runtime Environment. This is a subset of the SDK targeted at
deployment platforms. It contains everything needed to run Java programs but no
development tools.

Command Shell Conventions in This Book

In UNIX and Linux environments, users have a choice of command shells—interactive
command interpreters—to use for running commands in terminal windows.

This book will assume the use of bash (the Bourne-Again SHell), which is the most
popular Linux command shell. Command input lines will be shown with this prompt:

-10 -

bash$

So a user interaction with bash could look like this:

bash$ echo Hello World
Hello World
bash$

When an input line is too long in a Linux command shell, you can end it with the
backslash character and continue it on the next line:

bash$ echo The quick brown fox jumps over the lazy \
dog

The quick brown fox jumps over the lazy dog

bashs$

For most interactions discussed in this book, the choice of command shell has little effect
on how commands are entered. But there are two important exceptions.

Setting Environment Variables

Different command shells use different commands for setting environment variables.
When this book specifies setting of variables, it will use the bash notation:

bash$ FOO=bar
bash$ export FOO

or the shorter form:

bash$ export FOO=bar

or, occasionally, the form used to set the variable for the duration of a single command:

bash$ FOO=bar <command>.

For users who prefer the popular csh (C-shell) or tcsh (a csh clone), you will need to
perform your own translation to the csh-style notation:

setenv FOO bar

Environment Initialization File

The name of the initialization file is another important command shell difference.

When you start a new login session running bash, it reads a file called

~/.bash profile (that's .bash profile in your home directory) for any user-
specific setup of your environment. This book sometimes instructs you to add commands
to that file for setting environment variables.

If you are a csh or tcsh user, you will need to translate these instructions. The

initialization file it reads is called ~/.1ogin (. 1login in your home directory)—this is
where you will need to add the corresponding setenv commands.

-11 -

Part I: A Brief Introduction to Java

Chapter List

Chapter What Is Java?
1:

Chapter Moving from C++ to Java
2:

Chapter A Look at the Java Core Classes
3:

Chapter Additional Sun Java Class Library Specs
4:

Part Overview

The first part of the book provides a brief introduction to Java. If you're a Linux user or
developer coming to Java for the first time, you may find the Java concept a bit
bewildering because Java is a lot of things: a language, an architecture, an applications
platform, and more.

So we begin with a look at what Java really is, where and how it is used, what it offers to
programmers, and what sort of applications capabilities it provides.

Chapter 1: What Is Java?

Overview

This chapter gives you the 10-minute tour of Java. If you're already experienced with
Java, you might want to skip ahead. On the other hand, if you're new here, you might find
that Java is not exactly what you thought it was. It's not just a language, and it's not just
for Web browsers.

So what exactly is Java? It's a language. It's a machine architecture. It's a loading model.
It's a file format. It's an applications environment (several different applications
environments, actually). It's a specification. And it's an implementation.

Java began life as a failed Sun research project called Oak, targeted at embedded
operation in appliances. In 1995, Sun repackaged Oak as a portable "Internet programming
language" and positioned it initially as a way to run programs in Web browsers. The result
was something of a misfire: Web applets were not a huge success, and even today they
occupy a largely specialized niche. But Java displayed usefulness in other areas, and
interest in Java for different tasks—particularly Web services and enterprise connectivity—
skyrocketed. Java has since settled into a number of important application areas (we
explore more below), including, at long last, appliances!

The Many Faces of Java

Let's dissect Java in a bit more detail...

The Java Language

-12 -

By the time Sun announced Java in 1995, C++ and object-oriented programming had
been around for years. C++ had grown, in episodic spurts, from a preprocessor into a full-
featured compiled language. It had become the language of choice for projects of all
scales, and it had been through several stages of standardization—culminating in the
acceptance of the ANS| C++ standard in 1998.

C++ had also, along the way, picked up considerable baggage. It had a substantial
number of non-object-oriented artifacts, and it had become a difficult language to write
compilers for. It was also difficult to achieve complete portability: even the excellent ANSI
standardization did not completely shield developers from platform-specific language
porting headaches.

One of Java's goals was to fix what was wrong with C++, with a special focus on the
error-prone aspects of C++ development—those that tend to take up too much
debugging time. In this it has certainly succeeded: Java developers (especially C++
converts) find the language well-suited for rapid prototyping and development. Java's
remedies include:

» Strengthening the object orientation and eliminating non-object-oriented features (for
example, macros, globals)

» Eliminating the error-prone direct manipulation of memory pointers and the confusion
of referencing and dereferencing

» Getting the developer out of the messy memory management business
* Adding type safety

» Performing runtime checking for such common problems as illegal typecasting, bad
array subscripts, and null object references

» Supporting multithreaded programming directly in the language
* Improving exception handling

A detailed language specification is available, both in printed form and from Sun's Web
site (http://java.sun.com). Like most specs, it is better as a reference work than a
learning tool. For actually learning the language, a good place to start would be Java
Unleashed (Sams).

Chapter 2, "Moving from C++ to Java," uses some programming examples to take a
closer look at the differences between Java and C++. Despite the differences, Java looks
much like C++, and experience suggests that C++ programmers can pick it up quickly
and easily. So although this book is not in the business of teaching the language, the
introduction and the examples should be enough to get you well past the "Hello World"
stage.

The Java Machine Architecture

The Java specification describes not only the high-level language but also the low-level
machine and instruction set it runs on: a concurrent, abstract stack machine with an
architecture and a small bytecode instruction set closely tied to the language (see Figure
1.1). This is roughly equivalent to dictating the CPU on which a language can be used,
although a better analog is the P-code machine that was used in the development of
UCSD Pascal some 20 years back.

- 13-

I'he Java Lanjuags
..u:u amaine el e Sirmgl ange
Sysfem oui printedHelio workd™)
The Java Machine Architeciurs
O peintnic 87 «Fiedd java. o PrisiSisam oul>
8 jde #1 <Swing Haolo workd >

5 mvokewriual #8 « Method soid printiedgeva. lang Sirng|=
2 revdarn

Figure 1.1: Java defines a low-level architecture and instruction set closely
aligned with the high-level language.

Implementation of the architecture—as, for example, a silicon Java chip or as a virtual
machine—is left as an exercise for individual vendors. (This has turned out to be a
challenge to the acceptance of Java, but virtual machines are now available for Linux and
many other environments.)

In addition to describing an execution engine, the spec describes certain machine
behaviors: startup, shutdown, and, most interestingly, loading.

The Java Loading Model

The Java loading model is, ultimately, what makes Java unique. Loading of Java
modules (or classes, to be more correct) happens dynamically during program execution.
This is a radical change for generations of programmers accustomed to the compile-link-
load-run cycle for building and running programs and is resulting in new approaches to
structuring application functionality.

The loading of Java classes consists of several steps (see Figure 1.2):

1. Reading the bits

2. Verifying that the bits describe a well-structured class containing well-structured Java
code

3. Building a global class structure
4. Resolving references

5. Controlling access—allowing an application or environment to decide access rules for
class loading (such as restriction to trusted sources)

5 Eminn=ent

R Frwiesimen|
Bryterein Class Accis £
ClassLoadar Vi ke Contm I

0

A

Unresoived s rokianios

Figure 1.2: The Java class loader builds the environment during application
execution.

Loading of classes happens as needed, at any time during program execution—either
when a class is first referenced or when the application explicitly requests that a class be
loaded. The class-loading and security mechanisms are themselves classes and can be

- 14 -

modified by subclassing: Developers can define new sources of Java functionality not
envisioned by Java's creators.

The concept of runtime loading of functionality is certainly not new. We see it routinely in
dynamically loaded libraries, object models (CORBA, COM, and so on), and the plug-in
capability of many products. What is new is the full integration of class loading with the
language and the environment: it's never before been this easy, flexible, or extensible.
Allowing class loading from arbitrary sources (local disk, the Web, networked devices, a
dynamic code generator, and so on) is a notable advance in object-oriented
programming: it treats executable code objects with the same facility previously reserved
for data objects.

The loading model, combined with the portability of the code itself, gives Java bragging
rights as an "Internet programming language.”

The Java Class File Format

Just as Java defines a portable instruction set, it defines a platform-neutral package for
Java code: the class file. Class files are usually generated by a Java compiler (they are
the Java analog of .o object files), after which they are ready to run (recall that linking
happens at runtime). Class files are typically found sitting on file systems or bundled into
archives (zip files, or the closely related Java archive jar files), where Java's default
class-loading mechanism expects to find them with the filename suffix .class. By
subclassing the class loader, as discussed previously, applications can introduce a class
file from any source.

The Java Applications Environment

As any UNIX/Linux programmer knows, modern applications run in a rich environment
provided by libraries (system, GUI, utility, and so on) and subsystems (X, printing, and so
on). Java, although not an operating system (OS), is substantially in the OS business: It
must provide a portable applications environment for everything from basic 1/O services
to string manipulation to GUIs to networking. Java has undergone three major releases,
during which the applications environment has grown from minimal to substantial:

+ JDK1.0—Sun's initial release, heavily hyped but not ready for prime time. A basic
applications environment with a basic GUI component (AWT, the Abstract Windowing
Toolkit) built on top of native platform GUI mechanisms.

+ JDK1.1—A substantial improvement, introducing basic printing support, a better event
model, the JavaBeans component model, 18N, reflection, remote method invocation,
a security framework, and database connectivity. The latter three areas represent
Java's move into distributed enterprise applications.

» JDK1.2 (officially The Java 2 Platform, version 1.2)—Many consider this the first
ready-for-prime-time Java. It is huge but useful, introducing security enhancements, a
robust 2D graphics imaging model, the JFC Swing GUI toolkit (a native Java look and
feel), an accessibility API, drag-and-drop support, the collections classes, improved
persistence support, reference objects, an audio API, CORBA support, and more.

The language and architecture have also evolved with each release (nested classes, for
example, appeared in version 1.1), but the environment has changed most dramatically.

When we speak of JDK1.1 or JDK1.2, we are referring to a complete application
environment—Java Virtual Machine (JVM) + class libraries—that is used for two distinct
purposes:

» Running applications (Figure 1.3)—Applications are standalone programs with the
same rights and responsibilities as programs in any other language. Like C++
programs, standalone Java programs begin with a call to main () and end, typically,

- 15 -

with a call to exit (). A standalone program is usually run by invoking a JVM and
specifying a class file to execute.

Ttz e Standalond Applcation Eiresonmwd

X
Wincow
Syedum [Joram Fyrame Emaeoomant]

e |

Clages

LIS Applcation
Clamses

Figure 1.3: Java applications run in a platform-neutral environment within the
host environment.

* Running applets (Figure 1.4)—Applets run in browsers, embedded in Web pages,
typically under the control of a Java Runtime Environment (JRE) built into the browser.
Applets differ in three major respects from applications:

Trpical Jawa Ap piot Ervironmant

Lo

Bywtem Librari

x |

Windcw Ercmsar
Eywliim T

I I Java Fanlime Emdmnmant |

Habwark FO

-
e M

Class

it e i

Figure 1.4: Java applets run in a platform-neutral environment provided by a
browser.

+ The applet environment contains a restrictive security manager that prevents applets
from affecting the world outside the browser (such as the local file system) and
constrains the behavior of class loading and networking.

» Graphics happens to windows controlled by the browser—typically embedded in a
Web page, although browsers can launch top-level applet windows.

* Applets have a different life cycle from applications, described in terms of when they
are initially loaded, when they are started and stopped by the browser due to page
visibility, and when they are finally unloaded from the browser. There is nomain () in
applets.

Applets are typically run when a browser reads a page containing the HTML tags to load
and execute a Java class.

Differences aside, both applets and applications expect a full JRE. So a browser
supporting JDK1.2 (as of this writing, neither major browser does) would include the full,
gigantic JDK1.2 environment—Swing toolkit and all.

Java does define other, simpler environments for use in more constrained applications:

» PersonalJava—A subset of JDK1.1 for personal devices such as Portable Digital
Assistants.

- 16 -

* EmbeddedJava—A subset of JDK1.1 for use in embedded controllers, with extensions
targeted at real-time environments. EmbeddedJava is a political hot potato at the
moment: A number of vendors with deep experience in real-time systems were so
dissatisfied with Sun's EmbeddedJava work that they formed the J-Consortium in early
1999 to work toward better, vendor-neutral real-time Java extensions.

« JavaCard—A Java environment for use in smart cards, "credit cards with brains,"
designed to support the application and transaction requirements of that market.

» JavaTV—A Java environment for use with television-enabled applications such as
interactive programming and video-on-demand.

+ JavaPhone—A set of API extensions, on top of PersonalJava or EmbeddedJava, for
development of telephony applications.

In mid-1999, Sun announced the Java 2 Platform Micro Edition, a unification targeted at
subsuming these technologies.

We examine the core JRE classes in more detail in Chapter 3, "A Look at the Java Core
Classes."

The Java Specification and Implementation

In the preceding sections, we have repeatedly mentioned specifications: Java is, first and
foremost, a specification. The complete specs for the language, the class file format, the
virtual machine, and the runtime environment are available from Sun—in printed form
from a bookstore, or in electronic form online (no charge; http://java.sun.com).

Given the Java specification, it is possible for anyone to create any part of Java—a
compiler, a VM, an SDK—without any encumbrances to Sun. Later, you learn of some
"cleanroom" Java pieces, built entirely from specs, available on Linux.

Sun has also created a reference implementation of everything in the spec: JVM, core
libraries, and a development kit containing a full complement of tools. Sun ships two
commercial implementations, for Solaris and Windows NT, that were created from the
reference implementation. It also licenses the reference implementation to other vendors,
which is the basis for commercial Java ports on such platforms as HP-UX, AlX, Ultrix,
and others. The reference implementation is also the basis for the Blackdown SDK for
Linux, which gets extensive coverage beginning in Chapter 13, "Blackdown: The Official
Linux Port."

Use of the reference implementation comes at a price: The source is available for no
charge, but any products built from it are encumbered by licensing obligations to Sun. The
licensing terms are reasonably generous to anyone building a noncommercial
implementation; all others pay fees, resulting in an important revenue stream for Sun.

Other Java Technologies

Sun has many other focused Java components, outside the core platform, in various
stages of specification and implementation (see Chapter 4, "Additional Sun Java Class
Library Specs," for more details). Among them:

» Java3D—Support for 3D imaging
+ Java Media Framework—Multimedia support

« Java Servlets—Java on Web servers

-17 -

» Java Cryptography Extensions—A framework for private- and public-key cryptography
» JavaHelp—A full-featured help system

+ Jini—A framework for creating communities of "smart" devices, including automatic
network configuration and resource discovery

» JavaSpeech—An API for speech recognition and synthesis

+ Java 2 Enterprise Edition—A collection of technologies—directory, database, email,
messaging, transaction, and so on—targeted at deployment in the enterprise
environment

Where Is Java Used?

Some settings in which Java has found a home (beginning with the two traditional ones)
are as follows:

+ Standalone Java applications hosted by a JRE under many different operating
systems: Linux, NT, MacOS, all important flavors of UNIX, IBM's mainframe OSs, and
SO on.

» Applet JRE environments provided by Netscape Navigator and Microsoft Internet
Explorer Web browsers.

+ Web servers, for programmatic generation of Web content.

» Application servers, integrating the activities of enterprise applications, databases, and
Web activities.

+ Java PCs—Sun's JavaOS is an operating system, intended for use in network
computers and appliances, in which Java classes are the native application format.

* Inside Database Management Systems (DBMSs) such as Oracle and Sybase,
supporting stored procedures for smart database queries.

» Television set-top boxes, running JavaTV.

» Smart cards—a complete Java Virtual Machine plus the card-holder's data can reside
in a chip on a small plastic card.

+ Embedded controllers in consumer and industrial devices: printers, cameras, robots,
and so on.

+ Jewelry—rings, wristwatches, money clips, and so on with built-in JVMs and a
waterproof hardware interface. They are used for identification, e-commerce, and
cryptography (yes, Java-based secret decoder rings!).

In later chapters, we explore how some of these environments are being deployed in Linux.

What Can't You Do in Java?

Java is, in many ways, a computer scientist's dream. It brings together many of the most
interesting technologies of the past 20 years, from garbage collection to architecture-
neutral code to on-the-fly optimization to runtime validation to OOP. Many of these
technologies have not become mainstream because, in the real world, they're just too
slow.

- 18 -

That is also Java's problem: it's slow. We examine performance issues (and what to do
about them) in more detail later. The performance story undoubtedly will improve, but
there is good reason to doubt that Java will ever challenge compiled native applications
in terms of speed. Among the problems Java cannot handle today:

» Performance-critical problems—These still require native applications or, at the very
least, native-code components in Java applications.

+ Large problems—Problems with large memory or I/O requirements require the
application to take an active role in managing memory or I/O—application tuning
makes the difference between usable and unusable software in such demanding areas
as simulations and DBMSs. Java is not a supportive environment for such problems.

+ Platform-specific problems—Java takes great pains to achieve platform-
independence, to the point of denying you many capabilities you take for granted in
native languages or even in many platform-independent scripting languages. You
cannot, without writing a native code component, detect or create a symbolic link,
implement an X Window manager, read UNIX environment variables, identify the
owner of a file, change tty settings, and so on. (We explore platform issues, including
solutions to some of these problems, in Chapters 55, "JNI: Mixing Java and Native
Code on Linux," and 56, "X Window System Tips and Tricks.")

* GUIs—Of course Java does GUIs—Swing is a first-rate toolkit. But GUI performance
needs a great deal of attention if Java is to be a serious GUI platform. As of this
writing, Java is enjoying much more success in non-GUI environments, such as
servers, than in GUI environments such as applets.

If it seems, at this point in the chapter, that Java is everywhere...well, it has certainly fired
the collective imagination of the computing and networking worlds. In reality, Java
technology is a complex mix of software, bloatware, vaporware, and marketing; and it lives
in a charged climate of intense industry politics between Sun Microsystems, its
competitors, its partners, the courts, and the user and developer communities. Java is
certainly not the answer to every problem, but it is (like Linux) a highly interesting place to
work, play, and build the future of the Internet.

Summary

We have taken a high-level look at Java, exploring its role as a software technology, an
architecture, and an Internet language. Before we delve into the world of Java on Linux, we
take a few more chapters to explore topics of interest to Java newcomers: moving from
C++ to Java programming, understanding the runtime environment, and Java extensions.

Chapter 2: Moving from C++ to Java

Overview

Continuing our whirlwind tour of Java, this chapter provides a brief look at the language
differences between C++ and Java. We take an unusual approach: using small projects
to point out important differences. This is an introduction, not a language course; if you
want to really study and learn the language, a good place to start is Java Unleashed
(Sams).

Project #1: Hello World

We begin with a slightly modified Hello World project in C++ (Listing 2.1), illustrating
some important differences in 1/O, array, and string manipulation.

-19 -

Listing 2.1 Helloworld.c

1 #include <iostream.h>
2 #include <string.h>
3
4

//
5 // A modified "hello world": steps through argv and says
hello to
6 // everything in argv. If an argument happens to be
"world", we
7 // throw in a bang at the end.

38 //
9 int main (int argc, char *argv([])
10 {
11 for (int 1 = 1; 1 < argc; i++)
12 {
13 cout << "Hello, " << argv[i];
14 if (!strcmp(argv[i], "world")) cout << '!';
15 cout << '"\n';
16 1
17 }

This version simply steps through the command-line arguments, outputting a Hello
message for each argument. If the argument happens to be the word "world," a bang (!)
is appended.

Listing 2.2 shows an equivalent program in Java:

Listing 2.2 HelloWorld. java

1 package com.macmillan.nmeyers;
2
3 class HelloWorld
4 {
5 public static void main(java.lang.String[] argv)
6 {
7 for (int 1 = 0; 1 < argv.length; i++)
8 {
9 java.lang.System.out.print ("Hello, " +
argv[il]);
10 if (argv[i].equals ("world"))
11 java.lang.System.out.print ('!");
12 java.lang.System.out.print ('\n"'");
13 }
14 }
15 }

Some differences to note between the examples:

» Java classes reside in a hierarchical namespace, in which classes are completely
specified by a package name (analogous to a directory path) and a class name
(analogous to a filename), with "." used as a separator. Two classes seen in the
preceding example are java.lang.String, and java.lang.System. The "."is
also used to separate variable names from member names (for example, member

name equals () in HelloWorld.j ava:8).(1) The HelloWorld class also resides in

-20 -

a package— com.macmillan.nmeyers (following standard naming guidelines for

identifying the vendor). It's common and accepted practice for small, nonshipping

projects to omit the package directive and reside in the unnamed package.

(1) Unfortunately, the language spec badly overloads the "." separator. The method
java.lang.System.out.print (), for example, consists of:

* java.lang: Package Name

* System: Class name

* out: Class (static) variable; C++ would call this System: :out
* print (): Method for out

As we shall see below, the separator also separates nested class names. Internally,
Java uses three different separators, which the high-level language does not reflect.

» There are no header files in Java. The Java compiler learns about class APls directly
from class files found at compile-time. (Countless C++ programming hours are lost to
problems with header files.)

+ Strings are first-class objects, unlike the C++ char *. They do not depend on null
terminators and include such object operations as String.equals ()
(HelloWorld.java:10).

» Arrays, such as the String array passed to main (), know their own length
(HelloWorld. java:7).

» Java does not allow globals—variables, constants, procedures, anything! Even the
main () procedure is a class method (Java's equivalent of C++ static methods). The
JVM isn't running a global procedure called main () ; it's running a static class member
called com.macmillan.nmeyers.HelloWorld.main ().

» The argument vector differs from C++: the command-line arguments begin with
argv([0],notargv[1l].

There is a minor fraud (for instructive purposes) in the preceding example: Java
programmers do not usually specify the fully qualified class name; they use just the class
basename. Listing 2.3 shows a more typical form of the source.

Listing 2.3 HelloWorld. java as a Java developer would really write it.

1 package com.macmillan.nmeyers;

2

3 class HelloWorld?2

4 {

5 public static void main (String[] argv)

6 {

7 for (int i = 0; i < argv.length; i++)
8 {

9 System.out.print ("Hello, " + argv[il]);
10 if (argv[i].equals ("world"))
11 System.out.print ('!");
12 System.out.print ('\n"');
13 }

-21 -

14 }
15 }

Differences from the previous listing are shown in bold. For most classes (except those
from the java. lang package and those in the class's own package), a Java import
statement is needed to allow this shorthand.

Project #2: A Binary Tree

We take on a larger project here, involving some data structures. Wordtree is a simple
project that counts the occurrences of distinctive words in its input and looks for specific
words requested by the user. Specifically, it performs the following steps:

1. Reads text from stdin

2. Builds a simple, unbalanced binary tree of words from the input text, keeping a
frequency count

3. Takes words from the command line and scans for their presence in the text, keeping
a separate hit count

4. Traverses the tree, dumping the words and the counts

For example, reading stdin from the terminal:

bash$ wordtree quick fox foobar brown
the quick brown fox jumps over the lazy dog
~D

No such word: foobar

brown: 1, 1

dog: 1, O

fox: 1, 1

Jjumps: 1, O

lazy: 1, O

over: 1, O

quick: 1, 1

the: 2, O

The output reports that the word "foobar," requested on the command line, does not
appear in the text at all. The word "brown" appears once in the text and once in the
command line. The word "the" appears twice in the text but not at all on the command
line.

Wordtree in C++

The interesting classes in wordtree.C (Listing 2.4) are:

* Node—A node in our binary tree

* Dictionary—Container for our binary tree

* ErrorMsg—A small class used to throw an exception

Listing 2.4 wordtree.C

-22 -

1 #include <iostream.h>
2 #include <string.h>
3
4 // Node: Represent a node in our dictionary tree
5 class Node
6 {
7 public:
8 char *mystring;
9 int input count;
10 int other count;
11 Node *left, *right;
12 // Constructor: Create a local copy of the word and
zero the count
13 Node (char *s)
14 {
15 mystring = new char[strlen(s) + 1];
16 strcpy (mystring, s);
17 input count = 0;
18 other count = 0;
19 left = right = NULL;
20 }
21 // Destructor: Delete local copy of the word
22 ~Node ()
23 {
24 delete[] mystring;
25 1
26 // Comparison operators
27 operator< (Node &n)
28 {
29 return strcmp (mystring, n.mystring) < 0;
30 }
31 operator==(Node &n)
32 {
33 return !strcmp (mystring, n.mystring);
34 }
35 operator!=(Node &n)
36 {
37 return strcmp (mystring, n.mystring) != 0;
38 }
39 operator> (Node &n)
40 {
41 return strcmp (mystring, n.mystring) > 0;
42 }
43 // Define a way to output this node
44 friend ostream& operator<<(ostream &str, Node &n)
45 {
46 return str << n.mystring << ": " << n.input count
<< o m,om
47 << n.other count;
48 }
49 // In-order recursive traversal code: arg is a

function to be

-23-

50 // executed for each node

51 void traverse (void(*proc) (Node &))

52 {

53 if (left) left->traverse(proc);

54 proc (*this);

55 if (right) right->traverse (proc);

56 }

57 // Method to increment the count for a node matching
the requested

58 // key

59 void count word(Node &);

60 }i

61

62 // Here is our main dictionary, including root of the
tree

63 class Dictionary

64 {

65 Node *root;

66 public:

67 Dictionary (istream &) ;

68 // Start an in-order traversal on the root

69 void traverse (void (*proc) (Node &))

70 {

71 root->traverse (proc) ;

72 }

73 // Look for this word in the dictionary. If we find
it, increment

74 // its counter.

75 void count word(char *word)

76 {

77 // Create an automatic instance of node to use as
key

78 Node node (word) ;

79 // Start searching at root

80 root->count word (node) ;

81 }

82 }i

83

84 // We'll use this class to throw an exception

85 class ErrorMsg

86 {

87 public:

88 char *message;

89 // Constructor: A message and a missing word to
concatenate

90 ErrorMsg (char *msg, char *word)

91 {

92 // Allocate enough space to hold the concatenated
message plus

93 // a space plus null

94 message = new char[strlen(msg) + strlen(word) +
2]1;

] 95 strcpy (message, msqg);
96 strcat (message, " ");
97 strcat (message, word);

-4 -

98
99
100
101
102

103
&msqg)
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

1
~ErrorMsg ()

{

delete[] message;

}

friend ostream& operator<<(ostream &str, ErrorMsg

{

return str << msg.message;

}s

// This 1s the function we'll use for node traversal
void print a word(Node &node)

{

cout << node << '\n';

int main(int argc, char *argv([])
{
Dictionary dictionary(cin);
for (int 1 = 1; 1 < argc; i++)
{
try { dictionary.count word(argv[i]); }
catch (ErrorMsg &msg)
{

cerr << msg << '\n';

}

dictionary.traverse (print a word);

Dictionary::Dictionary(istream &str)
{
char word[1024];
root = NULL;
// Build a simple, unbalanced binary tree containing

all words we

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

// scan from str.
while (! (str >> word).fail())
{
// If tree is empty, build root from first word
Node *newnode;
if (!root) newnode = root = new Node (word) ;
else
{
// Build a local Node to use as a key
Node key (word) ;
// Start search from root
newnode = root;
// Continue until we find matching node
while (key != *newnode)

{

_25.-

149 if (key < *newnode)
150 {

151 if (!newnode->left) newnode->left =
new Node (word) ;
152 newnode = newnode->left;

153 }
154 else
155 {

156 if (!newnode->right) newnode->right =
new Node (word) ;
157 newnode = newnode->right;

158 1

159 }

160 1

lel newnode->input count++;
162 }

163 }

164

165 void Node::count word(Node &key)
166 {

167 // Look for a matching node in the tree. If we find
it, increment the
168 // counter, else throw an exception.

169 if (key == *this)

170 {

171 other count++;

172 return;

173 }

174 if (key < *this && left) left->count word(key);

175 else if (key > *this && right) right-
>count word (key) ;

176 else throw(ErrorMsg ("No such word:", key.mystring)):;

177)

The dictionary is constructed (Dictionary: :Dictionary (istream &)) by parsing
words out of stdin and building a tree full of Nodes, using the words as the keys.
Methods are provided (Dictionary::count word(), Node::count word())to
search the tree for a match from the command line, and to traverse the tree in order
(Dictionary::traverse (), Node: :traverse ()) and execute a caller-supplied
function for each node.

Wordtree in Java

This modest project illuminates a number of differences. The first difference is that Java
compilers expect you to package every class (except nested classes) in its own source
file with a matching name as shown in Listings 2.5-2.9:

Listing 2.5 Node. java

public class Node

{
public String mystring;
public int inputCount = 0;
public int otherCount = 0;
public Node left = null;

o U b W N

-26 -

7 public Node right = null;

8 public Node (String s)
9 {

10 mystring = s;

11 }

12 public int compareTo (Object n)

13 {

14 return mystring.compareTo (((Node)n) .mystring) ;

15 }

16 public String toString/()

17 {

18 return mystring + ": " + inputCount + ", " +
otherCount;

19 }

20 public void traverse (TraverseFunc tf)

21 {

22 if (left != null) left.traverse(tf);

23 tf.traverseFunc (this);

24 if (right != null) right.traverse (tf);

25 }

26 public void countWord (Node key) throws
NoSuchEntryException

27 {

28 int compare = key.compareTo (this);

29 if (compare == 0)

30 {

31 otherCount++;

32 return;

33 }

34 if (compare < 0 && left != null)
left.countWord (key) ;

35 else if (compare > 0 && right != null)
right.countWord (key) ;

36 else throw new NoSuchEntryException ("No such
word: " + key.mystring);

37 }

38 }

Listing 2.6 Dictionary.java

1 import java.io.*;
2 import java.util.x*;
3
4 public class Dictionary
5 {
6 public Node root = null;
7 // Constructor: Build a tree by parsing words from a
reader
8 public Dictionary(Reader r) throws IOException
9 {
10 // The reader classes don't know how to extract
words from
11 // input, so we'll build our own word extractor
12 BufferedReader reader = new BufferedReader(r):;
13 String currentLine;

_27 -

14 // Read a line

15 while ((currentlLine = reader.readLine()) != null)

16 {

17 // Build a string tokenizer

18 StringTokenizer tokenizer = new
StringTokenizer (currentline) ;

19 while (tokenizer.hasMoreTokens())

20 {

21 String word = tokenizer.nextToken () ;

22 Node newnode;

23 if (root == null) newnode = root = new
Node (word) ;

24 else

25 {

26 // Build a key

27 Node key = new Node (word) ;

28 // Start at root

29 newnode = root;

30 // Continue until we find a matching
node

31 int compare;

32 while ((compare =
key.compareTo (newnode)) != 0)

33 {

34 if (compare < 0)

35 {

36 if (newnode.left == null)

37 newnode.left = new

Node (word) ;
38

39
40
41
42

43
Node (word) ;
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58

newnode = newnode.left;

}

else

{

if (newnode.right == null)

newnode.right new

newnode = newnode.right;

}

newnode.inputCount++;

}
// Traverser
public void traverse (TraverseFunc tf)
{
root.traverse (tf);
1
// Look for word and increment count
public void countWord (String word) throws

NoSuchEntryException

59
60
61

{

root.countWord (new Node (word)) ;

-28 -

62 }

Listing 2.7 NoSuchEntryException. java

public class NoSuchEntryException extends Exception

{
public NoSuchEntryException (String str)

{

super (str) ;

~ o U w N

Listing 2.8 TraverseFunc. java
1 public interface TraverseFunc
2 {

3 void traverseFunc (Node n);
4

Listing 2.9 WordTree. java

1 import java.io.*;

2

3 public class WordTree

4 {

5 static public void main(String[] argv)

6 {

7 Dictionary dictionary = null;

8 try { dictionary = new Dictionary (new

InputStreamReader (System.in)); }

9 catch (IOException e)

10 {

11 System.err.println(e);

12 System.exit (1) ;

13 }

14 for (int i = 0; i < argv.length; i++)
15 {

16 try { dictionary.countWord(argv([i]); }
17 catch (NoSuchEntryException e)

18 {

19 System.err.println (e.getMessage());
20 }
21 1
22 dictionary.traverse (new PrintMeClass()):;
23 }
24 static public class PrintMeClass implements

TraverseFunc

25 {
26 public void traverseFunc (Node n)
27 {
28 System.out.println (n);
29 }

30 }

-29.

31 }

Some differences evident in the project:

Class declarations include all method code; the code cannot live elsewhere, as in the
C++ implementation of the Dictionary (istreamé&) constructor.

Scope declarations for class members appear with each member declaration. There
are four possible scopes: public, private, protected, and package. The first
three are similar to C++; the fourth limits access to other classes in the same package
(and is the default if none is specified).

We never work directly with pointers in Java, we use object references: these behave
much like C++ references (pointers in disguise), but they are assignable like pointers.
Compare wordtree.C:11 to Node. java:6-7. The latter is creating references,
initially empty, that will be assigned later.

The word nul1l is a real keyword denoting an unassigned reference (Node . java:6—
7). It is not a macro for zero, as with the C++ NULL. Java compilers (at least those
based on Sun's code) do not even support macros, which are considered very non-
object-oriented.

Java does not allow operator or typecast overloading. We've replaced the overloaded
comparison operators (wordtree.C:27-42) with a different comparison function
(Node. java:12-15). We've replaced the C++ ostream operator<<
(wordtree.C:44-48) with a function that generates a text representation

(Node. java:16-19). All Java objects have a toString () method, which is
responsible for creating a text representation for output.

Typecasting is somewhat less common in Java than in C++, but it does occur. In
Node.java:14, we downcast an argument of type java.lang.Object (the primal
superclass of everything) to Node. Runtime checking is always performed for a
typecast; an exception is thrown for an invalid coercion.

We cannot use function pointers, as in wordtree.C's handling of the traversal-time
function (wordtree.C:51-56,126). Instead, we define an interface (a pure abstract
class) called TraverseFunc that is required by the traversal code (Node . java:20—
25), and implemented by a nested class (WordTree . java:24-30) for use in the
traversal call (WordTree. java:22).

Java's strong typing avoids cross-pollution between integers, booleans, and object
reference values: a null reference != integer O != boolean false. Compare
wordtree.C:53, which uses a pointer value as a boolean, to the corresponding line at
Node.java:22, which uses a boolean expression. Similarly, integers cannot be used
as boolean expressions.

The import statements (Dictionary.java:1-2) allow us to use shorthand
references to classes instead of fully qualified names: Buf feredReader instead of
java.io.BufferedReader, StringTokenizer instead of
java.util.StringTokenizer. In this example, we use a wildcard notation
(import java.io.*)to import entire packages; some developers prefer to
individually import each class to be used (import java.io.BufferedReader, for
example).

Exceptions must be declared where they are thrown (Node . java:26). They must be
caught upstream (WordTree . java:17-20) and declared by all methods between the
throw and the catch. (Dictionary.java:58-61). The Java compiler does not let you
forget to keep track of your exceptions: It would consider

-30 -

Dictionary.countWord () in error if it did not include the throws clause due to
one of its callees.

+ Java includes an Exception class, which is subclassed
(NoSuchEntryException.java) and thrown when exceptions are needed.

* Relationship to a superclass is declared with an extends clause
(NoSuchEntryException.java:1) and to a superinterface with an implements
clause (WordTree. java:24). A class can have one superclass and many
superinterfaces, which is the closest Java comes to multiple inheritance. Superclass
initialization is handled with a super () call (NoSuchEntryException.java:d).

* Primitive types (char, byte, int, float, short, long, double, and boolean) are
allocated much as in C++; objects are not. A class instance cannot be allocated
automatically on the stack (wordtree.C:117) or as an array element; you must first
create the object reference(s) and then allocate an instance(s) for it
(WordTree.java:7-8).

This restriction applies to array as well as to stack variables: If you want an array of
object FooBar, you create an array of FooBar references and then assign an
instance to each reference: "FooBar fooBar = new FooBar[2]; fooBar[0] =
new FooBar(); fooBar[l] = new FooBar(); ."

* Nodeleteordelete[] keywords anywhere! Garbage collection cleans up class
objects after all references to them disappear. After WordTree.main () terminates,
there are no remaining references to the Dictionary it allocated on line 8—so that
instance can be garbage-collected. That instance contains, in turn, the tree's root node
reference, which contains references to children, and so on. By the time the garbage
collector has shaken out all unreferenced objects, the entire dictionary has been
garbage-collected and returned to free memory.

* No destructors, even if we want them. Java has finalizers, which are called when (and if)
the object is garbage-collected at some unspecified future time.

Project #3: Multithreading

One final example shows Java's multithreading support. Here is a simple multithreaded
program to count to 20, outputting the numbers as we go. One thread is responsible for
the even numbers, another for the odd numbers.

ThreadCount in C++

We see in the C++ program (Listing 2.10) a reliance on the POSIX pthreads interface,
a library-supplied mechanism to create and manage threads. Classes of interest:

* counter—A class that encapsulates our counter, and the mutex and condition
variable required to implement thread safety.

* odd_counter—A class encapsulating the odd counter, which increments the counter
when it is odd. Most of the code is devoted to various pthread synchronization calls:
locking the counter, waiting for a signal from the other thread that it has been changed,
signaling a change to the other thread, unlocking the counter.

The counter also includes a static function needed to start up the class. Because
pthread create () is a C function that expects a function pointer (not an object),
the startup () function—which pthread create () can handle—effectively
encapsulates the object.

231 -

* even counter—The other counter.
The main thread launches the other two threads, waits for them to finish, and then exits.
Listing 2.10 threadcount.C

1 #include <pthread.h>

2 #include <iostream.h>
3
4

// threadcount: A multi-threaded program that counts to

20
5
6 // This is our main counter and its thread-safety
components
7 class counter
38 {
9 public:
10 pthread cond t condition;
11 pthread mutex t mutex;
12 int value;
13 counter ()
14 {
15 condition =
(pthread cond t)PTHREAD COND INITIALIZER;
16 mutex =
(pthread mutex t)PTHREAD MUTEX INITIALIZER;
17 value = 0;
18 }
19 }i
20
21 // This class encapsulates functionality to increment the
counter
22 // when it is odd
23 class odd counter
24 {
25 counter é&ctr;
26 odd_counter (counter &c) : ctr(c) {}
27 void count ()
28 {
29 // Lock the counter
30 pthread mutex lock (&ctr.mutex);
31
32 // Count to 20
33 while (ctr.value < 20)
34 {
35 // If value is currently even, wait for a
change
36 while (! (ctr.value & 1))
37 pthread cond wait (&ctr.condition,
&ctr.mutex) ;
38 // Change the value
39 ctr.valuet+;
40 // Signal the change
41 pthread cond broadcast (&ctr.condition);
42 // Print results

-32-

43 cout << ctr.value << '\n';

44 }

45 pthread mutex unlock (&ctr.mutex);

46 }

47 public:

48 // A static function (suitable for passing to
pthread create) to

49 // create and start up our counter

50 static void *startup(void *c)

51 {

52 // Create an automatic instance of class and call
count () method

53 odd_counter (* (counter *)c).count();

54 return 0;

55 }

56 }:

57

58 // This class encapsulates functionality to increment the
counter

59 // when it is even

60 class even counter

61 {

62 counter &ctr;

63 even_ counter (counter &c) : ctr(c) {}

64 void count ()

65 {

66 // Lock the counter

67 pthread mutex lock (&ctr.mutex);

68

69 // Count to 20

70 while (ctr.value < 19)

71 {

72 // If value is currently odd, wait for a
change

73 while (ctr.value & 1)

74 pthread cond wait (&ctr.condition,
&ctr.mutex) ;

75 // Change the value

76 ctr.value+t++;

77 // Signal the change

78 pthread cond broadcast (&ctr.condition);

79 // Print results

80 cout << ctr.value << '\n';

81 }

82 pthread mutex unlock (&ctr.mutex);

83 }

84 public:

85 // A static function (suitable for passing to
pthread create) to

86 // create and start up our counter

87 static void *startup(void *c)

88 {

89 // Create an automatic instance of class and call
count () method

90 even counter (* (counter *)c).count();

-33 .

91 return O;

92 }
93 }i
94
95 int main ()
96 {
97 // Our counter
98 counter cnt;
99 pthread t threadl, thread2;
100 // Start first thread with odd counter, passing it
our counter
101 pthread create (&threadl, NULL, odd counter::startup,
&ent) ;
102 // Start second thread with even counter, passing it
our counter
103 pthread create (&thread2, NULL, even counter::startup,
&cnt) ;
104 // Hang around for threads to end
105 pthread join(threadl, NULL);
106 pthread join(thread2, NULL);
107 // Done!
108 exit (0);
109 }

ThreadCount in Java

Threading support is built in to the language, and all objects include basic plumbing to
support synchronization. The source (Listings 2.11-2.14) is much simpler.

Listing 2.11 Counter. java

class Counter

{

public int value;

=W N

Listing 2.12 EvenCounter. java

1 class EvenCounter implements Runnable

2 {

3 Counter counter;

4 EvenCounter (Counter c)

S) {

6 counter = c;

7 }

8 public void run()

S {
10 synchronized (counter)
11 {
12 while (counter.value < 19)
13 {
14 while ((counter.value & 1) ==
15 {
16 try { counter.wait(); }

-34 -

17 catch (InterruptedException e)
{}

18 }

19 counter.value++;

20 counter.notifyAll () ;

21 System.out.println (counter.value);
22 }

23 }

24 }

25 }

Listing 2.13 oddCounter. java

1 class OddCounter implements Runnable
2 {
3 Counter counter;
4 OddCounter (Counter c)
S) {
6 counter = c;
7 }
8 public void run()
9 {
10 synchronized (counter)
11 {
12 while (counter.value < 20)
13 {
14 while ((counter.value & 1) == 0)
15 {
16 try { counter.wait(); }
17 catch (InterruptedException e)
{}
18 }
19 counter.value++;
20 counter.notifyAll () ;
21 System.out.println (counter.value);
22 1
23 }
24 }
25 }

Listing 2.14 ThreadCount. java

1 // ThreadCount: A multi-threaded program that counts to

20

2

3 class ThreadCount

4 {

5 static void main (String[] argwv)

6 {

7 Counter counter = new Counter();

8 (new Thread (new OddCounter (counter))) .start ()
9 (new Thread(new EvenCounter (counter))) .start();
10 }

-35-

11 }
Some differences to note:

* No mutexes or condition variables in the Counter class. The necessary
synchronization plumbing is built in to all objects—it's inherited from the
java.lang.Object superclass. The synchronized clause (EvenCounter. java:10,
OddCounter.java:10) provides locking of the Counter object during the code
block. The java.lang.Object.wait () (EvenCounter. java:16,
OddCounter.java:16)and java.lang.Object.notifyAll ()
(EvenCounter.java:20, 0OddCounter. java:20) methods handle the interthread
synchronization.

» Recalling our earlier use of interfaces instead of function pointers, the
java.lang.Thread constructor (invoked at ThreadCount. java:8-9) expects a
class that implements the Runnable interface. This interface contains a single entry
point: run (), the method to be run by the new thread.

+ After threads are created, they are started with a call to the
java.lang.Thread.start () method (ThreadCount.java:8-9).

* Notice that ThreadCount.main () does not wait for the threads to complete. Java
programs terminate after the last thread has exited or when
java.lang.System.exit () is called. GUI applications launch additional threads to
handle the event loops, so they do not terminate until the app explicitly exits.

Moving On

There's more to Java than a handful of examples, of course, but these small projects
should give a developer who is conversant in C++ a brief overview of the language. Like all
examples in the book, this code is available on the CD-ROM for further play. We have
avoided discussing how to compile or run Java because the exact details depend on your
choice of tools: that will get extensive attention later.

Summary

Java bears many structural similarities to C++, with differences largely concentrated in
areas that make development easier and less prone to error. This chapter has, through
example, provided a glimpse into how Java's approaches to memory management, arrays,
type safety, handling of pointers and references, exceptions, and multi-threading simplify
the design of applications.

Chapter 3: A Look at the Java Core Classes

A Brief Introduction to Java

The Java Runtime Environment—the Java Virtual Machine (JVM) and the collection of
classes that define the facilities available to Java programs—is not an operating system.
But it's getting close. To create the capable, platform-independent runtime environment
found in JDK1.2, the class libraries have grown substantially.(1)

(1) One might convincingly argue that Java has become an OS, given the amount of OS-
type functionality it now provides. Although some of this functionality is simply a
platform-neutral wrapper around native capabilities, an increasing amount of capability
(such as GUIs, security, and imaging) is provided by extensive support in the Java
platform itself.

-36 -

The numbers are a bit overwhelming: JDK1.1 has 22 packages containing 392 classes,
implementing 3,671 methods. JDK1.2 has 59 packages containing 1,457 classes,
implementing 14,618 methods. And these are only the public and protected classes;
we're not including the classes and methods you can't reach from outside. (As of this
writing, the Blackdown JDK1.2—ported from the Sun reference implementation—takes
more than 20MB of disk space for the JVM, the compressed core class libraries, and the
native support libraries.)

In this chapter, we take a high-level look at the packages and classes that make up the
Java runtime environment. This chapter serves more as an introduction than a reference.
A complete class and method reference is an invaluable aid, but it's too big to print. Class
references and tutorials are available in bookstores, in pieces: buy one thick book to
study the Java Foundation Classes, another for security, another for CORBA, and so on.
For a comprehensive reference, the best place to start is the 80MB worth of JDK1.2 API
HTML documentation available, free of charge, from Sun's Java site (visit
http://java.sun.com and drill down through the Documentation link).

For each package, we will provide an overall package description, describe any particularly
interesting classes, and delve into detail where appropriate. We will also list classes and
interfaces in each of the packages.

Package java.applet

The java.applet package handles the basic requirements for applets—applications
that run in Web browsers and in similar embedded contexts. All applets must be derived
from class Applet.

The Applet class includes life cycle entry points for applet loading, startup, shutdown,
and unloading; non-trivial applet classes must override some or all of these methods.
(Unlike standalone applications, applets are not entered through a main () entry point.)
The class also includes methods to facilitate interaction with the browser environment,
such as playing audio, writing status messages, and interacting with other applets on the
page.

Here is a trivial example of an applet with a single pushbutton:

1 import Jjava.applet.*;

2 import java.awt.*;

3

4 public class TrivialApplet extends Applet
S) {

6 public TrivialApplet ()

7 {

8 add (new Button ("Hello World!"));
9 }
10 }

Some HTML code to display the applet:

<html>

<body>

<hl>Hello World Applet</hl>

<applet code="TrivialApplet.class"
width="100"
height="25">No Applet?</applet>

~ o U w N

</body>

-37 -

8 </html>

And the result, viewed in Netscape Navigator, is shown in Figure 3.1.

Fle Edi Waew Go Communcans |"3'|.-
- o 4 o - = = .

| Back Foward Relaad Homa Search Malscapo Frint Soorky W

q <k Bookmais A& Locanan: il o Triv aligplet himd] .'.f)' ‘What's Felaied

1 #Mmrinars g Webdal # Connections g BlzJoumsl A Emanlpdan #hkinams 2 searh,

Hello World Applet

_an-::n Hiaird |

o [| R = |

Figure 3.1: A trivial applet running in the Netscape browser.

Listing 3.1 shows all public classes and interfaces in the java.applet package.
Listing 3.1 java.applet Classes and Interfaces List

public class Jjava.applet.Applet extends java.awt.Panel

public interface java.applet.AppletContext extends
java.lang.Object
public interface java.applet.AppletStub extends java.lang.Object

public interface java.applet.AudioClip extends java.lang.Object

Package java.awt

The java.awt package is the home of the Abstract Windowing Toolkit (AWT), the core
Java graphic component. Among the AWT's functions are the following:

+ A platform-independent interface to the native graphical rendering environment (The X
Window System, Microsoft Windows, MacOS, OS/2, browser internal, and so on) for
2D rendering and keyboard/mouse input.

+ A platform-independent GUI, built on top of native GUIs (Motif, Microsoft Windows,
browser-provided widgets, and so on). In JDK1.2, this role is being subsumed by the
new Swing toolkit. We discuss the reasons and the details later in the chapter in our
examination of package javax.swing.

» A platform-independent event mechanism for handling window-system and GUI events
such as window resizing, focus changes, button-pressing, and window visibility
changes.

* A layout management framework to support GUI component layout.
* A mechanism for printing from Java applications.

» A 2D graphical rendering model and primitives for basic rendering operations such as
drawing lines, rectangles, polygons, and such.

It is in the latter area—2D rendering model—that the AWT has changed most significantly
between JDK1.1 and JDK1.2. JDK1.2 introduced a new model, Graphics2D, that
incorporates techniques from computer graphics to improve graphical rendering
capabilities.

-38 -

Prior to Graphics2D, the Java 2D rendering model was the X Window System rendering
model: limited color palette, bitmapped fonts, pixel-based coordinate system, and non-
blended pixel rendering. The capabilities in Graphics2D do a much better job of
mapping the real world—smooth objects and infinite color palettes—to the constrained
world of bitmapped computer displays. You do not have to use the new capabilities; they
are disabled by default, and they can exact a performance cost. But they are there if you
need them.

The new capabilities will sound familiar to anyone familiar with the image processing
aspects of 2D graphics: antialiasing, fractional font metrics, coordinate transformations,
alpha blending, dithering, scalable fonts. Graphics2D brings these capabilities to all
JDK1.2 environments—including those with display devices that do not support them. It
achieves this magic, in most implementations, by performing its rendering entirely in JVM
memory and blitting (copying pixel-for-pixel) the results to the display device. The result:
graphics performance can suffer significantly if you use these capabilities.

Here is a modest example of what Graphics2D's new rendering capabilities can do for
you. Figures 3.2 and 3.3 show two waterfall charts of the default Java sans-serif font, at
various sizes from 10 to 20 pixels in height (the program that generated this output,
WaterFall, can be found in Appendix B, "Miscellaneous Program Listings"):

ABCDEFGHUIKLMMNOP QRS TUVWXYZ

ABCDEFGHI] KILMNOPQRSTUNWIY Z
ABCDEFGHIKLMMOPOQRETUVIWEY Z
ARCDEFCHIJKLMNOPQRSTUVWXY Z
ABCDEFGHIJKLMN OFQRSTUYWXYZ
ABCDEFGHIJKLMNCOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIKLMNOPQRSTUVWXYZ

ABCDEFCHIJKLMNOPQRSTUVWXYZ

Figure 3.2: Waterfall with standard X-style rendering.

ABCDEFGHUKL MN OPQRS TUVWXYEZ

ABCDEFGHI KLMNOPQRETUVWXYZ

ABCDEF GHIJKLMMOPOQRST VWX Y Z
ABCDEFGHIKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEF GHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHUKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 3.3: Waterfall with antialiasing and fractional font metrics.

