

Release Team[oR] 2001
[x] java [x] linux

 - 2 -

Java Programming on Linux
by Nathan Meyers ISBN: 1571691669

Waite Group Press © 2000, 907 pages

This extensive reference will introduce you to the myriad
tools, technologies, and techniques that you'll need for
programming Java on Linux.

Table of Contents
Back Cover

Synopsis by Rebecca Rohan

This book is neither a course in Java programming nor a manual for the Linux
OS. While the well-written text provides overviews of both Java and Linux, it's
really a compendium of information you'll want on hand once you've chosen
Java-on-Linux. Coverage includes: configuring your Linux desktop, a list of the
Java core classes, a rundown of compilers, the Kaffe cleanroom, tidbits about
Linus Torvalds and Richard Stallman, the Open Source movement, when JIT
compilers are a benefit, threads, GNU, what's supported where, decompilers
and obfuscators, and improved graphical rendering. This must-have book will
answer your questions and provide enjoyable browsing for a long time

Table of Contents

 Java Programming on Linux - 5
 Linux and Java - The Choice of a New Millennium - 7
 Part I A Brief Introduction to Java
 Chapter 1 - What Is Java? - 12
 Chapter 2 - Moving from C++ to Java - 19
 Chapter 3 - A Look at the Java Core Classes - 36
 Chapter 4 - Additional Sun Java Class Library Specs - 149
 Part II A Brief Introduction to Linux
 Chapter 5 - What Is Linux? - 155
 Chapter 6 - How to Obtain and Install Linux - 162
 Chapter 7 - Configuring Your Linux Desktop - 168
 Chapter 8 - Installing Additional Linux Software - 173
 Part III Setting Up for Java Development and Deployment on Linux
 Chapter 9 - Setting Up a Linux Development Environment - 178
 Chapter 10 - Java Components for Linux - 191
 Chapter 11 - Choosing an Environment: 1.1 or 1.2? - 196
 Chapter 12 - Software Licensing - 201
 Part IV The Blackdown Port: A Sun Java SDK for Linux
 Chapter 13 - Blackdown: The Official Linux Portx - 205
 Chapter 14 - Configuring the Linux SDK/JRE Environment - 213

 - 3 -

 Chapter 15 - Troubleshooting the Blackdown JRE/JSDK Installation - 238
 Chapter 16 - Participating in the Blackdown Community - 247
 Part V Tools in the Blackdown JSDK
 Chapter 17 - The Java Application Launchers: java, jre, and oldjava - 250
 Chapter 18 - The Java Applet Viewer: appletviewer - 256
 Chapter 19 - The Java Compiler: javac - 260
 Chapter 20 - The Java Debugger: jdb - 263
 Chapter 21 - The Java Archiver: jar - 268
 Chapter 22 - The Java Native Code Header and Stub File Generator:

javah - 270
 Chapter 23 - The Java Documentation Generator: javadoc - 272
 Chapter 24 - Miscellaneous JSDK Development Tools - 281
 Part VI Additional Java Runtime Environments
 Chapter 25 - The IBM JSDK Port - 292
 Chapter 26 - Kaffe: A Cleanroom Java Environment - 293
 Chapter 27 - Japhar: A Cleanroom JVM - 299
 Chapter 28 - GNU Classpath: Cleanroom Core Class Libraries - 304
 Chapter 29 - Mozilla ElectricalFire: A New JVM - 305
 Chapter 30 - Sun HotSpot Performance Engine - 309
 Chapter 31 - gcj: A Compiled Java Solution - 311
 Chapter 32 - Tower: A Server-Side Hybrid Java Environment - 316
 Part VII Additional Java Runtime Components
 Chapter 33 - Just-In-Time Compilers - 325
 Chapter 34 - Java3D Extension - 330
 Chapter 35 - JavaComm, JCL, and RXTX: Serial Communications from

Java - 340
 Part VIII Compilers and Debuggers
 Chapter 36 - The Jikes Compiler - 345
 Chapter 37 - KJC: Kopi Java Compiler - 348
 Chapter 38 - Generic Java Compilers - 351
 Chapter 39 - The Jikes Debugger - 362
 Chapter 40 - DDD: The Data Display Debugger - 366
 Part IX IDEs, GUI Builders, and RAD Tools
 Chapter 41 - vTcLava: A tcl-Based Java GUI Builder - 372
 Chapter 42 - Korfe: A Python-Based Java GUI Builder - 379
 Chapter 43 - PlaceHoldr IDE - 384
 Chapter 44 - The Emacs JDE - 395
 Chapter 45 - ArgoUML Modeling Tool - 405
 Part X Miscellaneous Development Tools
 Chapter 46 - Jad: A Java Decompiler - 412
 Chapter 47 - DumpClass: A Tool for Querying Class Structure - 416
 Chapter 48 - JMakeDepend: A Project Build Management Utility - 419
 Part XI Java Application Distribution
 Chapter 49 - Distributing Java Applications and JREs - 426

 - 4 -

 Chapter 50 - Deploying Applets with Java Plug-in - 429
 Chapter 51 - Crossing Platform Component Models: Bringing Java to

ActiveX - 439
 Chapter 52 - InstallShield: Creating Self-Installing Java Applications - 456
 Chapter 53 - DashO: Optimizing Applications for Delivery - 459
 Part XII Linux Platform Issues
 Chapter 54 - Java, Linux, and Threads - 469
 Chapter 55 - JNI: Mixing Java and Native Code on Linux - 477
 Chapter 56 - X Window System Tips and Tricks - 493
 Part XIII Java Performance
 Chapter 57 - Why Is Java Slow? - 508
 Chapter 58 - A Heavy Look at Lightweight Toolkits - 519
 Chapter 59 - An Approach to Improving Graphical Rendering

Performance - 529
 Chapter 60 - PerfAnal: A Free Performance Analysis Tool - 543
 Chapter 61 - Heap Analysis Tool: Understanding Memory Utilization - 551
 Chapter 62 - OptimizeIt: Live Performance Analysis - 554
 Chapter 63 - Understanding Linux Kernel Performance - 560
 Chapter 64 - Profiling User-Space Native Code - 568
 Part XIV Java and Linux on Servers
 Chapter 65 - Java on the Web: Java Servlets and Apache JServ - 574
 Chapter 66 - Java from Web Pages: JSSI and JSP - 588
 Chapter 67 - Java, Linux, and Three-Tiered Architectures - 560
 Part XV Appendixes
 Appendix A - Index of Tools and Programs - 607
 Appendix B - Miscellaneous Program Listings - 611
 Appendix C - Important Information Resources - 727
 Appendix D - Tools Not Covered - 729

Back Cover
Java Programming on Linux is your guide to using the Java programming
language on the Linux platform. Written by an experienced Java and Linux
developer, this book introduces you to the many Java technologies available
today for you to use under Linux -- from proprietary Sun technologies to fully
Open Source solutions. Filled with practical, hands-on advice, Java
Programming on Linux will help you get the most out of Java and Linux, as an
applications platform, a development environment, and an enterprise server.

With Java Programming on Linux, you will learn:

• How to install, configure, troubleshoot, and use Sun’s Java
Development Kit on the Linux operating system.

• How to use many of the Java runtime and development environments
(from Sun and elsewhere) available for Linux.

• How to develop on Linux and distribute your applications to users on
all operating systems.

• How to access the unique capabilities of Linux and the X Window
System from Java.

 - 5 -

• How to identify performance bottlenecks that are slowing down your
Java applications on Linux and other platforms.

• How to deploy Java on Linux servers to support three-tier application
architectures.

About the Author

Nathan Meyers spent 20 years as a software developer and architect with
Hewlett-Packard Company, working on platforms ranging from embedded
systems to large UNIX servers. His development background includes
operating systems, development tools, device drivers, tools for performance
tuning, graphics applications, and GUIs. Nathan was part of the HP team that
did pioneering work on the X Window Systems, the Motif Toolkit, and the
Common Desktop Environment. He has been working with Linux since 1995
and with Java on Linux since the early Linux JDK1.1 platform releases.

Java Programming on Linux

 Nathan Meyers

 Associate Publisher: Michael Stephens

 Acquisitions Editor: Don Roche

 Development Editor: Robyn Thomas

 Managing Editor: Charlotte Clapp

 Copy Editor: Geneil Breeze

 Indexer: Joy Dean Lee

 Proofreaders: Tony Reitz, Wendy Ott

 Technical Editors: Luke Jones, Michael Jarvis, Juan Jose Sierralta P.

 Team Coordinator: Pamalee Nelson

 Media Developer: Todd Pfeffer

 Interior Design: Gary Adair

 Cover Design: Alan Clements

 Copy Writer: Eric Borgert

 Layout Technicians: Steve Geiselman. Brad Lenser

 Copyright © 2000 by Waite Group Press

 - 6 -

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

 International Standard Book Number: 1-57169-166-9

 Library of Congress Catalog Card Number: 99-65624

 Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Waite Group Press cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

 Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an "as is" basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

 About the Author

Nathan Meyers spent 20 years in the corporate software trenches, as a developer and
architect for Hewlett-Packard Company, working in handheld calculators, UNIX
workstations, and inkjet printers. His experience includes development of embedded
systems, device driver implementation, creation of development tools, definition and
implementation work on the X Window System and the Common Desktop Environment,
development of 2D and 3D graphics applications, UNIX application performance tuning,
design of evolutionary algorithms, and implementation of financial algorithms.

Nathan left HP in 1999 to pursue other opportunities in the worlds of Linux and Java.
Besides books like this, he has published in the Hewlett-Packard Journal, The X Resource
Journal, and the Linux Journal. He participates actively in the Java/Linux community and
manages this book's Web site at http://www.javalinux.net—visit the site for
information, updates, errata, or just to send email to the author.

 Dedication

 To Vicki.

Acknowledgments

 It takes a village to make a book, and this book has benefited from the talents of many

important contributors.

First, I'd like to thank Margot Maley of Waterside Productions and Don Roche of
Macmillan Computer Publishing, who worked together to bring this project into existence.
Development editor Robyn Thomas and project editor Charlotte Clapp coordinated the
complex logistics required to turn my words into a real book. Copy editor Geneil Breeze

 - 7 -

kept my use of the language honest, and technical editors Luke Jones, Michael Jarvis,
and Juan Jose Sierralta P. checked my work on the technical side. To anyone else I've
neglected to mention: My sincere gratitude and my apologies for the oversight.

Beyond the efforts that went into creating this book, I must also acknowledge the heroic
efforts in the Java, Linux, and Open Source communities that have made this book both
possible and of value. To the many brilliant developers behind the Blackdown organization,
Transvirtual Technologies, Cygnus Solutions, IBM AlphaWorks, and many other
organizations mentioned in the book: Thank you for making Java on Linux a great place to
do software and a great place to do business.

 Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

 You can fax, email, or write me directly to let me know what you did or didn't like about

this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book's title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

 Fax:

317-581-4770

 E-mail:

mstephens@mcp.com

 Mail:

Michael Stephens
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Linux and Java: The Choice of a New
Millennium

 Welcome to Java. Welcome to Linux. Welcome to the five-year revolution.

Five years ago, as Microsoft Windows 95 swept the world, Linux and Java were tiny blips
on the radar. In 1995, The term "Open Source" had not yet been coined, Linux was an
underground movement, and Java was struggling to prove itself a working technology.

 What a difference five years makes!

In the past few years of explosive Internet growth, both Linux and Java have assumed
crucial roles in advancing network technologies and shaping the Web. Both have had to
mature quickly, and, with the recent releases of the Linux 2.2 kernel and the Java 2
Platform, both demand to be taken seriously as technologies and as businesses.

 Which brings us to this book.

 - 8 -

Linux and Java go together like, well… cream and coffee. Linux offers a powerful, stable,
efficient operating system; Java offers a powerful and portable applications platform of
huge and growing popularity. You've probably already used the two together—if you've
ever run Netscape Navigator on Linux. But there is much more to Java than applets and
browsers. This book will help you take the next step: to the world of Java applications,
Java development, and Java Web services.

 Who Is This Book's Intended Audience?

If you need to use Java and Linux together, this book is for you. The book has a strong
focus on development tools and techniques, but we also cover topics of use to
nondevelopers (for example, Java installation and configuration) and administrators (for
example, Java Web services).

What Do You Need to Know Prior to Reading This Book?

Some previous exposure to both Java and Linux will be helpful, although we do include
introductions to both technologies. This book does not try to teach you Java or Linux (many
other fine books already do so)—it focuses on how you can use the two together.

 What Will You Learn from This Book?

This book will teach you how to install and use a Java environment under Linux, how to
develop Java under Linux, and how to deploy your Java applications to Linux and other
platforms.

What Software Will You Need?

You will need a Linux distribution and a Java Software Development Kit—both are
available for free online. You can also buy reasonably priced Linux distributions on CD-
ROM. This book will tell you how to get all the software you need.

 How This Book Is Organized

 This book is organized into 15 parts, first introducing the technologies and then covering

installation, configuration, development, and deployment of Java on Linux.

 The parts of the book are as follows:

 • Part I: A Brief Introduction to Java—If you're new to Java, this part takes you on a

brief tour of the language and the environment.

•

Part II: A Brief Introduction to Linux—If you're new to Linux, this part gives you a
brief introduction to the operating system and helps you get started setting up a Linux
system.

•

Part III: Setting Up for Java Development and Deployment on Linux—This part
describes the pieces you need to enable Java deployment and development in your
Linux environment.

•

Part IV: The Blackdown Port: A Sun Java SDK for Linux—The Blackdown
organization is the group responsible for porting Sun's Java software to Linux. This
part of the book describes how to obtain and install Java runtime and development
software from Blackdown.

•

Part V: Tools in the Blackdown JSDK—The Java Software Development Kit (JSDK)
from Blackdown includes all the pieces you need to develop, test, and run Java. Here
we describe the tools and how to use them.

 - 9 -

•

Part VI: Additional Java Runtime Environments—The Sun software distributed by
Blackdown is not the last word in running Java on Linux. This part describes
alternative Java environments you can use under Linux.

•

Part VII: Additional Java Runtime Components—This part of the book describes
additional components to make your Java environment faster, better, and more
capable.

•

Part VIII: Compilers and Debuggers—You have many Java development tool
choices beyond the SDK. Here we present some alternative compilers and debuggers
you can use.

•

Part IX: IDEs, GUI Builders, and RAD Tools—This part explores advanced
development tools—integrated development environments, user interface builders,
and rapid application development tools—available for use on Linux. One such tool,
Inprise JBuilder, is bundled on the accompanying CD-ROM.

 • Part X: Miscellaneous Development Tools—Here we explore some tools that can

assist your Java development efforts under Linux.

•

Part XI: Java Application Distribution—This part of the book helps you distribute
your Java applications to the rest of the world, including users on other operating
systems.

•

Part XII: Linux Platform Issues—This part discusses issues specific to using Java on
the Linux platform, such as accessing native platform capabilities and dealing with the
X Window System.

•

Part XIII: Java Performance—This part explores Java performance: why it's slow,
why it's improving, and how you can tune your own applications for better
performance.

•

Part XIV: Java and Linux on Servers—Java and Linux both have important roles on
three-tier applications servers and Web servers. This part of the book discusses using
Linux and Java for server applications.

 • Part XV: Appendixes—Here you'll find an index of programs provided in the book,

some code listings, and some pointers to additional resources.

 Visit Our Web Site

 This book has its own Web site: http://www.javalinux.net. Please visit the site for

the latest updates, errata, and downloads.

Conventions Used in This Book

 This section describes the important typographic, terminology, and command

conventions used in this book.

 Typographic Conventions Used in This Book

 The following typographic conventions are used in this book:

•

Code lines, commands, statements, variables, and any text you type or see onscreen
appears in a mono typeface. Bold italic mono typeface is often used to represent
the user's input.

 - 10 -

 • Command syntax descriptions use the following notation to describe commands and
arguments:

 – monospaced text—This represents the literal text of a command or option.

–

<monospaced italics in angle-brackets>—Angle-brackets and italic text
represent placeholders in a command description. These placeholders are replaced
by commands or options described in the text.

 – [<optional arguments>]—Brackets surround optional arguments. A vertical

stroke may separate multiple choices for an optional argument.

 – {on¦off}—Curly braces surround a required multiple-choice argument, with

choices separated by a vertical stroke.

 For example, a syntax description like this

 java [-green¦-native] [<options>] <class>

 could result in the command

 java –green –classpath . MyClass

•

Long listings of code or output are printed with line numbers to aid in reading. If a line
is too wide to fit on the page, the remainder appears in the following line without a line
number.

•

The book also contains Subtleties sidebars that explore a topic in more detail. The
information here may not be of immediate use but is helpful in better understanding
the topic or solving difficult problems.

 Naming Conventions Used in This Book

 The naming of Sun Java releases has been a matter of some confusion over the years.

This book adopts a convention consistent with Sun's most recent practices:

•

JDK—A JDK is a Java technology release, such as JDK1.0, JDK1.1, and JDK1.2. (Its
original meaning was "Java Development Kit," but common usage has broadened it to
mean an entire technology release. This is discussed in more detail in Chapter 10,
"Java Components for Linux," in the section on "A Glossary of Sun Java
Terminology.")

•

SDK—An SDK is a Software Development Kit. Every Java technology release is
accompanied by an SDK that includes tools, such as compilers and debuggers, for
Java development.

•

JRE—A JRE is a Java Runtime Environment. This is a subset of the SDK targeted at
deployment platforms. It contains everything needed to run Java programs but no
development tools.

 Command Shell Conventions in This Book

 In UNIX and Linux environments, users have a choice of command shells—interactive

command interpreters—to use for running commands in terminal windows.

 This book will assume the use of bash (the Bourne-Again SHell), which is the most

popular Linux command shell. Command input lines will be shown with this prompt:

 - 11 -

 bash$

 So a user interaction with bash could look like this:

 bash$ echo Hello World
 Hello World
 bash$

 When an input line is too long in a Linux command shell, you can end it with the

backslash character and continue it on the next line:

 bash$ echo The quick brown fox jumps over the lazy \
 dog
 The quick brown fox jumps over the lazy dog
 bash$

 For most interactions discussed in this book, the choice of command shell has little effect

on how commands are entered. But there are two important exceptions.

 Setting Environment Variables

 Different command shells use different commands for setting environment variables.

When this book specifies setting of variables, it will use the bash notation:

 bash$ FOO=bar
 bash$ export FOO

 or the shorter form:

 bash$ export FOO=bar

 or, occasionally, the form used to set the variable for the duration of a single command:

 bash$ FOO=bar <command>. . .

 For users who prefer the popular csh (C-shell) or tcsh (a csh clone), you will need to

perform your own translation to the csh-style notation:

 setenv FOO bar

 Environment Initialization File

 The name of the initialization file is another important command shell difference.

When you start a new login session running bash, it reads a file called
~/.bash_profile (that's .bash_profile in your home directory) for any user-
specific setup of your environment. This book sometimes instructs you to add commands
to that file for setting environment variables.

If you are a csh or tcsh user, you will need to translate these instructions. The
initialization file it reads is called ~/.login (.login in your home directory)—this is
where you will need to add the corresponding setenv commands.

 - 12 -

Part I: A Brief Introduction to Java

 Chapter List

 Chapter

1: What Is Java?

 Chapter

2: Moving from C++ to Java

 Chapter

3: A Look at the Java Core Classes

 Chapter

4: Additional Sun Java Class Library Specs

 Part Overview

The first part of the book provides a brief introduction to Java. If you're a Linux user or
developer coming to Java for the first time, you may find the Java concept a bit
bewildering because Java is a lot of things: a language, an architecture, an applications
platform, and more.

 So we begin with a look at what Java really is, where and how it is used, what it offers to

programmers, and what sort of applications capabilities it provides.

 Chapter 1: What Is Java?

 Overview

This chapter gives you the 10-minute tour of Java. If you're already experienced with
Java, you might want to skip ahead. On the other hand, if you're new here, you might find
that Java is not exactly what you thought it was. It's not just a language, and it's not just
for Web browsers.

So what exactly is Java? It's a language. It's a machine architecture. It's a loading model.
It's a file format. It's an applications environment (several different applications
environments, actually). It's a specification. And it's an implementation.

Java began life as a failed Sun research project called Oak, targeted at embedded
operation in appliances. In 1995, Sun repackaged Oak as a portable "Internet programming
language" and positioned it initially as a way to run programs in Web browsers. The result
was something of a misfire: Web applets were not a huge success, and even today they
occupy a largely specialized niche. But Java displayed usefulness in other areas, and
interest in Java for different tasks—particularly Web services and enterprise connectivity—
skyrocketed. Java has since settled into a number of important application areas (we
explore more below), including, at long last, appliances!

The Many Faces of Java

 Let's dissect Java in a bit more detail…

 The Java Language

 - 13 -

By the time Sun announced Java in 1995, C++ and object-oriented programming had
been around for years. C++ had grown, in episodic spurts, from a preprocessor into a full-
featured compiled language. It had become the language of choice for projects of all
scales, and it had been through several stages of standardization—culminating in the
acceptance of the ANSI C++ standard in 1998.

C++ had also, along the way, picked up considerable baggage. It had a substantial
number of non-object-oriented artifacts, and it had become a difficult language to write
compilers for. It was also difficult to achieve complete portability: even the excellent ANSI
standardization did not completely shield developers from platform-specific language
porting headaches.

One of Java's goals was to fix what was wrong with C++, with a special focus on the
error-prone aspects of C++ development—those that tend to take up too much
debugging time. In this it has certainly succeeded: Java developers (especially C++
converts) find the language well-suited for rapid prototyping and development. Java's
remedies include:

 • Strengthening the object orientation and eliminating non-object-oriented features (for

example, macros, globals)

 • Eliminating the error-prone direct manipulation of memory pointers and the confusion

of referencing and dereferencing

 • Getting the developer out of the messy memory management business

 • Adding type safety

 • Performing runtime checking for such common problems as illegal typecasting, bad

array subscripts, and null object references

 • Supporting multithreaded programming directly in the language

 • Improving exception handling

A detailed language specification is available, both in printed form and from Sun's Web
site (http://java.sun.com). Like most specs, it is better as a reference work than a
learning tool. For actually learning the language, a good place to start would be Java
Unleashed (Sams).

Chapter 2, "Moving from C++ to Java," uses some programming examples to take a
closer look at the differences between Java and C++. Despite the differences, Java looks
much like C++, and experience suggests that C++ programmers can pick it up quickly
and easily. So although this book is not in the business of teaching the language, the
introduction and the examples should be enough to get you well past the "Hello World"
stage.

 The Java Machine Architecture

The Java specification describes not only the high-level language but also the low-level
machine and instruction set it runs on: a concurrent, abstract stack machine with an
architecture and a small bytecode instruction set closely tied to the language (see Figure
1.1). This is roughly equivalent to dictating the CPU on which a language can be used,
although a better analog is the P-code machine that was used in the development of
UCSD Pascal some 20 years back.

 - 14 -

 Figure 1.1: Java defines a low-level architecture and instruction set closely

aligned with the high-level language.

Implementation of the architecture—as, for example, a silicon Java chip or as a virtual
machine—is left as an exercise for individual vendors. (This has turned out to be a
challenge to the acceptance of Java, but virtual machines are now available for Linux and
many other environments.)

 In addition to describing an execution engine, the spec describes certain machine

behaviors: startup, shutdown, and, most interestingly, loading.

 The Java Loading Model

The Java loading model is, ultimately, what makes Java unique. Loading of Java
modules (or classes, to be more correct) happens dynamically during program execution.
This is a radical change for generations of programmers accustomed to the compile-link-
load-run cycle for building and running programs and is resulting in new approaches to
structuring application functionality.

 The loading of Java classes consists of several steps (see Figure 1.2):

 1. Reading the bits

 2. Verifying that the bits describe a well-structured class containing well-structured Java

code

 3. Building a global class structure

 4. Resolving references

 5. Controlling access—allowing an application or environment to decide access rules for

class loading (such as restriction to trusted sources)

 Figure 1.2: The Java class loader builds the environment during application

execution.

Loading of classes happens as needed, at any time during program execution—either
when a class is first referenced or when the application explicitly requests that a class be
loaded. The class-loading and security mechanisms are themselves classes and can be

 - 15 -

modified by subclassing: Developers can define new sources of Java functionality not
envisioned by Java's creators.

The concept of runtime loading of functionality is certainly not new. We see it routinely in
dynamically loaded libraries, object models (CORBA, COM, and so on), and the plug-in
capability of many products. What is new is the full integration of class loading with the
language and the environment: it's never before been this easy, flexible, or extensible.
Allowing class loading from arbitrary sources (local disk, the Web, networked devices, a
dynamic code generator, and so on) is a notable advance in object-oriented
programming: it treats executable code objects with the same facility previously reserved
for data objects.

 The loading model, combined with the portability of the code itself, gives Java bragging

rights as an "Internet programming language."

 The Java Class File Format

Just as Java defines a portable instruction set, it defines a platform-neutral package for
Java code: the class file. Class files are usually generated by a Java compiler (they are
the Java analog of .o object files), after which they are ready to run (recall that linking
happens at runtime). Class files are typically found sitting on file systems or bundled into
archives (zip files, or the closely related Java archive jar files), where Java's default
class-loading mechanism expects to find them with the filename suffix .class. By
subclassing the class loader, as discussed previously, applications can introduce a class
file from any source.

 The Java Applications Environment

As any UNIX/Linux programmer knows, modern applications run in a rich environment
provided by libraries (system, GUI, utility, and so on) and subsystems (X, printing, and so
on). Java, although not an operating system (OS), is substantially in the OS business: It
must provide a portable applications environment for everything from basic I/O services
to string manipulation to GUIs to networking. Java has undergone three major releases,
during which the applications environment has grown from minimal to substantial:

•

JDK1.0—Sun's initial release, heavily hyped but not ready for prime time. A basic
applications environment with a basic GUI component (AWT, the Abstract Windowing
Toolkit) built on top of native platform GUI mechanisms.

•

JDK1.1—A substantial improvement, introducing basic printing support, a better event
model, the JavaBeans component model, I18N, reflection, remote method invocation,
a security framework, and database connectivity. The latter three areas represent
Java's move into distributed enterprise applications.

•

JDK1.2 (officially The Java 2 Platform, version 1.2)—Many consider this the first
ready-for-prime-time Java. It is huge but useful, introducing security enhancements, a
robust 2D graphics imaging model, the JFC Swing GUI toolkit (a native Java look and
feel), an accessibility API, drag-and-drop support, the collections classes, improved
persistence support, reference objects, an audio API, CORBA support, and more.

 The language and architecture have also evolved with each release (nested classes, for

example, appeared in version 1.1), but the environment has changed most dramatically.

When we speak of JDK1.1 or JDK1.2, we are referring to a complete application
environment—Java Virtual Machine (JVM) + class libraries—that is used for two distinct
purposes:

•

Running applications (Figure 1.3)—Applications are standalone programs with the
same rights and responsibilities as programs in any other language. Like C++
programs, standalone Java programs begin with a call to main() and end, typically,

 - 16 -

with a call to exit(). A standalone program is usually run by invoking a JVM and
specifying a class file to execute.

 Figure 1.3: Java applications run in a platform-neutral environment within the

host environment.

•

Running applets (Figure 1.4)—Applets run in browsers, embedded in Web pages,
typically under the control of a Java Runtime Environment (JRE) built into the browser.
Applets differ in three major respects from applications:

 Figure 1.4: Java applets run in a platform-neutral environment provided by a

browser.

•

The applet environment contains a restrictive security manager that prevents applets
from affecting the world outside the browser (such as the local file system) and
constrains the behavior of class loading and networking.

 • Graphics happens to windows controlled by the browser—typically embedded in a

Web page, although browsers can launch top-level applet windows.

•

Applets have a different life cycle from applications, described in terms of when they
are initially loaded, when they are started and stopped by the browser due to page
visibility, and when they are finally unloaded from the browser. There is no main() in
applets.

 Applets are typically run when a browser reads a page containing the HTML tags to load

and execute a Java class.

Differences aside, both applets and applications expect a full JRE. So a browser
supporting JDK1.2 (as of this writing, neither major browser does) would include the full,
gigantic JDK1.2 environment—Swing toolkit and all.

 Java does define other, simpler environments for use in more constrained applications:

 • PersonalJava—A subset of JDK1.1 for personal devices such as Portable Digital

Assistants.

 - 17 -

•

EmbeddedJava—A subset of JDK1.1 for use in embedded controllers, with extensions
targeted at real-time environments. EmbeddedJava is a political hot potato at the
moment: A number of vendors with deep experience in real-time systems were so
dissatisfied with Sun's EmbeddedJava work that they formed the J-Consortium in early
1999 to work toward better, vendor-neutral real-time Java extensions.

 • JavaCard—A Java environment for use in smart cards, "credit cards with brains,"

designed to support the application and transaction requirements of that market.

 • JavaTV—A Java environment for use with television-enabled applications such as

interactive programming and video-on-demand.

 • JavaPhone—A set of API extensions, on top of PersonalJava or EmbeddedJava, for

development of telephony applications.

 In mid-1999, Sun announced the Java 2 Platform Micro Edition, a unification targeted at

subsuming these technologies.

 We examine the core JRE classes in more detail in Chapter 3, "A Look at the Java Core

Classes."

 The Java Specification and Implementation

In the preceding sections, we have repeatedly mentioned specifications: Java is, first and
foremost, a specification. The complete specs for the language, the class file format, the
virtual machine, and the runtime environment are available from Sun—in printed form
from a bookstore, or in electronic form online (no charge; http://java.sun.com).

Given the Java specification, it is possible for anyone to create any part of Java—a
compiler, a VM, an SDK—without any encumbrances to Sun. Later, you learn of some
"cleanroom" Java pieces, built entirely from specs, available on Linux.

Sun has also created a reference implementation of everything in the spec: JVM, core
libraries, and a development kit containing a full complement of tools. Sun ships two
commercial implementations, for Solaris and Windows NT, that were created from the
reference implementation. It also licenses the reference implementation to other vendors,
which is the basis for commercial Java ports on such platforms as HP-UX, AIX, Ultrix,
and others. The reference implementation is also the basis for the Blackdown SDK for
Linux, which gets extensive coverage beginning in Chapter 13, "Blackdown: The Official
Linux Port."

Use of the reference implementation comes at a price: The source is available for no
charge, but any products built from it are encumbered by licensing obligations to Sun. The
licensing terms are reasonably generous to anyone building a noncommercial
implementation; all others pay fees, resulting in an important revenue stream for Sun.

Other Java Technologies

Sun has many other focused Java components, outside the core platform, in various
stages of specification and implementation (see Chapter 4, "Additional Sun Java Class
Library Specs," for more details). Among them:

 • Java3D—Support for 3D imaging

 • Java Media Framework—Multimedia support

 • Java Servlets—Java on Web servers

 - 18 -

 • Java Cryptography Extensions—A framework for private- and public-key cryptography

 • JavaHelp—A full-featured help system

 • Jini—A framework for creating communities of "smart" devices, including automatic

network configuration and resource discovery

 • JavaSpeech—An API for speech recognition and synthesis

•

Java 2 Enterprise Edition—A collection of technologies—directory, database, email,
messaging, transaction, and so on—targeted at deployment in the enterprise
environment

 Where Is Java Used?

 Some settings in which Java has found a home (beginning with the two traditional ones)

are as follows:

•

Standalone Java applications hosted by a JRE under many different operating
systems: Linux, NT, MacOS, all important flavors of UNIX, IBM's mainframe OSs, and
so on.

 • Applet JRE environments provided by Netscape Navigator and Microsoft Internet

Explorer Web browsers.

 • Web servers, for programmatic generation of Web content.

 • Application servers, integrating the activities of enterprise applications, databases, and

Web activities.

 • Java PCs—Sun's JavaOS is an operating system, intended for use in network

computers and appliances, in which Java classes are the native application format.

 • Inside Database Management Systems (DBMSs) such as Oracle and Sybase,

supporting stored procedures for smart database queries.

 • Television set-top boxes, running JavaTV.

 • Smart cards—a complete Java Virtual Machine plus the card-holder's data can reside

in a chip on a small plastic card.

 • Embedded controllers in consumer and industrial devices: printers, cameras, robots,

and so on.

•

Jewelry—rings, wristwatches, money clips, and so on with built-in JVMs and a
waterproof hardware interface. They are used for identification, e-commerce, and
cryptography (yes, Java-based secret decoder rings!).

 In later chapters, we explore how some of these environments are being deployed in Linux.

 What Can't You Do in Java?

Java is, in many ways, a computer scientist's dream. It brings together many of the most
interesting technologies of the past 20 years, from garbage collection to architecture-
neutral code to on-the-fly optimization to runtime validation to OOP. Many of these
technologies have not become mainstream because, in the real world, they're just too
slow.

 - 19 -

That is also Java's problem: it's slow. We examine performance issues (and what to do
about them) in more detail later. The performance story undoubtedly will improve, but
there is good reason to doubt that Java will ever challenge compiled native applications
in terms of speed. Among the problems Java cannot handle today:

 • Performance-critical problems—These still require native applications or, at the very

least, native-code components in Java applications.

•

Large problems—Problems with large memory or I/O requirements require the
application to take an active role in managing memory or I/O—application tuning
makes the difference between usable and unusable software in such demanding areas
as simulations and DBMSs. Java is not a supportive environment for such problems.

•

Platform-specific problems—Java takes great pains to achieve platform-
independence, to the point of denying you many capabilities you take for granted in
native languages or even in many platform-independent scripting languages. You
cannot, without writing a native code component, detect or create a symbolic link,
implement an X Window manager, read UNIX environment variables, identify the
owner of a file, change tty settings, and so on. (We explore platform issues, including
solutions to some of these problems, in Chapters 55, "JNI: Mixing Java and Native
Code on Linux," and 56, "X Window System Tips and Tricks.")

•

GUIs—Of course Java does GUIs—Swing is a first-rate toolkit. But GUI performance
needs a great deal of attention if Java is to be a serious GUI platform. As of this
writing, Java is enjoying much more success in non-GUI environments, such as
servers, than in GUI environments such as applets.

If it seems, at this point in the chapter, that Java is everywhere…well, it has certainly fired
the collective imagination of the computing and networking worlds. In reality, Java
technology is a complex mix of software, bloatware, vaporware, and marketing; and it lives
in a charged climate of intense industry politics between Sun Microsystems, its
competitors, its partners, the courts, and the user and developer communities. Java is
certainly not the answer to every problem, but it is (like Linux) a highly interesting place to
work, play, and build the future of the Internet.

 Summary

We have taken a high-level look at Java, exploring its role as a software technology, an
architecture, and an Internet language. Before we delve into the world of Java on Linux, we
take a few more chapters to explore topics of interest to Java newcomers: moving from
C++ to Java programming, understanding the runtime environment, and Java extensions.

Chapter 2: Moving from C++ to Java

 Overview

Continuing our whirlwind tour of Java, this chapter provides a brief look at the language
differences between C++ and Java. We take an unusual approach: using small projects
to point out important differences. This is an introduction, not a language course; if you
want to really study and learn the language, a good place to start is Java Unleashed
(Sams).

Project #1: Hello World

 We begin with a slightly modified Hello World project in C++ (Listing 2.1), illustrating

some important differences in I/O, array, and string manipulation.

 - 20 -

 Listing 2.1 Helloworld.c

 1 #include <iostream.h>
 2 #include <string.h>
 3
 4 //
 5 // A modified "hello world": steps through argv and says
hello to

 6 // everything in argv. If an argument happens to be
"world", we

 7 // throw in a bang at the end.
 8 //
 9 int main(int argc, char *argv[])
 10 {
 11 for (int i = 1; i < argc; i++)
 12 {
 13 cout << "Hello, " << argv[i];
 14 if (!strcmp(argv[i], "world")) cout << '!';
 15 cout << '\n';
 16 }
 17 }

This version simply steps through the command-line arguments, outputting a Hello
message for each argument. If the argument happens to be the word "world," a bang (!)
is appended.

 Listing 2.2 shows an equivalent program in Java:

 Listing 2.2 HelloWorld.java

 1 package com.macmillan.nmeyers;
 2
 3 class HelloWorld
 4 {
 5 public static void main(java.lang.String[] argv)
 6 {
 7 for (int i = 0; i < argv.length; i++)
 8 {
 9 java.lang.System.out.print("Hello, " +
argv[i]);

 10 if (argv[i].equals("world"))
 11 java.lang.System.out.print('!');
 12 java.lang.System.out.print('\n');
 13 }
 14 }
 15 }

 Some differences to note between the examples:

•

Java classes reside in a hierarchical namespace, in which classes are completely
specified by a package name (analogous to a directory path) and a class name
(analogous to a filename), with "." used as a separator. Two classes seen in the
preceding example are java.lang.String, and java.lang.System. The "." is
also used to separate variable names from member names (for example, member
name equals() in HelloWorld.java:8).(1) The HelloWorld class also resides in

 - 21 -

a package— com.macmillan.nmeyers (following standard naming guidelines for
identifying the vendor). It's common and accepted practice for small, nonshipping
projects to omit the package directive and reside in the unnamed package.

(1) Unfortunately, the language spec badly overloads the "." separator. The method
java.lang.System.out.print(), for example, consists of:

 • java.lang: Package Name

 • System: Class name

 • out: Class (static) variable; C++ would call this System::out

 • print(): Method for out

 As we shall see below, the separator also separates nested class names. Internally,

Java uses three different separators, which the high-level language does not reflect.

•

There are no header files in Java. The Java compiler learns about class APIs directly
from class files found at compile-time. (Countless C++ programming hours are lost to
problems with header files.)

•

Strings are first-class objects, unlike the C++ char *. They do not depend on null
terminators and include such object operations as String.equals()
(HelloWorld.java:10).

 • Arrays, such as the String array passed to main(), know their own length

(HelloWorld.java:7).

•

Java does not allow globals—variables, constants, procedures, anything! Even the
main() procedure is a class method (Java's equivalent of C++ static methods). The
JVM isn't running a global procedure called main(); it's running a static class member
called com.macmillan.nmeyers.HelloWorld.main().

 • The argument vector differs from C++: the command-line arguments begin with

argv[0], not argv[1].

There is a minor fraud (for instructive purposes) in the preceding example: Java
programmers do not usually specify the fully qualified class name; they use just the class
basename. Listing 2.3 shows a more typical form of the source.

 Listing 2.3 HelloWorld.java as a Java developer would really write it.

 1 package com.macmillan.nmeyers;
 2
 3 class HelloWorld2
 4 {
 5 public static void main(String[] argv)
 6 {
 7 for (int i = 0; i < argv.length; i++)
 8 {
 9 System.out.print("Hello, " + argv[i]);
 10 if (argv[i].equals("world"))
 11 System.out.print('!');
 12 System.out.print('\n');
 13 }

 - 22 -

 14 }
 15 }

Differences from the previous listing are shown in bold. For most classes (except those
from the java.lang package and those in the class's own package), a Java import
statement is needed to allow this shorthand.

Project #2: A Binary Tree

We take on a larger project here, involving some data structures. Wordtree is a simple
project that counts the occurrences of distinctive words in its input and looks for specific
words requested by the user. Specifically, it performs the following steps:

 1. Reads text from stdin

 2. Builds a simple, unbalanced binary tree of words from the input text, keeping a

frequency count

 3. Takes words from the command line and scans for their presence in the text, keeping

a separate hit count

 4. Traverses the tree, dumping the words and the counts

 For example, reading stdin from the terminal:

 bash$ wordtree quick fox foobar brown
 the quick brown fox jumps over the lazy dog
 ^D
 No such word: foobar
 brown: 1, 1
 dog: 1, 0
 fox: 1, 1
 jumps: 1, 0
 lazy: 1, 0
 over: 1, 0
 quick: 1, 1
 the: 2, 0

The output reports that the word "foobar," requested on the command line, does not
appear in the text at all. The word "brown" appears once in the text and once in the
command line. The word "the" appears twice in the text but not at all on the command
line.

 Wordtree in C++

 The interesting classes in wordtree.C (Listing 2.4) are:

 • Node—A node in our binary tree

 • Dictionary—Container for our binary tree

 • ErrorMsg—A small class used to throw an exception

 Listing 2.4 wordtree.C

 - 23 -

 1 #include <iostream.h>
 2 #include <string.h>
 3
 4 // Node: Represent a node in our dictionary tree
 5 class Node
 6 {
 7 public:
 8 char *mystring;
 9 int input_count;
 10 int other_count;
 11 Node *left, *right;
 12 // Constructor: Create a local copy of the word and
zero the count

 13 Node(char *s)
 14 {
 15 mystring = new char[strlen(s) + 1];
 16 strcpy(mystring, s);
 17 input_count = 0;
 18 other_count = 0;
 19 left = right = NULL;
 20 }
 21 // Destructor: Delete local copy of the word
 22 ~Node()
 23 {
 24 delete[] mystring;
 25 }
 26 // Comparison operators
 27 operator<(Node &n)
 28 {
 29 return strcmp(mystring, n.mystring) < 0;
 30 }
 31 operator==(Node &n)
 32 {
 33 return !strcmp(mystring, n.mystring);
 34 }
 35 operator!=(Node &n)
 36 {
 37 return strcmp(mystring, n.mystring) != 0;
 38 }
 39 operator>(Node &n)
 40 {
 41 return strcmp(mystring, n.mystring) > 0;
 42 }
 43 // Define a way to output this node
 44 friend ostream& operator<<(ostream &str, Node &n)
 45 {
 46 return str << n.mystring << ": " << n.input_count
<< ", "

 47 << n.other_count;
 48 }
 49 // In-order recursive traversal code: arg is a
function to be

 - 24 -

 50 // executed for each node
 51 void traverse(void(*proc)(Node &))
 52 {
 53 if (left) left->traverse(proc);
 54 proc(*this);
 55 if (right) right->traverse(proc);
 56 }
 57 // Method to increment the count for a node matching
the requested

 58 // key
 59 void count_word(Node &);
 60 };
 61
 62 // Here is our main dictionary, including root of the
tree

 63 class Dictionary
 64 {
 65 Node *root;
 66 public:
 67 Dictionary(istream &);
 68 // Start an in-order traversal on the root
 69 void traverse(void(*proc)(Node &))
 70 {
 71 root->traverse(proc);
 72 }
 73 // Look for this word in the dictionary. If we find
it, increment

 74 // its counter.
 75 void count_word(char *word)
 76 {
 77 // Create an automatic instance of node to use as
key

 78 Node node(word);
 79 // Start searching at root
 80 root->count_word(node);
 81 }
 82 };
 83
 84 // We'll use this class to throw an exception
 85 class ErrorMsg
 86 {
 87 public:
 88 char *message;
 89 // Constructor: A message and a missing word to
concatenate

 90 ErrorMsg(char *msg, char *word)
 91 {
 92 // Allocate enough space to hold the concatenated
message plus

 93 // a space plus null
 94 message = new char[strlen(msg) + strlen(word) +
2];

 95 strcpy(message, msg);
 96 strcat(message, " ");
 97 strcat(message, word);

 - 25 -

 98 }
 99 ~ErrorMsg()
 100 {
 101 delete[] message;
 102 }
 103 friend ostream& operator<<(ostream &str, ErrorMsg
&msg)

 104 {
 105 return str << msg.message;
 106 }
 107 };
 108
 109 // This is the function we'll use for node traversal
 110 void print_a_word(Node &node)
 111 {
 112 cout << node << '\n';
 113 }
 114
 115 int main(int argc, char *argv[])
 116 {
 117 Dictionary dictionary(cin);
 118 for (int i = 1; i < argc; i++)
 119 {
 120 try { dictionary.count_word(argv[i]); }
 121 catch (ErrorMsg &msg)
 122 {
 123 cerr << msg << '\n';
 124 }
 125 }
 126 dictionary.traverse(print_a_word);
 127 }
 128
 129 Dictionary::Dictionary(istream &str)
 130 {
 131 char word[1024];
 132 root = NULL;
 133 // Build a simple, unbalanced binary tree containing
all words we

 134 // scan from str.
 135 while (!(str >> word).fail())
 136 {
 137 // If tree is empty, build root from first word
 138 Node *newnode;
 139 if (!root) newnode = root = new Node(word);
 140 else
 141 {
 142 // Build a local Node to use as a key
 143 Node key(word);
 144 // Start search from root
 145 newnode = root;
 146 // Continue until we find matching node
 147 while (key != *newnode)
 148 {

 - 26 -

 149 if (key < *newnode)
 150 {
 151 if (!newnode->left) newnode->left =
new Node(word);

 152 newnode = newnode->left;
 153 }
 154 else
 155 {
 156 if (!newnode->right) newnode->right =
new Node(word);

 157 newnode = newnode->right;
 158 }
 159 }
 160 }
 161 newnode->input_count++;
 162 }
 163 }
 164
 165 void Node::count_word(Node &key)
 166 {
 167 // Look for a matching node in the tree. If we find
it, increment the

 168 // counter, else throw an exception.
 169 if (key == *this)
 170 {
 171 other_count++;
 172 return;
 173 }
 174 if (key < *this && left) left->count_word(key);
 175 else if (key > *this && right) right-
>count_word(key);

 176 else throw(ErrorMsg("No such word:", key.mystring));
 177 }

The dictionary is constructed (Dictionary::Dictionary(istream &)) by parsing
words out of stdin and building a tree full of Nodes, using the words as the keys.
Methods are provided (Dictionary::count_word(), Node::count_word()) to
search the tree for a match from the command line, and to traverse the tree in order
(Dictionary::traverse(), Node::traverse()) and execute a caller-supplied
function for each node.

 Wordtree in Java

This modest project illuminates a number of differences. The first difference is that Java
compilers expect you to package every class (except nested classes) in its own source
file with a matching name as shown in Listings 2.5–2.9:

 Listing 2.5 Node.java

 1 public class Node
 2 {
 3 public String mystring;
 4 public int inputCount = 0;
 5 public int otherCount = 0;
 6 public Node left = null;

 - 27 -

 7 public Node right = null;
 8 public Node(String s)
 9 {
 10 mystring = s;
 11 }
 12 public int compareTo(Object n)
 13 {
 14 return mystring.compareTo(((Node)n).mystring);
 15 }
 16 public String toString()
 17 {
 18 return mystring + ": " + inputCount + ", " +
otherCount;

 19 }
 20 public void traverse(TraverseFunc tf)
 21 {
 22 if (left != null) left.traverse(tf);
 23 tf.traverseFunc(this);
 24 if (right != null) right.traverse(tf);
 25 }
 26 public void countWord(Node key) throws
NoSuchEntryException

 27 {
 28 int compare = key.compareTo(this);
 29 if (compare == 0)
 30 {
 31 otherCount++;
 32 return;
 33 }
 34 if (compare < 0 && left != null)
left.countWord(key);

 35 else if (compare > 0 && right != null)
right.countWord(key);

 36 else throw new NoSuchEntryException("No such
word: " + key.mystring);

 37 }
 38 }

 Listing 2.6 Dictionary.java

 1 import java.io.*;
 2 import java.util.*;
 3
 4 public class Dictionary
 5 {
 6 public Node root = null;
 7 // Constructor: Build a tree by parsing words from a
reader

 8 public Dictionary(Reader r) throws IOException
 9 {
 10 // The reader classes don't know how to extract
words from

 11 // input, so we'll build our own word extractor
 12 BufferedReader reader = new BufferedReader(r);
 13 String currentLine;

 - 28 -

 14 // Read a line
 15 while ((currentLine = reader.readLine()) != null)
 16 {
 17 // Build a string tokenizer
 18 StringTokenizer tokenizer = new
StringTokenizer(currentLine);

 19 while (tokenizer.hasMoreTokens())
 20 {
 21 String word = tokenizer.nextToken();
 22 Node newnode;
 23 if (root == null) newnode = root = new
Node(word);

 24 else
 25 {
 26 // Build a key
 27 Node key = new Node(word);
 28 // Start at root
 29 newnode = root;
 30 // Continue until we find a matching
node

 31 int compare;
 32 while ((compare =
key.compareTo(newnode)) != 0)

 33 {
 34 if (compare < 0)
 35 {
 36 if (newnode.left == null)
 37 newnode.left = new
Node(word);

 38 newnode = newnode.left;
 39 }
 40 else
 41 {
 42 if (newnode.right == null)
 43 newnode.right = new
Node(word);

 44 newnode = newnode.right;
 45 }
 46 }
 47 }
 48 newnode.inputCount++;
 49 }
 50 }
 51 }
 52 // Traverser
 53 public void traverse(TraverseFunc tf)
 54 {
 55 root.traverse(tf);
 56 }
 57 // Look for word and increment count
 58 public void countWord(String word) throws
NoSuchEntryException

 59 {
 60 root.countWord(new Node(word));
 61 }

 - 29 -

 62 }

 Listing 2.7 NoSuchEntryException.java

 1 public class NoSuchEntryException extends Exception
 2 {
 3 public NoSuchEntryException(String str)
 4 {
 5 super(str);
 6 }
 7 }

 Listing 2.8 TraverseFunc.java

 1 public interface TraverseFunc
 2 {
 3 void traverseFunc(Node n);
 4 }

 Listing 2.9 WordTree.java

 1 import java.io.*;
 2
 3 public class WordTree
 4 {
 5 static public void main(String[] argv)
 6 {
 7 Dictionary dictionary = null;
 8 try { dictionary = new Dictionary(new
InputStreamReader(System.in)); }

 9 catch (IOException e)
 10 {
 11 System.err.println(e);
 12 System.exit(1);
 13 }
 14 for (int i = 0; i < argv.length; i++)
 15 {
 16 try { dictionary.countWord(argv[i]); }
 17 catch (NoSuchEntryException e)
 18 {
 19 System.err.println(e.getMessage());
 20 }
 21 }
 22 dictionary.traverse(new PrintMeClass());
 23 }
 24 static public class PrintMeClass implements
TraverseFunc

 25 {
 26 public void traverseFunc(Node n)
 27 {
 28 System.out.println(n);
 29 }
 30 }

 - 30 -

 31 }

 Some differences evident in the project:

 • Class declarations include all method code; the code cannot live elsewhere, as in the

C++ implementation of the Dictionary(istream&) constructor.

•

Scope declarations for class members appear with each member declaration. There
are four possible scopes: public, private, protected, and package. The first
three are similar to C++; the fourth limits access to other classes in the same package
(and is the default if none is specified).

•

We never work directly with pointers in Java, we use object references: these behave
much like C++ references (pointers in disguise), but they are assignable like pointers.
Compare wordtree.C:11 to Node.java:6–7. The latter is creating references,
initially empty, that will be assigned later.

•

The word null is a real keyword denoting an unassigned reference (Node.java:6–
7). It is not a macro for zero, as with the C++ NULL. Java compilers (at least those
based on Sun's code) do not even support macros, which are considered very non-
object-oriented.

•

Java does not allow operator or typecast overloading. We've replaced the overloaded
comparison operators (wordtree.C:27–42) with a different comparison function
(Node.java:12–15). We've replaced the C++ ostream operator<<
(wordtree.C:44–48) with a function that generates a text representation
(Node.java:16–19). All Java objects have a toString() method, which is
responsible for creating a text representation for output.

•

Typecasting is somewhat less common in Java than in C++, but it does occur. In
Node.java:14, we downcast an argument of type java.lang.Object (the primal
superclass of everything) to Node. Runtime checking is always performed for a
typecast; an exception is thrown for an invalid coercion.

•

We cannot use function pointers, as in wordtree.C's handling of the traversal-time
function (wordtree.C:51–56,126). Instead, we define an interface (a pure abstract
class) called TraverseFunc that is required by the traversal code (Node.java:20–
25), and implemented by a nested class (WordTree.java:24–30) for use in the
traversal call (WordTree.java:22).

•

Java's strong typing avoids cross-pollution between integers, booleans, and object
reference values: a null reference != integer 0 != boolean false. Compare
wordtree.C:53, which uses a pointer value as a boolean, to the corresponding line at
Node.java:22, which uses a boolean expression. Similarly, integers cannot be used
as boolean expressions.

•

The import statements (Dictionary.java:1–2) allow us to use shorthand
references to classes instead of fully qualified names: BufferedReader instead of
java.io.BufferedReader, StringTokenizer instead of
java.util.StringTokenizer. In this example, we use a wildcard notation
(import java.io.*) to import entire packages; some developers prefer to
individually import each class to be used (import java.io.BufferedReader, for
example).

•

Exceptions must be declared where they are thrown (Node.java:26). They must be
caught upstream (WordTree.java:17–20) and declared by all methods between the
throw and the catch. (Dictionary.java:58-61). The Java compiler does not let you
forget to keep track of your exceptions: It would consider

 - 31 -

Dictionary.countWord() in error if it did not include the throws clause due to
one of its callees.

 • Java includes an Exception class, which is subclassed

(NoSuchEntryException.java) and thrown when exceptions are needed.

•

Relationship to a superclass is declared with an extends clause
(NoSuchEntryException.java:1) and to a superinterface with an implements
clause (WordTree.java:24). A class can have one superclass and many
superinterfaces, which is the closest Java comes to multiple inheritance. Superclass
initialization is handled with a super() call (NoSuchEntryException.java:5).

•

Primitive types (char, byte, int, float, short, long, double, and boolean) are
allocated much as in C++; objects are not. A class instance cannot be allocated
automatically on the stack (wordtree.C:117) or as an array element; you must first
create the object reference(s) and then allocate an instance(s) for it
(WordTree.java:7–8).

This restriction applies to array as well as to stack variables: If you want an array of
object FooBar, you create an array of FooBar references and then assign an
instance to each reference: "FooBar fooBar = new FooBar[2]; fooBar[0] =
new FooBar(); fooBar[1] = new FooBar(); ."

•

No delete or delete[] keywords anywhere! Garbage collection cleans up class
objects after all references to them disappear. After WordTree.main() terminates,
there are no remaining references to the Dictionary it allocated on line 8—so that
instance can be garbage-collected. That instance contains, in turn, the tree's root node
reference, which contains references to children, and so on. By the time the garbage
collector has shaken out all unreferenced objects, the entire dictionary has been
garbage-collected and returned to free memory.

 • No destructors, even if we want them. Java has finalizers, which are called when (and if)

the object is garbage-collected at some unspecified future time.

Project #3: Multithreading

One final example shows Java's multithreading support. Here is a simple multithreaded
program to count to 20, outputting the numbers as we go. One thread is responsible for
the even numbers, another for the odd numbers.

 ThreadCount in C++

 We see in the C++ program (Listing 2.10) a reliance on the POSIX pthreads interface,

a library-supplied mechanism to create and manage threads. Classes of interest:

 • counter—A class that encapsulates our counter, and the mutex and condition

variable required to implement thread safety.

•

odd_counter—A class encapsulating the odd counter, which increments the counter
when it is odd. Most of the code is devoted to various pthread synchronization calls:
locking the counter, waiting for a signal from the other thread that it has been changed,
signaling a change to the other thread, unlocking the counter.

The counter also includes a static function needed to start up the class. Because
pthread_create() is a C function that expects a function pointer (not an object),
the startup() function—which pthread_create() can handle—effectively
encapsulates the object.

 - 32 -

 • even_counter—The other counter.

 The main thread launches the other two threads, waits for them to finish, and then exits.

 Listing 2.10 threadcount.C

 1 #include <pthread.h>
 2 #include <iostream.h>
 3
 4 // threadcount: A multi-threaded program that counts to
20

 5
 6 // This is our main counter and its thread-safety
components

 7 class counter
 8 {
 9 public:
 10 pthread_cond_t condition;
 11 pthread_mutex_t mutex;
 12 int value;
 13 counter()
 14 {
 15 condition =
(pthread_cond_t)PTHREAD_COND_INITIALIZER;

 16 mutex =
(pthread_mutex_t)PTHREAD_MUTEX_INITIALIZER;

 17 value = 0;
 18 }
 19 };
 20
 21 // This class encapsulates functionality to increment the
counter

 22 // when it is odd
 23 class odd_counter
 24 {
 25 counter &ctr;
 26 odd_counter(counter &c) : ctr(c) {}
 27 void count()
 28 {
 29 // Lock the counter
 30 pthread_mutex_lock(&ctr.mutex);
 31
 32 // Count to 20
 33 while (ctr.value < 20)
 34 {
 35 // If value is currently even, wait for a
change

 36 while (!(ctr.value & 1))
 37 pthread_cond_wait(&ctr.condition,
&ctr.mutex);

 38 // Change the value
 39 ctr.value++;
 40 // Signal the change
 41 pthread_cond_broadcast(&ctr.condition);
 42 // Print results

 - 33 -

 43 cout << ctr.value << '\n';
 44 }
 45 pthread_mutex_unlock(&ctr.mutex);
 46 }
 47 public:
 48 // A static function (suitable for passing to
pthread_create) to

 49 // create and start up our counter
 50 static void *startup(void *c)
 51 {
 52 // Create an automatic instance of class and call
count() method

 53 odd_counter(*(counter *)c).count();
 54 return 0;
 55 }
 56 };
 57
 58 // This class encapsulates functionality to increment the
counter

 59 // when it is even
 60 class even_counter
 61 {
 62 counter &ctr;
 63 even_counter(counter &c) : ctr(c) {}
 64 void count()
 65 {
 66 // Lock the counter
 67 pthread_mutex_lock(&ctr.mutex);
 68
 69 // Count to 20
 70 while (ctr.value < 19)
 71 {
 72 // If value is currently odd, wait for a
change

 73 while (ctr.value & 1)
 74 pthread_cond_wait(&ctr.condition,
&ctr.mutex);

 75 // Change the value
 76 ctr.value++;
 77 // Signal the change
 78 pthread_cond_broadcast(&ctr.condition);
 79 // Print results
 80 cout << ctr.value << '\n';
 81 }
 82 pthread_mutex_unlock(&ctr.mutex);
 83 }
 84 public:
 85 // A static function (suitable for passing to
pthread_create) to

 86 // create and start up our counter
 87 static void *startup(void *c)
 88 {
 89 // Create an automatic instance of class and call
count() method

 90 even_counter(*(counter *)c).count();

 - 34 -

 91 return 0;
 92 }
 93 };
 94
 95 int main()
 96 {
 97 // Our counter
 98 counter cnt;
 99 pthread_t thread1, thread2;
 100 // Start first thread with odd_counter, passing it
our counter

 101 pthread_create(&thread1, NULL, odd_counter::startup,
&cnt);

 102 // Start second thread with even_counter, passing it
our counter

 103 pthread_create(&thread2, NULL, even_counter::startup,
&cnt);

 104 // Hang around for threads to end
 105 pthread_join(thread1, NULL);
 106 pthread_join(thread2, NULL);
 107 // Done!
 108 exit(0);
 109 }

 ThreadCount in Java

 Threading support is built in to the language, and all objects include basic plumbing to

support synchronization. The source (Listings 2.11–2.14) is much simpler.

 Listing 2.11 Counter.java

 1 class Counter
 2 {
 3 public int value;
 4 }

 Listing 2.12 EvenCounter.java

 1 class EvenCounter implements Runnable
 2 {
 3 Counter counter;
 4 EvenCounter(Counter c)
 5 {
 6 counter = c;
 7 }
 8 public void run()
 9 {
 10 synchronized(counter)
 11 {
 12 while (counter.value < 19)
 13 {
 14 while ((counter.value & 1) == 1)
 15 {
 16 try { counter.wait(); }

 - 35 -

 17 catch (InterruptedException e)
{}

 18 }
 19 counter.value++;
 20 counter.notifyAll();
 21 System.out.println(counter.value);
 22 }
 23 }
 24 }
 25 }

 Listing 2.13 OddCounter.java

 1 class OddCounter implements Runnable
 2 {
 3 Counter counter;
 4 OddCounter(Counter c)
 5 {
 6 counter = c;
 7 }
 8 public void run()
 9 {
 10 synchronized(counter)
 11 {
 12 while (counter.value < 20)
 13 {
 14 while ((counter.value & 1) == 0)
 15 {
 16 try { counter.wait(); }
 17 catch (InterruptedException e)
{}

 18 }
 19 counter.value++;
 20 counter.notifyAll();
 21 System.out.println(counter.value);
 22 }
 23 }
 24 }
 25 }

 Listing 2.14 ThreadCount.java

 1 // ThreadCount: A multi-threaded program that counts to
20

 2
 3 class ThreadCount
 4 {
 5 static void main(String[] argv)
 6 {
 7 Counter counter = new Counter();
 8 (new Thread(new OddCounter(counter))).start();
 9 (new Thread(new EvenCounter(counter))).start();
 10 }

 - 36 -

 11 }

 Some differences to note:

•

No mutexes or condition variables in the Counter class. The necessary
synchronization plumbing is built in to all objects—it's inherited from the
java.lang.Object superclass. The synchronized clause (EvenCounter.java:10,
OddCounter.java:10) provides locking of the Counter object during the code
block. The java.lang.Object.wait() (EvenCounter.java:16,
OddCounter.java:16) and java.lang.Object.notifyAll()
(EvenCounter.java:20, OddCounter.java:20) methods handle the interthread
synchronization.

•

Recalling our earlier use of interfaces instead of function pointers, the
java.lang.Thread constructor (invoked at ThreadCount.java:8-9) expects a
class that implements the Runnable interface. This interface contains a single entry
point: run(), the method to be run by the new thread.

 • After threads are created, they are started with a call to the

java.lang.Thread.start() method (ThreadCount.java:8-9).

•

Notice that ThreadCount.main() does not wait for the threads to complete. Java
programs terminate after the last thread has exited or when
java.lang.System.exit() is called. GUI applications launch additional threads to
handle the event loops, so they do not terminate until the app explicitly exits.

 Moving On

There's more to Java than a handful of examples, of course, but these small projects
should give a developer who is conversant in C++ a brief overview of the language. Like all
examples in the book, this code is available on the CD-ROM for further play. We have
avoided discussing how to compile or run Java because the exact details depend on your
choice of tools: that will get extensive attention later.

 Summary

Java bears many structural similarities to C++, with differences largely concentrated in
areas that make development easier and less prone to error. This chapter has, through
example, provided a glimpse into how Java's approaches to memory management, arrays,
type safety, handling of pointers and references, exceptions, and multi-threading simplify
the design of applications.

Chapter 3: A Look at the Java Core Classes

 A Brief Introduction to Java

The Java Runtime Environment—the Java Virtual Machine (JVM) and the collection of
classes that define the facilities available to Java programs—is not an operating system.
But it's getting close. To create the capable, platform-independent runtime environment
found in JDK1.2, the class libraries have grown substantially.(1)

(1)

One might convincingly argue that Java has become an OS, given the amount of OS-
type functionality it now provides. Although some of this functionality is simply a
platform-neutral wrapper around native capabilities, an increasing amount of capability
(such as GUIs, security, and imaging) is provided by extensive support in the Java
platform itself.

 - 37 -

The numbers are a bit overwhelming: JDK1.1 has 22 packages containing 392 classes,
implementing 3,671 methods. JDK1.2 has 59 packages containing 1,457 classes,
implementing 14,618 methods. And these are only the public and protected classes;
we're not including the classes and methods you can't reach from outside. (As of this
writing, the Blackdown JDK1.2—ported from the Sun reference implementation—takes
more than 20MB of disk space for the JVM, the compressed core class libraries, and the
native support libraries.)

In this chapter, we take a high-level look at the packages and classes that make up the
Java runtime environment. This chapter serves more as an introduction than a reference.
A complete class and method reference is an invaluable aid, but it's too big to print. Class
references and tutorials are available in bookstores, in pieces: buy one thick book to
study the Java Foundation Classes, another for security, another for CORBA, and so on.
For a comprehensive reference, the best place to start is the 80MB worth of JDK1.2 API
HTML documentation available, free of charge, from Sun's Java site (visit
http://java.sun.com and drill down through the Documentation link).

For each package, we will provide an overall package description, describe any particularly
interesting classes, and delve into detail where appropriate. We will also list classes and
interfaces in each of the packages.

Package java.applet

The java.applet package handles the basic requirements for applets—applications
that run in Web browsers and in similar embedded contexts. All applets must be derived
from class Applet.

The Applet class includes life cycle entry points for applet loading, startup, shutdown,
and unloading; non-trivial applet classes must override some or all of these methods.
(Unlike standalone applications, applets are not entered through a main() entry point.)
The class also includes methods to facilitate interaction with the browser environment,
such as playing audio, writing status messages, and interacting with other applets on the
page.

 Here is a trivial example of an applet with a single pushbutton:

 1 import java.applet.*;
 2 import java.awt.*;
 3
 4 public class TrivialApplet extends Applet
 5 {
 6 public TrivialApplet()
 7 {
 8 add(new Button("Hello World!"));
 9 }
 10 }

 Some HTML code to display the applet:

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <applet code="TrivialApplet.class"
 5 width="100"
 6 height="25">No Applet?</applet>
 7 </body>

 - 38 -

 8 </html>

 And the result, viewed in Netscape Navigator, is shown in Figure 3.1.

 Figure 3.1: A trivial applet running in the Netscape browser.

 Listing 3.1 shows all public classes and interfaces in the java.applet package.

 Listing 3.1 java.applet Classes and Interfaces List

 public class java.applet.Applet extends java.awt.Panel
 public interface java.applet.AppletContext extends
java.lang.Object

 public interface java.applet.AppletStub extends java.lang.Object
 public interface java.applet.AudioClip extends java.lang.Object

Package java.awt

 The java.awt package is the home of the Abstract Windowing Toolkit (AWT), the core

Java graphic component. Among the AWT's functions are the following:

•

A platform-independent interface to the native graphical rendering environment (The X
Window System, Microsoft Windows, MacOS, OS/2, browser internal, and so on) for
2D rendering and keyboard/mouse input.

•

A platform-independent GUI, built on top of native GUIs (Motif, Microsoft Windows,
browser-provided widgets, and so on). In JDK1.2, this role is being subsumed by the
new Swing toolkit. We discuss the reasons and the details later in the chapter in our
examination of package javax.swing.

•

A platform-independent event mechanism for handling window-system and GUI events
such as window resizing, focus changes, button-pressing, and window visibility
changes.

 • A layout management framework to support GUI component layout.

 • A mechanism for printing from Java applications.

 • A 2D graphical rendering model and primitives for basic rendering operations such as

drawing lines, rectangles, polygons, and such.

It is in the latter area—2D rendering model—that the AWT has changed most significantly
between JDK1.1 and JDK1.2. JDK1.2 introduced a new model, Graphics2D, that
incorporates techniques from computer graphics to improve graphical rendering
capabilities.

 - 39 -

Prior to Graphics2D, the Java 2D rendering model was the X Window System rendering
model: limited color palette, bitmapped fonts, pixel-based coordinate system, and non-
blended pixel rendering. The capabilities in Graphics2D do a much better job of
mapping the real world—smooth objects and infinite color palettes—to the constrained
world of bitmapped computer displays. You do not have to use the new capabilities; they
are disabled by default, and they can exact a performance cost. But they are there if you
need them.

The new capabilities will sound familiar to anyone familiar with the image processing
aspects of 2D graphics: antialiasing, fractional font metrics, coordinate transformations,
alpha blending, dithering, scalable fonts. Graphics2D brings these capabilities to all
JDK1.2 environments—including those with display devices that do not support them. It
achieves this magic, in most implementations, by performing its rendering entirely in JVM
memory and blitting (copying pixel-for-pixel) the results to the display device. The result:
graphics performance can suffer significantly if you use these capabilities.

Here is a modest example of what Graphics2D's new rendering capabilities can do for
you. Figures 3.2 and 3.3 show two waterfall charts of the default Java sans-serif font, at
various sizes from 10 to 20 pixels in height (the program that generated this output,
WaterFall, can be found in Appendix B, "Miscellaneous Program Listings"):

 Figure 3.2: Waterfall with standard X-style rendering.

 Figure 3.3: Waterfall with antialiasing and fractional font metrics.

The first example is typical of text rendering on bitmapped displays: jagged edges,
inconsistent spacing, abrupt changes in the perceived stroke weight as the point size
increases. The second example, using Graphics2D to transform the image from an
idealized high-resolution space to a low-resolution bitmapped space, yields generally
better output. (Unfortunately, the half-toning techniques required for printing this book
tend to muddle the results on the printed page. The best way to compare is to run the
WaterFall program, provided in the appendices and on the CD-ROM.)

 Listing 3.2 shows all public classes and interfaces in the java.awt package.

 - 40 -

 Listing 3.2 java.awt Classes and Interfaces List

 public class java.awt.AWTError extends java.lang.Error
 public abstract class java.awt.AWTEvent extends
java.util.EventObject

public class java.awt.AWTEventMulticaster extends
java.lang.Object
 implements java.awt.event.ActionListener
 implements java.awt.event.AdjustmentListener
 implements java.awt.event.ComponentListener
 implements java.awt.event.ContainerListener
 implements java.awt.event.FocusListener
 implements java.awt.event.InputMethodListener
 implements java.awt.event.ItemListener
 implements java.awt.event.KeyListener
 implements java.awt.event.MouseListener
 implements java.awt.event.MouseMotionListener
 implements java.awt.event.TextListener
 implements java.awt.event.WindowListener

 public class java.awt.AWTException extends java.lang.Exception
 public final class java.awt.AWTPermission extends
 java.security.BasicPermission (new in 1.2)
 public interface java.awt.ActiveEvent extends
 java.lang.Object (new in 1.2)
 public interface java.awt.Adjustable extends java.lang.Object
 public final class java.awt.AlphaComposite extends
 java.lang.Object (new in 1.2)
 implements java.awt.Composite

 public class java.awt.BasicStroke extends
 java.lang.Object (new in 1.2)
 implements java.awt.Stroke

public class java.awt.BorderLayout extends java.lang.Object
 implements java.awt.LayoutManager2
 implements java.io.Serializable

 public class java.awt.Button extends java.awt.Component
 public class java.awt.Canvas extends java.awt.Component

public class java.awt.CardLayout extends java.lang.Object
 implements java.awt.LayoutManager2
 implements java.io.Serializable

 public class java.awt.Checkbox extends java.awt.Component
 implements java.awt.ItemSelectable

 public class java.awt.CheckboxGroup extends java.lang.Object
 implements java.io.Serializable

 public class java.awt.CheckboxMenuItem extends java.awt.MenuItem
 implements java.awt.ItemSelectable

 public class java.awt.Choice extends java.awt.Component
 implements java.awt.ItemSelectable

public class java.awt.Color extends java.lang.Object
 implements java.awt.Paint
 implements java.io.Serializable

public abstract class java.awt.Component extends
java.lang.Object
 implements java.awt.MenuContainer
 implements java.awt.image.ImageObserver
 implements java.io.Serializable

 public final class java.awt.ComponentOrientation extends
 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public interface java.awt.Composite extends

 - 41 -

 java.lang.Object (new in 1.2)
 public interface java.awt.CompositeContext extends
 java.lang.Object (new in 1.2)
 public class java.awt.Container extends java.awt.Component
 public class java.awt.Cursor extends java.lang.Object
 implements java.io.Serializable

 public class java.awt.Dialog extends java.awt.Window

public class java.awt.Dimension extends
java.awt.geom.Dimension2D
 implements java.io.Serializable

 public class java.awt.Event extends java.lang.Object
 implements java.io.Serializable

 public class java.awt.EventQueue extends java.lang.Object
 public class java.awt.FileDialog extends java.awt.Dialog

public class java.awt.FlowLayout extends java.lang.Object
 implements java.awt.LayoutManager
 implements java.io.Serializable

 public class java.awt.Font extends java.lang.Object
 implements java.io.Serializable

public abstract class java.awt.FontMetrics extends
java.lang.Object
 implements java.io.Serializable

 public class java.awt.Frame extends java.awt.Window
 implements java.awt.MenuContainer

 public class java.awt.GradientPaint extends
 java.lang.Object (new in 1.2)
 implements java.awt.Paint

 public abstract class java.awt.Graphics extends java.lang.Object
 public abstract class java.awt.Graphics2D extends
 java.awt.Graphics (new in 1.2)
 public abstract class java.awt.GraphicsConfigTemplate extends
 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public abstract class java.awt.GraphicsConfiguration extends
 java.lang.Object (new in 1.2)
 public abstract class java.awt.GraphicsDevice extends
 java.lang.Object (new in 1.2)
 public abstract class java.awt.GraphicsEnvironment
 extends java.lang.Object (new in 1.2)

public class java.awt.GridBagConstraints extends
java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

public class java.awt.GridBagLayout extends java.lang.Object
 implements java.awt.LayoutManager2
 implements java.io.Serializable

public class java.awt.GridLayout extends java.lang.Object
 implements java.awt.LayoutManager
 implements java.io.Serializable

 public class java.awt.IllegalComponentStateException extends
 java.lang.IllegalStateException
 public abstract class java.awt.Image extends java.lang.Object

public class java.awt.Insets extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public interface java.awt.ItemSelectable extends java.lang.Object
 public class java.awt.Label extends java.awt.Component
 public interface java.awt.LayoutManager extends java.lang.Object

 - 42 -

public interface java.awt.LayoutManager2 extends
java.lang.Object
 implements java.awt.LayoutManager

 public class java.awt.List extends java.awt.Component
 implements java.awt.ItemSelectable

 public class java.awt.MediaTracker extends java.lang.Object
 implements java.io.Serializable

 public class java.awt.Menu extends java.awt.MenuItem
 implements java.awt.MenuContainer

 public class java.awt.MenuBar extends java.awt.MenuComponent
 implements java.awt.MenuContainer

 public abstract class java.awt.MenuComponent extends
 java.lang.Object
 implements java.io.Serializable

 public interface java.awt.MenuContainer extends java.lang.Object
 public class java.awt.MenuItem extends java.awt.MenuComponent
 public class java.awt.MenuShortcut extends java.lang.Object
 implements java.io.Serializable

 public interface java.awt.Paint extends
 java.lang.Object (new in 1.2)
 implements java.awt.Transparency

 public interface java.awt.PaintContext extends
 java.lang.Object (new in 1.2)
 public class java.awt.Panel extends java.awt.Container
 public class java.awt.Point extends java.awt.geom.Point2D
 implements java.io.Serializable

public class java.awt.Polygon extends java.lang.Object
 implements java.awt.Shape
 implements java.io.Serializable

 public class java.awt.PopupMenu extends java.awt.Menu
 public interface java.awt.PrintGraphics extends java.lang.Object
 public abstract class java.awt.PrintJob extends java.lang.Object

public class java.awt.Rectangle extends
java.awt.geom.Rectangle2D
 implements java.awt.Shape
 implements java.io.Serializable

 public class java.awt.RenderingHints extends

java.lang.Object (new in 1.2)
 implements java.lang.Cloneable
 implements java.util.Map

 public abstract class java.awt.RenderingHints.Key extends
 java.lang.Object (new in 1.2)
 public class java.awt.ScrollPane extends java.awt.Container
 public class java.awt.Scrollbar extends java.awt.Component
 implements java.awt.Adjustable

 public interface java.awt.Shape extends java.lang.Object
 public interface java.awt.Stroke extends
 java.lang.Object (new in 1.2)
 public final class java.awt.SystemColor extends java.awt.Color
 implements java.io.Serializable

 public class java.awt.TextArea extends java.awt.TextComponent
 public class java.awt.TextComponent extends java.awt.Component
 public class java.awt.TextField extends java.awt.TextComponent
 public class java.awt.TexturePaint extends
 java.lang.Object (new in 1.2)
 implements java.awt.Paint

 public abstract class java.awt.Toolkit extends java.lang.Object
 public interface java.awt.Transparency extends
 java.lang.Object (new in 1.2)

 - 43 -

 public class java.awt.Window extends java.awt.Container

 Package java.awt.color

This package supports color management in Java—the use of device-independent color
spaces such as sRGB instead of the device-dependent RGB commonly used in
bitmapped graphics (the reason blue looks different on your display and your printer).
These classes will eventually replace the functionality provided by the java.awt.Color
class, but for now, this package is a work-in-progress.

Color management, which has long been a part of high-end graphic arts environments, is
still not heavily used on mainstream systems. It offers much in the way of reliable and
consistent color output, but it also presents the difficult and expensive problem of keeping
your devices (monitors and printers) precisely calibrated. If you want to learn more about
color management and sRGB, a paper published by the World Wide Web Consortium
provides some detail: http://www.w3.org/Graphics/Color/sRGB.html.

 Listing 3.3 shows all public classes and interfaces in the java.awt.color package.

 Listing 3.3 java.awt.color Classes and Interfaces List

 public class java.awt.color.CMMException extends
 java.lang.RuntimeException (new in 1.2)
 public abstract class java.awt.color.ColorSpace extends
 java.lang.Object (new in 1.2)
 public class java.awt.color.ICC_ColorSpace extends
 java.awt.color.ColorSpace (new in 1.2)
 public class java.awt.color.ICC_Profile extends
 java.lang.Object (new in 1.2)
 public class java.awt.color.ICC_ProfileGray extends
 java.awt.color.ICC_Profile (new in 1.2)
 public class java.awt.color.ICC_ProfileRGB extends
 java.awt.color.ICC_Profile (new in 1.2)
 public class java.awt.color.ProfileDataException extends
 java.lang.RuntimeException (new in 1.2)

 Package java.awt.datatransfer

This package provides a platform-independent interface for data transfer between
applications using the Clipboard. In the X Window System (and in Microsoft Windows, for
that matter), the Clipboard is used when you select the cut or copy menu item in one
application and the paste menu item to transfer data to another application.

Like many Java features, this is a lowest-common-denominator approach to supporting
native platform capabilities. It supports a data transfer mechanism found on many
graphical platforms, while ignoring a unique (and popular) X mechanism called Primary
Selection—which uses mouse buttons instead of cut, copy, and paste menu
selections.

 In Chapter 56, "X Window System Tips and Tricks," in the section "XClipboard: A JNI-

Based Cut-and-Paste Tool" we present a tool to access Primary Selection.

 Listing 3.4 shows all public classes and interfaces in the java.awt.datatransfer

package.

 Listing 3.4 java.awt.datatransfer Classes and Interfaces List

 - 44 -

 public class java.awt.datatransfer.Clipboard extends
 java.lang.Object
 public interface java.awt.datatransfer.ClipboardOwner extends
 java.lang.Object
 public class java.awt.datatransfer.DataFlavor extends

java.lang.Object
 implements java.io.Externalizable
 implements java.lang.Cloneable

 public interface java.awt.datatransfer.FlavorMap extends
 java.lang.Object (new in 1.2)
 public class java.awt.datatransfer.StringSelection extends

java.lang.Object
 implements java.awt.datatransfer.ClipboardOwner
 implements java.awt.datatransfer.Transferable

 public final class java.awt.datatransfer.SystemFlavorMap extends
 java.lang.Object (new in 1.2)
 implements java.awt.datatransfer.FlavorMap

 public interface java.awt.datatransfer.Transferable extends
 java.lang.Object
 public class java.awt.datatransfer.UnsupportedFlavorException
 extends java.lang.Exception

 Package java.awt.dnd

This package, new in JDK1.2, provides platform-independent drag-and-drop (DnD)
capabilities by integrating Java with native DnD mechanisms. It supports DnD among
Java applications and between Java and non-Java applications.

 Listing 3.5 shows all public classes and interfaces in the java.awt.dnd package.

 Listing 3.5 java.awt.dnd Classes and Interfaces List

 public interface java.awt.dnd.Autoscroll extends
 java.lang.Object (new in 1.2)
 public final class java.awt.dnd.DnDConstants extends
 java.lang.Object (new in 1.2)
 public class java.awt.dnd.DragGestureEvent extends
 java.util.EventObject (new in 1.2)
 public interface java.awt.dnd.DragGestureListener extends
 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public abstract class java.awt.dnd.DragGestureRecognizer extends
 java.lang.Object (new in 1.2)
 public class java.awt.dnd.DragSource extends
 java.lang.Object (new in 1.2)
 public class java.awt.dnd.DragSourceContext extends
 java.lang.Object (new in 1.2)
 implements java.awt.dnd.DragSourceListener

 public class java.awt.dnd.DragSourceDragEvent extends
 java.awt.dnd.DragSourceEvent (new in 1.2)
 public class java.awt.dnd.DragSourceDropEvent extends
 java.awt.dnd.DragSourceEvent (new in 1.2)
 public class java.awt.dnd.DragSourceEvent extends
 java.util.EventObject (new in 1.2)

 - 45 -

 public interface java.awt.dnd.DragSourceListener extends
 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public class java.awt.dnd.DropTarget extends

java.lang.Object (new in 1.2)
 implements java.awt.dnd.DropTargetListener
 implements java.io.Serializable

 public class java.awt.dnd.DropTarget.DropTargetAutoScroller
extends

 java.lang.
 Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class java.awt.dnd.DropTargetContext extends
 java.lang.Object (new in 1.2)
 public class java.awt.dnd.DropTargetContext.TransferableProxy
 extends java.lang.
 Object (new in 1.2)
 implements java.awt.datatransfer.Transferable

 public class java.awt.dnd.DropTargetDragEvent extends
java.awt.dnd.

 DropTargetEvent (new in 1.2)
 public class java.awt.dnd.DropTargetDropEvent extends
java.awt.dnd.

 DropTargetEvent (new in 1.2)
 public class java.awt.dnd.DropTargetEvent extends
 java.util.EventObject (new in 1.2)
 public interface java.awt.dnd.DropTargetListener extends
 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public class java.awt.dnd.InvalidDnDOperationException extends
 java.lang.
 IllegalStateException (new in 1.2)
 public abstract class java.awt.dnd.MouseDragGestureRecognizer
 extends java.awt.dnd.

DragGestureRecognizer (new in 1.2)
 implements java.awt.event.MouseListener
 implements java.awt.event.MouseMotionListener

 Package java.awt.event

This package defines the classes and interfaces that support the Java event-handling
mechanism. Event-handling is used to implement application behavior triggered by
external events (such as pressing a button in the GUI), and is based on a
broadcast/listener model: objects interested in receiving events register their interest with
objects capable of sending events. When events occur, notification is broadcast to the
interested listeners. (To those who have been around since the Java 1.0 days, this
mechanism was substantially changed in 1.1.)

A quick demonstration is shown in Listing 3.6. We'll extend the TrivialApplet
(presented in the "Package java.applet" section) by adding some mouse-press and
mouse-release behavior. The applet will handle the event by sending "button pressed"
and "button released" messages to the browser status line.

 Listing 3.6 Extending the TrivialApplet Behavior

 1 import java.applet.*;
 2 import java.awt.*;

 - 46 -

 3 import java.awt.event.*;
 4
 5 public class TrivialApplet2 extends Applet implements
MouseListener

 6 {
 7 public TrivialApplet2()
 8 {
 9 // Allocate and install our button
 10 Button button = new Button("Hello World!");
 11 add(button);
 12 // Register this class as a listener for mouse
events. This

 13 // call expects a MouseListener as an argument
 14 button.addMouseListener(this);
 15 }
 16 // Implementation of the MouseListener interface.
When

 17 // we implement an interface, we must implement all
 18 // methods... even those we don't care about.
 19 public void mouseClicked(MouseEvent e) {}
 20 public void mouseEntered(MouseEvent e) {}
 21 public void mouseExited(MouseEvent e) {}
 22 public void mousePressed(MouseEvent e)
 23 {
 24 showStatus("Button pressed");
 25 }
 26 public void mouseReleased(MouseEvent e)
 27 {
 28 showStatus("Button released");
 29 }
 30 }

On line 14, we register the TrivialApplet2 class as a listener. The class fulfills the
basic requirement of listening for mouse events—it implements the MouseListener
interface. Lines 22-29 implement the new actions.

 The result, viewed in Netscape Navigator, is shown in Figure 3.4.

 Figure 3.4: Trivial applet with a mouse listener added.

 Listing 3.7 shows all public classes and interfaces in the java.awt.event package.

 Listing 3.7 java.awt.event Classes and Interfaces List

 - 47 -

 public interface java.awt.event.AWTEventListener extends
 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public class java.awt.event.ActionEvent extends java.awt.AWTEvent
 public interface java.awt.event.ActionListener extends
 java.lang.Object
 implements java.util.EventListener

 public class java.awt.event.AdjustmentEvent extends
 java.awt.AWTEvent
 public interface java.awt.event.AdjustmentListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.ComponentAdapter extends
 java.lang.Object
 implements java.awt.event.ComponentListener

 public class java.awt.event.ComponentEvent extends
 java.awt.AWTEvent
 public interface java.awt.event.ComponentListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.ContainerAdapter extends
 java.lang.Object
 implements java.awt.event.ContainerListener

 public class java.awt.event.ContainerEvent extends
 java.awt.event.ComponentEvent
 public interface java.awt.event.ContainerListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.FocusAdapter extends
 java.lang.Object
 implements java.awt.event.FocusListener

 public class java.awt.event.FocusEvent extends
 java.awt.event.ComponentEvent
 public interface java.awt.event.FocusListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.InputEvent extends
 java.awt.event.ComponentEvent
 public class java.awt.event.InputMethodEvent extends
 java.awt.AWTEvent (new in 1.2)
 public interface java.awt.event.InputMethodListener extends
 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public class java.awt.event.InvocationEvent extends
 java.awt.AWTEvent (new in 1.2)
 implements java.awt.ActiveEvent

 public class java.awt.event.ItemEvent extends java.awt.AWTEvent
 public interface java.awt.event.ItemListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.KeyAdapter extends
 java.lang.Object
 implements java.awt.event.KeyListener

 public class java.awt.event.KeyEvent extends
 java.awt.event.InputEvent
 public interface java.awt.event.KeyListener extends

 - 48 -

java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.MouseAdapter extends
 java.lang.Object
 implements java.awt.event.MouseListener

 public class java.awt.event.MouseEvent extends
 java.awt.event.InputEvent
 public interface java.awt.event.MouseListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.MouseMotionAdapter extends
 java.lang.Object
 implements java.awt.event.MouseMotionListener

 public interface java.awt.event.MouseMotionListener extends
 java.lang.Object
 implements java.util.EventListener

 public class java.awt.event.PaintEvent extends
 java.awt.event.ComponentEvent
 public class java.awt.event.TextEvent extends java.awt.AWTEvent
 public interface java.awt.event.TextListener extends
 java.lang.Object
 implements java.util.EventListener

 public abstract class java.awt.event.WindowAdapter extends
 java.lang.Object
 implements java.awt.event.WindowListener

 public class java.awt.event.WindowEvent extends
 java.awt.event.ComponentEvent
 public interface java.awt.event.WindowListener extends
 java.lang.Object
 implements java.util.EventListener

 Package java.awt.font

This package, new to JDK1.2, supports detailed manipulation and use of scalable
typefaces. Most ordinary GUI and printing applications will not need these capabilities,
but they are valuable for desktop publishing, graphic arts, and other applications with
complex typographic requirements.

 Listing 3.8 shows all public classes and interfaces in the java.awt.font package.

 Listing 3.8 java.awt.font Classes and Interfaces List

 public class java.awt.font.FontRenderContext extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.GlyphJustificationInfo extends
java.lang.

 Object (new in 1.2)
 public final class java.awt.font.GlyphMetrics extends
 java.lang.Object (new in 1.2)
 public abstract class java.awt.font.GlyphVector extends
 java.lang.Object (new in 1.2)
 implements java.lang.Cloneable

 public abstract class java.awt.font.GraphicAttribute extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.ImageGraphicAttribute extends
 java.awt.font.

 - 49 -

 GraphicAttribute (new in 1.2)
 public final class java.awt.font.LineBreakMeasurer extends
 java.lang.Object (new in 1.2)
 public abstract class java.awt.font.LineMetrics extends
 java.lang.Object (new in 1.2)
 public interface java.awt.font.MultipleMaster extends
 java.lang.Object (new in 1.2)
 public interface java.awt.font.OpenType extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.ShapeGraphicAttribute extends
 java.awt.font.
 GraphicAttribute (new in 1.2)
 public final class java.awt.font.TextAttribute extends
 java.text.AttributedCharacterIterator.
 Attribute (new in 1.2)
 public final class java.awt.font.TextHitInfo extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.TextLayout extends
 java.lang.Object (new in 1.2)
 implements java.lang.Cloneable

 public class java.awt.font.TextLayout.CaretPolicy extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.TextLine.TextLineMetrics extends
 java.lang.Object (new in 1.2)
 public final class java.awt.font.TransformAttribute extends
 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 Package java.awt.geom

This package, new to JDK1.2, is associated with the new Graphics2D capabilities. The
classes here support drawing, manipulation, and transformation of objects representing
two-dimensional geometric primitives—arcs, lines, points, rectangles, ellipses, parametric
curves—in a floating point coordinate space.

 Listing 3.9 shows all public classes and interfaces in the java.awt.geom package.

 Listing 3.9 java.awt.geom Classes and Interfaces List

 public class java.awt.geom.AffineTransform extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable

 public abstract class java.awt.geom.Arc2D extends
 java.awt.geom.RectangularShape (new in 1.2)
 public class java.awt.geom.Arc2D.Double extends
 java.awt.geom.Arc2D (new in 1.2)
 public class java.awt.geom.Arc2D.Float extends
 java.awt.geom.Arc2D (new in 1.2)
 public class java.awt.geom.Area extends

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public abstract class java.awt.geom.CubicCurve2D extends

 - 50 -

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public class java.awt.geom.CubicCurve2D.Double extends
 java.awt.geom.CubicCurve2D (new in 1.2)
 public class java.awt.geom.CubicCurve2D.Float extends
 java.awt.geom.CubicCurve2D (new in 1.2)
 public abstract class java.awt.geom.Dimension2D extends
 java.lang.Object (new in 1.2)
 implements java.lang.Cloneable

 public abstract class java.awt.geom.Ellipse2D extends
 java.awt.geom.RectangularShape (new in 1.2)
 public class java.awt.geom.Ellipse2D.Double extends
 java.awt.geom.Ellipse2D (new in 1.2)
 public class java.awt.geom.Ellipse2D.Float extends
 java.awt.geom.Ellipse2D (new in 1.2)
 public class java.awt.geom.FlatteningPathIterator extends
 java.lang.Object (new in 1.2)
 implements java.awt.geom.PathIterator

 public final class java.awt.geom.GeneralPath extends

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public class java.awt.geom.IllegalPathStateException extends
java.lang.

 RuntimeException (new in 1.2)
 public abstract class java.awt.geom.Line2D extends

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public class java.awt.geom.Line2D.Double extends
 java.awt.geom.Line2D (new in 1.2)
 public class java.awt.geom.Line2D.Float extends
 java.awt.geom.Line2D (new in 1.2)
 public class java.awt.geom.NoninvertibleTransformException
extends java.lang.

 Exception (new in 1.2)
 public interface java.awt.geom.PathIterator extends
 java.lang.Object (new in 1.2)
 public abstract class java.awt.geom.Point2D extends
 java.lang.Object (new in 1.2)
 implements java.lang.Cloneable

 public class java.awt.geom.Point2D.Double extends
 java.awt.geom.Point2D (new in 1.2)
 public class java.awt.geom.Point2D.Float extends
 java.awt.geom.Point2D (new in 1.2)
 public abstract class java.awt.geom.QuadCurve2D extends

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public class java.awt.geom.QuadCurve2D.Double extends
 java.awt.geom.QuadCurve2D (new in 1.2)
 public class java.awt.geom.QuadCurve2D.Float extends
 java.awt.geom.QuadCurve2D (new in 1.2)
 public abstract class java.awt.geom.Rectangle2D extends
java.awt.geom.

 RectangularShape (new in 1.2)

 - 51 -

 public class java.awt.geom.Rectangle2D.Double extends
 java.awt.geom.Rectangle2D (new in 1.2)
 public class java.awt.geom.Rectangle2D.Float extends
 java.awt.geom.Rectangle2D (new in 1.2)
 public abstract class java.awt.geom.RectangularShape extends

java.lang.Object (new in 1.2)
 implements java.awt.Shape
 implements java.lang.Cloneable

 public abstract class java.awt.geom.RoundRectangle2D extends
java.awt.geom.

 RectangularShape (new in 1.2)
 public class java.awt.geom.RoundRectangle2D.Double extends
java.awt.geom.

 RoundRectangle2D (new in 1.2)

public class java.awt.geom.RoundRectangle2D.Float extends
java.awt.geom.
RoundRectangle2D (new in 1.2)

 Package java.awt.im

This package, new to JDK1.2, supports input methods that allow large alphabets (such
as ideographic representations of the Japanese, Chinese, and Korean languages) to be
entered on small keyboards. A common example is the use of the phonetic Japanese
Katakana alphabet to spell out and enter glyphs from the ideographic Kanji alphabet.

 Listing 3.10 shows all public classes and interfaces in the java.awt.im package.

 Listing 3.10 java.awt.im Classes and Interfaces List

 public class java.awt.im.InputContext extends java.lang.Object
(new in 1.2)

 public class java.awt.im.InputMethodHighlight extends
 java.lang.Object (new in 1.2)
 public interface java.awt.im.InputMethodRequests extends
 java.lang.Object (new in 1.2)
 public final class java.awt.im.InputSubset extends
 java.lang.Character.Subset (new in 1.2)

 Package java.awt.image

This package, which has grown substantially in JDK1.2, supports manipulation of
bitmapped images. The newer capabilities are not of interest to most GUI programs but
are of considerable utility to image processing applications.

As a demonstration of image manipulation, the SlideShow utility in Appendix B,
"Miscellaneous Program Listings," loads and displays images from .gif and .jpg
image files, optionally rescaling and/or sharpening them for display. The small excerpt in
Listing 3.11 shows the use of java.awt.image capabilities to handle the
transformations.

 Listing 3.11 Excerpt of SlideShow.java, Showing the Use of java.awt.image

Transformations

 193 // If we want to rescale, set up the filter
 194 if (rescale.isSelected())
 195 {

 - 52 -

 196 // Find our current image size
 197 Dimension dim = getSlideDimension();
 198 if (dim == null) return;
 199 double xscale = (double)width / (double)dim.width;
 200 double yscale = (double)height /
(double)dim.height;

 201 double xyscale = Math.min(xscale, yscale);
 202 // Set hints for maximum quality
 203 RenderingHints hints =
 204 new RenderingHints(
 205 RenderingHints.KEY_ANTIALIASING,
 206 RenderingHints.VALUE_ANTIALIAS_ON);
 207 hints.add(
 208 new RenderingHints(
 209 RenderingHints.KEY_COLOR_RENDERING,
 210
RenderingHints.VALUE_COLOR_RENDER_QUALITY));

 211 ImageFilter rescaleFilter =
 212 new BufferedImageFilter(
 213 new AffineTransformOp(
 214
AffineTransform.getScaleInstance(xyscale, xyscale),

 215 hints));
 216 transformedSlide =
Toolkit.getDefaultToolkit().createImage(

 217 new FilteredImageSource(
 218 transformedSlide.getSource(),
rescaleFilter));

 219 }
 220 // If we want to sharpen, set up the filter
 221 if (sharpen.isSelected())
 222 {
 223 float ctr = 2, offc = -.125f;
 224 ImageFilter sharpenFilter =
 225 new BufferedImageFilter(
 226 new ConvolveOp(
 227 new Kernel(3, 3, new float[]
 228 { offc, offc, offc,
 229 offc, ctr , offc,
 230 offc, offc, offc })));
 231 transformedSlide =
Toolkit.getDefaultToolkit().createImage(

 232 new FilteredImageSource(
 233 transformedSlide.getSource(),
sharpenFilter));

 234 }

 Listing 3.12 shows all public classes and interfaces in the java.awt.image package.

 Listing 3.12 java.awt.image Classes and Interfaces List

 public class java.awt.image.AffineTransformOp extends

java.lang.Object (new in 1.2)
 implements java.awt.image.BufferedImageOp
 implements java.awt.image.RasterOp

 - 53 -

 public class java.awt.image.AreaAveragingScaleFilter extends
 java.awt.image.ReplicateScaleFilter

public class java.awt.image.BandCombineOp extends
java.lang.Object (new in 1.2)
 implements java.awt.image.RasterOp

 public final class java.awt.image.BandedSampleModel extends
java.awt.image.

 ComponentSampleModel (new in 1.2)

public class java.awt.image.BufferedImage extends java.awt.Image
(new in 1.2)
 implements java.awt.image.WritableRenderedImage

 public class java.awt.image.BufferedImageFilter extends
 java.awt.image.ImageFilter (new in 1.2)
 implements java.lang.Cloneable

 public interface java.awt.image.BufferedImageOp extends
 java.lang.Object (new in 1.2)
 public class java.awt.image.ByteLookupTable extends
 java.awt.image.LookupTable (new in 1.2)
 public class java.awt.image.ColorConvertOp extends

java.lang.Object (new in 1.2)
 implements java.awt.image.BufferedImageOp
 implements java.awt.image.RasterOp

public abstract class java.awt.image.ColorModel extends
java.lang.Object
 implements java.awt.Transparency

 public class java.awt.image.ComponentColorModel extends
 java.awt.image.ColorModel (new in 1.2)
 public class java.awt.image.ComponentSampleModel extends
 java.awt.image.SampleModel (new in 1.2)

public class java.awt.image.ConvolveOp extends java.lang.Object
(new in 1.2)
 implements java.awt.image.BufferedImageOp
 implements java.awt.image.RasterOp

 public class java.awt.image.CropImageFilter extends
java.awt.image.ImageFilter

 public abstract class java.awt.image.DataBuffer extends
 java.lang.Object (new in 1.2)
 public final class java.awt.image.DataBufferByte extends
 java.awt.image.DataBuffer (new in 1.2)
 public final class java.awt.image.DataBufferInt extends
 java.awt.image.DataBuffer (new in 1.2)
 public final class java.awt.image.DataBufferShort extends
 java.awt.image.DataBuffer (new in 1.2)
 public final class java.awt.image.DataBufferUShort extends
 java.awt.image.DataBuffer (new in 1.2)
 public class java.awt.image.DirectColorModel extends
 java.awt.image.PackedColorModel

public class java.awt.image.FilteredImageSource extends
java.lang.Object
 implements java.awt.image.ImageProducer

 public interface java.awt.image.ImageConsumer extends
java.lang.Object

public class java.awt.image.ImageFilter extends java.lang.Object
 implements java.awt.image.ImageConsumer
 implements java.lang.Cloneable

 public interface java.awt.image.ImageObserver extends
java.lang.Object

 public interface java.awt.image.ImageProducer extends

 - 54 -

java.lang.Object
 public class java.awt.image.ImagingOpException extends
 java.lang.RuntimeException (new in 1.2)
 public class java.awt.image.IndexColorModel extends
java.awt.image.ColorModel

public class java.awt.image.Kernel extends java.lang.Object (new
in 1.2)
 implements java.lang.Cloneable

public class java.awt.image.LookupOp extends java.lang.Object
(new in 1.2)
 implements java.awt.image.BufferedImageOp
 implements java.awt.image.RasterOp

 public abstract class java.awt.image.LookupTable extends
 java.lang.Object (new in 1.2)

public class java.awt.image.MemoryImageSource extends
java.lang.Object
 implements java.awt.image.ImageProducer

 public class java.awt.image.MultiPixelPackedSampleModel extends
java.awt.image.

 SampleModel (new in 1.2)
 public abstract class java.awt.image.PackedColorModel extends
java.awt.image.

 ColorModel (new in 1.2)

public class java.awt.image.PixelGrabber extends
java.lang.Object
 implements java.awt.image.ImageConsumer

 public class java.awt.image.PixelInterleavedSampleModel extends
 java.awt.image.
 ComponentSampleModel (new in 1.2)
 public abstract class java.awt.image.RGBImageFilter extends
 java.awt.image.ImageFilter
 public class java.awt.image.Raster extends java.lang.Object (new
in 1.2)

 public class java.awt.image.RasterFormatException extends
java.lang.

 RuntimeException (new in 1.2)
 public interface java.awt.image.RasterOp extends java.lang.Object
(new in 1.2)

 public interface java.awt.image.RenderedImage extends
 java.lang.Object (new in 1.2)
 public class java.awt.image.ReplicateScaleFilter extends
 java.awt.image.ImageFilter

public class java.awt.image.RescaleOp extends java.lang.Object
(new in 1.2)
 implements java.awt.image.BufferedImageOp
 implements java.awt.image.RasterOp

 public abstract class java.awt.image.SampleModel extends
 java.lang.Object (new in 1.2)
 public class java.awt.image.ShortLookupTable extends
 java.awt.image.LookupTable (new in 1.2)
 public class java.awt.image.SinglePixelPackedSampleModel extends
java.awt.image.

 SampleModel (new in 1.2)
 public interface java.awt.image.TileObserver extends
 java.lang.Object (new in 1.2)
 public class java.awt.image.WritableRaster extends
 java.awt.image.Raster (new in 1.2)
 public interface java.awt.image.WritableRenderedImage extends

 - 55 -

 java.lang.Object (new in 1.2)
 implements java.awt.image.RenderedImage

 Package java.awt.image.renderable

 This package, new to JDK1.2, supports rendering-independent images, images managed

in a resolution-independent manner.

 Listing 3.13 shows all public classes and interfaces in the
java.awt.image.renderable package.

 Listing 3.13 java.awt.image.renderable Classes and Interfaces List

 public interface
java.awt.image.renderable.ContextualRenderedImageFactory

 extends java.lang.Object (new in 1.2)
 implements java.awt.image.renderable.RenderedImageFactory

 public class java.awt.image.renderable.ParameterBlock extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable

 public class java.awt.image.renderable.RenderContext extends
 java.lang.Object (new in 1.2)
 implements java.lang.Cloneable

 public interface java.awt.image.renderable.RenderableImage
extends java.lang.

 Object (new in 1.2)
 public class java.awt.image.renderable.RenderableImageOp extends
 java.lang.Object (new in 1.2)
 implements java.awt.image.renderable.RenderableImage

 public class java.awt.image.renderable.RenderableImageProducer
extends

java.lang.Object (new in 1.2)
 implements java.awt.image.ImageProducer
 implements java.lang.Runnable

 public interface java.awt.image.renderable.RenderedImageFactory
extends

 java.lang.Object (new in 1.2)

 Package java.awt.print

Good printing support has been a latecomer to Java. JDK1.1 began to introduce a
printing model, and this package, new to JDK1.2, upgrades the model. The classes
provided here allow you to manage print jobs, page formats, paper, and books.

When you print from a Java/Linux application, the AWT generates a PostScript� file and
sends it to the print spooling subsystem, where it will print properly if you send it to a
PostScript-capable printer. To learn more about printing from Linux, including how to print
PostScript if you do not have such a printer, see the "Printing HOWTO" published on the
Linux help page at http://www.linux.org/help/howto.html.

 Listing 3.14 shows all public classes and interfaces in the java.awt.print package.

 Listing 3.14 java.awt.print Classes and Interfaces List

public class java.awt.print.Book extends java.lang.Object (new in
1.2)
 implements java.awt.print.Pageable

 - 56 -

public class java.awt.print.PageFormat extends java.lang.Object
(new in 1.2)
 implements java.lang.Cloneable

 public interface java.awt.print.Pageable extends java.lang.Object
(new in 1.2)

public class java.awt.print.Paper extends java.lang.Object (new
in 1.2)
 implements java.lang.Cloneable

 public interface java.awt.print.Printable extends
java.lang.Object (new in 1.2)

 public class java.awt.print.PrinterAbortException extends
java.awt.print.

 PrinterException (new in 1.2)
 public class java.awt.print.PrinterException extends
 java.lang.Exception (new in 1.2)
 public interface java.awt.print.PrinterGraphics extends
 java.lang.Object (new in 1.2)
 public class java.awt.print.PrinterIOException extends
java.awt.print.

 PrinterException (new in 1.2)
 public abstract class java.awt.print.PrinterJob extends
 java.lang.Object (new in 1.2)

Package java.beans

JavaBeans is the name for the Java component architecture. Beans are modular,
reusable pieces of Java functionality that describe themselves (their inputs, outputs, and
behavior) so that they can easily be dropped into and manipulated by other applications.
Beans are easy to write—many core platform classes are beans—and are most
frequently built by following some simple stylistic rules when building classes.

 This package provides a collection of premium Bean functionality. Some Beans need

these classes to enable advanced configuration capabilities; many do not.

 Listing 3.15 shows all public classes and interfaces in the java.beans package.

 Listing 3.15 java.beans Classes and Interfaces List

 public interface java.beans.AppletInitializer extends
 java.lang.Object (new in 1.2)
 public class java.beans.BeanDescriptor extends
java.beans.FeatureDescriptor

 public interface java.beans.BeanInfo extends java.lang.Object
 public class java.beans.Beans extends java.lang.Object
 public interface java.beans.Customizer extends java.lang.Object
 public interface java.beans.DesignMode extends java.lang.Object
(new in 1.2)

 public class java.beans.EventSetDescriptor extends
java.beans.FeatureDescriptor

 public class java.beans.FeatureDescriptor extends
java.lang.Object

 public class java.beans.IndexedPropertyDescriptor extends
 java.beans.PropertyDescriptor
 public class java.beans.IntrospectionException extends
java.lang.Exception

 public class java.beans.Introspector extends java.lang.Object
 public class java.beans.MethodDescriptor extends
java.beans.FeatureDescriptor

 - 57 -

 public class java.beans.ParameterDescriptor extends
 java.beans.FeatureDescriptor
 public class java.beans.PropertyChangeEvent extends
java.util.EventObject

public interface java.beans.PropertyChangeListener extends
java.lang.Object
 implements java.util.EventListener

public class java.beans.PropertyChangeSupport extends
java.lang.Object
 implements java.io.Serializable

 public class java.beans.PropertyDescriptor extends
java.beans.FeatureDescriptor

 public interface java.beans.PropertyEditor extends
java.lang.Object

 public class java.beans.PropertyEditorManager extends
java.lang.Object

public class java.beans.PropertyEditorSupport extends
java.lang.Object
 implements java.beans.PropertyEditor

 public class java.beans.PropertyVetoException extends
java.lang.Exception

 public class java.beans.SimpleBeanInfo extends java.lang.Object
 implements java.beans.BeanInfo

public interface java.beans.VetoableChangeListener extends
java.lang.Object
 implements java.util.EventListener

public class java.beans.VetoableChangeSupport extends
java.lang.Object
 implements java.io.Serializable

 public interface java.beans.Visibility extends java.lang.Object

 Package java.beans.beancontext

This package, new to JDK1.2, supports Bean Contexts, hierarchical containers for
JavaBeans. The JDK1.1 JavaBeans model allows containers (tools or applications that
use Beans) to discover the capabilities and services provided by a Bean. JDK1.2 Bean
Contexts add an inverse capability—they allow Beans to discover the capabilities of the
environment in which they are being used.

 Listing 3.16 shows all public classes and interfaces in the java.beans.beancontext

package.

 Listing 3.16 java.beans.beancontext Classes and Interfaces List

 public interface java.beans.beancontext.BeanContext extends

java.lang.Object (new in 1.2)
 implements java.beans.DesignMode
 implements java.beans.Visibility
 implements java.beans.beancontext.BeanContextChild
 implements java.util.Collection

 public interface java.beans.beancontext.BeanContextChild extends
 java.lang.Object (new in 1.2)
 public interface
java.beans.beancontext.BeanContextChildComponentProxy extends

 java.lang.Object (new in 1.2)
 public class java.beans.beancontext.BeanContextChildSupport
extends

java.lang.Object (new in 1.2)
 implements java.beans.beancontext.BeanContextChild
 implements

 - 58 -

java.beans.beancontext.BeanContextServicesListener
 implements java.io.Serializable

 public interface java.beans.beancontext.BeanContextContainerProxy
extends

 java.lang.Object (new in 1.2)
 public abstract class java.beans.beancontext.BeanContextEvent
extends

 java.util.EventObject (new in 1.2)
 public class java.beans.beancontext.BeanContextMembershipEvent
extends

 java.beans.beancontext.
 BeanContextEvent (new in 1.2)
 public interface
java.beans.beancontext.BeanContextMembershipListener extends

 java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public interface java.beans.beancontext.BeanContextProxy extends
 java.lang.Object (new in 1.2)
 public class
java.beans.beancontext.BeanContextServiceAvailableEvent extends

 java.beans.beancontext.BeanContextEvent (new in 1.2)
 public interface
java.beans.beancontext.BeanContextServiceProvider extends

 java.lang.Object (new in 1.2)
 public interface
java.beans.beancontext.BeanContextServiceProviderBeanInfo

 extends java.lang.Object (new in 1.2)
 implements java.beans.BeanInfo

 public class
java.beans.beancontext.BeanContextServiceRevokedEvent extends

 java.beans.beancontext.BeanContextEvent (new in 1.2)
 public interface
java.beans.beancontext.BeanContextServiceRevokedListener

 extends java.lang.Object (new in 1.2)
 implements java.util.EventListener

 public interface java.beans.beancontext.BeanContextServices
extends

java.lang.Object (new in 1.2)
 implements java.beans.beancontext.BeanContext
 implements java.beans.beancontext.BeanContextServicesListener

 public interface
java.beans.beancontext.BeanContextServicesListener extends

java.lang.Object (new in 1.2)
 implements
java.beans.beancontext.BeanContextServiceRevokedListener

 public class java.beans.beancontext.BeanContextServicesSupport
extends

 java.beans.beancontext.
 BeanContextSupport (new in 1.2)
 implements java.beans.beancontext.BeanContextServices

 public class java.beans.beancontext.BeanContextServicesSupport.

BCSSProxyServiceProvider extends java.lang.Object (new in 1.2)
 implements java.beans.beancontext.BeanContextServiceProvider
 implements
java.beans.beancontext.BeanContextServiceRevokedListener

 public class java.beans.beancontext.BeanContextServicesSupport.
 BCSSServiceProvider extends java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public class java.beans.beancontext.BeanContextSupport extends
 java.beans.beancontext.
 BeanContextChildSupport (new in 1.2)

 - 59 -

 implements java.beans.PropertyChangeListener
 implements java.beans.VetoableChangeListener
 implements java.beans.beancontext.BeanContext
 implements java.io.Serializable

 public final class
java.beans.beancontext.BeanContextSupport.BCSIterator

 extends java.lang.Object (new in 1.2)
 implements java.util.Iterator

 Package java.io

An important core package, java.io, provides basic file Input/Output (I/O) support.
Classes are provided to support byte-oriented I/O, character-oriented I/O, line-oriented
I/O, buffering, filtering, I/O to arrays instead of files, and I/O of Java primitive types and
serialized Java classes.

One important data and I/O capability introduced in JDK1.1 was support of
Internationalization (I18N) by representing multibyte characters as distinct entities from
bytes. This is reflected in the existence of the distinct byte and char data types, and
different java.io classes to support the two types. Classes descended from
java.io.InputStream and java.io.OutputStream handle bytes, while those
descended from java.io.Reader and java.io.Writer handle characters.

Each of the java.io capabilities comes in its own class—one class provides character-
oriented I/O, another provides buffering, and so on. You can achieve combinations of
these capabilities by stringing the classes together. For example, an object to provide
buffered, line-oriented (including tracking of line numbers) reading of multibyte characters
from a file can be created with the following code:

 LineNumberReader reader = new LineNumberReader(new
FileReader("filename"));

 Listing 3.17 shows all public classes and interfaces in the java.io package.

 Listing 3.17 java.io Classes and Interfaces List

 public class java.io.BufferedInputStream extends
java.io.FilterInputStream

 public class java.io.BufferedOutputStream extends
java.io.FilterOutputStream

 public class java.io.BufferedReader extends java.io.Reader
 public class java.io.BufferedWriter extends java.io.Writer
 public class java.io.ByteArrayInputStream extends
java.io.InputStream

 public class java.io.ByteArrayOutputStream extends
java.io.OutputStream

 public class java.io.CharArrayReader extends java.io.Reader
 public class java.io.CharArrayWriter extends java.io.Writer
 public class java.io.CharConversionException extends
java.io.IOException

 public interface java.io.DataInput extends java.lang.Object

public class java.io.DataInputStream extends
java.io.FilterInputStream
 implements java.io.DataInput

 public interface java.io.DataOutput extends java.lang.Object

public class java.io.DataOutputStream extends
java.io.FilterOutputStream
 implements java.io.DataOutput

 public class java.io.EOFException extends java.io.IOException

 - 60 -

 public interface java.io.Externalizable extends java.lang.Object
 implements java.io.Serializable

public class java.io.File extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Comparable

 public final class java.io.FileDescriptor extends
java.lang.Object

 public interface java.io.FileFilter extends java.lang.Object (new
in 1.2)

 public class java.io.FileInputStream extends java.io.InputStream
 public class java.io.FileNotFoundException extends
java.io.IOException

 public class java.io.FileOutputStream extends
java.io.OutputStream

 public final class java.io.FilePermission extends
 java.security.Permission (new in 1.2)
 implements java.io.Serializable

 public class java.io.FileReader extends java.io.InputStreamReader
 public class java.io.FileWriter extends
java.io.OutputStreamWriter

 public interface java.io.FilenameFilter extends java.lang.Object
 public class java.io.FilterInputStream extends
java.io.InputStream

 public class java.io.FilterOutputStream extends
java.io.OutputStream

 public abstract class java.io.FilterReader extends java.io.Reader
 public abstract class java.io.FilterWriter extends java.io.Writer
 public class java.io.IOException extends java.lang.Exception
 public abstract class java.io.InputStream extends
java.lang.Object

 public class java.io.InputStreamReader extends java.io.Reader
 public class java.io.InterruptedIOException extends
java.io.IOException

 public class java.io.InvalidClassException extends java.io.
 ObjectStreamException
 public class java.io.InvalidObjectException extends java.io.
 ObjectStreamException
 public class java.io.LineNumberInputStream extends
java.io.FilterInputStream

 (deprecated in 1.1)
 public class java.io.LineNumberReader extends
java.io.BufferedReader

 public class java.io.NotActiveException extends
java.io.ObjectStreamException

 public class java.io.NotSerializableException extends java.io.
 ObjectStreamException
 public interface java.io.ObjectInput extends java.lang.Object
 implements java.io.DataInput

public class java.io.ObjectInputStream extends
java.io.InputStream
 implements java.io.ObjectInput
 implements java.io.ObjectStreamConstants

 public abstract class java.io.ObjectInputStream.GetField extends
 java.lang.Object (new in 1.2)
 public interface java.io.ObjectInputValidation extends
java.lang.Object

 public interface java.io.ObjectOutput extends java.lang.Object
 implements java.io.DataOutput

 public class java.io.ObjectOutputStream extends
java.io.OutputStream

 - 61 -

 implements java.io.ObjectOutput
 implements java.io.ObjectStreamConstants

 public abstract class java.io.ObjectOutputStream.PutField extends
 java.lang.Object (new in 1.2)
 public class java.io.ObjectStreamClass extends java.lang.Object
 implements java.io.Serializable

 public interface java.io.ObjectStreamConstants extends
java.lang.Object

 public abstract class java.io.ObjectStreamException extends
java.io.IOException

 public class java.io.ObjectStreamField extends java.lang.Object
 implements java.lang.Comparable

 public class java.io.OptionalDataException extends java.io.
 ObjectStreamException
 public abstract class java.io.OutputStream extends
java.lang.Object

 public class java.io.OutputStreamWriter extends java.io.Writer
 public class java.io.PipedInputStream extends java.io.InputStream
 public class java.io.PipedOutputStream extends
java.io.OutputStream

 public class java.io.PipedReader extends java.io.Reader
 public class java.io.PipedWriter extends java.io.Writer
 public class java.io.PrintStream extends
java.io.FilterOutputStream

 public class java.io.PrintWriter extends java.io.Writer
 public class java.io.PushbackInputStream extends
java.io.FilterInputStream

 public class java.io.PushbackReader extends java.io.FilterReader

public class java.io.RandomAccessFile extends java.lang.Object
 implements java.io.DataInput
 implements java.io.DataOutput

 public abstract class java.io.Reader extends java.lang.Object
 public class java.io.SequenceInputStream extends
java.io.InputStream

 public interface java.io.Serializable extends java.lang.Object
 public final class java.io.SerializablePermission extends
java.security.

 BasicPermission (new in 1.2)
 public class java.io.StreamCorruptedException extends java.io.
 ObjectStreamException
 public class java.io.StreamTokenizer extends java.lang.Object
 public class java.io.StringBufferInputStream extends
java.io.InputStream

 (deprecated in 1.1)
 public class java.io.StringReader extends java.io.Reader
 public class java.io.StringWriter extends java.io.Writer
 public class java.io.SyncFailedException extends
java.io.IOException

 public class java.io.UTFDataFormatException extends
java.io.IOException

 public class java.io.UnsupportedEncodingException extends
java.io.IOException

 public class java.io.WriteAbortedException extends java.io.
 ObjectStreamException
 public abstract class java.io.Writer extends java.lang.Object

 Package java.lang

 - 62 -

 This package contains core classes fundamental to the design of the Java language and
runtime environment. Among the classes included here are:

•

Errors and exceptions that can be generated by the Java Virtual Machine (as
distinguished from those generated by class code). For example, the JVM generates
java.lang.ClassFormatError if it tries to read an invalid Java class file.

 • Core language types such as Class, ClassLoader, Thread, and Runtime.

 • Wrappers around primitive data types, allowing them to be manipulated as classes.

 Listing 3.18 shows all public classes and interfaces in the java.lang package.

 Listing 3.18 java.lang Classes and Interfaces List

 public class java.lang.AbstractMethodError extends java.lang.
 IncompatibleClassChangeError
 public class java.lang.ArithmeticException extends
java.lang.RuntimeException

 public class java.lang.ArrayIndexOutOfBoundsException extends
java.lang.

 IndexOutOfBoundsException
 public class java.lang.ArrayStoreException extends
java.lang.RuntimeException

 public final class java.lang.Boolean extends java.lang.Object
 implements java.io.Serializable

 public final class java.lang.Byte extends java.lang.Number
 implements java.lang.Comparable

public final class java.lang.Character extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Comparable

 public class java.lang.Character.Subset extends java.lang.Object
(new in 1.2)

 public final class java.lang.Character.UnicodeBlock extends
 java.lang.Character.Subset (new in 1.2)
 public final class java.lang.Class extends java.lang.Object
 implements java.io.Serializable

 public class java.lang.ClassCastException extends
java.lang.RuntimeException

 public class java.lang.ClassCircularityError extends
java.lang.LinkageError

 public class java.lang.ClassFormatError extends
java.lang.LinkageError

 public abstract class java.lang.ClassLoader extends
java.lang.Object

 public class java.lang.ClassNotFoundException extends
java.lang.Exception

 public class java.lang.CloneNotSupportedException extends
java.lang.Exception

 public interface java.lang.Comparable extends java.lang.Object
(new in 1.2)

 public final class java.lang.Compiler extends java.lang.Object
 public final class java.lang.Double extends java.lang.Number
 implements java.lang.Comparable

 public class java.lang.Error extends java.lang.Throwable
 public class java.lang.Exception extends java.lang.Throwable
 public class java.lang.ExceptionInInitializerError extends
 java.lang.LinkageError
 public final class java.lang.Float extends java.lang.Number

 - 63 -

 implements java.lang.Comparable
 public class java.lang.IllegalAccessError extends java.lang.
 IncompatibleClassChangeError
 public class java.lang.IllegalAccessException extends
java.lang.Exception

 public class java.lang.IllegalArgumentException extends
 java.lang.RuntimeException
 public class java.lang.IllegalMonitorStateException extends
 java.lang.RuntimeException
 public class java.lang.IllegalStateException extends
java.lang.RuntimeException

 public class java.lang.IllegalThreadStateException extends
java.lang.

 IllegalArgumentException
 public class java.lang.IncompatibleClassChangeError extends
 java.lang.LinkageError
 public class java.lang.IndexOutOfBoundsException extends
java.lang.

 RuntimeException
 public class java.lang.InheritableThreadLocal extends
java.lang.ThreadLocal

 (new in 1.2)
 public class java.lang.InstantiationError extends java.lang.
 IncompatibleClassChangeError
 public class java.lang.InstantiationException extends
java.lang.Exception

 public final class java.lang.Integer extends java.lang.Number
 implements java.lang.Comparable

 public class java.lang.InternalError extends
java.lang.VirtualMachineError

 public class java.lang.InterruptedException extends
java.lang.Exception

 public class java.lang.LinkageError extends java.lang.Error
 public final class java.lang.Long extends java.lang.Number
 implements java.lang.Comparable

 public final class java.lang.Math extends java.lang.Object
 public class java.lang.NegativeArraySizeException extends
java.lang.

 RuntimeException
 public class java.lang.NoClassDefFoundError extends
java.lang.LinkageError

 public class java.lang.NoSuchFieldError extends java.lang.
 IncompatibleClassChangeError
 public class java.lang.NoSuchFieldException extends
java.lang.Exception

 public class java.lang.NoSuchMethodError extends java.lang.
 IncompatibleClassChangeError
 public class java.lang.NoSuchMethodException extends
java.lang.Exception

 public class java.lang.NullPointerException extends
java.lang.RuntimeException

 public abstract class java.lang.Number extends java.lang.Object
 implements java.io.Serializable

 public class java.lang.NumberFormatException extends java.lang.
 IllegalArgumentException
 public class java.lang.Object extends (none)
 public class java.lang.OutOfMemoryError extends
java.lang.VirtualMachineError

 public class java.lang.Package extends java.lang.Object (new in

 - 64 -

1.2)
 public abstract class java.lang.Process extends java.lang.Object
 public interface java.lang.Runnable extends java.lang.Object
 public class java.lang.Runtime extends java.lang.Object
 public class java.lang.RuntimeException extends
java.lang.Exception

 public final class java.lang.RuntimePermission extends
java.security.

 BasicPermission (new in 1.2)
 public class java.lang.SecurityException extends
java.lang.RuntimeException

 public class java.lang.SecurityManager extends java.lang.Object
 public final class java.lang.Short extends java.lang.Number
 implements java.lang.Comparable

 public class java.lang.StackOverflowError extends
java.lang.VirtualMachineError

public final class java.lang.String extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Comparable

public final class java.lang.StringBuffer extends
java.lang.Object
 implements java.io.Serializable

 public class java.lang.StringIndexOutOfBoundsException extends
java.lang.

 IndexOutOfBoundsException
 public final class java.lang.System extends java.lang.Object
 public class java.lang.Thread extends java.lang.Object
 implements java.lang.Runnable

 public class java.lang.ThreadDeath extends java.lang.Error
 public class java.lang.ThreadGroup extends java.lang.Object
 public class java.lang.ThreadLocal extends java.lang.Object (new
in 1.2)

 public class java.lang.Throwable extends java.lang.Object
 implements java.io.Serializable

 public class java.lang.UnknownError extends
java.lang.VirtualMachineError

 public class java.lang.UnsatisfiedLinkError extends
java.lang.LinkageError

 public class java.lang.UnsupportedClassVersionError extends
java.lang.

 ClassFormatError (new in 1.2)
 public class java.lang.UnsupportedOperationException extends
java.lang.

 RuntimeException (new in 1.2)
 public class java.lang.VerifyError extends java.lang.LinkageError
 public abstract class java.lang.VirtualMachineError extends
java.lang.Error

 public final class java.lang.Void extends java.lang.Object

 Package java.lang.ref

This package, new to JDK1.2, introduces the limited capability for an application to
interact with the garbage collector. The java.lang.ref classes provide three new
types of object references: soft, weak, and phantom.

Ordinary object references in Java (Foo foo = new Foo()) are hard references; the
objects will not be garbage-collected until all such references disappear (for example,
when foo goes out of scope).

 - 65 -

The behavior of hard references is not always desirable—it is sometimes useful to create
a reference that does not prevent its data from being garbage-collected. For example,
you may need to construct a table of objects currently being used by an application; when
the object is no longer referenced outside the table, it can be garbage-collected.

These classes give you such a capability. JDK1.2 also includes some utility classes that
use the capability. For example, the java.util.WeakHashMap class uses
java.lang.ref.WeakReference to implement an associative map that automatically
removes entries no longer referenced anywhere outside the map.

 Listing 3.19 shows all public classes and interfaces in the java.lang.ref package.

 Listing 3.19 java.lang.ref Classes and Interfaces List

 public class java.lang.ref.PhantomReference extends
java.lang.ref.Reference

 (new in 1.2)
 public abstract class java.lang.ref.Reference extends
java.lang.Object

 (new in 1.2)
 public class java.lang.ref.ReferenceQueue extends
java.lang.Object (new in 1.2)

 public class java.lang.ref.SoftReference extends
java.lang.ref.Reference

 (new in 1.2)
 public class java.lang.ref.WeakReference extends
java.lang.ref.Reference

 (new in 1.2)

 Package java.lang.reflect

This package allows applications to look at classes—to learn the details of what fields,
methods, constructors, and interfaces a class provides. Java uses this reflection
mechanism with JavaBeans to ascertain what capabilities a Bean supports. In Chapter
47, "DumpClass: A Tool for Querying Class Structure," we present a utility that uses
these classes to provide a dump of useful API information about any class.

 Listing 3.20 shows all public classes and interfaces in the java.lang.reflect

package.

 Listing 3.20 java.lang.reflect Classes and Interfaces List

 public class java.lang.reflect.AccessibleObject extends
java.lang.Object

 (new in 1.2)
 public final class java.lang.reflect.Array extends
java.lang.Object

 public final class java.lang.reflect.Constructor extends
java.lang.reflect.

 AccessibleObject
 implements java.lang.reflect.Member

 public final class java.lang.reflect.Field extends
java.lang.reflect.

 AccessibleObject
 implements java.lang.reflect.Member

 public class java.lang.reflect.InvocationTargetException extends
 java.lang.Exception
 public interface java.lang.reflect.Member extends
java.lang.Object

 - 66 -

 public final class java.lang.reflect.Method extends
java.lang.reflect.

 AccessibleObject
 implements java.lang.reflect.Member

 public class java.lang.reflect.Modifier extends java.lang.Object

public final class java.lang.reflect.ReflectPermission extends
java.security.
BasicPermission (new in 1.2)

 Package java.math

 This package provides arbitrary-precision floating point and integer arithmetic.

 Listing 3.21 shows all public classes and interfaces in the java.math package.

 Listing 3.21 java.math Classes and Interfaces List

 public class java.math.BigDecimal extends java.lang.Number
 implements java.lang.Comparable

 public class java.math.BigInteger extends java.lang.Number
 implements java.lang.Comparable

Package java.net

The java.net package is home to Java's core network functionality. Java is a highly
Web-friendly programming environment, with support for easy manipulation of URLs and
extensible classes for interpretation and handling of their contents.

 Listing 3.22 shows all public classes and interfaces in the java.net package.

 Listing 3.22 java.net Classes and Interfaces List

 public abstract class java.net.Authenticator extends
java.lang.Object

 (new in 1.2)
 public class java.net.BindException extends
java.net.SocketException

 public class java.net.ConnectException extends
java.net.SocketException

 public abstract class java.net.ContentHandler extends
java.lang.Object

 public interface java.net.ContentHandlerFactory extends
java.lang.Object

 public final class java.net.DatagramPacket extends
java.lang.Object

 public class java.net.DatagramSocket extends java.lang.Object

public abstract class java.net.DatagramSocketImpl extends
java.lang.Object
 implements java.net.SocketOptions

 public interface java.net.FileNameMap extends java.lang.Object
 public abstract class java.net.HttpURLConnection extends
java.net.URLConnection

 public final class java.net.InetAddress extends java.lang.Object
 implements java.io.Serializable

 public abstract class java.net.JarURLConnection extends
java.net.URLConnection

 (new in 1.2)
 public class java.net.MalformedURLException extends

 - 67 -

java.io.IOException
 public class java.net.MulticastSocket extends
java.net.DatagramSocket

 public final class java.net.NetPermission extends java.security.
 BasicPermission (new in 1.2)
 public class java.net.NoRouteToHostException extends
java.net.SocketException

 public final class java.net.PasswordAuthentication extends
java.lang.Object

 (new in 1.2)
 public class java.net.ProtocolException extends
java.io.IOException

 public class java.net.ServerSocket extends java.lang.Object
 public class java.net.Socket extends java.lang.Object
 public class java.net.SocketException extends java.io.IOException

public abstract class java.net.SocketImpl extends
java.lang.Object
 implements java.net.SocketOptions

 public interface java.net.SocketImplFactory extends
java.lang.Object

 public interface java.net.SocketOptions extends java.lang.Object

public final class java.net.SocketPermission extends
java.security.Permission
(new in 1.2)
 implements java.io.Serializable

 public final class java.net.URL extends java.lang.Object
 implements java.io.Serializable

 public class java.net.URLClassLoader extends
java.security.SecureClassLoader

 (new in 1.2)
 public abstract class java.net.URLConnection extends
java.lang.Object

 public class java.net.URLDecoder extends java.lang.Object (new in
1.2)

 public class java.net.URLEncoder extends java.lang.Object
 public abstract class java.net.URLStreamHandler extends
java.lang.Object

 public interface java.net.URLStreamHandlerFactory extends
java.lang.Object

 public class java.net.UnknownHostException extends
java.io.IOException

 public class java.net.UnknownServiceException extends
java.io.IOException

Package java.rmi

This package supports Remote Method Invocation, the object-flavored successor to
Sun's RPC (Remote Procedure Call) mechanism. RMI allows an object to invoke a
method on another object over the network, just as the older RPC allows procedure
invocation over the network.

RMI's competitors are the widely adopted CORBA and DCOM network component
models. And although CORBA and DCOM are platform-neutral, RMI is closely tied to
Java's architecture. Its main advantages are as follows:

•

CORBA and DCOM require that arguments and return values for method invocations
be translated to a platform-neutral representation; no such translation is required for
RMI. (Of course, Java objects already enjoy, by definition, a platform-neutral
representation.)

 - 68 -

•

Java objects can be passed as parameters and return values. If a participant in an
RMI transaction encounters an unknown object type, it can request information about
the class.

 • RMI supports distributed garbage collection over the network.

If you need a Java-specific network component model, use RMI. For a platform-neutral
model, JDK1.2 offers extensive support for CORBA in the org.omg.CORBA packages
and subpackages.

 Listing 3.23 shows all public classes and interfaces in the java.rmi package.

 Listing 3.23 java.rmi Classes and Interfaces List

 public class java.rmi.AccessException extends
java.rmi.RemoteException

 public class java.rmi.AlreadyBoundException extends
java.lang.Exception

 public class java.rmi.ConnectException extends
java.rmi.RemoteException

 public class java.rmi.ConnectIOException extends
java.rmi.RemoteException

 public class java.rmi.MarshalException extends
java.rmi.RemoteException

 public final class java.rmi.MarshalledObject extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public final class java.rmi.Naming extends java.lang.Object
 public class java.rmi.NoSuchObjectException extends
java.rmi.RemoteException

 public class java.rmi.NotBoundException extends
java.lang.Exception

 public class java.rmi.RMISecurityException extends java.lang.
 SecurityException (deprecated in 1.2)
 public class java.rmi.RMISecurityManager extends
java.lang.SecurityManager

 public class java.rmi.RemoteException extends java.io.IOException
 public class java.rmi.ServerError extends
java.rmi.RemoteException

 public class java.rmi.ServerException extends
java.rmi.RemoteException

 public class java.rmi.ServerRuntimeException extends java.rmi.
 RemoteException (deprecated in 1.2)
 public class java.rmi.StubNotFoundException extends
java.rmi.RemoteException

 public class java.rmi.UnexpectedException extends
java.rmi.RemoteException

 public class java.rmi.UnknownHostException extends
java.rmi.RemoteException

 public class java.rmi.UnmarshalException extends
java.rmi.RemoteException

 Package java.rmi.activation

This package, part of RMI, supports the use of persistent remote components. This new
JDK1.2 capability allows Java applications to create remote objects that can be executed
as they are needed without having to run all the time (as in JDK1.1).

 - 69 -

 Listing 3.24 shows all public classes and interfaces in the java.rmi.activation
package.

 Listing 3.24 java.rmi.activation Classes and Interfaces List

 public abstract class java.rmi.activation.Activatable extends
java.rmi.server.

 RemoteServer (new in 1.2)
 public class java.rmi.activation.ActivateFailedException extends
java.rmi.

 RemoteException (new in 1.2)
 public final class java.rmi.activation.ActivationDesc extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

public class java.rmi.activation.ActivationException extends
java.lang.Exception
(new in 1.2)

 public abstract class java.rmi.activation.ActivationGroup extends
java.rmi.server.

 UnicastRemoteObject (new in 1.2)
 implements java.rmi.activation.ActivationInstantiator

 public final class java.rmi.activation.ActivationGroupDesc
extends java.lang.

 Object (new in 1.2)
 implements java.io.Serializable

public class
java.rmi.activation.ActivationGroupDesc.CommandEnvironment
extends

 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public class java.rmi.activation.ActivationGroupID extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public class java.rmi.activation.ActivationID extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public interface java.rmi.activation.ActivationInstantiator
extends java.lang.

 Object (new in 1.2)
 implements java.rmi.Remote

 public interface java.rmi.activation.ActivationMonitor extends
java.lang.

 Object (new in 1.2)
 implements java.rmi.Remote

 public interface java.rmi.activation.ActivationSystem extends
java.lang.

 Object (new in 1.2)
 implements java.rmi.Remote

 public interface java.rmi.activation.Activator extends
java.lang.Object

 (new in 1.2)
 implements java.rmi.Remote

 public class java.rmi.activation.UnknownGroupException extends
java.rmi.

 activation.
 ActivationException (new in 1.2)
 public class java.rmi.activation.UnknownObjectException extends
java.rmi.

 activation.ActivationException (new in 1.2)

 - 70 -

 Package java.rmi.dgc

This package, part of RMI, supports distributed garbage collection. It supports the
capability of RMI servers to track the use of objects by remote clients, and to garbage-
collect those that are no longer in use.

 Listing 3.25 shows all public classes and interfaces in the java.rmi.dgc package.

 Listing 3.25 java.rmi.dgc Classes and Interfaces List

 public interface java.rmi.dgc.DGC extends java.lang.Object
 implements java.rmi.Remote

 public final class java.rmi.dgc.Lease extends java.lang.Object
 implements java.io.Serializable

 public final class java.rmi.dgc.VMID extends java.lang.Object
 implements java.io.Serializable

 Package java.rmi.registry

 This package, part of RMI, supports access to the registry - the mechanism through

which networked components register their presence and are discovered by clients.

 Listing 3.26 shows all public classes and interfaces in the java.rmi.registry

package.

 Listing 3.26 java.rmi.registry Classes and Interfaces List

 public final class java.rmi.registry.LocateRegistry extends
java.lang.Object

public interface java.rmi.registry.Registry extends
java.lang.Object
 implements java.rmi.Remote

 public interface java.rmi.registry.RegistryHandler extends
java.lang.Object

 (deprecated in 1.2)

 Package java.rmi.server

 This package, part of RMI, provides the classes needed to support a networked RMI

server—they provide the basic plumbing connecting RMI clients to RMI servers.

 Listing 3.27 shows all public classes and interfaces in the java.rmi.server package.

 Listing 3.27 java.rmi.server Classes and Interfaces List

 public class java.rmi.server.ExportException extends
java.rmi.RemoteException

 public interface java.rmi.server.LoaderHandler extends
java.lang.Object

 (deprecated in 1.2)
 public class java.rmi.server.LogStream extends
java.io.PrintStream

 (deprecated in 1.2)

public final class java.rmi.server.ObjID extends
java.lang.Object
 implements java.io.Serializable

 - 71 -

 public class java.rmi.server.Operation extends java.lang.Object
 (deprecated in 1.2)
 public class java.rmi.server.RMIClassLoader extends
java.lang.Object

 public interface java.rmi.server.RMIClientSocketFactory extends
java.lang.

 Object (new in 1.2)
 public interface java.rmi.server.RMIFailureHandler extends
java.lang.Object

 public interface java.rmi.server.RMIServerSocketFactory extends
java.lang.

 Object (new in 1.2)

public abstract class java.rmi.server.RMISocketFactory extends
java.lang.Object
 implements java.rmi.server.RMIClientSocketFactory
 implements java.rmi.server.RMIServerSocketFactory

 public interface java.rmi.server.RemoteCall extends
java.lang.Object

 (deprecated in 1.2)

public abstract class java.rmi.server.RemoteObject extends
java.lang.Object
 implements java.io.Serializable
 implements java.rmi.Remote

public interface java.rmi.server.RemoteRef extends
java.lang.Object
 implements java.io.Externalizable

 public abstract class java.rmi.server.RemoteServer extends
java.rmi.server.

 RemoteObject
 public abstract class java.rmi.server.RemoteStub extends
java.rmi.server.

 RemoteObject
 public class java.rmi.server.ServerCloneException extends
java.lang.

 CloneNotSupportedException
 public class java.rmi.server.ServerNotActiveException extends
java.lang.

 Exception

public interface java.rmi.server.ServerRef extends
java.lang.Object
 implements java.rmi.server.RemoteRef

 public interface java.rmi.server.Skeleton extends
java.lang.Object

 (deprecated in 1.2)
 public class java.rmi.server.SkeletonMismatchException extends
java.rmi.

 RemoteException (deprecated in 1.2)
 public class java.rmi.server.SkeletonNotFoundException extends
java.rmi.

 RemoteException (deprecated in 1.2)
 public class java.rmi.server.SocketSecurityException extends
java.rmi.server.

 ExportException
 public final class java.rmi.server.UID extends java.lang.Object
 implements java.io.Serializable

 public class java.rmi.server.UnicastRemoteObject extends
java.rmi.server.

 RemoteServer
 public interface java.rmi.server.Unreferenced extends
java.lang.Object

 - 72 -

Package java.security

 This package, which has grown significantly in JDK1.2, is the main interface to the Java

security framework.

Security is a fundamental design component of the Java platform and has undergone
large changes with each Java release. The changes for JDK1.2 included introduction of a
fine-grained access control mechanism, in which policies can be defined to precisely
control the privileges granted to applications and applets: read and/or write access to files
or directories, permissions to use some or all available networking capabilities, and so
on.

By default, Java applications on Linux run with capabilities equivalent to those of the user
running the application: If you can use a certain feature or write a certain file from C++,
you can do it from Java. The mechanisms provided by java.security allow for finer
control of those permissions: Users can be granted or denied specific permissions based
on systemwide configuration, per-user configuration, and the degree of trust assigned to
the application being run.

Java cannot, of course, override Linux security mechanisms to give users extra
capabilities—nothing in java.security can grant root user privileges to an ordinary
user. But by supporting detailed security constraints on applications, java.security
provides a new and useful level of protection when running untrusted applications.

 Java's security mechanism also handles cryptographic operations, certification of trusted

sources, and class loading.

 Listing 3.28 shows all public classes and interfaces in the java.security package.

 Listing 3.28 java.security Classes and Interfaces List

 public final class java.security.AccessControlContext extends
java.lang.Object

 new in 1.2)
 public class java.security.AccessControlException extends
java.lang.

 SecurityException (new in 1.2)
 public final class java.security.AccessController extends
java.lang.Object

 (new in 1.2)
 public class java.security.AlgorithmParameterGenerator extends
java.lang.Object

 (new in 1.2)
 public abstract class
java.security.AlgorithmParameterGeneratorSpi extends

 java.lang.Object (new in 1.2)
 public class java.security.AlgorithmParameters extends
java.lang.Object

 (new in 1.2)
 public abstract class java.security.AlgorithmParametersSpi
extends java.lang.

 Object (new in 1.2)
 public final class java.security.AllPermission extends
java.security.Permission

 (new in 1.2)
 public abstract class java.security.BasicPermission extends
java.security.

 Permission (new in 1.2)
 implements java.io.Serializable

 - 73 -

 public interface java.security.Certificate extends
java.lang.Object

 (deprecated in 1.2)

public class java.security.CodeSource extends java.lang.Object
(new in 1.2)
 implements java.io.Serializable

 public class java.security.DigestException extends java.security.
 GeneralSecurityException
 public class java.security.DigestInputStream extends
java.io.FilterInputStream

 public class java.security.DigestOutputStream extends java.io.
 FilterOutputStream
 public class java.security.GeneralSecurityException extends
java.lang.

 Exception (new in 1.2)
 public interface java.security.Guard extends java.lang.Object
(new in 1.2)

public class java.security.GuardedObject extends java.lang.Object
(new in 1.2)
 implements java.io.Serializable

 public abstract class java.security.Identity extends
java.lang.Object

(deprecated in 1.2)
 implements java.io.Serializable
 implements java.security.Principal

 public abstract class java.security.IdentityScope extends
java.security.Identity

 (deprecated in 1.2)
 public class java.security.InvalidAlgorithmParameterException
extends

 java.security.GeneralSecurityException (new in 1.2)
 public class java.security.InvalidKeyException extends
java.security.KeyException

 public class java.security.InvalidParameterException extends
java.lang.

 IllegalArgumentException
 public interface java.security.Key extends java.lang.Object
 implements java.io.Serializable

 public class java.security.KeyException extends java.security.
 GeneralSecurityException
 public class java.security.KeyFactory extends java.lang.Object
(new in 1.2)

 public abstract class java.security.KeyFactorySpi extends
java.lang.Object

 (new in 1.2)
 public class java.security.KeyManagementException extends
java.security.

 KeyException

public final class java.security.KeyPair extends
java.lang.Object
 implements java.io.Serializable

 public abstract class java.security.KeyPairGenerator extends
java.security.

 KeyPairGeneratorSpi
 public abstract class java.security.KeyPairGeneratorSpi extends
java.lang.

 Object (new in 1.2)
 public class java.security.KeyStore extends java.lang.Object (new
in 1.2)

 public class java.security.KeyStoreException extends
java.security.

 - 74 -

 GeneralSecurityException (new in 1.2)
 public abstract class java.security.KeyStoreSpi extends
java.lang.Object

 (new in 1.2)
 public abstract class java.security.MessageDigest extends
java.security.

 MessageDigestSpi
 public abstract class java.security.MessageDigestSpi extends
java.lang.Object

 (new in 1.2)
 public class java.security.NoSuchAlgorithmException extends
java.security.

 GeneralSecurityException
 public class java.security.NoSuchProviderException extends
java.security.

 GeneralSecurityException

public abstract class java.security.Permission extends
java.lang.Object
(new in 1.2)
 implements java.io.Serializable
 implements java.security.Guard

 public abstract class java.security.PermissionCollection extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public final class java.security.Permissions extends
java.security.

 PermissionCollection (new in 1.2)
 implements java.io.Serializable

public abstract class java.security.Policy extends
java.lang.Object
(new in 1.2)

 public interface java.security.Principal extends java.lang.Object

public interface java.security.PrivateKey extends
java.lang.Object
 implements java.security.Key

 public interface java.security.PrivilegedAction extends
java.lang.Object

 (new in 1.2)
 public class java.security.PrivilegedActionException extends
java.lang.

 Exception (new in 1.2)
 public interface java.security.PrivilegedExceptionAction extends
java.lang.

 Object (new in 1.2)
 public class java.security.ProtectionDomain extends
java.lang.Object (new in 1.2)

 public abstract class java.security.Provider extends
java.util.Properties

 public class java.security.ProviderException extends
java.lang.RuntimeException

public interface java.security.PublicKey extends
java.lang.Object
 implements java.security.Key

public class java.security.SecureClassLoader extends
java.lang.ClassLoader
(new in 1.2)

 public class java.security.SecureRandom extends java.util.Random
 public abstract class java.security.SecureRandomSpi extends
java.lang.Object

 (new in 1.2)

 - 75 -

 implements java.io.Serializable
 public final class java.security.Security extends
java.lang.Object

 public final class java.security.SecurityPermission extends
java.security.

 BasicPermission (new in 1.2)
 public abstract class java.security.Signature extends
java.security.

 SignatureSpi
 public class java.security.SignatureException extends
java.security.

 GeneralSecurityException
 public abstract class java.security.SignatureSpi extends
java.lang.Object

 (new in 1.2)
 public final class java.security.SignedObject extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public abstract class java.security.Signer extends
java.security.Identity

 (deprecated in 1.2)
 public class java.security.UnrecoverableKeyException extends
java.security.

 GeneralSecurityException (new in 1.2)
 public final class java.security.UnresolvedPermission extends
java.security.

 Permission (new in 1.2)
 implements java.io.Serializable

 Package java.security.acl

 This package, an obsolete part of java.security, is superceded by classes in the

JDK1.2 java.security.

 Listing 3.29 shows all public classes and interfaces in the java.security.acl

package.

 Listing 3.29 java.security.acl Classes and Interfaces List

 public interface java.security.acl.Acl extends java.lang.Object
 implements java.security.acl.Owner

public interface java.security.acl.AclEntry extends
java.lang.Object
 implements java.lang.Cloneable

 public class java.security.acl.AclNotFoundException extends
java.lang.Exception

public interface java.security.acl.Group extends
java.lang.Object
 implements java.security.Principal

 public class java.security.acl.LastOwnerException extends
java.lang.Exception

 public class java.security.acl.NotOwnerException extends
java.lang.Exception

 public interface java.security.acl.Owner extends java.lang.Object
 public interface java.security.acl.Permission extends
java.lang.Object

Package java.security.cert

 - 76 -

This package, part of java.security, supports certificates—encrypted documents
from a trusted source that guarantee the validity of a public encryption/decryption key.
This is the technology that underlies, among other things, the Secure Sockets Layer
(SSL) encryption used in Web browsers.

 Listing 3.30 shows all public classes and interfaces in the java.security.cert

package.

 Listing 3.30 java.security.cert Classes and Interfaces List

 public abstract class java.security.cert.CRL extends
java.lang.Object

 (new in 1.2)
 public class java.security.cert.CRLException extends
java.security.

 GeneralSecurityException (new in 1.2)
 public abstract class java.security.cert.Certificate extends
java.lang.Object

 (new in 1.2)
 public class java.security.cert.CertificateEncodingException
extends

 java.security.cert.CertificateException (new in 1.2)
 public class java.security.cert.CertificateException extends
java.security.

 GeneralSecurityException (new in 1.2)
 public class java.security.cert.CertificateExpiredException
extends

 java.security.cert.CertificateException (new in 1.2)
 public class java.security.cert.CertificateFactory extends
java.lang.Object

 (new in 1.2)
 public abstract class java.security.cert.CertificateFactorySpi
extends

 java.lang.Object (new in 1.2)
 public class java.security.cert.CertificateNotYetValidException
extends

 java.security.cert.CertificateException (new in 1.2)
 public class java.security.cert.CertificateParsingException
extends

 java.security.cert.CertificateException (new in 1.2)
 public abstract class java.security.cert.X509CRL extends
java.security.cert.CRL

 (new in 1.2)
 implements java.security.cert.X509Extension

 public abstract class java.security.cert.X509CRLEntry extends
java.lang.Object

 (new in 1.2)
 implements java.security.cert.X509Extension

 public abstract class java.security.cert.X509Certificate extends
java.security.

 cert.Certificate (new in 1.2)
 implements java.security.cert.X509Extension

 public interface java.security.cert.X509Extension extends
java.lang.Object

 (new in 1.2)

 Package java.security.interfaces

 - 77 -

 This package, part of java.security, defines interfaces needed for generation of RSA
and DSA-type cryptographic keys.

 Listing 3.31 shows all public classes and interfaces in the
java.security.interfaces package.

 Listing 3.31 java.security.interfaces Classes and Interfaces List

 public interface java.security.interfaces.DSAKey extends
java.lang.Object

 public interface java.security.interfaces.DSAKeyPairGenerator
extends

 java.lang.Object
 public interface java.security.interfaces.DSAParams extends
java.lang.Object

 public interface java.security.interfaces.DSAPrivateKey extends

java.lang.Object
 implements java.security.PrivateKey
 implements java.security.interfaces.DSAKey

public interface java.security.interfaces.DSAPublicKey extends
java.lang.Object
 implements java.security.PublicKey
 implements java.security.interfaces.DSAKey

 public interface java.security.interfaces.RSAPrivateCrtKey
extends

 java.lang.Object (new in 1.2)
 implements java.security.interfaces.RSAPrivateKey

 public interface java.security.interfaces.RSAPrivateKey extends
 java.lang.Object (new in 1.2)
 implements java.security.PrivateKey

 public interface java.security.interfaces.RSAPublicKey extends
 java.lang.Object (new in 1.2)
 implements java.security.PublicKey

 Package java.security.spec

 Package java.security.spec

 This package, part of java.security, is new to JDK1.2 and supports key

specifications and algorithm parameters for encryption specifications.

 Listing 3.32 shows all public classes and interfaces in the java.security.spec

package.

 Listing 3.32 java.security.spec Classes and Interfaces List

 public class java.security.spec.DSAParameterSpec extends
java.lang.Object

(new in 1.2)
 implements java.security.interfaces.DSAParams
 implements java.security.spec.AlgorithmParameterSpec

 public class java.security.spec.DSAPrivateKeySpec extends
java.lang.Object

 (new in 1.2)
 implements java.security.spec.KeySpec

 public class java.security.spec.DSAPublicKeySpec extends
java.lang.Object

 (new in 1.2)
 implements java.security.spec.KeySpec

 public abstract class java.security.spec.EncodedKeySpec extends
java.lang.

 - 78 -

 Object (new in 1.2)
 implements java.security.spec.KeySpec

 public class java.security.spec.InvalidKeySpecException extends
java.security.

 GeneralSecurityException (new in 1.2)
 public class java.security.spec.InvalidParameterSpecException
extends

 java.security.GeneralSecurityException (new in 1.2)
 public class java.security.spec.PKCS8EncodedKeySpec extends
java.security.spec.

 EncodedKeySpec (new in 1.2)
 public class java.security.spec.RSAPrivateCrtKeySpec extends
java.security.

 spec.RSAPrivateKeySpec (new in 1.2)
 public class java.security.spec.RSAPrivateKeySpec extends
java.lang.Object

 (new in 1.2)
 implements java.security.spec.KeySpec

public class java.security.spec.RSAPublicKeySpec extends
java.lang.Object
(new in 1.2)
 implements java.security.spec.KeySpec

 public class java.security.spec.X509EncodedKeySpec extends
java.security.spec.

 EncodedKeySpec (new in 1.2)

Package java.sql

This package provides the JDBC interface for Java access to databases. It includes the
necessary classes for constructing and executing SQL (Structured Query Language)
queries against a DBMS.

To use a particular database, you must obtain a JDBC driver for that database—such
drivers are available for almost all DBMSes available on Linux. In Chapter 67, "Java,
Linux, and Three-Tiered Architectures," we will explore a simple database query
application using the free MySQL database.

 Listing 3.33 shows all public classes and interfaces in the java.sql package.

 Listing 3.33 java.sql Classes and Interfaces List

 public interface java.sql.Array extends java.lang.Object (new in
1.2)

 public class java.sql.BatchUpdateException extends
java.sql.SQLException

 (new in 1.2)
 public interface java.sql.Blob extends java.lang.Object (new in
1.2)

public interface java.sql.CallableStatement extends
java.lang.Object
 implements java.sql.PreparedStatement

 public interface java.sql.Clob extends java.lang.Object (new in
1.2)

 public interface java.sql.Connection extends java.lang.Object
 public class java.sql.DataTruncation extends java.sql.SQLWarning
 public interface java.sql.DatabaseMetaData extends
java.lang.Object

 public class java.sql.Date extends java.util.Date
 public interface java.sql.Driver extends java.lang.Object

 - 79 -

 public class java.sql.DriverManager extends java.lang.Object
 public class java.sql.DriverPropertyInfo extends java.lang.Object

public interface java.sql.PreparedStatement extends
java.lang.Object
 implements java.sql.Statement

 public interface java.sql.Ref extends java.lang.Object (new in
1.2)

 public interface java.sql.ResultSet extends java.lang.Object
 public interface java.sql.ResultSetMetaData extends
java.lang.Object

 public interface java.sql.SQLData extends java.lang.Object (new
in 1.2)

 public class java.sql.SQLException extends java.lang.Exception
 public interface java.sql.SQLInput extends java.lang.Object (new
in 1.2)

 public interface java.sql.SQLOutput extends java.lang.Object (new
in 1.2)

 public class java.sql.SQLWarning extends java.sql.SQLException
 public interface java.sql.Statement extends java.lang.Object
 public interface java.sql.Struct extends java.lang.Object (new in
1.2)

 public class java.sql.Time extends java.util.Date
 public class java.sql.Timestamp extends java.util.Date
 public class java.sql.Types extends java.lang.Object

 Package java.text

The java.text package handles localized representation of dates, text, numbers, and
messages. By delegating the problems of character iteration, number and date formatting
and parsing, and text collation to classes that are loaded at runtime, this package allows
you to write locale-independent code and let the Java handle much of the localization
work.

 Listing 3.34 shows all public classes and interfaces in the java.text package.

 Listing 3.34 java.text Classes and Interfaces List

 public class java.text.Annotation extends java.lang.Object (new
in 1.2)

 public interface java.text.AttributedCharacterIterator extends
java.lang.Object

 (new in 1.2)
 implements java.text.CharacterIterator

 public class java.text.AttributedCharacterIterator.Attribute
extends

 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public class java.text.AttributedString extends java.lang.Object
(new in 1.2)

public abstract class java.text.BreakIterator extends
java.lang.Object
 implements java.lang.Cloneable

public interface java.text.CharacterIterator extends
java.lang.Object
 implements java.lang.Cloneable

 public class java.text.ChoiceFormat extends
java.text.NumberFormat

 public final class java.text.CollationElementIterator extends
java.lang.Object

 - 80 -

public final class java.text.CollationKey extends
java.lang.Object
 implements java.lang.Comparable

public abstract class java.text.Collator extends
java.lang.Object
 implements java.lang.Cloneable
 implements java.util.Comparator

 public abstract class java.text.DateFormat extends
java.text.Format

public class java.text.DateFormatSymbols extends
java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public class java.text.DecimalFormat extends
java.text.NumberFormat

public final class java.text.DecimalFormatSymbols extends
java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public class java.text.FieldPosition extends java.lang.Object

public abstract class java.text.Format extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public class java.text.MessageFormat extends java.text.Format
 public abstract class java.text.NumberFormat extends
java.text.Format

 public class java.text.ParseException extends java.lang.Exception
 public class java.text.ParsePosition extends java.lang.Object
 public class java.text.RuleBasedCollator extends
java.text.Collator

 public class java.text.SimpleDateFormat extends
java.text.DateFormat

public final class java.text.StringCharacterIterator extends
java.lang.Object
 implements java.text.CharacterIterator

Package java.util

 The java.util package is an assortment of extremely useful classes, including

 • java.util.Date—Representation of time and date.

•

java.util.Calendar—Localized formatting, parsing, and interpretation of date and
time fields. A subclass of Calendar is provided for the Gregorian calendar, and future
support is intended for various lunar and national calendars.

 • java.util.Bitset—Arbitrary-length bit arrays.

 • Properties and resources—Management of persistent properties and locale-specific

resources (such as localized messages).

 • java.util.StringTokenizer—A simple tokenizer for extracting words from

strings.

 • java.util.Random—Random number generation.

 • The Collections Classes—Classes for lists, arrays, balanced trees, sets, and

hashmaps—so you never have to reinvent those particular wheels.

 - 81 -

 Listing 3.35 shows all public classes and interfaces in the java.util package.

 Listing 3.35 java.util Classes and Interfaces List

 public abstract class java.util.AbstractCollection extends
java.lang.Object

 (new in 1.2)
 implements java.util.Collection

 public abstract class java.util.AbstractList extends java.util.
 AbstractCollection (new in 1.2)
 implements java.util.List

 public abstract class java.util.AbstractMap extends
java.lang.Object

 (new in 1.2)
 implements java.util.Map

 public abstract class java.util.AbstractSequentialList extends
java.util.

 AbstractList (new in 1.2)
 public abstract class java.util.AbstractSet extends java.util.
 AbstractCollection (new in 1.2)
 implements java.util.Set

public class java.util.ArrayList extends java.util.AbstractList
(new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.List

 public class java.util.Arrays extends java.lang.Object (new in
1.2)

public class java.util.BitSet extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

public abstract class java.util.Calendar extends
java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public interface java.util.Collection extends java.lang.Object
(new in 1.2)

 public class java.util.Collections extends java.lang.Object (new
in 1.2)

 public interface java.util.Comparator extends java.lang.Object
(new in 1.2)

 public class java.util.ConcurrentModificationException extends
java.lang.

 RuntimeException (new in 1.2)

public class java.util.Date extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.lang.Comparable

 public abstract class java.util.Dictionary extends
java.lang.Object

 public class java.util.EmptyStackException extends
java.lang.RuntimeException

 public interface java.util.Enumeration extends java.lang.Object
 public class java.util.EventObject extends java.lang.Object
 implements java.io.Serializable

 public class java.util.GregorianCalendar extends
java.util.Calendar

public class java.util.HashMap extends java.util.AbstractMap (new
in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.Map

 - 82 -

public class java.util.HashSet extends java.util.AbstractSet (new
in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.Set

public class java.util.Hashtable extends java.util.Dictionary
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.Map

 public interface java.util.Iterator extends java.lang.Object (new
in 1.2)

 public class java.util.LinkedList extends
java.util.AbstractSequentialList

(new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.List

public interface java.util.List extends java.lang.Object (new in
1.2)
 implements java.util.Collection

public interface java.util.ListIterator extends java.lang.Object
(new in 1.2)
 implements java.util.Iterator

 public abstract class java.util.ListResourceBundle extends
java.util.

 ResourceBundle

public final class java.util.Locale extends java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public interface java.util.Map extends java.lang.Object (new in
1.2)

 public interface java.util.Map.Entry extends java.lang.Object
(new in 1.2)

 public class java.util.MissingResourceException extends
java.lang.

 RuntimeException
 public class java.util.NoSuchElementException extends java.lang.
 RuntimeException
 public class java.util.Observable extends java.lang.Object
 public interface java.util.Observer extends java.lang.Object
 public class java.util.Properties extends java.util.Hashtable
 public final class java.util.PropertyPermission extends
java.security.

 BasicPermission (new in 1.2)
 public class java.util.PropertyResourceBundle extends
java.util.ResourceBundle

 public class java.util.Random extends java.lang.Object
 implements java.io.Serializable

 public abstract class java.util.ResourceBundle extends
java.lang.Object

public interface java.util.Set extends java.lang.Object (new in
1.2)
 implements java.util.Collection

 public class java.util.SimpleTimeZone extends java.util.TimeZone

public interface java.util.SortedMap extends java.lang.Object
(new in 1.2)
 implements java.util.Map

public interface java.util.SortedSet extends java.lang.Object
(new in 1.2)
 implements java.util.Set

 public class java.util.Stack extends java.util.Vector

 - 83 -

 public class java.util.StringTokenizer extends java.lang.Object
 implements java.util.Enumeration

public abstract class java.util.TimeZone extends
java.lang.Object
 implements java.io.Serializable
 implements java.lang.Cloneable

 public class java.util.TooManyListenersException extends
java.lang.Exception

public class java.util.TreeMap extends java.util.AbstractMap (new
in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.SortedMap

public class java.util.TreeSet extends java.util.AbstractSet (new
in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.SortedSet

public class java.util.Vector extends java.util.AbstractList
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements java.util.List

public class java.util.WeakHashMap extends java.util.AbstractMap
(new in 1.2)
 implements java.util.Map

 Package java.util.jar

This package, new to JDK1.2, supports the Java ARchive (jar) format—the primary
format for packaging Java class libraries and resources. A jar archive is identical to a zip
archive (discussed later in the chapter), with the optional addition of a manifest file
containing meta-information about the archive contents.

 Listing 3.36 shows all public classes and interfaces in the java.util.jar package.

 Listing 3.36 java.util.jar Classes and Interfaces List

public class java.util.jar.Attributes extends java.lang.Object
(new in 1.2)
 implements java.lang.Cloneable
 implements java.util.Map

 public class java.util.jar.Attributes.Name extends
java.lang.Object

 (new in 1.2)
 public class java.util.jar.JarEntry extends
java.util.zip.ZipEntry (new in 1.2)

 public class java.util.jar.JarException extends
java.util.zip.ZipException

 (new in 1.2)
 public class java.util.jar.JarFile extends java.util.zip.ZipFile
(new in 1.2)

 public class java.util.jar.JarInputStream extends
java.util.zip.ZipInputStream

 (new in 1.2)
 public class java.util.jar.JarOutputStream extends java.util.zip.
 ZipOutputStream (new in 1.2)

public class java.util.jar.Manifest extends java.lang.Object (new
in 1.2)
 implements java.lang.Cloneable

 - 84 -

 Package java.util.zip

This package supports the zip file format (the same one that has been in use since MS-
DOS days), a standard compressed archive format used for packaging Java classes and
resources. Because Java can load classes and resources directly from zip and jar
archives, it is possible to ship entire complex applications packed into a single archive
file.

 This package also supports reading and writing of the gzip file format—the application of

zip's compression algorithm to a single file instead of an archive.

 Listing 3.37 shows all public classes and interfaces in the java.util.zip package.

 Listing 3.37 java.util.zip Classes and Interfaces List

 public class java.util.zip.Adler32 extends java.lang.Object
 implements java.util.zip.Checksum

 public class java.util.zip.CRC32 extends java.lang.Object
 implements java.util.zip.Checksum

 public class java.util.zip.CheckedInputStream extends
java.io.FilterInputStream

 public class java.util.zip.CheckedOutputStream extends java.io.
 FilterOutputStream
 public interface java.util.zip.Checksum extends java.lang.Object
 public class java.util.zip.DataFormatException extends
java.lang.Exception

 public class java.util.zip.Deflater extends java.lang.Object
 public class java.util.zip.DeflaterOutputStream extends java.io.
 FilterOutputStream
 public class java.util.zip.GZIPInputStream extends java.util.zip.
 InflaterInputStream
 public class java.util.zip.GZIPOutputStream extends
java.util.zip.

 DeflaterOutputStream
 public class java.util.zip.Inflater extends java.lang.Object
 public class java.util.zip.InflaterInputStream extends java.io.
 FilterInputStream

public class java.util.zip.ZipEntry extends java.lang.Object
 implements java.lang.Cloneable
 implements java.util.zip.ZipConstants

 public class java.util.zip.ZipException extends
java.io.IOException

 public class java.util.zip.ZipFile extends java.lang.Object
 implements java.util.zip.ZipConstants

 public class java.util.zip.ZipInputStream extends java.util.zip.
 InflaterInputStream
 implements java.util.zip.ZipConstants

 public class java.util.zip.ZipOutputStream extends java.util.zip.
 DeflaterOutputStream
 implements java.util.zip.ZipConstants

 Package javax.accessibility

This package, new in JDK1.2, supports assistive user interface technologies. This
package is a contract: user interface (UI) components that fulfill the contract are
compatible with screen readers, screen magnifiers, and other technologies intended to
assist disabled users. Specifically, by implementing these interfaces, components are
contracting to provide enough information about themselves to support any sort of

 - 85 -

assistive technology.

Note

This package started out as a Java extension that was later incorporated into
Java's core functionality. As with all such packages, its name begins with
"javax." Why were the packages not renamed with a "java" prefix when
they were moved into the core? As Sun learned during the development of the
Swing toolkit, developers take strong objection to the renaming of packages
they depend on—so the "javax" name is a permanent feature.

The javax.accessibility classes are broken up into pieces supporting specific
types of UI functionality. All UI components offering accessibility must implement
javax.accessibility.Accessible. In addition, they must implement classes
specific to their functionality: javax.accessibility.AccessibleComponent if they
are visible onscreen, javax.accessibility.AccessibleText if they present
textual information, and so on.

 Listing 3.38 shows all public classes and interfaces in the javax.accessibility

package.

 Listing 3.38 javax.accessibility Classes and Interfaces List

 public interface javax.accessibility.Accessible extends
java.lang.Object

 (new in 1.2)
 public interface javax.accessibility.AccessibleAction extends
java.lang.Object

 (new in 1.2)
 public abstract class javax.accessibility.AccessibleBundle
extends java.lang.

 Object (new in 1.2)
 public interface javax.accessibility.AccessibleComponent extends
java.lang.

 Object (new in 1.2)
 public abstract class javax.accessibility.AccessibleContext
extends java.lang.

 Object (new in 1.2)
 public abstract class javax.accessibility.AccessibleHyperlink
extends java.lang.

 Object (new in 1.2)
 implements javax.accessibility.AccessibleAction

 public interface javax.accessibility.AccessibleHypertext extends
java.lang.

 Object (new in 1.2)
 implements javax.accessibility.AccessibleText

 public class javax.accessibility.AccessibleResourceBundle extends
java.util.

 ListResourceBundle (new in 1.2)
 public class javax.accessibility.AccessibleRole extends
javax.accessibility.

 AccessibleBundle (new in 1.2)
 public interface javax.accessibility.AccessibleSelection extends
java.lang.

 Object (new in 1.2)
 public class javax.accessibility.AccessibleState extends
javax.accessibility.

 AccessibleBundle (new in 1.2)
 public class javax.accessibility.AccessibleStateSet extends
java.lang.Object

 (new in 1.2)

 - 86 -

 public interface javax.accessibility.AccessibleText extends
java.lang.Object

 (new in 1.2)
 public interface javax.accessibility.AccessibleValue extends
java.lang.Object

 (new in 1.2)

 Package javax.swing

 The Swing toolkit, provided by the javax.swing package, is one of the most significant

(and largest) changes between JDK1.1 and JDK1.2.

Swing is a GUI toolkit, intended to replace the GUI components provided in the AWT.
The change is important; Java has enjoyed limited success as a GUI platform due to the
AWT's shortcomings, and Swing is Sun's serious attempt to improve the story.

And what an attempt! In its entirety, Swing comprises over 1,200 classes, making it
arguably the world's largest and most complex GUI toolkit. For most applications,
fortunately, developers need to deal with a few dozen of these classes. Many books have
been written on Swing—a good place to start is JFC Unleashed (Sams), which explores
Swing and its related components in detail.

 So, what problem are these 1,200+ classes trying to solve?

When Java started out in the GUI business, the AWT was positioned as the bridge to
native window system functionality. It provided a basic set of GUI components—menu,
scrollbar, text editor, check box, list, drop-down list, canvas, pushbutton, and label—with
which Java applications could build complete interfaces. Each component was
implemented with a corresponding peer component in the native window system
(standard GUI components in Microsoft Windows and MacOS; any GUI toolkit, usually
Motif, in UNIX environments; other, possibly proprietary, implementations on
PersonalJava and other platforms). Two things went wrong with the scenario:

•

By choosing a lowest common denominator set of GUI components, the AWT was a
weak toolkit, giving Java applications many fewer GUI components than were
available to native applications. This shortcoming was exacerbated when Microsoft
filled the gap with the Application Foundation Classes (AFC), which include a highly
capable, Windows-only Java GUI toolkit.

 • It has turned out to be exceedingly difficult to build GUI applications that look good in

all possible Java environments.

We'll illustrate the latter point with a modest example. Listing 3.39 is a simple AWT app,
written to function both as an applet (it's derived from java.applet.Applet) and an
application (it contains a main() that builds a top-level java.awt.Frame to enclose the
GUI). The app is a collection of five AWT components thrown together in an ugly
arrangement.

 Listing 3.39 Simple AWT app GuiMess

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import java.applet.*;
 4
 5 public class GuiMess extends Applet
 6 {
 7 // Constructor: Fill up with a passel of GUI components.
 8 public GuiMess()

 - 87 -

 9 {
 10 // We'll use the BorderLayout manager
 11 setLayout(new BorderLayout());
 12 // Start adding things... an option menu
 13 Choice choice = new Choice();
 14 add(choice, BorderLayout.NORTH);
 15 choice.add("Choice 1");
 16 choice.add("Choice 2");
 17 choice.add("Choice 3");
 18 choice.add("Choice 4");
 19 choice.add("Choice 5");
 20 // A checkbox
 21 add(new Checkbox("Checkbox"), BorderLayout.WEST);
 22 // A scrolled text area
 23 TextArea text = new TextArea();
 24 text.setText("The quick brown fox jumps over the
lazy dog.");

 25 add(text, BorderLayout.CENTER);
 26 // A button
 27 add(new Button("Button"), BorderLayout.EAST);
 28 // And a list
 29 List list = new List();
 30 list.add("Item 1");
 31 list.add("Item 2");
 32 list.add("Item 3");
 33 list.add("Item 4");
 34 list.add("Item 5");
 35 add(list, BorderLayout.SOUTH);
 36 }
 37 public static void main(String[] argv)
 38 {
 39 Frame frame = new Frame();
 40 GuiMess guiMess = new GuiMess();
 41 frame.add(guiMess);
 42 frame.pack();
 43 frame.setVisible(true);
 44 frame.addWindowListener(new WindowAdapter() {
 45 public void windowClosing(WindowEvent ev)
 46 {
 47 System.exit(0);
 48 }
 49 });
 50 }
 51 }

 Figure 3.5 shows the applet under Microsoft Windows with the two major browsers.

 - 88 -

 Figure 3.5: GuiMess applet viewed in Windows NT under MSIE and Netscape

Navigator.

Both instances shown in Figure 3.5 are running in browsers that use the native Windows
GUIs to implement the AWT, and look and feel similar. Figure 3.6 shows some views of
the same app under Linux.

 - 89 -

 Figure 3.6: GuiMess running under Linux as a Netscape Navigator applet and

as a standalone program.

Both instantiations shown in Figure 3.6 use the Motif toolkit to implement the AWT. The
look is very different, particularly in the drop-down Choice menu, and it's unlikely that a
GUI designer happy with the Windows version will be happy with what shows up under
Linux. Figure 3.7 gives us one final point of comparison.

 Figure 3.7: Running the standalone GuiMess application on Linux under Kaffe.

The free Kaffe implementation of Java (see Chapter 26, "Kaffe: A Cleanroom Java
Environment,") provides its own, non-Motif version of the AWT: it's handsome, and again
different from the others, but it's a real AWT that meets the Sun specification. Some
ambitious individuals in the Java/Linux community have also proposed (and may be
implementing) AWTs based on such popular toolkits as Gtk+, Qt, and Tk.

The point of this exploration is to note the differences that even a simple Java AWT-
based GUI must endure. For complex GUI layouts, the story gets worse: the Web is full
of applets that are carefully tuned to look good under Microsoft Windows but are virtually
unusable elsewhere—unreadable labels, text fields too small to type in, and so on.

Enter Swing, the all-Java GUI and Sun's answer to the AWT problems. Swing is a core
component of JDK1.2 but is also available for use as an add-on for JDK1.1 (see "Java
Foundation Classes" in Chapter 11, "Choosing an Environment: 1.1 or 1.2?"). Before any
further discussion of Swing, let's rewrite our application to use Swing (see Listing 3.40).

 Listing 3.40 GuiSwing, a Swing-Base Rewrite of GuiMess

 1 import java.awt.BorderLayout;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 public class GuiSwing extends JApplet

 - 90 -

 6 {
 7 // Constructor: Fill up with a passel of GUI components.
 8 public GuiSwing()
 9 {
 10 // We'll use the BorderLayout manager
 11 getContentPane().setLayout(new BorderLayout());
 12 // Start adding things... an option menu
 13 JComboBox choice = new JComboBox();
 14 // We don't want user editing of the input
 15 choice.setEditable(false);
 16 getContentPane().add(choice, BorderLayout.NORTH);
 17 choice.addItem("Choice 1");
 18 choice.addItem("Choice 2");
 19 choice.addItem("Choice 3");
 20 choice.addItem("Choice 4");
 21 choice.addItem("Choice 5");
 22 // A checkbox
 23 getContentPane().add(new JCheckBox("Checkbox"),
 BorderLayout.WEST);
 24 // A scrolled text area. Unlike AWT, the Swing text
area needs

 25 // a scrollpane supplied externally.
 26 JTextArea text = new JTextArea();
 27 text.setText("The quick brown fox jumps over the
lazy dog.");

 28 text.setRows(4);
 29 getContentPane().add(new JScrollPane(text),
BorderLayout.

 CENTER);
 30 // A button
 31 getContentPane().add(new JButton("Button"),
BorderLayout.EAST);

 32 // And a list Unlike AWT, the Swing list component
area needs a

 33 // scrollpane supplied externally.
 34 DefaultListModel listModel = new DefaultListModel();
 35 listModel.addElement("Item 1");
 36 listModel.addElement("Item 2");
 37 listModel.addElement("Item 3");
 38 listModel.addElement("Item 4");
 39 listModel.addElement("Item 5");
 40 JList list = new JList(listModel);
 41 list.setVisibleRowCount(4);
 42 getContentPane().add(new JScrollPane(list),
 BorderLayout.SOUTH);
 43 }
 44 public static void main(String[] argv)
 45 {
 46 JFrame frame = new JFrame();
 47 GuiSwing guiSwing = new GuiSwing();
 48 frame.getContentPane().add(guiSwing);
 49 frame.pack();
 50 frame.setVisible(true);
 51 frame.addWindowListener(new WindowAdapter() {

 - 91 -

 52 public void windowClosing(WindowEvent ev)
 53 {
 54 System.exit(0);
 55 }
 56 });
 57 }
 58 }

The rewrite is not terribly difficult; Swing components more than subsume the GUI
capabilities of the AWT, and the interfaces are different but not radically so. Figure 3.8
shows the resulting application, run under the Blackdown JDK:

 Figure 3.8: GuiSwing application running under Linux Blackdown JDK.

 By including Swing in the JDK1.2, Sun has designed a distinct Java platform look-and-

feel that reliably works everywhere. Briefly, here is what Swing brings to the party:

 • A GUI toolkit implemented entirely in Java, usable with any JVM.

•

A rich collection of capable low-level widgets (buttons, scrollbars, sliders, and such)
and higher-level GUI abstractions (file browser, tree viewer, table viewer, application
desktop).

•

A lightweight implementation that creates and manages the GUI components entirely
within the application, rather than creating multiple GUI components in the native
window system. (Despite the lightweight moniker, this approach imposes some heavy
performance costs that we explore in more detail later.)

 • A model/view paradigm that separates the viewing and data-modeling of complex GUI

components.

 • A Pluggable Look and Feel that allows the GUI to assume a native Java look (which

Sun calls the Metal look and feel) or to assume other personalities.

Note

The Swing Pluggable Look and Feel offers substantial control over
appearance and behavior. In addition to Metal, the available personalities are
clones of some familiar faces: Motif, Microsoft Windows, and MacOS. These
alternate personalities can be enabled either with system resource settings or
by making explicit calls from the code. My personal editorial opinion, which
seems to be widely held, is that Metal provides an excellent and distinctive
Java look—without the need to masquerade as any other toolkit.

 • Automatic support of double-buffering, which results in smooth, no-flicker graphical

rendering.

Swing is a first-rate toolkit and the future of Java GUIs. Its major downside is
performance. We explore some reasons and remedies in Chapters 58, "A Heavy Look at
Lightweight Toolkits," and 59, "An Approach to Improving Graphical Rendering
Performance."

 Listing 3.41 shows all public classes and interfaces in the javax.swing package.

 - 92 -

 Listing 3.41 javax.swing Classes and Interfaces List

 public abstract class javax.swing.AbstractAction extends
java.lang.Object (

new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements javax.swing.Action

 public abstract class javax.swing.AbstractButton extends
javax.swing.JComponent

(new in 1.2)
 implements java.awt.ItemSelectable
 implements javax.swing.SwingConstants

 public abstract class
javax.swing.AbstractButton.AccessibleAbstractButton

extends javax.swing.JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleAction
 implements javax.accessibility.AccessibleValue

 public class javax.swing.AbstractButton.ButtonChangeListener
extends java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.event.ChangeListener

 public abstract class javax.swing.AbstractListModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.ListModel

public interface javax.swing.Action extends java.lang.Object (new
in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.BorderFactory extends java.lang.Object
(new in 1.2)

public interface javax.swing.BoundedRangeModel extends
java.lang.Object
(new in 1.2)

public class javax.swing.Box extends java.awt.Container (new in
1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.Box.AccessibleBox extends
javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

public class javax.swing.Box.Filler extends java.awt.Component
(new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.Box.Filler.AccessibleBoxFiller extends
 javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

public class javax.swing.BoxLayout extends java.lang.Object (new
in 1.2)
 implements java.awt.LayoutManager2
 implements java.io.Serializable

public class javax.swing.ButtonGroup extends java.lang.Object
(new in 1.2)
 implements java.io.Serializable

public interface javax.swing.ButtonModel extends java.lang.Object
(new in 1.2)
 implements java.awt.ItemSelectable

 - 93 -

 public interface javax.swing.CellEditor extends java.lang.Object
(new in 1.2)

 public class javax.swing.CellRendererPane extends
java.awt.Container

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class
javax.swing.CellRendererPane.AccessibleCellRendererPane extends

javax.accessibility.AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

 public interface javax.swing.ComboBoxEditor extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.ComboBoxModel extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.ListModel

 public class javax.swing.DebugGraphics extends java.awt.Graphics
(new in 1.2)

 public class javax.swing.DefaultBoundedRangeModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.BoundedRangeModel

 public class javax.swing.DefaultButtonModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.ButtonModel

 public class javax.swing.DefaultCellEditor extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.table.TableCellEditor
 implements javax.swing.tree.TreeCellEditor

 public class javax.swing.DefaultCellEditor.EditorDelegate extends
java.lang.

Object (new in 1.2)
 implements java.awt.event.ActionListener
 implements java.awt.event.ItemListener
 implements java.io.Serializable

 public class javax.swing.DefaultComboBoxModel extends
javax.swing.

AbstractListModel (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.MutableComboBoxModel

 public class javax.swing.DefaultDesktopManager extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.DesktopManager

 public class javax.swing.DefaultFocusManager extends
javax.swing.FocusManager

 (new in 1.2)
 public class javax.swing.DefaultListCellRenderer extends
javax.swing.JLabel

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.ListCellRenderer

 public class javax.swing.DefaultListCellRenderer.UIResource
extends javax.

 swing.DefaultListCellRenderer (new in 1.2)

 - 94 -

 implements javax.swing.plaf.UIResource
 public class javax.swing.DefaultListModel extends
javax.swing.AbstractListModel

 (new in 1.2)
 public class javax.swing.DefaultListSelectionModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements javax.swing.ListSelectionModel

 public class javax.swing.DefaultSingleSelectionModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.SingleSelectionModel

 public interface javax.swing.DesktopManager extends
java.lang.Object

 (new in 1.2)
 public abstract class javax.swing.FocusManager extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.GrayFilter extends
java.awt.image.RGBImageFilter

 (new in 1.2)
 public interface javax.swing.Icon extends java.lang.Object (new
in 1.2)

public class javax.swing.ImageIcon extends java.lang.Object (new
in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon

public class javax.swing.JApplet extends java.applet.Applet (new
in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.RootPaneContainer

 public class javax.swing.JApplet.AccessibleJApplet extends javax.

accessibility.AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

 public class javax.swing.JButton extends
javax.swing.AbstractButton

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JButton.AccessibleJButton extends
javax.swing.

 AbstractButton.AccessibleAbstractButton (new in 1.2)
 public class javax.swing.JCheckBox extends
javax.swing.JToggleButton

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JCheckBox.AccessibleJCheckBox extends
javax.swing.

 JToggleButton.AccessibleJToggleButton (new in 1.2)
 public class javax.swing.JCheckBoxMenuItem extends
javax.swing.JMenuItem

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

public class
javax.swing.JCheckBoxMenuItem.AccessibleJCheckBoxMenuItem extends
javax.swing.JMenuItem.AccessibleJMenuItem (new in 1.2)

 public class javax.swing.JColorChooser extends
javax.swing.JComponent

 - 95 -

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JColorChooser.AccessibleJColorChooser
extends

 javax.swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JComboBox extends javax.swing.JComponent
(new in 1.2)
 implements java.awt.ItemSelectable
 implements java.awt.event.ActionListener
 implements javax.accessibility.Accessible
 implements javax.swing.event.ListDataListener

 public class javax.swing.JComboBox.AccessibleJComboBox extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleAction

 public interface javax.swing.JComboBox.KeySelectionManager
extends java.lang.

 Object (new in 1.2)
 public abstract class javax.swing.JComponent extends
java.awt.Container

 (new in 1.2)
 implements java.io.Serializable

 public abstract class javax.swing.JComponent.AccessibleJComponent
extends

 javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

 public class javax.swing.JComponent.AccessibleJComponent.
 AccessibleContainerHandler extends java.lang.Object (new in 1.2)
 implements java.awt.event.ContainerListener

 public class javax.swing.JDesktopPane extends
javax.swing.JLayeredPane

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JDesktopPane.AccessibleJDesktopPane
extends javax.

 swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JDialog extends java.awt.Dialog (new in
1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.RootPaneContainer
 implements javax.swing.WindowConstants

 public class javax.swing.JDialog.AccessibleJDialog extends
javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

 public class javax.swing.JEditorPane extends
javax.swing.text.JTextComponent

 (new in 1.2)

public class javax.swing.JEditorPane.AccessibleJEditorPane
extends javax.swing.text.JTextComponent.AccessibleJTextComponent
(new in 1.2)

 public class javax.swing.JEditorPane.AccessibleJEditorPaneHTML
extends

 javax.swing.JEditorPane.AccessibleJEditorPane (new in 1.2)
 public class
javax.swing.JEditorPane.JEditorPaneAccessibleHypertextSupport

extends javax.swing.JEditorPane.AccessibleJEditorPane (new in
1.2)
 implements javax.accessibility.AccessibleHypertext

 - 96 -

 public class
javax.swing.JEditorPane.JEditorPaneAccessibleHypertextSupport.

 HTMLLink extends javax.accessibility.AccessibleHyperlink (new in
1.2)

 public class javax.swing.JFileChooser extends
javax.swing.JComponent

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JFileChooser.AccessibleJFileChooser
extends

 javax.swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JFrame extends java.awt.Frame (new in
1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.RootPaneContainer
 implements javax.swing.WindowConstants

 public class javax.swing.JFrame.AccessibleJFrame extends
javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

 public class javax.swing.JInternalFrame extends
javax.swing.JComponent

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.RootPaneContainer
 implements javax.swing.WindowConstants

 public class javax.swing.JInternalFrame.AccessibleJInternalFrame
extends

 javax.swing.JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleValue

 public class javax.swing.JInternalFrame.JDesktopIcon extends
javax.swing.

 JComponent (new in 1.2)
 implements javax.accessibility.Accessible

 public class
javax.swing.JInternalFrame.JDesktopIcon.AccessibleJDesktopIcon

 extends javax.swing.JComponent.AccessibleJComponent (new in 1.2)

 implements javax.accessibility.AccessibleValue
public class javax.swing.JLabel extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JLabel.AccessibleJLabel extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 public class javax.swing.JLayeredPane extends
javax.swing.JComponent

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JLayeredPane.AccessibleJLayeredPane
extends javax.

 swing.JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JList extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.Scrollable

 public class javax.swing.JList.AccessibleJList extends
javax.swing.JComponent.

AccessibleJComponent (new in 1.2)
 implements java.beans.PropertyChangeListener
 implements javax.accessibility.AccessibleSelection
 implements javax.swing.event.ListDataListener

 - 97 -

 implements javax.swing.event.ListSelectionListener
 public class
javax.swing.JList.AccessibleJList.AccessibleJListChild extends

javax.accessibility.AccessibleContext (new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.accessibility.AccessibleComponent

public class javax.swing.JMenu extends javax.swing.JMenuItem (new
in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.MenuElement

 public class javax.swing.JMenu.AccessibleJMenu extends
javax.swing.JMenuItem.

 AccessibleJMenuItem (new in 1.2)
 implements javax.accessibility.AccessibleSelection

 public class javax.swing.JMenu.WinListener extends
java.awt.event.WindowAdapter

 (new in 1.2)
 implements java.io.Serializable

public class javax.swing.JMenuBar extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.MenuElement

 public class javax.swing.JMenuBar.AccessibleJMenuBar extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleSelection

 public class javax.swing.JMenuItem extends
javax.swing.AbstractButton

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.MenuElement

 public class javax.swing.JMenuItem.AccessibleJMenuItem extends
javax.swing.

 AbstractButton.AccessibleAbstractButton (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class javax.swing.JOptionPane extends
javax.swing.JComponent

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JOptionPane.AccessibleJOptionPane
extends javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JPanel extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JPanel.AccessibleJPanel extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 public class javax.swing.JPasswordField extends
javax.swing.JTextField

 (new in 1.2)
 public class javax.swing.JPasswordField.AccessibleJPasswordField
extends

 javax.swing.JTextField.AccessibleJTextField (new in 1.2)

public class javax.swing.JPopupMenu extends
javax.swing.JComponent (new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.MenuElement

 public class javax.swing.JPopupMenu.AccessibleJPopupMenu extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 public class javax.swing.JPopupMenu.Separator extends
javax.swing.JSeparator

 - 98 -

 (new in 1.2)
 public class javax.swing.JProgressBar extends
javax.swing.JComponent

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JProgressBar.AccessibleJProgressBar
extends javax.

 swing.JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleValue

 public class javax.swing.JRadioButton extends
javax.swing.JToggleButton

 (new in 1.2)
 implements javax.accessibility.Accessible

public class javax.swing.JRadioButton.AccessibleJRadioButton
extends javax.swing.JToggleButton.AccessibleJToggleButton (new in
1.2)

 public class javax.swing.JRadioButtonMenuItem extends
javax.swing.JMenuItem

 (new in 1.2)
 implements javax.accessibility.Accessible

 public class
javax.swing.JRadioButtonMenuItem.AccessibleJRadioButtonMenuItem

 extends javax.swing.JMenuItem.AccessibleJMenuItem (new in 1.2)

public class javax.swing.JRootPane extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JRootPane.AccessibleJRootPane extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 public class javax.swing.JRootPane.RootLayout extends
java.lang.Object

(new in 1.2)
 implements java.awt.LayoutManager2
 implements java.io.Serializable

 public class javax.swing.JScrollBar extends
javax.swing.JComponent

(new in 1.2)
 implements java.awt.Adjustable
 implements javax.accessibility.Accessible

 public class javax.swing.JScrollBar.AccessibleJScrollBar extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleValue

 public class javax.swing.JScrollPane extends
javax.swing.JComponent

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.ScrollPaneConstants

 public class javax.swing.JScrollPane.AccessibleJScrollPane
extends javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class javax.swing.JScrollPane.ScrollBar extends
javax.swing.JScrollBar

 (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.JSeparator extends
javax.swing.JComponent

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JSeparator.AccessibleJSeparator extends

 - 99 -

javax.swing.
 JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JSlider extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JSlider.AccessibleJSlider extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleValue

public class javax.swing.JSplitPane extends
javax.swing.JComponent (new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JSplitPane.AccessibleJSplitPane extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleValue

 public class javax.swing.JTabbedPane extends
javax.swing.JComponent

(new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JTabbedPane.AccessibleJTabbedPane
extends javax.swing.

JComponent.AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleSelection
 implements javax.swing.event.ChangeListener

 public class javax.swing.JTabbedPane.ModelListener extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.event.ChangeListener

public class javax.swing.JTable extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.Scrollable
 implements javax.swing.event.CellEditorListener
 implements javax.swing.event.ListSelectionListener
 implements javax.swing.event.TableColumnModelListener
 implements javax.swing.event.TableModelListener

 public class javax.swing.JTable.AccessibleJTable extends
javax.swing.

JComponent.AccessibleJComponent (new in 1.2)
 implements java.beans.PropertyChangeListener
 implements javax.accessibility.AccessibleSelection
 implements javax.swing.event.CellEditorListener
 implements javax.swing.event.ListSelectionListener
 implements javax.swing.event.TableColumnModelListener
 implements javax.swing.event.TableModelListener

 public class
javax.swing.JTable.AccessibleJTable.AccessibleJTableCell extends

javax.accessibility.AccessibleContext (new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.accessibility.AccessibleComponent

 public class javax.swing.JTextArea extends
javax.swing.text.JTextComponent

 (new in 1.2)

public class javax.swing.JTextArea.AccessibleJTextArea extends
javax.swing.text.JTextComponent.AccessibleJTextComponent (new in
1.2)

 public class javax.swing.JTextField extends
javax.swing.text.JTextComponent

 - 100 -

 (new in 1.2)
 implements javax.swing.SwingConstants

public class javax.swing.JTextField.AccessibleJTextField extends
javax.swing.text.JTextComponent.AccessibleJTextComponent (new in
1.2)

 public class javax.swing.JTextPane extends
javax.swing.JEditorPane (new in 1.2)

 public class javax.swing.JToggleButton extends
javax.swing.AbstractButton

 (new in 1.2)
 implements javax.accessibility.Accessible

public class javax.swing.JToggleButton.AccessibleJToggleButton
extends javax.swing.AbstractButton.AccessibleAbstractButton (new
in 1.2)
 implements java.awt.event.ItemListener

 public class javax.swing.JToggleButton.ToggleButtonModel extends
javax.swing.

 DefaultButtonModel (new in 1.2)

public class javax.swing.JToolBar extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.SwingConstants

 public class javax.swing.JToolBar.AccessibleJToolBar extends
javax.swing.

 JComponent.ccessibleJComponent (new in 1.2)
 public class javax.swing.JToolBar.Separator extends
javax.swing.JSeparator

 (new in 1.2)

public class javax.swing.JToolTip extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JToolTip.AccessibleJToolTip extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)

public class javax.swing.JTree extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.Scrollable

 public class javax.swing.JTree.AccessibleJTree extends
javax.swing.JComponent.

AccessibleJComponent (new in 1.2)
 implements javax.accessibility.AccessibleSelection
 implements javax.swing.event.TreeExpansionListener
 implements javax.swing.event.TreeModelListener
 implements javax.swing.event.TreeSelectionListener

 public class
javax.swing.JTree.AccessibleJTree.AccessibleJTreeNode extends

javax.accessibility.AccessibleContext (new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.accessibility.AccessibleAction
 implements javax.accessibility.AccessibleComponent
 implements javax.accessibility.AccessibleSelection

 public class javax.swing.JTree.DynamicUtilTreeNode extends
javax.swing.tree.

 DefaultMutableTreeNode (new in 1.2)
 public class javax.swing.JTree.EmptySelectionModel extends
javax.swing.tree.

 DefaultTreeSelectionModel (new in 1.2)
 public class javax.swing.JTree.TreeModelHandler extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.event.TreeModelListener

 - 101 -

 public class javax.swing.JTree.TreeSelectionRedirector extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.event.TreeSelectionListener

public class javax.swing.JViewport extends javax.swing.JComponent
(new in 1.2)
 implements javax.accessibility.Accessible

 public class javax.swing.JViewport.AccessibleJViewport extends
javax.swing.

 JComponent.AccessibleJComponent (new in 1.2)
 public class javax.swing.JViewport.ViewListener extends
java.awt.event.

 ComponentAdapter (new in 1.2)
 implements java.io.Serializable

public class javax.swing.JWindow extends java.awt.Window (new in
1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.RootPaneContainer

 public class javax.swing.JWindow.AccessibleJWindow extends
javax.accessibility.

AccessibleContext (new in 1.2)
 implements java.io.Serializable
 implements javax.accessibility.AccessibleComponent

public class javax.swing.KeyStroke extends java.lang.Object (new
in 1.2)
 implements java.io.Serializable

 public interface javax.swing.ListCellRenderer extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.ListModel extends java.lang.Object
(new in 1.2)

 public interface javax.swing.ListSelectionModel extends
java.lang.Object

 (new in 1.2)
 public abstract class javax.swing.LookAndFeel extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.MenuElement extends java.lang.Object
(new in 1.2)

 public class javax.swing.MenuSelectionManager extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.MutableComboBoxModel extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.ComboBoxModel

public class javax.swing.OverlayLayout extends java.lang.Object
(new in 1.2)
 implements java.awt.LayoutManager2
 implements java.io.Serializable

 public class javax.swing.ProgressMonitor extends java.lang.Object
(new in 1.2)

 public class javax.swing.ProgressMonitorInputStream extends
java.io.FilterInputStream

 (new in 1.2)
 public interface javax.swing.Renderer extends java.lang.Object
(new in 1.2)

 public class javax.swing.RepaintManager extends java.lang.Object
(new in 1.2)

 public interface javax.swing.RootPaneContainer extends
java.lang.Object

 - 102 -

 (new in 1.2)
 public interface javax.swing.ScrollPaneConstants extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.ScrollPaneLayout extends
java.lang.Object

(new in 1.2)
 implements java.awt.LayoutManager
 implements java.io.Serializable
 implements javax.swing.ScrollPaneConstants

 public class javax.swing.ScrollPaneLayout.UIResource extends
javax.swing.

 ScrollPaneLayout (new in 1.2)
 implements javax.swing.plaf.UIResource

 public interface javax.swing.Scrollable extends java.lang.Object
(new in 1.2)

 public interface javax.swing.SingleSelectionModel extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.SizeRequirements extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public interface javax.swing.SwingConstants extends
java.lang.Object

 (new in 1.2)

public class javax.swing.SwingUtilities extends java.lang.Object
(new in 1.2)
 implements javax.swing.SwingConstants

public class javax.swing.Timer extends java.lang.Object (new in
1.2)
 implements java.io.Serializable

 public class javax.swing.ToolTipManager extends
java.awt.event.MouseAdapter

 (new in 1.2)
 implements java.awt.event.MouseMotionListener

 public class javax.swing.ToolTipManager.insideTimerAction extends
java.lang.

 Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.ToolTipManager.outsideTimerAction
extends java.lang.

 Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.ToolTipManager.stillInsideTimerAction
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.UIDefaults extends java.util.Hashtable
(new in 1.2)

 public interface javax.swing.UIDefaults.ActiveValue extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.UIDefaults.LazyValue extends
java.lang.Object

 (new in 1.2)

public class javax.swing.UIManager extends java.lang.Object (new
in 1.2)
 implements java.io.Serializable

 public class javax.swing.UIManager.LookAndFeelInfo extends
java.lang.Object

 (new in 1.2)

 - 103 -

 public class javax.swing.UnsupportedLookAndFeelException extends
java.lang.

 Exception (new in 1.2)

public class javax.swing.ViewportLayout extends java.lang.Object
(new in 1.2)
 implements java.awt.LayoutManager
 implements java.io.Serializable

 public interface javax.swing.WindowConstants extends
java.lang.Object

 (new in 1.2)

 Package javax.swing (Continued)

 Package javax.swing.border

This package is part of Swing and provides a collection of stylish borders with which to
surround your GUI components. We will use some of these borders in a performance
analyzer project in Chapter 60, "PerfAnal: A Free Performance Analysis Tool."

 Listing 3.42 shows all public classes and interfaces in the javax.swing.border

package.

 Listing 3.42 javax.swing.border Classes and Interfaces List

 public abstract class javax.swing.border.AbstractBorder extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.border.Border

 public class javax.swing.border.BevelBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)
 public interface javax.swing.border.Border extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.border.CompoundBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)
 public class javax.swing.border.EmptyBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.border.EtchedBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)
 public class javax.swing.border.LineBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)
 public class javax.swing.border.MatteBorder extends
javax.swing.border.

 EmptyBorder (new in 1.2)
 public class javax.swing.border.SoftBevelBorder extends
javax.swing.border.

 BevelBorder (new in 1.2)
 public class javax.swing.border.TitledBorder extends
javax.swing.border.

 AbstractBorder (new in 1.2)

 - 104 -

 Package javax.swing.colorchooser

This package is part of Swing. It solves the age-old problem of implementing a GUI-
based color selection dialog without relying on the highly variable (often nonexistent)
support provided by various operating systems.Listing 3.43 shows all public classes and
interfaces in the javax.swing.colorchooser package.

 Listing 3.43 javax.swing.colorchooser Classes and Interfaces List

 public abstract class
javax.swing.colorchooser.AbstractColorChooserPanel

 extends javax.swing.JPanel (new in 1.2)
 public class
javax.swing.colorchooser.ColorChooserComponentFactory extends

 java.lang.Object (new in 1.2)
 public interface javax.swing.colorchooser.ColorSelectionModel
extends

 java.lang.Object (new in 1.2)
 public class javax.swing.colorchooser.DefaultColorSelectionModel
extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.colorchooser.ColorSelectionModel

 Package javax.swing.event

 This package is part of Swing. It describes the rich universe of events and event listeners

added to Java by the Swing toolkit.

 Listing 3.44 shows all public classes and interfaces in the javax.swing.event

package.

 Listing 3.44 javax.swing.event Classes and Interfaces List

 public class javax.swing.event.AncestorEvent extends
java.awt.AWTEvent

 (new in 1.2)
 public interface javax.swing.event.AncestorListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public abstract class javax.swing.event.CaretEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.CaretListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public interface javax.swing.event.CellEditorListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.ChangeEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.ChangeListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 - 105 -

 public interface javax.swing.event.DocumentEvent extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.event.DocumentEvent.ElementChange
extends

 java.lang.Object (new in 1.2)
 public final class javax.swing.event.DocumentEvent.EventType
extends

 java.lang.Object (new in 1.2)
 public interface javax.swing.event.DocumentListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.EventListenerList extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.event.HyperlinkEvent extends
java.util.EventObject

 (new in 1.2)
 public final class javax.swing.event.HyperlinkEvent.EventType
extends

 java.lang.Object (new in 1.2)
 public interface javax.swing.event.HyperlinkListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public abstract class javax.swing.event.InternalFrameAdapter
extends java.lang.

 Object (new in 1.2)
 implements javax.swing.event.InternalFrameListener

 public class javax.swing.event.InternalFrameEvent extends
java.awt.AWTEvent

 (new in 1.2)
 public interface javax.swing.event.InternalFrameListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.ListDataEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.ListDataListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.ListSelectionEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.ListSelectionListener extends
java.lang.

 Object (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.MenuDragMouseEvent extends
java.awt.event.

 MouseEvent (new in 1.2)
 public interface javax.swing.event.MenuDragMouseListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.MenuEvent extends
java.util.EventObject

 (new in 1.2)

 - 106 -

 public class javax.swing.event.MenuKeyEvent extends
java.awt.event.KeyEvent

 (new in 1.2)
 public interface javax.swing.event.MenuKeyListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public interface javax.swing.event.MenuListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public abstract class javax.swing.event.MouseInputAdapter extends
java.lang.

 Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class javax.swing.event.PopupMenuEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.PopupMenuListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public final class javax.swing.event.SwingPropertyChangeSupport
extends

 java.beans.PropertyChangeSupport (new in 1.2)
 public class javax.swing.event.TableColumnModelEvent extends
java.util.

 EventObject (new in 1.2)
 public interface javax.swing.event.TableColumnModelListener
extends java.lang.

 Object (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.TableModelEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.TableModelListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.TreeExpansionEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.TreeExpansionListener extends
java.lang.

 Object (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.TreeModelEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.TreeModelListener extends
java.lang.Object

 (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.TreeSelectionEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.TreeSelectionListener extends
java.lang.

 Object (new in 1.2)
 implements java.util.EventListener

 public interface javax.swing.event.TreeWillExpandListener extends
java.lang.

 - 107 -

 Object (new in 1.2)
 implements java.util.EventListener

 public class javax.swing.event.UndoableEditEvent extends
java.util.EventObject

 (new in 1.2)
 public interface javax.swing.event.UndoableEditListener extends
java.lang.

 Object (new in 1.2)
 implements java.util.EventListener

 Package javax.swing.filechooser

This package is part of Swing and describes the extensible utility classes used in the
implementation of the Swing file chooser dialog. The FileSystemView class is
intended, at some future date, to allow the file chooser to discern platform-specific details
about files (such as ownership, permissions, and mode bits in the UNIX/Linux world).

 Listing 3.45 shows all public classes and interfaces in the javax.swing.filechooser

package.

 Listing 3.45 javax.swing.filechooser Classes and Interfaces List

 public abstract class javax.swing.filechooser.FileFilter extends
 java.lang.Object (new in 1.2)
 public abstract class javax.swing.filechooser.FileSystemView
extends

 java.lang.Object (new in 1.2)
 public abstract class javax.swing.filechooser.FileView extends
 java.lang.Object (new in 1.2)

 Package javax.swing.plaf

This hefty package and its collection of subpackages is part of Swing and describes the
framework for the Pluggable Look and Feel capability of the Swing GUI components.
Each of the pluggable personalities performs its magic by extending the
javax.swing.plaf classes.

 Listing 3.46 shows all public classes and interfaces in the javax.swing.plaf package.

 Listing 3.46 javax.swing.plaf Classes and Interfaces List

 public class javax.swing.plaf.BorderUIResource extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.border.Border
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.BevelBorderUIResource extends

 javax.swing.border.BevelBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.CompoundBorderUIResource

 extends javax.swing.border.CompoundBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.EmptyBorderUIResource extends

 javax.swing.border.

 - 108 -

 EmptyBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.EtchedBorderUIResource extends

 javax.swing.border.EtchedBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.LineBorderUIResource extends

 javax.swing.border.LineBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.MatteBorderUIResource extends

 javax.swing.border.MatteBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.BorderUIResource.TitledBorderUIResource extends

 javax.swing.border.TitledBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public abstract class javax.swing.plaf.ButtonUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ColorChooserUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public class javax.swing.plaf.ColorUIResource extends
java.awt.Color

 (new in 1.2)
 implements javax.swing.plaf.UIResource

 public abstract class javax.swing.plaf.ComboBoxUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ComponentUI extends
java.lang.Object

 new in 1.2)
 public abstract class javax.swing.plaf.DesktopIconUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.DesktopPaneUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public class javax.swing.plaf.DimensionUIResource extends
java.awt.Dimension

 (new in 1.2)
 implements javax.swing.plaf.UIResource

 public abstract class javax.swing.plaf.FileChooserUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)

public class javax.swing.plaf.FontUIResource extends
java.awt.Font (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.IconUIResource extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.InsetsUIResource extends
java.awt.Insets

 (new in 1.2)
 implements javax.swing.plaf.UIResource

 public abstract class javax.swing.plaf.InternalFrameUI extends
javax.swing.

 - 109 -

 plaf.ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.LabelUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ListUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.MenuBarUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.MenuItemUI extends
javax.swing.plaf.

 ButtonUI (new in 1.2)
 public abstract class javax.swing.plaf.OptionPaneUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.PanelUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.PopupMenuUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ProgressBarUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ScrollBarUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ScrollPaneUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.SeparatorUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.SliderUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.SplitPaneUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.TabbedPaneUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.TableHeaderUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.TableUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.TextUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ToolBarUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ToolTipUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.TreeUI extends

 - 110 -

javax.swing.plaf.
 ComponentUI (new in 1.2)
 public abstract class javax.swing.plaf.ViewportUI extends
javax.swing.plaf.

 ComponentUI (new in 1.2)

 Package javax.swing.plaf.basic

This package is part of Swing and provides the basic look and feel of Swing GUI
components. Many of these components are used or extended by the pluggable
personalities.

 Listing 3.47 shows all public classes and interfaces in the javax.swing.plaf.basic

package.

 Listing 3.47 javax.swing.plaf.basic Classes and Interfaces List

 public class javax.swing.plaf.basic.BasicArrowButton extends
javax.swing.

 JButton (new in 1.2)
 implements javax.swing.SwingConstants

public class javax.swing.plaf.basic.BasicBorders extends
java.lang.Object
(new in 1.2)

 public class javax.swing.plaf.basic.BasicBorders.ButtonBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicBorders.FieldBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicBorders.MarginBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicBorders.MenuBarBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.basic.BasicBorders.RadioButtonBorder extends

 javax.swing.plaf.basic.BasicBorders.ButtonBorder (new in 1.2)
 public class javax.swing.plaf.basic.BasicBorders.SplitPaneBorder
extends

java.lang.Object (new in 1.2)
 implements javax.swing.border.Border
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.basic.BasicBorders.ToggleButtonBorder extends

 javax.swing.plaf.basic.BasicBorders.ButtonBorder (new in 1.2)
 public class javax.swing.plaf.basic.BasicButtonListener extends
java.lang.

Object (new in 1.2)
 implements java.awt.event.FocusListener
 implements java.awt.event.MouseListener
 implements java.awt.event.MouseMotionListener
 implements java.beans.PropertyChangeListener
 implements javax.swing.event.ChangeListener

 public class javax.swing.plaf.basic.BasicButtonUI extends
javax.swing.plaf.

 - 111 -

 ButtonUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicCheckBoxMenuItemUI
extends javax.

 swing.plaf.basic.BasicMenuItemUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicCheckBoxUI extends
javax.swing.

 plaf.basic.BasicRadioButtonUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicColorChooserUI extends
javax.

 swing.plaf.ColorChooserUI (new in 1.2)

public class
javax.swing.plaf.basic.BasicColorChooserUI.PropertyHandler
extends

 java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicComboBoxEditor extends
java.lang.

Object (new in 1.2)
 implements java.awt.event.FocusListener
 implements javax.swing.ComboBoxEditor

 public class
javax.swing.plaf.basic.BasicComboBoxEditor.UIResource extends

 javax.swing.plaf.basic.BasicComboBoxEditor (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicComboBoxRenderer extends
javax.swing.

JLabel (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.ListCellRenderer

 public class
javax.swing.plaf.basic.BasicComboBoxRenderer.UIResource extends

 javax.swing.plaf.basic.BasicComboBoxRenderer (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicComboBoxUI extends
javax.swing.plaf.

 ComboBoxUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicComboBoxUI.ComboBoxLayoutManager

 extends java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class javax.swing.plaf.basic.BasicComboBoxUI.FocusHandler
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class javax.swing.plaf.basic.BasicComboBoxUI.ItemHandler
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ItemListener

 public class javax.swing.plaf.basic.BasicComboBoxUI.KeyHandler
extends

 java.awt.event.KeyAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicComboBoxUI.ListDataHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ListDataListener

 public class
javax.swing.plaf.basic.BasicComboBoxUI.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicComboPopup extends
javax.swing.

 JPopupMenu (new in 1.2)
 implements javax.swing.plaf.basic.ComboPopup

 - 112 -

 public class
javax.swing.plaf.basic.BasicComboPopup.InvocationKeyHandler

 extends java.awt.event.KeyAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicComboPopup.InvocationMouseHandler

 extends java.awt.event.MouseAdapter (new in 1.2)
 public class javax.swing.plaf.basic.BasicComboPopup.
 InvocationMouseMotionHandler extends
java.awt.event.MouseMotionAdapter

 (new in 1.2)
 public class javax.swing.plaf.basic.BasicComboPopup.ItemHandler
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ItemListener

 public class
javax.swing.plaf.basic.BasicComboPopup.ListDataHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ListDataListener

 public class
javax.swing.plaf.basic.BasicComboPopup.ListMouseHandler extends

 java.awt.event.MouseAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicComboPopup.ListMouseMotionHandler

 extends java.awt.event.MouseMotionAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicComboPopup.ListSelectionHandler

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ListSelectionListener

 public class
javax.swing.plaf.basic.BasicComboPopup.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicDesktopIconUI extends
javax.swing.

 plaf.DesktopIconUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicDesktopIconUI.MouseInputHandler

 extends javax.swing.event.MouseInputAdapter (new in 1.2)
 public class javax.swing.plaf.basic.BasicDesktopPaneUI extends
javax.swing.

 plaf.DesktopPaneUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicDesktopPaneUI.CloseAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicDesktopPaneUI.MaximizeAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicDesktopPaneUI.MinimizeAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicDesktopPaneUI.NavigateAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicDirectoryModel extends
javax.swing.

 AbstractListModel (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicEditorPaneUI extends
javax.swing.

 plaf.basic.BasicTextUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicFileChooserUI extends

 - 113 -

javax.swing.
 plaf.FileChooserUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.AcceptAllFileFilter

 extends javax.swing.filechooser.FileFilter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.ApproveSelectionAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.BasicFileView extends

 javax.swing.filechooser.FileView (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.CancelSelectionAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicFileChooserUI.
 ChangeToParentDirectoryAction extends javax.swing.AbstractAction
(new in 1.2)

 public class
javax.swing.plaf.basic.BasicFileChooserUI.DoubleClickListener

 extends java.awt.event.MouseAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.GoHomeAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.NewFolderAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicFileChooserUI.SelectionListener

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ListSelectionListener

 public class
javax.swing.plaf.basic.BasicFileChooserUI.UpdateAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicGraphicsUtils extends
java.lang.

 Object (new in 1.2)
 public class javax.swing.plaf.basic.BasicIconFactory extends
java.lang.

 Object (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.plaf.basic.BasicInternalFrameTitlePane
extends

 javax.swing.JComponent (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.CloseAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.IconifyAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.MaximizeAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.MoveAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicInternalFrameTitlePane.
 PropertyChangeHandler extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.RestoreAction

 - 114 -

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.SizeAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicInternalFrameTitlePane.SystemMenuBar

 extends javax.swing.JMenuBar (new in 1.2)
 public class javax.swing.plaf.basic.BasicInternalFrameTitlePane.
 TitlePaneLayout extends java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class javax.swing.plaf.basic.BasicInternalFrameUI extends
javax.swing.

 plaf.InternalFrameUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicInternalFrameUI.
 BasicInternalFrameListener extends java.lang.Object (new in 1.2)
 implements javax.swing.event.InternalFrameListener

 public class
javax.swing.plaf.basic.BasicInternalFrameUI.BorderListener

 extends javax.swing.event.MouseInputAdapter (new in 1.2)
 implements javax.swing.SwingConstants

 public class
javax.swing.plaf.basic.BasicInternalFrameUI.ComponentHandler

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ComponentListener

 public class
javax.swing.plaf.basic.BasicInternalFrameUI.GlassPaneDispatcher

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class
javax.swing.plaf.basic.BasicInternalFrameUI.InternalFrameLayout

 extends java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class javax.swing.plaf.basic.BasicLabelUI extends
javax.swing.

 plaf.LabelUI (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicListUI extends
javax.swing.plaf.

 ListUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicListUI.FocusHandler
extends java.lang.

 Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class javax.swing.plaf.basic.BasicListUI.ListDataHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ListDataListener

 public class
javax.swing.plaf.basic.BasicListUI.ListSelectionHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ListSelectionListener

 public class javax.swing.plaf.basic.BasicListUI.MouseInputHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class
javax.swing.plaf.basic.BasicListUI.PropertyChangeHandler extends

 java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public abstract class javax.swing.plaf.basic.BasicLookAndFeel
extends

 javax.swing.LookAndFeel (new in 1.2)

 - 115 -

 implements java.io.Serializable
 public class javax.swing.plaf.basic.BasicMenuBarUI extends
javax.swing.plaf.

 MenuBarUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicMenuItemUI extends
javax.swing.plaf.

 MenuItemUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicMenuItemUI.MouseInputHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class javax.swing.plaf.basic.BasicMenuUI extends
javax.swing.plaf.

 basic.BasicMenuItemUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicMenuUI.ChangeHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class javax.swing.plaf.basic.BasicOptionPaneUI extends
javax.swing.plaf.

 OptionPaneUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicOptionPaneUI.ButtonActionListener

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicOptionPaneUI.ButtonAreaLayout extends

 java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class
javax.swing.plaf.basic.BasicOptionPaneUI.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicPanelUI extends
javax.swing.plaf.

 PanelUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicPasswordFieldUI extends
javax.swing.

 plaf.basic.BasicTextFieldUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicPopupMenuSeparatorUI
extends

 javax.swing.plaf.basic.BasicSeparatorUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicPopupMenuUI extends
javax.swing.plaf.

 PopupMenuUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicProgressBarUI extends
javax.swing.

 plaf.ProgressBarUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicProgressBarUI.ChangeHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class javax.swing.plaf.basic.BasicRadioButtonMenuItemUI
extends

 javax.swing.plaf.basic.BasicMenuItemUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicRadioButtonUI extends
javax.swing.

 plaf.basic.BasicToggleButtonUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicScrollBarUI extends
javax.swing.plaf.

 ScrollBarUI (new in 1.2)

 - 116 -

 implements java.awt.LayoutManager
 implements javax.swing.SwingConstants

 public class
javax.swing.plaf.basic.BasicScrollBarUI.ArrowButtonListener

 extends java.awt.event.MouseAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicScrollBarUI.ModelListener extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class
javax.swing.plaf.basic.BasicScrollBarUI.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicScrollBarUI.ScrollListener extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicScrollBarUI.TrackListener extends

 java.awt.event.MouseAdapter (new in 1.2)
 implements java.awt.event.MouseMotionListener

 public class javax.swing.plaf.basic.BasicScrollPaneUI extends
javax.swing.plaf.

 ScrollPaneUI (new in 1.2)
 implements javax.swing.ScrollPaneConstants

 public class
javax.swing.plaf.basic.BasicScrollPaneUI.HSBChangeListener

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class
javax.swing.plaf.basic.BasicScrollPaneUI.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicScrollPaneUI.VSBChangeListener

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class
javax.swing.plaf.basic.BasicScrollPaneUI.ViewportChangeHandler

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class javax.swing.plaf.basic.BasicSeparatorUI extends
javax.swing.plaf.

 SeparatorUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicSliderUI extends
javax.swing.plaf.

 SliderUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicSliderUI.ActionScroller
extends

 javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicSliderUI.ChangeHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class
javax.swing.plaf.basic.BasicSliderUI.ComponentHandler extends

 java.awt.event.ComponentAdapter (new in 1.2)
 public class javax.swing.plaf.basic.BasicSliderUI.FocusHandler
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class
javax.swing.plaf.basic.BasicSliderUI.PropertyChangeHandler

 - 117 -

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicSliderUI.ScrollListener
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.plaf.basic.BasicSliderUI.TrackListener
extends

 javax.swing.event.MouseInputAdapter (new in 1.2)
 public class javax.swing.plaf.basic.BasicSplitPaneDivider extends
java.awt.

 Container (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicSplitPaneDivider.DividerLayout

 extends java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class
javax.swing.plaf.basic.BasicSplitPaneDivider.DragController

 extends java.lang.Object (new in 1.2)
 public class
javax.swing.plaf.basic.BasicSplitPaneDivider.MouseHandler extends

 java.awt.event.MouseAdapter (new in 1.2)
 implements java.awt.event.MouseMotionListener

 public class javax.swing.plaf.basic.BasicSplitPaneDivider.
 VerticalDragController extends
javax.swing.plaf.basic.BasicSplitPaneDivider.

 DragController (new in 1.2)
 public class javax.swing.plaf.basic.BasicSplitPaneUI extends
javax.swing.plaf.

 SplitPaneUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicSplitPaneUI.

BasicHorizontalLayoutManager extends java.lang.Object (new in
1.2)
 implements java.awt.LayoutManager2

 public class javax.swing.plaf.basic.BasicSplitPaneUI.
 BasicVerticalLayoutManager extends
javax.swing.plaf.basic.BasicSplitPaneUI.

 BasicHorizontalLayoutManager (new in 1.2)
 public class javax.swing.plaf.basic.BasicSplitPaneUI.FocusHandler
extends

 java.awt.event.FocusAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardDownRightHandler

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardEndHandler

 extends java.lang.
 Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardHomeHandler

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.plaf.basic.BasicSplitPaneUI.

KeyboardResizeToggleHandler extends java.lang.Object (new in
1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicSplitPaneUI.KeyboardUpLeftHandler

 - 118 -

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ActionListener

 public class
javax.swing.plaf.basic.BasicSplitPaneUI.PropertyHandler extends

 java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicTabbedPaneUI extends
javax.swing.plaf.

 TabbedPaneUI (new in 1.2)
 implements javax.swing.SwingConstants

 public class
javax.swing.plaf.basic.BasicTabbedPaneUI.FocusHandler extends

 java.awt.event.FocusAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTabbedPaneUI.MouseHandler extends

 java.awt.event.MouseAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTabbedPaneUI.PropertyChangeHandler

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicTabbedPaneUI.TabSelectionHandler

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.ChangeListener

 public class
javax.swing.plaf.basic.BasicTabbedPaneUI.TabbedPaneLayout

 extends java.lang.Object (new in 1.2)
 implements java.awt.LayoutManager

 public class javax.swing.plaf.basic.BasicTableHeaderUI extends
javax.swing.

 plaf.TableHeaderUI (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTableHeaderUI.MouseInputHandler

 extends java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class javax.swing.plaf.basic.BasicTableUI extends
javax.swing.plaf.

 TableUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicTableUI.FocusHandler
extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class javax.swing.plaf.basic.BasicTableUI.KeyHandler
extends java.lang.

 Object (new in 1.2)
 implements java.awt.event.KeyListener

 public class
javax.swing.plaf.basic.BasicTableUI.MouseInputHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class javax.swing.plaf.basic.BasicTextAreaUI extends
javax.swing.plaf.

 basic.BasicTextUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicTextFieldUI extends
javax.swing.plaf.

 basic.BasicTextUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicTextPaneUI extends
javax.swing.plaf.

 basic.BasicEditorPaneUI (new in 1.2)
 public abstract class javax.swing.plaf.basic.BasicTextUI extends
javax.swing.

 plaf.TextUI (new in 1.2)

 - 119 -

 implements javax.swing.text.ViewFactory
 public class javax.swing.plaf.basic.BasicTextUI.BasicCaret
extends javax.

 swing.text.DefaultCaret (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicTextUI.BasicHighlighter
extends javax.

 swing.text.DefaultHighlighter (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.basic.BasicToggleButtonUI extends
javax.swing.

 plaf.basic.BasicButtonUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicToolBarSeparatorUI
extends javax.

 swing.plaf.basic.BasicSeparatorUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicToolBarUI extends
javax.swing.plaf.

 ToolBarUI (new in 1.2)
 implements javax.swing.SwingConstants

 public class
javax.swing.plaf.basic.BasicToolBarUI.DockingListener extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class javax.swing.plaf.basic.BasicToolBarUI.DragWindow
extends java.

 awt.Window (new in 1.2)
 public class javax.swing.plaf.basic.BasicToolBarUI.FrameListener
extends

 java.awt.event.WindowAdapter (new in 1.2)
 public class
javax.swing.plaf.basic.BasicToolBarUI.PropertyListener extends

 java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicToolBarUI.ToolBarContListener extends

 java.lang.Object (new in 1.2)
 implements java.awt.event.ContainerListener

 public class
javax.swing.plaf.basic.BasicToolBarUI.ToolBarFocusListener

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class javax.swing.plaf.basic.BasicToolTipUI extends
javax.swing.plaf.

 ToolTipUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicTreeUI extends
javax.swing.plaf.

 TreeUI (new in 1.2)
 public class javax.swing.plaf.basic.BasicTreeUI.CellEditorHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.CellEditorListener

 public class javax.swing.plaf.basic.BasicTreeUI.ComponentHandler
extends

 java.awt.event.ComponentAdapter (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.plaf.basic.BasicTreeUI.FocusHandler
extends java.

 lang.Object (new in 1.2)
 implements java.awt.event.FocusListener

 public class javax.swing.plaf.basic.BasicTreeUI.KeyHandler
extends java.awt.

 event.KeyAdapter (new in 1.2)

 - 120 -

 public class javax.swing.plaf.basic.BasicTreeUI.MouseHandler
extends java.awt.

 event.MouseAdapter (new in 1.2)
 public class javax.swing.plaf.basic.BasicTreeUI.MouseInputHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.MouseInputListener

 public class
javax.swing.plaf.basic.BasicTreeUI.NodeDimensionsHandler extends

 javax.swing.tree.AbstractLayoutCache.NodeDimensions (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTreeUI.PropertyChangeHandler extends

 java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.basic.BasicTreeUI.

SelectionModelPropertyChangeHandler extends java.lang.Object (new
in 1.2)
 implements java.beans.PropertyChangeListener

 public class
javax.swing.plaf.basic.BasicTreeUI.TreeCancelEditingAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTreeUI.TreeExpansionHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.TreeExpansionListener

 public class javax.swing.plaf.basic.BasicTreeUI.TreeHomeAction
extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTreeUI.TreeIncrementAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicTreeUI.TreeModelHandler
extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.TreeModelListener

 public class javax.swing.plaf.basic.BasicTreeUI.TreePageAction
extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTreeUI.TreeSelectionHandler extends

 java.lang.Object (new in 1.2)
 implements javax.swing.event.TreeSelectionListener

 public class javax.swing.plaf.basic.BasicTreeUI.TreeToggleAction
extends

 javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.basic.BasicTreeUI.TreeTraverseAction extends

 javax.swing.AbstractAction (new in 1.2)
 public class javax.swing.plaf.basic.BasicViewportUI extends
javax.swing.plaf.

 ViewportUI (new in 1.2)
 public interface javax.swing.plaf.basic.ComboPopup extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.plaf.basic.DefaultMenuLayout extends
javax.swing.

 BoxLayout (new in 1.2)
 implements javax.swing.plaf.UIResource

 Package javax.swing.plaf.metal

 - 121 -

 This package is part of Swing and provides the look and feel behavior for Swing's default
Metal personality.

 Listing 3.48 shows all public classes and interfaces in the javax.swing.plaf.metal

package.

 Listing 3.48 javax.swing.plaf.metal Classes and Interfaces List

 public class javax.swing.plaf.metal.DefaultMetalTheme extends
javax.swing.

 plaf.metal.
 MetalTheme (new in 1.2)
 public class javax.swing.plaf.metal.MetalBorders extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.plaf.metal.MetalBorders.ButtonBorder
extends javax.

 swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalBorders.Flush3DBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.metal.MetalBorders.InternalFrameBorder extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalBorders.MenuBarBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalBorders.MenuItemBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalBorders.PopupMenuBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class
javax.swing.plaf.metal.MetalBorders.RolloverButtonBorder extends

 javax.swing.plaf.metal.MetalBorders.ButtonBorder (new in 1.2)
 public class javax.swing.plaf.metal.MetalBorders.ScrollPaneBorder
extends

 javax.swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalBorders.TextFieldBorder
extends

 javax.swing.plaf.metal.MetalBorders.Flush3DBorder (new in 1.2)
 public class javax.swing.plaf.metal.MetalBorders.ToolBarBorder
extends javax.

swing.border.AbstractBorder (new in 1.2)
 implements javax.swing.SwingConstants
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalButtonUI extends
javax.swing.

 plaf.basic.BasicButtonUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalCheckBoxIcon extends
java.lang.

 Object (new in 1.2)
 implements java.io.Serializable

 - 122 -

 implements javax.swing.Icon
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalCheckBoxUI extends
javax.swing.plaf.

 metal.MetalRadioButtonUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalComboBoxButton extends
javax.swing.

 JButton (new in 1.2)
 public class javax.swing.plaf.metal.MetalComboBoxEditor extends
javax.swing.

 plaf.basic.BasicComboBoxEditor (new in 1.2)
 public class
javax.swing.plaf.metal.MetalComboBoxEditor.UIResource extends

 javax.swing.plaf.metal.MetalComboBoxEditor (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.plaf.metal.MetalComboBoxIcon extends
java.lang.Object

new in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon

 public class javax.swing.plaf.metal.MetalComboBoxUI extends
javax.swing.plaf.

 basic.BasicComboBoxUI (new in 1.2)
 public class
javax.swing.plaf.metal.MetalComboBoxUI.MetalComboBoxLayoutManager

 extends
javax.swing.plaf.basic.BasicComboBoxUI.ComboBoxLayoutManager

 (new in 1.2)
 public class
javax.swing.plaf.metal.MetalComboBoxUI.MetalComboPopup extends

 javax.swing.plaf.basic.BasicComboPopup (new in 1.2)
 public class javax.swing.plaf.metal.MetalComboBoxUI.MetalPropertyChangeListener
 extends
javax.swing.plaf.basic.BasicComboBoxUI.PropertyChangeHandler

 (new in 1.2)
 public class javax.swing.plaf.metal.MetalDesktopIconUI extends
javax.swing.

 plaf.basic.BasicDesktopIconUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalFileChooserUI extends
javax.swing.

 plaf.basic.BasicFileChooserUI (new in 1.2)
 public class
javax.swing.plaf.metal.MetalFileChooserUI.DirectoryComboBoxAction

 extends javax.swing.AbstractAction (new in 1.2)
 public class
javax.swing.plaf.metal.MetalFileChooserUI.DirectoryComboBoxModel

 extends javax.swing.AbstractListModel (new in 1.2)
 implements javax.swing.ComboBoxModel

 public class
javax.swing.plaf.metal.MetalFileChooserUI.FileRenderer extends

 javax.swing.DefaultListCellRenderer (new in 1.2)
 public class
javax.swing.plaf.metal.MetalFileChooserUI.FilterComboBoxModel

extends javax.swing.AbstractListModel (new in 1.2)
 implements java.beans.PropertyChangeListener
 implements javax.swing.ComboBoxModel

 public class
javax.swing.plaf.metal.MetalFileChooserUI.FilterComboBoxRenderer

 extends javax.swing.DefaultListCellRenderer (new in 1.2)
 public class

 - 123 -

javax.swing.plaf.metal.MetalFileChooserUI.SingleClickListener
 extends java.awt.event.MouseAdapter (new in 1.2)
 public class javax.swing.plaf.metal.MetalIconFactory extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.plaf.metal.MetalIconFactory.FileIcon16
extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon

 public class javax.swing.plaf.metal.MetalIconFactory.FolderIcon16
extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon

 public class
javax.swing.plaf.metal.MetalIconFactory.TreeControlIcon extends

java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.Icon

 public class
javax.swing.plaf.metal.MetalIconFactory.TreeFolderIcon extends

 javax.swing.plaf.metal.MetalIconFactory.FolderIcon16 (new in 1.2)
 public class javax.swing.plaf.metal.MetalIconFactory.TreeLeafIcon
extends

 javax.swing.plaf.metal.MetalIconFactory.FileIcon16 (new in 1.2)
 public class javax.swing.plaf.metal.MetalInternalFrameUI extends
javax.

 swing.plaf.basic.BasicInternalFrameUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalLabelUI extends
javax.swing.plaf.

 basic.BasicLabelUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalLookAndFeel extends
javax.swing.plaf.

 basic.BasicLookAndFeel (new in 1.2)
 public class javax.swing.plaf.metal.MetalPopupMenuSeparatorUI
extends javax.

 swing.plaf.metal.MetalSeparatorUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalProgressBarUI extends
javax.swing.

 plaf.basic.BasicProgressBarUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalRadioButtonUI extends
javax.swing.

 plaf.basic.BasicRadioButtonUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalScrollBarUI extends
javax.swing.

 plaf.basic.BasicScrollBarUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalScrollButton extends
javax.swing.

 plaf.basic.BasicArrowButton (new in 1.2)
 public class javax.swing.plaf.metal.MetalScrollPaneUI extends
javax.swing.

 plaf.basic.BasicScrollPaneUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalSeparatorUI extends
javax.swing.

 plaf.basic.BasicSeparatorUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalSliderUI extends
javax.swing.

 plaf.basic.BasicSliderUI (new in 1.2)
 public class

 - 124 -

javax.swing.plaf.metal.MetalSliderUI.MetalPropertyListener
extends

 javax.swing.plaf.basic.BasicSliderUI.PropertyChangeHandler (new
in 1.2)

 public class javax.swing.plaf.metal.MetalSplitPaneUI extends
javax.swing.plaf.

 basic.BasicSplitPaneUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalTabbedPaneUI extends
javax.swing.plaf.

 basic.BasicTabbedPaneUI (new in 1.2)
 public class
javax.swing.plaf.metal.MetalTabbedPaneUI.TabbedPaneLayout extends

 javax.swing.plaf.basic.BasicTabbedPaneUI.TabbedPaneLayout (new in
1.2)

 public class javax.swing.plaf.metal.MetalTextFieldUI extends
javax.swing.plaf.

 basic.BasicTextFieldUI (new in 1.2)
 public abstract class javax.swing.plaf.metal.MetalTheme extends
java.lang.

 Object (new in 1.2)
 public class javax.swing.plaf.metal.MetalToggleButtonUI extends
javax.swing.

 plaf.basic.BasicToggleButtonUI (new in 1.2)
 public class javax.swing.plaf.metal.MetalToolBarUI extends
javax.swing.

 plaf.basic.BasicToolBarUI (new in 1.2)
 public class
javax.swing.plaf.metal.MetalToolBarUI.MetalContainerListener

 extends java.lang.Object (new in 1.2)
 implements java.awt.event.ContainerListener

public class
javax.swing.plaf.metal.MetalToolBarUI.MetalDockingListener
extends

 javax.swing.plaf.basic.BasicToolBarUI.DockingListener (new in
1.2)

 public class
javax.swing.plaf.metal.MetalToolBarUI.MetalRolloverListener

 extends java.lang.Object (new in 1.2)
 implements java.beans.PropertyChangeListener

 public class javax.swing.plaf.metal.MetalToolTipUI extends
javax.swing.plaf.

 basic.BasicToolTipUI (new in 1.2)

public class javax.swing.plaf.metal.MetalTreeUI extends
javax.swing.plaf.basic.
BasicTreeUI (new in 1.2)

 Package javax.swing.plaf.multi

 This package is part of Swing and provides the hooks to extend Swing's built-in

pluggable personalities.

 Listing 3.49 shows all public classes and interfaces in the javax.swing.plaf.multi

package.

 Listing 3.49 javax.swing.plaf.multi Classes and Interfaces List

 public class javax.swing.plaf.multi.MultiButtonUI extends
javax.swing.

 plaf.ButtonUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiColorChooserUI extends

 - 125 -

javax.
 swing.plaf.ColorChooserUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiComboBoxUI extends
javax.swing.plaf.

 ComboBoxUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiDesktopIconUI extends
javax.swing.

 plaf.DesktopIconUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiDesktopPaneUI extends
javax.swing.

 plaf.DesktopPaneUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiFileChooserUI extends
javax.swing.

 plaf.FileChooserUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiInternalFrameUI extends
javax.swing.

 plaf.InternalFrameUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiLabelUI extends
javax.swing.plaf.

 LabelUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiListUI extends
javax.swing.plaf.

 ListUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiLookAndFeel extends
javax.swing.

 LookAndFeel (new in 1.2)
 public class javax.swing.plaf.multi.MultiMenuBarUI extends
javax.swing.plaf.

 MenuBarUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiMenuItemUI extends
javax.swing.plaf.

 MenuItemUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiOptionPaneUI extends
javax.swing.plaf.

 OptionPaneUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiPanelUI extends
javax.swing.plaf.

 PanelUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiPopupMenuUI extends
javax.swing.plaf.

 PopupMenuUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiProgressBarUI extends
javax.swing.

 plaf.ProgressBarUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiScrollBarUI extends
javax.swing.plaf.

 ScrollBarUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiScrollPaneUI extends
javax.swing.plaf.

 ScrollPaneUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiSeparatorUI extends
javax.swing.plaf.

 SeparatorUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiSliderUI extends
javax.swing.plaf.

 SliderUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiSplitPaneUI extends
javax.swing.plaf.

 SplitPaneUI (new in 1.2)

 - 126 -

 public class javax.swing.plaf.multi.MultiTabbedPaneUI extends
javax.swing.plaf.

 TabbedPaneUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiTableHeaderUI extends
javax.swing.plaf.

 TableHeaderUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiTableUI extends
javax.swing.plaf.TableUI

 (new in 1.2)
 public class javax.swing.plaf.multi.MultiTextUI extends
javax.swing.plaf.TextUI

 (new in 1.2)
 public class javax.swing.plaf.multi.MultiToolBarUI extends
javax.swing.plaf.

 ToolBarUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiToolTipUI extends
javax.swing.plaf.

 ToolTipUI (new in 1.2)
 public class javax.swing.plaf.multi.MultiTreeUI extends
javax.swing.plaf.TreeUI

 (new in 1.2)
 public class javax.swing.plaf.multi.MultiViewportUI extends
javax.swing.plaf.

 ViewportUI (new in 1.2)

 Package javax.swing (Continued)

 Package javax.swing.table

This package, part of Swing, provides classes and interfaces for dealing with the table-
viewing GUI. These classes can be used to customize appearance and semantics of the
viewer.

 Listing 3.50 shows all public classes and interfaces in the javax.swing.table

package.

 Listing 3.50 javax.swing.table Classes and Interfaces List

 public abstract class javax.swing.table.AbstractTableModel
extends java.

lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.table.TableModel

 public class javax.swing.table.DefaultTableCellRenderer extends
javax.swing.

JLabel (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.table.TableCellRenderer

 public class
javax.swing.table.DefaultTableCellRenderer.UIResource extends

 javax.swing.table.DefaultTableCellRenderer (new in 1.2)
 implements javax.swing.plaf.UIResource

 public class javax.swing.table.DefaultTableColumnModel extends
java.lang.

Object (new in 1.2)
 implements java.beans.PropertyChangeListener
 implements java.io.Serializable
 implements javax.swing.event.ListSelectionListener
 implements javax.swing.table.TableColumnModel

 - 127 -

 public class javax.swing.table.DefaultTableModel extends
javax.swing.table.

 AbstractTableModel (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.table.JTableHeader extends
javax.swing.JComponent

(new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.event.TableColumnModelListener

 public class
javax.swing.table.JTableHeader.AccessibleJTableHeader extends

 javax.swing.JComponent.AccessibleJComponent (new in 1.2)
 public interface javax.swing.table.TableCellEditor extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.CellEditor

 public interface javax.swing.table.TableCellRenderer extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.table.TableColumn extends
java.lang.Object

 (new in 1.2)
 implements java.io.Serializable

 public interface javax.swing.table.TableColumnModel extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.table.TableModel extends
java.lang.Object

 (new in 1.2)

 Package javax.swing.text

This package, part of Swing, provides classes and interfaces associated with the single-
and multiline text editing components. These classes can customize appearance and
semantics of the text editors.

One interesting and useful class is the StyledEditorKit, which describes a skeleton
text-editing framework that can be extended to build editors for styled documents.
Subpackages are provided (shown later in this chapter) that specialize this class for
HTML and Rich Text Format (RTF) documents.

 Listing 3.51 shows all public classes and interfaces in the javax.swing.text package.

 Listing 3.51 javax.swing.text Classes and Interfaces List

 public abstract class javax.swing.text.AbstractDocument extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.Document

 public abstract class
javax.swing.text.AbstractDocument.AbstractElement

extends java.lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.Element
 implements javax.swing.text.MutableAttributeSet
 implements javax.swing.tree.TreeNode

 public interface
javax.swing.text.AbstractDocument.AttributeContext extends

 java.lang.Object (new in 1.2)

 - 128 -

 public class javax.swing.text.AbstractDocument.BranchElement
extends

 javax.swing.text.AbstractDocument.AbstractElement (new in 1.2)
 public interface javax.swing.text.AbstractDocument.Content
extends

 java.lang.Object (new in 1.2)
 public class
javax.swing.text.AbstractDocument.DefaultDocumentEvent

 extends javax.swing.undo.CompoundEdit (new in 1.2)
 implements javax.swing.event.DocumentEvent

 public class javax.swing.text.AbstractDocument.ElementEdit
extends

 javax.swing.undo.AbstractUndoableEdit (new in 1.2)
 implements javax.swing.event.DocumentEvent.ElementChange

 public class javax.swing.text.AbstractDocument.LeafElement
extends javax.

 swing.text.AbstractDocument.AbstractElement (new in 1.2)
 public abstract class javax.swing.text.AbstractWriter extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.text.AttributeSet extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.text.BadLocationException extends
java.lang.Exception

 (new in 1.2)
 public class javax.swing.text.BoxView extends
javax.swing.text.CompositeView

 (new in 1.2)
 public interface javax.swing.text.Caret extends java.lang.Object
(new in 1.2)

 public class javax.swing.text.ChangedCharSetException extends
java.io.

 IOException (new in 1.2)
 public class javax.swing.text.ComponentView extends
javax.swing.text.View

 (new in 1.2)
 public abstract class javax.swing.text.CompositeView extends
javax.swing.text.

 View (new in 1.2)
 public class javax.swing.text.DefaultCaret extends
java.awt.Rectangle

(new in 1.2)
 implements java.awt.event.FocusListener
 implements java.awt.event.MouseListener
 implements java.awt.event.MouseMotionListener
 implements javax.swing.text.Caret

 public class javax.swing.text.DefaultEditorKit extends
javax.swing.text.

 EditorKit (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.BeepAction extends
javax.swing.

 text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.CopyAction extends
javax.swing.

 text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.CutAction extends
javax.swing.

 text.TextAction (new in 1.2)
 public class
javax.swing.text.DefaultEditorKit.DefaultKeyTypedAction extends

 - 129 -

 javax.swing.text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.InsertBreakAction
extends

 javax.swing.text.TextAction (new in 1.2)
 public class
javax.swing.text.DefaultEditorKit.InsertContentAction extends

 javax.swing.text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.InsertTabAction
extends javax.

 swing.text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultEditorKit.PasteAction
extends javax.

 swing.text.TextAction (new in 1.2)
 public class javax.swing.text.DefaultHighlighter extends
javax.swing.text.

 LayeredHighlighter (new in 1.2)

public class
javax.swing.text.DefaultHighlighter.DefaultHighlightPainter
extends

 javax.swing.text.LayeredHighlighter.LayerPainter (new in 1.2)
 public class javax.swing.text.DefaultStyledDocument extends
javax.swing.text.

 AbstractDocument (new in 1.2)
 implements javax.swing.text.StyledDocument

 public class
javax.swing.text.DefaultStyledDocument.AttributeUndoableEdit

 extends javax.swing.undo.AbstractUndoableEdit (new in 1.2)
 public class javax.swing.text.DefaultStyledDocument.ElementBuffer
extends

 java.lang.Object (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.text.DefaultStyledDocument.ElementSpec
extends

 java.lang.Object (new in 1.2)
 public class
javax.swing.text.DefaultStyledDocument.SectionElement extends

 javax.swing.text.AbstractDocument.BranchElement (new in 1.2)
 public abstract class javax.swing.text.DefaultTextUI extends
javax.swing.plaf.

 basic.BasicTextUI (new in 1.2) (deprecated in 1.2)
 public interface javax.swing.text.Document extends
java.lang.Object

 (new in 1.2)
 public abstract class javax.swing.text.EditorKit extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable

 public interface javax.swing.text.Element extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.text.ElementIterator extends
java.lang.Object

 (new in 1.2)
 implements java.lang.Cloneable

 public class javax.swing.text.FieldView extends
javax.swing.text.PlainView

 (new in 1.2)
 public class javax.swing.text.GapContent extends
javax.swing.text.GapVector

 (new in 1.2)

 - 130 -

 implements java.io.Serializable
 implements javax.swing.text.AbstractDocument.Content

 public interface javax.swing.text.Highlighter extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.text.Highlighter.Highlight extends
java.lang.

 Object (new in 1.2)
 public interface javax.swing.text.Highlighter.HighlightPainter
extends

 java.lang.Object (new in 1.2)
 public class javax.swing.text.IconView extends
javax.swing.text.View

 (new in 1.2)
 public abstract class javax.swing.text.JTextComponent extends
javax.swing.

JComponent (new in 1.2)
 implements javax.accessibility.Accessible
 implements javax.swing.Scrollable

 public class
javax.swing.text.JTextComponent.AccessibleJTextComponent extends

javax.swing.JComponent.AccessibleJComponent (new in 1.2)
implements javax.accessibility.AccessibleText
 implements javax.swing.event.CaretListener
 implements javax.swing.event.DocumentListener

 public class javax.swing.text.JTextComponent.KeyBinding extends
java.lang.

 Object (new in 1.2)
 public interface javax.swing.text.Keymap extends java.lang.Object
(new in 1.2)

 public class javax.swing.text.LabelView extends
javax.swing.text.View

 (new in 1.2)
 public abstract class javax.swing.text.LayeredHighlighter extends
java.lang.

 Object (new in 1.2)
 implements javax.swing.text.Highlighter

 public abstract class
javax.swing.text.LayeredHighlighter.LayerPainter extends

 java.lang.Object (new in 1.2)
 implements javax.swing.text.Highlighter.HighlightPainter

 public interface javax.swing.text.MutableAttributeSet extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.text.AttributeSet

 public class javax.swing.text.ParagraphView extends
javax.swing.text.BoxView

 (new in 1.2)
 implements javax.swing.text.TabExpander

 public class javax.swing.text.PasswordView extends
javax.swing.text.FieldView

 (new in 1.2)
 public class javax.swing.text.PlainDocument extends
javax.swing.text.

 AbstractDocument (new in 1.2)
 public class javax.swing.text.PlainView extends
javax.swing.text.View

 (new in 1.2)
 implements javax.swing.text.TabExpander

 public interface javax.swing.text.Position extends
java.lang.Object

 (new in 1.2)

 - 131 -

 public final class javax.swing.text.Position.Bias extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.text.Segment extends java.lang.Object
(new in 1.2)

 public class javax.swing.text.SimpleAttributeSet extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements javax.swing.text.MutableAttributeSet

 public final class javax.swing.text.StringContent extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.AbstractDocument.Content

public interface javax.swing.text.Style extends java.lang.Object
(new in 1.2)
 implements javax.swing.text.MutableAttributeSet

 public class javax.swing.text.StyleConstants extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.text.StyleConstants.CharacterConstants
extends javax.

 swing.text.StyleConstants (new in 1.2)
 implements javax.swing.text.AttributeSet.CharacterAttribute

 public class javax.swing.text.StyleConstants.ColorConstants
extends javax.

swing.text.StyleConstants (new in 1.2)
 implements javax.swing.text.AttributeSet.CharacterAttribute
 implements javax.swing.text.AttributeSet.ColorAttribute

 public class javax.swing.text.StyleConstants.FontConstants
extends javax.swing.

text.StyleConstants (new in 1.2)
 implements javax.swing.text.AttributeSet.CharacterAttribute
 implements javax.swing.text.AttributeSet.FontAttribute

 public class javax.swing.text.StyleConstants.ParagraphConstants
extends javax.

 swing.text.StyleConstants (new in 1.2)
 implements javax.swing.text.AttributeSet.ParagraphAttribute

 public class javax.swing.text.StyleContext extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.AbstractDocument.AttributeContext

 public class javax.swing.text.StyleContext.NamedStyle extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.Style

 public class javax.swing.text.StyleContext.SmallAttributeSet
extends java.lang.

 Object (new in 1.2)
 implements javax.swing.text.AttributeSet

 public interface javax.swing.text.StyledDocument extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.text.Document

 public class javax.swing.text.StyledEditorKit extends
javax.swing.text.

 DefaultEditorKit (new in 1.2)
 public class javax.swing.text.StyledEditorKit.AlignmentAction
extends javax.swing.text.StyledEditorKit.StyledTextAction (new in

 - 132 -

1.2)
 public class javax.swing.text.StyledEditorKit.BoldAction extends
javax.swing.

 text.StyledEditorKit.StyledTextAction (new in 1.2)
 public class javax.swing.text.StyledEditorKit.FontFamilyAction
extends

 javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
 public class javax.swing.text.StyledEditorKit.FontSizeAction
extends

 javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
 public class javax.swing.text.StyledEditorKit.ForegroundAction
extends

 javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
 public class javax.swing.text.StyledEditorKit.ItalicAction
extends javax.swing.

 text.StyledEditorKit.StyledTextAction (new in 1.2)
 public abstract class
javax.swing.text.StyledEditorKit.StyledTextAction extends

 javax.swing.text.
 TextAction (new in 1.2)
 public class javax.swing.text.StyledEditorKit.UnderlineAction
extends

 javax.swing.text.StyledEditorKit.StyledTextAction (new in 1.2)
 public interface javax.swing.text.TabExpander extends
java.lang.Object

 (new in 1.2)

public class javax.swing.text.TabSet extends java.lang.Object
(new in 1.2)
 implements java.io.Serializable

public class javax.swing.text.TabStop extends java.lang.Object
(new in 1.2)
 implements java.io.Serializable

 public interface javax.swing.text.TabableView extends
java.lang.Object

 (new in 1.2)
 public abstract class javax.swing.text.TableView extends
javax.swing.text.

 BoxView (new in 1.2)
 public class javax.swing.text.TableView.TableCell extends
javax.swing.text.

 BoxView (new in 1.2)
 implements javax.swing.text.TableView.GridCell

 public class javax.swing.text.TableView.TableRow extends
javax.swing.text.

 BoxView (new in 1.2)
 public abstract class javax.swing.text.TextAction extends
javax.swing.

 AbstractAction (new in 1.2)
 public class javax.swing.text.Utilities extends java.lang.Object
(new in 1.2)

 public abstract class javax.swing.text.View extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.SwingConstants

 public interface javax.swing.text.ViewFactory extends
java.lang.Object

 (new in 1.2)

public class javax.swing.text.WrappedPlainView extends
javax.swing.text.BoxView
(new in 1.2)
 implements javax.swing.text.TabExpander

 - 133 -

 Package javax.swing.text.html

This package and its subpackage, part of Swing, specialize the
javax.swing.StyledEditorKit class to support HTML editing. Sun describes the
StyledEditorKit capabilities as "the set of things needed by a text component to be a
reasonably functioning editor."

Using these classes will not give you a free world-class HTML browser or editor—it lacks,
among other things, any menus or buttons to access the editing functionality. But they do
provide a basic HTML (version 3.2) editor and viewer that can be customized to meet an
application's browsing or editing requirements.

 Listing 3.52 shows all public classes and interfaces in the javax.swing.text.html

package.

 Listing 3.52 javax.swing.text.html Classes and Interfaces List

 public class javax.swing.text.html.BlockView extends
javax.swing.text.BoxView

 (new in 1.2)
 public class javax.swing.text.html.CSS extends java.lang.Object
(new in 1.2)

 public final class javax.swing.text.html.CSS.Attribute extends
java.lang.

 Object (new in 1.2)
 public class javax.swing.text.html.FormView extends
javax.swing.text.

 ComponentView (new in 1.2)
 implements java.awt.event.ActionListener

 public class javax.swing.text.html.FormView.MouseEventListener
extends

 java.awt.event.
 MouseAdapter (new in 1.2)
 public class javax.swing.text.html.HTML extends java.lang.Object
(new in 1.2)

 public final class javax.swing.text.html.HTML.Attribute extends
java.lang.

 Object (new in 1.2)
 public class javax.swing.text.html.HTML.Tag extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.text.html.HTML.UnknownTag extends
javax.swing.text.

 html.HTML.
 Tag (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.text.html.HTMLDocument extends
javax.swing.text.

 DefaultStyledDocument (new in 1.2)
 public class javax.swing.text.html.HTMLDocument.BlockElement
extends javax.swing.text.

 AbstractDocument.BranchElement (new in 1.2)
 public class javax.swing.text.html.HTMLDocument.HTMLReader
extends javax.swing.

 text.html.HTMLEditorKit.ParserCallback (new in 1.2)
 public class
javax.swing.text.html.HTMLDocument.HTMLReader.BlockAction extends

 javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in

 - 134 -

1.2)
 public class
javax.swing.text.html.HTMLDocument.HTMLReader.CharacterAction

 extends javax.swing.text.html.HTMLDocument.HTMLReader.TagAction
(new in 1.2)

 public class
javax.swing.text.html.HTMLDocument.HTMLReader.FormAction extends

 javax.swing.text.html.HTMLDocument.HTMLReader.SpecialAction (new
in 1.2)

public class
javax.swing.text.html.HTMLDocument.HTMLReader.HiddenAction
extends

 javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in
1.2)

public class
javax.swing.text.html.HTMLDocument.HTMLReader.IsindexAction
extends

 javax.swing.text.html.HTMLDocument.HTMLReader.TagAction (new in
1.2)

public class
javax.swing.text.html.HTMLDocument.HTMLReader.ParagraphAction
extends

 javax.swing.text.html.HTMLDocument.HTMLReader.BlockAction (new in
1.2)

 public class
javax.swing.text.html.HTMLDocument.HTMLReader.PreAction extends

 javax.swing.text.html.HTMLDocument.HTMLReader.BlockAction (new in
1.2)

 public class
javax.swing.text.html.HTMLDocument.HTMLReader.SpecialAction

 extends javax.swing.text.html.HTMLDocument.HTMLReader.TagAction
(new in 1.2)

 public class
javax.swing.text.html.HTMLDocument.HTMLReader.TagAction extends

 java.lang.
 Object (new in 1.2)
 public abstract class javax.swing.text.html.HTMLDocument.Iterator
extends

 java.lang.
 Object (new in 1.2)
 public class javax.swing.text.html.HTMLDocument.RunElement
extends javax.

 swing.text.
 AbstractDocument.LeafElement (new in 1.2)
 public class javax.swing.text.html.HTMLEditorKit extends
javax.swing.text.

 StyledEditorKit (new in 1.2)
 public class javax.swing.text.html.HTMLEditorKit.HTMLFactory
extends java.lang.

 Object (new in 1.2)
 implements javax.swing.text.ViewFactory

 public abstract class
javax.swing.text.html.HTMLEditorKit.HTMLTextAction

 extends javax.swing.text.StyledEditorKit.StyledTextAction (new in
1.2)

 public class
javax.swing.text.html.HTMLEditorKit.InsertHTMLTextAction extends

 javax.swing.text.html.HTMLEditorKit.HTMLTextAction (new in 1.2)
 public class javax.swing.text.html.HTMLEditorKit.LinkController
extends java.

 awt.event.
 MouseAdapter (new in 1.2)

 - 135 -

 implements java.io.Serializable
 public abstract class javax.swing.text.html.HTMLEditorKit.Parser
extends java.

 lang.Object (new in 1.2)
 public class javax.swing.text.html.HTMLEditorKit.ParserCallback
extends java.

 lang.Object (new in 1.2)
 public class javax.swing.text.html.HTMLFrameHyperlinkEvent
extends javax.swing.

 event.HyperlinkEvent (new in 1.2)
 public class javax.swing.text.html.HTMLWriter extends
javax.swing.text.

 AbstractWriter (new in 1.2)
 public class javax.swing.text.html.InlineView extends
javax.swing.text.

 LabelView (new in 1.2)
 public class javax.swing.text.html.ListView extends
javax.swing.text.html.

 BlockView (new in 1.2)
 public class javax.swing.text.html.MinimalHTMLWriter extends
javax.swing.text.

 AbstractWriter (new in 1.2)
 public class javax.swing.text.html.ObjectView extends
javax.swing.text.

 ComponentView (new in 1.2)
 public class javax.swing.text.html.Option extends
java.lang.Object (new in 1.2)

 public class javax.swing.text.html.ParagraphView extends
javax.swing.text.

 ParagraphView (new in 1.2)
 public class javax.swing.text.html.StyleSheet extends
javax.swing.text.

 StyleContext (new in 1.2)
 public class javax.swing.text.html.StyleSheet.BoxPainter extends
java.lang.

 Object (new in 1.2)
 implements java.io.Serializable

 public class javax.swing.text.html.StyleSheet.ListPainter extends
java.lang.

 Object (new in 1.2)
 implements java.io.Serializable

 Package javax.swing.text.html.parser

 This package, part of Swing, provides supporting classes for HTML document parsing.

 Listing 3.53 shows all public classes and interfaces in the
javax.swing.text.html.parser package.

 Listing 3.53 javax.swing.text.html.parser Classes and Interfaces List

 public final class javax.swing.text.html.parser.AttributeList
extends java.

lang.Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.html.parser.DTDConstants

 public final class javax.swing.text.html.parser.ContentModel
extends java.

 lang.Object (new in 1.2)
 implements java.io.Serializable

 - 136 -

 public class javax.swing.text.html.parser.DTD extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.text.html.parser.DTDConstants

 public interface javax.swing.text.html.parser.DTDConstants
extends java.

 lang.Object (new in 1.2)
 public class javax.swing.text.html.parser.DocumentParser extends
javax.swing.

 text.html.parser.
 Parser (new in 1.2)
 public final class javax.swing.text.html.parser.Element extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.text.html.parser.DTDConstants

 public final class javax.swing.text.html.parser.Entity extends
java.lang.

 Object (new in 1.2)
 implements javax.swing.text.html.parser.DTDConstants

 public class javax.swing.text.html.parser.Parser extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.text.html.parser.DTDConstants

 public class javax.swing.text.html.parser.ParserDelegator extends
javax.swing.

 text.html.
 HTMLEditorKit.Parser (new in 1.2)
 public class javax.swing.text.html.parser.TagElement extends
java.lang.Object

 (new in 1.2)

 Package javax.swing.text.rtf

This package, part of Swing, provides an editor kit for building a Rich Text Format (RTF)
editor. RTF is commonly used as a lowest-common-denominator–styled document format
among Microsoft Windows applications.

As with the HTML editor discussed previously, do not expect this class to give you a
world-class editing tool. The functionality provided is basic, and must be customized to
meet the RTF viewing and editing needs of the application.

 Listing 3.54 shows all public classes and interfaces in the javax.swing.text.rtf

package.

 Listing 3.54 javax.swing.text.rtf Classes and Interfaces List

public class javax.swing.text.rtf.RTFEditorKit extends
javax.swing.text.
 StyledEditorKit (new in 1.2)

 Package javax.swing.tree

This package, part of Swing, provides classes for modeling the data behind the
javax.swing.JTree tree viewer GUI (discussed previously in the section "Package
javax.swing"). By separating the modeling from the viewing of the data, Swing allows you
to model the data with structures that best fit the data, instead of force-fitting the data into
data structures provided by the GUI.

 - 137 -

In Chapter 60, "PerfAnal: A Free Performance Analysis Tool," we will explore a
performance analysis tool that uses javax.swing.JTree and the classes in this
package to view and navigate performance data collected from Java applications.

 Listing 3.55 shows all public classes and interfaces in the javax.swing.tree package.

 Listing 3.55 javax.swing.tree Classes and Interfaces List

 public abstract class javax.swing.tree.AbstractLayoutCache
extends java.lang.

 Object (new in 1.2)
 implements javax.swing.tree.RowMapper

 public abstract class
javax.swing.tree.AbstractLayoutCache.NodeDimensions

 extends java.lang.
 Object (new in 1.2)
 public class javax.swing.tree.DefaultMutableTreeNode extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements javax.swing.tree.MutableTreeNode

 public class javax.swing.tree.DefaultTreeCellEditor extends
java.lang.Object

(new in 1.2)
 implements java.awt.event.ActionListener
 implements javax.swing.event.TreeSelectionListener
 implements javax.swing.tree.TreeCellEditor

 public class
javax.swing.tree.DefaultTreeCellEditor.DefaultTextField extends

 javax.swing.JTextField (new in 1.2)
 public class
javax.swing.tree.DefaultTreeCellEditor.EditorContainer extends

 java.awt.Container (new in 1.2)
 public class javax.swing.tree.DefaultTreeCellRenderer extends
javax.swing.

 JLabel (new in 1.2)
 implements javax.swing.tree.TreeCellRenderer

 public class javax.swing.tree.DefaultTreeModel extends
java.lang.Object

(new in 1.2)
 implements java.io.Serializable
 implements javax.swing.tree.TreeModel

 public class javax.swing.tree.DefaultTreeSelectionModel extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements java.lang.Cloneable
 implements javax.swing.tree.TreeSelectionModel

 public class javax.swing.tree.ExpandVetoException extends
java.lang.Exception

 (new in 1.2)
 public class javax.swing.tree.FixedHeightLayoutCache extends
javax.swing.tree.

 AbstractLayoutCache (new in 1.2)
 public interface javax.swing.tree.MutableTreeNode extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.tree.TreeNode

 public interface javax.swing.tree.RowMapper extends
java.lang.Object

 - 138 -

 (new in 1.2)
 public interface javax.swing.tree.TreeCellEditor extends
java.lang.Object

 (new in 1.2)
 implements javax.swing.CellEditor

 public interface javax.swing.tree.TreeCellRenderer extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.tree.TreeModel extends
java.lang.Object

 (new in 1.2)
 public interface javax.swing.tree.TreeNode extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.tree.TreePath extends java.lang.Object
 (new in 1.2)
 implements java.io.Serializable

 public interface javax.swing.tree.TreeSelectionModel extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.tree.VariableHeightLayoutCache extends
javax.swing.

 tree.AbstractLayoutCache (new in 1.2)

 Package javax.swing.undo

 This package, part of Swing, provides classes to support creation of an Undo/Redo stack

for arbitrary editing components.

 Listing 3.56 shows all public classes and interfaces in the javax.swing.undo package.

 Listing 3.56 javax.swing.undo Classes and Interfaces List

 public class javax.swing.undo.AbstractUndoableEdit extends
java.lang.

Object (new in 1.2)
 implements java.io.Serializable
 implements javax.swing.undo.UndoableEdit

 public class javax.swing.undo.CannotRedoException extends
java.lang.

 RuntimeException (new in 1.2)
 public class javax.swing.undo.CannotUndoException extends
java.lang.

 RuntimeException (new in 1.2)
 public class javax.swing.undo.CompoundEdit extends
javax.swing.undo.

 AbstractUndoableEdit (new in 1.2)
 public class javax.swing.undo.StateEdit extends javax.swing.undo.
 AbstractUndoableEdit (new in 1.2)
 public interface javax.swing.undo.StateEditable extends
java.lang.Object

 (new in 1.2)
 public class javax.swing.undo.UndoManager extends
javax.swing.undo.

 CompoundEdit (new in 1.2)
 implements javax.swing.event.UndoableEditListener

 public interface javax.swing.undo.UndoableEdit extends
java.lang.Object

 (new in 1.2)

 - 139 -

 public class javax.swing.undo.UndoableEditSupport extends
java.lang.Object

 (new in 1.2)

 Package org.omg.CORBA

This package and its subpackages, new in JDK1.2, support the Common Object Request
Broker Architecture (CORBA)—a standard from the Open Management Group
(OMG)from the Open Management Group (OMG) for interoperability among networked
applications. The high-level functionality provided by CORBA is similar to that from RMI
(discussed previously), but CORBA is a widely adopted, platform-neutral mechanism that
does not offer some of the Java-specific features of RMI.

 Detailed specifications and information about CORBA are available from the OMG Web

site at http://www.omg.org/.

 Listing 3.57 shows all public classes and interfaces in the org.omg.CORBA package.

 Listing 3.57 org.omg.CORBA Classes and Interfaces List

 public interface org.omg.CORBA.ARG_IN extends java.lang.Object
(new in 1.2)

 public interface org.omg.CORBA.ARG_INOUT extends java.lang.Object
(new in 1.2)

 public interface org.omg.CORBA.ARG_OUT extends java.lang.Object
(new in 1.2)

public abstract class org.omg.CORBA.Any extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

public final class org.omg.CORBA.AnyHolder extends
java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.BAD_CONTEXT extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.BAD_INV_ORDER extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.BAD_OPERATION extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.BAD_PARAM extends org.omg.CORBA.
 SystemException (new in 1.2)
 public interface org.omg.CORBA.BAD_POLICY extends
java.lang.Object (new in 1.2)

 public interface org.omg.CORBA.BAD_POLICY_TYPE extends
java.lang.Object

 (new in 1.2)
 public interface org.omg.CORBA.BAD_POLICY_VALUE extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.BAD_TYPECODE extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.BooleanHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.Bounds extends

 - 140 -

org.omg.CORBA.UserException
 (new in 1.2)
 public final class org.omg.CORBA.ByteHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.COMM_FAILURE extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public interface org.omg.CORBA.CTX_RESTRICT_SCOPE extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.CharHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public class org.omg.CORBA.CompletionStatus extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public abstract class org.omg.CORBA.Context extends
java.lang.Object

 (new in 1.2)
 public abstract class org.omg.CORBA.ContextList extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.DATA_CONVERSION extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public class org.omg.CORBA.DefinitionKind extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public interface org.omg.CORBA.DomainManager extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.Object

 public final class org.omg.CORBA.DoubleHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

public interface org.omg.CORBA.DynAny extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.Object

public interface org.omg.CORBA.DynArray extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

public interface org.omg.CORBA.DynEnum extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

public interface org.omg.CORBA.DynFixed extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

 public interface org.omg.CORBA.DynSequence extends
java.lang.Object

(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

 public interface org.omg.CORBA.DynStruct extends java.lang.Object
(new in 1.2)

 - 141 -

 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

public interface org.omg.CORBA.DynUnion extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

public interface org.omg.CORBA.DynValue extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.DynAny
 implements org.omg.CORBA.Object

 public abstract class org.omg.CORBA.DynamicImplementation extends
org.omg.

 CORBA.portable.ObjectImpl (new in 1.2)
 public abstract class org.omg.CORBA.Environment extends
java.lang.Object

 (new in 1.2)
 public abstract class org.omg.CORBA.ExceptionList extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.FREE_MEM extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.FixedHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.FloatHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

public interface org.omg.CORBA.IDLType extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.IRObject
 implements org.omg.CORBA.Object
 implements org.omg.CORBA.portable.IDLEntity

 public final class org.omg.CORBA.IMP_LIMIT extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.INITIALIZE extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.INTERNAL extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.INTF_REPOS extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.INVALID_TRANSACTION extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.INV_FLAG extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.INV_IDENT extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.INV_OBJREF extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public class org.omg.CORBA.INV_POLICY extends
org.omg.CORBA.SystemException

 (new in 1.2)

public interface org.omg.CORBA.IRObject extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.Object

 - 142 -

 implements org.omg.CORBA.portable.IDLEntity
 public final class org.omg.CORBA.IntHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.LongHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.MARSHAL extends
org.omg.CORBA.SystemException

 (new in 1.2)
 public final class org.omg.CORBA.NO_IMPLEMENT extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.NO_MEMORY extends org.omg.CORBA.
 SystemException (new in 1.2)
 public final class org.omg.CORBA.NO_PERMISSION extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.NO_RESOURCES extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.NO_RESPONSE extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public abstract class org.omg.CORBA.NVList extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.NameValuePair extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public abstract class org.omg.CORBA.NamedValue extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.OBJECT_NOT_EXIST extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.OBJ_ADAPTER extends
org.omg.CORBA.SystemException (new in 1.2)

 public abstract class org.omg.CORBA.ORB extends java.lang.Object
(new in 1.2)

 public interface org.omg.CORBA.Object extends java.lang.Object
(new in 1.2)

 public final class org.omg.CORBA.ObjectHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.PERSIST_STORE extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public interface org.omg.CORBA.PRIVATE_MEMBER extends
java.lang.Object

 (new in 1.2)
 public interface org.omg.CORBA.PUBLIC_MEMBER extends
java.lang.Object

 (new in 1.2)

public interface org.omg.CORBA.Policy extends java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.Object

 - 143 -

 public final class org.omg.CORBA.PolicyError extends
org.omg.CORBA.

 UserException (new in 1.2)
 public abstract class org.omg.CORBA.Principal extends java.lang.
 Object (new in 1.2) (deprecated in 1.2)
 public final class org.omg.CORBA.PrincipalHolder extends
java.lang.

 Object (new in 1.2) (deprecated in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public abstract class org.omg.CORBA.Request extends
java.lang.Object

 (new in 1.2)
 public abstract class org.omg.CORBA.ServerRequest extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.ServiceDetail extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CORBA.ServiceDetailHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.ServiceInformation extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CORBA.ServiceInformationHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.ServiceInformationHolder extends
java.lang.

 Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public class org.omg.CORBA.SetOverrideType extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public final class org.omg.CORBA.ShortHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.StringHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.StructMember extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public abstract class org.omg.CORBA.SystemException extends
java.lang.

 RuntimeException (new in 1.2)
 public class org.omg.CORBA.TCKind extends java.lang.Object (new
in 1.2)

 public final class org.omg.CORBA.TRANSACTION_REQUIRED extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.TRANSACTION_ROLLEDBACK extends
org.omg.CORBA.

 SystemException (new in 1.2)
 public final class org.omg.CORBA.TRANSIENT extends org.omg.CORBA.

 - 144 -

 SystemException (new in 1.2)
 public abstract class org.omg.CORBA.TypeCode extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public final class org.omg.CORBA.TypeCodeHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class org.omg.CORBA.UNKNOWN extends
org.omg.CORBA.SystemException

 (new in 1.2)
 public interface org.omg.CORBA.UNSUPPORTED_POLICY extends
java.lang.Object

 (new in 1.2)
 public interface org.omg.CORBA.UNSUPPORTED_POLICY_VALUE extends
java.lang.

 Object (new in 1.2)
 public final class org.omg.CORBA.UnionMember extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public final class org.omg.CORBA.UnknownUserException extends
org.omg.CORBA.

 UserException (new in 1.2)
 public abstract class org.omg.CORBA.UserException extends
java.lang.Exception

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public interface org.omg.CORBA.VM_ABSTRACT extends
java.lang.Object

 (new in 1.2)
 public interface org.omg.CORBA.VM_CUSTOM extends java.lang.Object
(new in 1.2)

 public interface org.omg.CORBA.VM_NONE extends java.lang.Object
(new in 1.2)

 public interface org.omg.CORBA.VM_TRUNCATABLE extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CORBA.ValueMember extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CORBA.WrongTransaction extends
org.omg.CORBA.

 UserException (new in 1.2)e

 Package org.omg.CORBA.DynAnyPackage

 This package, part of CORBA, defines some exceptions thrown by the
org.omg.CORBA.DynAny interface.

 Listing 3.58 shows all public classes and interfaces in the org.omg.CORBA.DynAny

package.

 Listing 3.58 org.omg.CORBA.DynAny Package Classes and Interfaces List

 public final class org.omg.CORBA.DynAnyPackage.Invalid extends
org.omg.CORBA.

 UserException (new in 1.2)

 - 145 -

 public final class org.omg.CORBA.DynAnyPackage.InvalidSeq extends
org.omg.

 CORBA.UserException (new in 1.2)
 public final class org.omg.CORBA.DynAnyPackage.InvalidValue
extends org.omg.

 CORBA.UserException (new in 1.2)
 public final class org.omg.CORBA.DynAnyPackage.TypeMismatch
extends org.omg.

 CORBA.UserException (new in 1.2)

 Package org.omg.CORBA.ORBPackage

 This package, part of CORBA, defines some exceptions thrown by CORBA methods.

 Listing 3.59 shows all public classes and interfaces in the
org.omg.CORBA.ORBPackage package.

 Listing 3.59 org.omg.CORBA.ORBPackage Classes and Interfaces List

 public final class org.omg.CORBA.ORBPackage.InconsistentTypeCode
extends

 org.omg.CORBA.UserException (new in 1.2)
 public class org.omg.CORBA.ORBPackage.InvalidName extends
org.omg.CORBA.

 UserException (new in 1.2)

 Package org.omg.CORBA.TypeCodePackage

 This package, part of CORBA, defines some exceptions thrown by CORBA methods.

 Listing 3.60 shows all public classes and interfaces in the
org.omg.CORBA.TypeCodePackage package.

 Listing 3.60 org.omg.CORBA.TypeCodePackage Classes and Interfaces List

 public final class org.omg.CORBA.TypeCodePackage.BadKind extends
org.omg.CORBA.

 UserException (new in 1.2)

public final class org.omg.CORBA.TypeCodePackage.Bounds extends
org.omg.CORBA.
UserException (new in 1.2)

 Package org.omg.CORBA.portable

 This package, part of CORBA, provides a portability layer that allows code to be used

with Object Request Brokers (ORBs) from different vendors.

 Listing 3.61 shows all public classes and interfaces in the org.omg.CORBA.portable

package.

 Listing 3.61 org.omg.CORBA.portable Classes and Interfaces List

 public class org.omg.CORBA.portable.ApplicationException extends
java.lang.

 Exception (new in 1.2)
 public abstract class org.omg.CORBA.portable.Delegate extends

 - 146 -

java.lang.Object
 (new in 1.2)
 public abstract class org.omg.CORBA.portable.InputStream extends
java.io.

 InputStream (new in 1.2)
 public interface org.omg.CORBA.portable.InvokeHandler extends
java.lang.Object

 (new in 1.2)
 public abstract class org.omg.CORBA.portable.ObjectImpl extends
java.lang.

 Object (new in 1.2)
 implements org.omg.CORBA.Object

 public abstract class org.omg.CORBA.portable.OutputStream extends
java.io.

 OutputStream (new in 1.2)
 public final class org.omg.CORBA.portable.RemarshalException
extends java.lang.

 Exception (new in 1.2)
 public interface org.omg.CORBA.portable.ResponseHandler extends
java.lang.

 Object (new in 1.2)
 public class org.omg.CORBA.portable.ServantObject extends
java.lang.Object

 (new in 1.2)
 public interface org.omg.CORBA.portable.Streamable extends
java.lang.Object

 (new in 1.2)

Package org.omg.CosNaming

 This package, part of CORBA, provides an API to name services.

 Listing 3.62 shows all public classes and interfaces in the org.omg.CORBA.CosNaming

package.

 Listing 3.62 org.omg.CosNaming Classes and Interfaces List

 public final class org.omg.CosNaming.Binding extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CosNaming.BindingHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.BindingHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public interface org.omg.CosNaming.BindingIterator extends
java.lang.Object

(new in 1.2)
 implements org.omg.CORBA.Object
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CosNaming.BindingIteratorHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.BindingIteratorHolder
extends java.lang.

 Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 - 147 -

public class org.omg.CosNaming.BindingListHelper extends
java.lang.Object
(new in 1.2)

 public final class org.omg.CosNaming.BindingListHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

public final class org.omg.CosNaming.BindingType extends
java.lang.Object
(new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CosNaming.BindingTypeHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.BindingTypeHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public class org.omg.CosNaming.IstringHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.NameComponent extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CosNaming.NameComponentHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.NameComponentHolder extends
java.lang.

 Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public class org.omg.CosNaming.NameHelper extends
java.lang.Object (new in 1.2)

 public final class org.omg.CosNaming.NameHolder extends
java.lang.Object

 (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public interface org.omg.CosNaming.NamingContext extends
java.lang.Object

(new in 1.2)
 implements org.omg.CORBA.Object
 implements org.omg.CORBA.portable.IDLEntity

 public class org.omg.CosNaming.NamingContextHelper extends
java.lang.Object

 (new in 1.2)
 public final class org.omg.CosNaming.NamingContextHolder extends
java.lang.

 Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public abstract class org.omg.CosNaming._BindingIteratorImplBase
extends org.

 omg.CORBA.
 DynamicImplementation (new in 1.2)
 implements org.omg.CosNaming.BindingIterator

 public class org.omg.CosNaming._BindingIteratorStub extends
org.omg.CORBA.

 portable.ObjectImpl (new in 1.2)
 implements org.omg.CosNaming.BindingIterator

 public abstract class org.omg.CosNaming._NamingContextImplBase
extends org.omg.

 CORBA.

 - 148 -

 DynamicImplementation (new in 1.2)
 implements org.omg.CosNaming.NamingContext

 public class org.omg.CosNaming._NamingContextStub extends
org.omg.CORBA.

portable.
ObjectImpl (new in 1.2)
 implements org.omg.CosNaming.NamingContext

 Package org.omg.CosNaming.NamingContextPackage

 This package, part of CORBA, describes exceptions thrown by classes in package
org.omg.CosNaming.

 Listing 3.63 shows all public classes and interfaces in the
org.omg.CORBA.CosNaming.NamingContextPackage package.

 Listing 3.63 org.omg.CosNaming.NamingContextPackage Classes and

Interfaces List

 public final class
org.omg.CosNaming.NamingContextPackage.AlreadyBound extends

org.omg.CORBA.
UserException (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class
org.omg.CosNaming.NamingContextPackage.AlreadyBoundHelper extends

 java.lang.Object (new in 1.2)
 public final class
org.omg.CosNaming.NamingContextPackage.AlreadyBoundHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class
org.omg.CosNaming.NamingContextPackage.CannotProceed extends

 org.omg.CORBA.UserException (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

public class
org.omg.CosNaming.NamingContextPackage.CannotProceedHelper
extends

 java.lang.Object (new in 1.2)
 public final class
org.omg.CosNaming.NamingContextPackage.CannotProceedHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class
org.omg.CosNaming.NamingContextPackage.InvalidName extends

 org.omg.CORBA.UserException (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class
org.omg.CosNaming.NamingContextPackage.InvalidNameHelper extends

 java.lang.Object (new in 1.2)
 public final class
org.omg.CosNaming.NamingContextPackage.InvalidNameHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class
org.omg.CosNaming.NamingContextPackage.NotEmpty extends

 org.omg.CORBA.UserException (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class
org.omg.CosNaming.NamingContextPackage.NotEmptyHelper extends

 java.lang.Object (new in 1.2)

 - 149 -

 public final class
org.omg.CosNaming.NamingContextPackage.NotEmptyHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class
org.omg.CosNaming.NamingContextPackage.NotFound extends

 org.omg.CORBA.UserException (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class
org.omg.CosNaming.NamingContextPackage.NotFoundHelper extends

 java.lang.Object (new in 1.2)
 public final class
org.omg.CosNaming.NamingContextPackage.NotFoundHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

 public final class
org.omg.CosNaming.NamingContextPackage.NotFoundReason

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.IDLEntity

 public class
org.omg.CosNaming.NamingContextPackage.NotFoundReasonHelper

 extends java.lang.Object (new in 1.2)
 public final class
org.omg.CosNaming.NamingContextPackage.NotFoundReasonHolder

 extends java.lang.Object (new in 1.2)
 implements org.omg.CORBA.portable.Streamable

Summary

This chapter has presented a high-level view of the JDK1.2 class libraries. The details of
using the libraries are not specific to Linux, and can fill (and have filled) many books. To
explore the libraries in more detail, two good references are Java 1.2 Class Libraries
Unleashed and JFC Unleashed (Sams).

Chapter 4: Additional Sun Java Class Library
Specs

 Overview

 Additional class libraries available from Sun, either as specs or as implemented class

libraries, fall into two categories:

 • Standard Extensions—Class libraries targeted at interesting markets. A standard

extension must have a full specification, a reference implementation, and a test suite.

•

Enterprise Technologies—Class libraries focused on server-side requirements. This is
an umbrella category covering numerous technologies in various degrees of
implementation: some of them are already core components, some are already
standard extensions, and the remainder lack all the necessary pieces to be considered
either.

Some of these pieces depend on JDK1.2, and availability is highly variable. For standard
extensions implemented entirely in Java, working versions are available today from Sun.
Extensions described as "Pure Java" or "100% Pure Java" have passed a specific
conformance test suite (see section 10.1), but any extension implemented in Java should
work on Linux.

 For extensions that require some non-Java, native OS support, availability depends on a

porting effort (such as one by the Blackdown Linux porting team) or a cleanroom

 - 150 -

implementation by an outside developer.

The bottom line: If you want to depend on these technologies, make sure that they are
available for the development and deployment platforms you care about. In many cases,
you can ship copies of these libraries for deployment, either free or after obtaining licenses
from Sun. Details are provided on the Sun Web pages devoted to the particular
technologies.

 Standard Extensions

 Here's the current list. All of these are available from Sun for download, from its main

Java Web site at http://java.sun.com.

 JavaBeans Activation Framework (JAF)

The JAF is a pure-Java library that supports deployment of JavaBeans components to
handle arbitrary data types. For example, if you have written a Bean that knows how to
display a new, previously unsupported graphics file format, the JAF handles the mapping
between the requirement ("display a file of this type in this browser window") and the
Bean with the capability.

 As a pure-Java component, the JAF works with Linux and any other Java-compliant

platform.

 Java Naming and Directory Interface (JNDI)

The JNDI is a Java API to standard enterprise naming and directory services, such as
Lightweight Directory Access Protocol (LDAP), Novell Directory Services (NDS), Internet
Domain Name System (DNS), Network Information System (NIS), and others. JNDI
provides a uniform interface to these services, freeing the developer from dealing with a
plethora of different APIs for different services. A Service Provider Interface allows new
services to be added.

JNDI is implemented in Java and works with Linux and any other Java-compliant
platform. Sun announced in summer of 1999 that JNDI will become a core component of
JDK1.3.

 JavaMail

The JavaMail API provides classes to support an email system and includes service
providers for the popular Internet Message Access Protocol (IMAP) and Simple Mail
Transport Protocol (SMTP) protocols, with an optional Post Office Protocol (POP3)
provider also available. Sun is relying on other vendors to supply service providers for
other protocols (MAPI, NNTP, Lotus Notes, and so on). JavaMail depends on the JNDI
extension (discussed previously).

 JavaMail is implemented in Java and works with Linux and any other Java-compliant

platform.

 InfoBus

 InfoBus is a support API for JavaBeans components. It facilitates communications among

Beans by creating an information bus abstraction for handling exchange of data.

 As a pure-Java component, InfoBus works with Linux and any other Java-compliant

platform.

 - 151 -

 Java3D

 Java3D is a 3D rendering API for support of modeling, gaming, and other 3D

applications.

Java3D depends on underlying platform graphics capabilities and is not available in a
Java-only version. Sun provides versions for Solaris and Windows (based on the
OpenGL graphics API) and is testing a version for Windows based on the DirectX
graphics API.

 We discuss a Linux version of Java3D in Chapter 34, "Java 3D Extension."

 Java Media Framework (JMF)

The JMF creates a framework for multimedia playback, capture, and manipulation. The
version 1.0 API supports only playback; version 2.0 (currently in early access) adds
capture, support for plug-in CODECs, broadcast, and manipulation.

 Versions of the JMF implemented entirely in Java are available, as are higher-performing

platform-specific versions for Solaris and Windows.

 Java Servlet API

One of the most important and successful Java technologies, servlets are Java programs
that run on Web servers. They are the Java analog of CGI scripts, which run in response
to browser requests for particular URLs.

Web server-side programs are a hot and contentious area in the Web development
world, and there is no shortage of debate over the relative merits of Java servlets, Perl,
and other comparable technologies. The true answer to this debate is: use the
technology that does the job for you.

Sun provides a pure-Java implementation of a development kit for servlets. The actual
environment in which servlets run must, of course, be provided by Web servers
themselves. Many free and commercial Web servers, such as Sun's own Web server
product, support servlets. In Chapter 65, "Java on the Web: Java Servlets and Apache
JServ," we set up a Web server with servlet support, built entirely from free components.

 Java Cryptography Extension (JCE)

The JCE creates a framework for support of public- and private-key cryptography
algorithms. The implementation includes service providers for some common encryption
algorithms (DES, Blowfish, Diffie-Hellman) and an interface that allows adding other
service providers.

Sun's implementation of JCE is completely in Java and works with Linux and any other
Java-compliant platform. Due to export restrictions, it is only available for download to
sites in the USA and Canada. However, cleanroom implementations of the JCE are
available from vendors outside the USA.

 JavaHelp

JavaHelp is a pure-Java help system—Sun's answer to the horribly uneven support for
help systems among various computing platforms. JavaHelp supports authoring and
display of HTML-based help on a wide variety of Java-compliant platforms.

 As a pure-Java component, JavaHelp works with Linux and any other Java-compliant

platform.

 - 152 -

 Java Communications API (JavaComm)

JavaComm provides an API for access to serial and parallel ports on your system. Such
support is platform-specific, and Sun ships versions for Windows and Solaris. Chapter
37, "KJC: Kopi Java Compiler," describes a partial implementation available for Linux.

 Java Management API (JMX) (specification only)

JMX (currently in early access) is a framework for management of networked services
and resources, through such protocols as SNMP (Simplified Network Management
Protocol). Using JMX, you can develop management tools and agents to assist in running
networks. It is currently in specification form and no implementation is available.

 Java Advanced Imaging (JAI)

The JAI API supports advanced, high-performance imaging capabilities beyond what is
provided in the core image classes. It is targeted at advanced markets such as medical
imaging, seismological imaging, and document processing.

JAI is available in a Java implementation usable on any Java-compliant platform. Versions
will also appear that take advantage of native platform computation and imaging
capabilities.

Enterprise Technologies

The following sections provide a brief rundown of Java's Enterprise Technologies. Those
that are not part of the core classes or the standard extensions just described are slated
to become standard extensions in the near future.

 Enterprise JavaBeans (EJB)

 Not to be confused with the JavaBean component model, EJB is a specification for

deployment of reusable business logic components.

Confused? The similarity of names is unfortunate. Like JavaBeans, EJB is about
reusable components. The similarity ends there: JavaBeans are arbitrary self-describing
components usable in a wide variety of contexts, whereas EJB is a highly constrained
environment for delivery of services. In short, the difference between JavaBeans and
Enterprise JavaBeans is that they have nothing to do with each other.

 What is an EJBean? It's a class that models a piece of business logic—the role of a teller

in a banking transaction, an accounting rule in an order processing system, and so on.

 What do you do with an EJBean? You place it in a container in an EJB application server

(see Figure 4.1).

 Figure 4.1: Enterprise JavaBeans deployed in an enterprise application server.

 - 153 -

The structure around the EJBean handles the many minutiae of enterprise applications—
security, database connectivity, network access, persistence, threading, RMI, and so
on—while the EJBean concentrates on providing basic logic. The application server is
then configured to support processes within the enterprise—for example, a Web-based
product ordering system (see Figure 4.2).

 Figure 4.2: A Web-based product ordering system built around EJB.

From within the EJB server, EJBeans are deployed as needed in the business
processes. For instance, an applet running on the Web client may need to execute a
piece of business logic to check product inventory. It might invoke that logic in a server-
resident EJBean method through an RMI call (see Figure 4.3).

 Figure 4.3: Using EJB to provide business logic for a client-side requirement.

This is an example of a session bean: a service performed on behalf of a client. EJB also
defines entity beans: persistent objects that represent data, such as cached database
entries.

These diagrams (Figures 4.1, 4.2, and 4.3) are, of course, simplifications. These are big
problems, and EJB is a big, hairy spec still in early adoption (and in competition with
other technologies). These pictures provide only a quick snapshot of the capabilities.

The EJB spec solidified in early 1999, and Sun does not yet ship any reference
implementations for EJB servers or containers. That should change with shipment of
Java 2 Enterprise Edition (scheduled for late 1999). However, EJB is already supported
by a number of com-mercial vendors of application servers and is showing promise as an
important enterprise application integration be technology.

 JavaServer Pages (JSP)

 - 154 -

A companion be technology to Java Servlets, JSP supports embedding of Java source
code in Web pages. The best-known competing technology is Microsoft's Active Server
Pages (ASP), but similar technologies also exist for embedding of Perl and other
languages.

 A reference implementation is available in Sun's JavaServer Web Development Kit

(JSWDK), available for download from http://java.sun.com.

 Java Servlet

Already a standard extension (discussed previously), servlets are like CGI scripts: an
entire URL is implemented programmatically. Contrast that with JSP, in which small
pieces of Java source code are embedded in otherwise static HTML.

 Java Naming and Directory Interface

 Already a standard extension (previously mentioned).

 Java IDL

Interface Definition Language (IDL) is the portable specification language used to
describe data passed among CORBA-compliant distributed applications. Java IDL is
Sun's term for the combination of JDK1.2 (which supports parts of the CORBA
specification) and the idl2java compiler, separately available from Sun, that generates the
necessary stubs and skeletons Java needs to interface with CORBA.

The idl2java compiler is a native program, distributed for Solaris and Windows by Sun
and not yet available for Linux. If you need to compile IDL into Java for use with the
JDK1.2 CORBA classes, you will need to do so on an Windows or Solaris platform.

 Java Database Connectivity (JDBC)

 The JDBC API is part of the core Java class libraries.

 Java Message Service (JMS)

JMS is a Java API for the relatively new area of enterprise messaging—infrastructures to
support secure, reliable message-passing among applications. It is currently in
specification form, with no implementation available.

 Java Transaction API (JTA)

 JTA is a Java API to support interaction with distributed transaction systems. It is

currently in specification form, with no implementation available.

 Java Transaction Service (JTS)

 JTS supports implementation of servers for distributed transaction systems. It is currently

in specification form, with no implementation available.

 JavaMail

 The JavaMail API is already a standard extension (previously mentioned).

 RMI/IIOP

 - 155 -

RMI/IIOP is an integration mechanism that supports encapsulating Java RMI calls in the
Internet Inter-Orb Protocol (IIOP) used in CORBA environments. In summer of 1999, Sun
announced its upcoming availability with JDK1.3.

Summary

This chapter has described extension and enterprise APIs for Java, which are targeted at
supporting Java application development in specific environments. This is an area that is
rapidly changing, as APIs undergo revision, release, acceptance, and, in some cases,
incorporation into the core Java specification.

Part II: A Brief Introduction to Linux

 Chapter List

 Chapter

5: What Is Linux?

 Chapter

6: How to Obtain and Install Linux

 Chapter

7: Configuring Your Linux Desktop

 Chapter

8: Installing Additional Linux Software

 Part Overview

 We took a few chapters to introduce Java; now we take a few chapters to introduce

Linux.

The past ten years have witnessed a remarkable explosion in personal computing. The
success of Microsoft, Intel, and the PC industry in penetrating the home and the office
has put huge amounts of computing power into the hands of normal human beings who
don't know a bit from a byte and who have no idea what an operating system is. They
know, simply, that their computer tends to work most of the time.

Against this background, the emergence of a new PC-based operating system as an
important force in the world is one of history's most unlikely events. This part of the book
examines what Linux is, where it comes from, how it is being used, and how you can obtain
it for your own use.

Chapter 5: What Is Linux?

 Overview

This chapter gives you the 10-minute tour of Linux. If you are already an experienced
Linux user, you might want to skip ahead. Our purpose, for the benefit of Java developers
new to Linux, is to give some basic background and help get you started.

We begin with a look at UNIX, including a bit of history to help understand how UNIX and
Linux got to be what they are today. For readers unfamiliar with some of these details,
they will be relevant to understanding the platform-specific issues faced by Java on the

 - 156 -

Linux platform.

 For readers interested in deep coverage of Linux, we recommend Linux Unleashed

(Sams).

What Is UNIX?