The first example is typical of text rendering on bitmapped displays: jagged edges,
inconsistent spacing, abrupt changes in the perceived stroke weight as the point size
increases. The second example, using Graphics2D to transform the image from an
idealized high-resolution space to a low-resolution bitmapped space, yields generally
better output. (Unfortunately, the half-toning techniques required for printing this book
tend to muddle the results on the printed page. The best way to compare is to run the
WaterFall program, provided in the appendices and on the CD-ROM.)

Listing 3.2 shows all public classes and interfaces in the java.awt package.

-30 .

Listing 3.2 java.awt Classes and Interfaces List

public class java.awt.AWTError extends java.lang.Error

public abstract class java.awt.AWTEvent extends

java.util.EventObject

public class java.awt.AWTEventMulticaster extends

java.lang.Object
implements java.awt.event.ActionListener
implements java.awt.event.AdjustmentListener
implements java.awt.event.ComponentListener
implements java.awt.event.ContainerListener
implements java.awt.event.FocusListener
implements java.awt.event.InputMethodListener
implements java.awt.event.ItemListener
implements java.awt.event.KeyListener
implements java.awt.event.MouselListener
implements java.awt.event.MouseMotionListener
implements java.awt.event.TextListener
implements java.awt.event.WindowListener

public class java.awt.AWTException extends java.lang.Exception

public final class java.awt.AWTPermission extends
java.security.BasicPermission (new in 1.2)

public interface java.awt.ActiveEvent extends
java.lang.Object (new in 1.2)

public interface java.awt.Adjustable extends java.lang.Object
public final class java.awt.AlphaComposite extends

java.lang.Object (new in 1.2)
implements java.awt.Composite
public class Jjava.awt.BasicStroke extends

java.lang.Object (new in 1.2)
implements java.awt.Stroke

public class Jjava.awt.BorderLayout extends java.lang.Object
implements java.awt.LayoutManager?2
implements java.io.Serializable

public class java.awt.Button extends java.awt.Component

public class java.awt.Canvas extends java.awt.Component

public class java.awt.CardLayout extends java.lang.Object
implements java.awt.LayoutManager?2
implements java.io.Serializable

public class Jjava.awt.Checkbox extends java.awt.Component
implements java.awt.ItemSelectable

public class java.awt.CheckboxGroup extends java.lang.Object
implements java.io.Serializable

public class Jjava.awt.CheckboxMenuItem extends Jjava.awt.Menultem
implements java.awt.ItemSelectable

public class Jjava.awt.Choice extends java.awt.Component
implements java.awt.ItemSelectable

public class java.awt.Color extends java.lang.Object
implements java.awt.Paint
implements java.io.Serializable

public abstract class java.awt.Component extends

java.lang.Object
implements java.awt.MenuContainer
implements java.awt.image.ImageObserver
implements java.io.Serializable

public final class Jjava.awt.ComponentOrientation extends

java.lang.Object (new in 1.2)
implements java.io.Serializable
public interface java.awt.Composite extends

- 40 -

java.lang.Object (new in 1.2)

public interface java.awt.CompositeContext extends
java.lang.Object (new in 1.2)

public class java.awt.Container extends java.awt.Component

public class Jjava.awt.Cursor extends java.lang.Object
implements java.io.Serializable
public class java.awt.Dialog extends java.awt.Window
public class Jjava.awt.Dimension extends
java.awt.geom.Dimension2D
implements java.io.Serializable
public class java.awt.Event extends java.lang.Object
implements java.io.Serializable
public class Jjava.awt.EventQueue extends java.lang.Object
public class java.awt.FileDialog extends java.awt.Dialog

public class java.awt.FlowLayout extends java.lang.Object
implements java.awt.LayoutManager
implements java.io.Serializable
public class java.awt.Font extends java.lang.Object
implements java.io.Serializable
public abstract class java.awt.FontMetrics extends
java.lang.Object
implements java.io.Serializable
public class java.awt.Frame extends java.awt.Window
implements java.awt.MenuContainer
public class Jjava.awt.GradientPaint extends
java.lang.Object (new in 1.2)
implements java.awt.Paint
public abstract class Jjava.awt.Graphics extends java.lang.Object
public abstract class java.awt.Graphics2D extends
java.awt.Graphics (new in 1.2)
public abstract class java.awt.GraphicsConfigTemplate extends

java.lang.Object (new in 1.2)
implements java.io.Serializable
public abstract class java.awt.GraphicsConfiguration extends
java.lang.Object (new in 1.2)
public abstract class java.awt.GraphicsDevice extends
java.lang.Object (new in 1.2)
public abstract class java.awt.GraphicsEnvironment
extends java.lang.Object (new in 1.2)

public class Jjava.awt.GridBagConstraints extends
java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public class Jjava.awt.GridBagLayout extends java.lang.Object
implements java.awt.LayoutManager?2
implements java.io.Serializable
public class java.awt.GridLayout extends java.lang.Object
implements java.awt.LayoutManager
implements java.io.Serializable
public class java.awt.IllegalComponentStateException extends

java.lang.IllegalStateException
public abstract class java.awt.Image extends java.lang.Object

public class java.awt.Insets extends java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public interface java.awt.ItemSelectable extends java.lang.Object

public class java.awt.Label extends java.awt.Component
public interface java.awt.LayoutManager extends java.lang.Object

-4] -

public interface java.awt.LayoutManager2 extends

java.lang.Object
implements java.awt.LayoutManager

public class java.awt.List extends java.awt.Component
implements java.awt.ItemSelectable

public class Jjava.awt.MediaTracker extends java.lang.Object
implements java.io.Serializable

public class java.awt.Menu extends java.awt.Menultem
implements java.awt.MenuContainer

public class java.awt.MenuBar extends java.awt.MenuComponent
implements java.awt.MenuContainer

public abstract class java.awt.MenuComponent extends

java.lang.Object
implements java.io.Serializable
public interface java.awt.MenuContainer extends java.lang.Object
public class java.awt.Menultem extends java.awt.MenuComponent
public class Jjava.awt.MenuShortcut extends java.lang.Object
implements java.io.Serializable
public interface java.awt.Paint extends
java.lang.Object (new in 1.2)
implements java.awt.Transparency
public interface java.awt.PaintContext extends
java.lang.Object (new in 1.2)
public class java.awt.Panel extends java.awt.Container
public class java.awt.Point extends java.awt.geom.Point2D
implements java.io.Serializable
public class Jjava.awt.Polygon extends java.lang.Object
implements java.awt.Shape
implements java.io.Serializable
public class java.awt.PopupMenu extends java.awt.Menu
public interface java.awt.PrintGraphics extends java.lang.Object
public abstract class java.awt.PrintJob extends java.lang.Object
public class Jjava.awt.Rectangle extends
java.awt.geom.Rectangle2D
implements java.awt.Shape
implements java.io.Serializable
public class java.awt.RenderingHints extends
java.lang.Object (new in 1.2)
implements java.lang.Cloneable
implements java.util.Map
public abstract class java.awt.RenderingHints.Key extends
java.lang.Object (new in 1.2)
public class Jjava.awt.ScrollPane extends java.awt.Container
public class java.awt.Scrollbar extends java.awt.Component
implements java.awt.Adjustable
public interface java.awt.Shape extends java.lang.Object
public interface java.awt.Stroke extends
java.lang.Object (new in 1.2)
public final class java.awt.SystemColor extends java.awt.Color
implements java.io.Serializable
public class Jjava.awt.TextArea extends java.awt.TextComponent
public class java.awt.TextComponent extends java.awt.Component
public class Jjava.awt.TextField extends java.awt.TextComponent
public class java.awt.TexturePaint extends
java.lang.Object (new in 1.2)
implements java.awt.Paint
public abstract class Jjava.awt.Toolkit extends java.lang.Object
public interface java.awt.Transparency extends
java.lang.Object (new in 1.2)

-4 -

public class java.awt.Window extends java.awt.Container

Package java.awt.color

This package supports color management in Java—the use of device-independent color
spaces such as sRGB instead of the device-dependent RGB commonly used in
bitmapped graphics (the reason blue looks different on your display and your printer).
These classes will eventually replace the functionality provided by the java.awt.Color
class, but for now, this package is a work-in-progress.

Color management, which has long been a part of high-end graphic arts environments, is
still not heavily used on mainstream systems. It offers much in the way of reliable and
consistent color output, but it also presents the difficult and expensive problem of keeping
your devices (monitors and printers) precisely calibrated. If you want to learn more about
color management and sRGB, a paper published by the World Wide Web Consortium
provides some detail: http://www.w3.org/Graphics/Color/sRGB.html.

Listing 3.3 shows all public classes and interfaces in the java.awt.color package.
Listing 3.3 java.awt.color Classes and Interfaces List

public class java.awt.color.CMMException extends
java.lang.RuntimeException (new in 1.2)

public abstract class java.awt.color.ColorSpace extends
java.lang.Object (new in 1.2)

public class java.awt.color.ICC_ColorSpace extends
java.awt.color.ColorSpace (new in 1.2)

public class java.awt.color.ICC_Profile extends
java.lang.Object (new in 1.2)

public class java.awt.color.ICC_ProfileGray extends
java.awt.color.ICC Profile (new in 1.2)

public class java.awt.color.ICC_ProfileRGB extends
java.awt.color.ICC Profile (new in 1.2)

public class java.awt.color.ProfileDataException extends
java.lang.RuntimeException (new in 1.2)

Package java.awt.datatransfer

This package provides a platform-independent interface for data transfer between
applications using the Clipboard. In the X Window System (and in Microsoft Windows, for
that matter), the Clipboard is used when you select the cut or copy menu item in one
application and the paste menu item to transfer data to another application.

Like many Java features, this is a lowest-common-denominator approach to supporting
native platform capabilities. It supports a data transfer mechanism found on many
graphical platforms, while ignoring a unique (and popular) X mechanism called Primary
Selection—which uses mouse buttons instead of cut, copy, and paste menu
selections.

In Chapter 56, "X Window System Tips and Tricks," in the section "XClipboard: A JNI-
Based Cut-and-Paste Tool" we present a tool to access Primary Selection.

Listing 3.4 shows all public classes and interfaces in the java.awt.datatransfer
package.

Listing 3.4 java.awt.datatransfer Classes and Interfaces List

-43 -

public class java.awt.datatransfer.Clipboard extends
java.lang.Object

public interface java.awt.datatransfer.ClipboardOwner extends
java.lang.Object

public class java.awt.datatransfer.DataFlavor extends

java.lang.Object
implements java.io.Externalizable
implements java.lang.Cloneable
public interface java.awt.datatransfer.FlavorMap extends

java.lang.Object (new in 1.2)
public class java.awt.datatransfer.StringSelection extends

java.lang.Object
implements java.awt.datatransfer.ClipboardOwner
implements java.awt.datatransfer.Transferable
public final class java.awt.datatransfer.SystemFlavorMap extends

java.lang.Object (new in 1.2)
implements java.awt.datatransfer.FlavorMap
public interface java.awt.datatransfer.Transferable extends

java.lang.Object
public class java.awt.datatransfer.UnsupportedFlavorException
extends java.lang.Exception

Package java.awt.dnd

This package, new in JDK1.2, provides platform-independent drag-and-drop (DnD)
capabilities by integrating Java with native DnD mechanisms. It supports DnD among
Java applications and between Java and non-Java applications.

Listing 3.5 shows all public classes and interfaces in the java.awt .dnd package.
Listing 3.5 java.awt.dnd Classes and Interfaces List

public interface java.awt.dnd.Autoscroll extends
java.lang.Object (new in 1.2)

public final class java.awt.dnd.DnDConstants extends
java.lang.Object (new in 1.2)

public class java.awt.dnd.DragGestureEvent extends
java.util.EventObject (new in 1.2)

public interface java.awt.dnd.DragGesturelistener extends

java.lang.Object (new in 1.2)
implements java.util.EventListener
public abstract class java.awt.dnd.DragGestureRecognizer extends

java.lang.Object (new in 1.2)

public class java.awt.dnd.DragSource extends
java.lang.Object (new in 1.2)

public class Jjava.awt.dnd.DragSourceContext extends

java.lang.Object (new in 1.2)
implements java.awt.dnd.DragSourcelListener
public class Jjava.awt.dnd.DragSourceDragEvent extends

java.awt.dnd.DragSourceEvent (new in 1.2)

public class Jjava.awt.dnd.DragSourceDropEvent extends
java.awt.dnd.DragSourceEvent (new in 1.2)

public class Jjava.awt.dnd.DragSourceEvent extends
java.util.EventObject (new in 1.2)

_44 -

public interface java.awt.dnd.DragSourcelistener extends
java.lang.Object (new in 1.2)
implements java.util.EventListener
public class Jjava.awt.dnd.DropTarget extends
java.lang.Object (new in 1.2)
implements java.awt.dnd.DropTargetListener
implements java.io.Serializable
public class Jjava.awt.dnd.DropTarget.DropTargetAutoScroller
extends
java.lang.
Object (new in 1.2)
implements java.awt.event.ActionListener
public class java.awt.dnd.DropTargetContext extends
java.lang.Object (new in 1.2)
public class java.awt.dnd.DropTargetContext.TransferableProxy
extends java.lang.
Object (new in 1.2)
implements java.awt.datatransfer.Transferable
public class java.awt.dnd.DropTargetDragEvent extends
java.awt.dnd.
DropTargetEvent (new in 1.2)
public class java.awt.dnd.DropTargetDropEvent extends
java.awt.dnd.
DropTargetEvent (new in 1.2)
public class java.awt.dnd.DropTargetEvent extends
java.util.EventObject (new in 1.2)
public interface java.awt.dnd.DropTargetListener extends

java.lang.Object (new in 1.2)
implements java.util.EventListener
public class java.awt.dnd.InvalidDnDOperationException extends
java.lang.
TllegalStateException (new in 1.2)
public abstract class java.awt.dnd.MouseDragGestureRecognizer
extends java.awt.dnd.
DragGestureRecognizer (new in 1.2)

implements java.awt.event.MouselListener
implements java.awt.event.MouseMotionListener

Package java.awt.event

This package defines the classes and interfaces that support the Java event-handling
mechanism. Event-handling is used to implement application behavior triggered by
external events (such as pressing a button in the GUI), and is based on a
broadcast/listener model: objects interested in receiving events register their interest with
objects capable of sending events. When events occur, notification is broadcast to the
interested listeners. (To those who have been around since the Java 1.0 days, this
mechanism was substantially changed in 1.1.)

A quick demonstration is shown in Listing 3.6. We'll extend the TrivialApplet
(presented in the "Package java.applet" section) by adding some mouse-press and
mouse-release behavior. The applet will handle the event by sending "button pressed"
and "button released" messages to the browser status line.

Listing 3.6 Extending the TrivialApplet Behavior

1 import java.applet.*;
2 import java.awt.*;

- 45 -

3 import java.awt.event.*;
4

5 public class TrivialApplet2 extends Applet implements
MouseListener

6 {

7 public TrivialApplet2 ()

8 {

9 // Allocate and install our button

10 Button button = new Button("Hello World!");

11 add (button) ;

12 // Register this class as a listener for mouse
events. This

13 // call expects a Mouselistener as an argument

14 button.addMouselListener (this);

15 }

16 // Implementation of the Mouselistener interface.
When

17 // we implement an interface, we must implement all

18 // methods... even those we don't care about.

19 public void mouseClicked (MouseEvent e) {}

20 public void mouseEntered (MouseEvent e) {}

21 public void mouseExited (MouseEvent e) {}

22 public void mousePressed (MouseEvent e)

23 {

24 showStatus ("Button pressed");

25 }

26 public void mouseReleased (MouseEvent e)

27 {

28 showStatus ("Button released");

29 }

30 }

On line 14, we register the TrivialApplet?2 class as a listener. The class fulfills the
basic requirement of listening for mouse events—it implements the MouseListener
interface. Lines 22-29 implement the new actions.

The result, viewed in Netscape Navigator, is shown in Figure 3.4.

Fie Edit View Go Cammunictor Healp
-) i at A o i X
f| Badk rward Felcad Home Search Matscape Frnt = [
E wk " Bogmake & Lomaton; Files o Trivialeples b | | @2 Wrat's Ralatad
Membars o Wabhall # Connactions # Bzloumal # Smartlipcate # Meipiace 2
Hello World Applet
el lw Morld!
o [EBEE ELiton pressad il & an B |

Figure 3.4: Trivial applet with a mouse listener added.

Listing 3.7 shows all public classes and interfaces in the java.awt.event package.

Listing 3.7 java.awt.event Classes and Interfaces List

- 46 -

public interface java.awt.event.AWTEventListener extends

java.lang.Object (new in 1.2)
implements java.util.EventListener
public class java.awt.event.ActionEvent extends java.awt.AWTEvent

public interface java.awt.event.ActionListener extends

java.lang.Object
implements java.util.EventListener
public class java.awt.event.AdjustmentEvent extends

java.awt.AWTEvent
public interface java.awt.event.AdjustmentListener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.ComponentAdapter extends

java.lang.Object
implements java.awt.event.ComponentListener
public class java.awt.event.ComponentEvent extends

java.awt.AWTEvent
public interface java.awt.event.ComponentListener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.ContainerAdapter extends

java.lang.Object
implements java.awt.event.ContainerListener
public class java.awt.event.ContainerEvent extends

java.awt.event.ComponentEvent
public interface java.awt.event.ContainerListener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.FocusAdapter extends

java.lang.Object
implements java.awt.event.FocusListener
public class Jjava.awt.event.FocusEvent extends

java.awt.event.ComponentEvent
public interface java.awt.event.FocusListener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.InputEvent extends

java.awt.event.ComponentEvent
public class Jjava.awt.event.InputMethodEvent extends
java.awt.AWTEvent (new in 1.2)
public interface java.awt.event.InputMethodListener extends
java.lang.Object (new in 1.2)

implements java.util.EventListener
public class java.awt.event.InvocationEvent extends
java.awt.AWTEvent (new in 1.2)

implements java.awt.ActiveEvent
public class java.awt.event.ItemEvent extends java.awt.AWTEvent
public interface java.awt.event.ItemListener extends
java.lang.Object

implements java.util.EventListener
public abstract class java.awt.event.KeyAdapter extends

java.lang.Object
implements java.awt.event.KeyListener
public class java.awt.event.KeyEvent extends

java.awt.event.InputEvent
public interface java.awt.event.KeyListener extends

-47 -

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.MouseAdapter extends

java.lang.Object
implements java.awt.event.MouselListener
public class Jjava.awt.event.MouseEvent extends

java.awt.event.InputEvent
public interface java.awt.event.Mouselistener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.MouseMotionAdapter extends

java.lang.Object
implements java.awt.event.MouseMotionListener
public interface java.awt.event.MouseMotionListener extends

java.lang.Object
implements java.util.EventListener
public class Jjava.awt.event.PaintEvent extends

java.awt.event.ComponentEvent
public class java.awt.event.TextEvent extends java.awt.AWTEvent
public interface java.awt.event.TextListener extends

java.lang.Object
implements java.util.EventListener
public abstract class java.awt.event.WindowAdapter extends

java.lang.Object
implements java.awt.event.WindowListener
public class Jjava.awt.event.WindowEvent extends

java.awt.event.ComponentEvent
public interface java.awt.event.WindowListener extends

java.lang.Object
implements java.util.EventListener

Package java.awt. font

This package, new to JDK1.2, supports detailed manipulation and use of scalable
typefaces. Most ordinary GUI and printing applications will not need these capabilities,
but they are valuable for desktop publishing, graphic arts, and other applications with
complex typographic requirements.

Listing 3.8 shows all public classes and interfaces in the java.awt. font package.
Listing 3.8 java.awt.font Classes and Interfaces List

public class Jjava.awt.font.FontRenderContext extends
java.lang.Object (new in 1.2)

public final class java.awt.font.GlyphJustificationInfo extends
java.lang.
Object (new in 1.2)

public final class Jjava.awt.font.GlyphMetrics extends
java.lang.Object (new in 1.2)
public abstract class java.awt.font.GlyphVector extends

java.lang.Object (new in 1.2)
implements java.lang.Cloneable
public abstract class java.awt.font.GraphicAttribute extends

java.lang.Object (new in 1.2)
public final class Jjava.awt.font.ImageGraphicAttribute extends
java.awt.font.

- 48 -

GraphicAttribute (new in 1.2)

public final class java.awt.font.LineBreakMeasurer extends

java.lang.Object (new in 1.2)

public abstract class java.awt.font.LineMetrics extends

java.lang.Object (new in 1.2)

public interface java.awt.font.MultipleMaster extends

java.lang.Object (new in 1.2)

public interface Jjava.awt.font.OpenType extends

java.lang.Object (new in 1.2)

public final class java.awt.font.ShapeGraphicAttribute extends
java.awt.font.

GraphicAttribute (new in 1.2)

public final class Jjava.awt.font.TextAttribute extends

java.text.AttributedCharacterIterator.

Attribute (new in 1.2)

public final class java.awt.font.TextHitInfo extends

java.lang.Object (new in 1.2)

public final class java.awt.font.TextLayout extends

java.lang.Object (new in 1.2)
implements java.lang.Cloneable
public class Jjava.awt.font.TextLayout.CaretPolicy extends

java.lang.Object (new in 1.2)

public final class Jjava.awt.font.TextLine.TextLineMetrics extends
java.lang.Object (new in 1.2)

public final class java.awt.font.TransformAttribute extends

java.lang.Object (new in 1.2)
implements java.io.Serializable

Package java.awt.geom

This package, new to JDK1.2, is associated with the new Graphics2D capabilities. The
classes here support drawing, manipulation, and transformation of objects representing
two-dimensional geometric primitives—arcs, lines, points, rectangles, ellipses, parametric
curves—in a floating point coordinate space.

Listing 3.9 shows all public classes and interfaces in the java.awt .geom package.
Listing 3.9 java.awt.geom Classes and Interfaces List

public class java.awt.geom.AffineTransform extends

java.lang.Object (new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
public abstract class java.awt.geom.Arc2D extends

java.awt.geom.RectangularShape (new in 1.2)
public class java.awt.geom.Arc2D.Double extends
java.awt.geom.Arc2D (new in 1.2)

public class java.awt.geom.Arc2D.Float extends
java.awt.geom.Arc2D (new in 1.2)

public class java.awt.geom.Area extends

java.lang.Object (new in 1.2)
implements java.awt.Shape
implements java.lang.Cloneable
public abstract class java.awt.geom.CubicCurve2D extends

- 49 -

java.lang.Object (new in 1.2)
implements java.awt.Shape
implements java.lang.Cloneable
public class Jjava.awt.geom.CubicCurve2D.Double extends

java.awt.geom.CubicCurve2D (new in 1.2)

public class java.awt.geom.CubicCurve2D.Float extends
java.awt.geom.CubicCurve2D (new in 1.2)

public abstract class java.awt.geom.Dimension2D extends

java.lang.Object (new in 1.2)
implements java.lang.Cloneable
public abstract class java.awt.geom.Ellipse2D extends

java.awt.geom.RectangularShape (new in 1.2)

public class java.awt.geom.Ellipse2D.Double extends
java.awt.geom.Ellipse2D (new in 1.2)

public class java.awt.geom.Ellipse2D.Float extends
java.awt.geom.Ellipse2D (new in 1.2)

public class java.awt.geom.FlatteningPathIterator extends

java.lang.Object (new in 1.2)
implements java.awt.geom.PathIterator
public final class java.awt.geom.GeneralPath extends

java.lang.Object (new in 1.2)
implements java.awt.Shape
implements java.lang.Cloneable
public class java.awt.geom.IllegalPathStateException extends
java.lang.
RuntimeException (new in 1.2)

public abstract class java.awt.geom.Line2D extends

java.lang.Object (new in 1.2)
implements java.awt.Shape
implements java.lang.Cloneable
public class java.awt.geom.Line2D.Double extends

java.awt.geom.Line2D (new in 1.2)
public class java.awt.geom.Line2D.Float extends
java.awt.geom.Line2D (new in 1.2)

public class java.awt.geom.NoninvertibleTransformException
extends java.lang.
Exception (new in 1.2)

public interface java.awt.geom.PathIterator extends
java.lang.Object (new in 1.2)
public abstract class java.awt.geom.Point2D extends

java.lang.Object (new in 1.2)
implements java.lang.Cloneable
public class java.awt.geom.Point2D.Double extends

java.awt.geom.Point2D (new in 1.2)

public class java.awt.geom.Point2D.Float extends
java.awt.geom.Point2D (new in 1.2)

public abstract class java.awt.geom.QuadCurve2D extends

java.lang.Object (new in 1.2)
implements java.awt.Shape
implements java.lang.Cloneable
public class Jjava.awt.geom.QuadCurve2D.Double extends

java.awt.geom.QuadCurve2D (new in 1.2)
public class java.awt.geom.QuadCurve2D.Float extends
java.awt.geom.QuadCurve2D (new in 1.2)

public abstract class java.awt.geom.Rectangle2D extends
java.awt.geom.
RectangularShape (new in 1.2)

-50 -

public class Jjava.awt.
java.awt.geom.Rectangle2D
public class Jjava.awt.
java.awt.geom.Rectangle2D

public abstract class

java.lang.Object (new

geom.Rectangle2D.Double extends

(new in 1.2)
geom.Rectangle2D.Float extends

(new in 1.2)
java.awt.geom.RectangularShape extends
in 1.2)

implements java.awt.Shape
implements java.lang.Cloneable

public abstract class
java.awt.geom.

RectangularShape (new

public class java.awt
java.awt.geom.

RoundRectangle2D (new

public class java.awt.

java.awt.geom.

RoundRectangle2D (new

Package java.awt.

java.awt.geom.RoundRectangle2D extends

in 1.2)

.geom.RoundRectangle2D.Double extends

in 1.2)
geom.RoundRectangle2D.Float extends

in 1.2)

im

This package, new to JDK1.2, supports input methods that allow large alphabets (such
as ideographic representations of the Japanese, Chinese, and Korean languages) to be
entered on small keyboards. A common example is the use of the phonetic Japanese
Katakana alphabet to spell out and enter glyphs from the ideographic Kanji alphabet.

Listing 3.10 shows all public classes and interfaces in the java.awt.im package.

Listing 3.10 java.awt.im Classes and Interfaces List

public class java.awt.

(new in 1.2)

public class java.awt.

java.lang.Object (new
public interface java

java.lang.Object (new

im.InputContext extends java.lang.Object

im.InputMethodHighlight extends
in 1.2)

.awt.im.InputMethodRequests extends

in 1.2)

public final class Jjava.awt.im.InputSubset extends

java.lang.Character.Subset

(new in 1.2)

Package java.awt.image

This package, which has grown substantially in JDK1.2, supports manipulation of
bitmapped images. The newer capabilities are not of interest to most GUI programs but
are of considerable utility to image processing applications.

As a demonstration of image manipulation, the SlideShow utility in Appendix B,
"Miscellaneous Program Listings," loads and displays images from .gif and . jpg

image files, optionally rescaling and/or sharpening them for display. The small excerpt in
Listing 3.11 shows the use of java.awt . image capabilities to handle the

transformations.

Listing 3.11 Excerpt of SlideShow.java, Showing the Use of java.awt.image

Transformations

193
194 if
195 {

// If we want to rescale,
(rescale.

set up the filter
isSelected())

-51 -

196 // Find our current image size

197 Dimension dim = getSlideDimension () ;

198 if (dim == null) return;

199 double xscale = (double)width / (double)dim.width;
200 double yscale = (double)height /
(double)dim.height;

201 double xyscale = Math.min (xscale, yscale);
202 // Set hints for maximum quality

203 RenderingHints hints =

204 new RenderingHints (

205 RenderingHints.KEY ANTIALIASING,

206 RenderingHints.VALUE ANTIALIAS ON) ;
207 hints.add(

208 new RenderingHints (

209 RenderingHints.KEY COLOR_RENDERING,
210

RenderingHints.VALUE COLOR RENDER QUALITY)) ;

211 ImageFilter rescaleFilter =

212 new BufferedImageFilter (

213 new AffineTransformOp (

214

AffineTransform.getScalelnstance (xyscale, xyscale),

215 hints));

216 transformedSlide =
Toolkit.getDefaultToolkit () .createImage (

217 new FilteredImageSource (

218 transformedSlide.getSource (),
rescaleFilter));

219 }

220 // If we want to sharpen, set up the filter

221 if (sharpen.isSelected())

222 {

223 float ctr = 2, offc = -.125f;

224 ImageFilter sharpenFilter =

225 new BufferedImageFilter (

226 new ConvolveOp (

227 new Kernel (3, 3, new float[]

228 { offc, offc, offc,
229 offc, ctr , offc,
230 offc, offc, offc })));
231 transformedSlide =

Toolkit.getDefaultToolkit ().createImage (

232 new FilteredImageSource (

233 transformedSlide.getSource (),

sharpenFilter));
234 }

Listing 3.12 shows all public classes and interfaces in the java.awt.image package.

Listing 3.12 java.awt.image Classes and Interfaces List

public class java.awt.image.AffineTransformOp extends

java.lang.Object (new in 1.2)

implements java.awt.image.BufferedImageOp

implements java.awt.image.RasterOp

-5

public class Jjava.awt.image.AreaAveragingScaleFilter extends
java.awt.image.ReplicateScaleFilter
public class Jjava.awt.image.BandCombineOp extends
java.lang.Object (new in 1.2)

implements java.awt.image.RasterOp
public final class Jjava.awt.image.BandedSampleModel extends
java.awt.image.
ComponentSampleModel (new in 1.2)
public class java.awt.image.BufferedImage extends java.awt.Image
(new in 1.2)

implements java.awt.image.WritableRenderedImage
public class Jjava.awt.image.BufferedImageFilter extends
java.awt.image.ImageFilter (new in 1.2)

implements java.lang.Cloneable
public interface java.awt.image.BufferedImageOp extends
java.lang.Object (new in 1.2)
public class Jjava.awt.image.ByteLookupTable extends
java.awt.image.LookupTable (new in 1.2)
public class Jjava.awt.image.ColorConvertOp extends
java.lang.Object (new in 1.2)

implements java.awt.image.BufferedImageOp

implements java.awt.image.RasterOp
public abstract class java.awt.image.ColorModel extends
java.lang.Object

implements java.awt.Transparency
public class java.awt.image.ComponentColorModel extends
java.awt.image.ColorModel (new in 1.2)
public class java.awt.image.ComponentSampleModel extends
java.awt.image.SampleModel (new in 1.2)
public class java.awt.image.ConvolveOp extends java.lang.Object
(new in 1.2)

implements java.awt.image.BufferedImageOp

implements java.awt.image.RasterOp
public class java.awt.image.CropImageFilter extends
java.awt.image.ImageFilter
public abstract class java.awt.image.DataBuffer extends
java.lang.Object (new in 1.2)
public final class java.awt.image.DataBufferByte extends
java.awt.image.DataBuffer (new in 1.2)
public final class java.awt.image.DataBufferInt extends
java.awt.image.DataBuffer (new in 1.2)
public final class java.awt.image.DataBufferShort extends
java.awt.image.DataBuffer (new in 1.2)
public final class Jjava.awt.image.DataBufferUShort extends
java.awt.image.DataBuffer (new in 1.2)
public class java.awt.image.DirectColorModel extends
java.awt.image.PackedColorModel
public class java.awt.image.FilteredImageSource extends
java.lang.Object

implements java.awt.image.ImageProducer
public interface java.awt.image.ImageConsumer extends
java.lang.Object
public class java.awt.image.ImageFilter extends java.lang.Object

implements java.awt.image.ImageConsumer

implements java.lang.Cloneable
public interface java.awt.image.ImageObserver extends
java.lang.Object
public interface java.awt.image.ImageProducer extends

-53 -

java.lang.Object
public class java.awt.

java.lang.RuntimeException

public class java.awt.

image.ImagingOpException extends
(new in 1.2)
image.IndexColorModel extends

java.awt.image.ColorModel

public class java.awt.
in 1.2)

image.Kernel extends java.lang.Object (new

implements java.lang.Cloneable

public class java.awt.
(new in 1.2)

image.LookupOp extends java.lang.Object

implements java.awt.image.BufferedImageOp
implements java.awt.image.RasterOp

public abstract class
java.lang.Object (new

public class Jjava.awt.
java.lang.Object

java.awt.image.LookupTable extends
in 1.2)
image.MemoryImageSource extends

implements java.awt.image.ImageProducer

public class java.awt.
java.awt.image.
SampleModel (new in 1.
public abstract class
java.awt.image.
ColorModel
public class java.awt.
java.lang.Object

image.MultiPixelPackedSampleModel extends

2)
java.awt.image.PackedColorModel extends

(new in 1.2)

image.PixelGrabber extends

implements java.awt.image.ImageConsumer

public class Jjava.awt.
java.awt.image.

ComponentSampleModel
public abstract class

image.PixelInterleavedSampleModel extends

(new in 1.2)

java.awt.image.RGBImageFilter extends

java.awt.image.ImageFilter

public class java.awt.
in 1.2)

public class java.awt.
java.lang.

RuntimeException (new

public interface java.
(new in 1.2)

public interface java.
java.lang.Object (new

public class java.awt.

image.Raster extends java.lang.Object (new

image.RasterFormatException extends

in 1.2)
awt.image.RasterOp extends java.lang.Object

awt.image.RenderedImage extends
in 1.2)
image.ReplicateScaleFilter extends

java.awt.image.ImageFilter

public class java.awt.
(new in 1.2)

image.RescaleOp extends java.lang.Object

implements java.awt.image.BufferedImageOp
implements java.awt.image.RasterOp

public abstract class
java.lang.Object (new

public class Jjava.awt.

java.awt.image.LookupTable

public class Jjava.awt.
java.awt.image.

SampleModel (new in 1.
public interface java.
java.lang.Object (new
public class java.awt.
java.awt.image.Raster

public interface java.

java.awt.image.SampleModel extends

in 1.2)

image.ShortLookupTable extends

(new in 1.2)
image.SinglePixelPackedSampleModel extends

2)
awt.image.TileObserver extends
in 1.2)

image.WritableRaster extends
(new in 1.2)
awt.image.WritableRenderedImage extends

-54 -

java.lang.Object (new in 1.2)
implements java.awt.image.RenderedImage

Package java.awt.image.renderable

This package, new to JDK1.2, supports rendering-independent images, images managed
in a resolution-independent manner.

Listing 3.13 shows all public classes and interfaces in the
java.awt.image.renderable package.

Listing 3.13 java.awt.image.renderable Classes and Interfaces List

public interface
java.awt.image.renderable.ContextualRenderedImageFactory
extends java.lang.Object (new in 1.2)

implements java.awt.image.renderable.RenderedImageFactory
public class Jjava.awt.image.renderable.ParameterBlock extends

java.lang.Object (new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
public class java.awt.image.renderable.RenderContext extends

java.lang.Object (new in 1.2)
implements java.lang.Cloneable
public interface java.awt.image.renderable.RenderableImage
extends java.lang.
Object (new in 1.2)
public class java.awt.image.renderable.RenderableImageOp extends

java.lang.Object (new in 1.2)
implements java.awt.image.renderable.RenderablelImage
public class Jjava.awt.image.renderable.RenderableImageProducer
extends
java.lang.Object (new in 1.2)
implements java.awt.image.ImageProducer
implements java.lang.Runnable
public interface java.awt.image.renderable.RenderedImageFactory
extends
java.lang.Object (new in 1.2)

Package java.awt.print

Good printing support has been a latecomer to Java. JDK1.1 began to introduce a
printing model, and this package, new to JDK1.2, upgrades the model. The classes
provided here allow you to manage print jobs, page formats, paper, and books.

When you print from a Java/Linux application, the AWT generates a PostScript’ file and
sends it to the print spooling subsystem, where it will print properly if you send it to a
PostScript-capable printer. To learn more about printing from Linux, including how to print
PostScript if you do not have such a printer, see the "Printing HOWTO" published on the
Linux help page at http://www.linux.org/help/howto.html.

Listing 3.14 shows all public classes and interfaces in the java.awt.print package.
Listing 3.14 java.awt.print Classes and Interfaces List

public class java.awt.print.Book extends java.lang.Object (new in
1.2)
implements java.awt.print.Pageable

-55-

public class Jjava.awt.print.PageFormat extends java.lang.Object
(new in 1.2)

implements java.lang.Cloneable
public interface java.awt.print.Pageable extends java.lang.Object
(new in 1.2)
public class Jjava.awt.print.Paper extends Jjava.lang.Object (new
in 1.2)

implements java.lang.Cloneable
public interface java.awt.print.Printable extends
java.lang.Object (new in 1.2)
public class Jjava.awt.print.PrinterAbortException extends
java.awt.print.
PrinterException (new in 1.2)

public class Jjava.awt.print.PrinterException extends
java.lang.Exception (new in 1.2)

public interface java.awt.print.PrinterGraphics extends
java.lang.Object (new in 1.2)

public class java.awt.print.PrinterIOException extends
java.awt.print.

PrinterException (new in 1.2)

public abstract class java.awt.print.PrinterJob extends
java.lang.Object (new in 1.2)

Package java.beans

JavaBeans is the name for the Java component architecture. Beans are modular,
reusable pieces of Java functionality that describe themselves (their inputs, outputs, and
behavior) so that they can easily be dropped into and manipulated by other applications.
Beans are easy to write—many core platform classes are beans—and are most
frequently built by following some simple stylistic rules when building classes.

This package provides a collection of premium Bean functionality. Some Beans need
these classes to enable advanced configuration capabilities; many do not.

Listing 3.15 shows all public classes and interfaces in the java.beans package.
Listing 3.15 java.beans Classes and Interfaces List

public interface java.beans.AppletlInitializer extends
java.lang.Object (new in 1.2)

public class java.beans.BeanDescriptor extends
java.beans.FeatureDescriptor

public interface java.beans.BeanInfo extends java.lang.Object
public class java.beans.Beans extends java.lang.Object

public interface java.beans.Customizer extends java.lang.Object
public interface java.beans.DesignMode extends java.lang.Object
(new in 1.2)

public class Jjava.beans.EventSetDescriptor extends
java.beans.FeatureDescriptor

public class java.beans.FeatureDescriptor extends
java.lang.Object

public class java.beans.IndexedPropertyDescriptor extends
java.beans.PropertyDescriptor

public class java.beans.IntrospectionException extends
java.lang.Exception

public class Jjava.beans.Introspector extends java.lang.Object
public class java.beans.MethodDescriptor extends
java.beans.FeatureDescriptor

- 56 -

public class Jjava.beans.ParameterDescriptor extends
java.beans.FeatureDescriptor

public class Jjava.beans.PropertyChangeEvent extends
java.util.EventObject
public interface Jjava.beans.PropertyChangelistener extends
java.lang.Object
implements java.util.EventListener
public class Jjava.beans.PropertyChangeSupport extends
java.lang.Object
implements java.io.Serializable
public class java.beans.PropertyDescriptor extends
java.beans.FeatureDescriptor
public interface java.beans.PropertyEditor extends
java.lang.Object
public class java.beans.PropertyEditorManager extends
java.lang.Object
public class java.beans.PropertyEditorSupport extends
java.lang.Object
implements java.beans.PropertyEditor
public class java.beans.PropertyVetoException extends
java.lang.Exception
public class java.beans.SimpleBeanInfo extends java.lang.Object
implements java.beans.BeanInfo
public interface java.beans.VetoableChangelistener extends
java.lang.Object
implements java.util.EventListener
public class java.beans.VetoableChangeSupport extends
java.lang.Object
implements java.io.Serializable
public interface java.beans.Visibility extends java.lang.Object

Package java.beans.beancontext

This package, new to JDK1.2, supports Bean Contexts, hierarchical containers for
JavaBeans. The JDK1.1 JavaBeans model allows containers (tools or applications that
use Beans) to discover the capabilities and services provided by a Bean. JDK1.2 Bean
Contexts add an inverse capability—they allow Beans to discover the capabilities of the
environment in which they are being used.

Listing 3.16 shows all public classes and interfaces in the java.beans.beancontext
package.

Listing 3.16 java.beans.beancontext Classes and Interfaces List

public interface Jjava.beans.beancontext.BeanContext extends

java.lang.Object (new in 1.2)
implements java.beans.DesignMode
implements java.beans.Visibility
implements java.beans.beancontext.BeanContextChild
implements java.util.Collection
public interface java.beans.beancontext.BeanContextChild extends
java.lang.Object (new in 1.2)
public interface
java.beans.beancontext.BeanContextChildComponentProxy extends
java.lang.Object (new in 1.2)
public class Jjava.beans.beancontext.BeanContextChildSupport
extends
java.lang.Object (new in 1.2)
implements java.beans.beancontext.BeanContextChild
implements

-57 -

java.beans.beancontext.BeanContextServicesListener
implements java.io.Serializable
public interface java.beans.beancontext.BeanContextContainerProxy
extends
java.lang.Object (new in 1.2)

public abstract class java.beans.beancontext.BeanContextEvent
extends

java.util.EventObject (new in 1.2)

public class Jjava.beans.beancontext.BeanContextMembershipEvent
extends

java.beans.beancontext.

BeanContextEvent (new in 1.2)

public interface
java.beans.beancontext.BeanContextMembershipListener extends
java.lang.Object (new in 1.2)

implements java.util.EventListener
public interface java.beans.beancontext.BeanContextProxy extends

java.lang.Object (new in 1.2)

public class
java.beans.beancontext.BeanContextServiceAvailableEvent extends
java.beans.beancontext.BeanContextEvent (new in 1.2)

public interface
java.beans .beancontext.BeanContextServiceProvider extends
java.lang.Object (new in 1.2)

public interface
java.beans.beancontext.BeanContextServiceProviderBeanInfo
extends java.lang.Object (new in 1.2)

implements java.beans.BeanInfo
public class
java.beans.beancontext.BeanContextServiceRevokedEvent extends
java.beans.beancontext.BeanContextEvent (new in 1.2)

public interface
java.beans.beancontext.BeanContextServiceRevokedListener
extends java.lang.Object (new in 1.2)
implements java.util.EventListener
public interface java.beans.beancontext.BeanContextServices
extends
java.lang.Object (new in 1.2)
implements java.beans.beancontext.BeanContext
implements java.beans.beancontext.BeanContextServicesListener
public interface
java.beans .beancontext.BeanContextServicesListener extends
java.lang.Object (new in 1.2)
implements
java.beans.beancontext.BeanContextServiceRevokedListener
public class java.beans.beancontext.BeanContextServicesSupport
extends
java.beans.beancontext.
BeanContextSupport (new in 1.2)
implements java.beans.beancontext.BeanContextServices
public class Jjava.beans.beancontext.BeanContextServicesSupport.
BCSSProxyServiceProvider extends java.lang.Object (new in 1.2)
implements java.beans.beancontext.BeanContextServiceProvider
implements
java.beans.beancontext.BeanContextServiceRevokedListener
public class Jjava.beans.beancontext.BeanContextServicesSupport.
BCSSServiceProvider extends java.lang.Object (new in 1.2)
implements java.io.Serializable
public class java.beans.beancontext.BeanContextSupport extends
java.beans.beancontext.
BeanContextChildSupport (new in 1.2)

-58-

implements java.beans.PropertyChangelistener
implements java.beans.VetoableChangelListener
implements java.beans.beancontext.BeanContext
implements java.io.Serializable
public final class
java.beans.beancontext.BeanContextSupport.BCSIterator
extends java.lang.Object (new in 1.2)
implements java.util.Iterator

Package java.io

An important core package, java. io, provides basic file Input/Output (1/0) support.
Classes are provided to support byte-oriented 1/O, character-oriented I/O, line-oriented
I/O, buffering, filtering, 1/0 to arrays instead of files, and I/O of Java primitive types and
serialized Java classes.

One important data and I/O capability introduced in JDK1.1 was support of
Internationalization (I118N) by representing multibyte characters as distinct entities from
bytes. This is reflected in the existence of the distinct byte and char data types, and
different java. io classes to support the two types. Classes descended from
java.io.InputStreamand java.io.OutputStream handle bytes, while those
descended from java.io.Reader and java.io.Writer handle characters.

Each of the java. io capabilities comes in its own class—one class provides character-
oriented /O, another provides buffering, and so on. You can achieve combinations of
these capabilities by stringing the classes together. For example, an object to provide
buffered, line-oriented (including tracking of line numbers) reading of multibyte characters
from a file can be created with the following code:

LineNumberReader reader = new LineNumberReader (new
FileReader ("filename")) ;

Listing 3.17 shows all public classes and interfaces in the java. io package.
Listing 3.17 java.io Classes and Interfaces List

public class java.io.BufferedInputStream extends
java.lo.FilterInputStream

public class java.io.BufferedOutputStream extends
java.ilo.FilterOutputStream

public class java.io.BufferedReader extends java.io.Reader

public class java.io.BufferedWriter extends java.io.Writer

public class java.io.ByteArrayInputStream extends
java.io.InputStream

public class java.io.ByteArrayOutputStream extends
java.io.OutputStream

public class Jjava.io.CharArrayReader extends java.io.Reader
public class java.io.CharArrayWriter extends java.io.Writer

public class Jjava.io.CharConversionException extends
java.io.IOException
public interface java.io.Datalnput extends java.lang.Object
public class java.io.DataInputStream extends
java.ilo.FilterInputStream

implements java.io.Datalnput
public interface java.io.DataOutput extends java.lang.Object
public class Jjava.io.DataOutputStream extends
java.io.FilterOutputStream

implements java.io.DataOutput
public class java.io.EOFException extends java.io.IOException

-59 -

public interface java.io.Externalizable extends java.lang.Object
implements java.io.Serializable
public class java.io.File extends java.lang.Object
implements java.io.Serializable
implements java.lang.Comparable
public final class Jjava.io.FileDescriptor extends
java.lang.Object
public interface java.io.FileFilter extends java.lang.Object (new
in 1.2)
public class java.io.FileInputStream extends java.io.InputStream

public class java.io.FileNotFoundException extends
java.io.IOException

public class java.io.FileOutputStream extends
java.ilo.OutputStream

public final class Jjava.io.FilePermission extends

java.security.Permission (new in 1.2)

implements java.io.Serializable
public class java.io.FileReader extends java.io.InputStreamReader
public class java.io.FileWriter extends
java.io.OutputStreamWriter
public interface java.io.FilenameFilter extends java.lang.Object

public class java.io.FilterInputStream extends
java.io.InputStream

public class java.io.FilterOutputStream extends
java.ilo.OutputStream

public abstract class java.io.FilterReader extends java.io.Reader

public abstract class java.io.FilterWriter extends java.io.Writer
public class java.io.IOException extends java.lang.Exception

public abstract class java.io.InputStream extends
java.lang.Object
public class Jjava.io.InputStreamReader extends java.io.Reader

public class java.io.InterruptedIOException extends
java.io.IOException
public class Jjava.io.InvalidClassException extends java.io.

ObjectStreamException
public class java.io.InvalidObjectException extends java.io.
ObjectStreamException

public class Jjava.io.LineNumberInputStream extends
java.io.FilterInputStream

(deprecated in 1.1)

public class java.io.LineNumberReader extends
java.ilo.BufferedReader

public class java.io.NotActiveException extends
java.io.0ObjectStreamException

public class java.io.NotSerializableException extends java.io.

ObjectStreamException

public interface java.io.ObjectInput extends java.lang.Object
implements java.io.Datalnput
public class java.io.ObjectInputStream extends
java.io.InputStream
implements java.io.ObjectInput
implements java.io.ObjectStreamConstants
public abstract class java.io.ObjectInputStream.GetField extends
java.lang.Object (new in 1.2)
public interface java.io.ObjectInputValidation extends
java.lang.Object
public interface java.io.ObjectOutput extends java.lang.Object
implements java.io.DataOutput
public class java.io.ObjectOutputStream extends
java.io.OutputStream

- 60 -

implements java.io.ObjectOutput

implements java.io.ObjectStreamConstants
public abstract class java.io.ObjectOutputStream.PutField extends
java.lang.Object (new in 1.2)

public class java.io.ObjectStreamClass extends java.lang.Object
implements java.io.Serializable

public interface java.io.ObjectStreamConstants extends

java.lang.Object

public abstract class java.io.ObjectStreamException extends

java.io.IOException

public class java.io.ObjectStreamField extends java.lang.Object
implements java.lang.Comparable

public class Jjava.io.OptionalDataException extends java.io.

ObjectStreamException
public abstract class java.io.OutputStream extends
java.lang.Object
public class java.io.OutputStreamWriter extends java.io.Writer
public class Jjava.io.PipedInputStream extends java.io.InputStream
public class java.io.PipedOutputStream extends
java.io.OutputStream
public class java.io.PipedReader extends java.io.Reader
public class java.io.PipedWriter extends java.io.Writer
public class java.io.PrintStream extends
java.lo.FilterOutputStream
public class Jjava.io.PrintWriter extends java.io.Writer
public class java.io.PushbackInputStream extends
java.ilo.FilterInputStream
public class Jjava.io.PushbackReader extends java.io.FilterReader
public class java.io.RandomAccessFile extends java.lang.Object
implements java.io.Datalnput
implements java.io.DataOutput
public abstract class java.io.Reader extends java.lang.Object
public class java.io.SequencelInputStream extends
java.io.InputStream
public interface java.io.Serializable extends java.lang.Object
public final class java.io.SerializablePermission extends
java.security.
BasicPermission (new in 1.2)
public class java.io.StreamCorruptedException extends java.io.
ObjectStreamException
public class java.io.StreamTokenizer extends java.lang.Object
public class java.io.StringBufferInputStream extends
java.io.InputStream
(deprecated in 1.1)
public class java.io.StringReader extends java.io.Reader
public class java.io.StringWriter extends java.io.Writer
public class java.io.SyncFailedException extends
java.io.IOException
public class java.io.UTFDataFormatException extends
java.io.IOException
public class java.io.UnsupportedEncodingException extends
java.io.IOException
public class Jjava.io.WriteAbortedException extends java.io.
ObjectStreamException
public abstract class java.io.Writer extends java.lang.Object

Package java.lang

-61 -

This package contains core classes fundamental to the design of the Java language and
runtime environment. Among the classes included here are:

» Errors and exceptions that can be generated by the Java Virtual Machine (as
distinguished from those generated by class code). For example, the JVM generates
java.lang.ClassFormatError if it tries to read an invalid Java class file.

* Core language types such as Class, ClassLoader, Thread, and Runtime.