The UNIX operating system has been around since 1969 and is the longest-running and
most spectacularly successful experiment in the history of computer science. It originated
in the halls of Bell Labs, at the hands of two researchers: Ken Thompson and Dennis
Ritchie. Over the years, UNIX has served as a primary development and test bed for
innovations in computer architecture, operating systems design, memory management,
file systems, database management systems, languages and compilers, I/O
architectures, multitasking and multiprocessing, and computer networking. UNIX is
closely associated with the development and evolution of the protocols that make up the
Internet, and UNIX-based servers make up a large part of the infrastructure of the
Internet.

UNIX spent its infancy behind the walls of Bell Labs' parent corporation, AT&T, where it
was used internally throughout the company. It began to spread beyond the confines of
Bell Labs in the mid-1970s, infiltrating computer science departments at several
universities. As AT&T began to commercialize UNIX, several universities started their
own research programs based on UNIX, and innovation proliferated. The most influential
university activity took place at UC Berkeley, and, with help from government research
grants, Berkeley became the home of a public-sector UNIX development stream. During
much of the 1980s, the AT&T and BSD (Berkeley System Distribution) streams continued
in parallel, both competing with and influencing each other.

As UNIX was increasingly commercialized in the 1980s, the differences between AT&T
and BSD UNIX resulted in competitive tensions among UNIX vendors and headaches for
independent software vendors and customers. These problems have been blamed for
preventing widespread consumer and business acceptance of UNIX—and the huge
success of the Intel/Microsoft architecture certainly underscores that point. But UNIX
continues to survive and thrive because it solves problems that other OSs do not. And
the standardization efforts of the past several years have helped to reduce the difficulties
of supporting the UNIX platform (that the vendors have not eliminated those difficulties
entirely is another reason for the ascent of Linux).

The commercial implementations of UNIX sold most widely today include Hewlett-
Packard Company's HP-UX, Sun Microsystems' Solaris, Compaq/DEC's Ultrix, IBM's
AIX, and SGI's IRIX.

 The Structure of UNIX

More than any other operating system, UNIX is made up of many small parts and—to
recycle an old cliché—greatly exceeds the sum of its parts. The OS is constructed in
layers, with core operations performed by a privileged kernel and everything else
happening in isolated concurrent activity streams called processes—the system creates
concurrence by dividing the CPU and other resources among the processes and
switching between processes tens or hundreds of times a second.

The isolation among processes, and the isolation enforced between processes and the
kernel, is a major reason behind UNIX's stability—the relatively high immunity to
interference between programs, and the general inability of user programs to damage the
system.

 Figure 5.1 gives a general idea of the structure of UNIX.

 - 157 -

Figure 5.1: UNIX's layered structure supports multitasking and enforces
protective isolation among processes as well as between processes and the
kernel.

The system was designed by software developers for software developers, which
resulted in a rich environment for software development—a distinction that UNIX still
enjoys today. It also resulted in a rich collection of tools and utilities that make it easy for
software developers to work on UNIX and to easily build complex tools out of simple
tools. That such utilities, completely nongraphical and blessed with such obscure names
as sed, awk, grep, vi, troff, cpio, and so on, never fired the imagination of the general
public is another reason UNIX did not penetrate the consumer and business market. (We
will explore important tools for use in development work in Chapter 9, "Setting Up a Linux
Development Environment.")

 And there is something else missing from the picture….

 UNIX and GUIs

Until the late 1980s, the UNIX world was largely text-oriented. UNIX applications, tools,
and utilities tended not to rely on graphics of any form. Applications that needed graphics,
2D or 3D, had to code to the proprietary graphical interfaces provided by each of the
UNIX vendors and create their own GUIs: not a friendly environment for innovation.

This began to change with the advent of the X Window System, which arose from
research at MIT's Laboratory for Computer Science. The X Window System serves 2D
graphical applications with a networked client/server model, in which applications
rendering graphics are clients, and workstations providing those rendering capabilities
are servers. Figure 5.2 shows an X application in its simplest form.

 Figure 5.2: Basic X-based application architecture.

The X Window System defines a standard set of services to be provided by an X display
server, and a standard network protocol through which applications can create and
control windows, render text and graphics, and interact with the user. Because the X
protocol is network-transparent, applications need not reside on the same system as the
X server. Users with inexpensive workstations can run compute-intensive graphical

 - 158 -

applications on large servers while enjoying full graphical I/O from their desks.

This vendor-neutral approach to distributed graphics gained the support of all UNIX
vendors, who formed the MIT X Consortium to further the evolution of X. But something is
still missing from the picture….

The X Window System is not a GUI. It is, by design and intention, everything needed to
create a GUI—basic windows, rendering, images, and so on—but it lacks the higher-level
abstractions that make up a graphical user interface: pushbuttons, text editors, scrollbars,
and the like. Design of GUIs, and of window managers (the "traffic cops" responsible for
controlling how various applications share the screen space in the X server), was left as
an exercise for the UNIX vendors.

The UNIX vendors rose to the challenge, competing fiercely for several years and, finally,
converging on a GUI toolkit, Motif, and a Desktop (window manager + extras), the
Common Desktop Environment (CDE). So a more complete picture of a typical X
application environment looks like Figure 5.3.

 Figure 5.3: X Window System GUI and application environment architecture.

Each GUI-based application interacts with the X server, and the CDE window manager
controls the behavior of the desktop (window geometry and borders, icons, overall look
and feel). Applications also interact with each other, and with the window manager, using
inter-client protocols. And because all interactions take place over network-transparent
protocols, all these components—applications, window manager, and the X server—can
be running on different systems.

 As complex as this appears, most of the interaction details shown in the diagram are

handled by the toolkits. Writing GUI applications for X is not difficult.

Subtleties

The relationship among the X Window System, GUI toolkits, and the window
manager is strange and new if you're coming from the non-UNIX world. They are all
separate components in UNIX and Linux:

 • The X Window System server runs the display, keyboard, and mouse. It is

responsible for basic graphics rendering.

•

GUI toolkits are separate components, bound with individual applications. Motif is
the most commercial toolkit but (despite the suggestion of the previous diagram)
not the only one. So, for example, the logic to implement a button or text box
resides with the GUI toolkit, not with the X server—different applications using
different toolkits routinely coexist under X.

 - 159 -

•

The window manager, a component of the desktop, handles controlling how
applications share the space on the X display. It is just another application, albeit
one with special privileges to control layout and visibility of other applications.
CDE is the most commercial, but not the only, desktop, and recent development
work within the open source community has led to exciting alternatives to CDE
(more in Chapter 7, "Configuring Your Linux Desktop").

To illustrate, Figure 5.4 shows a typical screen dump from my X display. I am
running a desktop called KDE, which is responsible for the background color, the
icons, the buttons at the bottom, the placement of my application windows, and the
decorations around the application windows.

The topmost application is a terminal emulator, kvt, which uses the Qt GUI toolkit.
Below that is an instance of Netscape, which uses Motif. And below that is a
remote-dialup script that uses the Tk GUI toolkit. When we start running Java
applications with the Swing interface, we will find yet another GUI sharing the
desktop.

 Figure 5.4: A dump of the author's desktop, showing a Linux desktop (KDE) and

three different applications running with three different toolkits.

Because the desktop controls the look and feel (and your personal satisfaction) for the
system, we will explore the topic of configuring your desktop in Chapter 7, "Configuring
Your Linux Desktop."

 A Brief Comment on UNIX/X Versus Microsoft Windows

Although the differences between the UNIX and Microsoft architectures are well beyond
the scope of this book, a brief observation will be helpful in illuminating the platform-
specific issues later in the book.

In the Microsoft architecture, the GUI, the window system, and the desktop are all integral
to the kernel, and applications must run locally (even sharing some address space with
the kernel). By contrast, the various X components are independent, non-kernel
processes, and UNIX enforces a significant amount of isolation between processes and
the kernel.

The close integration of Microsoft Windows has important advantages (GUI performance,
consistency of interfaces) and major disadvantages (huge and complex operating system,
lack of flexibility, fragility, lack of portability). As you will see when examining platform-

 - 160 -

specific performance issues, the distributed nature of the X Window System creates Java
performance challenges unique to UNIX and Linux platforms. The good news: tuning Java
application performance on one platform often benefits performance on all platforms.

What Is Linux?

 Having briefly explored 30 years of computer science history, we can begin to answer the

question: What is Linux? A little more history….

UNIX has grown up in a mixed academic/commercial environment, and its history is full
of talented innovators who find the pursuit of computer science at least as interesting as
making money, if not more so. Like all scientists, computer scientists like to work in packs
and tend to prefer collaboration over working behind locked doors.

The growth of the computer industry naturally led to tensions between making science
and making money. The problem is not unique to computer science: we see it in physics
(the electronics industry), biology (the bioengineering and pharmaceutical industries), and
elsewhere.

What is unique to computer science is that the scientists fought back. Linux is but one
example, and two names stand out as particularly crucial in the development of that
example: Richard Stallman and Linus Torvalds.

 Richard Stallman: The Apostle of Free Software

Richard Stallman, formerly of MIT, founded the GNU project in 1984
(http://www.gnu.org). GNU (a recursive acronym for "GNU is Not UNIX") set out to
write a completely free replacement for UNIX. His reasons, which he has described in
passionate writings, stem from a personal conviction that the commercialization of UNIX
was seriously stifling innovation in the field, and from deep convictions about the ethics of
intellectual property law.

In founding GNU, Stallman set out to create a new category of software: free software,
where free denoted something much broader than a zero-dollar price tag. Free software,
in the GNU lexicon, means software that the user is free to run, free to modify, free to
share, and free to improve. This notion has gained much currency in the past two years,
with the emergence of the Open Source software movement.

Recalling our earlier illustration, a UNIX system consists of a kernel, system libraries, and
many tools and utilities. As of this writing, the GNU kernel (called the Hurd—an obscure
acronym) is not finished, but everything else is. The GNU project has built an extensive
collection of free versions of many UNIX utilities and libraries. And, most significantly,
GNU developed a compiler and core library for the C programming language—a critical
piece of technology for OS development.

 Linus Torvalds: Kernel Hacker

Linus Torvalds, a Finnish computer science student, was a user of the Minix operating
system (a small, academic UNIX-like OS) when he decided he could write a better one
himself. He set to the task and, in 1991, published version 0.02 of the Linux kernel for the
Intel 80386 CPU. It wasn't much to look at, but it fired the imagination of kernel hackers
throughout the Internet world, and a movement was born.

Linus and his cadre of like-minded hackers continued their collaborative work (Linux is
truly a product of the Internet), and, in 1994, Linus published version 1.0 of the Linux
kernel. It was not the world's first UNIX for the 80386 architecture—Xenix was available
in the commercial market—but it was free, and it worked well on this widely available
CPU. Suddenly, millions of old and new affordable computers had a potential future as
UNIX platforms. Current market research suggests that Linux now runs on as many

 - 161 -

platforms as do all other UNIXes combined.

 Of course, an operating system is more than a kernel. With the availability of the Linux

kernel, a new opportunity opened up for Richard Stallman's unfinished work.

 Linux Kernel + GNU = Linux OS

With some simple addition, Kernel + GNU, you have a fully functional UNIX-like OS. We
say UNIX-like, not UNIX, because GNU and Linux are original works: not a single line is
licensed from the holders of the UNIX franchise. But the functionality is all in place, and
the Linux community tracks the evolving standards and keeps Linux current.

Because of GNU's central role in the Linux environment, you will also hear Linux called
"GNU/Linux," "The GNU System on Linux," or some similar name. These are all
alternative names for the same thing, and this book opts for the common convention:
we'll use "Linux" to describe the OS.

There is, of course, more to the Linux OS than the kernel and the GNU components. The
XFree86 project contributes the important X Window System, many utilities were derived
from the Berkeley UNIX effort, and a wide variety of tools and drivers come from
individual and corporate contributors. The job of assembling all these pieces into a
product has created a new type of business: Linux distributions.

 We will talk about these businesses, with increasingly well-known names such as Red

Hat and Caldera, in the Chapter 6, "How to Obtain and Install Linux."

 Linux Platforms

Linux started out life on the Intel x86 architecture but, thanks to its portable design and
implementation, has found a home on more computing platforms than any other OS.
Table 5.1 lists the platforms on which Linux is or will be available as of this writing:

 Table 5.1 Linux Platforms

 Vendor

Computer

CPU

 (many)

PC

Intel x86

 (several)

Workstations/Servers

PowerPC

 Compaq

Workstations/Servers

Alpha

 HP

Workstations/Servers

PA-RISC

 (several)

Workstations/Servers

Intel ia64

 SGI

Workstations/Servers

MIPS

 Sun

Workstations/Servers

Sparc

 Corel, etc.

Appliances/etc.

StrongARM

 - 162 -

Many of the preceding ports came into being through independent volunteer efforts, but
the past year has seen a major embrace of Linux by all major UNIX vendors. The port to
ia64, for example, is being spearheaded by HP and is targeted for availability when the
first ia64 platforms ship in mid-2000.

Linux is used in a huge range of environments, from small embedded systems to clustered
supercomputers. It's a popular choice for x86-based PCs that have fallen behind the
growing demands of supporting Microsoft operating systems. And Linux enjoys a dominant
role in the running of the Internet, from Web servers to firewalls to routers. The degree of
Linux's success is astonishing: no novelist could have invented it. As truth, it is utterly
stranger than fiction.

 Summary

This chapter has provided a high-level architectural view of Linux and of the environment—
OS, graphical display, and GUI—in which Linux applications run. As Linux continues to
gain acceptance, its role in the Internet, and consequently in the world of Java, will become
increasingly visible and important.

Chapter 6: How to Obtain and Install Linux

 Overview

This chapter is for Java users and developers who are new to Linux; it is targeted at
helping you run Linux for the first time. We discuss Linux distributions—what they are,
how to get them, and how to install them.

Linux is very different from other PC operating systems. Unlike Microsoft Windows or IBM
OS/2, it is not a monolithic offering from a large OS vendor. Linux is a collection of many
pieces—a kernel, drivers, libraries, utilities, compilers, windowing system, desktop, toys
and games, and so on—that come from hundreds of different sources. This is good news
for Linux users: the abundance of choice allows you to build systems targeted to specific
needs, such as software development, Internet firewalls, Web servers, X terminals, and
network routers, to name a few.

The choices you face in building a Linux system could be overwhelming, but they are not.
An entirely new business, the packaging of Linux distributions, has grown up around the
problem of shipping and installing systems. A Linux distribution is a collection of the
pieces you need to build a system, plus an automatic installation program to do the heavy
lifting.

 The three basic steps to installing a distribution are

 1. Choose and obtain a distribution.

 2. Boot up the distribution from floppy or CD-ROM.

 3. Follow the instructions on your screen.

We discuss the first topic here, with a look at the most popular distributions. Because the
landscape is ever-changing, it's a good idea to check on the latest available distributions:
A good source of information on current distributions is
http://www.linux.org/dist.

 The full, gory details of installing Linux are beyond the scope of this book, but we illustrate

 - 163 -

with a few screen shots to give you a general idea of what you will experience.

Choosing a Distribution

Four major commercial distributions, plus several smaller commercial, derivative, and
noncommercial distributions are available for Linux. The commercial distribution vendors
add value, and derive much of their income, from packaging and selling the media and
books that make up the distributions. Their distributions include all the free components
you need for Linux in addition to value-added installation and configuration software and
some commercial software from various sources.

The commercial distributions are usually sold in two forms: a reasonably priced bundle of
media and books available through computer stores and mail order, and free versions
available on the Web (and bundled with almost every Linux book sold). The free versions
come without bundled commercial software or support. My recommendation, if you
choose a commercial distribution, is that your first Linux purchase be a commercial
bundle; the printed materials and the free support can greatly speed you through the
early learning curve.

The non-commercial distributions, and the free versions of the commercial distributions,
are also commonly available from a number of CD-ROM distributors, such as
CheapBytes (http://www.cheapbytes.com), Linux System Labs
(http://www.lsl.com), and others.

 Let's look at the distribution vendors, beginning with the big four.

 Red Hat Software

Red Hat Software (http://www.redhat.com) is emerging as a big name in
distribution vendors, with the highest commercial and investor recognition of any Linux
business. It has long been a popular distribution in the home market and is moving
seriously into the corporate market. Services include a Linux portal (its home page), a
growing knowledge base of Linux advice, a research & development lab focused on
solving Linux usability problems, and commercial support services.

 I am a Red Hat user, so the examples in this book will tend to be Red Hat-centric. But

don't let my example prejudice you; there are other excellent distributions.

 Caldera

Caldera (http://www.caldera.com) is more focused on the business market and on
back-room servers than is Red Hat. The company started out as a Novell startup and
boasts a strong competence (and a commercial product suite) in hosting Novell networks
on Linux boxes. Caldera also bundles a professional office suite, Star Office. Services
include a knowledge base, professional support, and education.

 SuSE

SuSE (http://www.suse.com), based in Germany, is Europe's largest distribution
vendor. It is now pushing aggressively into the North American market and is business-
focused with a strong competence in databases. Its products and services include
enhanced X Window System display servers, professional office bundles, installation
support, and a support database.

 TurboLinux

 TurboLinux (http://www.turbolinux.com) is a Japan-based distribution focused on

high-performance clusters and on back-room servers for Internet and Web services.

 - 164 -

TurboLinux also boasts a strong competency in Asian language support, and is the
leading distribution in Asia.

 Mandrake

Mandrake (http://www.linuxmandrake.com) is a noncommercial derivative of Red
Hat. Its focus is on making distributions easy to install—particularly the thorny problems
of installing and configuring the desktop and detecting hardware devices. A Mandrake
distribution is a free Red Hat distribution plus a friendlier install process, for which
Mandrake has received good reviews in the trade press.

 Debian

Debian (http://www.debian.org) is a noncommercial distribution published by
Software In The Public Interest, Inc. The distribution has a reputation as being difficult to
install, easy to maintain, and of high quality.

 Slackware

 Slackware (http://www.slackware.com) is published by Walnut Creek CD-ROM, a

company that specializes in selling collections of shareware and freeware.

Walking Through an Installation

Let's do a brief walkthrough of a Red Hat 6.0 installation to give you an idea of what is
involved in the process. Our intent is to provide a brief overview; the Red Hat Linux
Installation Guide provides much more detail.

The packaged product comes with a bootable CD-ROM and some boot floppies. If you
have a free version without the boot floppies, the CD-ROM includes some floppy disk
images and a DOS executable, RAWRITE.EXE, which you can use to create the floppies
from a DOS or Windows machine. (You probably don't need the floppies; most modern
PCs can boot from CD-ROM. But if you do, just use RAWRITE to create the floppy, as in
the example in Figure 6.1 with the Red Hat CD-ROM in the D: drive. After creating the
floppy, you can exit DOS/Windows and begin the installation process.

 Figure 6.1: Running the RAWRITE.EXE utility to create Linux boot disks from a

Microsoft Windows environment.

 Reboot your machine with the boot CD-ROM or floppy in place. After booting, you see

the initial Red Hat installation screen (see Figure 6.2).

 - 165 -

 Figure 6.2: Initial Red Hat installation startup screen.

 After you press Enter, the system loads a small installation kernel and welcomes you to

the start of the installation process (see Figure 6.3).

 Figure 6.3: Start of the Red Hat installation process.

You navigate through this process using the Tab key and the spacebar; there is no
mouse capability yet. You need to answer a few screens of questions about language,
keyboard, and installation media, and then answer a crucial question (see Figure 6.4).

 Figure 6.4: The first important question in Red Hat installation.

 Because this is a new installation, select Install to continue. Next, choose an installation

type (see Figure 6.5).

 - 166 -

 Figure 6.5: You can choose certain default configurations, or choose Custom to

exercise full control over system setup.

You make your choice, and after a few more screens of questions, it is time to partition
your disk drive. Red Hat allows you to choose between the traditional Linux fdisk program
and the friendlier Disk Druid. Choose the latter, and see its interface (see Figure 6.6).

 Figure 6.6: Disk Druid shows your disk partitions. At the moment, your only

partition is an MS Windows partition that fills the entire drive.

This is bad news: your entire drive is occupied by a DOS/Windows partition. Red Hat
installation does not provide a way to shrink the partition. Some commercial (such as
PartitionMagic) and free products allow you to resize existing DOS disks outside this
installation process. But because you do not want to keep this Windows installation,
delete the partition. Then use the Add function to create three new partitions for Linux
(see Figure 6.7).

 Figure 6.7: New drive configuration, after deleting the Windows partition and

creating three new partitions.

 - 167 -

You have designated a small partition at the beginning of the drive to hold the boot files,
a large partition for the main file system, and a 32MB swap partition. (Because of some
decades-old architectural decisions in PC design, x86 machines cannot boot from disk
locations with high cylinder addresses. This drive is not large enough to have such a
problem, but the 10GB disk in your other PC is large enough.)

 After a series of screens to check and format the disk partitions, you now must choose

which components to install (see Figure 6.8).

 Figure 6.8: Red Hat installation allows you to choose the components you need

for your environment.

Here is where you customize your system: choose development components if you want
a development system, database or Web servers for back-room duty, X Window System
for a graphical workstation, and so on. If you make some wrong choices, components
can easily be added or removed later. You will not find Java here; you will learn in later
chapters how to obtain Java components for Linux.

 After you have selected the pieces you want, you click Ok and stand by while the disks

are formatted and the system is installed.

You then see a series of configuration screens for setting up the mouse, networking, time
zone, system services, printers, passwords, boot disk (it's a good idea to create a boot
floppy), boot loader, and X Server. After completing the installation steps, the system
reboots and starts up a new, fully functional Linux system.

If you find after installation that you need additional software from the CD-ROM, you can
install it using the Red Hat Package Manager (RPM) utility. In Chapter 9, "Setting Up a
Linux Development Environment," we discuss what components you need to set up a
development environment on Linux.

Your Turn

This chapter gave you a brief look at obtaining and installing Linux. Despite the practical
difficulties of building an OS that can deal with today's huge selection of hardware (and
the weak level of Linux support from most hardware vendors), the Linux community and
distribution vendors have done an outstanding job of creating an OS that is easy to install
and administer.

 A few simple guidelines as you build your own Linux system:

•

Many software products (including the Java SDK for Linux) list the distributions with
which they are known to work. It is a good idea to consult that when choosing a
distribution.

 - 168 -

 • Avoid strange, off-market peripherals on your PC. Standard peripherals are more likely

to be supported.

 • Plan ahead how you want to allocate your hard drive between Linux and other

operating systems.

•

You have a great deal of choice in choosing the look and feel of your graphical
desktop. We will explore that in more detail in the next chapter, Chapter 7,
"Configuring Your Linux Desktop."

•

Help is available from distribution vendors, Linux-oriented Web sites
(http://www.linux.org, among others), local user groups, and user communities
for various software products. Competing claims notwithstanding, Linux is the best-
supported OS in the industry.

 You will find, after an initial learning curve, that your Linux box is easier to run, more

powerful, and more reliable and stable than any other x86-based operating system.

 Summary

This chapter has looked at the major Linux distributions and provided a glimpse of the
steps required to install a Linux system. This is a dynamic area, with distribution vendors
continually improving the quality, robustness, ease-of-use, and ease of administration of
their products.

Chapter 7: Configuring Your Linux Desktop

 Overview

The desktop is the overall look and feel of the X windowing environment. You'll spend a
lot of time staring at the desktop, and it can be bewildering if you're moving from other
windowing environments, such as Windows, OS/2, or Macintosh, to Linux. Your
installation process will probably choose a desktop for you; if you don't like the choice,
you can change it.

As we discussed in Chapter 5, "What Is Linux?," the graphical I/O system is not built into
the Linux kernel. It consists of separate components: an X server, GUI toolkits used by
programs (not our immediate concern in this chapter), and the desktop. The desktop
gives the graphical environment its personality, and its functions usually include

•

Window management—Controlling the size, placement, and visibility of windows;
drawing and placing icons; drawing borders around windows; implementing the button
functionality in the window borders (iconify, maximize, close, and so on); customizing
behavior around application requirements.

 • Integration—Providing a networked facility for discovery and launch of services, and

communication between services.

 • Paging—Supporting easy navigation between applications.

 • Workspaces—Managing multiple virtual desktops.

 • Front panel—A sort of "dashboard" that displays system status and handles launching

of common applications.

 • File management—A GUI and drag-and-drop interface for navigating and manipulating

 - 169 -

the file system, and launching applications from the file system and the desktop.

 • Session management—Saving and restoring X Window System clients and settings

between sessions.

 • Utilities—Common utilities, such as a text editor, mail reader, calculator, datebook,

media player, backup tool, and help system.

 • Tchotchkes and Gewgaws—Many desktops include some games, screen savers, and

other such diversions.

 • Configuration—Tools for easy configuration of desktop look and behavior.

The Common Desktop Environment (CDE) adopted by the commercial UNIX vendors
does all these things, but because of its cost and licensing terms, it has not been widely
embraced by the Linux community. The result has been a proliferation of window
managers and desktops, some original and some highly derivative. Choosing a
comfortable desktop can make your time spent on Linux pleasant. Conversely, choosing
a bad desktop can make you a Linux-hater. The objective of this chapter is to help you
over this hurdle.

In these examples, I refer heavily to my particular distribution, Red Hat 6.0. (This is a
matter of convenient illustration, not an endorsement. There are simply too many different
distributions to describe them all.) Your results may vary, and you probably will need to
refer to documentation with your distribution.

 Starting the X Window System

 The two customary ways of starting up the X Window System are

 • Launch it from a console shell with the xinit command.

 • Log in through an X Display Manager.

Many distributions give you this option at installation time. For example, when the Red
Hat installer asks whether you want to run the X server automatically, answering yes
results in running an X Display Manager, as shown in Figure 7.1. Choosing automatic X
startup is generally the right choice. It starts up a full desktop instead of the minimal X
environment usually launched by xinit.

 Figure 7.1: Red Hat 6.0 Gnome Display Manager login screen.

 - 170 -

The next few sections look at the most popular and easily available desktops. The first two
are state-of-the-art, representing current GUI development activity in the Linux community.
The third is older, more stable, and not as original, but it borrows some familiar looks from
some well-known desktops on other platforms.

The K Desktop Environment (KDE)

The K Desktop Environment is an open source desktop with considerable acceptance in
the Linux community. It is full-featured and mature, with all the desktop capabilities
mentioned previously (see Figure 7.2).

 Figure 7.2: The K Desktop Environment.

 Configuration menus allow you to add your own applications and install new actions—

programs to be run when files are launched from the file manager or the desktop.

KDE is available from http://www.kde.org and depends on the qt GUI library,
available from http://www.troll.no. Both are shipped with Red Hat 6.0 and
available as Red Hat packages (kdebase, a collection of other kde* packages, and qt)
on the installation media. (We discuss the Red Hat Package Manager (RPM) and other
packaging tools in Chapter 8, "Installing Additional Linux Software.")

 This is the current desktop to beat, although it is feeling some competitive heat from the

Enlightenment Desktop.

The Gnome Enlightenment Desktop

The Enlightenment Desktop is an open source product of research at Red Hat Software
(The Gnome Desktop) and a loose consortium of independent developers (The
Enlightenment Window Manager). It's an attractive and powerful desktop (see Figure
7.3).

 - 171 -

 Figure 7.3: The Gnome Enlightenment Desktop.

Enlightenment also features the full complement of desktop functionality described earlier
in the chapter. Using configuration menus, it is easy to add your own applications and
define new actions.

Enlightenment is currently Red Hat's favored desktop and the default installed by the 6.0
distribution. It is less mature than KDE, and my own experience suggests that it's still
rough around the edges—but that will undoubtedly improve.

Enlightenment is available from http://www.enlightenment.org. It relies on the
Gnome product, available from http://www.gnome.org. Both are shipped with Red Hat
6.0 and available as Red Hat packages (enlightenment, gnome-core, and a collection
of additional gnome-* packages) from the installation media.

AnotherLevel

AnotherLevel is a combination of an older desktop (fvwm2) and some predefined
configurations that give fvwm2 a look approximating some familiar desktops—Windows
95 (see Figure 7.4), Motif Window Manager (see Figure 7.5), and NextStep(see Figure
7.6).

 Figure 7.4: AnotherLevel's Windows 95 personality.

 - 172 -

 Figure 7.5: AnotherLevel's Motif Window Manager personality.

 Figure 7.6: AnotherLevel's NextStep personality.

To change the look while running AnotherLevel, left-click on the root menu and look for
the Quit button. This leads you to a Switch to button. Use this button to select which
AnotherLevel desktop you want to run.

These desktops are usable, but, unlike KDE and Enlightenment, they are collections of
tired old components thrown together into a desktop and decorated to look familiar. They
have the advantage of being smaller and faster than the newer desktops, but they are not
full desktops—lacking, for example, drag-and-drop interoperability, MIME file type
recognition, and any sort of networked integration mechanism.

AnotherLevel is available at free software repositories such as
http://sunsite.unc.edu and is shipped on most installation media. On Red Hat
media, you need the packages for fvwm and AnotherLevel.

Selecting a Desktop

Installing the desktop product—from the Red Hat packages or other distributions—is the
first step to turning on your selected desktop. The second step is to tell the system which
one you want to use.

 - 173 -

This is another topic that varies by distribution; you will need to refer to your particular
documentation. The Gnome Display Manager in Red Hat 6.0 gives you the option to
choose your desktop at login time (see Figure 7.7).

 Figure 7.7: Red Hat 6.0 Gnome Display Manager login screen lets you select

your desktop.

After you have logged in, you have the option of setting a default desktop (again, this is
Gnome-specific behavior). Run the /usr/bin/switchdesk utility and choose your
desktop through the interface (see Figure 7.8). Under Red Hat, you need to install the
packages for switchdesk and switchdesk-gnome to use this utility.

 Figure 7.8: The switchdesk utility lets you set your default desktop.

 Your default desktop, when you next log in, will be your new selection.

 Summary

The Linux environment offers a plethora of choices for configuring the graphical desktop.
This chapter has presented a brief tour of the available desktops and includes pointers
intended to start you toward choosing the best one for your needs.

Chapter 8: Installing Additional Linux
Software

 Overview

 - 174 -

Installing a new Linux system gives you a PC full of software, but it doesn't give you
everything you need. For your Java development, you'll need to install Java tools, of
course, along with other development tools, utilities, and extensions. Later chapters
discuss a variety of components you need for Java development on Linux —but where do
you get them and how do you install them?

 Your first source of software is your Linux distribution media. Many standard tools and

utilities are provided on the distribution media in package management format.

Package Management

Most Linux distributions use a package management tool for distributing and installing
software. If you are a user of Red Hat, Caldera, SuSE, Debian, or many other
distributions, your installation distribution media will include dozens or hundreds of
packages ready for installation. Many other packages are published on the Web in
standard package management formats.

Package management tools handle important details of installing software: clean
installation, update, upgrade, and uninstallation; identifying and enforcing dependencies
between packages; protecting and respecting customizations you make to installed
packages. Surprisingly, package management is a relatively recent concept in the UNIX
world (Microsoft Windows environments have some similar, if more fragile, approaches),
and much of the innovation in package management is occurring in the Linux community.

 rpm

The Red Hat Package Manager (rpm) is the most commonly used and is the standard
package management tool for Red Hat, Caldera, and SuSE distributions (among others).
Although it originated with Red Hat Software, rpm has taken on a life independent of that
vendor, has its own development and support community (http://www.rpm.org), and
has been ported to many UNIX platforms.

 The RPM terminology may be a bit confusing, so here is what to look for in any

discussion of Red Hat packages:

 • The program for installing and managing packages is called rpm.

 • The term RPM describes the package format itself, and is also used as shorthand for

packages—for example, "obtain the RPM for the COBOL compiler."

RPM packages are shipped in files suffixed .rpm; your distribution media (for Red Hat,
Caldera, and so on) is full of .rpm files, and installing one is a simple matter of running
(as root):

 bash$ rpm -i <rpmfile>

You might occasionally need to build an RPM from a source RPM
(<something>.src.rpm)—for example, if an available RPM is not compatible with your
installed version of the C library. On Red Hat systems, performing the following step

 bash$ rpm —rebuild <rpm_source_file>

builds a binary (installable) RPM and places it in the /usr/src/redhat/RPMS
hierarchy. From there, it is installed with the -i option, as shown previously. For other
distributions, see the rpm documentation for details on building from source.

 Other rpm options allow package query, update, and uninstallation. For developers, there

are options to support package creation and management. An extensive man page (use

 - 175 -

the command man rpm) documents rpm's options and capabilities.

 The rpm tool is command-line oriented, but a GUI interface called xrpm is available from

many repositories.

 dpkg

 The Debian packager (dpkg) is the package manager used on Debian systems; files

suffixed .deb are dpkg packages. It also offers a menu-driven interface, dselect.

Because RPM is the more popular package format, rpm can be used on Debian systems.
However, Debian recommends instead the use of a tool called alien—a package
converter available from Debian and elsewhere—to convert .rpm packages to .deb.

 Other Package Management Technologies

Other technologies for general-purpose package management are in use or in
development: GNU Stow, CMU Depot, Bell Labs NSBD. However, you are not likely to
run into these technologies without taking some trouble to look for them.

Beyond general-purpose package management, individual products may have their own
package management technologies: Perl is an example. These technologies do not
interfere with the general-purpose package management, and in fact Perl and other such
products are available in standard package management formats.

 Non-Package Software Distributions

Not all software products are distributed in package form. Many are distributed in tarfiles
or zipfiles, sometimes in source form, and require you to do some work to install them.
Examples include the Blackdown Java port for Linux and standard Java extensions
published by Sun. (For products under active development, RPMs are sometimes
available but are not always current.)

 The following sections discuss some formats you are likely to encounter.

 Compressed Tarball Binary Distribution

These are archives in the hierarchical UNIX tar format, compressed with gzip or bzip2
(see the section "Compressing and Archiving: tar, gzip, bzip2, zip, unzip " in Chapter 9,
"Setting Up a Linux Development Environment"). Typical file suffixes are .tar.gz,
.tgz, .tar.bz2, and tar.Z. It is a common, but not universal, practice that the
contents of the archive are stored with relative filenames under a subdirectory whose
name echoes the archive name. For example, an archive called foo-1.2.tar.gz
contains all of its contents in a subdirectory called foo-1.2.

 To install a compressed tarball, choose an installation location, use cd to move to that

directory, and unpack the archive. For example:

 bash$ mkdir -p /usr/local/foo
 bash$ cd /usr/local/foo
 bash$ gzip -d <~/foo-1.2.tar.gz ¦ tar xvf -
 ... a bunch of output shows product unpacking into the foo-1.2
subdirectory ...

 For archives packed in .bz2 format, simply use bzip2 instead of gzip as shown in the

preceding example.

 - 176 -

 Archives packed in the old UNIX .Z compression format (some of Sun's distributions use
it) can be unpacked with gzip as shown in the preceding example.

The Blackdown Linux distribution is among the many products shipped as compressed
tarballs, with more recent Blackdown releases using the .bz2 compression format
exclusively.

 Compressed Tarball Source Distribution

This is a common format for products distributed in source form. The tarball includes full
sources plus enough intelligence (ideally) to build the product on Linux or any other UNIX
environment. The four steps to installing the products are as follows:

 1. Unpack it somewhere.

 Wherever you unpack is a temporary location for purposes of building—it's not your

final installation directory. Example:

 bash$ mkdir -p /tmp/foo
 bash$ cd /tmp/foo
 bash$ gzip -d <~/foo-1.2.src.tar.gz ¦ tar xvf –

 2. Configure it.

There should be a README file somewhere with instructions on building. Most
projects use the GNU autoconf technology, which automatically configures for correct
building on Linux and many other operating systems. For such projects, configuring
the product usually looks like this:

 bash$./configure
 <... a lot of output ...>

 A list of configuration options, including how to specify installation directories, is

available by asking for help:

 bash$./configure –help

 3. Build it.

 After configuration, building the project is usually done with a single make command:

 bash$ make
 <... a lot of output ...>

 4. Install it.

 The README or INSTALL file has instructions, which for many projects consists of

 bash$ make install

The product will be installed in some predefined directories (determined by whomever
made the distribution). You can usually override the destination directories with options
specified during the ./configure step (shown previously).

 This method of software distribution is widely used. The downside is that there is no

 - 177 -

package management. Some distributions include a "make uninstall" capability to
support removal, but this sort of distribution is susceptible to many of the problems solved
by package management: inability to cleanly upgrade or uninstall, possibility of stepping
on other software, difficulty of assembling a consistent set of components that
interoperate properly. (Don't panic! Problems are rare, but you need to be aware of the
possibility.)

 Zip Binary and Source Distributions

The other widely used format for software distribution is zipfiles, although this is more
generally true in the Microsoft Windows world than in UNIX/Linux. The procedures
described earlier for compressed tarballs apply just as well to zipfiles; the difference is in
the use of the unzip utility instead of tar, gzip, and bzip2.

 Unpacking zipfiles is easy:

 bash$ unzip -v foo-1.2.zip

 Beyond that, instructions are identical to those for tarballs (given previously).

 Sun distributes many of its standard Java extensions (see Chapter 4, "Additional Sun Java

Class Library Specs") in zipfile format.

Linux Software Repositories

There is no central global source for Linux software, but there are several large
repositories that serve as software depots and as mirrors for product distribution sites.
The following sections discuss two to get you started.

 Sunsite

The Sunsite repository at the University of North Carolina
(http://sunsite.unc.edu/pub) is a major distribution site for GNU projects, other
open-source projects, Linux technology, and Linux distributions.

Red Hat users can find distributions, official RPMs, and contributed RPMs under
http://sunsite.unc.edu/pub/linux/distributions/redhat/. Similar
resources are available for other distributions.

 Rpmfind

The rpmfind site, http://rpmfind.net/linux/RPM/, is a huge catalog of available
RPM packages. Not all the packages are stored at rpmfind—much of the information here
is pointers to other download sites—but it is a reliable way to find almost any RPM package
published anywhere.

 Summary

This chapter has surveyed the common methods and formats with which software is
distributed for Linux. In understanding how to use software published in these formats, you
can install and use any of the thousands of tools and products available for Linux.

Part III: Setting Up for Java Development and
Deployment on Linux

 - 178 -

 Chapter List

 Chapter

9: Setting Up a Linux Development Environment

 Chapter

10: Java Components for Linux

 Chapter

11: Choosing an Environment: 1.1 or 1.2?

 Chapter

12: Software Licensing

 Part Overview

Linux excels as a development environment, in the tradition of the UNIX systems on
which it is based. This part of the book examines the pieces you need to support
development on Linux: the compilers, utilities, and methods you need to do the work.

We also examine the deployment question—how to select a deployment environment for
your Java applications—and take a look at the open source world in which many of the
development tools were themselves developed.

Chapter 9: Setting Up a Linux Development
Environment

 Overview

The UNIX/Linux platform has from its inception been a rich environment for software
development. This chapter looks at some of the basic Linux tools you need (or might
want) to support your own development efforts. As in earlier chapters, this chapter
includes some Red Hat-centric advice on where to find these tools.

All these tools (except for the simple GUI-based text editors) are extensively
documented. Depending on your needs and your learning curve, the following
documentation tools are at your disposal:

•

Online manual pages (commonly called man pages) are published and installed for
most tools on a Linux system. You can use the Linux man command to view the pages
on a terminal. For example

 bash$ man gcc

 displays the documentation for the GNU C compiler.

 • The help systems that come with the K Desktop Environment and Gnome

Enlightenment show you relevant documentation.

 • Many fine books have been published on these tools and are as close as your nearest

technical bookstore.

 In the final section of this chapter, we set up a small Java project to demonstrate the use of

these tools.

 - 179 -

Command Shell

You are running a command shell—an interactive command interpreter—as soon as you
log in or run a terminal emulator on the desktop. The most popular Linux shell is bash,
but you have several choices. Here is a brief survey of the options.

 bash

GNU bash is the Bourne Again Shell, based on the Bourne shell long used under UNIX.
If you have Linux, you have bash; it is installed as a core component with all
distributions.

 bash Command-Line Editing

bash gives you command-line editing—the ability to reuse and edit previous commands.
Its behavior is, by default, modeled after the emacs text editor. Editing can be as
simple as using the arrow, Backspace, Insert, and Delete keys. Or you can use the
emacs control- and metacharacter commands to move through the command stack and
perform more advanced editing. See the bash man page for more detail:

 bash$ man bash

 If you prefer editing modeled after the popular AT&T vi editor, you can turn it on with a
set command:

 bash$ set -o vi

You can make vi-style editing the default behavior by adding the set -o vi command
to the ~/.bashrc file. With vi-style editing, you use the Esc key to switch modes and
vi's various single-letter commands to edit commands and navigate the command stack.

 bash Configuration Files

 Two configuration files are important to configuring and customizing bash behavior

(UNIX/Linux shells interpret the ~ character as designating your home directory):

 • ~/.bashrc is run by the shell whenever you start up a new instance of bash. It is

typically used to set modes and macros.

•

~/.bash_profile is run by the shell whenever a login shell is started. If that file is
absent, ~/.profile is used instead. Entries in this file are typically used to configure
your environment and set environment variables.

 bash Environment Variables

 Environment variables are set in bash with an = assignment, with no spaces before or

after the operator:

 bash$ FOO=bar

 Environment variables must be exported to be visible to processes launched by the shell:

 bash$ export FOO

 These two steps can be combined:

 - 180 -

 bash$ export FOO=bar

 Many examples in this book assume you are using bash, and we will commonly use this

one-line assign/export command to illustrate the use of an environment variable.

 Finally, a temporary environment variable can be specified for the duration of a single

command, by combining the assignment and the command invocation on the same line:

 bash$ FOO=bar /usr/local/bin/foobar

 This style of assignment is occasionally used in the book to illustrate the use of an

environment variable.

 tcsh

tcsh is modeled after the UNIX C Shell, an interactive shell that uses commands and
behaviors modeled after the C programming language. If you prefer to use this shell,
install tcsh on your system (it is available as an RPM on Red Hat distributions) and use
the chsh command to change your login shell:

 bash$ chsh -s /bin/tcsh
 password: <type your password here>

 Two configuration files are important to configuring and customizing tcsh behavior:

 • ~/.tcshrc is run by the shell whenever you start up a new instance of tcsh. If that

file is absent, ~/.cshrc is invoked instead.

 • ~/.login is run by the shell whenever a login shell is started.

 Other Shells

 Other shells, available for Linux but less popular, include

 • ash—A simple Bourne-like shell

 • ksh—A public-domain version of the Korn (Bourne-like) shell

Text Editor

 You'll need a text editor, of course. You can choose from the traditional powerhouse

editors, vi or emacs, or some simpler GUI and non-GUI editors.

Whichever editor you choose, it's a good idea to set an EDITOR environment variable so
that other programs can know what your favorite editor is. If you use a Bourne-type shell,
add

 export EDITOR=<your favorite editor name>

 to your ~/.bash_profile file. If you use a C-shell, add

 setenv EDITOR <your favorite editor name>

 - 181 -

 to your ~/.login file.

 vi—Visual Editor

The vi editor is a longtime UNIX staple whose lineage dates back to AT&T's stewardship
of UNIX. It's a powerful, full-featured, page-oriented editor widely used in the UNIX world.
The most popular version for Linux is vim, a highly enhanced vi available from virtually all
Linux distributions. On the Red Hat 6.0 distribution, installing the RPMs for vim-common
and vim-enhanced will give you vim.

vim normally runs in a terminal window; you can use the graphical version, gvim, to run
it in its own GUI window. On Red Hat, this requires loading the additional RPM for vim-
X11.

 An interesting enhanced vim capability is syntax coloring to aid in editing Java and other

languages. It's best used with the GUI version, gvim, and is enabled by typing

 :syntax on

 while in the editor, or adding the command syntax on to the .exrc file in your home

directory.

 emacs

The emacs editor, one of the first GNU project publications, is one of the most popular
and powerful page-oriented editors in the UNIX world. It is sufficiently different from the
other major editor, vi, that it's difficult to be conversant in both at the same time. UNIX
users tend to be strong partisans of either vi or emacs, but not both.

For historical reasons, emacs comes in two major flavors: GNU Emacs and XEmacs,
which branched several years ago from common source. There are numerous
differences, in features and philosophy, between the two—most notably that XEmacs is
better integrated with the X Window System. But both have similar capabilities, and
choosing one over the other is largely a matter of personal taste.

GNU Emacs is available from all Linux distributions, and from the GNU project
(http://www.gnu.org). Under Red Hat 6.0, installing the RPMs for emacs and
emacs-X11 will give you GNU Emacs.

XEmacs is also widely available. Although not as frequently included in core Linux
distributions as GNU Emacs, it can easily be found in source, binary, and RPM forms at
all major Linux software repositories.

The true power of emacs, beyond editing text, is its configurability. It includes a built-in
interpreter for the LISP programming language, which has been used to customize
emacs into a stunning variety of useful configurations. Among the many customization
packages available for emacs are a mail reader, an outline editor, and an automated
psychotherapist. In Chapter 44, "The Emacs JDE," we will examine a complete Java
integrated development environment (including syntax coloring) built from emacs.

Often imitated but never duplicated, emacs has inspired some smaller, simpler clones.
Editors such as joe and jed, available with many Linux distributions, provide some
emacs-like functionality in smaller packages.

 kedit

 - 182 -

 kedit isEnvironment a simple GUI-based editor, shipped with the K Desktop and
available through a button on the main panel (see Figure 9.1).

 Figure 9.1: KDE button to launch a simple GUI-based text editor.

The capabilities are simple and intuitive. This is certainly not a powerful programmer's
editor, and not a good long-term choice for a developer, but it's an easy way to start
editing text for UNIX/Linux newcomers. A screen shot is shown in Figure 9.2.

 Figure 9.2: The kedit editor, bundled with KDE.

 gEdit

 The Gnome/Enlightenment desktop includes its own text editor, gEdit. It can be

launched from the application menus on the root window (see Figure 9.3).

 Figure 9.3: Launching gEdit from the Gnome/Enlightenment root window.

Like kedit (discussed earlier), gEdit presents a simple, intuitive editor for text-editing
(see Figure 9.4). Also like kedit, gEdit is a good starter editor but not a good long-term
choice for developers.

 - 183 -

 Figure 9.4: The gEdit editor, bundled with Gnome/Enlightenment.

 Build Management Tool: make

make, another longtime standard UNIX tool, is used to maintain programs under
development by keeping object files current with source files. GNU Make, the standard
make in the Linux world, is available from all Linux distributions. On Red Hat distributions,
load the RPM for make.

Version Management Tool: cvs

cvs, the Concurrent Versions System, is a revision control system—an invaluable tool for
tracking and maintaining source code. In a nutshell, cvs maintains a repository that
keeps copies of all versions of your source files.

 A cvs Local Repository

 A local cvs repository serves two important functions in a development project:

•

Acts as a central code store, where a developer (or collaborating developers) can
keep master copies of the source, including experimental branches that can later be
merged into the main source trunk. cvs includes facilities to allow several developers
to work on the same code without stepping on each other's toes.

 • Acts as an archive, allowing you to recover all past versions of source. The revisions

are stored in a compact form, keeping the repository from exploding in size.

 A sample project (see "Creating a Sample Project" later in the chapter) illustrates basic

repository setup and use.

 cvs Remote Repository Servers

cvs supports client/server architectures, with the repository living on a server and clients
able to interact (check out, check in, manage, and so on) remotely. Several of the open
source projects discussed in later chapters use such repositories, through which they
allow read-only access to the larger community.

 If you need to check out source from a remote cvs repository, the steps are as follows:

 1. Obtain the repository name (CVSROOT), module name(s), and password for the

project.

 - 184 -

 2. Log in to the remote repository:

 bash$ cvs -d '<repository name>' login
 CVS password: <password>

 3. Check out the source, using compression to improve network throughput:

 bash$ cvs -z3 -d '<repository name>' co <module name(s)>
 <...output describing checkout activities...>

After the checked-out tree has been created, you no longer need the -d option: The
name of the repository is stored within the tree and automatically used for future cvs
activity.

 Obtaining cvs

cvs, and the underlying rcs (Revision Control System) tool it depends on, are available
on most Linux distributions and from free software repositories such as
http://www.sunsite.edu. On Red Hat releases, install the RPMs for cvs and rcs.

cvs is a command-line utility, and our later examples will use the command-line interface.
A GUI-based front-end is available, called tkCVS, from
http://www.cyclic.com/tkcvs/.

 Compression and Archiving: tar, gzip, bzip2, zip, unzip

Four compression and archiving utilities are heavily used in the Linux and Java
development worlds. As mentioned in the discussion on adding Linux software (see
Chapter 8, "Installing Additional Linux Software"), all these tools may be necessary for
obtaining and installing components you need for development work.

 Tape ARchiver: tar

The tar utility creates archives in a standard format, commonly used for distribution of
software packages. Virtually all Linux distributions install GNU tar as part of system
setup.

 Compressor: gzip

gzip is a data compressor based on the Lempel-Ziv compression algorithm. It is the
most commonly used compression format for distribution of UNIX- and Linux-related
software. Most Linux distributions install gzip during system setup.

 In addition to its role in software distribution, gzip is typically used to compress the Linux

kernel image used at Linux boot time.

 Compressor: bzip2

bzip2 is a newer compressor than gzip, using a different compression algorithm and
often achieving significantly better compression than gzip. Many of the new distributions
of Java for Linux are only available in bzip2 format.

 Most Linux distributions do not install bzip2 by default, but it is usually available as part

 - 185 -

of the distribution. On Red Hat systems, install the RPM for bzip2.

 Archiver/Compressor: zip and unzip

 zip is a compressed archive format that has been in use since the MS-DOS days. It

serves two important roles in Java development:

 • It is a standard Java archive format; Java can run classes directly out of a ZIP format.

The Java ARchive (JAR) format is closely related to ZIP.

 • ZIP is a common software distribution format, and you may need the zip utility to

unpack software.

 zip and unzip are available with virtually all Linux distributions. On Red Hat systems,

install the RPMs for zip and unzip.

 The GNU C Compiler: gcc

The GNU C compiler is the standard compiler in the open source world. Beyond its
crucial role in free systems such as Linux, FreeBSD, and the GNU Hurd, this compiler
enjoys considerable use on commercial operating systems such as HP-UX, Solaris, AIX,
NT, and others.

Older versions of this compiler were packaged as gcc (GNU C Compiler), later releases
came from the egcs (Experimental GNU Compiler Suite) branch project, and a
reunification in spring of 1999 brought the two projects back together as gcc (now
meaning GNU Compiler Collection). The maintainer of gcc for the open source
community is Cygnus Solutions (http://egcs.cygnus.com).

The compiler consists of core technology for code generation and optimization, some
related support libraries, and a number of front ends for different languages, including C,
C++, and, most recently, Java (see Chapter 31, "gcj: A Compiled Java Solution").

gcc is available with all Linux distributions. On Red Hat 6.0 systems, install the RPMs for
egcs and egcs-c++. You will also need the RPM for binutils, which supplies the GNU
linker and other utilities to support development. (The compiler package name will
undoubtedly change as the reunified gcc compiler is adopted.)

 Creating a Sample Project

We'll build a simple project, assuming use of the standard Java Software Development
Kit components from the Blackdown Java SDK (see Chapter 11, "Choosing an
Environment: 1.1 or 1.2?").

 Creating the Project

 We begin by creating a new directory, immediately below our home directory, for our
HelloWorld project:

 bash$ mkdir ~/helloworld
 bash$ cd ~/helloworld

 Using your favorite editor, create a HelloWorld.java, as shown in Listing 9.1

(as always, the line numbers are for illustration; not part of the source).

 Listing 9.1 HelloWorld.java

 - 186 -

 1 public class HelloWorld
 2 {
 3 public static void main(String[] argv)
 4 {
 5 System.out.println("Hello world");
 6 }
 7 }

 And create a Makefile (Listing 9.2) that knows how to build our project.

 Listing 9.2 Makefile

 1 .PHONY: all clean
 2
 3 all: HelloWorld.class
 4
 5 HelloWorld.class: HelloWorld.java
 6 javac HelloWorld.java
 7
 8 clean:
 9 rm -f *.class

The most important part of the Makefile is lines 5-6. Line 5 describes the target file we
are building (HelloWorld.class), and the sources it depends on
(HelloWorld.java); line 6 gives the command to build the target from the source by
running the Java compiler, javac.

 There are two other rules in the Makefile:

•

Line 3 describes a target called all, which is our shorthand for "the entire project."
The entire project has dependencies, at the moment, on one class file,
HelloWorld.class.

•

Lines 8-9 describe a target called clean, which is our shorthand for "clean up the
directory." The clean target has no dependencies (nothing after the ":"), and
executes one command, shown on line 9.

The one other entry in the Makefile, line 1, informs make that two of the targets are
"phony" targets. We will never build a file called "all" or a file called "clean": these are just
rules we need to use in the course of development.

 We're ready to build the project. We tell make to build the entire project:

 bash$ make all
 javac HelloWorld.java
 bash$

 The make process echoes its actions (javac HelloWorld.java) and completes. We

run the program:

 bash$ java HelloWorld
 Hello world
 bash$

 - 187 -

 Finally, we clean up the directory, removing everything that isn't source:

 bash$ make clean
 rm -f *.class
 bash$

 Creating the cvs Repository

 Now that we have a project, we create a cvs source repository. First, create a new

directory somewhere to hold the repository:

 bash$ mkdir ~/helloworld.cvsroot
 bash$

 And initialize the repository from within our project directory:

 bash$ cvs -d ~/helloworld.cvsroot init
 bash$ cvs -d ~/helloworld.cvsroot co .
 cvs checkout: Updating .
 ? HelloWorld.java
 ? Makefile
 cvs checkout: Updating CVSROOT
 U CVSROOT/checkoutlist
 U CVSROOT/commitinfo
 U CVSROOT/cvswrappers
 U CVSROOT/editinfo
 U CVSROOT/loginfo
 U CVSROOT/modules
 U CVSROOT/notify
 U CVSROOT/rcsinfo
 U CVSROOT/taginfo
 bash$

 To update our current project from the repository:

 bash$ cvs update
 cvs update: Updating .
 ? HelloWorld.java
 ? Makefile
 cvs update: Updating CVSROOT
 bash$

The lines with the "?" tell us that there are two files the repository doesn't know about: our
two source files, which have not yet been checked in. We check them in— a two-step
process of adding them and then committing the changes:

 bash$ cvs add HelloWorld.java Makefile
 cvs add: scheduling file `HelloWorld.java' for addition
 cvs add: scheduling file `Makefile' for addition
 cvs add: use 'cvs commit' to add these files permanently
 bash$ cvs commit -m'First checkin'
 cvs commit: Examining .

 - 188 -

 cvs commit: Examining CVSROOT
 cvs commit: Committing .
 RCS file: /home/nathanm/helloworld.cvsroot/./HelloWorld.java,v
 done
 Checking in HelloWorld.java;
 /home/nathanm/helloworld.cvsroot/./HelloWorld.java,v <—
HelloWorld.java

 initial revision: 1.1
 done
 RCS file: /home/nathanm/helloworld.cvsroot/./Makefile,v
 done
 Checking in Makefile;
 /home/nathanm/helloworld.cvsroot/./Makefile,v <— Makefile
 initial revision: 1.1
 done
 bash$

 (We specified a message, First Checkin in the cvs commit command. Had we not

done this, cvs would have started up a text editor and solicited a message.)

 Growing the Project

 We now have a working project. Let's grow the project by creating a new class (Listing

9.3) responsible for the "Hello World" message.

 Listing 9.3 WorldMessage.java

 1 import java.io.*;
 2
 3 public class WorldMessage
 4 {
 5 PrintWriter pw;
 6 WorldMessage(PrintWriter writer)
 7 {
 8 pw = writer;
 9 }
 10 public void print()
 11 {
 12 pw.println("Hello world");
 13 }
 14 }

 and modifying our main class (Listing 9.4) to use the new class.

 Listing 9.4 HelloWorld.java, Modified to Use the New WorldMessage Class

 1 import java.io.*;
 2
 3 public class HelloWorld
 4 {
 5 public static void main(String[] argv)
 6 {
 7 PrintWriter pw = new PrintWriter(System.out);

 - 189 -

 8 WorldMessage msg = new WorldMessage(pw);
 9 msg.print();
 10 pw.close();
 11 }
 12 }

 Finally, we update the Makefile (Listing 9.5) to reflect our new classes and dependencies.

 Listing 9.5 Makefile, Updated with the New Class

 1 .PHONY: all clean
 2
 3 all: HelloWorld.class WorldMessage.class
 4
 5 HelloWorld.class: HelloWorld.java
WorldMessage.class

 6 javac HelloWorld.java
 7
 8 WorldMessage.class: WorldMessage.java
 9 javac WorldMessage.java
 10
 11 clean:
 12 rm -f *.class

Notice that HelloWorld.class has gained a new dependency: the
WorldMessage.class from which it gets an important class definition. Because of this
dependency, make will automatically determine that it needs to build
WorldMessage.class before it builds HelloWorld.class (make uses a file's last
modification time to ascertain when a target must be rebuilt because it is older than its
dependency):

 bash$ make
 javac WorldMessage.java
 javac HelloWorld.java
 bash$

 Why didn't we say make all? Because all is the first rule, thus the default rule, in the
Makefile.

 We're ready to run:

 bash$ java HelloWorld
 Hello world
 bash$

 Updating the cvs Repository

 First we clean up our nonsource files:

 bash$ make clean
 rm -f *.class
 bash$

 - 190 -

 Then update our project from the repository:

 bash$ cvs update
 cvs update: Updating .
 M HelloWorld.java
 M Makefile
 ? WorldMessage.java
 cvs update: Updating CVSROOT
 bash$

 The cvs messages tell us that two of our files have been modified, and that
WorldMessage.java is unknown. We add it to the repository and commit the changes:

 bash$ cvs add WorldMessage.java
 cvs add: scheduling file `WorldMessage.java' for addition
 bash$ cvs commit -m'Split out the printing functionality'
 cvs commit: Examining .
 cvs commit: Examining CVSROOT
 cvs commit: Committing .
 Checking in HelloWorld.java;
 /home/nathanm/helloworld.cvsroot/./HelloWorld.java,v <—
HelloWorld.java

 new revision: 1.2; previous revision: 1.1
 done
 Checking in Makefile;
 /home/nathanm/helloworld.cvsroot/./Makefile,v <— Makefile
 new revision: 1.2; previous revision: 1.1
 done
 RCS file: /home/nathanm/helloworld.cvsroot/./WorldMessage.java,v
 done
 Checking in WorldMessage.java;
 /home/nathanm/helloworld.cvsroot/./WorldMessage.java,v <—
WorldMessage.java

 initial revision: 1.1
 done
 bash$

 We see from the messages that cvs is committing the latest modifications to the

repository and adding the new WorldMessage.java source.

 cvs supports projects that span directory hierarchies; we can easily add and manage

subdirectories as needed to grow the project.

Subtleties

 We've glossed over some important details, which will get more attention later:

•

The structure of the directories becomes a bit more complex when your class files
are placed in packages, as they should be for real projects. This is discussed in
Chapter 14, "Configuring the Linux JSDK/JRE Environment," in the section
"Classes Loaded from File Systems."

 • Our use of make in these examples is naïve: dependency among application

 - 191 -

modules is a tricky issue in Java. Unlike C++ and many other languages, the
correspondence between source files and class files is not simple (particularly
when nested and anonymous classes are used), and it is possible and
reasonable to have circular dependencies among class files. These are difficult
problems for make to handle.

•

Java compilers are beginning to address this problem (see the -depend option for the
Sun and Jikes compilers in Chapters 19, "The Java Compiler: javac," and 36, "The
Jikes Compiler"). There are also make-compatible, compiler-independent ad hoc
solutions to the problem: I'll share my own in Chapter 48, "JMakeDepend: A Project
Build Management Utility."

 To GUI or Not to GUI?

We have concentrated on command-line utilities in this chapter—a common practice in
the UNIX world. There are, in fact, many fine GUIs available to help with most aspects of
the development process. Later in the book (see Part IX, "IDEs, GUI Builders, and RAD
Tools"), we will explore some integrated development environments (IDEs) that combine
many of the build steps—editing, compiling, running—into a single GUI.

One pleasantly surprising aspect of UNIX development is the number of good GUI tools
that have been built by gluing together traditional components (perhaps we should call
them GLUIs) with powerful scripting languages such as Perl and Tcl/Tk/Wish. The tkCVS
tool mentioned earlier in the chapter, for example, uses a handful of Wish (WIndowing
SHell) scripts to build a capable GUI around cvs's cryptic commands. Figure 9.5 is a
screen dump of the tkCVS interface as it appeared for our sample project, before we
added the last set of changes to the repository. It uses a familiar file browser paradigm
while providing a reasonable set of buttons (with pop-up tooltips) and menus to access
cvs's full capabilities.

 Figure 9.5: The tkCVS GUI.

Summary

This chapter has presented an overview of the tools and techniques for setting up a
development environment on Linux. The tools discussed here will put you in the native
language development business and start you down the road toward Java development. In
Chapter 10, "Java Components for Linux," we examine the parts and pieces you need to
add Java language support to your system.

 Chapter 10: Java Components for Linux

 Overview

 - 192 -

Java development and deployment involves several components that, if you're coming
from a non-Java background, may seem strange and unfamiliar. The terrain is very much
in evolution: Java applications can be built in many different ways, and runtime
environments can be purchased whole or assembled from spare parts.

This chapter summarizes the types of tools used with Java on Linux and surveys the spare
parts. This will serve as background for the next several parts of the book, in which we
discuss where to find these tools and how to use them.

A Glossary of Sun Java Terminology

When Java tools and environments are described, they invariably use the terminology
that Sun associates with its releases. This is a sufficiently confusing area for which we
will provide not one, but two glossaries. Keep in mind that Java has been released in
three versions: 1.0, 1.1, and 1.2.

 First, the glossary of traditional Java terminology:

•

100% Pure Java—A trademarked term indicating that an API is implemented entirely
in Java and has been certified to have no platform-specific dependencies. Although it
is impossible to guarantee absolute portability across Java platforms, this certification
(provided as a fee-based service by Sun for vendor products) increases confidence in
a Java-based product's portability. Among Sun's own Standard Extensions, many of
them are implemented entirely in Java, but only some carry this certification.

•

Class path—This describes where Java's built-in class loader looks for classes and
can include class files and archives located on local media and on the Web. We
discuss how Java finds classes in more detail in Chapter 14, "Configuring the Linux
SDK/JRE Environment," in the section "How Java Finds Classes."

•

Core class libraries—These are the required class libraries specified for a particular
release of Java; if you don't have all of these libraries, you don't have a full runtime
environment. Class libraries are occasionally developed externally to the core and
later added—JFC Swing was developed and distributed as an extension for JDK1.1
and included in the core for JDK1.2.

•

Many of the core class libraries include platform-native code, which is shipped in
native shared libraries as part of the runtime environment. Platform-native code is
used to implement such platform-specific features as graphical rendering (for the
java.awt package) and native file I/O (for the java.io package).

•

JDK—The Java Development Kit is Sun's reference software development kit. The
same term is also commonly used as a synonym for a Java platform release—for
example, by browsers and apps claiming to be "JDK1.1-compliant." (This confusing
use is now standard practice, so we will follow it and instead use the term SDK to
denote the software development kit. With the release of the Java 2 Platform, Sun is
encouraging the use of a new term, J2SDK, for the software development kit.)

•

The SDK includes the JRE (discussed next) and development tools: compiler,
debugger, documentation generator, and so on. Beginning in Chapter 17, "The Java
Application Launchers: java, jre, and oldjava," we will examine the components that
make up the SDK for Linux.

•

JRE—The Java Runtime Environment is the JVM (discussed next) and the core class
libraries that define a complete environment in which Java applications run. JREs are
available as standalone application environments (which you get from the Blackdown
Linux port of the Sun code), and are also bundled with Web browsers. For the new
version of this term, see J2RE in the next glossary.

 - 193 -

 • JVM—The Java Virtual Machine is the core of a runtime environment—a program that
knows how to interpret Java classes.

•

Standard extension—A standard extension is a Java enhancement specified by Sun—
not as part of the core functionality but as functionality considered useful and
desirable. An example is the Java3D specification for 3D graphical rendering. All
standard extensions have, by definition, a full API specification, a reference
implementation, and a test suite.

 Figure 10.1 shows a schematic of the pieces.

 Figure 10.1: The Java Software Development Kit, used by developers, and the

Java Runtime Environment, used in deployment environments.

 And now the glossary of new terms:

•

Java 2 Platform— A Java platform is an abstraction: a specification of an environment
in which Java applications and applets run. When Sun introduced version 1.2 of Java,
it chose (for marketing purposes) to relaunch it as the Java 2 Platform (there was no
prior Java 1 platform).

•

This designation is not to be confused, although it often is, with the versioning scheme
used to identify releases: 1.0, 1.1, and 1.2 (to date). The current release of Java is
officially called The Java 2 Platform Version 1.2, and the next version will be The Java
2 Platform Version 1.3.

•

Java Foundation Classes—A marketing term describing a subset of the core class
libraries—AWT, Swing, pluggable look and feel, accessibility, Java2D, and drag-and-
drop.

•

J2RE—The Java 2 Runtime Environment, Standard Edition. This is the new name for
the JRE associated with the Java 2 Platform. The latest release is officially called the
Java 2 Runtime Environment Version 1.2.

•

J2SDK—The Java 2 Software Development Kit, Standard Edition. This is the new
name for the SDK associated with the Java 2 Platform. The latest release is officially
called the Java 2 Software Development Kit Version 1.2.

 • J2SE—The Java 2 Platform Standard Edition. This is the official name of the Java 2

Platform for client platforms such as browsers and desktop machines.

 Why Standard Edition? Because there are two other editions:

•

The Java 2 Enterprise Edition (J2EE) is slated for release in late 1999. J2EE consists
of the J2SE plus a number of server-oriented standard extensions (Enterprise Java
Beans, Servlets, Java Server Pages, and more).

 • The Java 2 Micro Edition, announced in mid-1999, is targeted at constrained

 - 194 -

environments such as personal and embedded applications.

 Undoubtedly, more acronyms are in the works.

Java Development and Runtime Components

 As you shop for Java components, you'll find the items detailed in the following sections.

 Java Compilers

Java compilers generate Java class files (suffixed .class) from Java source files
(suffixed .java). The Sun SDK includes a Java compiler, javac, which is itself a Java
application.

Because the class file and language specifications are public and easily available,
anyone can write a compiler. Some worthwhile variants that have appeared are as
follows:

 • Java compilers implemented as native applications, of which the best example is Jikes

(see Chapter 36, "The Jikes Compiler").

 • Java compilers that implement a superset of the Java language, such as the Generic

Java Compiler (see Chapter 38, "Generic Java Compilers").

•

Compilers that compile from other high-level languages into Java bytecodes. This is
not a wildly popular activity—the Java instruction set is not particularly well suited to
other languages—but is home to some worthwhile academic and commercial efforts.
Such compilers exist for Scheme, Eiffel, SmallTalk, C++, Cobol, and numerous other
languages.

 Java Native Compilers

These are compilers that get you from Java (.java and/or .class files) into native code
for your Linux (or some other) environment. The obvious reason is speed, and the
obvious trade-off is portability. Sun does not supply any such compilers, but we will
explore one in Chapter 31, "gcj: A Compiled Java Solution."

 Core Class Libraries

Sun supplies a complete set of core class libraries in its reference implementation, so any
Sun-licensed port will include them. But the specs are public, and anyone who doesn't
like Sun's implementation or its licensing terms is free to write his own. This is how Java
ends up running on such small-market platforms such as the Amiga and Next.

 Variants you will find are as follows:

•

Cleanroom implementations (without any licensed code from Sun) of core class
libraries bundled with a cleanroom JVM (see Chapter 26, "Kaffe: A Cleanroom Java
Environment").

 • Cleanroom implementations of core class libraries independent of a JVM (see Chapter

28, "GNU Classpath: Cleanroom Core Class Libraries").

 These alternative implementations offer you the opportunity to mix-and-match

components in a Java development or runtime environment.

 JVM

 - 195 -

 Like the core class libraries (discussed previously), the JVM is supplied by Sun but can

also be created from specifications. Variants you will find are as follows:

 • Cleanroom implementations of JVMs bundled with class libraries (see Chapter 26,

Kaffe: A Cleanroom Java Environment).

 • Cleanroom implementations of JVMs without any class libraries (Japhar, Chapter 27,

"Japhar: A Cleanroom JVM").

 JIT Compilers

Java is an interpreted language, which is bad news for performance. Just-in-time (JIT)
compilers add runtime optimization to Java by compiling pieces of the application into fast
native code as the app is running. This is a crucially important area, as Java seeks to
solve its well-known performance problems.

JITs are available from Sun (one is bundled with JDK1.2) and from outside developers
(see Chapter 33, "Just-In-Time Compilers"). There is extensive commercial JIT activity
for the Microsoft Windows platform, and Linux will undoubtedly receive more attention in
this area.

Much of the recent activity in this area has been focused on new JVM designs that
subsume the work of JITs (see Chapter 30, "Sun HotSpot Performance Engine" and
Chapter 29, "Mozilla ElectricalFire: A New JVM").

 The major downside to JITs and similar technologies is that they show more value on

long-lived server applications than in client applications and applets.

 Debuggers

Sun ships a basic, non-GUI debugger with the SDK, and other choices are available (see
Chapter 39, "The Jikes Debugger"). JDK1.2 introduced a new debugging interface, which
is intended to improve the quantity and quality of available debuggers.

 Profilers

Performance analysis tools have been a weak presence in the Java world, but the story
is improving. Sun introduced a new profiling interface in JDK1.2, and we will explore an
analysis application based on the interface in Chapter 60, "Perfanal: A Free Performance
Analysis Tool."

 Applet Viewers

Applet viewers provide the functionality to test-drive applets outside Web browsers, which
is especially useful for developing applets relying on runtime environments that are not
yet supported in browsers. An applet viewer is bundled with Sun's SDK.

 Documentation Generators

Java code is certainly not self-documenting, but Sun has defined a relatively low-pain
methodology for generating documentation by extracting class information and comments
from Java source files. One such tool, javadoc, is bundled with Sun's SDK, and
alternatives are available (see Chapter 38, "Generic Java Compilers," in the section
"PizzaDoc").

 Decompilers

 - 196 -

Java, as an interpreted language, is eminently decompilable and suitable for reverse
engineering. Although Sun does not provide any decompilers, the market is well served
by commercial and free products (see Chapter 46, "Jad: A Java Decompiler").

 Obfuscators

For developers who do not want to have their code reverse-engineered, obfuscators are
the answer to decompilers. Free and commercial offerings are available. Obfuscators do
their job by scrambling class and member names before you ship a product and creating
scrambled code that works correctly but is difficult to decompile.

The battle between decompilers and obfuscators is an escalating arms race. The best
advice for developers who must protect their super-secret algorithms is to run the code
on a trusted server and not let it near any client machines. (This advice applies just as
readily to compiled code as to Java.)

 Optimizers

Optimization can make Java code faster and smaller. Some optimization capability is
provided by compilers, but the best offerings today seem to be optimization post-
processors. Free and commercial products are available (see Chapter 53, "DashO:
Optimizing Applications for Delivery").

Optimizer and obfuscator capabilities are often shipped in the same product for
synergistic reasons. Optimized code is often more difficult to decompile, and a standard
obfuscation technique—replacing long descriptive variable names with short obscure
names—is also a useful size-reducing optimization.

 Integrated Development Environment, GUI Builders, and RAD

Tools

 Integrated Development Environments combine certain common development

activities—editing, compiling, running, debugging—into a single GUI application.

 GUI builders are interactive GUI-based tools that allow you to lay out your desired GUI

and then automatically generate code to implement the GUI.

Rapid Application Development (RAD) tools combine the two, and more (although the
industry definition of RAD is a bit slippery and not universally agreed on). RAD tools
concentrate on shortening the time-consuming steps of development. That typically
means IDE, GUI-building, automatic code generation, and interpreters or incremental
compilers for test-driving small changes.

 In later parts of the book, we will discuss these terms in more detail and examine some

tools that fall into these categories.

 Summary

This chapter has provided an overview of the components that make up Java runtime and
development environments. While the choices available in the Java world can be
staggering, an understanding of the necessary components will help you collect the pieces
you need for your development and deployment needs.

Chapter 11: Choosing an Environment: 1.1 or
1.2?

 - 197 -

 Overview

With the release of JDK1.2, Java became a much better place to create applications.
Over time, JDK1.2 will penetrate many operating systems and browsers and generally be
supported in the user community. But developers must face the inevitable question: In
which environment should today's applications be developed?

If you are developing for your own use, simply choose what works best for you. If
customers are involved—employers, contracting organizations, server administrators,
intranet or Internet surfers, PC or workstation users—you need to decide on a delivery
platform they can use. This chapter examines that issue.

Client, Server, or Other?

The first question to ask: For what environment are you developing Java applications?
Every application environment has a unique user community, version stream, and
requirements.

 Client-Side Java

This chapter focuses on the question of client-side Java: deployment of applications to be
run, or applets to be browsed, on machines deployed on an intranet or the Internet. In
this market, you must consider the question of whether (and how) your consumers are
ready for JDK1.2.

 Constrained Java Environments

If you are developing for one of the constrained Java environments—PersonalJava,
EmbeddedJava, JavaCard, JavaTV, or JavaPhone—then market acceptance and
penetration of JDK1.2 is not particularly relevant to you. These environments have their
own version streams, converging toward the Java 2 Platform Micro Edition announced by
Sun in mid-1999.

 Server-Side Java

If you are developing for the server side, the choice of environment is probably relevant
to you. Some of JDK1.2's capabilities—graphics and GUI improvements—are of little or
no interest. But others, such as CORBA support and security enhancements, could be
critical to your enterprise applications.

Fortunately, servers tend to be a more controlled environment than clients: You can
specify a target Java environment in which your application is to be deployed—subject, of
course, to availability and the willingness of server administrators to install and support
the environment.

JDK1.2 is available for Linux and other server platforms, and support should improve
steadily through 1999. As an example of its use, we will configure a JDK1.2-compliant Web
server with a servlet environment in Chapter 65, "Java on the Web: Java Servlets and
Apache JServ."

JDK1.1: Now Widely Supported

 A cautionary tale: JDK1.1 was introduced to the world in 1996. It took Netscape more

than three years to achieve full compliance in its browser.

 Clearly, the world cannot absorb Sun technology as quickly as Sun can push it out the

door, and it may not yet be time to bet your business on JDK1.2. The story for Java 1.1 is

 - 198 -

more encouraging, as the following sections explain.

 Supported Applet Environments

Modern releases of the two major browsers, Netscape Navigator and Microsoft Internet
Explorer, support substantially all of Java 1.1, and it is becoming increasingly difficult to
write a 1.1 applet that will not run on current browsers. Many subtle details are behind
this generalization—areas of incomplete support, browser point releases, bugs, the
Microsoft/Sun legal imbroglio—but 1.1 browser support is, in general, excellent.

You should, of course, always test your 1.1 applets with the available browsers,
especially if you have dependencies that may cause trouble (JNI or RMI, for example).
Be aware that, if you deploy to Microsoft Windows environments, Netscape uses a built-
in JRE, whereas Microsoft Internet Explorer uses the JRE bundled with Windows—so
results can vary by browser.

If you do not want to rely on native Microsoft or Netscape Java capabilities, the Java
Plug-in technology from Sun, discussed in Chapter 50, "Deploying Applets with Java
Plug-in," provides an alternative way to guarantee a fully 1.1-conformant applet
environment on certain platforms. (A 1.2-version of the same technology is discussed
later in the chapter.)

Good information about browser Java support, and how to "sniff" browsers to ascertain
Java capabilities, can be found at developer sites for Netscape
(http://developer.netscape.com) and Microsoft
(http://msdn.microsoft.com).

 Supported Application Environments

Support for standalone Java applications depends on the availability of a JRE for the
target platform. Again, the story here is good for Java 1.1. All major platforms have good
1.1 ports available: JREs for many UNIX and mainframe platforms are available from the
platform vendors. JREs for NT are available from Microsoft (1), Sun, and IBM. And, of
course, Linux JREs are available from the Blackdown organization and IBM (as we will
explore in detail in later chapters). In addition to JREs based on Sun sources, the free
JVM/library components discussed in Chapters 26 "Kaffe: A Cleanroom Java
Environment," 27 "Japhar: A Cleanroom JVM," and 28 "GNU Classpath: Cleanroom Core
Class Libraries," are or will be available for many major and minor computing platforms.

(1)

Is the Microsoft JRE fully compliant with the Java spec? This issue is at the core of the
current Sun/Microsoft legal battles. Sun's complaints about Microsoft have centered on
two major concerns:

 • The Microsoft JRE does not fully support the Sun spec.

 • Microsoft's development tools create "Java" code dependent on features available

only on Microsoft platforms.

That said, this book will steer clear of the controversy and leave it to the courts. If you
are developing Java applications on Linux, the issue of Microsoft's development tools
obviously does not affect you. As far as deploying your Linux-developed applications
and applets for Windows environments, your main concerns are

 • Does your JDK1.1 app work under the Microsoft JRE, with adequate performance

and reliability?

 • Will Microsoft ever support JDK1.2?

 That said, there is still an important challenge: ensuring that customers have the JRE

 - 199 -

installed. This is not so much a technical problem as a marketing/packaging/shipment
problem: How do you make users install software needed to run your Java application?
Fortunately, most or all major vendors allow you to freely redistribute the JRE. If you want
to ship a Java application with a JRE for HP-UX, Solaris, NT, or whatever, you can do it.
Just be sure to read, understand, and adhere to the redistribution terms imposed by the
JRE distributors. We will explore that issue in Chapter 49, "Distributing Java Applications
and JREs Installation."

 JDK1.2: Supported Where and When?

 JDK1.2 was introduced in late 1998. The best early support could be found on Solaris,

Windows, and Linux.

The Linux port has enjoyed some support from Sun and has benefited from a cutting-
edge volunteer porting effort by the Blackdown team. To those doing early JDK1.2
development work, Linux has turned out to be one of the best platforms for the job. The
port is a huge undertaking—the native portion of the JDK grew enormously for the 1.2
release—but it seems reasonable to expect that most vendors will have a JDK1.2 story
by the end of 1999.

The JDK1.2 story for browsers is not so clear. It is not known when Netscape Navigator
or Microsoft Internet Explorer will support that environment. Given the importance of
GUIs for applets, and the GUI advances offered by Swing, the question is of crucial
importance. The next two sections discuss some interim and future possible answers to
this problem.

 Option 1: The Java Plug-In

 An ideal solution to the browser support problem is to decouple the browser from its built-

in JRE and allow the browser to leverage any convenient JRE (see Figure 11.1).

 Figure 11.1: Browser environments are traditionally closely tied to a bundled or

platform JRE. Present and future developments will separate the components.

Sun has done exactly this, with a mechanism called the Java Plug-in. The Java Plug-in
uses the standard browser plug-in mechanisms to introduce a new JRE disguised as a
plug-in. Running JDK1.2 applets then becomes a matter of activating that plug-in—much
like browsing a multimedia file or Adobe PDF document.

The Java Plug-in is not a perfect solution: It is currently only supported on a few
platforms, and the HTML tag for the applet must be modified to use the plug-in JRE. We'll
discuss use and deployment of the Java Plug-in in Chapter 50, "Deploying Applets with
Java Plug-In," as part of the overall discussion of applet and application deployment.

 Option 2: Netscape Open Java Interface

Netscape is pursuing another approach to the same architectural idea: the Open Java
Interface (OJI). Starting with its Communicator 5.0 product, Netscape will support an API
through which any JRE can be integrated with the browser. In the long term, this should
allow Netscape to exit the difficult business of porting the Sun JRE and instead rely on

 - 200 -

resident platform JREs.

 The OJI will require some modest effort from JRE vendors: some glue code must be

written to connect a JRE to Netscape. But OJI will offer two significant advantages:

 • Any JRE, including those from the open-source community, can be used.

 • Unlike the Java Plug-in (see Chapter 50), OJI does not require any changes to HTML

code.

 As of this writing, OJI is not yet available. But it clearly offers good promise as the solution

for timely deployment of JDK1.2 and future releases.

 JDK1.2 Features Available for JDK1.1

You can get some JDK1.2 benefits without moving to that environment by loading some
supplemental classes available from Sun. These packages are JDK1.2 features that were
released as JDK1.1 extensions and are discussed in the following sections.

 Java Foundation Classes (JFC)

Portions of JFC are available for JDK1.1. These are implemented in Java—fully usable
on Linux and elsewhere. To download, visit the Java site (http://java.sun.com) and
go to the product page for the Java Foundation Classes to obtain the following
components:

 • JFC Swing Toolkit - including the pluggable look and feel.

 • Accessibility API

The components have the same package name, javax.swing, as in JDK1.2. (Some
earlier pre-releases used different package names—com.sun.java.swing and
java.awt.swing—an unfortunate source of confusion.)

 Java Collections Classes

The 1.1 versions of these useful classes are distributed in conjunction with the InfoBus
standard extension. Visit the Java site (http://java.sun.com) and go to the InfoBus
product page for information on how to download these classes.

Unfortunately, these classes are in a different package
(com.sun.java.util.collections) than their counterparts in JDK1.2 (java.util
and java.lang). This was necessary because some environments—notably many
browsers—refuse for security reasons to load classes called java.util.* or
java.lang.* from outside their core library archives. So JDK1.1 code written to use
these classes must be changed to work with JDK1.2.

JDK1.1 Apps Broken by JDK1.2

JDK1.2 is a proper superset of JDK1.1 but can, in some cases, break older applications.
In most cases, these incompatibilities are the result of better enforcement of existing
rules about class file format, argument values, security privileges, and so on.

The one area in which applications can become seriously broken, requiring some
rewriting, is security. The security mechanism changed substantially between JDK1.1
and JDK1.2, and applications that implement their own security code are in danger of
failure under JDK1.2. One visible example is HotJava, Sun's Java implementation of a

 - 201 -

Web browser. As of mid-1999, it was not yet usable with JDK1.2.

A short-term workaround is provided in the Sun JSDK, in the form of an application
launcher that uses the old security mechanism—see the section on oldjava in Chapter
17, "The Java Application Launchers: java, jre, and oldjava."

 For more complete information about incompatibilities, Sun publishes a compatibility

document (http://java.sun.com/products/jdk/1.2/compatibility.html).

 Summary

In choosing a deployment environment for your applications and applets, you need to
balance the benefits of the new environments with a realistic view of their availability in the
world. This chapter has presented a snapshot of the ever-changing landscape. The best
advice when betting on new Java technology is this: proceed with caution.

 Chapter 12: Software Licensing

 Overview

Open Source Software (OSS) has become one of the best-known computing terms at the
end of the 20th century—so much so that it has achieved the dubious status of buzzword:
a term freely thrown around by people who only vaguely understand what it means.

If you work in the Linux world, and in some cases if you work in the Java world, you are
dealing with OSS. This chapter takes a brief look at the meaning of OSS and at the various
licenses. Our purpose is to introduce the licenses you are likely to encounter, not to give
legal advice. If you choose to create software derived from an OSS-licensed product, you
must understand and honor the terms of the license before you deploy your projects.

 What Is OSS?

OSS is an elaboration of the concept of free software. Free software is nothing new: It has
been a hallmark of UNIX development from the beginning and has found particularly
passionate voices in the work of Richard Stallman (the GNU Project) and Eric Raymond
(author of the influential essay "The Cathedral and the Bazaar,"
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/). The basic idea
behind free software is that you—the user or developer—are free to do useful work with the
software beyond any artificial constraints imposed by the author or publisher of the
software.

Common Open Source Licenses

An inherent part of free software is access to the source, giving you the freedom to fix it,
improve it, or derive new software from it. But source access is not a sufficient condition
for OSS, which must also be freely redistributable and must have licensing terms that do
not unreasonably constrain your use of the source. The following sections look at
licenses that are considered by the Open Source Initiative
(http://www.opensource.org) to be compliant with its criteria for OSS.

 The GNU General Public License (GPL)

 The GPL is the best known, and probably most commonly used, OSS license. Informally

known as the "copyleft," the text of the license begins with a statement of its ethos:

 The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

 - 202 -

freedom to share and change free software—to make sure the software is free for all
its users. This General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces
of it in new free programs; and that you know you can do these things.

 After the preamble, the license spells out specific terms for copying, distributing, and

modifying the licensed code. In a nutshell, the terms of the GPL are as follows:

 • You may freely copy and redistribute GPL-licensed software.

 • You may charge for distributing and maintaining GPL-licensed software but not for the

software itself.

 • Source code for GPL-licensed software must be made freely available, either

published with any distribution of binaries, or available on request.

 • Any derived work created from GPL-licensed source is also covered by the GPL.

The GPL has fueled much of the growth of Linux and the GNU utilities available for Linux,
but it has turned out to be unpalatable in the commercial community. The requirement
that any work derived from GPL-licensed source also be subject to the GPL has scared
off businesses unwilling to give away their products or their sources—hence the
popularity of the licenses listed in subsequent sections.

 The GPL also includes a disclaimer of warranty, as do all other OSS licenses.

 The GNU Library General Public License (LGPL)

The GNU Library General Public License (recently redubbed the Lesser General Public
License) addresses one of the main objections to the GPL: that derived works must also
be covered by the license. Free software published under the LGPL can be used to
create products not covered by the LGPL.

The LGPL is especially important for OSS libraries. It allows you to link against an open
source library (such as the indispensable GNU C library) without considering the resulting
executable to be a derived work subject to GPL.

 The Berkeley Software Distribution (BSD) License

The BSD License, derived from the BSD UNIX development stream, is a short, simple
license that allows redistribution and reuse of software, and creation of derived works for
free or commercial purpose. The main requirements it imposes are as follows:

 • Preserve the integrity of the copyright notices when redistributing.

 • Give credit where credit is due: If you derive a work from BSD-licensed software, you

must mention this fact in advertising and promotional materials.

 The X Window System License

 - 203 -

 A short and liberal license from MIT, this is little more than a warranty disclaimer. It grants
unrestricted rights to modify, distribute, publish, sell, and reuse the software.

 The Artistic License

This is a license through which (quoting the preamble) "the Copyright Holder maintains
some semblance of artistic control over the development of the package" while enabling
the customary modification and redistribution rights of open source. It was developed by
Perl creator Larry Wall and strives to protect the integrity of the original public work while
allowing the technology to be freely deployed in other products. For example, you cannot
sell a proprietary Perl, but you can privately embed Perl (without publicly exposing its
interfaces) in your own proprietary product.

 Mozilla Public License (MPL)

The MPL, from the Netscape Mozilla project, is the first open source license to come from
a major corporation, which is reflected in its precise and detailed legal language. The
license spells out exactly how the code may be extended or incorporated into new
products, and the ways in which derived works are or are not required to be open source.
In a nutshell, sources derived from Mozilla's source must be open, whereas sources that
interact with Mozilla only through APIs are not so constrained.

 The license is a difficult read for non-attorneys, but it is also refreshingly to the point and

free of philosophical declarations.

 Q Public License (QPL)

 The QPL is from Troll Tech, developers of the popular Qt GUI toolkit. The toolkit exists in

two forms:

•

A free version, covered by the open source QPL, that lets you use Qt in UNIX-type
environments but prohibits you from distributing modifications or deriving commercial
products.

•

A commercial (non-QPL) version, with a licensing fee, that allows commercial
exploitation. As the copyright holder, Troll Tech is free to distribute under multiple
licenses. This is one example of the approaches some vendors are exploring to build
businesses on OSS.

Sun Community Source License (SCSL)—Not Open Source

One license you will encounter in the Java world is the SCSL—the license under which
Sun makes the Java reference implementation (and other products') source code
available. No charge is associated with the SCSL: You can see the source for free. But it
is not an open source license and should be used with caution.

The SCSL entitles you to obtain source, either for research and development, porting
efforts, or creating derived works. It does not allow you to redistribute the source, and it
requires that you negotiate a license with Sun for distribution of ports or derived works.
Licensing of the Java sources is an important income stream for them.

An area of particular sensitivity in the open source community is the effect of
"contamination" by the SCSL. Free Java projects such as Kaffe (see Chapter 26, "Kaffe:
A Cleanroom Java Environment") and Japhar (see Chapter 27, "Japhar: A Cleanroom
JVM") do not allow developers who have obtained an SCSL to contribute code to avoid
contamination by people who have seen the encumbered Sun source.

 That said, if you have a need to perform research or create products based on Sun's

sources, visit its site (http://java.sun.com) and go to the product pages for the

 - 204 -

relevant source releases. In the course of obtaining the sources, you will go through the
necessary steps to sign a Sun Community Source License.

Licensing Your Own Software

 How should you license your own software?

That decision is usually up to you, but not always. If you are creating derived works
based on another source (open source or otherwise), be sure to understand the licensing
terms. You cannot, for example, derive a proprietary commercial product from GPL-
licensed software.

 Beyond such concerns, should you publish your own software under open source terms?

 The basic business arguments in favor of OSS licensing are the following:

•

Quality—Case study OSS efforts from the past 20 years have produced the
astonishing collection of high-quality software from which the Internet is built, from low-
level protocol stacks to Web servers.

 • Business—Successful businesses can be built on top of OSS, including consulting,

integration, distribution, service, and customization.

•

Collaboration—The efforts of an involved user/developer community lead to better
products, better quality, and new markets. It allows you to devote fewer of your own
resources to development and QA. (This argument works if—a very big if—your
product attracts an interested developer community.)

•

Long-term value—The market value of a piece of software, proprietary or not, follows a
rapid decay curve; keeping software proprietary buys you little protection in today's
market.

(There is also a political/ethical argument that software should not be sold, patented, or
otherwise protected like a commodity. This argument is controversial and far from
universally accepted. Notice that most licenses do not prevent you from being in the
business of selling and protecting software. But it is an important and vocal current of
thought in the open-source world.)

We live in interesting times for OSS. Many innovative OSS business models are being
explored by commercial enterprises; it is still too soon to know which of these models will
work. Several major platform vendors have jumped on the Open Source train: SGI is
releasing its XFS networked files system to the OSS community, and Hewlett-Packard
Company has cosponsored (with O'Reilly & Associates) SourceXChange, a Web-based
matchmaking service for OSS developers and companies seeking to do OSS
development.

Is OSS for you? A good place to research the question is the Open Source Initiative
(http://www.opensource.org). You can review the various licenses in their entirety
and study the arguments in more detail than provided here.

 Summary

This chapter has explored the common licenses you will encounter when working in the
Linux and Java worlds. If you are in the business of selling or distributing software, you
should understand the licensing terms of all software you depend on—and especially of all
software from which you derive new works.

Part IV: The Blackdown Port: A Sun Java SDK

 - 205 -

for Linux

 Chapter List

 Chapter

13: Blackdown: The Official Linux Portx

 Chapter

14: Configuring the Linux JSDK/JRE Environment

 Chapter

15: Troubleshooting the Blackdown JRE/JSDK Installation

 Chapter

16: Participating in the Blackdown Community

 Part Overview

The center of gravity for much of the Java activity on Linux is the Blackdown port—a
volunteer effort to port the Sun Java Software Development Kit to Linux. In this part, we
focus on Blackdown: what it is, how to get it, and how to configure it and how to address
problems encountered in the Linux enviroment.

Chapter 13: Blackdown: The Official Linux
Portx

 Overview

The Java implementation found on most systems is a port of the Sun Java Development
Kit. Vendors such as HP, IBM, SGI, and Microsoft license the source, port the code, and
pay fees to Sun for the right to distribute the SDK and the JRE.

The Blackdown port, under the auspices of the volunteer Blackdown organization, is the
same thing—except that nobody is getting paid. The team is entirely volunteer, and the
project is licensed from Sun under a no-cost noncommercial license agreement.

The history of SDK ports on Linux began with Randy Chapman's port of SDK1.0 and
followed with Steve Byrne's leadership in porting SDK1.1. Karl Asha created the
Blackdown site and the mailing lists. These three and numerous others have contributed
engineering to create the Blackdown port, which enjoys the distinction (on Intel x86-
based Linux boxes) of being among the leading-edge ports on the market. Ports also
exist for Linux on Sparc, Alpha, and PowerPC platforms, although releases on these
platforms usually lag behind the x86-based releases.

The Blackdown Web site is http://www.blackdown.org and features downloads of
current SDKs and JREs, downloads of other Linux Java extensions, news,
documentation, useful links, a FAQ, a bug-reporting and tracking system, and a lively
mailing list whose participants include several engineers from Sun. (See Chapter 16,
"Participating in the Blackdown Community" for more detail.)

The Blackdown site also posts diffs: lists of changes required to port the Sun source to
Linux. The diffs, consisting of files published in a format generated by the GNU diff utility,
can be applied as patches to Sun's SDK source to produce the Blackdown SDK source. So
for developers who want to maintain their own sources, the diffs plus the Sun sources
(available for free through the Sun Community License) will get you there.

 - 206 -

 Contents of the Blackdown SDK and JRE

As discussed in Chapter 10, "Java Components for Linux," in the section "A Glossary of
Sun Java Terminology," the SDK is a full development environment, whereas the JRE is
a subset that provides application runtime support. The SDK is provided under restrictive
terms that prohibit you from redistributing it, whereas the JRE's more liberal terms allow
you to redistribute it with your application. In other words: you can count on finding JRE
components, but not SDK components, in a deployment environment.

 Each distribution includes a LICENSE file detailing the exact terms.

 Table 13.1 lists the major components comprising the SDK and JRE.

 Table 13.1 Blackdown SDK and JRE Components

 Component

SDK1.2

JRE1.2

SDK1.1

JRE1.1

More info

 appletviewer

X

X

Chapter 18

 extcheck

X

Chapter 24

 jar

X

X

Chapter 21

 jarsigner

X

Chapter 24

 java

X

X

X

Chapter 17

 java_g

X

Chapter 17

 javac

X

X

Chapter 19

 javac_g

X

Chapter 19

 javadoc

X

X

Chapter 23

 javah

X

X

Chapter 22

 javah_g

X

Chapter 22

 javakey

X

X

Chapter 24

 javap

X

X

Chapter 24

 jdb

X

X

Chapter 20

 jre

X

X

Chapter 17

 jre_g

X

Chapter 17

 - 207 -

 keytool

X

X

Chapter 24

 native2ascii

X

X

Chapter 24

 oldjava

X

Chapter 17

 policytool

X

X

Chapter 24

 rmic

X

X

Chapter 24

 rmid

X

X

Chapter 24

 rmiregistry

X

X

X

X

Chapter 24

 serialver

X

X

Chapter 24

 tnameserv

X

X

Chapter 24

 Core class

libraries

X

X

X

X

Chapter 3

 Core config

files

X

X

X

X

 Sun JIT compiler

X

X

Chapter 14

 Scalable fonts

X

X

Chapter 14

 JNI Headers

X

X

Chapter 55

 Demos

X

 We will describe these components in detail in subsequent chapters.

 Obtaining Blackdown Releases

The Blackdown project maintains several mirrors for distribution of the releases. If you
visit the main site (http://www.blackdown.org), navigate to the download page, and
select a mirror, you will find a directory hierarchy containing all the current and past
releases from the project. The diagram in Figure 13.1 shows a small excerpt of the
hierarchy, identifying the directories containing (as of this writing) the latest releases for
various platforms. (Not shown are many other directories containing earlier releases.)

 Figure 13.1: A snapshot of the latest Blackdown Java releases for Linux.

 - 208 -

This chart will quickly go out of date, but it gives an overall idea of the tree's organization
and the status of the various ports. Several different versioning schemes are in evidence
here: minor Java releases (1.1.5, 1.1.6, 1.1.7), major Java releases (1.1 versus 1.2),
versions of Blackdown releases (v5, v7, and so on), and versions of glibc (2.0, 2.1).

Within each directory containing SDKs and JREs are tar archives with the actual bits,
compressed either with gzip (.gz) or the better bzip2 (.bz2). (See Chapter 9, "Setting
Up a Linux Development Environment," in the section "Compression and Archiving: tar,
gzip, bzip2, zip, unzip" for details on archiving and compression utilities.)

 Unpacking the archives is straightforward:

 1. Decide where to install the product; create and cd to that directory. Example:

 bash$ mkdir -p /usr/local/Java
 bash$ cd /usr/local/Java

 2. Uncompress and untar the file. Example:

 bash$ gzip -d </tmp/jre_1.1.7-v3-glibc-x86.tar.gz ¦ tar xvf -

 or

 bash$ bzip2 -d </tmp/jre_1.1.7-v3-glibc-x86.tar.bz2 ¦ tar xvf -

Supported Linux Versions for the Blackdown SDK and JRE

Given the wide variety of Linux environments—many distributions, many versions of
many libraries, many configurations, many platforms—building and distributing a product
for Linux is a daunting task. The Blackdown port tries to avoid dependence on any one
distribution or system configuration and instead ships several versions of its distributions
to meet the needs of the user and development communities.

 All the versions described in this chapter can be picked up from the Blackdown site or its

mirrors.

 JDK Versions for x86 Linux

Most Linux machines in the world run on the Intel x86 CPU architecture, and most of the
Java/Linux development work has been for such machines. As of this writing, there are
four current Blackdown JDK versions for x86 (and many older ones available at the
download sites).

 The following subsections discuss the four versions, but we begin with an important

introduction to the reasons for version proliferation.

 An Important Note About libc

The four current i386 Blackdown JDK distributions are differentiated by Java version (1.1
versus 1.2) and by dependencies on the C library. C library dependency is a confusing
matter, and is the most common reason for failure to run the Blackdown JDK out of the
box. This section discusses the Linux GNU C library, its recent history, how to identify
your library version, and the importance of obtaining a Blackdown JDK that is compatible
with the library.

 - 209 -

The C library, libc, is a vital core component of any Linux or UNIX system. It provides
core functionality for virtually every program that runs on the system—including the Java
runtime. The shared version of this library, /lib/libc.so.<something>, and its
related components are used whenever a program is run, and the entire system is rife
with dependencies on this library.

 The Linux C library has gone through three important phases in recent history:

•

libc5—This is the "old" C library. It was created by applying extensive, Linux-specific
modifications to the C library distributed (for many operating systems) by the GNU
project. Many older applications depend on this library, but support is starting to
disappear; over time, progressively fewer products are maintaining libc5 compatibility.
Many Linux distributions have moved to the newer libraries (discussed next) but
continue to ship libc5 to support older applications.

•

glibc2.0—The GNU project substantially rewrote its C library, incorporating changes
for Linux compatibility. This new version 2 (in GNU's versioning stream) was adopted
as version 6 (in Linux's numbering stream). Linux distributions with glibc support
began to appear in 1998.

•

glibc2.1—The glibc2.0 release was considered experimental, although it was stable
and long-lived enough to be widely adopted (including by the Red Hat 5.x release
stream). Revision 2.1 appeared in 1999, and a number of distributions have moved to
this version.

When a Linux application is built, it becomes dependent on the library version it was
linked against. libc5 programs require the libc5 library to run and glibc components
require the glibc library to run.

For many Linux applications, that distinction is the whole story—they need libc5 or they
need glibc. But for some programs there is an additional sensitivity to the glibc version: a
program linked against glibc2.0 will not run on a system with glibc2.1, and vice versa.
The Blackdown JDK1.2 port is such a program—you must obtain a version that matches
your system.

 Identifying Your System

 What kind of C library does your system have? To answer, look for files named
/lib/libc.so.<something>:

 • If you have a libc.so.5 but not a libc.so.6, then you have a libc5 system.

 • If you have a libc.so.6, and it is a symbolic link to libc-2.0<something>, you

have a glibc2.0 system.

 • If you have a libc.so.6, and it is a symbolic link to libc-2.1<something>, you

have a glibc2.1 system.

 To install a Blackdown Java distribution, you must select one appropriate to your system.

 Updating Your System

 What if you want to move from libc5 to glibc—for example, to use JDK1.2—or move from

glibc2.0 to glibc2.1?

Installation of the C library is a tricky affair. It involves not just libc.so but also a
runtime linker (ld-linux.so) and dozens of other libraries with dependencies on libc. It
is possible, if you install glibc incorrectly, to render your system inoperative.

 - 210 -

The best way to move to the desired library is to install or upgrade your system to a Linux
distribution based on that library—for example, Red Hat 5.x (glibc2.0) or 6.x (glibc2.1). If
that is not an option, visit the Linux Online support center
(http://www.linux.org/help/howto.html) and consult the Glibc2 HOWTO for
detailed instructions.

 JDK1.1 for libc5 x86 Systems

You should obtain this version if you want to run JDK1.1 on a glibc-based system. To run
properly, you will need version 5.44 or greater of libc and a reasonably current version of
ld.so.

The current (as of this writing) SDK1.1/JRE1.1 release is 1.1.7; unless you have a
compelling reason to get an earlier release, get the latest. You will need to get the
release from the libc5 directory.

 JDK1.1 for glibc x86 Systems

 You should obtain this version if you want to run JDK1.1 on a glibc-based system.

The current (as of this writing) release is 1.1.7; unless you have a compelling reason to
get an earlier release, get the latest. You will need to get the release from the glibc
directory.

 JDK1.2 for glibc2.0 x86 Systems

As of JDK1.2, the Blackdown releases no longer support libc5. But they have a similar
library split—for the two versions of glibc. Unlike JDK1.1, JDK1.2 is unable to support
both glibc revisions with a single release. If you are running a glibc2.0 system, you need
to download a version of the SDK or JRE from the glibc2.0 directory.

 JDK1.2 for glibc2.1 x86 Systems

 If you are running a glibc2.1 system, you need to download a version of the SDK or JRE

from the glibc2.1 directory.

 JDK1.1 for Compaq Alpha Linux

 The most recent release for the Alpha is 1.1.7. There are two versions, for 21064 and

21164 CPUs.

 JDK1.1 for Sun Sparc Linux

 The most recent release for Sparc Linux is 1.1.6.

 JDK1.1 for PPC Linux

 The most recent release for PowerPC Linux (Apple, IBM, and other PPC platforms) is

1.1.6.

 JDK1.1 for MkLinux

 The most recent release for MkLinux (mach-based Linux on PowerMac) is 1.1.5.

 - 211 -

 JDK1.1 for ARM

 The most recent release for versions of Linux running on the ARM processor is is 1.1.8.

Basic Environment Setup

 After you have installed the SDK, a few changes to your environment will put you in the

Java business.

 Setting the Environment for JDK1.1

 Table 13.2 shows the three environment variables you need to set for your SDK1.1 or

JRE1.1 environment.

 Table 13.2 SDK1.1/JRE1.1 Environment Variables

 Variable

Purpose

Example

 JAVA_HOME

Specifies Java installation directory.
This is optional; if not set, JDK1.1
infers a value by examining the path
to the Java executables.

JAVA_HOME=/usr/local/
Java/jdk117_v3

 PATH

The standard UNIX/Linux variable
for locating executables. Java's
bin/directory should appear before
any other directories that may
contain executables of the same
name (such as other installed Java
environments!).

PATH=$JAVA_HOME/
bin:$PATH

 CLASSPATH

Tells Java where to find all classes
at runtime. This is optional; if not set,
JDK1.1 assumes the default
example value to the right.

CLASSPATH=$JAVA_HOME/lib/
rt.jar:\$JAVA_HOME/lib/
i18n.jar:\$JAVA_HOME/lib/
classes.zip:.

 Recall that the format for setting variables under the bash shell requires setting and

exporting the variable, as in this example:

 bash$ export JAVA_HOME=/usr/local/Java/jdk117_v3

 With the environment set up, you can try a quick test of the system. Write a program in

file Hello.java:

 1 public class Hello
 2 {
 3 public static void main(String[] argv)
 4 {
 5 System.out.println("Hello World");
 6 }

 - 212 -

 7 }

 Compile and run:

 bash$ javac Hello.java
 bash$ java Hello
 Hello World
 bash$

 If your system is configured correctly, you should see the traditional Hello World

output. Otherwise, the error you are most likely to see is one of these:

 • command not found—You neglected to include the Java installation bin/ directory

in your $PATH.

 • Can't find class Hello—You neglected to include the current directory "." in

the class path.

Chapter 14, "Configuring the Linux JSDK/JRE Environment," will cover some additional
Java environment configuration options. If you encounter problems beyond the obvious
two listed here, Chapter 15, "Troubleshooting the Blackdown JSDK/JRE Installation," can
help you diagnose the difficulty.

 Setting the Environment for JDK1.2

 For JDK1.2, you set the same variables as for JDK1.1, but with different values (see

Table 13.3):

 Table 13.3 SDK1.2/JRE1.2 Environment Variables

 Variable

Purpose

Example

 JAVA_HOME

This variable is never used by JRE1.2 or
SDK1.2. Its value is inferred from the
location of the Java executable. But it is
sometimes used by other Java
applications. If set, it should point to the
Java installation directory.

JAVA_HOME=/usr/local/
Java/jdk1.2

 PATH

The standard UNIX/Linux variable for
locating executables. Java's bin directory
should appear before any other directories
that may contain executables of the same
name (such as other installed Java
environments!).

PATH=$JAVA_HOME/
bin:$PATH

 CLASSPATH

Tells Java where to find all user classes at
runtime. We'll explain the 1.1/1.2
CLASSPATH differences in Chapter 14 in
the section "How a Class Path Is
Constructed for Applications."

CLASSPATH=.

 - 213 -

 Recall that the format for setting variables under the bash shell requires setting and

exporting the variable, as in this example:

 bash$ export JAVA_HOME=/usr/local/Java/jdk1.2

At this point, you may want to try the Hello World test described at the end of the
previous section, "Setting the Environment for JDK1.1." If your system is not configured
correctly, the error you are most likely to see is one of these:

 • command not found—You neglected to include the Java installation bin/ directory

in your $PATH.

 • Can't find class Hello—You neglected to include the current directory "." in

the class path.

Chapter 14 will cover some additional Java environment configuration options. If you
encounter problems beyond the obvious two listed here, Chapter 15 can help you
diagnose the difficulty.

 Setting the JDK_HOME Environment Variable

Past practice has sometimes relied on another environment variable, JDK_HOME, in some
startup scripts for Java programs. There is no need to set this variable, but if you do, it
should have the same value as $JAVA_HOME to avoid breaking some applications.

 Summary

This chapter introduced the Blackdown port of the Sun JDK for Linux. The discussion will
continue in the next two chapters, with detailed exploration of JDK configuration and
troubleshooting.

Chapter 14: Configuring the Linux SDK/JRE
Environment

 Overview

We discussed a basic Java configuration in Chapter 13, "Blackdown: The Official Linux
Port," in which setting or modifying a few environment variables—JAVA_HOME,
CLASSPATH, and PATH—gets you started running Java. This chapter explores
configuration of your environment in more depth, beginning with an important discussion
of how Java finds classes.

This discussion is relevant to both SDK (your development environment) and JRE (the
end-user's deployment environment). Where there are differences between JDK1.1 and
JDK1.2, we will point them out.

The SDK documentation bundles, mentioned several times throughout the chapter, are not
part of the Blackdown distributions. They can be obtained from the Java site
(http://java.sun.com) by visiting the relevant SDK product page and downloading the
SDK documentation.

 How Java Finds Classes

 The built-in Java class loader can load classes from two types of sources: file systems

 - 214 -

and archive files. A class path—a list of places to look, like the UNIX PATH variable—tells
the class loader where to find the relevant file system directories and archive files.

The class path is a more complicated affair than we've portrayed so far. We'll delve into it
in the next section; for now, think of it as an abstraction—a collection of locations to
search for classes.

 Classes Loaded from File Systems

 Java classes can live in file systems, as individual files with the .class suffix. Location

is a confusing matter, so we'll create a class file with an example:

 Consider a simple project, in which I am doing development work in a directory called
/foo. My source file, Hello.java, looks like this:

 1 package bar.baz;
 2
 3 public class Hello
 4 {
 5 public static void main(String[] argv)
 6 {
 7 System.out.println("Hello World");
 8 }
 9 }

 I have a subdirectory called classes/, into which I place my compiled classes when I

build:

 bash$ javac -d classes Hello.java

After compilation, my class can be found at location
/foo/classes/bar/baz/Hello.class. Notice that the compiler placed the class in
a hierarchical directory tree that reflects the full package+class name of my class,
bar.baz.Hello. So the full file system path to my class file consists of two separate
components: The path to the root of the class (/foo/classes/), and the relative path
from the root to the actual class file (bar/baz/Hello.class).

For the Java class loader to find this class, it needs to know the location of the root of the
class: the class path must include an entry for /foo/classes. The class loader derives
the relative path to Hello.class from the name of the class itself.

The tricky but crucial requirement is this: The class file must be located on a path, relative
to an entry in the class path, that matches its full package+class name. You can think of
those "." separators in the full package+class name as representing file system "/"
separators—in fact, Java uses "/" internally for precisely that purpose.

Example

 Here is an example, using a JDK1.2-style invocation, of how to load and run the

class:

 bash$ java -cp /foo/classes bar.baz.nmeyers.Hello
 Hello World
 bash$

 - 215 -

 And an example of what does not work:

 bash$ java -cp /foo/classes/bar/baz Hello
 Exception in thread "main" java.lang.NoClassDefFoundError:

Hello (wrong name: bar/baz/Hello)
 at java.lang.ClassLoader.defineClass0(Native Method)
 at java.lang.ClassLoader.defineClass(Compiled Code)
 at java.security.SecureClassLoader.defineClass(Compiled

Code) +
 at java.net.URLClassLoader.defineClass(Compiled Code)
 at java.net.URLClassLoader.access$1(Compiled Code)
 at java.net.URLClassLoader$1.run(Compiled Code)
 at java.security.AccessController.doPrivileged(Native

Method)
 at java.net.URLClassLoader.findClass(Compiled Code)
 at java.lang.ClassLoader.loadClass(Compiled Code)
 at sun.misc.Launcher$AppClassLoader.loadClass(Compiled

Code)
 at java.lang.ClassLoader.loadClass(Compiled Code)

bash$

The class loader found the Hello.class file, as expected, but threw an exception
because the class name requested (Hello) did not match the class name encoded
in the file (bar.baz.Hello).

 Classes Loaded from Archive Files

 The built-in Java class loader supports two hierarchical archive formats:

 • ZIP files—This is the familiar compressed archive that has been in use since MS-DOS

days.

 • Jar files—The Java ARchive format is identical to ZIP, with the optional addition of a

file containing metadata about the classes in the archive.

As with file systems, the class resides in a .class file in the archive. As with the
previous example, the full path to the class file consists of two components: the path to
the root (now the archive is the root), and the relative path to the class file (a path within
the archive). Using the previous example, we create such an archive and place it in the
/tmp directory:

 bash$ jar cvf /tmp/project.jar -C classes .
 added manifest
 adding: com/ (in=0) (out=0) (stored 0%)
 adding: com/macmillan/ (in=0) (out=0) (stored 0%)
 adding: com/macmillan/nmeyers/ (in=0) (out=0) (stored 0%)
 adding: com/macmillan/nmeyers/Hello.class (in=437) (out=300)
(deflated 31%)

 bash$

Here, we use the SDK1.2 jar tool to create an archive, /tmp/project.jar, from
everything in and below the root directory of the classes. The jar tool creates a default
manifest and copies the file system hierarchy into the compressed archive. (The SDK1.1

 - 216 -

jar has no -C option; you would need to cd to the classes directory to generate this jar
file.)

 To run from the archive, again using the JDK1.2-style invocation:

 bash$ java -cp /tmp/project.jar com.macmillan.nmeyers.Hello
 Hello World
 bash$

Subtleties

 Some subtleties embedded in these examples:

•

We used an application-launch command line (java) as an example, but this
discussion applies to all class references. All references are stored internally as
full package+class references and subject to the same class-loading logic that is
used for launching applications.

•

Notice that we asked the java launcher to run Hello, not Hello.class. If you're
new to Java, one of your first mistakes will be to try to run class files. Don't. With the
java application launcher, you request a class name and let the class loader resolve
it to a .class file somewhere.

How a Class Path Is Constructed for Applications

Construction of the class path became more complicated (but more robust) with JDK1.2,
so we will split the discussion between JDK1.1 and JDK1.2. Note that this discussion is
specific to the Sun implementation (other Java implementations may do it differently)
running in UNIX/Linux environments (Windows systems, for example, use a different path
separator).

 JDK1.1 Class Path Construction

JDK1.1 defines a single class path—a colon-separated list of directories and archive files.
The value of this class path depends on the presence of certain environment variables,
as shown in Table 14.1.

 Table 14.1 JDK1.1 Class Path Variables

 Environment Variables

Class Path (newlines inserted for
readability)

 CLASSPATH defined

$CLASSPATH

CLASSPATH undefined
JAVA_HOME defined
 $JAVA_HOME/lib/classes.jar:
$JAVA_HOME/lib/rt.jar:
$JAVA_HOME/lib/i18n.jar:
$JAVA_HOME/lib/classes.zip

.:
$JAVA_HOME/classes:

 - 217 -

CLASSPATH undefined
JAVA_HOME undefined
 the java launcher executable)

(same as above, where a value of
$JAVA_HOME is inferred from the path to

These settings apply when launching an app, when compiling, and when launching other
SDK tools. One exception is the appletviewer tool: it does not include "." in the default
class path.

 The value of the class path can be changed by command-line options (shown in Table

14.2) to the application launcher.

 Table 14.2 JDK1.1 Command-Line Options to Alter Class Paths

 Command

Class Path

 java -classpath <newclasspath>

<newclasspath>

 jre -classpath <newclasspath>

<newclasspath>

 jre -cp <newclasspath>

<newclasspath>:
<current class path>

Note that the java application launcher is shipped only with SDK1.1, whereas the jre
launcher is shipped with SDK1.1 and JRE1.1: jre is intended for use in deployment
environments.

Some of the other SDK tools, such as the Java compiler, also support a -classpath
argument. For those that do not, you can change the class path by modifying the
CLASSPATH environment variable.

 JDK1.2 Class Path Construction

The JDK1.1 class path structure has caused countless headaches in development and
deployment environments. The use of a single path for finding core classes, extensions,
and user classes is confusing and easily misused.

For JDK1.2, Sun defined three mechanisms for locating classes—one for core classes
needed to boot the environment, one for standard extensions, and one for user classes. It
is also possible, with this new mechanism, to assign different degrees of trust and
privilege to classes from the different sources. When the class loader needs to resolve a
class name, it searches the three in order: core, extension, user.

 Boot Class Path: Finding the Core Classes

The boot class path supplies the core Java classes—the huge collection of classes that
comprise the Java 2 Platform. Defining $JAVA_HOME to mean the installation directory(1)
of the SDK or JRE, Table 14.3 shows the default boot class path value.

 - 218 -

(1)
 This is a notational convenience. JDK1.2 ignores the environment variable and always
infers the value of JAVA_HOME from the path to the Java executables.

 Table 14.3 Default Boot Class Paths

 Installation

Default Boot Class Path

 JRE1.2

$JAVA_HOME/lib/rt.jar:
$JAVA_HOME/lib/i18n.jar:
$JAVA_HOME/classes

 SDK1.2

$JAVA_HOME/jre/lib/rt.jar:
$JAVA_HOME/jre/lib/i18n.jar:
$JAVA_HOME/jre/classes

One normally leaves the boot class path alone, but it can be changed with a nonstandard
option to the java application launcher (see Chapter 17, "The Java Application
Launchers: java, jre and oldjava," Section "Non-standard SDK1.2/JRE1.2 Options").

 Extensions Class Path

 Extensions are installed in a special directory within a JDK1.2 installation tree, as shown

in table 14.4.

 Table 14.4 JDK1.2 Extension Installation Directories

 Installation

Extension Installation Directory

 JRE1.2

$JAVA_HOME/lib/ext

 SDK1.2

$JAVA_HOME/jre/lib/ext

 The extensions must be packaged in jar files in that directory, and the choice of directory

cannot be overridden.

 User Class Path

The CLASSPATH environment variable functions as before, but now exclusively for your
application classes. If CLASSPATH is not defined, the class path defaults to the current
directory. It can be overridden with command-line options on the java application
launcher, as shown in table 14.5 (there is no longer a jre application launcher).

 - 219 -

 Table 14.5 JDK1.2 Command-Line Options to Alter Class Paths

 Command

Class Path

 java -classpath <newclasspath>

<newclasspath>

 java -cp <newclasspath>

<newclasspath>

 java -jar <jarfile>

<jarfile>

The user class path is used by almost all JDK1.2 tools, with one exception. The SDK1.2
appletviewer application ignores the user class path entirely to better emulate
browser deployment environments.

 For Further Reading

 The construction of class paths is explored in some detail in Sun's SDK1.2

documentation bundle. Table 14.6 identifies the files of interest.

 Table 14.6 JDK1.2 Class Path Documentation

 Document

Contents

 docs/tooldocs/

findingclasses.html

Information on how classes are located

 docs/guide/extensions/

extensions.html

Description of the Java Extensions Framework, including
some subtleties on how extension class libraries can add
other extension class libraries to the class path

 How a Class Path Is Constructed for Applets

 Although this topic is not highly relevant to setting up a Linux development platform, we'll

give it brief mention.

The principles for applet class paths are no different than for applications: browsers such
as Netscape have a class path that includes the core browser classes and centrally
installed plug-ins, and any plug-ins installed under your home directory.

The interesting magic occurs when a browser encounters one of the HTML tags that start
an applet (<APPLET>, <OBJECT>, or <EMBED>). These tags and their associated
parameters (code, codebase, object) effectively modify the class path in the browser's
JRE to include the networked source for the applet classes. Depending on the choice of
tag parameters, the <APPLET> tag specifies either

 - 220 -

 • A codebase and an object—comparable to specifying a class path and a class with
the java application launcher, or

 • A specific .class file to be loaded—unlike launching applications

Adding Standard Extensions and Application Classes

 Our discussion of class path construction has already touched on this topic, but we'll

provide some specific instructions here.

 What do we mean when we speak of standard extensions and application classes? What

is the difference between the two? Not very much:

•

A standard extension is a class library with expected wide usage among applications,
published in the form of a Java ARchive (jar) file. Examples include the Java
Cryptography Extension and the Java Naming and Directory Interface.

 • An application is a collection of classes, published by you or someone else, probably

in the form of a jar file.

 While standard extensions and applications may be packaged similarly, the two cases

are handled differently.

 Adding Standard Extensions and Application Classes Under

JDK1.1

 The JDK1.1 class path model does not distinguish between standard extensions and any

other collection of classes, although you may want to. A sensible approach is

 • When installing a standard extension, select a place to install it and add the associated

jar file(s) to your CLASSPATH environment variable.

 • When installing a Java app, select a place to install it. To run the app, use the jre -

cp command-line option to specify where its class file(s) can be found.

As you install more standard extensions on your system, your CLASSPATH will grow to
reflect this—it serves as sort of a running history of what is installed on your system. You
typically set your CLASSPATH in your ~/.bash_profile file, so a system with the
collections classes, Swing 1.1, Java Activation Framework, and JavaMail installed may
include a ~/.bash_profile entry looking something like this:

 export CLASSPATH=/usr/local/Java/jdk117_v3/lib/rt.jar:\
 /usr/local/Java/jdk117_v3/lib/i18n.jar:\
 /usr/local/Java/jdk117_v3/lib/classes.zip:\
 /usr/local/Java/1.1collections/lib/collections.jar:\
 /usr/local/Java/swing-1.1/swingall.jar:\
 /usr/local/Java/jaf-1.0.1/activation.jar:\
 /usr/local/Java/javamail-1.1.2/mail.jar:\
 .

 Adding Standard Extensions and Application Classes Under

JDK1.2

As the previous case shows, using the CLASSPATH variable to maintain a running history
of where you have installed everything is ugly and troublesome. Under the JDK1.2
model, standard extensions are placed in a single location and need not clutter up the

 - 221 -

CLASSPATH. You need only install your standard extension jar files in this directory
indicated in table 14.7.

 Table 14.7 Standard Extension Installation Directories

 Installation

Extension Installation Directory

 JRE1.2

$JAVA_HOME/lib/ext

 SDK1.2

$JAVA_HOME/jre/lib/ext

 Alternatively, you can install the extension elsewhere and place symbolic links to the jar

files in the ext directory.

Application classes are installed, as in JDK1.1, in some suitable location, and the
CLASSPATH variable or the java launcher runtime options can be used to locate the
classes.

Adding, Changing, and Configuring Fonts

Font support has changed significantly between JDK1.1 and JDK1.2. Whereas JDK1.1
relied exclusively on platform-native fonts provided by the underlying windowing system,
JDK1.2 includes scalable font rasterizers that directly support common scalable font
formats. In essence, JDK1.2 owns typeface glyph generation, just as it owns a GUI. This
frees Java from the many weaknesses of X font support, albeit at a significant cost in
performance.

In both JDK1.1 and JDK1.2, font names are described in a platform-neutral format
consisting of a typeface name, a style, and a point size. For example, foobar-bold-10
describes a 10-point bold font from the foobar family. Both environments also provide
some standard logical names, Serif, SansSerif, Monospaced, Dialog, and
DialogInput, to describe fonts used by the GUI; a 12-point version of the font used for
dialogs would be called Dialog-plain-12. (For historical reasons, some environments
provide logical fonts named Helvetica, TimesRoman, and Courier, although
applications are officially discouraged from relying on those names.)

The mapping between the platform-neutral names and resident fonts occurs in the JRE's
lib/ subdirectory. We'll describe here how to use the font-related configuration files,
options, and environment settings.

 Configuring Fonts in JDK1.1

The font configuration files can be found in the lib/ subdirectory of SDK1.1 and JRE1.1
installations. The relevant file is font.properties, and its many variants for locales
(font.properties.ja for Japan, font.properties.ru for Russia, and so on).

The job of the font.properties files is to stitch together various X Window System
fonts to support the two-byte Unicode set used by Java. Unicode supports all the
characters in the world, whereas the individual X fonts do not. The font.properties
files assign some property values that handle the mapping from X to Unicode. For

 - 222 -

example, this excerpt:

 # Serif font definition
 #
 serif.plain.0=-adobe-times-medium-r-normal—*-%d-*-*-p-*-iso8859-1
 serif.1=-itc-zapfdingbats-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.2=-adobe-symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.italic.0=-adobe-times-medium-i-normal—*-%d-*-*-p-*-iso8859-
1

 serif.bold.0=-adobe-times-bold-r-normal—*-%d-*-*-p-*-iso8859-1

 serif.bolditalic.0=-adobe-times-bold-i-normal—*-%d-*-*-p-*-
iso8859-1

is mapping several different X fonts into the Java font designated serif. A common
Adobe Times font (found in most X Window System installations) is mapped to Unicode
characters 0x0000-0x00ff, a Zapf Dingbat font is mapped to the appropriate Unicode
character range, as is a commonly found Adobe symbol font. Notice that four different
treatments of the Times font—regular, italic, bold, and bold italic—are mapped into
serif.0, whereas a single treatment of the other fonts is used for serif.1 and serif.2.

 How is the mapping performed from these fonts into the Unicode character set? The

answer lies in some property definitions further down in font.properties:

 # Static FontCharset info.
 #
 # This information is used by the font which is not indexed by
Unicode.

 # Such fonts can use their own subclass of FontCharset.
 #
 fontcharset.serif.0=sun.io.CharToByteISO8859_1
 fontcharset.serif.1=sun.awt.motif.CharToByteX11Dingbats
 fontcharset.serif.2=sun.awt.CharToByteSymbol

Platform-specific classes (subclasses of sun.io.CharToByteConverter) shipped as
part of the runtime environment provide the actual mappings into the Unicode character
set.

Using a small Java program called ShowFonts11 (see Appendix B, "Miscellaneous
Program Listings"), let's take a look at the default fonts available in JDK1.1 (see Figure
14.1).

 Figure 14.1: The standard logical fonts in JDK1.1.

 - 223 -

Subtleties

 There are some assumptions buried in the font.properties font definition

mappings:

•

The platform-specific mappings assume a particular set of characters in the X
fonts: that the iso8859-1 font indeed contains the expected characters, that the
dingbats font contains the customary little pictures, and that the symbol font
contains the expected assortment of Greek letters and mathematical symbols—all
at the proper locations. If these assumptions are incorrect, Java will display some
characters incorrectly or not at all.

•

The font names on the right-hand side are expected to be the usual X Window
System font names, with several fields wild-carded and with the familiar C/C++
"%d" integer format descriptor in the point size field. When Java needs to use a
font in a particular size, it generates a font name containing the appropriate point
size and requests the font from the X server.

 Knowing your way around this file, you can now make changes or additions, as

discussed in the following sections.

 Changing JDK1.1 Font Assignments

 We can edit the assignments to change the choice of X11 font. For example, we can

replace the SansSerif-plain definition in font.properties

 sansserif.plain.0=-adobe-helvetica-medium-r-normal—*-%d-*-*-p-*-
iso8859-1

 with another X font (admittedly a poor choice)

 sansserif.plain.0=-schumacher-clean-medium-r-normal—*-%d-*-*-p-*-
iso8859-1

 resulting in this (unfortunate) change (see Figure 14.2).

 Figure 14.2: Modifying a standard font assignment.

 A complete list of available X11 fonts can be obtained by running the Linux xlsfonts

utility.

 Adding New JDK1.1 Fonts

 We can also add an entirely new set of fonts:

 - 224 -

 # Add Bitstream Charter fonts
 charter.plain.0=-bitstream-charter-medium-r-normal —*-%d-*-*-p-*-
iso8859-1

 charter.italic.0=-bitstream-charter-medium-i-normal —*-%d-*-*-p-
*-iso8859-1

 charter.bold.0=-bitstream-charter-bold-r-normal —*-%d-*-*-p-*-
iso8859-1

 charter.bolditalic.0=-bitstream-charter-bold-i-normal —*-%d-*-*-
p-*-iso8859-1

 # Add character mapping for Charter
 fontcharset.charter.0=sun.io.CharToByteISO8859_1

 resulting in this new font (see Figure 14.3).

 Figure 14.3: Adding a new font to JDK1.1.

An unfortunate "feature" of Sun's Abstract Windowing Toolkit (AWT) implementation (but
not all implementations) is that the Toolkit.getFontList() call—the only available
JDK1.1 method for listing fonts—reports only the standard logical names. Our new
Charter font will not appear in the listing but is available for use by the java.awt.Font
constructors and factories.

 Adding Font Aliases

 The font.properties file also supports an alias naming mechanism:

 alias.foobar=serif

 with the predictable result (see Figure 14.4).

 Figure 14.4: A new font name created with an alias.

 As with new fonts, aliased font names might not show up in a
ToolKit.getFontList() listing.

 Adding Fonts Not Installed in X

JDK1.1 obtains all of its fonts from the X server. To add a font not currently installed in
the X Window System, first install the font in X and then add it to font.properties as
described previously.

 Configuring Fonts in JDK1.2

JDK1.2 supports scalable fonts as the primary method of glyph generation. Although it is
still capable of obtaining fonts from the X server, its preferred approach is to work directly
with scalable fonts in the form of TrueType, PostScript Type1, or F3 font files. By

 - 225 -

manipulating scalable font outlines, JDK1.2 can integrate font rendering with the full
capabilities of java.awt.Graphics2D, which includes antialiasing, arbitrary affine
transformations, and fractional font metrics (see Chapter 3, "A Look at the Java Core
Classes," in the section "Package java.awt" for a demo).

 In the following discussion, we will refer to a scalable font file, such as a TrueType .ttf

or a Type1 .pfb, as a scalable font program (SFP).

To a first approximation, configuring JDK1.2 fonts looks much like configuring JDK1.1
fonts. The interesting difference is in how the fonts are found and what fonts are found.
We begin with a discussion of the similarities, followed by a detailed look at the new ways
in which JDK1.2 finds its fonts. A word of caution: while the JDK1.2 font mechanism gives
Java impressive new text rendering capabilities, the details are complex and of interest
only if you need the new capabilities.

 Similarities to JDK1.1

Like JDK1.1, JDK1.2 uses a font.properties file. The contents look similar in both
environments, and the previous discussion about defining the logical fonts and mapping
them to Unicode still applies. We can see some minor differences in the choice of fonts in
this excerpt:

 # Serif font definition
 #
 serif.0=-b&h-lucidabright-medium-r-normal—*-%d-*-*-p-*-iso8859-1
 serif.1=—zapf dingbats-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.2=—symbol-medium-r-normal—*-%d-*-*-p-*-adobe-fontspecific

 but the character mappings appear identical:
 fontcharset.serif.0=sun.io.CharToByteISO8859_1
 fontcharset.serif.1=sun.awt.motif.CharToByteX11Dingbats
 fontcharset.serif.2=sun.awt.CharToByteSymbol

and the advice on editing this file is unchanged from JDK1.1. One minor difference (as of
this writing): the Blackdown distribution does not currently ship with font.properties
files for other locales.

The crucial difference in JDK1.2 is in how those X font names are resolved. The following
three sections explore the gritty details of where JDK1.2 fonts come from and how you
can control this behavior.

 Where and How JDK1.2 Gets Fonts

 JDK1.2 is designed to render scalable fonts and it uses SFPs where it can find them.

Where it cannot, it uses scalable fonts from the X server.

 Where does it find SFPs? By default, in the following directories (the defaults may

change in different locales):

 $JAVA_HOME/lib/fonts (in a JRE1.2 installation), or
 $JAVA_HOME/jre/lib/fonts (in a SDK1.2 installation)
 /usr/X11R6/lib/X11/fonts/Type1
 /usr/X11R6/lib/X11/fonts/TrueType

 The JRE and SDK are bundled with a dozen Lucida SFPs, and the standard five logical

fonts (serif, sans serif, and so on) are defined in terms of those fonts. In addition,

 - 226 -

the AWT looks for SFPs in two directories where X customarily places scalable fonts (this
default path is compiled into libfontmanager.so in the Blackdown distribution). In all
these cases, Java makes direct use of the SFPs in these directories—it is not getting the
fonts through the X server.

After finding the SFPs, the AWT finds all scalable fonts available from the X server—
those whose names contain the string 0-0-0-0. (To see such a list, run xlfd -fn
'*0-0-0-0*'.) All these fonts are made available for use by the application.

 Figure 14.5 shows a view of our font architecture.

 Figure 14.5: JDK1.2 obtains scalable fonts directly from scalable font programs

and from the X server.

The ShowFonts12 program (see Appendix B, "Miscellaneous Program Listings") is a
JDK1.2 utility that displays all available Java fonts, rendering the samples with
antialiasing and fractional font metrics. Let's examine a screen dump (see Figure 14.6).

 Figure 14.6: ShowFonts12 screen dump showing some of the available JDK1.2

fonts.

This is a portion of the universe of available fonts: you can see some of the standard
logical fonts (dialog) as well as dozens of fonts picked up from elsewhere. Figure 14.7
takes a closer look at a detail from this dump.

 - 227 -

 Figure 14.7: Some typefaces are rendered with antialiasing; some are not.

You can see that some of the fonts are rendered with antialiasing, and some without. The
Courier font comes from /usr/X11R6/lib/X11/fonts/Type1; it's an SFP used
directly by the AWT. The Bookman font came from the X server: it cannot be antialiased
(or transformed, or subjected to any of java.awt.Graphics2D's other new
capabilities). Of course, the situation would change if the AWT knew where it could find
the actual SFP. The next section explores that topic.

 Setting the JDK1.2 Font Path

The environment variable JAVA_FONTS can be used to override the JDK1.2 font path. If
set, this variable overrides the entire path: SFPs will be found only in directories specified
in this variable. So a reasonable setting on our sample system would copy the default
path and append new directories:

 export JAVA_FONTS=/usr/local/Java/jdk1.2/jre/lib/fonts:\
 /usr/X11R6/lib/X11/fonts/Type1:\
 /usr/X11R6/lib/X11/fonts/TrueType:\
 /usr/share/fonts/default/Type1

The new entry at the end specifies a font directory that holds some other SFPs, including
Bookman, published by URW. (The next section discusses the URW fonts in more
detail.)

 Running ShowFonts12 again shows some differences (see Figure 14.8).

 Figure 14.8: ShowFonts12 results, with some new fonts added to the

 - 228 -

JAVA_FONTS path.

 The Bookman font appears, now under the name URW Bookman, and with antialiasing

(see Figure 14.9).

 Figure 14.9: New—an antialiased Bookman font.

 We'll discuss the reason for the name change in the following Subtleties discussion.

Subtleties

We have glossed over some tricky subtleties about JDK1.2 font usage in this
discussion. These will not affect most installations, but they can sometimes lead to
unexpected behavior.

•

JDK1.2's use of SFPs depends on file system access: the AWT needs to read the
file. If you are running Java remotely from the X display host, the directories
containing the SFPs used by Java (and pointed to by JAVA_FONTS) must be
resident on a file system visible to that remote host.

 • That restriction does not apply for fonts obtained from the X server—it is X's job to

read those font files.

•

When JDK1.2 uses SFPs, it relies on the fonts.dir file resident in the directory
containing the SFP. Although that file was originally intended for use by the X
server, the AWT uses it to map from the X-style names (in font.properties)
to the SFP filenames. This name is also a filter: After JDK1.2 finds the SFP
corresponding to that name, it ignores a font from the X server with the same
name.

•

The character mappings in font.properties (the fontcharset.*
assignments) might not be used when JDK1.2 uses SFPs. Some SFPs already
have Unicode mappings.

•

Notice that font.properties has a reduced role in defining new fonts in
JDK1.2. Whereas all new JDK1.1 fonts had to be defined in this file, JDK1.2
discovers available fonts in its font path and in the X server. However, you must
call GraphicsEnvironment.getAvailableFontFamilyNames() before you
can use these fonts: Even if you know the name of the font you want, the JDK
may not find it until this call has been made.

•

In generating its platform-neutral names, JDK1.2 must map what it knows about
the fonts into the platform-neutral namespace. When handling a font from the X
server, it constructs this platform-neutral name with information available from X;
when handling an SFP, it constructs this name with data read from the SFP. The
results can be drastically different, as the treatment of the Bookman font showed
previously.

 - 229 -

•

You cannot assume that an SFP has all characters you need. If some are
missing, then Java will render those characters incorrectly or not at all. The
Lucida fonts bundled with Java are more complete than many other available
SFPs.

•

The interline spacing of fonts is a potentially confusing matter. In any application
displaying text, interline spacing is determined from two font-specific statistics: the
ascent and the descent. The standard logical fonts are odd beasts, constructed
from three different components—a base font plus a dingbat font plus a symbol
font. For purposes of computing interline spacing, Java chooses the maximum
ascent and descent of the fonts: A font you never see could end up affecting the
spacing of a font you do see.

 Case Study: Configuring JDK1.2 to Use URW Fonts

URW, a German design company and font foundry
(http://www.urwpp.de/home_e.htm), donated some high-quality scalable fonts to
the GhostScript community under GPL licensing terms. A number of Blackdown users
have chosen to use these fonts for JDK1.2, both because of dissatisfaction with the
bundled Lucida fonts and because most Linux systems do not have a scalable Zapf
Dingbat font (or any Zapf Dingbat font) installed, resulting in this annoying message when
starting a Java application:

 Font specified in font.properties not found [—zapf dingbats-
medium-r-normal—*-%d-*-*-p-*-adobe-fontspecific]

The URW fonts are available from many sources, including as a Red Hat RPM (urw-
fonts). The collection consists of 35 PostScript Type1 scalable fonts, plus supporting
files and the important fonts.dir file. You can adopt these fonts for your own use by
setting an appropriate font path, for example (based on where the Red Hat RPM installs
the fonts):

 export JAVA_FONTS=/usr/share/fonts/default/Type1:\
 /usr/X11R6/lib/X11/fonts/Type1:\
 /usr/X11R6/lib/X11/fonts/TrueType

 and by changing entries in the font.properties file. The excerpts in Listing 14.1

describe a usable set of Java fonts.

 Listing 14.1 An Excerpt from the font.properties File Mapping the Free URW

Fonts to Java's Logical Font Names

 # Serif font definition
 #
 serif.0=-urw-Times-medium-r-normal—*-%d-*-*-p-*-iso8859-1
 serif.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.italic.0=-urw-Times-medium-i-normal—*-%d-*-*-p-*-iso8859-1
 serif.italic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 serif.italic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 - 230 -

 serif.bold.0=-urw-Times-bold-r-normal—*-%d-*-*-p-*-iso8859-1
 serif.bold.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 serif.bold.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 serif.bolditalic.0=-urw-Times-bold-i-normal—*-%d-*-*-p-*-
iso8859-1

 serif.bolditalic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-
*-adobe- fontspecific

 serif.bolditalic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 # SansSerif font definition
 #
 sansserif.0=-urw-Helvetica-medium-r-normal—*-%d-*-*-p-* -iso8859-
1

 sansserif.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 sansserif.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 sansserif.italic.0=-urw-Helvetica-medium-o-normal—*-%d-*-*-p-*-
iso8859-1

 sansserif.italic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-
*-adobe- fontspecific

 sansserif.italic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 sansserif.bold.0=-urw-Helvetica-bold-r-normal—*-%d-*-*-p-*-
iso8859-1

 sansserif.bold.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 sansserif.bold.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 sansserif.bolditalic.0=-urw-Helvetica-bold-o-normal—*-%d-*-*-p-*-
iso8859-1

 sansserif.bolditalic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-
-p--adobe- fontspecific

 sansserif.bolditalic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe-fontspecific

 # Monospaced font definition
 #
 monospaced.0=-urw-Courier-medium-r-normal—*-%d-*-*-p-*-iso8859-1
 monospaced.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 monospaced.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 monospaced.italic.0=-urw-Courier-medium-o-normal—*-%d-*-*-p-*-
iso8859-1

 monospaced.italic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-
p-*-adobe- fontspecific

 monospaced.italic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe-fontspecific

 monospaced.bold.0=-urw-Courier-bold-r-normal—*-%d-*-*-p-*-
iso8859-1

 - 231 -

 monospaced.bold.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-
*-adobe- fontspecific

 monospaced.bold.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 monospaced.bolditalic.0=-urw-Courier-bold-o-normal—*-%d-*-*-p-*-
iso8859-1

 monospaced.bolditalic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-
--p-*-adobe- fontspecific

 monospaced.bolditalic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe-fontspecific

 # Dialog font definition
 #
 dialog.0=-urw-Avantgarde-book-r-normal—*-%d-*-*-p-*-iso8859-1
 dialog.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 dialog.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 dialog.italic.0=-urw-Avantgarde-book-o-normal—*-%d-*-*-p-*-
iso8859-1

 dialog.italic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 dialog.italic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 dialog.bold.0=-urw-Avantgarde-demibold-r-normal—*-%d-*-*-p-*-
iso8859-1

 dialog.bold.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 dialog.bold.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 dialog.bolditalic.0=-urw-Avantgarde-demibold-o-normal—*-%d-*-*-p-
*- iso8859-1

 dialog.bolditalic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-
p-*-adobe-fontspecific

 dialog.bolditalic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe-fontspecific

 # DialogInput font definition
 #
 dialoginput.0=-urw-Courier-medium-r-normal—*-%d-*-*-p-*- iso8859-
1

 dialoginput.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-*-
adobe- fontspecific

 dialoginput.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-adobe-
fontspecific

 dialoginput.italic.0=-urw-Courier-medium-o-normal—*-%d-*-*-p-*-
iso8859-1

 dialoginput.italic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-
p-*-adobe- fontspecific

 dialoginput.italic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-
adobe-fontspecific

 dialoginput.bold.0=-urw-Courier-bold-r-normal—*-%d-*-*-p-*-
iso8859-1

 dialoginput.bold.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-*-*-p-
*-adobe- fontspecific

 dialoginput.bold.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-*-

 - 232 -

adobe- fontspecific

 dialoginput.bolditalic.0=-urw-Courier-bold-o-normal—*-%d-*-*-p-*-
iso8859-1

 dialoginput.bolditalic.1=-urw-Zapf Dingbats-medium-r-normal—*-%d-
--p-*-adobe- fontspecific

 dialoginput.bolditalic.2=-urw-Symbol-medium-r-normal—*-%d-*-*-p-
*- adobe-fontspecific

 A full version of this file can be found on the CD-ROM.

 Figure 14.10 shows the result of these particular assignments to the URW fonts.

 Figure 14.10: The standard logical fonts, mapped to the URW scalable fonts.

 For Further Reading

 The SDK1.2 documentation bundle includes a writeup on the use of font.properties

files in docs/guide/internat/fontprop.html.

 Adding JIT Compilers

Just-in-time (JIT) compilers can noticeably improve Java performance. JDK1.2 comes
with a default JIT compiler from Sun (JDK1.1 does not). Although they do not achieve the
Holy Grail of native-level performance (and never will), JITs are an important Java
performance tool.

The notion behind JIT is that Java code is compiled, on-the-fly, into native code for
speedier execution. The compilation happens in a background thread during process
execution, causing short-term application slowdown for the promise of longer-term
speedup. Anyone is free to write a JIT: The JVM/JIT interface is well documented by Sun,
and several are available (see Chapter 33, "Just-In-Time Compilers"). JITs have shown
their greatest value in long-lived server processes, and, over time, they may lose favor to
newer JVM designs that subsume JIT behavior (see Chapter 29, "Mozilla ElectricalFire: A
New JVM," and 30, "Sun HotSpot Performance Engine").

JIT compilers are shipped as Linux-shared libraries and referenced from Java by a short
form of the library name: extract the part of the name between the lib and .so, so a JIT
called tya is shipped in library libtya.so. (This is the JDK's standard way of
referencing all native shared libraries on Linux.)

 Installing an Alternative JIT

 There are two steps to installing a JIT. Table 14.8 describes the steps, and their variants

for different JDK installations.

 Table 14.8 Steps to Installing a JIT

 - 233 -

 Step

SDK1.1/
JRE1.1

JRE1.2

SDK1.2

Install the JIT
where Java can
find it

Install the JIT
shared library in a
standard shared
library location(such
as /usr/lib)

Install the JIT
shared library in
directory
lib/i386 of the
JRE installation.

Install the JIT
shared library in
directory
jre/lib/i386 of
the SDK
installation.

or

Set LD_LIBRARY_
PATH environment
variable to point to
directory containing
the JIT.

 Tell Java to use

the JIT

set JAVA_COMPILER=<jit name>
run java or jre

 or

 run java or jre with the -Djava.compiler=<jit name> option

 Examples:

 bash$ export JAVA_COMPILER=tya
 bash$ java ...

 bash$ java -Djava.compiler=tya ...

 Disabling a JIT

By default, JDK1.1 runs without a JIT, and JDK1.2 runs with the default Sun JIT,
sunwjit. To disable JIT, use one of the preceding techniques to specify an empty
string:

 bash$ export JAVA_COMPILER=

 bash$ java ...

 Command line bash$ java -Djava.compiler= ...

 Why would you ever want to disable a JIT? Two reasons:

 • JITs sometimes cause bugs.

 • If you get a Java stack dump, the results are more meaningful with the JIT disabled.

 - 234 -

Stack dump with JIT:

 java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Compiled Code)
 at Hello.main(Compiled Code)

 Stack dump without JIT:

 java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Thread.java:983)
 at Hello.main(Hello.java:11)

Accommodating Multiple Java Installations

It is possible to have multiple Java installations on one host—perhaps an SDK1.1 and
SDK1.2, or a Sun SDK and Kaffe (see Chapter 26, "Kaffe: A Cleanroom Java
Environment"). To ensure they do not interfere with each other, you must follow one
simple guideline: ensure that the PATH, CLASSPATH, JAVA_HOME, and any dynamic-
loader-related environment variables are all consistent with one of the installations.

 Table 14.9 shows some example situations and appropriate environment settings.(2)

(2)

Not all Java implementations care about all these variables. Kaffe does not use
JAVA_HOME, for example. And most environments do something reasonable if
CLASSPATH is not defined. But if these variables are defined, it is important to define
them consistently for the Java installation being used.

 Table 14.9 Example Java Environment Settings

 Installation

Environment Settings

 SDK1.2 in /usr/
local/Java/jdk1.2

JAVA_HOME unset

CLASSPATH=.
PATH=/usr/local/Java/jdk1.2/bin:<...other
paths...>

JRE1.1 in
/usr/local/
Java/jre1.1

JAVA_HOME=/usr/local/Java/jre1.1
CLASSPATH=/usr/local/Java/jre1.1/lib/rt.jar:/
usr/local/Java/jre1.1/lib/i18n.jar:/usr/local
/Java/jre1.1/lib/classes.zip:.
PATH=/usr/local/Java/jre1.1/bin:<...other
paths...>

 Kaffe in /usr/local/
Java/kaffe

JAVA_HOME unset
CLASSPATH=/usr/local/Java/kaffe/share/
kaffe/Klasses.jar:.
PATH=/usr/local/Java/kaffe/bin:<...other paths...>

 If you use any environment variables that affect dynamic loading (LD_LIBRARY_PATH or

 - 235 -

LD_PRELOAD, see the later section "Environment Variables Affecting the SDK/JRE"), they
should not reference directories or libraries associated with a different Java installation.

Configuring JDK Security Settings

 JRE and SDK installations include files that are used to configure the Java security

mechanism. The relevant files can be found at the locations shown in Table 14.10.

 Table 14.10 Security Files

 Installation

Security Files

 SDK1.1/JRE1.1

$JAVA_HOME/lib/security/java.security

 JRE1.2

$JAVA_HOME/lib/security/* (multiple files)

 SDK1.2

$JAVA_HOME/jre/lib/security/* (multiple files)

These files can be used to install Java security providers and, in SDK1.2/JRE1.2, set
detailed and fine-grained security policies. SDK1.2/JRE1.2 provides a GUI-based tool for
administration of the security/java.policy file (see Chapter 24, "Miscellaneous
SDK Development Tools," in the section "JDK1.2 GUI-Based Policy Administration Tool:
policytool").

There is nothing Linux-specific about the contents of these files. Details on security
configuration can be found in docs/guide/security/index.html of either the SDK1.1
or SDK1.2 documentation bundle.

 Using Green Versus Native Threads

The Blackdown release supports the use of Sun's multithreading emulation (green
threads) and native Linux threads. Default behavior is to use green threads in JDK1.1
and native threads in JDK1.2. You can explicitly choose the threading implementation
with an environment variable or command-line option, as shown in Table 14.11.

 Table 14.11 Settings to Choose a Runtime Threading Model.

 Method

Example

 Environment variable

export THREADS_FLAG=green
or
export THREADS_FLAG=native

 Command-line option

java -green ...
or

 - 236 -

java -native ...
Must be the first command-line option.

 We will discuss green and native threads in more detail in Chapter 54, "Java, Linux, and

Threads".

 Environment Variables Affecting the SDK/JRE

 We've discussed a few environment variables that affect the behavior of the Blackdown

SDK/JRE. Table 14.12 provides a more comprehensive collection.

 Table 14.12 Environment Variables Affecting SDK/JRE Behavior

 Variable

SDK1.1/JRE1.1 Function

SDK1.2/JRE1.2 Function

 CLASSPATH

Colon-separated list of
directories and archives
containing core, extensions,
and user classes. See
"JDK1.1 Class Path
Construction."

Colon-separated list of
directories and archives
containing user classes. See
"JDK1.2 Class Path
Construction."

 DEBUG_PROG

Specifies the name of a
native debugger to use on the
java executable. The java
launch script runs the java
executable under the
debugger - typically for
purposes of debugging the
java executable or native
code in the application.

Specifies the name of a
native debugger to use on the
java executable. The java
launch script runs the java
executable under the
debugger - typically for
purposes of debugging the
java executable or native
code in the application.

 DISPLAY

Specifies the X Window
System display to which Java
sends graphical/GUI
I/O(normally set when you
are running under X; the
meaning of this variable is
explained in the man page for
the X Window System: run
man X). If unset, Java runs a
GUI-less executable with no
dependencies on the native
AWT library or any X
libraries—suitable for use on
servers. This requires that the
application have no use of the
AWT. (See also NS_JAVA,
below.)

Specifies the X Window
System display to which Java
sends graphical/GUI I/O.
Unlike in JDK1.1, there is no
special behavior if this
variable is not set. JDK1.2
automatically avoids any
dependencies on X libraries
or the X server if the AWT is
not used.

 DO_NOT_CHECK_MEM

Only active when running
with green threads. If set,
disables some AWT memory-

Only active when running
with green threads. If set,
disables some AWT memory-

 - 237 -

bug checking: a risky
performance enhancement.

bug checking: a risky
performance enhancement.

 DO_NOT_FREE

Only active when running
with green threads. If set,
disables all freeing of heap
memory.

Only active when running
with green threads. If set,
disables all freeing of heap
memory.

 DYN_JAVA

If set, runs a version of the
java executable with a
dynamically—instead of
statically—linked Motif library.
Requires that your system
have an installation of Motif
library (or the lesstif clone from
http://www.lesstif.org).

 JAVA_COMPILER

Specifies a JIT compiler—
see"Adding JIT Compilers." If
unset, JVM defaults to no JIT
compilation.

Specifies a JIT compiler —
see "Adding JIT Compilers" If
unset, JVM defaults to using
the Sun sunwjit JIT
compiler.

 JAVA_FONTS

Specifies a font path for
SFPs. See "Setting the
JDK1.2 Font Path." If unset, a
default font path is used.

 JAVA_HOME

Location of the top of the
SDK/JRE installation. If set,
this is used by the JDK to find
class and native shared
libraries.

 JDK_NO_KERNEL
_FIX

Only active when running
with green threads. If set,
disables a workaround for a
kernel accept()bug.

Only active when running
with green threads. If set,
disables a workaround for a
kernel accept() bug.

 LD_LIBRARY_PATH

A standard Linux environment
variable for the dynamic
loader: a colon- separated list
specifying non- standard
directories for loading of
dynamic libraries, including
JNI and JIT libraries.

A standard Linux environment
variable for the dynamic
loader: a colon-separated list
specifying nonstandard
directories for loading of
dynamic libraries, including
JNI libraries. This flag does
not affect loading of JIT
libraries in JDK1.2 (see
"Adding JIT Compilers" about
installing JITs).

 LD_PRELOAD

A standard Linux environment
variable for the dynamic
loader: a colon- separated list
of shared libraries(.so files)
to be loaded before execution
begins. Typically used to:
Override an application's
default choice for a shared
library, or Override certain
symbols provided by other

A standard Linux environment
variable for the dynamic
loader: a colon-separated list
of shared libraries (.so files)
to be loaded before execution
begins. Typically used to:
Override an application's
default choice for a shared
library, or Override certain
symbols provided by other

 - 238 -

shared libraries. (Example:
Chapter 56, "X Window
System Tips and Tricks."

shared libraries. (Example:
section "Xwinwrap:).
Controlling Colormap and
Visual Usage.")

 NS_JAVA

If set, runs a GUI- less
version of the Java
executable with no
dependencies on the native
AWT library or any X
libraries—suitable for use on
servers. This requires that the
application have no use of the
AWT.

(Not needed in JDK1.2 - the
JDK automatically avoids any
dependencies on X libraries
or the X server if the AWT is
not used.)

 THREADS_FLAG

If set to green, forces use of
green threads. If set to
native, forces use of native
threads. See "Green Versus
Native Threads."

If set to green, forces use of
green threads. If set to
native, forces use of native
threads. See"Green Versus
Native Threads."

 Summary

This chapter has explored the details of how to configure the Blackdown port of the Sun
JDK on Linux. With this background, you should be able to understand and handle many
configuration issues that can arise in a Linux deployment environment. But if problems
arise beyond the areas discussed in this chapter, see Chapter 15 to learn more about
Blackdown troubleshooting.

Chapter 15: Troubleshooting the Blackdown
JRE/JSDK Installation

 Overview

 A Yourf Blackdown installation will work perfectly the first time, and you will never have

cause for complaint.

 In the event that this prophecy is inaccurate, this chapter addresses some of the

problems Java/Linux users have encountered and what to do about them.

Before you dive into detailed troubleshooting, the first questions to ask when you
encounter Java failures are do you have a capable system (kernel 2.0 or 2.2, at least
32MB of virtual memory) and have you loaded the proper version of the JDK for your
system. (See Chapter 13, "Blackdown: The Official Linux Port," in the section "Supported
Linux Versions for the Blackdown SDK and JRE.")

 To check your kernel version, use the command:

 uname -r

 A value of 2.0 or 2.2 (followed by subordinate version numbers) indicates kernel version

2.0 or 2.2.

 To check your memory, use this command to report your memory size in KB:

 free

 - 239 -

Total virtual memory is the sum of total memory and total swap. Even 32MB may feel
pinched—see the "System Memory Limits" section, later in this chapter, for a discussion
on increasing your virtual memory.

 After eliminating these obvious causes, take a look at the common problems and the

sections in this chapter where they are discussed listed in Table 15.1.

 Table 15.1 Common Java/Linux Problems

 Problem or Message

Relevant Section

 Warning: Cannot allocate colormap
entry for default background.

Insufficient Colors to Allocate

Font specified in font.properties
not found[—zapf dingbats-medium- r-
normal—*-%d-*-*-p-*-adobe-
fontspecific]

JDK1.2 Missing Dingbat Fonts

Loading failures in core JDK shared native
libraries:
error in loading shared libraries:
... : undefined symbol
error in loading shared libraries:
... : cannot open shared object
file: No such file or directory

Trouble Loading JDK Core Shared
Libraries

Failure to find classes:
java.lang.NoClassDefFoundError or
similar problem reported during compilation or
execution of Java applications.

Java Failures to Find Classes:
Compilation and Execution

Exception in thread "main"
java.lang. UnsatisfiedLinkError: ...
libawt.so: ... cannot open shared
object file: No such file or
directory

AWT Dependence on X Libraries

 Warning: JIT compiler ... not found.
Will use interpreter.

Cannot Find JIT Compiler

Failure to run with your display depth or visual:
Raster IntegerInterleavedRaster:
... incompatible with
ColorModel ...
Display type and depth not
supported

Limited Support of X Visuals

 Error: can't find libjava.so

Java Startup Script Directory
Dependencies

 Java uses a lot of processes

Java Use of the Linux Process Table

 Java insists on an X display or the X libraries

even though the application does not open any

AWT Dependencies on X Availability

 - 240 -

windows.

 The application mysteriously freezes or dies

Unexplained Application Flakiness

Java runs out of memory:
Exception in thread ...
java.lang.OutOfMemoryError
Out of memory, exiting

Increasing Java Memory Limits

Exception in thread ...
java.lang.UnsatisfiedLinkError:
... (cannot load JNI libraries)

Finding JNI Libraries

 Cannot find include files when building native-

interface libraries.

Finding JNI Include Files

Order of activities/output is different between
green threads and native threads, or between
Linux and other platforms.

Implementation-Dependent Threading
Behavior

 Insufficient Colors to Allocate

 This message

 Warning: Cannot allocate colormap entry for default background.

often appears on systems with 8-bit-deep X displays when you start up a Java Abstract
Windowing Toolkit (AWT) application. It means that the X colormap is crowded by
applications requiring many colors—the most common offender is Netscape Navigator.

 The solution is not to run the offending applications, or to run them with an option to

install their own colormap. Not all applications have such an option, but Netscape does:

 netscape -install ...

There's a side effect: you see flashing "technicolor" displays whenever you give the focus
to an application with its own installed colormap. But this solution ensures that everyone
gets enough colors.

Java does not offer an option to install its own colormap—see Chapter 56, "X Window
System Tips and Tricks" section "Xwinwrap: Controlling Colormap and Visual Usage" for a
workaround to this oversight.

JDK1.2 Missing Dingbat Fonts

The AWT builds insufficient colors to allocate collection of default logical fonts from fonts
it finds on the system, as discussed in Chapter 14, "Configuring the Linux SDK/JRE
Environment" in the section "Adding, Changing, and Configuring Fonts." Its assumptions
about available fonts are sometimes wrong, and in the case of the Zapf Dingbats font, are
almost always wrong for Linux systems. This message

Font specified in font.properties not found [—zapf dingbats-
medium-r
-normal—*-%d-*-*-p-*-adobe-fontspecific]

 indicates that the Zapf Dingbats font, a collection of small icons, cannot be found.

 - 241 -

The solution is to install a scalable Zapf Dingbat font somewhere that Java can find it,
either in the X server or in a directory readable by the AWT. The section "Case Study:
Configuring JDK1.2 to Use URW Fonts" in Chapter 14 provides a case study in installing
a full new set of fonts to replace the default assignments. It will solve this problem, but it
is also more work than you absolutely need to do. Here is the quick two-step solution:

 1. Obtain and install the URW fonts described in the section "Case Study: Configuring

JDK1.2 to Use URW Fonts" of Chapter 14.

 2. Either add the new font directory to the X server font path

 bash$ xset fp+ /usr/share/fonts/default/Type1

 or modify Java's font path to find the new directory:

 bash$ export JAVA_FONTS=$JAVA_HOME/jre/lib/fonts:\
 /usr/X11R6/lib/X11/fonts/Type1:\
 /usr/X11R6/lib/X11/fonts/TrueType:\
 /usr/share/fonts/default/Type1

 (These sample instructions assume where the bundled JDK fonts are located and where

the URW fonts are installed. Your mileage may vary.)

 To make these settings stick

 • If you change the X server font path, your desktop should save the change when you

log out and restore it in future sessions.

 • If you set JAVA_FONTS, place the export command in your ~/.bash_profile, to

be run whenever you log in to a shell.

 As discussed in "Adding, Changing, and Configuring Fonts in JDK1.2" in Chapter 14, you

will get better-looking results with the JAVA_FONTS alternative.

Trouble Loading JDK Core Shared Libraries

The succession of changes to Linux's core C library, libc, has created occasional
incompatibilities between applications and libraries. To allow for this, the Blackdown team
builds multiple versions of its releases to support the variety of Linux libc configurations.

If your Java startup fails with an error message about loading a shared library and the
message refers to one of the Java libraries (libjava.so, libhpi.so, libjvm.so, or
some of the others bundled with the JRE and SDK), you have probably installed the
wrong JDK for your system.

 This problem may also manifest itself as an inexplicable failure in one of the JDK scripts:
No such file or directory.

See the discussion in Chapter 13, "Blackdown; The Official Linux Port" in the section titled
"Supported Linux Versions for the Blackdown SDK and JRE" on how to identify your
version of libc and choose the right version of the JDK1.1 or JDK1.2 Blackdown port.

Java Failures to Find Classes: Compilation and Execution

Java needs a class path to locate classes to be loaded at execution time, or resolved at
compilation time. JDK1.1 uses a single class path for finding all classes (see Chapter 14
in the section "JDK1.1 Class Path Construction"), whereas JDK1.2 uses a multitiered

 - 242 -

approach (see Chapter 14 in the section "JDK1.2 Class Path Construction").

In both environments, the rules that apply during execution also apply when you compile
Java sources with javac: the CLASSPATH variable or the -classpath option must
identify the source of all classes (SDK1.1) or all user classes (SDK1.2). If you cannot find
a class at execution or compilation time, your class path is missing something.

Many other compilers, such as Jikes (see Chapter 36, "The Jikes Compiler") and gjc (see
Chapter 38, "Generic Java Compilers," in the section "GJ: The Generic Java Compiler"), do
not use the JDK1.2 model for locating classes. Although they run under JDK1.2 and fully
support JDK1.2 compilation, these compilers must be told where to find all classes, either
with the CLASSPATH variable or the -classpath option. If the compiler cannot find a
class at compilation time, your class path is missing something.

 AWT Dependence on X Libraries

The AWT has dependencies on certain shared libraries from the X Window System;
libICE.so.6, libSM.so.6, libX11.so.6, libXext.so.6, libXp.so.6,
libXpm.so.4, and libXt.so.6. If Java reports a failure to load one of these shared
libraries required by libawt.so, you need to obtain current XFree86 libraries. For Red
Hat users, the relevant RPM is XFree86-libs.

The AWT also might have a dependence on the Motif library libXm.so.2. In JDK1.1, this
dependence is controllable with the DYN_JAVA environment variable (see Chapter 14 in
the section "Enviroment Variables Affecting the SDK/JRE"). Other Java implementations,
such as the Linux JDK from IBM, can also have this dependence. In this case, you need to
obtain a Motif or Motif-compatible library. A commercial Motif library is available from Metro
Link Incorporated (http://ww.metrolink.com/); a free Motif clone, Less Tif, is
available from the Less Tif home page, http://www.lesstif.org/. RPM distributions
of LessTif are available from RPM repositories.

Cannot Find JIT Compiler

See the discussion in the section titled "Adding JIT Compilers" in Chapter 14 on how to
install a Just-in-Time (JIT) compiler where the Java Virtual Machine can find it (the
requirements are different between JDK1.1 and JDK1.2).

Another (remote) possibility: some of the Blackdown JDK1.2 prereleases contained
incorrect permissions settings for the bundled JIT. If you cannot load the default JDK1.2
sunwjit compiler, check the permissions on the libsunwjit.so file in the libraries directory of
the JRE1.2 or SDK1.2 tree. If the file is not readable or executable, do the following in the
directory containing the file:

 chmod 0755 sunwjit.so

 Limited Support of X Visuals

Java was developed in an X Window System environment (Solaris) that does not support
the wide range of X display depths and visuals found in the Linux world. Although the
AWT works well with common 8-bit pseudo-color display, it is not uncommon to see a
message like

 Raster IntegerInterleavedRaster: ... incompatible with ColorModel
...

 when running on 16-, 24-, or 32-bit/pixel displays dissimilar to any found in the Solaris

world.

 - 243 -

The interim solution, until the AWT is improved to handle a wider choice of displays, is to
run your X server in a mode Java can support. See the Chapter 56 section "Experimenting
with X Server Settings" for a discussion of setting X server depth and visual modes.

 Java Startup Script Directory Dependencies

The startup script that launches java, javac, and other SDK/JRESDK applications
employs some shell programming tricks to figure out where it is installed and where to
find its libraries. The message

 Error: can't find libjava.so

indicates that the logic has failed. The most likely cause is that you are launching Java
through a symbolic link from somewhere outside the installation. Unfortunately, this
breaks the logic in the script. You need to delete the offending link and reference the
Java installation directly. You can do this by including the installation bin directory in
$PATH

 bash$ PATH=/usr/local/Java/jdk1.2/bin:$PATH
 bash$ java ...

 or by fully specifying the path to the executable:

 bash$ /usr/local/Java/jdk1.2/java ...

 This error might also occur if you try to run Java executables while you are in the

installation bin directory.

 Java Use of the Linux Process Table

 If you run Java with native threads, you may notice a process list like this when running
ps avx:

 PID TTY STAT TIME MAJFL TRS DRS RSS %MEM COMMAND
 23250 ttyp2 S 0:07 3573 9 30066 12996 10.1 java
 23274 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23275 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23276 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23277 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23278 ttyp2 S 0:01 52 9 30066 12996 10.1 java
 23279 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23280 ttyp2 S 0:00 5 9 30066 12996 10.1 java
 23281 ttyp2 S 0:00 0 9 30066 12996 10.1 java

The result is nine (nine!) Java processes, each taking 30MB of virtual memory! But the
output is deceptive: it really shows nine execution threads sharing the same 30MB of
memory.

In Linux, threads are given slots in the process table: every thread has its own process ID
(PID). Unfortunately, there is no information in the ps output to indicate this relationship
between the PIDs—only the common memory size hints at the relationship.

 We discuss this further when we examine platform-specific threading issues in Chapter 54,

"Java, Linux, and Threads."

 - 244 -

AWT Dependencies on X Availability

 If you are running the JDK in a server environment, without a GUI or any graphical I/O,

you may still encounter some dependencies on X libraries or the presence of an X server.

 Dependence on X Libraries

If your application does not use the AWT at all, you have no need of X libraries. In
JDK1.1, you can run a version of the application launcher without any X library
dependence by setting the NS_JAVA environment variable:

 bash$ export NS_JAVA=1
 bash# java ...

 JDK1.2 does not require such a step: it automatically avoids any dependencies on any X

libraries unless the application uses the AWT.

 GUI-Less AWT Dependence on X

If you use the AWT without any GUI or graphical I/O—for example, to generate
bitmapped images—you will find that Java still insists on using X libraries and connecting
to an X server.

You can work around this dependence by using a special display-less X server called Xvfb.
We discuss the details in the Chapter 56 section "Server-Side AWT: Using AWT/X Without
a Display Device," as part of the exploration of X server tips and tricks.

Unexplained Application Flakiness

If an application unexpectedly dies, freezes, or is generally flaky, and the problem is
unique to Linux, two good suspects are threading and JIT. The following sections discuss
the details.

 Threads

Thread behavior on Linux has been a challenge to the Blackdown port, and caused a
significant delay in the JDK1.2 release. When in doubt, run with green threads (java -
green ...) and see if the problem goes away.

If it does, you may have encountered a bug in the JDK—but it's also very likely you have
encountered a bug in the application. See the section "Implementation-Dependent
Threading Behavior" later in this chapter.

 JIT

Just-in-Time (JIT) compilation is always a good suspect in flaky behavior, and there are
known problems with the Sun JIT that are unique to Linux. Running without JIT
compilation (section "Disabling a JIT" of Chapter 14) is a good way to determine if it is
implicated. You can also try using one of the alternate JIT compilers (see Chapter 33,
"Just-In-Time Compilers") for comparison.

The Sun JIT that shipped with Blackdown JDK1.2 is beyond the control of the Blackdown
team: Sun provides it in binary form (evidently due to licensing issues with outside
sources). Problems with that JIT should be reported to Blackdown (Chapter 16,
"Participating in the Blackdown Community" in the section "Reporting Bugs") with an easy-
to-reproduce case; from there, they can be passed on to Sun.

 - 245 -

 Increasing Java Memory Limits

 Java applications can be heavy consumers of memory. The following sections discuss

some memory walls you may encounter.

 Java Heap Limit

 The message

 Exception in thread ... java.lang.OutOfMemoryError

indicates that the heap has hit its maximum size. To increase this limit, use the -mx
(JDK1.1) or -Xmx (JDK1.2) options described in Chapter 17, "The Java Application
Launchers: java, jre, and oldjava." If you are running appletviewer, you can pass these
options through to the application launcher by prefixing them with the -J option (see
Chapter 18, "The Java Applet Viewer: appletviewer").

 System Memory Limits

 The message

 Out of memory, exiting

indicates that your Linux system is out of memory. If this happens immediately, on
application startup, you can try reducing Java's initial and maximum memory limits with
the -mx and -ms (JDK1.1) or -Xmx and -Xms (JDK1.2) options described in Chapter 17.

But if your application really needs the memory it's requesting, playing with java memory
settings will not solve the problem: you need to find additional system memory. Beyond
the obvious step of killing any other memory-intensive processes, the long-term solution
is to increase available memory on your system. The following sections discuss your
options.

 Using All Available Physical Memory

Verify that Linux has found all physical memory on the system, by running the free utility.
Versions of Linux prior to 2.0.36 need help discovering physical memory beyond 64MB.
You can use the mem= boot-time directive to specify your memory size.

 When Linux presents the Linux Loader (LILO) prompt during boot, you can specify

memory size as part of startup. For example:

 LILO: linux mem=128m

 If you can successfully boot and find the new memory available, you should make this

standard boot behavior by modifying /etc/lilo.conf and running /sbin/lilo.

Information on configuring LILO can be found on the lilo and lilo.conf man pages
(run man lilo or man lilo.conf), and in the LILO Mini-Howto available from
http://www.linux.org/help/minihowto.html. Note that it is always a good idea,
when experimenting with LILO settings, to try those settings with a non-default boot
image before adding the settings to the default boot image.

 Adding Physical Memory

 Experience suggests that even simple Java applications can eat a lot of memory. You

 - 246 -

may find that adding physical memory is the only reasonable solution for achieving
respectable performance. If you add physical memory beyond 64MB on a pre-2.0.36
Linux system, read the previous section on "Using All Available Memory."

 Adding Swap Space

You can increase your system's virtual memory by adding swap space. Swap can be
added with physical disk partitions or with dedicated space from an existing file system.
The relevant Linux commands are fdisk (create disk partitions), mkswap (initialize a swap
area for use), and swapon (add swap to the system).

 Finding JNI Libraries

When you use a class with a dependence on native libraries, Java needs to know where
to find the libraries. Native shared libraries either need to be placed in the JDK installation
itself (for example, in the jre/lib/i386 subdirectory of an SDK1.2 installation), or
have their directories referenced in the LD_LIBRARY_PATH environment variable or the
system property java.library.path. Shared native libraries cannot be found through
the class path.

 Example:

 If you depend on a native library shipped in directory /foo:

 bash$ export LD_LIBRARY_PATH=/foo

 will allow you to find it at runtime. The path can consist of multiple directories, separated

by the colon (:) character. To add a new directory to an existing path:

 bash$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:foo

 Example:

 You can use the Java system property java.library.path for the same purpose:

 bash$ java -Djava.library.path=/foo ...

 Finding JNI Include Files

As the Java native-interface model has evolved into the current JNI, old models have
begun losing support. JDK1.2 still supports some older models, but gently discourages you
from using them by making them more difficult to compile. If you are trying to build a native-
interface module under SDK1.2 and encounter a missing include file (cannot find
oobj.h, or whatever), you will probably find it under the SDK's include-old/
subdirectory. Add that directory to your compiler include path.

 Implementation-Dependent Threading Behavior

 The Java threading model leaves many aspects of multi-threaded behavior unspecified,

including:

 • Whether thread scheduling is preemptive, or when thread-switching may occur

 • How time slices are allocated for threads

 - 247 -

 • How different thread priorities are supported

This flexibility allows for Java support on many platforms, but it has also caused trouble
for developers who do not practice good discipline in their multithreaded programming.
Applications that run smoothly on one platform may find themselves facing deadlocks,
race conditions, or other unexpected behaviors on other platforms. Applications that work
well with green threads may fail with native threads, or vice versa.

Multithreaded programming is challenging; our trivial example in the section "Project #3:
Multi-Threading" of Chapter 2, "Moving from C++ to Java," devoted roughly half its code
to thread synchronization. Two areas of particular danger are the Swing toolkit and the
collections classes. For performance reasons (synchronization is expensive), neither is
thread-safe: your application must synchronize multithreaded access to these classes.

Assistance is available: For the container classes, you can use the thread-safe wrappers
provided by many of the classes. For Swing, it is recommended that you use
SwingUtilities.invokeLater() or SwingUtilities.invokeAndWait() to
schedule GUI activities for execution in the AWT event thread.

 While it is impossible to draw up a definitive list, here are some hints that you may have

thread synchronization bugs in an application:

 • The application has deadlocks or race conditions that are unique to a platform, or to a

threading model.

 • Threads that run on one platform do not get any time on another platform or different

threading model.

 • The order of activities or outputs varies in unexpected ways between different

platforms or different threading models.

•

Adding or removing calls to Thread.yield() fixes or breaks the application.
Performing explicit yields can be important if a compute-intensive thread is hogging
the CPU, but you should be wary of "fixing" broken applications with them.

 Chapter 54, "Java, Linux, and Threads," discusses the specifics of Java threading behavior

on Linux.

 Summary

This chapter has discussed some of the common problems found when using the
Blackdown JDK on Linux. The information is unavoidably incomplete—new problems will
pop up as the JDK and Linux continue to evolve. To find the latest help for current
problems, consider using the available resources provided by the Blackdown project:

•

The Java/Linux FAQ from the Blackdown site (http://www.blackdown.org)
contains up-to-the-minute troubleshooting hints that cover problems observed with the
latest releases and on specific Linux distributions.

•

The Blackdown mailing list frequently discusses specific problems users encounter
with the JDK. Start by searching the archives and, if you need help, ask. See the
section "Blackdown Mailing Lists" in Chapter 16 for more information on the mailing
list.

Chapter 16: Participating in the Blackdown
Community

 - 248 -

 Overview

The Blackdown organization and Web site were created in 1995 and serve as the focal
point for Blackdown activities—notably the Linux/i386 port of the Sun JDK. Members of the
Blackdown community are also interested in the JDK on other Linux platforms, other Java
implementations for Linux, and tools and toys available for Java work in Linux.

Chapter 16: Participating in the Blackdown
Community

 Overview

The Blackdown organization and Web site were created in 1995 and serve as the focal
point for Blackdown activities—notably the Linux/i386 port of the Sun JDK. Members of the
Blackdown community are also interested in the JDK on other Linux platforms, other Java
implementations for Linux, and tools and toys available for Java work in Linux.

 The Blackdown Web Site

 Information available at the Blackdown Web site (http://www.blackdown.org)

includes

 • Status on Linux JDK porting efforts, including ports from outside the Blackdown project

(Alpha, PowerPC, and Sparc)

 • Locations of mirrors for downloads of Linux ports—both JDK ports and ports of

platform-specific standard extensions (such as Java3D)

 • An extensive FAQ

 • Links to information about products from Sun, third-party Java products, and Java

tools available for Linux

 • Mailing lists (See the following section "Blackdown Mailing Lists.")

 • A bug-tracking system (See the later section "Reporting Bugs.")

 Blackdown Mailing Lists

 Blackdown operates two mailings lists: one for general discussion and a digest version of

the same.

To subscribe to the general discussion list, send an email message to java-linux-
request@java.blackdown.org with the word subscribe in the subject line. To
unsubscribe, send a message to the same address with the word unsubscribe in the
subject line. To participate, send your contributions to java-
linux@java.blackdown.org.

An archive of past discussion is maintained on the Web, at http://www.mail-
archive.com/java-linux@java.blackdown.org/. The archive includes search
capabilities.

As with any civilized mailing list, it is wise to practice basic etiquette. Reasoned
discussion is welcome; flaming is not. Check the archives before asking a question that
has already been discussed to death. Accord the other participants some basic respect—

 - 249 -

remember that everyone here is on the same side. Most importantly for maintaining the
high quality of discussion: stick to the topic. The topic is Java on Linux, not beginning
Java programming, beginning Linux, nor industry politics.

 If you prefer to receive only a digest of the discussion, send your subscribe/unsubscribe

messages to java-linux-digest-request@java.blackdown.org.

Reporting Bugs

 Blackdown uses the Web-based Jitterbug bug-tracking system to report and track

defects.

 If you have a bug to report in the Blackdown JDK port, first take the following three steps:

 1. Visit the page of known Blackdown bugs to see whether the bug is already known.

The Blackdown site provides a "bug reporting" link to this page.

 2. If you have access to another Java platform, try to reproduce the bug there. If the bug

is not specific to Linux/i386, it is not a Blackdown bug.

 3. Look for the bug in the Javasoft Bug Parade (see Appendix C, "Important

Resources," the section on "Javasoft Bug Parade,") to see whether it is a known bug.

If you have a legitimate Blackdown bug, visit the bug-reporting page at
http://www.blackdown.org/cgi-bin/jdk. The Jitterbug system is reasonably
straightforward and self-explanatory. The main screen includes options for submitting
new bugs, searching the database for existing bugs, and browsing the various categories
(done, incoming, pending, and so on) of bug reports. Again, it is a good idea to search for
relevant existing bugs before submitting your own report.

If you do submit a bug report, be brief and specific. Include a small Java program that
reproduces the bug. Vague, general reports ("Swing doesn't work") are not likely to get
attention.

 Summary

The Blackdown organization serves as the focus of Java porting activity on Linux. Tune in
to Blackdown to get the latest ports, the latest news on Java/Linux activities, and the
combined wisdom of other users of Java on Linux.

Part V: Tools in the Blackdown JSDK

 Chapter List

 Chapter

17: The Java Application Launchers: java, jre, and
oldjava

 Chapter

18: The Java Applet Viewer: appletviewer

 Chapter

19: The Java Compiler: javac

 Chapter The Java Debugger: jdb

 - 250 -

20:

 Chapter

21: The Java Archiver: jar

 Chapter

22: The Java Native Code Header and Stub File Generator:
javah

 Chapter

23: The Java Documentation Generator: javadoc

 Chapter

24: Miscellaneous JSDK Development Tools

 Part Overview

The Blackdown port ships with the full complement of Sun SDK tools[md]everything found
in the Solaris or Windows SDKs can be found here. This part provides a brief guide to the
important development tools in both SDK1.1 and SDK1.2, describes their use, explains the
differences between the two environments, and offers usage and implementation details
specific to the Linux versions.

Chapter 17: The Java Application Launchers:
java, jre, and oldjava

 Overview

The Java application launchers are the application entry points into Java: they start up
the JVM, point it at the class libraries it needs, and tell it which class to load. After loading
the main class, the JVM calls the class's main() procedure to start the program. End
users do not have to know about application launchers. A deployed application can hide
launch details in a shell script (UNIX/Linux), batch file (Microsoft Windows), or iconic
action.

In the JDK1.1 environment, Sun provided two versions of the launcher: java and jre.
The first was shipped only with the SDK and targeted at developers. The second, lacking
the developer-oriented options, was targeted at deployment environments.

In JDK1.2, Sun combined the two into a single java launcher. It's a better solution but
with an unfortunate side effect: It breaks all older application-launch scripts—the only
launcher shipped on JDK1.1 deployment platforms (jre) is not present on JDK1.2
deployment platforms.

SDK1.2 introduced another launcher, oldjava. For older applications broken by the
drastic JDK1.2 changes in class path construction and security mechanisms, the oldjava
launcher emulates the pre-1.2 mechanisms.

java Launcher

 The java command launches a Java application by starting a JVM and loading the

application classes.

 Synopsis:

 - 251 -

 java [-green ¦ -native] [<options>] <classname> [<arguments>]
 java [-green ¦ -native] [<options>] -jar <jarfile> [<arguments>]

 (Second form is SDK1.2/JRE1.2 only.)

 Platform: SDK1.2, JRE1.2, SDK1.1

 Note that the launcher requires a class name, not a filename. It is the class loader's job to

resolve this class name to a .class file resident on a file system or in an archive.

 Options:

 Options from 1.1 and 1.2 are listed together, with indications of which options (or which

names for options) are unique to one of the platforms.

•

-checksource (SDK1.1 only) and -cs (SDK1.1 only)—Before loading a class, check
whether its source is newer than the class file. If yes, then recompile the class before
loading.

•

-classpath <path> and -cp <path> (SDK1.2/JRE1.2)—Set the class path used
for finding all classes (SDK1.1) or all user classes (SDK1.2/JRE1.2). In both
environments, this option overrides the default class path or any class path defined by
$CLASSPATH.

•

-D<propertyName>=<newValue>—Assign a value to a Java property. Some
standard property names, such as java.compiler, affect JDK behavior. Other
properties are simply used to pass values into the program. Java applications do not
have access to read or set UNIX/Linux environment variables; this mechanism serves
as a platform-neutral replacement.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -help—Print a help message.

•

-jar <jarfile> (SDK1.2/JRE1.2 only)—Specify a jar archive to execute. The
launcher depends on information in the archive's manifest to identify the main class.
This option completely defines the user class path; all class path elements defined by
$CLASSPATH or -classpath are ignored.

•

-msn (SDK1.1) and -Xmsn (SDK1.2/JRE1.2)—Specify the starting size of the memory
heap. The value n is a number specified in bytes, kbytes (suffixed with k), or mbytes
(suffixed with m).

•

-mxn (SDK1.1) and -Xmxn (SDK1.2/JRE1.2)—Specify the maximum size of the
memory heap. The value n is a number specified in bytes, kbytes (suffixed with k), or
mbytes (suffixed with m). If the JVM must grow beyond this size, it will throw an
exception. This value must be greater than or equal to the starting size specified by -
msn or -Xmsn.

•

-native—Force the JVM to use the "native" platform thread API, which is the POSIX
Pthread interface. This generally(1) means that kernel threads will be used. If specified,
this must be the first option on the command line.

(1)
 Native threading sometimes implies kernel-space threading, but not always. For
more detail, see the discussion of threading APIs (Chapter 54, "Java, Linux, and

 - 252 -

Threads," section "Lightweight Process Implementation Details").

 As part of our discussion of platform-specific issues, we'll explore threads in more

detail in Chapter 54, "Java, Linux, and Threads."

•

-noasyncgc (SDK1.1 only)—Disable the asynchronous garbage collection thread.
Garbage collection will only occur when the application requests it or runs out of
memory.

•

-noclassgc (SDK1.1) and -Xnoclassgc (SDK1.2/JRE1.2)—Disable garbage
collection of unused space associated with classes (as opposed to space associated
with class instances).

 • -noverify (SDK1.1)—Disable verification of classes.

 • -ossn (SDK1.1 only)—Specify the maximum stack size for Java code in bytes, kbytes

(suffixed with k), or mbytes (suffixed with m).

 • -ssn (SDK1.1 only)—Specify the maximum stack size for native code in bytes, kbytes

(suffixed with k), or mbytes (suffixed with m).

•

-v (SDK1.1), -verbose, -verbosegc (SDK1.1), -verbose:class
(SDK1.2/JRE1.2), -verbose:gc (SDK1.2/JRE1.2), -verbose:jni
(SDK1.2/JRE1.2)—These options enable the JVM's verbose mode, selectively or
nonselectively reporting on class-loading, garbage collection, and use of JNI methods
and interfaces.

 • -verify (SDK1.1)—Enable verification of all classes. Only code executed is verified,

not all code in the class. Contrast with -noverify and -verifyremote.

 • -verifyremote (SDK1.1)—Verify all code loaded through a class loader. This is the

default verification behavior. Contrast with -noverify and -verify.

 • -version—Print the SDK/JRE version number.

 Nonstandard SDK1.2/JRE1.2 Options:

These are SDK1.2/JRE1.2 options specific to the current JVM behavior; their future
support and their support in other JVMs (such as HotSpot) is not guaranteed. All
nonstandard options begin with -X. As the previous options list shows, certain SDK1.1
options became nonstandard options in SDK1.2/JRE1.2.

 • -X—List available nonstandard options.

 • -Xbootclasspath:<new classpath>—Override the boot class path, from which

Java loads its core classes.

 • -Xcheck:jni—Perform additional checks for JNI functions.

 • -Xdebug—Run the JVM with the debugger enabled. A "password" is printed out that

can be used by a Java debugger to attach to the running JVM.

 • -Xnoclassgc—Disable garbage collection of unused space associated with classes.

This is the JDK1.2 version of the -noclassgc option.

 • -Xmsn—Specify the starting size of the memory heap in bytes, kbytes (suffixed with

k), or mbytes (suffixed with m). This is the JDK1.2 version of the -msn option.

 - 253 -

 • -Xmxn—Specify the maximum size of the memory heap in bytes, kbytes (suffixed with

k), or mbytes (suffixed with m). This is the JDK1.2 version of the -mxn option.

 • -Xrs—Reduce the use of operating system signals.

•

-Xrunhprof:<commands>—SDK1.2/JRE1.2 supports a new profiling interface,
accessed through a native C/C++ API. The Java Virtual Machine Profiling Interface
(JVMPI) is intended for use by tools vendors to develop performance analysis tools for
Java. SDK1.2/JRE1.2 ships with a sample JVMPI application, hprof, that gathers and
saves profiling data to a file. Use -Xrunhprof:help to print out a list of legal
commands.

In Chapter 60, "PerfAnal: A Free Performance Analysis Tool," we will describe profiling
in more detail and introduce a useful GUI-based tool for analyzing data collected by the
hprof profiler.

java_g Launcher

The SDK offers a debuggable, non-optimized version of the java launcher, java_g.
This version fills an important role in SDK1.1, where it is needed to perform debugging
and profiling.

An SDK1.2 version of java_g is available, primarily to support debugging of the JVM
itself. But you are unlikely to need it for your own development work: Application
debugging and profiling are supported by the regular SDK1.2 java launcher.

 Synopsis:

 java_g [-green ¦ -native] [<options>] <classname> [<arguments>]

 Platform: SDK1.1

 The java_g launcher supports all options supported by the java launcher, plus some

additional options to support debugging and profiling.

 New Options:

 • -debug—Run the JVM with the debugger enabled. A "password" is printed out that

can be used by a Java debugger to attach to the running JVM.

 • -prof—Collect and save profile data into file ./java.prof. Note that this capability

is limited compared to the profiling capabilities in JDK1.2.

 • -prof:<file>—Collect and save profile data into the specified file.

 • -t—Print a trace of Java instructions executed.

jre Launcher

This component, the only launcher shipped with JRE1.1, is the deployment-side
counterpart to the java launcher used by developers. It was discontinued in
SDK1.2/JRE1.2, in favor of using a single launcher in both development and deployment
environments.

 Synopsis:

 - 254 -

 jre [-green ¦ -native] [<options>] <classname> [<arguments>]

 Platform: SDK1.1/JRE1.1

The options supported by jre substantially overlap those supported by the java
launcher, with a few differences that orient it toward deployment use instead of
development.

 Options:

 • -classpath <path>—Set the class path for finding all classes. Equivalent to the

SDK1.1 java -classpath option.

 • -cp <path>—Prepend the specified path to the existing class path.

 • -D<propertyName>=<newValue>—Identical option to java launcher (above).

 • -green—Run with "green" threads, as in the java launcher.

 • -help—Print a usage message, as in the java launcher.

 • -msn—Specify initial memory heap size, as in the SDK1.1 java launcher.

 • -mxn—Specify maximum memory heap size, as in the SDK1.1 java launcher.

 • -native—Run with "native" threads, as in the java launcher.

 • -noasyncgc—Disable asynchronous garbage collection, as in the SDK1.1 java

launcher.

 • -noclassgc—Disable class garbage collection, as in the SDK1.1 java launcher.

 • -nojit—Disable just-in-time compilation.

 • -noverify—Disable class verification, as in the SDK1.1 java launcher.

 • -ossn—Specify the maximum stack space for Java code, as in the SDK1.1 java

launcher.

 • -ssn—Specify the maximum stack space for native code, as in the SDK1.1 java

launcher.

 • -v and -verbose—Verbosely report class loading, garbage collection, and JNI

activity, as in the SDK1.1 java launcher.

 • -verbosegc—Verbosely report garbage collection activity, as in the SDK1.1 java

launcher.

 • -verify—Verify executed code, as in the SDK1.1 java launcher.

 • -verifyremote—Verify all loaded classes, as in the SDK1.1 java launcher.

 jre_g Launcher

 - 255 -

The jre_g launcher is a non-optimized version of the jre launcher. It appears to exist
for purposes of debugging the launcher itself, and offers no options for application
debugging or profiling.

 Synopsis:

 jre_g [-green ¦ -native] [<options>] <classname> [<arguments>]

 Platform: SDK1.1

 Options are the same as for jre, discussed in the previous section.

oldjava Launcher

JDK1.2 introduced disruptive changes in class loading and security that break some older
applications. The oldjava launcher is a temporary expedient to work around the
problem. It supports execution of older applications by taking the following steps:

•

It emulates the old class path model. A single class path (the boot class path) is used
for core, extension, and user classes. It also disables the new extensions mechanism,
in which extensions are automatically found in a central directory.

 • It emulates the old security model. User classes have the same privileges as core

classes.

Using oldjava to run older applications does not guarantee success, but it improves the
chances. Some older applications include, in their launch scripts, intricate (and obsolete)
dependencies on the layout of the SDK or JRE installation tree. Obviously, oldjava
cannot do anything about such dependencies.

 Synopsis:

 oldjava [-green ¦ -native] [<options>] <classname> [<arguments>]

 Platform: SDK1.2

 The options for oldjava are more or less compatible with JRE1.2/SDK1.2 java options,

with a few changes.

 Options Changes:

 • -classpath <path> and -cp <path>—Override the boot class path, which is

used for finding all classes, not just core classes.

 • The -jar option is disabled in oldjava.

Subtleties

There is one additional confusing subtlety. The CLASSPATH environment variable
specifies a user class path to be searched after the boot class path. It defaults to the
current directory if not set. This behavior is unaffected by the -classpath and -cp
options, which change only the boot class path; this is the only case for any Java
launcher in which the -classpath option does not cause $CLASSPATH to be ignored.

 - 256 -

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include launcher documentation on the

following pages:

 java

docs/tooldocs/solaris/java.html

 jre (SDK1.1 bundle

only)

docs/tooldocs/solaris/jre.html

 Summary

This chapter has explored the Java application launchers used to run Java programs in a
Linux environment. The launchers perform the first essential step of application execution:
starting up a virtual machine and loading the application classes. The next chapter
examines an important variant—a launcher you can use to run applets.

 Chapter 18: The Java Applet Viewer:
appletviewer

 Overview

The Java applet viewer is a development tool that allows you to test-drive applets before
they are deployed for use in browsers. By creating an applet test bed with the current
SDK environment, appletviewer lets you test applets in ways not possible with
browsers: with a newer JDK, for example, or running under a debugger. Until browsers
widely support JDK1.2, appletviewer is the only way to run JDK1.2 applets on many
platforms.

 Running appletviewer

 The appletviewer invocation starts the viewer, reads the Web page specified by the

URL, and loads and runs the applet referenced in the page.

 Synopsis:

 appletviewer [-green ¦ -native] [<options>] <URL>

 Platform: SDK1.2 SDK1.1

 Options:

•

-debug—Runs appletviewer under the jdb debugger. Note the difference from
the -debug option for application launchers described in Chapter 17, "The Java
Application Launchers: java, jre, and oldjava," which starts the app but doesn't
start a debugger.

 • -encoding <encoding_name>—Specifies the character encoding used in the

HTML file referenced by the URL.

•

-green—Forces the JVM to use the Sun "green" thread emulation package, which is
a user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 - 257 -

•

-J<java_option>—Specifies options to be passed to the JVM. These options are
passed, with the -J stripped off, to the java executable that is actually running the
applet— see the option definitions in Chapter 17 in the section "java Launcher."

 • -native—Forces the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 appletviewer: A Simple Browser

The appletviewer tool functions as a simple browser, reading an HTML file and
handling the applet-related tags. After loading the applet class referenced by the tags, it
calls the applet startup methods init() and start() to begin execution. The tool
creates a restricted execution environment comparable to the "sandbox" environment in a
browser but with some additional GUI controls that allow you to modify security settings.

The purpose of appletviewer is to test applets, not Web pages or interaction with Web
browsers. It has limited HTML parsing capability and no HTML display capability. The
HTML should be small and simple—just enough to specify the applet. The following
sections discuss the relevant tags and give some examples.

 Specifying an Applet with the <applet> Tag

 The traditional HTML tag for applets is <applet>. To illustrate, we write a simple test

applet and the supporting HTML.

Our Swing-based applet displays a single pushbutton that, when pressed or released,
sends a message to the browser status line. The button label and the text of the
messages are specified as applet parameters in the HTML. Here is the code:

 1 import java.awt.event.*;
 2 import javax.swing.*;
 3
 4 //
 5 // Simple applet to display a pushbutton and a status message
associated

 6 // with button press and release (more precisely: associated
with mouse

 7 // click activity on the button).
 8 //
 9 public class ButtonStatus extends JApplet
 10 {
 11 JButton button;
 12 public ButtonStatus()
 13 {
 14 button = new JButton();
 15 getContentPane().add(button);
 16 }
 17 public void init()
 18 {
 19 button.setText(getParameter("ButtonText"));
 20 button.addMouseListener(new MouseAdapter() {
 21 public void mousePressed(MouseEvent e)
 22 {
 23 showStatus(getParameter("ButtonDownMsg"));

 - 258 -

 24 };
 25 public void mouseReleased(MouseEvent e)
 26 {
 27 showStatus(getParameter("ButtonUpMsg"));
 28 };
 29 });
 30 }
 31 }

 Here is the HTML:

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <applet code="ButtonStatus.class"
 5 ButtonText="Press Me"
 6 ButtonDownMsg="Button is Down"
 7 ButtonUpMsg="Button is Up"
 8 width="200"
 9 height="100">No Applet?</applet>
 10 </body>
 11 </html>

 Figure 18.1 shows the result.

 Figure 18.1: ButtonStatus applet with button released (left) and pressed

(right).

 Specifying an Applet for Netscape with the <embed> Tag
(SDK1.2 Only)

The <embed> tag is a Netscape extension, added in Netscape 4.x, to support embedded
objects of arbitrary types—including applets exercising the Java Plug-in. Here is our
HTML, rewritten to use this Netscape-specific tag and run the Java Plug-in:

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <EMBED type="application/x-java-applet;version=1.2"
 5 code = "ButtonStatus.class"
 6 WIDTH = "200"
 7 HEIGHT = "100"
 8 ButtonText="Press Me"
 9 ButtonDownMsg="Button is Down"
 10 ButtonUpMsg="Button is Up"
 11 pluginspage="http://java.sun.com/products/plugin/1.2/

 - 259 -

plugin-install.html">
 12 <NOEMBED>
 13 No Applet?
 14 </NOEMBED></EMBED>
 15 </body>
 16 </html>

The SDK1.2 version of appletviewer understands the <embed> tag as an applet tag,
although it ignores certain attributes (src, type, pluginspage) that are important to
proper operation of the applet in Netscape.

 Specifying an Applet for MSIE with the <object> Tag
(SDK1.2 Only)

The <object> tag is an HTML 4.0 extension that, in Microsoft Internet Explorer (4.x and
later), supports the Java Plug-in. Here is our HTML, rewritten to use the <object> tag
and run the Java Plug-in:

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 5 WIDTH = "200"
 6 HEIGHT = "100"
 7 codebase="http://java.sun.com/products/plugin/1.2/ jinstall-
12-win32.cab#Version=1,2,0,0">

 8 <PARAM NAME = CODE VALUE = "ButtonStatus.class" >
 9 <PARAM NAME="type" VALUE="application/x-java-
applet;version=1.2">

 10 <PARAM NAME="ButtonText" VALUE="Press Me">
 11 <PARAM NAME="ButtonDownMsg" VALUE="Button is Down">
 12 <PARAM NAME="ButtonUpMsg" VALUE="Button is Up">
 13 No Applet?
 14 </OBJECT>
 15
 16 </body>
 17 </html>

The SDK1.2 version of appletviewer understands the <object> tag as an applet tag,
although it ignores certain parameters (classid, type, codebase) that are important to
proper operation of the applet in MSIE.

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include relevant documentation on the

following pages:

 appletviewer

docs/tooldocs/solaris/appletviewer.html

 HTML tags

(SDK1.2 only)

docs/tooldocs/solaris/appletviewertags.html

The discussion of the Java Plug-in in Chapter 50, "Deploying Applets with Java Plug-in,"
will discuss <embed> and <object> in more detail and will also explain how to publish
JDK1.2 applets targeted to work on all browsers.

 - 260 -

Summary

The appletviewer tool lets you test-drive applets in ways that are not possible from
existing Web browsers—you can test with the latest JVMs, modify security settings, and
perform debugging. Although its lack of browser capabilities makes it unsuitable for fully
testing applet-enabled Web pages, appletviewer is the best way to test applets with
current Java execution environments.

Chapter 19: The Java Compiler: javac

 Overview

This is the primary development tool for users of the SDK. The Java compiler compiles
.java source files to .class bytecode objects—the executables understood by the Java
Virtual Machine.

Running javac

The javac invocation compiles the specified Java source files. The compiler is itself a
Java application, so the invocation results in launching a JVM to run the Java compiler
classes.

 Synopsis:

 javac [-green ¦ -native] [<options>] <source files>
 javac [-green ¦ -native] [<options>] [<source files>] [@<files>]
(SDK1.2 only)

The SDK1.2 version offers a convenience for projects with a long list of source files: The
@ option allows the compiler to read a list of source files from a file instead of a crowded
command line.

 Platform: SDK1.2 SDK1.1

 Options:

 • -classpath <classpath>—Set the class path to be searched during compilation.

If this option is not specified, $CLASSPATH is used.

Compile-time handling of the class path is similar to runtime handling: The SDK1.1
class path must include the core classes, whereas SDK1.2 handles the core classes
separately (see the definition of -bootclasspath, later in this chapter).

Note that this option controls where the compiler looks for classes. It does not control
where the JVM running the compiler looks for classes. If necessary, that can be done
with the -J option (discussed later).

•

-d <directory>—Specify a directory into which the .class files are to go. The
compiler places classes into a hierarchical subtree of this directory based on the full
package+class name. See the discussion in Chapter 14, "Configuring the Linux
SDK/JRE Environment," in the section "Classes Loaded from File Systems" for more
detail.

 If this option is not specified, .class files are placed in the current directory. If the

classes are part of a package, you will not be able to run them from this directory (also

 - 261 -

discussed in Chapter 14 in the section "Classes Loaded from File Systems").

 • -deprecation—Generate fatal errors when using deprecated classes. If this option

is not specified, use of deprecated classes generates a compile-time warning.

 • -encoding <encoding>—Specify the character encoding for the source files. If

unspecified, javac uses the default encoding for the current locale.

•

-g—Save full debugging information into the .class files. If not specified, default
behavior is to save some information—source filename and line numbers but no info
on local variables.

 • -g:none (SDK1.2 only)—Prevent any debugging information from being saved into

the .class files.

•

-g:<list of keywords> (SDK1.2 only)—Selectively save debugging information
into the .class file. The <list of keywords> is a comma-separated list
containing any or all of the words source, lines, or vars.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

•

-J<option>—Specify options to be passed to the java application launcher that is
running the compiler. Options are passed, with the -J stripped, to the java command
line.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -nowarn—Disable warning messages.

•

-O—Optimize code for better runtime performance—usually at the cost of code size
and debuggability. The SDK1.1 documentation warns of risks in the use of this option;
SDK1.2 has removed some of the riskier behavior.

There is some consensus in the user community that the best optimization is
performed by postprocessors that operate on the entire project after compilation. We
will examine such a product in Chapter 53, "DashO: Optimizing Applications for
Delivery."

•

-sourcepath <sourcepath> (SDK1.2 only)—Specify a colon-separated path to be
searched for source files. Path components can include directories and compressed
ZIP and JAR archives.

 • -verbose—Print verbose messages on which class files are being compiled and

which classes are being loaded by the JVM.

 SDK1.2 Cross-Compilation Options:

 SDK1.2 supplies these options to support cross-compilation—the generation of classes

compatible with earlier Java platforms:

•

-bootclasspath <bootclasspath>—Change the search path the compiler uses
to resolve references to core classes. Using this option, you can point the boot class
path at JDK1.1 core libraries to compile for that platform.

 • -extdirs <directories>—Use these extension directories— directories

 - 262 -

containing Java extension JAR archives—instead of the standard location for
SDK1.2/JRE1.2 extensions.

•

-target <version>—Specify a target JVM—1.1 or 1.2. If 1.1 is specified (the
default), javac generates code that will run on JDK1.1 and JDK1.2 virtual machines.
If 1.2 is specified, the generated code will not run on a JDK1.1 virtual machine.

 SDK1.2 Nonstandard Options:

 • -X—Print a list of available nonstandard options.

•

-Xdepend—Perform a dependency analysis. This replaces the SDK1.1 java -
checksource runtime option with a more sensible compile time option. It causes
javac to search all reachable classes for source files that are newer than their
corresponding objects, and to recompile the offending classes. This results in
reasonable, but not completely robust, decisions on which files need to be recompiled.

Unfortunately, this option substantially slows compilation. We will explore an alternate
approach to this problem in Chapter 48, "JMakeDepend: A Project Build Management
Utility."

 • -Xstdout—Send messages to stdout (System.out) instead of the default stderr

(System.err).

 • -Xverbosepath— Generate verbose information describing where source and class

files are found.

Subtleties

•

The classes that make up the Java compiler itself live in different places in the two
environments. In SDK1.1, they live in the classes.zip file that also holds the
core classes. In SDK1.2, they are shipped in a separate tools.jar. Developers
who rely on some of those classes to build their own tools need to add the new
jarfile in SDK1.2.

•

The -d and -classpath options are completely independent. Although -d
specifies where classes are to be written, it does not affect where classes are
searched. This can cause surprises.

Consider a project with two classes, Foo and Bar, compiled into directory baz
(javac -d baz ...), in which class Foo contains references to class Bar. If you
need to change and recompile only Foo.java, you must specify -d baz and you
must also include baz in the class path. This will tell the compiler where to place
Foo.class and where to resolve the reference to class Bar.

(Had you recompiled both files at once, the modification to the class path would have
been unnecessary. We will discuss some of the intricacies of dependency analysis in
our JMakeDepend project in Chapter 48, "JMakeDepend: A Project Build
Management Utility.")

 javac_g Compiler

 This version of the compiler is a normal part only of SDK1.1. A version is available for

SDK1.2, but you are unlikely ever to need it.

 - 263 -

 Synopsis:

 javac_g [-green ¦ -native] [<options>] <source files>

 Platform: SDK1.1

 This is a nonoptimized version of the compiler used for debugging the compiler itself.

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include relevant documentation on the

following pages:

 javac docs/tooldocs/solaris/javac.html

 Summary

This chapter has presented javac, the compiler bundled with the Sun SDK. This tool is not
your only choice of compiler; later chapters will offer looks at alternative free compilers,
integrated development environments, fast compilers, and compilers supporting language
extensions.

Chapter 20: The Java Debugger: jdb

 Overview

The SDK includes an interactive, non-GUI debugger, jdb. Like the well-known gdb and
dbx UNIX debuggers, jdb offers a text-based command interface allowing you to control
execution and examine application contexts and data structures.

 Running jdb

 You can debug both applications and applets with jdb. You also have the option of

launching an application/applet from jdb or attaching to an existing, running instance.

 Synopsis:

 jdb [-green ¦ -native] [<options>] [<class>] [<arguments>]
 jdb [-green ¦ -native] -host <hostname> -password <password>
 appletviewer [-green ¦ -native] -debug [<options>] <URL>

The first form of this command is for launching and debugging applications. Invocation is
identical to launching an application with the java application launcher options(see
Chapter 17, "The Java Application Launchers: java, jre, and oldjava"), a class name, and
arguments to be passed to main(). (According to Sun documentation, all java
launcher options can be used here—experience suggests otherwise.)

 If no <class> is specified, the debugger is started without a class loaded—one can be

loaded later with a debugger command.

Example

 - 264 -

 To debug an application that is normally launched with

 bash$ java com.foo.bar arg1 arg2

 launch a debugger with

 bash$ jdb com.foo.bar arg1 arg2

The second form of the command debugs an application that is already running. The
original application must have been launched with the -debug option; the <password>
is the Agent password returned at application invocation.

Example

 If you use jdb to attach to an already running application, you must follow certain

practices when launching that application.

 Under SDK1.1, you must launch the application with java_g:

 bash$ java_g -debug com.foo.bar arg1 arg2
 Agent password=5k53pk

 Under SDK1.2, you must include the SDK's tools.jar in the class path when

launching, and you must disable just-in-time compilation:

 bash$ java -debug –Djava.compiler= -classpath $JAVA_HOME/lib/

[ic:ccc]tools.jar:. com.foo.bar arg1 arg2
 Agent password=5k53pk

 Now you are ready to debug:

 bash$ jdb -host localhost -password 5k53pk

 The third form of the command is for debugging applets. See appletviewer (Chapter

18, "The Java Applet Viewer: appletviewer") for a list of options.

 Platform: SDK1.2 SDK1.1

 Options:

 • -classpath—Passed to debuggee JVM for use as its class path.

 • -dbgtrace—Print out information for debugging the debugger.

 • -D<propertyName>=<newValue>—Passed to debuggee JVM to set property

values for the target application.

 - 265 -

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line. Note that this affects the operation of the debugger executable but
not of the JVM running the application being debugged. Use the THREADS_FLAG
environment variable to affect that JVM.

 • -help—Print out a usage message.

 • -host <hostname>—Host on which existing process to be debugged is running.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -password <password>—Agent password for existing process to be debugged.

 • -version—Print out version of jdb.

 • -X<non-standard java option> (SDK1.2 only)—Passed to debuggee JVM.

 jdb Commands

 Commands used in the debugger text-based UI are as follows:

 Thread Management

•

threads [<threadgroup>]—List all the current threads in a thread group. If no
argument is specified, the default thread group (as set by threadgroup, discussed
later in this list) is used. A <threadgroup> of system results in showing all threads.

For each thread, the list shows the name of the thread, the name of the thread class
(java.lang.Thread or a derived class), and the current status of the thread. For
commands (discussed next) requiring a <thread id>, the ordinal numbers (1, 2, 3,
…) shown in this command's output are used.

 • thread <thread id>—Set the default thread to be used for thread-specific

commands, such as stack navigation.

•

suspend [<thread ids>]—Suspend one or more threads. The optional <thread
ids> argument is a list (separated by spaces) of one or more thread IDs. If none is
specified, all nonsystem threads are suspended. Some debugger operations, such as
listing local variables, can only be performed on suspended threads.

•

resume [<thread ids>]—Resume (unsuspend) one or more threads. The
optional <thread ids> argument is a list (separated by spaces) of one or more
thread numbers. If none is specified, all threads are resumed.

 • where [<thread id>]¦[all]—Print a stack dump for the specified <thread

id>, for all threads, or (if no argument is specified) for the default thread.

•

wherei [<thread id>]¦[all]—Print a stack dump, plus PC information, for the
specified <thread id>, for all threads, or (if no argument is specified) for the default
thread.

 • threadgroups—List all thread groups.

 • threadgroup <name>—Set the default thread group for the various thread

 - 266 -

operations. The <name> is taken from the threadgroups list, discussed in the
preceding item.

 Viewing Data

•

print <id(s)>—Print one or more items, where an item can be a local, instance, or
class variable, or a class name. When printing a class variable, it is apparently
necessary to qualify it with the class name (for example, classname.varname). All
items are printed in their toString() format.

 • dump <id(s)>—Print one or more items, as in the preceding command, but in a

detailed format.

 • locals—Print the names and values of all local variables.

 • classes—List all known classes and interfaces.

 • methods <class id>—List all methods for a specified class.

 Breakpoints and Stack Navigation

•

stop in <class id>.<method> and stop in <class
id>.<method>[(<argument_type>,...)] (SDK1.2 only)—Set a breakpoint in a
named method. The SDK1.2 version allows you to optionally qualify the method name
with full signature (argument types) information.

 • stop at <class id>:<line>—Set a breakpoint at a specified line number in the

<class id> source.

 • up [n]—Move specified number of frames up a thread's stack. If the optional

argument is not specified, it defaults to 1.

 • down [n]—Move specified number of frames down a thread's stack. If the optional

argument is not specified, it defaults to 1.

 • clear <class id>.<method>[(<argument_type>,...)] (SDK1.2 only)—

Clear a breakpoint in a method.

 • clear <class id>:<line>—Clear a breakpoint at a specified line number in the

<class id> source.

 • step—Execute the current line.

 • step up—Execute the remainder of the current procedure until return to the caller.

 • stepi—Execute the current bytecode instruction.

 • next—Execute the current line, stepping over method calls.

 • cont—Continue (currently stopped) execution.

 Exceptions

 • catch <class id>—Break when a specified exception occurs.

 - 267 -

 • ignore <class id>—Ignore the specified exception.

 Source

•

list [<line number>¦<method>]—List source code at the specified line
number, for the specified method, or (if neither specified) around the current location in
source.

 • use [<source file path>]—Set the current path for finding source files. If no

argument is specified, prints the current path.

 Resources

 • memory—Show the current memory usage: free and total memory.

 • gc—Force garbage collection to occur and reclaim unreferenced objects.

 Debugger Control

 • load <classname>—Load a specified class for debugging.

•

run [<class> [<args>]]—Run the specified class with the specified arguments
for main(). If no argument is specified, run the class and arguments specified in the
jdb startup command line.

 • !!—Repeat the last jdb command executed.

 • help, ?—List jdb commands.

 • exit, quit—End the debugging session.

Future Directions

The jdb debugger is built on top of an old interface called the Java Debugger API, which
interacts with a running JVM over a network connection. Sun describes jdb as a "proof-
of-concept" for that API, whose architecture is shown in Figure 20.1.

 Figure 20.1: Java Debugger API.

SDK1.2 introduced a new multitiered debugging approach, the Java Platform Debugging
Architecture, consisting of a low-level native-code interface, a network protocol, and a
debugging API (see Figure 20.2).

 - 268 -

 Figure 20.2: Java Platform Debugging Architecture.

The new architecture was not fully implemented in time for SDK1.2 and is scheduled for a
later release, which will probably include another "proof-of-concept" debugger. Sun's
longer-term intent is to enable third-party tool developers to build better debuggers. The
Java Debug Interface is intended to be the primary API for debuggers, but implementers
are free to use the other interfaces, including the low-level JVMDI native interface for
possible implementation of in-process debugging.

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include relevant documentation on the

following pages:

 docs/tooldocs/solaris/jdb.html

Summary

This chapter has explored jdb, a text-based debugger supplied with the SDK. Although
jdb does the job, it is not the last or best word in Java debuggers. We will explore some
alternatives—different debuggers, as well as GUI wrappers for jdb, in Chapter 39, "The
Jikes Debugger," and Chapter 40, "DDD: The Data Display Debugger."

Chapter 21: The Java Archiver: jar

 Overview

The jar tool manages Java ARchive files—compressed hierarchical archives modeled
after the ZIP file format. Jar files contain class and resource files for an application or
extension and can include a manifest containing metadata and digital signatures.

Applications can be run, and extensions loaded, from jar files referenced in the class path
and (in JDK1.2) referenced by the java -jar option or installed in the standard
extensions directory. Jar files are also the standard way to package multiple-class applets
for deployment on the Web.

 Running jar

 The jar command line offers options similar to those for the UNIX Tape ARchiver (tar)

utility, with modes to support creation, update, listing, and extraction of archives.

 Synopsis:

 - 269 -

 jar [-green ¦ -native] c [vfm0M] [<jarfile>] [<manifest>] [-C
<dir>] <files>

 jar [-green ¦ -native] u [vfm0M] [<jarfile>] [<manifest>] [-C
<dir>] <files>

 jar [-green ¦ -native] t [vf0] [<jarfile>] [<files>]
 jar [-green ¦ -native] x [vf0] [<jarfile>] [<files>]

 Platform: SDK1.2, SDK1.1

The first form of the jar invocation creates a new archive file, whereas the second form
updates an existing archive. The specified <files> are placed in the archive; if a
directory is specified, it and its contents are recursively added. The use and position of
the <jarfile> and <manifest> arguments are related to the use of the options, see
the following list of options.

The third form of the jar invocation lists the contents of an archive, and the fourth form
extracts the contents from an archive. If any <files> are specified, they are listed or
extracted. Otherwise, all files in the archive are listed or extracted. The files are extracted
into a hierarchical directory structure reflecting that of the archive.

 Options:

 • 0—(zero) Disable compression of the archive entries. If not specified, archive entries

are compressed using ZIP-style compression.

•

-C (SDK1.2 only)— Change directory to the specified <dir> before processing the
<files>. For example, if the root of your project class hierarchy is the classes/
subdirectory, build an archive with the command:

 jar cvf /tmp/myproject.jar -C classes .

(Recalling the discussion in the "Classes Loaded from Archive Files" section of
Chapter 14, "Configuring the Linux JSDK/JRE Environment," the archive must be
created relative to the root of the class hierarchy. The SDK1.1 jar, lacking the -C
option, requires you to change directory (cd) to the classes/ directory before
creating the archive.)

•

f—Specify a jar file on which to operate. If none is specified, input operations (t, x)
operate on stdin, output operations (c) on stdout, and input/output operations (u) read
a jar file from stdin and write a jar file to stdout.

A <jarfile> parameter is supplied to jar if and only if this option has been
specified. If the m option is also specified, the order of the <jarfile> and
<manifest> parameters must match the order in which the f and m options were
specified.

•

-green—Force the JVM running jar to use the Sun "green" thread emulation
package, which is a user-space emulation of kernel threading. If specified, this must
be the first option on the command line.

 • m—Specify a manifest file to be placed into the archive. If this option is not specified,

jar creates a default manifest file.

A <manifest> parameter is supplied to jar if and only if this option has been
specified. If the f option is also specified, the order of the <jarfile> and
<manifest> parameters must match the order in which the f and m options were
specified.

 - 270 -

 • M—Do not include a manifest file in the archive.

 • -native—Force the JVM running jar to use the "native" platform thread API. If

specified, this must be the first option on the command line.

 • v—Run jar in verbose mode.

For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include relevant documentation on the

following pages:

 jar

docs/tooldocs/solaris/jar.html

 Jar Guide

docs/guide/jar/jarGuide.html

Manifest and
Signature
Specification

docs/guide/jar/manifest.html

Summary

This chapter has presented the Java ARchiver, jar. The Java archive format, in defining a
compressed, self-contained, self-describing repository, lets you easily package entire
applications and applets for distribution and for deployment on Web servers.

Chapter 22: The Java Native Code Header and
Stub File Generator: javah

 Overview

The javah utility is one of the primary tools for Java Native Interface (JNI) development. It
generates the C and C++ header files you need to support native code that can be called
from Java.

Running javah

 Given one or more Java classes containing declarations for native methods, the javah

invocation generates header files for use by the native source files.

 Synopsis:

 javah [-green ¦ -native] [<options>] <classes>

Java has historically supported two different approaches for integrating native code with
Java code—the Native Method Interface (NMI) and the Java Native Interface (JNI). You
can use javah to support either, but you should be aware that the newer JNI is the path
to long-term supportability while NMI is headed toward obsolescence.

 We will explore the details of interfacing with native code in Chapter 55, " JNI: Mixing

Java and Native Code on Linux."

 Platform: SDK1.2, SDK1.1

 - 271 -

 Options:

 • -bootclasspath <path> (SDK1.2 only)—Set the class path for core classes

looked up by javah.

 • -classpath <path>—Set the class path for all classes (SDK1.1) or user classes

(SDK1.2) looked up by javah.

•

-d <dir>—Place output files in the specified directory. If this option is not specified,
javah places its output files in the current directory. Do not combine with the -o
option.

•

-force (SDK1.2 only)—Force output files to always be written. If this option is not
specified, javah will not rewrite output files that it believes to be current with respect
to the classes from which they were generated. (The default behavior is evidently
intended to avoid triggering unnecessary rebuilds of the native code.)

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -help—Print out a list of command-line options.

 • -jni—Generate headers for the JNI interface. This is the default behavior of SDK1.2.

If this option is not specified for SDK1.1, javah generates NMI headers.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

•

-o <file>—Specify an output file. Normally, output is placed in one or more files
whose names are derived from the class names. If this option is specified, all output is
concatenated into a single file. Do not combine with the -d option.

•

-old (SDK1.2 only)—Generate header files for the old NMI interface. This is the
default behavior of SDK1.1. If this option is not specified for SDK1.2, javah generates
JNI headers.

 • -stubs—Generate C/C++ program stubs. This is only relevant for the NMI interface.

If this option is used under SDK1.2, you must also specify the -old option.

 • -td <dir> (SDK1.1 only)—Specify a directory (overriding the default /tmp) for

javah to place its temporary files.

 • -trace (SDK1.1 only)—Add tracing information to the stubs file.

 • -v (SDK1.1) and -verbose (SDK1.2)—Generate verbose output.

 • -version—Print javah version information.

 javah_g

 Platform: SDK1.1

 This is a non-optimized version of javah, suitable for running under a debugger.

Invocation and use is identical to javah.

 - 272 -

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include relevant documentation on the

following page:

 docs/tooldocs/solaris/javah.html

 Summary

This chapter has presented javah, the header file generator for support of interfacing
between Java and native code. In Chapter 55, "JNI: Mixing Java and Native Code on
Linux," we will further explore the interface, discuss specific requirements for Linux, and
present an example of its use.

Chapter 23: The Java Documentation
Generator: javadoc

 Overview

 The javadoc tool generates HTML documentation from Java source files. It is the tool

used by Sun to generate the extensive class reference in the SDK documentation bundles.

Running javadoc

 The javadoc invocation can be applied to individual source files or, most conveniently,

to entire packages.

 Synopsis:

 javadoc [-green ¦ -native] [<options>] [<packages>] [<sources>]
[@<files>] (SDK1.2)

 javadoc [-green ¦ -native] [<options>] [<packages>] [<sources>]
(SDK1.1)

The javadoc tool is Sun's answer to the perennial problem of documenting your
interfaces. It reads Java source files and generates many files of API documentation. It's
almost magic—free documentation!—except that it does require some developer help to
generate useful documents. It looks for comments, in a stylized format, to explain the API
being documented. We'll describe and illustrate with an example later in the chapter.

The capabilities of javadoc grew substantially between SDK1.1 and SDK1.2. The
SDK1.1 version was a self-contained utility. SDK1.2, on the other hand, is built on top of
doclets, an extensible architecture for document formatting. The standard doclet shipped
with the SDK1.2 javadoc supports HTML generation; other doclets could potentially
support Windows help files or XML output.

 The optional SDK1.2 @<files> argument allows you to read command-line options from

a file instead of a (possibly very long) javadoc command line.

 Platform: SDK1.2, SDK1.1

 Options:

 - 273 -

•

-1.1 (SDK1.2 only)—Emulate SDK1.1 behavior. SDK1.2 javadoc output has
changed substantially from SDK1.1. If you need to generate the old format, this option
swaps in a doclet class that produces 1.1-style output.

 • -author—Include @author paragraphs from the source code comments. (This

option is built in to SDK1.1, and provided by the standard doclet in SDK1.2.)

 • -bootclasspath <pathlist> (SDK1.2 only)—Override the class path used by the

JVM for loading boot classes.

 • -classpath <pathlist>—Specify class path for loading all classes (SDK1.1) or

user classes (SDK1.2).

 This path is also searched for the source files if a -sourcepath option (discussed

later in this list) is not specified.

•

-d <directory>—Specify a directory in which to place the javadoc output.
Defaults to the current directory. (This option is built in to SDK1.1, and provided by the
standard doclet in SDK1.2.)

•

-doclet <class> (SDK1.2 only)—Specify a doclet class to use instead of the
standard doclet. This allows you to generate output in some format other than HTML.
If you use a different doclet class, built-in javadoc options will still be supported, but
options provided by the standard doclet (such as –d) may no longer be supported or
even be meaningful.

 • -docletpath <path> (SDK1.2 only)—Specify a class path for finding doclet class

files.

 • -docencoding <name>—Specify the encoding to be used for javadoc output.

(This option is built in to SDK1.1, and provided by the standard doclet in SDK1.2.)

 • -encoding <name>—Specify the encoding used in the source files.

 • -extdirs <dirlist> (SDK1.2 only)—Specify an alternate location for the JDK1.2

extensions directory.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -help—Print a list of options.

 • -J<flag>—Specify an option to be passed to the JVM running javadoc. This option

is passed, with the -J stripped, to the java application launcher that runs javadoc.

 • -locale <name> (SDK1.2 only)—Specify the locale to be targeted for javadoc

output.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

•

-nodeprecated—Do not include @deprecated information from the source code
comments. (This option is built in to SDK1.1, and provided by the standard doclet in
SDK1.2.)

 • -noindex—Do not generate a class index. (This option is built in to SDK1.1, and

provided by the standard doclet in SDK1.2.)

 - 274 -

 • -notree—Do not generate a class hierarchy list. (This option is built in to SDK1.1,

and provided by the standard doclet in SDK1.2.)

 • -overview <file> (SDK1.2 only)—Specify an externally authored file to be added

to the javadoc overview page.

 • -package—Generate documentation on public, protected, and package-accessible

classes and members.

 • -private—Generate documentation on all classes and members.

 • -protected—Generate documentation on public and protected classes and

members. This is the default behavior.

 • -public—Generate documentation only on public classes and members.

 • -sourcepath <pathlist>—Specify a path to search for source files. If not

specified, defaults to the class path.

Note

Source files must reside in a hierarchy that reflects the package name
whether or not you use the -sourcepath option. For purposes of generating
documentation, javadoc finds source files the same way the Java class
loader finds class files (see Chapter 14, "Configuring the Linux JSDK/JRE
Environment," in the section "Classes Loaded from File Systems").

 • -verbose (SDK1.2 only)—Generate verbose output to the terminal.

 • -version—Include @version information from the source code comments. (This

option is built-in to SDK1.1, and provided by the standard doclet in SDK1.2.)

 Options for the Standard doclet

These options, usable on the SDK1.2 javadoc command line, are specific to the
standard doclet used to generate the default output format. Some of these reflect options
that were built in to the SDK1.1 javadoc and migrated to the standard doclet in SDK1.2.

 • -author—Include @author paragraphs from the source code comments.

 • -bottom <html-code>—Specify HTML to be included at the bottom of each

generated page.

Note

With the -bottom and other options (-doctitle, -footer, and -header)
that specify HTML on the command line, the <html-code> may contain
spaces and characters such as <, >, and &, that are interpreted by bash or
other command shells. You can protect this argument from the shell by
enclosing it in single quotes. For example:

 javadoc -bottom 'My Footer'

Everything between the single quotes is passed to javadoc without
interpretation by the shell, except for the single-quote character itself and the
backslash. You can pass a single quote within the argument by preceding it
with a backslash:

 javadoc -bottom 'A Single-Quote \' Here'

 - 275 -

 And you can pass a backslash by preceding it with another backslash:

 javadoc -bottom 'A Backslash \\ Here'

 • -d <directory>—Specify a directory in which to place the javadoc output.

Defaults to the current directory.

 • -docencoding <name>—Specify the encoding to be used for javadoc output.

 • -doctitle <html-code>—Specify HTML to be included at the top of the overview

summary file.

 • -footer <html-code>—Specify HTML to be included at the bottom of each

generated page, to the right of the lower navigation bar.

•

-group <name> <p1>:<p2>—In a javadoc project documenting more than one
package, this option specifies groupings of packages under broad categories. The
information is used in laying out the overview page.

 • -header <html-code>—Specify HTML to be included at the top of each generated

page.

 • -helpfile <file>—Specify an externally authored help file to be linked to the

"HELP" buttons on the top and bottom navigation bars in the generated pages.

•

-link <url>—Specify an existing set of javadoc documentation for purposes of
cross-referencing. If the documentation you are currently generating contains
references to classes described in the existing <url>, javadoc will include HTML
links to the existing documentation wherever those references occur.

For example, if this option references a URL containing javadoc output for the core
classes, then any reference to core classes/members in the generated pages will be
linked to the appropriate location in the existing core class documentation.

•

-linkoffline <url> <packageListUrl>—Specify an existing offline set of
javadoc documentation for purposes of cross-referencing. This is a variant of the -
link option. Normally, the -link option causes the standard doclet to examine a
package-list file, found at the target <url>, listing the packages described in the
documentation. The standard doclet uses the information in that list to derive the
correct links into that documentation. If the list is unavailable (perhaps missing, or you
do not have current access to <url>), you can provide your own and reference it with
the <packageListUrl> argument to the -linkoffline option.

 • -nodeprecated—Do not include @deprecated information from the source code

comments.

 • -nodeprecatedlist—Do not generate documentation for deprecated classes.

 • -nohelp—Do not include the HELP link in the top and bottom navigation bars on the

generated pages.

 • -noindex—Do not generate a class index.

 • -nonavbar—Do not generate top and bottom navigation bars in the generated

pages.

 - 276 -

 • -notree—Do not generate a class hierarchy list.

•

-splitindex—Split the class index file into multiple files—one for entries starting
with "A," one for "B," and so on. This is a useful option for large libraries: if not
specified, the index occupies a single (possibly very large) page.

 • -stylesheetfile <path>—Specify a cascading style sheet (.css) file to be

associated with the documentation. If none is specified, javadoc generates a default.

 • -use—Generate "use" pages that describe each class's and package's customer. In

other words: who uses this class?

 • -version—Include @version information from the source code comments.

•

-windowtitle <text>—Specifies the window title for the documentation—the title
that will appear on the window title bar while the documentation is being browsed. If not
specified, defaults to the -doctitle value.

javadoc Source

The source material for javadoc is provided by stylized comments in Java source code.
These comments, delimited by the sequence /** and */, are placed immediately before
the item (class, interface, or member) being described. This information will end up in an
HTML document, and should follow the authoring conventions for well-formed HTML. As
with any HTML document, it should use HTML escapes for any magic characters
appearing in the text (for example, < for the < character). The javadoc comments for a
class, interface, or field, begin with a single-line description in HTML. This is followed by
a detailed multiline description in HTML. This is followed by tags that provide specific,
detailed information about the API being documented—inputs, outputs, exceptions,
cross-references, and so on. When javadoc generates its output, it organizes the tags
into relevant sections of the document.

The next section of this chapter provides an example of the use of javadoc tags, and an
illustration of how they appear in the output documentation. Here are the tags currently
supported by javadoc:

 • @author <name>—Identify the author of this part of javadoc documentation.

•

@deprecated <text>—Identify a class member as deprecated and not intended for
current use. The <text>, which can include an explanation or a pointer to another
class or member, is included in a bold, italicized message with the API description.

•

@exception <class> <description>—Describe an exception class thrown by
this method. The <description> text appears in the javadoc output as an
explanation of the exception.

•

{@link <target> <text>} (SDK1.2 only)—Insert an inline link into the
documentation, containing <text> as the linked text. The <target> can either be a
URL or a reference to another package, class, or class member. The @link tag can
appear anywhere in javadoc source (see Note).

Note

If the <target> field in a {@link} or @see tag is a reference to another
package, class, or class member, it takes the general form
<package>.<class>#<member>, with one or more fields specified.
Possible forms of the <target> field include:

 • <package> (for example, java.lang)

 - 277 -

 • <class> (for example, Object)

 • <package>.<class> (for example, java.lang.Object)

 • #<member> (for example, #toString())

 • <package>.<class>#<member> (for example,

java.lang.Object#toString())

 The details of turning this reference into a link and a URL are automatically

handled by javadoc.

 • @param <param-name> <description>—Describe a parameter passed to this

method.

 • @return <description>—Describe the return value of this method.

•

@see "<quoted string>"—Describe a related piece of information, which will
appear in the "see also" section of the javadoc output. According to Sun, this form of
@see is broken in JDK1.2 and should not be used (see Note).

 • @see <markup>—Describe a related piece of information. The <markup> field is

HTML markup describing a link (see Note). For example:

 @see Foo Bar

•

@see <target> [<label>]—Describe a related piece of information (see Note).
The <target> field is a reference to a package, class, or class member, of the form
<package>.<class>#<member>.

 • @since <text>—Describe when this component was added to the API. Example:

@since JDK1.1 .

•

@serial [<field description>] (SDK1.2 only)—Document a default
serializable field, and include an optional description of the field. This tag allows
javadoc to generate a specification for the serial representation of a class.

 • @serialField <fieldname> <fieldtype> <field description> (SDK1.2

only)—Document an ObjectStreamField component.

 • @serialData <data description> (SDK1.2 only)—Document data written by

writeObject() when an object is serialized.

•

@throws <class> <description> (SDK1.2 only)—Describe an exception thrown
by this method. The <description> text appears in the javadoc output as an
explanation of the exception. This tag is as synonym for @exception.

 • @version <text>—Add a "version" subheading to generated documentation.

Example

 Listings 23.1 and 23.2 contain a modest example to illustrate basic operation. Our two-

class "Hello World" project is full of comments for javadoc.

 - 278 -

 Listing 23.1 Hello.java Source

 1 package com.bogus;
 2 import java.io.*;
 3
 4 /**
 5 * This class is responsible for generating the important
"Hello"

 6 * message, as well as for instantiating and exercising
another

 7 * class that generates the "World" message.
 8 *
 9 * @author Nathan Meyers
 10 * @see com.bogus.World
 11 */
 12 public class Hello
 13 {
 14 /**
 15 * The output writer.
 16 */
 17 protected PrintWriter pwriter;
 18 /**
 19 * The instance of the World class we will exercise.
 20 */
 21 protected World world;
 22 /**
 23 * Construct a Hello object capable of outputting to
the specified

 24 * PrintWriter.
 25 *
 26 * @param pw The PrintWriter to write to.
 27 */
 28 public Hello(PrintWriter pw)
 29 {
 30 pwriter = pw;
 31 world = new World(pw);
 32 }
 33 /**
 34 * Say the magic word.
 35 *
 36 * @return Nothing!
 37 */
 38 public void print()
 39 {
 40 pwriter.print("Hello ");
 41 world.print();
 42 }
 43 /**
 44 * The main() method for the application.
 45 */
 46 public static void main(String[] argv)
 47 {
 48 PrintWriter pw = new PrintWriter(new
OutputStreamWriter(System.out));

 - 279 -

 49 (new Hello(pw)).print();
 50 pw.close();
 51 }
 52 }

 Listing 23.2 World.java Source

 1 package com.bogus;
 2 import java.io.*;
 3
 4 /**
 5 * This class generates the much-beloved "World" message.
 6 */
 7 public class World
 8 {
 9 /**
 10 * The output writer.
 11 */
 12 protected PrintWriter pwriter;
 13 /**
 14 * Simple World constructor.
 15 *
 16 * @param pw The PrintWriter to write to.
 17 */
 18 public World(PrintWriter pw)
 19 {
 20 pwriter = pw;
 21 }
 22 /**
 23 * Say the magic word.
 24 */
 25 public void print()
 26 {
 27 pwriter.println("World");
 28 }
 29 }

To build our documentation, we place these files into a class hierarchy reflecting the
package name, build a destination directory, and invoke the SDK1.2 javadoc on the
package name:

 bash$ mkdir -p com/bogus
 bash$ cp *.java com/bogus
 bash$ mkdir /tmp/javadoc
 bash$ javadoc -sourcepath . -d /tmp/javadoc com.bogus

 The result is a documentation tree (see Figure 23.1).

 - 280 -

 Figure 23.1: javadoc documentation tree.

 Figure 23.2 shows the browser entry to the documentation.

 Figure 23.2: Main documentation page for our package.

For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include detailed javadoc

documentation on the following pages:

 javadoc

docs/tooldocs/solaris/javadoc.html

 javadoc enhancements

(SDK1.2 only)

docs/tooldocs/javadoc/index.html

 An overview of doclets

(SDK1.2 only)

docs/tooldocs/javadoc/overview.html

 The standard doclet

(SDK1.2 only)

docs/tooldocs/javadoc/standard-
doclet.html

 How to write Doc

comments for javadoc

Javadoc product page at http://java.sun.com.

Summary

 - 281 -

This chapter has presented javadoc, Sun's standard tool for generating Java API
documentation. By defining a standard format for adding documentation to code, the
javadoc approach simplifies the generation of API documents and allows advanced tools
(such as integrated development environments and rapid application development tools) to
add automated documentation support.

Chapter 24: Miscellaneous JSDK
Development Tools

 Overview

 Having covered the important day-to-day tools, this chapter briefly mentions some others to

be found in the Blackdown SDK.

Java Class File Disassembler: javap

 The javap tool dumps information on classes and, optionally, generates a disassembled

bytecode listing of class contents.

 Usage

 The javap invocation operates on one or more classes found in the class path.

 Synopsis:

 javap [-green ¦ -native] [<options>] <classes>

 This tool is useful for dumping detailed information about class contents. It provides both

the ability to dump class structures and to disassemble method bytecodes.

While javap can be invaluable for certain tasks (we make good use of it in chapter 38,
"Generic Java Compilers," in the section "Retrofitting"), it suffers two noticeable
shortcomings:

•

It provides no information about inherited class members. In Chapter 47, "DumpClass:
A Tool for Querying Class Structure," we present an alternative tool that addresses
this problem.

•

It tends to crash when disassembling bytecodes. Many alternative decompilation tools
are available to do the job, including one discussed in Chapter 46, "Jad: A Java
Decompiler."

 Platform: SDK1.2, SDK1.1

 Options:

 • -b—Enforce backward compatibility with older versions.

 • -bootclasspath <pathlist> (SDK1.2 only)—Specify the class path to be

searched for root classes.

 • -c—Generate a disassembly listing.

 • -classpath <pathlist>—Specify the class path for all (SDK1.1) or user (SDK1.2)

 - 282 -

classes.

 • -extdirs <dirs> (SDK1.2 only)—Specify an alternate location for the JDK1.2

extensions directory.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -help (SDK1.2 only)—Print a list of options.

 • -J<flag>—Specify an option to be passed to the JVM running javap. This option is

passed, with the -J stripped, to the java application launcher that runs javap.

 • -l—Dump tables of line number and local variable information.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -package—List public, protected, and package-accessible classes and methods.

 • -private—List all classes and methods.

 • -protected—List public and protected classes and methods.

 • -public—List public classes and methods.

 • -s—Print type signatures (in internal Java format) for class members.

 • -verbose—Print information on stack size and local variables for methods.

•

-verify (SDK1.1 only)—Run the bytecode verifier on classes. (In SDK1.2, use
"java -verify", as discussed in Chapter 17, "The Java Application Launchers:
java, jre and oldjava").

 • -version (SDK1.1 only)—Print javap version information.

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include javap documentation on the

following page:

 docs/tooldocs/solaris/javap.html

 Java Standard Extension Checker: extcheck

 The extcheck utility checks an extension jar file for conflicts with any existing installed

extensions—a worthwhile sanity check before installing a new extension.

 Usage

The extcheck invocation checks the Java archive specified on the command line.
Because the check is based on metadata stored in the archive's manifest, extcheck will
fail for jar files not containing this metadata.

 - 283 -

 Synopsis:

 extcheck [-green ¦ -native] [-verbose] <jarfile>

 Platform: SDK1.2

 For Further Reading

 The SDK1.2 documentation bundle includes extcheck documentation on the following

page:

 extcheck docs/tooldocs/solaris/extcheck.html

 Source Code Character Set Converter: native2ascii

The native2ascii utility supports translation between the character sets used locally
and the standard universal Unicode character set used by Java to encode textual
information. Unicode is a superset of the old American Standard Code for Information
Interchange (ASCII)—hence the name.

 Usage

 The native2ascii invocation allows you to convert from locale-specific native

encoding to Unicode, or to perform a reverse conversion from Unicode to native.

 Synopsis:

 native2ascii [-green ¦ -native] [-reverse] [-encoding <encoding>]
[<inputfile> [<outputfile>]]

 Platform: SDK1.2, SDK1.1

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include native2ascii documentation

on the following page:

 docs/tooldocs/solaris/native2ascii.html

Class Serial Version Number Generator:
serialver

The serialver utility supports serialization—the ability to represent a complete object
as a sequence of bytes for storage, retrieval, and transmission. Serialized objects are
sensitive to class structure; any changes to a class can break compatibility between the
class definition and a serialized instance of the class.

The use of serial version IDs avoids compatibility disasters by associating a unique
number—based on class name and structure—with serialized objects. If class structure
changes, its serial version ID also changes and incompatibilities with older serialized
objects are easily detected.

 Usage

 - 284 -

The serialver invocation takes a class name and generates a line of Java source
code—a definition of the serialVersionUID variable that you can include in the class
source. Note that you can only use serialver on classes that implement the
java.io.Serializable interface.

 Synopsis:

 serialver [-green ¦ -native] -show¦<class>

 Although normally a batch tool, serialver supports an option, -show, that runs a GUI

for interactive use.

 Platform: SDK1.2, SDK1.1

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include serialver documentation on

the following page:

 docs/tooldocs/solaris/serialver.html

CORBA Support: tnameserv

JDK1.2 introduced core Java support of the Common Object Request Broker Architecture
(CORBA) for use of distributed services. That support consists of classes for creation of
CORBA clients and servers (the org.omg.CORBA.* packages and classes) and the
utility described here.

One of the core services in a CORBA environment is name services, used for locating
objects in the CORBA space. SDK1.2 provides a sample implementation of a simple
COS (Common Object Services) name server.

 Usage

 The tnameserv invocation starts up the COS server. Once running, the server handles

requests for registration and location of services.

 Synopsis:

 tnameserv [-green ¦ -native] [-ORBInitialPort <port>]

 The server listens at TCP port 900, unless overridden with the -ORBInitialPort

option.

 Platform: SDK1.2

 Where's the IDL Compiler?

An important component of CORBA developer support is an Interface Description
Language (IDL) compiler, for mapping generic CORBA interface descriptions to the
language interfaces used in a particular CORBA implementation. Sun's version of such a
tool, idl2java, is a native-code product that is not currently available for Linux. There
do not appear to be any substitutes available; IDL compilers are closely coupled to their
accompanying CORBA implementations, so IDL compilers from other vendors will not

 - 285 -

work.

Until a Linux-usable version of idl2java is available, you can either avoid the use of
Sun's JDK1.2 CORBA implementation (many fine free and commercial third-party ORBs
are available) or use a Microsoft Windows or Solaris version of the compiler.

 For Further Reading

 The SDK1.2 documentation bundle includes tnameserv documentation on the following

page:

 docs/guide/idl/jidlNaming.html

RMI Support: rmic, rmid, rmiregistry

The Remote Method Invocation (RMI) is Sun's network protocol for support of distributed
objects. The general idea is similar to CORBA—objects can invoke other objects'
methods and pass data, in an architecture-neutral format, over the network. But the RMI
specification is much simpler than CORBA and is designed for the specific needs of Java.

The Java core classes include the necessary components for implementing RMI client
and server objects. The tools described here, variously supplied with the SDK and JRE,
provide development-side support and deployment-side network infrastructure for
implementing an RMI-enabled application.

 RMI Stubs/Skeleton Generator: rmic

Objects designed to provide RMI-based services must implement the
java.rmi.Remote interface, an empty interface whose only purpose is to advertise that
a class is intended for RMI use.

For such classes, the rmic utility generates stub and skeleton classes that provide client-
side and server-side (respectively) methods for requesting and providing services. For
every class requested in the rmic invocation, two new .class files containing the stub
and skeleton methods are generated.

 Synopsis:

 rmic [-green ¦ -native] [<options>] <classes>

 Platform: SDK1.2, SDK1.1

 Options:

 • -classpath <path>—Specify the class path to search for all classes (SDK1.1) or

user classes (SDK1.2).

•

-d <directory>—Specify a destination directory for the generated classes and
sources. The output files will be placed into a file hierarchy representing the package
hierarchy of the classes they describe. If this option is not specified, all generated files
will be placed in the current directory.

 • -depend—Perform some dependency analysis, causing recompiles for classes that

are out-of-date relative to other classes.

 • -g—Include debugging information in the generated class files.

 - 286 -

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -J<flag>—Specify an option to be passed to the JVM running rmic. This option is

passed, with the -J stripped, to the java application launcher that runs rmic.

•

-keep and -keepgenerated—Keep the generated intermediate .java source files.
If not specified, only the .class files are generated. Source files are placed into the
same location as their corresponding .class files.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -nowarn—Disable compiler warnings.

 • -v1.1 (SDK1.2 only)—Create stubs and skeletons that conform to the JDK1.1 stub

protocol.

 • -v1.2 (SDK1.2 only)—Create stubs and skeletons that conform to the JDK1.2 stub

protocol.

 • -vcompat (SDK1.2 only)—Create stubs and skeletons that support both JDK1.1 and

JDK1.2 stub protocols.

 • -verbose—Generate verbose output.

 RMI Activation System Daemon: rmid

 JDK1.2 added a new capability: automatic RMI object activation. The RMI Daemon

(rmid) provides the necessary infrastructural support by handling requests for activation.

 Synopsis:

 rmid [-green ¦ -native] [-port <num>] [-log <dir>] [-stop] [-
C<option>]

 Platform: SDK1.2, JRE1.2

 Options:

 • -C<option>—Specify a command-line option to be passed (with the -C stripped) to

processes spawned by rmid.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -log <dir>—Specify a directory in which rmid will keep its logs. If this option is not

specified, the default is the current directory in which rmid was started.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -port <port#>—Specify a listening port, overriding the default TCP port 1098.

 - 287 -

 • -stop—Stop the daemon listening at the default or specified (-port) port number.

 RMI Activation System Daemon: rmiregistry

 RMI environments require a registry service to support server registration and client

location of services. The rmiregistry utility provides such a service.

 Synopsis:

 rmiregistry [<port>]

 If a port is not specified, rmiregistry listens at TCP port 1099.

 Platform: SDK1.2, JRE1.2, SDK1.1, JRE1.2

 For Further Reading

 The SDK1.1 and SDK1.2 documentation bundles include documentation on RMI and its

tools on the following pages:

 rmic

docs/tooldocs/solaris/rmic.html

 rmid (SDK1.2 only)

docs/tooldocs/solaris/rmid.html

 rmiregistry

docs/tooldocs/solaris/rmiregistry.html

 RMI information

docs/guide/rmi/index.html

Security Administration Tools: jarsigner, javakey,
keytool, policytool

These tools, in various incarnations in SDK1.1 and SDK1.2, support the Java security
mechanisms for distribution of signed, trusted applications. The application signatures
created and managed by these tools interact with the permissions granted in a JDK
deployment environment (see Chapter 14, "Configuring the Linux SDK/JRE
Environment," in the section "Security Settings").

Note that these tools do not support signing of applets or extensions for Web browsers
from Netscape and Microsoft. These are browser-specific issues, and are addressed by
tools and techniques supplied by Netscape
(http://developer.netscape.com:80/docs/manuals/signedobj/) and
Microsoft (http://www.microsoft.com/Java/security/default.htm).

 Jar Digital Signature Tool: jarsigner

The jarsigner utility administers digital signatures in a jar file. Combined with
keytool, which is discussed later, it comprises the main toolset for managing signatures
and signing applications under JDK1.2.

 Synopsis:

 jarsigner [-green ¦ -native] [<options>] <jarfile> <alias>
 jarsigner [-green ¦ -native] -verify [<options>] <jarfile>

 - 288 -

 Platform: SDK1.2

 Options:

 • -certs—Increase verbosity of -verify -verbose operation by including

information on each certificate stored.

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 • -internalsf—Store an internal copy of the signature file.

 • -keypass <password>—Specify a password for private key protection.

 • -keystore <url>—Specify location of the keystore. Defaults to user's personal

keystore in ~/.keystore.

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -sectionsonly—Do not include a header in the jar file's .SF signature file. Defaults

to the alias name if not specified.

 • -sigfile <file>—Specify a base name for the jar file's signature files.

 • -signedjar <file>—Specify a new name for the signed version of the jar file. If

not specified, overwrites the original jar file.

 • -storepass <password>—Set a signature for access to the keystore.

 • -storetype <type>—Specify the type of keystore.

 • -verbose—Generate verbose output.

 • -verify—Verify the signatures in the jarfile.

 JDK1.1 Key Administration Tool: javakey

The javakey utility manages keys and digital signatures in archive files under JDK1.1.
Its functionality is superceded in JDK1.2 by jarsigner and keytool. The underlying
security mechanism is replaced with an entirely new mechanism in JDK1.2.

 Synopsis:

 javakey [-green¦-native] -c <identity> [true¦false]
 javakey [-green¦-native] -cs <signer> [true¦false]
 javakey [-green¦-native] -dc <certfile>
 javakey [-green¦-native] -ec <idOrSigner> <certnum> <certoutfile>
 javakey [-green¦-native] -ek <idOrSigner> <pubfile> [<privfile>]
 javakey [-green¦-native] -g <signer> <algorithm> <keysize>
[<pubfile>] [<privfile>]

 javakey [-green¦-native] -gc <directivefile>
 javakey [-green¦-native] -gk <signer> <algorithm> <keysize>

 - 289 -

[<pubfile>] [<privfile>]
 javakey [-green¦-native] -gs <directivefile> <jarfile>
 javakey [-green¦-native] -ic <idOrSigner> <certsrcfile>
 javakey [-green¦-native] -ii <idOrSigner>
 javakey [-green¦-native] -ik <identity> <keysrcfile>
 javakey [-green¦-native] -ikp <signer> <pubfile> <privfile>
 javakey [-green¦-native] -l
 javakey [-green¦-native] -ld
 javakey [-green¦-native] -li <idOrSigner>
 javakey [-green¦-native] -r <idOrSigner>
 javakey [-green¦-native] -t <idOrSigner> [true¦false]

 Platform: SDK1.1, JRE1.1

 JDK1.2 Key Administration Tool: keytool

 The keytool utility manages a repository of keys and digital signatures.

 Synopsis:

 keytool [-green¦-native] -certreq [<options>]
 keytool [-green¦-native] -delete -alias <alias> [<options>]
 keytool [-green¦-native] -export [<options>]
 keytool [-green¦-native] -genkey [<options>]
 keytool [-green¦-native] -help
 keytool [-green¦-native] -identitydb [<options>]
 keytool [-green¦-native] -import [<options>]
 keytool [-green¦-native] -keyclone -dest <dest_alias> [<options>]
 keytool [-green¦-native] -keypasswd [<options>]
 keytool [-green¦-native] -list [<options>]
 keytool [-green¦-native] -printcert [<options>]
 keytool [-green¦-native] -selfcert [<options>]
 keytool [-green¦-native] -storepasswd [<options>]

 Platform: SDK1.2, JRE1.2

 Options:

 • -alias <alias>—Specify alias for this keystore entry (certreq, export, genkey,

import, keyclone, keypasswd, list, selfcert).

 • -dname <dname>—Specify the distinguished name (genkey, selfcert).

 • -file <cert_file>—Specify certificate (.cer) file (export, import,

printcert).

 • -file <csr_file>—Specify certificate signing request (.csr) file (certreq).

 • -file <idb_file>—Specify JDK1.1 Identity Database (.idb) file (identitydb).

•

-green—Force the JVM to use the Sun "green" thread emulation package, which is a
user-space emulation of kernel threading. If specified, this must be the first option on
the command line.

 - 290 -

 • -keyalg <keyalg>—Specify the name of the key algorithm (genkey).

 • -keypass <keypass>—Specify password to protect the private key (certreq,

dest, genkey, import, selfcert).

 • -keypass <old_keypass>—Specify the private key password to be changed

(keypasswd).

 • -keysize <keysize>—Specify the size (in bits) of the key to generate (genkey).

•

-keystore <keystore>—Specify the location of the keystore (defaults to
~/.keystore) (alias, certreq, dest, export, genkey, identitydb, import,
keypasswd, list, selfcert, storepasswd).

 • -native—Force the JVM to use the "native" platform thread API. If specified, this

must be the first option on the command line.

 • -new <new_keypass>—Specify the new private key password (dest, keypasswd).

 • -new <new_storepass>—Specify the new keystore password (storepasswd).

 • -noprompt—Do not interact with the user (import).

 • -rfc—Output the certificate in the text format described by the RFC1421 standard

(export, list).

 • -sigalg <sigalg>—Specify the algorithm to be used for the signature (certreq,

genkey, selfcert).

•

-storepass <storepass>—Specify the password for the keystore (alias,
certreq, dest, export, genkey, identitydb, import, keypasswd, list,
selfcert, storepasswd).

•

-storetype <storetype>—Specify the type of the keystore (alias, certreq,
dest, export, genkey, identitydb, import, keypasswd, list, selfcert,
storepasswd).

 • -trustcacerts—Add the certificates in the central JDK1.2 certificate store to the

chain of trust (import).

 • -v—Run with verbose output.

 • -validity <valDays>—Specify a validity period (in days) for the certificate.

(genkey, selfcert).

 JDK1.2 GUI-Based Policy Administration Tool: policytool

 This tool provides a GUI for manipulation of the JDK1.2 java.policy security file (see the

"Security Settings" section in Chapter 14) and individual user policy files.

 Synopsis:

 policytool [-green ¦ -native] [-file <file>]

 - 291 -

 Platform: SDK1.2, JRE1.2

 For Further Reading

 The SDK1.1 documentation bundle includes documentation on JDK1.1 security

administration and its tools on following pages:

 javakey

docs/tooldocs/solaris/javakey.html

 Java security

docs/guide/security/index.html

 The SDK1.2 documentation bundle includes documentation on JDK1.2 security

administration and its tools on following pages:

 jarsigner

docs/tooldocs/solaris/jarsigner.html

 keytool

docs/tooldocs/solaris/keytool.html

 policytool

docs/tooldocs/solaris/policytool.html

 Java security

docs/guide/security/index.html

 Summary

This chapter has provided a quick reference to SDK tools that, while perhaps not as
heavily used as those described in earlier chapters, play important roles in the
development and deployment of Java applications.

Part VI: Additional Java Runtime
Environments

 Chapter List

 Chapter

25: The IBM JSDK Port

 Chapter

26: Kaffe: A Cleanroom Java Environment

 Chapter

27: Japhar: A Cleanroom JVM

 Chapter

28: GNU Classpath: Cleanroom Core Class Libraries

 Chapter

29: Mozilla ElectricalFire: A New JVM

 Chapter

30: Sun HotSpot Performance Engine

 - 292 -

 Chapter

31: gcj: A Compiled Java Solution

 Chapter

32: Tower: A Server-Side Hybrid Java Environment

 Part Overview

 Thus far, we have focused on the basic component that puts Linux in the Java business:

the Sun JDK.

Despite the vast quantity of available Sun Java software, the true story of Java's
acceptance can be seen in the wealth of Java activity beyond Sun's walls (and
sometimes beyond its reach), from cleanroom JVMs to development systems to
language extensions.

In this part, we examine alternative runtime environments—solutions that do not depend on
the Blackdown JDK or, in some cases, on any Sun-supplied software. Some of these are
available and usable today (Kaffe, IBM SDK); others are promising projects—not yet ready
for prime time but offering the promise of vendor-neutral Java (Japhar, GNU Classpath).
We'll also take a look at some promising new JVM approaches (ElectricalFire, HotSpot)
and some native-compiled Java solutions (gcj, TowerJ).

Chapter 25: The IBM JSDK Port

 Overview

The IBM JDK port for Linux is a port of the Sun Java SDK to the Linux platform. As of this
writing, IBM's offering consists only of an SDK1.1, but will undoubtedly grow to include
JRE1.1, SDK1.2 and JRE1.2 offerings.

 Platforms: SDK1.1

IBM is one of Java's most vocal boosters and may hold the distinction of shipping the
most JDK ports of any major vendor. It supports Java on OS/2, OS/390, AS/400, AIX,
VM/ESA, and Microsoft Windows. In mid-1999, IBM added Linux to the mix, releasing its
own Linux JDK to the world.

The IBM Linux JDK is (as of this writing), released through the IBM AlphaWorks site—
http://alphaworks.ibm.com. To find it, navigate from the home page to the AlphaWorks
technology page and look for Java offerings. The product is shipped as a compressed
binary tarball, and installation and configuration is similar to that for the Blackdown JDK.

 The major differences between the IBM and Blackdown JDKs are as follows:

•

Based on current observation, Blackdown will tend to have technology available
sooner than IBM. (It is unclear whether this pattern, established with early releases,
will continue.)

 • Blackdown supports a larger variety of Linux configurations; the IBM release targets

only the Linux 2.2 kernel with glibc 2.1.

 • The IBM release ships for native threads only; Blackdown supports native and green

threads.

 - 293 -

•

The IBM release incorporates proprietary IBM technology for garbage collection, JIT,
and possibly other areas. These should introduce performance gains over the vanilla
Sun code in the Blackdown port, and early results have been promising.

•

The structure of the product trees are virtually identical, except that the IBM JDK uses
directories named linux/ for native components, whereas the Blackdown JDK uses
directories named for the target platform architecture (i386/, for example).

 System Requirements

The IBM JDK requires Linux kernel 2.2, glibc version 2.1 (see Chapter 13, "Blackdown:
The Official Linux Port," in the section "An Important Note About libc") and support of
the X Window System. A static version of the Motif toolkit is linked into the product, so
there is no dependence on a shared Motif library.

If an application does not use the AWT, the IBM JVM will run without any dependencies
on the AWT libraries or shared X11 libraries—meaning, as with the Blackdown port, that
it is usable for non-graphics applications in server environments without the X Window
System.

 The AlphaWorks Linux JDK Web Site

All software distributed by IBM's AlphaWorks site includes its own FAQ, discussion area,
description of system requirements, and download links.The Web-based discussion forum
is the center of the IBM/Linux/JDK community. This is the place to ask questions, help
other users, and make your voice heard.

 Summary

This chapter has discussed the IBM port of the Sun JDK to Linux. Just as IBM has found
helping Linux to be in its commercial interests, other vendors will certainly follow suit and
we can expect more good proprietary technologies to find their way to Linux. It is anyone's
guess what this means in the long term—which vendors will help Java succeed on Linux,
and what role the Blackdown organization will play. But the trend bodes well for Java's
success on the Linux platform.

Chapter 26: Kaffe: A Cleanroom Java
Environment

 Overview

 Kaffe is a cleanroom implementation of the Java runtime environment.

 Platform: Almost JRE1.1

The Open Source revolution has created a plethora of brave new business models hardly
imagined when Java first appeared. Transvirtual Technologies, Inc.,
(http://www.transvirtual.com) is one such example: a company that makes its
living by both selling and giving away its work.

Transvirtual's technology is Kaffe, a cleanroom implementation of Java, developed
entirely from specs without any licensed Sun code. The company earns its income by
licensing and porting its technology for use in embedded environments: handhelds, smart
cards, appliances, and the like. It also gives away its technology, under GPL terms, in the
form of JDK implementations for desktop computers.

 - 294 -

Kaffe enjoys the distinction of support on the largest number of desktop CPUs (i386,
Sparc, Alpha, Motorola 68K, PowerPC, MIPS, PA-RISC, and StrongARM) and operating
systems (including Linux, FreeBSD, HP-UX, Solaris, OSF/1, AmigaOS, AIX, Irix, and
more) of any Java implementation.

Transvirtual's product line consists of Kaffe Custom Edition (the commercial product) and
Kaffe Desktop Edition (the GPL product). Kaffe is nominally a PersonalJava
environment—it claims full compliance with current PersonalJava specs—but it also
implements substantial portions of JDK1.1 and a few parts of JDK1.2 in its JVM and core
libraries.

Transvirtual grabbed some headlines with a mid-1999 announcement about one capability
exceeding that of the Sun JDK. In collaboration with Microsoft, it has enhanced Kaffe with
multiplatform versions of Microsoft's Java extensions. With Kaffe, you can run Microsoft's
extended Java code (which, technically and legally speaking, is not considered to be Java)
on many platforms.

 Obtaining and Installing Kaffe

Kaffe is freely available from Transvirtual's Web site
(http://www.transvirtual.com), from the Kaffe Web site
(http://www.kaffe.org), and from many software repositories. It is also distributed,
in RPM form, with Red Hat and other Linux distributions.

The source distribution from the Kaffe Web site is built with GNU's autoconf
technology, and is easily unpacked and built on Linux (see Chapter 8, "Installing
Additional Linux Software," in the section "Compressed Tarball Source Distribution").
RPMs and Debian packages are also available for both source and binaries; installation
is straightforward.

The one caution to note is that the Kaffe distributions are configured to install their
components (including executables named java, javac, javadoc, and so on) in
standard locations, such as /usr/bin and /usr/lib, or /usr/local/bin and
/usr/local/lib. If you are also using another Java environment on your system, be
sure to set up your environment to consistently use one Java at a time (see Chapter 14,
"Configuring the Linux JSDK/JRE Environment," in the section "Accommodating Multiple
Java Installations"). This includes ensuring that the proper executables are found first in the
$PATH. Running Sun's JVM with Kaffe's core classes, or vice versa, creates some
remarkably strange and confusing problems.

Contents of the Kaffe Distribution

Here are the installation locations for the Red Hat Kaffe RPM. If you build instead from
the Kaffe source distribution, the default target is /usr/local/*, which you can
override with configuration options.

•

Core executables in /usr/bin: appletviewer, install-jar, jar, java, javac,
javadoc, javakey, javap, jdb, kaffe, kaffeh, kfc native2ascii, report-
kaffe-bug, rmic, rmiregistry, serialver.

 • Documentation, including FAQs, developer information, and licensing terms, in

/usr/doc/kaffe-<ver>/, where <ver> is the current version number.

 • C/C++ header files for use with JNI in /usr/include/kaffe/.

 • Shared libraries for all native components, including AWT, I/O, math, and networking,

in /usr/lib/kaffe/.

 - 295 -

 • A kaffe man page in /usr/man/man1/.

 • Kaffe core class files in /usr/share/kaffe/.

 The entire installation, as of this writing, takes a tidy 4MB.

System Requirements and Dependencies

Kaffe requires a Linux 2.x system. If you run AWT applications, you will need X Window
System library support on the system. The AWT is implemented without any dependence
on Motif or any other GUI libraries.

Dependence on libc version is determined entirely by the system on which Kaffe is built.
If you build Kaffe from a source distribution, then you will have a version appropriate for
your system. If you obtain an RPM, the rpm tool should prevent you from installing a
version you cannot run.

Comparisons to the Sun JDK

The Java specifications cover the language, class format, core libraries and extensions,
and JVM—in essence, the environment in which Java applications run. They do not cover
implementation details, configuration, development environment, or tools. We will do
some brief comparisons here and in the next several sections.

 Kaffe Performance

 Kaffe is slick and compact. Overall performance is very good, and startup performance is

considerably faster than that of the Sun JDK.

 Kaffe Tools

Kaffe is primarily a runtime environment, not a development kit. It does supply a few tools
(described later in the chapter, in the section "Kaffe Tools"), as well as scripts to launch
the customary Sun SDK tools from Sun's SDK class libraries if they are available.

 Does Kaffe Swing?

 Yes! Put the JFC Swing 1.1 class library in your class path or install it as an extension jar

file, and you have full use of Swing GUI components.

 Configuring Kaffe

 Almost none of the Sun-related configuration information (see Chapter 14) is relevant to

configuring Kaffe. The following sections explain how Kaffe does it.

 Specifying the Class Path

Kaffe uses an enhanced JDK1.1 model for finding classes—a single class path for
everything (see the section "JDK1.1 Class Path Construction" in Chapter 14 for a
discussion of Sun's JDK1.1 model). The class path is specified for application execution
in one of two ways:

 • Fully specified with a -classpath option to the application launcher

 • Specified by $CLASSPATH, to which Kaffe automatically appends its core class library

(Klasses.jar), its extension class libraries, and, if found, classes.zip. (Kaffe

 - 296 -

does not ship a classes.zip—you can add Sun's SDK1.1 classes.zip here by
copying or linking it into Kaffe's share/kaffe/ directory.)

 Kaffe has one JDK1.2-style class path enhancement: a -jar option that launches an

application from a jar file.

 No Configuration Properties Files

Kaffe does not rely on any configuration properties files such as font.properties.
Configuration is performed by a java.awt.Defaults class bundled in the core
classes. You can override the defaults by building your own java.awt.Defaults class
and placing it before the core libraries in the class path.

If you need to build your own java.awt.Defaults class, the easiest approach is to
copy and modify the source from the Kaffe distribution. The rationale for specifying
defaults with a class instead of a file is speed, robustness, and avoiding the need for
additional file system access at startup.

 Configuring Security

 Kaffe does not yet have a security manager to configure.

 Kaffe Fonts

The standard logical font names—Default, Monospaced, SansSerif, Serif,
Dialog, DialogInput, ZapfDingbats—are mapped to X Window System fonts in the
java.awt.Defaults class (discussed in the earlier section, "No Configuration
Properties Files"). All GUI components have reasonable default fonts, and any of those
fonts can be obtained through the normal java.awt.Font constructors or factories (the
names are case - sensitive).

In addition, Kaffe can open other X Window System fonts by family name. For example, if
you have a Helvetica font installed in X, requesting a helvetica-plain-12 in Java will
give you a 12-point Helvetica font.

Kaffe also lets you open a font using the platform-specific X font name. These names are
usable with the java.awt.Font constructor (see the following example), but not with
methods that use the platform-neutral font name format (such as Font.decode()).

 Example:

Font font = new Font("-adobe-utopia-bold-r-normal-0-200-75-75-p-
0-
iso8859-1", Font.PLAIN, 0);

 The second and third arguments, specifying style and size, are ignored—that information

is already present in the X-style XLFD name. The most interesting fields are

 • Family name (2nd field): utopia

 • Weight (3rd field): bold

 • Slant (4th field): r (r=roman, i=italic, o=oblique)

 • Pointsize*10 (7th field): 200 (that is, 20 points)

 - 297 -

 • Horizontal and vertical display resolution (8th and 9th fields): 75 (specified in dpi)

A list of X fonts is available from the Linux xlsfonts utility. To use any of the fonts
reported by xlsfonts, substitute your desired pointsize*10 and display resolution into
the 7th through 9th fields. A pointsize of 0 defaults to 12 points; a display resolution of 0
defaults to your actual display resolution.

 Adding JIT Compilers

 Kaffe has JIT built in. External JIT compilers are not supported.

 Environment Variables

 Table 26.1 lists some variables that are meaningful in Kaffe.

 Table 26.1 Environment Variables Affecting Kaffe Execution

 Variable

Function

 CLASSPATH

Class path for non-core components. Kaffe automatically
appends entries for core components. If not specified,
defaults to the current directory.

 KAFFE_DEBUG

Used for debugging Kaffe. If set to GDB, runs Kaffe under the
GNU debugger. If set to GNU emacs or Xemacs, runs Kaffe
under the GNU debugger in an Emacs window.

 KAFFEHOME

Optional. If set, should point to where Kaffe's core classes are
installed (/usr/share/kaffe in the case of the Red Hat
RPM).

 KAFFELIBRARYPATH

Optional. If set, should point to where Kaffe's native shared
libraries are installed (/usr/lib/kaffe in the case of the
Red Hat RPM).

 The kafferc File

Kaffe can optionally perform system- or user-specific initialization at startup. If a
share/kaffe/.kafferc file exists in the Kaffe distribution directories and/or a
.kafferc file exists in the user's home directory, Kaffe will source these files into its
startup shell before launching the application.

 Kaffe Tools

Kaffe includes enough tools to put you into the development and runtime business, but
does not include a clone of everything found in the Sun SDK. The following sections
discuss the tools included with Kaffe, as well as how you can use Sun's tools with Kaffe.

 Kaffe's java Application Launcher

 - 298 -

 Application launch is similar to launching under JDK1.1, although several launcher

options are not yet supported.

 Synopsis:

 java [<options>] <class>

 A few interesting Kaffe-specific options (or Kaffe-specific behaviors) are

•

-classpath—Specify the complete path for finding all classes: core, extension, user
(like JDK1.1). If this option is not used, $CLASSPATH is honored and Kaffe
automatically appends its core and extension classes (unlike JDK1.1, which does not
automatically append classes).

 • -help—Print a usage message, including information on which options are not yet

supported.

 • -jar—Run the application from a jar file.

 • -verbosejit—Print verbose output on the activities of the built-in JIT compiler.

 Kaffe's appletviewer Applet Tester

 Like the Sun SDK, Kaffe includes a facility to test-drive applets under its own virtual

machine.

 Synopsis:

 appletviewer <HTMLfile>

 The invocation is different from Sun's SDK: The applet viewer will not load a URL, only a

file.

 Kaffe's javac Java Compiler

Kaffe bundles a Java compiler with its distribution- the Kopi compiler described in chapter
37, "The Kopi Java Compiler." Kaffe also includes a javac script that launches the Kopi
compiler with the familiar javac command.

 Synopsis:

 javac[<options>]_<source_files>_

 Kaffe's kaffeh JNI Stub Generator

Kaffe's kaffeh tool is the Kaffe-flavored version of Sun's javah. Like javah, kaffeh
requires the -jni option to generate JNI-compatible header files; otherwise, it generates
header files for the pre-JNI nonportable interface. kaffeh does not offer an option to
generate a stub .c file.

 Kaffe's install-jar Utility

 This tool supports management of installed extensions.

 - 299 -

 Synopsis:

 install-jar <jarfile>

 The invocation runs a simple shell script that installs a jar file into Kaffe's share/kaffe/

directory.

 Running Non-Kaffe Tools

Kaffe does not ship its own versions of jar, javadoc, javakey, javap, jdb,
native2ascii, rmic, rmiregistry, or serialver. It supplies scripts that launch
them, under the Kaffe JVM, from Sun's SDK1.1 classes.zip. To use these tools, you
must have that archive in the class path, or a copy of that archive (or symlink to it) in
Kaffe's share/kaffe/ subdirectory.

 The Kaffe Site

Kaffe has its own development community, mailing list, cvs source tree (you can check out
the current, up-to-the-second source), and JitterBug bug-tracking database—all found at
the Kaffe Web site (http://www.kaffe.org). Developers who have not been tainted by
conflicting licenses (such as the Sun Community License, discussed in Chapter 12,
"Software Licensing," in the section "Sun Community Source License (SCSL)—Not Open
Source") are welcome to contribute to ongoing Kaffe development.

 Summary

This chapter has discussed Kaffe, a fully functional and widely available cleanroom
implementation of the Java runtime. While creating Sun JDK ports on Linux and many
other platforms has been slow and tortuous, Kaffe has demonstrated notable success in
building working software and a working business with an open-source cleanroom
implementation of the Java specifications.

Chapter 27: Japhar: A Cleanroom JVM

 Overview

 Japhar is a free, open source Java Virtual Machine.

 Platforms: <JRE1.1

A product of The Hungry Programmers (http://www.hungry.com), Japhar is a
cleanroom JVM covered by the GNU LGPL. As of this writing, it is still in early
development and nowhere near ready for production use.

 Japhar's most direct competitor is Kaffe, discussed in Chapter 26, "Kaffe: A Cleanroom

Java Environment." Here is a quick checklist of differences between the two:

 • Kaffe works; Japhar is still in very early development.

•

Kaffe is a full runtime environment; Japhar is only a JVM and requires separate core
Java libraries. These separate libraries can come from the Sun JDK or elsewhere (see
Chapter 28, "GNU Classpath: Cleanroom Core Class Libraries").

 - 300 -

•

Kaffe is associated with a commercial organization, which publishes an open source
version under GPL licensing terms—you can obtain more favorable terms by buying a
license. Japhar is noncommercial and released under LGPL, which offers you more
latitude than GPL in how it can be deployed (see Chapter 12, "Software Licensing," in
the section "The GNU LGPL").

 • Kaffe does JIT compilation; Japhar currently does not.

 • Japhar currently uses native threads; Kaffe does not.

•

Kaffe's capabilities and rate of growth are determined largely by the business needs of
its publisher, whereas Japhar focuses relentlessly on tracking the latest specs as
quickly as possible.

 • Kaffe has garbage collection; Japhar currently does not.

Obtaining and Installing Japhar

Japhar is distributed in source form from the project site, http://www.japhar.org. A
link on the main page takes you to information on obtaining the code. You can grab the
source in one of two ways:

•

Download a compressed archive, unpack, and build—it uses GNU autoconf
technology (see Chapter 8, "Installing Additional Linux Software," in the section
"Compressed Tarball Source Distribution") for easy building.

•

Check out current source from the project cvs tree. You need cvs (see Chapter 9,
"Setting Up a Linux Development Environment," in the section "cvs") to access the
project cvs repository. Use the techniques described in Chapter 9 in the section "cvs
Remote Repository Servers" to obtain Japhar source. The necessary repository name,
module name, and password are supplied on the Japhar site.

To build Japhar, you need a Linux 2.x development environment that includes
development support—libraries and header files—for X and Motif. (For Motif, you can
substitute the Hungry Programmers' Lesstif product, available from
http://www.lesstif.org and also in package form from many repositories and
Linux distributions.)

To build Japhar, you may also need a willingness to hack. Japhar is characteristic of
many young projects: The build process is not entirely robust, is occasionally broken by
recent changes, and has not been tested on a wide variety of configurations. You may
need to hack source or Makefiles to succeed in building. The best source of information
and help is the Japhar mailing list—see details on the Japhar home page.

After unpacking the archive or installing from cvs, you build Japhar with the customary
configure/make sequence. The configure script has several options to determine
what local facilities—X, Motif, an existing JDK—it should expect to find. Assuming that
you have Motif and an existing JDK, the steps to building Japhar should look something
like this:

 bash$./configure —with-jdk=$(JAVA_HOME)
 <...lots of output...>
 bash$ make
 <...lots of output...>
 bash$ make install
 <...lots of output...>

 - 301 -

These steps will configure, build, and install Japhar in some standard /usr/local/*
locations (you can override the default target locations by specifying the -prefix=
option to the configure script).

The result of the —with-jdk option is to copy several components from the Sun JDK—
core class libraries, configuration files, and so on—into Japhar's installation directories. It is
recommended that you use JDK1.1. The option can also be used with JDK1.2, but Japhar's
limited (to date) JDK1.2 support makes success less likely.

Contents of Japhar

 A Japhar installation includes five subdirectories:

•

bin/—This contains Japhar executables, including scripts to launch standard JDK
applications from the JDK core class archives (see "Non-Japhar Tools," later in this
chapter).

 • include/—This contains header files to support native interfaces, including JNI and

the Japhar Foreign Function Interface (FFI).

 • info/—This contains documents formatted for the Linux info documentation

system.

 • lib/—This contains all of Japhar's native libraries. Included are the native

components of AWT and other class libraries that require native components.

•

share/—This contains all of Japhar's core and extension classes. When Japhar is
configured with the —with-jdk option, core class libraries from the resident JDK are
copied into this directory.

 Configuring Japhar

 Most Japhar configuration occurs when the build-time configure script is run: use
./configure —help to see all the options.

 The configuration controls you can exercise at runtime are

•

The class path. This is specified in the usual way, through $CLASSPATH or a
command-line option (—classpath). Japhar automatically appends any .jar and
.zip archives found in its share/ subdirectory to the class path. Japhar does not,
however, include the share directory itself in the class path. If you have some classes
(not contained in archives) rooted in that directory, you must add that directory to the
specified class path.

 • Various properties files in the lib subdirectory, copied from the Sun JDK at

installation.

Available Japhar Tools

 Japhar is a runtime tool—you will not find compilers or many other development tools in

the distribution. This section describes what is included in a Japhar installation.

 The japhar Application Launcher

 The application launcher is called japhar, not java as in some other JVMs. It employs

the double-dash command-line option format common with GNU applications.

 - 302 -

 Synopsis:

 japhar [<options>] <class> [<args>]

 Options:

•

—classpath=<classpath>—Specify the search path for user classes. Note the use
of — and =, unlike most other Java implementations. If this option is not specified,
$CLASSPATH is used. In either case, Japhar automatically adds all .jar and .zip
files found in its share/ subdirectory to the class path.

 • —help—Print a usage message.

 • —verbose:{gc¦jni¦class¦method}—Turn on verbosity for garbage collection, JNI,

class, and/or method activities. You can specify multiple items, separated by commas.

 • —version—Print the Japhar version number.

 The japharh Native Stub Generator

 The japharh tool serves a function similar to javah: generating header and/or stub

files—with an additional option to dump class information.

 Synopsis:

 japharh [<options>] <classes>

 Options:

 • -classpath=<classpath>—Specify the class path for user classes.

 • -d=<path>—Specify a destination directory.

 • -dump [-ascii]—Dump a disassembled version of the class file contents as

unformatted text.

 • -dump -html—Dump a disassembled version of the class file contents in HTML

format.

 • -header—Generate native headers for the classes requested on the command line.

This is the default behavior if no options are specified.

 • -help—Print a help message.

 • -stubs—Generate native stubs files for the classes requested on the command line.

 • -version—Print version information.

 The japhar-config Tool

This tool generates information useful for native code that needs to interact with Japhar.
The information it returns, such as compiler flags, link flags, and installation locations,
can be used when compiling or linking native code intended to work with Japhar.

 - 303 -

 Synopsis:

 japhar-config <sub-command>

 Sub-commands (specify exactly one of the following):

 • —version—Print version information.

 • —help—Print a usage message.

 • —help <sub-command>—Print more detailed information on a particular sub-

command.

 • link—Print link-line options to properly link the correct libraries.

 • link-jvmdi—Print link-line options to properly link against the Japhar JVMDI

implementation.

 • compile—Print compile-line options for building native applications against Japhar.

•

info [<var>]—Print a description of the various directories comprising the Japhar
installation. Possible values for <var> are includedir, mandir, infodir, libdir,
localstatedir, sysconfdir, datadir, libexecdir, sbindir, bindir,
prefix, and exec_prefix. If <var> is specified (example: japhar-config info
bindir), only that directory is described; otherwise, information is printed on all
directories.

 • —prefix—A backward-compatible synonym for the info prefix sub-command.

 • —exec-prefix—A backward-compatible synonym for the info exec-prefix sub-

command.

 • —libs—A backward-compatible synonym for the link sub-command.

 • —cflags—A backward-compatible synonym for the compile sub-command.

 Non-Japhar Tools

Japhar does not ship its own versions of appletviewer, extcheck, jar, jarsigner,
javac, javadoc, javah, javakey, javap, jdb, keytool, native2ascii,
policytool, rmic, rmid, rmiregistry, serialver, or tnameserv. It supplies scripts
of the same name that launch those tools, running under the Japhar JVM, from Sun's
JDK1.1 classes.zip archive.

Japhar JDK Compatibility

Japhar is targeting JDK1.2 compatibility and, as an interim target, JDK 1.1 compatibility. It
has not fully achieved either, but, as of this writing, its 1.1 compatibility is reasonably good
and reporting a fairly high success rate in compatibility tests.

Summary

 This chapter has examined Japhar, an open source clone of the Java Virtual Machine.

Taken together, Japhar and the GNU ClassPath project (discussed in the next chapter) will

 - 304 -

comprise a full Java clone whose liberal licensing terms will let you deploy Java capabilities
anywhere without encumbrance.

Chapter 28: GNU Classpath: Cleanroom Core
Class Libraries

 Overview

 GNU Classpath is a cleanroom implementation of the JDK core classes.

 Platform: <JDK1.1

The GNU Classpath project is, for the Java world, what the C library is for the C/C++
world: an attempt to create a freely available set of indispensable core classes for
application use. It is initially targeted at the Japhar JVM (see Chapter 27, "Japhar: A
Cleanroom JVM"). The combination of the two comprises a free, LGPL-licensed Java
environment that you can modify, adapt, and redistribute without owing Sun any licensing
fees.

 GNU Classpath is a young project—as of this writing, the current release was 0.00. Trying

to use Classpath is not, at present, for the faint of heart.

Obtaining and Installing Classpath

 Classpath is distributed in source form from the project Web site,
http://www.classpath.org. You can grab the source in one of two ways:

•

Download a compressed tarball of the most recent release. It uses GNU autoconf
technology (see Chapter 8, "Installing Additional Linux Software," in the section
"Compressed Tarball Source Distribution") for easy building.

•

Check out the current source from the project cvs tree. You need cvs (see Chapter 9,
"Setting Up a Linux Development Environment," in the section "cvs") to access the
project cvs repository. Use the techniques described in Chapter 9 in the section "cvs
Remote Repository Servers" to obtain Classpath source. The Classpath home page
contains the details on accessing the repository.

 To build Classpath, you need a basic Linux 2.x C/C++ development environment. There

are no dependencies on X or Motif development environments.

A word of caution: To build Classpath, you may also need a willingness to hack.
Classpath is characteristic of many young projects: The build process is not particularly
robust, is occasionally broken by recent changes, and has not been tested on a wide
variety of configurations. Even when you succeed in building, the library may on any
given day be nonfunctional, broken on certain Linux releases, or somehow incompatible
with current Japhar versions. The best source of information and help is the Classpath
mailing list—see details on the Classpath home page.

After unpacking the tarball or installing from cvs, you build Classpath with the customary
configure/make sequence. The default behavior is to build binaries for use with Japhar
and not to rebuild the .class files (which are included in the distribution). The configure
script expects to find Japhar's bin directory in $PATH. It runs japhar-config (see the
section "The japhar-config Tool" in Chapter 27) to collect information on Japhar's
installed location:

 bash$./configure

 - 305 -

 <...lots of output...>
 bash$ make
 <...lots of output...>
 bash$ make install
 <...lots of output...>

The make install step places Classpath directly into the Japhar installation. Native
shared libraries are placed in Japhar's lib subdirectory, and the class library is installed
under Japhar's shared subdirectory. The classes are not installed in a .zip or .jar
archive but in a hierarchical tree on the file system.

Running Japhar/Classpath

 After Classpath installs itself into the Japhar installation, you need to ensure that Japhar's
shared directory is in the class path:

 bash$ export CLASSPATH=/usr/local/japhar/shared:.
 bash$ japhar ...

Because Japhar appends its installed .zip and .jar archives to the class path (see
Chapter 27, in the section "Configuring Japhar"), it will find and use the Classpath
classes before it finds the (possibly) installed Sun JDK class Classpathlibraries.

 Classpath JDK Compatibility

The project's stated goal at present is for Classpath 1.0 to fully support JDK1.1 and largely
support JDK1.2. Links on the Classpath home page point to information about the current
state of compatibility.

Support for Other JVMs

 Classpath is planning to support other JVMs but does not currently do so.

 Summary

This chapter has discussed the GNU Classpath project. Although still in an early state,
Classpath offers the promise of core Java class libraries whose open-source licensing
terms will enable Java solutions on many more platforms than will ever be supported by
Sun JDK ports.

Chapter 29: Mozilla ElectricalFire: A New JVM

 Overview

 ElectricalFire is a cleanroom Java Virtual Machine from Netscape's Mozilla organization.

 Platform: <1.1

One casualty of the shifting business sands under Netscape Corporation is ElectricalFire
(EF), a canceled commercial product turned open source. EF started out as a
commercial JVM, intended for mid-1998 release, and was canceled in early 1998 when
Netscape made a strategic move away from Java. A year later, it was turned into an open

 - 306 -

source project under the auspices of Mozilla.org—the same organization developing new
browser engines for Netscape Navigator and Communicator
(http://www.mozilla.org).

EF is a cleanroom JVM, like Kaffe and Japhar, but it takes a novel approach to Java
bytecode compilation. It never interprets Java bytecodes; it always compiles to native
instructions before running a piece of code. EF does not even contain a bytecode
interpreter. One rationale behind this design is the elimination of any behavior that differs
between interpreted and compiled code. (Such differences may stem from interpreter
bugs, JIT compiler bugs, or even application bugs that lead to race conditions or other
speed/execution-order sensitivities. EF reduces the number of potential failure paths.)

The EF compiler is just-in-time: classes are compiled as they are needed. It currently
offers a fairly complete x86 back-end code generator and partial implementations of code
generators for PowerPC, PA-RISC, and Sparc architectures.

Looking beyond JIT compilation, EF is exploring the potential role of batch compilation,
either during or before application startup. The primary advantages to be gained are to
eliminate the performance "choppiness" caused by bursts of JIT activity, and to take
advantage of global information that can lead to better optimization.

Current project status is, in the words of the Web site
(http://www.mozilla.org/projects/ef/), "just starting to get interesting." The
JVM passes many of the Java Compatibility Kit tests, meaning that it runs Java code
pretty well, but it is still far from supporting the many Java classes that require native
platform integration (AWT, among many others). The project team is hoping to be able to
leverage GNU Classpath (see Chapter 28, "GNU Classpath: Cleanroom Core Class
Libraries") to create a complete Java platform.

 You can run EF today, using the Sun JDK1.2 libraries. Although capabilities are limited, it is

possible to get past the important "Hello World" checkpoint.

 Obtaining and Building ElectricalFire

The only way to get EF today is by checkout from a networked cvs tree (see Chapter 9,
"Setting Up a Linux Development Environment," in the section "cvs Remote Repository
Servers"). The Web site includes download and build instructions, available by following a
link from the home page.

To build and use EF, you need a JDK1.2 installation (just the core classes), Perl, and a
C/C++ Linux development environment. You need to check out two sections from the
Mozilla cvs source tree: nsprpub (the Netscape Portable Runtime) and ef (the
ElectricalFire source).

Instructions for using the Mozilla cvs repository are posted at
http://www.mozilla.org/cvs.html. Note that you do not need to check out
everything—just projects mozilla/nsprpub and mozilla/ef.

 Building the Utility Libraries

 We'll use $TOP to refer to the top of the checked-out cvs tree.

To build the nsprpub libraries, cd to the $TOP/mozilla/nsprpub directory and make.
When you're finished, some shared libraries will have been placed into the
$TOP/mozilla/dist/<arch>/lib directory, where <arch> is some name reflecting
your current OS and architecture (for my current setup, <arch> is
Linux2.2.5_x86_PTH_DBG.OBJ).

 - 307 -

 Building ElectricalFire

 To prepare to build EF:

 1. Set CLASSPATH to point to your JDK1.2 class libraries:

 bash$ export CLASSPATH=/usr/local/Java/jdk1.2/jre/lib/rt.jar

 2. Set LD_LIBRARY_PATH and LD_RUN_PATH to point to the directory containing the

nsprpub libraries:

 bash$ export

LD_LIBRARY_PATH=$TOP/mozilla/dist/Linux2.2.5_x86_PTH_DBG.OBJ/lib
 bash$ export

LD_RUN_PATH=$TOP/mozilla/dist/Linux2.2.5_x86_PTH_DBG.OBJ/lib

 ($LD_RUN_PATH is used by the linker to locate libraries at link time.)

 3. cd to the $TOP/mozilla/ef directory.

 You're now ready to build ElectricalFire with make. Experience suggests that you may need

to hack some Makefiles or source to successfully complete the build.

 Running ElectricalFire

The build steps just described result in an executable, sajava, in the
$TOP/mozilla/ef/dist/<arch>/bin directory, and some shared libraries in
$TOP/mozilla/ef/dist/<arch>/lib. The executable, short for "StandAlone Java,"
is the application launcher—the replacement for java.

 To run sajava, you need to tweak your environment a bit more:

 1. Add the EF shared libraries to your LD_LIBRARY_PATH:

 bash$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\
 $TOP/mozilla/ef/dist/Linux2.2.5_x86_PTH_DBG.OBJ/lib

 2. Add the EF bin directory to your PATH:

 bash$

PATH=$PATH:$TOP/mozilla/ef/dist/Linux2.2.5_x86_PTH_DBG.OBJ/bin

Now you're ready to run. EF uses the JDK1.1 model for CLASSPATH (see Chapter 14,
"Configuring the Linux JSDK/JRE Environment," in the section "JDK1.1 Class Path
Construction"). You need to include all core and user class path components: the JDK1.2
rt.jar archive and any directories from which you want to load extensions or
application classes.

 Synopsis:

 sajava [<options>] <class>

 Options:

 Some of these options may be enabled only when EF is built with special configuration

 - 308 -

settings. Some options allow short-form abbreviations.

 • -all—Compile all methods. (abbreviation: -a)

•

-breakCompile <className> <methodName> <signature>—Set a debug
breakpoint just before compiling the specified method. Method is specified by space-
separated class name, method name, and signature. (abbreviation: -bc)

•

-breakExec <className> <methodName> <signature>—Set a debug
breakpoint just before executing the specified method. Method is specified by space-
separated class name, method name, and signature. (abbreviation: -be)

 • -catchHardwareExceptions—Catch all hardware exceptions—used in the debug

builds only. (abbreviation: -ce)

 • -classpath <canonical class-path>—Specify the full class path.

(abbreviation: -c)

 • -debug—Enable debugging.

 • -help—Print a help message. (abbreviation: -h)

 • -lib <libname>—Load the specified native shared library at init time. Library

name is specified in the usual Java canonical format. (abbreviation: -l)

•

-logFile <filename>—Specify the log file to use for the -log option. Can be
interspersed with -log options, specifying a different log file for different logs. A value
of stderr for the <filename> is also accepted. (abbreviation: -lf)

•

-log <module-name> <level>—Turn on logging for a particular module. Higher
<level> results in more detail. Log output defaults to stderr unless overridden by -
logFile.

 • -logNames—Print out a list of all modules for which logging can be enabled.

(abbreviation: -ln)

 • -method <methodName> <sig>—Specify a method and signature on which the -

stage option is to operate. (abbreviation: -m)

•

-methodName <methodName>—Specify a method on which the -stage option is to
operate. This is a simpler form of -method, usable when a signature is not needed to
disambiguate overloaded method names. (abbreviation: -mn)

 • -noinvoke—Do not invoke the compiled method. This is implied if the compile stage

(-stage) is anything other than i. (abbreviation: -n)

 • -nosystem—Do not initialize system classes on startup. (abbreviation: -nosys)

 • -stage {r¦p¦g¦o¦i}—Specify how much processing the compiler should do:

 – r—Read

 – p—Preprocess

 – g—Generate primitives

 - 309 -

 – o—Optimize

 – i—Generate instructions

Clearly, any setting other than i will not run your application. This option is intended
for use with the -method or -methodName options, discussed previously, to specify a
method to process for debugging or analysis of sajava behavior. (abbreviation: -s)

•

-trace <className> <methodName> <signature>—Enable tracing for the
specified method. Method is specified by space-separated class name, method name,
and signature. (abbreviation: -t)

 • -traceAll—Enable tracing for all methods. (abbreviation: -ta)

 • -verbose—Run verbosely. (abbreviation: -v)

 ElectricalFire and Netscape

 Is ElectricalFire to become the official Netscape JVM?

The answer from Mozilla.org is a clear no. But as Netscape gains the capability to support
any JVM through its OJI initiative (see Chapter 11, "Choosing an Environment: 1.1 or 1.2?,"
in the section "Option 2: Netscape Open Java Interface"), EF will become a usable choice
with Netscape Navigator and Communicator.

 Summary

This chapter has discussed ElectricalFire, an open source JVM from the Netscape Mozilla
project. Beside providing an alternative free JVM, ElectricalFire offers an intriguing
approach to runtime bytecode compilation and a worthwhile addition to the Java
performance discussion.

 Summary

This chapter has discussed ElectricalFire, an open source JVM from the Netscape Mozilla
project. Beside providing an alternative free JVM, ElectricalFire offers an intriguing
approach to runtime bytecode compilation and a worthwhile addition to the Java
performance discussion.

 HotSpot's Dynamic Optimization

What is HotSpot? It's another JVM, like ElectricalFire (see Chapter 29, "Mozilla
ElectricalFire: A New JVM"), but it takes a nearly opposite approach to bytecode
compilation. Instead of compiling immediately, HotSpot defers any compilation of Java
bytecodes until it has had an opportunity to run the application for a while and see where
it spends its time. This approach allows it to collect global information on how classes,
methods, and resources are used, and then concentrate its compilation and optimization
efforts on the hotspots in the code.

 Similar approaches are already used in C/C++ development, for example in Profile-

Based Optimization (PBO). A typical PBO development cycle is as follows:

 1. Build an instrumented version of the application.

 2. Run the application with workloads representative of real-world problems, collecting

 - 310 -

detailed statistics on control flow and resource usage.