» Wrappers around primitive data types, allowing them to be manipulated as classes.
Listing 3.18 shows all public classes and interfaces in the java. lang package.
Listing 3.18 java.lang Classes and Interfaces List

public class Jjava.lang.AbstractMethodError extends java.lang.
IncompatibleClassChangeError

public class java.lang.ArithmeticException extends

java.lang.RuntimeException

public class java.lang.ArrayIndexOutOfBoundsException extends

java.lang.

IndexOutOfBoundsException

public class java.lang.ArrayStoreException extends

java.lang.RuntimeException

public final class Jjava.lang.Boolean extends java.lang.Object
implements java.io.Serializable

public final class java.lang.Byte extends java.lang.Number
implements java.lang.Comparable

public final class java.lang.Character extends java.lang.Object
implements java.io.Serializable
implements java.lang.Comparable

public class Jjava.lang.Character.Subset extends java.lang.Object

(new in 1.2)

public final class java.lang.Character.UnicodeBlock extends

java.lang.Character.Subset (new in 1.2)

public final class java.lang.Class extends java.lang.Object
implements java.io.Serializable

public class Jjava.lang.ClassCastException extends

java.lang.RuntimeException

public class java.lang.ClassCircularityError extends

java.lang.LinkageError

public class Jjava.lang.ClassFormatError extends

java.lang.LinkageError

public abstract class java.lang.ClassLoader extends

java.lang.Object

public class java.lang.ClassNotFoundException extends

java.lang.Exception

public class Jjava.lang.CloneNotSupportedException extends

java.lang.Exception

public interface java.lang.Comparable extends java.lang.Object

(new in 1.2)

public final class java.lang.Compiler extends java.lang.Object

public final class java.lang.Double extends java.lang.Number
implements java.lang.Comparable

public class java.lang.Error extends java.lang.Throwable

public class java.lang.Exception extends java.lang.Throwable

public class java.lang.ExceptionInInitializerError extends

java.lang.LinkageError

public final class java.lang.Float extends java.lang.Number

-62 -

implements java.lang.Comparable

public class Jjava.lang.IllegalAccessError extends java.lang.

IncompatibleClassChangeError

public class Jjava.lang.IllegalAccessException extends

java.lang.Exception

public class java.lang.IllegalArgumentException extends

java.lang.RuntimeException

public class java.lang.IllegalMonitorStateException extends

java.lang.RuntimeException

public class java.lang.IllegalStateException extends

java.lang.RuntimeException

public class java.lang.IllegalThreadStateException extends

java.lang.

TllegalArgumentException

public class java.lang.IncompatibleClassChangeError extends

java.lang.LinkageError

public class java.lang.IndexOutOfBoundsException extends

java.lang.

RuntimeException

public class java.lang.InheritableThreadlLocal extends

java.lang.ThreadLocal

(new in 1.2)

public class java.lang.InstantiationError extends java.lang.

IncompatibleClassChangeError

public class java.lang.InstantiationException extends

java.lang.Exception

public final class Jjava.lang.Integer extends java.lang.Number
implements java.lang.Comparable

public class java.lang.InternalError extends

java.lang.VirtualMachineError

public class java.lang.InterruptedException extends

java.lang.Exception

public class Jjava.lang.LinkageError extends java.lang.Error

public final class java.lang.Long extends java.lang.Number
implements java.lang.Comparable

public final class java.lang.Math extends java.lang.Object

public class java.lang.NegativeArraySizeException extends

java.lang.

RuntimeException

public class java.lang.NoClassDefFoundError extends

java.lang.LinkageError

public class Jjava.lang.NoSuchFieldError extends java.lang.

IncompatibleClassChangeError

public class Jjava.lang.NoSuchFieldException extends

java.lang.Exception

public class Jjava.lang.NoSuchMethodError extends java.lang.

IncompatibleClassChangeError

public class Jjava.lang.NoSuchMethodException extends

java.lang.Exception

public class java.lang.NullPointerException extends

java.lang.RuntimeException

public abstract class java.lang.Number extends java.lang.Object
implements java.io.Serializable

public class java.lang.NumberFormatException extends java.lang.

IllegalArgumentException

public class java.lang.Object extends (none)

public class Jjava.lang.OutOfMemoryError extends

java.lang.VirtualMachineError

public class java.lang.Package extends java.lang.Object (new in

-63 -

1.2)
public abstract class java.lang.Process extends java.lang.Object

public interface java.lang.Runnable extends java.lang.Object
public class java.lang.Runtime extends java.lang.Object

public class java.lang.RuntimeException extends
java.lang.Exception
public final class Jjava.lang.RuntimePermission extends
java.security.
BasicPermission (new in 1.2)
public class Jjava.lang.SecurityException extends
java.lang.RuntimeException
public class java.lang.SecurityManager extends java.lang.Object
public final class java.lang.Short extends java.lang.Number
implements java.lang.Comparable
public class Jjava.lang.StackOverflowError extends
java.lang.VirtualMachineError
public final class java.lang.String extends java.lang.Object
implements java.io.Serializable
implements java.lang.Comparable
public final class java.lang.StringBuffer extends
java.lang.Object
implements java.io.Serializable
public class Jjava.lang.StringIndexOutOfBoundsException extends
java.lang.
IndexOutOfBoundsException
public final class java.lang.System extends java.lang.Object
public class Jjava.lang.Thread extends java.lang.Object
implements java.lang.Runnable
public class java.lang.ThreadDeath extends java.lang.Error
public class Jjava.lang.ThreadGroup extends java.lang.Object
public class java.lang.ThreadLocal extends java.lang.Object (new
in 1.2)
public class Jjava.lang.Throwable extends java.lang.Object
implements java.io.Serializable
public class java.lang.UnknownError extends
java.lang.VirtualMachineError
public class java.lang.UnsatisfiedLinkError extends
java.lang.LinkageError
public class Jjava.lang.UnsupportedClassVersionError extends
java.lang.
ClassFormatError (new in 1.2)
public class java.lang.UnsupportedOperationException extends
java.lang.
RuntimeException (new in 1.2)
public class Jjava.lang.VerifyError extends java.lang.LinkageError

public abstract class java.lang.VirtualMachineError extends
java.lang.Error
public final class Jjava.lang.Void extends java.lang.Object

Package java.lang.ref

This package, new to JDK1.2, introduces the limited capability for an application to
interact with the garbage collector. The java.lang.ref classes provide three new
types of object references: soft, weak, and phantom.

Ordinary object references in Java (Foo foo = new Foo ()) are hard references; the
objects will not be garbage-collected until all such references disappear (for example,
when foo goes out of scope).

- 64 -

The behavior of hard references is not always desirable—it is sometimes useful to create
a reference that does not prevent its data from being garbage-collected. For example,
you may need to construct a table of objects currently being used by an application; when
the object is no longer referenced outside the table, it can be garbage-collected.

These classes give you such a capability. JDK1.2 also includes some utility classes that
use the capability. For example, the java.util.WeakHashMap class uses
java.lang.ref.WeakReference to implement an associative map that automatically
removes entries no longer referenced anywhere outside the map.

Listing 3.19 shows all public classes and interfaces in the java.lang. ref package.
Listing 3.19 java.lang.ref Classes and Interfaces List

public class java.lang.ref.PhantomReference extends
java.lang.ref.Reference

(new in 1.2)

public abstract class java.lang.ref.Reference extends
java.lang.Object

(new in 1.2)

public class java.lang.ref.ReferenceQueue extends
java.lang.Object (new in 1.2)

public class java.lang.ref.SoftReference extends
java.lang.ref.Reference

(new in 1.2)

public class java.lang.ref.WeakReference extends
java.lang.ref.Reference

(new in 1.2)

Package java.lang.reflect

This package allows applications to look at classes—to learn the details of what fields,
methods, constructors, and interfaces a class provides. Java uses this reflection
mechanism with JavaBeans to ascertain what capabilities a Bean supports. In Chapter
47, "DumpClass: A Tool for Querying Class Structure," we present a utility that uses
these classes to provide a dump of useful APl information about any class.

Listing 3.20 shows all public classes and interfaces in the java.lang.reflect
package.

Listing 3.20 java.lang.reflect Classes and Interfaces List

public class java.lang.reflect.AccessibleObject extends
java.lang.Object
(new in 1.2)
public final class java.lang.reflect.Array extends
java.lang.Object
public final class java.lang.reflect.Constructor extends
java.lang.reflect.
AccessibleObject

implements java.lang.reflect.Member
public final class java.lang.reflect.Field extends
java.lang.reflect.
AccessibleObject

implements java.lang.reflect.Member
public class java.lang.reflect.InvocationTargetException extends

java.lang.Exception

public interface java.lang.reflect.Member extends
java.lang.Object

- 65 -

public final class Jjava.lang.reflect.Method extends
java.lang.reflect.
AccessibleObject

implements java.lang.reflect.Member
public class java.lang.reflect.Modifier extends java.lang.Object
public final class Jjava.lang.reflect.ReflectPermission extends
java.security.
BasicPermission (new in 1.2)

Package java.math

This package provides arbitrary-precision floating point and integer arithmetic.
Listing 3.21 shows all public classes and interfaces in the java.math package.
Listing 3.21 java.math Classes and Interfaces List

public class java.math.BigDecimal extends java.lang.Number
implements java.lang.Comparable

public class java.math.BigInteger extends java.lang.Number
implements java.lang.Comparable

Package java.net

The java.net package is home to Java's core network functionality. Java is a highly
Web-friendly programming environment, with support for easy manipulation of URLs and
extensible classes for interpretation and handling of their contents.

Listing 3.22 shows all public classes and interfaces in the java.net package.
Listing 3.22 java.net Classes and Interfaces List

public abstract class Jjava.net.Authenticator extends
java.lang.Object
(new in 1.2)
public class java.net.BindException extends
java.net.SocketException
public class Jjava.net.ConnectException extends
java.net.SocketException
public abstract class java.net.ContentHandler extends
java.lang.Object
public interface java.net.ContentHandlerFactory extends
java.lang.Object
public final class java.net.DatagramPacket extends
java.lang.Object
public class java.net.DatagramSocket extends java.lang.Object
public abstract class java.net.DatagramSocketImpl extends
java.lang.Object
implements java.net.SocketOptions
public interface java.net.FileNameMap extends java.lang.Object
public abstract class java.net.HttpURLConnection extends
java.net.URLConnection
public final class java.net.InetAddress extends java.lang.Object
implements java.io.Serializable
public abstract class java.net.JarURLConnection extends
java.net.URLConnection
(new in 1.2)

public class Jjava.net.MalformedURLException extends

- 66 -

java.io.IOException

public class java.net.MulticastSocket extends
java.net.DatagramSocket

public final class Jjava.net.NetPermission extends java.security.
BasicPermission (new in 1.2)

public class java.net.NoRouteToHostException extends
java.net.SocketException

public final class Jjava.net.PasswordAuthentication extends
java.lang.Object

(new in 1.2)

public class java.net.ProtocolException extends
java.io.IOException

public class Jjava.net.ServerSocket extends java.lang.Object

public class java.net.Socket extends java.lang.Object
public class java.net.SocketException extends java.io.IOException

public abstract class java.net.SocketImpl extends
java.lang.Object
implements java.net.SocketOptions
public interface java.net.SocketImplFactory extends
java.lang.Object
public interface java.net.SocketOptions extends java.lang.Object
public final class java.net.SocketPermission extends
java.security.Permission
(new in 1.2)
implements java.io.Serializable
public final class java.net.URL extends java.lang.Object
implements java.io.Serializable
public class java.net.URLClassLoader extends
java.security.SecureClassLoader
(new in 1.2)
public abstract class java.net.URLConnection extends
java.lang.Object
public class java.net.URLDecoder extends java.lang.Object (new in
1.2)
public class Jjava.net.URLEncoder extends java.lang.Object

public abstract class Jjava.net.URLStreamHandler extends
java.lang.Object

public interface java.net.URLStreamHandlerFactory extends
java.lang.Object

public class Jjava.net.UnknownHostException extends
java.io.IOException

public class java.net.UnknownServiceException extends
java.io.IOException

Package java.rmi

This package supports Remote Method Invocation, the object-flavored successor to
Sun's RPC (Remote Procedure Call) mechanism. RMI allows an object to invoke a
method on another object over the network, just as the older RPC allows procedure
invocation over the network.

RMI's competitors are the widely adopted CORBA and DCOM network component
models. And although CORBA and DCOM are platform-neutral, RMI is closely tied to
Java's architecture. Its main advantages are as follows:

+ CORBA and DCOM require that arguments and return values for method invocations
be translated to a platform-neutral representation; no such translation is required for
RMI. (Of course, Java objects already enjoy, by definition, a platform-neutral
representation.)

-67 -

» Java objects can be passed as parameters and return values. If a participant in an
RMI transaction encounters an unknown object type, it can request information about
the class.

* RMI supports distributed garbage collection over the network.

If you need a Java-specific network component model, use RMI. For a platform-neutral
model, JDK1.2 offers extensive support for CORBA in the org.omg.CORBA packages
and subpackages.

Listing 3.23 shows all public classes and interfaces in the java.rmi package.
Listing 3.23 java.rmi Classes and Interfaces List

public class Jjava.rmi.AccessException extends
java.rmi.RemoteException
public class java.rmi.AlreadyBoundException extends
java.lang.Exception
public class Jjava.rmi.ConnectException extends
java.rmi.RemoteException
public class java.rmi.ConnectIOException extends
java.rmi.RemoteException
public class java.rmi.MarshalException extends
java.rmi.RemoteException
public final class java.rmi.MarshalledObject extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public final class java.rmi.Naming extends java.lang.Object
public class java.rmi.NoSuchObjectException extends
java.rmi.RemoteException
public class java.rmi.NotBoundException extends
java.lang.Exception
public class Jjava.rmi.RMISecurityException extends java.lang.
SecurityException (deprecated in 1.2)

public class java.rmi.RMISecurityManager extends
java.lang.SecurityManager

public class Jjava.rmi.RemoteException extends java.io.IOException
public class Jjava.rmi.ServerError extends
java.rmi.RemoteException

public class Jjava.rmi.ServerException extends
java.rmi.RemoteException

public class Jjava.rmi.ServerRuntimeException extends Jjava.rmi.
RemoteException (deprecated in 1.2)

public class Jjava.rmi.StubNotFoundException extends
java.rmi.RemoteException

public class Jjava.rmi.UnexpectedException extends
java.rmi.RemoteException

public class java.rmi.UnknownHostException extends
java.rmi.RemoteException

public class java.rmi.UnmarshalException extends
java.rmi.RemoteException

Package java.rmi.activation

This package, part of RMI, supports the use of persistent remote components. This new
JDK1.2 capability allows Java applications to create remote objects that can be executed
as they are needed without having to run all the time (as in JDK1.1).

- 68 -

Listing 3.24 shows all public classes and interfaces in the java.rmi.activation
package.

Listing 3.24 java.rmi.activation Classes and Interfaces List

public abstract class java.rmi.activation.Activatable extends
java.rmi.server.
RemoteServer (new in 1.2)

public class java.rmi.activation.ActivateFailedException extends
java.rmi.
RemoteException (new in 1.2)

public final class java.rmi.activation.ActivationDesc extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class java.rmi.activation.ActivationException extends
java.lang.Exception
(new in 1.2)
public abstract class java.rmi.activation.ActivationGroup extends
java.rmi.server.
UnicastRemoteObject (new in 1.2)

implements java.rmi.activation.ActivationInstantiator
public final class java.rmi.activation.ActivationGroupDesc
extends java.lang.
Object (new in 1.2)

implements java.io.Serializable
public class
java.rmi.activation.ActivationGroupDesc.CommandEnvironment
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable
public class java.rmi.activation.ActivationGroupID extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class java.rmi.activation.ActivationID extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public interface java.rmi.activation.ActivationInstantiator
extends java.lang.
Object (new in 1.2)

implements java.rmi.Remote
public interface java.rmi.activation.ActivationMonitor extends
java.lang.
Object (new in 1.2)

implements java.rmi.Remote
public interface java.rmi.activation.ActivationSystem extends
java.lang.
Object (new in 1.2)

implements java.rmi.Remote
public interface java.rmi.activation.Activator extends
java.lang.Object
(new in 1.2)

implements java.rmi.Remote
public class Jjava.rmi.activation.UnknownGroupException extends
java.rmi.
activation.

ActivationException (new in 1.2)

public class java.rmi.activation.UnknownObjectException extends
java.rmi.
activation.ActivationException (new in 1.2)

- 69 -

Package java.rmi.dgc

This package, part of RMI, supports distributed garbage collection. It supports the
capability of RMI servers to track the use of objects by remote clients, and to garbage-
collect those that are no longer in use.

Listing 3.25 shows all public classes and interfaces in the java. rmi.dgc package.
Listing 3.25 java.rmi.dgc Classes and Interfaces List

public interface java.rmi.dgc.DGC extends java.lang.Object
implements java.rmi.Remote

public final class java.rmi.dgc.Lease extends java.lang.Object
implements java.io.Serializable

public final class java.rmi.dgc.VMID extends java.lang.Object
implements java.io.Serializable

Package java.rmi.registry

This package, part of RMI, supports access to the registry - the mechanism through
which networked components register their presence and are discovered by clients.

Listing 3.26 shows all public classes and interfaces in the java.rmi.registry
package.

Listing 3.26 java.rmi.registry Classes and Interfaces List

public final class java.rmi.registry.LocateRegistry extends
java.lang.Object
public interface java.rmi.registry.Registry extends
java.lang.Object

implements java.rmi.Remote
public interface java.rmi.registry.RegistryHandler extends
java.lang.Object
(deprecated in 1.2)

Package java.rmi.server

This package, part of RMI, provides the classes needed to support a networked RMI
server—they provide the basic plumbing connecting RMI clients to RMI servers.

Listing 3.27 shows all public classes and interfaces in the java.rmi.server package.
Listing 3.27 java.rmi.server Classes and Interfaces List

public class java.rmi.server.ExportException extends
java.rmi.RemoteException
public interface java.rmi.server.LoaderHandler extends
java.lang.Object
(deprecated in 1.2)
public class java.rmi.server.LogStream extends
java.io.PrintStream
(deprecated in 1.2)
public final class java.rmi.server.ObjID extends
java.lang.Object

implements java.io.Serializable

-70 -

public class java.rmi.server.Operation extends java.lang.Object
(deprecated in 1.2)

public class java.rmi.server.RMIClassLoader extends
java.lang.Object

public interface java.rmi.server.RMIClientSocketFactory extends
java.lang.

Object (new in 1.2)

public interface java.rmi.server.RMIFailureHandler extends
java.lang.Object

public interface java.rmi.server.RMIServerSocketFactory extends
java.lang.

Object (new in 1.2)

public abstract class java.rmi.server.RMISocketFactory extends
java.lang.Object
implements java.rmi.server.RMIClientSocketFactory
implements java.rmi.server.RMIServerSocketFactory
public interface java.rmi.server.RemoteCall extends
java.lang.Object
(deprecated in 1.2)

public abstract class java.rmi.server.RemoteObject extends
java.lang.Object

implements java.io.Serializable

implements java.rmi.Remote
public interface java.rmi.server.RemoteRef extends
java.lang.Object

implements java.io.Externalizable
public abstract class java.rmi.server.RemoteServer extends
java.rmi.server.
RemoteObject

public abstract class Jjava.rmi.server.RemoteStub extends
java.rmi.server.
RemoteObject

public class Jjava.rmi.server.ServerCloneException extends
java.lang.
CloneNotSupportedException

public class java.rmi.server.ServerNotActiveException extends
java.lang.
Exception

public interface java.rmi.server.ServerRef extends
java.lang.Object

implements java.rmi.server.RemoteRef
public interface java.rmi.server.Skeleton extends
java.lang.Object
(deprecated in 1.2)
public class java.rmi.server.SkeletonMismatchException extends
java.rmi.
RemoteException (deprecated in 1.2)

public class java.rmi.server.SkeletonNotFoundException extends
java.rmi.
RemoteException (deprecated in 1.2)

public class Jjava.rmi.server.SocketSecurityException extends
java.rmi.server.
ExportException

public final class java.rmi.server.UID extends java.lang.Object
implements java.io.Serializable

public class java.rmi.server.UnicastRemoteObject extends

java.rmi.server.

RemoteServer

public interface java.rmi.server.Unreferenced extends
java.lang.Object

-71 -

Package java.security

This package, which has grown significantly in JDK1.2, is the main interface to the Java
security framework.

Security is a fundamental design component of the Java platform and has undergone
large changes with each Java release. The changes for JDK1.2 included introduction of a
fine-grained access control mechanism, in which policies can be defined to precisely
control the privileges granted to applications and applets: read and/or write access to files
or directories, permissions to use some or all available networking capabilities, and so
on.

By default, Java applications on Linux run with capabilities equivalent to those of the user
running the application: If you can use a certain feature or write a certain file from C++,
you can do it from Java. The mechanisms provided by java.security allow for finer
control of those permissions: Users can be granted or denied specific permissions based
on systemwide configuration, per-user configuration, and the degree of trust assigned to
the application being run.

Java cannot, of course, override Linux security mechanisms to give users extra
capabilities—nothing in java.security can grant root user privileges to an ordinary
user. But by supporting detailed security constraints on applications, java.security
provides a new and useful level of protection when running untrusted applications.

Java's security mechanism also handles cryptographic operations, certification of trusted
sources, and class loading.

Listing 3.28 shows all public classes and interfaces in the java.security package.
Listing 3.28 java.security Classes and Interfaces List

public final class Jjava.security.AccessControlContext extends
java.lang.Object

new in 1.2)

public class java.security.AccessControlException extends
java.lang.

SecurityException (new in 1.2)

public final class java.security.AccessController extends
java.lang.Object

(new in 1.2)

public class java.security.AlgorithmParameterGenerator extends
java.lang.Object
(new in 1.2)

public abstract class
java.security.AlgorithmParameterGeneratorSpi extends
java.lang.Object (new in 1.2)

public class java.security.AlgorithmParameters extends
java.lang.Object
(new in 1.2)
public abstract class java.security.AlgorithmParametersSpi
extends java.lang.
Object (new in 1.2)
public final class Jjava.security.AllPermission extends
java.security.Permission
(new in 1.2)
public abstract class java.security.BasicPermission extends
java.security.
Permission (new in 1.2)

implements java.io.Serializable

-T2 -

public interface java.security.Certificate extends
java.lang.Object
(deprecated in 1.2)

public class Jjava.security.CodeSource extends java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class java.security.DigestException extends java.security.

GeneralSecurityException

public class java.security.DigestInputStream extends
java.io.FilterInputStream
public class Jjava.security.DigestOutputStream extends java.io.

FilterOutputStream

public class Jjava.security.GeneralSecurityException extends
java.lang.
Exception (new in 1.2)

public interface Jjava.security.Guard extends java.lang.Object
(new in 1.2)
public class Jjava.security.GuardedObject extends java.lang.Object
(new in 1.2)

implements java.io.Serializable
public abstract class java.security.Identity extends
java.lang.Object
(deprecated in 1.2)

implements java.io.Serializable

implements java.security.Principal
public abstract class Jjava.security.IdentityScope extends
java.security.Identity
(deprecated in 1.2)

public class java.security.InvalidAlgorithmParameterException

extends
java.security.GeneralSecurityException (new in 1.2)

public class Jjava.security.InvalidKeyException extends
java.security.KeyException

public class Jjava.security.InvalidParameterException extends
java.lang.

TllegalArgumentException

public interface java.security.Key extends java.lang.Object

implements java.io.Serializable
public class Jjava.security.KeyException extends java.security.
GeneralSecurityException
public class Jjava.security.KeyFactory extends java.lang.Object
(new in 1.2)
public abstract class java.security.KeyFactorySpi extends
java.lang.Object
(new in 1.2)

public class java.security.KeyManagementException extends
java.security.
KeyException
public final class Jjava.security.KeyPair extends
java.lang.Object

implements java.io.Serializable
public abstract class java.security.KeyPairGenerator extends
java.security.
KeyPairGeneratorSpi
public abstract class java.security.KeyPairGeneratorSpi extends
java.lang.
Object (new in 1.2)
public class java.security.KeyStore extends java.lang.Object (new
in 1.2)
public class Jjava.security.KeyStoreException extends
java.security.

-73 -

GeneralSecurityException (new in 1.2)

public abstract class java.security.KeyStoreSpi extends
java.lang.Object
(new in 1.2)

public abstract class Jjava.security.MessageDigest extends
java.security.
MessageDigestSpi

public abstract class java.security.MessageDigestSpi extends
java.lang.Object
(new in 1.2)

public class Jjava.security.NoSuchAlgorithmException extends
java.security.
GeneralSecurityException

public class Jjava.security.NoSuchProviderException extends
java.security.
GeneralSecurityException

public abstract class java.security.Permission extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements java.security.Guard
public abstract class java.security.PermissionCollection extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public final class java.security.Permissions extends
java.security.
PermissionCollection (new in 1.2)

implements java.io.Serializable
public abstract class java.security.Policy extends
java.lang.Object
(new in 1.2)
public interface java.security.Principal extends java.lang.Object

public interface Jjava.security.PrivateKey extends
java.lang.Object

implements java.security.Key
public interface java.security.PrivilegedAction extends
java.lang.Object
(new in 1.2)

public class Jjava.security.PrivilegedActionException extends
java.lang.
Exception (new in 1.2)

public interface java.security.PrivilegedExceptionAction extends
java.lang.
Object (new in 1.2)

public class Jjava.security.ProtectionDomain extends
java.lang.Object (new in 1.2)
public abstract class java.security.Provider extends
java.util.Properties
public class java.security.ProviderException extends
java.lang.RuntimeException
public interface java.security.PublicKey extends
java.lang.Object

implements java.security.Key
public class java.security.SecureClassLoader extends
java.lang.ClassLoader
(new in 1.2)
public class Jjava.security.SecureRandom extends java.util.Random

public abstract class java.security.SecureRandomSpi extends
java.lang.Object
(new in 1.2)

-74 -

implements java.io.Serializable
public final class Jjava.security.Security extends
java.lang.Object
public final class Jjava.security.SecurityPermission extends
java.security.
BasicPermission (new in 1.2)
public abstract class java.security.Signature extends
java.security.
SignatureSpi
public class java.security.SignatureException extends
java.security.
GeneralSecurityException
public abstract class java.security.SignatureSpi extends
java.lang.Object
(new in 1.2)
public final class Jjava.security.SignedObject extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public abstract class java.security.Signer extends
java.security.Identity
(deprecated in 1.2)
public class Jjava.security.UnrecoverableKeyException extends
java.security.
GeneralSecurityException (new in 1.2)
public final class Jjava.security.UnresolvedPermission extends
java.security.
Permission (new in 1.2)

implements java.io.Serializable

Package java.security.acl

This package, an obsolete part of java.security, is superceded by classes in the
JDK1.2 java.security.

Listing 3.29 shows all public classes and interfaces in the java.security.acl
package.

Listing 3.29 java.security.acl Classes and Interfaces List

public interface java.security.acl.Acl extends java.lang.Object
implements java.security.acl.Owner
public interface java.security.acl.AclEntry extends
java.lang.Object
implements java.lang.Cloneable
public class Jjava.security.acl.AclNotFoundException extends
java.lang.Exception
public interface java.security.acl.Group extends
java.lang.Object
implements java.security.Principal
public class Jjava.security.acl.LastOwnerException extends
java.lang.Exception
public class Jjava.security.acl.NotOwnerException extends
java.lang.Exception
public interface java.security.acl.Owner extends java.lang.Object
public interface java.security.acl.Permission extends
java.lang.Object

Package java.security.cert

=75 -

This package, part of java.security, supports certificates—encrypted documents
from a trusted source that guarantee the validity of a public encryption/decryption key.
This is the technology that underlies, among other things, the Secure Sockets Layer
(SSL) encryption used in Web browsers.

Listing 3.30 shows all public classes and interfaces in the java.security.cert
package.

Listing 3.30 java.security.cert Classes and Interfaces List

public abstract class java.security.cert.CRL extends
java.lang.Object
(new in 1.2)

public class Jjava.security.cert.CRLException extends
java.security.
GeneralSecurityException (new in 1.2)

public abstract class java.security.cert.Certificate extends
java.lang.Object
(new in 1.2)

public class Jjava.security.cert.CertificateEncodingException
extends
java.security.cert.CertificateException (new in 1.2)

public class Jjava.security.cert.CertificateException extends
java.security.
GeneralSecurityException (new in 1.2)

public class java.security.cert.CertificateExpiredException
extends
java.security.cert.CertificateException (new in 1.2)

public class java.security.cert.CertificateFactory extends
java.lang.Object
(new in 1.2)

public abstract class java.security.cert.CertificateFactorySpi
extends
java.lang.Object (new in 1.2)

public class java.security.cert.CertificateNotYetValidException
extends
java.security.cert.CertificateException (new in 1.2)

public class Jjava.security.cert.CertificateParsingException
extends
java.security.cert.CertificateException (new in 1.2)

public abstract class java.security.cert.X509CRL extends
java.security.cert.CRL
(new in 1.2)

implements java.security.cert.X509Extension
public abstract class java.security.cert.X509CRLEntry extends
java.lang.Object
(new in 1.2)

implements java.security.cert.X509Extension
public abstract class java.security.cert.X509Certificate extends
java.security.
cert.Certificate (new in 1.2)

implements java.security.cert.X509Extension
public interface java.security.cert.X509Extension extends
java.lang.Object
(new in 1.2)

Package java.security.interfaces

-76 -

This package, part of java.security, defines interfaces needed for generation of RSA
and DSA-type cryptographic keys.

Listing 3.31 shows all public classes and interfaces in the
java.security.interfaces package.

Listing 3.31 java.security.interfaces Classes and Interfaces List

public interface java.security.interfaces.DSAKey extends
java.lang.Object

public interface java.security.interfaces.DSAKeyPairGenerator
extends

java.lang.Object

public interface java.security.interfaces.DSAParams extends
java.lang.Object
public interface Jjava.security.interfaces.DSAPrivateKey extends

java.lang.Object

implements java.security.PrivateKey

implements java.security.interfaces.DSAKey
public interface java.security.interfaces.DSAPublicKey extends
java.lang.Object

implements java.security.PublicKey

implements java.security.interfaces.DSAKey
public interface java.security.interfaces.RSAPrivateCrtKey
extends
java.lang.Object (new in 1.2)

implements java.security.interfaces.RSAPrivateKey
public interface java.security.interfaces.RSAPrivateKey extends
java.lang.Object (new in 1.2)

implements java.security.PrivateKey
public interface java.security.interfaces.RSAPublicKey extends

java.lang.Object (new in 1.2)
implements java.security.PublicKey
Package java.security.spec

Package java.security. spec

This package, part of java.security, is new to JDK1.2 and supports key
specifications and algorithm parameters for encryption specifications.

Listing 3.32 shows all public classes and interfaces in the java.security.spec
package.

Listing 3.32 java.security.spec Classes and Interfaces List

public class Jjava.security.spec.DSAParameterSpec extends
java.lang.Object
(new in 1.2)
implements java.security.interfaces.DSAParams
implements java.security.spec.AlgorithmParameterSpec
public class Jjava.security.spec.DSAPrivateKeySpec extends
java.lang.Object
(new in 1.2)
implements java.security.spec.KeySpec
public class Jjava.security.spec.DSAPublicKeySpec extends
java.lang.Object
(new in 1.2)
implements java.security.spec.KeySpec
public abstract class java.security.spec.EncodedKeySpec extends
java.lang.

=77 -

Object (new in 1.2)
implements java.security.spec.KeySpec
public class java.security.spec.InvalidKeySpecException extends
java.security.
GeneralSecurityException (new in 1.2)
public class Jjava.security.spec.InvalidParameterSpecException
extends
java.security.GeneralSecurityException (new in 1.2)

public class Jjava.security.spec.PKCS8EncodedKeySpec extends
java.security.spec.
EncodedKeySpec (new in 1.2)
public class Jjava.security.spec.RSAPrivateCrtKeySpec extends
java.security.
spec.RSAPrivateKeySpec (new in 1.2)
public class Jjava.security.spec.RSAPrivateKeySpec extends
java.lang.Object
(new in 1.2)

implements java.security.spec.KeySpec
public class java.security.spec.RSAPublicKeySpec extends
java.lang.Object
(new in 1.2)

implements java.security.spec.KeySpec
public class Jjava.security.spec.X509EncodedKeySpec extends
java.security.spec.
EncodedKeySpec (new in 1.2)

Package java.sql

This package provides the JDBC interface for Java access to databases. It includes the
necessary classes for constructing and executing SQL (Structured Query Language)
queries against a DBMS.

To use a particular database, you must obtain a JDBC driver for that database—such
drivers are available for almost all DBMSes available on Linux. In Chapter 67, "Java,
Linux, and Three-Tiered Architectures," we will explore a simple database query
application using the free MySQL database.

Listing 3.33 shows all public classes and interfaces in the java.sqgl package.
Listing 3.33 java.sql Classes and Interfaces List

public interface java.sql.Array extends java.lang.Object (new in
1.2)
public class Jjava.sql.BatchUpdateException extends
java.sqgl.SQLException
(new in 1.2)
public interface java.sql.Blob extends java.lang.Object (new in
1.2)
public interface java.sqgl.CallableStatement extends
java.lang.Object

implements java.sgl.PreparedStatement
public interface java.sql.Clob extends java.lang.Object (new in
1.2)
public interface java.sql.Connection extends java.lang.Object

public class java.sql.DataTruncation extends java.sqgl.SQLWarning

public interface java.sql.DatabaseMetaData extends
java.lang.Object
public class java.sql.Date extends java.util.Date

public interface java.sql.Driver extends java.lang.Object

-78 -

public class Jjava.sql.DriverManager extends java.lang.Object
public class java.sql.DriverPropertyInfo extends java.lang.Object

public interface java.sql.PreparedStatement extends
java.lang.Object

implements java.sgl.Statement
public interface java.sql.Ref extends java.lang.Object (new in
1.2)
public interface java.sqgl.ResultSet extends java.lang.Object

public interface java.sql.ResultSetMetaData extends
java.lang.Object

public interface java.sqgl.SQLData extends Jjava.lang.Object (new
in 1.2)

public class java.sql.SQLException extends java.lang.Exception
public interface java.sql.SQLInput extends java.lang.Object (new
in 1.2)

public interface java.sql.SQLOutput extends java.lang.Object (new
in 1.2)

public class java.sql.SQLWarning extends java.sqgl.SQLException
public interface java.sql.Statement extends java.lang.Object

public interface java.sql.Struct extends java.lang.Object (new in
1.2)
public class java.sql.Time extends java.util.Date

public class java.sql.Timestamp extends java.util.Date
public class java.sql.Types extends java.lang.Object

Package java. text

The java.text package handles localized representation of dates, text, numbers, and
messages. By delegating the problems of character iteration, number and date formatting
and parsing, and text collation to classes that are loaded at runtime, this package allows
you to write locale-independent code and let the Java handle much of the localization
work.

Listing 3.34 shows all public classes and interfaces in the java.text package.
Listing 3.34 java.text Classes and Interfaces List

public class java.text.Annotation extends java.lang.Object (new
in 1.2)
public interface java.text.AttributedCharacterIterator extends
java.lang.Object
(new in 1.2)

implements java.text.CharacterIterator
public class Jjava.text.AttributedCharacterIterator.Attribute
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable
public class java.text.AttributedString extends java.lang.Object
(new in 1.2)
public abstract class java.text.BreakIterator extends
java.lang.Object

implements java.lang.Cloneable
public interface java.text.CharacterIterator extends
java.lang.Object

implements java.lang.Cloneable
public class java.text.ChoiceFormat extends
java.text.NumberFormat
public final class java.text.CollationElementIterator extends
java.lang.Object

-79 -

public final class Jjava.text.CollationKey extends
java.lang.Object

implements java.lang.Comparable
public abstract class java.text.Collator extends
java.lang.Object

implements java.lang.Cloneable

implements java.util.Comparator
public abstract class java.text.DateFormat extends
java.text.Format
public class java.text.DateFormatSymbols extends
java.lang.Object

implements java.io.Serializable

implements java.lang.Cloneable
public class java.text.DecimalFormat extends
java.text.NumberFormat
public final class Jjava.text.DecimalFormatSymbols extends
java.lang.Object

implements java.io.Serializable

implements java.lang.Cloneable
public class java.text.FieldPosition extends java.lang.Object
public abstract class java.text.Format extends java.lang.Object

implements java.io.Serializable

implements java.lang.Cloneable
public class Jjava.text.MessageFormat extends java.text.Format

public abstract class java.text.NumberFormat extends
java.text.Format
public class java.text.ParseException extends java.lang.Exception
public class Jjava.text.ParsePosition extends java.lang.Object
public class java.text.RuleBasedCollator extends
java.text.Collator
public class Jjava.text.SimpleDateFormat extends
java.text.DateFormat
public final class Jjava.text.StringCharacterIterator extends
java.lang.Object

implements java.text.CharacterIterator

Package java.util
The java.util package is an assortment of extremely useful classes, including
* java.util.Date—Representation of time and date.

* java.util.Calendar—Localized formatting, parsing, and interpretation of date and
time fields. A subclass of Calendar is provided for the Gregorian calendar, and future
support is intended for various lunar and national calendars.

* java.util.Bitset—Arbitrary-length bit arrays.

* Properties and resources—Management of persistent properties and locale-specific
resources (such as localized messages).

* java.util.StringTokenizer—A simple tokenizer for extracting words from
strings.

* java.util.Random—Random number generation.

» The Collections Classes—Classes for lists, arrays, balanced trees, sets, and
hashmaps—so you never have to reinvent those particular wheels.

- 80 -

Listing 3.35 shows all public classes and interfaces in the java.util package.
Listing 3.35 java.util Classes and Interfaces List

public abstract class java.util.AbstractCollection extends
java.lang.Object
(new in 1.2)
implements java.util.Collection
public abstract class java.util.AbstractlList extends java.util.

AbstractCollection (new in 1.2)
implements java.util.List
public abstract class java.util.AbstractMap extends
java.lang.Object
(new in 1.2)
implements java.util.Map
public abstract class java.util.AbstractSequentiallist extends
java.util.
Abstractlist (new in 1.2)

public abstract class java.util.AbstractSet extends java.util.

AbstractCollection (new in 1.2)
implements java.util.Set
public class Jjava.util.ArrayList extends java.util.AbstractList
(new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.List
public class Jjava.util.Arrays extends java.lang.Object (new in
1.2)
public class java.util.BitSet extends java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public abstract class java.util.Calendar extends
java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public interface java.util.Collection extends java.lang.Object
(new in 1.2)
public class java.util.Collections extends java.lang.Object (new
in 1.2)
public interface java.util.Comparator extends java.lang.Object
(new in 1.2)
public class java.util.ConcurrentModificationException extends
java.lang.
RuntimeException (new in 1.2)

public class java.util.Date extends java.lang.Object

implements java.io.Serializable

implements java.lang.Cloneable

implements java.lang.Comparable
public abstract class java.util.Dictionary extends
java.lang.Object
public class java.util.EmptyStackException extends
java.lang.RuntimeException
public interface java.util.Enumeration extends java.lang.Object

public class Jjava.util.EventObject extends java.lang.Object
implements java.io.Serializable
public class java.util.GregorianCalendar extends
java.util.Calendar
public class java.util.HashMap extends java.util.AbstractMap (new
in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.Map

- 81 -

public class java.util.HashSet extends java.util.AbstractSet (new
in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.Set
public class Jjava.util.Hashtable extends java.util.Dictionary
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.Map
public interface java.util.Iterator extends java.lang.Object (new
in 1.2)
public class java.util.LinkedList extends
java.util.AbstractSequentiallist
(new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.List
public interface java.util.List extends java.lang.Object (new in
1.2)
implements java.util.Collection
public interface java.util.ListIterator extends java.lang.Object
(new in 1.2)
implements java.util.Iterator
public abstract class java.util.ListResourceBundle extends
java.util.
ResourceBundle
public final class java.util.Locale extends java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public interface java.util.Map extends java.lang.Object (new in
1.2)
public interface java.util.Map.Entry extends java.lang.Object
(new in 1.2)
public class Jjava.util.MissingResourceException extends
java.lang.
RuntimeException
public class java.util.NoSuchElementException extends java.lang.
RuntimeException
public class java.util.Observable extends java.lang.Object
public interface java.util.Observer extends java.lang.Object
public class java.util.Properties extends java.util.Hashtable

public final class java.util.PropertyPermission extends
java.security.
BasicPermission (new in 1.2)

public class java.util.PropertyResourceBundle extends
java.util.ResourceBundle
public class java.util.Random extends java.lang.Object
implements java.io.Serializable
public abstract class java.util.ResourceBundle extends
java.lang.Object
public interface java.util.Set extends java.lang.Object (new in
1.2)
implements java.util.Collection
public class java.util.SimpleTimeZone extends java.util.TimeZone

public interface Jjava.util.SortedMap extends java.lang.Object
(new in 1.2)

implements java.util.Map
public interface java.util.SortedSet extends java.lang.Object
(new in 1.2)

implements java.util.Set
public class java.util.Stack extends java.util.Vector

-8 -

public class java.util.StringTokenizer extends java.lang.Object
implements java.util.Enumeration
public abstract class java.util.TimeZone extends
java.lang.Object
implements java.io.Serializable
implements java.lang.Cloneable
public class Jjava.util.TooManylListenersException extends
java.lang.Exception
public class java.util.TreeMap extends java.util.AbstractMap (new
in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.SortedMap
public class java.util.TreeSet extends java.util.AbstractSet (new
in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.SortedSet
public class java.util.Vector extends java.util.AbstractList
implements java.io.Serializable
implements java.lang.Cloneable
implements java.util.List
public class java.util.WeakHashMap extends java.util.AbstractMap
(new in 1.2)
implements java.util.Map

Package java.util.jar

This package, new to JDK1.2, supports the Java ARchive (jar) format—the primary
format for packaging Java class libraries and resources. A jar archive is identical to a zip
archive (discussed later in the chapter), with the optional addition of a manifest file
containing meta-information about the archive contents.

Listing 3.36 shows all public classes and interfaces in the java.util.jar package.
Listing 3.36 java.util.jar Classes and Interfaces List

public class java.util.jar.Attributes extends java.lang.Object
(new in 1.2)

implements java.lang.Cloneable

implements java.util.Map
public class java.util.jar.Attributes.Name extends
java.lang.Object
(new in 1.2)

public class java.util.jar.JarEntry extends
jJava.util.zip.ZipEntry (new in 1.2)

public class Jjava.util.jar.JarException extends
java.util.zip.ZipException

(new in 1.2)

public class java.util.jar.JarFile extends java.util.zip.ZipFile
(new in 1.2)

public class java.util.jar.JarInputStream extends
java.util.zip.ZipInputStream

(new in 1.2)

public class Jjava.util.jar.JarOutputStream extends java.util.zip.
ZipOutputStream (new in 1.2)

public class java.util.jar.Manifest extends java.lang.Object (new
in 1.2)
implements java.lang.Cloneable

-83 -

Package java.util.zip

This package supports the zip file format (the same one that has been in use since MS-
DOS days), a standard compressed archive format used for packaging Java classes and
resources. Because Java can load classes and resources directly from zip and jar
archives, it is possible to ship entire complex applications packed into a single archive
file.

This package also supports reading and writing of the gzip file format—the application of
zip's compression algorithm to a single file instead of an archive.

Listing 3.37 shows all public classes and interfaces in the java.util.zip package.
Listing 3.37 java.util.zip Classes and Interfaces List

public class java.util.zip.Adler32 extends java.lang.Object
implements java.util.zip.Checksum

public class java.util.zip.CRC32 extends java.lang.Object
implements java.util.zip.Checksum

public class java.util.zip.CheckedInputStream extends

java.lo.FilterInputStream

public class java.util.zip.CheckedOutputStream extends java.io.

FilterOutputStream

public interface java.util.zip.Checksum extends java.lang.Object
public class java.util.zip.DataFormatException extends
java.lang.Exception

public class java.util.zip.Deflater extends java.lang.Object
public class java.util.zip.DeflaterOutputStream extends java.io.
FilterOutputStream

public class java.util.zip.GZIPInputStream extends java.util.zip.
InflaterInputStream

public class java.util.zip.GZIPOutputStream extends
java.util.zip.

DeflaterOutputStream

public class java.util.zip.Inflater extends java.lang.Object
public class java.util.zip.InflaterInputStream extends java.io.
FilterInputStream

public class java.util.zip.ZipEntry extends java.lang.Object
implements java.lang.Cloneable
implements java.util.zip.ZipConstants

public class Jjava.util.zip.ZipException extends

java.io.IOException

public class java.util.zip.ZipFile extends java.lang.Object
implements java.util.zip.ZipConstants

public class java.util.zip.ZipInputStream extends java.util.zip.

InflaterInputStream
implements java.util.zip.ZipConstants
public class java.util.zip.ZipOutputStream extends java.util.zip.

DeflaterOutputStream
implements java.util.zip.ZipConstants

Package javax.accessibility

This package, new in JDK1.2, supports assistive user interface technologies. This
package is a contract: user interface (Ul) components that fulfill the contract are
compatible with screen readers, screen magnifiers, and other technologies intended to
assist disabled users. Specifically, by implementing these interfaces, components are
contracting to provide enough information about themselves to support any sort of

-84 -

assistive technology.

Note This package started out as a Java extension that was later incorporated into
Java's core functionality. As with all such packages, its name begins with
"Javax." Why were the packages not renamed with a "java" prefix when
they were moved into the core? As Sun learned during the development of the
Swing toolkit, developers take strong objection to the renaming of packages
they depend on—so the "javax" name is a permanent feature.

The javax.accessibility classes are broken up into pieces supporting specific
types of Ul functionality. All Ul components offering accessibility must implement
javax.accessibility.Accessible. In addition, they must implement classes
specific to their functionality: javax.accessibility.AccessibleComponent if they
are visible onscreen, javax.accessibility.AccessibleText if they present
textual information, and so on.

Listing 3.38 shows all public classes and interfaces in the javax.accessibility
package.

Listing 3.38 javax.accessibility Classes and Interfaces List

public interface javax.accessibility.Accessible extends
java.lang.Object
(new in 1.2)
public interface javax.accessibility.AccessibleAction extends
java.lang.Object
(new in 1.2)
public abstract class javax.accessibility.AccessibleBundle
extends java.lang.
Object (new in 1.2)
public interface javax.accessibility.AccessibleComponent extends
java.lang.
Object (new in 1.2)
public abstract class javax.accessibility.AccessibleContext
extends java.lang.
Object (new in 1.2)
public abstract class javax.accessibility.AccessibleHyperlink
extends java.lang.
Object (new in 1.2)

implements javax.accessibility.AccessibleAction
public interface javax.accessibility.AccessibleHypertext extends
java.lang.
Object (new in 1.2)

implements javax.accessibility.AccessibleText
public class javax.accessibility.AccessibleResourceBundle extends
java.util.
ListResourceBundle (new in 1.2)
public class javax.accessibility.AccessibleRole extends
javax.accessibility.
AccessibleBundle (new in 1.2)
public interface javax.accessibility.AccessibleSelection extends
java.lang.
Object (new in 1.2)
public class javax.accessibility.AccessibleState extends
javax.accessibility.
AccessibleBundle (new in 1.2)
public class Jjavax.accessibility.AccessibleStateSet extends
java.lang.Object
(new in 1.2)

-85 -

public interface javax.accessibility.AccessibleText extends
java.lang.Object

(new in 1.2)

public interface javax.accessibility.AccessibleValue extends
java.lang.Object

(new in 1.2)

Package javax.swing

The Swing toolkit, provided by the javax.swing package, is one of the most significant
(and largest) changes between JDK1.1 and JDK1.2.

Swing is a GUI toolkit, intended to replace the GUI components provided in the AWT.
The change is important; Java has enjoyed limited success as a GUI platform due to the
AWT's shortcomings, and Swing is Sun's serious attempt to improve the story.

And what an attempt! In its entirety, Swing comprises over 1,200 classes, making it
arguably the world's largest and most complex GUI toolkit. For most applications,
fortunately, developers need to deal with a few dozen of these classes. Many books have
been written on Swing—a good place to start is JFC Unleashed (Sams), which explores
Swing and its related components in detail.

So, what problem are these 1,200+ classes trying to solve?

When Java started out in the GUI business, the AWT was positioned as the bridge to
native window system functionality. It provided a basic set of GUI components—menu,
scrollbar, text editor, check box, list, drop-down list, canvas, pushbutton, and label—with
which Java applications could build complete interfaces. Each component was
implemented with a corresponding peer component in the native window system
(standard GUI components in Microsoft Windows and MacOS; any GUI toolkit, usually
Motif, in UNIX environments; other, possibly proprietary, implementations on
PersonalJava and other platforms). Two things went wrong with the scenario:

» By choosing a lowest common denominator set of GUlI components, the AWT was a
weak toolkit, giving Java applications many fewer GUI components than were
available to native applications. This shortcoming was exacerbated when Microsoft
filled the gap with the Application Foundation Classes (AFC), which include a highly
capable, Windows-only Java GUI toolkit.

+ It has turned out to be exceedingly difficult to build GUI applications that look good in
all possible Java environments.

We'll illustrate the latter point with a modest example. Listing 3.39 is a simple AWT app,
written to function both as an applet (it's derived from java.applet.Applet)and an
application (it contains a main () that builds a top-level java.awt.Frame to enclose the
GUI). The app is a collection of five AWT components thrown together in an ugly
arrangement.

Listing 3.39 Simple AWT app GuiMess

import java.awt.*;
import Jjava.awt.event.*;
import java.applet.*;

public class GuiMess extends Applet
{

// Constructor: Fill up with a passel of GUI components.

O J o U w N

public GuiMess ()

- 86 -

9 {

10 // We'll use the BorderLayout manager

11 setLayout (new BorderLayout ());

12 // Start adding things... an option menu

13 Choice choice = new Choice () ;

14 add (choice, BorderLayout.NORTH) ;

15 choice.add ("Choice 1");

16 choice.add ("Choice 2");

17 choice.add ("Choice 3");

18 choice.add ("Choice 4");

19 choice.add ("Choice 5");

20 // A checkbox

21 add (new Checkbox ("Checkbox"), BorderLayout.WEST);
22 // A scrolled text area

23 TextArea text = new TextAreal();

24 text.setText ("The quick brown fox jumps over the
lazy dog.");

25 add (text, BorderLayout.CENTER) ;

26 // A button

27 add (new Button ("Button"), BorderLayout.EAST);
28 // And a list

29 List list = new List();

30 list.add ("Item 1");

31 list.add("Item 2");

32 list.add("Item 3");

33 list.add("Item 4");

34 list.add("Item 5");

35 add(list, BorderLayout.SOUTH) ;

36 1

37 public static void main(String[] argv)

38 {

39 Frame frame = new Frame/();

40 GuiMess guiMess = new GuiMess () ;

41 frame.add (guiMess) ;

42 frame.pack();

43 frame.setVisible (true) ;

44 frame.addWindowListener (new WindowAdapter () {
45 public void windowClosing (WindowEvent ev)
46 {

477 System.exit (0) ;

48 }

49 1) ;

50 1

51 }

Figure 3.5 shows the applet under Microsoft Windows with the two major browsers.