 3. Rebuild the application, applying optimizations based on the statistics.

The steps applied during the rebuild include aggressive optimization of hotspots (heavily
trafficked stretches of code), intra- and intermodule inlining, and rearranging module
location to improve locality.

 This sort of optimization works well, often dramatically so, but suffers some

shortcomings:

 • It adds a lot of work to the product build-release cycle.

•

There is always some concern that a test workload may not accurately represent real
deployment workloads, and that PBO may even detune the application for real-world
use. (This problem is more psychological than real, but it does reduce the acceptance
of PBO.)

 Research continues in industry and academia into better solutions, with a strong focus on

moving optimization from the factory to the field.

Java, of course, presents a unique environment for dynamic optimization, and HotSpot is
Sun's approach. HotSpot incorporates the steps we described previously—
instrumentation and optimization—into the runtime environment and concentrates its
bytecode compilation efforts on performing advanced optimizations with the greatest
return.

HotSpot's greatest gains are expected to be on the server side: Long-lived server
processes give HotSpot time to perform its optimizations, and the application time to
amortize the costs of runtime optimization and benefit from the results.(1)

(1)

Sun reinforces its HotSpot server-side focus with a claim that client application
performance is determined more by native platform facilities—system libraries, kernel,
and GUI—than by JVM performance. This claim does not really hold up to competitive
language benchmarking. Java's client-side performance problems stem from several
causes, including JVM performance, memory requirements, and less-than-efficient use
of the underlying window system. But the message is clear enough: HotSpot is not the
performance solution we've been waiting for on the client side.

Other HotSpot Improvements

 In addition to dynamic optimization, HotSpot has redesigned many of the JVM

subsystems to address current Java bottlenecks:

 • Object references use actual pointers instead of handles, eliminating one level of

indirection whenever objects are dereferenced.

 • Thread synchronization is faster.

 • A shared stack between Java and native code reduces the cost of switching language

contexts.

•

Aggressive inlining by the optimizer, and lower call overhead for non-inlined methods,
lowers the cost of method calls—a traditionally expensive component of object-
oriented programs.

•

New heap management, with faster allocation, smarter garbage collection (GC), and a
reduction of "choppy" performance caused by GC activity, results in faster and better
GC.

 - 311 -

 For more detail, visit the HotSpot product page

(http://java.sun.com/products/hotspot) and view the white paper.

Summary

This chapter has discussed HotSpot, Sun's current approach to Java performance
improvement. HotSpot's results on Microsoft Windows platforms have been encouraging,
and its eventual availability on Linux should be good news for the Java/Linux performance
story.

Chapter 31: gcj: A Compiled Java Solution

 Overview

 Gcj is a native-language Java compiler.

 Platforms: <JDK1.1

All the solutions discussed so far have fully embraced the Java application model of
interpreted bytecodes and dynamic loading of classes. The model is flexible but
expensive: Interpretation is slow, and dynamic compilation is still a long way from
delivering native-level performance.

An obvious alternative for some applications is to embrace the language, with its many
advantages for developers, but live without some of the flexibility and portability: compile
down to the native platform. You still enjoy the advantages of portable source (much
more portable than C++), but gain dramatically in performance.

 gcj is the familiar GNU C compiler, with a Java front end. It actually consists of two

components:

 • A Java compiler (gcj) that reads Java source or class files

 • A runtime library (libgcj) to provide the core classes

 In its current state (as of this writing), gcj/libgcj is a native-only solution that supports

parts of JDK1.1. Some things it does not yet do are:

 • Support all of JDK1.1.

 • Support the AWT.

 • Support loading and interpretation of bytecoded class files.

 All these areas are under active development, however, and some may be in place by the

time you read this.

 Obtaining gcj and libgcj

The compiler and library are published by Cygnus Solutions, which is managing the
development tree. Both are a part of the gcc compiler suite, and were first released as
part of the 2.95 gcc release in summer of 1999.

 To obtain gcj and libgcj, visit GNU compiler repositories managed by Cygnus

 - 312 -

(http://www.cygnus.com), GNU (http://www.gnu.org), or elsewhere, and obtain
the compressed tarballs for gcc and libgcj—version 2.95 or later.

The gcc distribution is available either as a single distribution (gcc-<version>) or in
pieces (gcc-core-<version>, gcc-gcj-<version>, and so on). The simplest solution is
to obtain the single distribution. Unpack the gcc and libgcj tarballs into any convenient
location.

gcj and libgcj are also maintained in publicly accessible cvs trees (see Chapter 9,
"Setting Up a Linux Development Environment," in the section "cvs Remote Repository
Servers") at Cygnus. Unless you wish to hack the latest source, working from published
distributions is the way to go.

 Building gcj and libgcj

We'll show some sample build procedures here. Because we're working with new
compilers whose general usability with Linux is not yet established(1), we will build
everything into an isolated sandbox that will not interfere with normal compiler and library
use on the system.

 (1) As of this writing, gcc v2.95 cannot be used to build the Linux kernel.

 Building gcc

 After unpacking the gcc archive, everything will be in the gcc-<version> subdirectory.

The Cygnus source trees are designed to be built in a separate binary directory, not in
the source tree. We create a sibling directory for the binaries and configure to build there.
Note the recommended options (explained in the list following the code example):

 bash$ bzip2 -d <gcc-2.95-tar.bz2 ¦ tar xvf -
 <...lots of output unpacking into gcc-2.95/...>
 bash$ mkdir gcc-2.95-bin
 bash$ cd gcc-2.95-bin
 bash$../gcc-2.95/configure —prefix=/usr/local/Java/gcj \
 —enable-java-gc=boehm —enable-threads=posix \
 —enable-languages=java,c++ —enable-version-specific-runtime-libs
 <...lots of output...>

 Here are the recommended options, and why:

•

—prefix=/usr/local/Java/gcj—Because we are building prerelease compilers,
we specify a sandbox installation directory that will not interfere with normal system
compilers.

 • —enable-java-gc=boehm—This specifies the garbage collection mechanism that

will be used (boehm is the default).

 • —enable-threads=posix—This specifies the threading mechanism to use. Default

is no threads, so this is an important option.

•

—enable-languages=java,c++—These are the languages we need to build
libgcj, as well as our own applications. We cannot use the regularly installed C++
compiler: It may not be compatible with this gcj and its libraries.

 • —enable-version-specific-runtime-libs—This allows us to place the

 - 313 -

runtime support libraries in the sandbox with the compiler, rather than in standard
system locations.

 The remaining steps are familiar:

 bash$ make
 <...lots of output...>
 bash$ make install
 <...lots of output...>
 bash$

 The result will be an installation of gcj into our target directory

(/usr/local/Java/gcj).

 Building libgcj

 With the new gcc available, we can now build libgcj. First set some important

environment variables:

 bash$ PATH=/usr/local/Java/gcj/bin:$PATH
 bash$ export LD_LIBRARY_PATH=/usr/local/Java/gcj/lib
 bash$ export LD_RUN_PATH=/usr/local/Java/gcj/lib

 The configuration step is similar to that for the gcc build. In a directory outside of that

containing the gcc build, enter the following commands:

 bash$ bzip2 -d <libgcj-2.95-tar.bz2 ¦ tar xvf -
 <...lots of output unpacking into libgcj-2.95/...>
 bash$ mkdir libgcj-2.95-bin
 bash$ cd libgcj-2.95-bin
 bash$../libgcj-2.95/configure —prefix=/usr/local/Java/gcj \
 —enable-java-gc=boehm —enable-threads=posix
 <...lots of output...>

 The options chosen for prefix, enable-java, and enable-threads must match the

settings for the compiler.

 Build and install the usual way:

 bash$ make
 <...lots of output...>
 bash$ make install
 <...lots of output...>
 bash$

Compiling and Running Java Programs

gcj compiles both Java source and bytecoded class files. Because it does not handle all
the modern source constructs (such as inner classes), the compiler works best with class
files.

 With the environment variables set as shown in the previous section,"Building libgcj,"

we can compile and run Java programs.

 - 314 -

 Synopsis:

 gcj [<options>] <.java and .class files>

 Options:

 Options are similar to those of any other GNU compiler front end, with two important

additions:

 • —main=<class>—Specify the main class for the application (the class name you

would normally specify to the java application launcher).

•

—CLASSPATH <classpath> or —classpath <classpath>—Specify a class path to
search during compilation. If not specified, the CLASSPATH environment variable is
used. Note that this is compile-time behavior, and results in creating references that
must be resolved by natively compiled classes at link time.

 Example:

 bash$ gcj -O -c Hello.class
 bash$ gcj -O —main=Hello -o Hello Hello.o
 bash$./Hello
 Hello world
 bash$

As with any program built by gcc, objects and executables can be built with optimization
(-O) and/or debugging flags (-g), and programs can be debugged with source-level
native debuggers such as gdb.

Subtleties

 Class files can, somewhat confusingly, serve two purposes at once during

compilation:

 • If specified on the gcj command line, class files are compiled into native object

files.

 • Class files in the class path serve to resolve references generated by classes

being compiled.

 The two roles are disjoined, and some classes may be needed both on the

command line and in the class path. For example, if you compile

 gcj Foo.class Bar.class

and Foo has dependencies on Bar, then Bar.class must be found in the class
path in order for Foo.class to successfully compile. It is not sufficient that
Bar.class is also being compiled.

 If class Bar is in a package, the usual class path rules apply: It must be found in a

directory structure reflecting the package name.

Additional gcj Components

 - 315 -

 The gcc enhancements for Java include more than a new front end and the libgcj
library. Three new utilities provide support for gcj development.

 jvgenmain: main() Procedure Generator

This utility, called by gcj when the —main option is specified, generates a main()
procedure—a basic requirement for native executables. The job of the native main() is
to launch the gcj runtime and call the main() entry point in the specified Java class.

 Synopsis:

 jvgenmain <classname> [<outputfilename>]

 jvgenmain is installed in the directory containing the gcc pipeline components

(preprocessors and such) rather than the bin/ subdirectory of the installation.

 gcjh: Native Header File Generator

 The counterpart of javah, gcjh generates header files to support C/C++ native

implementations of Java methods.

Given the differences between the native gcj and normal Java environments, gcj does
not use Java's JNI interface for calling C/C++ methods. It employs its own unique, fast
native interface (the Cygnus Native Interface) well suited to fully native applications.

 Synopsis:

 gcjh [<options>] <classes>

 Options:

 • —classpath <path> or —CLASSPATH <path>—Specify the class path.

 • -I<dir>—Append the specified directory to the class path.

 • -d <dir>—Specify output directory name.

 • —help—Print a help message.

 • -o <file>—Specify output file name.

 • -td <dir>—Specify directory to be used for temporary files.

 • -v or -verbose—Run verbosely.

 • —version—Report version number and terminate.

 jcf-dump: Class File Dump Utility

 This utility reads and dumps the contents of a class file in a readable and highly

informative format.

 Synopsis:

 - 316 -

 jcf-dump [-o <outputfile>] [-c] <class>

 Options:

 • -c—Disassemble the bytecodes.

 • -o <outputfile>—Send results to specified file instead of stdout.

 Summary

This chapter has presented gcj and libgcj, the GNU compiler components for support
of native-compiled Java applications. The compiler and runtime are under active
development, and are also a part of Cygnus' commercial Code Fusion product.

Given the importance and success of gcc, there is little doubt that gcj and libgcj will
achieve high quality and functionality, and become important Java development and
deployment tools in Linux and other environments.

Chapter 32: Tower: A Server-Side Hybrid
Java Environment

 Overview

 TowerJ is a high-end commercial Java runtime designed to support server-side Java.

 Platform: JDK1.1

TowerJ is a commercial Java environment targeted at enabling the middle tier in three-
tier client/server architectures (see Chapter 67, "Java, Linux, and Three-Tiered
Architectures"). It is available for several server platforms including Linux, and focused on
delivering extremely high performance.

TowerJ uses a hybrid approach to creating an execution environment, a combination of a
runtime interpreter (such as JRE, Kaffe, ElectricalFire, HotSpot, and so on), native
language static compilation (such as gcj, discussed in Chapter 31, "gcj: A Compiled
Java Solution," and numerous products in the Microsoft Windows world), and a
proprietary runtime engine that supports Java-like dynamic loading capabilities for native
code.

 Figure 32.1 contrasts the TowerJ approach to other standard approaches.

 - 317 -

 Figure 32.1: A comparison of three approaches to Java runtime.

 The two standard approaches offer two extremes in the trade-off between performance

and flexibility:

 • Java interpreters offer the flexibility of the Java loading model but poor performance.

 • Compiled Java offers the best performance but no dynamic loading of classes—a

central Java feature.(1)

 (1) gcj is moving toward supporting dynamic class loading.

TowerJ implements a hybrid of these two approaches, targeting performance and flexibility.
With TowerJ, the server application is statically compiled into native platform code by a fully
optimizing compiler. Additional classes, outside the core application, can be compiled into
their own shared libraries. The runtime can then dynamically load class bytecodes into an
interpreter and compiled class objects in the form of shared libraries.

Obtaining TowerJ

TowerJ is available for download and purchase from TowerJ's Web site,
http://www.towerj.com. You can obtain a free 15-day evaluation license if you want
to test drive the product.

The product is distributed in the form of a classball—a single class file that encapsulates
the product archives and an installer program. To install, just run the class file and answer
the questions. You can install the product anywhere, although choosing a location other
than the default (/opt/TowerJ) requires you to set an additional environment variable to
run the product. The vendor supplies license keys and instructions for installation.

TowerJ Installation Contents

 The installation includes all the TowerJ executables and libraries, documentation, and

binaries. The two important binaries are the following:

 • towerj—A GUI-based project manager implemented in Java.

 • tj—The TowerJ compiler, which can be invoked from the project manager or run from

the command line.

TowerJ offers a nearly complete JDK1.1 environment, with AWT conspicuously absent—a
reasonable configuration for a server-side solution. The absence of AWT is a licensing
issue and may be addressed in future releases.

Product and Environment Dependencies

 TowerJ has the following outside product dependencies:

 • A JDK1.1 JVM and core classes (JRE1.1 is sufficient; you do not need SDK1.1).

 • The gcc compiler.

 • Swing 1.1, if you are going to use the towerj Project Manager.

 - 318 -

 The product also depends on the following environment variables:

 • TOWERJ—Set to the directory containing the TowerJ installation; optional if TowerJ

was installed in the default /opt/TowerJ directory.

 • PATH—Must include the TowerJ bin directory ($TOWERJ/bin/x86-linux).

(Naturally, it must also include the path components for the JDK and gcc.)

 • CLASSPATH—Must include the JDK1.1 core classes. If you are going to use the

TowerJ Project Manager, it must also include the Swing 1.1 classes.

 • LD_LIBRARY_PATH—Must include the TowerJ lib directory ($TOWERJ/lib/x86-

linux).

 • TOWERJ_TJLIB_PATH—Search path for compiled class files (which are known as

Tjlibs).

Running the TowerJ Project Manager

The Project Manager provides a GUI interface to drive all steps of building a server-side
solution. Using the Project Manager is optional. Everything can be done with command-
line interfaces, but we will use the Project Manager for illustration.

 Synopsis:

 towerj

 We create a new project from the main window (see Figure 32.2) and choose a directory

in which to run the project.

 Figure 32.2: Starting a new project.

Sample TowerJ Projects

 In the next several sections, we'll explore some simple TowerJ projects to illustrate the

basic operation of the development and execution environment.

 First Project: Hello World

The first project is the customary "Hello World" program, illustrating how to turn a simple
Java application into a TowerJ application. In this project, as in those that follow, the
application is first built as conventional Java classes by the SDK or comparable tools.
The TowerJ development process will then generate TowerJ executables from the
application and core Java classes.

 Building the Program

 After initially creating the project and its directory, TowerJ searches its entire class path

and catalogs all the classes in the main window (see Figure 32.3). We see the core

 - 319 -

classes and another familiar class (built-in examples in earlier chapters) in the class path.

 Figure 32.3: All the classes in our class path, displayed in a Swing JTree

structure.

 We are going to build a TowerJ application from the "Hello World" program, so we

designate that class as the root class (see Figure 32.4).

 Figure 32.4: Specifying the root class: Select the class on the left and designate

it as root.

It's now time to build the application. Selecting the Build button from the Project
menu launches the process. We watch as TowerJ analyzes the root class and the class
path and resolves all classes that will be loaded to run the root class. These classes are
then compiled to native code, and an executable is built containing the complete
application (see Figure 32.5).

 Figure 32.5: The build window reports on project build progress.

 The result of this activity is an executable native program, Hello, that implements our

Java program:

 bash$./Hello
 Hello world

 - 320 -

Because all needed classes were compiled into native TowerJ components, the Hello
World program has no dependencies on the Sun JDK. (It does, however, depend on
TowerJ shared libraries that must be licensed and installed on a deployment host.)

 Tuning the Program

 We're not finished. The program is not yet deployable—rather, it is configured for the next

phase of development, performance tuning.

We tune the program by running it under a variety of workloads and capturing runtime
information. The program was built in feedback mode, with instrumentation to capture
useful data. Every run of the program generates a feedback file, with a .tjp suffix,
reporting on class use. For this trivial example, the feedback files (shown in Listing 32.1)
tell us that the application is already fully self-contained.

 Listing 32.1 First Project: Hello World Feedback

 feedbackID=1
 #———————————————————————————————-
 # No classes were interpreted
 #———————————————————————————————-
 # No classes were loaded by custom class loaders
 #———————————————————————————————-
 # All classes were found.
 #———————————————————————————————-
 # No classes need be marked open
 #———————————————————————————————-
 # No 'dead' classes need be marked included
 #———————————————————————————————-
 # No invisible classes need be marked included

With this information on class usage, we can now rebuild the project with full optimization.
Using the Options button in the Project menu, call up the options dialog, set No
Feedback mode (see Figure 32.6), and rebuild. The feedback information (if any real
information had been captured) is used for optimization purposes.

 Figure 32.6: Preparing to build a final version.

 - 321 -

 The final version of the Hello executable is no longer instrumented and, of course, very
fast.

 Second Project: Dynamic Loading of Classes

Although the first project demonstrated basic operation, it did not exploit one of TowerJ's
selling points: its capability to dynamically load classes into a running application. The
second project illustrates how TowerJ identifies and optimizes additional classes needed
at program runtime.

 We rewrite our trivial example as shown in Listing 32.2.

 Listing 32.2 Second Project: Dynamic Loading of Classes

 import java.util.*;

 class Hello
 {
 public static void main(String[] argv)
 {
 for (int i = 0; i < argv.length; i++)
 {
 Date date1 = new Date();
 Class cls;
 try { cls = Class.forName(argv[i]); }
 catch (ClassNotFoundException e)
 {
 System.out.println(e);
 continue;
 }
 Date date2 = new Date();
 System.out.println("Loaded " + cls + " in " +
 (date2.getTime() -
date1.getTime()) +

 " msec");
 }
 }
 }

This version loads any and all arbitrary classes requested on the command line, printing
the name of and the time taken to load each class. Running under the Blackdown JDK1.1
and loading two classes from Swing gives us these results:

 bash$ java Hello javax.swing.JFrame javax.swing.JButton
 Loaded class javax.swing.JFrame in 35 msec
 Loaded class javax.swing.JButton in 34 msec
 bash$

 (Note that all times reported are approximate. The Java Date() methods rely on the

host system clock, and are not a reliable source of high-precision timing data.)

 After building a TowerJ version in feedback mode, we run a sample workload (we would

run many sample workloads for a less trivial example):

 bash$./Hello javax.swing.JFrame javax.swing.JButton

 - 322 -

 Loaded class javax.swing.JFrame in 1177 msec
 Loaded class javax.swing.JButton in 1195 msec
 bash$

 The large numbers show the time required for TowerJ to load the classes—it's obviously

slow, but we're running an instrumented version that is collecting runtime data.

The resulting feedback file(s) (shown in Listing 32.3) holds information for the next phase
of optimization—all the new classes loaded as a result of running the test workloads.
Feedback from the test workloads identifies dynamically loaded classes that were not
found when the executable was initially built.

 Listing 32.3 Second Project: Feedback from the Dynamic Loading of Classes

 feedbackID=1
 #———————————————————————————————-
 # The following classes were interpreted from the classpath:
 interpreted= java.text.resources.LocaleElements_en \
 javax.swing.JFrame \
 java.awt.MenuContainer \
 javax.swing.AbstractButton \
 javax.swing.JButton \
 java.text.resources.LocaleElements \
 javax.swing.WindowConstants \
 java.util.ListResourceBundle \
 javax.swing.SwingConstants \
 java.text.resources.DateFormatZoneData \
 java.awt.Component \
 javax.accessibility.Accessible \
 javax.swing.JComponent \
 java.awt.Frame \
 java.awt.Container \
 java.awt.image.ImageObserver \
 java.awt.Window \
 java.awt.ItemSelectable \
 java.text.resources.DateFormatZoneData_en \
 javax.swing.RootPaneContainer
 #———————————————————————————————-
 # No classes were loaded by custom class loaders
 #———————————————————————————————-
 # All classes were found.
 #———————————————————————————————-
 # The following classes pairs denote dynamic classes and their
compiled

 # ancestors which need to be marked open if the class remains
dynamic:

 open-pairs= java.util.ListResourceBundle java.util.ResourceBundle
 #———————————————————————————————-
 # No 'dead' classes need be marked included
 #———————————————————————————————-
 # No invisible classes need be marked included

Using this data, we can rebuild and process these new classes into fast TowerJ
executable versions. When we rebuild, TowerJ offers us the opportunity to decide which
of these new classes to compile into the application (see Figure 32.7).

 - 323 -

 Figure 32.7: TowerJ offers control over the next step of optimization.

Our Hello executable grows by 52 percent—20 new classes have been compiled in.
The results of running the final, optimized executable with one new class requested are
as follows:

 bash$./Hello javax.swing.JFrame javax.swing.JButton
javax.swing.JLabel

 Loaded class javax.swing.JFrame in 0 msec
 Loaded class javax.swing.JButton in 0 msec
 Loaded class javax.swing.JLabel in 387 msec
 bash$

We notice fast loading for the classes we compiled in and slow loading of the new class
(slower than the Blackdown JDK, faster than we would have seen in feedback mode).
Because javax.swing.JLabel was never processed for use by TowerJ, it is loaded
and interpreted as a bytecoded class.

 Third Project: Building a Tjlib

The support of dynamically loaded compiled classes, which TowerJ calls Tjlibs, is its
unique contribution as a product. The second project illustrated the need to load arbitrary
new classes at runtime—a standard practice with servlets, Enterprise JavaBeans, and
other Java server environments. By building compiled versions of those classes external
to the application, Tjlibs provide the speed of native applications and shared libraries with
the dynamic loading model of Java.

Following on the previous project, we create a new project to build a Tjlib containing a
compiled version of the javax.swing.JLabel class. For this Tjlib, we want to build
only that class and nothing that will already be found in the core application (which runs
afoul of a current TowerJ restriction). We set up the project to build a Tjlib called
MyNewClass, marking the target class as included (see Figure 32.8).

 - 324 -

 Figure 32.8: Setting up to build a Tjlib containing the single class

javax.swing.JLabel.

The result of this build is MyNewClass.tjlib, which we install in some location in the
deployment environment. The environment variable TOWERJ_TJLIB_PATH must be set
to point to the installation directories of installed Tjlibs, allowing the TowerJ runtime to
find them.

There is no change to the application: Tjlibs are loaded through the same calls (such as
Class.forName()) that load bytecoded class files. With the new Tjlib deployed, the
results of running the application are improved:

 bash$./Hello javax.swing.JFrame javax.swing.JButton
javax.swing.JLabel

 Loaded class javax.swing.JFrame in 0 msec
 Loaded class javax.swing.JButton in 0 msec
 Loaded class javax.swing.JLabel in 19 msec
 bash$

 And, of course, javax.swing.JLabel is now a compiled class, meaning substantially

improved runtime performance when we start using the class.

Note that the times reported in these examples provide some visibility into how the classes
are being loaded. They do not reflect TowerJ's actual (and impressive) performance in
deployment environments.

 Summary

This chapter has discussed the TowerJ server development and deployment platform.
While clearly not a tool for the average Linux user, it is a powerful and effective solution on
the server. Current published results from the Volano benchmarks
(http://www.volano.com/report.html) show that the combination of Linux and
TowerJ comprises a world-beating Java server platform.

Part VII: Additional Java Runtime Components

 Chapter List

 Chapter

33: Just-in-Time Compilers

 Chapter

34: Java3D Extension

 Chapter

35: JavaComm, JCL, and RXTX: Serial Communications
from Java

 - 325 -

 Part Overview

Part VI discussed core runtime environments. This part moves beyond the core to
examine additional runtime components available to enhance your Java/Linux
installation. In particular, we explore the following two areas:

 • Alternative JIT compilers—allowing you to add just-in-time compilation to Blackdown

JDK1.1 or choose an alternate JIT solution for Blackdown JDK1.2.

 • Native Java extensions—Linux versions of standard Java extensions, bringing 3D

graphics and data communications capabilities to Java on Linux.

Chapter 33: Just-In-Time Compilers

 Overview

JIT compilers have been Java's first line of offense against the performance challenges
of an interpreted language. The notion behind JIT is simple: Java bytecodes are
compiled, on a method-by-method basis, into native-code implementations for direct
execution by the underlying hardware. JIT compilation is performed by a low-priority
thread concurrently with application execution. Methods that are called are compiled;
methods that are not called are left alone. After the initial cost of compilation, benefits
from JIT begin to appear the second time a method is called.

JIT works. Significant effort has gone into JIT development on the Microsoft Windows
platform (Symantec is one of the technology leaders here), and there is ample evidence
that it is effective. It works best in long-lived Java server applications, but JIT measurably
helps all but the most trivial applications.

Does JIT work well? Does it deliver anything approaching the performance of compiled,
optimized applications? Yes, it works well; no, it doesn't match performance available
from globally optimizing static native compilers. And neither approach achieves C/C++
levels of performance (for more discussion see Chapter 57, "Why Is Java Slow?").

JIT is not confined to the Windows world, of course. After some general JIT discussion in
the following section, we'll examine three free JIT compilers available today for Linux
deployment.

JVM/JIT Interfacing

The JIT interface is a native Java interface published by Sun and supported with C/C++
header files included with the SDK. The interfaces differ between JDK1.1 and JDK1.2. A
single JIT binary cannot serve both environments, but some JITs (tya and shujit,
discussed later) can be built for either environment.

JITs, like other native components, are always supplied in the form of shared native
libraries. To use it, the shared library is placed somewhere the JVM can find it, and the
JVM is told which JIT to use (see Chapter 14, "Configuring the Linux SDK/JRE
Environment," in the section "Installing an Alternative JIT").

In general, Java applications do not worry about the JIT—it's just there, and it just
(usually) works. The core classes do provide a minimal interface that applications can
use if needed:

 public final class java.lang.Compiler extends java.lang.Object

 - 326 -

•

public static native java.lang.Object command(Object any)—Call an
implementation-specific hook into the JIT compiler. The Java specification does not
define anything about this call other than its existence. The JIT may choose (and
presumably document) any functionality for this method.

 • public static native boolean compileClass(Class clazz)—Compile

the class specified by the java.lang.Class argument.

 • public static native boolean compileClasses(String string)—

Compile the class whose name matches the string argument.

 • public static native void disable()—Disable JIT activity.

 • public static native void enable()—Re-enable JIT activity.

 The sunwjit Compiler

 With the release of the Java 2 Platform, Sun began bundling JIT technology with the

JDK.

 Platform: JDK1.2

Sun's JIT, libsunwjit.so, is shipped in the standard SDK and JRE native shared
library directories, and the use of this JIT during Java execution is enabled by default.
This JIT can be disabled by using a different JIT or specifying no JIT (see Chapter 14,
"Configuring the Linux SDK/JRE Environment," in the section "Adding JIT Compilers").

 Controlling sunwjit with Environment Variables

The sunwjit compiler recognizes one environment variable—JIT_ARGS—that can be
used to modify its behavior. The two documented arguments are trace and exclude,
which selectively enable tracing of JIT activity.

 bash$ export JIT_ARGS="trace [exclude(<method name> [<method
name>...])]"

 This will cause the JIT to report all procedures being compiled, excepting methods

specifically excluded.

 As of this writing, this option is not yet functional in the Linux port.

 The tya Compiler

 The tya JIT compiler is an open-source (GPL) product published by Albrecht Kleine for

Linux and FreeBSD platforms.

 Platform: JDK1.1/JDK1.2

 Performance of tya is good and continuing to improve, the code is actively maintained,

and the author is an active participant in the Blackdown community.

 Obtaining and Building tya

 Current tya distributions are published, as compressed source tarballs (see Chapter 8,

"Installing Additional Linux Software," in the section "Compressed Tarball Source

 - 327 -

Distribution"), at ftp://gonzalez.cyberus.ca/pub/Linux/java/. tya uses GNU
autoconf technology—configuration, building, and installation are straightforward.

While tya targets both JDK1.1 and JDK1.2, you cannot use the same binary on both; like
any JIT, tya must be compiled for a particular Java platform. The decision about target
platform is made automatically when you perform the configure step before building
tya—the configuration script does this by examining the first java executable found in
your $PATH.

tya is also published in RPM form and appears in some Linux distributions. Such
versions are almost always out-of-date—the best source for current tya is the
gonzalez.cyberus.ca FTP server.

 Controlling tya with Environment Variables

tya supports one environment variable—TYA_LOGFILE. If set, this is the name of a log
file tya will use. Note that tya will generate very little log output unless some debugging
is enabled with compile-time options (discussed in the following section).

 Configuring tya with Compile-Time Options

tya behavior can be configured, to a large extent, with some trivial hacking. The
distribution includes a header file, tyaconfig.h, containing #defines to control
several debugging and code generation options. The project is set up to encourage
freelance hacking and accept improvements from outside developers.

 Debug Options:

 • DEBUG—If defined, generate voluminous debugging output.

 • VERBOSE—If defined, generate statistics.

 • VERBOSE_ASM86—If defined, generate voluminous output showing x86 instructions

generated.

 • USE_SYSLOG—If defined, tya sends log output to the Linux syslog. $TYA_LOGFILE

is ignored.

 • GATHER_STATS—If defined, gather and report some statistics on tya activity.

 Code Generation Options:

 • USE_REG_OPT—If defined, enable use of some CPU registers for holding local

variables.

 • INLINING—If defined, enable runtime inlining of some method calls.

 • TRY_FAST_INVOKE—If set, enables a fast method invocation technique.

•

EXCEPTIONS_BY_SIGNALS—If set, uses UNIX signals instead of traditional Java
runtime checking to detect certain exceptions. This should speed up performance in
the normal case and slow down handling of exceptional conditions.

 • USEASM—If set, uses assembler code instead of C for certain generated code.

 - 328 -

 • INLINE_LONGARITM—If set, emit code for handling certain operations on long
long (64-bit) integers; else use wrappers provided by the JDK.

 • COMBINEOP—If set, generate combined-operation x86 opcodes when possible.

 • FAST_FPARITH—If set, make low-overhead fast calls into Java math code.

 • INLINE_FPARITM—If set, generate code that uses floating point processor instructions

for certain math operations.

The shujit Compiler

 The shujit JIT compiler is an open-source (GPL) product published by Shudo Kazuyuki

for Linux and FreeBSD platforms.

 Platform: JDK1.1/JDK1.2

 Like tya, shujit's performance is competitive, the code is actively maintained, and the

author is an active participant in the Blackdown community.

 Obtaining and Building shujit

Current shujit distributions are published, as compressed source tarballs, at
http://www.shudo.net/jit/. To build shujit, you need to obtain ruby, an object-
oriented scripting language popular in Japan, from
http://www.netlab.co.jp/ruby/. Both ruby and shujit use GNU autoconf
technology—configuration, building, and installation are straightforward. As with building
tya, the configuration step figures out the target Java environment (JDK1.1 or 1.2) by
examining the first java executable in your $PATH.

 Controlling shujit With Environment Variables

 shujit uses an environment variable—JAVA_COMPILER_OPT—for configuration of

several runtime options. Format is as follows:

 JAVA_COMPILER_OPT="<option> [<option> ...]"

 where the options can be space- or comma-separated. Currently recognized options are

as follows:

 • cmplatload—Compile all class methods when a class is loaded.

 • cmplclinit—Enable compilation of class initialization methods.

•

codedb—Build a database of compiled code to database files named
./shujit_code.* (output is to multiple database files whose names begin with
shujit_code).

 • codesize—Print statistics on size of generated code to a log file named

./jit_codesize.

 • dontcmplvmcls—Disable initialization of already loaded core classes at JIT startup.

 • igndisable—Ignore calls to disable JIT activity

(java.lang.Compiler.disable()).

 - 329 -

•

outcode—Generate assembly language source files (.S) containing source for
methods that are compiled. The files are named according to the C/C++ naming
conventions for Java native methods.

 • quiet—Disable normal messages from the JIT.

 Future JIT Directions

Projects such as Sun's HotSpot (see Chapter 30, "Sun HotSpot Performance Engine,")
and Mozilla's ElectricalFire (see Chapter 29, "Mozilla ElectricalFire: A New JVM,")
suggest a future without JITs, in which new JVM architectures own the entire
responsibility for native code generation and optimization. But JITs have been a rich area
for research and innovation, and will undoubtedly remain so.

One of the more intriguing glimpses of future activity can be found in the OpenJIT project,
at Tokyo Institute of Technology. OpenJIT incorporates computational reflection, the
capability of classes to assist in their own optimization by providing their own optimizers—
written in Java, of course. Details are published at
http://openjit.is.titech.ac.jp/.

 Summary

This chapter has discussed three JIT compilers available on Linux for the Blackdown
JDK. The Java performance story on Linux still has much room for improvement, and
future JITs from these and other sources will improve the competitiveness of the
Java/Linux platform.

 - 330 -

Chapter 34: Java3D Extension

 Overview

 The Java3D Extension brings 3D graphics capabilities to Java on Linux.

 Platform: JDK1.2

Java3D is a standard Java extension that brings native platform 3D rendering to Java
applications. Unlike most standard extensions, however, you cannot obtain one for Linux
from Sun Microsystems. The reason: a dependence on the native platform.

 The reliance of Java's standard extensions on native platform capabilities creates three

categories of extensions:

 • Extensions implemented entirely in Java. This includes JNDI, JavaMail, and most

other extensions.

•

Extensions that can be implemented in entirely in Java but are also implemented with
native platform support for performance reasons. An example is the Java Advanced
Imaging API. Sun publishes Java-only sample implementations of these extensions,
as well as some platform-specific versions.

•

Extensions that can only be implemented with native platform support. For native
platforms not supported by Sun, these extensions can be ported by third parties—
vendors, volunteers, or whomever.

The latter category includes Java3D, for which Sun has delivered Solaris and NT
versions. Both implementations are built on the OpenGL graphics rendering API, and Sun
is also working toward an NT implementation that uses Microsoft's Direct3D API.

 Java3D has been licensed to other UNIX vendors for implementation and is being ported to

Linux under the auspices of the Blackdown organization.

Obtaining and Installing Java3D for Linux

Java3D is published alongside the Blackdown JDK distributions (see Chapter 13,
"Blackdown: The Official Linux Port," in the section "Supported Linux Versions for the
Blackdown SDK and JRE") and can be obtained from Blackdown download sites. The
distribution is in the form of a compressed binary tarball (see Chapter 8, "Installing
Additional Linux Software," in the section "Compressed Tarball Binary Distribution").

The tarball is structured to unpack directly into an SDK installation and assumes that the
installation is rooted in a directory named jdk1.2/. To unpack according to these
assumptions, perform the following step from the parent directory of jdk1.2/:

 bash$ bzip2 -d <<tarball.bz2> ¦ tar xvf -

 where <tarball.bz2> is the name of the compressed archive. For example:

 bash$ bzip2 -d <java3d.tar.bz2 ¦ tar xvf -

This distribution is in prerelease as of this writing; future releases may choose a different
scheme. You can always examine the contents of the archive, without unpacking, by
running tar with the t option instead of x—this will give you visibility into archive layout.

 - 331 -

 A cleaner choice than unpacking into the current SDK would be to unpack elsewhere, say
/usr/local/Java/Java3d, and then create a few symbolic links from the SDK:

 bash$ ln -s /usr/local/Java/Java3d/jdk1.2/demo/java3d \
 /usr/local/Java/jdk1.2/demo/
 bash$ ln -s /usr/local/Java/Java3d/jdk1.2/jre/lib/ext/* \
 /usr/local/Java/jdk1.2/jre/lib/ext
 bash$ ln -s /usr/local/Java/Java3d/jdk1.2/jre/lib/i386/* \
 /usr/local/Java/jdk1.2/jre/lib/i386

 But you're not yet ready to run. The extension depends on the presence of native 3D

graphics support on your system.

Obtaining Linux 3D Support—Mesa

There is currently an open source 3D graphics library and toolkit, Mesa, that provides a
fully functional 3D API modeled on the OpenGL API. The Blackdown Java3D
implementation uses Mesa, so you must install Mesa to use Java3D.

Mesa is widely available in RPM and tarball form, both source and binary. You can find it
at your favorite repository, or at Mesa's Web site (http://www.mesa3d.org). Get it,
install it, and you're ready to run Java3D.

 The Current State of Linux 3D Support

 The state of 3D graphics support for Linux is highly fluid at the moment.

We just mentioned Mesa, but what exactly is it? Mesa is a free 3D graphics library and
toolkit modeled on the OpenGL standard, and offering substantial source-level API
compatibility with the OpenGL API. Many applications written to use OpenGL (including
the Java3D sample implementation from Sun) can easily use Mesa and choose to do so
because the price is right.

For those needing a true OpenGL implementation, Mesa is not such a beast. Users of the
current Java3D implementation do not need one (as of this writing), but several options
exist in this rapidly changing landscape:

 • Commercial OpenGL implementations are available that run against commercial X

servers.

 • Commercial OpenGL implementations are available that run against XFree86.

•

PrecisionInsight is working toward creating an open source OpenGL, based on Mesa,
GLX (an open source interface from SGI), and XFree86. It's not fully cooked, as of this
writing, but beta versions for certain graphics cards are starting to appear.

The best sources of current information on OpenGL status, including Linux support, are the
OpenGL Web site, http://www.opengl.org, and the Mesa Web site,
http://www.mesa3d.org.

 Contents of the Java3D Distribution

 The distribution includes three components:

 • Class libraries, in the jdk1.2/jre/lib/ext directory. Following standard practice

for JDK1.2 extensions (see Chapter 14, "Configuring the Linux JSDK/JRE

 - 332 -

Environment," in the section "Adding Standard Extensions and Application Classes
Under JDK1.2"), these files (or symlinks to them) should be placed in the SDK or JRE
lib/ext directory.

•

Native support libraries, in the jdk1.2/jre/lib/i386 directory. Following standard
practice for extensions, these files (or symlinks to them) should be placed in the SDK
or JRE lib/i386 directory.

 • A lot of great demos!

Running Java3D Demos

The fastest way to verify that the installation is working is to run a demo. Just cd to one
of the demo directories (or otherwise include it in your class path) and run. If the demo
fails immediately with the message libMesaGL.so.3: cannot open shared
object file: No such file or directory, you probably didn't install Mesa.
See the section "Obtaining Linux 3D Support—Mesa" earlier in this chapter.

 The Java3D 1.1.1 prerelease contains 37 demos. A couple of examples are discussed in

the following sections.

 Text3DLoad

 This is found in the demo/java3d/Text3D subdirectory, and demonstrates display and

manipulation of 3D text.

 Synopsis:

 java Text3DLoad [-f <fontname>] <text>

 Example:

 bash$ java Text3DLoad -f sansserif "Hello World"

 This results in the window shown in Figure 34.1.

 Figure 34.1: Text3DLoad demo window.

 The left, middle, and right mouse buttons serve to rotate the image and move it along

 - 333 -

various axes. The result, after a bit of clicking and dragging, appears in Figure 34.2.

 Figure 34.2: Text3DLoad demo window, after some manual manipulation.

 ObjLoad

 Found in the demo/java3d/ObjLoad subdirectory, this demo shows the capability to

load objects saved in the WaveFront .obj format.

 Synopsis:

 java ObjLoad [-s] [-n] [-t] [-c <degrees>] <.obj file>

 Options:

 • -c <degrees>—Sets the crease angle used when generating surface normals.

 • -n—Suppresses triangulation.

 • -s—Spins the model. If not specified, the user interacts with the model through mouse

buttons.

 • -t—Suppresses stripification.

 Example:

 Two sample objects are shipped with Java3D. We load one of them:

 bash$ java ObjLoad ../geometry/galleon.obj

 This results in the interactive model shown in Figure 34.3.

 - 334 -

 Figure 34.3: ObjLoad demo window displaying the galleon model.

Programming to the Java3D API

The Java3D API is big: 262 public classes in Java3D 1.1.1, with 671 public constructors
and 2,884 public methods. Extensive documentation is provided by Sun. Visit
http://java.sun.com and navigate to the Java3D pages for pointers to
documentation.

 The following section gives a quick class list.

 Packages j3d.audio and j3d.audioengines

Not only does Java3D target the gaming market—a keen customer for audio
capabilities—it also offers 3D spatial sound processing. Listing 34.1 lists the classes in
these two packages.

 Listing 34.1 Java3D Classes Supporting Audio

 com.sun.j3d.audio.AudioData
 com.sun.j3d.audio.AudioDataStream
 com.sun.j3d.audio.AudioDevice
 com.sun.j3d.audio.AudioPlayer
 com.sun.j3d.audio.AudioSecurityAction
 com.sun.j3d.audio.AudioSecurityExceptionAction
 com.sun.j3d.audio.AudioStream
 com.sun.j3d.audio.AudioStreamSequence
 com.sun.j3d.audio.AudioTranslatorStream
 com.sun.j3d.audio.ContinuousAudioDataStream
 com.sun.j3d.audio.Format
 com.sun.j3d.audio.HaeNoise
 com.sun.j3d.audio.HaePlayable
 com.sun.j3d.audio.HaeWaveNoise
 com.sun.j3d.audio.HaeWaveStream
 com.sun.j3d.audio.J3DHaeClip
 com.sun.j3d.audio.J3DHaeStream
 com.sun.j3d.audio.JavaSoundParams
 com.sun.j3d.audio.MediaInputStream
 com.sun.j3d.audio.NativeAudioStream

 - 335 -

 com.sun.j3d.audio.SunAudioClip
 com.sun.j3d.audioengines.AudioEngine
 com.sun.j3d.audioengines.AudioEngine3D
 com.sun.j3d.audioengines.AuralParameters
 com.sun.j3d.audioengines.Sample
 com.sun.j3d.audioengines.javasound.JavaSoundMixer

 Package j3d.loaders and Subpackages

 Java3D loaders handle the reading of scene graphs from files and URLs. Listing 34.2

lists the classes in these packages.

 Listing 34.2 Java3D Classes Supporting 3D Scene Loading

 com.sun.j3d.loaders.IncorrectFormatException
 com.sun.j3d.loaders.Loader
 com.sun.j3d.loaders.LoaderBase
 com.sun.j3d.loaders.ParsingErrorException
 com.sun.j3d.loaders.Scene
 com.sun.j3d.loaders.SceneBase
 com.sun.j3d.loaders.lw3d.FloatValueInterpolator
 com.sun.j3d.loaders.lw3d.Lw3dLoader
 com.sun.j3d.loaders.lw3d.LwsPrimitive
 com.sun.j3d.loaders.objectfile.ObjectFile

 Packages j3d.util.*

 This is a grab-bag of utilities to support Java3D behaviors, geometry computations, and

world coordinates. See Listing 34.3 for a list of classes.

 Listing 34.3 Java3D Utility Classes

 com.sun.j3d.utils.applet.MainFrame
 com.sun.j3d.utils.audio.DistanceAttenuation
 com.sun.j3d.utils.behaviors.interpolators.CubicSplineCurve
 com.sun.j3d.utils.behaviors.interpolators.CubicSplineSegment
 com.sun.j3d.utils.behaviors.interpolators.
RotPosScaleTCBSplinePathInterpolator

 com.sun.j3d.utils.behaviors.interpolators.TCBKeyFrame
 com.sun.j3d.utils.behaviors.interpolators.TCBSplinePathInterpolator
 com.sun.j3d.utils.behaviors.keyboard.KeyNavigator
 com.sun.j3d.utils.behaviors.keyboard.KeyNavigatorBehavior
 com.sun.j3d.utils.behaviors.mouse.MouseBehavior
 com.sun.j3d.utils.behaviors.mouse.MouseBehaviorCallback
 com.sun.j3d.utils.behaviors.mouse.MouseRotate
 com.sun.j3d.utils.behaviors.mouse.MouseTranslate
 com.sun.j3d.utils.behaviors.mouse.MouseZoom
 com.sun.j3d.utils.behaviors.picking.Intersect
 com.sun.j3d.utils.behaviors.picking.PickMouseBehavior
 com.sun.j3d.utils.behaviors.picking.PickObject
 com.sun.j3d.utils.behaviors.picking.PickRotateBehavior
 com.sun.j3d.utils.behaviors.picking.PickTranslateBehavior
 com.sun.j3d.utils.behaviors.picking.PickZoomBehavior

 - 336 -

 com.sun.j3d.utils.behaviors.picking.PickingCallback
 com.sun.j3d.utils.geometry.Box
 com.sun.j3d.utils.geometry.ColorCube
 com.sun.j3d.utils.geometry.Cone
 com.sun.j3d.utils.geometry.Cylinder
 com.sun.j3d.utils.geometry.GeometryInfo
 com.sun.j3d.utils.geometry.NormalGenerator
 com.sun.j3d.utils.geometry.Primitive
 com.sun.j3d.utils.geometry.Sphere
 com.sun.j3d.utils.geometry.Stripifier
 com.sun.j3d.utils.geometry.Text2D
 com.sun.j3d.utils.geometry.Triangulator
 com.sun.j3d.utils.image.TextureLoader
 com.sun.j3d.utils.internal.FastVector
 com.sun.j3d.utils.internal.J3dUtilsI18N
 com.sun.j3d.utils.universe.MultiTransformGroup
 com.sun.j3d.utils.universe.PlatformGeometry
 com.sun.j3d.utils.universe.SimpleUniverse
 com.sun.j3d.utils.universe.Viewer
 com.sun.j3d.utils.universe.ViewerAvatar
 com.sun.j3d.utils.universe.ViewingPlatform

 Package javax.media.j3d

This is the core Java3D API. Java3D presents a familiar paradigm to 3D programmers:
scene graphs, with immediate- and retained-mode rendering. See Listing 34.4 for a list of
classes.

 Listing 34.4 Core Java3D Classes Supporting Scenes and Rendering

 javax.media.j3d.Alpha
 javax.media.j3d.AmbientLight
 javax.media.j3d.Appearance
 javax.media.j3d.AudioDevice
 javax.media.j3d.AudioDevice3D
 javax.media.j3d.AuralAttributes
 javax.media.j3d.Background
 javax.media.j3d.BackgroundSound
 javax.media.j3d.BadTransformException
 javax.media.j3d.Behavior
 javax.media.j3d.Billboard
 javax.media.j3d.BoundingBox
 javax.media.j3d.BoundingLeaf
 javax.media.j3d.BoundingPolytope
 javax.media.j3d.BoundingSphere
 javax.media.j3d.Bounds
 javax.media.j3d.BranchGroup
 javax.media.j3d.Canvas3D
 javax.media.j3d.CapabilityNotSetException
 javax.media.j3d.Clip
 javax.media.j3d.ColorInterpolator
 javax.media.j3d.ColoringAttributes
 javax.media.j3d.CompressedGeometry

 - 337 -

 javax.media.j3d.CompressedGeometryHeader
 javax.media.j3d.ConeSound
 javax.media.j3d.DanglingReferenceException
 javax.media.j3d.DecalGroup
 javax.media.j3d.DepthComponent
 javax.media.j3d.DepthComponentFloat
 javax.media.j3d.DepthComponentInt
 javax.media.j3d.DepthComponentNative
 javax.media.j3d.DepthComponentRetained
 javax.media.j3d.DirectionalLight
 javax.media.j3d.DistanceLOD
 javax.media.j3d.ExponentialFog
 javax.media.j3d.Fog
 javax.media.j3d.FogRetained
 javax.media.j3d.Font3D
 javax.media.j3d.FontExtrusion
 javax.media.j3d.GeneralizedStripFlags
 javax.media.j3d.Geometry
 javax.media.j3d.GeometryArray
 javax.media.j3d.GeometryArrayRetained
 javax.media.j3d.GeometryDecompressor
 javax.media.j3d.GeometryRetained
 javax.media.j3d.GeometryStripArray
 javax.media.j3d.GeometryStripArrayRetained
 javax.media.j3d.GraphicsConfigTemplate3D
 javax.media.j3d.GraphicsContext3D
 javax.media.j3d.Group
 javax.media.j3d.HiResCoord
 javax.media.j3d.IllegalRenderingStateException
 javax.media.j3d.IllegalSharingException
 javax.media.j3d.ImageComponent
 javax.media.j3d.ImageComponent2D
 javax.media.j3d.ImageComponent3D
 javax.media.j3d.ImageComponentRetained
 javax.media.j3d.IndexedGeometryArray
 javax.media.j3d.IndexedGeometryArrayRetained
 javax.media.j3d.IndexedGeometryStripArray
 javax.media.j3d.IndexedGeometryStripArrayRetained
 javax.media.j3d.IndexedLineArray
 javax.media.j3d.IndexedLineStripArray
 javax.media.j3d.IndexedPointArray
 javax.media.j3d.IndexedQuadArray
 javax.media.j3d.IndexedTriangleArray
 javax.media.j3d.IndexedTriangleFanArray
 javax.media.j3d.IndexedTriangleStripArray
 javax.media.j3d.InputDevice
 javax.media.j3d.Interpolator
 javax.media.j3d.J3dProperties
 javax.media.j3d.LOD
 javax.media.j3d.Leaf
 javax.media.j3d.LeafRetained
 javax.media.j3d.Light

 - 338 -

 javax.media.j3d.LightRetained
 javax.media.j3d.LineArray
 javax.media.j3d.LineAttributes
 javax.media.j3d.LineStripArray
 javax.media.j3d.LinearFog
 javax.media.j3d.Link
 javax.media.j3d.Locale
 javax.media.j3d.Material
 javax.media.j3d.MediaContainer
 javax.media.j3d.Morph
 javax.media.j3d.MultipleParentException
 javax.media.j3d.Node
 javax.media.j3d.NodeComponent
 javax.media.j3d.NodeReferenceTable
 javax.media.j3d.NodeRetained
 javax.media.j3d.ObjectUpdate
 javax.media.j3d.OrderedGroup
 javax.media.j3d.PathInterpolator
 javax.media.j3d.PhysicalBody
 javax.media.j3d.PhysicalEnvironment
 javax.media.j3d.PickShape
 javax.media.j3d.PointArray
 javax.media.j3d.PointAttributes
 javax.media.j3d.PointLight
 javax.media.j3d.PointSound
 javax.media.j3d.PolygonAttributes
 javax.media.j3d.PositionInterpolator
 javax.media.j3d.PositionPathInterpolator
 javax.media.j3d.QuadArray
 javax.media.j3d.Raster
 javax.media.j3d.RenderingAttributes
 javax.media.j3d.RestrictedAccessException
 javax.media.j3d.RotPosPathInterpolator
 javax.media.j3d.RotPosScalePathInterpolator
 javax.media.j3d.RotationInterpolator
 javax.media.j3d.RotationPathInterpolator
 javax.media.j3d.ScaleInterpolator
 javax.media.j3d.SceneGraphCycleException
 javax.media.j3d.SceneGraphObject
 javax.media.j3d.SceneGraphObjectRetained
 javax.media.j3d.SceneGraphPath
 javax.media.j3d.Screen3D
 javax.media.j3d.Sensor
 javax.media.j3d.SensorRead
 javax.media.j3d.Shape3D
 javax.media.j3d.SharedGroup
 javax.media.j3d.Sound
 javax.media.j3d.SoundException
 javax.media.j3d.SoundRetained
 javax.media.j3d.Soundscape
 javax.media.j3d.SpotLight
 javax.media.j3d.Switch

 - 339 -

 javax.media.j3d.SwitchValueInterpolator
 javax.media.j3d.TexCoordGeneration
 javax.media.j3d.Text3D
 javax.media.j3d.Texture
 javax.media.j3d.Texture2D
 javax.media.j3d.Texture3D
 javax.media.j3d.TextureAttributes
 javax.media.j3d.TextureRetained
 javax.media.j3d.Transform3D
 javax.media.j3d.TransformGroup
 javax.media.j3d.TransparencyAttributes
 javax.media.j3d.TransparencyInterpolator
 javax.media.j3d.TriangleArray
 javax.media.j3d.TriangleFanArray
 javax.media.j3d.TriangleStripArray
 javax.media.j3d.View
 javax.media.j3d.ViewPlatform
 javax.media.j3d.VirtualUniverse
 javax.media.j3d.WakeupCondition
 javax.media.j3d.WakeupCriterion

 Package javax.vecmath

 This package provides the vector, matrix, and colorspace manipulation support needed in

3D applications. See Listing 34.5 for a list of classes.

 Listing 34.5 Java3D Classes for Vector, Matrix, and Colorspace Arithmetic

 javax.vecmath.AxisAngle4d
 javax.vecmath.AxisAngle4f
 javax.vecmath.Color3b
 javax.vecmath.Color3f
 javax.vecmath.Color4b
 javax.vecmath.Color4f
 javax.vecmath.GMatrix
 javax.vecmath.GVector
 javax.vecmath.Matrix3d
 javax.vecmath.Matrix3f
 javax.vecmath.Matrix4d
 javax.vecmath.Matrix4f
 javax.vecmath.MismatchedSizeException
 javax.vecmath.Point2d
 javax.vecmath.Point2f
 javax.vecmath.Point3d
 javax.vecmath.Point3f
 javax.vecmath.Point4d
 javax.vecmath.Point4f
 javax.vecmath.Quat4d
 javax.vecmath.Quat4f
 javax.vecmath.SingularMatrixException
 javax.vecmath.TexCoord2f
 javax.vecmath.TexCoord3f

 - 340 -

 javax.vecmath.Tuple2d
 javax.vecmath.Tuple2f
 javax.vecmath.Tuple3b
 javax.vecmath.Tuple3d
 javax.vecmath.Tuple3f
 javax.vecmath.Tuple4b
 javax.vecmath.Tuple4d
 javax.vecmath.Tuple4f
 javax.vecmath.Vector2d
 javax.vecmath.Vector2f
 javax.vecmath.Vector3d
 javax.vecmath.Vector3f
 javax.vecmath.Vector4d
 javax.vecmath.Vector4f

Summary

This chapter has presented the Java3D standard extension and its implementation for
Linux. This implementation is still a work in progress, and we can expect over time to see
improved support for various 3D graphics cards.

Chapter 35: JavaComm, JCL, and RXTX:
Serial Communications from Java

 Overview

The Java Communications API (JavaComm) is a standard extension to support use of
the serial and parallel ports. This chapter describes an implementation available for
Linux. As of this writing, the implementation supports serial ports only.

 Platforms: JDK1.1/JDK1.2

 The Java Communications API provides a standard interface for serial and parallel port

hardware. The capabilities of the current 2.0 release include

 • Finding and enumerating available serial and parallel hardware

 • Opening and asserting process ownership of a port

 • Resolving port ownership between contending applications

 • Performing asynchronous and synchronous I/O on ports

 • Receiving events describing communication port state changes

 Among the applications you can develop with such an API are

 • Device drivers for custom I/O devices and protocols

 • Monitors for uninterruptible power supplies

 • Terminal servers for ISP environments

 - 341 -

Like the Java3D extension discussed earlier (Chapter 34, "Java3D Extension"),
JavaComm is one of the standard Sun extensions that cannot be implemented entirely in
Java. It requires a native component that understands how to drive the serial and parallel
port hardware on a host system.

 A JavaComm solution for Linux (or any other platform) consists of three components:

 • The JavaComm extension library, published by Sun.

 • A platform-specific driver, in the form of a class library. This driver will necessarily

include some native methods that know how to control the hardware.

 • A native code shared library to implement the native methods in the driver.

 For the Linux platform, these three pieces come from three different sources. The following

sections describe how to obtain and build the components.

Obtaining JavaComm

The Java Communications API is distributed as a standard extension from Sun: Visit the
product page (http://java.sun.com/products/javacomm) and download the
distribution for Sparc Solaris (you must use this version, not those for x86 Solaris or NT).

 Unpack the tarball in some convenient location:

 bash$ gzip –d <javacomm20-sparc.tar.Z ¦ tar xvf -

 You need only the comm.jar file from the distribution, although some other files will be

useful at testing time. To install comm.jar:

•

Under JRE1.1 or SDK1.1, place the jar file (or a symbolic link to it) in the lib
subdirectory of the installation, and add the jar file to your class path. Java does not
require that the jar file live in this directory, but the JCL/RXTX build process (discussed
in the following section) does.

 • Under SDK1.2, place the jar file (or a symbolic link to it) in the jre/lib/ext

subdirectory of the installation.

 • Under JRE1.2, place the jar file (or a symbolic link to it) in the lib/ext subdirectory

of the installation.

 You also need to create a properties file, javax.comm.properties, containing the

following single line:

 Driver=gnu.io.RXTXCommDriver

 This file should be installed in the usual location for properties files:

 • In JRE1.1, SDK1.1, or JRE1.2: lib/ subdirectory of the JDK installation.

 • In SDK1.2: jre/lib/ subdirectory of the JDK installation.

 After we have installed the drivers (described in the next section), this file has the important

job of identifying the drivers so they can be used by JavaComm.

 - 342 -

Obtaining and Installing JCL and RXTX

 The drivers needed to enable JavaComm on Linux are, for historical reasons, the product

of two different authors:

 • The low-level native RXTX library, published by Keane Jarvi, is a general-purpose

multiplatform API for serial and parallel port interfaces.

•

The JavaComm for Linux (JCL) driver, published by Kevin Hester, is an
implementation of the JavaComm driver interface. When the author needed to
implement the low-level code to access the hardware, he chose to use the RXTX
library instead of writing his own.

Despite the diverse authorship, you can get both from a single source. The RXTX
distribution, published at http://www.frii.com/~jarvi/rxtx/, includes a copy of
JCL.

From the RXTX home page, navigate to the download page and obtain the stable or
developer's version (depending on your tastes) of the compressed tarball. After
unpacking it into any convenient directory, perform the following steps to build it:

 bash$./configure
 <...lots of output...>
 bash$ make
 <...lots of output...>
 bash$ make jcl
 <...a little output...>
 bash$ make install

The build process identifies the Java environment in which it is running (JDK1.1 or
JDK1.2), builds a version appropriate to that environment, and installs the JCL and RXTX
libraries to an appropriate place:

•

JRE1.1 and SDK1.1: Native libraries to /usr/local/lib (you can set an alternate
destination at ./configure time); jcl.jar to the lib/ subdirectory in the JDK
installation. You will need to add jcl.jar to your class path.

 • JRE1.2: Native libraries to the lib/i386/ in the JRE installation; jcl.jar to the

lib/ext/ subdirectory.

 • SDK1.2: Native libraries to the jre/lib/i386/ in the SDK installation; jcl.jar to

the jre/lib/ext/ subdirectory.

If you are building versions for both JDK1.1 and JDK1.2, you must perform the builds
separately; do not perform a single build and try to install the same result into JDK1.1 and
JDK1.2 installations. After building and installing for one environment, perform the
following step to clean up the build tree:

 bash$ make distclean

change your environment (see Chapter 14, "Configuring the Linux JSDK/JRE
Environment," in the section on "Accommodating Multiple Java Installations"), and rebuild
the product from the ./configure step onward.

 Testing JavaComm for Linux

 The test recommended with the JCL/RXTX distribution is the BlackBox test that is

 - 343 -

bundled with the Sun JavaComm distribution. To run, include the
<javacomm_dir>/samples/BlackBox/BlackBox.jar archive in your class path
and run the BlackBox class:

 bash$ java BlackBox

 The BlackBox example will display a GUI for every device it can open (see Figure 35.1)

and dump an exception trace for every device it cannot.

 Figure 35.1: The GUI for the JavaComm BlackBox tester.

 If you find that BlackBox fails to open all serial devices on your system, the two most

likely causes are as follows:

•

The permissions on the devices do not let you access them. Check the permissions on
/dev/ttyS0, /dev/ttyS1, and so on. You may need to run this test as the root
user.

 • The interface is in use by another process. You cannot open this device—even

running as the root user—until the other process has relinquished it.

The BlackBox GUI allows you to set various device parameters and to send and receive
data. Obviously, an interesting testing session will require that the port be connected to a
responsive device. If you have two available serial ports, you can test communications
between them by connecting them with a crossover serial cable.

The JavaComm API

 The Java Communications API provides 13 classes and interfaces, in the package
javax.comm, to support serial and parallel port usage. Here is a brief summary:

•

public interface CommDriver—This interface is implemented by loadable
comm port drivers, such as JavaComm for Linux, and is not normally used from
applications.

•

public abstract class CommPort—CommPort is the superclass of all devices
supported by this package. CommPort objects (and their device-specific SerialPort
and ParallelPort subclasses) are not explicitly instantiated by applications but are
returned by the static CommPortIdentifier.getPortIdentifiers() call. This
superclass defines general comm-device methods for interfacing with transmit/receive
buffers, timers, and framing control.

•

public class CommPortIdentifier—This class handles access to comm ports:
discovery of available devices, claiming and resolving ownership, and managing
ownership-related events.

•

public interface CommPortOwnershipListener—This interface describes an
API for detection of events related to ownership of comm ports. Applications can use
this interface to implement mechanisms for shared ownership of comm ports.

 - 344 -

 • public class NoSuchPortException—This exception is thrown when a
requested port cannot be found.

 • public abstract class ParallelPort—This is the main class for parallel port

devices; it defines methods and modes for port and printer I/O.

 • public class ParallelPortEvent—This class describes events that are

reportable by the parallel port.

 • public interface ParallelPortEventListener—This interface describes a

listener for parallel port events.

 • public class PortInUseException—This exception is thrown when a

requested port is already in use.

•

public abstract class SerialPort—This is the main class for serial ports and
includes methods and modes for control of serial port word size, hardware and
software flow control, parity, framing, baud rate, modem lines, buffers, break character
send/detect, and error detection.

 • public class SerialPortEvent—This class describes events that are

reportable by the serial port.

 • public interface SerialPortEventListener—This interface describes a

listener for parallel port events.

 • public class UnsupportedCommOperationException—This exception is

thrown when an unsupported operation is attempted on a comm port.

 Summary

This chapter discussed the Java Communications API and the components necessary to
install a Linux implementation. Only serial devices are supported by the current
implementation, but support of parallel devices is intended in future versions.

Part VIII: Compilers and Debuggers

 Chapter List

 Chapter

36: The Jikes Compiler

 Chapter

37: KJC: Kopi Java Compiler

 Chapter

38: Generic Java Compilers

 Chapter

39: The Jikes Debugger

 Chapter

40: DDD: The Data Display Debugger

 Part Overview

 - 345 -

The development tools offered with the Sun SDK are sufficient for building complete
applications but, in the UNIX tradition, not highly optimized for usability. Sun vocally
encourages other tool vendors to improve on their offerings, with the most visible results
in the Microsoft Windows world: highly capable development environments from
Symantec, Inprise, IBM, numerous smaller players, and of course (controversially)
Microsoft.

But the list of quality offerings is not restricted to Windows. This and the next few parts of
the book examine development tools, beginning with single-purpose tools and, later,
moving into development environments.

Chapter 36: The Jikes Compiler

 Overview

 This chapter explores the Jikes compiler, an open source Java compiler from IBM's

AlphaWorks organization.

 Platform: JDK1.1/JDK1.2

One of the most popular tools to come from IBM's Java research, Jikes is a free, open
source, natively implemented Java compiler. Jikes is not a product; it's a project from IBM
Research and is, for IBM, as much about researching the open source model as it is
about languages and compilers.

Jikes compiles .java sources into .class files, roughly 10 times faster than javac.
The speed comes from a combination of the native implementation—it's written in C++—
and a great deal of clever coding.

Jikes's speed has made it a popular tool for use in medium-size to large projects, where it
saves significant time during recompilation. Perhaps its biggest downside is a lack of
optimization: Jikes produces correct but poorly optimized bytecodes. Projects that use
Jikes for quick turnaround during the workday often opt to use Sun's javac to (slowly)
build final, well- optimized versions.

 Obtaining Jikes

Jikes is available from IBM Research at
http://ibm.com/developerworks/opensource. Its three components are the
compiler, parser generator, and test suite. From the main project page, you can

 • View current source (all three components) through a Web-based interface to the

project cvs tree.

 • Download the current development version (internal release) in source form or as an

executable for Linux, Microsoft Windows, AIX, or Solaris.

 • Download a stable, released version in source form or as an executable for Linux,

Microsoft Windows, AIX, or Solaris.

Unless you need to hack source, it's much easier to grab the binaries. The archive consists
of three files: the jikes executable, some brief HTML documentation, and a license.
Install it anywhere.

Running Jikes

 - 346 -

 Synopsis:

 jikes [<options>] [<source files>] [@<files>]

 Compile the specified source files. The @ option allows the compiler to read a list of

source files and other options from a file instead of the command line.

 General Options:

 • +1.0—Recognize only Java 1.0.2 language constructs (for backwards compatibility).

 • +B—Run Jikes as a syntax-checker, without generating bytecodes.

•

-classpath <path>—Specify the class path (overrides $CLASSPATH). Note that
Jikes follows the JDK1.1 class path model (see Chapter 14, "Configuring the Linux
SDK/JRE Environment," in the section "JDK1.1 Class Path Construction"). The class
path must include all core, extension, and user classes to be searched at compile
time.

•

+D—Same as option +E (discussed later in the list), but errors are output immediately,
without buffering and sorting. This is useful primarily if Jikes is crashing before
generating error messages.

•

-d <dir>—Output class files to the specified directory. This is analogous the the
javac -d option (see Chapter 19, "The Java Compiler: javac"): classes are placed
into a hierarchy reflecting the package name.

 • -debug—Ignored (recognized for compatibility).

 • -deprecation—Report on use of deprecated language features. (Deprecated

classes and methods are reported regardless of this flag.)

•

+E—Report errors in an easy-to-parse one-line format—useful for integration with
IDEs. The +E stands for emacs, which is often used as an IDE (see Chapter 44, "The
Emacs JDE"). Without this option, error messages are reported in a longer, more
human-readable format.

 • -g—Generate the local variable table for debugging use.

•

+K<name>=<TypeKeyWord>—Perform type substitution: all occurrences of <name>
in the source are interpreted as the specified <TypeKeyWord>. The <TypeKeyWord>
can only be a primitive data type, such as int. For example, the option
+Kfoo=double will interpret variables declared as type foo to be declared as
double.

 • -nowarn—Suppress warning messages.

 • -nowrite—Suppress writing of class files.

 • -O—Create a small class file by suppressing writing of the line number table.

Optimization? Not yet.

 • +P—Compile pedantically, with many warnings.

 • +T<n>—Set an alternate tab stop value. Jikes uses tab stops to align parts of its error

messages; the default value is 8 if this option is not specified.

 - 347 -

 • -verbose—Run verbosely, listing source and class files read and written during

compilation.

 • -Xstdout—Redirect all output listings to stdout.

 • +Z—Treat cautions as fatal errors. Otherwise, cautions (worse than warnings, not as

bad as errors) are nonfatal.

 Dependency-Related Options:

Dependencies in Java projects are difficult to describe and handle (see Chapter 48,
"JMakeDepend: A Project Build Management Utility"). Jikes offers a number of options to
control how it discovers, reports, and acts on dependencies between source and class
files.

By default, Jikes performs a simple dependency check for the classes it builds—looking
for class files that do not exist or are older than source, and looking for simple
dependencies between class files. Depending on the results of the analysis, Jikes could
compile all classes on the command line, some classes on the command line, or even
some classes not on the command line. This check (described in more detail in the HTML
page shipped with Jikes) is imperfect but is comparable to that performed by many other
Java compilers.

 The following options modify Jikes' default behavior in handling dependencies:

•

+F—Enable a more thorough dependency analysis, possibly resulting in performing
more compilation. This approach is more expensive than the default behavior but
avoids certain perils of missing classes that should be recompiled. See +U later in the
list for a stronger setting.

 • -depend—Suppress dependency analysis: recompile everything.

•

+M—Generate Makefile dependencies, one dependency file per source file. The
dependency file, named <classname>.u, lists classfile:source and
classfile:classfile dependencies in a format understood by make.

 • +M=<filename>—Generate dependencies, collected into a single file. Format is

different from that produced by the plain +M option, discussed previously.

 • +U—Perform a more thorough dependency analysis, like +F, discussed previously, but

also examine classes in .zip and .jar archives.

 • -Xdepend—Recompile all used classes.

•

++—Enable "incremental mode." This option implies the +F flag (discussed previously)
but it causes the compiler not to terminate compilation: It sits and waits for terminal
input. Enter a blank line, it recompiles; another blank line, another recompile, and so
on; enter "q" and the compiler terminates.

This behavior gives you a fast edit-compile cycle: make source changes in your editor
and then press Enter in your Jikes terminal window to recompile only the affected
modules. Edit some more, compile again with a single keystroke. This not only saves a
few keystrokes, it saves the time Jikes takes to build its dependency structures. It's a
worthwhile option if you find yourself in a tweak-rebuild-tweak cycle.

Setting the Environment for Jikes

 - 348 -

 The following environment variables affect Jikes' behavior:

 CLASSPATH

Class path to search for all classes: system, extension, user.

 JIKESPATH

Same as CLASSPATH; if specified, JIKESPATH overrides CLASSPATH.

 Troubleshooting Jikes Problems

Jikes is a research project on compiling Java, and the team has put considerable energy
into shaking out flaws and underspecifications in the language. If compiling a program
with Jikes produces different results from compiling with other tools, the cause may be a
bug in Jikes. But it is also likely to be a dependence on some underspecified aspect of
the Java language.Useful sources of help are

 • The HTML page (jikes.html) shipped with the Jikes distribution.

•

The Jikes mailing list (see the project home page for subscription information). Lists
are provided for general discussion, bugs, announcements, patches, and licensing
issues.

 • The Jikes discussion database (see the project home page for directions).

 Summary

This chapter discussed the Jikes compiler from IBM, an open source Java compiler
implemented in C++. Jikes is probably the best compiler around for speed and language
compliance, but its lack of well-optimized output prevents it from being a complete, one-
size-fits-all tool.

Chapter 37: KJC: Kopi Java Compiler

 This chapter discusses the Kopi Java compiler, an open source Java compiler

implemented in Java.

 Platforms: JDK1.1/JDK1.2

The Kopi Java compiler, by Vincent Gay-Para and Thomas Graf, is the first Java
compiler, implemented in Java, to be published under GPL terms. Kopi is a four-pass
optimizing compiler, distributed with all sources—a good compiler and a good study
source on Java compilation and optimization techniques.

Kopi enjoys growing acceptance in the Java community. In late 1999, the Kaffe project
(see Chapter 26, "Kaffe: A Cleanroom Java Environment") announced it would bundle
Kopi with its distribution—replacing the older Pizza compiler.

 Obtaining Kopi

Kopi is published by Decision Management Systems (DMS) and is distributed through its
Web site: http://www.dms.at/. You can download the Kopi compiler suite, various
source components, and related DMS products from the site. You can also check out
sources from DMS's networked CVS repository (see Chapter 9, "Setting Up a Linux
Development Environment," in the section "CVS Remote Repository Servers").

 For a minimal download, you need only kjc.jar. This gives you everything you need to

use the Kopi compiler. Install it anywhere, and include it in your class path to run the

 - 349 -

compiler.

 Should you choose to obtain sources, you will need to obtain some additional

technologies, used by Kopi itself, to build the Kopi class libraries:

•

The GNU getopt utility (available from
http://www.gnu.org/software/java/java-software.html) is a Java
version of the popular C/C++ getopt(3), which assists in parsing command lines.

 • The ANTLR (ANother Tool for Language Recognition) generator (available from

http://www.antlr.org/) is used to build language parsers.

 The Structure of Kopi

 Kopi contains four packages that encapsulate the compiler's functionality:

 • at.dms.classfile—An API that supports reading, writing, and modification of class

files. It includes a bytecode optimizer and an assembler.

 • at.dms.dis—A disassembler that dumps class files into the assembler format

(.ksm) used by Kopi.

 • at.dms.ksm—An assembler that generates class files from .ksm source files.

 • at.dms.kjc—The compiler itself.

Because source is available, these pieces can be adapted for other uses—subject, of
course, to GPL terms (see Chapter 12, "Software Licensing," in the section "The GNU
GPL").

Running Kopi

 To run Kopi, include the kjc.jar archive in your class path. Most options are specified

with the customary GNU double-dash prefix.

 Synopsis:

 java at.dms.kjc.Main [<options>] <java sources>

 Options:

•

—beautify—Generate reformatted (pretty-printed) versions of the original source.
Does not generate class files. Output is to the current directory unless -d (discussed
later in the list) is specified. Result is in <sourcename>.gen.

 • —classpath <path>—Specify the compile-time class path.

•

—d <directory>—Specify a destination directory instead of the current directory.
Class files are placed in a hierarchy representing the package name, but source files
(from -beautify or -java) are simply placed in the specified directory.

 • —deprecation—Report use of deprecated classes and members.

 • —fast—Choose the fastest modes for compilation.

 - 350 -

 • -g—Compile for debugging.

 • -help—Generate a help message.

•

—java—Generate a version of the source with all class names fully qualified
(package+class). Output is to the current directory unless -d (discussed previously) is
specified. The result for each source file appears in <sourcename>.gen.

 • —multi—Run the compiler in multithreaded mode.

 • —nowrite—Run the compiler only as a syntax-checker: do not generate code.

 • -O0—Disable all optimization (option is the capital letter O followed by the number

zero).

 • -O—Compile with normal optimization (default).

 • -O2—Enable maximum optimization.

 • —strict—Strictly enforce the Java language spec.

 • —verbose—Generate verbose compilation output.

 • —version—Report the current compiler version number.

 • —warning—Display warning messages. Kopi generates some good messages about

unused variables and suspicious constructs.

The Extended Kopi Java Compiler

The Kopi compiler is part of a larger work by DMS, the Extended Kopi Java Compiler
(xkjc), which extends the language for SQL database support. xkjc is also available in
source and binary form from the DMS Web site.

 Briefly, xkjc's enhancements are

•

Support for unnamed parameters, as in C++: foo(int) is permitted instead of
foo(int x) in situations where the method signature is needed but the variable is
not used.

•

A simple assertion mechanism that allows you to write assertions in source. For ease
of management, the assertions are automatically disabled by compiling with the -O
option.

 • Operator overloading, as in C++: standard unary and binary operators can be

extended to work on any class.

•

Embedded Structured Query Language (SQL)—to ease development of database
applications. SQL is part of the language (not just quoted strings passed to a database)
and is parsed and syntax-checked along with the Java source.

 Summary

 This chapter discussed the Kopi Java compiler, an open source Java compiler

implemented in Java. The Kopi GPL-licensed distribution provides a high-quality optimizing

 - 351 -

compiler and components you can use to build your own compiler-related tools.

Chapter 38: Generic Java Compilers

 Overview

 This chapter discusses Java compilers that support generic programming—what C++

programmers call templates.

 Platforms: SDK1.1/SDK1.2

 One visible shortcoming of the Java language has been lack of support for generic types,

specifically in the form of parametric polymorphism.

 Para-what?

Parametric polymorphism is the capability to develop procedures for which the data type
of one or more parameters is unspecified (generic), and can be used with a variety of
data types. Developers working in modern environments are typically exposed to three
variations on parametric polymorphism:

 • In the C programming language, macro definitions do not specify parameter types and

are thus generic.

 • C++ uses templates, which allow generic types to be used with methods and

procedures.

 • Java considers java.lang.Object to be a generic type, but does not otherwise

support generic programming.

 The following sections explore generic programming in more detail, discuss how Java can

benefit from the technique, and describe compilers that support it.

The Problem: Generic Code for Specific Data Types

 Most computer languages are much more supportive of variable data than they are of

variable types. We illustrate with a small example from C++.

 Consider a simple data structures problem. A stack to handle objects of class foo might

look like this:

 class foostack
 {
 public:
 void push(foo obj);
 foo pop();
 };
 Using the stack is straightforward, as shown in this code
fragment:

 foo X;
 foostack Y;
 .
 .
 Y.push(X);
 .

 - 352 -

 .
 X = Y.pop();

 If we want to implement a stack for objects of class bar, the code looks familiar:

 class barstack
 {
 public:
 void push(bar obj);
 bar pop();
 };

 What is wrong with this picture?

We have written two nearly identical classes to implement a stack—truly a case of
reinventing the wheel. Each implementation supports variable data (the argument to
push() is a variable), but we had to write unique code for two different data types.

 Let's look at how Java solves the problem.

 The Current Java Solution

The Java answer to the preceding problem is to use the Object superclass. Unlike in
C++, all Java classes descend from a single superclass, which suggests a generic
solution to the problem:

 public class MyStack
 {
 public void push(Object obj) { <...implementation...> }
 public Object pop() { <...implementation...> }
 }

 If we want to implement a stack of class Foo, the code is simple:

 Foo X = new Foo();
 MyStack Y = new MyStack();
 .
 .
 Y.push(X);
 .
 .
 X = (Foo)Y.pop();

 And what is wrong with this picture?

 Two problems stand out:

•

The need to use a typecast on the MyStack.pop() operation is annoying and
aesthetically unsatisfactory. Programs that make heavy use of such generic
approaches (including users of the Sun Collections classes) tend to make heavy use
of typecasts.

 • We can push anything onto the stack, despite our intent to use it only for objects of

type Foo. We are relying on runtime checking—the typecast will throw an exception if

 - 353 -

it is inappropriate—to detect a problem that could easily and more appropriately be
found at compile time. Wouldn't it be better and more friendly to spot such a problem,
during compilation, at the site of the MyStack.push() call?

 We look back to C++ for a possible solution.

 C++ Templates

Templates are the C++ implementation of parametric polymorphism. Unlike primitive C
macros, templates allow you to specify generic parameters while taking advantage of the
type-safety offered by the C++ compiler. We illustrate with a reimplementation of the
earlier stack example:

 template <class T> class mystack
 {
 public:
 void push(T obj);
 T pop();
 };

We have introduced a new variable to stand in for an arbitrary class, and written a class
definition parameterized in that variable. The parameter is specified in the <class T>
declaration and used in the individual method declarations for push() and pop().

 Here is our rewrite of the application code:

 foo X;
 mystack<foo> Y;
 .
 .
 Y.push(X);
 .
 .
 X = Y.pop();

The notation is a bit strange, but the effect is just what we need. The mystack<foo>
declaration requests a version of mystack that is specialized for use with class foo. The
resulting stack class will operate only on foo objects—push() will only take a parameter
of that class, and pop()'s return type matches that class. We could, using the same "<>"
notation, specialize mystack for any type.

Java Templates

Does Java need its own version of templates? Despite Sun's initial claim that it is
unnecessary, the need is clear to users. Generic types are one of the most requested
enhancements to the language, and Sun is giving it serious consideration. Given the
associated costs and risks—changing the language, possibly changing the class file
format, maintaining backward compatibility, preserving performance—we probably
cannot expect a quick resolution to the request. But the interest is strong.

Fortunately, you do not have to wait. Compilers are available today, capable of handling
parametric polymorphism and generating code that works in today's environments with
today's class libraries. We will look at them in the following sections.

 GJ: The Generic Java Compiler

 - 354 -

The Generic Java (GJ) compiler is the work of a team based at the University of South
Australia. Its first attempt at generic support was the Pizza compiler, which has now been
largely supplanted by GJ. The GJ effort includes the participation of two engineers from
JavaSoft, and it appears to be the leading model for how generic support might be added
to the core language.

The next several subsections describe how to install and use the GJ compiler. In Chapter
48, "JMakeDepend: A Project Build Management Utility," we present a project written in
Generic Java.

 Obtaining and Installing GJ

GJ can be obtained from the project Web site at
http://www.cis.unisa.edu.au/~pizza/gj/, or at mirrors referenced from the
main site. Two different versions are available: one for JDK1.1 and one for JDK1.2—
choose the one for your target platform. The distribution is a compressed binary tarball
(see Chapter 8, "Installing Additional Linux Software," in the section "Compressed Tarball
Binary Distribution"). You can install it anywhere.

 To use GJ, you also need an existing JRE or SDK installation—both to run the compiler

(which is a Java program) and to resolve classes at compile and runtime.

 The GJ installation consists of several subdirectories:

•

classes—The classes that make up the compiler, plus some type-parameterized
versions of the Java Collections classes. (Later, in the section "Using the Collections
Classes," we discuss some details of using the Collections classes for generic
programming.)

 • doc—Documentation on the parameterized versions of the Collections classes.

 • src—Sources for some modified Sun classes. Source for the compiler is not provided

and is not publicly available.

The Web site includes detailed installation information, documentation (including a
tutorial), an FAQ, and some good related links. GJ has a user community and a mailing
list and is actively (if spottily) maintained.

 Using GJ's Language Enhancements

The full GJ language and its use are described in papers available from the GJ site.
Briefly, GJ's enhancements to Java are much smaller and simpler than C++ templates:
Generic classes are specified by one or more comma-separated class name(s)
appearing between angle-brackets (<>), immediately to the right of the class name being
parameterized. We revisit our earlier MyStack definition:

 public class MyStack<T>
 {
 public void push(T obj) { <...implementation...> }
 public T pop() { <...implementation...> }
 }

 This gives us a fully specialized implementation of a stack, with type-checking by the

compiler, whenever we need one:

 Foo X = new Foo();

 - 355 -

 MyStack<Foo> Y = new MyStack<Foo>();
 .
 .
 Y.push(X);
 .
 .
 X = Y.pop();

The subtleties of using GJ templates, including template nesting, are explored in papers
available from the GJ site. If you are already familiar with templates, you will find them
less general but easier to use than their C++ counterparts.

Subtleties

 The differences between Java and C++ result in some interesting under-the-covers

implementation differences:

•

In C++, the compiler and linker manufacture new code to implement the
specializations. For every specialization of class mystack created in the previous
section "C++ Templates" (mystack<foo>, mystack<bar>), code is
automatically generated and added to the application. The compiler is doing
automatically what we did manually in the section "The Problem: Generic Code
for Specific Data Types" earlier in this chapter.

•

In Java, the same compiled code, if written using java.lang.Object, can run
all specializations. The GJ compiler generates such code when compiling the
parameterized methods, and inserts the necessary typecast operators into code
using those methods. It is doing automatically what we did manually in the section
"The Current Java Solution" earlier in the chapter.

 Some other subtleties to note are as follows:

•

The Java bytecodes generated from GJ source looks like any other Java
bytecodes. The template-specific information disappears (the compiler developers
describe it as translation by erasure), and the code is fully interoperable with
ordinary Java classes. The template signatures are recorded in the class file as
attributes, where they are used by the GJ compiler and ignored by everyone else.

•

C++ templates are more general than GJ templates in one important respect: C++
templates can be specialized for any type; GJ templates can be specialized only
for classes. You cannot create a MyStack<int> (but you can create a
MyStack<Integer>).

 Using the Collections Classes

The GJ release includes an implementation of the Sun Collections classes that supports
parametric polymorphism. Documentation for these classes is included in the GJ
distribution, but, in a nutshell, the classes are parameterized in an obvious way:
Occurrences of the java.lang.Object type in class definitions are replaced with
parameterized classes. For example, the java.util.TreeSet<A> class offers the
following specialized constructors:

 TreeSet(Collection<A>)

 - 356 -

 TreeSet(SortedSet<A>)
 TreeSet(Comparator<A>)

 and the following specialized methods:

 public Iterator<A> iterator();
 public boolean contains(A o);
 public boolean add(A o);
 public boolean remove(A o);
 public SortedSet<A> subSet(A fromElement, A toElement);
 public SortedSet<A> headSet(A toElement);
 public SortedSet<A> tailSet(A fromElement);
 public Comparator<A> comparator();
 public A first();
 public A last();

 Listing 38.1 is a simple demonstration using java.util.TreeSet to read input lines

and output them in sorted order, eliminating duplicate lines.

 Listing 38.1 Demonstration of Generic Programming with the Collections Classes

 1 import java.util.*;
 2 import java.io.*;
 3
 4 public class StringSort
 5 {
 6 public static void main(String[] argv) throws
java.io.IOException

 7 {
 8 TreeSet<String> set = new TreeSet<String>();
 9 BufferedReader reader =
 10 new BufferedReader(new
InputStreamReader(System.in));

 11 String currLine;
 12 while ((currLine = reader.readLine()) != null)
 13 set.add(currLine);
 14 Iterator<String> iterator = set.iterator();
 15 while (iterator.hasNext())
 16 {
 17 currLine = iterator.next();
 18 System.out.println(currLine);
 19 }
 20 }
 21 }

The template additions are highlighted in bold italic. Not shown, in line 17, is the
(String) typecast that would be needed if this program were implemented without
templates.

To use these new versions of the Collections classes, you must include them in the class
path during compilation—they contain the template signatures needed by the compiler.
These new versions are not needed at runtime, however; the application will run with the
standard class libraries.

 - 357 -

 Later, in the section "Retrofitting Existing Classes for Generic Programming," we discuss
the work necessary to create template-enabled versions of any existing class.

 Running the Compiler

The GJ compiler is named gjc, and is shipped in the GJ class libraries. To use the
compiler, you must include the classes/ subdirectory of the GJ installation in your class
path.

 Synopsis:

 java [<java options>] gjc.Main [<options>] <sourcefiles>

 Options:

•

-bootclasspath <path>—(JDK1.2 only)Set the boot class path. If you are using
the parameterized versions of the Sun Collections classes, use this option to place the
GJ classes ahead of the core classes in the boot class path:

 bash$ java gjc.Main -bootclasspath

/usr/local/Java/gjc/classes:\
 $JAVA_HOME/jre/lib/rt.jar:\
 $JAVA_HOME/jre/lib/i18n.jar ...

•

-classpath <path>—Set the class path. If you are using the parameterized
versions of the Sun Collections classes under JDK1.1, use this option to place the GJ
classes ahead of the Sun versions of the classes:

 bash$ java gjc.Main -classpath

/usr/local/Java/gjc/classes:$CLASSPATH ...

•

-d <filename>—Specify a destination directory for the class files. As with other
Java compilers, the class files are placed into a hierarchical directory tree reflecting
the package name.

 • -experimental—Enable experimental compiler features.

 • -g—Include debugging information (line numbers and local variables) in the class

files.

 • -nowarn—Suppress warning messages.

 • -prompt—Pause after every error, prompting you to continue or abort.

 • -retrofit <path>—Retrofit existing classes for templates. See the section

"Retrofitting Existing Classes for Generic Programming" later in the chapter for details.

•

-s—Emit source. This runs gjc as a translator, generating plain Java source files as
output. If you use the -d option (discussed previously), the generated .java files are
placed into a hierarchical directory tree reflecting the package name. If you do not use
-d, gjc will refuse to overwrite any source files with output files.

 • -scramble—Obfuscate the bytecode by scrambling private identifiers.

 • -scrambleall—Obfuscate the bytecode by scrambling private and package-visible

identifiers.

 - 358 -

 • -switchcheck—Warn about fall-through in switch statements.

 • -unchecked—Suppress "unchecked" warnings.

 • -verbose—Run verbosely.

 • -version—Output current compiler version number.

 Retrofitting Existing Classes for Generic Programming

We discussed how to write parameterized classes in the section "Using GJ's Language
Enhancements" earlier in the chapter, but how can you take existing classes with existing
generic behavior (such as the Collections classes) and create parameterized versions of
them?

gjc provides just such a facility: class retrofitting. It allows you, without benefit of source
availability, to create parameterized versions of existing classes. To retrofit a class, begin
by generating a list of public and protected class members with the javap utility. For
example, Listing 38.2 shows what javap gives us for the java.util.Collection
interface.

 Listing 38.2 Output from Running javap java.util.Collection

 public interface java.util.Collection
 /* ACC_SUPER bit NOT set */
 {
 public abstract boolean add(java.lang.Object);
 public abstract boolean addAll(java.util.Collection);
 public abstract void clear();
 public abstract boolean contains(java.lang.Object);
 public abstract boolean containsAll(java.util.Collection);
 public abstract boolean equals(java.lang.Object);
 public abstract int hashCode();
 public abstract boolean isEmpty();
 public abstract java.util.Iterator iterator();
 public abstract boolean remove(java.lang.Object);
 public abstract boolean removeAll(java.util.Collection);
 public abstract boolean retainAll(java.util.Collection);
 public abstract int size();
 public abstract java.lang.Object toArray()[];
 public abstract java.lang.Object
toArray(java.lang.Object[])[];

 }

 The output shown in Listing 38.2 is almost legal Java source. With some minor editing, it

can be turned into the source we need.

To take the next step, choose the members we need to parameterize and create a new,
sparse parameterized class definition with just those members. We also need to edit our
javap output into something that looks like Java source (see Listing 38.3)—adding a
package specification, normalizing the class names, and adding argument names:

 Listing 38.3 Collection.java

 - 359 -

 package java.util;

 public interface Collection<T>
 {
 public abstract boolean add(T obj);
 public abstract boolean addAll(Collection<T> coll);
 public abstract boolean contains(T obj);
 public abstract boolean containsAll(Collection<T> coll);
 public abstract boolean equals(T obj);
 public abstract Iterator<T> iterator();
 public abstract boolean remove(T obj);
 public abstract boolean removeAll(Collection<T> coll);
 public abstract boolean retainAll(Collection<T> coll);
 public abstract T toArray(T[] array)[];
 }

The class described in Listing 38.3 has a dependency on one other class,
java.util.Iterator, so we create a sparse parameterized definition (see Listing
38.4) for that class.

 Listing 38.4 Iterator.java

 package java.util;

 public interface Iterator<T>
 {
 public abstract T next();
 }

Now we're ready to create parameterized versions of these classes. The -retrofit
<path> argument runs the compiler in a special mode that generates retrofitted classes.
The <path> argument is the class path to search for the classes being retrofitted:

bash$ java gjc.Main -retrofit
/usr/local/Java/jdk1.2/jre/lib/rt.jar -d . \
Iterator.java Collection.java

The result is two class files, java/util/Iterator.class and
java/util/Collection.class, that are copies of the original classes from rt.jar,
but with signatures added to support their use as parameterized classes.

To use the parameterized versions of these classes with gjc, include them in your class
path before any class libraries containing the original version of the classes (see the
recommended use of -classpath and -bootclasspath in the earlier section
"Running the Compiler"). You do not need these special versions of the classes at
runtime—only when compiling.

Subtleties

 Why did we choose to parameterize this method:

 public abstract java.lang.Object

toArray(java.lang.Object[])[];

 - 360 -

 but not this method:

 public abstract java.lang.Object toArray()[];

 to return an array of generic class T?

We know that the first function will, in fact, return the T[] passed to it. The second
function will return an Object[] full of elements of class T, but that array is not
legally castable to T[]—GJ's under-the-covers typecasting will not work.

 There is no bulletproof workaround available to the compiler—clearly, retrofitting

has its limits.

 Creating Documentation Using PizzaDoc

One lasting legacy of the Pizza project—GJ's predecessor—is the PizzaDoc
documentation generator. It's a good drop-in replacement for the JDK1.1 javadoc, and it
boasts the capability to handle source files that use templates.

To use PizzaDoc, you need the Pizza compiler. You can obtain this from the Pizza Web
page (http://www.cis.unisa.edu.au/~pizza/), or as part of a Kaffe distribution
(see Chapter 26, "Kaffe: A Cleanroom Java Environment").

PizzaDoc has one idiosyncrasy in processing GJ sources: You need the -pizza option
to process .java files that use templates. This option is not necessary if the files are
instead named with the .pizza extension.

 Synopsis:

 pizzadoc [<options>] <sourcefiles>

 Options:

Many of the PizzaDoc options are duplicates of options provided by Sun's javadoc. You
can learn more about javadoc and its options in Chapter 23, "The Java Documentation
Generator: javadoc."

 • -author—Include author information in the generated documentation (also in

javadoc).

 • -classpath <pathname>—Specify a class path (also in javadoc).

 • -d <filename>—Specify a destination directory for the generated documentation

(also in javadoc).

 • -excludedeprecated—Exclude classes or members marked as deprecated.

 • -index—Generate an index page.

 • -linktrans—Transform links, using information read from a .pizzadoc file. This is

default behavior.

 - 361 -

 • -newindex—Generate new index files (versus updating existing files).

 • -nodeprecated—Do not include information from @deprecated documentation

tags (also in javadoc).

 • -noindex—Do not generate a class index (also in javadoc).

 • -nointerface—Do not generate pages for pure interfaces.

 • -nolinktrans—Disable -linktrans (discussed earlier in the list) behavior.

 • -nosourcename—Do not include source filenames in the pages.

 • -notree—Do not generate a class hierarchy list (also in javadoc). This is default

behavior.

 • -package—Generate documentation on public, protected, and package-

accessible classes and class members (also in javadoc).

 • -pizza—Recognize the GJ template extensions. Use this flag when processing

.java files containing Generic Java.

 • -private—Generate documentation on all classes and class members (also in

javadoc).

 • -protected—Generate documentation on protected and public classes and

class members (also in javadoc).

 • -public—Generate documentation on public classes and class members (also in

javadoc).

 • -since—Include information from @since tags.

 • -sourceversion—Include information from @version tags.

 • -tree—Generate a class hierarchy tree (versus -notree).

 • -verbose—Run verbosely.

Alternative Generic Java Compilers

 GJ is not the only generic Java compiler in town. Two others are known, although they

appear to receive little maintenance these days.

 The JUMP Compiler

 The JUMP compiler extends Java with a number of familiar C++ features:

 • Operator overloading—The capability to define class operations for the unary and

binary operators.

 • Default parameters—The capability to underspecify a method call and allow default

values to fill in the blanks.

 • Parametric polymorphism—This version uses a template instantiation code generation

 - 362 -

mechanism similar to C++.

 • Global variables and functions—As in C++, globals can be defined outside a class

context.

 • Namespaces—As in C++, the variable namespace can be segmented into multiple

spaces to avoid name collisions.

 The compiler is a native program—much faster than Java-based compilers—and

generates standard Java bytecodes that can be interpreted by standard JVMs.

 You can obtain JUMP from
http://ourworld.compuserve.com/homepages/DeHoeffner/jump.htm.

 The PolyJ Compiler

A product of the MIT Laboratory for Computer Science, PolyJ is also heavily mentioned in
the Sun discussions supporting parametric polymorphism. The language and
implementation approach is different from that of GJ. An extensive comparison is
provided at the PolyJ Web site.

PolyJ is implemented on top of the guavac compiler, a free natively implemented Java
compiler. As of this writing, PolyJ supported JDK1.02 but not JDK1.1. Current evidence
suggests that guavac is no longer maintained (probably put out of business by the Jikes
compiler) and that PolyJ is not getting much attention.

 The PolyJ home page is at http://www.pmg.lcs.mit.edu/polyj/.

Summary

This chapter explored generic programming in Java and the compilers that support it
through the use of templates. Support for generic types may someday appear in Sun's
JDK, but there is currently no indication when (or if) that will occur.

Chapter 39: The Jikes Debugger

 Overview

 From IBM's AlphaWorks, the people who brought you the Jikes compiler (see Chapter

36, "The Jikes Compiler"), comes the Jikes Debugger (JD).

 Platforms: SDK1.1

 JD is a GUI-based Java debugger written in Java. It does not enjoy the level of success or

support of the Jikes compiler, but it's a useful and powerful tool.

Obtaining the Jikes Debugger

To obtain JD, visit the AlphaWorks home page (http://alphaworks.ibm.com),
navigate to the technology page for the Jikes Debugger, and download. The download is
in the form of a zip file, which you can install anywhere.

The documented system requirements are a JDK1.1.5 or greater installation. JD has never
been ported to SDK1.2, and its heavy SDK1.1 dependencies prevent its reliable use in that
environment.

 - 363 -

 Contents of the JD Distribution

 The distribution contains:

 • A .zip application archive containing all the JD class files; add this to your class path

to run JD.

 • Source for most of JD (except, for licensing reasons, some classes created by

modifying Sun sources). The source is included in the .zip archive.

 • Some sample invocation scripts.

 • Bits of documentation, including an HTML page.

Running JD

The first requirement for debugging with JD, or any debugger, is to compile the
application with the debug flag. For Sun's javac compiler, as for most compilers, this is
the -g flag.

 To use JD, you must include the JD archive, jd.zip, in your class path.

 Launching JD

 Two different debugger invocations are provided—one to start a new process under the

debugger, and one to attach the debugger to a process that is already running.

 Synopsis:

 java jd.Main [<jd_args>] [<jvm_args>] [<classname>
[<class_args>]]

 java jd.Main [<jd_args>] -host <hostname> -password <password>

 The first form starts a new application under the debugger. The three groups of

arguments are:

 • <jd_args>—arguments passed to JD. The recognized arguments are described later

in this section.

•

<jvm_args>—arguments passed to the java launcher starting the application. The
first argument on the command line that is not recognized as a JD argument is
interpreted as the end of the <jd_args> and the start of the <jvm_args>.

 Arguments recognized by the java launcher are described in Chapter 17, "The Java

Application Launchers: java, jre, and oldjava," in the section "java Launcher."

 • <class_args>—arguments passed to the class being debugged, just as they would

be specified if the class were run from a normal java launch command.

 The second form attaches JD to a running application that was started with the -debug

option. <jd_args> has the same meaning as for the first form.

 Both forms of debugger invocation usage exactly mirror those provided by the Sun Java

Debugger (see Chapter 20, "The Java Debugger: jdb").

 - 364 -

 Arguments:

 These arguments are recognized as valid <jd_args>:

 • -classpath <classpath>—Specify the class path JD searches for classes.

 • -help—Print a usage message.

•

-noversioncheck—You must specify this option if you are running in any
environment other than JDK1.1.6; otherwise, the compiler will check the environment
and refuse to run.

•

-sourcepath <sourcepath>—Specify the path JD searches for source files. JD
expects to find sources in a directory hierarchy reflecting the full package+class name.
In other words, a source living in the same directory as its class file will be found.

 These arguments are used with the second form of the JD invocation:

 • -host <hostname>—Specify the host on which the application is running.

 • -password <password>—Specify the password that was reported by the java

launcher when the application was started with the -debug option.

 Using The JD GUI

 Figure 39.1 shows the Jikes Debugger GUI.

 Figure 39.1: The Jikes Debugger interface is clear and intuitive.

The interface is well designed and easy to use. Table 39.1 itemizes the panels. The top
four panels provide navigation through the program being debugged, whereas the bottom
three provide visibility and interaction with the program.

 Table 39.1 Panels in the Jikes Debugger GUI

 Panel

Purpose

 - 365 -

 Locals

Shows the value of local variables. If you are not seeing your local
variables, the class was probably compiled without the -g option.

 Callers

Navigates the call stack.

 Threads

Allows you to inspect the application threads.

 Classes

Allows you to inspect code in various classes.

 Inspector

Provides detailed information on the currently selected local variable.
You can use the mouse to explore the data structure in depth,
increasing detail by clicking on fields of interest.

 Console

Handles input to and output from the application. You can type input
into this panel if any input is needed.

 Source

Displays source in the currently selected stack frame.

 A few menus and buttons provide the rest of the interface:

 • Pull-down menus from the menu bar allow you to set the class path and source path,

restart the program, and selectively show or hide the panels.

•

The buttons on the lower right take care of stopping; starting; single-stepping; and
stepping into, out of, and over method calls. These buttons display ToolTips (hints
about what they do) when the mouse hovers overhead.

 JD Bugs

 • There is apparently some functionality associated with the right mouse button in the

panels, but the pop-up window disappears so quickly that it remains a mystery.

•

The interface is strange and confusing if JD cannot allocate enough colors, the
highlighted lines (refer to Figure 39.1) are not highlighted, making it difficult to figure
out where you are. There is no warning message under JDK1.1 to indicate that not
enough colors were available. For an X server trick that works around this problem,
see Chapter 56, "X Window System Tips and Tricks" in the section "xwinwrap:
Controlling Colormap and Visual Usage."

 Running a Sample Session

We'll take a quick test drive, using the ShowFonts11 example from Chapter 14,
"Configuring the Linux JSDK/JRE Environment," in the section "Adding, Changing, and
Configuring Fonts in JDK1.1." Starting up the debugger

 bash$ jd.Main -noversioncheck com.macmillan.nmeyers.ShowFonts11

 starts the session. Referring to Figure 39.1, clicking the mouse on the third line of the

main program sets a breakpoint at the frame.add() call.

 Now we are ready to run. The buttons in the lower right of the GUI (see Figure 39.2)

 - 366 -

control execution. From left to right, these buttons do the following: stop execution, start
execution, refresh the GUI windows, step over method calls, single-step, step out of
current method, and debug a single thread.

 Figure 39.2: The stop/start controls; the currently highlighted button starts or

continues execution.

 Pressing the button to release all threads (in Figure 39.2) starts execution; the program

runs until it reaches the breakpoint.

Having reached the breakpoint, we can use the Locals and Inspector panels to
examine data. In Figure 39.3, we have chosen in the Locals panel to inspect the
variable frame. We can navigate in the Inspector panel to view frame's contents.

 Figure 39.3: Inspecting the frame variable.

 You can continue running and debugging using the controls we've shown in this section.

 Summary

This chapter discussed the Jikes Debugger, from IBM's AlphaWorks. Jikes is not only free,
it is a first-rate GUI debugger. Unfortunately, it has not been ported to JDK1.2 and appears
to be receiving no further development.

Chapter 40: DDD: The Data Display Debugger

 Overview

 The Data Display Debugger (DDD) is a free GUI front end for non-GUI debuggers such

as Sun's JDK debugger.

 Platforms: SDK1.1/SDK1.2

DDD is not itself a debugger, but it makes many popular text-oriented debuggers much
easier to use. In addition to supporting such classic UNIX native-code debuggers as gdb,
dbx, and xdb, it has grown in recent years to support debuggers for Perl, Python, and
Java.

 DDD's magic is to present a well-designed debugger GUI and translate the user's actions

 - 367 -

into the text commands recognized by the underlying tool. Its ability to drive Sun's jdb (see
Chapter 20, "The Java Debugger: jdb") gives Java developers a powerful graphical
debugger.

Chapter 40: DDD: The Data Display Debugger

 Overview

 The Data Display Debugger (DDD) is a free GUI front end for non-GUI debuggers such

as Sun's JDK debugger.

 Platforms: SDK1.1/SDK1.2

DDD is not itself a debugger, but it makes many popular text-oriented debuggers much
easier to use. In addition to supporting such classic UNIX native-code debuggers as gdb,
dbx, and xdb, it has grown in recent years to support debuggers for Perl, Python, and
Java.

DDD's magic is to present a well-designed debugger GUI and translate the user's actions
into the text commands recognized by the underlying tool. Its ability to drive Sun's jdb (see
Chapter 20, "The Java Debugger: jdb") gives Java developers a powerful graphical
debugger.

Running DDD

Basic DDD use is straightforward, and we will list just the basic options and operations
relevant to Java debugging. Full DDD functionality is extensive: the man page (run man
ddd) is 112 pages long.

 Synopsis:

 ddd --jdb [<options>] <class>

 Options:

 • --font —Specify an X font to use for the GUI.

 • --fontsize <size>—Specify font size, in 1/10-point units.

 • --trace—Send a running log of DDD<->jdb interaction to stderr.

•

--tty—Use the terminal from which ddd is launched as a text debugging console.
The default behavior is to provide the console in one of the windows of the DDD main
GUI.

 • --version—Report DDD version number, then exit.

 • --configuration—Report DDD configuration flags, then exit.

 • --manual—Run man ddd to view the documentation.

 • --license—Display the DDD license.

 As an X Toolkit program, the ddd executable also supports the X toolkit options

 - 368 -

described on the X Window System man page (man X).

 Notice the lack of a --classpath option. You should set your class path with the
CLASSPATH environment variable.

As with the Jikes Debugger, DDD becomes difficult to use if it doesn't manage to allocate
all the colors it needs. The workaround in Chapter 56, "X Window System Tips and
Tricks," in the section "xwinwrap: Controlling Colormap and Visual Usage" can be useful
here.

The DDD GUI

 Figure 40.1 shows the basic DDD interface.

 Figure 40.1: DDD GUI, with source window, console window, and command

tool.

 Table 40.1 lists the functions available with the windows shown in Figure 40.1.

 Table 40.1 DDD's Windows and Their Functions

 Window

Function

 Source Window

Navigate through source. Also set breakpoints and examine data.

 Console Window

View the interaction between DDD and jdb. You can also type in
your own jdb commands. If you run DDD with the --tty option,
the terminal from which you launched the debugger acts as the
console.

 Data Window

Examine data structures in detail (not shown in the figure).

 Command Tool

Basic run, stop, single-step, step-over, and similar functionality.

 - 369 -

The right mouse button provides pop-up functionality in the source window, allowing you
to manage breakpoints and examine variables (see Figure 40.2). The pop-ups are
context-sensitive—the available functions depend on the location of the mouse when the
mouse button is pressed.

 Figure 40.2: Pop-up menus from the right mouse button allow you to control

breakpoints and examine variables.

 The remainder of DDD's extensive functionality—configuration, search, execution

control—is offered in the various pull-down menus on the menu bar (see Figure 40.3).

 Figure 40.3: DDD's pull-down menus.

Running a Sample Session

We'll test drive the ShowFonts11 example, as we did with the Jikes Debugger (see
Chapter 39, "The Jikes Debugger," in the section "Running a Sample Session"). This
command launches the session:

 bash$ ddd –jdb com.macmillan.nmeyers.ShowFonts11

After startup, the ShowFonts11 source appears in the Source window. By right-clicking
to the left of the third line of main() in the Source window and choosing Set
Breakpoint from the pop-up window, we can set a breakpoint(see Figure 40.4).

 - 370 -

 Figure 40.4: A breakpoint (indicated with the stop sign) at the frame.add()

call.

 We start the program with the Run button in the command tool or the Program pull-down

menu. A green arrow (see Figure 40.5) indicates that we've reached the line of interest.

 Figure 40.5: The green arrow shows our position—we've hit the breakpoint.

 Now, by right-clicking on an instance of the frame variable, we can ask to Display
frame. This brings up a detailed view in the Data window (see Figure 40.6).

 Figure 40.6: Details on the frame variable in the Data window.

 Examining the data, we can right-click on individual components and ask to Display()

 - 371 -

their contents (see Figure 40.7).

 Figure 40.7: Right-clicking on layoutMgr allows us to descend and explore its

contents.

Finally, we can generate a more permanent record with the File, Print Graph menu
button, which allows us to generate a PostScript � version of the information in the Data
window (see Figure 40.8).

 Figure 40.8: PostScript rendition of the contents of the Data window.

 DDD Quality

DDD is a fine tool. Experience suggests that it works well with every debugger it uses—
except the SDK1.2 jdb. The problem isn't DDD, it is the instability of that debugger. Its
unpredictable behavior makes the SDK1.2 jdb difficult to use by itself, and it badly
confuses DDD. Until that debugger functions more reliably (perhaps in an upcoming
Blackdown JDK release), you may not want to use it with DDD.

 Summary

This chapter explored DDD, a powerful GUI front end to text-oriented debuggers such as
jdb. DDD drives many different debuggers, giving you the opportunity to use a
consistent debugging interface with Java, C/C++, and numerous other languages and
environments.

 Part IX: IDEs, GUI Builders, and RAD Tools

 Chapter List

 Chapter vTcLava: A tcl-Based Java GUI Builder

 - 372 -

41:

 Chapter

42: Korfe: A Python-Based Java GUI Builder

 Chapter

43: PlaceHoldr IDE

 Chapter

44: The Emacs JDE

 Chapter

45: ArgoUML Modeling Tool

 Part Overview

Integrated Development Environments (IDEs), GUI Builders, and Rapid Application
Development (RAD) tools are all GUI-based development tools, and the distinctions
between them can be a bit fuzzy. In this part, we examine some of the available offerings,
including both Linux native apps and some Java apps that are usable on Linux.

The story for advanced development tools on Linux has been weak to date, with most of
the interesting offerings targeted at the huge Microsoft Windows market. This doesn't
mean that you cannot develop significant Java applications on Linux: There is really very
little you can do with the most advanced RAD tool that you cannot do with the Sun SDK
or some of the other tools we've examined. But the best advanced tools can offer
significant productivity gains, and their availability for Linux is steadily improving.

 So what are these products and what do the names mean? Here are some brief

definitions:

•

IDEs combine the most common components of application development—editing,
compiling, running, and debugging—into a single GUI-based environment. Additional
capabilities often include project management, revision control, and wizards that help
automate the creation of new components.

•

GUI Builders are specialized tools: Their purpose is to speed you through one of the
most dreary steps of creating a GUI application—laying out and customizing the UI
components.

After creating the layout, GUI builders generate skeleton application code from which
you can build the rest of the program. At that point, a typical GUI-builder's usefulness
ends. But many modern IDEs incorporate GUI-building among their other features,
allowing you to move freely between GUI design and application development.

•

Rapid Application Development is not really a type of tool, it's a methodology for
speeding up software product development cycles. RAD tools are designed to support
the methodology by assisting in some of the project phases—gathering requirements,
prototyping, computer-aided software engineering, supporting collaboration, and
testing—comprising RAD.

Chapter 41: vTcLava: A tcl-Based Java GUI
Builder

 Overview

 - 373 -

 VTcLava is a GUI builder, based on the Tcl scripting language, supporting generation of
Java GUIs.

 Platforms: SDK1.1/SDK1.2

Visual Tcl (vTcl) is a GUI builder for the Tcl scripting language and its companion Tk
GUI toolkit. The tool is implemented entirely in Tcl/Tk and is designed to generate new
GUIs in the form of Tcl/Tk scripts. The tool is also extensible, allowing developers to
create new functionality with add-on modules.

One such module is vTcLava, developed by Constantin Teodorescu, that turns vTcl into
a GUI builder for Java. The result is a basic tool that can get you quickly into the Swing-
based GUI business. The tool is distributed under GPL terms.

Obtaining vTcLava

The home page for vTcLava is http://www.java.ro/vtclava. The author
distributes it in the form of a modified vTcl distribution, so you do not need to separately
obtain vTcl. (But, for the record, the vTcl home page is
http://www.neuron.com/stewart/vtcl.)

The vTcLava distribution is in the form of a compressed tarball. To install it, unpack it into
any convenient directory. Because the implementation is entirely in the form of scripts, no
further building needs to be done.

Resolving vTcLava Platform Dependencies

vTcLava is a portable tool implemented entirely with Tcl scripts. It requires the following
components (which are available for Linux and for many other platforms, including
Windows):

•

Tcl, v8.0 or later. This is included with almost all Linux distributions and can also be
widely found at software repositories. For Red Hat users, the RPM is tcl. Tcl can also
be obtained from the publisher of the technology, Scriptics, at
http://www.scriptics.com.

•

Tk, v8.0 or later. This is the graphical toolkit associated with Tcl and is distributed
through the same channels. The RPM is named tk. Tk includes the wish (WIndowing
SHell) executable, which is the environment under which vTcLava runs.

 • SDK1.2, or SDK1.1 + Swing.

Running vTcLava

 You need to set two environment variables to run vTcLava:

 • PATH_TO_WISH—the full pathname of the wish executable.

 • VTCL_HOME—the directory in which vTcLava is installed.

 Then run the wish script $VTCL_HOME/vt.tcl.

For convenience, the vTcLava installation includes a shell script, $VTCL_HOME/vtcl,
that can be used to launch vTcLava after the appropriate edits have been made to the
PATH_TO_WISH and VTCL_HOME assignments at the beginning of the script.

 - 374 -

 Synopsis:

 wish $VTCL_HOME/vt.tcl

Using vTcLava

Figure 41.1 shows most of the vTcLava windows (clockwise from upper-left): main
window, list of top-level windows, view of widget tree hierarchy, workspace, tools palette,
attribute editor, and (center) function list.

 Figure 41.1: vTcLava windows.

To start creating a new GUI, select File, New from the menu. This creates a new empty
workspace, which you can begin to populate with objects from the tools palette. The
palette offers some basic widgets—boxes, buttons, scrollbars, labels, lists—with some
more advanced items (scrolled text areas and such) available by choosing Compound,
Insert, System from the menu.

To add a new component, choose it from the tools palette or the Compound menu. It will
appear in the workspace, where you can move and/or resize it. To change the
component, select that component (the top button is selected in Figure 41.1) and make
changes in the attributes editor. For example, by changing the text (see Figure 41.2), we
change the label that appears on the button (see Figure 41.3).

 - 375 -

 Figure 41.2: Editing the text attribute for our button.

 Figure 41.3: New text for the button.

 To test-drive the interface, choose test mode (select Mode, Test Mode) from the menu

bar. Interface behavior will be simulated under the Tcl interpreter.

 Generating Java Code

 To start generating Java code, right-click in the workspace and select Generate Java
UI. This brings up a new Java Console window (see Figure 41.4).

 Figure 41.4: The Java Console—used for GUI generation.

Choose your top-level class (JFrame, JDialog, JInternalFrame, or JApplet) and, if
necessary, choose to generate a main() procedure. Choosing the Build Source
button generates the code (see Figure 41.5), which uses Swing components.

 - 376 -

 Figure 41.5: After generation of the GUI.

 Additional buttons on the interface allow you to save, compile, and run the code.

Examining the generated skeleton code (see Listing 41.1), you see a fully functional
program that creates, initializes, and places all the components (cryptic component
names, such as top, lis, and but, are derived from Tk component names). The
skeleton also includes empty callbacks for various events—button-clicking and list
selection—that can occur on the components.

 Listing 41.1 Java Code Generated by vTcLava

 1 // Experimental vTcl to Java UI translator
 2 // version 0.5 12-May-1999
 3 // written by Constantin Teodorescu teo@flex.ro
 4
 5 import java.awt.*;
 6 import java.awt.event.*;
 7 import javax.swing.*;
 8 import javax.swing.border.*;
 9 import javax.swing.event.*;
 10 //import com.sun.java.swing.*;
 11 //import com.sun.java.swing.event.*;
 12 //import com.sun.java.swing.border.*;
 13
 14 // user defined import taken from
 15 // proc top20:import (if any)
 16
 17
 18 public class top20 extends JFrame {
 19 JList lis21 = new JList ();
 20 JScrollPane jsp_lis21 = new JScrollPane();
 21 JButton but22 = new JButton ();
 22 JButton but23 = new JButton ();
 23 JButton but24 = new JButton ();
 24
 25 Font sansserif_font = new Font("SansSerif",0,12);
 26 Color black_color = new Color(0);
 27 // User defined variables
 28 // from proc top20:variables (if any)

 - 377 -

 29
 30
 31 // Construct the frame
 32 public top20 () {
 33
 34 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 35 try {
 36 widgetinit();
 37 } catch (Exception e) {
 38 e.printStackTrace();
 39 }
 40 }
 41
 42 // component initialization
 43 private void widgetinit() throws Exception {
 44 this.getContentPane().setLayout(null);
 45
 46 this.setSize(new Dimension(289,219));
 47 this.setLocation(595,542);
 48 this.setResizable(true);
 49 this.setTitle("New Toplevel 2");
 50
 51 jsp_lis21.getViewport().add(lis21);
 52 jsp_lis21.setBounds(new Rectangle(5, 5, 148, 176));
 53 this.getContentPane().add(jsp_lis21, null);
 54 lis21.addListSelectionListener(new ListSelectionListener()
{

 55 public void valueChanged(ListSelectionEvent e) {
 56 lis21_state_changed (e);
 57}
 58 });
 59 but22.setBounds(new Rectangle(175, 10, 84, 26));
 60 but22.setText("Press me!");
 61 but22.setMargin(new Insets(0,0,0,0));
 62 but22.addActionListener(new
java.awt.event.ActionListener() {

 63 public void actionPerformed(ActionEvent e) {
 64 but22_click (e);
 65 }
 66 });
 67 this.getContentPane().add(but22, null);
 68 but23.setBounds(new Rectangle(175, 55, 62, 26));
 69 but23.setText("button");
 70 but23.setMargin(new Insets(0,0,0,0));
 71 but23.addActionListener(new
java.awt.event.ActionListener() {

 72 public void actionPerformed(ActionEvent e) {
 73 but23_click (e);
 74 }
 75 });
 76 this.getContentPane().add(but23, null);
 77 but24.setBounds(new Rectangle(175, 105, 62, 26));
 78 but24.setText("button");

 - 378 -

 79 but24.setMargin(new Insets(0,0,0,0));
 80 but24.addActionListener(new
java.awt.event.ActionListener() {

 81 public void actionPerformed(ActionEvent e) {
 82 but24_click (e);
 83 }
 84 });
 85 this.getContentPane().add(but24, null);
 86
 87 // User defined init statements
 88
 89 }
 90
 91
 92 // Overriden so we can exit on System Close
 93
 94 protected void processWindowEvent(WindowEvent e) {
 95 super.processWindowEvent(e);
 96 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 97 System.exit(0);
 98 }
 99 }
 100
 101 void lis21_state_changed (ListSelectionEvent e) {

102 if ((! e.getValueIsAdjusting()) &&
(lis21.getSelectedValue()!=
null)) {

 103 // Code for lis21 click event
 104
 105 }
 106 }
 107
 108 void but22_click (ActionEvent e) {
 109 // Code for but22 click event
 110
 111 }
 112
 113 void but23_click (ActionEvent e) {
 114 // Code for but23 click event
 115
 116 }
 117
 118 void but24_click (ActionEvent e) {
 119 // Code for but24 click event
 120
 121 }
 122
 123
 124 // User defined methods for top20 class from
 125 // proc top20:methods (if any)
 126
 127
 128 public static void main(String argv[]) {

 - 379 -

 129 top20 _top20 = new top20 ();
 130 _top20.setVisible(true);
 131 }
 132
 133 }

 Figure 41.6 shows the Java program in operation: an empty list and three buttons.

 Figure 41.6: Running the generated program.

Improving vTcLava Capabilities

The vTcLava tool is an early work, written to solve the author's problem and then
released for public consumption. It is still very Tk-flavored, trying (not always
successfully) to map Tk components to Swing components and not yet supporting many
of the components or layout managers in Swing. It also does not generate any non-Swing
AWT interfaces, although the author would like to add that capability.

vTcLava is a GPL project and, like many GPL projects, welcomes contributed engineering.
If it looks like a good solution, or half of a good solution, you are welcome to make
improvements and send them to the author for future releases.

Summary

This chapter explored vTcLava, a Java GUI builder implemented in the portable Tcl
scripting language. Built on the extensible vTcl GUI builder, vTcLava offers basic Swing-
based GUI creation and skeleton code generation.

Chapter 42: Korfe: A Python-Based Java GUI
Builder

 Overview

 Korfe, published by the JavaLobby, is a GUI builder implemented in the Python scripting

language.

 Platforms: SDK1.2

This chapter takes a look at a Java GUI builder, Korfe, implemented in the Python
scripting language. Although this particular builder is not yet well cooked (it still needs
some sustained development attention), it is interesting as an example of the integration
of Java with scripting.

 - 380 -

 This chapter looks at two technologies:

 • JPython, a Java implementation of the Python scripting language

 • Korfe, a GUI builder implemented in JPython

Python and JPython

Python is one of the powerful scripting languages enjoying heavy use in the Internet
world, the other two best-known being Perl and Tcl. These languages are successful for
several
reasons:

 • All enjoy wide acceptance and support, open source distribution, and active user

communities.

 • They can be used to solve problems that are much slower and more difficult to solve in

programming languages—Java included.

•

They can be used to implement significant GUI applications. We saw one example in
Chapter 41, "vTcLava: A Tcl-Based Java GUI Builder." Another (possibly extreme)
example is Grail, a full-featured Web browser implemented entirely in Python.

•

All support object-oriented constructs. Python was originally designed as an object-
oriented scripting language, whereas object-orientation was grafted onto the other two
languages (a heritage they share, incidentally, with C++).

All three languages have their vocal supporters, and choosing one is largely a matter of
personal taste. But Python enjoys a unique affinity with Java—an implementation called
JPython.

JPython is a 100% Pure Java implementation of the Python interpreter, and it interprets
Python the way JIT compilers interpret Java: by compiling down to something more
natural. In other words, it's not a script interpreter implemented in Java (which would be
unspeakably slow) but a script compiler that generates and then runs Java bytecodes.

 This close coupling between a scripting language and a programming language creates

some remarkable synergies between the two:

 • JPython and Java classes can fully interact, calling each other's methods and even

subclassing each other's classes.

 • Portions of a Java application can be implemented with Python scripts.

 • Python scripts can be compiled into class files.

The result is a flexible development and applications environment that allows a mix of
scripting and Java coding, supporting (say the JPython backers) whatever combination of
the two meets your project's needs for rapid prototyping, development, and runtime
performance.

The next section of this chapter explores an application of this scripting/Java
combination. Building on the idea explored with vTcLava, we explore another script-
based GUI builder whose use of JPython gives it the unique ability to directly run the
GUIs it creates.

 For more information about JPython, or to obtain a distribution, visit

 - 381 -

http://www.jpython.org. JPython is most commonly distributed as a classball, a
single class file that encapsulates an archive and installation GUI—just run the class to
install.

The Korfe Builder

Korfe is being developed under the auspices of JavaLobby
(http://www.javalobby.com), as part of its JavaLobby Foundation Applications
suite.

Korfe is a GUI builder, implemented in Python and Java, and runnable under JPython and
JDK1.2. Like vTcLava (see Chapter 41), Korfe is an early offering with some growing yet
to do. Also like vTcLava, it generates Swing-based GUIs.

Obtaining Korfe

The Korfe home page is
http://www.javalobby.com/jfa/projects/korfe.html, and Korfe is available
as source and binary distributions and also via a networked cvs repository. The easiest
way to use Korfe is to download the self-executable jar file. Instructions and links for all
these can be found on the home page.

 The Korfe distribution includes bundled JPython classes, so you do not need to separately

install JPython.

Running Korfe

 The easiest way to use Korfe is from the self-executable jar file, korfe-bin.jar,

distributed on the Korfe home page.

 Synopsis:

 java -jar korfe-bin.jar

 Figure 42.1 shows the Korfe desktop. Running within a Swing-based desktop are the

design workspace, a view of the hierarchy, and a properties editor.

 Figure 42.1: The Korfe desktop.

 - 382 -

All the available components are provided in a tabbed toolbar (upper right of Figure 42.1).
Of the AWT and Swing layout managers, Korfe currently supports only the
BorderLayout—whose regions are clearly labeled in the design workspace.

 To create a new workspace, choose File, New from the menu.

 To add components to the workspace, select the component from the toolbar and click in

a region in the workspace. Figure 42.2 shows the results of some editing.

 Figure 42.2: A new text editing application in Korfe.

 The application in Figure 42.2 was built with the following steps:

 1. Select the JScrollPane (from the Swing2 tab) and click in the middle region of the

layout.

 2. Select JTextArea (from the Swing2 tab) and click in the middle region of the layout.

3.

Select the JLabel (from the Swing1 tab) and click in the top region of the layout.
The properties editor was then used to change the text of the label to "Edit Text
Until Done" and the horizontal alignment to center the text.

 4. Select the JButton (from the Swing1 tab) and click in the bottom region of the

layout. The properties editor was then used to change the text of the button to OK.

 To test-drive the GUI, select View, Show Run Time Version from the menu—the interface

will be run directly by the JVM running Korfe.

 The File menu offers choices to save work-in-progress and to generate code. Listing 42.1

shows the code generated for this example.

 Listing 42.1 Application Code Generated by Korfe

 1 /*
 2 * Written by Korfe version 0.2.8
 3 */
 4
 5 import java.awt.*;
 6 import javax.swing.*;

 - 383 -

 7
 8 class korfetest extends javax.swing.JPanel
 9 {
 10
 11 public korfetest()
 12 {
 13 super();
 14 setupGUI();
 15 }
 16
 17
 18 //Call this method to set up the GUI
 19 public void setupGUI()
 20 {
 21 BorderLayout layout1 = new BorderLayout();
 22 setLayout(layout1);
 23 variable0 = new JScrollPane();
 24 variable1 = new JTextArea();
 25 variable1.setText("JTextArea");
 26 variable0.setViewportView(variable1);
 27
 28 add(variable0 , "Center");
 29
 30 variable2 = new JLabel();
 31 variable2.setText("Edit Text Until Done");
 32 variable2.setHorizontalAlignment(0);
 33 add(variable2 , "North");
 34
 35 variable3 = new JButton();
 36 variable3.setText("OK");
 37 add(variable3 , "South");
 38
 39 }
 40
 41 //Variables
 42 private JButton variable3;
 43 private JLabel variable2;
 44 private JTextArea variable1;
 45 private JScrollPane variable0;
 46 }

As seen in the code, Korfe sets up a single GUI component, subclassed from
javax.swing.JPanel, without additional skeleton code and without a main()
procedure. Figure 42.3 shows the component in action.

 - 384 -

 Figure 42.3: Running the component built by Korfe.

Summary

This chapter examined Korfe, a GUI-builder, and JPython, the Java-based scripting
package in which it is implemented. While Korfe needs more attention before it can be
considered a highly functional builder, it demonstrates the unique potential JPython offers
in integrating a powerful scripting language with Java.

Chapter 43: PlaceHoldr IDE

 Overview

 Inprise JBuilder is a pure-Java integrated development environment.

 Platform: SDK1.2

Macmillan Computer Publishing has proudly partnered with Inprise Corporation (formerly
Borland) to bundle its new JBuilder product with this book. JBuilder, a successor to the
popular Borland C++ line of IDEs, is a full-featured offering whose capabilities and
features include

 • Wizard-based creation of projects, applications, applets, classes, JavaBeans, and

more.

 • A visual designer supporting AWT, Swing, and a collection of value-added GUIs from

Inprise.

 • An integrated debugger.

 • JavaBean development support, with GUI-based management of properties, events,

and advanced beaninfo and property editor support.

 • Integrated support of javadoc documentation.

•

Extensive support of database applications, with a number of value-added GUI and
non-GUI components. This plays to an existing Inprise strength: the company already
ships a professional SQL Database Management System, InterBase, on Linux.

 • Support of enterprise component development, with Java servlets, JavaServer Pages,

Enterprise JavaBeans, and CORBA wizards and support.

 In addition to JBuilder and InterBase, Inprise has thrown its support behind Linux in some

 - 385 -

significant and visible ways, notably:

 • Its Just-In-Time compiler technology, based on an existing Microsoft Windows-based

product, is available in a version for Linux.

 • A new rapid application development suite, code-named Kylix, has been announced for

release on Linux in 2000. Kylix will support development in C, C++, and Delphi.

Obtaining and Installing JBuilder

 The CD-ROM with this book includes the JBuilder distribution and installation

instructions. To use JBuilder, you need an SDK1.2 installation.

 As of this writing, four issues had been identified with the use of JBuilder on Linux:

 • It requires green threads to run correctly.

•

Due to bugs in Swing (under JDK1.2), JBuilder requires a special version of its own
GUI classes. When JDK1.2.2 becomes available on Linux, the special classes will no
longer be needed.

•

Due to bugs in the generation or use of font metrics, the use of the bold font in IDE text
editors causes cursor placement problems. It may be necessary to modify some
JBuilder font settings.

•

JBuilder depends on Sun's Java Platform Debugging Architecture (JPDA) to support
integrated debugging. Until JPDA becomes available for Linux (it is a collection of Java
and native components that are not part of the JDK), JBuilder cannot support
debugging and may require installation of a workaround.

See the CD-ROM for installation instructions and any required workaround instructions.
You can also check the JBuilder home page (http://www.borland.com/jbuilder/)
for current Linux support information.

Running JBuilder

After installation, JBuilder occupies a directory hierarchy containing tools and sample
applications. The launch script for the IDE can be found in the bin/ subdirectory for the
tools.

 Synopsis:

 <path to JBuilder installation>/jbuilder/bin/jbuilder

 Figure 43.1 shows the main JBuilder GUI visible after startup.

 Figure 43.1: The main JBuilder GUI.

 - 386 -

Creating a Sample JBuilder Project

JBuilder's extensive capabilities are described in documentation with the product.
Although there is far too much to try to discuss in a single chapter, we will build a simple
project—a text editor—to illustrate basic JBuilder usage.

 Starting the Project

We start the project by selecting File, New from the menu, which brings up a dialog
offering a choice of projects and objects (see Figure 43.2). Many entries in the list are not
meaningful, and are grayed out, until a project has been started.

 Figure 43.2: This dialog lets you choose new projects and objects.

From this dialog, choosing to create an Application brings up the New Project Wizard,
in which you specify a directory to contain the project (see Figure 43.3) and general
project identification (see Figure 43.4).

 Figure 43.3: Setting up a destination directory for project files.

 - 387 -

 Figure 43.4: Specifying general project identification.

After the New Project Wizard, JBuilder presents the Application Wizard dialog, in which
you specify top-level class information (see Figure 43.5) and create an initial GUI (see
Figure 43.6).

 Figure 43.5: Specifying the top-level class.

 Figure 43.6: Creating the initial GUI, including an optional top-level menu and

toolbar.

 After you finish with the wizards, JBuilder constructs and compiles the application. The

main JBuilder GUI (see Figure 43.7) provides several different views of the project.

 - 388 -

 Figure 43.7: The main GUI shows multiple views of the project and its classes.

The upper-left panel in Figure 43.7 catalogs the various files associated with the
project—three .java files, three GIF images for the toolbar, and an HTML file for project-
level notes. You can edit any of these files by double-clicking on it in this panel.

The right-hand panel is the editor. In Figure 43.7, it contains a text editor currently being
used to edit MeyersFrame.java—the main GUI class. Tabs at the bottom of the editor
choose other editing modes: the visual designer, a JavaBeans properties editor, and an
HTML documentation editor.

The lower-left panel is a navigator used in conjunction with the editor—its format and
contents depend on what editor is in use in the editor panel. With the text editor shown in
Figure 43.7, the navigator shows procedures and variables declared in the file. You can
click on entries in the navigator to jump to the declarations.

 With the basic project defined, the next section explores the use of the visual designer to

build the GUI.

 Building the GUI

 Selecting the Design tab at the bottom of the editor starts the visual designer (see Figure

43.8).

 Figure 43.8: Running the visual designer.

 - 389 -

The editor now displays a GUI designer, a wide selection of GUI and non-GUI
components (top of the visual designer window), and a properties and events editor
(panel on the far right). The navigator in the lower left panel now displays a hierarchical
view of the GUI, the menus, and other project resources that can be configured from the
visual designer. You can edit any object in the navigator by first selecting the object (with
a single-click) and then right-clicking and selecting Activate Designer from the pop-
up menu.

This project needs two new GUI components to implement the text editor: a scroll pane
and an editor pane. To add the scroll pane, select the JScrollPane from the Swing
Containers tab above the editor (see Figure 43.9) and click inside the GUI to insert it.
Then select the JEditorPane from the Swing tab (see Figure 43.10) and click inside
the GUI to insert it.

 Figure 43.9: Selecting the scroll pane.

 Figure 43.10: Selecting the editor pane.

 After the new components have been inserted, they appear in the GUI designer (see

Figure 43.11) and in the hierarchical navigator panel at the lower left.

 Figure 43.11: The visual editor and navigator show the results of adding the

new components.

More GUI components are required: the File menu needs buttons defined for opening
and saving files. To edit the menu bar, select menuBar1 in the navigator; then right-click
and select Activate Designer from the pop-up menu (see Figure 43.12).

 - 390 -

 Figure 43.12: Selecting the pop-up menu for editing.

 The visual designer now provides a view of the application's menu bar (see Figure

43.13).

 Figure 43.13: The visual designer edits the application's top-level menu bar.

 To add a new menu item, right-click on the existing Exit menu item and select Insert
Menu item from the pop-up menu (see Figure 43.14).

 Figure 43.14: Inserting a new menu item.

After creating the new item, double-click on that item for editing (see Figure 43.15). You
can also change the object's name in the properties editor (see Figure 43.16) to
something more descriptive (menuFileOpen, in this case) than the default.

 Figure 43.15: Editing the menu button text.

 - 391 -

 Figure 43.16: Changing the name of the Open menu button in the properties

editor.

 You can add a Save button in the same way.

 Adding Behaviors

 By now the project has all its GUI components defined; now we must define behaviors.

For this step, we will define a procedure for opening files.

 Returning to the Open button added in the previous section, select the Events tab at the

lower right to activate the events editor (see Figure 43.17).

 Figure 43.17: The events editor (right side) allows us to define event handlers

for, in this case, the Open key.

The application needs an event handler for the actionPerformed event; clicking the
mouse inside the empty text box for that event causes JBuilder to create and
automatically name such a handler (see Figure 43.18). Double-clicking on the new
handler name automatically switches us to the text editor (see Figure 43.19), with the
cursor positioned in the new code to allow editing.

 - 392 -

 Figure 43.18: Creating a new handler with a single click.

 Figure 43.19: Editing the new action handler code (at bottom of the text editor).

For this example, we'll type in the code for a short event handler that opens and loads a
file. JBuilder provides a context-sensitive pop-up menu with possible name completions
(see Figure 43.20) while you edit the text.

 Figure 43.20: The name-completion pop-up menu (cursor is above left of the

pop-up).

 Figure 43.21 shows the completed handler code. (The code also requires the addition of

an import java.io.* statement at the beginning of the module.)

 Figure 43.21: The completed handler code displays and handles a

JFileChooser dialog.

At this point, the application has defined one behavior—opening a file for editing—and
associated it with the Open button in the File menu. We must also associate that
behavior with the relevant button in the toolbar.

 - 393 -

To add the missing behavior, return to the design editor, select the first icon (the open-file
icon) in the toolbar and edit its events (see Figure 43.22). Select the actionPerformed
event and change the default method name to the method that was recently created for
the Open button: menuFileOpen_actionPerformed().

 Figure 43.22: Adding an event handler for the toolbar open-file icon.

With this behavior defined, the project now does something. We're not finished, of
course; the application must add behaviors for saving files, providing online help, and so
on. The necessary buttons and menu items are already in place. You can apply the steps
described in this section to add their behaviors.

 Building the Project

 If you have not yet saved your files, now is a good time. Select File, Save All from

the menu to save all project and source files.

To build the project, select Project, Make project "<projectname>" from the
menu. If any errors occur during compilation, a new JBuilder pane will be created
displaying the error messages. Clicking the mouse on any message will display the
offending line in the text editor, allowing you to make corrections.

 Running the Project

To run the project, select Run, Run Project from the menu. If the project generates
any stdout or stderr output, a new JBuilder pane will be created displaying the output
(see Figure 43.23). All output panes can be selected by tabs (along the bottom). To
remove one or more output panes, right-click on a tab and select the desired Remove
command from the popup menu.

 - 394 -

 Figure 43.23: Running or building the project can create a new tabbed pane at

the bottom of the IDE.

Figure 43.24 shows the application at startup. To load a file for editing, select the open-
file icon from the toolbar, or choose File, Open from the menu and use the file chooser
(see Figure 43.25) to select a file. Figure 43.26 shows the running application with the file
loaded.

 Figure 43.24: The running application, showing the default editor contents

(jEditorPane1) configured by the application.

 Figure 43.25: Using the Swing file chooser (in the project source directory) to

select a file to edit.

 - 395 -

 Figure 43.26: The working application now contains a text file to edit.

 Debugging the Project

JBuilder includes a debugger, but Linux does not (as of this writing) support the Java
Platform Debugging Architecture. Until a Linux JPDA port is released, you cannot debug
under JBuilder. For current status of the JPDA, visit the Sun JPDA page at
http://java.sun.com/products/jpda/.

Chapter 44: The Emacs JDE

 Overview

 This chapter discusses the Emacs JDE, a Java integrated development environment built

with the Emacs text editor.

 Platforms: SDK1.1/SDK1.2

Figure 44.1 shows one of the icons shipped with the XEmacs editor. It is an overflowing
kitchen sink, and it faithfully represents the ethos of the Emacs (GNU Emacs and
XEmacs) editors: they contain everything but the kitchen sink.

 Figure 44.1: XEmacs: The kitchen sink.

Emacs may be the first text editor whose power and complexity rivals that of many
operating systems. This is due to an embedded Lisp interpreter that turns Emacs into a
general-purpose computer and a huge collection of published Elisp packages that
customize the editor into whatever you want it to be. It is not uncommon for serious
Emacs users to completely eschew all other interfaces—GUIs, command shells, and so
on—and use their systems entirely from within Emacs sessions. Indeed, if Emacs
enjoyed the marketing muscle that Java does, it might well eclipse Java as a portable
programming environment.

An Emacs overthrow of Java is unlikely, given present realities, but Emacs does have a
presence in the Java world(1): The Emacs Java Development Environment, published by
Paul Kinnucan. This free IDE, distributed under GPL terms, includes all the features you

 - 396 -

expect in an IDE: source editing with syntax coloring and automatic indentation, tight
compiler integration, source-level debugging, source code browsing, support of
Makefiles, automatic generation of application skeleton code—even an interactive
command interpreter that speaks Java.

(1)

Emacs and Java also enjoy an incidental historical affinity. James Gosling, the chief
architect behind Java, was the author of Gosling Emacs—the first Emacs for UNIX
and a commercial predecessor of GNU Emacs.

Emacs is not for everyone; people either love it or hate it. Emacs offers a GUI of sorts
(we have many screen dumps in this chapter to prove it), but its design is largely text-
based. Of the two major Emacs versions, XEmacs embraces the X Window System more
than does GNU Emacs, but neither is an easy leap from the rich GUI toolsets normally
used in X, Microsoft Windows, Macintosh, and Java platforms.

On the other hand, for those who embrace the Emacs view of human-computer interaction,
it has proven to be a capable IDE, and the package described in this chapter adds Java to
those capabilities.

Obtaining Emacs JDE

The Emacs JDE home page is http://sunsite.auc.dk/jde/. Links are provided on
the home page to download the current software, either as a compressed tarball or a zip
file.

 Additional requirements for using Emacs JDE are as follows:

 • A GNU Emacs or XEmacs editor of recent vintage (see Chapter 9, "Setting Up a Linux

Development Environment," in the section "emacs").

Emacs has traditionally shipped with a huge collection of packages that add
functionality. GNU Emacs still does so, but XEmacs recently chose to unbundle the
packages and make them available for individual installation. If you install such an
unbundled distribution, you need to obtain the following add-on packages to support
JDE: cc-mode, debug, edit-utils, mail-lib, and xemacs-base. Details on
installation and package management are provided at
http://www.xemacs.org/Install/index.html.

 • An SDK.

 • A Web browser for viewing documentation.

Examining the Contents of Emacs JDE

 The JDE distribution includes the components shown in Table 44.1. Components suffixed
.el are ELisp programs recognized by the Emacs Lisp interpreter.

 Table 44.1 Components of the Emacs JDE Distribution

 Components

Description

 jde.el

An Emacs Lisp script defining an Emacs editing mode for Java
development.

 - 397 -

 jde-run.el

Script to launch applications and applets.

 jde-db.el

Script to interface with jdb for debugging.

 jde-gen.el

Script with code generation templates.

 speedbar.el

Script providing a tree-structured source code browser.

 imenu.el

Script providing an indexing utility for speedbar.el.

 bsh.jar

The BeanShell—an interactive Java source code interpreter.
Source is not included.

 beanshell.el

Script to interface with the BeanShell.

 jde.jar

Classes to support generation of skeleton source code. Source is
included.

 jde-wiz.el

Script to interface with jde.jar functionality.

Installing Emacs-JDE

 Installation from the compressed tarball or zip file is straightforward: Choose an

installation directory and unpack the archive.

 You will then need to add information to your ~/.emacs initialization file to add the

Emacs-JDE to your environment:

 (setq load-path (nconc '("<installation directory>") load-
path))

 (require 'jde)

 where <installation directory> specifies the top-level directory unpacked by the

archive.

Developing with Emacs JDE

The full power of Emacs has been described in books—very thick books—that we avoid
trying to duplicate. Instead, we will illustrate some basic operations to get you started with
Emacs JDE.

 Synopsis:

 emacs <source file>
 xemacs <source file>

If you edit a source file with the suffix .java (or create one, as in the section "Generating
Code from JDE" later in this chapter), Emacs enables Java editing and JDE features. The
display (we will use XEmacs in these examples) includes an edit buffer and some menus
to support Java development (see Figure 44.2).

 - 398 -

 Figure 44.2: Editing a Java application in XEmacs.

For those viewing Figure 44.2 in black and white, the keywords, variables, package
names, and other items are distinguished with various shades of red, green, blue, brown,
and black.

 Compiling and Running

 A pull-down JDE menu gives us a choice of compilation, debugging, and other

development steps (see Figure 44.3).

 Figure 44.3: The JDE menu.

 We begin by compiling our program, which reveals a problem (see Figure 44.4).

 Figure 44.4: The javac compiler complains about a bad method name.

 - 399 -

By placing the cursor on the complaint, right-clicking, and choosing Goto Error (see
Figure 44.5), we move the cursor to the offending line of code in the top window, where
we can correct the error.

 Figure 44.5: Right-click on the compiler error to edit the bad code.

 After successfully compiling, we choose to run (select the Run App choice in Figure

44.3) and see the results in the lower buffer window (see Figure 44.6).

 Figure 44.6: Running the program uses an Emacs buffer (bottom) as a console.

 Customizing Emacs JDE

We will shortly debug, but we must first change some settings. Using the menu choice to
customize the compiler (see Figure 44.7) brings up the customization screen (see Figure
44.8), which allows us to change settings.

 - 400 -

 Figure 44.7: The menus to select customization options.

 Figure 44.8: The customization buffer for the compilation step.

 We change the debug setting to compile with full debugging (see Figure 44.9) and right-

click to set the option.

 Figure 44.9: Turn on the debugging option.

 We also customize the project settings by adding the current directory, ".", to the

debugger source path (see Figure 44.10).

 - 401 -

 Figure 44.10: Add "." to the debugger source path.

Many settings can be customized, beyond these two examples—Emacs JDE is infinitely
configurable. For example, although the defaults assume that you are using a Sun SDK,
the system can be configured to use any choice of JVM (Kaffe, for example), any choice
of compiler (Jikes, for example), any source path, class path, and so on. After
customizing, save the choices in a project file (choose Save Project as shown in
Figure 44.7) for future use.

Emacs project files, in which customizations are saved, are specified in ELisp—the same
language in which Emacs extensions are programmed. While perhaps not
understandable to the casual reader, these files can be understood by Emacs wizards,
who will often choose to edit them directly rather than deal with the ponderous interface
shown in Figures 44.8[nd]44.10. Here is a small excerpt from the JDE project file,
reflecting the customizations we just performed:

 (jde-set-variables
 .
 .
 .
 '(jde-compile-option-debug (quote ("all" (t nil nil))))
 '(jde-db-source-directories (quote ("./")) t)
 .
 .
 .

 Debugging with Emacs JDE

After recompiling for debugging, we choose to Debug App (refer to Figure 44.3). Emacs
gives us a debugger console window and uses a pointer (=>) to track program location in
the source window (see Figure 44.11).

 - 402 -

 Figure 44.11: Start of a debugging session; => points to the current source line.

A debugging menu (see Figure 44.12) appeared when we began debugging, providing
the necessary buttons to run, single-step, set breakpoints, and print variable values. For
operations such as managing breakpoints and inspecting variables, you first place the
cursor at an appropriate location in the source window (for example, on a variable name)
and then request the desired action from the debugging menu.

 Figure 44.12: A debugger menu offers the usual debugging choices.

 Generating Code from JDE

Emacs can create class files from scratch. A choice from the File menu (see Figure
44.13) creates a new .java file, with a javadoc skeleton (see Figure 44.14) and
assistance in building the class.

 Figure 44.13: Emacs JDE creates a new class.

 Figure 44.14: The Skelton Class code includes skelton javador comments.

 - 403 -

Our new class includes some javadoc skeleton documentation and prompts us for basic
class information. (The extends: prompt, at the bottom of Figure 44.14, is requesting
the name of a superclass.)

Beyond skeleton creation, Emacs JDE offers several wizards and templates (through the
JDE menu, shown in Figure 44.3) that assist in defining a class, including those shown in
Table 44.2.

 Table 44.2 JDE Wizards and Templates

 Wizard/Template

Purpose

 Get/Set Pair

Declares a class member variable and creates get and
set skeleton calls for manipulating the variable—useful for
developing JavaBeans.

 Listener

Creates skeleton implementations of event adapters for
Action, Window, and Mouse events.

 Override Method

Creates a skeleton implementation of a method to be
overridden from a parent class.

 Implement Interface

Creates a skeleton implementation of a specified
interface.

For example, starting with our new class (see Figure 44.15), invoking the Implement
Interface wizard prompts for an interface name (see Figure 44.16) in the bottom
minibuffer and adds the necessary skeleton code (see Figure 44.17), complete with
javadoc comments and some "TODO" reminder comments.

 Figure 44.15: The skeleton implementation of class foobar.

 - 404 -

 Figure 44.16: The Implement Interface wizard prompts for an interface
name.

 Figure 44.17: The skeleton methods created by the wizard await

implementation.

Using the Interactive BeanShell Command Shell

The Emacs JDE distribution includes an interactive shell, the BeanShell (bsh), that
speaks Java. bsh is a command interpreter, like bash or csh, that runs inside a Java
environment. You can interactively run single Java commands or write small Java scripts
for interpretation.

BeanShell is usable as a standalone scripting tool (visit the product's home page at
http://www.beanshell.org to learn more), and is also usable from Emacs. bsh is
activated with the JDE Interpret menu selection (refer to Figure 44.3), which opens a
new Emacs buffer providing the bsh interface (see Figure 44.18). Extensive
documentation on bsh usage is available at the Emacs JDE Web site.

 Figure 44.18: Some Java interpreted by the BeanShell.

 Summary

This chapter examined Emacs JDE, a Java integrated development environment built on
the Emacs text editor. Thanks to Emacs's legendary extensibility, JDE provides a full-
featured IDE for use with Java.

 - 405 -

Chapter 45: ArgoUML Modeling Tool

 Overview

 ArgoUML is a tool for rapid application development based on User Model Language.

 Platform: JDK1.1/JDK1.2

The Unified Software Development Process, developed Ivar Jacobson, Grady Booch,
and James Rumbaugh, uses the graphical User Modeling Language (UML) to model
software systems. Tools to support this process, from modeling through code generation
and implementation, are one of the current frontiers in RAD tool development.

The major player in this business is Rational Software, but competition in the field is
growing. Several of these systems are implemented in Java, some exclusively Java-
centric: You can use them today on Linux.

One such tool is ArgoUML, an open source project from the University of California at
Irvine. Although not as fully cooked as the high-priced commercial products, it offers an
inexpensive glimpse into this important area. And, like all open source products, ArgoUML
gives you the opportunity to be a contributor.

Obtaining ArgoUML

The ArgoUML home page can be found at
http://www.ics.uci.edu/pub/arch/uml/ and has pointers to distributions. Two
streams are available, one based on JDK1.1 and an old Swing toolkit (with early package
names), and a new version usable with JDK1.1/Swing1.1 and JDK1.2. The examples and
instructions presented in this chapter are generated with the v0.7.0 preview release for
JDK1.1/JDK1.2.

 ArgoUML has a dependency on one external package, the XML parser for Java from

IBM's Alphaworks: the UML download site includes a link to download the class library.

 Both libraries are shipped as ZIP files that each encapsulate one jar file. To install, unzip

both files into the same directory.

 Running ArgoUML

 ArgoUML can be invoked by including its jar file in the class path and invoking the main

class, or, under JDK1.2, using the java -jar option.

 Synopsis:

 java uci.uml.Main
 java -jar <argo jarfile> (JDK1.2 only)

The XML parser jar file must be resident in the directory containing the ArgoUML jar file.
The only other dependencies are on the core classes and, if you are running JDK1.1, the
Swing1.1 library.

 Starting a New UML Project

When you start ArgoUML, you are automatically working on a new, empty project. If you
want to work on an existing project saved earlier, you can open it with the Open
Project button in the File menu.

 - 406 -

The main window (see Figure 45.1) shows some views of the project. The collection of
pull-downs and tabs throughout the interface provides different views of the project to
meet the varied needs of UML design.

 Figure 45.1: The main ArgoUML window.

The upper-left window contains the navigator, which allows you to move through the
project's components. The lower-left window contains a to-do list. You can add items to
the list, but, most interestingly, ArgoUML critiques the project and adds its own to-do
items. At the beginning of the project, the to-do list tells you (see Figure 45.2) that you
need to get started. Throughout the project, items appear in and disappear from this list,
guiding you through the project and, to a degree, acting as a tutorial on the process.

 Figure 45.2: The to-do list for a fresh project.

 Adding Classes to a Project

After assigning a package name to the project by editing some properties (see Figure
45.3), select the class diagram in the navigator to edit the class diagram. Choosing the
class button (see Figure 45.4) allows you to drop a new class into the diagram (see
Figure 45.5).

 Figure 45.3: Editing properties of the package name to give it a suitable Java

package name.

 - 407 -

 Figure 45.4: Select this button to add a new class.

 Figure 45.5: A new class is added.

Right-clicking on the object exposes some editing choices (see Figure 45.6). By editing
properties and adding attributes and operations, we begin to fill out the class (see Figure
45.7).

 Figure 45.6: Right-clicking exposes choices to add functionality to the class.

 - 408 -

 Figure 45.7: Defining some class attributes and operations.

Through a similar set of operations, we define another class (see Figure 45.8) and use
the generalization operator (see Figure 45.9) to define an inheritance relationship (see
Figure 45.10). The navigator shows the growth of our project (see Figure 45.11).

 Figure 45.8: A new class: Polygon.

 Figure 45.9: The generalization button.

 - 409 -

 Figure 45.10: Defining the new inheritance relationship.

 Figure 45.11: Current view of the project.

Not to overlook the all-important documentation, you can edit the javadoc comments for
the various classes, methods, and fields (see Figure 45.12) in the tabbed pane at the
bottom.

 Figure 45.12: Editing javadoc comments for the Polygon class.

 Saving Output and Generating Code

At this point, you've seen about 40% of what you can do in a class diagram and 2% of
what you can do in UML. Use cases, state diagrams, activity diagrams, and collaboration
diagrams are well beyond the scope of this chapter.

 To name and save the project, use the Save Project As button in the File menu.

You specify a single destination name, but several files are saved describing the project

 - 410 -

and the diagrams. All class and use case information is saved in XML format, using
(where appropriate) standard Document Type Definitions that are or will be supported by
all UML tools.

 To generate code, use the Generate All Classes button in the Generation menu

to call up the code generation dialog (see Figure 45.13).

 Figure 45.13: Code generation dialog.

Specify a directory: ArgoUML will generate the Java source into a hierarchical tree
representing the package name. Listings 45.1 and 45.2 show the contents of the two files
generated from our simple project.

 Listing 45.1 Shape.java, a Java Source File Generated by ArgoUML

 1 // FILE: /tmp/myclasses/com/macmillan/nmeyers/Shape.java
 2
 3 package com.macmillan.nmeyers;
 4 import java.util.*;
 5
 6 /** A class that represents ...
 7 *
 8 * @see OtherClasses
 9 * @author your_name_here
 10 */
 11 public class Shape {
 12
 13 // Attributes
 14 /** An attribute that represents ...
 15 */
 16 public String name = "";
 17
 18 // Associations
 19
 20 // Operations
 21 /** An operation that does ...
 22 *
 23 * @param firstParamName a description of this parameter

 - 411 -

 24 */
 25 public void draw() {
 26 }
 27 } /* end class Shape */

 Listing 45.2 Polygon.java, the ArgoUML-generated Source for the Polygon

Subclass of Shape

 1 // FILE: /tmp/myclasses/com/macmillan/nmeyers/Polygon.java
 2
 3 package com.macmillan.nmeyers;
 4 import java.util.*;
 5
 6 /** A class that represents a two-dimensional polygon with
three or more vertices.

 7 *
 8 * @see Shape
 9 * @author Nathan Meyers
 10 */
 11 public class Polygon extends Shape {
 12
 13 // Attributes
 14 /** An attribute that represents ...
 15 */
 16 public int numVertices = 0;
 17
 18 // Associations
 19
 20 // Operations
 21
 22 } /* end class Polygon */

Future of ArgoUML

The to-do list is still long, but ArgoUML is under active development, with dozens of
contributors and several thousand users. Despite its low version number, ArgoUML's
capabilities and robustness are impressive. It should continue to serve as a powerful
learning tool and a good Java development aid for those who do not need the costly,
enterprise-class features of commercial products.

 Summary

This chapter has presented ArgoUML, an open source UML modeling tool from the
University of California at Irvine. The Unified Software Development Process and its
predecessor software engineering methodologies (such as Structured Analysis and
Design) have been around for years—enthusiastically embraced by some development
organizations and ignored by many others. Adopting the Process and UML is a big
decision: An organization must fully commit to using it and must structure its development
processes around it. ArgoUML gives you an excellent and low-cost way to explore UML
and what it offers for the software development process.

Part X: Miscellaneous Development Tools

 - 412 -

 Chapter List

 Chapter

46: Jad: A Java Decompiler

 Chapter

47: DumpClass: A Tool for Querying Class Structure

 Chapter

48: JMakeDepend: A Project Build Management Utility

 Part Overview

This part looks at some development tools that do not fit neatly into the standard categories
of compilers, debuggers, development environments, and so on. This is not the book's last
word on tools. Later, in discussion of deployment, platform, and performance issues, we
look at tools, projects, and products specifically focused on those areas.

Chapter 46: Jad: A Java Decompiler

 Overview

 Jad (JAva Decompiler) is a natively implemented decompiler for Java class files.

 Platform: Linux JDK1.1/JDK1.2

The tortured history of Java decompilers began in 1996, when the late Hanpeter Van
Vliet published Mocha, a decompiler that generated Java source files from bytecoded
class files. A great uproar ensued after its publication, and Mocha has, at various times,
been withdrawn from and returned to distribution.

Why the fuss? The controversy about decompilers is the ease with which they allow you
to construct unpublished source from published binary code—a potential threat to the
intellectual property rights of software authors. Over time, the controversy died down, and
several commercial decompilers are now available as standalone products or part of
development suites.

 A few general observations about decompilers before we describe jad:

•

The best reason to have a decompiler is to recover classes to which you have mislaid
the source, or to study how Java is compiled and optimized into bytecodes. The worst
reason is to steal someone else's code—you're creative enough to build your own
masterpieces.

 • All decompilers work to some degree; none works perfectly, and most can be made to

trip up on some example of ordinary, unobfuscated code.

•

It is impossible to completely protect software from reverse engineering. Java is easier
to decompile than most, but not even native code is immune. You can only make the
job more or less difficult.

•

The best way to protect valuable code assets is to run them on a secure server and
not let them anywhere near users' machines. Java offers a rich collection of
mechanisms (RMI, CORBA, servlets, and so on) to support this model.

 - 413 -

 We will look at the other side of the coin—tools for obfuscating code to discourage
decompilation—when we examine deployment-related tools in later chapters.

 Obtaining jad

jad is a natively implemented decompiler published as freeware by Pavel Kouznetsov.
jad is distributed, in binary form only, for several platforms including Linux. As a native
application, it runs several times faster than decompilers (such as Mocha) that are
implemented in Java. The source for jad is unpublished, and it is free for noncommercial
use only.

Home for jad is
http://www.geocities.com/SiliconValley/Bridge/8617/jad.html, which
contains links to executables for Linux and other platforms.

 Installation is trivial: Unzip the file anywhere to produce a jad executable and a
Readme.txt file. jad has no dependencies on any installed Java environment.

 Running jad

 The jad invocation generates decompiled sources from one or more class files.

 Synopsis:

 jad [<options>] <classfiles>

 Options:

 • -a—Include Java bytecodes, as comments, in the decompiled output.

 • -af—Include Java bytecodes, as with -a, but use full package+class names for all

class references.

 • -b—Output redundant braces around code blocks.

•

-clear—Clear automatic prefixes. When jad encounters mangled names that are
not legal Java identifiers, it generates automatic prefixes for those names (see the -
pa, -pc, -pe, -pf, -pl, -pm, and -pp options later in this list). This option clears all
automatic prefixes.

 • -d <dir>—Specify destination directory for output files.

•

-dead—Try to decompile dead code. (Dead code may be a result of writing
unreachable code, or intentionally inserted by obfuscators to thwart decompilers. Note
that jad may crash when trying to decompile intentionally bad code.)

 • -disass—Generate a disassembly listing (like -a) but with no source listing.

 • -f—Output full package+class names for classes and members.

 • -ff—Output class fields before methods.

 • -i—Output default initializers for all non-final fields.

 • -l<num>—Split string constants into chunks of the specified size, adding

 - 414 -

concatenation operators as needed.

 • -nl—Split string constants at newline characters, adding concatenation operators as

needed.

 • -nocast—Disable generation of auxiliary casts.

 • -nocode—Disable generation of source code for methods.

 • -noconv—Disable conversion of Java identifiers.

 • -noctor—Disable generation of empty class constructors.

 • -nodos—Disable checking for class files in DOS mode.

 • -noinner—Disable support of inner classes.

 • -nolvt—Ignore local variable table.

 • -nonlb—Disable output of newline before opening brackets.

 • -o—Overwrite output files without requesting confirmation.

 • -p—Send decompiled code to stdout instead of writing to .jad file.

 • -pa <pfx>—Specify prefix for packages in generated source files.

 • -pc <pfx>—Specify prefix for classes with numerical names (default: _cls).

 • -pe <pfx>—Specify prefix for unused exception names (default: _ex).

 • -pf <pfx>—Specify prefix for fields with numerical names (default: _fld).

 • -pi<num>—Pack imports into one line after the specified number of imports.

 • -pl <pfx>—Specify prefix for locals with numerical names (default: _lcl).

 • -pm <pfx>—Specify prefix for methods with numerical names (default: _mth).

 • -pp <pfx>—Specify prefix for method parms with numerical names (default: _prm).

 • -pv<num>—Pack fields with identical types into one line.

 • -r—Restore package directory structure.

 • -s <ext>—Use specified extension for output file instead of .jad.

 • -stat—Display summary statistics on classes/methods/fields processed.

 • -t—Use tabs for indentation.

 • -t<num>—Use specified number of spaces for indentation.

 - 415 -

 • -v—Run verbosely by displaying method names as they are being decompiled.

 The single-word options can be specified in several ways:

 • -<option>—Toggle option

 • -<option>+—Enable option

 • -<option>-—Disable option

Decompiling a Sample Project Using jad

 Using the "Hello world" example, we invoke jad with the -a option to include bytecodes

in the output:

 bash$ jad -a Hello.class
 Parsing Hello.class... Generating Hello.jad
 bash$

 The results are shown in listing 46.1. The decompiled bytecodes appear as comments.

 Listing 46.1 A Decompiled Version of the "Hello World" Program Generated by jad

 // Decompiled by Jad v1.5.7. Copyright 1997-99 Pavel Kouznetsov.
 // Jad home page:
http://www.geocities.com/SiliconValley/Bridge/8617/jad.html

 // Decompiler options: packimports(3) annotate
 // Source File Name: Hello.java

 import java.io.PrintStream;

 class Hello
 {

 Hello()
 {
 // 0 0:aload_0
 // 1 1:invokespecial #6 <Method void Object()>
 // 2 4:return
 }

 public static void main(String argv[])
 {
 System.out.println("Hello world");
 // 0 0:getstatic #7 <Field PrintStream
System.out>

 // 1 3:ldc1 #1 <String "Hello world">
 // 2 5:invokevirtual #8 <Method void
PrintStream.println(String)>

 // 3 8:return
 }
 }

 - 416 -

 Summary

This chapter has presented jad, a Java decompiler implemented as a native executable
for Linux and other platforms. With the easy availability of jad and similar tools—in other
words, the ease with which Java can be decompiled—relying on "security through
obscurity" is risky. Alternative approaches to protecting software are to limit its
deployment and to understand the protections offered by national and international
copyright law.

Chapter 47: DumpClass: A Tool for Querying
Class Structure

 Overview

 DumpClass is a tool for viewing class contents and a demonstration of how to use the

Reflection API classes and methods.

 Platform: JDK1.1/JDK1.2

This is a personal tool, written out of frustration with the limitations of the SDK javap
tool. My favorite javap functionality is the default (no-option) functionality, which simply
dumps information about class members. My frustration is that it only describes members
defined by the class and not inherited members.

DumpClass displays the structure of a class—methods, initializers, and fields—including
members inherited from superclasses. Personal experience suggests that that looking at
such information—C++ header files or Java class dumps—is often of more value and
convenience than diving into the documentation. This tool generates the Java class dumps
I find most useful.

Obtaining DumpClass

DumpClass is provided, in source and binary form, on the enclosed CD-ROM. Different
versions are provided for JDK1.1 and JDK1.2. A listing is also provided in Appendix B,
"Miscellaneous Program Listings."

The JDK1.1 version relies on the external Sun v1.1 Collections classes (see Chapter 11,
"Choosing an Environment: 1.1 or 1.2?," in the section "Java Collections Classes"), which
must be included in the class path.

The JDK1.2 version has no dependencies outside the core classes and uses a more robust
class loader (built on JDK1.2's class-loading model) that is less likely to fail when
examining classes with unresolved references.

Running DumpClass

 The DumpClass invocation specifies one or more classes on which you want

information.

 Synopsis:

 java com.macmillan.nmeyers.DumpClass [<options>] <classes>
(JDK1.2 only)

 java com.macmillan.nmeyers.DumpClass11 [<options>] <classes>
(JDK1.1 only)

 - 417 -

To specify inner classes, use Java's internal $ separator (for example, java
com.macmillan.nmeyers.DumpClass
javax.swing.text.AbstractDocument$Content). When dumping a class,
DumpClass will not dump its inner classes.

 Options:

 • -public—Display only public class members.

 • -protected—Display public and protected class members (default behavior).

 • -package—Display public, protected, and package-visible class members.

 • -private—Display all class members.

•

-suppress:{name,interfaces,hierarchy,headings,keys, all}—
Suppress certain output features. The next section, "Running a DumpClass Example,"
describes the optional output features controlled by this option.

 • -noancestors—Do not show ancestors' class members.

•

-inaccessible—Display inaccessible members: ancestor constructors, ancestor
private members, ancestor package-visible members from a different package. Default
is not to display.

 Running a DumpClass Example

 Listing 47.1 shows an example DumpClass invocation and the resulting output:

 Listing 47.1 Example DumpClass Invocation and Output

 bash$ java com.macmillan.nmeyers.DumpClass java.lang.System
 public final class java.lang.System
 class java.lang.Object

 Fields

 err: public static final java.io.PrintStream java.lang.System.err
 in: public static final java.io.InputStream java.lang.System.in
 out: public static final java.io.PrintStream java.lang.System.out

 Methods

arraycopy: public static native void
java.lang.System.arraycopy(java.lang.Object,int,java.lang.
Object,int,int)

 clone: protected native java.lang.Object java.lang.Object.clone()
throws java.lang.CloneNotSupportedException

 currentTimeMillis: public static native long
java.lang.System.currentTimeMillis()

 equals: public boolean java.lang.Object.equals(java.lang.Object)
 exit: public static void java.lang.System.exit(int)
 finalize: protected void java.lang.Object.finalize() throws
java.lang.Throwable

 gc: public static void java.lang.System.gc()

 - 418 -

 getClass: public final native java.lang.Class
java.lang.Object.getClass()

 getProperties: public static java.util.Properties
java.lang.System.getProperties()

 getProperty: public static java.lang.String
java.lang.System.getProperty(java.lang.String)

 getProperty: public static java.lang.String
java.lang.System.getProperty(java.lang.String,java.lang.String)

 getSecurityManager: public static java.lang.SecurityManager
java.lang.System.getSecurityManager()

 getenv: public static java.lang.String
java.lang.System.getenv(java.lang.String)

 hashCode: public native int java.lang.Object.hashCode()
 identityHashCode: public static native int
java.lang.System.identityHashCode(java.lang.Object)

 load: public static void java.lang.System.load(java.lang.String)
 loadLibrary: public static void
java.lang.System.loadLibrary(java.lang.String)

 mapLibraryName: public static native java.lang.String
java.lang.System.mapLibraryName(java.lang.String)

 notify: public final native void java.lang.Object.notify()
 notifyAll: public final native void java.lang.Object.notifyAll()
 runFinalization: public static void
java.lang.System.runFinalization()

 runFinalizersOnExit: public static void
java.lang.System.runFinalizersOnExit(boolean)

 setErr: public static void
java.lang.System.setErr(java.io.PrintStream)

 setIn: public static void
java.lang.System.setIn(java.io.InputStream)

 setOut: public static void
java.lang.System.setOut(java.io.PrintStream)

 setProperties: public static void
java.lang.System.setProperties(java.util.Properties)

 setProperty: public static java.lang.String
java.lang.System.setProperty(java.lang.String,java.lang.String)

 setSecurityManager: public static synchronized void
java.lang.System.setSecurityManager(java.lang.SecurityManager)

 toString: public java.lang.String java.lang.Object.toString()
 wait: public final void java.lang.Object.wait() throws
java.lang.InterruptedException

 wait: public final native void java.lang.Object.wait(long) throws
java.lang.InterruptedException

 wait: public final void java.lang.Object.wait(long,int) throws
java.lang.InterruptedException

The first lines display the class name and hierarchy. This can be suppressed with the -
suppress:name option. To suppress the hierarchy but not the class name, use -
suppress:hierarchy.

If the class implements any interfaces, they are also shown as an implements clause in
the first line (none in this example). To suppress this information, use -
suppress:interfaces.

 To suppress the headings that describe each section (Constructors, Fields,
Methods), use -suppress:headings.

 To suppress the keys shown for each member (<membername>: at the beginning of each

line), use -suppress:keys.

 - 419 -

 Summary

This chapter has presented DumpClass, a utility for dumping the contents of a class. In
addition to its utility as a development tool, DumpClass serves as an illustration of how the
Reflection API can be used to discover detailed information about class structure.

Chapter 48: JMakeDepend: A Project Build
Management Utility

 Overview

 JMakeDepend is a project build utility, used in conjunction with GNU make to manage

Java projects.

 Platform: JDK1.1/JDK1.2

This is a personal tool, written to address some of the difficulties of managing Java
development with UNIX/Linux tools such as GNU make. Before exploring JMakeDepend,
we'll take a look at the challenges of building Java projects with make.

The Java make Problem

The make utility, which has long proven its value in managing the building of software
projects, is not well suited to managing Java projects. Java presents unique challenges—
relationships between sources and objects, relationships between objects and other
objects—not found in most languages and not easily managed by make.

 A Closer Look at make

The purpose of make is to bring a software project up to date. At every step of a project,
make identifies and executes the actions required to bring a project to a known state:
which sources to recompile for an up-to-date executable, which executables to rebuild for
an up-to-date project, which files to remove to clean up your project area, and so on.

make does its job by reading dependency rules and actions that you provide (in a
Makefile), building a dependency graph for the project, and performing whatever
actions are needed to reach a desired node in the graph—for example, building an
executable that is up-to-date with regard to the latest sources. A simple Makefile to
build a shared library from two C sources might look like this:

 libfoobar.so: foo.o bar.o
 gcc -o libfoobar.so -shared foo.o bar.o

 foo.o: foo.c
 gcc -fpic -c foo.c

 bar.o: bar.c
 gcc -fpic -c bar.c

This Makefile describes a relationship between two C-language source files, their
corresponding object files, and the final shared library. Whenever you run make, it
recompiles or relinks (using various invocations of gcc) as needed—based on what files
are missing and on what objects are out-of-date with respect to the sources and objects
on which they depend.

 - 420 -

 How Java Breaks make

In examining the Makefile shown in the previous section, you can discern a clear chain
of dependencies between sources and objects: The library (.so) depends on two
compiled modules (.o), and each module depends on one C source file (.c). You can,
whatever the current project state, use these relationships to determine what steps are
needed, in what order, to bring the project up to date.

All Makefiles, no matter how large or complex, must describe relationships that can be
represented in this way (in other words, the dependencies are representable in a directed
acyclic graph). Unfortunately, Java breaks this requirement in several ways:

•

make assumes that there are no cycles in the dependency graph (if foo.o depends
on bar.o, then bar.o cannot depend on foo.o), but Java allows mutual
dependencies between classes.

•

make assumes that separate modules can be built independently (you can safely build
foo.o and bar.o in two separate compilation steps). In Java, you must sometimes
build multiple objects in a single compilation step.

•

make assumes that there is a straightforward mapping from provider to dependent
(compiling foo.c generates the single file foo.o). Java, with its inner and
anonymous classes, can generate many class files from a single source—and the
developer might not know the names of the files to be generated.

 Listings 48.1-48.4 illustrate the problem with a small set of Java classes.

 Listing 48.1 A.java

 1
 2
 3 class A {
 4 A()
 5 {
 6 }
 7 static class C extends B
 8 {
 9 }
 10 interface D
 11 {
 12 }
 13 void foobar(E e)
 14 {
 15 }
 16 }

 Listing 48.2 B.java

 1 package com.macmillan.nmeyers;
 2
 3 class B extends A implements A.D
 4 {
 5 }

 - 421 -

 Listing 48.3 E.java

 1 package com.macmillan.nmeyers;
 2
 3 class E implements A.D, F
 4 {
 5 }

 Listing 48.4 F.java

 1 package com.macmillan.nmeyers;
 2
 3 interface F
 4 {
 5 }

This is legal Java and shows (perhaps to excess) a common practice: mutual
dependencies among Java classes(1). There are no illegal cycles in the inheritance
hierarchy (no class attempts to be its own ancestor), but there are cycles in the
dependency graph: A change to class A affects class B, and a change to class B affects
class A (in this case, an inner class under A). By the time you tease out all the
dependencies, a change to almost any class affects almost everything.

(1)

This, by the way, is another Java advantage over C/C++. Dependencies like this are
not unreasonable in complex projects, but are nearly impossible to support in C/C++.
Large projects sometimes take extraordinary steps, such as multiple compilation
cycles, or take great pains to architect such dependencies out of the product.

 How would you express these relationships in a Makefile? You might try the traditional

C/C++ approach of expressing source and object dependencies:

 A.class: A.java B.class E.class
 javac A.java

 B.class: B.java A.class
 javac B.java

 E.class: E.java A.class F.class
 javac E.java

 F.class: F.java
 javac F.java

 Unfortunately, this will fail for several reasons:

•

make will complain about the cycles (such as the mutual dependence between
A.class and B.class) and remove the offending edges from the graph. The result is
missing dependencies.

•

If mutually dependent class files are to be rebuilt, they must be rebuilt together in a
single invocation of the Java compiler. make gives us no easy way to execute such a
command.

 • The dependencies shown are not really correct. Class E does not really depend on a

 - 422 -

class found in the class file A.class, it depends on an inner class (A.D) that comes
from a different class file: A$D.class.

Clearly, the difficulties of expressing these relationships in a Makefile can be extreme
for complex projects. Easier solutions are to rebuild the entire project every time (a slow
alternative), or to rely on compiler detection of dependencies (not supported, or not
supported properly, on most compilers).

 Identifying a Solution

make may not be the solution to managing Java development, but it can be 90 percent of
the solution—it's too good a tool not to use. This conclusion is borne out by UNIX history,
in which tools such as Imake and makedepend were developed specifically to adapt
make to project requirements.

JMakeDepend serves such a role: It was written to adapt GNU make for Java
development. It employs a handful of make tricks to work around the limitations,
accurately record and act on the dependencies, and rebuild a minimal number of class
files to bring a project up-to-date.

I am not the first to attack this problem: Other approaches have been published online. I
have not found them particularly workable, and they are too often dependent on the
features provided by a particular compiler. So I offer my compiler-neutral approach in this
chapter.

The solution to be described is implemented in two parts: The JMakeDepend program
itself and some rules in the Makefile to run the program and use the rules it generates.
The next several sections describe and illustrate the use of JMakeDepend.

Obtaining JMakeDepend

JMakeDepend is provided, in source and compiled form for JDK1.1 and JDK1.2, on the
CD-ROM. It consists of two pieces: a class to read class files and the JMakeDepend
class—the latter is written in Generic Java and must be compiled with gjc (see Chapter
38, "Generic Java Compilers," in the section "GJ: The Generic Java Compiler"). Source
listings also apppear in Appendix B, "Miscellaneous Program Listings."

The JDK1.2 version of JMakeDepend has no external dependencies. The JDK1.1 version
depends on the Sun 1.1 Collections classes (see Chapter 11, "Choosing an Environment:
1.1 or 1.2?," in the section "Java Collections Classes").

Running JMakeDepend

 We'll first describe operation of the program and, in the next section, show how to use it

from a Makefile.

 Synopsis:

 java com.macmillan.nmeyers.JMakeDepend [-noinner] [<classfiles>]

(JDK1.2 only)
 java com.macmillan.nmeyers.JMakeDepend11 [-noinner]
[<classfiles>] (JDK1.1 only)

Class file names are specified on the command line; if none is specified, they are read
(one per line) from stdin. Output is sent to stdout and consists of dependencies and
commands designed to be included (via the include directive) in a Makefile.

 - 423 -

 Options:

•

-noinner—Normally, JMakeDepend creates Makefile dependencies for all class
files it examines. If this option is specified, dependencies for inner classes are hidden
and their dependent relationships folded into the dependency listings for the
corresponding outer class.

Using JMakeDepend from a Makefile

Listing 48.5 presents a sample prescription for a Makefile, with detailed discussion (line
numbers added for clarity). This is based on the example classes shown in Listings 48.1–
48.4 and assumes that we are building the class files in a subdirectory named classes,
using SDK1.2.

 Listing 48.5 Sample Makefile Prescription

 1 .PHONY: all clean buildall depend
 2
 3 SOURCES=A.java B.java E.java F.java
 4
 5 all:
 6 rm -f .targets
 7 $(MAKE) .targets
 8 [-f .targets] && javac -classpath
$CLASSPATH:classes -d classes @.targets ¦¦ true

 9
 10 clean:
 11 rm -rf classes .depend
 12
 13 ifneq ($(MAKECMDGOALS),buildall)
 14 ifneq ($(MAKECMDGOALS),clean)
 15 include .depend
 16 endif
 17 endif
 18
 19 .depend:
 20 $(MAKE) buildall
 21 find classes -type f -print ¦ java
com.macmillan.nmeyers.JMakeDepend >.depend

 22
 23 depend:
 24 rm -f .depend
 25 $(MAKE) .depend
 26
 27 buildall:
 28 rm -rf classes
 29 mkdir classes
 30 javac -d classes $(SOURCES)

 Here is how the Makefile runs JMakeDepend and uses the rules it generates:

1.

make builds a .depend file containing dependency rules (lines 19-21). The file is
created by first building the entire project (line 20) and then running JMakeDepend to
examine the resulting class files (line 21).

 - 424 -

2.

make includes (reads in) the .depend file (line 15), whose rules will be used in the
next step. Inclusion is conditional; .depend is not included if we are performing a
make clean or are rebuilding the entire project. (The latter condition is needed to
prevent infinite make recursion when building a new .depend file.)

3.

make builds the project (lines 5-8) by first creating a temporary .targets file
containing a list of sources to be recompiled (line 7, using rules that were included
from .depend) and then invoking the Java compiler with that information (line 8). The
compiler invocation specifies -d for placement of the class files being built and -
classpath to find those that already exist. If no .targets file exists (nothing needs
to be rebuilt), the compiler is not invoked.

The first step is the most time-consuming—it rebuilds the entire project and then runs
JMakeDepend. It occurs automatically if the .depend file is missing, but you will need to
perform your own make depend (lines 23–25) to update if you add new classes or
otherwise change dependency relationships. In general, this step is infrequently
performed.

 The third step is the most frequent: change your source, run make, and the minimal set of

files is rebuilt.

 The key logic behind building the project comes from the .depend file generated by
JMakeDepend and shown in Listing 48.6 for this project (again with line numbers added):

 Listing 48.6 Sample .depend File Generated by JMakeDepend

 1 classes/com/macmillan/nmeyers/A$$D.class: A.java B.java
E.java F.java

 2 echo $< $? >>.rawtargets
 3
 4 classes/com/macmillan/nmeyers/A$$C.class: A.java B.java
E.java F.java

 5 echo $< $? >>.rawtargets
 6
 7 classes/com/macmillan/nmeyers/F.class: F.java
 8 echo $< $? >>.rawtargets
 9
 10 classes/com/macmillan/nmeyers/E.class: E.java A.java
B.java F.java

 11 echo $< $? >>.rawtargets
 12
 13 classes/com/macmillan/nmeyers/B.class: B.java A.java
E.java F.java

 14 echo $< $? >>.rawtargets
 15
 16 classes/com/macmillan/nmeyers/A.class: A.java B.java
E.java F.java

 17 echo $< $? >>.rawtargets
 18
 19 JSOURCES = A.java B.java E.java F.java
 20
 21 JOBJECTS = classes/com/macmillan/nmeyers/A$$D.class
classes/com/macmillan/nmeyers/F.class

classes/com/macmillan/nmeyers/A.class
classes/com/macmillan/nmeyers/E.class
classes/com/macmillan/nmeyers/B.class

 - 425 -

classes/com/macmillan/nmeyers/A$$C.class
 22
 23 .rawtargets: $(JOBJECTS)
 24
 25 .targets:
 26 rm -f .rawtargets
 27 $(MAKE) .rawtargets
 28 [-f .rawtargets] && tr -s ' ' '\012'
<.rawtargets ¦ sort -u > .targets ¦¦ true

 29 rm -f .rawtargets

For every class file, JMakeDepend has created a dependency relationship to all sources
on which it ultimately depends. By specifying a relation to sources instead of class files, it
avoids the cycles that make cannot handle.

When make is asked to build .targets (line 7 of the original Makefile), it triggers the
rule at line 25 of .depend. Line 27 creates .rawtargets by triggering dependency
rules for the various class files (lines 1–17) to name the sources that need to be rebuilt.
That list of names is filtered (line 28) to remove duplicates and generate the .targets
file. With that information, the build can proceed (line 8 of the original Makefile).

This technology has dependencies on the UNIX/Linux utilities tr and sort, but none on
the choice of compiler. For compilers that (unlike the SDK1.2 javac) cannot read
arguments from a file, you can pull the contents of the file into the command line with
shell command substitution:

 javac ... `cat .targets`

 JMakeDepend Caveats

 Two cautions about JMakeDepend deserve mention:

•

Although JMakeDepend tries to minimize the number of files that must be rebuilt after
a change, it does not always succeed. Because it cannot detect the difference
between substantive modifications (such as API changes) and trivial changes (such as
editing comments), JMakeDepend errs on the side of caution and recompiles all
classes with dependencies on a changed source file.

•

JMakeDepend does not handle any dependencies outside the class files being
examined. It will not record dependencies on the core classes, extension classes, other
application class libraries, or anything else that happens to be in the class path. If
necessary, you can express those inter-project dependencies in the Makefile.

Summary

This chapter has presented JMakeDepend, a utility to assist GNU make in managing Java
projects. JMakeDepend allows you to exploit the power of make—keeping projects up-to-
date and minimizing compilation time—while coping with the new, unique requirements of
Java development.

Part XI: Java Application Distribution

 Chapter List

 - 426 -

 Chapter
49: Distributing Java Applications and JREs

 Chapter

50: Deploying Applets with Java Plug-in

 Chapter

51: Crossing Platform Component Models: Bringing Java to
ActiveX

 Chapter

52: InstallShield: Creating Self-Installing Java Applications

 Chapter

53: DashO: Optimizing Applications for Delivery

 Part Overview

The portability of the Java platform is one of its major attractions as an applications
target. In a perfect Java world, that portability would extend all the way from the source
code to the end-user environment: Drop in the application, and it just works.

 That world does not exist, of course, and distributing Java applications and applets puts

you face-to-face with a few real-world challenges:

 • End users may not have a Java environment.

 • End users may have an old Java environment.

 • End users may have the wrong current Java environment (for example, a Microsoft

JVM without RMI support).

 • Many generations of Web browsers are in use, with varying degrees of Java support

and with their own platform-specific requirements and capabilities.

 To date, these problems have created formidable barriers to application distribution,

making publication of platform-neutral Java applications a challenging discipline in itself.

These problems will always be with us as Java evolves, but the situation is improving:
The (hoped-for) stability offered by the Java 2 Platform, the availability of free and
commercial distribution technologies, and technologies such as Java Plug-in and
Netscape OJI (Chapter 11, "Choosing an Environment: 1.1 or 1.2?," section "Option 2:
Netscape Open Java Interface") offer hope.

The chapters in this part explore the issues, tools, and technologies relevant to the
problem of getting your Java creations to your users. We focus on two major aspects of
application distribution:

•

Ensuring a match between your application's requirements and the end-user
environment. Because your deployment environments will undoubtedly include many
boxes running Microsoft, we lavish some detail on that part of the delivery/distribution
problem.

 • Technologies for optimization and delivery of applications: optimizers, packagers, and

obfuscators.

Chapter 49: Distributing Java Applications

 - 427 -

and JREs

 Overview

The two components a user needs to run your Java applications are a runtime
environment and the application itself. Because you are presumably writing software for
users on many different platforms, we must examine the question of how to get them up
and running.

Sun publishes Java Runtime Environments (JREs) for two platforms: Solaris and
Microsoft Windows. They can be obtained from the Sun JDK product pages at the main
Java Web site (http://java.sun.com). JREs are available for other platforms that
support the JDK (HP, IBM, and others), and are distributed by the individual platform
vendors. Blackdown also distributes JREs for Linux from its download sites.

As we discussed in Chapter 10, "Java Components for Linux," in the section "A Glossary
of Sun Java Terminology," these runtime environments are not full SDKs—just a minimal
set of components to support runtime Java. Unlike the SDK, which you are not allowed to
redistribute, JREs have liberal redistribution terms. They also do not charge any licensing
fees. They are published for the sole purpose of enabling Java on more platforms.

The business model behind JREs is unquestionably weird but necessary to world
domination. Sun publishes, for no licensing fee, an optimized JRE, JIT, and HotSpot for
the arch-rival Windows operating system. It's important for Java's acceptance even if it
hurts Solaris. Sun's competitors, such as HP, license and publish optimized JRE ports
because they cannot afford not to be in the Java business. And although Sun collects
licensing fees for commercial ports such as HP's, it derives no income from the Linux
port—another OS that competes with Solaris.(1)

(1)
 Like many high-tech companies, Sun has no shortage of Linux partisans roaming the
hallways. Their presence is visible in the activities of the Blackdown organization.

The details on how JREs can be deployed are provided in README files shipped with the
JREs. These details can vary between Java releases, but this chapter provides a general
picture of how it works. For more detail, refer to the READMEs accompanying any JRE you
want to ship.

Shipping a JRE with Your Application

The easiest way to deploy the JRE is to ship it, complete, with your application. For
customers deploying on Windows platforms, the JRE is available as a self-installing
executable. You can ship that executable and, as part of your product installation
procedure, simply run it.

For UNIX and Linux platforms, customers face the same procedure you faced when
installing the Blackdown port: no auto-installation, just a large compressed archive file (a
tarball). Your options for shipping the JRE include the following:

 • Bundling it with your application and giving the customer instructions on installing from

a compressed archive.

 • Not bundling the JRE and directing the customer to platform-vendor Web sites to

obtain one (or relying on whatever the customer has already installed).

•

Installing it as part of your product installation process, either in some central location
or a location specific to your product. Installing in a central location incurs the risk that
you may damage an existing Java installation or applications that depend on particular
Java versions, so consider such a step carefully. Some reasonable precautions
include:

 - 428 -

 – Allowing the user to choose whether or not to replace an existing JRE.

 – Allowing the user to choose between a global and a product-specific installation

location.

 – Providing an uninstall capability that will recover an older JRE installation.

 In light of the risks and difficulties of shipping a JRE, Sun suggests an alternate

approach—discussed in the next section.

 Incorporating Minimal JRE Functionality into Your
Application Installation

An alternative approach promoted by Sun is not to ship an entire JRE, but just to ship
some minimal components in your own product's directories: Your application has its own
private JRE. This avoids the risks of polluting the user's system or depending on the
user's installed versions, at the cost of some disk space.

If you take this approach, Sun strictly prescribes what you ship. You cannot arbitrarily
subset Java functionality. According to the current JRE1.2 requirements for Solaris and
Windows, the following components may be excluded from a redistributed JRE:

 • I18N support classes (i18n.jar)

 • JIT compiler

 • The ext/ extensions subdirectory

 • RMI components rmid and rmiregistry

 • CORBA component tnameserv

 • Security components keytool and policytool

 • Font properties files other than the default lib/font.properties

 • Java Plug-in classes and plug-in ActiveX control (jaws.jar and beans.ocx) in the

Win32 version

 All other components are required. You can choose to ship green-only or native-only

threading implementations.

Most of the required files can be shipped in your product directories. For Windows
deployments, the required msvcrt.dll included in the JRE needs to be installed into
the Windows system directory (unless a newer version of that library is already installed).

 To repeat an earlier warning: Be sure to consult the README and other documentation

that comes bundled with any JRE you want to redistribute.

 What About Applet Support?

This chapter has focused on applications. For applets, the story is still in flux. The old
answer to the question was to leave it to the browser. Netscape bundles its own JRE,
and Internet Explorer uses the Microsoft JRE.

 - 429 -

 With the advent of Java Plug-in (see Chapter 50, "Deploying Applets with Java Plug-In"),
applets can find and install their own replacement JRE.

 The story will undoubtedly be different for the Netscape Open Java Interface, but those

answers are not yet available.

 For Further Reading

A good source of information, in the form of developers' notes on the JRE, can be found on
the main Java Web site at
http://java.sun.com/products/jdk/1.2/runtime.html.

 Summary

This chapter has discussed the problem of shipping Java Runtime Environments with
your applications. Until the time that we can reliably count on finding current Java
environments installed on current operating systems, JRE distribution will remain an
unavoidable part of application distribution.

Chapter 50: Deploying Applets with Java Plug-
in

 Overview

The Java Plug-in extends existing Web browsers to use new Java Runtime
Environments, enabling the deployment of applets that might otherwise not be usable
with noncompliant browsers.

 Platforms: JDK1.1/JDK1.2

 One of the early and, in retrospect, unfortunate architectural decisions in the Java world

was the bundling of the Java Runtime Environment (JRE) with Web browsers.

Netscape was an early Java partner and champion, and its work on bundling Java with
the Navigator product brought JVMs to many platforms quickly. Unfortunately, it created
huge ongoing maintenance and performance headaches for Netscape on many
platforms. The Java sources are not particularly portable to begin with, and Netscape had
to create threading mechanisms on many operating systems that lacked native threading
support. Netscape's JDK1.1 was not fully compliant until well into 1999, and there is no
Netscape JDK1.2 anywhere on the horizon.

Microsoft's solution on the Windows platform was architecturally much cleaner: a
separate Java runtime, usable by Microsoft's browser or by any other Java consumer.
Unfortunately, as the ongoing Sun/Microsoft legal battles show, Microsoft's JDK1.1
compliance is in dispute, and its JDK1.2 may never happen.

The end result of both approaches is that browser applets, the original purported killer
app for Java technology, have turned out to be an unhappy place to do business. Add
such incompatibilities as different security certification requirements, plug-in technologies,
HTML and JavaScript enhancements, and LiveConnect(1), and you realize that
developers and users have not been the victors in the browser wars.

 (1) A Netscape-specific bridge between Java, JavaScript, and native code.

 - 430 -

 The good news: Things are looking up.

Technologies are now available to bring current JDK environments to browsers on at least
some platforms. This chapter looks at today's solutions for full JDK1.1 and JDK1.2 applet
support in Netscape Navigator and Microsoft Internet Explorer.

Java Plug-in for JDK1.1

Early versions of this product were called Java Activator, and the term is sometimes still
encountered. If you're looking for Java Activator—you've found it. The Java Plug-in is an
add-on for current browsers that provides a fully compliant JDK1.1 Java environment for
applet execution.

The Plug-in employs a clever back door for adding new Java support to old browsers:
expandability that is already provided by Netscape Navigator and Internet Explorer. Plug-
ins are simply pieces of native code designed to expand browser functionality. Typical
plug-ins on the market include streaming audio players, multimedia viewers, and PDF file
readers. The Java Plug-in is just another native-code plug-in: It happens to implement a
Java Virtual Machine!(2)

(2)

To be more precise, the Java Plug-in implements the glue between a JRE1.1
installation and the browser. This new browser/JVM architecture looks much more like
Microsoft's approach to JVM integration.

To use the Java Plug-in from a Web page, you must include special HTML tags in the
page that invokes it and, if necessary, download it into a machine that does not have one
installed. Details are discussed later in this chapter, in the section "Invoking the Java
Plug-in from HTML."

Sun ships the Java Plug-in for Solaris and Windows, and versions for some other
platforms are available from other vendors. Not all platforms are represented,
unfortunately; there is not yet one for Linux. But the availability of the product for
Windows means that you can still deploy modern applets to a very large customer base.

 Sun has positioned the JDK1.1 Plug-in as a solution for Enterprise customers, rather than

for general Web deployment. One can surmise several possible reasons:

•

Corporate intranets tend to deploy more conservatively than home users. Whereas
you and I run current browser releases with good JDK1.1 support, the typical cubicle
dweller runs older code.

 • Corporate intranets tend to settle on one or two browser, platform, and version

choices, which simplifies the problem of plug-in deployment.

 • Microsoft Internet Explorer (IE) enjoys significant market penetration in corporate

intranets; the Plug-in offers full JDK1.1 compliance where MSIE does not.

•

Installing the Plug-in involves an interruption to your surfing and a big download to
your PC. It's not clear whether home users will tolerate this as patiently as corporate
users on a fast LAN. And the Plug-in doesn't make exceptions for browsers that are
already JDK1.1-compliant: If you browse a page requiring the Plug-in, you must use
the Plug-in.

All things considered, the presence of a Web page requiring the JDK1.1 Java Plug-in
makes sense on a high-speed corporate intranet, but would probably not be appreciated
on the Web.

 Obtaining the JDK1.1 Java Plug-in

 - 431 -

If you need to obtain the Java Plug-in for deployment on an intranet, it is available for free
download from Sun. Visit the Java Plug-in product pages at http://java.sun.com for
details.

 Invoking the Java Plug-in from HTML

Use of the Java Plug-in requires different HTML tags than the customary <APPLET>. The
page must use tags that are normally used for Netscape plug-ins (the <EMBED> tag) or
MSIE ActiveX controls (the <OBJECT> tag).

To illustrate (see Listings 50.1 and 50.2), we create a trivial applet and corresponding
traditional HTML code (this is similar to the example in Chapter 28, "GNU Classpath:
Cleanroom Core Class Libraries," but specific to JDK1.1 and its Plug-in):

 Listing 50.1 Simple Demonstration Applet

 1 import java.awt.*;
 2 import java.applet.*;
 3
 4 public class Hello extends Applet
 5 {
 6 Label label;
 7 public Hello()
 8 {
 9 label = new Label();
 10 add(label);
 11 }
 12 public void init()
 13 {
 14 label.setText(getParameter("LabelText"));
 15 }
 16 }

 Listing 50.2 Standard HTML Applet Invocation, Which Uses the Default Browser

JVM

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <applet code="Hello.class"
 5 LabelText="Hello World"
 6 width="200"
 7 height="100">No Applet?</applet>
 8 </body>
 9 </html>

 Invoking the Java Plug-in in Netscape Navigator

The traditional HTML will run the applet with Navigator's built-in Java interpreter. To
invoke the Java Plug-in, the HTML must instead describe an embedded Java object.
Those deploying on intranets are encouraged to replace the java.sun.com reference
with links to locally installed copies of the downloadable code shown in Listing 50.3.

 - 432 -

 Listing 50.3 HTML Applet Invocation to Use the Java Plug-in Under Netscape
Navigator

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <EMBED type="application/x-java-applet;version=1.1"
 5 code = "Hello.class"
 6 WIDTH = "200"
 7 HEIGHT = "100"
 8 LabelText="Hello World"
 9 pluginspage="http://java.sun.com/products/plugin/1.1/
plugin-install.html">

 10 <NOEMBED>
 11 No Applet?
 12 </NOEMBED></EMBED>
 13 </body>
 14 </html>

When this page is browsed from Navigator, the Plug-in will be installed (if not already
installed), and the applet will run under a full JRE1.1. The installation can be large: it
includes the full JRE1.1 in addition to the small Plug-in code.

 Invoking the Java Plug-in in Internet Explorer

Under MSIE, the traditional HTML will run the applet with Microsoft's JVM. To instead
invoke the Java Plug-in and use the Sun JVM, the HTML must describe an embedded
ActiveX object. Those deploying on intranets are encouraged to replace the
java.sun.com reference with links to locally installed copies of the downloadable code
shown in Listing 50.4.

 Listing 50.4 HTML Applet Invocation to Use the Java Plug-in Under Microsoft

Internet Explorer

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93"

 5 WIDTH = "200"
 6 HEIGHT = "100"
 7 codebase="http://java.sun.com/products/plugin/1.1/
jinstall-11-win32.cab#Version=1,1,0,0">

 8 <PARAM NAME = CODE VALUE = "Hello.class" >
 9 <PARAM NAME="type" VALUE="application/x-java-
applet;version=1.1">

 10 <PARAM NAME="LabelText" VALUE="Hello World">
 11 No Applet?
 12 </OBJECT>
 13
 14 </body>
 15 </html>

 When browsed with MSIE, the page will install the Plug-in (if it is not already installed),

and the applet will run under a full JRE1.1.

 - 433 -

 Invoking the Java Plug-in for Both Browsers

 You can target both browsers with an HTML trick: Hide the Navigator code inside a
<COMMENT> in the MSIE <OBJECT> code as shown in Listing 50.5.

 Listing 50.5 HTML Applet Invocation to Use the Java Plug-in Under Either

Netscape or MSIE

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>
 4 <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93"

 5 WIDTH = "200"
 6 HEIGHT = "100"
 7 codebase="http://java.sun.com/products/plugin/1.1/
jinstall-11-win32.cab#Version=1,1,0,0">

 8 <PARAM NAME = CODE VALUE = "Hello.class" >
 9 <PARAM NAME="type" VALUE="application/x-java-
applet;version=1.1">

 10 <PARAM NAME="LabelText" VALUE="Hello World">
 11 <COMMENT>
 12 <EMBED type="application/x-java-applet;version=1.1"
 13 code = "Hello.class"
 14 WIDTH = "200"
 15 HEIGHT = "100"
 16 LabelText="Hello World"
 17 pluginspage="http://java.sun.com/products/
plugin/1.1/plugin-install.html">

 18 <NOEMBED>
 19 No Applet?
 20 </COMMENT>
 21 </NOEMBED></EMBED>
 22 </OBJECT>
 23
 24 </body>
 25 </html>

Now, either browser can read this page and load the Java Plug-in. Netscape finds its
HTML (lines 12–21) amid MSIE tags it ignores, while MSIE doesn't see the Netscape
tags hidden between <COMMENT></COMMENT> delimiters (lines 11 and 20).

Subtleties

This last example (Listing 50.5) contains an interesting bit of poorly formed HTML:
interleaving of the <COMMENT></COMMENT> tags with <EMBED></EMBED> and
<NOEMBED></NOEMBED>. The exact order of these tags—<COMMENT>, <EMBED>,
<NOEMBED>, </COMMENT>, </NOEMBED>, </EMBED>—is not, strictly speaking,
good HTML coding. How can you get away with it?

Because Navigator ignores <OBJECT> and <COMMENT> tags, MSIE ignores
everything inside a <COMMENT>, and both browsers ignore unmatched end-tags,
this code appears to each browser to be more or less well-formed HTML. The effect
of this trick is a neat convenience for the Web page author: The HTML executed

 - 434 -

when the applet cannot be run (the text "No Applet?" on line 19) need only be
specified once.

 htmlconv: Automatic Generation of Java Plug-in Tags

Sun provides a free tool for conversion of HTML <APPLET> tags to the new tags needed
for the Java Plug-in. You can obtain the tool, htmlconv, from the Java Plug-in product
pages. We describe the JDK1.2 version, which you are more likely to find of interest, in
detail in the following section.

Java Plug-in for JDK1.2

Java Plug-in v1.2 is the JDK1.2 counterpart to the Plug-in discussed previously. Unlike
the earlier version, Sun is encouraging wide deployment of this product. The reason is
clear: There is currently no other way to support JDK1.2 applets in browsers. Future
developments (Netscape OJI) will improve the story for Netscape Navigator, but there is
currently no other known route to JDK1.2 support by MSIE.

Multiplatform availability is still a weak link; there is no version for Linux or many other
OSes. But the Windows version opens up many target browsers to JDK1.2 applets—and
you always have the capability to test-drive your applets in Linux under appletviewer
(see Chapter 18, "The Java Applet Viewer: appletviewer").

 Obtaining Java Plug-in 1.2

The Plug-in is included with the SDK1.2 and JRE1.2 installations for the Windows
platforms. If it is not installed, it can be installed automatically when the relevant HTML
tags are encountered.

 Invoking the Java Plug-in from HTML

 The HTML required to invoke the 1.2 Plug-in is almost identical to that used for 1.1. The

two changed fields are as follows (for the MSIE-related tags):

 codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-
win32.cab#Version=1,2,0,0"

 <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">

 and (for the Navigator-related tags):

 EMBED type="application/x-java-applet;version=1.2"

 pluginspage="http://java.sun.com/products/plugin/1.2/ plugin-
install.html"

 Supporting Multiple Platforms

The HTML changes described so far are focused entirely on delivering the Java Plug-in
to browsers running on Microsoft and Solaris platforms. Sun also recommends a set of
tags you can use to support a wider range of browsers—which we will now explore.

 The code in Listings 50.6 and 50.7 adds some logic that identifies the browser and

platform, installs the Java Plug-in for Windows and Solaris platforms, and just runs the

 - 435 -

normal <APPLET> tag on all other platforms (where it will fail until the browser has
JDK1.2 support). With some JavaScript hacking, it is extensible to support other Java
Plug-in implementations as they become available.

The first part of the solution (Listing 50.6) is placed at the beginning of the document
body (immediately after the <BODY> tag). Its purpose is to identify browsers and versions
capable of hosting a Java Plug-in, and it sets some variable values that will be used later.

 Listing 50.6 Part 1 of the Multiplatform HTML Java Plug-in Code

 1 <SCRIPT LANGUAGE="JavaScript"><!--
 2 var _info = navigator.userAgent; var _ns = false;
 3 var _ie = (_info.indexOf("MSIE") > 0 &&
_info.indexOf("Win") > 0

 4 && _info.indexOf("Windows 3.1") < 0);
 5 //--></SCRIPT>
 6 <COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--
 7 var _ns = (navigator.appName.indexOf("Netscape") >= 0
 8 && ((_info.indexOf("Win") > 0 &&
_info.indexOf("Win16") < 0

 9 &&
java.lang.System.getProperty("os.version").indexOf("3.5") < 0)

 10 ¦¦ _info.indexOf("Sun") > 0));
 11 //--></SCRIPT></COMMENT>

The other part of the solution (shown in Listing 50.7) replaces each <APPLET> tag (again
using our trivial applet example) with tags that enable the Java Plug-in. This code
includes references to variables that were defined in Listing 50.6.

 Listing 50.7 HTML to Invoke Our Trivial Applet Under the Java Plug-in on

Platforms That Support the Plug-in

 1 <SCRIPT LANGUAGE="JavaScript"><!--
 2 if (_ie == true) document.writeln('<OBJECT
 3 classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 4 width="200" height="100" align="baseline"
 5 codebase="http://java.sun.com/products/plugin/1.2/
jinstall-12-win32.cab#Version=1,2,0,0">

 6 <NOEMBED><XMP>');
 7 else if (_ns == true) document.writeln('<EMBED
 8 type="application/x-java-applet;version=1.2"
width="200" height="100"

 9 align="baseline" code="Hello.class"
 10 LabelText="Hello World"
 11 pluginspage="http://java.sun.com/products/plugin/1.2/
plugin-install.html">

 12 <NOEMBED><XMP>');
 13 //--></SCRIPT>
 14 <APPLET code="Hello.class" align="baseline"
 15 width="200" height="100"></XMP>
 16 <PARAM NAME="java_code" VALUE="Hello.class">
 17 <PARAM NAME="java_type" VALUE="application/x-java-
applet;version=1.2">

 18 <PARAM NAME="LabelText" VALUE="Hello World">
 19 No applet?
 20 </APPLET></NOEMBED></EMBED></OBJECT>

 - 436 -

 21
 22 <!--
 23 <APPLET code="Hello.class" align="baseline"
 24 width="200" height="100">
 25 <PARAM NAME="LabelText" VALUE="Hello World">
 26 No applet?
 27 </APPLET>
 28 -->

If this collection of HTML and JavaScript seems like a convoluted mess (compare it to the
original code in Listing 50.2), it at least serves as a vivid example of the portability
nightmares that have resulted from the browser wars.

 htmlconv v1.2: Automatic Generation of HTML Tags

Sun provides a Java utility to assist in converting HTML source to use the Java Plug-in.
You can obtain the JDK1.2 version of htmlconv from the product page for Java Plug-in
1.2; just unzip it anywhere and add its top-level directory to the class path.

 Using the htmlconv GUI

 This invocation starts up the GUI version of htmlconv (see Figure 50.1).

 Figure 50.1: The HTML converter for Java Plug-in 1.2.

 Synopsis:

 java HTMLConverter

A simple GUI allows you to convert single HTML files or directory trees full of HTML files.
A choice of templates handles the four cases described in the earlier code examples:
targeting Netscape, targeting MSIE, targeting both on Solaris and Windows, or targeting
all platforms. If none of these is suitable, you are free to define your own template.

 Running the converter on our original Hello.html, with the extended template (which

targets all platforms), produces the multibrowser HTML shown in Listing 50.8.

 Listing 50.8 HTML Code to Use the Java Plug-in

 1 <html>
 2 <body>
 3 <h1>Hello World Applet</h1>

 - 437 -

 4 <!--"CONVERTED_APPLET"-->
 5 <!-- CONVERTER VERSION 1.0 -->
 6 <SCRIPT LANGUAGE="JavaScript"><!--
 7 var _info = navigator.userAgent; var _ns = false;
 8 var _ie = (_info.indexOf("MSIE") > 0 &&
_info.indexOf("Win") > 0 && _info.indexOf("Windows 3.1") < 0);

 9 //--></SCRIPT>
 10 <COMMENT><SCRIPT LANGUAGE="JavaScript1.1"><!--

 11 var _ns = (navigator.appName.indexOf("Netscape") >= 0
&& ((_info.indexOf("Win") > 0 && _info.indexOf("Win16") < 0 &&
java.lang.System.getProperty("os.version").indexOf("3.5") < 0) ¦¦
(_info.indexOf("Sun") > 0) ¦¦ (_info.indexOf("Linux") > 0)));

 12 //--></SCRIPT></COMMENT>
 13
 14 <SCRIPT LANGUAGE="JavaScript"><!--

 15 if (_ie == true) document.writeln('<OBJECT
classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93" WIDTH =
"200" HEIGHT = "100"
codebase="http://java.sun.com/products/plugin/1.2/jinstall-12-
win32.cab#Version=1,2,0,0"><NOEMBED><XMP>');

 16 else if (_ns == true) document.writeln('<EMBED
type="application/x-java-applet;version=1.2" java_CODE =
"Hello.class" WIDTH = "200" HEIGHT = "100"
pluginspage="http://java.sun.com/products/plugin/1.2/ plugin-
install.html"><NOEMBED><XMP>');

 17 //--></SCRIPT>
 18 <APPLET CODE = "Hello.class" WIDTH = "200" HEIGHT = "100"
></XMP>

 19 <PARAM NAME = CODE VALUE = "Hello.class" >
 20
 21 <PARAM NAME="type" VALUE="application/x-java-
applet;version=1.2">

 22
 23 </APPLET>
 24 No Applet?
 25 </NOEMBED></EMBED></OBJECT>
 26
 27
 28 <!—
 29 <APPLET CODE = "Hello.class" WIDTH = "200" HEIGHT =
"100" >

 30 No Applet?
 31
 32 </APPLET>
 33 -->
 34 <!--"END_CONVERTED_APPLET"-->
 35
 36 </body>
 37 </html>

 The result is similar to the version we produced manually in Listings 50.6 and 50.7, with

two notable differences:

 • Line 11 contains, optimistically, a reference to another supported operating system. As

of this writing, Linux does not yet have the Java Plug-in.

 • The LabelText applet parameter has been lost. The code is now broken and

 - 438 -

requires manual editing to reinsert the applet parameter(s).

 The converter can save considerable tedium in creating these files, but the results are

still clearly a bit fragile. Use with care.

 htmlconv Batch Operation

 A non-GUI mode allows you to use htmlconv as a batch processor.

 Synopsis:

 java HTMLConverter <filespecs> [-simulate] [<options>]

The <filespecs> specifies the names of HTML files to be converted. If you use
wildcards, quoted to prevent interpretation by your shell, they will be interpreted by the
converter. For example:

 java HTMLConverter '*.html' '*.htm'

 will process all HTML files in the directory (and subdirectories, if you specify recursion).

 Options:

 • -simulate—List files that will be converted, and current option values, but do not

perform conversions.

 • -source <directory>—Specify the path to the source files.

 • -backup <directory>—Specify the directory in which to back up original files.

 • -subdirs {TRUE¦FALSE}—Process directories recursively if TRUE.

•

-template <filename>—Use the specified template file for the conversion. (The
standard four files can be found in the templates/ subdirectory of the htmlconv
installation directory.)

 • -log <logfile>—Specify a log file for recording conversions performed.

 • -progress {TRUE¦FALSE}—Display progress messages to stdout if TRUE.

For Further Reading

The product pages for the Java Plug-in at http://java.sun.com include good
documentation, with more extensive examples than those in this chapter and detailed
instructions on how to handle many applet parameters not shown here.

 Summary

This chapter has discussed the Java Plug-in and its use in deploying applets. In the
aftermath of the brutal Netscape/Microsoft browser wars, the Java Plug-in creates some
hope that applets may yet become a viable and reliable way to deliver functionality to users
on the Web.

 - 439 -

Chapter 51: Crossing Platform Component
Models: Bringing Java to ActiveX

 Overview

 This chapter discusses delivery of Java Beans into Microsoft's ActiveX component

framework.

 Platforms: JDK1.1/JDK1.2

If you deliver components to users in the Microsoft Windows space, you inevitably face
the issue of whether and how to adopt Microsoft's Component Object Model (COM) and
its ActiveX component framework.

ActiveX is, to a reasonable approximation, Microsoft's counterpart to Sun's JavaBeans
specification—a way to deliver reusable components for use in a wide variety of Windows
applications, not just browsers, but any application that subscribes to the Component
Object Model.

In the past, supporting ActiveX and Java has been an either/or proposition: Java
developers could not deliver ActiveX components, and ActiveX components were not
usable from Java. The situation has improved, with (predictably) both Microsoft and Sun
providing different advice and techniques for integrating the two technologies. This chapter
focuses on the question you face as a Java developer on Linux: how to deliver Java
components into the ActiveX framework.

What's a Component?

This is one of those Big Questions that can send developers and development
organizations to the brink of war. A component is a reusable, modular piece of
functionality intended for use as a building block in larger applications. What's reusable?
What's modular? What's the right type and amount of functionality to package into a
component? If a component is published on the Internet and nobody reuses it, does it still
make a sound?

Sun's answer, the JavaBeans component model, avoids many of the troublesome
questions and creates a clean and simple specification for what constitutes a Java Bean.
Briefly, the attributes listed in Table 51.1 define a Bean.

 Table 51.1 Characteristics of Java Beans

 Attribute

Description

 Introspection

Beans allow other applications to analyze and understand their
function.

 Customization

Beans can be customized in appearance and behavior.

 Events

Beans support events as a means of communication between
components.

 Properties

Beans provide access to properties, both for customization when

 - 440 -

they are configured and for runtime use.

 Persistence

Beans can be saved, in serialized form, and reconstituted for later
use.

These attributes are expressed through conventions on how Bean methods are named,
rules on how Beans are packaged, and the availability of java.beans.* support
classes to assist in creating and implementing Beans.

 Creating a Java Bean

 To illustrate how the JavaBeans characteristics translate into practice, we create a small

Bean from some example code provided by Sun.

 Listing 51.1 is an example of a component, a Java Bean distributed by Sun in its Bean

Development Kit (BDK) (1):

(1)

The BDK is available from the Java product pages but is not intended for serious
development work. Sun publishes it primarily as a template to help IDE vendors
understand the requirements for supporting Beans.

 Listing 51.1 Example Bean From Sun's Bean Development Kit

 1
 2 package sunw.demo.buttons;
 3
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.beans.*;
 7 import java.io.Serializable;
 8 import java.util.Vector;
 9
 10
 11 /**
 12 * A simple Java Beans button. OurButton is a "from-
scratch"

 13 * lightweight AWT component. It's a good example of how
to

 14 * implement bound properties and support for event
listeners.

 15 *
 16 * Parts of the source are derived from
sun.awt.tiny.TinyButtonPeer.

 17 */
 18
 19 public class OurButton extends Component implements
Serializable,

 20 MouseListener,
MouseMotionListener {

 21
 22 /**
 23 * Constructs a Button with the a default label.
 24 */
 25 public OurButton() {

 - 441 -

 26 this("press");
 27 }
 28
 29 /**
 30 * Constructs a Button with the specified label.
 31 * @param label the label of the button
 32 */
 33 public OurButton(String label) {
 34 super();
 35 this.label = label;
 36 setFont(new Font("Dialog", Font.PLAIN, 12));
 37 setBackground(Color.lightGray);
 38 addMouseListener(this);
 39 addMouseMotionListener(this);
 40 }
 41
 42 //---

 43
 44 /**
 45 * Paint the button: the label is centered in both
dimensions.

 46 *
 47 */
 48 public synchronized void paint(Graphics g) {
 49 int width = getSize().width;
 50 int height = getSize().height;
 51
 52 g.setColor(getBackground());
 53 g.fill3DRect(0, 0, width - 1, height - 1, !down);
 54
 55 g.setColor(getForeground());
 56 g.setFont(getFont());
 57
 58 g.drawRect(2, 2, width - 4, height - 4);
 59
 60 FontMetrics fm = g.getFontMetrics();
 61 g.drawString(label, (width -
fm.stringWidth(label)) / 2,

 62 (height + fm.getMaxAscent() -
fm.getMaxDescent()) / 2);

 63 }
 64
 65 //---

 66
 67 // Mouse listener methods.
 68
 69 public void mouseClicked(MouseEvent evt) {
 70 }
 71
 72 public void mousePressed(MouseEvent evt) {
 73 if (!isEnabled()) {
 74 return;

 - 442 -

 75 }
 76 down = true;
 77 repaint();
 78 }
 79
 80 public void mouseReleased(MouseEvent evt) {
 81 if (!isEnabled()) {
 82 return;
 83 }
 84 if (down) {
 85 fireAction();
 86 down = false;
 87 repaint();
 88 }
 89 }
 90
 91 public void mouseEntered(MouseEvent evt) {
 92 }
 93
 94 public void mouseExited(MouseEvent evt) {
 95 }
 96
 97 public void mouseDragged(MouseEvent evt) {
 98 if (!isEnabled()) {
 99 return;
 100 }
 101 // Has the mouse been dragged outside the button?
 102 int x = evt.getX();
 103 int y = evt.getY();
 104 int width = getSize().width;
 105 int height = getSize().height;
 106 if (x < 0 ¦¦ x > width ¦¦ y < 0 ¦¦ y > height) {
 107 // Yes, we should deactivate any pending
click.

 108 if (down) {
 109 down = false;
 110 repaint();
 111 }
 112 } else if (!down) {
 113 down = true;
 114 repaint();
 115 }
 116 }
 117
 118 public void mouseMoved(MouseEvent evt) {
 119 }
 120
 121 //---

 122
 123 // Methods for registering/deregistering event
listeners

 124

 - 443 -

 125 /**
 126 * The specified ActionListeners
actionPerformed method will

 127 * be called each time the button is clicked. The
ActionListener

 128 * object is added to a list of ActionListeners
managed by

 129 * this button, it can be removed with
removeActionListener.

 130 * Note: the JavaBeans specification does not require
ActionListeners

 131 * to run in any particular order.
 132 *
 133 * @see #removeActionListener
 134 * @param l the ActionListener
 135 */
 136
 137 public synchronized void
addActionListener(ActionListener l) {

 138 pushListeners.addElement(l);
 139 }
 140
 141 /**
 142 * Remove this ActionListener from the buttons
internal list. If the

 143 * ActionListener isn't on the list, silently do
nothing.

 144 *
 145 * @see #addActionListener
 146 * @param l the ActionListener
 147 */
 148 public synchronized void
removeActionListener(ActionListener l) {

 149 pushListeners.removeElement(l);
 150 }
 151
 152 /**
 153 * The specified PropertyChangeListeners
propertyChange method will

 154 * be called each time the value of any bound
property is changed.

 155 * The PropertyListener object is addded to a list of
PropertyChangeListeners

 156 * managed by this button, it can be removed with
removePropertyChangeListener.

 157 * Note: the JavaBeans specification does not require
PropertyChangeListeners

 158 * to run in any particular order.
 159 *
 160 * @see #removePropertyChangeListener
 161 * @param l the PropertyChangeListener
 162 */
 163 public void
addPropertyChangeListener(PropertyChangeListener l) {

 164 changes.addPropertyChangeListener(l);

 - 444 -

 165 }
 166
 167 /**
 168 * Remove this PropertyChangeListener from the
buttons internal list.

 169 * If the PropertyChangeListener isn't on the list,
silently do nothing.

 170 *
 171 * @see #addPropertyChangeListener
 172 * @param l the PropertyChangeListener
 173 */
 174 public void
removePropertyChangeListener(PropertyChangeListener l) {

 175 changes.removePropertyChangeListener(l);
 176 }
 177
 178 //---

 179
 180
 181 /**
 182 * This method has the same effect as pressing the
button.

 183 *
 184 * @see #addActionListener
 185 */
 186 public void fireAction() {
 187 if (debug) {
 188 System.err.println("Button " + getLabel() + "
pressed.");

 189 }
 190 Vector targets;
 191 synchronized (this) {
 192 targets = (Vector) pushListeners.clone();
 193 }
 194 ActionEvent actionEvt = new ActionEvent(this, 0,
null);

 195 for (int i = 0; i < targets.size(); i++) {
 196 ActionListener target =
(ActionListener)targets.elementAt(i);

 197 target.actionPerformed(actionEvt);
 198 }
 199
 200 }
 201
 202 /**
 203 * Enable debugging output. Currently a message is
printed each time

 204 * the button is clicked. This is a bound property.
 205 *
 206 * @see #getDebug
 207 * @see #addPropertyChangeListener
 208 */

 - 445 -

 209 public void setDebug(boolean x) {
 210 boolean old = debug;
 211 debug = x;
 212 changes.firePropertyChange("debug", new
Boolean(old), new Boolean(x));

 213 }
 214
 215 /**
 216 * Returns true if debugging output is enabled.
 217 *
 218 * @see #setDebug
 219 */
 220 public boolean getDebug() {
 221 return debug;
 222 }
 223
 224 /**
 225 * Set the font size to 18 if true, 12 otherwise.
This property overrides

 226 * the value specified with setFontSize. This is a
bound property.

 227 *
 228 * @see #isLargeFont
 229 * @see #addPropertyChangeListener
 230 */
 231 public void setLargeFont(boolean b) {
 232 if (isLargeFont() == b) {
 233 return;
 234 }
 235 int size = 12;
 236 if (b) {
 237 size = 18;
 238 }
 239 Font old = getFont();
 240 setFont(new Font(old.getName(), old.getStyle(),
size));

 241 changes.firePropertyChange("largeFont", new
Boolean(!b), new Boolean(b));

 242 }
 243
 244 /**
 245 * Returns true if the font is "large" in the sense
defined by setLargeFont.

 246 *
 247 * @see #setLargeFont
 248 * @see #setFont
 249 */
 250 public boolean isLargeFont() {
 251 if (getFont().getSize() >= 18) {
 252 return true;

 - 446 -

 253 } else {
 254 return false;
 255 }
 256 }
 257
 258
 259 /**
 260 * Set the point size of the current font. This is a
bound property.

 261 *
 262 * @see #getFontSize
 263 * @see #setFont
 264 * @see #setLargeFont
 265 * @see #addPropertyChangeListener
 266 */
 267 public void setFontSize(int x) {
 268 Font old = getFont();
 269 setFont(new Font(old.getName(), old.getStyle(),
x));

 270 changes.firePropertyChange("fontSize", new
Integer(

 old.getSize()), new Integer(x));

 271 }
 272
 273 /**
 274 * Return the current font point size.
 275 *
 276 * @see #setFontSize
 277 */
 278 public int getFontSize() {
 279 return getFont().getSize();
 280 }
 281
 282 /**
 283 * Set the current font and change its size to fit.
This is a

 284 * bound property.
 285 *
 286 * @see #setFontSize
 287 * @see #setLargeFont
 288 */
 289 public void setFont(Font f) {
 290 Font old = getFont();
 291 super.setFont(f);
 292 sizeToFit();
 293 changes.firePropertyChange("font", old, f);
 294 repaint();
 295 }
 296
 297 /**
 298 * Set the buttons label and change its size to fit.
This is a

 - 447 -

 299 * bound property.
 300 *
 301 * @see #getLabel
 302 */
 303 public void setLabel(String newLabel) {
 304 String oldLabel = label;
 305 label = newLabel;
 306 sizeToFit();
 307 changes.firePropertyChange("label", oldLabel,
newLabel);

 308 }
 309
 310 /**
 311 * Returns the buttons label.
 312 *
 313 * @see #setLabel
 314 */
 315 public String getLabel() {
 316 return label;
 317 }
 318
 319 public Dimension getPreferredSize() {
 320 FontMetrics fm = getFontMetrics(getFont());
 321 return new Dimension(fm.stringWidth(label) +
TEXT_XPAD,

 322 fm.getMaxAscent() +
fm.getMaxDescent() + TEXT_YPAD);

 323 }
 324
 325 /**
 326 * @deprecated provided for backward compatibility
with old layout managers.

 327 */
 328 public Dimension preferredSize() {
 329 return getPreferredSize();
 330 }
 331
 332 public Dimension getMinimumSize() {
 333 return getPreferredSize();
 334 }
 335
 336 /**
 337 * @deprecated provided for backward compatibility
with old layout managers.

 338 */
 339 public Dimension minimumSize() {
 340 return getMinimumSize();
 341 }
 342
 343 private void sizeToFit() {
 344 Dimension d = getSize();

 - 448 -

 345 Dimension pd = getPreferredSize();
 346
 347 if (pd.width > d.width ¦¦ pd.height > d.height) {
 348 int width = d.width;
 349 if (pd.width > width) {
 350 width = pd.width;
 351 }
 352 int height = d.height;
 353 if (pd.height > height) {
 354 height = pd.height;
 355 }
 356 setSize(width, height);
 357
 358 Component p = getParent();
 359 if (p != null) {
 360 p.invalidate();
 361 p.validate();
 362 }
 363 }
 364 }
 365
 366 /**
 367 * Set the color the buttons label is drawn with.
This is a bound property.

 368 */
 369 public void setForeground(Color c) {
 370 Color old = getForeground();
 371 super.setForeground(c);
 372 changes.firePropertyChange("foreground", old, c);
 373 // This repaint shouldn't really be necessary.
 374 repaint();
 375 }
 376
 377
 378 /**
 379 * Set the color the buttons background is drawn
with. This is a bound property.

 380 */
 381 public void setBackground(Color c) {
 382 Color old = getBackground();
 383 super.setBackground(c);
 384 changes.firePropertyChange("background", old, c);
 385 // This repaint shouldn't really be necessary.
 386 repaint();
 387 }
 388
 389
 390 private boolean debug;
 391 private PropertyChangeSupport changes = new
PropertyChangeSupport(

 this);

 - 449 -

 392 private Vector pushListeners = new Vector();
 393 private String label;
 394 private boolean down;
 395 private boolean sized;
 396
 397 static final int TEXT_XPAD = 12;
 398 static final int TEXT_YPAD = 8;
 399 }

 Some of the characteristics that make this recognizably a Bean:

 • The class has a no-argument constructor (lines 25–27).

•

The class includes properly named methods to get and set properties—
getFontSize() (lines 278–280) and setFontSize() (lines 267–271), among
many others.

•

The class uses property change events to report (for example, line 384) and detect
changes to Bean properties. Listeners can register their interest in property changes in
lines 163–165.

 • The class can be serialized (declared in line 19).

 This class compiles to the file sunw/demo/buttons/OurButton.class. To properly

package this class as a Bean, we create a custom manifest file, mymanifest, containing

 Name: sunw/demo/buttons/OurButton.class
 Java-Bean: True

 and package it with the compiled class into a jar file, OurButton.jar:

 bash$ jar cvfm OurButton.jar mymanifest sunw/
 added manifest
 adding: sunw/ (in=0) (out=0) (stored 0%)
 adding: sunw/demo/ (in=0) (out=0) (stored 0%)
 adding: sunw/demo/buttons/ (in=0) (out=0) (stored 0%)
 adding: sunw/demo/buttons/OurButton.class (in=6104) (out=2979)
(deflated 51%)

 bash$

 We now have a Bean—Java's notion of a component. The following sections discuss

how to package it into Microsoft's notion of a component, an ActiveX control.

 For the next steps, we must move the action to a Windows box: the solutions delivered by

both Sun and Microsoft run only under Win32.

 The Sun JavaBeans Bridge for ActiveX

Sun's early attempt to package Beans for ActiveX was a Beans/ActiveX bridge distributed
with the Bean Development Kit (BDK). ActiveX components created by this tool could be
distributed with an accompanying Sun runtime component that provided the bridging glue
to ActiveX.

 More recently, Sun moved the Bridge into its Java Plug-in (see Chapter 50, "Deploying

 - 450 -

Applets with Java Plug-in"). This new approach encourages deployment of the Plug-in,
leverages the Plug-in when the component is used, and simplifies distributing your
component.

 To turn your Bean into an ActiveX component, you use the packager shipped with the

Java Plug-in for Windows. We will illustrate with the Plug-in 1.2 version.

 Running the JavaBeans ActiveX Packager

The packager, bundled with the Java Plug-in, turns a Bean into an ActiveX control. It is
launched from an MS-DOS command shell by running the java application launcher on
the jaws.jar archive installed with the Plug-in.

In the following synopsis, we use the Windows variable %JRE% to designate the location
of the Java Plug-in installation (a typical value might be c:\Program
Files\JavaSoft\JRE\1.2).

 Synopsis:

 java -cp %JRE%\lib\jaws.jar sun.beans.ole.Packager

This starts up the packager GUI—Figure 51.1 shows the startup screen. For this
demonstration, we assume that the OurButton.jar file created previously (in the
section "Creating a Java Bean") has been copied to the c:\temp directory on the
Windows machine.

 Figure 51.1: Packager startup screen.

 The next screen allows us to choose which Bean to package (see Figure 51.2).

 Figure 51.2: Choose the Bean. In this case, we only have one.

 Next we name the object (see Figure 51.3).

 - 451 -

 Figure 51.3: The third screen names the ActiveX object being built.

 We will be generating two new files in a specified destination directory (see Figure 51.4).

 Figure 51.4: Specify a destination for generated files.

Finally, we generate the new files and, optionally, register the new control on our
development system (see Figure 51.5). A status dialog informs us of progress and
success or failure.

 Figure 51.5: Ready to create the new ActiveX control.

 Examining the Packaged Bean

The end result of running the packager is two new files: a type library file
(OurButton.tlb) and a file of Windows Registry entries (OurButton.reg). The
Registry entries (excerpted in Listing 51.2) provide the glue to integrate the Bean with
Windows—the new object's Class ID (CLSID), instructions to run the JRE when the
object is referenced, and other relevant information.

 Listing 51.2 Registry Entries (Excerpted) for the New ActiveX Object

 1 REGEDIT4

 - 452 -

 2 [HKEY_CLASSES_ROOT\OurButton.Bean]
 3 @= "OurButton Bean Control"
 4 [HKEY_CLASSES_ROOT\OurButton.Bean\CLSID]
 5 @= "{7FB22CF0-50F8-11D3-B327-005056FDBDB1}"
 6 [HKEY_CLASSES_ROOT\OurButton.Bean\CurVer]
 7 @= "1"
 .
 .
 .

 27 [HKEY_CLASSES_ROOT\CLSID\{7FB22CF0-50F8-11D3-B327-
005056FDBDB1}\
JarFileName]

 28 @= "C:\\TEMP\\OurButton.jar"

 29 [HKEY_CLASSES_ROOT\CLSID\{7FB22CF0-50F8-11D3-B327-
005056FDBDB1}\
JavaClass]

 30 @= "sunw.demo.buttons.OurButton"

 31 [HKEY_CLASSES_ROOT\CLSID\{7FB22CF0-50F8-11D3-B327-
005056FDBDB1}\
InterfaceClass]

 32 @= "sun/beans/ole/OleBeanInterface"
 .
 .
 .
 65 [HKEY_CLASSES_ROOT\TypeLib\ {7FB22CF1-50F8-11D3-B327-
005056FDBDB1}]

 66 @= "OurButton Bean Control Type Library"
 67 [HKEY_CLASSES_ROOT\TypeLib\ {7FB22CF1-50F8-11D3-B327-
005056FDBDB1}\1.0]

 68 @= "OurButton Bean Control "

 69 [HKEY_CLASSES_ROOT\TypeLib\ {7FB22CF1-50F8-11D3-B327-
005056FDBDB1}\1.0\
0\win32]

 70 @= "c:\\temp\\OurButton.tlb"

 71 [HKEY_CLASSES_ROOT\TypeLib\ {7FB22CF1-50F8-11D3-B327-
005056FDBDB1}\1.0\
FLAGS]

 72 @= "2"

 73 [HKEY_CLASSES_ROOT\TypeLib\ {7FB22CF1-50F8-11D3-B327-
005056FDBDB1}\1.0\
HELPDIR]

 74 @= "c:\\temp"

Our little Java Bean has generated 74 lines of entries for the Windows Registry. These
entries, along with OurButton.tlb and the original jar file (OurButton.jar),
constitute the ActiveX control to be installed.

One modification is needed before installation. The Registry entries reflect our use of the
c:\temp directory when we ran the packager. These references must, as part of
installation, be changed to reflect the actual product installation directory.

 - 453 -

 Using the New Component

 With the new ActiveX component installed, the OurButton Bean is available for use.

We demonstrate the new component by running Microsoft Word in Visual Basic Design
Mode (see Figure 51.6). To start this mode from Word, launch the Visual Basic editor
(under the Tools menu, Macro submenu) and, in the Visual Basic editor, select Design
Mode from the Run menu. This will bring up two floating tool bars, usable from Word,
offering access to ActiveX controls—including the control we just added.

 Figure 51.6: Adding ActiveX controls to a Word document. Our new control is

one of the available choices.

After the Bean is added, the properties editor (see Figure 51.7) gives us access to the
various properties we exposed through the JavaBeans methods. The component is
blacked out during this step (a Visual Basic feature), but appears afterward showing the
proper settings (see Figure 51.8).

 Figure 51.7: The control has been added, and we can edit its properties.

 - 454 -

 Figure 51.8: The control after it has been customized.

The Microsoft javareg Tool

javareg is Microsoft's answer to the Sun packager. Not surprisingly, it generates
ActiveX components that run on the Microsoft JVM instead of the installed Sun JRE.
javareg is shipped with the Microsoft Java SDK, which is available as a free download
from Microsoft.

javareg is a bit more general than the Sun packager in one respect: Its input is not
confined to Beans, and its output is not confined to ActiveX controls. It can package other
Java classes as COM or DCOM objects. We will use it here with the Java Bean used
previously (in the section "The Sun JavaBeans Bridge for ActiveX").

 Running javareg

 javareg is launched from an MS-DOS command window. It has no GUI—you use

options to control its activities.

 Synopsis:

 javareg <options>

 Options:

 • /class:<classname>—Specify the class to be registered or unregistered.

•

/clsid:<CLSID>—Specify the CLSID to use for the registered class. If unspecified,
one is automatically generated. Typically, you would automatically generate one when
you first release the Bean and then explicitly use that same CLSID with this option
when the Bean is deployed.

•

/codebase:<path>—Specity the path, a URL or directory name, in which the class
being registered can be found. Evidently, this can be a directory or a Microsoft cabinet
(.cab) file, but cannot be a jar file.

 • /control—Register this object as an ActiveX control (used when creating ActiveX

but not COM objects).

 • /nomktyplib—Register an existing typelib file (specified by /typelib) instead of

generating a new one.

 • /progid:<PROGID>—Specify a COM ProgID for the class being registered.

 • /q—Run quietly.

 • /register or /regserver—Register the class specified by /class.

 • /remote:<RemoteServerName>—Activate the class remotely using DCOM.

 • /surrogate—Write the Registry entries for the Java class. Typically used to support

DCOM.

 • /typelib:<filename>—Specify the location of the typelib to be written or, if

 - 455 -

/nomktyplib is specified, to be read.

 • /unregister or /unregserver—Unregister the class specified by /class.

 • /?—Display a help dialog.

 Example:

Assuming that the class file has been placed in
c:\temp\sunw\demo\buttons\OurButton.class, this invocation will register it as
an ActiveX control:

 c:\> javareg /class:sunw.demo.buttons.OurButton /register
/control

 /codebase:c:\temp /typelib:c:\temp\OurButton.tlb

 After successful execution, javareg will display a dialog providing the CLSID. The Bean

should now be usable as an ActiveX control.

A Comparison of javareg Versus Sun's Packager Procedures

 javareg differs radically from the Sun packager in two respects:

 • It is command-line driven.

 • Its purpose is to register (or unregister) Java-based controls, not to create a .reg file

that will allow others to do so.

Unlike the Sun approach, in which you generate Registry entries to ship with the control,
javareg directly manipulates the Registry at installation time. You run it when you need
to register a control; end users run it when they need to register a control. So the steps
(see Table 51.2) of shipping a Java Bean as an ActiveX control are markedly different
between the two tools:

 Table 51.2 Comparison of the Steps to Shipping ActiveX Controls

 Step

Sun Packager

Microsoft javareg

 Creating the

file Control

Run Packager on your jar file to
generate .tlb and.reg files.
Packager also generates a unique
CLSID at this time.

Run javareg on your class
to generate a .tlb file,
generate a unique CLSID,
and register the results in the
Windows Registry.

 Shipping Bits

Ship your jar file, the .tlb file,
and the .reg file - with the .reg
file modified to reflect where
everything will be placed.

Ship your class file and a
copy of the javareg
executable.

 Installing

Install the jar file and the .tlb file.
Add the .reg file entries to the
Windows Registry by running

Install the class file and run
javareg on the deployment
machine to create a .tlb

 - 456 -

regedit.exe. and add the control to the
Registry. Specify the CLSID
explicitly to match the original
value.

 Removing the

Control

Edit the Windows Registry by hand.

Run javareg with the
/unregister option to
remove (some of) the Registry
entries.

Summary

 We have examined two approaches to delivering Java components as ActiveX control to

users in the Windows environment:

•

The solution from Sun, bundled with the Java Plug-in, is particularly well suited to
shipping JDK1.2 functionality in an ActiveX control. Given Sun's limited deployment
message about Java Plug-in 1.1 (discussed in Chapter 50, "Deploying Applets with
Java Plug-in"), using Plug-in v1.2 for this job seems a better choice.

 • The solution from Microsoft is suitable for delivering controls that are closely tied to

execution only on Microsoft's JVM.

Chapter 52: InstallShield: Creating Self-
Installing Java Applications

 Overview

 InstallShield Java Edition is a commercial tool for creating multiplatform Java application

installation packages.

 Platforms: JDK1.1/JDK1.2

One of the downsides of Java's promise of platform neutrality is the delivery problem:
How do you ship something platform-neutral to platforms that are not…well, neutral?
Some examples of application delivery difficulties are as follows:

 • UNIX systems employ different package management technologies that vary by

vendor and even by operating system release.

•

Linux systems employ different package management technologies that vary by
distribution. Even distribution vendors using the same package management
technology (such as Red Hat's and SuSE's use of RPM) cannot necessarily use the
same product installation packages.

•

You can bypass package management and simply install products in a convenient
directory—but then you've saddled the user with the problem of keeping detailed track
of product installations.

•

There are no standards for installing graphical components into an X-based desktop.
How and where do you install an icon to launch an application? How do you associate
file types with applications? The answer varies between CDE, KDE, Gnome, and other
desktops.

•

Although Microsoft Windows offers more GUI consistency than do X desktops,
application installation is a complex and fragile process involving the Windows
Registry and various application and system directories scattered throughout the file

 - 457 -

system.

InstallShield is a commercial product that is long-established in the area of delivering
applications to Windows platforms. Its more recent Java Edition is focused on delivering
Java applications to multiple platforms.

The product is, at present, more strongly focused on the complexities of delivering to
Windows platforms. For UNIX and Linux, it creates usable self-installers that do not try to
solve the (perhaps hopeless) package management and desktop integration problems, but
do provide for easy product installation and removal.

 Obtaining InstallShield

The Java version of InstallShield is available for download, evaluation, and purchase
from http://www.installshield.com/java. You can use the version for "other
Unix platforms," which is provided either as a self-installing shell script, a self-installing
classball (.class file) that can be run by a JVM, or an applet that will install through a
browser.

 Install the product in any convenient directory.

 Running InstallShield

 The InstallShield installation includes a launcher, isjava, in the bin subdirectory.

 Synopsis:

 isjava

This starts the GUI (see Figure 52.1), which you can navigate linearly or, using the
optional navigation pane, randomly. The product requires a JDK1.1 or JDK1.2 installation
to run.

 Figure 52.1: InstallShield GUI welcome screen. The navigation pane is enabled

with the View button in the Extensions menu.

 The next screen (see Figure 52.2) allows you to customize the welcome screen.

 - 458 -

 Figure 52.2: Design your own welcome screen.

 Subsequent screens allow you to specify supported languages, preview the welcome

screen, and specify a target environment (see Figure 52.3).

 Figure 52.3: You can target your application for specific Java revisions and/or

specific platforms—or allow it to run wherever a JRE can be found.

 You can construct a custom Readme panel for displaying introductory textual information,

and a License panel that the user must read and accept during installation.

The destination directory structure is designed in the Installation Directories dialog (see
Figure 52.4), in which you map portions of your development tree or staging area into the
destination directories. Each of these components can be designated as required or
optional, components can be associated with particular locales, and you can control how
much flexibility the user has in placing the directories.

 - 459 -

 Figure 52.4: Designing the destination directory structure.

Subsequent screens allow you to designate language-specific configurations and to
designate scripts (Java classes, actually) to be run during installation. Finally, a series of
three screens helps you through the complexities of delivering into Windows
environments—setting up shortcuts and dealing with the Registry.

After all configuration is completed, InstallShield lets you build a deliverable package (see
Figure 52.5) in formats usable on various destination platforms. The packages can
include JREs that the customer can install, as part of product installation, if the target
machine has none.

 Figure 52.5: You can build a deliverable classball, applet, .EXE, and/or a self-

installing shell script.

Summary

Building delivery packages for users on Java's many platforms is a difficult exercise in
nonportability. InstallShield addresses the problem and, judging from various Java
applications found on the Web, enjoys good success in the marketplace.

Chapter 53: DashO: Optimizing Applications
for Delivery

 Overview

 DashO is an optimizer and obfuscator used to prepare Java applications for delivery.

 Platforms: JDK1.1/JDK1.2

 - 460 -

DashO is a professional tool from Preemptive Solutions, targeted at optimizing Java
applications for delivery. The name (the last character is the letter O, not zero) is
suggestive of the compiler option, -O, often used for optimization, and it reflects the
product's mission: to create highly optimized versions of Java applications.

 DashO's capabilities include

 • Bytecode optimization for improved runtime performance

 • Obfuscation of bytecodes to discourage reverse engineering

 • Shrinking application and library archives to create applications that download more

quickly and consume less disk space

 Preemptive's product line includes versions at various price points. Less expensive

versions provide obfuscation and size reduction; more expensive versions can optimize.

This type of optimization—performed when packaging the product rather than when
compiling—is analogous to link-time optimizations provided in some commercial C/C++
compilers. By using global application information that is not available at compile time, it
can detect optimization opportunities that would otherwise be missed.

Post-compilation optimization has also gained favor among some Java developers
because optimization support is uneven, and sometimes buggy, among different Java
compilers.

 Obtaining DashO

DashO can be downloaded and purchased from Preemptive's main Web site
(http://www.preemptive.com). Available versions include the full-featured DashO-
Pro and the less expensive DashO-OE (Optimization Edition). A no-charge non-GUI
evaluation version is also available, with most of the DashO-Pro capabilities, and with a
license that disallows anything but personal use.

 DashO is shipped in a self-installing shell script: run the script and install to some

convenient location.

This chapter looks at the DashO-Pro capabilities. The product ships with excellent and
extensive documentation; our goal here is to briefly examine what the product can do for
you, not to duplicate the wealth of information found in the manual.

Running DashO

 The DashO-Pro installation provides a jar file, DashoPro.jar, that you must add to your

class path.

 Synopsis:

 java DashoPro [<options>] <configfile>
 java DashoProGui

 The first invocation runs the command-line version; the second runs the GUI.

 Both versions use a configuration file, whose suffix is conventionally .dop, and whose

contents are discussed in the later section "Configuration File Directives."

 - 461 -

The GUI provides a friendly front end to DashO configuration and to managing the .dop
file. The command-line version can be used to batch-run a configuration file saved by the
GUI or created by you in a text editor.

 Command-line Mode Options:

•

-f—Force execution. Normally, DashO will refuse to run if it detects the use of
methods for dynamic loading of classes (for example, Class.forName()). DashO
must know all classes that can ever be loaded to do its job correctly. After explicitly
telling DashO (in the configuration file) of all classes that can be loaded, running with -
f will cause it to complete.

 • -i—Run in "investigation" mode, generating a report but not an output archive.

 • -l—Use less memory (but run slower).

 • -q—Run quietly.

 • -v—Run verbosely.

 The DashO-Pro GUI

When you create a new project in DashO-Pro, a New Project Wizard helps you build the
initial project configuration. The first screen (see Figure 53.1) sets up the class path and
some global options. For this example, we use the PerfAnal project from Chapter 60,
"PerfAnal: A Free Performance Analysis Tool."

 Figure 53.1: Initial setup of the class path and global options under the DashO-

Pro Project Wizard.

Choosing the Use Environment Classpath option will add the current JVM's class
path. Everything else, including application class paths and the bootclasspath (if you are
running under JDK1.2), must be explicitly specified.

Other options selected in this example are forName detection (look for invocations of
Class.forName() in the code) and making many class members public. See the
discussion of the General directive (in the section "Configuration File Directives") for
more explanation of these options.

 The next screen (see Figure 53.2) allows you to specify a project type. For all projects

types, you will then need to specify triggers—the interfaces that the outside world needs.

 - 462 -

Triggers include all advertised main() methods (if you are packaging an application),
init() methods Iif packaging applets), and all public methods and packages (if
packaging libraries).

 Figure 53.2: Specifying the project type and the trigger methods.

DashO-Pro will build a dependency graph, from the triggers, to identify all classes that
are needed by the project. But it will need some help in identifying situations not explicitly
found in the code: Any classes loaded dynamically, or classes whose serialization should
not be modified by the optimization process. The next dialog (see Figure 53.3) solicits
this necessary information. See Subtleties (later in the chapter) for further discussion of
this problem.

 Figure 53.3: Identifying dependencies that cannot be detected by examining

code.

Finally, you can specify any packages to be automatically excluded from the analysis and
the final output (see Figure 53.4). For this example, we exclude javax.*—following
DashO's recommended settings for packaging Swing-based applications.

 - 463 -

 Figure 53.4: Identifying classes to exclude.

After you complete initial configuration, DashO-Pro closes the wizard and analyzes the
results to ensure that all classes are found. You can then interact with the main screen
(see Figure 53.5) to further tune the settings.

 Figure 53.5: The main DashO-Pro GUI. A selection of tabbed pages gives you

access to choices for optimization and obfuscation options.

 All options seen in the various screens correspond to settings in the configuration file,

which are described in the next section, "Configuration File Directives."

The results of running our particular example: All classes except the main class were
renamed to short one- or two-letter names, most methods were renamed, and the size of
the application jar file shrunk by 42 percent.

 Configuration File Directives

 If you run DashO without the GUI, you must provide a configuration file. You can write

one in a text editor or create one by saving configuration settings from the DashO GUI.

 Directives are specified across multiple lines, beginning with a dash and a directive name

followed by a colon, with parameters specified on subsequent lines. The general form is

 -<directive>:
 <parameters>

 - 464 -

 For example:

 -Version:
 1.2

 Here is the full list of configuration directives:

 -Version:
 <version>

 Identify the version of DashO targeted by this configfile.

 -MapFile:
 <filename>

 Create a map file identifying classes and members that have been renamed.

 -ReportFile:
 <filename>

 Generate a report file with summary and details on what has been removed.

 -ClassPath:
 <classpath components>

 Specify the class path to search. The components can be specified on a single line, with

delimiters, or spread over multiple lines without delimiters.

 -Destination:
 <directory or jarfile>

 Specify where the output hierarchy is to be built, either a directory tree or a Java Archive.

 -TriggerMethods:
 <methodnames>

 Specify the method(s), in the form class:method:parameters, that launches the

application.

 -RemoveUnusedElements:
 {all¦none¦onlynonpublics}

 Control the extent of what elements are removed. A good value for applications

containing no classes that will be subclasses is all.

 -ExcludePackages:
 <packagenames>

 Specify packages not to be included in the output classes.

 -General:
 <option>

 - 465 -

 Specify certain global options that control overall behavior. Possible options are:

 • makepublic—Make all classes and non-private members public, for faster runtime

loading.

 • includesun—Include sun.* classes, normally excluded.

 • fornamedetection—Enable DashO heuristics to try to detect classes dynamically

loaded by Class.forName() calls.

 • ignorenotfoundclasses—Do not fail if some referenced classes are not found.

 • leavedebugginginfo—Do not remove debugging info from class files.

 -IncludeClasses:
 <classfile names>

 Specify classes to include that DashO might not otherwise detect as live classes. This is

typically used to specify classes that will be dynamically loaded.

 -IncludeClassesUnconditionally:
 <classfile names>

 Do not remove any members from specified classes that would break serialization

compatibility with versions of the class that have not been processed by DashO.

 -IncludeNonClassFiles:
 <filenames>

 Specify non-class files to include in the output—resource files. Used to specify images

and other such resources to including in the output.

 -RenameOptions:
 {on¦off¦onlynonpublics}

 Specify which classes and members are candidates for renaming to short, cryptic names.

 -RenamePrefix:
 <prefix>

Specify a distinctive prefix to be prepended to all renamed classes. Used to avoid
collision when separate components of the same project are processed in different
DashO invocations.

 -NoRenameClasses:
 <classfile names>

 Specify classes not to be renamed.

 -NoRenameMethods:
 <methods>

 Specify methods not to be renamed, in the format class:method:parameter.

 - 466 -

 -OptimizationType:
 {none¦speed¦size}

 Specify preferred optimization mode. If none, DashO only performs obfuscation.

 Sample Configuration File

 Listing 53.1 shows an example of a configuration file saved from the DashO GUI. These

are the settings from the PerfAnal example shown in the section "The DashO-Pro GUI."

 Listing 53.1 Configuration Settings for the PerfAnal Project

 -Version:
 1.2
 -MapFile:
 -ReportFile:
 -ClassPath:
 ./classes
 /usr/local/Java/jdk1.2/jre/lib/rt.jar
 -TriggerMethods:
 com.macmillan.nmeyers.PerfAnal:main:java.lang.String[]
 -Destination:
 /home/nathanm/Business/Book/Projects/PerfAnal/build
 -ExcludePackages:
 javax.*
 -ExcludeClasses:
 -IncludeClasses:
 -NoRenameMethods:
 -NoOptimizeClasses:
 -NoOptimizeMethods:
 -NoRenameClasses:
 -OptimizationType:
 SPEED
 -Optimizations:
 -RemoveUnusedElements:
 ALL
 -RenameOptions:
 ON
 -RenamePrefix:
 -IncludeClassesUnconditional:
 -IncludeNonClassFiles:
 -General:
 MAKEPUBLIC
 FORNAMEDETECTION

 Understanding DashO Operation

Starting with knowledge of an application's trigger methods—the methods that
commence execution—DashO analyzes an application for all dependencies, ascertaining
what classes and class members are referenced. With this information, it can perform a
number of space and speed optimizations:

 • Rename classes and class members with short names, shortening many entries in

constant pools in all the application's class files.

 - 467 -

 • Remove unused entries or combine equivalent entries in class file constant pools to

save space.

 • Remove unused classes and class members.

 • Discover methods and classes that can be declared final, resulting in fewer virtual

method calls.

 • Discover virtual method calls that can be transformed into direct calls, saving a level of

indirection.

 • Change the access level on classes and class methods to public, creating a shorter

path through class-loading security mechanisms.

The result is a smaller archive of faster code. DashO can also be used on class libraries,
restricting its behavior to transformations that do not damage the capability of classes to
be inherited, have their methods overridden, or be serialized.

Subtleties

Performance and space optimizations, such as devirtualizing virtual method calls
and removing class members, depend on a thorough understanding of how classes
and members are used. Members that are never touched can be removed,
methods that are never overridden can be declared final, and so on.

Building this understanding is a difficult problem in an environment such as Java,
where dynamic class-loading (for example, Class.forname()) and reflective
methods (for example, Method.invoke()) can make it impossible to completely
determine what classes and members will end up being used when the application
runs.

DashO includes optional heuristics that try to derive such information from the class
files—but the problem is not easy. In some cases, ascertaining the class or member
being referenced is trivial:

 Class.forName("Foo")

 In others, it is implied by context:

 String s;
 Foo foo = (Foo)Class.forName(s).newInstance();

 or can be derived from the control flow:

 String s = "Foo";
 Class.forName(s);

 or is hopelessly unsolvable:

 BufferedReader r;
 Class.forName(r.readLine());

 DashO and similar tools can help you discover these cases, but it will take some

 - 468 -

configuration and testing on your part to ensure that you end up with a usable and
deliverable optimized application.

Subtleties

Another subtle problem created by optimization is that of preserving the serialized
representation of a class. If any data fields are identified as unused and are
removed from a class, the serialized representation of the class is changed.

This change can introduce incompatibilities if serialization is used (objects of this class
are saved to a file, sent across a network, or whatever) and another application uses the
serialized version. The IncludeClassesUnconditionally directive is provided
specifically to let you preserve the serialized representation of a class.

Summary

This chapter examined DashO, a commercial offering for packaging Java applications for
distribution. DashO specifically addresses three aspects of application delivery: space
optimization, obfuscation, and bytecode performance optimization.

Part XII: Linux Platform Issues

 Chapter List

 Chapter

54: Java, Linux, and Threads

 Chapter

55: JNI: Mixing Java and Native Code on Linux

 Chapter

56: X Window System Tips and Tricks

 Part Overview

As compelling as is Java's vision of a platform-neutral world, we will always face platform-
specific issues. Where differences occur among Java's various host environments, Java
takes four different approaches:

 • Abstract out the differences between platforms—as the AWT does for GUIs.

 • Replace native functionality with Java and/or native code—as Graphics2D does for

graphical rendering and Swing does for GUIs.

 • Underspecify behavior—threading behavior is sufficiently underspecified to allow

implementation on all platforms.

 • Ignore platform capabilities—deprive developers of access to the unique strengths and

capabilities of a particular host platform.

 This part of the book focuses on some of these issues—using Java on Linux, issues

 - 469 -

unique to Linux, accessing platform-specific capabilities, and issues specific to running
under the X Window System.

 Chapter 54: Java, Linux, and Threads

 Overview

Multithreaded programming has long lurked as a mysterious art in application
development: rarely practiced, and more rarely practiced well. Support has varied widely
among languages and environments, and standardization efforts in the UNIX community
have been slow and controversial.

The early major successes in providing widely available multithreaded capabilities came
from two organizations—Microsoft and Sun Microsystems—that proceeded with their own
designs while standardization efforts muddled along. Those two approaches, NT threads
and Solaris threads, are very much core components of their respective operating
systems and are used under the covers of the Java implementations on those two
platforms.

Other platforms have caught up, thanks to standardization of threading APIs and to
implementation efforts by the various vendors. Combined with other factors—Java's
success as the first mainstream language to provide a good threading interface, the
increasing availability of multiprocessor machines—multithreaded programming is finally
moving from the domain of wizards into the mainstream.

This chapter undertakes a brief exploration of some threading-related topics relevant to
Java development, particularly on Linux. The topic of parallel programming is broad and
deep, touching on fundamental operating system and architectural design issues. We can
only scratch the surface here and will concentrate the discussion on programming models
and problems faced by Java developers on Linux and elsewhere.

What Is Multithreaded Programming?

 Multithreaded programming is a form of parallel programming: the use of independent,

cooperating streams of execution to solve a problem.

Any discussion of parallel programming quickly delves into terms such as parallel
processing, multiprogramming, multitasking, and multiprocessing, all of which have
specific and historical connotations in computer science. The topic also leads to
architectural design concepts such as MIMD (Multiple Instruction, Multiple Data), SMP
(Symmetric Multiprocessing), and MPP (Massively Parallel Processing), and to
distribution/communications mechanisms such as PVM (Parallel Virtual Machine) and
MPI (Message-Passing Interface).

All are interesting topics, particularly for solving large computation problems—but we
aren't going to go there because Java doesn't take us there. All you really need to
understand multithreaded programming, at this level of abstraction and function, is to
wrap your mind around heavyweight processes and lightweight processes.

 Heavyweight Processes

Heavyweight processes are what UNIX programmers have traditionally called simply
processes—separate streams of execution that run in isolation from each other.
Processes run in their own address spaces, interacting (in general) with the kernel but
not usually with other processes (see Figure 54.1).

 - 470 -

 Figure 54.1: Typical heavyweight processes.

The heavyweight processes in Figure 54.1 run in isolation, and are prevented by the
hardware and the operating system from interfering with each other. Each process has its
own data memory, code, instruction pointer (IP) and stack. Some memory is shared (in
the interest of conservation) by heavyweight processes:

 • All processes share read-only access to native code in shared libraries.

 • If more than one instance of a particular program is running, the instances share read-

only access to the text (code) segment of the program.

 Some implementation details are associated with processes, such as how they share

limited CPU resources, but developers do not usually have to worry about them.

 Where processes do need to interact, several enabling mechanisms are provided (see

Figure 54.2).

 Figure 54.2: Heavyweight process interaction.

Among the mechanisms heavyweight processes typically use to interact (see Figure
54.2) are shared memory, interprocess communication mechanisms (pipes, semaphores,
signals, networking), and shared access to the the file system.

 Three factors make heavyweight processes heavy:

 • Significant amounts of resources (most notably, private memory to hold data) are

uniquely associated with each process.

 • When limited resources, such as a single CPU, must be shared among processes, the

context switch between processes is costly.

•

The interaction mechanisms are costly, requiring kernel activity and protocol overhead.
Shared memory is much cheaper than the other mechanisms but is a precious and
limited systemwide resource.

 - 471 -

 Lightweight Processes

Lightweight processes is a synonym (1) for threads. The important difference
between processes and threads is that, in the latter, the
multiple streams of execution share code, memory, and address
space (see Figure 54.3).

(1)
 This is an approximate synonym, as noted in the section "Hybrid Threading Models,"
later in this chapter.

 Figure 54.3: Comparing lightweight and heavyweight processes.

On the right (in Figure 54.3) is a traditional heavyweight process. On the left are two
threads, sharing the data memory and address space, running the same code, but with
private stacks and IPs: each has its own flow of control, local variables, and call stack.

 There are two crucial distinctions between lightweight and heavyweight processes buried

in Figure 54.3:

•

Private memory allocated for data is often a process's largest resource demand on a
system. By sharing this resource, the two threads have reduced their memory demand
to that of a single process.

•

In addition to sharing memory, the threads share address space—a critical difference
from how heavyweight processes can share memory. A memory pointer (or object
reference) in one thread has the same meaning in all threads, increasing the ability of
threads to cooperate on the same problem.

 Indeed, it is often useful, if sometimes simplistic, to think of the threads as multiple

streams of execution within the same process.

 Because of the differences imposed by the shared memory and address space, threads

offer new opportunities and challenges in software design and development:

 • Fully shared access to the address space vastly opens up communications between

the streams of execution.

•

New, low-cost synchronization mechanisms are needed to allow the streams to share
memory without clobbering each other: mutexes, condition variables, monitors, and
such.

 • New levels of developer discipline are required to use the synchronization

mechanisms, and it is difficult to detect when you've done it wrong.

•

Developers must find a workable balance between coarse-grained parallelism (threads
work largely independently) and fine-grained parallelism (threads communicate and
coordinate extensively) that fairly divides the work among threads but does not bog
them down in endless synchronization and communication tasks.

 - 472 -

•

Threading implementations present many new and different implementation details (see
the next section, "Lightweight Process Implementation Details"), which unavoidably
intrude on the design of multithreaded software.

Lightweight Process Implementation Details

 When implementing threads in any environment, the devil is in the details. Here are some

of the details you need to understand and how they can affect you.

 Threading in Which Space?

The use of multiple streams of execution within a process did not begin with the advent of
standard threading mechanisms. Long before, inventive developers were finding other
ways to do the job. Figure 54.4 illustrates such a mechanism.

 Figure 54.4: An example dispatching mechanism for multiple streams of

execution with a process.

 In this example, the dispatcher is responsible for switching process context—CPU

registers and run stack—and for allocating time slices to the different streams.

 User-Space Threads

The example in Figure 54.4 is a simplified version of user-space threads. The mechanism
is implemented entirely by the application in user space, and the kernel is not responsible
for switching contexts. In essence, the application has implemented its own mechanism
for scheduling threads, modeled on the kernel's mechanism for scheduling processes.

One of Sun's important contributions to the early acceptance of Java was a threading
library, green threads, that creates a user-space threading mechanism. Long before all
the UNIX vendors were supporting threading APIs, green threads allowed Netscape to
deliver working JVMs to many different platforms.

Even today, with extensive threading support available on most systems, green threads
are still important. The first working implementation of the JDK on a new platform is
usually based on green threads.

Subtleties

 Building a user-space threading mechanism presents some interesting

programming challenges:

•

Implementing the context-switch itself requires architecture-dependent code to
handle the details of switching stacks and registers. Some assembly-language
coding is usually required.

 - 473 -

•

A single thread must not be allowed to block the entire process. If one thread
wants to issue a read() call, for example, it must not stop the other threads
while it waits for available data. A user-space threading implementation will
typically provide its own implementation of read(), blocking the calling thread
but continuing to dispatch other threads until data becomes available.

•

The threading mechanism must do something sensible when signals are
received, dispatching them to whichever thread is equipped to handle them. This
typically requires the implementation to build its own signal-handling mechanism
to keep track of which threads have registered signal handlers.

 Kernel-Space Threads

Kernel-space threads put control of thread dispatching in the kernel, where the same
logic that switches between processes also switches between threads within processes.
It is often the case that kernel threads are more expensive than user threads, but they
also offer important advantages:

 • They leverage existing kernel scheduling code, creating a cleaner solution.

 • In multiprocessor environments, kernel threads can assign different threads to different

CPUs, user threads cannot.

 The latter point is the most important. Without kernel threads, multithreaded applications

cannot enjoy any of the performance advantages of multiprocessor systems.

 Hybrid Threading Models

Some systems implement hybrid models—kernel-scheduled clusters of user-scheduled
threads. Solaris threads offer such a model and, contrary to our simplistic definition in the
section "Lightweight Processes," Solaris distinguishes between the terms lightweight
processes (scheduled by the kernel) and threads (scheduled in user space within
lightweight processes).

 Java's Threading Model

Understanding operating system threading models is important to using them properly,
but you also face one unsettling certainty with Java: You have no control over the
threading model. The details are settled between the JVM and the operating system.
Your application may run in an environment that offers only one threading model, or the
choice of model may be imposed on you by a user who launches the application with the
-green or -native option specified.

 The good news is that this forces you to write more portable code. The bad news is that

this forces you to write more portable code.

 API ≠ Threading Space

Java provides two threading models on Linux and many other platforms, green and
native. These terms are often interpreted as meaning, respectively, user-space and
kernel-space—but that is not necessarily the case. When discussing Java
implementations, native simply means using a native threading API provided by the
platform (see Figure 54.5).

 - 474 -

 Figure 54.5: Green versus native threads on different architectures.

 "Green" threads (on the left-hand side of Figure 54.5) have an API defined by Sun—the

same API on all platforms—and are implemented with user-space threads.

By contrast, "native" threads (on the right-hand side of Figure 54.5) are implemented with
APIs provided by the native platform. Microsoft Windows and Solaris provide proprietary
native APIs, and other UNIX platforms provide the POSIX P1003.1c pthreads API defined
by the International Standards Organization. But defining an API does not mean defining
an implementation. What lives on the other side of an API is, as shown in Figure 54.5, a
black box—it may or may not be a kernel-based thread implementation. It may even
change over time: Some operating systems, such as HP-UX, shipped user-space
implementations of P1003.1c before they offered kernel threads, and then shipped
kernel-space implementations after the necessary support was in place.

 Under Linux, the POSIX P1003.1c API does use kernel threads. We peek inside the

black box in the section "Linux Threading Specifics" later in the chapter.

 Preemption

Preemption—the capability of the thread scheduler to interrupt one thread to schedule
another—is a feature of many threading implementations, but not all. Java does not
require preemption in threading, and some Java implementations do not preempt.

As a result, Java applications may run in an environment that passes control between
threads at any time. Or, alternatively, a running thread might give up control to other
threads only when it initiates a blocking operation (such as a read()) or explicitly yields
control with the Thread.yield() or Thread.sleep() call.

So an application that needs to run well in all environments must allow for operation with
and without preemption. If your application includes a stretch of compute-intensive code,
for example, that code could potentially hog the CPU in a non-preemptive environment.
This could block out all other threads, including GUI threads, making the application
unresponsive and difficult to use. You may need to add Thread.yield() calls at
strategic places to ensure that important threads are not starved.

Preemptive threading avoids the CPU-hog problem, but it introduces another risk to Java
programs. A thread can be interrupted at any time. Any objects that are being shared
between threads must make use of Java's synchronization mechanisms to ensure that
different threads do not interfere with each others' use of the object.

The bottom line is summed up in this warning: Assume that code can be preempted at
any time, and assume that preemption will never occur. This leads to two prescriptions
for multithreaded development:

 • Use the Thread.yield() call in compute-intensive code to ensure that other threads

can run.

 - 475 -

•

Use Java's synchronization capabilities to prevent threads from interfering with each
other. This means using the synchronized keyword and taking advantage of
Object.wait() and Object.notify() to coordinate activities between threads.

Finally, it's important to test an application under both models. Those that work well
under only one threading model are probably suffering from thread starvation, deadlock,
or a failure to properly synchronize access to shared objects.

 Thread Scheduling

Java makes no guarantees about the order in which threads will be scheduled, which
threads will run concurrently on multiple CPUs, or how big a timeslice threads will get in a
preemptive threading environment. Java applications should not make any assumptions
about the scheduling of threads.

 Thread Priorities

Java supports thread priorities. The Thread.setPriority() call can be used to mark
the relative importance of threads. Priorities are useful, but they are basically suggestions.
There is no guarantee that the underlying threading system supports priorities, or that it
supports as many priority levels as Java offers, or how priorities actually map to thread
scheduling.

 Linux Threading Specifics

 Having explored the threading questions Java faces on any platform, we take a look at

how Linux answers those questions.

Modern Linux implementations include a fully functional POSIX pthread library. Any
application using the pthread API is using kernel threads with preemption. The JDK,
when running with native threads, falls into this category.

 Linux threading is, however, unique. Two factors distinguish the Linux implementation of

threading from that of many other operating systems supporting multithreading:

•

It is fast. Kernel-switched threads are reputed to perform as well as user-space
threads (a rarity), obviating the usual rationale for favoring user-space threads or
hybrid thread models.

 • The thread mechanism is built on a unique system call, __clone(), that generalizes

the traditional fork() call for support of lightweight processes.

The __clone() call is not visible to Java developers, nor is it recommended for use by
C/C++ developers (it's highly nonportable!); but it is used under the covers of the pthread
implementation, and has important implications for multithreaded programs.

In a nutshell, the __clone() call spawns a new system process, similar to the fork()
system call, but allows fine-grained control over whether the parent and child processes
share private memory, file system information, file descriptors, signal handlers, and
process ID. Heavyweight processes share very little, lightweight processes share a lot,
and the standard mechanisms for managing processes work on both.

The upshot of Linux's kernel-space threading model, and the behavior of the __clone()
call, is that threads take up entries in the process table and have unique per-thread
process IDs(2). The consequences are as follows:

(2)
 The__clone() call permits parent and child processes to share a PID, but this is
highly discouraged. There are too many places in the OS where such a practice

 - 476 -

would break important assumptions. Perhaps the existence of this capability implies
future plans to make it work properly.

•

There is a disconcerting tendency for multithreaded processes to show up as many
entries in the process list (see the section "Identifying Related Thread Processes" later
in this chapter.

•

Because the process table is a finite resource, there is a limit on your ability to create
huge numbers of threads. By default, Linux limits a single user to no more than 256
entries in the process table—although you can increase that number if necessary (see
the section on "Increasing the Maximum Number of Processes" later in this chapter).

 Identifying Related Thread Processes

How do you distinguish threads from processes running on your system? This question
was asked in Chapter 15, "Troubleshooting The Blackdown JRE/JSDK Installation," in
the section "Java Use of the Linux Process Table," and is often the reason for panicked
questions from new users of the Blackdown JDK on Linux.

 Consider this output generated by the Linux ps (process status) utility:

 PID TTY STAT TIME MAJFL TRS DRS RSS %MEM COMMAND
 23250 ttyp2 S 0:07 3573 9 30066 12996 10.1 java
 23274 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23275 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23276 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23277 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23278 ttyp2 S 0:01 52 9 30066 12996 10.1 java
 23279 ttyp2 S 0:00 0 9 30066 12996 10.1 java
 23280 ttyp2 S 0:00 5 9 30066 12996 10.1 java
 23281 ttyp2 S 0:00 0 9 30066 12996 10.1 java

To anyone familiar with using ps, this output clearly describes 9 processes, all running
the command java and consuming (according to the numbers in the DRS column) a total
of 270MB of memory.

 But the output is deceptive: In reality, these are all threads sharing the same 30MB of

memory.

 How can you ascertain the truth from the ps output? The short answer is that you can't—

there is nothing in the output identifying these processes as lightweight.

There is a powerful hint, of course: all nine processes have identical memory size. But
that is not proof, it's just a strong suggestion. A more powerful hint is available in the
/proc file system. The /proc/<pid>/ directory (where <pid> is a process ID, and a
directory exists for every current process) contains a number of files whose contents will
be identical for related threads:

•

/proc/<pid>/maps contains a map of a process's memory regions: related threads
will have identical maps. So, using the process IDs that appeared in the ps output, you
will see identical contents in /proc/23250/maps, /proc/23274/maps,
/proc/23275/maps, and so on.

 • For related threads, the information in /proc/<pid>/status will report identical

values for all the Vm* fields.

 • Several other per-process items, such as /proc/<pid>/environ and the contents

 - 477 -

of the /proc/<pid>/fds directory, will match for related threads.

 These approaches are not foolproof, but they are fool-resistant. You can use them to

ascertain, with reasonable certainty, whether two process IDs belong to related threads.

If these instructions seem terribly imprecise, it reflects the non-goal of Linux to provide
this information. Yes, you can identify related threads if it is really important to you, but
simply understanding the reason for so many process entries is the most important
knowledge.

 Increasing the Maximum Number of Processes

In its default configuration, Linux allows a maximum of about 512 total processes and a
maximum of 256 per user. What if your Java application wants to create thousands of
threads?

The first question to ask is whether you really need thousands of threads. Threads are
sometimes the simplest way to solve a problem—a busy Web server might, for example,
spawn a thread to handle every request—but not always the most efficient. Too many
threads can quickly lead to thrashing, and you may find that some creative queuing is a
better solution than is assuming infinite resources. In the succinct words of one
instructive Java Web site, too many threads is usually a sign of "lazy programming."

That said, you can increase Linux's process limits by building a custom kernel. In the
kernel source tree, the file include/linux/tasks.h contains the relevant constants.
By adjusting the values of NR_TASKS and MAX_TASKS_PER_USER, you can support up
to 4,092 processes on an x86-based Linux system.

 Thread Preemption on Linux

The Blackdown JDK port offers green and native-threaded versions of the JVM. Barring
the unlikely possibility that you are not using the standard libpthread, the native-
threading version uses preemptive scheduling. The green-threaded version does not.

 For other Java environments, such as Kaffe and gcj, the behavior can vary with the

implementation and with configuration-time choices.

 Thread Priorities

Thread priorities have no effect under the JDK on Linux. Although Linux offers applications
a certain amount of control over process and thread priority, that control is available only to
processes running as the root user. The Blackdown JDK does not try to set thread
priorities.

 Summary

We have looked at some of the intricacies of Java thread usage under Linux. Applications
running with native threads are supported by a preemptive, kernel-space threading
mechanism. Limitations imposed by the Linux environment include a limit on the allowable
number of threads and no support for thread priorities.

Chapter 55: JNI: Mixing Java and Native Code
on Linux

 Overview

 - 478 -

The capability to interface between Java and native platform code has been
indispensable since Java's early days. It has also been changeable and contentious, as
one might expect at the boundary to native platform functionality. JNI compliance is one
of the issues in the Sun/Microsoft dispute.

The current Java Native Interface—introduced with JDK1.1—is being touted as the final
and correct way to mesh portable code with platform code, and it certainly addresses
many painful problems encountered with earlier interfaces. This chapter takes a look at
the use of JNI in the Linux environment.

The good news is that JNI is a reasonably portable specification, and the ample Sun
documentation about using it on other platforms applies nearly verbatim to Linux. This
chapter focuses on Linux specifics: Why and how to use native components with your
Java programs on Linux.

 Why Use Native Code?

Writing native code is unquestionably a chore; you must deal with new tools and with
languages that are less object-oriented and, well, less fun than developing in Java. But
there are good reasons to add native components to a Java application, which we
discuss in the next two subsections.

 The Need for Speed

The most compelling reason to use native code is performance. Java is slow for many
good reasons (see Chapter 57, "Why Is Java Slow?"), and relying entirely on Java code
for heavy processing creates a guaranteed disadvantage.

Compute-intensive and memory-intensive applications can particularly benefit from using
native components. Java's extensive runtime checking, its heavy use of indirection, and
its far-from-optimal use of memory can inflict a heavy toll on hard-working applications.
Sometimes, only the facilities of a dangerous language such as C or C++ can deliver the
performance you need.

 Native Platform Capabilities

In its ongoing quest for acceptance, Java is eagerly embracing most of the native
platform functionality that the market cares about. Extensions such a Java3D, Java
Media Framework, JavaComm, and Java Advanced Imaging provide portable access to
many specialized hardware and platform capabilities that might otherwise be out of
reach.

But there is still a big hole when it comes to supporting native platform functionality.
UNIX/Linux developers adopting Java will quickly discover some of the things you cannot
do, in the name of portability:

•

You cannot fully exploit the file system—Java has no support for symbolic links, file
permissions, user IDs and file ownership, named pipes, full file status information, and
other unique features found in UNIX/Linux file systems.

 • You cannot interact with the environment—Java gives you no access to UNIX/Linux

environment variables.

•

You cannot control devices—Java offers no basic device control capabilities
comparable to the ioctl() and fcntl() facilities in UNIX/Linux. Need to disable
terminal echo so that the user can type in a password? Not possible.

 • You cannot interact with other processes—You cannot learn anything about

UNIX/Linux processes, or use such interprocess communications mechanisms as

 - 479 -

signals and UNIX-domain sockets.

•

You cannot interact with the X Window System, other X clients, and the window
manager—You cannot control window decorations, read selection buffers, choose
nondefault visuals, launch a browser, iconify or uniconify windows, or perform many
other actions available to normal X clients.

 The list goes on.

Are these limitations considered faults with Java or unreasonable expectations by
UNIX/Linux developers? Probably some of both. Java was certainly not designed to
support development of UNIX system utilities or X window managers. But, on occasion,
the Java definition of portability is simply too constricting, and you need to take
advantage of the strengths of the underlying platform.

 JNI offers you a route to as much native platform functionality as you need.

JNI History

 JNI has four predecessor technologies:

•

JDK1.0 Native Method Interface (NMI)—The original native interface, NMI directly
mapped Java structures into C structures to be passed to native code. This resulted in
a fragile interface because Java does not specify how its objects are to be laid out.
NMI code was, as a consequence, tightly bound to a particular JVM implementation
and could be incompatible with other JVMs or even with different releases of the same
JVM.

 NMI also interacted poorly with garbage collection (GC), and using it imposed severe

limitations on the type of GC algorithms that could be used.

•

Netscape Java Runtime Interface (JRI)—A more portable solution from Netscape that
was used in the Navigator product, JRI was subsequently enhanced into the current
JNI.

•

Microsoft Raw Native Interface (RNI)—Like NMI, RNI provides direct native access to
Java object structures. Although RNI is more GC-aware than NMI, it suffers from
similar concerns and shortcomings.

•

Microsoft Java/COM interface—Microsoft's Component Object Model (COM) offers a
higher-level interface to Java objects than do NMI or RNI. The COM interface is a
force-fit to Java's requirements, but an even greater concern is that COM is still a
single-platform specification that shows no signs of acceptance outside the Microsoft
Windows environment.

Building on the experience of the past interfaces, JNI tries to strike a balance between
speed, portability, and supportability. Sun requires JNI support as a condition of
conformance in JDK implementations and has indicated that JNI-based code will enjoy
support in future JVMs long after support has disappeared for other approaches.

 In a nutshell, the three main features that distinguish JNI from NMI and others are the

following:

•

JNI is portable across JVM implementations. The same binaries should work with any
JVM on a particular platform. (See the section "Understanding Version Sensitivities of
Linux JNI Components," later in this chapter, for some exceptions specific to Linux.)

 • JNI handles data in a portable manner: Rather than passing raw Java structures

directly to native code, access to Java structures is indirect. JNI defines native calls

 - 480 -

through which the native code can read and write class and object members.

 • JNI is friendly to garbage collection, providing new techniques for managing dynamic

objects that do not interfere with advanced GC techniques.

Clearly, JNI increases portability at the expense of performance. Indirect access to objects
and their contents is not free, and JNI will lead to performance gains only if your native
code is doing some non-trivial amount of processing. But JNI also offers the best design, to
date, for building native components that will work with current, future, and multivendor
Java implementations.

JNI History

 JNI has four predecessor technologies:

•

JDK1.0 Native Method Interface (NMI)—The original native interface, NMI directly
mapped Java structures into C structures to be passed to native code. This resulted in
a fragile interface because Java does not specify how its objects are to be laid out.
NMI code was, as a consequence, tightly bound to a particular JVM implementation
and could be incompatible with other JVMs or even with different releases of the same
JVM.

 NMI also interacted poorly with garbage collection (GC), and using it imposed severe

limitations on the type of GC algorithms that could be used.

•

Netscape Java Runtime Interface (JRI)—A more portable solution from Netscape that
was used in the Navigator product, JRI was subsequently enhanced into the current
JNI.

•

Microsoft Raw Native Interface (RNI)—Like NMI, RNI provides direct native access to
Java object structures. Although RNI is more GC-aware than NMI, it suffers from
similar concerns and shortcomings.

•

Microsoft Java/COM interface—Microsoft's Component Object Model (COM) offers a
higher-level interface to Java objects than do NMI or RNI. The COM interface is a
force-fit to Java's requirements, but an even greater concern is that COM is still a
single-platform specification that shows no signs of acceptance outside the Microsoft
Windows environment.

Building on the experience of the past interfaces, JNI tries to strike a balance between
speed, portability, and supportability. Sun requires JNI support as a condition of
conformance in JDK implementations and has indicated that JNI-based code will enjoy
support in future JVMs long after support has disappeared for other approaches.

 In a nutshell, the three main features that distinguish JNI from NMI and others are the

following:

•

JNI is portable across JVM implementations. The same binaries should work with any
JVM on a particular platform. (See the section "Understanding Version Sensitivities of
Linux JNI Components," later in this chapter, for some exceptions specific to Linux.)

•

JNI handles data in a portable manner: Rather than passing raw Java structures
directly to native code, access to Java structures is indirect. JNI defines native calls
through which the native code can read and write class and object members.

 • JNI is friendly to garbage collection, providing new techniques for managing dynamic

objects that do not interfere with advanced GC techniques.

 Clearly, JNI increases portability at the expense of performance. Indirect access to objects

 - 481 -

and their contents is not free, and JNI will lead to performance gains only if your native
code is doing some non-trivial amount of processing. But JNI also offers the best design, to
date, for building native components that will work with current, future, and multivendor
Java implementations.

Connecting Java Methods to Native Functions

To build JNI-based code, you need the javah tool from the SDK (see Chapter 22, "The
Java Native Code Header and Stub File Generator: javah"), and a C or C++ compiler
such as gcc (see Chapter 9, "Setting Up a Linux Development Environment," in the
section "gcc—the GNU C Compiler").

The gateway from Java into native code is through individual Java methods. For every
Java method declared to be native, there is a corresponding C/C++ entry point whose
mangled name reflects the corresponding Java signature. The rules for deriving the
C/C++ name from the Java name are well-documented, but all you really need to know is
how to use javah.

This section describes how to use javah to generate header files and derive the C/C++
entry point names. And it introduces a project, FileStatus, that demonstrates the use
of JNI from the Java side. The next section, "Accessing Java Classes from Native Code,"
discusses the native side of the Java/JNI relationship.

 JDK1.2 JNI Header Generation

 javah generates JNI header files from class files—see Chapter 22. The SDK1.2 javah

generates JNI headers by default, so usage is simple:

 javah <classes>

The result will be one .h file for each class containing native methods, with a function
prototype declared for each native function in the class. The filename reflects the full
package+classname, so a class named foo.bar.Baz would generate a header file
named foo_bar_Baz.h.

 JDK1.1 JNI Header Generation

Generating JNI headers under JDK1.1 differs from JDK1.2 in one minor respect: javah
generates old NMI-style headers by default and must be explicitly told to generate JNI
headers:

 javah -jni <classes>

 The result is the same as with the JDK1.2 javah.

 FileStatus: A Sample JNI Project

As a sample JNI project, we create a class, extending java.io.File, that reports some
UNIX/Linux-specific details about a file: user ID, group ID, access modes, and
information on symbolic links.

 Listing 55.1 contains the Java portion of the project, including the declaration of the

native methods to be implemented in a separate C source file.

 Listing 55.1 FileStatus.java

 - 482 -

 1 package com.macmillan.nmeyers;
 2
 3 // This class reports some Unix/Linux-specific
information about

 4 // files
 5 public class FileStatus extends java.io.File
 6 {
 7 public String uid = null; // UID in text form
 8 public String gid = null; // GID in text form
 9 public int mode = 0; // Mode bits
 10 public String target = null; // Target of
symlink

 11
 12 static
 13 {
 14 System.loadLibrary("FileStatus");
 15 }
 16
 17 public FileStatus(String path)
 18 {
 19 super(path);
 20 getExtendedInformation();
 21 }
 22 public FileStatus(String path, String name)
 23 {
 24 super(path, name);
 25 getExtendedInformation();
 26 }
 27 public FileStatus(java.io.File dir, String name)
 28 {
 29 super(dir, name);
 30 getExtendedInformation();
 31 }
 32 private native void getExtendedInformation();
 33
 34 public static void main(String[] argv)
 35 {
 36 for (int i = 0; i < argv.length; i++)
 37 {
 38 FileStatus file = new FileStatus(argv[i]);
 39 System.out.print(file.toString() +
 40 ": owner = " + file.uid +
 41 ", group = " + file.gid +
 42 ", mode = " + file.mode);
 43 if (file.target != null)
 44 System.out.print(", symlink to " +
file.target);

 45 System.out.println("");
 46 }
 47 }
 48 }

 Lines 7–10 contain the platform-specific data. These fields are filled in by the
getExtendedInformation() code during class construction. The user and group ID

 - 483 -

are returned as strings, and the permissions as a number. If the file turns out to be a
symbolic link, target's non-null String value indicates the target of the link.

 Lines 12–15 contain a static initializer that loads the native portion of the code from a

shared library named libFileStatus.so.

Lines 17–31 extend the constructors found in the superclass. After superclass
construction, they call the getExtendedInformation() native method to fill in the
object fields with platform-specific data.

 Line 32 contains the declaration of our native method, to be implemented elsewhere in C.

 Lines 34–47 contain a simple main() procedure that tests this class by applying it to

filenames requested on the command line.

 Sample Header File Generation

Having written and compiled the Java portion of this project, we can generate the
headers needed by the native component of the project. Running the SDK1.2 javah on
the compiled class

 bash$ javah com.macmillan.nmeyers.FileStatus

 generates the header file com_macmillan_nmeyers_FileStatus.h. The file includes

a function prototype with the signature needed for the native method:

 JNIEXPORT void JNICALL Java_com_macmillan_nmeyers_FileStatus_
 getExtendedInformation(JNIEnv *, jobject);

 Notice reference to several types and macros, JNIEXPORT, JNICALL, Java, JNIEnv,

and jobject, whose definitions are provided by header files included by this header file.

 Native Code Access from Java

A native method call looks like any other method call. Referring to Listing 55.1, lines 20, 25,
and 30 all contain invocations of the native getExtendedInformation() method—no
additional magic is required from the Java side to use it.

Accessing Java Classes from Native Code

 Having discussed the Java side of JNI in the previous section, "Connecting Java Methods

to Native Functions," this section focuses on the native side of the problem.

All native-side access to Java classes, objects, and members is indirect. Your native
code must jump through a few hoops to touch the class contents. As previously
mentioned in the section "JNI History," this is a speed/portability trade-off that makes JNI
a reasonably robust interface. To illustrate access, Listing 55.2 shows the native
component of our sample project.

 Listing 55.2 FileStatus.c

 1 #include "com_macmillan_nmeyers_FileStatus.h"
 2 #include <sys/stat.h>
 3 #include <unistd.h>
 4 #include <pwd.h>
 5 #include <grp.h>

 - 484 -

 6 #include <sys/types.h>
 7 #include <limits.h>
 8 #include <stdio.h>
 9
 10 void
Java_com_macmillan_nmeyers_FileStatus_getExtendedInformation

 11 (JNIEnv *env, jobject obj)
 12 {
 13 struct stat statbuf;
 14 /* Get our class */
 15 jclass cls = (*env)->GetObjectClass(env, obj);
 16 /* Get a method ID for toString() */
 17 jmethodID mid =
 18 (*env)->GetMethodID(env, cls, "toString",
"()Ljava/lang/String;");

 19 /* Get the full file path */
 20 jstring filename = (*env)->CallObjectMethod(env, obj,
mid);

 21 /* Extract the name into a buffer */

 22 const char *filename_str = (*env)-
>GetStringUTFChars(env,
filename, 0);

 23 /* Get file status */
 24 int result = lstat(filename_str, &statbuf);
 25 /* Did the lstat succeed? */
 26 if (!result)
 27 {
 28 /* Yes. Get the name for the UID */
 29 struct passwd *passwd_entry =
getpwuid(statbuf.st_uid);

 30 char pwbuf[64], *pwname;
 31 jstring uid_string = 0;
 32 jfieldID uid_fieldid;
 33 /* Yes. And the name for the GID */
 34 struct group *group_entry =
getgrgid(statbuf.st_gid);

 35 char grbuf[64], *grname;
 36 jstring gid_string = 0;
 37 jfieldID gid_fieldid;
 38 /* And the target of the link */
 39 char *linktarget = 0;
 40 char linkbuf[NAME_MAX + 1];
 41 jstring target_string = 0;
 42 jfieldID mode_fieldid;
 43 /* Did we find a password entry? */
 44 if (passwd_entry)
 45 {
 46 /* Yes. point to it. */
 47 pwname = passwd_entry->pw_name;
 48 }
 49 else
 50 {
 51 /* No. print out the number to a tempbuf and
use that */

 52 sprintf(pwbuf, "%ld", (long)statbuf.st_uid);

 - 485 -

 53 pwname = pwbuf;
 54 }
 55 /* Did we find a group entry? */
 56 if (group_entry)
 57 {
 58 /* Yes. point to it. */
 59 grname = group_entry->gr_name;
 60 }
 61 else
 62 {
 63 /* No. print out the number to a tempbuf and
use that */

 64 sprintf(grbuf, "%ld", (long)statbuf.st_gid);
 65 grname = grbuf;
 66 }
 67 /* Do we have a link? */
 68 if (S_ISLNK(statbuf.st_mode))
 69 {
 70 /* Yes. Resolve the name. */
 71 int namelen = readlink(filename_str, linkbuf,
NAME_MAX);

 72 /* If success, null-terminate the string and
point at it */

 73 if (namelen > 0)
 74 {
 75 linkbuf[namelen] = 0;
 76 linktarget = linkbuf;
 77 }
 78 }

 79 /* We have everything. Time to start filling in
our object.
First

 80 create the strings */
 81 uid_string = (*env)->NewStringUTF(env, pwname);
 82 gid_string = (*env)->NewStringUTF(env, grname);
 83 if (linktarget)
 84 target_string = (*env)->NewStringUTF(env,
linktarget);

 85 /* Find the field ID for the uid */
 86 uid_fieldid =
 87 (*env)->GetFieldID(env, cls, "uid",
"Ljava/lang/String;");

 88 /* Set the string */
 89 (*env)->SetObjectField(env, obj, uid_fieldid,
uid_string);

 90 /* Find the field ID for the gid */
 91 gid_fieldid =
 92 (*env)->GetFieldID(env, cls, "gid",
"Ljava/lang/String;");

 93 /* Set the string */
 94 (*env)->SetObjectField(env, obj, gid_fieldid,
gid_string);

 95 if (linktarget)
 96 {
 97 jfieldID target_fieldid =
 98 (*env)->GetFieldID(env, cls, "target",

 - 486 -

"Ljava/lang/String;");

 99 (*env)->SetObjectField(env, obj,
target_fieldid, target_
string);

 100 }
 101 /* Finally, find the field ID for the mode */
 102 mode_fieldid = (*env)->GetFieldID(env, cls,
"mode", "I");

 103 /* And set it */

 104 (*env)->SetIntField(env, obj, mode_fieldid,
(jint)statbuf.
st_mode);

 105 }
 106 /* Release the name buffer */
 107 (*env)->ReleaseStringUTFChars(env, filename,
filename_str);

 108 }

 Three steps are required to access a class member:

 1. Identify the class (line 15 derives the class ID from the current FileStatus object).

2.

Obtain a member identifier (lines 17–18 obtain a methodID for the toString()
method). This step requires us to specify the full signature of the member—notice the
fourth argument to GetMethodID()—a method signature we obtained with help
from the SDK javap utility.

 3. Use the member identifier to get access to the object. Line 20 uses the methodID to

invoke the toString() method to obtain the file path.

When not busy accessing class members, the code collects some platform-specific
information about the file of interest. Line 24 issues an lstat() call against the file
whose path was obtained in line 20, which returns much of the information of interest.

Lines 29 and 44–54 find or derive a string describing the file's user ID, mapping (if
possible) the numeric ID to the user's name on the system. Lines 34 and 56–66 do the
same for the file's group ID.

Lines 68–78 determine whether the file is a symbolic link and, if so, derive the string
describing the link's target. Lines 81-84 create new java.lang.String objects that will
be written into the FileStatus object.

 Lines 86–104 write the results of our activities into the object fields. The operations to write

out values are similar to the earlier activities in lines 16–20 to read in one of the fields.

Building the JNI Native Component Objects

 Using gcc, the following steps build this project:

 bash$ javac -d . FileStatus.java
 bash$ javah com.macmillan.nmeyers.FileStatus
 bash$ gcc -O -D_REENTRANT -fpic -I$JAVA_HOME/include \
 -I$JAVA_HOME/include/linux -I$JAVA_HOME/include/\
 genunix -c FileStatus.c
 bash$ gcc -shared -o libFileStatus.so FileStatus.o

 - 487 -

 After creating the class file and header file with the first two commands, the third
command compiles the native implementation. The important options are as follows:

 • -D_REENTRANT—Sets a flag causing C/C++ to issue thread-safe calls where needed.

 • -fpic—Compile position-independent code suitable for use in a shared library.

•

-I<directories>—These three -I options cover building against either SDK1.1 or
SDK1.2. The include/linux subdirectory is found in the SDK1.2 tree,
include/genunix in the SDK1.1 tree.

 Finally, the link step, with the important -shared option, builds the shared
libFileStatus.so library.