-87 -

B CAShas with Lins'Gublcas biml - Hissoesil bnizino

| B Edt e Fgvorbes Josk Heb

| G < R |
=g Fauial Sop Fefuch Home Semch
| e [@] -3 harm v Limna' Gtz il =] oBe |Leks

=
GuiMess Applet
=D |
T e ik brosan fow purpr over He baop dog,
F \Dhachbex]
s | =
b d 3

= Hetrcaps

:n;:vwnu;mmuﬂ.
{ 5y A B = alN

Foweed Felad Home Search Hmcu
ﬂ'mh & Loctorr [=] @0 wWhat's Related
Blnsteri Hessage B WebMal 8 Corioct 0] Feople (G vall]

GuiMess Applet

O | A | TR |

Thee quitk brovw fo jume over the <]

[&heckbon | Bution
*

Figure 3.5: GuiMess applet viewed in Windows NT under MSIE and Netscape
Navigator.

Both instances shown in Figure 3.5 are running in browsers that use the native Windows
GUIs to implement the AWT, and look and feel similar. Figure 3.6 shows some views of
the same app under Linux.

Flle Edit “iew Go Communkator Help |
- - 3 b § Bl
f Back Forwars Relead Home

| b Bookmarks 4 Lecation: | @3 What's Related |
| #Mermbens £ WebMal £ Connections: 4 BizJouq

GuiMess Applet

Choice 3 |
e guick brown for jumps o
Mt bom

- 88 -

Cholics 1

Mhe goick brown fox jumps cuss the lazy dog.

Chescichoos Bt zan

Ttwa 1

Ttwa 4

Figure 3.6: GuiMess running under Linux as a Netscape Navigator applet and
as a standalone program.

Both instantiations shown in Figure 3.6 use the Motif toolkit to implement the AWT. The
look is very different, particularly in the drop-down Choice menu, and it's unlikely that a
GUI designer happy with the Windows version will be happy with what shows up under
Linux. Figure 3.7 gives us one final point of comparison.

haice 1 1]
e quick brosn Tor juspz ever e lasy

| Cmkiay Fuitan
[_d

Hom 1

i 7

Hom 3

iz 4

Figure 3.7: Running the standalone GuiMess application on Linux under Kaffe.

The free Kaffe implementation of Java (see Chapter 26, "Kaffe: A Cleanroom Java
Environment,") provides its own, non-Motif version of the AWT: it's handsome, and again
different from the others, but it's a real AWT that meets the Sun specification. Some
ambitious individuals in the Java/Linux community have also proposed (and may be
implementing) AWTs based on such popular toolkits as Gtk+, Qt, and Tk.

The point of this exploration is to note the differences that even a simple Java AWT-
based GUI must endure. For complex GUI layouts, the story gets worse: the Web is full
of applets that are carefully tuned to look good under Microsoft Windows but are virtually
unusable elsewhere—unreadable labels, text fields too small to type in, and so on.

Enter Swing, the all-Java GUI and Sun's answer to the AWT problems. Swing is a core
component of JDK1.2 but is also available for use as an add-on for JDK1.1 (see "Java
Foundation Classes" in Chapter 11, "Choosing an Environment: 1.1 or 1.2?"). Before any
further discussion of Swing, let's rewrite our application to use Swing (see Listing 3.40).

Listing 3.40 GuiSwing, a Swing-Base Rewrite of GuiMess

import java.awt.BorderLayout;
import java.awt.event.*;

import javax.swing.*;

g s w N

public class GuiSwing extends JApplet

-89 -

// Constructor: Fill up with a passel of GUI components.

O ~J o

public GuiSwing ()

S {

10 // We'll use the BorderLayout manager

11 getContentPane () .setLayout (new BorderLayout ());

12 // Start adding things... an option menu

13 JComboBox choice = new JComboBox () ;

14 // We don't want user editing of the input

15 choice.setEditable (false);

16 getContentPane () .add (choice, BorderLayout.NORTH) ;

17 choice.addItem("Choice 1");

18 choice.addItem ("Choice 2");

19 choice.addItem("Choice 3");

20 choice.addItem ("Choice 4");

21 choice.addItem("Choice 5");

22 // A checkbox

23 getContentPane () .add (new JCheckBox ("Checkbox"),
BorderLayout .WEST) ;

24 // A scrolled text area. Unlike AWT, the Swing text

area needs

25 // a scrollpane supplied externally.

26 JTextArea text = new JTextAreal();

27 text.setText ("The quick brown fox jumps over the

lazy dog.");

28 text.setRows (4) ;

29 getContentPane () .add (new JScrollPane (text),

BorderLayout.
CENTER) ;

30 // A button

31 getContentPane () .add (new JButton ("Button"),

BorderLayout.EAST) ;

32 // BAnd a list Unlike AWT, the Swing list component

area needs a

33 // scrollpane supplied externally.

34 DefaultListModel listModel = new DefaultListModel () ;

35 listModel.addElement ("Item 1");

36 listModel.addElement ("Item 2");

37 listModel.addElement ("Item 3");

38 listModel.addElement ("Item 4");

39 listModel.addElement ("Item 5");

40 JList list = new JList (listModel);

41 list.setVisibleRowCount (4) ;

42 getContentPane () .add (new JScrollPane(list),
BorderLayout.SOUTH) ;

43 }

44 public static void main (String[] argv)

45 {

46 JFrame frame = new JFrame();

47 GuiSwing guiSwing = new GuiSwing() ;

48 frame.getContentPane () .add (guiSwing) ;

49 frame.pack();

50 frame.setVisible (true) ;

51 frame.addWindowListener (new WindowAdapter () {

-90 -

52 public void windowClosing (WindowEvent ev)
53 {

54 System.exit (0);

55 }

56 1)

57 }

58 }

The rewrite is not terribly difficult; Swing components more than subsume the GUI
capabilities of the AWT, and the interfaces are different but not radically so. Figure 3.8
shows the resulting application, run under the Blackdown JDK:

[Cheice 2 -
The quick brown fex jumps over the laxy dop
w Checkboax (T LT

eefmi L -
f——

Itam 3 —
tmm 4

-

Figure 3.8: GuiSwing application running under Linux Blackdown JDK.

By including Swing in the JDK1.2, Sun has designed a distinct Java platform look-and-
feel that reliably works everywhere. Briefly, here is what Swing brings to the party:

» A GUI toolkit implemented entirely in Java, usable with any JVM.

» Arrich collection of capable low-level widgets (buttons, scrollbars, sliders, and such)
and higher-level GUI abstractions (file browser, tree viewer, table viewer, application
desktop).

* A lightweight implementation that creates and manages the GUI components entirely
within the application, rather than creating multiple GUI components in the native
window system. (Despite the lightweight moniker, this approach imposes some heavy
performance costs that we explore in more detail later.)

* A model/view paradigm that separates the viewing and data-modeling of complex GUI
components.

* A Pluggable Look and Feel that allows the GUI to assume a native Java look (which
Sun calls the Metal look and feel) or to assume other personalities.

Note The Swing Pluggable Look and Feel offers substantial control over
appearance and behavior. In addition to Metal, the available personalities are
clones of some familiar faces: Motif, Microsoft Windows, and MacOS. These
alternate personalities can be enabled either with system resource settings or
by making explicit calls from the code. My personal editorial opinion, which
seems to be widely held, is that Metal provides an excellent and distinctive
Java look—without the need to masquerade as any other toolkit.

» Automatic support of double-buffering, which results in smooth, no-flicker graphical
rendering.

Swing is a first-rate toolkit and the future of Java GUIs. Its major downside is
performance. We explore some reasons and remedies in Chapters 58, "A Heavy Look at
Lightweight Toolkits," and 59, "An Approach to Improving Graphical Rendering
Performance."

Listing 3.41 shows all public classes and interfaces in the javax.swing package.

-91 -

Listing 3.41 javax.swing Classes and Interfaces List

public abstract class Jjavax.swing.AbstractAction extends
java.lang.Object (
new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements javax.swing.Action
public abstract class javax.swing.AbstractButton extends
javax.swing.JComponent
(new in 1.2)
implements java.awt.ItemSelectable
implements javax.swing.SwingConstants
public abstract class
javax.swing.AbstractButton.AccessibleAbstractButton
extends javax.swing.JComponent.AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleAction
implements javax.accessibility.AccessibleValue
public class javax.swing.AbstractButton.ButtonChangelListener
extends java.lang.
Object (new in 1.2)
implements java.io.Serializable
implements javax.swing.event.ChangelListener
public abstract class javax.swing.AbstractListModel extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.ListModel
public interface javax.swing.Action extends java.lang.Object (new
in 1.2)
implements java.awt.event.ActionListener
public class Jjavax.swing.BorderFactory extends java.lang.Object
(new in 1.2)
public interface javax.swing.BoundedRangeModel extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.Box extends Jjava.awt.Container (new in
1.2)
implements javax.accessibility.Accessible
public class Jjavax.swing.Box.AccessibleBox extends
javax.accessibility.
AccessibleContext (new in 1.2)
implements java.io.Serializable
implements javax.accessibility.AccessibleComponent
public class javax.swing.Box.Filler extends java.awt.Component
(new in 1.2)
implements javax.accessibility.Accessible
public class javax.swing.Box.Filler.AccessibleBoxFiller extends

javax.accessibility.

AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class Jjavax.swing.BoxLayout extends java.lang.Object (new
in 1.2)

implements java.awt.LayoutManager?2

implements java.io.Serializable
public class Jjavax.swing.ButtonGroup extends java.lang.Object
(new in 1.2)

implements java.io.Serializable
public interface javax.swing.ButtonModel extends java.lang.Object
(new in 1.2)

implements java.awt.ItemSelectable

-9) .-

public interface javax.swing.CellEditor extends java.lang.Object
(new in 1.2)
public class javax.swing.CellRendererPane extends
java.awt.Container
(new in 1.2)

implements javax.accessibility.Accessible
public class
javax.swing.CellRendererPane.AccessibleCellRendererPane extends
javax.accessibility.AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public interface javax.swing.ComboBoxEditor extends
java.lang.Object
(new in 1.2)

public interface javax.swing.ComboBoxModel extends
java.lang.Object
(new in 1.2)
implements javax.swing.ListModel
public class Jjavax.swing.DebugGraphics extends java.awt.Graphics
(new in 1.2)
public class Jjavax.swing.DefaultBoundedRangeModel extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.BoundedRangeModel
public class Jjavax.swing.DefaultButtonModel extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.ButtonModel
public class Jjavax.swing.DefaultCellEditor extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.table.TableCellEditor
implements javax.swing.tree.TreeCellEditor
public class javax.swing.DefaultCellEditor.EditorDelegate extends
java.lang.
Object (new in 1.2)
implements java.awt.event.ActionListener
implements java.awt.event.ItemListener
implements java.io.Serializable
public class javax.swing.DefaultComboBoxModel extends
javax.swing.
AbstractlListModel (new in 1.2)
implements java.io.Serializable
implements javax.swing.MutableComboBoxModel
public class javax.swing.DefaultDesktopManager extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.DesktopManager
public class javax.swing.DefaultFocusManager extends
javax.swing.FocusManager
(new in 1.2)

public class javax.swing.DefaultListCellRenderer extends
javax.swing.JLabel
(new in 1.2)

implements java.io.Serializable

implements javax.swing.ListCellRenderer
public class javax.swing.DefaultListCellRenderer.UIResource
extends javax.
swing.DefaultlListCellRenderer (new in 1.2)

-03 .

implements javax.swing.plaf.UIResource
public class javax.swing.DefaultListModel extends
javax.swing.AbstractListModel
(new in 1.2)

public class Jjavax.swing.DefaultListSelectionModel extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements java.lang.Cloneable

implements javax.swing.ListSelectionModel
public class Jjavax.swing.DefaultSingleSelectionModel extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.SingleSelectionModel
public interface javax.swing.DesktopManager extends
java.lang.Object
(new in 1.2)

public abstract class javax.swing.FocusManager extends
java.lang.Object
(new in 1.2)

public class Jjavax.swing.GrayFilter extends
java.awt.image.RGBImageFilter
(new in 1.2)

public interface javax.swing.Icon extends Jjava.lang.Object (new
in 1.2)
public class javax.swing.Imagelcon extends java.lang.Object (new
in 1.2)

implements java.io.Serializable

implements javax.swing.Icon
public class Jjavax.swing.JApplet extends java.applet.Applet (new
in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.RootPaneContainer
public class Jjavax.swing.JApplet.AccessibleJApplet extends javax.

accessibility.AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class Jjavax.swing.JButton extends
javax.swing.AbstractButton
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JButton.AccessibleJButton extends
javax.swing.
AbstractButton.AccessibleAbstractButton (new in 1.2)

public class javax.swing.JCheckBox extends
javax.swing.JToggleButton
(new in 1.2)

implements javax.accessibility.Accessible
public class javax.swing.JCheckBox.AccessibleJCheckBox extends
javax.swing.
JToggleButton.AccessibledToggleButton (new in 1.2)

public class javax.swing.JCheckBoxMenultem extends
javax.swing.JMenultem
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.SwingConstants
public class
javax.swing.JCheckBoxMenuIltem.AccessibleJCheckBoxMenultem extends
javax.swing.JMenultem.AccessibleJMenultem (new in 1.2)
public class Jjavax.swing.JColorChooser extends
javax.swing.JComponent

-94 -

(new in 1.2)
implements javax.accessibility.Accessible
public class javax.swing.JColorChooser.AccessibleJColorChooser
extends
javax.swing.JComponent.AccessibleJComponent (new in 1.2)

public class Jjavax.swing.JComboBox extends javax.swing.JComponent
(new in 1.2)

implements java.awt.ItemSelectable

implements java.awt.event.ActionListener

implements javax.accessibility.Accessible

implements javax.swing.event.ListDatalistener
public class javax.swing.JComboBox.AccessibleJComboBox extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

implements javax.accessibility.AccessibleAction
public interface javax.swing.JComboBox.KeySelectionManager
extends java.lang.
Object (new in 1.2)

public abstract class javax.swing.JComponent extends
java.awt.Container
(new in 1.2)

implements java.io.Serializable
public abstract class javax.swing.JComponent.AccessibleJComponent
extends
javax.accessibility.

AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class javax.swing.JComponent.AccessibleJComponent.

AccessibleContainerHandler extends java.lang.Object (new in 1.2)
implements java.awt.event.ContainerListener
public class javax.swing.JDesktopPane extends
javax.swing.JLayeredPane
(new in 1.2)
implements javax.accessibility.Accessible
public class Jjavax.swing.JDesktopPane.AccessibleJDesktopPane
extends javax.
swing.JComponent.AccessibleJComponent (new in 1.2)

public class Jjavax.swing.JDialog extends java.awt.Dialog (new in
1.2)

implements javax.accessibility.Accessible

implements javax.swing.RootPaneContainer

implements javax.swing.WindowConstants
public class Jjavax.swing.JDialog.AccessibleJDialog extends
javax.accessibility.
AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class Jjavax.swing.JEditorPane extends
javax.swing.text.JTextComponent
(new in 1.2)
public class Jjavax.swing.JEditorPane.AccessibleJEditorPane
extends javax.swing.text.JTextComponent.AccessibledTextComponent
(new in 1.2)
public class javax.swing.JEditorPane.AccessibleJEditorPaneHTML
extends
javax.swing.JEditorPane.AccessibleJEditorPane (new in 1.2)

public class
javax.swing.JEditorPane.JEditorPaneAccessibleHypertextSupport
extends javax.swing.JEditorPane.AccessibleJEditorPane (new in
1.2)

implements javax.accessibility.AccessibleHypertext

-905 -

public class
javax.swing.JEditorPane.JEditorPaneAccessibleHypertextSupport.
HTMLLink extends javax.accessibility.AccessibleHyperlink (new in
1.2)
public class javax.swing.JFileChooser extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class javax.swing.JFileChooser.AccessibleJFileChooser
extends
javax.swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JFrame extends java.awt.Frame (new in
1.2)

implements javax.accessibility.Accessible

implements javax.swing.RootPaneContainer

implements javax.swing.WindowConstants
public class javax.swing.JFrame.AccessibleJFrame extends
javax.accessibility.
AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class javax.swing.JInternalFrame extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.RootPaneContainer

implements javax.swing.WindowConstants
public class javax.swing.JInternalFrame.AccessibleJInternalFrame
extends
javax.swing.JComponent.AccessibleJComponent (new in 1.2)

implements javax.accessibility.AccessibleValue
public class javax.swing.JInternalFrame.JDesktopIcon extends
javax.swing.
JComponent (new in 1.2)

implements javax.accessibility.Accessible
public class
javax.swing.JInternalFrame.JDesktopIcon.AccessibledDesktopIcon
extends javax.swing.JComponent.AccessibleJComponent (new in 1.2)

implements javax.accessibility.AccessibleValue
public class javax.swing.JLabel extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.SwingConstants
public class Jjavax.swing.JLabel.AccessibleJLabel extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class Jjavax.swing.JLayeredPane extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JLayeredPane.AccessibleJLayeredPane
extends javax.
swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JList extends javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.Scrollable
public class javax.swing.JList.AccessibleJList extends
javax.swing.JComponent.
AccessibleJComponent (new in 1.2)
implements java.beans.PropertyChangelistener
implements javax.accessibility.AccessibleSelection
implements javax.swing.event.ListDatalListener

-906 -

implements javax.swing.event.ListSelectionListener
public class
javax.swing.JList.AccessibleJList.AccessibleJListChild extends
javax.accessibility.AccessibleContext (new in 1.2)

implements javax.accessibility.Accessible

implements javax.accessibility.AccessibleComponent
public class Jjavax.swing.JMenu extends javax.swing.JMenultem (new
in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.MenuElement
public class Jjavax.swing.JMenu.AccessibleJMenu extends
javax.swing.JMenultem.
AccessibleJMenultem (new in 1.2)

implements javax.accessibility.AccessibleSelection
public class javax.swing.JMenu.WinListener extends
java.awt.event.WindowAdapter
(new in 1.2)

implements java.io.Serializable
public class javax.swing.JMenuBar extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.MenuElement
public class javax.swing.JMenuBar.AccessibleJMenuBar extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

implements javax.accessibility.AccessibleSelection
public class javax.swing.JMenultem extends
javax.swing.AbstractButton
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.MenuElement
public class javax.swing.JMenultem.AccessibleJMenultem extends
javax.swing.
AbstractButton.AccessibleAbstractButton (new in 1.2)

implements javax.swing.event.ChangelListener
public class Jjavax.swing.JOptionPane extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class javax.swing.JOptionPane.AccessibleJOptionPane
extends javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class javax.swing.JPanel extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JPanel.AccessibleJPanel extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
public class Jjavax.swing.JPasswordField extends
javax.swing.JTextField
(new in 1.2)
public class Jjavax.swing.JPasswordField.AccessibleJPasswordField
extends
javax.swing.JTextField.AccessibleJTextField (new in 1.2)

public class Jjavax.swing.JPopupMenu extends
javax.swing.JComponent (new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.MenuElement
public class javax.swing.JPopupMenu.AccessibleJPopupMenu extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class javax.swing.JPopupMenu.Separator extends
javax.swing.JSeparator

-97 -

(new in 1.2)

public class javax.swing.JProgressBar extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.SwingConstants
public class javax.swing.JProgressBar.AccessibleJProgressBar
extends javax.
swing.JComponent.AccessibleJComponent (new in 1.2)

implements javax.accessibility.AccessibleValue
public class Jjavax.swing.JRadioButton extends
javax.swing.JToggleButton
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JRadioButton.AccessibleJRadioButton
extends javax.swing.JToggleButton.AccessibleJToggleButton (new in
1.2)
public class javax.swing.JRadioButtonMenultem extends
javax.swing.JMenultem
(new in 1.2)

implements javax.accessibility.Accessible
public class
javax.swing.JRadioButtonMenuItem.AccessibleJRadioButtonMenultem
extends javax.swing.JMenultem.AccessibleJMenultem (new in 1.2)

public class javax.swing.JRootPane extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JRootPane.AccessibleJRootPane extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class Jjavax.swing.JRootPane.RootLayout extends
java.lang.Object
(new in 1.2)
implements java.awt.LayoutManager?2
implements java.io.Serializable
public class Jjavax.swing.JScrollBar extends
javax.swing.JComponent
(new in 1.2)
implements java.awt.Adjustable
implements javax.accessibility.Accessible
public class Jjavax.swing.JScrollBar.AccessibleJScrollBar extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleValue
public class javax.swing.JScrollPane extends
javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.ScrollPaneConstants
public class javax.swing.JScrollPane.AccessibleJScrollPane
extends javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements javax.swing.event.ChangelListener
public class javax.swing.JScrollPane.ScrollBar extends
javax.swing.JScrollBar
(new in 1.2)
implements javax.swing.plaf.UIResource
public class Jjavax.swing.JSeparator extends
javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.SwingConstants
public class Jjavax.swing.JSeparator.AccessibleJSeparator extends

- 08 -

javax.swing.
JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JSlider extends javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.SwingConstants
public class javax.swing.JSlider.AccessibleJSlider extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleValue
public class javax.swing.JSplitPane extends
javax.swing.JComponent (new in 1.2)
implements javax.accessibility.Accessible
public class Jjavax.swing.JSplitPane.AccessibleJSplitPane extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleValue
public class javax.swing.JTabbedPane extends
javax.swing.JComponent
(new in 1.2)
implements java.io.Serializable
implements javax.accessibility.Accessible
implements javax.swing.SwingConstants
public class Jjavax.swing.JTabbedPane.AccessibleJTabbedPane
extends javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleSelection
implements javax.swing.event.ChangelListener
public class Jjavax.swing.JTabbedPane.Modellistener extends
java.lang.Object
(new in 1.2)
implements java.io.Serializable
implements javax.swing.event.ChangelListener
public class Jjavax.swing.JTable extends javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.Scrollable
implements javax.swing.event.CellEditorListener
implements javax.swing.event.ListSelectionListener
implements javax.swing.event.TableColumnModelListener
implements javax.swing.event.TableModellListener
public class javax.swing.JTable.AccessibleJTable extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)
implements java.beans.PropertyChangelistener
implements javax.accessibility.AccessibleSelection
implements javax.swing.event.CellEditorListener
implements javax.swing.event.ListSelectionListener
implements javax.swing.event.TableColumnModelListener
implements javax.swing.event.TableModelListener
public class
javax.swing.JTable.AccessibleJTable.AccessibledJTableCell extends
javax.accessibility.AccessibleContext (new in 1.2)
implements javax.accessibility.Accessible
implements javax.accessibility.AccessibleComponent
public class javax.swing.JTextArea extends
javax.swing.text.JTextComponent
(new in 1.2)
public class javax.swing.JTextArea.AccessibleJTextArea extends
javax.swing.text.JTextComponent.AccessibleJTextComponent (new in
1.2)
public class javax.swing.JTextField extends
javax.swing.text.JTextComponent

-99 .

(new in 1.2)

implements javax.swing.SwingConstants
public class javax.swing.JTextField.AccessibleJTextField extends
javax.swing.text.JTextComponent.AccessibleJTextComponent (new in
1.2)
public class javax.swing.JTextPane extends
javax.swing.JEditorPane (new in 1.2)
public class javax.swing.JToggleButton extends
javax.swing.AbstractButton
(new in 1.2)

implements javax.accessibility.Accessible
public class Jjavax.swing.JToggleButton.AccessibleJToggleButton
extends javax.swing.AbstractButton.AccessibleAbstractButton (new
in 1.2)

implements java.awt.event.ItemListener
public class Jjavax.swing.JToggleButton.ToggleButtonModel extends
javax.swing.
DefaultButtonModel (new in 1.2)

public class Jjavax.swing.JToolBar extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.SwingConstants
public class javax.swing.JToolBar.AccessibleJToolBar extends
javax.swing.
JComponent.ccessibleJComponent (new in 1.2)

public class javax.swing.JToolBar.Separator extends
javax.swing.JSeparator
(new in 1.2)

public class javax.swing.JToolTip extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class javax.swing.JToolTip.AccessibleJToolTip extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class Jjavax.swing.JTree extends javax.swing.JComponent
(new in 1.2)
implements javax.accessibility.Accessible
implements javax.swing.Scrollable
public class javax.swing.JTree.AccessibleJTree extends
javax.swing.JComponent.
AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleSelection
implements javax.swing.event.TreeExpansionListener
implements javax.swing.event.TreeModellListener
implements javax.swing.event.TreeSelectionListener
public class
javax.swing.JTree.AccessibleJTree.AccessibleJTreeNode extends
javax.accessibility.AccessibleContext (new in 1.2)
implements javax.accessibility.Accessible
implements javax.accessibility.AccessibleAction
implements javax.accessibility.AccessibleComponent
implements javax.accessibility.AccessibleSelection
public class javax.swing.JTree.DynamicUtilTreeNode extends
javax.swing.tree.
DefaultMutableTreeNode (new in 1.2)
public class javax.swing.JTree.EmptySelectionModel extends
javax.swing.tree.
DefaultTreeSelectionModel (new in 1.2)
public class javax.swing.JTree.TreeModelHandler extends
java.lang.Object
(new in 1.2)
implements javax.swing.event.TreeModellListener

- 100 -

public class javax.swing.JTree.TreeSelectionRedirector extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.event.TreeSelectionListener
public class Jjavax.swing.JViewport extends javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible
public class javax.swing.JViewport.AccessibleJViewport extends
javax.swing.
JComponent .AccessibleJComponent (new in 1.2)

public class javax.swing.JViewport.ViewListener extends
java.awt.event.
ComponentAdapter (new in 1.2)

implements java.io.Serializable
public class javax.swing.JWindow extends java.awt.Window (new in
1.2)

implements javax.accessibility.Accessible

implements javax.swing.RootPaneContainer
public class Jjavax.swing.JWindow.AccessibleJWindow extends
javax.accessibility.
AccessibleContext (new in 1.2)

implements java.io.Serializable

implements javax.accessibility.AccessibleComponent
public class Jjavax.swing.KeyStroke extends java.lang.Object (new
in 1.2)

implements java.io.Serializable
public interface javax.swing.ListCellRenderer extends
java.lang.Object
(new in 1.2)

public interface javax.swing.ListModel extends java.lang.Object
(new in 1.2)

public interface javax.swing.ListSelectionModel extends
java.lang.Object

(new in 1.2)

public abstract class javax.swing.LookAndFeel extends
java.lang.Object
(new in 1.2)

public interface javax.swing.MenuElement extends java.lang.Object
(new in 1.2)
public class Jjavax.swing.MenuSelectionManager extends
java.lang.Object
(new in 1.2)
public interface javax.swing.MutableComboBoxModel extends
java.lang.Object
(new in 1.2)

implements javax.swing.ComboBoxModel
public class Jjavax.swing.OverlayLayout extends java.lang.Object
(new in 1.2)

implements java.awt.LayoutManager?2

implements java.io.Serializable
public class javax.swing.ProgressMonitor extends java.lang.Object
(new in 1.2)
public class Jjavax.swing.ProgressMonitorInputStream extends
java.io.FilterInputStream
(new in 1.2)
public interface javax.swing.Renderer extends java.lang.Object
(new in 1.2)
public class javax.swing.RepaintManager extends java.lang.Object
(new in 1.2)
public interface javax.swing.RootPaneContainer extends
java.lang.Object

- 101 -

(new in 1.2)

public interface javax.swing.ScrollPaneConstants extends
java.lang.Object
(new in 1.2)

public class javax.swing.ScrollPanelLayout extends
java.lang.Object
(new in 1.2)

implements java.awt.LayoutManager

implements java.io.Serializable

implements javax.swing.ScrollPaneConstants
public class javax.swing.ScrollPanelLayout.UIResource extends
javax.swing.
ScrollPanelayout (new in 1.2)

implements javax.swing.plaf.UIResource
public interface javax.swing.Scrollable extends java.lang.Object
(new in 1.2)
public interface javax.swing.SingleSelectionModel extends
java.lang.Object
(new in 1.2)

public class javax.swing.SizeRequirements extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public interface Jjavax.swing.SwingConstants extends
java.lang.Object
(new in 1.2)

public class javax.swing.SwingUtilities extends java.lang.Object
(new in 1.2)

implements javax.swing.SwingConstants
public class javax.swing.Timer extends java.lang.Object (new in
1.2)

implements java.io.Serializable
public class Jjavax.swing.ToolTipManager extends
java.awt.event.MouseAdapter
(new in 1.2)

implements java.awt.event.MouseMotionListener
public class javax.swing.ToolTipManager.insideTimerAction extends
java.lang.
Object (new in 1.2)

implements java.awt.event.ActionListener
public class Jjavax.swing.ToolTipManager.outsideTimerAction
extends java.lang.
Object (new in 1.2)

implements java.awt.event.ActionListener
public class Jjavax.swing.ToolTipManager.stillInsideTimerAction
extends
java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class javax.swing.UIDefaults extends java.util.Hashtable
(new in 1.2)
public interface javax.swing.UIDefaults.ActiveValue extends
java.lang.Object
(new in 1.2)
public interface javax.swing.UIDefaults.LazyValue extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.UIManager extends java.lang.Object (new
in 1.2)

implements java.io.Serializable
public class javax.swing.UIManager.LookAndFeelInfo extends
java.lang.Object
(new in 1.2)

-102 -

public class Jjavax.swing.UnsupportedLookAndFeelException extends
java.lang.
Exception (new in 1.2)

public class Jjavax.swing.ViewportLayout extends java.lang.Object
(new in 1.2)

implements java.awt.LayoutManager

implements java.io.Serializable
public interface javax.swing.WindowConstants extends
java.lang.Object
(new in 1.2)

Package javax.swing (Continued)

Package javax.swing.border

This package is part of Swing and provides a collection of stylish borders with which to
surround your GUI components. We will use some of these borders in a performance
analyzer project in Chapter 60, "PerfAnal: A Free Performance Analysis Tool."

Listing 3.42 shows all public classes and interfaces in the javax.swing.border
package.

Listing 3.42 javax.swing.border Classes and Interfaces List

public abstract class javax.swing.border.AbstractBorder extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.border.Border
public class javax.swing.border.BevelBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)

public interface javax.swing.border.Border extends
java.lang.Object
(new in 1.2)

public class javax.swing.border.CompoundBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)

public class Jjavax.swing.border.EmptyBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)

implements java.io.Serializable
public class Jjavax.swing.border.EtchedBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)
public class Jjavax.swing.border.LineBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)
public class Jjavax.swing.border.MatteBorder extends
javax.swing.border.
EmptyBorder (new in 1.2)
public class javax.swing.border.SoftBevelBorder extends
javax.swing.border.
BevelBorder (new in 1.2)
public class javax.swing.border.TitledBorder extends
javax.swing.border.
AbstractBorder (new in 1.2)

- 103 -

Package javax.swing.colorchooser

This package is part of Swing. It solves the age-old problem of implementing a GUI-
based color selection dialog without relying on the highly variable (often nonexistent)
support provided by various operating systems.Listing 3.43 shows all public classes and
interfaces in the javax.swing.colorchooser package.

Listing 3.43 javax.swing.colorchooser Classes and Interfaces List

public abstract class
javax.swing.colorchooser.AbstractColorChooserPanel
extends javax.swing.JPanel (new in 1.2)

public class
javax.swing.colorchooser.ColorChooserComponentFactory extends
java.lang.Object (new in 1.2)

public interface javax.swing.colorchooser.ColorSelectionModel
extends
java.lang.Object (new in 1.2)

public class javax.swing.colorchooser.DefaultColorSelectionModel
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.colorchooser.ColorSelectionModel

Package javax.swing.event

This package is part of Swing. It describes the rich universe of events and event listeners
added to Java by the Swing toolkit.

Listing 3.44 shows all public classes and interfaces in the javax.swing.event
package.

Listing 3.44 javax.swing.event Classes and Interfaces List

public class javax.swing.event.AncestorEvent extends
java.awt.AWTEvent
(new in 1.2)

public interface Jjavax.swing.event.AncestorListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public abstract class javax.swing.event.CaretEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.CaretListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public interface javax.swing.event.CellEditorListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class javax.swing.event.ChangeEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.Changelistener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener

-104 -

public interface javax.swing.event.DocumentEvent extends
java.lang.Object
(new in 1.2)

public interface javax.swing.event.DocumentEvent.ElementChange
extends
java.lang.Object (new in 1.2)

public final class javax.swing.event.DocumentEvent.EventType
extends
java.lang.Object (new in 1.2)

public interface javax.swing.event.DocumentListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class javax.swing.event.EventListenerList extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class javax.swing.event.HyperlinkEvent extends
java.util.EventObject
(new in 1.2)

public final class Jjavax.swing.event.HyperlinkEvent.EventType
extends
java.lang.Object (new in 1.2)

public interface javax.swing.event.HyperlinkListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public abstract class javax.swing.event.InternalFrameAdapter
extends java.lang.
Object (new in 1.2)

implements javax.swing.event.InternalFramelListener
public class javax.swing.event.InternalFrameEvent extends
java.awt.AWTEvent
(new in 1.2)

public interface javax.swing.event.InternalFramelistener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class javax.swing.event.ListDataEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.ListDatalistener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class Jjavax.swing.event.ListSelectionEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.ListSelectionlistener extends
java.lang.
Object (new in 1.2)

implements java.util.EventListener
public class javax.swing.event.MenuDragMouseEvent extends
java.awt.event.
MouseEvent (new in 1.2)

public interface javax.swing.event.MenuDragMouselListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class javax.swing.event.MenuEvent extends
java.util.EventObject
(new in 1.2)

- 105 -

public class Jjavax.swing.event.MenuKeyEvent extends
java.awt.event.KeyEvent
(new in 1.2)

public interface javax.swing.event.MenuKeylListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public interface javax.swing.event.Menulistener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public abstract class javax.swing.event.MouseInputAdapter extends
java.lang.
Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class Jjavax.swing.event.PopupMenuEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.PopupMenulListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public final class Jjavax.swing.event.SwingPropertyChangeSupport
extends
java.beans.PropertyChangeSupport (new in 1.2)

public class Jjavax.swing.event.TableColumnModelEvent extends
java.util.
EventObject (new in 1.2)

public interface javax.swing.event.TableColumnModellListener
extends java.lang.
Object (new in 1.2)

implements java.util.EventListener
public class javax.swing.event.TableModelEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.TableModellistener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class Jjavax.swing.event.TreeExpansionEvent extends
java.util.EventObject
(new in 1.2)

public interface javax.swing.event.TreeExpansionlListener extends
java.lang.
Object (new in 1.2)

implements java.util.EventListener
public class Jjavax.swing.event.TreeModelEvent extends
java.util.EventObject
(new in 1.2)
public interface javax.swing.event.TreeModellListener extends
java.lang.Object
(new in 1.2)

implements java.util.EventListener
public class javax.swing.event.TreeSelectionEvent extends
java.util.EventObject
(new in 1.2)
public interface javax.swing.event.TreeSelectionlListener extends
java.lang.
Object (new in 1.2)

implements java.util.EventListener
public interface javax.swing.event.TreeWillExpandListener extends
java.lang.

- 106 -

Object (new in 1.2)
implements java.util.EventListener
public class javax.swing.event.UndoableEditEvent extends
java.util.EventObject
(new in 1.2)
public interface javax.swing.event.UndoableEditListener extends
java.lang.
Object (new in 1.2)
implements java.util.EventListener

Package javax.swing.filechooser

This package is part of Swing and describes the extensible utility classes used in the
implementation of the Swing file chooser dialog. The FileSystemView class is
intended, at some future date, to allow the file chooser to discern platform-specific details
about files (such as ownership, permissions, and mode bits in the UNIX/Linux world).

Listing 3.45 shows all public classes and interfaces in the javax.swing.filechooser
package.

Listing 3.45 javax.swing.filechooser Classes and Interfaces List

public abstract class javax.swing.filechooser.FileFilter extends
java.lang.Object (new in 1.2)

public abstract class javax.swing.filechooser.FileSystemView
extends
java.lang.Object (new in 1.2)

public abstract class javax.swing.filechooser.FileView extends
java.lang.Object (new in 1.2)

Package javax.swing.plaf

This hefty package and its collection of subpackages is part of Swing and describes the
framework for the Pluggable Look and Feel capability of the Swing GUI components.
Each of the pluggable personalities performs its magic by extending the
javax.swing.plaf classes.

Listing 3.46 shows all public classes and interfaces in the javax.swing.plaf package.
Listing 3.46 javax.swing.plaf Classes and Interfaces List

public class Jjavax.swing.plaf.BorderUIResource extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.border.Border

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.BevelBorderUIResource extends
javax.swing.border.BevelBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.CompoundBorderUIResource
extends javax.swing.border.CompoundBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.EmptyBorderUIResource extends
javax.swing.border.

- 107 -

EmptyBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.EtchedBorderUIResource extends
javax.swing.border.EtchedBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.LineBorderUIResource extends
javax.swing.border.LineBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.MatteBorderUIResource extends
javax.swing.border.MatteBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.BorderUIResource.TitledBorderUIResource extends
javax.swing.border.TitledBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public abstract class javax.swing.plaf.ButtonUI extends
javax.swing.plaf.
ComponentUIl (new in 1.2)
public abstract class javax.swing.plaf.ColorChooserUI extends
javax.swing.plaf.
ComponentUIl (new in 1.2)
public class javax.swing.plaf.ColorUIResource extends
java.awt.Color
(new in 1.2)

implements javax.swing.plaf.UIResource
public abstract class javax.swing.plaf.ComboBoxUI extends
javax.swing.plaf.
ComponentUI (new in 1.2)
public abstract class javax.swing.plaf.ComponentUI extends
java.lang.Object
new in 1.2)
public abstract class javax.swing.plaf.DesktopIconUI extends
javax.swing.plaf.
ComponentUI (new in 1.2)
public abstract class javax.swing.plaf.DesktopPaneUI extends
javax.swing.plaf.
ComponentUI (new in 1.2)
public class javax.swing.plaf.DimensionUIResource extends
java.awt.Dimension
(new in 1.2)

implements javax.swing.plaf.UIResource
public abstract class javax.swing.plaf.FileChooserUI extends
javax.swing.plaf.
ComponentUIl (new in 1.2)
public class javax.swing.plaf.FontUIResource extends
java.awt.Font (new in 1.2)

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.IconUIResource extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.Icon

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.InsetsUIResource extends
java.awt.Insets
(new in 1.2)

implements javax.swing.plaf.UIResource
public abstract class javax.swing.plaf.InternalFrameUI extends
javax.swing.

- 108 -

plaf.ComponentUI

public abstract class
javax.swing.plaf.
ComponentUIl (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ButtonUI (new in 1.2)
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUIl (new in 1.
public abstract class
javax.swing.plaf.
ComponentUIl (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUI (new in 1.
public abstract class
javax.swing.plaf.
ComponentUIl (new in 1.

public abstract class

javax.

2)

javax.

2)

javax.

2)

javax.

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

2)

javax.

(new in 1.2)
swing.

swing.

swing.

swing.

swing.

swing.

swing

swing

swing

swing.

swing.

swing.

swing.

swing.

swing.

swing.

swing

swing

swing.

swing.

plaf.

plaf.

plaf

plaf

plaf.

plaf.

.plaf.

.plaf.

.plaf.

plaf.

plaf.

plaf.

plaf.

plaf.

plaf.

plaf.

.plaf.

.plaf.

plaf.

plaf.

LabelUI extends

ListUI extends

.MenuBarUI extends

.MenuItemUI extends

OptionPaneUI extends

PanelUI extends

PopupMenuUI extends

ProgressBarUI extends

ScrollBarUI extends

ScrollPaneUI extends

SeparatorUI extends

SliderUI extends

SplitPaneUI extends

TabbedPaneUI extends

TableHeaderUI extends

TableUI extends

TextUI extends

ToolBarUI extends

ToolTipUI extends

TreeUI extends

- 109 -

javax.swing.plaf.
ComponentUI (new in 1.2)

public abstract class javax.swing.plaf.ViewportUI extends
javax.swing.plaf.
ComponentUIl (new in 1.2)

Package javax.swing.plaf.basic

This package is part of Swing and provides the basic look and feel of Swing GUI
components. Many of these components are used or extended by the pluggable
personalities.

Listing 3.47 shows all public classes and interfaces in the javax.swing.plaf.basic
package.

Listing 3.47 javax.swing.plaf.basic Classes and Interfaces List

public class javax.swing.plaf.basic.BasicArrowButton extends
javax.swing.
JButton (new in 1.2)

implements javax.swing.SwingConstants
public class javax.swing.plaf.basic.BasicBorders extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.plaf.basic.BasicBorders.ButtonBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.basic.BasicBorders.FieldBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.basic.BasicBorders.MarginBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.basic.BasicBorders.MenuBarBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.basic.BasicBorders.RadioButtonBorder extends
javax.swing.plaf.basic.BasicBorders.ButtonBorder (new in 1.2)

public class javax.swing.plaf.basic.BasicBorders.SplitPaneBorder
extends
java.lang.Object (new in 1.2)

implements javax.swing.border.Border

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.basic.BasicBorders.ToggleButtonBorder extends
javax.swing.plaf.basic.BasicBorders.ButtonBorder (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicButtonlListener extends
java.lang.
Object (new in 1.2)

implements java.awt.event.FocusListener

implements java.awt.event.MouselListener

implements java.awt.event.MouseMotionListener

implements java.beans.PropertyChangelistener

implements javax.swing.event.ChangelListener
public class javax.swing.plaf.basic.BasicButtonUI extends
javax.swing.plaf.

- 110 -

ButtonUI (new in 1.2)

public class javax.swing.plaf.basic.BasicCheckBoxMenuItemUI
extends javax.
swing.plaf.basic.BasicMenultemUI (new in 1.2)

public class javax.swing.plaf.basic.BasicCheckBoxUI extends
javax.swing.
plaf.basic.BasicRadioButtonUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicColorChooserUI extends
javax.
swing.plaf.ColorChooserUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicColorChooserUI.PropertyHandler
extends
java.lang.Object (new in 1.2)
implements java.beans.PropertyChangelistener
public class Jjavax.swing.plaf.basic.BasicComboBoxEditor extends
java.lang.
Object (new in 1.2)
implements java.awt.event.FocusListener
implements javax.swing.ComboBoxEditor
public class
javax.swing.plaf.basic.BasicComboBoxEditor.UIResource extends
javax.swing.plaf.basic.BasicComboBoxEditor (new in 1.2)
implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.basic.BasicComboBoxRenderer extends
javax.swing.
JLabel (new in 1.2)
implements java.io.Serializable
implements javax.swing.ListCellRenderer
public class
javax.swing.plaf.basic.BasicComboBoxRenderer.UIResource extends
javax.swing.plaf.basic.BasicComboBRoxRenderer (new in 1.2)
implements javax.swing.plaf.UIResource
public class javax.swing.plaf.basic.BasicComboBoxUI extends
javax.swing.plaf.
ComboBoxUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicComboBoxUI.ComboBoxLayoutManager
extends java.lang.Object (new in 1.2)

implements java.awt.LayoutManager
public class javax.swing.plaf.basic.BasicComboBoxUI.FocusHandler
extends
java.lang.Object (new in 1.2)

implements java.awt.event.FocusListener
public class javax.swing.plaf.basic.BasicComboBoxUI.ItemHandler
extends
java.lang.Object (new in 1.2)

implements java.awt.event.ItemListener
public class Jjavax.swing.plaf.basic.BasicComboBoxUI.KeyHandler
extends
java.awt.event.KeyAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicComboBoxUI.ListDataHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ListDatalListener
public class
javax.swing.plaf.basic.BasicComboBoxUI.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class javax.swing.plaf.basic.BasicComboPopup extends
javax.swing.
JPopupMenu (new in 1.2)

implements javax.swing.plaf.basic.ComboPopup

- 111 -

public class
javax.swing.plaf.basic.BasicComboPopup.InvocationKeyHandler
extends java.awt.event.KeyAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicComboPopup.InvocationMouseHandler
extends java.awt.event.MouseAdapter (new in 1.2)

public class javax.swing.plaf.basic.BasicComboPopup.

InvocationMouseMotionHandler extends
java.awt.event.MouseMotionAdapter
(new in 1.2)

public class javax.swing.plaf.basic.BasicComboPopup.ItemHandler
extends
java.lang.Object (new in 1.2)

implements java.awt.event.ItemListener
public class
javax.swing.plaf.basic.BasicComboPopup.ListDataHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ListDatalListener
public class
javax.swing.plaf.basic.BasicComboPopup.ListMouseHandler extends
java.awt.event.MouseAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicComboPopup.ListMouseMotionHandler
extends java.awt.event.MouseMotionAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicComboPopup.ListSelectionHandler
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ListSelectionListener
public class
javax.swing.plaf.basic.BasicComboPopup.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelistener
public class javax.swing.plaf.basic.BasicDesktopIconUI extends
javax.swing.
plaf.DesktopIconUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicDesktopIconUI.MouseInputHandler
extends javax.swing.event.MouselnputAdapter (new in 1.2)
public class Jjavax.swing.plaf.basic.BasicDesktopPaneUI extends

javax.swing.
plaf.DesktopPaneUIl (new in 1.2)

public class
javax.swing.plaf.basic.BasicDesktopPaneUI.CloseAction extends
javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicDesktopPaneUI.MaximizeAction extends
javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicDesktopPaneUI.MinimizeAction extends
javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicDesktopPaneUI.NavigateAction extends
javax.swing.AbstractAction (new in 1.2)
public class javax.swing.plaf.basic.BasicDirectoryModel extends
javax.swing.
AbstractlListModel (new in 1.2)

implements java.beans.PropertyChangelistener
public class Jjavax.swing.plaf.basic.BasicEditorPaneUI extends
javax.swing.
plaf.basic.BasicTextUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicFileChooserUI extends

-112 -

javax.swing.

plaf.FileChooserUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.AcceptAllFileFilter
extends javax.swing.filechooser.FileFilter (new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.ApproveSelectionAction
extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.BasicFileView extends
javax.swing.filechooser.FileView (new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.CancelSelectionAction
extends javax.swing.AbstractAction (new in 1.2)

public class javax.swing.plaf.basic.BasicFileChooserUI.

ChangeToParentDirectoryAction extends javax.swing.AbstractAction
(new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.DoubleClickListener
extends java.awt.event.MouseAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicFileChooserUI.GoHomeAction extends
javax.swing.AbstractAction (new in 1.2)
public class
javax.swing.plaf.basic.BasicFileChooserUI.NewFolderAction extends
javax.swing.AbstractAction (new in 1.2)
public class
javax.swing.plaf.basic.BasicFileChooserUI.SelectionListener
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ListSelectionListener
public class
javax.swing.plaf.basic.BasicFileChooserUI.UpdateAction extends
javax.swing.AbstractAction (new in 1.2)

public class javax.swing.plaf.basic.BasicGraphicsUtils extends
java.lang.
Object (new in 1.2)
public class javax.swing.plaf.basic.BasicIconFactory extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable
public class javax.swing.plaf.basic.BasicInternalFrameTitlePane
extends
javax.swing.JComponent (new in 1.2)

public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.CloseAction
extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.IconifyAction
extends javax.swing.AbstractAction (new in 1.2)

public class

javax.swing.plaf.basic.BasicInternalFrameTitlePane.MaximizeAction

extends javax.swing.AbstractAction (new in 1.2)

public class

javax.swing.plaf.basic.BasicInternalFrameTitlePane.MoveAction

extends javax.swing.AbstractAction (new in 1.2)

public class javax.swing.plaf.basic.BasicInternalFrameTitlePane.

PropertyChangeHandler extends java.lang.Object (new in 1.2)
implements java.beans.PropertyChangelListener

public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.RestoreAction

-113 -

extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.SizeAction
extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.SystemMenuBar
extends javax.swing.JMenuBar (new in 1.2)

public class javax.swing.plaf.basic.BasicInternalFrameTitlePane.

TitlePanelayout extends java.lang.Object (new in 1.2)
implements java.awt.LayoutManager
public class javax.swing.plaf.basic.BasicInternalFrameUI extends
javax.swing.
plaf.InternalFrameUIl (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicInternalFrameUT.