Listing 55.3 shows the results of running the test main() program to list the contents of
the SDK1.2 bin/ directory. (Notice the use of the java.library.path property to
specify the location of the shared library, libFileStatus.so.)

 Listing 55.3 Running the JNI FileStatus Project

 1 bash$ java -Djava.library.path=.
com.macmillan.nmeyers.FileStatus /usr/
local/Java/jdk1.2/bin/*

 2 /usr/local/Java/jdk1.2/bin/appletviewer: owner = root,
group = root,
mode = 41471, symlink to .java_wrapper

 3 /usr/local/Java/jdk1.2/bin/extcheck: owner = root, group
= root, mode =
41471, symlink to .java_wrapper

 4 /usr/local/Java/jdk1.2/bin/i386: owner = nathanm, group =
401, mode =
16877

 5 /usr/local/Java/jdk1.2/bin/jar: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 6 /usr/local/Java/jdk1.2/bin/jarsigner: owner = root, group
= root, mode =
41471, symlink to .java_wrapper

 7 /usr/local/Java/jdk1.2/bin/java: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 8 /usr/local/Java/jdk1.2/bin/java-rmi.cgi: owner = nathanm,
group = 401,
mode = 33261

 9 /usr/local/Java/jdk1.2/bin/java_g.bak: owner = nathanm,
group = users,
mode = 33261

 10 /usr/local/Java/jdk1.2/bin/javac: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 11 /usr/local/Java/jdk1.2/bin/javadoc: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 12 /usr/local/Java/jdk1.2/bin/javah: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 13 /usr/local/Java/jdk1.2/bin/javap: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 - 488 -

 14 /usr/local/Java/jdk1.2/bin/jdb: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 15 /usr/local/Java/jdk1.2/bin/keytool: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 16 /usr/local/Java/jdk1.2/bin/native2ascii: owner = root,
group = root,
mode = 41471, symlink to .java_wrapper

 17 /usr/local/Java/jdk1.2/bin/oldjava: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 18 /usr/local/Java/jdk1.2/bin/policytool: owner = root,
group = root, mode
= 41471, symlink to .java_wrapper

 19 /usr/local/Java/jdk1.2/bin/rmic: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 20 /usr/local/Java/jdk1.2/bin/rmid: owner = root, group =
root, mode =
41471, symlink to .java_wrapper

 21 /usr/local/Java/jdk1.2/bin/rmiregistry: owner = root,
group = root, mode
= 41471, symlink to .java_wrapper

 22 /usr/local/Java/jdk1.2/bin/serialver: owner = root, group
= root, mode =
41471, symlink to .java_wrapper

 23 /usr/local/Java/jdk1.2/bin/tnameserv: owner = root, group
= root, mode =
41471, symlink to .java_wrapper

 This output shows you something you probably already knew: that most of the scripts in the

JDK bin/ directory are links to a single script.

 Running Java from Native Code: The Java Invocation API

The JVM can be started up from a native application through the Invocation API, which
launches the JVM—provided as a shared library—through a simple sequence of C/C++
calls. The java launcher executable is, itself, a small native application that uses this API
to start the JVM.

The Invocation API works under Linux as elsewhere and is covered in existing Sun SDK
documentation. The source for the java launcher is shipped as part of the SDK itself: the
file src/launcher/java.c, in the src.jar archive in the top-level directory of the
JDK1.2 installation, provides a good example of how to launch the JVM from native code.

Debugging JNI Code

Debugging JNI code is possible, if a bit tricky. You need to run a native debugger, such
as the GNU Debugger (gdb), and you need to jump through a few hoops—a (currently)
unavoidable problem when debugging code resident in dynamically loaded libraries.

 Here is a sequence of steps that works for me:

 1. Compile and link the native components with the -g (debug) option.

 2. Set LD_PRELOAD to point to native shared libraries you want to debug.

 3. Set DEBUG_PROG to a command string that will launch a debugger.

 - 489 -

 4. Run the Java green-threads launcher: java -green. This will start up the debugger

(the launch script uses $DEBUG_PROG for this purpose).

 5. In the debugger, set a breakpoint at main().

 6. Run the program, specifying the Java command-line arguments in the run command.

 7. After the debugger hits the main() breakpoint, set a breakpoint in your native code

and continue execution.

 8. After the debugger hits your breakpoint, start debugging.

 Example Debugging Session

 After recompiling the native code with the -g debugging flag, we set up to run with the
ddd debugger:

 bash$ LD_PRELOAD=./libFileStatus.so DEBUG_PROG="ddd —gdb" java -
green

 This starts ddd, running the Java green-threads executable. We set a breakpoint at
main() by pressing the Break button (see Figure 55.1).

 Figure 55.1: ddd startup, running the Java launcher executable

 We start the debugger by choosing Program, Run from the menu and specifying the

Java command-line arguments in the Arguments dialog (see Figure 55.2).

 - 490 -

 Figure 55.2: Specify the Java launch arguments in the Arguments dialog.

 The arguments, which are partly obscured in the text box, are

 -Djava.library.path=. com.macmillan.nmeyers.FileStatus.

Launching the application from this debugger dialog is a bit more cumbersome than
launching from a shell. Unlike a shell, the debugger does not perform command-line
expansion—we cannot use wildcards or other shell conveniences to construct the
command.

 After pressing the Run button, the program starts, and the command window (see Figure

55.3) shows that we have hit the breakpoint in main().

 Figure 55.3: The debugger has hit the breakpoint in main().

The breakpoint encountered by the debugger in Figure 55.3 is the java launcher's
main() procedure. Notice that the debugger is complaining that it cannot find the
source.

Having reached a breakpoint in native code, we can finally set a breakpoint in our
shared-library code. Because the library is already loaded (recall that it was preloaded)
we can set the breakpoint by typing or pasting the name in the text window (see Figure
55.4, left-hand side) and pressing the Break button. We continue execution by choosing
Program, Continue.

 Figure 55.4: Setting a breakpoint for the JNI code.

 After continuing, we hit our breakpoint (see Figure 55.5) and continue into a normal

debugging session.

 - 491 -

 Figure 55.5: Ready for native debugging.

 Variations in Debugging Startup

 The challenge in debugging with dynamically loaded libraries is to reach a state in which

you can set an initial breakpoint. The two necessary components of this state are:

 • Program execution has commenced.

 • The library has been loaded.

Our first technique was to preload the library with the LD_PRELOAD environment variable.
The following sections discuss a couple of alternative approaches that do not require
preloading.

 Set a Breakpoint at Library Loading

The dlopen() procedure is responsible for loading all dynamically loaded libraries. By
stopping before and after every execution of dlopen(), you can watch libraries being
loaded. After you see your JNI library being loaded, you're ready to set a breakpoint and
debug.

 The sequence is this:

 1. At debugging session startup, set a breakpoint at dlopen and continue execution.

2.

When you hit a dlopen() breakpoint, type the finish command into the interactive
window (see Figure 55.6) to skip past the rest of dlopen() execution. dlopen() will
load the library and stop immediately after completion.

 Figure 55.6: Using finish to skip past dlopen() execution.

 - 492 -

After completion of the dlopen() procedure, gdb prints out information about its
procedure, which includes (by a certain amount of luck) the name of the library just
loaded. In Figure 55.6, you have just loaded the library providing the JIT compiler.

 This isn't the library you want to debug, so you must repeat step 2 until you have loaded

your native library. Now you can set a breakpoint.

 Insert a Breakpoint in Source

The easiest solution to setting a debugging breakpoint is a shameless hack: Insert a
breakpoint directly into the native source code. This avoids the tedious steps we
previously prescribed.

 The following C/C++ inline x86 assembly-code (recognized by gcc and g++)

 __asm__("int $0x3");

inserts the code for a breakpoint directly into the native code: Place it wherever you want
to break and recompile the native code. You can run your application under a debugger
without the elaborate preparations given previously: This is a permanent breakpoint.

 But beware: Do not try running this code outside a debugger—it will abort and dump

core.

 Understanding Version Sensitivities of Linux JNI
Components

Although JNI offers excellent binary portability across JVM versions, there are two
sensitive areas in which JNI cannot offer much versionitis protection. These are
discussed in the following sections.

 libc Version

As discussed in Chapter 13, "Blackdown: The Official Linux Port," in the section "An
Important Note About libc," evolution of the GNU C library has created some prickly
compatibility issues under Linux. A JNI native component built against libc5 is not usable
with a glibc-based JVM, and vice versa. Just as the JVM is published in versions for
multiple libraries, so too must JNI components be run in an environment that matches the
build environment.

If your JNI component targets JDK1.2, the good news is that the Blackdown JDK1.2 is
published only for the glibc environment—you will not have to create a libc5-based
version.

 Threading Model

If you need to use the POSIX pthread API, do not use it from code that will be run under a
JVM with green threads. Mixing pthread calls with green threads is an absolute
incompatibility.

 Building Old NMI Code

 The old Native Method Interface is still supported in the "classic" JVM under JDK1.2, but

not in HotSpot, and possibly not in future JDK releases.

 - 493 -

 NMI is clearly a dead end, but here's what you need to know if you need to build NMI
source under current SDKs.

 Building NMI Under SDK1.1

 javah generates NMI headers and stubs by default. To generate headers:

 javah <classes>

 To generate C stub files:

 javah -stubs <classes>

 To compile NMI native modules, add the SDK's include/ subdirectory to the compiler's

include path (using the gcc -I option).

 Building NMI Under SDK1.2

 JNI is the default native interface under JDK1.2. To generate old NMI-style headers:

 javah -old <classes>

 To generate C stub files:

 javah -old -stubs <classes>

 To compile NMI native modules, add the SDK's include-old/ subdirectory to the

compiler's include path (using the gcc -I option).

 For Further Reading

The JDK1.1 and JDK1.2 documentation bundles include detailed instructions on using JNI.
The JNI spec can be found in document docs/guide/jni/spec/jniTOC.doc.html in
either bundle.

 Summary

JNI is your entry to platform-specific code, both to improve application performance and
to access native capabilities that Java might not give you. The current JNI design
replaces some older, faster, but more fragile techniques with a robust design that should
support you through future JDK releases and with JVMs from other vendors.

JNI usage from Linux is similar to usage from other platforms. Other than a handful of
compilation options (see the section "Building the JNI Native Component Objects" earlier in
this chapter) and version concerns (see the section "Understanding Version Sensitivities of
Linux JNI Components" earlier in this chapter), the instructions for using JNI from Solaris
are usable, verbatim, for JNI development under Linux.

Chapter 56: X Window System Tips and Tricks

 Overview

 The Java AWT enjoys a close, personal relationship with the underlying graphics display

system on its host machine, and in the Linux environment this means the X Window

 - 494 -

System. This chapter probes that relationship in some detail, concentrating on the areas
that affect Java application behavior and interaction with other X applications.

 There are many varied topics ahead. In a nutshell, this chapter covers:

 • Understanding X visuals and Java AWT support/nonsupport (see "X Server Depth,

Visuals, and Java Support").

 • Requesting private colormaps and nonstandard visuals from Java—with code (see

"xwinwrap: Controlling Colormap and Visual Usage").

 • Changing X Server settings to work around AWT limitations (see "Experimenting with

X Server Settings").

 • Using X Window System capabilities not exposed by the AWT—with code (see

"Exercising Full X Capabilities").

 • Using the AWT on hosts (that is, servers) without displays (see "Server-Side AWT:

Using AWT/X Without a Display Device").

X Server Depth, Visuals, and Java Support

Users of the Blackdown JDK1.2 port, running on Linux boxes with advanced displays,
have sometimes been surprised to learn that they cannot run Java graphical or GUI
applications (see Chapter 15, "Troubleshooting The Blackdown JRE/JSDK Installation,"
in the section "Limited Support of X Visuals"). The X Window System is capable of
supporting many display depths and visuals, and the complex JDK1.2 Graphics2D
pipeline cannot (yet) deal with all the choices.

 This section looks at the problems of understanding X's capabilities and what Java can

and cannot do with these capabilities.

 Understanding Display Depth

 Display depth is a familiar concept: It's the number of bits devoted to representing each

pixel in a display device.

In the early days of expensive memory and bitonal displays, display devices had a depth
of 1—a pixel was on or off, it occupied a single bit of memory, and the contents of a full
320x240 screen could fit in less than 10KB of memory.

Such devices are now rare. Most common display devices today have a depth of at least
8, and depths of 16 and 24 are common. Many display devices allow flexible memory
usage, letting you trade off depth and resolution—high-res at low-depth, or low-res at
high-depth. The available choices are staggering, and a huge challenge for the Java
AWT.

 Understanding Display Class

The X Window System uses the term display class to describe six different models for
how pixel values in display memory map to colors on the screen. In all these models,
pixel values serve as indices into color tables. The difference between the models is in
how the pixel values are interpreted, how many tables are used, and how the tables are
populated.

 Figure 56.1 shows the six display classes used by X.

 - 495 -

 Figure 56.1: The six X Window System display classes.

The three classes in the top row, PseudoColor, DirectColor, and GrayScale, are
read/write classes: the contents of the tables are set by X clients. Two of these models,
PseudoColor and GrayScale, index into a single table of RGB or Gray values
(respectively). DirectColor packs three indices into a pixel value. Each acts on one
primary color table, and the resulting primaries are combined to generate the final color
value.

The three classes in the bottom row, StaticColor, TrueColor, and StaticGray, are read-
only versions of the first three classes. The contents of the color tables cannot be set by
X clients but are instead initialized to fixed color ramps that span the color space or the
gray levels.

Subtleties

In all the display classes described here, the size of the individual color table entries
is the same. Color values in X are specified with 16-bit quantities, so you can
describe 2^16 distinct gray values and 2^48 distinct RGB values. That is well
beyond the capability of hardware to handle, or the human eye to perceive. The X
server quantizes them down to whatever the hardware supports.

 Understanding X Visuals

 In X Window System terminology, a visual is a combination of a display depth and a

display class. Examples are 8-bit PseudoColor and 24-bit TrueColor.

X can, in theory, allow any combination of depth and class, although some combinations
make more sense than others. The most frequently used visual on 8-bit color displays is
8-bit PseudoColor—a sensible way for multiple applications to share scarce entries in the
color table.

 On 24-bit displays, the DirectColor and TrueColor classes are the most commonly used.

Whatever the capabilities of the display, the X server offers some set of visuals, and it
offers a default visual that is used by the root window and by most applications. You can
find out what is available from your X server, and the default values, by running the
xdpyinfo utility. Listing 56.1 shows a typical excerpt of xdpyinfo output for an 8-bit

 - 496 -

XFree86 server.

 Listing 56.1 The xdpyinfo Output for an 8-Bit Display Device Shows That Six

Different Visuals Are Supported

 number of visuals: 6
 default visual id: 0x22
 visual:
 visual id: 0x22
 class: PseudoColor
 depth: 8 planes
 available colormap entries: 256
 red, green, blue masks: 0x0, 0x0, 0x0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x23
 class: DirectColor
 depth: 8 planes
 available colormap entries: 8 per subfield
 red, green, blue masks: 0x7, 0x38, 0xc0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x24
 class: GrayScale
 depth: 8 planes
 available colormap entries: 256
 red, green, blue masks: 0x0, 0x0, 0x0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x25
 class: StaticColor
 depth: 8 planes
 available colormap entries: 256
 red, green, blue masks: 0x7, 0x38, 0xc0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x26
 class: TrueColor
 depth: 8 planes
 available colormap entries: 8 per subfield
 red, green, blue masks: 0x7, 0x38, 0xc0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x27
 class: StaticGray
 depth: 8 planes
 available colormap entries: 256
 red, green, blue masks: 0x0, 0x0, 0x0
 significant bits in color specification: 8 bits

This server offers 8-bit visuals for all six display classes. Notice that for DirectColor and
TrueColor, 3 bits of the pixel value are used as a red index, 3 for green, and 2 for blue.
It's a weird visual, but it's available to X clients that need it.

 - 497 -

 Listing 56.2 shows some typical xdpyinfo output for a 24-bit server.

 Listing 56.2 The xdpyinfo Output for a 24-Bit Display Device Shows Two

Dupported Visuals

 number of visuals: 2
 default visual id: 0x22
 visual:
 visual id: 0x22
 class: DirectColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff, 0xff00, 0xff0000
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x23
 class: TrueColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff, 0xff00, 0xff0000
 significant bits in color specification: 8 bits

This server offers only two visuals; clients do not even have the option of running with 8-
bit PseudoColor windows. Some commercial UNIX X servers offer multiple depths. The
choices for the 24-bit server might also include some 8-bit choices, and XFree86 is
planning to do the same in a future release.

 Understanding X Colormaps

The section "Understanding Display Class" earlier in this chapter described X's use of
color tables. A colormap is an X resource containing the set of tables needed to
implement a visual. A colormap for 8-bit PseudoColor is a table with 256 entries; a
colormap for 24-bit TrueColor is three tables of 256 entries each (assuming the usual
division of 8 bits/color).

The X server starts up with one colormap per screen—a default colormap used by the
root window and used by most X clients. But clients have the option of requesting private
colormaps, which they may do for either of two reasons:

 • To avoid crowding the colormap used by everyone else. As an example, Netscape

Navigator's -install option installs a private colormap.

 • To use a nondefault visual.

When clients use private colormaps, the X window manager is responsible for installing
and uninstalling that colormap when that client gains or loses the focus. The familiar
result of this is the "technicolor" flashing that shows all other applications with false
colors.

Subtleties

 X can manage as many colormaps as fit in memory. It's possible for hundreds of

different clients to have custom colormaps. Unlike the software, most display

 - 498 -

hardware supports a single colormap, so X must install the currently relevant
colormap from its own buffers into the display hardware. As the focus moves from
window to window in an X display, X ensures that the hardware is using the
colormap created for that window.

Some display hardware in the UNIX workstation market includes support for
multiple colormaps, allowing several clients to have private colormaps without
causing color flashing. It is the X server's job, in its device-specific code, to properly
manage such hardware.

 How Does This Affect Java?

 X applications face a huge universe of choices: six different display classes, many

possible depths, and the capability to choose nondefault visuals and colormaps.

The Sun AWT, at present, does not take advantage of these choices. It either works with
the X server's default settings or it doesn't work at all—and there are many settings with
which it doesn't work.

To run Java on X servers with default settings the AWT does not support (in general, this
means visuals not found on Solaris), you must work around the limitations: Either select
non-default visuals the AWT can handle, or change X server settings to provide new
visuals the AWT can handle. The next two sections describe steps you can take to run
Java on uncooperative display devices.

xwinwrap: Controlling Colormap and Visual Usage

Most UNIX/Linux users are familiar with Netscape's -install option. It causes
Navigator to install a private colormap to avoid sharing a crowded colormap with other X
clients. Also available, but not as widely used, is a -visual option that lets you run
Navigator with any visual offered by the X server.

Unfortunately, this flexibility is not a universal practice. Many X clients give you no choice
but to run with the default visual and to share the crowded default colormap. Sun's Java
AWT falls into this category.

We present a small project, xwinwrap, that gives you a workaround. It allows you to run
any X client with its own colormap and with a nondefault visual. It can help the Sun AWT
in a couple of ways:

 • By installing a private colormap, the AWT will not run out of colors due to the demands

of other X clients.

•

By specifying a nondefault visual, the AWT may be usable on displays for which it
cannot handle the default visual. This will become especially useful after XFree86 has
added support for multiple depths (as discussed previously in the section
"Understanding X Visuals").

 Theory of xwinwrap Operation

When X clients open a network connection to the X server, they are given information
about the current X server configuration, including the default visual and colormap.
Clients not interested in private colormaps or nondefault visuals simply use these values
when creating new top-level windows.

 xwinwrap provides an onionskin library (a thin wrapper between the real X library and

 - 499 -

the client) that intercepts calls to the Xlib functions XOpenDisplay() and
XCreateWindow(), substituting nondefault values as needed. Without making any
change to the application itself, xwinwrap allows you to make choices, not otherwise
offered by the application, about the application's colormap and choice of visual.

 Usage

xwinwrap is provided as a shared library, which you preload using the LD_PRELOAD
environment variable. This step interposes xwinwrap between the application and the X
library, where it can do its work.

Input is provided to xwinwrap through a single environment variable:
XWINWRAP_VISUALID. Set it to the number (reported by xdpyinfo) of the visual you
want to use. If this variable is not used, xwinwrap installs a private colormap using the
default visual.

 Example:

 Using the 8-bit server shown in the section "Understanding X Visuals" earlier in the

chapter, we run Java with a GrayScale visual:

 bash$ LD_PRELOAD=xwinwrap.so XWINWRAP_VISUALID=0x24 java ...

 Building xwinwrap

xwinwrap is implemented in a single C source file, which is provided on the CD-ROM
and also shown in Appendix B. The following steps will build the xwinwrap library from
source:

 bash$ gcc -D_REENTRANT -c -fpic xwinwrap.c
 bash$ gcc -o xwinwrap.so -shared -nostdlib xwinwrap.o -ldl

 Caveats

 xwinwrap is a low-risk tool, but a few warnings are in order:

•

Like all other native code, it depends on the libc version it was built against (see the
discussion in Chapter 13, "Blackdown: The Official Linux Port" in the section "An
Important Note About libc"). If you build it under glibc, it will work only with glibc-based
X clients. If you build it under libc5, it will work only with libc5-based clients.

•

xwinwrap performs its magic by meddling with the supposedly opaque X Screen data
structure. This can, theoretically, be broken by future changes to X data structures. But
such changes would also break many X clients and are unlikely to occur in X11R6.

•

xwinwrap violates the assumption that the "default" visual is the one used by the root
window. In the unlikely event that the X client renders to the root window with the
default GC, this could lead to incorrect colors or a BadMatch X protocol error.

 Finding the Right Visual

xwinwrap gives you two capabilities not found in the Java AWT: installing a private
colormap and choosing a non-default visual. With the latter, you can select any visual
available from the X server (as we discussed previously in the "Usage" section). But
there is no guarantee that any available visual will be one the AWT can handle—you may
truly be unable to run Java GUI applications.

 - 500 -

In that case, the next step is to try running the X server with different settings. The next
section discusses how you can experiment with settings that control available display
depths.

 Experimenting with X Server Settings

As noted in the section "Understanding X Visuals" earlier in this chapter, X servers offer a
limited collection of visuals, generally restricted to a single depth. That's a problem with
current X servers and current releases of the Sun JDK1.2: There are many visuals with
which the AWT simply does not work.

Fortunately, most X servers give you a choice. Even when running with very capable
deep hardware, most X servers have the option of running in an 8-bit mode or some
other mode that the AWT can handle. It's not a happy solution to give up the capabilities
of a deep display, but it is sometimes a necessary one until better AWTs are available.

 X Server Options

 Two options in the X server command line allow you to experiment with depths and

visuals:

 X -bpp <depth> -cc <class> ...

 Options:

 • -bpp <depth>—Set the bits-per-pixel display depth.

•

-cc <class>—Set the default visual class. This doesn't affect which visuals are
available, but it does control the choice of default visual. The possible values for
<class> are as follows:

 • 0—StaticGray

 • 1—GrayScale

 • 2—StaticColor

 • 3—PseudoColor

 • 4—TrueColor

 • 5—DirectColor

 How to Safely Experiment with X Server Invocation

Few users invoke the X server directly. The most common invocations are by the display
manager (when the system automatically starts X) or with the startx or xinit
commands (when you start X from the console). This section discusses how to
experiment with settings without rendering your console unusable or inaccessible.

 X Display Manager

If your X server starts up automatically and presents you with a login screen, you are
running an X display manager. Every display manager has its own unique configuration
procedures. If you are running the classic xdm (from the MIT sample implementation), or

 - 501 -

something based on xdm, it is probably relying on a file called /etc/X11/Xservers or
/etc/X11/xdm/Xservers to specify the X server startup command.

 If you are a Red Hat 6.0 user, you are probably running the newer gdm, which usually

takes its X server startup command from /etc/X11/gdm/gdm.conf.

Whichever display manager you run, you will need to locate the appropriate configuration
file, find the X server launch command, and add the appropriate options. This file is not
writable by ordinary users—you must be running as the root user to edit it.

But don't do it yet! If you put bad values into this file, you may end up with an X server
that will not start up and a console that is difficult to log in to. For purposes of
experimentation, the following procedure should keep you from getting locked out (most
of these operations require you to be running as root; we will use the customary # prompt
to indicate that root is running the command shell):

 1. Change your init state to 3 so you can start experimenting, with the following

command:

 bash# /sbin/telinit 3

 This will immediately kick you out of the X server into a text-mode console. You

should be able to log into the console and use the command shell.

 If you get into trouble, see the "Emergency Reboot" section later in the chapter.

 2. Knowing now that you can safely work in init state 3, edit the /etc/inittab file

(again, running as root) and look for a line like this:

 id:5:initdefault:

 and change the 5 to a 3. This ensures that you will automatically enter init state 3 (no

X server login) after rebooting.

 3. Experiment with X server startup values using startx or xinit (see the later

section "Trying X Server Settings").

4.

After you have found X server options that work for you, try them with the X display
manager. Edit the appropriate configuration file (again, running as root). For example,
if your display manager is using gdm, you may need to add options to a line in
/etc/X11/gdm/gdm.conf that looks like this:

 0=/usr/bin/X11/X <options...>

 5. Try returning to init state 5, with the following command:

 bash# /sbin/telinit 5

If all goes well, you will see the X login screen and you can start a desktop session. If
there is a problem, X may fail to come up or stay up. See the "Emergency Reboot"
section. After reboot, you will be back in init state 3 (no X server) and can straighten
things out.

 6. Everything works? Your desktop is still functional? Edit /etc/inittab (again,

running as root), change the default init state from 3 back to 5. You're finished!

 These procedures are admittedly overcautious and paranoid, but they should keep you

 - 502 -

out of trouble.

 Trying X Server Settings

If you are not running an X display manager, you probably start up your X server with the
startx or xinit command. The two are similar—startx is a small shell wrapper
around an xinit invocation and is the preferred invocation.

 If you normally run an X display manager, but have disabled it for experimentation,
startx is the command you need to launch an X server.

 Synopsis:

 startx [— <X server options>]

The <X server options> are passed to the X server; you can use this to try the -cc
and -bpp options described in the section "X Server Options." To try this for the first time,
just invoke it by itself:

 bash$ startx

It should start up an X session with a desktop (possibly not the same desktop that runs
under your display manager). You should be able to start up a terminal window and to
experiment with running Java programs to see whether they work. When you're satisfied
that you can use the desktop and run Java programs, exit the X server with the
Ctrl+Alt+Backspace key combination and start experimenting with X server settings.

 Here are some startx invocations worth trying:

 bash$ startx — -bpp 8

 This runs the X server in 8-bit mode. It is virtually guaranteed to work and to allow Java

AWT applications to run.

 bash$ startx — -bpp 16

This runs the X server in 16-bit mode. This typically offers just one or two visuals. the
XFree86 SVGA server currently offers only a TrueColor visual with 5 bits of red, 6 bits of
green, and 5 bits of blue. If the AWT is unable to run in this mode, try the next one:

 bash$ startx — -bpp 15

This invocation also runs a 16-bit server but with a visual that (it is reported) makes the
AWT happier. The 15-bit TrueColor visual uses 5 bits per primary color and ignores the
upper bit of each 2-byte pixel value.

 bash$ startx — -bpp 24

On some server/hardware combinations, this runs a 24-bit server with TrueColor and/or
DirectColor visuals with 8 bits per primary color. On some hardware, the result looks
strange and terrible and unusable. Try the next option:

 bash$ startx — -bpp 32

When you ask for a 32-bit server, you generally get a 24-bit server that puts its pixels on
32-bit address boundaries. For some types of display hardware, this is exactly the setting
you need to get a working 24-bit server.

 - 503 -

The other relevant X server option is -cc, which sets the default visual class using the
values described in the section "X Server Options." You don't usually need this option; it
generally defaults to a reasonable value. But it is available for experimentation. By
combining it with the -bpp option, you fully specify a default visual. For example:

 bash$ startx — -bpp 8 -cc 3

 This invocation runs the X server with a depth of 8 bits per pixel and a default visual of 8-

bit PseudoColor.

 If you request a default visual that is not available with the requested depth, the server

will complain and fail to start up.

 With all these options, you should be able to find an X server setting that will support

Java applications on your system.

 In Case of Emergency

Experimenting with the X server is not dangerous, but it is possible—especially if you use
a display manager—to put the machine into a mode that makes it difficult or impossible to
log in from the console. If, for example, you choose settings that your desktop cannot
handle, you may not be able to proceed past the display manager login screen.

Here are some emergency procedures that should help you out of such a bind. By testing
desktop startup, and falling back on these procedures as necessary, you can ensure that
your desktop works with new settings before you re-enable automatic X login.

 Network Access

Even if you lock yourself out of the console, the rest of your system is fully functional. If
your machine is networked and you can log in to it remotely, you can always log in and
clean up from a remote terminal.

 X Failsafe Mode

You may find that X runs, and the login screen runs, but the desktop will not start up.
Perhaps it is unhappy with the default visual. In this case, use the display manager's
option to select a "failsafe" session (see Figure 56.2). This starts up a basic X session
with a single terminal and no window manager. Failsafe mode is not very friendly, but it is
robust and allows you to make fixes to your environment.

 Figure 56.2: Most display managers offer you a "failsafe" session.

 Emergency Reboot

 - 504 -

 The two most import key combinations to know in Linux are

•

Ctrl+Alt+Delete—This reboots your system. On any reasonably modern Linux, this
executes a clean reboot that shuts down your system in an orderly manner before
restarting.

•

Ctrl+Alt+Backspace—This aborts the X server. The Ctrl+Alt+Delete combination
doesn't work when the X server is running—it is intercepted by the server. But you can
use Ctrl+Alt+Backspace to abort the X server and then press Ctrl+Alt+Delete to
reboot.

If a display manager is running, it will start a new X server moments after you abort. If you
are trapped by an X server you cannot use but cannot stop from restarting, you must act
quickly: abort the X server and, as soon as it terminates, quickly use Ctrl+Alt+Delete before
a new server starts up.

Exercising Full X Capabilities

In its approach to portability, the Java AWT ignores many X Window System capabilities.
This isn't a problem for most software most of the time, but sometimes you really need to
get beyond the AWT to use X's many ignored capabilities.

 You can do this, of course—it's a simple matter of writing Java Native Interface (JNI)

code. Java does present a couple of roadblocks, however:

 • You cannot get the X Display pointer from Java; you must open your own private

connection to the X server.

•

You cannot obtain any window IDs from Java. If you want to interact with any of your
AWT windows, you will need to search the server's window hierarchy and try to find
them.

Sun has indicated, in a FAQ, an intention to address these shortcomings in the future.
Until such a future, Java is basically unsupportive of native X Window System access.
Any X functionality you implement in native code is, essentially, an independent X client.

The following subsection presents a tool written to solve a specific problem: access to a
native X data transfer capability that the AWT does not support. It serves as an
illustration of how you can get to non-portable X Window System capabilities ignored by
Java.

 XClipboard: A JNI-Based Cut-and-Paste Tool

 X Window System users are accustomed to two common techniques for transferring data

between GUI applications:

•

Cut/Copy/Paste—Select text and/or data in one application, press the Cut or Copy
button to copy it to the Clipboard, and transfer it to another application with the Paste
button. This is identical to a standard technique in the Microsoft Windows environment.

•

Selection—Select text and/or data in one application and transfer it to another
application (without copying it to the Clipboard) by pressing the middle mouse button.
There is no counterpart in the Microsoft Windows environment. Under the X Window
System, this technique is commonly used to move data to/from terminal emulators and
other X clients without Cut/Copy/Paste capabilities.

 From an X programming perspective, these two operations are virtually identical: the only

difference is the name of the buffer—CLIPBOARD versus PRIMARY—used to hold the

 - 505 -

data.

For Java users, there is another difference: Java supports the first capability (in the
java.awt.datatransfer package) and ignores the second. XClipboard is a JNI-
based class that provides some of the missing functionality. You can use XClipboard to
read text that has been selected, but not copied to the Clipboard, by another X
application.

 Using XClipboard

 The XClipboard source supplied on the CD-ROM includes full API javadoc

information. Briefly, the most interesting methods are as follows:

•

XClipboard()—The XClipboard constructor opens a connection to the X server
and allocates resources needed to support the read methods. The finalizer closes the
connection.

•

String readPrimarySelectionString()—This method returns the primary
selection: a text string that has been selected by an X application but not necessarily
copied to the Clipboard.

 Using XClipboard from Java is straightforward. This code fragment shows how it can

be used to read the current primary selection string:

 // Create an XClipboard object
 XClipboard xc = new XClipboard();
 // Read the primary selection string
 String selection = xc.readPrimarySelectionString();

As with any JNI-based class, you need to ensure that Java can find the native library
(libXClipboard.so) associated with the class. This is discussed in Chapter 15 in the
section "Finding JNI Libraries."

 Building XClipboard

XClipboard consists of two source files, a .java file defining the Java interface and a
.c file providing the native functionality. Both are provided on the CD-ROM, and listings
are provided in Appendix B.

 The following sequence of commands can be used to build XClipboard:

 bash$ javac -d . XClipboard.java
 bash$ javah -jni com.macmillan.nmeyers.XClipboard
 bash$ cc -O -D_REENTRANT -fpic –I$(JAVA_HOME) \
 -I$(JAVA_HOME)/include/linux \
 -I$(JAVA_HOME)/include/genunix -c XClipboard.c
 bash$ cc -O -shared -o libXClipboard.so XClipboard.o -L
/usr/X11R6/lib \

 -lX11

 These commands compile the Java source, create a JNI header file, and compile and link

the native library.

 Server-Side AWT: Using AWT/X Without a Display Device

 The UNIX/Linux Java AWT is dependent on the presence of an X server: If you use AWT,

 - 506 -

you use X. This is true even if you do not create any windows.

The reliance on a graphical device is no different from AWT requirements on Microsoft
Windows—except that Windows always has a display. Even Microsoft NT Server, unlike
UNIX or Linux servers, requires a display.

AWT's reliance on X has turned out to be a problem for server-side Java. Server-side
applications that use the AWT for, say, generation of bitmapped images, cannot run
without an X server—even though they do not use a GUI, create any windows, or use
any X capabilities at all.

Fortunately, the problem has a simple solution: the X Virtual Frame Buffer server (Xvfb),
an X server that uses a virtual memory frame buffer instead of a physical graphics
device. From the Xvfb man page (emphasis added):

The primary use of this server was intended to be server testing. The mfb or cfb
code for any depth can be exercised with this server without the need for real
hardware that supports the desired depths. The X community has found many other
novel uses for Xvfb, including testing clients against unusual depths and screen
configurations, doing batch processing with Xvfb as a background rendering
engine, load testing, as an aid to porting the X server to a new platform, and
providing an unobtrusive way to run applications that don't really need an X server
but insist on having one anyway.

In other words, Xvfb is (unintentionally) a made-to-order solution to the server-side AWT
problem! Xvfb is a standard XFree86 component, available wherever XFree86 is
available and found in virtually all Linux distributions.

 Running Xvfb

 Synopsis:

 Xvfb [:<display>] [<options>]

The <display> is the X display number, an integer = 0. Whatever you specify here
must also be specified in the DISPLAY environment variable read by the Java AWT/X
client. Default is 0.

 Options:

Xvfb has many options, most of them standard X server options. Running it without any
options will give you a perfectly usable default—an X server with a depth of 8. But if the
defaults are not adequate, the main option of interest is:

•

-screen <number> <WxHxD>—Specify the width, height, and depth of a screen in
the server. Xvfb defaults to driving a single screen of 1280x1024x8. A server can
have multiple screens, with different dimensions and depths for each one.

 Once started, the Xvfb server looks and feels to X clients like any other X server and can

easily be used by the AWT for non-GUI applications.

Subtleties

The details of X terminology and how clients find servers on networks can be a bit
arcane, and you don't usually have to think about them; when you use the X
Window System on a workstation, it all just works.

 - 507 -

But using Xvfb for server-side graphics is different from working at a graphical
workstation. These details will help you understand how to run Java in a way that it
knows how to find and talk to the Xvfb X server.

An X server is, in X terminology, a single display, listening at a single network
address, controlling one or more screens. The TCP address at which an X server
listens is 6000+x, where x is the display number. You probably run your workstation
X server at display 0, meaning that it is listening at TCP port 6000. (It may also be
listening to single addresses for other protocols, such as UNIX-domain sockets or
DECnet addresses.)

X clients talk to X servers over the network, and they discover how to find X servers
through information conveyed in the DISPLAY environment variable. All X clients,
including the Java AWT, use this variable to figure out how to contact the X server.
(When you run an X server on a graphical workstation, this variable is automatically
set for use by applications.)

The DISPLAY variable value specifying a TCP-based X connection consists of
three parts: <host>:<display>.<screen>, so a DISPLAY variable of
foo.bar.com:0.0 will connect to an X server listening at port 6000 on host
foo.bar.com and use screen #0.

 If <host> is omitted, the local host is assumed, and the client may connect by TCP,

UNIX-domain socket, or any other protocol it chooses.

 If .<screen> is omitted, the X server assumes a default value.

 Using Xvfb on Servers

 To use Xvfb on a server

 1. Run Xvfb at some chosen display number.

 2. Set $DISPLAY for any clients that will need to use the server.

 For example, to support an Apache Web server running servlets, use these commands:

 bash$ Xvfb :0 &
 bash$ export DISPLAY=:0
 bash$ /usr/sbin/httpd &

 Whenever Apache spawns a JVM, that JVM will connect to the X server the first time the

AWT is used and remain connected until it terminates.

 How Not to Use Xvfb

Xvfb will work well as a persistent daemon, as shown in the previous Apache example.
Do not try to start or stop Xvfb from individual servlets, JSPs, EJBs, or whatever,
because

 • It's expensive.

 - 508 -

 • A running X server requires a unique listener address; you cannot run two display :0 X
servers from two concurrent servlets.

 • The X connection from AWT to the X server persists for the lifetime of the JVM process,

not for the lifetime of a single transaction.

 Summary

We have examined a variety of topics related to the use of Java with the X Window System
display server. Where Java's portability model abstracts out many details of dealing with X,
we must sometimes delve into platform-specific details to get the functionality we need
from Java applications on UNIX and Linux.

Part XIII: Java Performance

 Chapter List

 Chapter

57: Why Is Java Slow?

 Chapter

58: A Heavy Look at Lightweight Toolkits

 Chapter

59: An Approach to Improving Graphical Rendering
Performance

 Chapter

60: PerfAnal: A Free Performance Analysis Tool

 Chapter

61: Heap Analysis Tool: Understanding Memory Utilization

 Chapter

62: OptimizeIt: Live Performance Analysis

 Chapter

63: Understanding Linux Kernel Performance

 Chapter

64: Profiling User-Space Native Code

 Part Overview

This part of the book focuses on the crucial issue of Java runtime performance. We look at
the reasons behind Java's well-known performance problems and explore remedies and
tools you can use to improve the performance of your own applications.

Chapter 57: Why Is Java Slow?

 Overview

 The reality of Java performance has always lagged the promise—a painful lesson

learned by some businesses that made early bets on Java technology. The situation is

 - 509 -

improving, especially on the commercially important Microsoft Windows platform, but it
still has a long way to go. And Linux, which has not enjoyed the focused, expensive
tuning efforts lavished on other platforms, lags considerably.

The situation will continue to improve for Linux on several fronts. The free JIT compilers,
tya and shujit (see Chapter 33, "Just-In-Time Compilers"), are constantly being
improved. Other JITs are on the way from commercial vendors such as Inprise. The entry
of IBM into the Linux JVM arena (see Chapter 25, "The IBM SDK Port") is encouraging.
Sun's planned SCSL release of HotSpot (discussed in Chapter 30, "Sun HotSpot
Performance Engine") means that it will be ported to Linux. And Linux's growing
importance as a strategic platform will undoubtedly attract some new participants to the
performance game.

 But, for now, Java is slow, and Java on Linux is slower. Why?

Perhaps a better question is, why not? Every worthwhile innovation in computer science
has extracted a price in performance: there is no shame in this. Table 57.1 shows a few
examples from history.

 Table 57.1 Some Indispensable Software Technologies and Their Costs

 Innovation

Performance Penalty

 High-level Languages

Less efficient than hand-coded assembler

 Time-Sharing

Costs of task-switching

 Virtual Memory

Costs of paging

 Graphical User Interfaces

Significantgraphical user interfaces. See GUIs
(graphical user interfaces) in computation, demands
on graphics hardware, and (for networked systems like
X) network bandwidth

 Object-Oriented

Programming

Significant increase in procedure calls, indirect
references, and late binding

In all the examples in Table 57.1, the performance penalty has been accepted as a
normal cost of progress. Or, to paraphrase the second law of computing: "There Ain't No
Such Thing as a Free Lunch."(1)

 (1) The first law, of coruse, is "Garbage In, Garbage out."

 Java, like other worthwhile innovations, suffers the same problem. The problem has been

exacerbated by several factors:

•

Many of the most interesting research topics from decades of computer science—
garbage collection, architecture-neutral code, on-the-fly optimization, runtime
validation, object-oriented programming, type safety, and so on—have been crammed
into Java.

 - 510 -

 • Java's rapid acceptance has given it little opportunity to mature.

 • Java's rapid growth into the huge, all-encompassing Java 2 platform has afforded little

opportunity to focus on the basics.

The result is that Java, like a child prodigy, has been thrust into the limelight at a tender
young age. And Sun Microsystems, like an anxious stage parent, has been aggressively
overselling Java's strengths long before the product could really deliver. Only recently
has Java shown signs of settling down enough to gain some maturity.

One unfortunate promise that continually reappears is that of "native-like" performance—
the notion that Java code can reach performance parity with native, compiled, optimized
C and C++ applications. This is unlikely; Java is slow for many reasons, two (see Table
57.2) of which are irreducible and fundamental to Java's runtime contract with
applications.

 Table 57.2 The Two Irreducible Reasons Java Is Slower than C++

 Reason

Result

 Runtime

Checking

Java performs runtime checks on many error conditions, including
bad array indices, null pointers, and illegal typecasts. C++ does not.

 Garbage

Collection

No matter how clever and efficient garbage collection algorithms
become, they are still not free. CPU cycles spent collecting garbage
are cycles not spent running the application. This is more of a
problem for busy programs—servers or compute-intensive apps—
than for GUI-intensive apps with a lot of idle time.

This doesn't mean that you can't write some fast loops or run some impressive
benchmarks in Java. But there will always be code for which Java cannot run as fast as
compiled languages, and few real-world applications can avoid triggering any runtime
checking or garbage collection.

That said, if Java can manage to pioneer some innovative optimization technologies that
are beyond the reach of anything achievable by compiled languages, it may manage to
overcome these handicaps and achieve the mythical free lunch of performance parity
with compiled languages.

In the next sections, we will discuss some of the reducible reasons for Java performance
problems and discuss what (if anything) is being done to address them. The following
chapters will offer some hints, tips, and tools to help you overcome some of the
problems.

Our intent here is expository, not competitive. This chapter is not titled "Why C++ Is Better
than Java." There are many reasons Java suffers performance problems, some based in
design, some in implementation. Understanding those reasons can help you design faster
Java applications.

 Java Is Interpreted

 Bytecode interpretation is slow. This is a reducible problem, thanks to JIT compilation

 - 511 -

and the more advanced techniques being applied by HotSpot (see Chapter 30, "Sun
HotSpot Performance Engine"). But it leads us to another irreducible problem: the time
required to perform the compilation and optimization.

Long-lived server processes benefit the most from on-the-fly compilation and
optimization, primarily because they are around long enough to effectively amortize the
costs of the compilation and to benefit from its results. Server apps also do not present
some of the client-side difficulties that are beyond the reach of optimization techniques
(see the section "Java AWT's Inefficient Graphics" later in this chapter).

One remaining approach can reduce the problem of dynamic optimization time: ahead-of-
time compilation. Examples include gcj (see Chapter 31, "gcj: A Compiled Java
Solution"), which compiles to native code, and TowerJ (discussed in Chapter 32, "TowerJ:
A Server-Side Hybrid Java Environment"), which combines native-code compilation and a
proprietary runtime engine.

Java's Use of Object References

As discussed in Chapter 2, "Moving from C++ to Java," Java object references feel much
like C++ references. They are used in the source code without explicit dereferencing but
are handled as pointers under the covers. This does not mean, however, that they are
pointers. The only guarantee about a reference is that it resolves, somehow, to an object.
The devil is in the details.

In the traditional Sun JVM, object references are not pointers. They are entities that
resolve to pointers (through a map maintained by the JVM), which are then resolved to
actual objects. Why the additional indirection? It gives the garbage collector the freedom
to move objects: Only the reference map must be updated when an object is moved.

You pay the price of this every time you use an object: two dereferences to get to the
data. By contrast, C/C++ data access requires zero dereferences (if you are directly
manipulating objects) or one dereference (if you are using pointers or references). The
costs rapidly escalate when you use arrays. Consider two comparable situations in
C/C++ and Java. This statement (which is valid in both C/C++ and Java) reads a single
field from an element in an array of class objects:

 int y = x[n].number;

 Here is the cost in the two environments:

 • C++—An address calculation and a single dereference.

 • Java—Four dereferences: two for the array itself, two for the nth element. Also,

additional address calculations, a null-pointer check, and a bounds check.

Sun's HotSpot reduces this cost by removing a level of indirection: Pointers are directly
used as object references. This complicates garbage collection, of course. When an object
is moved, all live pointers to it must be found and updated.

Java's Limitations on Pointer Use

Java's prohibition against manipulation of data pointers is one of its most important
reasons for programmer productivity gains. It eliminates a huge class of errors that cause
C/C++ developers countless hours of debugging.

Unfortunately, this comes at a cost. C/C++ programmers have developed an arsenal of
pointer-based techniques for enhancing performance, and these techniques are simply
not available in Java. Let us consider a simple example: use of pointers to step through
an array.

 - 512 -

 A C/C++ programmer wanting to copy a null-terminated array of bytes might write a loop

like this:

 register char *dest, *source;
 .
 .
 .
 while (*dest++ = *source++);

An optimizing x86 compiler can implement the while-loop in six instructions: four data
instructions (two of which access memory), a test, and a branch. No Java loop, compiled
or otherwise, can come remotely close.(2)

(2)

Experimentation with gcj suggests that a best-case, optimized, compiled version of
comparable Java code would take about 3x the time of this loop—the additional cost
coming from increased indirection and runtime checking.

There are, of course, several potential errors lurking in this loop: bad pointers, missing null-
terminator, writing off the end of allocated memory—any one of which may have root cause
or may create havoc in some distant location. Java ends this debugging nightmare but not
without depriving developers of valuable performance tools.

Java AWT's Inefficient Graphics

Before the Java 2 Platform, Java relied heavily on the native capabilities of the host
graphics platform. This engendered no shortage of problems (as discussed in Chapter 3,
"A Look at the Java Core Classes," in the section "Package javax.swing"), but it at
least had the effect of delegating the heavy lifting to reasonably well-tuned, optimized,
native-code graphics and GUI libraries and window systems.

 With the advent of Java2D and Swing, Java has assumed a substantial portion of the

graphics and GUI burden. Some of the results follow:

•

Much of the rendering formerly performed by the underlying window system is now
performed on memory buffers by slower algorithms running in the JVM and then blitted
(bit-for-bit copied) over the network to the display. This leads to higher computation,
memory, and (for X environments) higher network costs for graphics. For some
operations, like rendering of text, the slowdown is dramatic.

•

Swing's "lightweight"(3) approach to GUI components moves the burden of event
dispatching (and other window system responsibilities) from native X server code to
slower Java code in the JVM. It also increases network traffic between X server and
client.

(3)

The term lightweight to describe toolkit architectures such as Swing has been badly
misused in recent years. We will explore the costs of lightweight toolkits in more
detail in Chapter 58, "A Heavy Look at Lightweight Toolkits."

 • Various inefficiences lurk in event-handling: It's not uncommon to see an excessive

number of repaint requests.

Listing 57.1 shows a small benchmark that dramatically illustrates the changes between
releases. FontPerf is a JDK1.1/JDK1.2 Swing-based utility that measures text refresh
performance.

 Listing 57.1 FontPerf.java

 - 513 -

 1 package com.macmillan.nmeyers;
 2 import java.awt.*;
 3 import javax.swing.*;
 4 import java.awt.event.*;
 5 import java.util.*;
 6
 7 class FontPerf extends JFrame
 8 {
 9 int nReps;
 10 int countdown = 0;
 11 Date starttime;
 12 FontPerf(String fontname,
 13 int nCols,
 14 int nRows,
 15 int nr,
 16 boolean doublebuffer)
 17 {
 18 super("Font Rendering Performance Test");
 19 nReps = nr;
 20 if (!doublebuffer)
 21 {
 22 // Turn off double-buffering so we can watch
rendering

 23 getRootPane().setDoubleBuffered(false);
 24
((JComponent)getContentPane()).setDoubleBuffered(

 false);
 25 }
 26
 27 // Get all available font families for JDK1.2
 28 try
 29 {
 30
GraphicsEnvironment.getLocalGraphicsEnvironment().

 31 getAvailableFontFamilyNames();
 32 }
 33 catch (NoClassDefFoundError e) {}
 34
 35 JTextArea textarea = new JTextArea(nRows, nCols);
 36 textarea.setFont(Font.decode(fontname));
 37 getContentPane().add(textarea,
 38 BorderLayout.CENTER);
 39 JButton start = new JButton("Run Test");
 40 getContentPane().add(start, BorderLayout.SOUTH);
 41 String testString = "";
 42 while (testString.length() < nCols)
 43 testString +=
"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";

 44 testString = testString.substring(0, nCols);
 45 for (int row = 0; row < nRows; row++)
 46 textarea.append(testString + "\n");
 47 start.addActionListener(new ActionListener() {
 48 public void actionPerformed(ActionEvent e)
 49 {

 - 514 -

 50 countdown = nReps;
 51 starttime = new Date();
 52 repaint();
 53 }
 54 });
 55 addWindowListener(new WindowAdapter() {
 56 public void windowClosing(WindowEvent ev)
 57 {
 58 System.exit(0);
 59 }
 60 });
 61 }
 62 public void paint(Graphics g)
 63 {
 64 super.paint(g);
 65 if (countdown > 0)
 66 {
 67 if (—countdown > 0) repaint();
 68 else
 69 {
 70 System.out.println("Time for " + nReps +
 " repaints: " +
 71 (new Date().getTime()
-

 72 starttime.getTime())
+ " ms");

 73 System.out.flush();
 74 }
 75 }
 76 }
 77 private static void usage()
 78 {
 79 System.err.println("Usage: FontPerf [-
nodoublebuffer]

 fontname" +
 80 " columns rows repetitions");
 81 System.exit(1);
 82 }
 83 public static void main(String[] argv)
 84 {
 85 boolean doublebuffer = true;
 86 int startArray = 0;
 87 if (argv.length > 0 && argv[0].equals("-
nodoublebuffer"))

 88 {
 89 doublebuffer = false;
 90 startArray++;
 91 }
 92 if (argv.length - startArray != 4) { usage(); }
 93 int nCols = Integer.parseInt(argv[startArray +
1]);

 94 int nRows = Integer.parseInt(argv[startArray +
2]);

 95 int nReps = Integer.parseInt(argv[startArray +
3]);

 - 515 -

 96 FontPerf fontperf = new
FontPerf(argv[startArray], nCols,

 nRows,
 97 nReps,
doublebuffer);

 98 fontperf.pack();
 99 fontperf.setVisible(true);
 100 }
 101 }

 Synopsis:

 java com.macmillan.nmeyers.FontPerf [-nodoublebuffer]
<columns> \

 <rows> <repetitions>

This creates a Swing text editor, in the specified font, with the specified number of rows
and columns. Below the text editor, a Run Test button is used to start the test. The test
repaints the text editor for the specified number of repetitions, timing the activity and
sending the result to stdout.

 The optional -nodoublebuffer argument disables Swing's default double-buffering

behavior.

 Dependencies:

 When running under JDK1.1, there is an additional dependency on the Swing 1.1 toolkit.

 Example:

 java com.macmillan.nmeyers.FontPerf serif-plain-20 30 10 50

 This example creates a 30x10-character text editor (see Figure 57.1). Clicking the Run
Test button will repaint the editor 50 times and send the elapsed time to stdout.

 Figure 57.1: FontPerf test window. The button starts a font-drawing benchmark.

The results tell us a great deal about Graphics2D. Because JDK licensing terms set limits
on publication of benchmark results, you will need to run this test (found on the CD-ROM)
yourself to get numbers. You will discover a performance range of approximately two
orders of magnitude. Table 57.3 ranks the performances of different environments.

 Table 57.3 Relative Performance of JDK1.1 and JDK1.2 Text Rendering

 - 516 -

 Environment Speed Comment

 JDK1.1, no

double-buffering

Fastest

 JDK1.1,

double-buffering

Double-buffering involves writing to an offscreen X
buffer, then blitting to the window. It creates the
appearance of smoother graphics but at a performance
cost.

 JDK1.2,

double-buffering

Graphics2D renders to a buffer in the JVM, then blits the
result to the window.

 JDK1.2, no

double-buffering

Slowest

Graphics2D is optimized around client-side rendering
and renders inefficiently directly to the X server. This
case is far outside Graphics2D's design center.

 The next few chapters will explore related issues, workarounds, and tools you can apply to

this problem.

 Java's Increased Memory Use

Java objects take more space than equivalent C++ objects. More space means more
memory bandwidth demand, more cache stress, more paging. The cost goes directly to
the bottom line in performance. Table 57.4 shows some causes of heavy Java memory
use.

 Table 57.4 Java Memory Demands

 Cause

Cost

 Headers associated

with every object

3 machine-words for every object in classic JVM, 2 in HotSpot.

 Object reference

map

In the classic JVM (but not HotSpot), every object requires an
entry in the object reference map.

Arrays are
expensive: Java
demands an extra
level of indirection in
allocating and
referencing array
elements.

Compare costs of allocating a 100-element array of object Foobar:

C++: A single heap allocation 100*sizeof(Foobar) bytes long.
Heap overhead for managing a single allocation.

Java: 101 heap allocations, consisting of

 • A 100-element array of Foobar references.

 • 100 Foobar objects with their headers.

Additional costs are 101 entries in the object reference map and

 - 517 -

heap overhead for managing 101 allocations.
Another cost, decreased locality, is discussed in the following
section, "Poor Memory Locality."

Java's Poor Memory Locality

When applications grow to consume any significant amount of memory, they encounter
the awful truth of modern computer programming: CPUs are fast; memory is slow. A
substantial amount of engineering has gone into modern caching architectures to solve
the problem and to ensure that the memory you are using, and are about to use, is
cached near the CPU in fast (and expensive) RAM.

The principle behind modern memory architectures and memory management code is
locality: the notion that the memory you are going to use is not far from memory you have
recently used. Programs that violate this principle tend to suffer terrible problems with
memory latency.

How much does locality matter? In Appendix B we present a simple C program,
memstress, that stresses a block of memory by accessing it in optimal and nonoptimal
patterns. Figure 57.2 shows some results from test runs on a 200Mhz PPro Linux system
with 128MB of RAM.

 Figure 57.2: Results of running memstress on a 128MB 200Mhz PPro system.

Each curve in figure 57.2 represents a different allocated memory block size; points on
the X axis represent different stride values used in stepping through memory. Everything
fits in RAM—there is no paging happening—so results reflect the effectiveness of
caching on memory latency.

The effect of caching based on locality is clearly evident: Optimal memory access
patterns run nearly 6x faster than worst-case memory access patterns. The differences
become much more dramatic, of course, when memory size increases beyond available
RAM and paging occurs.

In C/C++ environments, where programs own a great deal of memory management
responsibility, developers can exert control over memory layout to favor locality. It is not
uncommon for large-memory programs to implement their own heap management (C++
offers excellent facilities to support this), leading to big improvements in locality and
memory performance.(4)

(4)

How big? In some businesses, where deals are made and broken by competitive
benchmarking, .5% is substantial. But better results are common, and it is not unheard
of for clever heap management to result in gains on the order of 2x, 10x, or 100x.
Exact details are generally closely guarded secrets in competitive businesses.

 - 518 -

 Java's approach to memory management runs afoul of locality in at least three ways:

•

Arrays of objects are allocated much less optimally. An array of C++ objects is
allocated with a single new() call, resulting in a tight, contiguous block of objects.
Java's approach to populating arrays, with one new() per object, can scatter array
contents through the address space.

•

The lack of automatic object allocation means that the contents of individual objects
can be scattered through the address space. A C++ object containing a 100-integer
array might look like this:

 class foo
 {
 .
 .
 int X[100];
 .
 .
 };

 resulting in a 100-word block of memory contiguous with the object's other storage.

The Java equivalent

 class Foo
 {
 .
 .
 int[] X;
 .
 .
 }

 requires the array to be separately allocated at construction (or later), resulting in

noncontiguous storage of object data.

•

Java is hostile to custom heap management. Memory layout is under the control of the
allocators and the garbage collection system, and Java programmers are deprived of
another technique available to C/C++ programmers.

There is an opportunity lurking here for Java: The garbage collector routinely relocates
blocks of memory to squeeze out dead memory. If it could also base such decisions on
locality, it could achieve a unique form of dynamic optimization beyond the reach of
compiled languages.

 Java Class-Loading Expense

Java application startup involves loading application classes and core classes. Of the
4,273 public and nonpublic classes that make up the JDK1.2 core, 180 must be loaded to
run "Hello World" (44 under JDK1.1), and approximately 450 must be loaded for a simple
AWT application (about 140 under JDK1.1).

 Loading of core classes is analogous to a native application's loading of shared libraries,

but with some handicaps:

•

With native applications, many commonly used shared libraries are already loaded
and mapped into shared memory before an application starts. There is not (currently)
any comparable scheme for Java. The JVM must load all classes it needs from the

 - 519 -

class path into memory.

•

Typical native applications depend on, at most, a dozen or two shared libraries. Java
must load hundreds of classes, each involving retrieval and possible decompression
from a file system or archive.

The process is impressively fast and well-tuned, given the magnitude of the problem. But
there is a startup delay, much more noticeable with JDK1.2 than JDK1.1, as classes are
loaded.

 Summary

This chapter has examined Java performance problems and some of its causes. Two of
these causes—runtime checking and garbage collection—are fundamental to Java's
runtime contract with applications. Many others are matters of implementation or language
restriction.

Chapter 58: A Heavy Look at Lightweight
Toolkits

 Overview

It's no secret that Swing is a lightweight GUI toolkit. Lightweight toolkits are not new:
Swing is not the first for Java (Biss-AWT, a toolkit from the authors of Kaffe, has been
around for a while—and Kaffe's AWT is lightweight), and it's not the first for the X Window
System.

The term lightweight implies that resources of some sort—space, computational, or
whatever—are saved by using such an architecture. This is true to an extent, although
the term has lost much of its original meaning.

 This chapter explores lightweight toolkits: what they are, why they are used, and why

they can be so expensive.

Subtleties

Throughout this chapter we use the terms client and server in the X Window
System sense. A client is an application needing graphical display services; a
server is the device providing graphical display services.

This definition makes perfect semantic sense, but it also creates some confusion. In
many internet and intranet environments, a server is a large central host and a client is
an inexpensive desktop computer. In typical X environments, the X server runs on an
inexpensive desktop computer while large X clients (such as high-powered design tools)
often run on large computation servers.

Definition and History

A lightweight GUI component is one that does not consume window resources in the
underlying window system. A lightweight GUI toolkit is a toolkit populated by lightweight
GUI components.

Notice that we have defined "lightweight" in terms of window system resources. As we
will see in the discussion to follow, lightweight GUIs work by moving some resource
requirements from the window system to the application—sometimes at considerable

 - 520 -

expense.

 Let us illustrate with an example from the Motif toolkit. Listings 58.1 and 58.2 are two

nearly identical Motif programs—with only the differences shown for the second one.

 Listing 58.1 motif1.c, a Simple Motif-based X Application

 1 #include <Xm/Form.h>
 2 #include <Xm/PushB.h>
 3 #include <Xm/Label.h>
 4 #include <Xm/Separator.h>
 5
 6 int main(int argc, String *argv)
 7 {
 8 XtAppContext context;
 9 Arg args[20];
 10 Widget top, form, label, sep, button;
 11 XmString str;
 12 int i;
 13
 14 top = XtAppInitialize(&context, "MotifDemo", 0, 0,
&argc,

 argv, 0, 0, 0);
 15
 16 form = XmCreateForm(top, "mainform", args, 0);
 17 XtManageChild(form);
 18
 19 i = 0;
 20 XtSetArg(args[i], XmNtopAttachment, XmATTACH_FORM);
i++;

 21 XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM);
i++;

 22 XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM);
i++;

 23 str = XmStringCreateSimple("Please Press Button");
 24 XtSetArg(args[i], XmNlabelString, str); i++;
 25 label = XmCreateLabel(form, "label", args, i);
 26 XmStringFree(str);
 27 XtManageChild(label);
 28
 29 i = 0;
 30 XtSetArg(args[i], XmNtopAttachment, XmATTACH_WIDGET);
i++;

 31 XtSetArg(args[i], XmNtopWidget, label); i++;
 32 XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM);
i++;

 33 XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM);
i++;

 34 sep = XmCreateSeparator(form, "separator", args, i);
 35 XtManageChild(sep);
 36
 37 i = 0;
 38 XtSetArg(args[i], XmNtopAttachment, XmATTACH_WIDGET);
i++;

 39 XtSetArg(args[i], XmNtopWidget, sep); i++;
 40 XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM);

 - 521 -

i++;
 41 XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM);
i++;

 42 str = XmStringCreateSimple("OK");
 43 XtSetArg(args[i], XmNlabelString, str); i++;
 44 button = XmCreatePushButton(form, "pushbutton", args,
i);

 45 XmStringFree(str);
 46 XtManageChild(button);
 47
 48 XtRealizeWidget(top);
 49 XtAppMainLoop(context);
 50 }

 Listing 58.2 motif2.c, Showing Only Differences (Highlighted) from the

Preceding motif1.c

 1 #include <Xm/Form.h>
 2 #include <Xm/PushBG.h>
 3 #include <Xm/LabelG.h>
 4 #include <Xm/SeparatoG.h>
 ,
 ,
 ,
 25 label = XmCreateLabelGadget(form, "label", args, i);
 ,
 ,
 ,
 34 sep = XmCreateSeparatorGadget(form, "separator",
args, i);

 ,
 ,
 ,
 44 button = XmCreatePushButtonGadget(form, "pushbutton",
args,

 i);
 ,
 ,
 ,

 Figure 58.1 shows the GUI for both programs: A label, a thin horizontal separator, and a

pushbutton.

 Figure 58.1: GUIs from the two programs, run with the Lesstif library.

The two GUIs are virtually indistinguishable, but there is a big difference. The first is built
from heavyweight Motif widgets, the second from lightweight Motif gadgets. Listings 58.3
and 58.4 show the results of running the xwininfo utility on the two GUIs.

 Listing 58.3 Using xwininfo to Reveal motif1's Window Hierarchy Shows One

 - 522 -

Window Per Component

 bash$ xwininfo -tree

 xwininfo: Please select the window about which you
 would like information by clicking the
 mouse in that window.

 xwininfo: Window id: 0x300001a "motif1"

 Root window id: 0x2a (the root window) (has no name)
 Parent window id: 0x2401e86 "kwm"
 1 child:
 0x300001b (has no name): () 118x44+0+0 +183+55
 3 children:
 0x300001e (has no name): () 118x17+0+0 +183+55
 0x300001d (has no name): () 118x2+0+17 +183+72
 0x300001c (has no name): () 118x25+0+19 +183+74

 Listing 58.4 Using xwininfo to Reveal motif2's Window Hierarchy Shows a

Single Window Holding All Components

 bash$ xwininfo -tree

 xwininfo: Please select the window about which you
 would like information by clicking the
 mouse in that window.

 xwininfo: Window id: 0x4c0001a "motif2"

 Root window id: 0x2a (the root window) (has no name)
 Parent window id: 0x2401e94 "kwm"
 1 child:
 0x4c0001b (has no name): () 118x44+0+0 +347+57

We see that motif1 has a relatively deep and complex window hierarchy. Every
component—label, separator, and pushbutton—occupies a window in the X server. By
contrast, all the motif2 components live in a single window. In motif2, the GUI
components are manipulated as separate components on the client side, but are drawn
into a single window on the X server.

What makes motif2 a lightweight solution? Is it lightweight because fewer X server
resources are used? By the definition at the beginning of this section, the answer is yes.
But in terms of overall resource use, it doesn't seem any lighter. Now the client must track
a window hierarchy that the server was tracking. Overall system resource use is
unchanged.

So where is the light in lightweight? The answer comes from the early days of Motif,
when the X Window System was much less mature and developers were first starting to
build complex GUIs with Motif. These GUIs, like today's complex GUIs, were loaded with
menus, text areas, buttons, labels—the usual plethora of components. Whenever such
an application would start up, a terrible thing happened: The X server was brought to its
knees as hundreds of windows were created. Users watched in helpless rage as many
KB of X protocol were exchanged, many KB of data structures were allocated in the X
server, and the workstation started to thrash.

 - 523 -

The answer was the invention of Motif gadgets, lightweight counterparts to the
heavyweight widgets. Gadget versions were defined for a handful of heavily used Motif
components (label, separator, and four types of buttons), and applications were able to
reduce the horrendous startup costs by reducing window usage on the X server.

The early results were promising, but a funny thing happened on the way to lightweight
toolkits: memory became more plentiful, CPUs got faster, VM management got better,
networking code improved, and many bloated data structures in the X server went on a
diet. Lightweight components lost some of their lustre, and their other costs (see "The
Costs of Lightweight Components" later in this chapter) were beginning to become
evident.

Now, years later, Motif still supports only a handful of lightweight components (a recent
release added an icon gadget), and it and many other X toolkits (Tk, Qt, GTK+, and so
on) thrive as heavyweight GUI toolkits.

Subtleties

Sun's AWT component set on UNIX/Linux is built on top of the Motif toolkit and
uses the term peer to describe the Motif component that corresponds to an AWT
component—java.awt.Button uses an XMPushButton as a peer,
java.awt.TextArea uses XMText, and so on. Similar peer relationships exist
with other windowing systems. By contrast, Swing components do not have peers.

On a quick reading, it would seem that the presence or absence of peers makes a
Java toolkit heavyweight or lightweight. Not so: What makes AWT "heavyweight" is
that the underlying toolkit uses server-side windows for each of its components. If
Motif offered enough lightweight components, AWT/Motif could have been fully
lightweight.

Conversely, Swing could have been implemented as a heavyweight toolkit by building
its components with raw native windows instead of trying to use existing GUI
components. This would have imposed some design constraints, but many fewer than
are imposed by Motif and Win32 GUIs. That was not done; Swing was designed with
features unavailable in many windowing systems (such as the glass pane), and is thus
irreversibly a lightweight toolkit.

The Costs of Lightweight Components

Lightweight GUI components were not exactly discredited as X matured—they offer some
interesting advantages—but their benefit to window system performance has turned out
to be minimal. They also turn out to have some significant additional costs. This section
explores those costs by describing some typical window system activities and how they
are handled by heavyweight versus lightweight GUI components.

For purposes of this discussion, we create a simple GUI component, consisting of a main
window containing a text field and a pushbutton (see Figure 58.2). Additional semantics
are that the cursor changes to a text cursor when the mouse enters the text field, and the
pushbutton border lights up when the mouse enters the button area.

 - 524 -

 Figure 58.2: A simple GUI for illustration of lightweight components.

One additional assumption for this comparison is that the lightweight toolkit renders with
normal X protocol and does not (as in Swing) render into a client-side buffer that is then
blitted (copied bit-for-bit) over the network to the server. (The Swing approach adds an
additional performance hit beyond this discussion.)

 Repainting Window Backgrounds

The three components shown here—main window, text field, and pushbutton—have
different backgrounds. Table 58.1 shows what occurs if the background needs to be
repainted (perhaps as a result of exposing the window).

 Table 58.1 Heavyweight Versus Lightweight Repainting Backgrounds

 Heavyweight Toolkit

Lightweight Toolkit

Each window has a background color or
image associated with it in the X server.
The X server paints each background
without any client interaction.

Window background is repainted by
protocol requests sent by the client.
Possible side effect is to disturb other
windows (see "Rendering to Obscured
Windows" in this chapter).

The increased costs of the lightweight toolkit are additional protocol requests on the
network, increased latency, and a slower path through the X server (processing of a
client drawing request) to repaint the background.

 Rendering to Obscured Windows

In our example, the main window is partially obscured by two other components. Table
58.2 shows what occurs when rendering to that window—whether painting the
background or rendering more interesting contents:

 Table 58.2 Heavyweight Versus Lightweight Rendering to Obscured Windows

 Heavyweight Toolkit

Lightweight Toolkit

 - 525 -

For all rendering, the X server uses a
clipping mask (typically with help from
hardware) that prevents it from
disturbing other windows. X clients
painting into the main window cannot
disturb the text field or the pushbutton.

When painting to the main window, the client
must either avoid disturbing the other
components or repaint them.
Options include:

 • Setting a clipping mask in the server

• Client-side logic to avoid drawing over the

other components, possibly by painting in
sections

 • Repainting the other components after
rendering to the main window

The increased costs of the lightweight toolkit are additional protocol requests on the
network, management of client clipping masks, and possible repaints of components that
would not otherwise require repainting.

 Typing into Text Areas

 The text field accepts keyboard input according to one of two models:

 • Implicit focus—Keyboard input is accepted while the mouse is in the text area.

 • Explicit focus—Keyboard input is accepted when the client gives the text area the

focus, regardless of mouse position.

 Table 58.3 shows how keyboard input is handled.

 Table 58.3 Heavyweight Versus Lightweight Keyboard Input

 Heavyweight Toolkit

Lightweight Toolkit

For either focus model, keyboard input
is sent to the client only when the text
field is accepting input.

All keyboard input is sent to the client, which
must implement the focus model and decide
whether to accept the input and dispatch it
to the text field.

 The increased costs of the lightweight toolkit are unneeded keypress events on the

network and additional client-side logic to process the keys.

 Handling Exposure Events

An exposure event is a message from server to client that part or all of a window has
been uncovered and needs to be repainted. For windows with a background, the X server
will repaint the background before sending the event. Table 58.4 shows how exposure

 - 526 -

events are handled.

 Table 58.4 Heavyweight Versus Lightweight Handling of Exposure Events

 Heavyweight Toolkit

Lightweight Toolkit

An exposure event is sent for each
window that has been exposed. Each
event results in dispatching a repaint to
the corresponding component.

An exposure event is sent for the single
application window. The client must ascertain
which components are affected (based on
the position and size of the exposed area)
and dispatch repaints accordingly.

The increased costs of the lightweight toolkit are complex dispatching logic on the client
side, mimicking behavior that is already provided by the X server. Can the client do it as
efficiently as an X server that's been continuously tuned for years?

 The increased costs of the heavyweight toolkit are additional exposure events on the

network.

 Handling Mouse Clicks

 The user activates the GUI pushbutton with a click of the mouse. Table 58.5 shows how

it's done.

 Table 58.5 Heavyweight Versus Lightweight Handling of Mouse Clicks

 Heavyweight Toolkit

Lightweight Toolkit

The client registers interest in mouse
events for the window containing the
button. If the mouse is clicked in that
window (but not outside it), an event is
sent to the client for dispatching to the
corresponding component.

The client registers interest in mouse events
for the entire application window. When an
event is received, the client compares the
location of the click to the dimensions of the
button, deciding whether to accept it and
dispatch to the component, or ignore it.

The increase costs of the lightweight toolkit are additional protocol on the network and
complex dispatching logic on the client side, mimicking behavior that is already provided
by the X server.

 Associating Cursors with Windows

When the mouse moves into the text field, the cursor changes to the familiar text "I-
beam" and changes back to the default cursor when it leaves. Table 58.6 shows how it's
done.

 - 527 -

 Table 58.6 Heavyweight Versus Lightweight Associating Cursors with Windows

 Heavyweight Toolkit

Lightweight Toolkit

The client associates a cursor with
the text field's window, and the X
server handles everything without
client involvement.

The client tracks all mouse movement in the
application. When the mouse enters the area
corresponding to the text field, the client sends a
cursor-change request. When the mouse leaves,
it sends another cursor-change request.

The increased costs of the lightweight toolkit are much additional protocol on the
network—mouse events and cursor requests, increased latency, and additional logic in
the client, mimicking behavior that is already provided by the X server.

 Flashing a Window Border

 When the mouse moves into the button area, the button's border lights up. Table 58.7

shows the details.

 Table 58.7 Heavyweight Versus Lightweight Window Border Flashing

 Heavyweight Toolkit

Lightweight Toolkit

The client registers interest in cursor
enter- and leave-events for the
window containing the button. When
those events are received, the client
performs the appropriate rendering.

The client tracks all mouse movement in the
application. When the mouse enters or leaves
the area corresponding to the button, the
client performs the appropriate rendering.

The increased costs of the lightweight toolkit are much additional protocol on the network—
frequent mouse motion instead of infrequent enter- and leave-events, increased latency,
and additional logic in the client, mimicking behavior that is already provided by the X
server.

The Bottom Line: Advantages and Disadvantages of
Lightweight Toolkits

As the preceding section makes clear, lightweight toolkits earn their name by offloading
activity from the windowing system to the network and the application—often at great
expense. But lightweight toolkits offer some unique advantages, specifically:

 • Startup performance—Complex heavyweight GUIs require heavy client/server

interaction and extensive server window allocation at startup; complex lightweight

 - 528 -

GUIs do not. (As discussed previously, this has become a minor point.)

•

Feature flexibility—Lightweight toolkits may implement features not available from the
underlying window system. An example is the glass pane found in several Swing
components—there is no exact counterpart in the X Window System.

•

Feature independence—Lightweight toolkits may implement features not available
across all display devices. If, theoretically speaking, the X server offered an extension
to support alpha-blending, it would only find support among high-end displays. A
client-side "lightweight" implementation of alpha-blending wouldn't care.

•

Load balancing—If the client is running on a much more powerful machine than that
running the X server, it might better handle the demands of storing and managing the
large window hierarchy. (Current practice suggests, however, that this is not a concern
for modern X servers running on modern machines.)

 Lightweight toolkits suffer the following disadvantages:

 • Increased network traffic between client and server compared to heavyweight toolkits.

 • Increased latency as certain server-side activities are moved to the client side.

 • Lightweight toolkits cannot take advantage of display hardware performance features

(as in the alpha-blending example in the previous list).

 • Runtime performance can suffer if window, rendering, or buffering operations are less

efficient in the client's implementation than in the X server.

The final disadvantage—efficiency of operations—is a culprit in Swing's performance
problems. Many operations that could be handled by well-tuned, optimized native code in
the X server are instead handled by Java code on the client side: untuned code running
in a slow execution environment. Future tuning efforts should improve the Swing story.

Which is ultimately best, lightweight or heavyweight toolkits? It's a moot point: with
lightweight toolkits offering features otherwise unavailable from GUIs, they are not about to
abandon those features in the interest of runtime performance. In the long run, Swing will
benefit—as the X Window System benefited, as Motif benefited, as Microsoft Windows
benefited—from the relentless upward march of clockspeeds, memory density, and
network bandwidth.

What About Non-X Environments?

 This discussion has been highly X-focused, as befits the Linux platform, but what is its

relevance to Java in general?

The lightweight concept certainly applies beyond the confines of the X window system.
This quote from Sun (which appears in the JDK1.2 documentation bundle, in
docs/guide/awt/designspec/ lightweights.html) sheds some platform-
neutral light on Java's notion of lightweight:

The Lightweight UI Framework is very simple—it boils down to the ability to now
directly extend the java.awt.Component and java.awt.Container classes in
order to create components which do not have native opaque windows associated
with them.

This proposition, whether applied to X's client/server architecture, Microsoft Windows, or
any other environment, means assuming application-side control of windows and
application-side duplication of behavior that already exists in the underlying windowing
system. Although Swing's performance challenges on X are more extreme than in some

 - 529 -

other environments, they are not unique to X: The costs discussed in this chapter apply
everywhere.

 Swing is an excellent toolkit that deserves to succeed. Whether this happens will depend in

large part on how effectively it, and Java2D, can be tuned.

 Summary

 This chapter has discussed lightweight GUI toolkits, with a focus on understanding the

performance challenges faced by Swing and comparable toolkits.

Chapter 59: An Approach to Improving
Graphical Rendering Performance

 Overview

This chapter explores some techniques that I have found useful for improving
performance of my AWT-based Swing-based applications under JDK1.2: backing store
and event coalescence.

 Platforms: JDK1.2

Both techniques discussed in this chapter are well-established routes to improving
performance, although Java is not completely supportive of them. The following sections
explain why and how to use them.

Spiral0: An Introduction

 We begin this exploration by introducing a graphics-intensive JDK1.2 application called
Spiral0.

 Synopsis:

 java com.macmillan.nmeyers.Spiral0 <width> <height>

 Spiral0 creates a Swing-based JFrame window, at the specified size, containing a

spiral graphic (see Figure 59.1).

 - 530 -

 Figure 59.1: Spiral0 main window.

 The spiral graphic in Figure 59.1 contains two characteristics of particular interest:

 • It uses antialiasing, so graphics rendering is expensive.

 • It redraws the entire image for every repaint event, as do many real-world applications

that lack the capability to refresh just a portion of their rendering area.

 An additional characteristic found in many real-world applications, but not in Spiral0, is

 • The computation required to repaint the window, outside graphical rendering, is

expensive.

 In other words, Spiral0 is a simple model for graphical applications that do not want to

repaint any more than is absolutely necessary.

 Spiral0 sports another feature to assist in this chapter's activities: every time it repaints,

it times the activity and prints out the results.

 Using Spiral0 to Understand Repaint Behavior

After starting Spiral0, drag another window over it and watch how it repaints (you will
need to have your window manager configured for opaque window moves). In Figure
59.2, a partial screen dump shows the effects of dragging my terminal window over the
Spiral0 window.

 Figure 59.2: The effect of dragging an obscuring window over Spiral0.

You can see many white areas in Figure 59.2 that have been recently exposed but not
yet repainted. The text in the terminal window shows that many repaint events are taking
place.

 An examination of the timing output shows that the following activities are taking place:

 • At startup, the spiral is painted in its entirety several times.

•

Whenever areas of the spiral are covered and then exposed, many repaints are
generated for small strips of the window (that is, the clipping area in the Graphics
object passed to paintComponent() is a small strip).

 • Looking at the repaint times(1), we see that small repaints are faster than full-window

repaints. Although the application is redrawing the entire spiral every time,

 - 531 -

Graphics2D is evidently ignoring some of the drawing that occurs outside the clipping
area.

(1)

The times reported by this program are useful in a rough way, but be wary of giving
them too much significance. It is impossible to accurately time events this brief with
the system clock.

 Despite the modest internal AWT performance trick observed in the last observation,

there is obviously much inefficiency here and far too many repaint requests taking place.

 Spiral0 Source

 Listing 59.1 shows the Spiral0 source.

 Listing 59.1 Spiral0.java

 1 package com.macmillan.nmeyers;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5 import java.util.*;
 6
 7 class Spiral0 extends JFrame
 8 {
 9 Spiral spiral;
 10 Spiral0(int w, int h)
 11 {
 12 getContentPane().add(spiral = new Spiral(w, h));
 13 pack();
 14 setVisible(true);
 15 addWindowListener(new WindowAdapter() {
 16 public void windowClosing(WindowEvent ev)
 17 {
 18 System.exit(0);
 19 }
 20 });
 21 }
 22 class Spiral extends JComponent
 23 {
 24 int width, height;
 25 int repaintCount = 0;
 26 long repaintTime = 0;
 27 Spiral(int w, int h)
 28 {
 29 width = w;
 30 height = h;
 31 }
 32 public Dimension getPreferredSize()
 33 {
 34 return new Dimension(width, height);
 35 }
 36 public void paintComponent(Graphics g)
 37 {

 - 532 -

 38 ((Graphics2D)g).setRenderingHint(
 39 RenderingHints.KEY_ANTIALIASING,
 40 RenderingHints.VALUE_ANTIALIAS_ON);
 41 Rectangle bounds = g.getClipBounds();
 42 g.clearRect(bounds.x, bounds.y, bounds.width,
bounds.height);

 43 ((Graphics2D)g).scale(1.0 / 1.1, 1.0 / 1.1);
 44 Dimension d = getSize();
 45 Date date1 = new Date();
 46 int x1 = 0, x2 = (int)((d.width - 1) * 1.1);
 47 int y1 = 0, y2 = (int)((d.height - 1) * 1.1);
 48 while (x1 < x2 && y1 < y2)
 49 {
 50 g.drawLine(x1, y1, x1, y2);
 51 y1 += 2;
 52 g.drawLine(x1, y2, x2, y2);
 53 x1 += 2;
 54 g.drawLine(x2, y2, x2, y1);
 55 y2 -= 2;
 56 g.drawLine(x2, y1, x1, y1);
 57 x2 -= 2;
 58 }
 59 Date date2 = new Date();
 60 repaintCount++;
 61 long rpTime = date2.getTime() -
date1.getTime();

 62 repaintTime += rpTime;
 63 System.out.println("count = " + repaintCount
+

 64 ", region = [" + bounds.x + "," +
 65 bounds.y + "," + bounds.width +
 66 "x" + bounds.height +
 67 "], time = " + rpTime +
 68 " ms, total time = " + repaintTime +
 69 "ms");
 70 }
 71 }
 72 public static void main(String[] argv)
 73 {
 74 int width = 0, height = 0;
 75 try
 76 {
 77 if (argv.length != 2) throw new
NumberFormatException();

 78 width = Integer.parseInt(argv[0]);
 79 height = Integer.parseInt(argv[1]);
 80 }
 81 catch (NumberFormatException e)
 82 {
 83 System.err.println("Usage: Spiral0 <width>
<height>");

 84 System.exit(1);
 85 }
 86 new Spiral0(width, height);

 - 533 -

 87 }
 88 }

 The Spiral0 constructor (lines 10–21) constructs the top-level window by creating and

inserting a single instance of the nested class Spiral0.Spiral.

Spiral0.Spiral is a simple graphical element whose only interesting method is
paintComponent() (lines 36–70). This method turns on antialiasing (lines 38–40)(2),
clears the rectangle being redrawn (lines 41–42), draws the spiral (lines 43–58), and
displays some summary statistics on the performance of the repaint.

(2)

To make the output more interesting, a scaling transformation (line 43) is applied to
the spiral. This results in placing the lines of the spiral at varying off-pixel addresses to
ensure that the AWT's antialiasing logic is kept busy.

 The main() procedure (lines 72–87) parses the command line and creates the main

window.

 Spiral1: Automating Spiral0

Spiral0 illustrated some basic behaviors of AWT repainting. Spiral1 adds some
automation, performing programmatically the manual window-dragging discussed in the
section "Using Spiral0 to Understand Repaint Behavior." Spiral1 adds an opaque,
heavyweight rectangular "puck" on top of the spiral and bounces it around (like a hockey
puck) under program control, constantly exposing areas that need to be repainted.

 Synopsis:

 java com.macmillan.nmeyers.Spiral1 <width> <height> <count>
<delay>

After creating its components, Spiral1 moves the puck over the spiral <count> times,
with a specified <delay> (in milliseconds) between moves. As it does so, you can see a
trailing shadow (see Figure 59.3) of areas that have been exposed and need to be
repainted.

 Figure 59.3: Spiral1 running.

 As the puck (darker rectangle) moves across the surface in Figure 59.3, it exposes areas

that are soon repainted. In this image, the puck has moved eight times since the most

 - 534 -

recent repaint.

 Results of Spiral1

The output generated by Spiral1 gives us a view of how much time is spent repainting.
When a test is run with a 300x300 spiral and a <count> of 200, the first few lines of
output

 count = 1, region = [0,0,296x276], time = 557 ms, total time =
557ms

 count = 2, region = [0,0,300x300], time = 568 ms, total time =
1125ms

 count = 3, region = [0,0,300x300], time = 635 ms, total time =
1760ms

 count = 4, region = [0,0,96x76], time = 147 ms, total time =
1907ms

 count = 5, region = [10,10,100x100], time = 156 ms, total time =
2063ms

 count = 6, region = [20,20,100x100], time = 193 ms, total time =
2256ms

 count = 7, region = [0,0,300x300], time = 565 ms, total time =
2821ms

 count = 8, region = [30,30,100x100], time = 159 ms, total time =
2980ms

 count = 9, region = [30,30,100x100], time = 195 ms, total time =
3175ms

 count = 10, region = [40,40,100x100], time = 157 ms, total time =
3332ms

show that the full image was painted four times (due to inefficient Swing/AWT startup
behavior), and that partial repaints due to puck movement took about 150–200 ms each.
By the time the puck has finished its 200 moves

 count = 200, region = [60,60,100x100], time = 158 ms, total time
= 36544ms

 count = 201, region = [50,50,100x100], time = 207 ms, total time
= 36751ms

 count = 202, region = [40,40,100x100], time = 160 ms, total time
= 36911ms

 count = 203, region = [30,30,100x100], time = 209 ms, total time
= 37120ms

 count = 204, region = [20,20,100x100], time = 166 ms, total time
= 37286ms

 count = 205, region = [10,10,100x100], time = 209 ms, total time
= 37495ms

 the application has spent approximately 37.5 seconds performing repaints.

 Spiral1 Source

Spiral1 adds the puck component and logic to support moving it around the display.
We will highlight the differences rather than showing full code listings. Full source is
available on the CD-ROM.

The puck-motion logic is implemented partly in main() and partly in a custom layout
manager (see Listing 59.2). By placing the logic to move the puck in the layout manager,
we ensure that it is executed by the event-handling thread—a requirement (or at least a
strong recommendation) when dealing with Swing.

 Listing 59.2 Spiral1.java Custom Layout Manager

 - 535 -

 7 class Spiral1 extends JFrame
 8 {
 9 Spiral spiral;
 10 Component puck;
 11 int puckX = -1, puckY = -1;
 12 int puckXinc = -1, puckYinc = -1;
 13 boolean movePuck = false;
 14 Spiral1(int w, int h)
 15 {
 16 getContentPane().setLayout(new LayoutManager() {
 17 public void addLayoutComponent(String s,
Component c)

 18 {}
 19 public void layoutContainer(Container c)
 20 {
 21 Dimension size = c.getSize();
 22 spiral.setBounds(0, 0, size.width,
size.height);

 23 Dimension puckSize = new
Dimension(size.width / 3,

 24
size.height / 3);

 25 if (puckX == -1)
 26 {
 27 puckX = 0;
 28 puckY = 0;
 29 puckXinc = puckSize.width / 10;
 30 puckYinc = puckSize.height / 10;
 31 }
 32 if (movePuck)
 33 {
 34 if (puckX + puckXinc + puckSize.width
> size.width ¦¦

 35 puckX + puckXinc < 0) puckXinc =
-puckXinc;

 36 if (puckY + puckYinc +
puckSize.height > size.height ¦¦

 37 puckY + puckYinc < 0) puckYinc =
-puckYinc;

 38 puckX += puckXinc;
 39 puckY += puckYinc;
 40 movePuck = false;
 41 }
 42 puck.setBounds(puckX, puckY,
puckSize.width, puckSize.height);

 43 }
 44 public Dimension minimumLayoutSize(Container
c)

 45 { return spiral.getMinimumSize(); }
 46 public Dimension
preferredLayoutSize(Container c)

 47 { return spiral.getPreferredSize(); }
 48 public void removeLayoutComponent(Component
c)

 49 {}
 50 });

 - 536 -

 51 getContentPane().add(puck = new Panel());
 52 puck.setBackground(Color.red);
 53 getContentPane().add(spiral = new Spiral(w, h));
 54 pack();

The layout procedure (lines 19–43) repositions the puck whenever the movePuck flag
(set by a timing loop in main()) is true. The puck is automatically sized to one-third the
size of the spiral (line 23), and it is moved on a diagonal one-tenth its own size (lines 29–
30). Lines 34–39 cause the puck to bounce when it hits a wall.

 Listing 59.3 shows the changes to main().

 Listing 59.3 Spiral1.java Changes to main()

 113 public static void main(String[] argv)
 114 {
 115 int width = 0, height = 0, count = 0, delayms =
0;

 116 try
 117 {
 118 if (argv.length != 4) throw new
NumberFormatException();

 119 width = Integer.parseInt(argv[0]);
 120 height = Integer.parseInt(argv[1]);
 121 count = Integer.parseInt(argv[2]);
 122 delayms = Integer.parseInt(argv[3]);
 123 }
 124 catch (NumberFormatException e)
 125 {
 126 System.err.println("Usage: Spiral1 <width>
<height> " +

 127 "<count> <delay in ms>");
 128 System.exit(1);
 129 }
 130 Spiral1 s = new Spiral1(width, height);
 131 while (count— > 0)
 132 {
 133 try { Thread.sleep((long)delayms); }
 134 catch (InterruptedException e) {}
 135 s.movePuck = true;
 136 s.puck.invalidate();
 137 s.validate();
 138 }
 139 }
 140 }

After the logic to handle the new command-line parameters (lines 116–129), main() sits in
a loop (lines 131–138) and, by setting movePuck and calling invalidate() and
validate(), causes the layout manager to be called to move the puck.

Spiral2: Adding Backing Store

Backing Store is a common performance technique in graphics. It involves holding the
current window contents in a buffer for repainting as needed. Backing store is not to be
confused with double-buffering (see Figure 59.4), although the logic is similar.

 - 537 -

 Figure 59.4: A comparison of double-buffering and backing store.

The purpose of double-buffering is to hide slow rendering speed—it's a particularly
important technique in animation for creating smooth frame-to-frame transitions. With
double-buffering, the application does not draw to the display; it draws (perhaps slowly
building a scene or image) to an offscreen buffer and then rapidly blits (copies pixel-for-
pixel) the image to the display. Whenever the application needs to draw, whether to
render a new frame or simply to repaint an exposed area, it employs this two-stage
rendering process.

Double-buffering is used in Swing, and it is being employed every time Spiral0 or
Spiral1 repaints any part of its window. So, although drawing the spiral may be a slow
process, you do not perceive the slowness; the slow sequence of drawing one antialiased
line after another happens offscreen.

By contrast, backing store is designed to avoid involving the application's rendering logic
in repainting whenever possible. The application draws to an offscreen buffer (and
perhaps concurrently to the screen), and the offscreen buffer is blitted to the screen
whenever the image needs to be repainted. The application's rendering logic becomes
involved only when needed to change the image.

Backing store can be implemented in the display system: Many X servers allow it to be
selectively enabled for individual windows at the request of the application. Or it can be
implemented within the application itself. At present, Graphics2D and Swing do not
provide either option, but we can improve graphics performance by adding our own
backing store implementation.

 Synopsis:

 No significant change from the Spiral1 invocation:

 java com.macmillan.nmeyers.Spiral2 <width> <height> <count>
<delay>

 Changes to Spiral2 Source

The significant change in Spiral2 is the introduction of a new class, BackingStore
(see the section "BackingStore: A New Class to Implement Backing Store for
Lightweight Components"). The changes to the Spiral2 source are trivial (see Listing
59.4)—the Spiral2.Spiral object is now wrapped in a BackingStore object.

 Listing 59.4 Spiral2.java Significant Changes from Spiral1.java

 7 class Spiral2 extends JFrame

 - 538 -

 8 {
 9 Component spiral;
 .
 .
 .
 53 getContentPane().add(spiral = new
BackingStore(new Spiral(w, h)));

 BackingStore: A New Class to Implement Backing Store for
Lightweight Components

 The BackingStore class is a container for a single lightweight component, providing a

backing store implementation for that component and its descendants.

 Theory of BackingStore Operation

When backing store is implemented in the display system—for example, enabled for a
particular X window—implementation is simple. Exposing part of the window causes the
window system to repaint from the offscreen buffer, without even notifying the application
of the activity.

Implementing backing store in Java is more challenging. The only hook available for
controlling application painting behavior is the paint() method, and the backing store
logic must ascertain why paint() is being called. Is it repainting an exposed area of the
window, or responding to an application request to repaint? The difference is crucial. If
the application requested a repaint, the image has presumably changed, and the app
must be allowed to paint its new image.

 The design of BackingStore is built on two aspects of Swing/AWT behavior:

•

Application-requested repainting is handled by the repaint manager
(javax.swing.RepaintManager), whereas repaint requests caused by exposure
events are not. This provides a way to answer the "why are we repainting?" question
described previously.

•

Lightweight components are painted by painting their parent components—specifically,
their paint() methods are called by their parents' paint() methods. This provides
the capability for a parent to intercept and override its child's painting activities.

BackingStore maintains an image buffer, exactly the size of the child it contains, and
redirects the child to paint into that buffer. When paint() is called to repaint exposed
areas, BackingStore satisfies the request from the buffer. When paint() is called by
request of the application, BackingStore allows the application to repaint the buffer
and then blits its contents to the display.

 BackingStore Source

 Listing 59.5 shows the source for the BackingStore class.

 Listing 59.5 BackingStore.java

 1 package com.macmillan.nmeyers;
 2 import javax.swing.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5

 - 539 -

 6 public class BackingStore extends Container
 7 {
 8 static boolean repainting = false;
 9 static boolean installed = false;
 10 Image bstore = null;
 11 Component component;
 12 private class BSRepaintManager extends RepaintManager
 13 {
 14 public void paintDirtyRegions()
 15 {
 16 repainting = true;
 17 try { super.paintDirtyRegions(); }
 18 finally { repainting = false; }
 19 }
 20 }
 21 public BackingStore(Component comp)
 22 {
 23 if (!installed)
 24 {
 25 installed = true;
 26 RepaintManager.setCurrentManager(new
BSRepaintManager());

 27 }
 28 component = comp;
 29 add(component);
 30 component.addComponentListener(new
ComponentAdapter() {

 31 public void componentResized(ComponentEvent
e)

 32 {
 33 bstore = null;
 34 }
 35 });
 36 Dimension size = component.getSize();
 37 setSize(size);
 38 }
 39 public Insets getInsets()
 40 {
 41 return new Insets(0, 0, 0, 0);
 42 }
 43 public Dimension getMinimumSize()
 44 {
 45 return component.getMinimumSize();
 46 }
 47 public Dimension getMaximumSize()
 48 {
 49 return component.getMaximumSize();
 50 }
 51 public Dimension getPreferredSize()
 52 {
 53 return component.getPreferredSize();
 54 }
 55 public void doLayout()

 - 540 -

 56 {
 57 Dimension size = getSize();
 58 component.setBounds(0, 0, size.width,
size.height);

 59 }
 60 public void paint(Graphics g)
 61 {
 62 boolean doRepaint = repainting;
 63 if (bstore == null)
 64 {
 65 Dimension size = component.getSize();
 66 bstore = component.createImage(size.width,
size.height);

 67 doRepaint = true;
 68 }
 69 if (doRepaint)
 70 {
 71 Graphics g2 = bstore.getGraphics().create();
 72 g2.setClip(component.getBounds());
 73 g2.setFont(g.getFont());
 74 g2.setColor(g.getColor());
 75 component.paint(g2);
 76 g2.dispose();
 77 }
 78 g.drawImage(bstore, 0, 0, this);
 79 }
 80 }

 BackingStore is a container that tightly encloses a component for which it provides

backing store services.

 The core logic is contained in the paint() method (lines 60–79), and consists of three

steps:

 1. If there is currently no backing store bitmap, create one to match the size of the

component (lines 63–68).

2.

If we know that the application needs to redraw its image—a new bitmap has been
created or the repainting flag is set—lines 71–76 create a java.awt.Graphics
object for the bitmap, copy certain attributes from the original java.awt.Graphics
object, and call the paint() method for the component being managed.

 3. Blit the contents of the bitmap to the display (line 78).

 The rest of the class contains ancillary logic to support the container and painting

behavior:

 • The methods in lines 39–59 perform the necessary layout methods to implement the

container behavior.

•

The BackingStore.BSRepaintManager class implements a custom repaint
manager whose only purpose is to override the RepaintDirtyRegions() method
(lines 14–19) to set the repainting flag. This step answers the "why are we repainting?"
question.

 • The constructor (lines 21–38) installs the custom repaint manager and installs a

 - 541 -

listener that will discard the current backing store bitmap if the container is resized.

Subtleties

 This backing store implementation presents a couple of subtleties:

•

As BackingStore is currently implemented, painting now passes through two
levels of buffering: our backing store buffer and Swing double-buffering. Because
of the latter, the java.awt.Graphics object passed to paint() in line 60
actually points to another offscreen buffer, not to the screen.

If you want to turn off double-buffering, see lines 20–25 of the benchmark in
Chapter 57, "Why Is Java Slow?," in the section "Inefficient Graphics" for an
example of how to do it. As that benchmark illustrates, however, double-buffering is
important for AWT performance and you should use it for every component that is
not being managed by BackingStore. If you disable double-buffering for the
application's main window (as the benchmark does), you can reenable it for
individual components by calling their individual setDoubleBuffered() methods.

•

Notice that all logic dealing with the repaint manager uses static variables (lines
8–9). The repaint manager itself is a global resource, not a per-component
resource. These static variables treat it accordingly in the event that more than
one instance of BackingStore is being used.

 Caveats

The design of BackingStore is based on certain JDK behaviors that are observed but
not documented by Sun. In particular, the relationships between the repaint manager,
application-requested repainting, repainting due to exposure events, and calls to
paint() are not documented.

This logic has been verified to work with JDK1.2 on Linux and Microsoft Windows, and
with the JDK1.3 prerelease on Microsoft Windows, but its long-term effectiveness is not
certain.

 Results of Spiral2

The results of adding backing store are spectacular. Running the same test used in the
section "Results of Spiral1," earlier in this chapter, the application must paint its spiral
exactly just twice:

 count = 1, region = [0,0,292x272], time = 522 ms, total time =
522ms

 count = 2, region = [0,0,300x300], time = 591 ms, total time =
1113ms

The first paint, at an odd size, is apparently a Swing layout artifact and does not always
occur. Beyond the time required to draw the images into the backing store buffer, the
blitting of the image during repainting is fast—too fast to measure with the
java.util.Date class.

Using another measure of application performance—the CPU time measured by the Linux
time utility—shows that Spiral2 requires only 20% of the computing resources required
by Spiral1.

 - 542 -

Spiral3: Adding Event Coalescence

 An additional optimization is possible: coalescence of repaint events.

As seen in Figure 59.2, the AWT can generate many rapid repaint requests for tiny
portions of the screen. These events identify, to pixel accuracy, precisely what areas of
the screen need to be repainted. Depending on how an application performs its
repainting—in particular, on how expensive it is to repaint—this plethora of micro-paint
events might be efficient or might be wildly inefficient.

 For repainting from a backing store buffer, the micro-paint events are inefficient. It is

much more efficient to coalesce many repaints into a single large repaint.

The AWT provides a facility to support coalescence of events:
Component.coalesceEvents(). Spiral3 adds event coalescence to the
performance improvements of Spiral2.

 Synopsis:

 The invocation has the same arguments as before:

 java com.macmillan.nmeyers.Spiral3 <width> <height> <count>
<delay>

 The new code in Spiral3.java (see Listing 59.6) does the work of coalescing events.

 Listing 59.6 Spiral3.java Changes to Coalesce Events

 63 public AWTEvent coalesceEvents(AWTEvent
existingEvent,

 64 AWTEvent newEvent)
 65 {
 66 AWTEvent result =
super.coalesceEvents(existingEvent, newEvent);

 67 if (result == null &&
 68
existingEvent.getClass().equals(PaintEvent.class))

 69 {
 70 Rectangle newRect =
 71 new
Rectangle(((PaintEvent)existingEvent).getUpdateRect());

 72
newRect.add(((PaintEvent)newEvent).getUpdateRect());

 73 result = new
PaintEvent(((PaintEvent)existingEvent).getComponent(),

 74
existingEvent.getID(),

 75 newRect);
 76 }
 77 return result;
 78 }

The new coalesceEvents() method first calls the method it is overriding (line 66). If
that method does nothing, and if the events being handled are PaintEvents (lines 67–
68), then the two events are coalesced into a single event (lines 71–75).

 The new update rectangle (the area to be repainted) for the new event is the smallest

 - 543 -

rectangle that contains both original update rectangles. Note that this is simple and
aggressive coalescence logic: It is possible for two small rectangles to combine into one
large one. In the extreme, unusual case, two 1-pixel rectangles at opposite corners of the
screen can combine into a single rectangle that fills the screen.

Sun has indicated that the JDK1.3 AWT includes more capable event coalescence logic
than currently found in JDK1.2, which might eventually obviate the need for this
coalesceEvents() implementation.

Summary

This chapter presented some techniques that have, in the author's experience, been useful
for improving performance of graphical rendering in Swing-based applications. Until such a
time as future AWT tuning or enhancements make them unnecessary, these techniques
have shown excellent promise in speeding up Java graphics.

Chapter 60: PerfAnal: A Free Performance
Analysis Tool

 Overview

 This chapter presents a personal tool, PerfAnal, that aids in exploring Java application

performance.

 Platforms: JDK1.2

With the JDK1.2 release, the Java Virtual Machine began paying serious attention to
enabling performance analysis tools. The JVM includes a new native interface, the Java
Virtual Machine Profiling Interface (JVMPI), that allows tool's vendors to create in-process
profiling tools.

 Figure 60.1 shows the proposed architecture for profiling tools based on JVMPI.

 Figure 60.1: Sun's proposed architecture for JVMPI-based profiling tools.

The profiling agent (in Figure 60.1) must run in-process with the API, but the connection
to the front end is expected to be over a wire protocol to be defined by the individual tools
vendor.

Anyone can implement a profiling agent. The API is fully described in the JDK1.2
documentation bundle (in docs/guide/jvmpi/jvmpi.html). The hook for starting a
profiling agent is in the java launcher invocation:

 java ... -Xrun<agent>:<agent-args> ...

 where the agent executable is provided as a shared library named lib<agent>.so, and
<agent-args> are parameters to be parsed by the agent.

 - 544 -

 Sun's Sample hprof Profiler

SDK1.2 includes a sample implementation of a JVMPI-based profiler, hprof. It's not
sophisticated or particularly friendly, but it demonstrates the sort of data available through
JVMPI.

 Synopsis:

 java ... -Xrunhprof:<agent-args> ...

 Arguments:

 Arguments in <agent-args> are separated by commas.

•

cpu={samples¦times¦old}—Collect CPU profiling data for analyzing code
performance. The samples option uses statistical profiling to collect stack traces
showing where code is spending its time; times uses instrumented code to report on
time spent in individual methods; old specifies the format provided by the old JDK1.1
-prof option. Default is not to collect CPU profiling data unless this option is used.

 • cutoff=<value>—Do not report CPU times below <value>, which defaults to

0.0001.

 • depth=<size>—Depth of stack trace to use for heap=sites and cpu=samples

options. Default is 4.

 • doe={y¦n}—If yes, dump output on exit. Default is yes.

 • format={a¦b}—Generate profile data in ASCII or binary format. Default is ASCII.

 • file=<file>—Output profile data to the specified file. Default is java.hprof (for

binary) or java.hprof.txt (for ASCII).

•

heap={dump¦sites¦all}—Collect heap profiling data for analyzing memory usage
and leaks. The dump option dumps the contents of the Java heap at program
termination; sites generates stack traces showing where memory was allocated;
all does both. If you do not explicitly request heap or CPU analysis options, the
default behavior is heap=all.

 • lineno={y¦n}—If yes, include line number information in traces. Note that line

numbers are only reported if JIT is disabled. Default is yes.

 • monitor={y¦n}—If yes, report information on contention for monitors used to

synchronize multithreaded code. Default is no.

•

net=<host>:<port>—Send output to a TCP socket listening at the specified port on
the specified host. This option is used to send information to a running analysis
program instead of saving it to a file.

 • thread={y¦n}—If yes, include thread identification with stack traces. Default is no.

 Sun's Sample hprof Profiler

 SDK1.2 includes a sample implementation of a JVMPI-based profiler, hprof. It's not

 - 545 -

sophisticated or particularly friendly, but it demonstrates the sort of data available through
JVMPI.

 Synopsis:

 java ... -Xrunhprof:<agent-args> ...

 Arguments:

 Arguments in <agent-args> are separated by commas.

•

cpu={samples¦times¦old}—Collect CPU profiling data for analyzing code
performance. The samples option uses statistical profiling to collect stack traces
showing where code is spending its time; times uses instrumented code to report on
time spent in individual methods; old specifies the format provided by the old JDK1.1
-prof option. Default is not to collect CPU profiling data unless this option is used.

 • cutoff=<value>—Do not report CPU times below <value>, which defaults to

0.0001.

 • depth=<size>—Depth of stack trace to use for heap=sites and cpu=samples

options. Default is 4.

 • doe={y¦n}—If yes, dump output on exit. Default is yes.

 • format={a¦b}—Generate profile data in ASCII or binary format. Default is ASCII.

 • file=<file>—Output profile data to the specified file. Default is java.hprof (for

binary) or java.hprof.txt (for ASCII).

•

heap={dump¦sites¦all}—Collect heap profiling data for analyzing memory usage
and leaks. The dump option dumps the contents of the Java heap at program
termination; sites generates stack traces showing where memory was allocated;
all does both. If you do not explicitly request heap or CPU analysis options, the
default behavior is heap=all.

 • lineno={y¦n}—If yes, include line number information in traces. Note that line

numbers are only reported if JIT is disabled. Default is yes.

 • monitor={y¦n}—If yes, report information on contention for monitors used to

synchronize multithreaded code. Default is no.

•

net=<host>:<port>—Send output to a TCP socket listening at the specified port on
the specified host. This option is used to send information to a running analysis
program instead of saving it to a file.

 • thread={y¦n}—If yes, include thread identification with stack traces. Default is no.

 Using PerfAnal

 Here is a sample invocation using the data collected in the section "Sample hprof

Usage":

 java -Xmx64m com.macmillan.nmeyers.PerfAnal results.txt

 - 546 -

 The Four Windows

 For each profile file specified on the command line, PerfAnal displays a top-level

window enclosing four views of the profiling data (see Figure 60.2).

 Figure 60.2: The PerfAnal main window.

Each subwindow in Figure 60.2 displays a Swing JTree showing how much time is spent
in various methods. You can double-click to open JTree branches to get more detail.
Each window slices the data differently, and PerfAnal allows you to correlate
information between the windows.

The upper-left window (see Figure 60.3) shows which methods consumed the most time,
inclusive of subroutine calls. The tree is organized by caller; by exploring the tree, you
can see how much time was spent in the called methods.

 Figure 60.3: The upper-left window in PerfAnal's main window.

The tree in Figure 60.3 shows methods in order of decreasing execution time—inclusive
of subroutine calls. Exploring the tree to identify callees, we see that
javax/swing/JComponent. paint() spent most of its time in
com/macmillan/nmeyers/Spiral1$Spiral. paintComponent(), which spent
most of its time in sun/java2d/SunGraphics2D.drawLine(), and so on.

The lower-left window (see Figure 60.4) displays the same list of methods in the same
order, but organized by callee. By exploring the tree, you can see on whose behalf the
time is being spent.

 - 547 -

 Figure 60.4: The lower-left window in PerfAnal's main window.

The tree in Figure 60.4 also shows time spent in various methods, but with information
organized by callee. You can see three procedures that called
javax/swing/JComponent.paint() and can explore further up the call stack. Why
don't the numbers add up to 76.52%? Because we only collected 12-deep stack traces. If
the missing callers are important to the analysis, we will need to make a profiling run with
a higher depth= value.

 The upper-right window (see Figure 60.5) displays the same list of methods in the same

order, but here they are broken down by source line number.

 Figure 60.5: The upper-right window in PerfAnal's main window.

The tree in Figure 60.5 shows us that the busy javax/swing/JComponent.paint()
method spent most of its time on line #547, which is obviously (referring back to Figure
60.3) a call to com/macmillan/nmeyers/Spiral1$Spiral.paintComponent().

Finally, the lower-right window (see Figure 60.6) displays the methods—but in a different
order. This list is exclusive of subroutine calls and shows exactly where in the code the
application's time is really being spent.

 Figure 60.6: The lower-right window of PerfAnal's main window.

The tree in Figure 60.6 lists the methods in order of decreasing time, exclusive of
subroutine calls. The three busiest methods are native methods; the fourth is a Java
method broken down by line number.

 - 548 -

Note

All times reported in the analysis windows are in terms of ticks—increments of
the profiler sampling clock. Because the period of hprof's clock tick is not
documented, PerfAnal does not attempt to convert ticks into CPU seconds.
Nevertheless, the tick times are useful as a relative performance measure
within an analysis and between different analyses.

 Correlating Information Between the Windows

 Each of the four windows provides an interesting slice of the data, but how does that map

to performance tuning?

The results begin to get interesting when they are correlated between windows. Knowing,
for example, that the application is spending 11 percent of its time in a single native
rendering method, we can ask why and on whose behalf the time is being spent.

PerfAnal provides a facility to correlate the data between windows. We illustrate by
exploring the time spent in the native
IndexedCompositing.ColorFillAlphaToIndexed() method.

 Right-clicking on that line (see Figure 60.7) pops up a menu that allows us to Goto this
Method.

 Figure 60.7: Right-clicking pops up a menu with utilities for window correlation.

Choosing Goto this Method synchronizes all four windows: it selects the
corresponding entry in each window. Now, moving to the lower-left window (see Figure
60.8) and exploring the tree from that point exposes more useful detail. Looking up the
call stack past the Swing and AWT code (see Figure 60.9) reveals that all the time spent
in IndexedCompositing.ColorFillAlphaToIndexed() is due to calls from
Spiral1$Spiral.paintComponent().

Figure 60.8: After the last step, the
sun/java2d/loops/IndexedCompositing.ColorFillAlphaToIndexed()
method has been selected in all four windows.

 - 549 -

 Figure 60.9: Exploring up the call stack from Indexed
Compositing.ColorFillAlphaToIndexed().

This exploration has pointed the finger at the paintComponent() code for the spiral.
Repeat the process: using Goto this Method on that call, we see that this method is
(inclusive of subroutine calls) responsible for nearly 75% of execution time. Why is it
being exercised so frequently?

Another exploration up the call stack in the lower-left window traces the calls back to the
Motif event-handling code: the application is drawing a lot because it is receiving many
exposure events!(1) One possible solution, as already explored in Chapter 59, "An
Approach to Improving Graphical Rendering Performance," is to find a faster way to
respond to exposure events.

(1)

You will discover a minor fiction here if you repeat this experiment. Although this
sample data was collected with the depth=12 option, you will need to collect the data
with a greater depth value to trace all the way back to Motif event-handling code.
Choosing the amount of stack trace information to collect requires compromising
between detail and the CPU/memory demands of PerfAnal itself.

 Other PerfAnal Functionality

 The pop-up menu shown previously in Figure 60.7 offers two additional functions:

 • Select a Method to Analyze allows you to choose any method for further

exploration, presented in a dialog as a sorted list (see Figure 60.10).

 Figure 60.10: You can choose any method for further analysis.

 • Select Thread(s) to Analyze allows you to limit the analysis to certain

application threads. A pop-up dialog (see Figure 60.11) presents the choices.

 Figure 60.11: This dialog allows you to slice the analysis by thread.

 - 550 -

Finally, the File menu on the menu bar includes a Save button, which saves all the
analysis information from all windows into a text file, using indentation and numbers to
represent the tree structure. Here are the first few lines of the text file from this example:

 Method Times by Caller (times inclusive): 5175 ticks
 1: javax/swing/JComponent.paint: 76.52% (3960 inclusive / 3
exclusive)

 2: com/macmillan/nmeyers/Spiral1$Spiral.paintComponent:
74.80% (3871 inclusive / 13 exclusive)

 3: sun/java2d/SunGraphics2D.drawLine: 68.48% (3544 inclusive
/ 23 exclusive)

PerfAnal Source

PerfAnal is implemented with 12 top-level classes providing the analysis and GUI
capabilities. Complete source is provided on the CD-ROM, and a listing can be found in
Appendix B, "Miscellaneous Program Listings."

Summary

This chapter presented the PerfAnal tool, which works in conjunction with the JDK1.2
sample profiling application to provide detailed runtime performance analysis of a Java
application. Subsequent chapters will present a tool for heap (memory usage) analysis and
a commercial tool that enables live profiling of a running application.

Collecting Memory Statistics

We discussed general hprof usage, including memory-related options, in Chapter 60,
"PerfAnal: A Free Performance Analysis Tool," in the section "Sun's Sample hprof
Profiler." The memory profiling options collect three types of data into the profiling output:

•

Stack traces, which are identical to the stack traces described in Chapter 60 in the
section "Sample hprof Usage." These traces, however, are triggered by memory
allocation activity rather than by the ticks of a profiling timer.

•

A ranked list of allocations, similar to the ranked list described in Chapter 60 in the
section "Sample hprof Usage," but organized around memory usage. Here is the
beginning of the list, as generated by a sample run of Spiral1 (this program, an
illustration of graphical rendering speed, was discussed in Chapter 59, "Graphical
Rendering Performance"):

 SITES BEGIN (ordered by live bytes) Wed Sep 1 11:29:41 1999
 percent live alloc'ed stack class
 rank self accum bytes objs bytes objs trace name
 1 14.29% 14.29% 90004 1 171704 2 7725 [B
 2 2.60% 16.89% 16388 1 16388 1 1236 [C
 3 2.60% 19.49% 16388 1 16388 1 1245 [C
 4 1.85% 21.34% 11628 3 11628 3 963 [C
 5 1.78% 23.12% 11240 102 11240 102 3260 [C
 6 1.78% 24.91% 11240 102 11240 102 5456 [C

 The first entry describes an array of bytes (its Java class signature, shown in the last

column, is [B) whose allocation was captured in stack trace #7725 (shown elsewhere

 - 551 -

in the file). Two such objects were allocated during the life of the program, and one
was still live when the program terminated.

 • One or more dumps of current heap contents. Here is an example entry:

 OBJ 85c3020 (sz=20, trace=6676,

class=java/util/HashMap$Entry@82038a8)
 key 85c3100
 value 85c3130

This entry describes a 20-byte object of class java.util.HashMap.Entry,
containing references to two other objects. Each of these dump entries also shows the
allocated object's handle (85c3020, in this case) and the identity of the trace captured
when the object was allocated.

A dump is generated at program termination, but you can also generate dumps while
the program is running. At any time during execution, you can generate a current
dump by typing Ctrl+\ (control-backslash) to the terminal in which the JVM is running.
This allows you to capture baseline traces for purpose of comparison.

As with the CPU performance data, the memory data captured by hprof allows you to
build a detailed understanding of program resource usage—in this case, you can learn
where memory is being used and retained by the application. It, too, is a huge and complex
data set, and can benefit from a tool designed to aid in its interpretation. Sun provides such
a tool in its Heap Analysis Tool.

The Sun Heap Analysis Tool

Sun distributes, through its developer site (http://developer.java.sun.com), an
experimental tool called HAT—the Heap Analysis Tool—to aid in interpreting memory
profiling information. To obtain the tool, visit the developer site and search for "Heap
Analysis Tool." The tool is provided as a zip archive: unpack it anywhere.

 As of this writing, the tool is in early access and is completely unsupported.

 To use the tool, you need to collect hprof heap profiling data in binary format. A sample

invocation to collect the data from a run of Spiral1 is as follows:

 bash$ java -Xrunhprof:depth=12,thread=y,format=b,file=results.bin
\

 com.macmillan.nmeyers.Spiral1 300 300 200 100

Running HAT

 HAT is provided in a class library, hat.zip, in the bin/ subdirectory of the HAT

distribution.

 Synopsis:

 java -cp <installdir>/bin/hat.zip -Xmx100m hat.Main [<options>]
<profile>[:<trace#>]

The results file collected during profiling is specified in the <profile> argument; if it
contains more than one heap dump, use the optional <trace#> suffix to select which
trace to analyze. Example: results.bin:1.

 Once started, HAT starts up a small Web server. All interaction with HAT is through a

 - 552 -

browser.

 Options:

 • -port=<port#>—Specify port at which to run the Web server. Default is 7000. (If

you are running an X font server, the default port number will probably conflict with it.)

•

-baseline=<profile>[:<trace#>]—Specify a heap dump to serve as a
baseline. HAT will generate its memory usage statistics by comparing the two dumps.
The baseline dump may optionally be in a different file than the one being analyzed.

•

-exclude=<excludefile>—Read a list of fields to exclude from the analysis. The
file should contain fully qualified names, one per line, of fields to be excluded from the
analysis.

 After startup, HAT will analyze the file, output a handful of status messages, and then

indicate that the server is ready.

 Example:

For the data collected in the sample Spiral1 invocation in the section "The Sun Heap
Analysis Tool," this invocation would run a HAT analysis of the data and report results
through port 7005:

 bash$ java -cp /usr/local/Java/hat/bin/hat.zip -Xmx100m hat.Main
-port=7005 results.bin

 Started HTTP server on port 7005
 Reading from results.bin...
 Dump file created Wed Sep 01 11:57:35 PDT 1999
 Snapshot read, resolving...
 Resolving 20025 objects...
 Chasing references, expect 40
dots..

 Eliminating duplicate
references..

 Snapshot resolved.
 Server is ready.

 Interacting with HAT

All interaction with HAT is through a Web browser. Browsing the "home page" at
http://localhost:7005 (using the port number from the previous example) provides
a listing of all classes found in the profile. Figure 61.1 shows, for our example, a
truncated excerpt of that page.

 - 553 -

 Figure 61.1: Excerpts of HAT top-level page showing all classes.

The page shown in Figure 61.1 displays all classes for which allocations were recorded.
Following the link for any class leads to a detailed look at the class structure. Figure 61.2
presents a detailed look at the Spiral1 class; links on this page allow us to study the
class and its instances in detail—examining its members, finding all references to and
from class instances, and identifying where and by whom all instances were allocated.

 Figure 61.2: A detailed look at the structure of the Spiral1 class.

Many other queries are possible, allowing you to explore objects, allocations, and
reference chains. The best documentation on HAT comes from the README.html file
bundled in the distribution archive.

HAT Weaknesses

HAT provides a powerful tool for exploring the memory allocations and the web of
references in a Java application. It is particularly good at slicing the data in many different
ways, to help you understand the complex relationships among objects.

Perhaps its biggest shortcoming is that it doesn't answer the simple question of "who is
using so much memory?". There is, for example, no query to report that 14% of memory
was taken up by just two allocations of byte arrays—as is evident from inspecting the
ranked allocation list shown in the section "Collecting Memory Statistics" earlier in this
chapter. (Knowing to look for such arrays, further inquiry with HAT reveals that they are
members of class java.awt.image.DataBufferByte—that is, they are the buffers
used for double-buffering.)

 So, for the moment, HAT is best used in conjunction with other information—such as a text

version of the profile data.

Summary

This chapter looked at HAT, an experimental tool from Sun for analyzing memory statistics
generated by JDK1.2's JVM Profiling Interface. By understanding how an application's
memory is being used and abused, you can tune your application for improved memory
use and runtime performance.

 - 554 -

Chapter 62: OptimizeIt: Live Performance
Analysis

 Overview

 This chapter explores OptimizeIt, a commercial performance analysis tool available for

Linux.

 Platforms: JDK1.1/JDK1.2

Sun designed its JVM Profiling Interface (JVMPI) to support the development of third-
party profiling tools. The sample hprof profiler exploited in Chapters 60, "PerfAnal: A
Free Performance Analysis Tool," and 61, "Heap Analysis Tool: Understanding Memory
Utilization," provides a first glimpse of Java's profiling capabilities, but it misses JVMPI's
most exciting potential. It does not perform live profiling of running applications.

OptimizeIt is a commercial tool that addresses this shortcoming. Available for Linux,
Solaris, and Windows, OptimizeIt combines the various types of profiling supported by
JVMPI— runtime statistical, runtime instrumentation, and heap—into a live GUI that
allows detailed analysis of running applications. For applications that must run under
JDK1.1, OptimizeIt also supports the limited profiling capabilities provided in that
environment.

Obtaining OptimizeIt

You can download, obtain an evaluation license, and purchase OptimizeIt from
http://www.optimizeit.com. The product is shipped as a gzipped tarball, which
you can unpack anywhere.

 OptimizeIt ships with its own custom JRE1.1 to run its own classes, but uses your installed

JDK to run the applications being analyzed.

 Running OptimizeIt

 The installation includes a launch script, named OptimizeIt, in the top-level directory.

 Synopsis:

 <install_dir>/OptimizeIt

This brings up a configuration dialog (see Figure 62.1) in which you configure the
application to be analyzed. For this exploration, we set it up to analyze the Spiral1
program introduced in Chapter 59, "An Approach to Improving Graphical Rendering
Performance."

 - 555 -

 Figure 62.1: The OptimizeIt configuration dialog.

 After configuration, OptimizeIt presents the main GUI (see Figure 62.2) to control the

analysis activity.

 Figure 62.2: The OptimizeIt main GUI.

The GUI in Figure 62.2 allows you to start, pause, and terminate the application with the
buttons on the upper left. The second cluster of buttons allows you to select three
analysis modes: virtual memory usage, CPU usage, and heap usage. In this screen shot,
the product is performing live heap usage analysis as the application runs.

 The following sections explore some of the specific analysis modes available through the

main GUI.

 Analyzing Heap Usage

When OptimizeIt is being used to capture heap usage (refer to Figure 62.2), you can
examine the details about objects being allocated by the application. To analyze a
particular class, select the class (char[] is selected in the example) and use the third
group of buttons to explore the data in more detail.

 You can uses the various analysis modes to explore allocation backtraces (see Figures

62.3 and 62.4) and reference graphs (see Figure 62.5) to understand where memory is

 - 556 -

being allocated and how it is being used. Another analysis option lets you examine all
objects in the JVM (see Figure 62.6).

 Figure 62.3: Examining allocation backtraces.

 Figure 62.4: Examining allocation backtraces up the call stack.

 Figure 62.5: Examining reference graphs.

 - 557 -

 Figure 62.6: Examining the object reference graph.

 Text provided after each figure (Figures 62.2–62.6) presents more detail about the

analysis being performed.

The tree in the upper window in Figure 62.3 allows you to discover where allocations are
taking place. The star icon indicates the location of allocations, whereas the arrow icon
points to additional allocations further down the call stack.

The lower window describes which methods are doing the actual allocation: We see that
more than 27 percent of the char arrays have been allocated by the StringBuffer
constructor.

Figure 62.4 reverses the analysis seen in Figure 62.3: You can explore up the call stack
from the site of allocation traces—ascertaining on whose behalf an allocation was made.
This mode is selected with the far-right Reverse Display button.

You can examine a reference graph—that is, track down who holds references to any
object. In Figure 62.5, we begin with a scrolled list (in the upper window) showing the
contents of every char array.

Selecting one of the arrays—in this case an array containing the X name for the zapf
dingbats font—provides further analysis in the lower two windows. The middle window
contains a reference graph showing that this char array is referenced by a String
object, which is in turn referenced by an AWT font-related class.

 The lower window provides a full stack trace that was captured when the array was

allocated; this trace is 41 calls deep.

The object graph in Figure 62.6 provides a complete view of all objects in the JVM,
organized by class name. When you select an individual object for examination, the lower
window provides a stack traceback showing where it was allocated.

 Analyzing CPU Usage

Selecting OptimizeIt's Show CPU Profiler button (the 9th button from the left) enables
analysis of application CPU use. In this mode, you must ask the tool to record runtime
information (see Figure 62.7) and then stop the recording before beginning analysis.

 - 558 -

 Figure 62.7: Profiling CPU activity.

 When profiling CPU activity, you can choose to record the data in one of three modes:

 • Collect statistically sampled data, using a real-time clock as the sample clock. This

captures idle and busy time spent by the program.

 • Collect statistically sampled data, using the CPU clock as a sample clock. This is the

default choice, and it captures CPU time consumed by the program.

 • Collect data from profiler instrumentation in the JVM.

 The default mode (CPU clock sampling) is the method used by most profiling tools, and is

probably the most useful for discovering application performance problems.

 After you end data collection and begin analysis, OptimizeIt presents a pull-down menu

(see Figure 62.8) offering you a choice of which thread to analyze.

 Figure 62.8: Selecting a thread for analysis.

The pull-down thread selection menu in Figure 62.8 describes the threads whose CPU
activity was captured during profiling. Red and green dots indicate periods of inactivity
and activity for each thread, giving you a quick view of where time was spent and how the
threads interact.

 When analyzing an individual thread, the interface presents traceback and hot spot

information (see Figures 62.9 and 62.10) for detailed exploration.

 - 559 -

 Figure 62.9: Analyzing CPU usage.

 Figure 62.10: Analyzing CPU usage up the call stack.

 The upper window in Figure 62.9 allows you to explore down the call stack to see where

time is being spent. The lower window displays the top hot spots for this thread.

And, as with the memory usage graph, you can turn the CPU usage graph upside-down
(see Figure 62.10) and explore up the call stack from the sites of the hot spots. This
allows you to discover on whose behalf CPU time is being spent.

Finally, you can explore the source code associated with hot spots. By selecting an entry
in the list of hot spots and activating the source viewer, you are shown a display of
source code with the relevant sections highlighted (see Figure 62.11).

 Figure 62.11: The source code viewer highlights source code hot spots.

 For Further Reading

OptimizeIt is a commercial product, with extensive documentation and online help. This
chapter has presented a few snapshots of some common analysis modes; the included
documentation provides a more thorough view of the product's functions and capabilities.

 Summary

This chapter described OptimizeIt—a commercial Java performance-tuning tool available
for Linux. Its rich set of capabilities is made possible by the JDK1.2 JVM Profiling Interface,
and you can expect to see more such tools as JDK1.2 matures.

 - 560 -

Chapter 63: Understanding Linux Kernel
Performance

 Overview

 This chapter discusses techniques for analyzing Java's performance costs in terms of

time spent in the Linux kernel.

 Platforms: JDK1.1/JDK1.2

The performance tools discussed in Chapters 60, "PerfAnal: A Free Performance
Analysis Tool," and 62, "OptimizeIt: Live Performance Analysis," focused on one aspect
of CPU usage: time spent executing user code. Another important aspect of runtime
performance is system time—the time spent executing code in the Linux kernel. This time
is not recorded in profiles generated by the JVM, but applications enjoy considerable
control over how much they stress the kernel.

Consider a simple example. The program in Listing 63.1 generates a specified amount of
output using two different output classes. This program takes two command-line
parameters, count1 and count2. Lines 13–16 print the letter 'X' count1 times using
the method java.io.PrintStream.print(). Lines 18–21 print the letter 'X' count2
times using the method java.io.PrintWriter.print().

 Listing 63.1 PrintX.java

 1 import java.io.*;
 2
 3 public class PrintX
 4 {
 5 public static void main(String[] argv)
 6 {
 7 int count1 = 0, count2 = 0;
 8 try { count1 = Integer.parseInt(argv[0]);
 9 count2 = Integer.parseInt(argv[1]); }
 10 catch (Exception e) { System.out.println(e);
System.exit(1); }

 11 PrintWriter writer =
 12 new PrintWriter(new
OutputStreamWriter(System.out));

 13 for (int i = 0; i < count1; i++)
 14 {
 15 System.out.print('X');
 16 }
 17 System.out.flush();
 18 for (int i = 0; i < count2; i++)
 19 {
 20 writer.print('X');
 21 }
 22 writer.flush();
 23 }
 24 }

 When two different invocations of this program are run side-by-side (sending their output

to the bit bucket)

 - 561 -

 bash$ java PrintX 100000 0 >/dev/null
 bash$ java PrintX 0 100000 >/dev/null

 the second invocation runs faster than the first. What's going on?

The GNU time Utility

We begin to answer the question by using the GNU time utility—a standard component
in virtually all Linux distributions. In the unlikely event that time is not already installed on
your system, it should be available from the installation media. Red Hat users can load it
from the time RPM.

 time provides an easy and useful way to generate a quick analysis of the example

program's performance.

 Synopsis:

 time [<options>] <command...>

 time runs the specified command and reports on the CPU and real time consumed by

the process and its children.

 Options:

 • -a or --append—Append output to file specified with the -o option (below).

•

-f <format> or --format=<format>—Specify a custom format string for time
output. The string consists of characters that are output verbatim, and format strings
that are replaced with specified values. Possible format string values are

 %C: Command string executed

 %c: Number of involuntary context switches

 %D: Average unshared data size (kB)

 %E: Elapsed time (h:mm:ss or m:ss)

 %F: Major page faults

 %I: File system inputs

 %K: Average total size (kB)

 %k: Signals delivered

 %M: Maximum resident set size (kB)

 %O: File system outputs

 %p: Average stack size (kB)

 %P: Percent of CPU used by command

 - 562 -

 %R: Minor page faults

 %r: Socket messages received

 %s: Socket messages sent

 %S: System time (seconds)

 %t: Average resident set size (kB)

 %U: User time (seconds)

 %W: Number of swaps

 %w: Number of voluntary context switches

 %X: Average shared text size (kB)

 %x: Exit status

 %Z: Page size (bytes)

 • --help—Generate a usage message.

 • -p or --portability—Generate a standard, "portable" output format.

 • -o <file> or --output=<file>—Record output in specified file. Default is to send

output to stderr.

 • -v or --verbose—Generate detailed output, including all the data described for the -

-format option (discussed previously in this list).

 • -V or --version—Print version number.

 Using time with PrintX yields the following results:

 bash$ time --portability java PrintX 100000 0 >/dev/null
 real 8.58
 user 8.03
 sys 0.38
 bash$ time --portability java PrintX 0 100000 >/dev/null
 real 3.56
 user 3.32
 sys 0.13

Both invocations printed 100,000 characters, but the first invocation took more than twice
as much elapsed time, more than twice as much user-space CPU time, and nearly 3
times as much system (kernel) time.

We could analyze PrintX with the tools discussed in the last few chapters and learn
which methods are consuming CPU time. But the answer from the Java side is obvious:
The application is busy printing! Some relevant information—such as why one kind of
printing is slower then another—is beyond the reach of those tools. For that, we need to

 - 563 -

look at what is happening in the operating system.

The time tool provides a good first glimpse at OS activity—the preceding example
shows that something interesting is going on. But the numbers are rough and include
program overhead not directly associated with the application code. We need more
detailed tools.

The Linux strace Utility

strace is a system call tracing utility—it traces, in detail, the use of kernel facilities by
applications. strace is found in most distributions and is usually installed by default.
Red Hat users can load it from the strace RPM.

Subtleties

 What is a system call? The concept is foreign to many Java developers and often a

bit bewildering to C/C++ programmers.

As shown in the discussion of UNIX and Linux in Chapter 5, "What Is Linux?" in the
section "The Structure of UNIX," there is a clear division of labor between work
performed in user space and work performed in kernel space. This division of labor
is largely transparent to programmers but is an important activity under the covers.

 Consider, for example, what happens when your program writes data to a file on

disk:

 1. Your user-space code calls a print routine with the data you want to write.

 2. User-space code in a library formats the data and appends the formatted bytes

to a buffer.

 3. When the buffer fills, the library code flushes the buffer by making a system call

to the kernel, asking it to perform a physical write.

4.

Code in the kernel handles the remaining hoary details—shepherding those
bytes through the intricacies of the file system, I/O subsystem, device drivers,
hardware, and the kernel's other activities, ultimately causing a small recording
head to write some bits to a spinning magnetic platter.

Even in native languages such as C++, application programs do not often make
explicit system calls; they use the higher-level capabilities provided by libraries
(formatted buffered I/O, in this example) and let the libraries make the system calls.

Despite this strong boundary between user and kernel activity, applications have
some control over how they use and abuse the kernel, as you see when we use
strace to analyze our example program.

 Synopsis:

 strace [<options>] [<command and args>]

 Run the specified command and arguments, capturing and reporting information on

system calls made by the process. The <command and args> parameter is optional—

 - 564 -

you do not specify it if you use the -p option to analyze an already-running process.

 Options:

 • -c—Generate a summary of system call usage and time. If this option is not specified,

strace generates a voluminous, detailed log of all system calls.

 • -d—Generate output for debugging of strace.

 • -f—Trace forked processes as they are created.

 • -ff—Output traces from forked processes into separate files. The filenames are

derived from the -o option (discussed later in this list) with the process ID appended.

 • -F—Trace vforked processes, if possible.

 • -h—Display a help message.

 • -i—Output the user-space instruction pointer value at the time of the system call.

 • -q—Run quietly.

 • -r—Print a relative time stamp for each system call—the elapsed time since the

previous system call.

 • -t, -tt, or -ttt—Print an absolute time stamp for each system call (with varying

degrees of detail, depending on which option is used).

 • -T—Print CPU time consumed by each system call.

 • -V—Print strace version.

 • -v—Run verbosely: include more detail in the output.

 • -x or -xx—Print non-ASCII strings (-x) or all strings (-xx) in hex.

 • -a <column>—Align system call results data on a specified column.

•

-e <expr>—Specify a filter to apply to the data to be printed. This option allows you
to apply a number of detailed criteria to selecting the system calls to report. See the
strace man page for full details.

 • -o <file>—Send results to specified file. Default is stderr.

•

-O <overhead>—strace has its own heuristics for estimating how much overhead
its own activities consume—and subtracting that from the reported results. This option
allows you to specify your own value.

 • -p <pid>—Trace an existing process with the specified PID.

 • -s <strsize>—Limit the size of strings printed in the output.

 • -S {time¦calls¦name¦nothing}—Sort the counts generated by the -c option

(discussed previously) by the specified value.

 - 565 -

 • -u <username>—Run the command under the specified username. You must be the

root user to use this option.

 Example:

Of the many strace options, -c is particularly useful. It generates a short summary
indicating which kernel functions were called and how much time was spent in those
calls. If -c is not specified, strace generates voluminous output logging every system
call—which is sometimes useful, but not necessary for our purposes in this chapter. (Also
note that many of the strace options are not relevant if –c is specified.)

Before showing how to apply strace to Java, here is an illustration of its use with
ordinary programs launched from the command line. The example in Listing 63.2 uses
strace to run the GNU ls command and generate a summary.

 Listing 63.2 Running strace on the GNU ls Command

 bash$ strace -c ls /usr/local/Java/jdk1.2
 execve("/bin/ls", ["ls", "/usr/local/Java/jdk1.2"], [/* 29 vars
*/]) = 0

 COPYRIGHT README.PRE-RELEASE README.linux.src include lib
 LICENSE README.html bin include-old
src.jar

 README README.linux demo jre

 % time seconds usecs/call calls errors syscall
 ------ ----------- ----------- --------- --------- ---------
 82.35 0.003779 1260 3 write
 3.66 0.000168 34 5 2 open
 2.09 0.000096 19 5 mmap
 1.57 0.000072 36 2 getdents
 1.50 0.000069 69 1 lstat
 1.44 0.000066 11 6 brk
 1.20 0.000055 28 2 munmap
 1.02 0.000047 47 1 read
 0.94 0.000043 14 3 ioctl
 0.81 0.000037 9 4 fstat
 0.70 0.000032 8 4 close
 0.70 0.000032 32 1 readlink
 0.70 0.000032 32 1 stat
 0.37 0.000017 17 1 mprotect
 0.33 0.000015 8 2 lseek
 0.17 0.000008 8 1 fcntl
 0.15 0.000007 7 1 time
 0.15 0.000007 7 1 getpid
 0.15 0.000007 7 1 personality
 ------ ----------- ----------- --------- --------- -------------
 100.00 0.004589 45 2 total

The first line of output shows the system call—execve()—that launched the program.
This is followed by the output of the program—a listing of the contents of the JDK1.2
directory.

 - 566 -

The remaining output is the analysis: strace's report on the use of system calls. Of the
.004589 seconds this program spent performing kernel activity, more than 82 percent of it
was spent performing writes to the terminal—not a big surprise.

The system calls in the right-hand column may seem cryptic. They are the low-level
services provided by the kernel to your application and usually stay hidden behind the
capable interfaces supplied by user-space libraries such as libc (for C/C++ programmers)
and the Java core class libraries.

Using strace with Java

As with native applications, using strace with Java will give you some visibility into how
your Java application is stressing the kernel. The challenge to using strace is to run it
on the java executable, not on the java launch script. We do this with a modest trick—
using the debugger backdoor built into the java launch script.

 Synopsis:

 DEBUG_PROG="strace <options>" java -green ...

Setting the DEBUG_PROG environment variable causes the java launch script to invoke
the java executable with the specified command. The -green flag is needed because
strace is (at present) confused by native-threaded programs.

 Example:

 Listings 63.3 and 63.4 show the results of running the example program with strace. In

Listing 63.4, CPU usage is much lower, particularly for the read and write system calls.

 Listing 63.3 Running strace on the First Invocation of PrintX

 bash$ DEBUG_PROG="strace -c" java -green PrintX 100000 0
>/dev/null

 execve("/usr/local/Java/jdk1.2/bin/i386/native_threads/java",
["/usr/local

 /Java/jdk1.2/bin/i386/native_threads/java", "Hello", "100000",
"0"], [/* 3

 3 vars */]) = 0
 % time seconds usecs/call calls errors syscall
 ------ ----------- ----------- --------- --------- --------
 78.70 1.870720 19 100005 write
 19.82 0.471126 1098 429 read
 0.47 0.011254 110 102 kill
 0.21 0.005023 27 189 brk
 0.15 0.003659 8 438 _llseek
 0.14 0.003342 47 71 30 open
 0.13 0.003085 23 132 lstat
 0.10 0.002264 162 14 14 SYS_179
 0.07 0.001751 55 32 4 stat
 0.06 0.001404 28 51 mmap
 0.03 0.000796 36 22 mprotect
 0.02 0.000497 16 32 close
 0.02 0.000367 9 43 fstat
 0.01 0.000332 17 19 gettimeofday
 0.01 0.000325 36 9 munmap

 - 567 -

 0.01 0.000325 23 14 14 sigreturn
 0.01 0.000180 30 6 readlink
 0.01 0.000145 6 24 SYS_175
 0.00 0.000109 7 15 SYS_174
 0.00 0.000071 71 1 socket
 0.00 0.000064 32 2 1 connect
 0.00 0.000061 61 1 clone
 0.00 0.000045 45 1 pipe
 0.00 0.000029 15 2 uname
 0.00 0.000024 8 3 fcntl
 0.00 0.000020 5 4 getpid
 0.00 0.000018 9 2 lseek
 0.00 0.000014 7 2 getrlimit
 0.00 0.000011 6 2 time
 0.00 0.000011 6 2 setrlimit
 0.00 0.000011 6 2 getdents
 0.00 0.000009 9 1 wait4
 0.00 0.000008 8 1 personality
 0.00 0.000007 7 1 times
 0.00 0.000006 6 1 getuid
 ------ ----------- ----------- --------- --------- ------------
 100.00 2.377113 101675 63 total

 Listing 63.4 Running strace on the second invocation of PrintX

 bash$ DEBUG_PROG="strace -c" java -green PrintX 0 100000
>/dev/null

 execve("/usr/local/Java/jdk1.2/bin/i386/native_threads/java",
["/usr/local

 /Java/jdk1.2/bin/i386/native_threads/java", "Hello", "0",
"100000"], [/* 3

 3 vars */]) = 0
 % time seconds usecs/call calls errors syscall
 ------ ----------- ----------- --------- --------- -----------
 38.68 0.024711 58 429 read
 25.20 0.016099 125 129 kill
 6.86 0.004382 23 189 brk
 5.84 0.003731 9 438 _llseek
 4.66 0.002979 42 71 30 open
 4.32 0.002760 21 132 lstat
 3.11 0.001987 153 13 13 SYS_179
 2.53 0.001617 51 32 4 stat
 1.99 0.001273 25 51 mmap
 1.46 0.000935 52 18 write
 0.73 0.000464 15 32 close
 0.64 0.000410 19 22 mprotect
 0.63 0.000405 18 23 gettimeofday
 0.60 0.000383 17 23 SYS_175
 0.56 0.000356 8 43 fstat
 0.50 0.000321 36 9 munmap
 0.40 0.000257 86 3 fcntl
 0.27 0.000171 29 6 readlink
 0.17 0.000108 7 15 SYS_174

 - 568 -

 0.16 0.000101 8 13 13 sigreturn
 0.10 0.000067 34 2 getdents
 0.10 0.000063 32 2 1 connect
 0.10 0.000061 61 1 clone
 0.09 0.000059 59 1 socket
 0.08 0.000054 54 1 pipe
 0.05 0.000029 15 2 uname
 0.03 0.000019 5 4 getpid
 0.03 0.000018 9 2 lseek
 0.02 0.000014 7 2 getrlimit
 0.02 0.000011 6 2 time
 0.02 0.000011 6 2 setrlimit
 0.01 0.000008 8 1 wait4
 0.01 0.000008 8 1 personality
 0.01 0.000007 7 1 times
 0.01 0.000006 6 1 getuid
 ------ ----------- ----------- --------- --------- ------------
 100.00 0.063885 1716 61 total

What a difference! The first invocation of the program spent 1.87 seconds performing
writes—the write system call was invoked 100,000 times. The second invocation only
called write 18 times and consumed drastically less kernel time. The cause of the
performance differences is now obvious: the java.io.PrintWriter class is buffering
its output, whereas the java.io.PrintStream class is not.

 This is the sort of detail we can only learn from a trace of kernel activities.

Summary

This chapter examined tools you can use—time and strace—for understanding how
Java applications stress the Linux kernel and for identifying tuning opportunities. The next
chapter examines one more performance aspect worth understanding: time spent in native
user-space code.

 Profiler: A Native Application Profiler

The Linux and UNIX worlds provide a variety of tools to support application profiling, such
as code instrumentation inserted by the compiler, instrumented libraries, sampling-based
utilities, and kernel instrumentation.

Profiler is a personal tool that leverages one of those existing tools, by bringing an
existing libc profiling capability to JDK1.2. The information it collects is similar to that
from strace—a shallow(1) view of where time is being spent, but the view is of the user-
space native address space instead of kernel calls. Profiler reports time spent in user-
space native code and kernel time spent on behalf of user-space native code.

(1)
 A "shallow view" meaning one that lacks the full traceback information that was
available with the Java profiles.

 - 569 -

 Theory of Profiler Operation

Most of the native code run during Java execution is resident in the JVM's shared library
address space. This includes the JVM itself, the JIT, all JNI methods, the C library, all
Java support libraries—everything except JIT-compiled code (which can be created and
run in data space).

The C library provides a facility, profil(3), to support profiling of native code located in
a contiguous chunk of address space. To use profil(3), you must determine a range
of addresses to profile, and you must provide an array of counters to collect the profiling
data. Figure 64.1 illustrates how the address space is divided among the counters.

 Figure 64.1: An illustration of how profil(3) uses the profiling array.