BasicInternalFrameListener extends java.lang.Object (new in 1.2)
implements javax.swing.event.InternalFramelListener
public class
javax.swing.plaf.basic.BasicInternalFrameUI.BorderListener
extends javax.swing.event.MouselnputAdapter (new in 1.2)
implements javax.swing.SwingConstants
public class
javax.swing.plaf.basic.BasicInternalFrameUI.ComponentHandler
extends java.lang.Object (new in 1.2)
implements java.awt.event.ComponentListener
public class
javax.swing.plaf.basic.BasicInternalFrameUI.GlassPaneDispatcher
extends java.lang.Object (new in 1.2)
implements javax.swing.event.MouselInputListener
public class
javax.swing.plaf.basic.BasicInternalFrameUI.InternalFrameLayout
extends java.lang.Object (new in 1.2)
implements java.awt.LayoutManager
public class javax.swing.plaf.basic.BasicLabelUI extends
javax.swing.
plaf.LabelUI (new in 1.2)
implements java.beans.PropertyChangelListener
public class javax.swing.plaf.basic.BasicListUI extends
javax.swing.plaf.
ListUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicListUI.FocusHandler
extends java.lang.
Object (new in 1.2)

implements java.awt.event.FocusListener
public class javax.swing.plaf.basic.BasicListUI.ListDataHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ListDatalistener
public class
javax.swing.plaf.basic.BasicListUI.ListSelectionHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ListSelectionListener
public class javax.swing.plaf.basic.BasicListUI.MouselInputHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class
javax.swing.plaf.basic.BasicListUI.PropertyChangeHandler extends
java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public abstract class javax.swing.plaf.basic.BasicLookAndFeel
extends
javax.swing.LookAndFeel (new in 1.2)

-114 -

implements java.io.Serializable
public class Jjavax.swing.plaf.basic.BasicMenuBarUI extends
javax.swing.plaf.
MenuBarUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicMenuItemUI extends
javax.swing.plaf.
MenultemUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicMenuItemUI.MouseInputHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class javax.swing.plaf.basic.BasicMenuUI extends
javax.swing.plaf.
basic.BasicMenultemUI (new in 1.2)

public class javax.swing.plaf.basic.BasicMenuUI.ChangeHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class javax.swing.plaf.basic.BasicOptionPaneUI extends
javax.swing.plaf.
OptionPaneUIl (new in 1.2)

public class
javax.swing.plaf.basic.BasicOptionPaneUI.ButtonActionListener
extends java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicOptionPaneUI.ButtonArealayout extends
java.lang.Object (new in 1.2)

implements java.awt.LayoutManager
public class
javax.swing.plaf.basic.BasicOptionPaneUI.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class javax.swing.plaf.basic.BasicPanelUI extends
javax.swing.plaf.
PanelUI (new in 1.2)

public class javax.swing.plaf.basic.BasicPasswordFieldUI extends

javax.swing.
plaf.basic.BasicTextFieldUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicPopupMenuSeparatorUI
extends
javax.swing.plaf.basic.BasicSeparatorUIl (new in 1.2)

public class javax.swing.plaf.basic.BasicPopupMenuUI extends
javax.swing.plaf.
PopupMenuUI (new in 1.2)

public class javax.swing.plaf.basic.BasicProgressBarUI extends
javax.swing.
plaf.ProgressBarUIl (new in 1.2)

public class
javax.swing.plaf.basic.BasicProgressBarUI.ChangeHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class Jjavax.swing.plaf.basic.BasicRadioButtonMenuItemUI
extends
javax.swing.plaf.basic.BasicMenultemUI (new in 1.2)
public class Jjavax.swing.plaf.basic.BasicRadioButtonUI extends
javax.swing.
plaf.basic.BasicToggleButtonUI (new in 1.2)
public class javax.swing.plaf.basic.BasicScrollBarUI extends
javax.swing.plaf.
ScrollBarUI (new in 1.2)

- 115 -

implements java.awt.LayoutManager

implements javax.swing.SwingConstants
public class
javax.swing.plaf.basic.BasicScrollBarUI.ArrowButtonListener
extends java.awt.event.MouseAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicScrollBarUI.ModellListener extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class
javax.swing.plaf.basic.BasicScrollBarUI.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class
javax.swing.plaf.basic.BasicScrollBarUI.ScrollListener extends
java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicScrollBarUI.TrackListener extends
java.awt.event.MouseAdapter (new in 1.2)

implements java.awt.event.MouseMotionListener
public class javax.swing.plaf.basic.BasicScrollPaneUI extends
javax.swing.plaf.
ScrollPaneUI (new in 1.2)

implements javax.swing.ScrollPaneConstants
public class
javax.swing.plaf.basic.BasicScrollPaneUI.HSBChangelListener
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class
javax.swing.plaf.basic.BasicScrollPaneUI.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class
javax.swing.plaf.basic.BasicScrollPaneUI.VSBChangelListener
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class
javax.swing.plaf.basic.BasicScrollPaneUI.ViewportChangeHandler
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class javax.swing.plaf.basic.BasicSeparatorUI extends
javax.swing.plaf.
SeparatorUIl (new in 1.2)

public class javax.swing.plaf.basic.BasicSliderUI extends
javax.swing.plaf.
SliderUI (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicSliderUI.ActionScroller
extends
javax.swing.AbstractAction (new in 1.2)

public class javax.swing.plaf.basic.BasicSliderUI.ChangeHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class
javax.swing.plaf.basic.BasicSliderUI.ComponentHandler extends
java.awt.event.ComponentAdapter (new in 1.2)
public class javax.swing.plaf.basic.BasicSliderUI.FocusHandler
extends
java.lang.Object (new in 1.2)

implements java.awt.event.FocusListener
public class
javax.swing.plaf.basic.BasicSliderUI.PropertyChangeHandler

- 116 -

extends java.lang.Object (new in 1.2)
implements java.beans.PropertyChangelistener
public class javax.swing.plaf.basic.BasicSliderUI.ScrollListener
extends
java.lang.Object (new in 1.2)
implements java.awt.event.ActionListener
public class javax.swing.plaf.basic.BasicSliderUI.TrackListener
extends
javax.swing.event.MouseInputAdapter (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicSplitPaneDivider extends
java.awt.
Container (new in 1.2)

implements java.beans.PropertyChangelListener
public class
javax.swing.plaf.basic.BasicSplitPaneDivider.DividerLayout
extends java.lang.Object (new in 1.2)

implements java.awt.LayoutManager
public class
javax.swing.plaf.basic.BasicSplitPaneDivider.DragController
extends java.lang.Object (new in 1.2)

public class
javax.swing.plaf.basic.BasicSplitPaneDivider.MouseHandler extends
java.awt.event.MouseAdapter (new in 1.2)

implements java.awt.event.MouseMotionListener
public class javax.swing.plaf.basic.BasicSplitPaneDivider.
VerticalDragController extends
javax.swing.plaf.basic.BasicSplitPaneDivider.
DragController (new in 1.2)
public class javax.swing.plaf.basic.BasicSplitPaneUI extends
javax.swing.plaf.
SplitPaneUI (new in 1.2)
public class javax.swing.plaf.basic.BasicSplitPaneUT.
BasicHorizontallLayoutManager extends java.lang.Object (new in
1.2)

implements java.awt.LayoutManager?2
public class javax.swing.plaf.basic.BasicSplitPaneUT.
BasicVerticallLayoutManager extends
javax.swing.plaf.basic.BasicSplitPaneUI.
BasicHorizontallLayoutManager (new in 1.2)
public class javax.swing.plaf.basic.BasicSplitPaneUI.FocusHandler
extends
java.awt.event.FocusAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardDownRightHandler
extends java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardEndHandler
extends java.lang.

Object (new in 1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardHomeHandler
extends java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class javax.swing.plaf.basic.BasicSplitPaneUT.
KeyboardResizeToggleHandler extends java.lang.Object (new in
1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardUpLeftHandler

- 117 -

extends java.lang.Object (new in 1.2)

implements java.awt.event.ActionListener
public class
javax.swing.plaf.basic.BasicSplitPaneUI.PropertyHandler extends
java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelistener
public class javax.swing.plaf.basic.BasicTabbedPaneUI extends
javax.swing.plaf.
TabbedPaneUI (new in 1.2)

implements javax.swing.SwingConstants
public class
javax.swing.plaf.basic.BasicTabbedPaneUI.FocusHandler extends
java.awt.event.FocusAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicTabbedPaneUI .MouseHandler extends
java.awt.event.MouseAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicTabbedPaneUI.PropertyChangeHandler
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class
javax.swing.plaf.basic.BasicTabbedPaneUI.TabSelectionHandler
extends java.lang.Object (new in 1.2)

implements javax.swing.event.ChangelListener
public class
javax.swing.plaf.basic.BasicTabbedPaneUI.TabbedPaneLayout
extends java.lang.Object (new in 1.2)

implements java.awt.LayoutManager
public class javax.swing.plaf.basic.BasicTableHeaderUI extends
javax.swing.
plaf.TableHeaderUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicTableHeaderUI.MouseInputHandler
extends java.lang.Object (new in 1.2)

implements javax.swing.event.MouselnputListener
public class Jjavax.swing.plaf.basic.BasicTableUI extends
javax.swing.plaf.
TableUI (new in 1.2)
public class javax.swing.plaf.basic.BasicTableUI.FocusHandler
extends
java.lang.Object (new in 1.2)

implements java.awt.event.FocusListener
public class javax.swing.plaf.basic.BasicTableUI.KeyHandler
extends java.lang.
Object (new in 1.2)

implements java.awt.event.KeyListener
public class
javax.swing.plaf.basic.BasicTableUI.MouseInputHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class Jjavax.swing.plaf.basic.BasicTextAreaUI extends
javax.swing.plaf.
basic.BasicTextUI (new in 1.2)
public class javax.swing.plaf.basic.BasicTextFieldUI extends
javax.swing.plaf.
basic.BasicTextUI (new in 1.2)
public class Jjavax.swing.plaf.basic.BasicTextPaneUI extends
javax.swing.plaf.
basic.BasicEditorPaneUI (new in 1.2)
public abstract class javax.swing.plaf.basic.BasicTextUI extends
javax.swing.
plaf.TextUI (new in 1.2)

- 118 -

implements javax.swing.text.ViewFactory
public class Jjavax.swing.plaf.basic.BasicTextUI.BasicCaret
extends javax.
swing.text.DefaultCaret (new in 1.2)

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.basic.BasicTextUI.BasicHighlighter
extends javax.
swing.text.DefaultHighlighter (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.basic.BasicToggleButtonUI extends
javax.swing.
plaf.basic.BasicButtonUI (new in 1.2)

public class javax.swing.plaf.basic.BasicToolBarSeparatorUI
extends javax.
swing.plaf.basic.BasicSeparatorUIl (new in 1.2)

public class javax.swing.plaf.basic.BasicToolBarUI extends
javax.swing.plaf.
ToolBarUI (new in 1.2)

implements javax.swing.SwingConstants
public class
javax.swing.plaf.basic.BasicToolBarUI.DockingListener extends
java.lang.Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class javax.swing.plaf.basic.BasicToolBarUI.DragWindow
extends java.
awt.Window (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicToolBarUI.FramelListener
extends
java.awt.event.WindowAdapter (new in 1.2)

public class
javax.swing.plaf.basic.BasicToolBarUI.PropertyListener extends
java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class
javax.swing.plaf.basic.BasicToolBarUI.ToolBarContListener extends
java.lang.Object (new in 1.2)

implements java.awt.event.ContainerListener
public class
javax.swing.plaf.basic.BasicToolBarUI.ToolBarFocusListener
extends java.lang.Object (new in 1.2)

implements java.awt.event.FocusListener
public class javax.swing.plaf.basic.BasicToolTipUI extends
javax.swing.plaf.
ToolTipUI (new in 1.2)
public class javax.swing.plaf.basic.BasicTreeUI extends
javax.swing.plaf.
TreeUI (new in 1.2)
public class javax.swing.plaf.basic.BasicTreeUI.CellEditorHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.CellEditorListener
public class Jjavax.swing.plaf.basic.BasicTreeUI.ComponentHandler
extends
java.awt.event.ComponentAdapter (new in 1.2)

implements java.awt.event.ActionListener
public class javax.swing.plaf.basic.BasicTreeUI.FocusHandler
extends java.
lang.Object (new in 1.2)

implements java.awt.event.FocusListener
public class javax.swing.plaf.basic.BasicTreeUI.KeyHandler
extends java.awt.
event .KeyAdapter (new in 1.2)

-119 -

public class javax.swing.plaf.basic.BasicTreeUI.MouseHandler
extends java.awt.
event .MouseAdapter (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicTreeUI.MouseInputHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.MouseInputListener
public class
javax.swing.plaf.basic.BasicTreeUI.NodeDimensionsHandler extends
javax.swing.tree.AbstractLayoutCache.NodeDimensions (new in 1.2)

public class
javax.swing.plaf.basic.BasicTreeUI.PropertyChangeHandler extends
java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelistener
public class javax.swing.plaf.basic.BasicTreeUTI.

SelectionModelPropertyChangeHandler extends java.lang.Object (new
in 1.2)

implements java.beans.PropertyChangelistener
public class
javax.swing.plaf.basic.BasicTreeUI.TreeCancelEditingAction
extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicTreeUI.TreeExpansionHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.TreeExpansionListener
public class javax.swing.plaf.basic.BasicTreeUI.TreeHomeAction
extends
javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicTreeUI.TreelncrementAction extends
javax.swing.AbstractAction (new in 1.2)

public class Jjavax.swing.plaf.basic.BasicTreeUI.TreeModelHandler
extends
java.lang.Object (new in 1.2)

implements javax.swing.event.TreeModelListener
public class javax.swing.plaf.basic.BasicTreeUI.TreePageAction
extends
javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.basic.BasicTreeUI.TreeSelectionHandler extends
java.lang.Object (new in 1.2)

implements javax.swing.event.TreeSelectionlListener
public class javax.swing.plaf.basic.BasicTreeUI.TreeToggleAction
extends
javax.swing.AbstractAction (new in 1.2)
public class
javax.swing.plaf.basic.BasicTreeUI.TreeTraverseAction extends
javax.swing.AbstractAction (new in 1.2)
public class javax.swing.plaf.basic.BasicViewportUI extends
javax.swing.plaf.
ViewportUI (new in 1.2)
public interface javax.swing.plaf.basic.ComboPopup extends
java.lang.Object
(new in 1.2)
public class javax.swing.plaf.basic.DefaultMenulayout extends
javax.swing.
BoxLayout (new in 1.2)

implements javax.swing.plaf.UIResource

Package javax.swing.plaf.metal

- 120 -

This package is part of Swing and provides the look and feel behavior for Swing's default
Metal personality.

Listing 3.48 shows all public classes and interfaces in the javax.swing.plaf.metal
package.

Listing 3.48 javax.swing.plaf.metal Classes and Interfaces List

public class javax.swing.plaf.metal.DefaultMetalTheme extends
javax.swing.
plaf.metal.

MetalTheme (new in 1.2)

public class javax.swing.plaf.metal.MetalBorders extends
java.lang.Object
(new in 1.2)

public class javax.swing.plaf.metal.MetalBorders.ButtonBorder
extends javax.
swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.metal.MetalBorders.Flush3DBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.metal .MetalBorders.InternalFrameBorder extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.metal.MetalBorders.MenuBarBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.metal.MetalBorders.MenultemBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.metal.MetalBorders.PopupMenuBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class
javax.swing.plaf.metal .MetalBorders.RolloverButtonBorder extends
javax.swing.plaf.metal.MetalBorders.ButtonBorder (new in 1.2)

public class javax.swing.plaf.metal.MetalBorders.ScrollPaneBorder
extends
javax.swing.border.AbstractBorder (new in 1.2)

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.metal.MetalBorders.TextFieldBorder
extends
javax.swing.plaf.metal.MetalBorders.Flush3DBorder (new in 1.2)

public class javax.swing.plaf.metal.MetalBorders.ToolBarBorder
extends javax.
swing.border.AbstractBorder (new in 1.2)

implements javax.swing.SwingConstants

implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.metal.MetalButtonUI extends
javax.swing.
plaf.basic.BasicButtonUI (new in 1.2)
public class Jjavax.swing.plaf.metal.MetalCheckBoxIcon extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

- 121 -

implements javax.swing.Icon

implements javax.swing.plaf.UIResource
public class javax.swing.plaf.metal.MetalCheckBoxUI extends
javax.swing.plaf.
metal.MetalRadioButtonUI (new in 1.2)

public class javax.swing.plaf.metal.MetalComboBoxButton extends
javax.swing.
JButton (new in 1.2)

public class Jjavax.swing.plaf.metal.MetalComboBoxEditor extends
javax.swing.
plaf.basic.BasicComboBoxEditor (new in 1.2)

public class
javax.swing.plaf.metal.MetalComboBoxEditor.UIResource extends
javax.swing.plaf.metal.MetalComboBRoxEditor (new in 1.2)
implements javax.swing.plaf.UIResource
public class Jjavax.swing.plaf.metal.MetalComboBoxIcon extends
java.lang.Object
new in 1.2)
implements java.io.Serializable
implements javax.swing.Icon
public class javax.swing.plaf.metal.MetalComboBoxUI extends
javax.swing.plaf.
basic.BasicComboBoxUI (new in 1.2)

public class
javax.swing.plaf.metal.MetalComboBoxUI.MetalComboBoxLayoutManager
extends
javax.swing.plaf.basic.BasicComboBoxUI.ComboBoxLayoutManager

(new in 1.2)

public class
javax.swing.plaf.metal.MetalComboBoxUI.MetalComboPopup extends
javax.swing.plaf.basic.BasicComboPopup (new in 1.2)

public class
javax.swing.plaf.metal.MetalComboBoxUI.MetalPropertyChangeListener
extends
javax.swing.plaf.basic.BasicComboBoxUI.PropertyChangeHandler

(new in 1.2)

public class javax.swing.plaf.metal.MetalDesktopIconUI extends
javax.swing.
plaf.basic.BasicDesktopIconUIl (new in 1.2)

public class javax.swing.plaf.metal.MetalFileChooserUI extends
javax.swing.
plaf.basic.BasicFileChooserUI (new in 1.2)

public class
javax.swing.plaf.metal.MetalFileChooserUI.DirectoryComboBoxAction
extends javax.swing.AbstractAction (new in 1.2)

public class
javax.swing.plaf.metal.MetalFileChooserUI.DirectoryComboBoxModel
extends javax.swing.AbstractListModel (new in 1.2)

implements javax.swing.ComboBoxModel
public class
javax.swing.plaf.metal.MetalFileChooserUI.FileRenderer extends
javax.swing.DefaultListCellRenderer (new in 1.2)

public class
javax.swing.plaf.metal.MetalFileChooserUI.FilterComboBoxModel
extends javax.swing.AbstractListModel (new in 1.2)

implements java.beans.PropertyChangelistener

implements javax.swing.ComboBoxModel
public class
javax.swing.plaf.metal .MetalFileChooserUI.FilterComboBoxRenderer
extends javax.swing.DefaultListCellRenderer (new in 1.2)

public class

-122 -

javax.swing.plaf.metal.MetalFileChooserUI.SingleClickListener
extends java.awt.event.MouseAdapter (new in 1.2)

public class javax.swing.plaf.metal.MetalIconFactory extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class javax.swing.plaf.metal.MetalIconFactory.FileIconlé
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.Icon
public class javax.swing.plaf.metal.MetalIconFactory.FolderIconlé6
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.Icon
public class
javax.swing.plaf.metal.MetalIconFactory.TreeControlIcon extends
java.lang.Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.Icon
public class
javax.swing.plaf.metal .MetalIconFactory.TreeFolderIcon extends
javax.swing.plaf.metal.MetalIconFactory.FolderIconl6 (new in 1.2)
public class javax.swing.plaf.metal.MetalIconFactory.TreelLeafIcon
extends
javax.swing.plaf.metal.MetalIconFactory.FileIconl6é (new in 1.2)
public class javax.swing.plaf.metal.MetalInternalFrameUI extends
javax.
swing.plaf.basic.BasicInternalFrameUI (new in 1.2)
public class Jjavax.swing.plaf.metal.MetallabelUI extends
javax.swing.plaf.
basic.BasicLabelUI (new in 1.2)
public class Jjavax.swing.plaf.metal.MetallookAndFeel extends
javax.swing.plaf.
basic.BasicLookAndFeel (new in 1.2)
public class Jjavax.swing.plaf.metal.MetalPopupMenuSeparatorUI
extends javax.
swing.plaf.metal.MetalSeparatorUIl (new in 1.2)
public class Jjavax.swing.plaf.metal.MetalProgressBarUI extends
javax.swing.
plaf.basic.BasicProgressBarUI (new in 1.2)
public class javax.swing.plaf.metal.MetalRadioButtonUI extends
javax.swing.
plaf.basic.BasicRadioButtonUI (new in 1.2)
public class javax.swing.plaf.metal.MetalScrollBarUI extends
javax.swing.
plaf.basic.BasicScrollBarUI (new in 1.2)
public class javax.swing.plaf.metal.MetalScrollButton extends
javax.swing.
plaf.basic.BasicArrowButton (new in 1.2)
public class javax.swing.plaf.metal.MetalScrollPaneUI extends
javax.swing.
plaf.basic.BasicScrollPaneUIl (new in 1.2)
public class javax.swing.plaf.metal.MetalSeparatorUI extends
javax.swing.
plaf.basic.BasicSeparatorUIl (new in 1.2)
public class Jjavax.swing.plaf.metal.MetalSliderUI extends
javax.swing.
plaf.basic.BasicSliderUIl (new in 1.2)

public class

-123 -

javax.swing.plaf.metal.MetalSliderUI.MetalPropertyListener
extends
javax.swing.plaf.basic.BasicSliderUI.PropertyChangeHandler (new
in 1.2)

public class javax.swing.plaf.metal.MetalSplitPaneUI extends
javax.swing.plaf.

basic.BasicSplitPaneUI (new in 1.2)

public class javax.swing.plaf.metal.MetalTabbedPaneUI extends
javax.swing.plaf.

basic.BasicTabbedPaneUIl (new in 1.2)

public class
javax.swing.plaf.metal.MetalTabbedPaneUI.TabbedPanelLayout extends
javax.swing.plaf.basic.BasicTabbedPaneUI.TabbedPanelLayout (new in
1.2)

public class javax.swing.plaf.metal.MetalTextFieldUI extends
javax.swing.plaf.

basic.BasicTextFieldUI (new in 1.2)

public abstract class javax.swing.plaf.metal.MetalTheme extends
java.lang.

Object (new in 1.2)

public class Jjavax.swing.plaf.metal.MetalToggleButtonUI extends
javax.swing.

plaf.basic.BasicToggleButtonUI (new in 1.2)

public class Jjavax.swing.plaf.metal.MetalToolBarUI extends
javax.swing.

plaf.basic.BasicToolBarUI (new in 1.2)

public class
javax.swing.plaf.metal.MetalToolBarUI.MetalContainerListener
extends java.lang.Object (new in 1.2)

implements java.awt.event.ContainerListener
public class
javax.swing.plaf.metal.MetalToolBarUI.MetalDockingListener
extends
javax.swing.plaf.basic.BasicToolBarUI.DockingListener (new in
1.2)
public class
javax.swing.plaf.metal.MetalToolBarUI.MetalRolloverListener
extends java.lang.Object (new in 1.2)

implements java.beans.PropertyChangelListener
public class javax.swing.plaf.metal.MetalToolTipUI extends
javax.swing.plaf.
basic.BasicToolTipUI (new in 1.2)
public class javax.swing.plaf.metal.MetalTreeUI extends
javax.swing.plaf.basic.
BasicTreeUI (new in 1.2)

Package javax.swing.plaf.multi

This package is part of Swing and provides the hooks to extend Swing's built-in
pluggable personalities.

Listing 3.49 shows all public classes and interfaces in the javax.swing.plaf.multi
package.

Listing 3.49 javax.swing.plaf.multi Classes and Interfaces List

public class Jjavax.swing.plaf.multi.MultiButtonUI extends
javax.swing.
plaf.ButtonUI (new in 1.2)

public class Jjavax.swing.plaf.multi.MultiColorChooserUI extends

-124 -

javax.

swing.plaf.ColorChooserUI (new in 1.

public class javax.swing.plaf.multi
javax.swing.plaf.
ComboBoxUI (new in
public class javax
javax.swing.
plaf.DesktopIconUI

1.2)
.swing.plaf.multi

(new in 1.2)

public class javax.
javax.swing.
plaf.DesktopPaneUI
public class javax.
javax.swing.
plaf.FileChooserUI
public class javax.
javax.swing.
plaf.InternalFrameUI

swing.plaf.multi

(new in 1.2)
swing.plaf.multi

(new in 1.2)
swing.plaf.multi

(new in 1.2)
public class javax.swing.plaf.multi
javax.swing.plaf.

LabelUI (new in 1.2)

public class Jjavax.swing.plaf.
javax.swing.plaf.

ListUI (new in 1.2)

public class Jjavax.swing.plaf
javax.swing.
LookAndFeel
public class javax.swing.plaf
javax.swing.plaf.

MenuBarUI (new in 1.2)

public class javax.swing.plaf.
javax.swing.plaf.

MenultemUI (new in 1.2)
public class javax.swing.plaf

javax.swing.plaf.
OptionPaneUIl (new in 1.2)

multi

.multi

(new in 1.2)
.multi

multi

.multi

public class javax.swing.plaf.multi
javax.swing.plaf.

PanelUI (new in 1.2)

public class javax.swing.plaf
javax.swing.plaf.

PopupMenuUI (new in 1.2)

.multi

public class javax.swing.plaf.multi
javax.swing.

plaf.ProgressBarUIl (new in 1.2)

public class javax.swing.plaf.multi
javax.swing.plaf.

ScrollBarUI (new in 1.2)
public class javax.swing.plaf.
javax.swing.plaf.

ScrollPaneUI (new in 1.2)
public class Jjavax.swing.plaf.
javax.swing.plaf.

SeparatorUI (new in 1.2)

multi

multi

public class javax.swing.plaf.multi
javax.swing.plaf.

S1liderUI (new in 1.2)

public class javax.swing.plaf.
javax.swing.plaf.

SplitPaneUI (new in 1.2)

multi

2)

.MultiComboBoxUI extends

.MultiDesktopIconUI extends

.MultiDesktopPaneUI extends

.MultiFileChooserUI extends

.MultiInternalFrameUI extends

.MultiLabelUI extends

.MultiListUI extends

.MultiLookAndFeel extends

.MultiMenuBarUI extends

.MultiMenultemUI extends

.MultiOptionPaneUI extends

.MultiPanelUI extends

.MultiPopupMenuUI extends

.MultiProgressBarUI extends

.MultiScrollBarUI extends

.MultiScrollPaneUI extends

.MultiSeparatorUI extends

.MultiSliderUI extends

.MultiSplitPaneUI extends

- 125 -

public class Jjavax.swing.plaf.multi.MultiTabbedPaneUI extends
javax.swing.plaf.
TabbedPaneUI (new in 1.2)

public class javax.swing.plaf.multi.MultiTableHeaderUI extends
javax.swing.plaf.
TableHeaderUI (new in 1.2)

public class javax.swing.plaf.multi.MultiTableUI extends
javax.swing.plaf.TableUI
(new in 1.2)

public class javax.swing.plaf.multi.MultiTextUI extends
javax.swing.plaf.TextUI
(new in 1.2)

public class javax.swing.plaf.multi.MultiToolBarUI extends
javax.swing.plaf.
ToolBarUI (new in 1.2)

public class javax.swing.plaf.multi.MultiToolTipUI extends
javax.swing.plaf.
ToolTipUI (new in 1.2)

public class Jjavax.swing.plaf.multi.MultiTreeUI extends
javax.swing.plaf.TreeUI
(new in 1.2)

public class Jjavax.swing.plaf.multi.MultiViewportUI extends
javax.swing.plaf.
ViewportUI (new in 1.2)

Package javax.swing (Continued)

Package javax.swing. table

This package, part of Swing, provides classes and interfaces for dealing with the table-
viewing GUI. These classes can be used to customize appearance and semantics of the
viewer.

Listing 3.50 shows all public classes and interfaces in the javax.swing.table
package.

Listing 3.50 javax.swing.table Classes and Interfaces List

public abstract class javax.swing.table.AbstractTableModel
extends java.
lang.Object (new in 1.2)
implements java.io.Serializable
implements javax.swing.table.TableModel
public class Jjavax.swing.table.DefaultTableCellRenderer extends
javax.swing.
JLabel (new in 1.2)
implements java.io.Serializable
implements javax.swing.table.TableCellRenderer
public class
javax.swing. table.DefaultTableCellRenderer.UIResource extends
javax.swing.table.DefaultTableCellRenderer (new in 1.2)
implements javax.swing.plaf.UIResource
public class Jjavax.swing.table.DefaultTableColumnModel extends
java.lang.
Object (new in 1.2)
implements java.beans.PropertyChangelListener
implements java.io.Serializable
implements javax.swing.event.ListSelectionListener
implements javax.swing.table.TableColumnModel

- 126 -

public class Jjavax.swing.table.DefaultTableModel extends
javax.swing.table.
AbstractTableModel (new in 1.2)

implements java.io.Serializable
public class javax.swing.table.JTableHeader extends
javax.swing.JComponent
(new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.event.TableColumnModelListener
public class
javax.swing. table.JTableHeader.AccessibleJTableHeader extends
javax.swing.JComponent.AccessibleJComponent (new in 1.2)

public interface javax.swing.table.TableCellEditor extends
java.lang.Object
(new in 1.2)

implements javax.swing.CellEditor
public interface javax.swing.table.TableCellRenderer extends
java.lang.Object
(new in 1.2)

public class javax.swing.table.TableColumn extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable
public interface javax.swing.table.TableColumnModel extends
java.lang.Object
(new in 1.2)

public interface javax.swing.table.TableModel extends
java.lang.Object
(new in 1.2)

Package javax.swing. text

This package, part of Swing, provides classes and interfaces associated with the single-
and multiline text editing components. These classes can customize appearance and
semantics of the text editors.

One interesting and useful class is the StyledEditorKit, which describes a skeleton
text-editing framework that can be extended to build editors for styled documents.
Subpackages are provided (shown later in this chapter) that specialize this class for
HTML and Rich Text Format (RTF) documents.

Listing 3.51 shows all public classes and interfaces in the javax.swing.text package.
Listing 3.51 javax.swing.text Classes and Interfaces List

public abstract class Jjavax.swing.text.AbstractDocument extends
java.lang.
Object (new in 1.2)
implements java.io.Serializable
implements javax.swing.text.Document
public abstract class
javax.swing. text.AbstractDocument.AbstractElement
extends java.lang.Object (new in 1.2)
implements java.io.Serializable
implements javax.swing.text.Element
implements javax.swing.text.MutableAttributeSet
implements javax.swing.tree.TreeNode
public interface
javax.swing. text.AbstractDocument.AttributeContext extends
java.lang.Object (new in 1.2)

- 127 -

public class Jjavax.swing.text.AbstractDocument.BranchElement
extends
javax.swing.text.AbstractDocument.AbstractElement (new in 1.2)

public interface javax.swing.text.AbstractDocument.Content
extends
java.lang.Object (new in 1.2)

public class
javax.swing. text.AbstractDocument.DefaultDocumentEvent
extends javax.swing.undo.CompoundEdit (new in 1.2)

implements javax.swing.event.DocumentEvent
public class javax.swing.text.AbstractDocument.ElementEdit
extends
javax.swing.undo.AbstractUndoableEdit (new in 1.2)

implements javax.swing.event.DocumentEvent.ElementChange
public class javax.swing.text.AbstractDocument.LeafElement
extends javax.
swing.text.AbstractDocument.AbstractElement (new in 1.2)
public abstract class javax.swing.text.AbstractWriter extends
java.lang.Object
(new in 1.2)
public interface javax.swing.text.AttributeSet extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.text.BadLocationException extends
java.lang.Exception
(new in 1.2)
public class Jjavax.swing.text.BoxView extends
javax.swing.text.CompositeView
(new in 1.2)
public interface javax.swing.text.Caret extends java.lang.Object
(new in 1.2)
public class Jjavax.swing.text.ChangedCharSetException extends
java.io.
IOException (new in 1.2)
public class Jjavax.swing.text.ComponentView extends
javax.swing.text.View
(new in 1.2)
public abstract class javax.swing.text.CompositeView extends
javax.swing.text.
View (new in 1.2)
public class Jjavax.swing.text.DefaultCaret extends
java.awt.Rectangle
(new in 1.2)

implements java.awt.event.FocusListener

implements java.awt.event.MouselListener

implements java.awt.event.MouseMotionListener

implements javax.swing.text.Caret
public class Jjavax.swing.text.DefaultEditorKit extends
javax.swing.text.
EditorKit (new in 1.2)
public class Jjavax.swing.text.DefaultEditorKit.BeepAction extends
javax.swing.
text.TextAction (new in 1.2)
public class javax.swing.text.DefaultEditorKit.CopyAction extends
javax.swing.
text.TextAction (new in 1.2)
public class Jjavax.swing.text.DefaultEditorKit.CutAction extends
javax.swing.
text.TextAction (new in 1.2)

public class
javax.swing.text.DefaultEditorKit.DefaultKeyTypedAction extends

- 128 -

javax.swing.text.TextAction (new in 1.2)

public class javax.swing.text.DefaultEditorKit.InsertBreakAction
extends
javax.swing.text.TextAction (new in 1.2)

public class
javax.swing. text.DefaultEditorKit.InsertContentAction extends
javax.swing.text.TextAction (new in 1.2)

public class Jjavax.swing.text.DefaultEditorKit.InsertTabAction
extends javax.
swing.text.TextAction (new in 1.2)
public class Jjavax.swing.text.DefaultEditorKit.PasteAction
extends javax.
swing.text.TextAction (new in 1.2)
public class Jjavax.swing.text.DefaultHighlighter extends
javax.swing.text.
LayeredHighlighter (new in 1.2)
public class
javax.swing.text.DefaultHighlighter.DefaultHighlightPainter
extends
javax.swing.text.LayeredHighlighter.LayerPainter (new in 1.2)
public class Jjavax.swing.text.DefaultStyledDocument extends
javax.swing.text.
AbstractDocument (new in 1.2)

implements javax.swing.text.StyledDocument
public class
javax.swing. text.DefaultStyledDocument.AttributeUndoableEdit
extends javax.swing.undo.AbstractUndoableEdit (new in 1.2)

public class javax.swing.text.DefaultStyledDocument.ElementBuffer
extends
java.lang.Object (new in 1.2)

implements java.io.Serializable
public class javax.swing.text.DefaultStyledDocument.ElementSpec
extends
java.lang.Object (new in 1.2)

public class
javax.swing. text.DefaultStyledDocument.SectionElement extends
javax.swing.text.AbstractDocument.BranchElement (new in 1.2)

public abstract class javax.swing.text.DefaultTextUI extends
javax.swing.plaf.
basic.BasicTextUI (new in 1.2) (deprecated in 1.2)
public interface javax.swing.text.Document extends
java.lang.Object
(new in 1.2)
public abstract class javax.swing.text.EditorKit extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements java.lang.Cloneable
public interface javax.swing.text.Element extends
java.lang.Object
(new in 1.2)
public class javax.swing.text.ElementIterator extends
java.lang.Object
(new in 1.2)

implements java.lang.Cloneable
public class javax.swing.text.FieldView extends
javax.swing.text.PlainView
(new in 1.2)
public class javax.swing.text.GapContent extends
javax.swing.text.GapVector
(new in 1.2)

- 129 -

implements java.io.Serializable

implements javax.swing.text.AbstractDocument.Content
public interface javax.swing.text.Highlighter extends
java.lang.Object
(new in 1.2)

public interface javax.swing.text.Highlighter.Highlight extends
java.lang.
Object (new in 1.2)

public interface javax.swing.text.Highlighter.HighlightPainter
extends
java.lang.Object (new in 1.2)

public class Jjavax.swing.text.IconView extends
javax.swing.text.View
(new in 1.2)

public abstract class javax.swing.text.JTextComponent extends
javax.swing.
JComponent (new in 1.2)

implements javax.accessibility.Accessible

implements javax.swing.Scrollable
public class
javax.swing. text.JTextComponent.AccessibleJTextComponent extends
javax.swing.JComponent.AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleText

implements javax.swing.event.CaretListener

implements javax.swing.event.DocumentListener
public class Jjavax.swing.text.JTextComponent.KeyBinding extends
java.lang.
Object (new in 1.2)

public interface javax.swing.text.Keymap extends java.lang.Object
(new in 1.2)

public class javax.swing.text.LabelView extends
javax.swing.text.View

(new in 1.2)

public abstract class javax.swing.text.LayeredHighlighter extends
java.lang.
Object (new in 1.2)

implements javax.swing.text.Highlighter
public abstract class
javax.swing. text.LayeredHighlighter.LayerPainter extends
java.lang.Object (new in 1.2)

implements javax.swing.text.Highlighter.HighlightPainter
public interface javax.swing.text.MutableAttributeSet extends
java.lang.Object
(new in 1.2)

implements javax.swing.text.AttributeSet
public class javax.swing.text.ParagraphView extends
javax.swing.text.BoxView
(new in 1.2)

implements javax.swing.text.TabExpander
public class javax.swing.text.PasswordView extends
javax.swing.text.FieldView
(new in 1.2)

public class javax.swing.text.PlainDocument extends
javax.swing.text.
AbstractDocument (new in 1.2)

public class javax.swing.text.PlainView extends
javax.swing.text.View
(new in 1.2)

implements javax.swing.text.TabExpander
public interface javax.swing.text.Position extends
java.lang.Object
(new in 1.2)

- 130 -

public final class Jjavax.swing.text.Position.Bias extends
java.lang.Object
(new in 1.2)

public class Jjavax.swing.text.Segment extends java.lang.Object
(new in 1.2)
public class Jjavax.swing.text.SimpleAttributeSet extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements java.lang.Cloneable

implements javax.swing.text.MutableAttributeSet
public final class javax.swing.text.StringContent extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.text.AbstractDocument.Content
public interface javax.swing.text.Style extends java.lang.Object
(new in 1.2)

implements javax.swing.text.MutableAttributeSet
public class Jjavax.swing.text.StyleConstants extends
java.lang.Object
(new in 1.2)

public class Jjavax.swing.text.StyleConstants.CharacterConstants
extends javax.
swing.text.StyleConstants (new in 1.2)

implements javax.swing.text.AttributeSet.CharacterAttribute
public class javax.swing.text.StyleConstants.ColorConstants
extends javax.
swing.text.StyleConstants (new in 1.2)

implements javax.swing.text.AttributeSet.CharacterAttribute

implements javax.swing.text.AttributeSet.ColorAttribute
public class javax.swing.text.StyleConstants.FontConstants
extends javax.swing.
text.StyleConstants (new in 1.2)

implements javax.swing.text.AttributeSet.CharacterAttribute

implements javax.swing.text.AttributeSet.FontAttribute
public class javax.swing.text.StyleConstants.ParagraphConstants
extends javax.
swing.text.StyleConstants (new in 1.2)

implements javax.swing.text.AttributeSet.ParagraphAttribute
public class javax.swing.text.StyleContext extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.text.AbstractDocument.AttributeContext
public class javax.swing.text.StyleContext.NamedStyle extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.text.Style
public class javax.swing.text.StyleContext.SmallAttributeSet
extends java.lang.
Object (new in 1.2)

implements javax.swing.text.AttributeSet
public interface javax.swing.text.StyledDocument extends
java.lang.Object
(new in 1.2)

implements javax.swing.text.Document
public class javax.swing.text.StyledEditorKit extends
javax.swing.text.
DefaultEditorKit (new in 1.2)

public class javax.swing.text.StyledEditorKit.AlignmentAction
extends javax.swing.text.StyledEditorKit.StyledTextAction (new in

-131 -

1.2)

public class javax.swing.text.StyledEditorKit.BoldAction extends
javax.swing.

text.StyledEditorKit.StyledTextAction (new in 1.2)

public class Jjavax.swing.text.StyledEditorKit.FontFamilyAction
extends

javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
public class Jjavax.swing.text.StyledEditorKit.FontSizeAction
extends

javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
public class Jjavax.swing.text.StyledEditorKit.ForegroundAction
extends

javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
public class javax.swing.text.StyledEditorKit.ItalicAction
extends javax.swing.

text.StyledEditorKit.StyledTextAction (new in 1.2)

public abstract class
javax.swing.text.StyledEditorKit.StyledTextAction extends
javax.swing.text.

TextAction (new in 1.2)

public class javax.swing.text.StyledEditorKit.UnderlineAction
extends
javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
public interface javax.swing.text.TabExpander extends
java.lang.Object
(new in 1.2)
public class javax.swing.text.TabSet extends java.lang.Object
(new in 1.2)

implements java.io.Serializable
public class javax.swing.text.TabStop extends java.lang.Object
(new in 1.2)

implements java.io.Serializable
public interface javax.swing.text.TabableView extends
java.lang.Object
(new in 1.2)
public abstract class javax.swing.text.TableView extends
javax.swing.text.
BoxView (new in 1.2)
public class javax.swing.text.TableView.TableCell extends
javax.swing.text.
BoxView (new in 1.2)

implements javax.swing.text.TableView.GridCell
public class javax.swing.text.TableView.TableRow extends
javax.swing.text.
BoxView (new in 1.2)
public abstract class javax.swing.text.TextAction extends
javax.swing.
AbstractAction (new in 1.2)
public class javax.swing.text.Utilities extends java.lang.Object
(new in 1.2)
public abstract class Jjavax.swing.text.View extends
java.lang.Object
(new in 1.2)

implements javax.swing.SwingConstants
public interface javax.swing.text.ViewFactory extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.text.WrappedPlainView extends
javax.swing.text.BoxView
(new in 1.2)

implements javax.swing.text.TabExpander

-132 -

Package javax.swing.text.html

This package and its subpackage, part of Swing, specialize the
javax.swing.StyledEditorKit class to support HTML editing. Sun describes the
StyledEditorKit capabilities as "the set of things needed by a text component to be a
reasonably functioning editor."

Using these classes will not give you a free world-class HTML browser or editor—it lacks,
among other things, any menus or buttons to access the editing functionality. But they do
provide a basic HTML (version 3.2) editor and viewer that can be customized to meet an

application's browsing or editing requirements.

Listing 3.52 shows all public classes and interfaces in the javax.swing.text.html
package.

Listing 3.52 javax.swing.text.html Classes and Interfaces List

public class Jjavax.swing.text.html.BlockView extends
javax.swing.text.BoxView
(new in 1.2)

public class javax.swing.text.html.CSS extends java.lang.Object
(new in 1.2)
public final class javax.swing.text.html.CSS.Attribute extends
java.lang.
Object (new in 1.2)
public class javax.swing.text.html.FormView extends
javax.swing.text.
ComponentView (new in 1.2)

implements java.awt.event.ActionListener
public class Jjavax.swing.text.html.FormView.MouseEventListener
extends
java.awt.event.

MouseAdapter (new in 1.2)

public class javax.swing.text.html.HTML extends java.lang.Object
(new in 1.2)
public final class javax.swing.text.html.HTML.Attribute extends
java.lang.
Object (new in 1.2)
public class Jjavax.swing.text.html.HTML.Tag extends
java.lang.Object
(new in 1.2)
public class javax.swing.text.html.HTML.UnknownTag extends
javax.swing.text.
html.HTML.
Tag (new in 1.2)

implements java.io.Serializable
public class Jjavax.swing.text.html.HTMLDocument extends
javax.swing.text.
DefaultStyledDocument (new in 1.2)
public class Jjavax.swing.text.html.HTMLDocument.BlockElement
extends javax.swing.text.
AbstractDocument.BranchElement (new in 1.2)
public class Jjavax.swing.text.html.HTMLDocument.HTMLReader
extends javax.swing.
text.html.HTMLEditorKit.ParserCallback (new in 1.2)
public class
javax.swing.text.html.HTMLDocument.HTMLReader.BlockAction extends
javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in

- 133 -

1.2)
public class
javax.swing. text.html.HTMLDocument. HTMLReader.CharacterAction
extends javax.swing.text.html.HTMLDocument.HTMLReader.TagAction
(new in 1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.FormAction extends
javax.swing.text.html.HTMLDocument.HTMLReader.SpecialAction (new
in 1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.HiddenAction
extends
javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in
1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.IsindexAction
extends
javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in
1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.ParagraphAction
extends
javax.swing.text.html.HTMLDocument.HTMLReader.BlockAction (new in
1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.PreAction extends
javax.swing.text.html.HTMLDocument .HTMLReader.BlockAction (new in
1.2)
public class
javax.swing. text.html.HTMLDocument. HTMLReader.SpecialAction
extends javax.swing.text.html.HTMLDocument.HTMLReader.TagAction
(new in 1.2)
public class
javax.swing. text.html.HTMLDocument.HTMLReader.TagAction extends
java.lang.
Object (new in 1.2)
public abstract class javax.swing.text.html.HTMLDocument.Iterator
extends
java.lang.
Object (new in 1.2)
public class Jjavax.swing.text.html.HTMLDocument.RunElement
extends javax.
swing.text.
AbstractDocument.LeafElement (new in 1.2)
public class javax.swing.text.html.HTMLEditorKit extends
javax.swing.text.
StyledEditorKit (new in 1.2)
public class javax.swing.text.html.HTMLEditorKit.HTMLFactory
extends java.lang.
Object (new in 1.2)

implements javax.swing.text.ViewFactory
public abstract class
javax.swing. text.html . HTMLEditorKit.HTMLTextAction
extends javax.swing.text.StyledEditorKit.StyledTextAction (new in
1.2)
public class
javax.swing.text.html.HTMLEditorKit.InsertHTMLTextAction extends
javax.swing.text.html.HTMLEditorKit.HTMLTextAction (new in 1.2)
public class Jjavax.swing.text.html.HTMLEditorKit.LinkController
extends java.
awt.event.
MouseAdapter (new in 1.2)

-134 -

implements java.io.Serializable
public abstract class javax.swing.text.html.HTMLEditorKit.Parser
extends java.
lang.Object (new in 1.2)
public class javax.swing.text.html.HTMLEditorKit.ParserCallback
extends java.
lang.Object (new in 1.2)
public class Jjavax.swing.text.html.HTMLFrameHyperlinkEvent
extends javax.swing.
event.HyperlinkEvent (new in 1.2)
public class javax.swing.text.html.HTMLWriter extends
javax.swing.text.
AbstractWriter (new in 1.2)

public class javax.swing.text.html.InlineView extends
javax.swing.text.
LabelView (new in 1.2)
public class javax.swing.text.html.ListView extends
javax.swing.text.html.
BlockView (new in 1.2)
public class javax.swing.text.html.MinimalHTMLWriter extends
javax.swing.text.
AbstractWriter (new in 1.2)
public class javax.swing.text.html.ObjectView extends
javax.swing.text.
ComponentView (new in 1.2)
public class Jjavax.swing.text.html.Option extends
java.lang.Object (new in 1.2)
public class javax.swing.text.html.ParagraphView extends
javax.swing.text.
ParagraphView (new in 1.2)
public class javax.swing.text.html.StyleSheet extends
javax.swing.text.
StyleContext (new in 1.2)
public class javax.swing.text.html.StyleSheet.BoxPainter extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable
public class javax.swing.text.html.StyleSheet.ListPainter extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

Package javax.swing.text.html.parser
This package, part of Swing, provides supporting classes for HTML document parsing.

Listing 3.53 shows all public classes and interfaces in the
javax.swing.text.html.parser package.

Listing 3.53 javax.swing.text.html.parser Classes and Interfaces List

public final class Jjavax.swing.text.html.parser.Attributelist
extends java.
lang.Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.text.html.parser.DTDConstants
public final class Jjavax.swing.text.html.parser.ContentModel
extends java.
lang.Object (new in 1.2)

implements java.io.Serializable

- 135 -

public class javax.swing.text.html.parser.DTD extends
java.lang.Object
(new in 1.2)

implements javax.swing.text.html.parser.DTDConstants
public interface javax.swing.text.html.parser.DTDConstants
extends java.
lang.Object (new in 1.2)
public class javax.swing.text.html.parser.DocumentParser extends
javax.swing.
text.html.parser.
Parser (new in 1.2)

public final class Jjavax.swing.text.html.parser.Element extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.text.html.parser.DTDConstants
public final class Jjavax.swing.text.html.parser.Entity extends
java.lang.
Object (new in 1.2)

implements javax.swing.text.html.parser.DTDConstants
public class Jjavax.swing.text.html.parser.Parser extends
java.lang.Object
(new in 1.2)

implements javax.swing.text.html.parser.DTDConstants
public class javax.swing.text.html.parser.ParserDelegator extends
javax.swing.
text.html.
HTMLEditorKit.Parser (new in 1.2)

public class javax.swing.text.html.parser.TagElement extends
java.lang.Object
(new in 1.2)

Package javax.swing.text.rtf

This package, part of Swing, provides an editor kit for building a Rich Text Format (RTF)
editor. RTF is commonly used as a lowest-common-denominator—styled document format
among Microsoft Windows applications.

As with the HTML editor discussed previously, do not expect this class to give you a
world-class editing tool. The functionality provided is basic, and must be customized to
meet the RTF viewing and editing needs of the application.

Listing 3.54 shows all public classes and interfaces in the javax.swing.text.rtf
package.

Listing 3.54 javax.swing.text.rtf Classes and Interfaces List

public class javax.swing.text.rtf.RTFEditorKit extends
javax.swing.text.
StyledEditorKit (new in 1.2)

Package javax.swing. tree

This package, part of Swing, provides classes for modeling the data behind the
javax.swing.JTree tree viewer GUI (discussed previously in the section "Package
javax.swing"). By separating the modeling from the viewing of the data, Swing allows you
to model the data with structures that best fit the data, instead of force-fitting the data into

data structures provided by the GUI.

- 136 -

In Chapter 60, "PerfaAnal: A Free Performance Analysis Tool," we will explore a
performance analysis tool that uses javax.swing.JTree and the classes in this
package to view and navigate performance data collected from Java applications.

Listing 3.55 shows all public classes and interfaces in the javax.swing. tree package.
Listing 3.55 javax.swing. tree Classes and Interfaces List

public abstract class Jjavax.swing.tree.AbstractLayoutCache
extends java.lang.
Object (new in 1.2)

implements javax.swing.tree.RowMapper
public abstract class
javax.swing. tree.AbstractLayoutCache.NodeDimensions
extends java.lang.

Object (new in 1.2)

public class javax.swing.tree.DefaultMutableTreeNode extends
java.lang.
Object (new in 1.2)
implements java.io.Serializable
implements java.lang.Cloneable
implements javax.swing.tree.MutableTreeNode
public class Jjavax.swing.tree.DefaultTreeCellEditor extends
java.lang.Object
(new in 1.2)
implements java.awt.event.ActionListener
implements javax.swing.event.TreeSelectionListener
implements javax.swing.tree.TreeCellEditor
public class
javax.swing. tree.DefaultTreeCellEditor.DefaultTextField extends
javax.swing.JTextField (new in 1.2)

public class
javax.swing.tree.DefaultTreeCellEditor.EditorContainer extends
java.awt.Container (new in 1.2)

public class Jjavax.swing.tree.DefaultTreeCellRenderer extends
javax.swing.
JLabel (new in 1.2)

implements javax.swing.tree.TreeCellRenderer
public class javax.swing.tree.DefaultTreeModel extends
java.lang.Object
(new in 1.2)

implements java.io.Serializable

implements javax.swing.tree.TreeModel
public class javax.swing.tree.DefaultTreeSelectionModel extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

implements java.lang.Cloneable

implements javax.swing.tree.TreeSelectionModel
public class Jjavax.swing.tree.ExpandVetoException extends
java.lang.Exception
(new in 1.2)

public class javax.swing.tree.FixedHeightLayoutCache extends

javax.swing.tree.
AbstractLayoutCache (new in 1.2)

public interface javax.swing.tree.MutableTreeNode extends
java.lang.Object
(new in 1.2)

implements javax.swing.tree.TreeNode
public interface javax.swing.tree.RowMapper extends
java.lang.Object

- 137 -

(new in 1.2)

public interface javax.swing.tree.TreeCellEditor extends
java.lang.Object
(new in 1.2)

implements javax.swing.CellEditor
public interface javax.swing.tree.TreeCellRenderer extends
java.lang.Object
(new in 1.2)
public interface javax.swing.tree.TreeModel extends
java.lang.Object
(new in 1.2)
public interface javax.swing.tree.TreeNode extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.tree.TreePath extends java.lang.Object

(new in 1.2)
implements java.io.Serializable
public interface javax.swing.tree.TreeSelectionModel extends
java.lang.Object
(new in 1.2)

public class javax.swing.tree.VariableHeightLayoutCache extends

javax.swing.
tree.AbstractLayoutCache (new in 1.2)

Package javax.swing.undo

This package, part of Swing, provides classes to support creation of an Undo/Redo stack
for arbitrary editing components.

Listing 3.56 shows all public classes and interfaces in the javax.swing.undo package.
Listing 3.56 javax.swing.undo Classes and Interfaces List

public class javax.swing.undo.AbstractUndoableEdit extends
java.lang.
Object (new in 1.2)

implements java.io.Serializable

implements javax.swing.undo.UndoableEdit
public class javax.swing.undo.CannotRedoException extends
java.lang.
RuntimeException (new in 1.2)
public class javax.swing.undo.CannotUndoException extends
java.lang.
RuntimeException (new in 1.2)
public class javax.swing.undo.CompoundEdit extends
javax.swing.undo.
AbstractUndoableEdit (new in 1.2)
public class Jjavax.swing.undo.StateEdit extends javax.swing.undo.
AbstractUndoableEdit (new in 1.2)

public interface javax.swing.undo.StateEditable extends
java.lang.Object
(new in 1.2)
public class Jjavax.swing.undo.UndoManager extends
javax.swing.undo.
CompoundEdit (new in 1.2)

implements javax.swing.event.UndoableEditListener
public interface javax.swing.undo.UndoableEdit extends
java.lang.Object
(new in 1.2)

- 138 -

public class Jjavax.swing.undo.UndoableEditSupport extends
java.lang.Object
(new in 1.2)

Package org.omg.CORBA

This package and its subpackages, new in JDK1.2, support the Common Object Request
Broker Architecture (CORBA)—a standard from the Open Management Group
(OMG)from the Open Management Group (OMG) for interoperability among networked
applications. The high-level functionality provided by CORBA is similar to that from RMI
(discussed previously), but CORBA is a widely adopted, platform-neutral mechanism that
does not offer some of the Java-specific features of RMI.

Detailed specifications and information about CORBA are available from the OMG Web
siteat http://www.omg.org/.

Listing 3.57 shows all public classes and interfaces in the org. omg.CORBA package.
Listing 3.57 org.omg.CORBA Classes and Interfaces List

public interface org.omg.CORBA.ARG IN extends java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.ARG INOUT extends java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.ARG_OUT extends java.lang.Object
(new in 1.2)
public abstract class org.omg.CORBA.Any extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.AnyHolder extends
java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.BAD CONTEXT extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.BAD INV_ORDER extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.BAD OPERATION extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.BAD PARAM extends org.omg.CORBA.
SystemException (new in 1.2)
public interface org.omg.CORBA.BAD POLICY extends
java.lang.Object (new in 1.2)
public interface org.omg.CORBA.BAD POLICY TYPE extends
java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.BAD POLICY VALUE extends
java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.BAD TYPECODE extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.BooleanHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.Bounds extends

- 139 -

org.omg.CORBA.UserException
(new in 1.2)

public final class org.omg.CORBA.ByteHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.COMM FAILURE extends
org.omg.CORBA.
SystemException (new in 1.2)

public interface org.omg.CORBA.CTX RESTRICT_ SCOPE extends
java.lang.Object
(new in 1.2)

public final class org.omg.CORBA.CharHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public class org.omg.CORBA.CompletionStatus extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public abstract class org.omg.CORBA.Context extends
java.lang.Object
(new in 1.2)

public abstract class org.omg.CORBA.ContextList extends
java.lang.Object
(new in 1.2)

public final class org.omg.CORBA.DATA CONVERSION extends
org.omg.CORBA.
SystemException (new in 1.2)

public class org.omg.CORBA.DefinitionKind extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public interface org.omg.CORBA.DomainManager extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object
public final class org.omg.CORBA.DoubleHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public interface org.omg.CORBA.DynAny extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynArray extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynEnum extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynFixed extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynSequence extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynStruct extends java.lang.Object
(new in 1.2)

- 140 -

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynUnion extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public interface org.omg.CORBA.DynValue extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.DynAny

implements org.omg.CORBA.Object
public abstract class org.omg.CORBA.DynamicImplementation extends
org.omg.
CORBA.portable.ObjectImpl (new in 1.2)
public abstract class org.omg.CORBA.Environment extends
java.lang.Object
(new in 1.2)
public abstract class org.omg.CORBA.ExceptionList extends
java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.FREE MEM extends org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.FixedHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.FloatHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public interface org.omg.CORBA.IDLType extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.IRObject

implements org.omg.CORBA.Object

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.IMP LIMIT extends org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INITIALIZE extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INTERNAL extends org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INTF REPOS extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INVALID TRANSACTION extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INV_FLAG extends org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INV_IDENT extends org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.INV_OBJREF extends
org.omg.CORBA.
SystemException (new in 1.2)
public class org.omg.CORBA.INV_POLICY extends
org.omg.CORBA.SystemException
(new in 1.2)
public interface org.omg.CORBA.IRObject extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object

141 -

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.IntHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.LongHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.MARSHAL extends
org.omg.CORBA.SystemException
(new in 1.2)
public final class org.omg.CORBA.NO IMPLEMENT extends
org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.NO MEMORY extends org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.NO_ PERMISSION extends
org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.NO RESOURCES extends
org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.NO RESPONSE extends
org.omg.CORBA.
SystemException (new in 1.2)

public abstract class org.omg.CORBA.NVList extends
java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.NameValuePair extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public abstract class org.omg.CORBA.NamedValue extends
java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.OBJECT NOT EXIST extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.OBJ ADAPTER extends
org.omg.CORBA.SystemException (new in 1.2)
public abstract class org.omg.CORBA.ORB extends java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.Object extends java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.ObjectHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.PERSIST STORE extends
org.omg.CORBA.
SystemException (new in 1.2)
public interface org.omg.CORBA.PRIVATE MEMBER extends
java.lang.Object
(new in 1.2)

public interface org.omg.CORBA.PUBLIC MEMBER extends
java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.Policy extends java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object

142 -

public final class org.omg.CORBA.PolicyError extends
org.omg.CORBA.
UserException (new in 1.2)

public abstract class org.omg.CORBA.Principal extends java.lang.
Object (new in 1.2) (deprecated in 1.2)

public final class org.omg.CORBA.PrincipalHolder extends
java.lang.
Object (new in 1.2) (deprecated in 1.2)

implements org.omg.CORBA.portable.Streamable
public abstract class org.omg.CORBA.Request extends
java.lang.Object
(new in 1.2)

public abstract class org.omg.CORBA.ServerRequest extends
java.lang.Object
(new in 1.2)

public final class org.omg.CORBA.ServiceDetail extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CORBA.ServiceDetailHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CORBA.ServiceInformation extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CORBA.ServiceInformationHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CORBA.ServiceInformationHolder extends
java.lang.
Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public class org.omg.CORBA.SetOverrideType extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.ShortHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.StringHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.StructMember extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public abstract class org.omg.CORBA.SystemException extends
java.lang.
RuntimeException (new in 1.2)
public class org.omg.CORBA.TCKind extends java.lang.Object (new
in 1.2)
public final class org.omg.CORBA.TRANSACTION REQUIRED extends
org.omg.CORBA.
SystemException (new in 1.2)
public final class org.omg.CORBA.TRANSACTION ROLLEDBACK extends
org.omg.CORBA.
SystemException (new in 1.2)

public final class org.omg.CORBA.TRANSIENT extends org.omg.CORBA.

- 143 -

SystemException (new in 1.2)

public abstract class org.omg.CORBA.TypeCode extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.TypeCodeHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CORBA.UNKNOWN extends
org.omg.CORBA.SystemException
(new in 1.2)
public interface org.omg.CORBA.UNSUPPORTED POLICY extends
java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.UNSUPPORTED POLICY VALUE extends
java.lang.
Object (new in 1.2)
public final class org.omg.CORBA.UnionMember extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public final class org.omg.CORBA.UnknownUserException extends
org.omg.CORBA.
UserException (new in 1.2)
public abstract class org.omg.CORBA.UserException extends
java.lang.Exception
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public interface org.omg.CORBA.VM ABSTRACT extends
java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.VM CUSTOM extends java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.VM NONE extends java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.VM TRUNCATABLE extends
java.lang.Object
(new in 1.2)
public final class org.omg.CORBA.ValueMember extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CORBA.WrongTransaction extends
org.omg.CORBA.
UserException (new in 1.2)e

Package org.omg.CORBA.DynAnyPackage

This package, part of CORBA, defines some exceptions thrown by the
org.omg.CORBA.DynAny interface.

Listing 3.58 shows all public classes and interfaces in the org.omg.CORBA.DynAny
package.

Listing 3.58 org.omg.CORBA.DynAny Package Classes and Interfaces List

public final class org.omg.CORBA.DynAnyPackage.Invalid extends
org.omg.CORBA.
UserException (new in 1.2)

144 -

public final class org.omg.CORBA.DynAnyPackage.InvalidSeq extends
org.omg.
CORBA.UserException (new in 1.2)

public final class org.omg.CORBA.DynAnyPackage.InvalidValue
extends org.omg.
CORBA.UserException (new in 1.2)

public final class org.omg.CORBA.DynAnyPackage.TypeMismatch
extends org.omg.
CORBA.UserException (new in 1.2)

Package org.omg.CORBA.ORBPackage
This package, part of CORBA, defines some exceptions thrown by CORBA methods.

Listing 3.59 shows all public classes and interfaces in the
org.omg.CORBA.ORBPackage package.

Listing 3.59 org.omg.CORBA.ORBPackage Classes and Interfaces List

public final class org.omg.CORBA.ORBPackage.InconsistentTypeCode
extends
org.omg.CORBA.UserException (new in 1.2)

public class org.omg.CORBA.ORBPackage.InvalidName extends
org.omg.CORBA.
UserException (new in 1.2)

Package org.omg.CORBA. TypeCodePackage
This package, part of CORBA, defines some exceptions thrown by CORBA methods.

Listing 3.60 shows all public classes and interfaces in the
org.omg.CORBA. TypeCodePackage package.

Listing 3.60 org.omg.CORBA.TypeCodePackage Classes and Interfaces List

public final class org.omg.CORBA.TypeCodePackage.BadKind extends
org.omg.CORBA.
UserException (new in 1.2)

public final class org.omg.CORBA.TypeCodePackage.Bounds extends
org.omg.CORBA.
UserException (new in 1.2)

Package org.omg.CORBA.portable

This package, part of CORBA, provides a portability layer that allows code to be used
with Object Request Brokers (ORBs) from different vendors.

Listing 3.61 shows all public classes and interfaces in the org.omg.CORBA.portable
package.

Listing 3.61 org.omg.CORBA.portable Classes and Interfaces List

public class org.omg.CORBA.portable.ApplicationException extends
java.lang.
Exception (new in 1.2)

public abstract class org.omg.CORBA.portable.Delegate extends

- 145 -

java.lang.Object
(new in 1.2)
public abstract class org.omg.CORBA.portable.InputStream extends
java.io.
InputStream (new in 1.2)
public interface org.omg.CORBA.portable.InvokeHandler extends
java.lang.Object
(new in 1.2)
public abstract class org.omg.CORBA.portable.ObjectImpl extends
java.lang.
Object (new in 1.2)

implements org.omg.CORBA.Object
public abstract class org.omg.CORBA.portable.OutputStream extends
java.io.
OutputStream (new in 1.2)
public final class org.omg.CORBA.portable.RemarshalException
extends java.lang.
Exception (new in 1.2)
public interface org.omg.CORBA.portable.ResponseHandler extends
java.lang.
Object (new in 1.2)
public class org.omg.CORBA.portable.ServantObject extends
java.lang.Object
(new in 1.2)
public interface org.omg.CORBA.portable.Streamable extends
java.lang.Object
(new in 1.2)

Package org.omg.CosNaming
This package, part of CORBA, provides an API to name services.

Listing 3.62 shows all public classes and interfaces in the org.omg.CORBA.CosNaming
package.

Listing 3.62 org.omg.CosNaming Classes and Interfaces List

public final class org.omg.CosNaming.Binding extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CosNaming.BindingHelper extends
java.lang.Object
(new in 1.2)
public final class org.omg.CosNaming.BindingHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public interface org.omg.CosNaming.BindingIterator extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CosNaming.BindingIteratorHelper extends
java.lang.Object
(new in 1.2)
public final class org.omg.CosNaming.BindingIteratorHolder
extends java.lang.
Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable

- 146 -

public class org.omg.CosNaming.BindingListHelper extends
java.lang.Object
(new in 1.2)
public final class org.omg.CosNaming.BindingListHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class org.omg.CosNaming.BindingType extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CosNaming.BindingTypeHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CosNaming.BindingTypeHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public class org.omg.CosNaming.IstringHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CosNaming.NameComponent extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CosNaming.NameComponentHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CosNaming.NameComponentHolder extends
java.lang.
Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public class org.omg.CosNaming.NameHelper extends
java.lang.Object (new in 1.2)
public final class org.omg.CosNaming.NameHolder extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.portable.Streamable
public interface org.omg.CosNaming.NamingContext extends
java.lang.Object
(new in 1.2)

implements org.omg.CORBA.Object

implements org.omg.CORBA.portable.IDLEntity
public class org.omg.CosNaming.NamingContextHelper extends
java.lang.Object
(new in 1.2)

public final class org.omg.CosNaming.NamingContextHolder extends
java.lang.
Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public abstract class org.omg.CosNaming. BindingIteratorImplBase
extends org.
omg .CORBA.

DynamicImplementation (new in 1.2)
implements org.omg.CosNaming.BindingIterator
public class org.omg.CosNaming. BindingIteratorStub extends
org.omg.CORBA.
portable.ObjectImpl (new in 1.2)
implements org.omg.CosNaming.BindingIterator
public abstract class org.omg.CosNaming. NamingContextImplBase
extends org.omg.
CORBA.

147 -

DynamicImplementation (new in 1.2)
implements org.omg.CosNaming.NamingContext
public class org.omg.CosNaming. NamingContextStub extends
org.omg.CORBA.
portable.
ObjectImpl (new in 1.2)
implements org.omg.CosNaming.NamingContext

Package org.omg.CosNaming.NamingContextPackage

This package, part of CORBA, describes exceptions thrown by classes in package
org.omg.CosNaming.

Listing 3.63 shows all public classes and interfaces in the
org.omg.CORBA.CosNaming.NamingContextPackage package.

Listing 3.63 org.omg.CosNaming.NamingContextPackage Classes and
Interfaces List

public final class
org.omg.CosNaming.NamingContextPackage.AlreadyBound extends
org.omg.CORBA.
UserException (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.AlreadyBoundHelper extends
java.lang.Object (new in 1.2)

public final class
org.omg.CosNaming.NamingContextPackage.AlreadyBoundHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class
org.omg.CosNaming.NamingContextPackage.CannotProceed extends
org.omg.CORBA.UserException (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.CannotProceedHelper
extends
java.lang.Object (new in 1.2)

public final class
org.omg.CosNaming.NamingContextPackage.CannotProceedHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class
org.omg.CosNaming.NamingContextPackage.InvalidName extends
org.omg.CORBA.UserException (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.InvalidNameHelper extends
java.lang.Object (new in 1.2)

public final class
org.omg.CosNaming.NamingContextPackage.InvalidNameHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class
org.omg.CosNaming.NamingContextPackage.NotEmpty extends
org.omg.CORBA.UserException (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.NotEmptyHelper extends
java.lang.Object (new in 1.2)

- 148 -

public final class
org.omg.CosNaming.NamingContextPackage.NotEmptyHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class
org.omg.CosNaming.NamingContextPackage.NotFound extends
org.omg.CORBA.UserException (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.NotFoundHelper extends
java.lang.Object (new in 1.2)

public final class
org.omg.CosNaming.NamingContextPackage.NotFoundHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable
public final class
org.omg.CosNaming.NamingContextPackage.NotFoundReason
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.IDLEntity
public class
org.omg.CosNaming.NamingContextPackage.NotFoundReasonHelper
extends java.lang.Object (new in 1.2)

public final class
org.omg.CosNaming.NamingContextPackage.NotFoundReasonHolder
extends java.lang.Object (new in 1.2)

implements org.omg.CORBA.portable.Streamable

Summary

This chapter has presented a high-level view of the JDK1.2 class libraries. The details of
using the libraries are not specific to Linux, and can fill (and have filled) many books. To
explore the libraries in more detail, two good references are Java 1.2 Class Libraries
Unleashed and JFC Unleashed (Sams).

Chapter 4: Additional Sun Java Class Library
Specs

Overview

Additional class libraries available from Sun, either as specs or as implemented class
libraries, fall into two categories:

+ Standard Extensions—Class libraries targeted at interesting markets. A standard
extension must have a full specification, a reference implementation, and a test suite.

» Enterprise Technologies—Class libraries focused on server-side requirements. This is
an umbrella category covering numerous technologies in various degrees of
implementation: some of them are already core components, some are already
standard extensions, and the remainder lack all the necessary pieces to be considered
either.

Some of these pieces depend on JDK1.2, and availability is highly variable. For standard
extensions implemented entirely in Java, working versions are available today from Sun.
Extensions described as "Pure Java" or "100% Pure Java" have passed a specific
conformance test suite (see section 10.1), but any extension implemented in Java should
work on Linux.

For extensions that require some non-Java, native OS support, availability depends on a
porting effort (such as one by the Blackdown Linux porting team) or a cleanroom

- 149 -

implementation by an outside developer.

The bottom line: If you want to depend on these technologies, make sure that they are
available for the development and deployment platforms you care about. In many cases,
you can ship copies of these libraries for deployment, either free or after obtaining licenses
from Sun. Details are provided on the Sun Web pages devoted to the particular
technologies.

Standard Extensions

Here's the current list. All of these are available from Sun for download, from its main
Java Web site at http://java.sun.com.

JavaBeans Activation Framework (JAF)

The JAF is a pure-Java library that supports deployment of JavaBeans components to
handle arbitrary data types. For example, if you have written a Bean that knows how to
display a new, previously unsupported graphics file format, the JAF handles the mapping
between the requirement ("display a file of this type in this browser window") and the
Bean with the capability.

As a pure-Java component, the JAF works with Linux and any other Java-compliant
platform.

Java Naming and Directory Interface (JNDI)

The JNDI is a Java API to standard enterprise naming and directory services, such as
Lightweight Directory Access Protocol (LDAP), Novell Directory Services (NDS), Internet
Domain Name System (DNS), Network Information System (NIS), and others. JNDI
provides a uniform interface to these services, freeing the developer from dealing with a
plethora of different APlIs for different services. A Service Provider Interface allows new
services to be added.

JNDI is implemented in Java and works with Linux and any other Java-compliant
platform. Sun announced in summer of 1999 that JNDI will become a core component of
JDK1.3.

JavaMail

The JavaMail API provides classes to support an email system and includes service
providers for the popular Internet Message Access Protocol (IMAP) and Simple Mail
Transport Protocol (SMTP) protocols, with an optional Post Office Protocol (POP3)
provider also available. Sun is relying on other vendors to supply service providers for
other protocols (MAPI, NNTP, Lotus Notes, and so on). JavaMail depends on the JNDI
extension (discussed previously).

JavaMail is implemented in Java and works with Linux and any other Java-compliant
platform.

InfoBus

InfoBus is a support API for JavaBeans components. It facilitates communications among
Beans by creating an information bus abstraction for handling exchange of data.

As a pure-Java component, InfoBus works with Linux and any other Java-compliant
platform.

- 150 -

Java3D

Java3D is a 3D rendering API for support of modeling, gaming, and other 3D
applications.

Java3D depends on underlying platform graphics capabilities and is not available in a
Java-only version. Sun provides versions for Solaris and Windows (based on the
OpenGL graphics API) and is testing a version for Windows based on the DirectX
graphics API.

We discuss a Linux version of Java3D in Chapter 34, "Java 3D Extension."

Java Media Framework (JMF)

The JMF creates a framework for multimedia playback, capture, and manipulation. The
version 1.0 API supports only playback; version 2.0 (currently in early access) adds
capture, support for plug-in CODECs, broadcast, and manipulation.

Versions of the JMF implemented entirely in Java are available, as are higher-performing
platform-specific versions for Solaris and Windows.

Java Serviet API

One of the most important and successful Java technologies, servlets are Java programs
that run on Web servers. They are the Java analog of CG/ scripts, which run in response
to browser requests for particular URLSs.

Web server-side programs are a hot and contentious area in the Web development
world, and there is no shortage of debate over the relative merits of Java servlets, Perl,
and other comparable technologies. The true answer to this debate is: use the
technology that does the job for you.

Sun provides a pure-Java implementation of a development kit for servlets. The actual
environment in which servlets run must, of course, be provided by Web servers
themselves. Many free and commercial Web servers, such as Sun's own Web server
product, support servlets. In Chapter 65, "Java on the Web: Java Servlets and Apache
JServ," we set up a Web server with servlet support, built entirely from free components.

Java Cryptography Extension (JCE)

The JCE creates a framework for support of public- and private-key cryptography
algorithms. The implementation includes service providers for some common encryption
algorithms (DES, Blowfish, Diffie-Hellman) and an interface that allows adding other
service providers.

Sun's implementation of JCE is completely in Java and works with Linux and any other
Java-compliant platform. Due to export restrictions, it is only available for download to
sites in the USA and Canada. However, cleanroom implementations of the JCE are
available from vendors outside the USA.

JavaHelp

JavaHelp is a pure-Java help system—Sun's answer to the horribly uneven support for
help systems among various computing platforms. JavaHelp supports authoring and
display of HTML-based help on a wide variety of Java-compliant platforms.

As a pure-Java component, JavaHelp works with Linux and any other Java-compliant
platform.

- 151 -

Java Communications API (JavaComm)

JavaComm provides an API for access to serial and parallel ports on your system. Such
support is platform-specific, and Sun ships versions for Windows and Solaris. Chapter
37, "KJC: Kopi Java Compiler," describes a partial implementation available for Linux.

Java Management API (JMX) (specification only)

JMX (currently in early access) is a framework for management of networked services
and resources, through such protocols as SNMP (Simplified Network Management
Protocol). Using JMX, you can develop management tools and agents to assist in running
networks. It is currently in specification form and no implementation is available.

Java Advanced Imaging (JAI)

The JAI API supports advanced, high-performance imaging capabilities beyond what is
provided in the core image classes. It is targeted at advanced markets such as medical
imaging, seismological imaging, and document processing.

JAl is available in a Java implementation usable on any Java-compliant platform. Versions
will also appear that take advantage of native platform computation and imaging
capabilities.

Enterprise Technologies

The following sections provide a brief rundown of Java's Enterprise Technologies. Those
that are not part of the core classes or the standard extensions just described are slated
to become standard extensions in the near future.

Enterprise JavaBeans (EJB)

Not to be confused with the JavaBean component model, EJB is a specification for
deployment of reusable business logic components.

Confused? The similarity of names is unfortunate. Like JavaBeans, EJB is about
reusable components. The similarity ends there: JavaBeans are arbitrary self-describing
components usable in a wide variety of contexts, whereas EJB is a highly constrained
environment for delivery of services. In short, the difference between JavaBeans and
Enterprise JavaBeans is that they have nothing to do with each other.

What is an EJBean? It's a class that models a piece of business logic—the role of a teller
in a banking transaction, an accounting rule in an order processing system, and so on.

What do you do with an EJBean? You place it in a container in an EJB application server
(see Figure 4.1).

EIB Server

EJB Container

| EBazan | EBaan
EJBaan EJBaan]
EHaan EHaan

Figure 4.1: Enterprise JavaBeans deployed in an enterprise application server.

- 152 -

The structure around the EJBean handles the many minutiae of enterprise applications—
security, database connectivity, network access, persistence, threading, RMI, and so
on—while the EJBean concentrates on providing basic logic. The application server is
then configured to support processes within the enterprise—for example, a Web-based
product ordering system (see Figure 4.2).

Drder
Processing

EJB Sereer

B Container

Acoening
Seyslr

E.Ilasn E.lfbasn

!

EdRisn

E.lflaan

EJBaan

EJBaan

d—b| DS

Figure 4.2: A Web-based product ordering system built around EJB.

From within the EJB server, EJBeans are deployed as needed in the business
processes. For instance, an applet running on the Web client may need to execute a
piece of business logic to check product inventory. It might invoke that logic in a server-
resident EJBean method through an RMI call (see Figure 4.3).

Wk
Chni

Cordar

Prcessing

£ Accownling
| EBan | System
| EBan f—p LIHMLG

Figure 4.3: Using EJB to provide business logic for a client-side requirement.

This is an example of a session bean: a service performed on behalf of a client. EJB also
defines entity beans: persistent objects that represent data, such as cached database
entries.

These diagrams (Figures 4.1, 4.2, and 4.3) are, of course, simplifications. These are big
problems, and EJB is a big, hairy spec still in early adoption (and in competition with
other technologies). These pictures provide only a quick snapshot of the capabilities.

The EJB spec solidified in early 1999, and Sun does not yet ship any reference
implementations for EJB servers or containers. That should change with shipment of
Java 2 Enterprise Edition (scheduled for late 1999). However, EJB is already supported
by a number of com-mercial vendors of application servers and is showing promise as an
important enterprise application integration be technology.

JavaServer Pages (JSP)

- 153 -

A companion be technology to Java Servlets, JSP supports embedding of Java source
code in Web pages. The best-known competing technology is Microsoft's Active Server
Pages (ASP), but similar technologies also exist for embedding of Perl and other
languages.

A reference implementation is available in Sun's JavaServer Web Development Kit
(JSWDK), available for download from http://java.sun.com.

Java Servlet

Already a standard extension (discussed previously), servlets are like CGl scripts: an
entire URL is implemented programmatically. Contrast that with JSP, in which small
pieces of Java source code are embedded in otherwise static HTML.

Java Naming and Directory Interface

Already a standard extension (previously mentioned).

Java IDL

Interface Definition Language (IDL) is the portable specification language used to
describe data passed among CORBA-compliant distributed applications. Java IDL is
Sun's term for the combination of JDK1.2 (which supports parts of the CORBA
specification) and the idI2java compiler, separately available from Sun, that generates the
necessary stubs and skeletons Java needs to interface with CORBA.

The idI2java compiler is a native program, distributed for Solaris and Windows by Sun
and not yet available for Linux. If you need to compile IDL into Java for use with the
JDK1.2 CORBA classes, you will need to do so on an Windows or Solaris platform.

Java Database Connectivity (JDBC)

The JDBC API is part of the core Java class libraries.

Java Message Service (JMS)

JMS is a Java API for the relatively new area of enterprise messaging—infrastructures to
support secure, reliable message-passing among applications. It is currently in
specification form, with no implementation available.

Java Transaction API (JTA)

JTA is a Java API to support interaction with distributed transaction systems. It is
currently in specification form, with no implementation available.

Java Transaction Service (JTS)

JTS supports implementation of servers for distributed transaction systems. It is currently
in specification form, with no implementation available.

JavaMail

The JavaMail APl is already a standard extension (previously mentioned).

RMI/IIOP

-154 -

RMI/IIOP is an integration mechanism that supports encapsulating Java RMI calls in the
Internet Inter-Orb Protocol (IIOP) used in CORBA environments. In summer of 1999, Sun
announced its upcoming availability with JDK1.3.

Summary

This chapter has described extension and enterprise APls for Java, which are targeted at
supporting Java application development in specific environments. This is an area that is
rapidly changing, as APIls undergo revision, release, acceptance, and, in some cases,
incorporation into the core Java specification.

Part ll: A Brief Introduction to Linux

Chapter List

Chapter What Is Linux?
5:

Chapter How to Obtain and Install Linux
6:

Chapter Confiquring Your Linux Desktop
7:

Chapter Installing Additional Linux Software
8:

Part Overview

We took a few chapters to introduce Java; now we take a few chapters to introduce
Linux.

The past ten years have witnessed a remarkable explosion in personal computing. The
success of Microsoft, Intel, and the PC industry in penetrating the home and the office
has put huge amounts of computing power into the hands of nhormal human beings who
don't know a bit from a byte and who have no idea what an operating system is. They
know, simply, that their computer tends to work most of the time.

Against this background, the emergence of a new PC-based operating system as an
important force in the world is one of history's most unlikely events. This part of the book
examines what Linux is, where it comes from, how it is being used, and how you can obtain
it for your own use.

Chapter 5: What Is Linux?

Overview

This chapter gives you the 10-minute tour of Linux. If you are already an experienced
Linux user, you might want to skip ahead. Our purpose, for the benefit of Java developers
new to Linux, is to give some basic background and help get you started.

We begin with a look at UNIX, including a bit of history to help understand how UNIX and
Linux got to be what they are today. For readers unfamiliar with some of these details,
they will be relevant to understanding the platform-specific issues faced by Java on the

- 155 -

Linux platform.

For readers interested in deep coverage of Linux, we recommend Linux Unleashed
(Sams).

What Is UNIX?

The UNIX operating system has been around since 1969 and is the longest-running and
most spectacularly successful experiment in the history of computer science. It originated
in the halls of Bell Labs, at the hands of two researchers: Ken Thompson and Dennis
Ritchie. Over the years, UNIX has served as a primary development and test bed for
innovations in computer architecture, operating systems design, memory management,
file systems, database management systems, languages and compilers, 1/0
architectures, multitasking and multiprocessing, and computer networking. UNIX is
closely associated with the development and evolution of the protocols that make up the
Internet, and UNIX-based servers make up a large part of the infrastructure of the
Internet.

UNIX spent its infancy behind the walls of Bell Labs' parent corporation, AT&T, where it
was used internally throughout the company. It began to spread beyond the confines of
Bell Labs in the mid-1970s, infiltrating computer science departments at several
universities. As AT&T began to commercialize UNIX, several universities started their
own research programs based on UNIX, and innovation proliferated. The most influential
university activity took place at UC Berkeley, and, with help from government research
grants, Berkeley became the home of a public-sector UNIX development stream. During
much of the 1980s, the AT&T and BSD (Berkeley System Distribution) streams continued
in parallel, both competing with and influencing each other.

As UNIX was increasingly commercialized in the 1980s, the differences between AT&T
and BSD UNIX resulted in competitive tensions among UNIX vendors and headaches for
independent software vendors and customers. These problems have been blamed for
preventing widespread consumer and business acceptance of UNIX—and the huge
success of the Intel/Microsoft architecture certainly underscores that point. But UNIX
continues to survive and thrive because it solves problems that other OSs do not. And
the standardization efforts of the past several years have helped to reduce the difficulties
of supporting the UNIX platform (that the vendors have not eliminated those difficulties
entirely is another reason for the ascent of Linux).

The commercial implementations of UNIX sold most widely today include Hewlett-
Packard Company's HP-UX, Sun Microsystems' Solaris, Compag/DEC's Ultrix, IBM's
AlX, and SGl's IRIX.

The Structure of UNIX

More than any other operating system, UNIX is made up of many small parts and—to
recycle an old cliché—greatly exceeds the sum of its parts. The OS is constructed in
layers, with core operations performed by a privileged kernel and everything else
happening in isolated concurrent activity streams called processes—the system creates
concurrence by dividing the CPU and other resources among the processes and
switching between processes tens or hundreds of times a second.

The isolation among processes, and the isolation enforced between processes and the
kernel, is a major reason behind UNIX's stability—the relatively high immunity to
interference between programs, and the general inability of user programs to damage the
system.

Figure 5.1 gives a general idea of the structure of UNIX.

- 156 -

Lot Apgdication
Shalis

Uil

Coergiiors & Inbarpestors

Bfliend File W0
£ Agpication Memory anagement
§ Uhies [string, math, dalebime, oic.)
& Nomworking [Seasion L]
Kamal Cals
Y

Symlam

Llgar Space

Kemal Space

Tw,
Prooatses & Thiamwd
File Syatans
Users § Geoups
Chamcior & Block 10
Yirual Mamory Systam
CFU and 10 Scaadulieg
Liger and Fie Sywiem Saceriy
Share Memaory & IPC
Motworking (Matwork Layor & balow)

Feavned

Figure 5.1: UNIX's layered structure supports multitasking and enforces
protective isolation among processes as well as between processes and the
kernel.

The system was designed by software developers for software developers, which
resulted in a rich environment for software development—a distinction that UNIX still
enjoys today. It also resulted in a rich collection of tools and utilities that make it easy for
software developers to work on UNIX and to easily build complex tools out of simple
tools. That such utilities, completely nongraphical and blessed with such obscure names
as sed, awk, grep, vi, troff, cpio, and so on, never fired the imagination of the general
public is another reason UNIX did not penetrate the consumer and business market. (We
will explore important tools for use in development work in Chapter 9, "Setting Up a Linux
Development Environment.")

And there is something else missing from the picture....

UNIX and GUIs

Until the late 1980s, the UNIX world was largely text-oriented. UNIX applications, tools,
and utilities tended not to rely on graphics of any form. Applications that needed graphics,
2D or 3D, had to code to the proprietary graphical interfaces provided by each of the
UNIX vendors and create their own GUIs: not a friendly environment for innovation.

This began to change with the advent of the X Window System, which arose from
research at MIT's Laboratory for Computer Science. The X Window System serves 2D
graphical applications with a networked client/server model, in which applications
rendering graphics are clients, and workstations providing those rendering capabilities
are servers. Figure 5.2 shows an X application in its simplest form.

¥ Cluafl

Window
X Sorvar X Peotocal Fr

- - Bpplealicn
e gy ageili
I

.&E——-@:

Figure 5.2: Basic X-based application architecture.

The X Window System defines a standard set of services to be provided by an X display
server, and a standard network protocol through which applications can create and
control windows, render text and graphics, and interact with the user. Because the X
protocol is network-transparent, applications need not reside on the same system as the
X server. Users with inexpensive workstations can run compute-intensive graphical

- 157 -

applications on large servers while enjoying full graphical I/O from their desks.

This vendor-neutral approach to distributed graphics gained the support of all UNIX
vendors, who formed the MIT X Consortium to further the evolution of X. But something is
still missing from the picture....

The X Window System is not a GUI. It is, by design and intention, everything needed to
create a GUl—basic windows, rendering, images, and so on—but it lacks the higher-level
abstractions that make up a graphical user interface: pushbuttons, text editors, scrollbars,
and the like. Design of GUIs, and of window managers (the "traffic cops" responsible for
controlling how various applications share the screen space in the X server), was left as
an exercise for the UNIX vendors.

The UNIX vendors rose to the challenge, competing fiercely for several years and, finally,
converging on a GUI toolkit, Motif, and a Desktop (window manager + extras), the
Common Desktop Environment (CDE). So a more complete picture of a typical X
application environment looks like Figure 5.3.

J— U 8ased
CUE W Apslicatien
Wil oo

My = o XED
x-ﬂi'm
W EEren w_,.-:-""’
EH-Dsaed
i Applcation

iy
oy,
&; .
: GlBased

apphcainn
Wt
Wi

Figure 5.3: X Window System GUI and application environment architecture.

Each GUI-based application interacts with the X server, and the CDE window manager
controls the behavior of the desktop (window geometry and borders, icons, overall look
and feel). Applications also interact with each other, and with the window manager, using
inter-client protocols. And because all interactions take place over network-transparent
protocols, all these components—applications, window manager, and the X server—can
be running on different systems.

As complex as this appears, most of the interaction details shown in the diagram are
handled by the toolkits. Writing GUI applications for X is not difficult.

Subtleties

The relationship among the X Window System, GUI toolkits, and the window
manager is strange and new if you're coming from the non-UNIX world. They are all
separate components in UNIX and Linux:

» The X Window System server runs the display, keyboard, and mouse. It is
responsible for basic graphics rendering.

» GUI toolkits are separate components, bound with individual applications. Motif is
the most commercial toolkit but (despite the suggestion of the previous diagram)
not the only one. So, for example, the logic to implement a button or text box
resides with the GUI toolkit, not with the X server—different applications using
different toolkits routinely coexist under X.

- 158 -

» The window manager, a component of the desktop, handles controlling how
applications share the space on the X display. It is just another application, albeit
one with special privileges to control layout and visibility of other applications.
CDE is the most commercial, but not the only, desktop, and recent development
work within the open source community has led to exciting alternatives to CDE
(more in Chapter 7, "Configuring Your Linux Desktop").

To illustrate, Figure 5.4 shows a typical screen dump from my X display. | am
running a desktop called KDE, which is responsible for the background color, the
icons, the buttons at the bottom, the placement of my application windows, and the
decorations around the application windows.

The topmost application is a terminal emulator, kvt, which uses the Qt GUI toolkit.
Below that is an instance of Netscape, which uses Motif. And below that is a
remote-dialup script that uses the Tk GUI toolkit. When we start running Java
applications with the Swing interface, we will find yet another GUI sharing the
desktop.

- = - -

e ' Gew Remme P jecwe
R T o —
T Aumam B Aiia ACrrersn Bl e B L pirs Lk i o min

Be 0 etcspe Bl etemer. 8 d

— . — Lalo -

i |l ey | § [Tesin

o ook’ [Tewwa PR e pug tmma e vemas | g | ey)
P e | b ik | ewa

. i
B |8 et | B oot | 8 (e | S o | B i | iy -

Figure 5.4: A dump of the author's desktop, showing a Linux desktop (KDE) and
three different applications running with three different toolkits.

Because the desktop controls the look and feel (and your personal satisfaction) for the
system, we will explore the topic of configuring your desktop in Chapter 7, "Configuring
Your Linux Desktop."

A Brief Comment on UNIX/X Versus Microsoft Windows

Although the differences between the UNIX and Microsoft architectures are well beyond
the scope of this book, a brief observation will be helpful in illuminating the platform-
specific issues later in the book.

In the Microsoft architecture, the GUI, the window system, and the desktop are all integral
to the kernel, and applications must run locally (even sharing some address space with
the kernel). By contrast, the various X components are independent, non-kernel
processes, and UNIX enforces a significant amount of isolation between processes and
the kernel.

The close integration of Microsoft Windows has important advantages (GUI performance,
consistency of interfaces) and major disadvantages (huge and complex operating system,
lack of flexibility, fragility, lack of portability). As you will see when examining platform-

- 159 -

specific performance issues, the distributed nature of the X Window System creates Java
performance challenges unique to UNIX and Linux platforms. The good news: tuning Java
application performance on one platform often benefits performance on all platforms.

What Is Linux?

Having briefly explored 30 years of computer science history, we can begin to answer the
question: What is Linux? A little more history....

UNIX has grown up in a mixed academic/commercial environment, and its history is full
of talented innovators who find the pursuit of computer science at least as interesting as
making money, if not more so. Like all scientists, computer scientists like to work in packs
and tend to prefer collaboration over working behind locked doors.

The growth of the computer industry naturally led to tensions between making science
and making money. The problem is not unique to computer science: we see it in physics
(the electronics industry), biology (the bioengineering and pharmaceutical industries), and
elsewhere.

What is unique to computer science is that the scientists fought back. Linux is but one
example, and two names stand out as particularly crucial in the development of that
example: Richard Stallman and Linus Torvalds.

Richard Stallman: The Apostle of Free Software

Richard Stallman, formerly of MIT, founded the GNU project in 1984
(http://www.gnu.org). GNU (a recursive acronym for "GNU is Not UNIX") set out to
write a completely free replacement for UNIX. His reasons, which he has described in
passionate writings, stem from a personal conviction that the commercialization of UNIX
was seriously stifling innovation in the field, and from deep convictions about the ethics of
intellectual property law.

In founding GNU, Stallman set out to create a new category of software: free software,
where free denoted something much broader than a zero-dollar price tag. Free software,
in the GNU lexicon, means software that the user is free to run, free to modify, free to
share, and free to improve. This notion has gained much currency in the past two years,
with the emergence of the Open Source software movement.

Recalling our earlier illustration, a UNIX system consists of a kernel, system libraries, and
many tools and utilities. As of this writing, the GNU kernel (called the Hurd—an obscure
acronym) is not finished, but everything else is. The GNU project has built an extensive
collection of free versions of many UNIX utilities and libraries. And, most significantly,
GNU developed a compiler and core library for the C programming language—a critical
piece of technology for OS development.

Linus Torvalds: Kernel Hacker

Linus Torvalds, a Finnish computer science student, was a user of the Minix operating
system (a small, academic UNIX-like OS) when he decided he could write a better one
himself. He set to the task and, in 1991, published version 0.02 of the Linux kernel for the
Intel 80386 CPU. It wasn't much to look at, but it fired the imagination of kernel hackers
throughout the Internet world, and a movement was born.

Linus and his cadre of like-minded hackers continued their collaborative work (Linux is
truly a product of the Internet), and, in 1994, Linus published version 1.0 of the Linux
kernel. It was not the world's first UNIX for the 80386 architecture—Xenix was available
in the commercial market—but it was free, and it worked well on this widely available
CPU. Suddenly, millions of old and new affordable computers had a potential future as
UNIX platforms. Current market research suggests that Linux now runs on as many

- 160 -

platforms as do all other UNIXes combined.

Of course, an operating system is more than a kernel. With the availability of the Linux
kernel, a new opportunity opened up for Richard Stallman's unfinished work.

Linux Kernel + GNU = Linux OS

With some simple addition, Kernel + GNU, you have a fully functional UNIX-like OS. We
say UNIX-like, not UNIX, because GNU and Linux are original works: not a single line is
licensed from the holders of the UNIX franchise. But the functionality is all in place, and

the Linux community tracks the evolving standards and keeps Linux current.

Because of GNU's central role in the Linux environment, you will also hear Linux called
"GNU/Linux," "The GNU System on Linux," or some similar name. These are all
alternative names for the same thing, and this book opts for the common convention:
we'll use "Linux" to describe the OS.

There is, of course, more to the Linux OS than the kernel and the GNU components. The
XFree86 project contributes the important X Window System, many utilities were derived
from the Berkeley UNIX effort, and a wide variety of tools and drivers come from
individual and corporate contributors. The job of assembling all these pieces into a
product has created a new type of business: Linux distributions.

We will talk about these businesses, with increasingly well-known names such as Red
Hat and Caldera, in the Chapter 6, "How to Obtain and Install Linux."

Linux Platforms

Linux started out life on the Intel x86 architecture but, thanks to its portable design and
implementation, has found a home on more computing platforms than any other OS.
Table 5.1 lists the platforms on which Linux is or will be available as of this writing:

Table 5.1 Linux Platforms

Vendor Computer CPU
(many) PC Intel x86

(several) Workstations/Servers PowerPC
Compaq Workstations/Servers Alpha
HP Workstations/Servers PA-RISC

(several) Workstations/Servers Intel ia64

SGl Workstations/Servers MIPS
Sun Workstations/Servers Sparc
Corel, etc. Appliances/etc. StrongARM

- 161 -

Many of the preceding ports came into being through independent volunteer efforts, but
the past year has seen a major embrace of Linux by all major UNIX vendors. The port to
iab4, for example, is being spearheaded by HP and is targeted for availability when the
first ia64 platforms ship in mid-2000.

Linux is used in a huge range of environments, from small embedded systems to clustered
supercomputers. It's a popular choice for x86-based PCs that have fallen behind the
growing demands of supporting Microsoft operating systems. And Linux enjoys a dominant
role in the running of the Internet, from Web servers to firewalls to routers. The degree of
Linux's success is astonishing: no novelist could have invented it. As truth, it is utterly
stranger than fiction.

Summary

This chapter has provided a high-level architectural view of Linux and of the environment—
OS, graphical display, and GUl—in which Linux applications run. As Linux continues to
gain acceptance, its role in the Internet, and consequently in the world of Java, will become
increasingly visible and important.

Chapter 6: How to Obtain and Install Linux

Overview

This chapter is for Java users and developers who are new to Linux; it is targeted at
helping you run Linux for the first time. We discuss Linux distributions—what they are,
how to get them, and how to install them.

Linux is very different from other PC operating systems. Unlike Microsoft Windows or IBM
0S/2, it is not a monolithic offering from a large OS vendor. Linux is a collection of many
pieces—a kernel, drivers, libraries, utilities, compilers, windowing system, desktop, toys
and games, and so on—that come from hundreds of different sources. This is good news
for Linux users: the abundance of choice allows you to build systems targeted to specific
needs, such as software development, Internet firewalls, Web servers, X terminals, and
network routers, to name a few.

The choices you face in building a Linux system could be overwhelming, but they are not.
An entirely new business, the packaging of Linux distributions, has grown up around the
problem of shipping and installing systems. A Linux distribution is a collection of the
pieces you need to build a system, plus an automatic installation program to do the heavy
lifting.

The three basic steps to installing a distribution are
1. Choose and obtain a distribution.

2. Boot up the distribution from floppy or CD-ROM.
3. Follow the instructions on your screen.

We discuss the first topic here, with a look at the most popular distributions. Because the
landscape is ever-changing, it's a good idea to check on the latest available distributions:
A good source of information on current distributions is
http://www.linux.org/dist.

The full, gory details of installing Linux are beyond the scope of this book, but we illustrate

- 162 -

with a few screen shots to give you a general idea of what you will experience.

Choosing a Distribution

Four major commercial distributions, plus several smaller commercial, derivative, and
noncommercial distributions are available for Linux. The commercial distribution vendors
add value, and derive much of their income, from packaging and selling the media and
books that make up the distributions. Their distributions include all the free components
you need for Linux in addition to value-added installation and configuration software and
some commercial software from various sources.

The commercial distributions are usually sold in two forms: a reasonably priced bundle of
media and books available through computer stores and mail order, and free versions
available on the Web (and bundled with almost every Linux book sold). The free versions
come without bundled commercial software or support. My recommendation, if you
choose a commercial distribution, is that your first Linux purchase be a commercial
bundle; the printed materials and the free support can greatly speed you through the
early learning curve.

The non-commercial distributions, and the free versions of the commercial distributions,
are also commonly available from a number of CD-ROM distributors, such as
CheapBytes (http://www.cheapbytes.com), Linux System Labs
(http://www.1lsl.com), and others.

Let's look at the distribution vendors, beginning with the big four.

Red Hat Software

Red Hat Software (http://www.redhat.com) is emerging as a big name in
distribution vendors, with the highest commercial and investor recognition of any Linux
business. It has long been a popular distribution in the home market and is moving
seriously into the corporate market. Services include a Linux portal (its home page), a
growing knowledge base of Linux advice, a research & development lab focused on
solving Linux usability problems, and commercial support services.

| am a Red Hat user, so the examples in this book will tend to be Red Hat-centric. But
don't let my example prejudice you; there are other excellent distributions.

Caldera

Caldera (http://www.caldera.comn) is more focused on the business market and on
back-room servers than is Red Hat. The company started out as a Novell startup and
boasts a strong competence (and a commercial product suite) in hosting Novell networks
on Linux boxes. Caldera also bundles a professional office suite, Star Office. Services
include a knowledge base, professional support, and education.

SuSE

SuSE (http://www.suse.com), based in Germany, is Europe's largest distribution
vendor. It is now pushing aggressively into the North American market and is business-
focused with a strong competence in databases. Its products and services include
enhanced X Window System display servers, professional office bundles, installation
support, and a support database.

TurboLinux

TurboLinux (http://www.turbolinux.com)is a Japan-based distribution focused on
high-performance clusters and on back-room servers for Internet and Web services.

- 163 -

TurboLinux also boasts a strong competency in Asian language support, and is the
leading distribution in Asia.

Mandrake

Mandrake (http://www.linuxmandrake.com) is a noncommercial derivative of Red
Hat. Its focus is on making distributions easy to install—particularly the thorny problems
of installing and configuring the desktop and detecting hardware devices. A Mandrake
distribution is a free Red Hat distribution plus a friendlier install process, for which
Mandrake has received good reviews in the trade press.

Debian

Debian (http://www.debian.org)is a noncommercial distribution published by
Software In The Public Interest, Inc. The distribution has a reputation as being difficult to
install, easy to maintain, and of high quality.

Slackware

Slackware (http://www.slackware.comn) is published by Walnut Creek CD-ROM, a
company that specializes in selling collections of shareware and freeware.

Walking Through an Installation

Let's do a brief walkthrough of a Red Hat 6.0 installation to give you an idea of what is
involved in the process. Our intent is to provide a brief overview; the Red Hat Linux
Installation Guide provides much more detail.

The packaged product comes with a bootable CD-ROM and some boot floppies. If you
have a free version without the boot floppies, the CD-ROM includes some floppy disk
images and a DOS executable, RAWRITE . EXE, which you can use to create the floppies
from a DOS or Windows machine. (You probably don't need the floppies; most modern
PCs can boot from CD-ROM. But if you do, just use RAWRITE to create the floppy, as in
the example in Figure 6.1 with the Red Hat CD-ROM in the D: drive. After creating the
floppy, you can exit DOS/Windows and begin the installation process.

suhib rawrba

e THF

sl Carp

= divinageaibest . B

e
ketis ante driwe §5 sad prexs -IHITE-

1] SEZME [k e space: O bndart]

listan | L Eming 0uMaEEs |[BE Cammend Promet - & Zi4Pu

Figure 6.1: Running the RAWRITE . EXE utility to create Linux boot disks from a
Microsoft Windows environment.

Reboot your machine with the boot CD-ROM or floppy in place. After booting, you see
the initial Red Hat installation screen (see Figure 6.2).

_ 164 -

Helcoem fo Bod Mat Limsus?

& To isstall or apgreds & spstes veanisg Bed lal Linex 2,0
ar latmr, prazs the {EHTEE) key.

o To esahle experi node, ippe: experi (EHTER:. Prasa <F3F Qe
Fore Inforeat o sbrat expart sode

o Thix dizk can m longer be uxed ax o rexcss dizk. Prezs P43 for
Enfermatles on tho e rescue disks

o Uze the fusctiom Eeps lixted below fer wore Inforeation

iFi-Falnl [(FE-Gurerall IF3-Expart) (F-Recue] [(FE-Elickatart] [(FE-Esrmall
Lix

Figure 6.2: Initial Red Hat installation startup screen.

After you press Enter, the system loads a small installation kernel and welcomes you to
the start of the installation process (see Figure 6.3).

Hulcosm to Amd Hat Lisux

Haolcom o Bod Hat Liwixf

Thiz iaztallation proceax ix ouflined in detall in the
UFricial Bed Hat Livax Instal lafion Lelde susllsbhle from
Aed Hat Software, 1 gou haws access 0 this ssnosl, won
should read tke iwmstallation section bofore pontinuing.

[f you hawe purchased Offi=ia]l Bed Hed Linwx, bo surn io

cuyialur your gurchaze Lthrough oar sl zito,
hitpl/ s rudbat . com.

Alt-Tahs Botuson alesents ! <CSpocer =oleoie !

Figure 6.3: Start of the Red Hat installation process.

You navigate through this process using the Tab key and the spacebar; there is no
mouse capability yet. You need to answer a few screens of questions about language,
keyboard, and installation media, and then answer a crucial question (see Figure 6.4).

Rud Hat Linux End Hat Zofituars 1 =t imxtallatiom path

Houlld wou like %o dnxiall &
ToW systes or upgrade & spston
uhkichk already contains: Hed Het
Limyw 2.8 or later?

LTeh>#{A1t-Tahs Botuwsom slesents ! <Epucer molecie | {F125 mowt soroos

Figure 6.4: The first important question in Red Hat installation.

Because this is a new installation, select Install to continue. Next, choose an installation
type (see Figure 6.5).

- 165 -

Apd Hat Linnx (90 Ewd Hat Softesrs Smlwct inxtallation claxx

Installation Class
HEat type of eachine 2re pou
Imktalling? Far maximes
Flaxikility, chooee "Custon”.

Eorkstation

TETYET
FEICE

LTeb>#{Alt-Tak* hatusewn olosswts 1 48

Figure 6.5: You can choose certain default configurations, or choose Custom to
exercise full control over system setup.

You make your choice, and after a few more screens of questions, it is time to partition
your disk drive. Red Hat allows you to choose between the traditional Linux fdisk program
and the friendlier Disk Druid. Choose the latter, and see its interface (see Figure 6.6).

Aud Hat Linnx (C) 1999 End Hat Sl twars

1 Lurrant Dizk Pargisinone |

Hount Point Towice Pasjaestol Aoiual il
XEE]

Bmtup 1ilinzyztars

Or ive Surrar ios
Or i Ooom [E<H-51
[Hils 1bsB3]

Fron

Tatal LT
S BT

Fl-Adad F2-Add WFE FI-Edit Fi-Delato

Figure 6.6: Disk Druid shows your disk partitions. At the moment, your only
partition is an MS Windows partition that fills the entire drive.

This is bad news: your entire drive is occupied by a DOS/Windows partition. Red Hat
installation does not provide a way to shrink the partition. Some commercial (such as
PartitionMagic) and free products allow you to resize existing DOS disks outside this
installation process. But because you do not want to keep this Windows installation,
delete the partition. Then use the Add function to create three new partitions for Linux
(see Figure 6.7).

Aod Hat Linnx (C) 1090 End Hat Saftwars

Bmtnp itlnzyztars

Linux native
Nlx SHap
Linu= natlve

- -

D i Siurrar [o8
O ivn Ouom [E<HAS]
Hils kB3]

Tatal
] I [eunEaEann |

Fl-Adad FZ2-Add WF3E FI-Edit Fi-Delato

Figure 6.7: New drive configuration, after deleting the Windows partition and
creating three new partitions.

- 166 -

You have designated a small partition at the beginning of the drive to hold the boot files,
a large partition for the main file system, and a 32MB swap partition. (Because of some
decades-old architectural decisions in PC design, x86 machines cannot boot from disk
locations with high cylinder addresses. This drive is not large enough to have such a
problem, but the 10GB disk in your other PC is large enough.)

After a series of screens to check and format the disk partitions, you now must choose
which components to install (see Figure 6.8).

Aud Hat Linux (03 1999 Bud Hat Ssitwars Choosze packasgns to fmztall
CoHpoments £a Inctsll

Choosa cosponents to Insfall:

LTHb>A{A1t-Taks Botoson ol

Figure 6.8: Red Hat installation allows you to choose the components you need
for your environment.

Here is where you customize your system: choose development components if you want
a development system, database or Web servers for back-room duty, X Window System
for a graphical workstation, and so on. If you make some wrong choices, components
can easily be added or removed later. You will not find Java here; you will learn in later
chapters how to obtain Java components for Linux.

After you have selected the pieces you want, you click Ok and stand by while the disks
are formatted and the system is installed.

You then see a series of configuration screens for setting up the mouse, networking, time
zone, system services, printers, passwords, boot disk (it's a good idea to create a boot
floppy), boot loader, and X Server. After completing the installation steps, the system
reboots and starts up a new, fully functional Linux system.

If you find after installation that you need additional software from the CD-ROM, you can
install it using the Red Hat Package Manager (RPM) utility. In Chapter 9, "Setting Up a
Linux Development Environment," we discuss what components you need to set up a
development environment on Linux.

Your Turn

This chapter gave you a brief look at obtaining and installing Linux. Despite the practical
difficulties of building an OS that can deal with today's huge selection of hardware (and
the weak level of Linux support from most hardware vendors), the Linux community and
distribution vendors have done an outstanding job of creating an OS that is easy to install
and administer.

A few simple guidelines as you build your own Linux system:

* Many software products (including the Java SDK for Linux) list the distributions with
which they are known to work. It is a good idea to consult that when choosing a
distribution.

- 167 -

» Avoid strange, off-market peripherals on your PC. Standard peripherals are more likely
to be supported.

* Plan ahead how you want to allocate your hard drive between Linux and other
operating systems.

* You have a great deal of choice in choosing the look and feel of your graphical
desktop. We will explore that in more detail in the next chapter, Chapter 7,
"Configuring Your Linux Desktop."

* Help is available from distribution vendors, Linux-oriented Web sites
(http://www.linux.org, among others), local user groups, and user communities
for various software products. Competing claims notwithstanding, Linux is the best-
supported OS in the industry.

You will find, after an initial learning curve, that your Linux box is easier to run, more
powerful, and more reliable and stable than any other x86-based operating system.

Summary

This chapter has looked at the major Linux distributions and provided a glimpse of the
steps required to install a Linux system. This is a dynamic area, with distribution vendors
continually improving the quality, robustness, ease-of-use, and ease of administration of
their products.

Chapter 7: Configuring Your Linux Desktop

Overview

The desktop is the overall look and feel of the X windowing environment. You'll spend a
lot of time staring at the desktop, and it can be bewildering if you're moving from other
windowing environments, such as Windows, OS/2, or Macintosh, to Linux. Your
installation process will probably choose a desktop for you; if you don't like the choice,
you can change it.

As we discussed in Chapter 5, "What Is Linux?," the graphical I/O system is not built into
the Linux kernel. It consists of separate components: an X server, GUI toolkits used by
programs (not our immediate concern in this chapter), and the desktop. The desktop
gives the graphical environment its personality, and its functions usually include

* Window management—Controlling the size, placement, and visibility of windows;
drawing and placing icons; drawing borders around windows; implementing the button
functionality in the window borders (iconify, maximize, close, and so on); customizing
behavior around application requirements.

+ Integration—Providing a networked facility for discovery and launch of services, and
communication between services.

» Paging—Supporting easy navigation between applications.
» Workspaces—Managing multiple virtual desktops.

» Front panel—A sort of "dashboard" that displays system status and handles launching
of common applications.

» File management—A GUI and drag-and-drop interface for navigating and manipulating

- 168 -

the file system, and launching applications from the file system and the desktop.

» Session management—Saving and restoring X Window System clients and settings
between sessions.

» Utilities—Common utilities, such as a text editor, mail reader, calculator, datebook,
media player, backup tool, and help system.

» Tchotchkes and Gewgaws—Many desktops include some games, screen savers, and
other such diversions.

» Configuration—Tools for easy configuration of desktop look and behavior.

The Common Desktop Environment (CDE) adopted by the commercial UNIX vendors
does all these things, but because of its cost and licensing terms, it has not been widely
embraced by the Linux community. The result has been a proliferation of window
managers and desktops, some original and some highly derivative. Choosing a
comfortable desktop can make your time spent on Linux pleasant. Conversely, choosing
a bad desktop can make you a Linux-hater. The objective of this chapter is to help you
over this hurdle.

In these examples, | refer heavily to my particular distribution, Red Hat 6.0. (This is a
matter of convenient illustration, not an endorsement. There are simply too many different
distributions to describe them all.) Your results may vary, and you probably will need to
refer to documentation with your distribution.

Starting the X Window System

The two customary ways of starting up the X Window System are
* Launch it from a console shell with the xinit command.

* Log in through an X Display Manager.

Many distributions give you this option at installation time. For example, when the Red
Hat installer asks whether you want to run the X server automatically, answering yes
results in running an X Display Manager, as shown in Figure 7.1. Choosing automatic X
startup is generally the right choice. It starts up a full desktop instead of the minimal X
environment usually launched by xinit.

Figure 7.1: Red Hat 6.0 Gnome Display Manager login screen.

- 169 -

The next few sections look at the most popular and easily available desktops. The first two
are state-of-the-art, representing current GUI development activity in the Linux community.
The third is older, more stable, and not as original, but it borrows some familiar looks from
some well-known desktops on other platforms.

The K Desktop Environment (KDE)

The K Desktop Environment is an open source desktop with considerable acceptance in
the Linux community. It is full-featured and mature, with all the desktop capabilities
mentioned previously (see Figure 7.2).

Figure 7.2: The K Desktop Environment.

Configuration menus allow you to add your own applications and install new actions—
programs to be run when files are launched from the file manager or the desktop.

KDE is available from http://www. kde.org and depends on the gt GUI library,
available from http://www.troll.no. Both are shipped with Red Hat 6.0 and
available as Red Hat packages (kdebase, a collection of other kde* packages, and gt)
on the installation media. (We discuss the Red Hat Package Manager (RPM) and other
packaging tools in Chapter 8, "Installing Additional Linux Software.")

This is the current desktop to beat, although it is feeling some competitive heat from the
Enlightenment Desktop.

The Gnome Enlightenment Desktop

The Enlightenment Desktop is an open source product of research at Red Hat Software
(The Gnome Desktop) and a loose consortium of independent developers (The
Enlightenment Window Manager). It's an attractive and powerful desktop (see Figure
7.3).

- 170 -

Figure 7.3: The Gnome Enlightenment Desktop.

Enlightenment also features the full complement of desktop functionality described earlier
in the chapter. Using configuration menus, it is easy to add your own applications and
define new actions.

Enlightenment is currently Red Hat's favored desktop and the default installed by the 6.0
distribution. It is less mature than KDE, and my own experience suggests that it's still
rough around the edges—but that will undoubtedly improve.

Enlightenment is available from http://www.enlightenment.org. It relies on the
Gnome product, available from http://www.gnome.org. Both are shipped with Red Hat
6.0 and available as Red Hat packages (enlightenment, gnome-core, and a collection
of additional gnome-* packages) from the installation media.

AnotherLevel

AnotherlLevel is a combination of an older desktop (fvwm2) and some predefined
configurations that give fvwm2 a look approximating some familiar desktops—Windows
95 (see Figure 7.4), Motif Window Manager (see Figure 7.5), and NextStep(see Figure
7.6).

Figure 7.4: AnotherLevel's Windows 95 personality.

-171 -

Figure 7.5: AnotherLevel's Motif Window Manager personality.

'Dio-0i0 B

Figure 7.6: AnotherLevel's NextStep personality.

To change the look while running AnotherLevel, left-click on the root menu and look for
the Quit button. This leads you to a Switch to button. Use this button to select which
AnotherlLevel desktop you want to run.

These desktops are usable, but, unlike KDE and Enlightenment, they are collections of
tired old components thrown together into a desktop and decorated to look familiar. They
have the advantage of being smaller and faster than the newer desktops, but they are not
full desktops—Iacking, for example, drag-and-drop interoperability, MIME file type
recognition, and any sort of networked integration mechanism.

AnotherLevel is available at free software repositories such as
http://sunsite.unc.edu and is shipped on most installation media. On Red Hat
media, you need the packages for fvwm and AnotherLevel.

Selecting a Desktop

Installing the desktop product—from the Red Hat packages or other distributions—is the
first step to turning on your selected desktop. The second step is to tell the system which
one you want to use.

-172 -

This is another topic that varies by distribution; you will need to refer to your particular
documentation. The Gnome Display Manager in Red Hat 6.0 gives you the option to
choose your desktop at login time (see Figure 7.7).

hon: !
x B el e -

ﬁ’ ~ AnatharLey e
Languegdi - poa o

SR < Fajai

Figure 7.7: Red Hat 6.0 Gnome Display Manager login screen lets you select
your desktop.

After you have logged in, you have the option of setting a default desktop (again, this is
Gnome-specific behavior). Run the /usr/bin/switchdesk utility and choose your
desktop through the interface (see Figure 7.8). Under Red Hat, you need to install the
packages for switchdesk and switchdesk-gnome to use this utility.

=18 [x]

Current display iz wectra:0

ravallable Desktops

+ GNOME

« fnother Level

I Change anly applies 1 curkent display

I DK | Cancel

Figure 7.8: The switchdesk utility lets you set your default desktop.

Your default desktop, when you next log in, will be your new selection.

Summary

The Linux environment offers a plethora of choices for configuring the graphical desktop.
This chapter has presented a brief tour of the available desktops and includes pointers
intended to start you toward choosing the best one for your needs.

Chapter 8: Installing Additional Linux
Software

Overview

-173 -

Installing a new Linux system gives you a PC full of software, but it doesn't give you
everything you need. For your Java development, you'll need to install Java tools, of
course, along with other development tools, utilities, and extensions. Later chapters
discuss a variety of components you need for Java development on Linux —but where do
you get them and how do you install them?

Your first source of software is your Linux distribution media. Many standard tools and
utilities are provided on the distribution media in package management format.

Package Management

Most Linux distributions use a package management tool for distributing and installing
software. If you are a user of Red Hat, Caldera, SuSE, Debian, or many other
distributions, your installation distribution media will include dozens or hundreds of
packages ready for installation. Many other packages are published on the Web in
standard package management formats.

Package management tools handle important details of installing software: clean
installation, update, upgrade, and uninstallation; identifying and enforcing dependencies
between packages; protecting and respecting customizations you make to installed
packages. Surprisingly, package management is a relatively recent concept in the UNIX
world (Microsoft Windows environments have some similar, if more fragile, approaches),
and much of the innovation in package management is occurring in the Linux community.

rpm

The Red Hat Package Manager (rpm) is the most commonly used and is the standard
package management tool for Red Hat, Caldera, and SuSE distributions (among others).
Although it originated with Red Hat Software, rom has taken on a life independent of that
vendor, has its own development and support community (http://www.rpm.org), and
has been ported to many UNIX platforms.

The RPM terminology may be a bit confusing, so here is what to look for in any
discussion of Red Hat packages:

» The program for installing and managing packages is called rom.

+ The term RPM describes the package format itself, and is also used as shorthand for
packages—for example, "obtain the RPM for the COBOL compiler.”

RPM packages are shipped in files suffixed . rpm; your distribution media (for Red Hat,
Caldera, and so on) is full of . rpm files, and installing one is a simple matter of running
(as root):

bash$ rpm -i <rpmfile>

You might occasionally need to build an RPM from a source RPM
(<something> . src . rpm)—for example, if an available RPM is not compatible with your
installed version of the C library. On Red Hat systems, performing the following step

bash$ rpm —rebuild <rpm source file>

builds a binary (installable) RPM and places it in the /usr/src/redhat/RPMS
hierarchy. From there, it is installed with the -1 option, as shown previously. For other
distributions, see the rom documentation for details on building from source.

Other rom options allow package query, update, and uninstallation. For developers, there
are options to support package creation and management. An extensive man page (use

~174 -

the command man rpm) documents rpm's options and capabilities.

The rom tool is command-line oriented, but a GUI interface called xrpm is available from
many repositories.

dpkg

The Debian packager (dpkg) is the package manager used on Debian systems; files
suffixed . deb are dpkg packages. It also offers a menu-driven interface, dselect.

Because RPM is the more popular package format, rom can be used on Debian systems.
However, Debian recommends instead the use of a tool called alien—a package
converter available from Debian and elsewhere—to convert . rpm packages to . deb.

Other Package Management Technologies

Other technologies for general-purpose package management are in use or in
development: GNU Stow, CMU Depot, Bell Labs NSBD. However, you are not likely to
run into these technologies without taking some trouble to look for them.

Beyond general-purpose package management, individual products may have their own
package management technologies: Perl is an example. These technologies do not
interfere with the general-purpose package management, and in fact Perl and other such
products are available in standard package management formats.

Non-Package Software Distributions

Not all software products are distributed in package form. Many are distributed in tarfiles
or zipfiles, sometimes in source form, and require you to do some work to install them.
Examples include the Blackdown Java port for Linux and standard Java extensions
published by Sun. (For products under active development, RPMs are sometimes
available but are not always current.)

The following sections discuss some formats you are likely to encounter.

Compressed Tarball Binary Distribution

These are archives in the hierarchical UNIX tar format, compressed with gzip or bzip2
(see the section "Compressing and Archiving: tar, gzip, bzip2, zip, unzip " in Chapter 9,
"Setting Up a Linux Development Environment"). Typical file suffixes are .tar.gz,
.tgz, .tar.bz2,and tar.z. Itis a common, but not universal, practice that the
contents of the archive are stored with relative filenames under a subdirectory whose
name echoes the archive name. For example, an archive called foo-1.2.tar.gz
contains all of its contents in a subdirectory called foo-1.2.

To install a compressed tarball, choose an installation location, use cd to move to that
directory, and unpack the archive. For example:

bash$ mkdir -p /usr/local/foo
bash$ cd /usr/local/foo
bash$ gzip -d <~/foo-1.2.tar.gz | tar xvf -

a bunch of output shows product unpacking into the foo-1.2
subdirectory ...

For archives packed in .bz2 format, simply use bzip2 instead of gzip as shown in the
preceding example.

-175 -

Archives packed in the old UNIX . z compression format (some of Sun's distributions use
it) can be unpacked with gzip as shown in the preceding example.

The Blackdown Linux distribution is among the many products shipped as compressed
tarballs, with more recent Blackdown releases using the .bz2 compression format
exclusively.

Compressed Tarball Source Distribution

This is a common format for products distributed in source form. The tarball includes full
sources plus enough intelligence (ideally) to build the product on Linux or any other UNIX
environment. The four steps to installing the products are as follows:

1. Unpack it somewhere.

Wherever you unpack is a temporary location for purposes of building—it's not your
final installation directory. Example:

bash$ mkdir -p /tmp/foo
bash$ cd /tmp/foo
bash$ gzip -d <~/foo-1.2.src.tar.gz | tar xvf -

2. Configure it.

There should be a README file somewhere with instructions on building. Most
projects use the GNU autoconf technology, which automatically configures for correct
building on Linux and many other operating systems. For such projects, configuring
the product usually looks like this:

bash$./configure
<... a lot of output ...>

A list of configuration options, including how to specify installation directories, is
available by asking for help:

bash$./configure -help
3. Build it.
After configuration, building the project is usually done with a single make command:

bash$ make
<... a lot of output ...>

4. |Install it.
The README or INSTALL file has instructions, which for many projects consists of
bash$ make install

The product will be installed in some predefined directories (determined by whomever
made the distribution). You can usually override the destination directories with options
specified during the . /configure step (shown previously).

This method of software distribution is widely used. The downside is that there is no

-176 -

package management. Some distributions include a "make uninstall" capability to
support removal, but this sort of distribution is susceptible to many of the problems solved
by package management: inability to cleanly upgrade or uninstall, possibility of stepping
on other software, difficulty of assembling a consistent set of components that
interoperate properly. (Don't panic! Problems are rare, but you need to be aware of the
possibility.)

Zip Binary and Source Distributions

The other widely used format for software distribution is zipfiles, although this is more
generally true in the Microsoft Windows world than in UNIX/Linux. The procedures
described earlier for compressed tarballs apply just as well to zipfiles; the difference is in
the use of the unzip utility instead of tar, gzip, and bzip2.

Unpacking zipfiles is easy:
bash$ unzip -v foo-1.2.zip
Beyond that, instructions are identical to those for tarballs (given previously).

Sun distributes many of its standard Java extensions (see Chapter 4, "Additional Sun Java
Class Library Specs") in zipfile format.

Linux Software Repositories

There is no central global source for Linux software, but there are several large
repositories that serve as software depots and as mirrors for product distribution sites.
The following sections discuss two to get you started.

Sunsite

The Sunsite repository at the University of North Carolina
(http://sunsite.unc.edu/pub)is a major distribution site for GNU projects, other
open-source projects, Linux technology, and Linux distributions.

Red Hat users can find distributions, official RPMs, and contributed RPMs under
http://sunsite.unc.edu/pub/linux/distributions/redhat/. Similar
resources are available for other distributions.

Rpmfind

The rpmfind site, http://rpmfind.net/linux/RPM/, is a huge catalog of available
RPM packages. Not all the packages are stored at rpmfind—much of the information here
is pointers to other download sites—but it is a reliable way to find almost any RPM package
published anywhere.

Summary

This chapter has surveyed the common methods and formats with which software is
distributed for Linux. In understanding how to use software published in these formats, you
can install and use any of the thousands of tools and products available for Linux.

Part lll: Setting Up for Java Development and
Deployment on Linux

-177 -

Chapter List

Chapter Setting Up a Linux Development Environment
9:

Chapter Java Components for Linux
10:

Chapter Choosing an Environment: 1.1 or 1.2?
11:

Chapter Software Licensing
12:

Part Overview

Linux excels as a development environment, in the tradition of the UNIX systems on
which it is based. This part of the book examines the pieces you need to support
development on Linux: the compilers, utilities, and methods you need to do the work.

We also examine the deployment question—how to select a deployment environment for
your Java applications—and take a look at the open source world in which many of the
development tools were themselves developed.

Chapter 9: Setting Up a Linux Development
Environment

Overview

The UNIX/Linux platform has from its inception been a rich environment for software
development. This chapter looks at some of the basic Linux tools you need (or might
want) to support your own development efforts. As in earlier chapters, this chapter
includes some Red Hat-centric advice on where to find these tools.

All these tools (except for the simple GUI-based text editors) are extensively
documented. Depending on your needs and your learning curve, the following
documentation tools are at your disposal:

* Online manual pages (commonly called man pages) are published and installed for
most tools on a Linux system. You can use the Linux man command to view the pages
on a terminal. For example

bash$ man gcc
displays the documentation for the GNU C compiler.

» The help systems that come with the K Desktop Environment and Gnome
Enlightenment show you relevant documentation.

+ Many fine books have been published on these tools and are as close as your nearest
technical bookstore.

In the final section of this chapter, we set up a small Java project to demonstrate the use of
these tools.

-178 -

Command Shell
You are running a command shell—an interactive command interpreter—as soon as you

log in or run a terminal emulator on the desktop. The most popular Linux shell is bash,
but you have several choices. Here is a brief survey of the options.

bash

GNU bash is the Bourne Again Shell, based on the Bourne shell long used under UNIX.
If you have Linux, you have bash; it is installed as a core component with all
distributions.

bash Command-Line Editing

bash gives you command-line editing—the ability to reuse and edit previous commands.
Its behavior is, by default, modeled after the emacs text editor. Editing can be as
simple as using the arrow, Backspace, Insert, and Delete keys. Or you can use the
emacs control- and metacharacter commands to move through the command stack and
perform more advanced editing. See the bash man page for more detail:

bash$ man bash

If you prefer editing modeled after the popular AT&T vi editor, you can turn it on with a
set command:

bash$ set -o vi

You can make vi-style editing the default behavior by adding the set -o vi command
to the ~/ .bashrc file. With vi-style editing, you use the Esc key to switch modes and
vi's various single-letter commands to edit commands and navigate the command stack.

bash Configuration Files

Two configuration files are important to configuring and customizing bash behavior
(UNIX/Linux shells interpret the ~ character as designating your home directory):

* ~/.bashrc is run by the shell whenever you start up a new instance of bash. It is
typically used to set modes and macros.

* ~/.bash profile is run by the shell whenever a login shell is started. If that file is
absent, ~/ .profile is used instead. Entries in this file are typically used to configure
your environment and set environment variables.

bash Environment Variables

Environment variables are set in bash with an = assignment, with no spaces before or
after the operator:

bash$ FOO=bar

Environment variables must be exported to be visible to processes launched by the shell:

bash$ export FOO

These two steps can be combined:

-179 -

bash$ export FOO=bar

Many examples in this book assume you are using bash, and we will commonly use this
one-line assign/export command to illustrate the use of an environment variable.

Finally, a temporary environment variable can be specified for the duration of a single
command, by combining the assignment and the command invocation on the same line:

bash$ FOO=bar /usr/local/bin/foobar

This style of assignment is occasionally used in the book to illustrate the use of an
environment variable.

tcsh

tcsh is modeled after the UNIX C Shell, an interactive shell that uses commands and
behaviors modeled after the C programming language. If you prefer to use this shell,
install tcsh on your system (it is available as an RPM on Red Hat distributions) and use
the chsh command to change your login shell:

bash$ chsh -s /bin/tcsh
password: <type your password here>

Two configuration files are important to configuring and customizing tcsh behavior:

* ~/.tcshrcis run by the shell whenever you start up a new instance of tcsh. If that
file is absent, ~/ . cshrc is invoked instead.

* ~/.login is run by the shell whenever a login shell is started.
Other Shells

Other shells, available for Linux but less popular, include

* ash—A simple Bourne-like shell

* ksh—A public-domain version of the Korn (Bourne-like) shell

Text Editor

You'll need a text editor, of course. You can choose from the traditional powerhouse
editors, vi or emacs, or some simpler GUI and non-GUI editors.

Whichever editor you choose, it's a good idea to set an EDITOR environment variable so
that other programs can know what your favorite editor is. If you use a Bourne-type shell,
add

export EDITOR=<your favorite editor name>

to your ~/.bash profile file. If you use a C-shell, add

setenv EDITOR <your favorite editor name>

- 180 -

toyour ~/.login file.

vi—Visual Editor

The vi editor is a longtime UNIX staple whose lineage dates back to AT&T's stewardship
of UNIX. It's a powerful, full-featured, page-oriented editor widely used in the UNIX world.
The most popular version for Linux is vim, a highly enhanced vi available from virtually all
Linux distributions. On the Red Hat 6.0 distribution, installing the RPMs for vim-common

and vim-enhanced will give you vim.

vim normally runs in a terminal window; you can use the graphical version, gvim, to run
it in its own GUI window. On Red Hat, this requires loading the additional RPM for vim-
X11.

An interesting enhanced vim capability is syntax coloring to aid in editing Java and other
languages. It's best used with the GUI version, gvim, and is enabled by typing

:syntax on

while in the editor, or adding the command syntax on to the .exzrc file in your home
directory.

emacs

The emacs editor, one of the first GNU project publications, is one of the most popular
and powerful page-oriented editors in the UNIX world. It is sufficiently different from the
other major editor, v1i, that it's difficult to be conversant in both at the same time. UNIX
users tend to be strong partisans of either vi or emacs, but not both.

For historical reasons, emacs comes in two major flavors: GNU Emacs and XEmacs,
which branched several years ago from common source. There are numerous
differences, in features and philosophy, between the two—most notably that XEmacs is
better integrated with the X Window System. But both have similar capabilities, and
choosing one over the other is largely a matter of personal taste.

GNU Emacs is available from all Linux distributions, and from the GNU project
(http://www.gnu.org). Under Red Hat 6.0, installing the RPMs for emacs and
emacs-X11 will give you GNU Emacs.

XEmacs is also widely available. Although not as frequently included in core Linux
distributions as GNU Emacs, it can easily be found in source, binary, and RPM forms at
all major Linux software repositories.

The true power of emacs, beyond editing text, is its configurability. It includes a built-in
interpreter for the LISP programming language, which has been used to customize
emacs into a stunning variety of useful configurations. Among the many customization
packages available for emacs are a mail reader, an outline editor, and an automated
psychotherapist. In Chapter 44, "The Emacs JDE," we will examine a complete Java
integrated development environment (including syntax coloring) built from emacs.

Often imitated but never duplicated, emacs has inspired some smaller, simpler clones.
Editors such as joe and jed, available with many Linux distributions, provide some
emacs-like functionality in smaller packages.

kedit

- 181 -

kedit isEnvironment a simple GUI-based editor, shipped with the K Desktop and
available through a button on the main panel (see Figure 9.1).

&

Figure 9.1: KDE button to launch a simple GUI-based text editor.

The capabilities are simple and intuitive. This is certainly not a powerful programmer's
editor, and not a good long-term choice for a developer, but it's an easy way to start
editing text for UNIX/Linux newcomers. A screen shot is shown in Figure 9.2.

| Ele Edt Opfons Help
|0 FE mms S 7

Public clasm Hallokorid
[
palslin stabio woid maintBringll aegel

mamtemcut println{ Fello worlde |
i
i

[ME [Line: 5 Col 22

Figure 9.2: The kedit editor, bundled with KDE.

gEdit

The Gnome/Enlightenment desktop includes its own text editor, gEdit. It can be
launched from the application menus on the root window (see Figure 9.3).

Gnome Apps ® Applicobons WlgEdd . |
Crinar Frograms ®| Gareas .

Aestar Erigiarena it

Figure 9.3: Launching gEdit from the Gnome/Enlightenment root window.

Like kedit (discussed earlier), gEdit presents a simple, intuitive editor for text-editing
(see Figure 9.4). Also like kedit, gkEdit is a good starter editor but not a good long-term
choice for developers.

- 182 -

Fim Eol Puiging Seliigs Wiadoss Hslp

O wo G ¥ W@ @ ||

Mz Opan Sawe Cla Prist O Ceopy Fasia Fisd Eat
| HellaWord java iz clams FelloSarld
—i
public atatic waid meiniStoingl] e

1
Symtam.out.printini “Hella world® |

Figure 9.4: The gEdit editor, bundled with Gnome/Enlightenment.

Build Management Tool: make

make, another longtime standard UNIX tool, is used to maintain programs under
development by keeping object files current with source files. GNU Make, the standard
make in the Linux world, is available from all Linux distributions. On Red Hat distributions,
load the RPM for make.

Version Management Tool: cvs

cvs, the Concurrent Versions System, is a revision control system—an invaluable tool for
tracking and maintaining source code. In a nutshell, cvs maintains a repository that
keeps copies of all versions of your source files.

A cvs Local Repository
A local cvs repository serves two important functions in a development project:

» Acts as a central code store, where a developer (or collaborating developers) can
keep master copies of the source, including experimental branches that can later be
merged into the main source trunk. cvs includes facilities to allow several developers
to work on the same code without stepping on each other's toes.

» Acts as an archive, allowing you to recover all past versions of source. The revisions
are stored in a compact form, keeping the repository from exploding in size.

A sample project (see "Creating a Sample Project” later in the chapter) illustrates basic
repository setup and use.

cvs Remote Repository Servers

cvs supports client/server architectures, with the repository living on a server and clients
able to interact (check out, check in, manage, and so on) remotely. Several of the open
source projects discussed in later chapters use such repositories, through which they
allow read-only access to the larger community.

If you need to check out source from a remote cvs repository, the steps are as follows:

1. Obtain the repository name (CvVSROOT), module name(s), and password for the
project.

- 183 -

2. Log in to the remote repository:

bash$ cvs -d '<repository name>' login
CVS password: <password>

3. Check out the source, using compression to improve network throughput:

bash$ cvs -z3 -d '<repository name>' co <module name (s)>
<...output describing checkout activities...>

After the checked-out tree has been created, you no longer need the -d option: The
name of the repository is stored within the tree and automatically used for future cvs
activity.

Obtaining cvs

cvs, and the underlying rcs (Revision Control System) tool it depends on, are available
on most Linux distributions and from free software repositories such as
http://www.sunsite.edu. On Red Hat releases, install the RPMs for cvs and rcs.

cvs is a command-line utility, and our later examples will use the command-line interface.
A GUI-based front-end is available, called tkCvs, from
http://www.cyclic.com/tkcvs/.

Compression and Archiving: tar, gzip, bzip2, zip, unzip

Four compression and archiving utilities are heavily used in the Linux and Java
development worlds. As mentioned in the discussion on adding Linux software (see
Chapter 8, "Installing Additional Linux Software"), all these tools may be necessary for
obtaining and installing components you need for development work.

Tape ARchiver: tar

The tar utility creates archives in a standard format, commonly used for distribution of
software packages. Virtually all Linux distributions install GNU tar as part of system
setup.

Compressor: gzip

gzip is a data compressor based on the Lempel-Ziv compression algorithm. It is the
most commonly used compression format for distribution of UNIX- and Linux-related
software. Most Linux distributions install gz ip during system setup.

In addition to its role in software distribution, gzip is typically used to compress the Linux
kernel image used at Linux boot time.

Compressor: bzip2

bzip2 is a newer compressor than gzip, using a different compression algorithm and
often achieving significantly better compression than gzip. Many of the new distributions
of Java for Linux are only available in bzip2 format.

Most Linux distributions do not install bz ip2 by default, but it is usually available as part

184 -

of the distribution. On Red Hat systems, install the RPM for bzip2.

Archiver/Compressor: zip and unzip

zip is a compressed archive format that has been in use since the MS-DOS days. It
serves two important roles in Java development:

» lItis a standard Java archive format; Java can run classes directly out of a ZIP format.
The Java ARchive (JAR) format is closely related to ZIP.

* ZIP is a common software distribution format, and you may need the z1ip utility to
unpack software.

zip and unzip are available with virtually all Linux distributions. On Red Hat systems,
install the RPMs for zip and unzip.

The GNU C Compiler: gcc

The GNU C compiler is the standard compiler in the open source world. Beyond its
crucial role in free systems such as Linux, FreeBSD, and the GNU Hurd, this compiler
enjoys considerable use on commercial operating systems such as HP-UX, Solaris, AlX,
NT, and others.

Older versions of this compiler were packaged as gcc (GNU C Compiler), later releases
came from the egcs (Experimental GNU Compiler Suite) branch project, and a
reunification in spring of 1999 brought the two projects back together as gcc (how
meaning GNU Compiler Collection). The maintainer of gcc for the open source
community is Cygnus Solutions (http://egcs.cygnus.com).

The compiler consists of core technology for code generation and optimization, some
related support libraries, and a number of front ends for different languages, including C,
C++, and, most recently, Java (see Chapter 31, "gc: A Compiled Java Solution").

gcc is available with all Linux distributions. On Red Hat 6.0 systems, install the RPMs for
egcs and egcs—-c++. You will also need the RPM for binutils, which supplies the GNU
linker and other utilities to support development. (The compiler package name will
undoubtedly change as the reunified gcc compiler is adopted.)

Creating a Sample Project

We'll build a simple project, assuming use of the standard Java Software Development
Kit components from the Blackdown Java SDK (see Chapter 11, "Choosing an
Environment: 1.1 or 1.2?").

Creating the Project

We begin by creating a new directory, immediately below our home directory, for our
HelloWorld project:

bash$ mkdir ~/helloworld
bash$ ed ~/helloworld

Using your favorite editor, create a HelloWorld.java, as shown in Listing 9.1
(as always, the line numbers are for illustration; not part of the source).

Listing 9.1 HelloWorld.java

- 185 -

public class HelloWorld
{

public static void main (String[] argwv)

{
System.out.println ("Hello world");

~ o O W N

And create a Makefile (Listing 9.2) that knows how to build our project.

Listing 9.2 Makefile

.PHONY: all clean
all: HelloWorld.class
HelloWorld.class: HelloWorld. java

javac HelloWorld.java

clean:

O 0 J o U b W N -

rm -f *.class

The most important part of the Makefile is lines 5-6. Line 5 describes the target file we
are building (HelloWorld.class), and the sources it depends on
(Helloworld.java); line 6 gives the command to build the target from the source by
running the Java compiler, javac.

There are two other rules in the Makefile:

* Line 3 describes a target called a11, which is our shorthand for "the entire project.”
The entire project has dependencies, at the moment, on one class file,
HelloWorld.class.

* Lines 8-9 describe a target called clean, which is our shorthand for "clean up the
directory.”" The clean target has no dependencies (nothing after the ":"), and
executes one command, shown on line 9.

The one other entry in the Makefile, line 1, informs make that two of the targets are
"phony" targets. We will never build a file called "all" or a file called "clean": these are just
rules we need to use in the course of development.

We're ready to build the project. We tell make to build the entire project:

bash$ make all
javac HelloWorld.java
bash$

The make process echoes its actions (javac HelloWorld.java)and completes. We
run the program:

bash$ java HelloWorld
Hello world
bash$

- 186 -

Finally, we clean up the directory, removing everything that isn't source:

bash$ make clean
rm -f *.class
bash$

Creating the cvs Repository

Now that we have a project, we create a cvs source repository. First, create a new
directory somewhere to hold the repository:

bash$ mkdir ~/helloworld.cvsroot
bash$

And initialize the repository from within our project directory:

bash$ cvs -d ~/helloworld.cvsroot init
bash$ cvs -d ~/helloworld.cvsroot co
cvs checkout: Updating

? HelloWorld.java

? Makefile

cvs checkout: Updating CVSROOT

U CVSROOT/checkoutlist
U CVSROOT/commitinfo

U CVSROOT/cvswrappers
U CVSROOT/editinfo

U CVSROOT/loginfo

U CVSROOT/modules

U CVSROOT/notify

U CVSROOT/rcsinfo

U CVSROOT/taginfo
bash$

To update our current project from the repository:

bash$ cvs update

cvs update: Updating

? HelloWorld.java

? Makefile

cvs update: Updating CVSROOT
bash$

The lines with the "?" tell us that there are two files the repository doesn't know about: our
two source files, which have not yet been checked in. We check them in— a two-step
process of adding them and then committing the changes:

bash$ cvs add HelloWorld.java Makefile

cvs add: scheduling file "HelloWorld.java' for addition
cvs add: scheduling file "Makefile' for addition

cvs add: use 'cvs commit' to add these files permanently
bash$ cvs commit -m'First checkin'

cvs commit: Examining

- 187 -

cvs commit: Examining CVSROOT

cvs commit: Committing

RCS file: /home/nathanm/helloworld.cvsroot/./HelloWorld.java,v
done

Checking in HelloWorld.java;
/home/nathanm/helloworld.cvsroot/./HelloWorld.java,v <—
HelloWorld. java

initial revision: 1.1

done

RCS file: /home/nathanm/helloworld.cvsroot/./Makefile,v
done

Checking in Makefile;
/home/nathanm/helloworld.cvsroot/./Makefile,v <— Makefile
initial revision: 1.1

done

bash$

(We specified a message, First Checkin inthe cvs commit command. Had we not
done this, cvs would have started up a text editor and solicited a message.)

Growing the Project

We now have a working project. Let's grow the project by creating a new class (Listing
9.3) responsible for the "Hello World" message.

Listing 9.3 WorldMessage.java

1 import java.io.*;

2

3 public class WorldMessage

4 {

5 PrintWriter pw;

6 WorldMessage (PrintWriter writer)
7 {

8 pw = writer;

9 }
10 public void print ()
11 {
12 pw.println("Hello world");
13 }
14 }

and modifying our main class (Listing 9.4) to use the new class.

Listing 9.4 HelloWorld.java, Modified to Use the New WorldMessage Class
import java.io.*;

public class HelloWorld

{

public static void main (String[] argwv)

{

~N o O W N

PrintWriter pw = new PrintWriter (System.out);

- 188 -

8 WorldMessage msg = new WorldMessage (pw) ;

9 msg.print () ;
10 pw.close();
11 }

12 }

Finally, we update the Makefile (Listing 9.5) to reflect our new classes and dependencies.

Listing 9.5 Makefile, Updated with the New Class

1 .PHONY: all clean

2

3 all: HelloWorld.class WorldMessage.class
4

5 HelloWorld.class: HelloWorld.java

WorldMessage.class

6 javac HelloWorld.java

5

8 WorldMessage.class: WorldMessage.java
9 javac WorldMessage.java

10

11 clean:

12 rm -f *.class

Notice that HelloWorld.class has gained a new dependency: the
WorldMessage.class from which it gets an important class definition. Because of this
dependency, make will automatically determine that it needs to build
WorldMessage.class before it builds HelloWorld.class (make uses a file's last
modification time to ascertain when a target must be rebuilt because it is older than its
dependency):

bash$ make

javac WorldMessage.java
javac HelloWorld.java
bash$

Why didn't we say make all? Because all is the first rule, thus the default rule, in the
Makefile.

We're ready to run:

bash$ java HelloWorld
Hello world
bash$

Updating the cvs Repository
First we clean up our nonsource files:
bash$ make clean

rm -f *.class
bashs$

- 189 -

Then update our project from the repository:

bash$ cvs update

cvs update: Updating

M HelloWorld.java

M Makefile

? WorldMessage.java

cvs update: Updating CVSROOT
bash$

The cvs messages tell us that two of our files have been modified, and that
WorldMessage.java is unknown. We add it to the repository and commit the changes:

bash$ cvs add WorldMessage.java

cvs add: scheduling file "WorldMessage.java' for addition
bash$ cvs commit -m'Split out the printing functionality'
cvs commit: Examining

cvs commit: Examining CVSROOT

cvs commit: Committing

Checking in HelloWorld.java;

/home/nathanm/helloworld.cvsroot/./HelloWorld.java,v <—
HelloWorld. java
new revision: 1.2; previous revision: 1.1

done

Checking in Makefile;
/home/nathanm/helloworld.cvsroot/./Makefile,v <— Makefile

new revision: 1.2; previous revision: 1.1

done

RCS file: /home/nathanm/helloworld.cvsroot/./WorldMessage.java,v
done

Checking in WorldMessage.Jjava;

/home/nathanm/helloworld.cvsroot/./WorldMessage.java,v <—
WorldMessage.java

initial revision: 1.1

done

bash$

We see from the messages that cvs is committing the latest modifications to the
repository and adding the new WorldMessage.java source.

cvs supports projects that span directory hierarchies; we can easily add and manage
subdirectories as needed to grow the project.

Subtleties

We've glossed over some important details, which will get more attention later:

» The structure of the directories becomes a bit more complex when your class files
are placed in packages, as they should be for real projects. This is discussed in
Chapter 14, "Configuring the Linux JSDK/JRE Environment," in the section
"Classes Loaded from File Systems."

* Our use of make in these examples is naive: dependency among application

- 190 -

modules is a tricky issue in Java. Unlike C++ and many other languages, the
correspondence between source files and class files is not simple (particularly
when nested and anonymous classes are used), and it is possible and
reasonable to have circular dependencies among class files. These are difficult
problems for make to handle.

Java compilers are beginning to address this problem (see the ~depend option for the
Sun and Jikes compilers in Chapters 19, "The Java Compiler: javac," and 36, "The
Jikes Compiler"). There are also make-compatible, compiler-independent ad hoc
solutions to the problem: I'll share my own in Chapter 48, "JMakeDepend: A Project
Build Management Utility."

To GUI or Not to GUI?

We have concentrated on command-line utilities in this chapter—a common practice in
the UNIX world. There are, in fact, many fine GUIs available to help with most aspects of
the development process. Later in the book (see Part IX, "IDEs, GUI Builders, and RAD
Tools"), we will explore some integrated development environments (IDEs) that combine
many of the build steps—editing, compiling, running—into a single GUI.

One pleasantly surprising aspect of UNIX development is the number of good GUI tools
that have been built by gluing together traditional components (perhaps we should call
them GLUIs) with powerful scripting languages such as Perl and Tcl/Tk/Wish. The tkCvs
tool mentioned earlier in the chapter, for example, uses a handful of Wish (Windowing
SHell) scripts to build a capable GUI around cvs's cryptic commands. Figure 9.5 is a
screen dump of the tkCvVs interface as it appeared for our sample project, before we
added the last set of changes to the repository. It uses a familiar file browser paradigm
while providing a reasonable set of buttons (with pop-up tooltips) and menus to access
cvs's full capabilities.

[in Heports Search Oplies eer Defined Gs |_up|

Current Direcbary [Tan enaianc e isensd
Madule Locstion homamathanshoeloreoid.cvsroedl.

« ilir » |
- « il »
CVERDOT = ilif =
Hedle'Wiorid_asa jLocally kMedified)
el ke {Locally Madified]
“Worid Message s Y
Workagace Fiter: [*

28| X|] w| 7| | D B Al & &) h] 6] o

Figure 9.5: The tkcvs GUI.

Summary

This chapter has presented an overview of the tools and techniques for setting up a
development environment on Linux. The tools discussed here will put you in the native
language development business and start you down the road toward Java development. In
Chapter 10, "Java Components for Linux," we examine the parts and pieces you need to
add Java language support to your system.

Chapter 10: Java Components for Linux

Overview

- 191 -

Java development and deployment involves several components that, if you're coming
from a non-Java background, may seem strange and unfamiliar. The terrain is very much
in evolution: Java applications can be built in many different ways, and runtime
environments can be purchased whole or assembled from spare parts.

This chapter summarizes the types of tools used with Java on Linux and surveys the spare
parts. This will serve as background for the next several parts of the book, in which we
discuss where to find these tools and how to use them.

A Glossary of Sun Java Terminology

When Java tools and environments are described, they invariably use the terminology
that Sun associates with its releases. This is a sufficiently confusing area for which we
will provide not one, but two glossaries. Keep in mind that Java has been released in
three versions: 1.0, 1.1, and 1.2.

First, the glossary of traditional Java terminology:

100% Pure Java—A trademarked term indicating that an API is implemented entirely
in Java and has been certified to have no platform-specific dependencies. Although it
is impossible to guarantee absolute portability across Java platforms, this certification
(provided as a fee-based service by Sun for vendor products) increases confidence in
a Java-based product's portability. Among Sun's own Standard Extensions, many of
them are implemented entirely in Java, but only some carry this certification.

» Class path—This describes where Java's built-in class loader looks for classes and
can include class files and archives located on local media and on the Web. We
discuss how Java finds classes in more detail in Chapter 14, "Configuring the Linux
SDK/JRE Environment," in the section "How Java Finds Classes."

» Core class libraries—These are the required class libraries specified for a particular
release of Java; if you don't have all of these libraries, you don't have a full runtime
environment. Class libraries are occasionally developed externally to the core and
later added—JFC Swing was developed and distributed as an extension for JDK1.1
and included in the core for JDK1.2.

+ Many of the core class libraries include platform-native code, which is shipped in
native shared libraries as part of the runtime environment. Platform-native code is
used to implement such platform-specific features as graphical rendering (for the
java.awt package) and native file I/O (for the java. io package).

+ JDK—The Java Development Kit is Sun's reference software development kit. The
same term is also commonly used as a synonym for a Java platform release—for
example, by browsers and apps claiming to be "JDK1.1-compliant." (This confusing
use is now standard practice, so we will follow it and instead use the term SDK to
denote the software development kit. With the release of the Java 2 Platform, Sun is
encouraging the use of a new term, J2SDK, for the software development kit.)

+ The SDK includes the JRE (discussed next) and development tools: compiler,
debugger, documentation generator, and so on. Beginning in Chapter 17, "The Java
Application Launchers: java, jre, and oldjava," we will examine the components that
make up the SDK for Linux.

+ JRE—The Java Runtime Environment is the JVM (discussed next) and the core class
libraries that define a complete environment in which Java applications run. JREs are
available as standalone application environments (which you get from the Blackdown
Linux port of the Sun code), and are also bundled with Web browsers. For the new
version of this term, see J2RE in the next glossary.

-192 -

+ JVM—The Java Virtual Machine is the core of a runtime environment—a program that
knows how to interpret Java classes.

+ Standard extension—A standard extension is a Java enhancement specified by Sun—
not as part of the core functionality but as functionality considered useful and
desirable. An example is the Java3D specification for 3D graphical rendering. All
standard extensions have, by definition, a full API specification, a reference
implementation, and a test suite.

Figure 10.1 shows a schematic of the pieces.

Dheasabopsa's Plaitharm

Diérsiai sl
Tex:la

Figure 10.1: The Java Software Development Kit, used by developers, and the
Java Runtime Environment, used in deployment environments.

And now the glossary of new terms:

+ Java 2 Platform— A Java platform is an abstraction: a specification of an environment
in which Java applications and applets run. When Sun introduced version 1.2 of Java,
it chose (for marketing purposes) to relaunch it as the Java 2 Platform (there was no
prior Java 1 platform).

» This designation is not to be confused, although it often is, with the versioning scheme
used to identify releases: 1.0, 1.1, and 1.2 (to date). The current release of Java is
officially called The Java 2 Platform Version 1.2, and the next version will be The Java
2 Platform Version 1.3.

» Java Foundation Classes—A marketing term describing a subset of the core class
libraries—AWT, Swing, pluggable look and feel, accessibility, Java2D, and drag-and-
drop.

+ J2RE—The Java 2 Runtime Environment, Standard Edition. This is the new name for

the JRE associated with the Java 2 Platform. The latest release is officially called the
Java 2 Runtime Environment Version 1.2.

* J2SDK—The Java 2 Software Development Kit, Standard Edition. This is the new
name for the SDK associated with the Java 2 Platform. The latest release is officially
called the Java 2 Software Development Kit Version 1.2.

» J2SE—The Java 2 Platform Standard Edition. This is the official name of the Java 2
Platform for client platforms such as browsers and desktop machines.

Why Standard Edition? Because there are two other editions:

» The Java 2 Enterprise Edition (J2EE) is slated for release in late 1999. J2EE consists
of the J2SE plus a number of server-oriented standard extensions (Enterprise Java
Beans, Servlets, Java Server Pages, and more).

» The Java 2 Micro Edition, announced in mid-1999, is targeted at constrained

-193 -

environments such as personal and embedded applications.

Undoubtedly, more acronyms are in the works.

Java Development and Runtime Components

As you shop for Java components, you'll find the items detailed in the following sections.

Java Compilers

Java compilers generate Java class files (suffixed . class) from Java source files
(suffixed . java). The Sun SDK includes a Java compiler, javac, which is itself a Java
application.

Because the class file and language specifications are public and easily available,
anyone can write a compiler. Some worthwhile variants that have appeared are as
follows:

» Java compilers implemented as native applications, of which the best example is Jikes
(see Chapter 36, "The Jikes Compiler").

» Java compilers that implement a superset of the Java language, such as the Generic
Java Compiler (see Chapter 38, "Generic Java Compilers").

» Compilers that compile from other high-level languages into Java bytecodes. This is
not a wildly popular activity—the Java instruction set is not particularly well suited to
other languages—but is home to some worthwhile academic and commercial efforts.
Such compilers exist for Scheme, Eiffel, SmallTalk, C++, Cobol, and numerous other
languages.

Java Native Compilers

These are compilers that get you from Java (. java and/or . class files) into native code
for your Linux (or some other) environment. The obvious reason is speed, and the
obvious trade-off is portability. Sun does not supply any such compilers, but we will
explore one in Chapter 31, "gcj: A Compiled Java Solution."

Core Class Libraries

Sun supplies a complete set of core class libraries in its reference implementation, so any
Sun-licensed port will include them. But the specs are public, and anyone who doesn't
like Sun's implementation or its licensing terms is free to write his own. This is how Java
ends up running on such small-market platforms such as the Amiga and Next.

Variants you will find are as follows:

» Cleanroom implementations (without any licensed code from Sun) of core class
libraries bundled with a cleanroom JVM (see Chapter 26, "Kaffe: A Cleanroom Java
Environment").

» Cleanroom implementations of core class libraries independent of a JVM (see Chapter
28, "GNU Classpath: Cleanroom Core Class Libraries").

These alternative implementations offer you the opportunity to mix-and-match
components in a Java development or runtime environment.

JVM
-194 -

Like the core class libraries (discussed previously), the JVM is supplied by Sun but can
also be created from specifications. Variants you will find are as follows:

» Cleanroom implementations of JVMs bundled with class libraries (see Chapter 26,
Kaffe: A Cleanroom Java Environment).

» Cleanroom implementations of JVMs without any class libraries (Japhar, Chapter 27,
"Japhar: A Cleanroom JVM").

JIT Compilers

Java is an interpreted language, which is bad news for performance. Just-in-time (JIT)
compilers add runtime optimization to Java by compiling pieces of the application into fast
native code as the app is running. This is a crucially important area, as Java seeks to
solve its well-known performance problems.

JITs are available from Sun (one is bundled with JDK1.2) and from outside developers
(see Chapter 33, "Just-In-Time Compilers"). There is extensive commercial JIT activity
for the Microsoft Windows platform, and Linux will undoubtedly receive more attention in
this area.

Much of the recent activity in this area has been focused on new JVM designs that
subsume the work of JITs (see Chapter 30, "Sun HotSpot Performance Engine" and
Chapter 29, "Mozilla ElectricalFire: A New JVM").

The major downside to JITs and similar technologies is that they show more value on
long-lived server applications than in client applications and applets.

Debuggers

Sun ships a basic, non-GUI debugger with the SDK, and other choices are available (see
Chapter 39, "The Jikes Debugger"). JDK1.2 introduced a new debugging interface, which
is intended to improve the quantity and quality of available debuggers.

Profilers

Performance analysis tools have been a weak presence in the Java world, but the story
is improving. Sun introduced a new profiling interface in JDK1.2, and we will explore an
analysis application based on the interface in Chapter 60, "Perfanal: A Free Performance

Analysis Tool."

Applet Viewers

Applet viewers provide the functionality to test-drive applets outside Web browsers, which
is especially useful for developing applets relying on runtime environments that are not
yet supported in browsers. An applet viewer is bundled with Sun's SDK.

Documentation Generators

Java code is certainly not self-documenting, but Sun has defined a relatively low-pain
methodology for generating documentation by extracting class information and comments
from Java source files. One such tool, javadoc, is bundled with Sun's SDK, and
alternatives are available (see Chapter 38, "Generic Java Compilers," in the section
"PizzaDoc").

Decompilers

- 195 -

Java, as an interpreted language, is eminently decompilable and suitable for reverse
engineering. Although Sun does not provide any decompilers, the market is well served
by commercial and free products (see Chapter 46, "Jad: A Java Decompiler").

Obfuscators

For developers who do not want to have their code reverse-engineered, obfuscators are
the answer to decompilers. Free and commercial offerings are available. Obfuscators do
their job by scrambling class and member names before you ship a product and creating
scrambled code that works correctly but is difficult to decompile.

The battle between decompilers and obfuscators is an escalating arms race. The best

advice for developers who must protect their super-secret algorithms is to run the code
on a trusted server and not let it near any client machines. (This advice applies just as

readily to compiled code as to Java.)

Optimizers

Optimization can make Java code faster and smaller. Some optimization capability is
provided by compilers, but the best offerings today seem to be optimization post-
processors. Free and commercial products are available (see Chapter 53, "DashO:
Optimizing Applications for Delivery").

Optimizer and obfuscator capabilities are often shipped in the same product for
synergistic reasons. Optimized code is often more difficult to decompile, and a standard
obfuscation technique—replacing long descriptive variable names with short obscure
names—is also a useful size-reducing optimization.

Integrated Development Environment, GUI Builders, and RAD
Tools

Integrated Development Environments combine certain common development
activities—editing, compiling, running, debugging—into a single GUI application.

GUI builders are interactive GUI-based tools that allow you to lay out your desired GUI
and then automatically generate code to implement the GUI.

Rapid Application Development (RAD) tools combine the two, and more (although the
industry definition of RAD is a bit slippery and not universally agreed on). RAD tools
concentrate on shortening the time-consuming steps of development. That typically
means IDE, GUI-building, automatic code generation, and interpreters or incremental
compilers for test-driving small changes.

In later parts of the book, we will discuss these terms in more detail and examine some
tools that fall into these categories.

Summary

This chapter has provided an overview of the components that make up Java runtime and
development environments. While the choices available in the Java world can be
staggering, an understanding of the necessary components will help you collect the pieces
you need for your development and deployment needs.

Chapter 11: Choosing an Environment: 1.1 or
1.27

- 196 -

Overview

With the release of JDK1.2, Java became a much better place to create applications.
Over time, JDK1.2 will penetrate many operating systems and browsers and generally be
supported in the user community. But developers must face the inevitable question: In
which environment should today's applications be developed?

If you are developing for your own use, simply choose what works best for you. If
customers are involved—employers, contracting organizations, server administrators,
intranet or Internet surfers, PC or workstation users—you need to decide on a delivery
platform they can use. This chapter examines that issue.

Client, Server, or Other?

The first question to ask: For what environment are you developing Java applications?
Every application environment has a unique user community, version stream, and
requirements.

Client-Side Java

This chapter focuses on the question of client-side Java: deployment of applications to be
run, or applets to be browsed, on machines deployed on an intranet or the Internet. In
this market, you must consider the question of whether (and how) your consumers are
ready for JDK1.2.

Constrained Java Environments

If you are developing for one of the constrained Java environments—PersonalJava,
EmbeddedJava, JavaCard, JavaTV, or JavaPhone—then market acceptance and
penetration of JDK1.2 is not particularly relevant to you. These environments have their
own version streams, converging toward the Java 2 Platform Micro Edition announced by
Sun in mid-1999.

Server-Side Java

If you are developing for the server side, the choice of environment is probably relevant
to you. Some of JDK1.2's capabilities—graphics and GUI improvements—are of little or
no interest. But others, such as CORBA support and security enhancements, could be
critical to your enterprise applications.

Fortunately, servers tend to be a more controlled environment than clients: You can
specify a target Java environment in which your application is to be deployed—subiject, of
course, to availability and the willingness of server administrators to install and support
the environment.

JDK1.2 is available for Linux and other server platforms, and support should improve
steadily through 1999. As an example of its use, we will configure a JDK1.2-compliant Web
server with a servlet environment in Chapter 65, "Java on the Web: Java Servlets and

Apache JServ."

JDK1.1: Now Widely Supported

A cautionary tale: JDK1.1 was introduced to the world in 1996. It took Netscape more
than three years to achieve full compliance in its browser.

Clearly, the world cannot absorb Sun technology as quickly as Sun can push it out the
door, and it may not yet be time to bet your business on JDK1.2. The story for Java 1.1 is

-197 -

more encouraging, as the following sections explain.

Supported Applet Environments

Modern releases of the two major browsers, Netscape Navigator and Microsoft Internet
Explorer, support substantially all of Java 1.1, and it is becoming increasingly difficult to
write a 1.1 applet that will not run on current browsers. Many subtle details are behind
this generalization—areas of incomplete support, browser point releases, bugs, the
Microsoft/Sun legal imbroglio—but 1.1 browser support is, in general, excellent.

You should, of course, always test your 1.1 applets with the available browsers,
especially if you have dependencies that may cause trouble (JNI or RMI, for example).
Be aware that, if you deploy to Microsoft Windows environments, Netscape uses a built-
in JRE, whereas Microsoft Internet Explorer uses the JRE bundled with Windows—so
results can vary by browser.

If you do not want to rely on native Microsoft or Netscape Java capabilities, the Java
Plug-in technology from Sun, discussed in Chapter 50, "Deploying Applets with Java
Plug-in," provides an alternative way to guarantee a fully 1.1-conformant applet
environment on certain platforms. (A 1.2-version of the same technology is discussed
later in the chapter.)

Good information about browser Java support, and how to "sniff" browsers to ascertain
Java capabilities, can be found at developer sites for Netscape
(http://developer.netscape.com)and Microsoft
(http://msdn.microsoft.com).

Supported Application Environments

Support for standalone Java applications depends on the availability of a JRE for the
target platform. Again, the story here is good for Java 1.1. All major platforms have good
1.1 ports available: JREs for many UNIX and mainframe platforms are available from the
platform vendors. JREs for NT are available from Microsoft (1), Sun, and IBM. And, of
course, Linux JREs are available from the Blackdown organization and IBM (as we will
explore in detail in later chapters). In addition to JREs based on Sun sources, the free
JVM/library components discussed in Chapters 26 "Kaffe: A Cleanroom Java
Environment," 27 "Japhar: A Cleanroom JVM," and 28 "GNU Classpath: Cleanroom Core
Class Libraries," are or will be available for many major and minor computing platforms.

(1) Is the Microsoft JRE fully compliant with the Java spec? This issue is at the core of the
current Sun/Microsoft legal battles. Sun's complaints about Microsoft have centered on
two major concerns:

» The Microsoft JRE does not fully support the Sun spec.

» Microsoft's development tools create "Java" code dependent on features available
only on Microsoft platforms.

That said, this book will steer clear of the controversy and leave it to the courts. If you
are developing Java applications on Linux, the issue of Microsoft's development tools
obviously does not affect you. As far as deploying your Linux-developed applications
and applets for Windows environments, your main concerns are

» Does your JDK1.1 app work under the Microsoft JRE, with adequate performance
and reliability?

* Will Microsoft ever support JDK1.27?

That said, there is still an important challenge: ensuring that customers have the JRE

- 198 -

installed. This is not so much a technical problem as a marketing/packaging/shipment
problem: How do you make users install software needed to run your Java application?
Fortunately, most or all major vendors allow you to freely redistribute the JRE. If you want
to ship a Java application with a JRE for HP-UX, Solaris, NT, or whatever, you can do it.
Just be sure to read, understand, and adhere to the redistribution terms imposed by the
JRE distributors. We will explore that issue in Chapter 49, "Distributing Java Applications
and JREs Installation."

JDK1.2: Supported Where and When?

JDK1.2 was introduced in late 1998. The best early support could be found on Solaris,
Windows, and Linux.

The Linux port has enjoyed some support from Sun and has benefited from a cutting-
edge volunteer porting effort by the Blackdown team. To those doing early JDK1.2
development work, Linux has turned out to be one of the best platforms for the job. The
port is a huge undertaking—the native portion of the JDK grew enormously for the 1.2
release—but it seems reasonable to expect that most vendors will have a JDK1.2 story
by the end of 1999.

The JDK1.2 story for browsers is not so clear. It is not known when Netscape Navigator
or Microsoft Internet Explorer will support that environment. Given the importance of
GUIs for applets, and the GUI advances offered by Swing, the question is of crucial
importance. The next two sections discuss some interim and future possible answers to
this problem.

Option 1: The Java Plug-In

An ideal solution to the browser support problem is to decouple the browser from its built-
in JRE and allow the browser to leverage any convenient JRE (see Figure 11.1).

!
T : Briwsat
! Jum
1
' -
Com L A
Chss &
Libraray. t Browser Carg
1+ Soecwiy Clieas
! Clasas L
!
i

Barlern Aar

Figure 11.1: Browser environments are traditionally closely tied to a bundled or
platform JRE. Present and future developments will separate the components.

Sun has done exactly this, with a mechanism called the Java Plug-in. The Java Plug-in
uses the standard browser plug-in mechanisms to introduce a new JRE disguised as a
plug-in. Running JDK1.2 applets then becomes a matter of activating that plug-in—much
like browsing a multimedia file or Adobe PDF document.

The Java Plug-in is not a perfect solution: It is currently only supported on a few
platforms, and the HTML tag for the applet must be modified to use the plug-in JRE. We'll
discuss use and deployment of the Java Plug-in in Chapter 50, "Deploying Applets with
Java Plug-In," as part of the overall discussion of applet and application deployment.

Option 2: Netscape Open Java Interface

Netscape is pursuing another approach to the same architectural idea: the Open Java
Interface (OJI). Starting with its Communicator 5.0 product, Netscape will support an API
through which any JRE can be integrated with the browser. In the long term, this should
allow Netscape to exit the difficult business of porting the Sun JRE and instead rely on

- 199 -

resident platform JREs.

The OJI will require some modest effort from JRE vendors: some glue code must be
written to connect a JRE to Netscape. But OJI will offer two significant advantages:

* Any JRE, including those from the open-source community, can be used.

* Unlike the Java Plug-in (see Chapter 50), OJI does not require any changes to HTML
code.

As of this writing, OJI is not yet available. But it clearly offers good promise as the solution
for timely deployment of JDK1.2 and future releases.

JDK1.2 Features Available for JDK1.1

You can get some JDK1.2 benefits without moving to that environment by loading some
supplemental classes available from Sun. These packages are JDK1.2 features that were
released as JDK1.1 extensions and are discussed in the following sections.

Java Foundation Classes (JFC)

Portions of JFC are available for JDK1.1. These are implemented in Java—fully usable
on Linux and elsewhere. To download, visit the Java site (http://java.sun.com)and
go to the product page for the Java Foundation Classes to obtain the following
components:

» JFC Swing Toolkit - including the pluggable look and feel.
* Accessibility API

The components have the same package name, javax.swing, as in JDK1.2. (Some
earlier pre-releases used different package names—com. sun.java.swing and
java.awt.swing—an unfortunate source of confusion.)

Java Collections Classes

The 1.1 versions of these useful classes are distributed in conjunction with the InfoBus
standard extension. Visit the Java site (http://java.sun.com)and go to the InfoBus
product page for information on how to download these classes.

Unfortunately, these classes are in a different package
(com.sun.java.util.collections) than their counterparts in JDK1.2 (java.util
and java.lang). This was necessary because some environments—notably many
browsers—refuse for security reasons to load classes called java.util.* or
java.lang.* from outside their core library archives. So JDK1.1 code written to use
these classes must be changed to work with JDK1.2.

JDK1.1 Apps Broken by JDK1.2

JDK1.2 is a proper superset of JDK1.1 but can, in some cases, break older applications.
In most cases, these incompatibilities are the result of better enforcement of existing
rules about class file format, argument values, security privileges, and so on.

The one area in which applications can become seriously broken, requiring some
rewriting, is security. The security mechanism changed substantially between JDK1.1
and JDK1.2, and applications that implement their own security code are in danger of
failure under JDK1.2. One visible example is HotJava, Sun's Java implementation of a

- 200 -

Web browser. As of mid-1999, it was not yet usable with JDK1.2.

A short-term workaround is provided in the Sun JSDK, in the form of an application
launcher that uses the old security mechanism—see the section on o1djava in Chapter
17, "The Java Application Launchers: java, jre, and oldjava."

For more complete information about incompatibilities, Sun publishes a compatibility
document (http://java.sun.com/products/jdk/1.2/compatibility.html).

Summary

In choosing a deployment environment for your applications and applets, you need to
balance the benefits of the new environments with a realistic view of their availability in the
world. This chapter has presented a snapshot of the ever-changing landscape. The best
advice when betting on new Java technology is this: proceed with caution.

Chapter 12: Software Licensing

Overview

Open Source Software (OSS) has become one of the best-known computing terms at the
end of the 20th century—so much so that it has achieved the dubious status of buzzword:
a term freely thrown around by people who only vaguely understand what it means.

If you work in the Linux world, and in some cases if you work in the Java world, you are
dealing with OSS. This chapter takes a brief look at the meaning of OSS and at the various
licenses. Our purpose is to introduce the licenses you are likely to encounter, not to give
legal advice. If you choose to create software derived from an OSS-licensed product, you
must understand and honor the terms of the license before you deploy your projects.

What Is OSS?

OSS is an elaboration of the concept of free software. Free software is nothing new: It has
been a hallmark of UNIX development from the beginning and has found particularly
passionate voices in the work of Richard Stallman (the GNU Project) and Eric Raymond
(author of the influential essay "The Cathedral and the Bazaar,"
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/). The basic idea
behind free software is that you—the user or developer—are free to do useful work with the
software beyond any artificial constraints imposed by the author or publisher of the
software.

Common Open Source Licenses

An inherent part of free software is access to the source, giving you the freedom to fix it,
improve it, or derive new software from it. But source access is not a sufficient condition
for OSS, which must also be freely redistributable and must have licensing terms that do
not unreasonably constrain your use of the source. The following sections look at
licenses that are considered by the Open Source Initiative
(http://www.opensource.orqg) to be compliant with its criteria for OSS.

The GNU General Public License (GPL)

The GPL is the best known, and probably most commonly used, OSS license. Informally
known as the "copyleft," the text of the license begins with a statement of its ethos:

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your

-201 -

freedom to share and change free software—to make sure the software is free for all
its users. This General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces
of it in new free programs; and that you know you can do these things.

After the preamble, the license spells out specific terms for copying, distributing, and
modifying the licensed code. In a nutshell, the terms of the GPL are as follows:

* You may freely copy and redistribute GPL-licensed software.

* You may charge for distributing and maintaining GPL-licensed software but not for the
software itself.

» Source code for GPL-licensed software must be made freely available, either
published with any distribution of binaries, or available on request.

» Any derived work created from GPL-licensed source is also covered by the GPL.

The GPL has fueled much of the growth of Linux and the GNU utilities available for Linux,
but it has turned out to be unpalatable in the commercial community. The requirement
that any work derived from GPL-licensed source also be subject to the GPL has scared
off businesses unwilling to give away their products or their sources—hence the
popularity of the licenses listed in subsequent sections.

The GPL also includes a disclaimer of warranty, as do all other OSS licenses.

The GNU Library General Public License (LGPL)

The GNU Library General Public License (recently redubbed the Lesser General Public
License) addresses one of the main objections to the GPL.: that derived works must also
be covered by the license. Free software published under the LGPL can be used to
create products not covered by the LGPL.

The LGPL is especially important for OSS libraries. It allows you to link against an open
source library (such as the indispensable GNU C library) without considering the resulting
executable to be a derived work subject to GPL.

The Berkeley Software Distribution (BSD) License

The BSD License, derived from the BSD UNIX development stream, is a short, simple
license that allows redistribution and reuse of software, and creation of derived works for
free or commercial purpose. The main requirements it imposes are as follows:

» Preserve the integrity of the copyright notices when redistributing.

» Give credit where credit is due: If you derive a work from BSD-licensed software, you
must mention this fact in advertising and promotional materials.

The X Window System License

-202 -

A short and liberal license from MIT, this is little more than a warranty disclaimer. It grants
unrestricted rights to modify, distribute, publish, sell, and reuse the software.

The Artistic License

This is a license through which (quoting the preamble) "the Copyright Holder maintains
some semblance of artistic control over the development of the package" while enabling
the customary modification and redistribution rights of open source. It was developed by
Perl creator Larry Wall and strives to protect the integrity of the original public work while
allowing the technology to be freely deployed in other products. For example, you cannot
sell a proprietary Perl, but you can privately embed Perl (without publicly exposing its
interfaces) in your own proprietary product.

Mozilla Public License (MPL)

The MPL, from the Netscape Mozilla project, is the first open source license to come from
a major corporation, which is reflected in its precise and detailed legal language. The
license spells out exactly how the code may be extended or incorporated into new
products, and the ways in which derived works are or are not required to be open source.
In a nutshell, sources derived from Mozilla's source must be open, whereas sources that
interact with Mozilla only through APIs are not so constrained.

The license is a difficult read for non-attorneys, but it is also refreshingly to the point and
free of philosophical declarations.

Q Public License (QPL)

The QPL is from Troll Tech, developers of the popular Qt GUI toolkit. The toolkit exists in
two forms:

+ A free version, covered by the open source QPL, that lets you use Qt in UNIX-type
environments but prohibits you from distributing modifications or deriving commercial
products.

» A commercial (non-QPL) version, with a licensing fee, that allows commercial
exploitation. As the copyright holder, Troll Tech is free to distribute under multiple
licenses. This is one example of the approaches some vendors are exploring to build
businesses on OSS.

Sun Community Source License (SCSL)—Not Open Source

One license you will encounter in the Java world is the SCSL—the license under which
Sun makes the Java reference implementation (and other products') source code
available. No charge is associated with the SCSL: You can see the source for free. But it
is not an open source license and should be used with caution.

The SCSL entitles you to obtain source, either for research and development, porting
efforts, or creating derived works. It does not allow you to redistribute the source, and it
requires that you negotiate a license with Sun for distribution of ports or derived works.
Licensing of the Java sources is an important income stream for them.

An area of particular sensitivity in the open source community is the effect of
"contamination” by the SCSL. Free Java projects such as Kaffe (see Chapter 26, "Kaffe:
A Cleanroom Java Environment") and Japhar (see Chapter 27, "Japhar: A Cleanroom
JVM") do not allow developers who have obtained an SCSL to contribute code to avoid
contamination by people who have seen the encumbered Sun source.

That said, if you have a need to perform research or create products based on Sun's
sources, visit its site (http://java.sun.com)and go to the product pages for the

-203 -

relevant source releases. In the course of obtaining the sources, you will go through the
necessary steps to sign a Sun Community Source License.

Licensing Your Own Software

How should you license your own software?

That decision is usually up to you, but not always. If you are creating derived works
based on another source (open source or otherwise), be sure to understand the licensing
terms. You cannot, for example, derive a proprietary commercial product from GPL-
licensed software.

Beyond such concerns, should you publish your own software under open source terms?
The basic business arguments in favor of OSS licensing are the following:

* Quality—Case study OSS efforts from the past 20 years have produced the
astonishing collection of high-quality software from which the Internet is built, from low-
level protocol stacks to Web servers.

» Business—Successful businesses can be built on top of OSS, including consulting,
integration, distribution, service, and customization.

» Collaboration—The efforts of an involved user/developer community lead to better
products, better quality, and new markets. It allows you to devote fewer of your own
resources to development and QA. (This argument works if—a very big if—your
product attracts an interested developer community.)

+ Long-term value—The market value of a piece of software, proprietary or not, follows a
rapid decay curve; keeping software proprietary buys you little protection in today's
market.

(There is also a political/ethical argument that software should not be sold, patented, or
otherwise protected like a commaodity. This argument is controversial and far from
universally accepted. Notice that most licenses do not prevent you from being in the
business of selling and protecting software. But it is an important and vocal current of
thought in the open-source world.)

We live in interesting times for OSS. Many innovative OSS business models are being
explored by commercial enterprises; it is still too soon to know which of these models will
work. Several major platform vendors have jumped on the Open Source train: SGl is
releasing its XFS networked files system to the OSS community, and Hewlett-Packard
Company has cosponsored (with O'Reilly & Associates) SourceXChange, a Web-based
matchmaking service for OSS developers and companies seeking to do OSS
development.

Is OSS for you? A good place to research the question is the Open Source Initiative
(http://www.opensource.org). You can review the various licenses in their entirety
and study the arguments in more detail than provided here.

Summary

This chapter has explored the common licenses you will encounter when working in the
Linux and Java worlds. If you are in the business of selling or distributing software, you
should understand the licensing terms of all software you depend on—and especially of all
software from which you derive new works.

Part IV: The Blackdown Port: A Sun Java SDK

-204 -

for Linux

Chapter List

Chapter Blackdown: The Official Linux Portx
13:

Chapter Confiquring the Linux JSDK/JRE Environment
14:

Chapter Troubleshooting the Blackdown JRE/JSDK Installation
15:

Chapter Participating in the Blackdown Community
16:

Part Overview

The center of gravity for much of the Java activity on Linux is the Blackdown port—a
volunteer effort to port the Sun Java Software Development Kit to Linux. In this part, we
focus on Blackdown: what it is, how to get it, and how to configure it and how to address
problems encountered in the Linux enviroment.

Chapter 13: Blackdown: The Official Linux
Portx

Overview

The Java implementation found on most systems is a port of the Sun Java Development
Kit. Vendors such as HP, IBM, SGI, and Microsoft license the source, port the code, and
pay fees to Sun for the right to distribute the SDK and the JRE.

The Blackdown port, under the auspices of the volunteer Blackdown organization, is the
same thing—except that nobody is getting paid. The team is entirely volunteer, and the
project is licensed from Sun under a no-cost noncommercial license agreement.

The history of SDK ports on Linux began with Randy Chapman's port of SDK1.0 and
followed with Steve Byrne's leadership in porting SDK1.1. Karl Asha created the
Blackdown site and the mailing lists. These three and numerous others have contributed
engineering to create the Blackdown port, which enjoys the distinction (on Intel x86-
based Linux boxes) of being among the leading-edge ports on the market. Ports also
exist for Linux on Sparc, Alpha, and PowerPC platforms, although releases on these
platforms usually lag behind the x86-based releases.

The Blackdown Web site is http://www.blackdown.org and features downloads of
current SDKs and JREs, downloads of other Linux Java extensions, news,
documentation, useful links, a FAQ, a bug-reporting and tracking system, and a lively
mailing list whose participants include several engineers from Sun. (See Chapter 16,
"Participating in the Blackdown Community" for more detail.)

The Blackdown site also posts diffs: lists of changes required to port the Sun source to

Linux. The diffs, consisting of files published in a format generated by the GNU di £ £ utility,
can be applied as patches to Sun's SDK source to produce the Blackdown SDK source. So

for developers who want to maintain their own sources, the diffs plus the Sun sources
(available for free through the Sun Community License) will get you there.

- 205 -

Contents of the Blackdown SDK and JRE

As discussed in Chapter 10, "Java Components for Linux," in the section "A Glossary of
Sun Java Terminology," the SDK is a full development environment, whereas the JRE is
a subset that provides application runtime support. The SDK is provided under restrictive
terms that prohibit you from redistributing it, whereas the JRE's more liberal terms allow
you to redistribute it with your application. In other words: you can count on finding JRE
components, but not SDK components, in a deployment environment.

Each distribution includes a L.ICENSE file detailing the exact terms.
Table 13.1 lists the major components comprising the SDK and JRE.

Table 13.1 Blackdown SDK and JRE Components

Component SDK1.2 JRE1.2 SDK1.1 JRE1.1 More info
-]

appletviewer X X Chapter 18
extcheck X Chapter 24
jar X X Chapter 21
jarsigner X Chapter 24
java X X X Chapter 17
java g X Chapter 17
javac X X Chapter 19
javac g X Chapter 19
javadoc X X Chapter 23
javah X X Chapter 22
javah g X Chapter 22
javakey X X Chapter 24
javap X X Chapter 24
jdb X X Chapter 20
jre X X Chapter 17
jre g X Chapter 17

- 206 -

keytool
nativeZascii
oldjava
policytool
rmic

rmid
rmiregistry
serialver
tnameserv

Core class
libraries

Core config
files

Sun JIT compiler
Scalable fonts
JNI Headers

Demos

Chapter 24

Chapter 24

Chapter 17

Chapter 24

Chapter 24

Chapter 24

Chapter 24

Chapter 24

Chapter 24

Chapter 3

Chapter 14

Chapter 14

Chapter 55

We will describe these components in detail in subsequent chapters.

Obtaining Blackdown Releases

The Blackdown project maintains several mirrors for distribution of the releases. If you
visit the main site (http://www.blackdown.org), navigate to the download page, and
select a mirror, you will find a directory hierarchy containing all the current and past
releases from the project. The diagram in Figure 13.1 shows a small excerpt of the
hierarchy, identifying the directories containing (as of this writing) the latest releases for
various platforms. (Not shown are many other directories containing earlier releases.)

£z
e e | e e e e e |
] I | I] |
L) Lc] vl [I i3 I | St | Gt [W
kard | | kand | [Jokma | | sk e | N E—
AEks | | dAEk || FEke | | FER via] Jikand | | 08 and
[[23 SO eipha JOK el O JRE for JRE for
s || mEw =6 L
= G

Figure 13.1: A snapshot of the latest Blackdown Java releases for Linux.

-207 -

This chart will quickly go out of date, but it gives an overall idea of the tree's organization
and the status of the various ports. Several different versioning schemes are in evidence
here: minor Java releases (1.1.5, 1.1.6, 1.1.7), major Java releases (1.1 versus 1.2),
versions of Blackdown releases (v5, v7, and so on), and versions of glibc (2.0, 2.1).

Within each directory containing SDKs and JREs are tar archives with the actual bits,
compressed either with gzip (.gz) or the better bzip2 (.bz2). (See Chapter 9, "Setting
Up a Linux Development Environment," in the section "Compression and Archiving: tar,
gzip, bzip2, zip, unzip" for details on archiving and compression utilities.)

Unpacking the archives is straightforward:
1. Decide where to install the product; create and cd to that directory. Example:

bash$ mkdir -p /usr/local/Java
bash$ ed /usr/local/Java

2. Uncompress and untar the file. Example:
bash$ gzip -d </tmp/jre 1.1.7-v3-glibc-x86.tar.gz | tar xvf -
or

bash$ bzip2 -d </tmp/jre 1.1.7-v3-glibc-x86.tar.bz2 | tar xvf -

Supported Linux Versions for the Blackdown SDK and JRE

Given the wide variety of Linux environments—many distributions, many versions of
many libraries, many configurations, many platforms—building and distributing a product
for Linux is a daunting task. The Blackdown port tries to avoid dependence on any one
distribution or system configuration and instead ships several versions of its distributions
to meet the needs of the user and development communities.

All the versions described in this chapter can be picked up from the Blackdown site or its
mirrors.

JDK Versions for x86 Linux

Most Linux machines in the world run on the Intel x86 CPU architecture, and most of the
Java/Linux development work has been for such machines. As of this writing, there are
four current Blackdown JDK versions for x86 (and many older ones available at the
download sites).

The following subsections discuss the four versions, but we begin with an important
introduction to the reasons for version proliferation.

An Important Note About libc

The four current i386 Blackdown JDK distributions are differentiated by Java version (1.1
versus 1.2) and by dependencies on the C library. C library dependency is a confusing
matter, and is the most common reason for failure to run the Blackdown JDK out of the
box. This section discusses the Linux GNU C library, its recent history, how to identify
your library version, and the importance of obtaining a Blackdown JDK that is compatible
with the library.

- 208 -

The C library, libc, is a vital core component of any Linux or UNIX system. It provides
core functionality for virtually every program that runs on the system—including the Java
runtime. The shared version of this library, /1ib/1libc.so.<something>, and its
related components are used whenever a program is run, and the entire system is rife
with dependencies on this library.

The Linux C library has gone through three important phases in recent history:

* libc5—This is the "old" C library. It was created by applying extensive, Linux-specific
modifications to the C library distributed (for many operating systems) by the GNU
project. Many older applications depend on this library, but support is starting to
disappear; over time, progressively fewer products are maintaining libc5 compatibility.
Many Linux distributions have moved to the newer libraries (discussed next) but
continue to ship libc to support older applications.

» glibc2.0—The GNU project substantially rewrote its C library, incorporating changes
for Linux compatibility. This new version 2 (in GNU's versioning stream) was adopted
as version 6 (in Linux's numbering stream). Linux distributions with glibc support
began to appear in 1998.

» glibc2.1—The glibc2.0 release was considered experimental, although it was stable
and long-lived enough to be widely adopted (including by the Red Hat 5.x release
stream). Revision 2.1 appeared in 1999, and a number of distributions have moved to
this version.

When a Linux application is built, it becomes dependent on the library version it was
linked against. libcd programs require the libc5 library to run and glibc components
require the glibc library to run.

For many Linux applications, that distinction is the whole story—they need libc5 or they
need glibc. But for some programs there is an additional sensitivity to the glibc version: a
program linked against glibc2.0 will not run on a system with glibc2.1, and vice versa.
The Blackdown JDK1.2 port is such a program—you must obtain a version that matches
your system.

Identifying Your System

What kind of C library does your system have? To answer, look for files named
/1ib/libc.so.<something>:

* Ifyouhavea libc.so.5butnota libc.so. 6, then you have a libc5 system.

* Ifyouhavea libc.so.6,anditis a symbolic linkto 1ibc-2.0<something>, you
have a glibc2.0 system.

* Ifyouhavea libc.so.6,anditis a symbolic linkto 1ibc-2.1<something>, you
have a glibc2.1 system.

To install a Blackdown Java distribution, you must select one appropriate to your system.
Updating Your System

What if you want to move from libc5 to glibc—for example, to use JDK1.2—or move from
glibc2.0 to glibc2.1?

Installation of the C library is a tricky affair. It involves not just 1ibc.so but also a
runtime linker (1d-1inux. so) and dozens of other libraries with dependencies on libc. It
is possible, if you install glibc incorrectly, to render your system inoperative.

-209 -

The best way to move to the desired library is to install or upgrade your system to a Linux
distribution based on that library—for example, Red Hat 5.x (glibc2.0) or 6.x (glibc2.1). If
that is not an option, visit the Linux Online support center
(http://www.linux.org/help/howto.html) and consult the Glibc2 HOWTO for
detailed instructions.

JDK1.1 for libc5 x86 Systems

You should obtain this version if you want to run JDK1.1 on a glibc-based system. To run
properly, you will need version 5.44 or greater of libc and a reasonably current version of
1d.so.

The current (as of this writing) SDK1.1/JRE1.1 release is 1.1.7; unless you have a
compelling reason to get an earlier release, get the latest. You will need to get the
release from the 1ibc5 directory.

JDK1.1 for glibc x86 Systems

You should obtain this version if you want to run JDK1.1 on a glibc-based system.

The current (as of this writing) release is 1.1.7; unless you have a compelling reason to
get an earlier release, get the latest. You will need to get the release from the glibc
directory.

JDK1.2 for glibc2.0 x86 Systems

As of JDK1.2, the Blackdown releases no longer support libc5. But they have a similar
library split—for the two versions of glibc. Unlike JDK1.1, JDK1.2 is unable to support
both glibc revisions with a single release. If you are running a glibc2.0 system, you need
to download a version of the SDK or JRE from the glibc2.0 directory.

JDK1.2 for glibc2.1 x86 Systems

If you are running a glibc2.1 system, you need to download a version of the SDK or JRE
from the glibc2.1 directory.

JDK1.1 for Compaq Alpha Linux

The most recent release for the Alpha is 1.1.7. There are two versions, for 21064 and
21164 CPUs.

JDK1.1 for Sun Sparc Linux

The most recent release for Sparc Linux is 1.1.6.

JDK1.1 for PPC Linux

The most recent release for PowerPC Linux (Apple, IBM, and other PPC platforms) is
1.1.6.

JDK1.1 for MkLinux

The most recent release for MkLinux (mach-based Linux on PowerMac) is 1.1.5.

-210 -

JDK1.1 for ARM

The most recent release for versions of Linux running on the ARM processor is is 1.1.8.

Basic Environment Setup

After you have installed the SDK, a few changes to your environment will put you in the
Java business.

Setting the Environment for JDK1.1

Table 13.2 shows the three environment variables you need to set for your SDK1.1 or
JRE1.1 environment.

Table 13.2 SDK1.1/JRE1.1 Environment Variables

Variable Purpose

JAVA HOME=/usr/local/
Java/jdkl1l7 v3

Example

JAVA HOME Specifies Java installation directory.
This is optional; if not set, JDK1.1
infers a value by examining the path
to the Java executables.

PATH The standard UNIX/Linux variable
for locating executables. Java's
bin/directory should appear before
any other directories that may
contain executables of the same
name (such as other installed Java

environments!).

PATH=$JAVA HOME/
bin:S$PATH

CLASSPATH

Tells Java where to find all classes
at runtime. This is optional; if not set,
JDK1.1 assumes the default
example value to the right.

CLASSPATH=$JAVA HOME/lib/
rt.jar:\$JAVA HOME/lib/
il8n.jar:\$JAVA HOME/lib/
classes.zip:.

Recall that the format for setting variables under the bash shell requires setting and
exporting the variable, as in this example:

bash$ export JAVA HOME=/usr/local/Java/jdk117_v3

With the environment set up, you can try a quick test of the system. Write a program in
file Hello.java:

1
2 {
3
4
5
6

public class Hello

public static void main(Stringl[]

{

argv)

System.out.println ("Hello World");

-211 -

Compile and run:

bash$ javac Hello.java
bash$ java Hello

Hello World

bashs$

If your system is configured correctly, you should see the traditional Hel1o World
output. Otherwise, the error you are most likely to see is one of these:

command not found—You neglected to include the Java installation bin/ directory
in your SPATH.

Can't find class Hello—You neglected to include the current directory "." in
the class path.

Chapter 14, "Configuring the Linux JSDK/JRE Environment," will cover some additional
Java environment configuration options. If you encounter problems beyond the obvious
two listed here, Chapter 15, "Troubleshooting the Blackdown JSDK/JRE Installation," can
help you diagnose the difficulty.

Setting the Environment for JDK1.2

For JDK1.2, you set the same variables as for JDK1.1, but with different values (see
Table 13.3):

Table 13.3 SDK1.2/JRE1.2 Environment Variables

Variable Purpose Example
JAVA HOME This variable is never used by JRE1.2 or JAVA HOME=/usr/local/
SDK1.2. Its value is inferred from the Java/jdkl.2

location of the Java executable. But it is
sometimes used by other Java
applications. If set, it should point to the
Java installation directory.

PATH The standard UNIX/Linux variable for PATH=$JAVA HOME/
locating executables. Java's bin directory bin:SPATH
should appear before any other directories
that may contain executables of the same
name (such as other installed Java
environments!).

CLASSPATH Tells Java where to find all user classes at CLASSPATH=.
runtime. We'll explain the 1.1/1.2
CLASSPATH differences in Chapter 14 in
the section "How a Class Path Is
Constructed for Applications."

-212 -

Recall that the format for setting variables under the bash shell requires setting and
exporting the variable, as in this example:

bash$ export JAVA HOME=/usr/local/Java/jdkl.2

At this point, you may want to try the He11o World test described at the end of the
previous section, "Setting the Environment for JDK1.1." If your system is not configured
correctly, the error you are most likely to see is one of these:

* command not found—You neglected to include the Java installation bin/ directory
in your SPATH.

* Can't find class Hello—You neglected to include the current directory "." in
the class path.

Chapter 14 will cover some additional Java environment configuration options. If you
encounter problems beyond the obvious two listed here, Chapter 15 can help you
diagnose the difficulty.

Setting the JDK_HOME Environment Variable

Past practice has sometimes relied on another environment variable, JDK_HOME, in some
startup scripts for Java programs. There is no need to set this variable, but if you do, it
should have the same value as $JAVA HOME to avoid breaking some applications.

Summary

This chapter introduced the Blackdown port of the Sun JDK for Linux. The discussion will
continue in the next two chapters, with detailed exploration of JDK configuration and
troubleshooting.

Chapter 14: Configuring the Linux SDK/JRE
Environment

Overview

We discussed a basic Java configuration in Chapter 13, "Blackdown: The Official Linux
Port," in which setting or modifying a few environment variables—JAvA HOME,
CLASSPATH, and PATH—gets you started running Java. This chapter explores
configuration of your environment in more depth, beginning with an important discussion
of how Java finds classes.

This discussion is relevant to both SDK (your development environment) and JRE (the
end-user's deployment environment). Where there are differences between JDK1.1 and
JDK1.2, we will point them out.

The SDK documentation bundles, mentioned several times throughout the chapter, are not
part of the Blackdown distributions. They can be obtained from the Java site
(http://java.sun.com) by visiting the relevant SDK product page and downloading the
SDK documentation.

How Java Finds Classes

The built-in Java class loader can load classes from two types of sources: file systems

-213 -

and archive files. A class path—a list of places to look, like the UNIX PATH variable—tells
the class loader where to find the relevant file system directories and archive files.

The class path is a more complicated affair than we've portrayed so far. We'll delve into it
in the next section; for now, think of it as an abstraction—a collection of locations to
search for classes.

Classes Loaded from File Systems

Java classes can live in file systems, as individual files with the . c1ass suffix. Location
is a confusing matter, so we'll create a class file with an example:

Consider a simple project, in which | am doing development work in a directory called
/ foo. My source file, Hello. java, looks like this:

package bar.baz;

1
2
3 public class Hello

4 {

5 public static void main (String[] argwv)
6 {

7 System.out.println ("Hello World");
8
9

| have a subdirectory called classes/, into which | place my compiled classes when |
build:

bash$ javac -d classes Hello.java

After compilation, my class can be found at location
/foo/classes/bar/baz/Hello.class. Notice that the compiler placed the class in
a hierarchical directory tree that reflects the full package+class name of my class,
bar.baz.Hello. So the full file system path to my class file consists of two separate
components: The path to the root of the class (/foo/classes/), and the relative path
from the root to the actual class file (bar/baz/Hello.class).

For the Java class loader to find this class, it needs to know the location of the root of the
class: the class path must include an entry for /foo/classes. The class loader derives
the relative path to Hello.class from the name of the class itself.

The tricky but crucial requirement is this: The class file must be located on a path, relative
to an entry in the class path, that matches its full package+class name. You can think of

those "." separators in the full package+class name as representing file system " /"
separators—in fact, Java uses "/" internally for precisely that purpose.

Example

Here is an example, using a JDK1.2-style invocation, of how to load and run the
class:

bash$ java -cp /foo/classes bar.baz.nmeyers.Hello
Hello World
bash$

-214 -

And an example of what does not work:

bash$ java -cp /foo/classes/bar/baz Hello

Exception in thread "main" java.lang.NoClassDefFoundError:
Hello (wrong name: bar/baz/Hello)
at java.lang.ClassLoader.defineClass0 (Native Method)

at java.lang.ClassLoader.defineClass (Compiled Code)

at java.security.SecureClassLoader.defineClass (Compiled
Code) +
at java.net.URLClassLoader.defineClass (Compiled Code)

at java.net.URLClassLoader.access$1l (Compiled Code)
at java.net.URLClassLoader$l.run (Compiled Code)
at java.security.AccessController.doPrivileged (Native

Method)

at java.net.URLClassLoader.findClass (Compiled Code)

at java.lang.ClassLoader.loadClass (Compiled Code)

at sun.misc.Launcher$AppClassLoader.loadClass (Compiled
Code)

at java.lang.ClassLoader.loadClass (Compiled Code)
bash$

The class loader found the Hello. class file, as expected, but threw an exception
because the class name requested (Hel10) did not match the class name encoded
in the file (bar.baz.Hello).

Classes Loaded from Archive Files

The built-in Java class loader supports two hierarchical archive formats:

» ZIP files—This is the familiar compressed archive that has been in use since MS-DOS
days.

» Jar files—The Java ARchive format is identical to ZIP, with the optional addition of a
file containing metadata about the classes in the archive.

As with file systems, the class resides in a . class file in the archive. As with the
previous example, the full path to the class file consists of two components: the path to
the root (now the archive is the root), and the relative path to the class file (a path within
the archive). Using the previous example, we create such an archive and place it in the
/tmp directory:

bash$ jar cvf /tmp/project.jar -C classes
added manifest

adding: com/ (in=0) (out=0) (stored 0%)

adding: com/macmillan/ (in=0) (out=0) (stored 0%)

adding: com/macmillan/nmeyers/ (in=0) (out=0) (stored 0%)
adding: com/macmillan/nmeyers/Hello.class (in=437) (out=300)
(deflated 31%)

bash$

Here, we use the SDK1.2 jar tool to create an archive, /tmp/project.jar, from
everything in and below the root directory of the classes. The jar tool creates a default
manifest and copies the file system hierarchy into the compressed archive. (The SDK1.1

-215 -

jar has no -C option; you would need to cd to the classes directory to generate this jar
file.)

To run from the archive, again using the JDK1.2-style invocation:

bash$ java -cp /tmp/project.jar com.macmillan.nmeyers.Hello
Hello World
bashs$

Subtleties

Some subtleties embedded in these examples:

* We used an application-launch command line (java) as an example, but this
discussion applies to all class references. All references are stored internally as
full package+class references and subject to the same class-loading logic that is
used for launching applications.

* Notice that we asked the java launcher to run Hello, not Hello.class. If you're
new to Java, one of your first mistakes will be to try to run class files. Don't. With the
java application launcher, you request a class name and let the class loader resolve
ittoa .class file somewhere.

How a Class Path Is Constructed for Applications

Construction of the class path became more complicated (but more robust) with JDK1.2,
so we will split the discussion between JDK1.1 and JDK1.2. Note that this discussion is
specific to the Sun implementation (other Java implementations may do it differently)
running in UNIX/Linux environments (Windows systems, for example, use a different path
separator).

JDK1.1 Class Path Construction

JDK1.1 defines a single class path—a colon-separated list of directories and archive files.
The value of this class path depends on the presence of certain environment variables,
as shown in Table 14.1.

Table 14.1 JDK1.1 Class Path Variables

Environment Variables Class Path (newlines inserted for
readability)
CLASSPATH defined $CLASSPATH

CLASSPATH undefined .

JAVA HOME defined SJAVA HOME/classes:
SJAVA HOME/lib/classes.jar:

$JAVA HOME/lib/rt.jar:

$JAVA HOME/1lib/il8n.jar:

SJAVA HOME/lib/classes.zip

-216 -

CLASSPATH undefined (same as above, where a value of
JAVA HOME undefined $JAVA HOME is inferred from the path to

the java launcher executable)

These settings apply when launching an app, when compiling, and when launching other
SDK tools. One exception is the appletviewer tool: it does not include "." in the default
class path.

The value of the class path can be changed by command-line options (shown in Table
14.2) to the application launcher.

Table 14.2 JDK1.1 Command-Line Options to Alter Class Paths

Command Class Path

java -classpath <newclasspath> <newclasspath>
jre -classpath <newclasspath> <newclasspath>

jre -cp <newclasspath> <newclasspath>:
<current class path>

Note that the java application launcher is shipped only with SDK1.1, whereas the jre
launcher is shipped with SDK1.1 and JRE1.1: jre is intended for use in deployment
environments.

Some of the other SDK tools, such as the Java compiler, also support a -classpath
argument. For those that do not, you can change the class path by modifying the
CLASSPATH environment variable.

JDK1.2 Class Path Construction

The JDK1.1 class path structure has caused countless headaches in development and
deployment environments. The use of a single path for finding core classes, extensions,
and user classes is confusing and easily misused.

For JDK1.2, Sun defined three mechanisms for locating classes—one for core classes
needed to boot the environment, one for standard extensions, and one for user classes. It
is also possible, with this new mechanism, to assign different degrees of trust and
privilege to classes from the different sources. When the class loader needs to resolve a
class name, it searches the three in order: core, extension, user.

Boot Class Path: Finding the Core Classes

The boot class path supplies the core Java classes—the huge collection of classes that
comprise the Java 2 Platform. Defining $JAVA HOME to mean the installation directory(1)
of the SDK or JRE, Table 14.3 shows the default boot class path value.

-217 -

(1) This is a notational convenience. JDK1.2 ignores the environment variable and always
infers the value of JAvA HOME from the path to the Java executables.

Table 14.3 Default Boot Class Paths

Installation Default Boot Class Path

JRE1.2 SJAVA HOME/lib/rt.jar:
$JAVA HOME/lib/il8n.jar:
SJAVA HOME/classes

SDK1.2 SJAVA HOME/Jjre/lib/rt.jar:
SJAVA HOME/Jjre/lib/il8n.jar:
$JAVA HOME/Jjre/classes

One normally leaves the boot class path alone, but it can be changed with a nonstandard
option to the java application launcher (see Chapter 17, "The Java Application
Launchers: java, jre and oldjava," Section "Non-standard SDK1.2/JRE1.2 Options").

Extensions Class Path

Extensions are installed in a special directory within a JDK1.2 installation tree, as shown
in table 14.4.

Table 14.4 JDK1.2 Extension Installation Directories

Installation Extension Installation Directory

JRE1.2 $JAVA HOME/lib/ext

SDK1.2 SJAVA HOME/jre/lib/ext

The extensions must be packaged in jar files in that directory, and the choice of directory
cannot be overridden.

User Class Path

The CLASSPATH environment variable functions as before, but now exclusively for your
application classes. If CLASSPATH is not defined, the class path defaults to the current
directory. It can be overridden with command-line options on the java application
launcher, as shown in table 14.5 (there is no longer a jre application launcher).

-218 -

Table 14.5 JDK1.2 Command-Line Options to Alter Class Paths

Command Class Path

java -classpath <newclasspath> <newclasspath>
java -cp <newclasspath> <newclasspath>

java -jar <jarfile> <jarfile>

The user class path is used by almost all JDK1.2 tools, with one exception. The SDK1.2
appletviewer application ignores the user class path entirely to better emulate
browser deployment environments.

For Further Reading

The construction of class paths is explored in some detail in Sun's SDK1.2
documentation bundle. Table 14.6 identifies the files of interest.

Table 14.6 JDK1.2 Class Path Documentation

Document Contents

docs/tooldocs/ Information on how classes are located
findingclasses.html

docs/guide/extensions/ Description of the Java Extensions Framework, including
extensions.html some subtleties on how extension class libraries can add
other extension class libraries to the class path

How a Class Path Is Constructed for Applets

Although this topic is not highly relevant to setting up a Linux development platform, we'll
give it brief mention.

The principles for applet class paths are no different than for applications: browsers such
as Netscape have a class path that includes the core browser classes and centrally
installed plug-ins, and any plug-ins installed under your home directory.

The interesting magic occurs when a browser encounters one of the HTML tags that start
an applet (<APPLET>, <OBJECT>, or <EMBED>). These tags and their associated
parameters (code, codebase, object) effectively modify the class