Each counter in the profiling array in Figure 64.1 represents activity in some portion of the
address space. Every time the profiling timer ticks (every 10ms of CPU time), the value of
the instruction pointer is examined and the corresponding array element is incremented.
A large array may be used to collect high-resolution data, or a small array to collect low-
resolution data.

The information needed to make this profiling facility useful is a mapping between the
process's address space and the libraries (and procedures) being executed. That
information comes from two sources:

•

The Linux /proc file system provides this information in a pseudo-file(2) named
/proc/<pid>/maps, where <pid> is the process ID. For every shared library used
by a process, the file indicates where the library is mapped in the process's address
space. Beginning with Linux kernel 2.2, the file also shows the names of the shared
libraries—an important feature on which Profiler depends.

(2)

Like everything else in the /proc filesystem, this is not a real file; it is a way to
query the kernel for some of its internal data structures. You can learn more about
this powerful Linux feature from the proc man page.

 • The shared libraries themselves contain symbol tables that allow you to map

addresses to the names of individual procedures.

 Profiler uses these sources to construct a map of where in native code the application

is spending time.

 Using Profiler

Profiler is packaged as a shared library that implements the JVM Profiling Interface,
similar to hprof (see the section "Sun's Sample hprof Profiler" in Chapter 60). Like
hprof, it is used with the JDK1.2 JVM through the -Xrun option.

 Synopsis:

 - 570 -

 java -green ... -XrunProfiler[:<options>]

The library must be located somewhere the JVM can find it—either in the JDK's central
library repository, or in a directory referenced by the LD_LIBRARY_PATH environment
variable (as discussed in Chapter 15, "Troubleshooting The Blackdown JSDK/JRE
Installation " in the section "Finding JNI Libraries").

The -green option is not mandatory, but not using it can lead to confusing results: the
times(2) system call used to report total user time reports incorrect results for native-
threaded applications.

 Options:

 The comma-separated options control Profiler's behavior:

 • size=<#bytes>—Specify the size of the profiling array in bytes. A better alternative

to this option is scale= (discussed next).

•

scale=<#bytes>—Specify the resolution of the profiling array. The smallest possible
value, 1, gives you the highest resolution: Every byte of the address space maps to a
separate profiling counter (refer to Figure 64.1), and you can precisely identify every
procedure where time is being spent. Unfortunately, this also leads to a large profiling
array and large memory requirements for Profiler.

The default value is 1024, meaning that 1024 bytes of address space map to a single
counter. This keeps the profiling array relatively small. It will identify which libraries are
consuming time, but usually not which procedures. The best value depends on what
you need to learn from profiling: Use a value of 1 to get the best possible list of hot
spots; use higher values to keep Profiler from using disruptive amounts of memory.

 • expand=<#bytes> or expand=<percent>%—Specify additional space for

dynamically loaded libraries.

Profiler determines how much address space to profile to by examining the shared
libraries that are loaded after JVM initialization. If any libraries are later dynamically
loaded, they will fall outside the address range being profiled. You can specify room
for growth—either in bytes or as a percentage of current size—to allow for later shared
libraries. The additional space will be profiled by Profiler, on the assumption that it
will provide useful data.

An alternate solution to this problem is to preload all shared libraries you need to
profile, with the LD_PRELOAD environment variable (see the section "Environment
Variables Affecting the JSDK/JRE" in Chapter 14).

 • scope=global—Charge time to globally visible procedures in the shared libraries

(default).

•

scope=local—Charge time to the nearest local label in shared libraries. This is the
opposite of the scope=global option. When reporting time spent in libraries, it will
charge the time to the nearest label at or before the instruction pointer, whether global
or local. The nearest label may be a local procedure within the library, or it may be a
label inside a procedure. The results are potentially useful, but more likely to be
confusing.

 • file=<filename>—Save profiling results to the specified file. Default is to send

results to stderr.

 - 571 -

Applying Profiler

 We apply Profiler to the PrintX problem we were analyzing with strace (see

Chapter 63, "Understanding Linux Kernel Performance").

 Profiling the Slow Version

 First we profile the slow invocation of PrintX.

 bash$ java -green -XrunProfiler:scale=1,file=results.txt PrintX
100000 0 \

 >/dev/null
 Profiler: profiling over 20467712-byte address range
 Profiler: allocating 20467713 profiling elements

Profiler indicated that it is profiling 20MB worth of shared libraries, creating a suitably
large array to capture the high-resolution profiling information requested by the scale=1
option.

 The results begin with a report on overall CPU time:

 Total time: 8330 ms (7850 ms user, 480 ms system)
 Total time profiled: 5280 ms

The first line is CPU time reported by the times(2) system call; the second is the
amount of time captured by the profiler. In this case, the profiler captured only about 63%
of the CPU time—the remainder was spent running JIT-compiled code outside the shared
library address space. (This difference disappears if JIT is disabled.)

 The next section of output is a ranked list of time spent in individual libraries:

 CPU Use by Library

 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so
 Total time: 2020 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so
 Total time: 1150 ms
 Non-procedure time: 10 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/libsunwjit.so
 Total time: 1140 ms
 /lib/libc-2.1.1.so
 Total time: 730 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/libjava.so
 Total time: 220 ms
 /lib/ld-2.1.1.so
 Total time: 10 ms
 /usr/lib/libstdc++-2-libc6.1-1-2.9.0.so
 Total time: 10 ms

 Finally, Profiler shows hot spots in the code, broken out by individual library

procedure:

 Hot Spots

 - 572 -

 /usr/local/Java/jdk1.2/jre/lib/i386/libsunwjit.so:JITGetMethodBlockForPC: 420 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so:sysMonitorExit: 410 ms
 /lib/libc-2.1.1.so:__libc_write: 380 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:monitorEnter2: 270 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:monitorExit2: 260 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:sysInvokeNative: 200 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so:write: 200 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:JVM_ArrayCopy: 190 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:
AddToLoadedClasses: 180 ms

 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so:
sysMonitorEnter: 170 ms

 /usr/local/Java/jdk1.2/jre/lib/i386/libjava.so:writeBytes: 160 ms
 .
 .
 .

 Notice how much time is spent in the C library __libc_write() procedure and in

various JNI- and synchronization-related methods.

 Profiling the Fast Version

 We try the same test with the fast invocation of PrintX:

 bash$ java -green -XrunProfiler:scale=1,file=results.txt PrintX 0
100000 >/dev/null

 Profiler: profiling over 20467712-byte address range
 Profiler: allocating 20467713 profiling elements

 The differences are immediately obvious:

 Total time: 2630 ms (2610 ms user, 20 ms system)
 Total time profiled: 1900 ms

 We see that less time is spent both in the libraries and in the JIT-compiled code.

 The per-library results show us that much less time is spent in all libraries:

 CPU Use by Library

 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so
 Total time: 890 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/libsunwjit.so
 Total time: 560 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so
 Total time: 240 ms
 /lib/libc-2.1.1.so
 Total time: 190 ms
 /usr/lib/libstdc++-2-libc6.1-1-2.9.0.so

 - 573 -

 Total time: 10 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/libzip.so
 Total time: 10 ms

 And the list of hot spots is drastically different:

 Hot Spots

 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:allocObject: 160 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:InitializeRefs: 150 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/green_threads/libhpi.so:
sysMonitorExit: 100 ms

 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:FreeHandleMemory: 90 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:cacheAlloc:
80 ms

 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:JVM_ArrayCopy: 80 ms
 /usr/local/Java/jdk1.2/jre/lib/i386/classic/libjvm.so:allocArray:
70 ms

 /usr/local/Java/jdk1.2/jre/lib/i386/libsunwjit.so:
JITGetMethodBlockForPC: 70 ms

 /lib/libc-2.1.1.so:memmove: 60 ms
 .
 .
 .

The earlier hot spots are gone. The libc write call is not being heavily abused, and much
of the associated overhead (synchronization, for example) is also gone. The improvement
is a direct result of the difference in output buffering behavior: The use of buffering makes
java.io.PrintWriter much more efficient than java.io.PrintStream.

Building Profiler

 The source for Profiler is provided on the CD-ROM, and a listing can be found in

Appendix B, "Miscellaneous Program Listings."

 Building the Profiler shared library requires SDK1.2 and a C++ development

environment. The necessary commands to build are as follows:

 g++ -D_REENTRANT -fpic -I$JAVA_HOME/include -
I$JAVA_HOME/include/linux \

 -I/usr/include/g++-2 -I/usr/include/g++ -c profiler.C
 g++ -shared -o libProfiler.so profiler.o

The code makes extensive use of the C++ standard library and depends on headers that
are usually found in /usr/include/g++/ or /usr/include/g++-2/ (depending on
your g++ installation).

Summary

This chapter presented Profiler, a tool to assist in understanding how Java JDK1.2
applications use CPU resources in native code. Native profiling of user- and kernel-space
CPU usage is a challenging pursuit and not an ideal first line of inquiry as you investigate
Java application performance. But they can also provide performance information that is
not available through Java profiling and are a useful addition to your development tools

 - 574 -

arsenal.

Part XIV: Java and Linux on Servers

 Chapter List

 Chapter

65: Java on the Web: Java Servlets and Apache JServ

 Chapter

66: Java from Web Pages: JSSI and JSP

 Chapter

67: Java, Linux, and Three-Tiered Architectures

 Part Overview

One area of increasing success and visibility for both Java and Linux is servers—
relatively large systems providing file, computation, information, or application services to
users on other computers.

What makes a computer a server? The word carries less precision than such older terms
as minicomputer and mainframe. A server can be anything from a high-end x86 machine
to a heavy-iron IBM box. The common themes among servers—the requirements that
distinguish them from laptops and wristwatches—are roughly these:

•

System design—Servers have demanding system design requirements. Capacities
between components, buses, and interfaces must be well matched, and there must be
no bottlenecks in the core hardware and software. (Many home computers flunk this
test.)

 • Memory—Thrashing is deadly to servers. They need enough physical memory to carry

a substantial workload with minimal paging.

 • Scalability—As requirements grow, servers can be smoothly scaled up to meet them

with the addition of appropriate resources (memory, mass storage, CPUs, and so on).

•

Reliability—Servers require highly reliable and fault-tolerant subsystems that can stay
alive despite the inevitable problems and failures of computer hardware. Downtime is
deadly.

Linux is an increasingly important player in the server market. With server-focused Linux
distributions such as TurboLinux and server-focused hardware vendors such as VA Linux
Systems, Linux has proven itself a true competitor in the market.

Java's success in the server world is no less dramatic than is Linux's. Technologies such
as servlets, Enterprise JavaBeans, and Java Database Connectivity have established
Java's power to glue disparate computing resources into a coherent collection of
services.

 The next several chapters look at the ways in which the two technologies can be brought

together in the enterprise and on the Internet.

Chapter 65: Java on the Web: Java Servlets
and Apache JServ

 - 575 -

 Overview

Apache is the most popular Web server today, running more than half the sites on the
Web and easily outselling the combined offerings from Netscape, Microsoft, and all other
Web server vendors. It is also, remarkably, a free, open source product.

As the Web evolved from static pages to dynamic content, many technologies grew to
support the generation of that content. One of those, Java servlets, brings Java's many
application and networking strengths to bear on the problem of generating dynamic Web
content.

 This chapter looks at Apache and Java Servlets individually and then explains how they

can be combined in a Linux environment.

The Apache Web Server

Apache grew out of the pioneering Web development work at the National Center for
Supercomputing Applications (NCSA). Along with work by the European Laboratory for
Particle Physics (CERN), NCSA's early-1990s design efforts had much to do with
development of the methods and protocols that make up today's Web.

 Apache History

NCSA's public-domain HTTP Daemon (httpd) was the first widely deployed Web server
and was, by 1995, the world's most popular. It was also, by 1995, in serious trouble. Its
primary developer, Rob McCool, had moved on to other pursuits, and it was kept alive
largely through the efforts of tenacious Webmasters whose individual bug-fixing efforts
kept them in the Web-serving business.

In early 1995, a new generation of developers outside NCSA decided to pick up the
pieces. Brian Behlendorf and Cliff Skolnick set about to organize the salvation of httpd.
They established a mailing list, a central development site, and incorporated the many
floating bug fixes into a single version, which was released in April of that year.

Over the next several months, the code was rearchitected, documented, enhanced, and,
after an intense porting and testing effort, released in December as the new Apache Web
server.

Apache continues to be maintained by volunteers, under the auspices of the Apache
Software Foundation (http://www.apache.org), and continues to be enhanced
through individual contributions. The Apache project tracks evolving Web standards and
keeps current with the protocols as they develop.

Apache is not alone, of course. The Web server market has exploded since Apache's
early days, with Microsoft and Netscape leading the pack of some three dozen
commercial offerings. But Apache continues to own more than half the market and to
prove itself a robust and capable Web server.

Apache's main faults are typical of noncommercial products: It's powerful, but not easy to
use. Expert users have no trouble with its interfaces, but many less sophisticated users
are better served by the friendly GUI- and Web-based front ends offered by competing
products.

 Obtaining Apache

 Apache is widely available—from the main site (http://www.apache.org), from other

repositories, and in most Linux distributions. Red Hat users need to install the RPMs for

 - 576 -

apache (for core capabilities) and apache-devel (for the capabilities to be described in
this chapter).

 Java Servlets

Java servlets provide a mechanism for executing Java code on a Web server, in
response to requests from clients. They represent a powerful evolution from the early
technologies for dynamic Web content generation.

 Background: The Common Gateway Interface

Web servers have long supported dynamic generation of content. The original interface
for this purpose was the Common Gateway Interface (CGI)—a mechanism that allows
Web servers to launch programs instead of simply returning static pages. The resulting
Web page is simply the output of the CGI program.

CGI is implemented on Web servers by mapping certain parts of their namespace to
programs instead of files. So, for example, a Web server handling a request for a page
named /cgi-bin/foobar.cgi will probably run a program named foobar.cgi rather
than send a static page.

A server may need to generate dynamic content for any reason: perhaps to provide up-
to-date information (such as current time and temperature), or to respond to data sent by
the client (such as a search engine query). To support data sent by clients, the Hypertext
Transport Protocol (HTTP) defines several methods a browser can use to send user-
supplied information to the server for processing (see Figure 65.1).

 Figure 65.1: HTTP support of client input.

Web browsers (on the left side of Figure 65.1) may use the POST and PUT methods
(among others) to upload arbitrary data, or the GET/QUERY method, in which the browser
appends a client-supplied query to a new page request.

But whether CGI is used to process user input or simply to provide current server-side
information, the result is that a program is launched (see Figure 65.2), data is passed to
and returned from the program, and a new page is generated from the results.

 Figure 65.2: CGI launches a program to generate a page.

 The CGI program terminates after handling one request.

 - 577 -

CGI is a simple but capable interface. Because it can launch any arbitrary program, its
capabilities are limited only by the imagination of application developers. Most CGI
applications are shell or Perl scripts, but any sort of program is possible.

 However, CGI also incurs some costs that make it a poor choice for modern, large-scale

Web servers:

 • Launching a new process for every request is expensive and can add up to a huge

drain on busy Web servers.

•

Because every request results in execution of a new program, it is difficult and
expensive to maintain the state of an interactive session. CGI-based interactive
applications, such as e-shopping carts, must respond to every request by running a
fresh program that fully restores the session state from disk or DBMS, acts on the
request, and then fully saves the new session state.

•

There is no well-defined environment in which to develop CGI applications. For
example, there are no libraries to support common input processing or output
generation tasks.

 A number of inventive solutions have appeared to these problems—servlets are one of

those solutions.

 The JSDK Specification

The Java Servlet Development Kit (JSDK) is a Sun specification and implementation for
Java applications that perform CGI-like functions. The overall architecture is similar to
CGI—the servlet takes parameters and input from the client and generates output for the
client—but differs in some important implementation details:

 • A request is handled by invoking a method on an existing object in a running JVM—a

much less expensive approach than launching a new program.

•

The life cycle of a servlet is not determined by the life of a single request. Servlets are
long-lived, can easily maintain state between requests, and can support interaction
among different clients.

 • JSDK includes support classes for some common tasks, such as input processing,

session management, and cookie management.

 Figure 65.3 illustrates the servlet life cycle and relationship to the Web server.

 Figure 65.3: Servlet life cycle.

 - 578 -

Once created, a servlet instance can handle multiple requests during its lifetime. Service
requests may arrive concurrently from multiple threads, each on behalf of a different
client—creating an opportunity for interaction between clients and a requirement that
servlets be coded for proper multithreaded execution.

As of this writing, version 2.2 of the Java Servlet specification is undergoing review. Of
the existing versions, 2.0 is widely supported (including by Apache JServ), and 2.1 is
available in sample implementation from Sun and in some commercial products.

 Sample JSDK Implementations

Sun publishes sample implementations of the JSDK, available from the Java Servlets
product page, which you can reach from the main Java site at http://java.sun.com.
The implementations are entirely in Java and fully usable on Linux. As of this writing, the
implementations are published in three forms:

 • Java Servlet Development Kit (JSDK) 2.0—A software development kit supporting the

Java Servlet 2.0 specification.

 • Java Servlet Development Kit (JSDK) 2.1—A software development kit supporting the

Java Servlet 2.1 specification.

•

JavaServer Web Development Kit (JSWDK) 1.0—A software development kit that
subsumes JSDK2.1 and adds JavaServer Pages (JSP), which we will discuss further
in Chapter 66, "Java from Web Pages: JSSI and JSP," and Extensible Markup
Language (XML).

All three include a primitive servlet runner, intended for testing servlets but not for general
use as a Web server. For production servlet deployment, you need support from a
production-grade Web server, as discussed in the section "Apache JServ: Adding Java
Servlets to Apache" later in this chapter.

 The Java Servlet API

The Java Servlet API defines the interface between Web servers and Java servlets, and
is one of the smallest and simplest in the Java application universe. Here is a glimpse of
the JSDK2.1 classes.

 Package javax.servlet

The java.servlet package defines the basic servlet functions and services, without
bindings to any particular Web protocol. Included are classes to support dispatching of
requests and management of input and output streams between the servlet and the Web
server. Here are the javax.servlet public classes and interfaces:

public abstract class javax.servlet.GenericServlet extends
java.lang.Object
 implements java.io.Serializable
 implements javax.servlet.Servlet
 implements javax.servlet.ServletConfig

 public interface javax.servlet.RequestDispatcher extends
java.lang.Object

 public interface javax.servlet.Servlet extends java.lang.Object
 public interface javax.servlet.ServletConfig extends
java.lang.Object

 public interface javax.servlet.ServletContext extends
java.lang.Object

 public class javax.servlet.ServletException extends
java.lang.Exception

 - 579 -

 public abstract class javax.servlet.ServletInputStream extends
java.io.InputStream

 public abstract class javax.servlet.ServletOutputStream extends
java.io.OutputStream

 public interface javax.servlet.ServletRequest extends
java.lang.Object

 public interface javax.servlet.ServletResponse extends
java.lang.Object

 public interface javax.servlet.SingleThreadModel extends
java.lang.Object

 public class javax.servlet.UnavailableException extends
javax.servlet.ServletException

 Package javax.servlet.http

The javax.servlet.http package specializes the javax.servlet classes for the
HTTP protocol. Its classes include mechanisms for handling each of the HTTP request
types, utilities for extracting input and constructing output, authentication hooks, session
management, and tools for managing HTTP cookies. Here are the
javax.servlet.http public classes and interfaces:

 public class javax.servlet.http.Cookie extends java.lang.Object
 implements java.lang.Cloneable

public abstract class javax.servlet.http.HttpServlet extends
javax.servlet.GenericServlet
 implements java.io.Serializable

public interface javax.servlet.http.HttpServletRequest extends
java.lang.Object
 implements javax.servlet.ServletRequest

public interface javax.servlet.http.HttpServletResponse extends
java.lang.Object
 implements javax.servlet.ServletResponse

 public interface javax.servlet.http.HttpSession extends
java.lang.Object

 public class javax.servlet.http.HttpSessionBindingEvent extends
java.util.EventObject

public interface javax.servlet.http.HttpSessionBindingListener
extends java.lang.Object
 implements java.util.EventListener

 public interface javax.servlet.http.HttpSessionContext extends
java.lang.Object (deprecated)

 public class javax.servlet.http.HttpUtils extends java.lang.Object

 Apache JServ: Adding Java Servlets to Apache

Having discussed the basic components of a Java Web solution—a Web server and Java
servlets—we pull the pieces together to create a fully functional and free Java Web
solution.

The group managing Apache development, the Apache Software Foundation, also
oversees the development of several Apache-related projects. One of these, Apache
JServ, is the Apache servlet add-on.

 Apache JServ consists of two pieces, as shown in Figure 65.4: an in-process

communications module and a separate, all-Java implementation of a servlet engine.

 - 580 -

 Figure 65.4: Apache JServ implements an all-Java servlet engine in a

standalone JVM process.

Apache Jserv's components include core engine logic from Apache, the Sun JSDK2.0
sample implementation, and a communications module from Apache. On the Web server
side, a native module passes requests, via the Apache JServ protocol, to the engine. The
JVM running the servlet engine is launched by Apache at startup.

By running the servlet engine in a separate process, Apache avoids integration
complexities between the JVM and the Web server. The only native code in the entire
package is in the communications module, mod_jserv, used by the Web server. That
module can either be compiled into the Web server or introduced as a dynamically
loaded plug-in (an optional capability, in Apache versions starting with 1.3, that Apache
calls a Dynamic Shared Object, or DSO).

 Obtaining Apache JServ

 Apache JServ is available from http://www.apache.org/jserv. Download the

gzipped tarball and unpack it into any convenient directory for building.

 Building Apache JServ

 The details of building Apache and Apache JServ will vary with your configuration. I'll

provide some sample instructions, based on a Red Hat 6.0 system.

The Red Hat 6.0 installation media include RPMs for the Apache v1.3 Web server and for
development libraries. You will need both of them, apache and apache-devel, to work
with Apache JServ. The RPM installation process will install the Apache components,
start up the Web server, and configure your system to restart the Web server at system
reboot. After installation, you should find that browsing to your local host

 http://localhost

will give you a welcome screen from the Apache Web server. This installation of Apache
was built with support for DSO modules, so you can add Apache JServ without having to
rebuild the Web server.

 Additional components you need to build Apache JServ are

 • SDK1.1 or SDK1.2

 • The JSDK2.0 implementation from Sun

 • A gcc development environment

 With these pieces in place, you are ready to build Apache JServ. In the directory where

you unpacked the tarball, the following step will configure the build for this environment:

 bash$./configure --with-apache-install=/usr --prefix=<target
directory> \

 - 581 -

 --with-jsdk=<jsdk location>

 where <target directory> is where you want to install the servlet engine, and
<jsdk location> is the location of your installed JSDK2.0 implementation. Example:

 bash$./configure --with-apache-install=/usr --
prefix=/opt/apache_jserv \

 --with-jsdk=/usr/local/Java/JSDK2.0

 After configuring, you should be able to build with a single make command:

 bash$ make

Finally, the installation step will place the servlet engine into the target directory and the
mod_jserv module into a location (/usr/lib/apache/mod_jserv.so) where
Apache can find it:

 bash$ make install

 Configuring Apache JServ

Apache JServ creates a powerful and flexible environment for execution of servlets. A full,
detailed explanation is beyond the scope of this chapter (the distribution includes 350KB of
documentation). But the next section introduces some basic configuration settings and sets
up an example servlet project.

A Sample Apache JServ Project

To illustrate setup of Apache JServ, we present an example project. This example is built
with Apache Web Server 1.3 and Apache JServ 1.0. If you have dealt with early versions
of Apache JServ, note that many configuration instructions changed between pre-release
and release. The best source of configuration information is the current documentation
from the Apache JServ project.

 SimpleServlet: A Project to Report Servlet Parameters

 Listing 65.1 shows an example servlet that generates a report about the request that

triggered it.

 Listing 65.1 SimpleServlet.java

 1 import javax.servlet.*;
 2 import javax.servlet.http.*;
 3 import java.util.*;
 4 import java.io.*;
 5
 6 public class SimpleServlet extends HttpServlet
 7 {
 8 public void doGet(HttpServletRequest req,
HttpServletResponse resp)

 9 {
 10 // Set up the response writer
 11 resp.setContentType("text/html");
 12 PrintWriter writer = null;
 13 try {

 - 582 -

 14 writer = resp.getWriter();
 15 }
 16 catch (IOException e) { return; }
 17
 18 // Start output
 19 writer.println("<html><title>SimpleServlet
Output</title>");

 20
 21 // Return interesting values
 22 writer.println("<H1>Query Parameters</H1>\n");
 23 writer.println("Requested URI: " +
req.getRequestURI() + "\n");

 24 writer.println("
Query String: " +
req.getQueryString() + "\n");

 25 writer.println("
Auth Type: " +
req.getAuthType() + "\n");

 26 writer.println("
User Name: " +
req.getRemoteUser() + "\n");

 27
 28 // Find all our headers
 29 Enumeration headers = req.getHeaderNames();
 30 if (headers != null && headers.hasMoreElements())
 31 {
 32 writer.println("<H1>Headers</H1>\n");
 33 String br = "";
 34 while (headers.hasMoreElements())
 35 {
 36 String header =
(String)headers.nextElement();

 37 writer.println(br + "Header[\"" + header
+ "\"] = "

 38 + req.getHeader(header) +
"\n");

 39 br = "
";
 40 }
 41 }
 42 writer.println("</html>");
 43
 44 // Close and flush
 45 writer.close();
 46 }
 47 public String getServletInfo()
 48 {
 49 return "SimpleServlet Example";
 50 }
 51 }

This servlet creates a handler for the HTTP GET request by implementing its own
doGet() method. After creating the output writer and starting to output HTML (lines 12–
19), it queries and generates a report on some request parameters (lines 22–26) and
some header strings sent by the browser (lines 30–41).

 Configuring Apache

 At this point, we have the three components we need to enter the servlet business: the

Apache Web server, the Apache JServ servlet engine, and a servlet. We now need three

 - 583 -

pieces of glue—three configuration files—to assemble them into a solution. The following
sections discuss the configuration files needed to turn on our servlet.

 Recall that the current installed configuration for the example project is as follows:

 • Apache 1.3 has been installed from a Red Hat 6.0 RPM.

 • Apache JServ 1.0 was built and installed in the /opt/apache_jserv directory.

For deployment of the project, we choose to install servlets under directory
/opt/apache_jserv/servlets, beginning with a sample project under the
examples/ subdirectory.

 Apache JServ Organization

 To understand the roles played by configuration files, we take a brief look (see Figure

65.5) at how servlets are organized in an Apache/JServ environment.

 Figure 65.5: Architectural overview of servlet organization under Apache.

 The environment is configured by three different components:

•

The servlet engine organizes servlets into manageable domains called zones, each
with its own configuration file (the Zone Config File in Figure 65.5) describing the
servlets it supplies.

•

A configuration file for the servlet engine (the JServ Config File in Figure 65.5) handles
overall engine setup and identifies the zones being supplied by this engine. This
configuration file also contains communication and JVM startup information required
by the mod_jserv module in Web server.

•

A configuration file for the Web server (the Apache Config File in Figure 65.5)
establishes Apache support for servlets and maps servlet zones to mount points in the
Web server namespace.

 Apache Configuration File

The first piece of glue needed is for the Apache Web server. It must be configured to
recognize requests for servlets and to launch and communicate with the servlet engine.
Listing 65.2 shows some lines added to the Apache configuration file
(/etc/httpd/conf/httpd.conf, in the Red Hat 6.0 installation). This is a small,
bare-bones, low-security example that does not illustrate all available options.

 Listing 65.2 Configuration Directives Added to the Core Apache Configuration

File

 1 # Tell Apache to load the Apache JServ communication

 - 584 -

module
 2 LoadModule jserv_module modules/mod_jserv.so
 3
 4 # Tell Apache to start the JVM automatically when we need
Servlets

 5 ApJServManual off
 6
 7 # Tell Apache JServ where to look for its properties on
auto-startup

 8 ApJServProperties
/opt/apache_jserv/servlets/jserv.properties

 9
 10 # Default port that Apache JServ is listening to
 11 ApJServDefaultPort 8007
 12
 13 # Disable secret key for Apache JServ access
 14 ApJServSecretKey DISABLED
 15
 16 # Mount points for the zones Apache will manage
 17 ApJServMount /examples /examples
 18
 19 # Allow localhost to query status under /jserv directory
 20 <Location /jserv/>
 21 SetHandler jserv-status
 22
 23 order deny,allow
 24 deny from all
 25 allow from localhost 127.0.0.1
 26 </Location>

Line 2 loads the mod_jserv module, which was installed during Apache JServ
installation. The module handles configuration of and communication with the servlet
engine.

 Line 5 enables automatic startup of the servlet engine when servlets are needed.

 Line 8 describes a properties file (to be discussed in the next section) for the servlet

engine.

 Line 11 identifies the default TCP port for communication with the servlet engine.

 Line 14 makes this a simple, low-security environment.

Line 17 maps part of the Web server's namespace for use by servlets. Specifically, the
/examples mount point will be used to access servlets in a zone named "examples."
Servlets will be accessed from the Web server under the subdirectory
http://<hostname>/examples/.

 Finally, lines 20–26 allow access to Apache and JServ administrative status to Web

browsers running on the local host.

 Apache JServ Configuration File

The second piece of glue is a configuration file for the servlet engine. When the engine is
launched from the Web server, the Web server tells the servlet engine the location (line 8
in Listing 65.2) of this file. Listing 65.3 shows a bare-bones, low-security Apache JServ

 - 585 -

configuration file.

 Listing 65.3 /opt/apache_jserv/servlets/jserv.properties, Describing the

Configuration for the Servlet Engine

 1 # Specify the wrapper program (JVM) to run for servlets
 2 wrapper.bin=/usr/local/Java/jdk1.2/bin/java
 3
 4 # Entry point for Apache JServ Servlet Engine
 5 wrapper.class=org.apache.jserv.JServ
 6
 7 # Classpath for our JVM
 8 wrapper.classpath=/opt/apache_jserv/lib/ApacheJServ.jar
 9 wrapper.classpath=/usr/local/Java/JSDK2.0/lib/jsdk.jar
 10
 11 # Protocol used for signal handling
 12 wrapper.protocol=ajpv11
 13
 14 # Define port for Apache JServ protocol
 15 port=8007
 16
 17 # List of zones managed by this JServ
 18 zones=examples
 19
 20 # Property files for the zones we manage
 21 examples.properties=/opt/apache_jserv/servlets/
examples/examples.properties

 22
 23 # Allow only localhost to connect through Apache JServ
port

 24 security.allowedAddresses=127.0.0.1
 25
 26 # Enable/disable connection authentication.
 27 security.authentication=false
 28
 29 # Enable/disable the execution of org.apache.jserv.JServ
as a servlet.

 30 security.selfservlet=true

The information in lines 1–12 of this file is for the benefit of the Web server, not the
servlet engine. It identifies the wrapper (the java application launcher), the class path,
and the class needed to start the engine.

 Line 15 configures the servlet engine to communicate with Apache over TCP port 8007.

 Line 18 lists the one zone being served by this engine, examples.

 Line 21 points to the configuration file for zone examples.

 Line 24 creates some minimal security: only Apache servers running locally can connect

to this engine.

 Line 27 turns off other authentication methods on the connection from Apache.

 Line 30 allows us access to JServ configuration information from a Web browser.

 - 586 -

 Zone Configuration File

 Finally, the configuration file for the examples zone (see Listing 65.4) allows us to

configure our servlet for access from Apache.

 Listing 65.4 /opt/apache_jserv/servlets/examples/examples.
properties File, Configuring the Examples Zone

 1 # The list of servlet repositories controlled by this
servlet zone

 2 repositories=/opt/apache_jserv/servlets/examples
 3
 4 # Define an alias for our servlet
 5 servlet.simple.code=SimpleServlet

 Line 2 identifies the repositories—the directories containing servlets for this zone.

Line 5 specifies an alias, simple, and the Java class corresponding to that alias. The
alias assigns a name by which a particular servlet can be requested—in this case, it
points to our example servlet project.

 Running the Servlet

 With the pieces in place, we need to restart the Apache Web server. In the Red Hat 6.0

environment, this can be done by executing the initialization script as the root user:

 bash$ /etc/rc.d/init.d/httpd restart

 Accessing the Servlet from a Browser

 The servlet is now available from our Web server, as shown in Figure 65.6.

 Figure 65.6: Browsing to http://localhost/examples/simple shows

that Apache now supports servlets.

 Accessing Apache and Apache JServ Administrative Information

 Apache and the servlet engine also provide access to administrative information, through

 - 587 -

permissions that were set up in the Apache and JServ configuration files. The main
status page (see Figure 65.7) allows us to view status on the Web server (see Figure
65.8) and the servlet engine (see Figure 65.9).

 Figure 65.7: Browsing to http://localhost/jserv/ exposes a viewer into

Apache and JServ status.

 Figure 65.8: Information on the Apache side of the Apache/JServ relationship.

 - 588 -

 Figure 65.9: Information on the JServ side of the Apache/JServ relationship.

For Further Reading

Although Apache's capabilities and configuration requirements may seem overwhelming,
they are also well documented. The source distribution includes a docs/ subdirectory full
of detailed documentation. The Java-Apache faq-o-matic
(http://java.apache.org/faq/) is a repository of wise advice from people who
have solved Apache JServ installation and configuration problems.

 Apache also enjoys an active community of users and developers. Information on mailing

lists can be found at http://java.apache.org/main/mail.html.

 Summary

This chapter explored the steps to enabling basic servlet support on Linux with the Apache
Web server. From here, you can easily enable other interesting technologies, including
Java Server-Side Includes, JavaServer Pages, and Three-Tier Application Architectures.
We explore these technologies in the next two chapters.

Chapter 66: Java from Web Pages: JSSI and
JSP

 Overview

Having examined servlets, the core technology mixing Java and Web servers, we look at
two useful technologies built on top of servlets: Java Server-Side Includes (JSSI) and
JavaServer Pages (JSP). Although servlets provide a facility by which Java applications
can dynamically generate complete Web pages, JSSI and JSP tackle the problem from the
opposite side: running Java from within static Web pages.

 Apache JSSI

 JSSI is a Java-flavored extension of traditional Server-Side Includes (SSI). Traditional

SSI is already supported by Apache and many other Web servers.

 Traditional SSI

Traditional SSI allows you to embed directives into a static page that are parsed by the
Web server and replaced with dynamic content. By common convention, Web pages
containing SSI are usually suffixed .shtml, and Web servers will not pay attention to
SSI commands in pages without that suffix.

 SSI provides a rich set of capabilities for server-side parsing and execution. For example,

in a .shtml page containing the code

 <!--#include file="foobar.html" -->

the contents of foobar.html will be inserted into the page at the site of the directive.
SSI commands can do much more, including run programs, to generate dynamic content.
Detailed instructions on using and configuring SSI with the Apache Web server are
included in FAQs from Apache (http://www.apache.org/).

 Java SSI

 - 589 -

JSSI is the Java-flavored version of traditonal SSI—it allows you to run servlets from
within Web pages. By allowing you to embed Java programs in a page, JSSI does for
servlets on the server side exactly what browsers do for applets on the client side. Under
Apache, JSSI files are conventionally suffixed .jhtml, and they embed servlets in the
page with the <SERVLET> tag (which closely resembles the <APPLET> tag supported by
browsers). For example:

 <SERVLET CODE=FooBar.class>
 </SERVLET>

As with applets, servlets allow parameters to be included in the HTML and read by the
servlet code. Parameters are specified with <PARAM> tags between the <SERVLET> and
</SERVLET> tags:

 <SERVLET CODE=FooBar.class>
 <PARAM NAME="arg1" VALUE="foo">
 </SERVLET>

 When the tag is encountered, the servlet is run and its output substituted into the Web

page.

Subtleties

Sun Microsystems is also in the Web server business and has, not surprisingly,
integrated Java SSI more closely with traditional SSI than has Apache. On Sun's
Web servers, .shtml usually represents a Web page that can use both
conventional SSI tags and <SERVLET> tags.

By contrast, the Apache JSSI implementation discussed in this chapter provides
partial support for conventional SSI in a .jhtml page. Future plans include
improved support for mixing the two SSI technologies.

To further confuse the situation, Sun's Web server (along with other products on the
market) uses .jhtml to designate something completely different: page-compiled
Java—Java source embedded in Web pages, similar to the JSP technology
discussed later in this chapter.

The bottom line is that the relationship between a Web page suffix and the server-
side technology it exploits is not a standard mapping. It's more a matter of
convention for a particular Web server product and, ultimately, configuration
decisions made by a Webmaster.

 Obtaining Apache JSSI

Apache JSSI is available from the project site at
http://java.apache.org/jservssi/. You can obtain a gzipped tarball or zipfile
and unpack it anywhere. The distribution includes source and a compiled jarfile in the
src/java/ subdirectory. The example in this section is built on JSSI release 1.1.2.

 Requirements

 Apache JSSI requires JDK1.1 or JDK1.2 and a servlet engine, such as Apache JServ. It

may also run with other servlet engines.

 - 590 -

 Configuring Apache JSSI

With the Apache JServ pieces already in place, adding JSSI is straightforward. JSSI is a
servlet; you need to configure it to be run from the Apache JServ engine when it is
needed.

First, you must add the Apache JSSI jarfile as a repository to be managed by one of your
Apache JServ zones. Returning to the examples zone used for the sample project in
Chapter 65, "Java on the Web: Java Servlets and Apache JServ," we update the zone
properties file by adding a new repository pointing to the JSSI installation. For this
example (see Listing 66.1), Apache JSSI was unpacked into the directory
/usr/local/Java/ApacheJSSI-1.1.2.

 Listing 66.1 Updated /opt/apache_jserv/servlets/examples/
examples.properties

 1 # The list of servlet repositories controlled by this
servlet zone

 2 repositories=/opt/apache_jserv/servlets/examples
 3 repositories=/usr/local/Java/ApacheJSSI-
1.1.2/src/java/ApacheJSSI.jar

 4
 5 # Define an alias for our servlet
 6 servlet.simple.code=SimpleServlet

 This addition to examples.properties has two effects:

 • It adds the JSSI code as a servlet, available in the examples zone.

 • It allows JSSI to run other servlets found in the examples zone.

The other necessary change is to configure Apache to recognize .jhtml files and
invoke the JSSI servlet to process them. The following one-line addition is needed in the
main configuration file (/etc/httpd/conf/httpd.conf in our example installation):

 1 ApJServAction .jhtml /examples/org.apache.servlet.ssi.SSI

 After making this change, restart the Apache Web server. In our example Red Hat 6.0

installation, this command will do the job:

 bash$ /etc/rc.d/init.d/httpd restart

 Using Apache JSSI

 After the configuration changes described previously, the Apache Web server should

handle .jhtml pages. Listing 66.2 contains a small Web page to test the results.

 Listing 66.2 testjhtml.html Draws a Table, with the <SERVLET> Tag in the

Second Row

 1 <HTML>
 2 <HEAD>
 3 <TITLE>Apache JHTML Test</TITLE>
 4 </HEAD>
 5 <BODY>

 - 591 -

 6 <table border="1" cols="1">
 7 <tr>
 8 <td>
 9 <center>Here are the results of running the
servlet</center>

 10 </td>
 11 </tr>
 12 <tr>
 13 <td>
 14 <SERVLET name=SimpleServlet>
 15 SERVLET DID NOT WORK
 16 </SERVLET>
 17 </td>
 18 <tr>
 19 </table>
 20 </BODY>
 21 </HTML>

 Figure 66.1 shows the results of browsing the page.

 Figure 66.1: Browsing the page defined in Listing 66.2 shows the results of the

<SERVLET> tag embedded in a table.

JavaServer Pages

The Apache JServ technology discussed in Chapter 65 brought Java to the Web
browser. JSSI brought servlets into the Web page. JavaServer Pages (JSP) take things
one step further: They bring Java source code directly into HTML Web pages.

JSP is Sun's answer to Microsoft's Active Server Pages (ASP), in which scripts
embedded in Web pages are processed by Microsoft's Internet Information Server. The
scripting languages supported by ASP are VBScript (a dialect of Visual Basic) and
JScript (a descendant of the JavaScript language used in browsers). JSP scripts, by
contrast, are written in Java and enjoy more portability than do ASP scripts.

The Sun JSP1.0 specification is complete, and JSP1.1 is in review. In a (highly simplified)
nutshell, JSP defines HTML tags for embedding Java source in a Web page and provides
a class library to support the requirements of dynamic content generation. By convention,
Web pages employing JSP have the suffix .jsp.

 - 592 -

Subtleties

A JSP Web page looks similar to a static Web page—mostly HTML, but with special
tags enclosing Java source code. In reality, the page is a stylized Java source file
defining a servlet. When the page is processed by the Web server, it is filtered into
true Java source (all literal HTML on the page is transformed into print statements),
compiled, and run as a servlet.

Because a JSP page is Java source, it must respect the requirements of the
language. A single line of bad Java will break the entire page, not just the affected
line. The page must, after filtering by the JSP logic, look like a valid source for a
servlet implementation. In other words, it's not difficult to write a bad JSP page.

JSP imposes an additional requirement for printing: You should not use the normal
java.io classes for output. To print from Java in a JSP page, enclose the
expression to be printed within the special tags <%= and %>. JSP provides its own
output methods to avoid synchronization problems with output buffers managed by
the java.io classes.

 There are three current JSP projects worth watching:

 • The Sun JavaServer Web Development Kit (JSWDK) is a development kit combining

(as of version 1.0) the reference implementations of JSDK2.1 and JSP1.0.

 • The Apache Jakarta project (http://jakarta.apache.org) is targeted at building

an implementation of JSDK2.1 and JSP1.0 for use with the Apache Web server.

•

GNUJSP is a free, cleanroom implementation of the JSP specification, built on
JSDK2.0 capabilities and usable with Apache JServ and many other servlet engines.
As of this writing, it is rapidly approaching compliance with the JSP1.0 spec.

There are also commercial products—Allaire's JRun, among others—that bring JSP to
the Apache Web server. For our purposes in this chapter, we will focus on using
GNUJSP.

 Obtaining GNUJSP

The GNUJSP home page at http://www.klomp.org/gnujsp/ provides project
information, status, and downloads for GNUJSP. Downloads are available as gzipped
tarballs and zipfiles. They include source and a jarfile and can be unpacked anywhere.
The example in this section is built on the 0.9.10 release.

 Requirements

 GNUJSP requires JDK1.1 or JDK1.2, a Java compiler, and a servlet engine, such as

Apache JServ. It is also known to run with many other servlet engines.

 Configuring GNUJSP

 JSP requires more plumbing than JSSI—interpreting a JSP page involves a Web server,

a servlet engine, and a Java compiler to handle the embedded code.

 Revisiting the existing installation for the examples zone, we must create a directory in

 - 593 -

which GNUJSP can hold its compiled classes and give it access modes that will allow
read/write access to Apache and GNUJSP:

 bash$ mkdir /opt/apache_jserv/servlets/examples/jspstore
 bash$ chmod a+rw /opt/apache_jserv/servlets/examples/jspstore

The zone configuration file requires some new entries. Listing 66.3 shows the addition (in
bold italic) of a new repository pointing to the JSP installation and an initialization
argument for the JSP servlet. For purposes of this example, GNUJSP is installed in the
/usr/local/Java/gnujsp-0.9.10 directory.

When GNUJSP needs to compile, its default behavior is to launch the javac (Sun's Java
compiler) main class—which it expects to find in the class path. But configuration is
flexible; you can add options to this file (described in the GNUJSP documentation) to use
alternate compilers.

 Listing 66.3 Updated /opt/apache_jserv/servlets/examples/
examples.properties

 1 # The list of servlet repositories controlled by this
servlet zone

 2 repositories=/opt/apache_jserv/servlets/examples
 3 repositories=/usr/local/Java/ApacheJSSI-
1.1.2/src/java/ApacheJSSI.jar

 4 repositories=/usr/local/Java/gnujsp-0.9.10/lib/gnujsp.jar
 5
 6 # Define an alias for our servlet
 7 servlet.simple.code=SimpleServlet
 8
 9 # Define an alias for the GNUJSP
 10 servlet.gnujsp.code=org.gjt.jsp.JSPServlet

 11
servlet.gnujsp.initArgs=repository=/opt/apache_jserv/servlets/
examples/jspstore

The initialization file for the servlet engine also requires some new information. Listing
66.4 shows one addition (in bold italic) to the class path for the servlet engine. The new
entry adds the class library supplying the javac compiler main class. If we were running
under SDK1.1, that compiler would be found in classes.zip in the standard class path.

 Listing 66.4 /opt/apache_jserv/servlets/jserv.properties

 1 # Specify the wrapper program (JVM) to run for servlets
 2 wrapper.bin=/usr/local/Java/jdk1.2/bin/java
 3
 4 # Entry point for Apache JServ Servlet Engine
 5 wrapper.class=org.apache.jserv.JServ
 6
 7 # Classpath for our JVM
 8 wrapper.classpath=/opt/apache_jserv/lib/ApacheJServ.jar
 9 wrapper.classpath=/usr/local/Java/JSDK2.0/lib/jsdk.jar
 10 wrapper.classpath=/usr/local/Java/jdk1.2/lib/tools.jar
 11
 12 # Protocol used for signal handling
 13 wrapper.protocol=ajpv11
 14

 - 594 -

 15 # Define port for Apache JServ protocol
 16 port=8007
 17
 18 # List of zones managed by this JServ
 19 zones=examples
 20
 21 # Property files for the zones we manage
 22 examples.properties=/opt/apache_jserv/servlets/
examples/examples.properties

 23
 24 # Allow only localhost to connect through Apache JServ
port

 25 security.allowedAddresses=127.0.0.1
 26
 27 # Enable/disable connection authentication.
 28 security.authentication=false
 29
 30 # Enable/disable the execution of org.apache.jserv.JServ
as a servlet.

 31 security.selfservlet=true

We need one final piece of plumbing—instructions to the Apache Web server on what to
do when it encounters .jsp files. Add this line to the Apache configuration file
(/etc/httpd/conf/httpd.conf in our example installation):

 1 ApJServAction .jsp /examples/gnujsp

 Everything is now in place to support JSP. Restart the Web server to activate the

changes:

 bash$ /etc/rc.d/init.d/httpd restart

 Using GNUJSP

To test GNUJSP, we combine elements from the previous Apache JServ (see Listing
65.1) and Apache JSSI (see Listing 66.2) examples: an HTML page containing a table,
with dynamic Java output in the second row of the table. This time, the output is
generated by source code—adapted from Listing 65.1—embedded directly in the Web
page.

Listing 66.5 shows the new Web page source. Java code appears in <% ... %> tags.
Note the freely interspersed HTML and Java, even inside a loop (lines 32–40). Note also
that the code does not use the java.io classes for output; it places objects to be printed
inside <%= ... %> tags.

 Listing 66.5 testjsp.jsp, Adapted from the Previous SimpleServlet.java

Example

 1 <HTML>
 2 <HEAD>
 3 <TITLE>GNUJSP Test</TITLE>
 4 <%@ import="javax.servlet.http.*,java.util.*" %>
 5 </HEAD>
 6 <BODY>
 7 <table border="1" cols="1"
 8 <tr>

 - 595 -

 9 <td>
 10 <center>Here are the results of running the JSP
code</center>

 11 </td>
 12 </tr>
 13 <tr>
 14 <td>
 15 <H1>Query Parameters</H1>
 16 Requested URI:
 17 <%= request.getRequestURI() %>
 18
Query String:
 19 <%= request.getQueryString() %>
 20
Auth Type:
 21 <%= request.getAuthType() %>
 22
User Name:
 23 <%= request.getRemoteUser() %>
 24 <%
 25 Enumeration headers = request.getHeaderNames();
 26 if (headers != null && headers.hasMoreElements())
 27 {
 28 %>
 29 <H1>Headers</H1>
 30 <%
 31 String br = "";
 32 while(headers.hasMoreElements())
 33 {
 34 String header =
(String)headers.nextElement();

 35 %>
 36 <%= br %>
 37 Header["<%= header %>"] = "<%=
request.getHeader(header) %>"

 38 <%
 39 br = "
";
 40 }
 41 }
 42 %>
 43 </td>
 44 </tr>
 45 </table>
 46 </BODY>
 47 </HTML>

Figure 66.2 shows the results of browsing the .jsp page. Except for the formatting of
null strings by the JSP print methods, the results are identical to the earlier .jhtml
example in Figure 66.1.

 - 596 -

 Figure 66.2: Browsing the .jsp page.

Chapter 67: Java, Linux, and Three-Tiered
Architectures

 Overview

One role for Java that has led to outstanding success is that of enterprise application
integration—wiring together the resources of an enterprise into a coherent set of
services. Java has found an important role in the middle tier of three-tiered application
architectures.

 The Three Tiers

What is a three-tiered architecture? No two sources will give you the same answer to that
question—it's nearly impossible to find a description that does not include a vendor's
name firmly affixed to one of the layers. But, after extensive research, I am able to
provide a precise and accurate abstraction of all existing and future three-tiered
architectures (see Figure 67.1).

 Figure 67.1: A vendor-neutral three-tiered application architecture.

 The front end is the client, which, in modern environments, is often a Web browser.

The back end is a collection of computational and information resources used in an
enterprise: database management systems (DBMS), accounting, inventory, order
fulfillment, transaction processing, personnel, and so on.

The middleware acts as an agency between the back-end services and the client, and is
where much of the action is happening in Java today. Many of the technologies in the
Java 2 Enterprise Edition are focused on this layer, for example:

 • Enterprise JavaBeans (EJB)—A middleware framework for delivery of services

 - 597 -

 • Java Database Connectivity—Access from the middle tier to DBMS

 • Java Naming and Directory Interface—Access from the middle tier to directory

services

 • Java Servlets and JSP—Support for middle-tier applications running under Web

servers

 • Java Messaging—Support for reliable data exchange

 • Java Transactions—Transaction support for middle-tier components

 • CORBA and RMI—Support for distributed objects in the enterprise

Middleware is about delivering services. Its role is to decouple the creation and
maintenance of those services from the very different problem of providing them to
users(1). At its simplest, middleware acts as a gateway to the back end. For more
complex requirements, middleware can integrate or aggregate services, act as an agent
on behalf of the back end (for example, by caching database entries in the middle layer),
act as an agent on behalf of clients (for example, by performing batch processing for a
user), and so on.

(1)

In many descriptions of three-tier architectures, the middle tier is described as the
repository of business logic or business rules governing the use of back-end
resources—somehow suggesting a unique role for middleware applications. In reality,
the middle tier can fulfill this role, and often does, but it cannot own this role. A great
deal of business logic resides irrevocably in the back end. The broader concept of
delivering services seems a more accurate description of middleware's role.

The available selection of middleware products in today's market is impressive,
overwhelming, and complicated by the usual technology battles—EJB versus Microsoft's
Windows Distributed interNet Applications (DNA), for example—and the present immaturity
of the technologies.

Linux in the Middle

 As a competitive server platform, Linux can comfortably fill the middle tier in three-tier

architectures.

Given the performance demands of enterprise environments, you may find that currently
available JDKs fall short—but this story is still being written. The IBM JDK (see Chapter
25, "The IBM JSDK Port") shows good promise in industry benchmarks, and the TowerJ
platform (see Chapter 32, "TowerJ: A Server-Side Hybrid Java Environment") is proving
to be a world-beater. The Volano reports (http://www.volano.com/report.html),
which benchmark server environments, show that Linux more than holds its own as a
server platform for Java applications.

For the final project in this book, we create our own middle-tier Java application. The
simplest, and probably most common, realization of the three-tier architecture on the
Web is the use of the Apache Web server to access a back-end database. For this, you
need Apache, servlets, and a Database Management System.

 DBMS for Linux

There is no shortage of choice when you are in the market for a Linux Database
Management System (DBMS). Most commercial vendors, from small niche players to big
names such as Oracle, Sybase, Informix, IBM, and Computer Associates, have Linux
DBMS offerings. Many commercial vendors offer free personal-use licenses, and you can

 - 598 -

also choose from such professional-grade free products as PostgreSQL and MySQL.

Moving beyond the mainstream world of relational databases, the market includes
several object databases for Linux. And, beyond native-code implementations, Java-
based DBMSes are available.

 A good starting point in the search for Linux DBMS offerings is the Linux Center project

(http://www.portalux.com/applications/databases).

For an example project, we will use the MySQL DBMS—a popular product that supports
the Structured Query Language (SQL) standard for programmatic interaction with
databases. MySQL is governed by liberal licensing terms that keep it free for most
personal and commercial applications on non-Microsoft Windows boxes.

 Installing MySQL and a JDBC Driver

MySQL is available from the main Web site, http://www.mysql.com. Source and
binary versions are provided as compressed tarballs and as RPMs. They can be installed
using the techniques discussed in Chapter 8, "Installing Additional Linux Software." You
should install both server and client components.

Depending on the installation environment, you may need to start the database server
yourself. The necessary instructions are included in the distributions. In the Red Hat 6.0
environment, installation from the Red Hat client and server RPMs (provided at the
MySQL download site) handle all the details—just run rpm to install MySQL, and the
database is up and running when it finishes.

The one additional component you need to use MySQL from Java is a JDBC driver. This
is the glue between Java's database I/O abstractions and the actual database, and is
unique to a particular database technology. You can obtain MySQL JDBC drivers from
http://www.worldserver.com/mm.mysql/. Download a current release and
unpack it anywhere; the distribution includes a jarfile you can add to your class path.

 Setting Up the Database

MySQL includes an excellent tutorial—installing from the Red Hat distribution places it at
/usr/doc/MySQL-<release number>/manual.html. One of the first tools to learn
is mysql, the text-based interactive database front end. We use mysql to set up our
database.

For this example, we use the test database provided with the MySQL installation (see
Listing 67.1). After indicating that we want to work with that database (the USE command)
and checking its current contents (the SHOW TABLES command shows it to be empty),
we create a database table, phonelist, with five named fields. This table will be used
by our example servlet to implement a telephone book application.

 Listing 67.1 Setting Up the Example Database

 bash$ mysql
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 4 to server version: 3.22.25

 Type 'help' for help.

 mysql> USE test
 Database changed
 mysql> SHOW TABLES;

 - 599 -

 Empty set (0.00 sec)

 mysql> CREATE TABLE phonelist (lastname varchar(20),
 -> firstname varchar(20),
 -> countrycode varchar(5),
 -> areacode varchar(5),
 -> number varchar(15));
 Query OK, 0 rows affected (0.23 sec)

 mysql> QUIT
 Bye
 bash$

 Creating a Middle-Tier Application

With an initialized DBMS, a JDBC driver, and an Apache Web server with servlet support,
we have all the needed equipment for an Apache-based middle-tier application. We will
create a Web-based telephone book, with the capability to query for existing telephone
listings and to store new listings. The tools used in this example are the existing servlets
set up from Chapter 65, "Java on the Web: Java Servlets and Apache JServ," MySQL
release 3.22.25, and release 1.2b of the the MySQL JDBC driver.

The telephone book will be implemented by a servlet named PhoneBook. Figure 67.2
shows PhoneBook's GUI design: a five-element form with buttons to support saving and
querying entries. When data is queried, results will be returned in a table below the form.

 Figure 67.2: GUI design for the PhoneBook servlet.

 Listing 67.2 shows the complete servlet implementation of the application.

 Listing 67.2 PhoneBook.java

 1 import javax.servlet.*;
 2 import javax.servlet.http.*;
 3 import java.util.*;
 4 import java.io.*;
 5 import java.sql.*;
 6
 7 public class PhoneBook extends HttpServlet
 8 {
 9 Connection connection = null;

 - 600 -

 10 public void init(ServletConfig config) throws
ServletException

 11 {
 12 // Servlet initialization
 13 super.init(config);
 14 try
 15 {
 16 // Load the MySQL JDBC driver
 17 Class.forName("org.gjt.mm.mysql.Driver");
 18 }
 19 catch (ClassNotFoundException e)
 20 { throw new ServletException(e.toString()); }
 21 }
 22 private void doOutput1(PrintWriter writer)
 23 {
 24 writer.println(
 25 "<HTML>\n" +
 26 "<HEAD>\n" +
 27 "<TITLE>Phone Book</TITLE>" +
 28 "</HEAD>\n" +
 29 "<BODY>\n" +
 30 "<CENTER>\n" +
 31 "<H1>Telephone Book</H1>\n" +
 32 "<FORM ACTION=\"PhoneBook\" METHOD=\"POST\">" +
 33 "<TABLE>\n" +
 34 "<TR>\n" +
 35 " <TD>Last Name</TD>\n" +
 36 " <TD><INPUT TYPE=\"TEXT\" SIZE=20
NAME=\"LastName\">

 </TD>" +
 37 "</TR><TR>\n" +
 38 " <TD>First Name</TD>\n" +
 39 " <TD><INPUT TYPE=\"TEXT\" SIZE=20
NAME=\"FirstName\">

 </TD>" +
 40 "</TR><TR>\n" +
 41 " <TD>Country Code</TD>\n" +
 42 " <TD><INPUT TYPE=\"TEXT\" SIZE=5
NAME=\"CountryCode\">

 </TD>" +
 43 "</TR><TR>\n" +
 44 " <TD>Area Code</TD>\n" +
 45 " <TD><INPUT TYPE=\"TEXT\" SIZE=5
NAME=\"AreaCode\">

 </TD>" +
 46 "</TR><TR>\n" +
 47 " <TD>Phone Number</TD>\n" +
 48 " <TD><INPUT TYPE=\"TEXT\" SIZE=15
NAME=\"PhoneNum\">

 </TD>" +
 49 "</TR>\n" +
 50 "</TABLE>" +
 51 "<INPUT TYPE=\"Submit\" NAME=\"Query\"
VALUE=\"Query\">\n" +

 52 "<INPUT TYPE=\"Submit\" NAME=\"Add\" VALUE=\"Add

 - 601 -

New
 Entry\">\n" +
 53 "<INPUT TYPE=\"Reset\" VALUE=\"Reset\">\n" +
 54 "</FORM>
"
 55);
 56 }
 57 private void doOutput2(PrintWriter writer)
 58 {
 59 writer.println("</BODY></HTML>");
 60 }
 61 public void doGet(HttpServletRequest req,
HttpServletResponse

 resp)
 62 {
 63 // Get action puts up the query form.
 64 resp.setContentType("text/html");
 65 PrintWriter writer = null;
 66 try {
 67 writer = resp.getWriter();
 68 }
 69 catch (IOException e) { return; }
 70 doOutput1(writer);
 71 doOutput2(writer);
 72 writer.close();
 73 }
 74 public synchronized void doPost(HttpServletRequest
req,

 75 HttpServletResponse
resp)

 76 {
 77 // Post action puts up the query form and
responds to the

 post
 78 resp.setContentType("text/html");
 79 PrintWriter writer = null;
 80 try {
 81 writer = resp.getWriter();
 82 }
 83 catch (IOException e) { return; }
 84
 85 // Output the form
 86 doOutput1(writer);
 87
 88 // Open or reopen the connection if needed
 89 try
 90 {
 91 // Open a connection to the server - no login
or

 password.
 92 // The form of the URL (first parameter) is
dictated

 by the
 93 // MySQL jdbc driver. Default MySQL TCP port
is 3306

 94 if (connection == null ¦¦

 - 602 -

connection.isClosed())
 95 connection = DriverManager.getConnection(
 96 "jdbc:mysql://localhost:3306/test",
"", "");

 97 }
 98 catch (SQLException e)
 99 {
 100 writer.println("Error: Cannot open database
 connection\n");
 101 doOutput2(writer);
 102 writer.close();
 103 return;
 104 }
 105
 106 // Open input from the POST data
 107 ServletInputStream instream = null;
 108 Hashtable postData = null;
 109 try
 110 {
 111 // Build a hashtable of the posted data
 112 postData = HttpUtils.parsePostData(
 113 req.getContentLength(),
req.getInputStream());

 114 }
 115 catch (IOException e)
 116 {
 117 writer.println("Error: Cannot read post
data\n");

 118 }
 119 if (postData.containsKey("Add"))
 120 {
 121 // User requested to add a new entry... make
sure

 122 // at least last name is non-empty
 123 if
(((String[])postData.get("LastName"))[0].length()

 == 0)
 124 writer.println("Error: No last name
specified for

 Add");
 125 else try
 126 {
 127 // Construct and execute an SQL statement
to

 insert
 128 Statement stmt =
connection.createStatement();

 129 stmt.executeUpdate(
 130 "INSERT INTO phonelist VALUES (" +
 131 "'" +
 132
((String[])postData.get("LastName"))[0] +

 133 "','" +
 134
((String[])postData.get("FirstName"))[0] +

 135 "','" +

 - 603 -

 136
((String[])postData.get("CountryCode"))[0] +

 137 "','" +
 138
((String[])postData.get("AreaCode"))[0] +

 139 "','" +
 140
((String[])postData.get("PhoneNum"))[0] +

 141 "');");
 142 writer.println("New entry added for " +
 143
((String[])postData.get("LastName"))[0]);

 144 }
 145 catch (SQLException e)
 146 {
 147 writer.println("Error: " + e.toString());
 148 }
 149 catch (NullPointerException e)
 150 {
 151 // This will trigger if a form field is
missing

 from
 152 // the post.
 153 writer.println("Error: " + e.toString());
 154 }
 155 }
 156 else
 157 {
 158 // User requested a query...
 159 ResultSet results = null;
 160 try
 161 {
 162 // Construct an SQL query string. First
figure out

 163 // the qualifiers based on form input
 164 StringBuffer queryQualifiers = new
StringBuffer();

 165 appendQueryQualifiers(queryQualifiers,
"lastname",

 166 (postData.get("LastName")));
 167 appendQueryQualifiers(queryQualifiers,
 "firstname",
 168 (postData.get("FirstName")));
 169 appendQueryQualifiers(queryQualifiers,
 "countrycode",
 170 (postData.get("CountryCode")));
 171 appendQueryQualifiers(queryQualifiers,
"areacode",

 172 (postData.get("AreaCode")));
 173 appendQueryQualifiers(queryQualifiers,
"number",

 174 (postData.get("PhoneNum")));
 175
 176 Statement stmt =
connection.createStatement();

 177 results = stmt.executeQuery(

 - 604 -

 178 "SELECT * FROM phonelist" +
 179 queryQualifiers +
 180 ";"
 181);
 182
 183 if (results == null)
 184 writer.println("Null result from
query");

 185 else
 186 {
 187 // Print headers
 188 writer.println(
 189 "<TABLE BORDER=\"2\">\n" +
 190 "<TR>\n" +
 191 " <TD><CENTER>Last Name</CENTER></TD>\n" +
 192 " <TD><CENTER>First Name</CENTER></TD>\n" +
 193 " <TD><CENTER>Country Code</CENTER></TD>\n" +
 194 " <TD><CENTER>Area Code</CENTER></TD>\n" +
 195 " <TD><CENTER>Phone Number</CENTER></TD>\n" +
 196 "</TR>");
 197
 198 while (results.next())
 199 {
 200 writer.println(
 201 "<TR>" +
 202 " <TD>" + results.getString(1) + "</TD>\n" +
 203 " <TD>" + results.getString(2) + "</TD>\n" +
 204 " <TD>" + results.getString(3) + "</TD>\n" +
 205 " <TD>" + results.getString(4) + "</TD>\n" +
 206 " <TD>" + results.getString(5) + "</TD>\n" +
 207 "</TR>");
 208 }
 209 writer.println("</TABLE>");
 210 }
 211 }
 212 catch (SQLException e)
 213 {
 214 writer.println("Error: " + e.toString());
 215 }
 216 }
 217 doOutput2(writer);
 218 writer.close();
 219 }
 220 // appendQueryQualifiers: A utility to assist in
constructing

 221 // the query string
 222 private void appendQueryQualifiers(StringBuffer
qualifiers,

 223 String dbfield,
 224 Object formdata)
 225 {
 226 if (formdata == null) return;
 227 String forminfo = ((String[])formdata)[0];

 - 605 -

 228 // Was anything specified for this form field?
 229 if (forminfo.length() > 0)
 230 {
 231 // Yes
 232 if (qualifiers.length() == 0)
 233 qualifiers.append(" WHERE");
 234 else
 235 qualifiers.append(" AND");
 236 qualifiers.append(" " + dbfield + " = \"" +
 237 forminfo + "\"");
 238 }
 239 }
 240 public String getServletInfo()
 241 {
 242 return "PhoneBook";
 243 }
 244 }

 The init() method (lines 10–21) is executed once when the servlet is first loaded. Its

only job is to ensure that the JDBC driver for MySQL databases has been loaded.

The two HTTP requests supported by PhoneBook are GET (doGet(), lines 61–73) and
POST (doPost(), lines 74–219). The doGet() method, called when the page is
browsed, does nothing more than display the form, calling doOutput1() and
doOutput2() to generate the HTML.

The doPost() method is called when the form is used to query or add to the database.
After outputting the HTML form by calling doOutput1(), it handles the request, outputs
the results, and finally outputs the end-of-page HTML tags by calling doOutput2().

The database activity begins in lines 94–96, with the opening of a connection (or
reopening of one that was automatically closed). Lines 107–114 parse the POST data that
was sent with the request, placing the results in a java.util.Hashtable. The hash
table will contain an entry for every field of the HTML form, plus one indicating which
button was pressed (Query or Add New Entry). The Hashtable.get() calls used to
retrieve entries from the hash table (lines 165–174 and elsewhere) return a String[],
from which the form data is extracted.

 Lines 123–154 process the Add New Entry request. After a trivial error check

(checking that a Last Name was specified), it constructs an SQL statement of the form

 INSERT INTO phonelist VALUES ('<lastname>', '<firstname>',
'<countrycode>',

 '<areacode>', '<phonenumber>');

where the actual values are derived from the form data. After processing the request
(129–141), the servlet displays a success message and concludes its activities (lines
217–218).

 Lines 159–215 process the Query request. The database query is created and the query

performed in lines 162–181, by an SQL statement of the form

 SELECT * FROM phonelist [WHERE lastname="<lastname>" AND ...]

 with optional qualifiers based on data extracted from the HTML form. If all form fields are

empty, the query will retrieve all records from the table.

 - 606 -

If the query returns a non-null results array, the servlet outputs the table headers (lines
188–196) and steps through the results array row by row, generating HTML table rows
(lines 198–208).

Configuring and Running PhoneBook

 Our existing Apache JServ configuration requires two additions:

 • The servlet must be installed in a repository, such as the examples/ directory used in

previous chapters.

•

The JDBC driver must be added to the JVM class path. This can be accomplished with
this addition to the Apache JServ configuration file,
/opt/apache_jserv/servlets/jserv. properties:

 wrapper.classpath=/usr/local/Java/mm.mysql.jdbc-

1.2b/mysql_comp.jar

After restarting Apache to update the JServ class path, the PhoneBook servlet is
available in the examples/ servlets zone. In Figure 67.3, the form is filled out with
information to be added to the directory.

 Figure 67.3: Browsing to the servlet displays the form.

 Information is added to tye directory by filling in the fields of the form (see Figure 67.3)

and pressing the Add New Entry key.

The directory can be searched by filling in any of the fields—or leaving all fields blank to
return all entries. Figure 67.4 shows the results of pressing Query with a value of 408 in
the Area Code field.

 - 607 -

 Figure 67.4: The results of a query are displayed in a table below the form.

Summary

Three-tier application architectures are a hotbed of activity in Java and an area in which
Linux is a strong offering. This chapter presented a simple example—browser access to a
back-end database—of the middleware application area. As the Java 2 Enterprise Edition
matures, expect that Linux platforms will become increasingly significant in such enterprise
applications.

 Part XV: Appendixes

 Appendix List

 Appendix

A: Index of Tools and Programs

 Appendix

B: Miscellaneous Program Listings

 Appendix

C: Important Resources

 Appendix

D: Tools Not Covered

 Appendix A: Index of Tools and Programs

 Overview

 This appendix provides a quick reference to the examples and projects provided in this

book. The programs listed here fall into three categories:

 • Functional tools that perform a useful task

 • Benchmarks

 • Example projects that are large enough to mention

 - 608 -

Functional Tools

Many tools listed here are personal tools I use in my own development work. Source
listings are provided in the book, and source and compiled versions are available on the
CD-ROM.

 DumpClass

 Platform: Versions for JDK1.1 and JDK1.2

 Discussion: Chapter 47, "DumpClass: A Tool for Querying Class Structure"

 Listing: Appendix B

A utility to dump a list of class members, DumpClass includes information about ancestor
classes organized into convenient groupings. This is a personal tool I use when I want a
listing of class members more comprehensive than that provided by the SDK javap
utility.

An alternate version, DumpClass11, is provided on the CD-ROM. DumpClass11 works
under JDK1.1 but uses class-loading mechanisms that make it slightly less robust than
DumpClass.

 JMakeDepend

 Platform: Versions for JDK1.1 and JDK1.2

 Discussion: Chapter 48, "JMakeDepend: A Project Build Management Utility"

 Listing: Appendix B

This is a personal tool I use for development projects to allow the use of GNU make with
Java. Several aspects of Java development violate standard make assumptions; this tool
works around the problems.

An alternate version, JMakeDepend11, is provided on the CD-ROM. Because
JMakeDepend depends on some classes (the Sun Collections classes) whose package
name changed between JDK1.1 and JDK1.2, this version supports JDK1.1.

 PerfAnal

 Platform: JDK1.2

 Discussion: Chapter 60, "PerfAnal: A Free Performance Analysis Tool"

 Listing: Appendix B

This is a personal tool I use to analyze performance data collected by the JDK1.2 sample
profiler. When applied to output from Sun's hprof profiler (a standard JDK1.2
component), PerfAnal allows a detailed exploration of where and why an application is
spending its time.

 Profiler

 - 609 -

 Platform: JDK1.2

 Discussion: Chapter 64, "Profiling User-Space Native Code"

 Listing: Appendix B

This is a personal tool that provides visibility into where, in the native code address
space, an application is spending time. Profiler allows you to identify which core
activities—JVM execution, JIT, JNI methods, C library activity, and so on—are
consuming CPU time.

See also the discussion of strace in Chapter 63, "Understanding Linux Kernel
Performance." This Linux utility will help you understand how a Java application uses
kernel resources.

 ShowFonts11

 Platform: JDK1.1/JDK1.2

 Discussion: Chapter 14, "Configuring the Linux JSDK/JRE Environment," in the section

"Adding, Changing, and Configuring Fonts in JDK1.1" and Appendix B

 Listing: Appendix B

 This tool generates a GUI-based listing of available fonts.

 ShowFonts12

 Platform: JDK1.2

 Discussion: Chapter 14, "Configuring the Linux JSDK/JRE Environment," in the section

"Adding, Changing, and Configuring Fonts in JDK1.2" and Appendix B

 Listing: Appendix B

 This tool generates a GUI-based listing of available fonts, using a JDK1.2 method that

returns much more information than the JDK1.1 method used in ShowFonts11.

 SlideShow

 Platform: JDK1.2

 Discussion: Chapter 3, "A Look at the Java Core Classes," in the section "Package
java.awt.image" and Appendix B

 Listing: Appendix B

This utility demonstrates some JDK1.2 graphical capabilities by implementing an image
viewer with image enhancements capabilities. I wrote SlideShow while preparing for a
talk in which I needed to show some image files. It allows you to step through a list of
image files, effectively functioning as a slide projector.

 WaterFall

 Platform: JDK1.2

 - 610 -

 Discussion: Chapter 3, "A Look at the Java Core Classes," in the section "Package
java.awt" and Appendix B

 Listing: Appendix B

This utility demonstrates some JDK1.2 font-rendering capabilities by creating a
typographic waterfall chart showing a font in a range of sizes. Versions of the chart are
created with and without new JDK1.2 rendering capabilities (antialiasing and fractional
font metrics) to show their effect on font appearance.

 XClipboard

 Platform: JDK1.1/JDK1.2

 Discussion: Chapter 56, "X Window System Tips and Tricks," in the section "XClipboard:

A JNI-Based Cut-and-Paste Tool"

 Listing: Appendix B

This JNI-based class library provides access to X Window System inter-client data
transfer capabilities that are not exposed through the java.awt.datatransfer
classes. Among other things, it allows you to use the X primary selection mechanism
that, in many X clients, is accessed from the middle mouse button (but that the Java AWT
does not support).

 xwinwrap

 Platform: JDK1.1/JDK1.2/Any X Application

 Discussion: Chapter 56, "X Window System Tips and Tricks," in the section "xwinwrap:

Controlling Colormap and Visual Usage"

 Listing: Appendix B

This shared library allows you to run an X client (such as a Java AWT-based program) with
a custom colormap and a nondefault visual. It can be used to solve colormap crowding
problems, or to run a Java application with a visual it likes better than the X server's default
visual.

 Benchmarks

 This section describes two performance measurement tools I have found useful for

understanding Java application performance on Linux.

 FontPerf

 Platform: JDK1.1/JDK1.2

 Discussion and Listing: Chapter 57, "Why Is Java Slow?," in the section "Inefficient

Graphics"

 This benchmark measures the performance of text rendering and is useful for

understanding text slowdowns between JDK1.1 and JDK1.2.

 Memstress

 - 611 -

 Platform: Linux

 Discussion: Chapter 57, "Why Is Java Slow?," in the section "Poor Memory Locality"

and Appendix B

 Listing: Appendix B

 This native benchmark measures the effect of poor memory locality on memory access

speeds.

 Example Projects

 Among the code examples in this book, the three projects mentioned here provide some

useful functionality you can apply to your own projects.

 Backing Store

 Platform: JDK1.2

 Discussion and Listing: Chapter 59, "An Approach to Improving Graphical Rendering

Performance"

This project explores techniques you can use to improve graphical rendering
performance, including a backing store implementation that can drastically reduce the
repainting workload of an application for which repaints are expensive.

 FileStatus

 Platform: JDK1.1/JDK1.2

 Discussion and Listing: Chapter 55, "JNI: Mixing Java and Native Code on Linux"

This project describes a JNI-based component that accesses native platform
capabilities—ownership and permissions information about files—that are not supported
from Java.

 PhoneBook

 Platform: JDK1.1/JDK1.2

 Discussion and Listing: Chapter 67, "Java, Linux, and Three-Tiered Architectures"

 This project illustrates three-tier application architectures with a Java servlet implementing

database access.

Appendix B: Miscellaneous Program Listings

 Overview

The 67 chapters of this book include a number of small Java examples that were
illustrated with code listings in the chapter. This appendix provides the listings for 11
larger projects and examples not listed in the individual chapters.

 - 612 -

All sources here are also available on the book's CD-ROM. The two versions do not
exactly match—the electronic versions include open source copyright notices and other
comments not reproduced here.

 For programs whose instructions were not provided in the chapters, this appendix includes

usage instructions.

DumpClass: Print Detailed Class Structure Information

 This utility, described in Chapter 47, "DumpClass: A Tool for Querying Class Structure,"

prints out detailed information about class structure.

 Platform: JDK1.1/JDK1.2 (two different versions)

 Separate versions, DumpClass and DumpClass11 are provided for JDK1.2 and JDK1.1

(respectively). Although nearly identical, the versions differ in two small details:

•

The Sun Container classes, on which DumpClass depends, were an extension in
JDK1.1 and part of the core classes in JDK1.2. The package name changed between
the two releases, requiring different versions of the program.

 • The JDK1.2 version uses a class-loading method that was unavailable in JDK1.1, and

is more robust than the JDK1.1 counterpart.

 Both versions are provided on the CD-ROM. Listing B.1 shows the source listing for the

JDK1.2 version.

 Listing B.1 DumpClass.java

 1 package com.macmillan.nmeyers;
 2 import java.lang.*;
 3 import java.lang.reflect.*;
 4 import java.util.*;
 5 import java.awt.*;
 6
 7 class DumpClass
 8 {
 9 static class ClassMember implements Comparable
 10 {
 11 Member member = null;
 12 ClassMember(Member m) { member = m; }
 13 public String toString()
 14 { return member.toString(); }
 15 public String getName()
 16 {
 17 String result = member.getName();
 18 int pos = result.lastIndexOf('.');
 19 if (pos != -1) result = result.substring(pos
+ 1);

 20 return result;
 21 }
 22 // Implementation of compareTo: create an
ordering between

 23 // ClassMember representations of members.
 24 public int compareTo(Object m)

 - 613 -

 25 {

 26 if
(!member.getClass().equals(((ClassMember)m).member.
getClass()))

 27 {
 28 return
member.getClass().toString().compareTo(

 29
((ClassMember)m).member.getClass().toString());

 30 }
 31 if
(member.getClass().equals(Constructor.class))

 32 {
 33 final Constructor constructor1 =
(Constructor)member;

 34 final Constructor constructor2 =
 35 (Constructor)((ClassMember)m).member;
 36 int result =
constructor1.getName().compareTo(

 37 constructor2.getName());
 38 if (result != 0) return result;
 39 Class[] parm1 =
constructor1.getParameterTypes();

 40 Class[] parm2 =
constructor2.getParameterTypes();

 41 for (int i = 0; i < parm1.length && i <
parm2.length; i++)

 42 {

 43 result =
parm1[i].toString().compareTo(parm2[i].
toString());

 44 if (result != 0) return result;
 45 }
 46 return parm1.length - parm2.length;
 47 }
 48 if (member.getClass().equals(Method.class))
 49 {
 50 final Method method1 = (Method)member;
 51 final Method method2 =
(Method)((ClassMember)m).member;

 52 int result = method1.getName().compareTo(
 53 method2.getName());
 54 if (result != 0) return result;
 55 Class[] parm1 =
method1.getParameterTypes();

 56 Class[] parm2 =
method2.getParameterTypes();

 57 for (int i = 0; i < parm1.length && i <
parm2.length; i++)

 58 {

 59 result =
parm1[i].toString().compareTo(parm2[i].
toString());

 60 if (result != 0) return result;
 61 }
 62 return parm1.length - parm2.length;
 63 }
 64 if (member.getClass().equals(Field.class))

 - 614 -

 65 return member.getName().compareTo(
 66 ((ClassMember)m).member.getName());
 67 return member.toString().compareTo(
 68 ((ClassMember)m).member.toString());
 69 }
 70 }
 71 // Our own implementation of a set, with some
filtering on the add()

 72 // operation
 73 static class MemberSet extends TreeSet
 74 {
 75 boolean showProtected = true;
 76 boolean showPackage = false;
 77 boolean showPrivate = false;
 78 boolean showInaccessible = false;
 79 String clsName = null;
 80 String packageName = null;
 81 MemberSet(Class cls, boolean f1, boolean f2,
boolean f3, boolean f4)

 82 {
 83 showProtected = f1;
 84 showPackage = f2;
 85 showPrivate = f3;
 86 showInaccessible = f4;
 87 clsName = cls.getName();
 88 int ppos = clsName.lastIndexOf(".");
 89 packageName = (ppos >= 0) ?
clsName.substring(0, ppos) : "";

 90 }
 91 public boolean add(Class cls, ClassMember
element)

 92 {
 93 int modifier = element.member.getModifiers();
 94 // Root out inaccessible members
 95 if (!showInaccessible)
 96 {
 97 String cName = cls.getName();
 98 int ppos = clsName.lastIndexOf(".");
 99 String pName = (ppos >= 0) ?
clsName.substring(0, ppos) : "";

 100 // Private ancestor members
 101 if (Modifier.isPrivate(modifier) &&
 102 !cName.equals(clsName) ¦¦
 103 // Ancestor constructors
 104
element.member.getClass().equals(Constructor.class) &&

 105 !cName.equals(clsName) ¦¦
 106 // Package-visible ancestors from
different packages

 107 !Modifier.isPublic(modifier) &&
 108 !Modifier.isProtected(modifier) &&
 109 !pName.equals(packageName))
 110 return false;
 111 }
 112 // This logic assumes relationships between

 - 615 -

permission

 113 // levels that will always be true (e.g.
showPrivate->show
all).

 114 if (Modifier.isPublic(modifier) ¦¦
 115 showPrivate ¦¦
 116 Modifier.isProtected(modifier) &&
showProtected ¦¦

 117 !Modifier.isPrivate(modifier) &&
showPackage)

 118 return super.add(element);
 119 else return false;
 120 }
 121 }
 122 // We don't need to link classes: provide a
classloader that skips

 123 // that step.
 124 static class MyClassLoader extends ClassLoader
 125 {
 126 public Class loadClass(String c) throws
ClassNotFoundException

 127 { return super.loadClass(c, false); }
 128 }
 129 static void usageMsg()
 130 {
 131 System.err.println("Usage: DumpClass [options]
<classes>");

 132 System.err.println("\nOptions:");
 133 System.err.println(" -public");
 134 System.err.println(" -protected
(default)");

 135 System.err.println(" -package");
 136 System.err.println(" -private");
 137 System.err.println(" -
suppress:{name,interfaces," +

 138
"hierarchy,headings,keys,all}");

 139 System.err.println(" -noancestors");
 140 System.err.println(" -inaccessible");
 141 System.exit(1);
 142 }
 143 public static void main(String[] argv)
 144 {
 145 int argn;
 146 boolean showProtected = true;
 147 boolean showPackage = false;
 148 boolean showPrivate = false;
 149 boolean showName = true;
 150 boolean showInterfaces = true;
 151 boolean showHierarchy = true;
 152 boolean showHeadings = true;
 153 boolean showKeys = true;
 154 boolean showAncestorMembers = true;
 155 boolean showInaccessible = false;
 156 for (argn = 0;
 157 argn < argv.length &&

 - 616 -

argv[argn].startsWith("-");
 158 argn++)
 159 {
 160 if (argv[argn].equals("-public"))
 161 showProtected = showPackage = showPrivate
= false;

 162 else if (argv[argn].equals("-protected"))
 163 {
 164 showProtected = true;
 165 showPackage = showPrivate = false;
 166 }
 167 else if (argv[argn].equals("-package"))
 168 {
 169 showProtected = showPackage = true;
 170 showPrivate = false;
 171 }
 172 else if (argv[argn].equals("-private"))
 173 showProtected = showPackage = showPrivate
= true;

 174 else if (argv[argn].equals("-noancestors"))
 175 showAncestorMembers = false;
 176 else if (argv[argn].equals("-inaccessible"))
 177 showInaccessible = true;
 178 else if (argv[argn].startsWith("-suppress:"))
 179 {
 180 String args = argv[argn].substring(10);
 181 while (args.length() > 0)
 182 {
 183 int comma = args.indexOf(',');
 184 String arg;
 185 if (comma > 0)
 186 {
 187 arg = args.substring(0, comma);
 188 args = args.substring(comma + 1);
 189 }
 190 else
 191 {
 192 arg = args;
 193 args = "";
 194 }
 195 if (arg.equals("name") ¦¦
arg.equals("all"))

 196 showName = false;
 197 if (arg.equals("interfaces") ¦¦
arg.equals("all"))

 198 showInterfaces = false;
 199 if (arg.equals("hierarchy") ¦¦
arg.equals("all"))

 200 showHierarchy = false;
 201 if (arg.equals("headings") ¦¦
arg.equals("all"))

 202 showHeadings = false;
 203 if (arg.equals("keys") ¦¦
arg.equals("all"))

 204 showKeys = false;

 - 617 -

 205 }
 206 }
 207 else
 208 {
 209 usageMsg();
 210 }
 211 }
 212
 213 MyClassLoader loader = new MyClassLoader();
 214 // For each class requested
 215 for (boolean firstClass = true;
 216 argn < argv.length;
 217 firstClass = false, argn++)
 218 {
 219 Class cls;
 220 // Load the class
 221 try
 222 { cls = loader.loadClass(argv[argn]); }
 223 catch (ClassNotFoundException e)
 224 { System.err.println("Class " + argv[argn] +
" not found");

 225 continue; }
 226
 227 // Build a set of members
 228 MemberSet memberSet =

 229 new MemberSet(cls, showProtected,
showPackage,
showPrivate,

 230 showInaccessible);
 231
 232 // Step up the class hierarchy until we run
out. The indent

 233 // controls indentation of classes in the
hierarchy chart, and

 234 // is also used to ascertain when we're
operating on the

 235 // requested class or an ancestor.
 236 for (String indent = "";; indent += " ")
 237 {
 238 if (showName)
 239 {
 240 if (indent.equals(""))
 241 {

 242 // Do some processing specific to
the requested
class

 243 if (!firstClass)
System.out.println("");

 244 int modifiers =
cls.getModifiers();

 245 String modString =
Modifier.toString(modifiers);

 246 // Filter out weirdness in
handling of "interface"

 247 // modifier
 248 int pos = modString.indexOf("
interface");

 - 618 -

 249 if (pos >= 0)
 250 modString =
modString.substring(0, pos) +

 251
modString.substring(pos + 10);

 252 if (modString.length() > 0)
 253 System.out.print(modString +
" ");

 254 }
 255 if (showHierarchy ¦¦
indent.equals(""))

 256 System.out.print(indent + cls);
 257 // For the requested class, but not
superclasses, list

 258 // the supported interfaces
 259 if (indent.equals("") &&
showInterfaces)

 260 {
 261 Class[] interfaces;
 262 interfaces = cls.getInterfaces();

 263 if (interfaces != null &&
interfaces.
length > 0)

 264 {
 265 System.out.print(" implements
" +

 266
interfaces[0].getName());

 267 for (int j = 1; j <
interfaces.length; j++)

 268 System.out.print(", " +
 269
interfaces[j].getName());

 270 }
 271 }
 272 if (showHierarchy ¦¦
indent.equals(""))

 273 System.out.println("");
 274 }
 275
 276 if (showAncestorMembers ¦¦
indent.equals(""))

 277 {
 278 // Build a list of methods for this
class

 279 Method[] methods;
 280 try
 281 { methods = cls.getDeclaredMethods();
}

 282 catch (SecurityException e)

 283 { System.err.println("Security
exception
calling " +

 284
"getDeclaredMethods() for " +

 285 argv[argn]);
 286 break; }
 287 for (int j = 0; j < methods.length;
j++)

 - 619 -

 288 memberSet.add(cls, new
ClassMember(methods[j]));

 289
 290 // Build a list of constructors for
this class

 291 Constructor[] constructors;
 292 try
 293 { constructors =
cls.getDeclaredConstructors(); }

 294 catch (SecurityException e)

 295 { System.err.println("Security
exception
calling " +

 296
"getDeclaredConstructors()
for " +

 297 argv[argn]);
 298 break; }
 299 for (int j = 0; j <
constructors.length; j++)

 300 memberSet.add(cls,
 301 new
ClassMember(constructors[j]));

 302
 303 // Build a list of fields for this
class

 304 Field[] fields;
 305 try
 306 { fields = cls.getDeclaredFields(); }
 307 catch (SecurityException e)

 308 { System.err.println("Security
exception
calling " +

 309
"getDeclaredFields() for " +

 310 argv[argn]);
 311 break; }
 312 for (int j = 0; j < fields.length;
j++)

 313 memberSet.add(cls, new
ClassMember(fields[j]));

 314 }
 315
 316 // We're done when we run out of classes
to analyze

 317 if (cls.equals(Object.class)) break;
 318 cls = cls.getSuperclass();
 319 if (cls == null) break;
 320 }
 321
 322 // Output results
 323 Class currentMemberType = null;
 324 for (Iterator j = memberSet.iterator();
j.hasNext();)

 325 {
 326 ClassMember mm = (ClassMember)j.next();
 327 if (showHeadings &&
 328

 - 620 -

!mm.member.getClass().equals(currentMemberType))
 329 {
 330 currentMemberType =
mm.member.getClass();

 331 if (currentMemberType ==
Constructor.class)

 332
System.out.println("\nConstructors\n");

 333 else if (currentMemberType ==
Field.class)

 334 System.out.println("\nFields\n");
 335 else
 336
System.out.println("\nMethods\n");

 337 }
 338 if (showKeys)
System.out.print(mm.getName() + ": ");

 339 System.out.println(mm.toString());
 340 }
 341 }
 342 System.exit(0);
 343 }
 344 }

DumpClass uses the Reflection API to study classes. Because certain capabilities found
in javap—identifying the source file and identifying inner classes—can only be achieved
by reading the class file (not through the Reflection API), DumpClass does not provide
those capabilities. (We presented a project that does read class files in Chapter 48,
"JMakeDepend: A Project Build Management Utility.")

 Most of the heavy lifting in DumpClass is performed by two classes:

 • DumpClass.ClassMember (lines 9–70), a wrapper for

java.lang.reflect.Member objects that implements an ordering relation.

 • DumpClass.MemberSet (lines 73–121), a specialized TreeSet used to filter and

organize the collected information.

A customized class loader is introduced in lines 124–128, which loads classes but does
not link them. Although linking is necessary when a class is to be instantiated, it's not
necessary for our purposes and can trigger errors (for example, missing native library)
that DumpClass does not care about. This trick only works under JDK1.2; we must load
classes using Class.forName() under JDK1.1.

 After initializing (lines 156–211) and instantiating the custom class loader (line 213),
DumpClass loops through the command-line arguments (lines 214–217) for processing.

For each class requested, DumpClass loads the class (line 222), allocates a
DumpClass.MemberSet (line 228), and populates it with information obtained through
reflection (lines 236–320). It then processes the parent class, ascending the inheritance
hierarchy until it runs out of classes.

Lines 324–340 step through the DumpClass.MemberSet, dumping class information to
stdout. The behavior of java.util.TreeSet ensures that the information is sorted and
that overridden ancestor class members are not shown.

JMakeDepend: Generate Dependency Information for GNU

 - 621 -

make

 This utility, presented in Chapter 48, "JMakeDepend: A Project Build Management

Utility," can be used in conjunction with GNU make to manage Java projects.

 Platform: JDK1.1/JDK1.2 (two different versions)

GNU make offers powerful logic for managing dependencies between sources and
objects, but Java's unique requirements make it difficult to use this logic. JMakeDepend
works around the make limitations, enabling make's use in Java environments.

 JMakeDepend consists of two top-level classes:

 • JMakeDepend is the core utility.

•

ClassFileContents reads class files, providing information needed for
JMakeDepend to do its job. Much as we would like to use the Reflection API to study
class files, it cannot tell us everything JMakeDepend needs to know. In particular,
Reflection will not report the source name from which a class was compiled, and it will
not return information about what external classes are referenced.

 Two versions of JMakeDepend are provided on the CD-ROM:

 • JMakeDepend: Usable under JDK1.2.

•

JMakeDepend11: A JDK1.1-only version that depends on the Sun Container class
library. The package name of these classes changed when they were integrated into
the JDK1.2 core.

 Listing B.2 provides the ClassFileContents source, and Listing B.3 provides the
JMakeDepend source.

 Listing B.2 ClassFileContents.java

 1 package com.macmillan.nmeyers;
 2 import java.io.*;
 3
 4 public class ClassFileContents
 5 {
 6 // Class file layout from Java spec
 7 int magic;
 8 short minor_version;
 9 short major_version;
 10 int constant_pool_count;
 11 cp_info constant_pool[];
 12 final static byte CONSTANT_Utf8 = 1;
 13 final static byte CONSTANT_Integer = 3;
 14 final static byte CONSTANT_Float = 4;
 15 final static byte CONSTANT_Long = 5;
 16 final static byte CONSTANT_Double = 6;
 17 final static byte CONSTANT_Class = 7;
 18 final static byte CONSTANT_String = 8;
 19 final static byte CONSTANT_Fieldref = 9;
 20 final static byte CONSTANT_Methodref = 10;

 - 622 -

 21 final static byte CONSTANT_InterfaceMethodref = 11;
 22 final static byte CONSTANT_NameAndType = 12;
 23 public class cp_info
 24 {
 25 byte tag;
 26 }
 27 // Reader for next cp_info entry
 28 cp_info read_cp_info(DataInputStream is) throws
IOException

 29 {
 30 byte tag = is.readByte();
 31 switch (tag)
 32 {
 33 case CONSTANT_Utf8:
 34 return new CONSTANT_Utf8_info(tag, is);
 35 case CONSTANT_Integer:
 36 return new CONSTANT_Integer_info(tag,
is);

 37 case CONSTANT_Float:
 38 return new CONSTANT_Float_info(tag, is);
 39 case CONSTANT_Long:
 40 return new CONSTANT_Long_info(tag, is);
 41 case CONSTANT_Double:
 42 return new CONSTANT_Double_info(tag, is);
 43 case CONSTANT_Class:
 44 return new CONSTANT_Class_info(tag, is);
 45 case CONSTANT_String:
 46 return new CONSTANT_String_info(tag, is);
 47 case CONSTANT_Fieldref:
 48 return new CONSTANT_Fieldref_info(tag,
is);

 49 case CONSTANT_Methodref:
 50 return new CONSTANT_Methodref_info(tag,
is);

 51 case CONSTANT_InterfaceMethodref:
 52 return new
CONSTANT_InterfaceMethodref_info(tag, is);

 53 case CONSTANT_NameAndType:
 54 return new CONSTANT_NameAndType_info(tag,
is);

 55 }
 56 throw new IOException("Unrecognized tag " + tag);
 57 }
 58 // Subclasses of cp_info for Java types
 59 public class CONSTANT_Class_info extends cp_info
 60 {
 61 int name_index;
 62 CONSTANT_Class_info(byte t, DataInputStream is)
 63 throws IOException
 64 {
 65 tag = t;
 66 name_index = is.readUnsignedShort();
 67 }
 68 public String toString()

 - 623 -

 69 {
 70 return "[Class:name_index:" +
nameIndex(name_index) + ']';

 71 }
 72 }
 73 public class CONSTANT_Fieldref_info extends cp_info
 74 {
 75 int class_index;
 76 int name_and_type_index;
 77 CONSTANT_Fieldref_info(byte t, DataInputStream
is)

 78 throws IOException
 79 {
 80 tag = t;
 81 class_index = is.readUnsignedShort();
 82 name_and_type_index = is.readUnsignedShort();
 83 }
 84 public String toString()
 85 {
 86 return "[Fieldref:class_index:" + class_index
+

 87 ",name_and_type_index:" +
name_and_type_index + ']';

 88 }
 89 }
 90 public class CONSTANT_Methodref_info extends cp_info
 91 {
 92 int class_index;
 93 int name_and_type_index;
 94 CONSTANT_Methodref_info(byte t, DataInputStream
is)

 95 throws IOException
 96 {
 97 tag = t;
 98 class_index = is.readUnsignedShort();
 99 name_and_type_index = is.readUnsignedShort();
 100 }
 101 public String toString()
 102 {
 103 return "[Methodref:class_index:" +
class_index +

 104 ",name_and_type_index:" +
name_and_type_index + ']';

 105 }
 106 }
 107 public class CONSTANT_InterfaceMethodref_info extends
cp_info

 108 {
 109 int class_index;
 110 int name_and_type_index;
 111 CONSTANT_InterfaceMethodref_info(byte t,
DataInputStream is)

 112 throws IOException
 113 {
 114 tag = t;
 115 class_index = is.readUnsignedShort();

 - 624 -

 116 name_and_type_index = is.readUnsignedShort();
 117 }
 118 public String toString()
 119 {
 120 return "[InterfaceMethodref:class_index:" +
class_index +

 121 ",name_and_type_index:" +
name_and_type_index + ']';

 122 }
 123 }
 124 public class CONSTANT_String_info extends cp_info
 125 {
 126 int string_index;
 127 CONSTANT_String_info(byte t, DataInputStream is)
 128 throws IOException
 129 {
 130 tag = t;
 131 string_index = is.readUnsignedShort();
 132 }
 133 public String toString()
 134 {
 135 return "[String:string_index:" + string_index
+ ']';

 136 }
 137 }
 138 public class CONSTANT_Integer_info extends cp_info
 139 {
 140 int bytes;
 141 CONSTANT_Integer_info(byte t, DataInputStream is)
 142 throws IOException
 143 {
 144 tag = t;
 145 bytes = is.readInt();
 146 }
 147 public String toString()
 148 {
 149 return "[Integer:bytes:" + bytes + ']';
 150 }
 151 }
 152 public class CONSTANT_Float_info extends cp_info
 153 {
 154 float value;
 155 CONSTANT_Float_info(byte t, DataInputStream is)
 156 throws IOException
 157 {
 158 tag = t;
 159 value = is.readFloat();
 160 }
 161 public String toString()
 162 {
 163 return "[Float:value:" + value + ']';
 164 }
 165 }

 - 625 -

 166 public class CONSTANT_Long_info extends cp_info
 167 {
 168 long value;
 169 CONSTANT_Long_info(byte t, DataInputStream is)
 170 throws IOException
 171 {
 172 tag = t;
 173 value = is.readLong();
 174 }
 175 public String toString()
 176 {
 177 return "[Long:value:" + value + ']';
 178 }
 179 }
 180 public class CONSTANT_Double_info extends cp_info
 181 {
 182 double value;
 183 CONSTANT_Double_info(byte t, DataInputStream is)
 184 throws IOException
 185 {
 186 tag = tag;
 187 value = is.readDouble();
 188 }
 189 public String toString()
 190 {
 191 return "[Double:value:" + value + ']';
 192 }
 193 }
 194 public class CONSTANT_NameAndType_info extends
cp_info

 195 {
 196 int name_index;
 197 int descriptor_index;
 198 CONSTANT_NameAndType_info(byte t, DataInputStream
is)

 199 throws IOException
 200 {
 201 tag = t;
 202 name_index = is.readUnsignedShort();
 203 descriptor_index = is.readUnsignedShort();
 204 }
 205 public String toString()
 206 {
 207 return "[NameAndType:name_index:" +
nameIndex(name_index) +

 208 ",descriptor_index:" +
descriptor_index + ']';

 209 }
 210 }
 211 public class CONSTANT_Utf8_info extends cp_info
 212 {
 213 int length;
 214 byte bytes[];
 215 CONSTANT_Utf8_info(byte t, DataInputStream is)

 - 626 -

 216 throws IOException
 217 {
 218 tag = t;
 219 length = is.readUnsignedShort();
 220 bytes = new byte[length];
 221 for (int i = 0; i < length; i++)
 222 bytes[i] = is.readByte();
 223 }
 224 public String getString()
 225 {
 226 String stringInfo = null;
 227 try { stringInfo = new String(bytes, "UTF8");
}

 228 catch (UnsupportedEncodingException e) {}
 229 return stringInfo;
 230 }
 231 public String toString()
 232 {
 233 return "[UTF8String:length:" + length +
",bytes:" +

 234 getString() + ']';
 235 }
 236 }
 237
 238 short access_flags;
 239 final short ACC_PUBLIC=0x0001;
 240 final short ACC_FINAL=0x0010;
 241 final short ACC_SUPER=0x0020;
 242 final short ACC_INTERFACE=0x0200;
 243 final short ACC_ABSTRACT=0x0400;
 244
 245 int this_class;
 246 int super_class;
 247 int interfaces_count;
 248 int interfaces[];
 249 int fields_count;
 250 field_info fields[];
 251 public class field_info
 252 {
 253 short access_flags;
 254 final short ACC_PUBLIC = 0x0001;
 255 final short ACC_PRIVATE = 0x0002;
 256 final short ACC_PROTECTED = 0x0004;
 257 final short ACC_STATIC = 0x0008;
 258 final short ACC_FINAL = 0x0010;
 259 final short ACC_VOLATILE = 0x0040;
 260 final short ACC_TRANSIENT = 0x0080;
 261 int name_index;
 262 int descriptor_index;
 263 int attributes_count;
 264 attribute_info attributes[];
 265 field_info(DataInputStream is) throws IOException
 266 {

 - 627 -

 267 access_flags = is.readShort();
 268 name_index = is.readUnsignedShort();
 269 descriptor_index = is.readUnsignedShort();
 270 attributes_count = is.readUnsignedShort();
 271 attributes = new
attribute_info[attributes_count];

 272 for (int i = 0; i < attributes_count; i++)
 273 attributes[i] = new attribute_info(is);
 274 }
 275 public String toString()
 276 {
 277 String result = "[access_flags:" +
hex(access_flags) +

 278 ",name_index:" +
nameIndex(name_index) +

 279 ",descriptor_index:" +
descriptor_index +

 280 ",attributes_count:" +
attributes_count +

 281 ",attributes:[";
 282 for (int i = 0; i < attributes_count; i++)
 283 {
 284 if (i > 0) result += ',';
 285 result += attributes[i].toString();
 286 }
 287 result += "]]";
 288 return result;
 289 }
 290 }
 291 int methods_count;
 292 method_info methods[];
 293 public class method_info
 294 {
 295 short access_flags;
 296 final short ACC_PUBLIC = 0x0001;
 297 final short ACC_PRIVATE = 0x0002;
 298 final short ACC_PROTECTED = 0x0004;
 299 final short ACC_STATIC = 0x0008;
 300 final short ACC_FINAL = 0x0010;
 301 final short ACC_SYNCHRONIZED = 0x0020;
 302 final short ACC_NATIVE = 0x0100;
 303 final short ACC_ABSTRACT = 0x0400;
 304 int name_index;
 305 int descriptor_index;
 306 int attributes_count;
 307 attribute_info attributes[];
 308 method_info(DataInputStream is) throws
IOException

 309 {
 310 access_flags = is.readShort();
 311 name_index = is.readUnsignedShort();
 312 descriptor_index = is.readUnsignedShort();
 313 attributes_count = is.readUnsignedShort();
 314 attributes = new
attribute_info[attributes_count];

 - 628 -

 315 for (int i = 0; i < attributes_count; i++)
 316 attributes[i] = new attribute_info(is);
 317 }
 318 public String toString()
 319 {
 320 String result = "[access_flags:" +
hex(access_flags) +

 321 ",name_index:" +
nameIndex(name_index) +

 322 ",descriptor_index:" +
descriptor_index +

 323 ",attributes_count:" +
attributes_count +

 324 ",attributes:[";
 325 for (int i = 0; i < attributes_count; i++)
 326 {
 327 if (i > 0) result += ',';
 328 result += attributes[i].toString();
 329 }
 330 result += "]]";
 331 return result;
 332 }
 333 }
 334 int attributes_count;
 335 attribute_info attributes[];
 336 public class attribute_info
 337 {
 338 int attribute_name_index;
 339 int attribute_length;
 340 byte info[];
 341 attribute_info(DataInputStream is) throws
IOException

 342 {
 343 attribute_name_index =
is.readUnsignedShort();

 344 attribute_length = is.readInt();
 345 info = new byte[attribute_length];
 346 for (int i = 0; i < attribute_length; i++)
 347 info[i] = is.readByte();
 348 }
 349 public String toString()
 350 {
 351 String result = "[attribute_name_index:" +
 352
nameIndex(attribute_name_index) +

 353 ",attribute_length:" +
attribute_length +

 354 ",info:0x";
 355 for (int i = 0; i < attribute_length; i++)
 356 result += hex(info[i]);
 357 return result + ']';
 358 }
 359 }
 360 static public class Exceptions_attribute
 361 {

 - 629 -

 362 int attribute_name_index;
 363 int attribute_length;
 364 int number_of_exceptions;
 365 int exception_index_table[];
 366 Exceptions_attribute(attribute_info info) throws
IOException

 367 {
 368 attribute_name_index =
info.attribute_name_index;

 369 attribute_length = info.attribute_length;
 370 DataInputStream is =
 371 new DataInputStream(
 372 new ByteArrayInputStream(info.info));
 373 number_of_exceptions =
is.readUnsignedShort();

 374 exception_index_table = new
int[number_of_exceptions];

 375 for (int i = 0; i < number_of_exceptions;
i++)

 376 exception_index_table[i] =
is.readUnsignedShort();

 377 is.close();
 378 }
 379 }
 380
 381 public ClassFileContents(InputStream is) throws
IOException

 382 {
 383 DataInputStream inputStream = new
DataInputStream(is);

 384 magic = inputStream.readInt();
 385 if (magic != 0xcafebabe) throw new IOException(
"Not a class file");

 386 minor_version = inputStream.readShort();
 387 major_version = inputStream.readShort();
 388 constant_pool_count =
inputStream.readUnsignedShort();

 389 constant_pool = new cp_info[constant_pool_count];
 390 constant_pool[0] = null;
 391 for (int i = 1; i < constant_pool_count; i++)
 392 {
 393 constant_pool[i] = read_cp_info(inputStream);
 394 // Kluge around strange classfile
representation of

 395 // longs and doubles in the constant pool.
The spec

 396 // indicates that this representation was
not, in

 397 // retrospect, a good idea.
 398 if (constant_pool[i].getClass().equals(
 399 CONSTANT_Long_info.class) ¦¦
 400 constant_pool[i].getClass().equals(
 401 CONSTANT_Double_info.class))
 402 constant_pool[++i] = null;
 403 }
 404 access_flags = inputStream.readShort();
 405 this_class = inputStream.readUnsignedShort();

 - 630 -

 406 super_class = inputStream.readUnsignedShort();
 407 interfaces_count =
inputStream.readUnsignedShort();

 408 interfaces = new int[interfaces_count];
 409 for (int i = 0; i < interfaces_count; i++)
 410 {
 411 interfaces[i] =
inputStream.readUnsignedShort();

 412 }
 413 fields_count = inputStream.readUnsignedShort();
 414 fields = new field_info[fields_count];
 415 for (int i = 0; i < fields_count; i++)
 416 {
 417 fields[i] = new field_info(inputStream);
 418 }
 419 methods_count = inputStream.readUnsignedShort();
 420 methods = new method_info[methods_count];
 421 for (int i = 0; i < methods_count; i++)
 422 {
 423 methods[i] = new method_info(inputStream);
 424 }
 425 attributes_count =
inputStream.readUnsignedShort();

 426 attributes = new
attribute_info[attributes_count];

 427 for (int i = 0; i < attributes_count; i++)
 428 {
 429 attributes[i] = new
attribute_info(inputStream);

 430 }
 431 }
 432 // Build a huge and generally unusable String
representation of

 433 // ClassFileContents.
 434 public String toString()
 435 {
 436 String result = "[";
 437 result += "magic:0x" + hex(magic);
 438 result += ",minor_version:0x" +
hex(minor_version);

 439 result += ",major_version:0x" +
hex(major_version);

 440 result += ",constant_pool_count:" +
constant_pool_count;

 441 result += ",constant_pool:[";
 442 for (int i = 0; i < constant_pool_count; i++)
 443 {
 444 result += (i > 0 ? "," : "") +
constant_pool[i];

 445 }
 446 result += "],access_flags:0x" +
hex(access_flags);

 447 result += ",this_class:" +
 448 constant_pool[((CONSTANT_Class_info)
 449
constant_pool[this_class]).name_index];

 450 result += ",super_class:" +

 - 631 -

 451 constant_pool[((CONSTANT_Class_info)
 452
constant_pool[super_class]).name_index];

 453 result += ",interfaces_count:" +
interfaces_count;

 454 result += ",interfaces:[";
 455 for (int i = 0; i < interfaces_count; i++)
 456 {
 457 result += (i > 0 ? "," : "");
 458 result +=
constant_pool[interfaces[i]].toString();

 459 }
 460 result += "],fields_count:" + fields_count;
 461 result += ",fields:[";
 462 for (int i = 0; i < fields_count; i++)
 463 {
 464 result += (i > 0 ? "," : "");
 465 result += fields[i].toString();
 466 }
 467 result += "],methods_count:" + methods_count;
 468 result += ",methods:[";
 469 for (int i = 0; i < methods_count; i++)
 470 {
 471 result += (i > 0 ? "," : "");
 472 result += methods[i].toString();
 473 }
 474 result += "],attributes_count = " +
attributes_count;

 475 result += ",attributes:[";
 476 for (int i = 0; i < attributes_count; i++)
 477 {
 478 result += (i > 0 ? "," : "");
 479 result += attributes[i].toString();
 480 }
 481 result += "]]";
 482 return result;
 483 }
 484 // Utilities
 485 public static String hex(byte n)
 486 {
 487 final char[] hexdigits = {
'0','1','2','3','4','5','6','7',

 488
'8','9','a','b','c','d','e','f' };

 489 return "" + hexdigits[(n >> 4) & 0xf] +
hexdigits[n & 0xf];

 490 }
 491 public static String hex(short n)
 492 {
 493 return hex((byte)((n >> 8) & 0xff)) +
 494 hex((byte)((n) & 0xff));
 495 }
 496 public static String hex(int n)
 497 {
 498 return hex((short)((n >> 16) & 0xffff)) +

 - 632 -

 499 hex((short)((n) & 0xffff));
 500 }
 501 String nameIndex(int n)
 502 {
 503 String result = "" + n;
 504 if (constant_pool.length > n &&
 505 constant_pool[n].getClass().equals(
 506 CONSTANT_Utf8_info.class))
 507 {
 508 result += "(" +
 509
((CONSTANT_Utf8_info)constant_pool[n]).getString()

 510 + ")";
 511 }
 512 return result;
 513 }
 514 // Utility to decompile Java method signatures
 515 public static String decompile(String descriptor)
 516 {
 517 String result = "", term;
 518 int arrayCount = 0;
 519 boolean lastKeyWord = false;
 520 while (descriptor.length() > 0)
 521 {
 522 int increment = 1;
 523 boolean keyWord = true;
 524 switch (descriptor.charAt(0))
 525 {
 526 case 'B': term = "byte"; break;
 527 case 'C': term = "char"; break;
 528 case 'D': term = "double"; break;
 529 case 'F': term = "float"; break;
 530 case 'I': term = "int"; break;
 531 case 'J': term = "long"; break;
 532 case 'S': term = "short"; break;
 533 case 'V': term = "void"; break;
 534 case 'Z': term = "boolean"; break;
 535 case 'L':
 536 int endLoc = descriptor.indexOf(';');
 537 term = descriptor.substring(1,
endLoc);

 538 increment = endLoc + 1;
 539 break;
 540 case '[':
 541 term = "";
 542 arrayCount++;
 543 break;
 544 default:
 545 term = descriptor.substring(0, 1);
 546 keyWord = false;
 547 break;
 548 }
 549 descriptor = descriptor.substring(increment);

 - 633 -

 550 if (term.length() > 0)
 551 {
 552 if (lastKeyWord && keyWord) result += ",
";

 553 result += term;
 554 for (int i = 0; i < arrayCount; i++)
 555 result += "[]";
 556 arrayCount = 0;
 557 lastKeyWord = keyWord;
 558 }
 559 }
 560 return result;
 561 }
 562
 563 // Give this class a main() method... mainly for
testing.

 564 public static void main(String[] argv)
 565 {
 566 for (int i = 0; i < argv.length; i++)
 567 {
 568 ClassFileContents cf = null;
 569 FileInputStream is;
 570 try
 571 {
 572 is = new FileInputStream(argv[i]);
 573 cf = new ClassFileContents(is);
 574 }
 575 catch (FileNotFoundException e)
 576 { System.err.println(argv[i] + ": " + e); }
 577 catch (IOException e)
 578 { System.err.println(argv[i] + ": " + e); }
 579 System.out.println("\n" + argv[i] + "\n\n" +
cf);

 580 }
 581 }
 582 }

This class defines Java structures for various class file structures (lines 58–379), and
reads the class file (lines 381–431). It also defines a toString() function to generate
an unwieldy and useless string representation of a class file, and a useful decompile()
utility (lines 515–561) to demangle method signatures.

When reading the class file, the constructor steps through and interprets the contents
according to the file format documented by Sun
(http://java.sun.com/docs/books/vmspec/ 2nd-
edition/html/ClassFile.doc.html). After reading a few scalar values found at the
beginning of the file (lines 384–390), it reads the constant pool (lines 391–403), a few
more scalar values, followed by the interfaces, fields, methods, and attributes (lines 409–
430).

 The end result, an instance of ClassFileContents, is used by the JMakeDepend

class shown in the next listing.

JMakeDepend (see Listing B.3 for the JDK1.2 version) does the real work, tracking down
class references and building a dependency a list for use by GNU make. The code is
written in Generic Java, and depends on the compiler discussed in Chapter 38, "Generic

 - 634 -

Java Compilers", in the section "GJ: The Generic Java Compiler."

 Listing B.3 JMakeDepend.java

 1 package com.macmillan.nmeyers;
 2 import java.io.*;
 3 import java.util.*;
 4
 5 class JMakeDepend
 6 {
 7 static class Dependencies
 8 {
 9 String clsfile;
 10 String srcfile;
 11 String clsname;
 12 HashSet<String> providers;
 13 HashSet<String> visited;
 14 Dependencies(String c, String s, String o)
 15 {
 16 clsfile = c;
 17 srcfile = s;
 18 clsname = o;
 19 providers = new HashSet<String>();
 20 visited = new HashSet<String>();
 21 providers.add(o);
 22 visited.add(o);
 23 }
 24 boolean add(String s)
 25 {
 26 boolean result = providers.add(s);
 27 if (result && visited.size() > 1)
 28 {
 29 visited.clear();
 30 visited.add(clsname);
 31 }
 32 return result;
 33 }
 34 boolean add(Collection<String> s)
 35 {
 36 boolean result = providers.addAll(s);
 37 if (result && visited.size() > 1)
 38 {
 39 visited.clear();
 40 visited.add(clsname);
 41 }
 42 return result;
 43 }
 44 public void parseAndAddClasses(String s)
 45 {
 46 int idx = 0;
 47 while ((idx = s.indexOf('L', idx)) != -1)
 48 {

 - 635 -

 49 int idx2 = s.indexOf(';', idx);
 50 if (idx2 == -1) break;
 51 add(s.substring(idx + 1, idx2));
 52 idx = idx2;
 53 }
 54 }
 55 public int hashCode()
 56 {
 57 return clsname.hashCode();
 58 }
 59 }
 60 static int convb(byte[] b)
 61 {
 62 int result = 0;
 63 for (int i = 0; i < b.length; i++)
 64 {
 65 int b2 = b[i];
 66 if (b2 < 0) b2 += 0x100;
 67 result = (result << 8) + b2;
 68 }
 69 return result;
 70 }
 71 private static String ddollar(String s)
 72 {
 73 String result = "";
 74 int idx1 = 0, idx2;
 75 while ((idx2 = s.indexOf('$', idx1)) != -1)
 76 {
 77 result += s.substring(idx1, idx2) + "$$";
 78 idx1 = idx2 + 1;
 79 }
 80 result += s.substring(idx1);
 81 return result;
 82 }
 83 public static void processClassFile(
 84 String filename,
 85 HashMap<String, Dependencies> dependencies)
 86 {
 87 // Read classfile
 88 ClassFileContents cf = null;
 89 FileInputStream is;
 90 try
 91 {
 92 is = new FileInputStream(filename);
 93 cf = new ClassFileContents(is);
 94 }
 95 catch (FileNotFoundException e)
 96 {
 97 System.err.println(filename + ": " + e);
 98 return;
 99 }
 100 catch (IOException e)

 - 636 -

 101 {
 102 System.err.println(filename + ": " + e);
 103 return;
 104 }
 105
 106 // Note the name of the class file
 107 String clsfile = filename;
 108
 109 // Compute the name of the class
 110 String clsname =
((ClassFileContents.CONSTANT_Utf8_info)

 111 cf.constant_pool[
 112 ((ClassFileContents.CONSTANT_Class_info)
 113
cf.constant_pool[cf.this_class]).name_index]).

 114 getString();
 115
 116 // Compute the name of the source
 117 String srcfile = null;
 118 for (int j = 0; j < cf.attributes_count; j++)
 119 {
 120 String attrname =
 121 ((ClassFileContents.CONSTANT_Utf8_info)
 122 cf.constant_pool[
 123
cf.attributes[j].attribute_name_index]).

 124 getString();
 125 if (attrname.equals("SourceFile") &&
 126 cf.attributes[j].attribute_length == 2)
 127 {
 128 int sourceNameIndex =
convb(cf.attributes[j].info);

 129 srcfile =
((ClassFileContents.CONSTANT_Utf8_info)

 130
cf.constant_pool[sourceNameIndex]).getString();

 131 break;
 132 }
 133 }
 134 if (srcfile == null)
 135 {
 136 System.err.println(clsfile + ": No source
name found");

 137 return;
 138 }
 139
 140 // We can add a dependency record

 141 Dependencies depend = new Dependencies(clsfile,
srcfile,
clsname);

 142 if (dependencies.containsKey(clsname))
 143 {
 144 System.err.println(clsfile + ": Class " +
clsname +

 145 " already loaded");
 146 }

 - 637 -

 147 dependencies.put(clsname, depend);
 148
 149 // Now find all classes we depend on...
 150
 151 // ...the superclass...
 152 String superclass =
((ClassFileContents.CONSTANT_Utf8_info)

 153 cf.constant_pool[
 154 ((ClassFileContents.CONSTANT_Class_info)
 155
cf.constant_pool[cf.super_class]).name_index]).

 156 getString();
 157 depend.add(superclass);
 158
 159 // ...the interfaces...
 160 for (int j = 0; j < cf.interfaces_count; j++)
 161 {
 162
 163 String interfaceName = ((ClassFileContents.
 164 CONSTANT_Utf8_info)cf.constant_pool[
 165
((ClassFileContents.CONSTANT_Class_info)

 166
cf.constant_pool[cf.interfaces[j]]).
name_index]).

 167 getString();
 168 depend.add(interfaceName);
 169 }
 170 // ...the fields...
 171 for (int j = 0; j < cf.fields_count; j++)
 172 {
 173 String fieldDescriptor = ((ClassFileContents.
 174 CONSTANT_Utf8_info)cf.constant_pool[
 175 cf.fields[j].descriptor_index]).
 176 getString();
 177 depend.parseAndAddClasses(fieldDescriptor);
 178 }
 179
 180 // ...and the methods
 181 for (int j = 0; j < cf.methods_count; j++)
 182 {
 183 String methodDescriptor =
((ClassFileContents.

 184 CONSTANT_Utf8_info)cf.constant_pool[
 185 cf.methods[j].descriptor_index]).
 186 getString();
 187 depend.parseAndAddClasses(methodDescriptor);
 188 }
 189
 190 // Finally, since the previous step has missed
all of

 191 // the locals, step through the constant pool and
 192 // log all of the classes found there
 193 for (int j = 0; j < cf.constant_pool_count; j++)
 194 {

 - 638 -

 195 if (cf.constant_pool[j] != null &&
 196 cf.constant_pool[j].getClass().equals(
 197
ClassFileContents.CONSTANT_Class_info.class))

 198 {
 199 String className = ((ClassFileContents.
 200 CONSTANT_Utf8_info)cf.constant_pool[
 201
((ClassFileContents.CONSTANT_Class_info)

 202
cf.constant_pool[j]).name_index]).

 203 getString();
 204 depend.add(className);
 205 }
 206 }
 207 }
 208 private static void usage()
 209 {
 210 System.err.println("Usage: JMakeDepend [-noinner]
" +

 211 "[<classfiles>]");

 212 System.err.println("\nClass file names read from
stdin if
no " +

 213 "<classfiles> specified");
 214 System.exit(1);
 215 }
 216 public static void main(String[] argv)
 217 {
 218 HashMap<String, Dependencies> dependencies =
 219 new HashMap<String, Dependencies>();
 220 boolean hideInnerClasses = false;
 221
 222 int firstarg = 0;

 223 while (firstarg < argv.length &&
argv[firstarg].startsWith
("-"))

 224 {
 225 if (argv[firstarg].equals("-noinner"))
 226 hideInnerClasses = true;
 227 else usage();
 228 firstarg++;
 229 }
 230
 231 // Process cmdline args if any
 232 for (int i = firstarg; i < argv.length; i++)
 233 processClassFile(argv[i], dependencies);
 234
 235 // If none, accept filenames from stdin, one per
line

 236 if (firstarg == argv.length)
 237 {
 238 BufferedReader reader = new BufferedReader(
 239 new InputStreamReader(System.in));
 240 String line;

 - 639 -

 241 try
 242 {
 243 while ((line = reader.readLine()) !=
null)

 244 processClassFile(line, dependencies);
 245 }
 246 catch (IOException e)
 247 {
 248 System.err.println(e);
 249 }
 250 }
 251
 252 // Now for the O(N^2) part: identify higher-order
dependencies.

 253 for (boolean done = false; !done;)
 254 {
 255 done = true;
 256 // Step through our current dependency
records

 257 for (Iterator<Dependencies> i =
dependencies.values().
iterator();

 258 i.hasNext();)
 259 {
 260 Dependencies dep = i.next();
 261 // Step through each class in this record
 262 {
 263 // Make a copy of the classes in the
record to avoid

 264 // fast-fail on the iterator

 265 HashSet<String> temp = new
HashSet<String>(dep.
providers);

 266 for (Iterator<String> j =
temp.iterator(); j.
hasNext();)

 267 {
 268 String key = j.next();
 269 if (!dep.visited.add(key))
continue;

 270 // Is there a dependency record
for this object?

 271 Dependencies dep2 =
dependencies.get(key);

 272 if (dep2 == null) continue;
 273 // Yes... transfer its
dependencies to dep's

 274 // record
 275 if (dep.add(dep2.providers)) done
= false;

 276 }
 277 }
 278 }
 279 }
 280
 281 // If we're hiding inner classes, merge their
dependencies into

 - 640 -

 282 // outer-class dependency list
 283 if (hideInnerClasses)
 284 {
 285 HashMap<String, Dependencies> outerClasses =
 286 new HashMap<String, Dependencies>();

 287 // Step through our objects, compiling a list
of outer
classes

 288 for (Iterator<Dependencies> i =
dependencies.values().
iterator();

 289 i.hasNext();)
 290 {
 291 // Next entry
 292 Dependencies dep = i.next();
 293 // Is it an inner class? If not, add to
our outerClasses map

 294 // keyed by source filename
 295 if (dep.clsname.indexOf("$") == -1)
 296 outerClasses.put(dep.srcfile, dep);
 297 }
 298 // Step through a copy of our set of objects
(to avoid

 299 // iterator fast-fail) and weed out inner
classes.

 300 ArrayList<Dependencies> list =
 301 new
ArrayList<Dependencies>(dependencies.values());

 302 for (Iterator<Dependencies> i =
list.iterator(); i.
hasNext();)

 303 {
 304 // Next entry
 305 Dependencies dep = i.next();
 306 // Is it an inner class?
 307 if (dep.clsname.indexOf("$") != -1)
 308 {
 309 // Yes. Look for the enclosing class
based on the

 310 // source name.
 311 Dependencies outer =
outerClasses.get(dep.srcfile);

 312 if (outer != null)
 313 {
 314 // Found it! Transfer the
dependencies

 315 // (this step is probably
redundant)

 316 outer.add(dep.providers);
 317 // And remove ourself from the
master map

 318 dependencies.remove(dep.clsname);
 319 }
 320 }
 321 }
 322 }
 323

 - 641 -

 324 // Print out dependencies
 325 HashSet<String> allSources = new
HashSet<String>();

 326 HashSet<String> allTargets = new
HashSet<String>();

 327 for (Iterator<Dependencies> i =
dependencies.values().
iterator();

 328 i.hasNext();)
 329 {
 330 Dependencies dep = i.next();
 331 allSources.add(dep.srcfile);
 332 allTargets.add(dep.clsfile);
 333 // Print out the source dependency
 334 System.out.print(ddollar(dep.clsfile) + ": "
+

 335 ddollar(dep.srcfile));
 336
 337 // Collect the secondary sourcefile
dependencies

 338 HashSet<String> otherSources = new
HashSet<String>();

 339 for (Iterator<String> j =
dep.providers.iterator(); j.
hasNext();)

 340 {
 341 String key = j.next();
 342 if (key.equals(dep.clsname)) continue;
 343 Dependencies dep2 =
dependencies.get(key);

 344 if (dep2 == null ¦¦
dep.srcfile.equals(dep2.srcfile))

 345 continue;
 346 otherSources.add(dep2.srcfile);
 347 }
 348 // Print them out
 349 for (Iterator<String> iterator =
otherSources.iterator();

 350 iterator.hasNext();)
 351 System.out.print(" " +
ddollar(iterator.next()));

 352
 353 // Print the command
 354 System.out.println("\n\techo $< $?
>>.rawtargets\n");

 355 }
 356
 357 System.out.print("JSOURCES =");
 358 for (Iterator<String> i = allSources.iterator();
i.hasNext();)

 359 System.out.print(" " + ddollar(i.next()));
 360 System.out.print("\n\nJOBJECTS =");
 361 for (Iterator<String> i = allTargets.iterator();
i.hasNext();)

 362 System.out.print(" " + ddollar(i.next()));
 363
System.out.println("\n\n.rawtargets:\t$(JOBJECTS)");

 364 System.out.println("\n.targets:");

 - 642 -

 365 System.out.println("\trm -f .rawtargets");
 366 System.out.println("\t$(MAKE) .rawtargets");

 367 System.out.println("\t[-f .rawtargets] && tr -s
' ' '
\\012' " +

 368 "<.rawtargets ¦ sort -u >
.targets ¦¦ true");

 369 System.out.println("\trm -f .rawtargets");
 370 System.exit(0);
 371 }
 372 }

 The main() procedure steps through the class files (lines 222–250), calling
processClassFile() (lines 83–207) to handle each one.

For each class file, processClassFile() extracts the classname (lines 109–114), the
source name (lines 117–138), the classnames of the superclass (lines 152–157), all
interfaces (lines 160–169), all fields (lines 171–178), and all methods and method
arguments (lines 181–188). Finally, the constant pool is scanned (lines 193–206) for any
other referenced classes—for example, from local variables.

Back to main(). All classes found are recorded in a master map (dependencies, line
218), with information on the originating class file and source file, if available. After all class
files have been processed, lines 253–279 iterate on the collected data, propagating
dependencies to all dependent classes. If we are hiding inner classes, lines 283–322
remove them and propagate their dependencies to the enclosing class. Finally, lines 325–
369 generate the output.

 memstress: Measure Effect of Locality on Performance

Chapter 57, "Why Is Java Slow?," discussed the importance of memory locality on
application performance. We presented a plot showing how drastically performance can
be impacted by poor locality. This small C program generated the data in the plot.

 Platform: UNIX/Linux

The invocation allows you to specify the size of the memory block to be tested. Choosing
a size significantly larger than your CPU cache will show the dramatic results of stressing
the cache. Choosing a size larger than your physical memory will cause heavy paging
activity.

 Synopsis:

 memstress <#bits of address space> <#repetitions>

Running memstress allocates 2^n bytes of memory, where n is the number of address
bits specified in the first argument. It then loops through the memory block with various
stride values (see Figure B.1) to test the effect of locality on performance. For each stride
value, it touches every address in the block once and then repeats the operation the
specified number of times.

 - 643 -

 Figure B.1: Stride values affect the order in which memory is touched.

Depending on such variables as the amount of available RAM, the amount of available
memory cache, and the details of how caching and paging work, performance will greatly
vary with different stride values. The stride values used for the test are 1, 3, 7, 15, …,
where each value is a power of 2 minus 1. Here is some output from a run with the
command memstress 24 5:

 Memory size = 16777216 bytes (1 << 24)
 Number of repetitions = 5

 Stride Time
 ------ ----
 1 2.120818 sec (39553643.924126 bytes/sec)
 3 2.876940 sec (29158091.583309 bytes/sec)
 7 3.957169 sec (21198508.327656 bytes/sec)
 15 6.000262 sec (13980402.855712 bytes/sec)
 31 12.428373 sec (6749562.472913 bytes/sec)
 63 12.871100 sec (6517397.891404 bytes/sec)
 127 12.991733 sec (6456881.464543 bytes/sec)
 255 13.246348 sec (6332770.360562 bytes/sec)
 511 13.743164 sec (6103840.425677 bytes/sec)
 1023 14.633202 sec (5732585.390412 bytes/sec)
 2047 11.654724 sec (7197603.306624 bytes/sec)
 4095 5.299311 sec (15829620.114795 bytes/sec)
 8191 9.262438 sec (9056587.477280 bytes/sec)
 16383 15.920155 sec (5269174.829023 bytes/sec)
 32767 16.717737 sec (5017789.190002 bytes/sec)
 65535 16.570820 sec (5062276.942240 bytes/sec)
 131071 16.280092 sec (5152678.498378 bytes/sec)
 262143 16.227264 sec (5169453.088332 bytes/sec)
 524287 15.561468 sec (5390627.670866 bytes/sec)
 1048575 11.181644 sec (7502124.016816 bytes/sec)
 2097151 7.901720 sec (10616179.768454 bytes/sec)
 4194303 3.817173 sec (21975970.174622 bytes/sec)
 8388607 2.623275 sec (31977615.766360 bytes/sec)
 16777215 2.116233 sec (39639340.281042 bytes/sec)

The results are dramatic—a nearly 8x difference between best-case and worst-case
locality. For this test, the memory size fits well within the available memory on the
workstation; tests that result in paging show much more extreme differences.

 Listing B.4 contains the memstress source.

 Listing B.4 memstress.c

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include <unistd.h>
 5 #include <sys/time.h>
 6

 - 644 -

 7 int main(int argc, char **argv)
 8 {
 9 int nbits, repetitions;
 10 size_t stride, memsize, memsizemask;
 11 char *memory;
 12 if (argc != 3)
 13 {

 14 fprintf(stderr, "Usage: %s <#bits of address
space>
<#repetitions>\n",

 15 argv[0]);
 16 exit(1);
 17 }
 18
 19 nbits = atoi(argv[1]);
 20 repetitions = atoi(argv[2]);
 21
 22 /* Allocate our memory */
 23 memsize = (size_t)1 << nbits;
 24 memsizemask = memsize - 1;
 25 memory = (char *)malloc(memsize);
 26 if (!memory)
 27 {
 28 fprintf(stderr, "Insufficient memory to allocate
%ld bytes\n",

 29 (long)memsize);
 30 exit(1);
 31 }
 32
 33 /* Touch the memory before we start */
 34 memset(memory, 255, memsize);
 35
 36 /* Start our output */
 37 printf("Memory size = %ld bytes (1 << %d)\n",
(long)memsize, nbits);

 38 printf("Number of repetitions = %d\n", repetitions);
 39 printf("\n Stride Time\n");
 40 printf(" ------ ----\n");
 41
 42 /* Stress the memory, with different stride values */
 43 for (stride = 1; stride < memsize; stride = stride *
2 + 1)

 44 {
 45 struct timeval time1, time2;
 46 struct timezone tz;
 47 double delta, rate;
 48 register size_t offset = 0;
 49 register long count;
 50 volatile register char *mem = memory, chr;
 51 gettimeofday(&time1, &tz);
 52 printf("%12ld ", stride);
 53 fflush(stdout);
 54 /* Start accessing memory */
 55 for (count = (long)memsize * (long)repetitions;

 - 645 -

 56 count--;
 57 offset = (offset + stride) & memsizemask)
 58 {
 59 chr = mem[offset];
 60 }
 61 gettimeofday(&time2, &tz);
 62 delta = time2.tv_sec + time2.tv_usec / 1.0e6 -
 63 time1.tv_sec - time1.tv_usec / 1.0e6;
 64 rate = (double)memsize * repetitions / delta;
 65 printf("%lf sec (%lf bytes/sec)\n", delta, rate);
 66 }
 67
 68 exit(0);
 69 }

The outer loop (lines 43–66) steps through the various stride values, timing the results for
each value. The inner loop (lines 55–60) uses a memory pointer declared volatile, to
ensure that memory accesses are not optimized away. The choices of stride values make
the calculation required to correctly step through the memory (line 57) simple.

PerfAnal: Analyze Application CPU Usage

Chapter 60, "PerfAnal: A Free Performance Analysis Tool," presented a tool that could
be used in conjunction with JDK1.2's sample profiler to study the CPU usage of an
application.

 Platform: JDK1.2

 PerfAnal consists of 12 top-level classes, shown in Listings B.5–B.16. We include with

each listing a brief description of the class' role.

CalleeInclusive (see Listing B.5) encapsulates the by-callee information in the
analysis. Given the collection of per-procedure information and tracebacks passed to the
constructor (line 12), the tracebacks are analyzed and their data massaged into the tree
presented in the lower-left window of the main GUI.

 Listing B.5 CalleeInclusive.java.

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3 import javax.swing.tree.*;
 4 import java.text.*;
 5
 6 // This class encapsulates a tree, consisting of
DefaultMutableTreeNodes,

 7 // of performance data by procedure, broken down by
caller,
inclusive of

 8 // called procedures.

 9 class CalleeInclusive extends PerfTree.PerfTreeNode
implements
Comparable

 10 {
 11 HashMap kidInfo = new HashMap();
 12 CalleeInclusive(HashMap procedures, int totalCount)

 - 646 -

 13 {
 14 super(new ProcCountInfo(new Procedure("")));
 15 ((ProcCountInfo)getUserObject()).count =
totalCount;

 16 // Build a list of procedures, sorted by usage
 17 Iterator iterator =
procedures.values().iterator();

 18 while (iterator.hasNext())
 19 {
 20 ProcCountInfo info = new
ProcCountInfo((Procedure)iterator. next());

 21 add(info);
 22 }
 23 if (children == null) return;
 24 // Step through the procedures, and populate the
tree with

 25 // descendant information
 26 for (iterator = children.iterator();
iterator.hasNext();)

 27 {
 28 CalleeInclusive child =
(CalleeInclusive)iterator.next();

 29 Procedure.TraceInfo prevTraceInfo = null;
 30 // Step through all of the tracebacks
relevant to this proc

 31 for (Iterator traceIterator =
 32 ((ProcCountInfo)child.getUserObject()).
 33 procedure.myTraces.iterator();
 34 traceIterator.hasNext();)
 35 {
 36 Procedure.TraceInfo traceInfo =
 37
(Procedure.TraceInfo)traceIterator.next();

 38 // We want only the last instance of a
particular

 39 // traceback for this Procedure... it
will have the

 40 // deepest caller stack. Earlier
instances are recursion

 41 // and muddle the results.
 42 if (prevTraceInfo != null &&

 43
!prevTraceInfo.traceBack.equals(traceInfo.
traceBack))

 44
child.addDescendants(prevTraceInfo.traceBack,

 45
prevTraceInfo.depth + 1);

 46 prevTraceInfo = traceInfo;
 47 }
 48 if (prevTraceInfo != null)
 49
child.addDescendants(prevTraceInfo.traceBack,

 50 prevTraceInfo.depth
+ 1);

 51 }
 52 // Propagate the timing information
 53 processNodes();

 - 647 -

 54 }
 55 TreePath findThisProc(String procName)
 56 {
 57 // Linear search for child with given name
 58 Iterator iterator = children.iterator();
 59 while (iterator.hasNext())
 60 {
 61 CalleeInclusive child =
(CalleeInclusive)iterator.next();

 62 ProcCountInfo pci =
(ProcCountInfo)child.getUserObject();

 63 if (pci.procedure.procName.equals(procName))
 64 return new TreePath(child.getPath());
 65 }
 66 return null;
 67 }
 68 private CalleeInclusive(ProcCountInfo pci)
 69 {
 70 super(pci);
 71 }
 72 private CalleeInclusive add(ProcCountInfo pci)
 73 {
 74 CalleeInclusive pi = new CalleeInclusive(pci);
 75 kidInfo.put(pci.procedure.procName,
 76 new KidInfo(pci.procedure.procName,
pi));

 77 add(pi);
 78 return pi;
 79 }
 80

 81 // processNodes() traverses the tree, doing assorted
important
processing:

 82 //
 83 // Null out the kidInfo pointer to free up memory we no
longer need

 84 // Propagate our profile times upward
 85 // Sort the children into descending time order
 86
 87 private void processNodes()
 88 {
 89 // Clean out some memory we no longer need
 90 kidInfo = null;
 91 // Initialize our count with time spent in this
method

 92 ProcCountInfo pci =
(ProcCountInfo)getUserObject();

 93 if (getLevel() > 0) pci.count = pci.myCount;
 94 // Recursively handle the children, and add their
time to ours

 95 if (children != null)
 96 {
 97 ListIterator iterator =
children.listIterator();

 98 while (iterator.hasNext())
 99 {

 - 648 -

 100 CalleeInclusive pi =
(CalleeInclusive)iterator.next();

 101 ProcCountInfo childPci = (ProcCountInfo)pi.
getUserObject();

 102 pi.processNodes();
 103 if (getLevel() > 0) pci.count +=
childPci.count;

 104 }
 105 Collections.sort(children);
 106 }
 107 }
 108 private void addDescendants(TraceBack traceBack, int
depth)

 109 {
 110 if (traceBack.thread != null &&
!traceBack.thread.enabled)

 111 return;
 112 if (depth < traceBack.entries.size())
 113 {
 114 String procName =
 115 ((TraceBack.TraceBackEntry)traceBack.
 116 entries.get(depth)).procName;
 117 KidInfo ki = (KidInfo)kidInfo.get(procName);
 118 CalleeInclusive ci;
 119 if (ki == null)
 120 ci = add(new ProcCountInfo(new
Procedure(procName)));

 121 else
 122 ci = ki.kid;
 123 ci.addDescendants(traceBack, depth + 1);
 124 }
 125 else

 126 ((ProcCountInfo)getUserObject()).myCount +=
traceBack.
traceCount;

 127 }
 128 public int compareTo(Object o)
 129 {
 130 return
((ProcCountInfo)getUserObject()).compareTo(

 131 ((PerfTree.PerfTreeNode)o).getUserObject());
 132 }
 133 public String toString()
 134 {
 135 ProcCountInfo rootPci = (ProcCountInfo)
 136
((PerfTree.PerfTreeNode)getRoot()).getUserObject();

 137 if (getLevel() == 0)
 138 return "Method Times by Callee (times
inclusive): " +

 139 rootPci.count + " ticks";
 140 ProcCountInfo pci =
(ProcCountInfo)getUserObject();

 141 return pci.toString(rootPci.count);
 142 }
 143 public String getProcName()

 - 649 -

 144 {
 145 return
((ProcCountInfo)getUserObject()).procedure.procName;

 146 }
 147 static class ProcCountInfo implements Comparable
 148 {
 149 Procedure procedure;
 150 int count = 0;
 151 int myCount = 0;
 152 static DecimalFormat format = new
DecimalFormat("##0.##%");

 153 ProcCountInfo(Procedure p)
 154 {
 155 procedure = p;
 156 }
 157 public String toString(int totalCount)
 158 {
 159 return procedure.procName + ": " +
 160 format.format((double)count /
(double)totalCount) +

 161 " (" + count + " inclusive)";
 162 }
 163 public int compareTo(Object o)
 164 {
 165 return ((ProcCountInfo)o).count - count;
 166 }
 167 public boolean equals(Object o)
 168 {
 169 return count == ((ProcCountInfo)o).count;
 170 }
 171 }
 172 static class KidInfo implements Comparable
 173 {
 174 String kidName;
 175 CalleeInclusive kid;
 176 KidInfo(String kn, CalleeInclusive k)
 177 {
 178 kidName = kn;
 179 kid = k;
 180 }
 181 public int compareTo(Object o)
 182 {
 183 return
kidName.compareTo(((KidInfo)o).kidName);

 184 }
 185 }
 186 }

 CallerInclusive (see Listing B.6) is similar to CalleeInclusive but organizes the tree

around callers instead of called procedures.

 Listing B.6 CallerInclusive.java.

 1 package com.macmillan.nmeyers;

 - 650 -

 2 import java.util.*;
 3 import javax.swing.tree.*;
 4 import java.text.*;
 5
 6 // This class encapsulates a tree, consisting of
DefaultMutableTreeNodes,

 7 // of performance data by procedure, broken down by
callee, inclusive of

 8 // called procedures.

 9 class CallerInclusive extends PerfTree.PerfTreeNode
implements
Comparable

 10 {
 11 HashMap kidInfo = new HashMap();
 12 CallerInclusive(HashMap procedures, int totalCount)
 13 {
 14 super(new ProcCountInfo(new Procedure("")));
 15 ((ProcCountInfo)getUserObject()).count =
totalCount;

 16 // Build a list of procedures, sorted by usage
 17 Iterator iterator =
procedures.values().iterator();

 18 while (iterator.hasNext())
 19 {
 20 ProcCountInfo info = new
ProcCountInfo((Procedure)iterator. next());

 21 add(info);
 22 }
 23 if (children == null) return;
 24 // Step through the procedures, and populate the
tree with

 25 // descendant information
 26 for (iterator = children.iterator();
iterator.hasNext();)

 27 {
 28 CallerInclusive child =
(CallerInclusive)iterator.next();

 29 Procedure.TraceInfo prevTraceInfo = null;
 30 // Step through all of the tracebacks
relevant to this proc

 31 for (Iterator traceIterator =
 32 ((ProcCountInfo)child.getUserObject()).
 33 procedure.myTraces.iterator();
 34 traceIterator.hasNext();)
 35 {
 36 Procedure.TraceInfo traceInfo =
 37
(Procedure.TraceInfo)traceIterator.next();

 38 // We want only the first instance of a
particular

 39 // traceback for this Procedure... it
will have the

 40 // deepest callee stack. Later instances
are recursion

 41 // and muddle the results.
 42 if (prevTraceInfo != null &&
 43
prevTraceInfo.traceBack.equals(traceInfo.traceBack))

 - 651 -

 44 continue;
 45 prevTraceInfo = traceInfo;
 46 child.addDescendants(traceInfo.traceBack,
 47 traceInfo.depth -
1);

 48 }
 49 }
 50 // Propagate the timing information
 51 processNodes();
 52 }
 53 TreePath findThisProc(String procName)
 54 {
 55 // Linear search for child with given name
 56 Iterator iterator = children.iterator();
 57 while (iterator.hasNext())
 58 {
 59 CallerInclusive child =
(CallerInclusive)iterator.next();

 60 ProcCountInfo pci =
(ProcCountInfo)child.getUserObject();

 61 if (pci.procedure.procName.equals(procName))
 62 return new TreePath(child.getPath());
 63 }
 64 return null;
 65 }
 66 private CallerInclusive(ProcCountInfo pci)
 67 {
 68 super(pci);
 69 }
 70 private CallerInclusive add(ProcCountInfo pci)
 71 {
 72 CallerInclusive pi = new CallerInclusive(pci);
 73 kidInfo.put(pci.procedure.procName,
 74 new KidInfo(pci.procedure.procName,
pi));

 75 add(pi);
 76 return pi;
 77 }
 78

 79 // processNodes() traverses the tree, doing assorted
important
processing:

 80 //
 81 // Null out the kidInfo pointer to free up memory we no
longer need

 82 // Propagate our profile times upward
 83 // Sort the children into descending time order
 84
 85 private void processNodes()
 86 {
 87 // Clean out some memory we no longer need
 88 kidInfo = null;
 89 // Initialize our count with time spent in this
method

 90 ProcCountInfo pci =

 - 652 -

(ProcCountInfo)getUserObject();
 91 if (getLevel() > 0) pci.count = pci.myCount;
 92 // Recursively handle the children, and add their
time to ours

 93 if (children != null)
 94 {
 95 ListIterator iterator =
children.listIterator();

 96 while (iterator.hasNext())
 97 {
 98 CallerInclusive pi =
(CallerInclusive)iterator.next();

 99 ProcCountInfo childPci =
(ProcCountInfo)pi.
getUserObject();

 100 pi.processNodes();
 101 if (getLevel() > 0) pci.count +=
childPci.count;

 102 }
 103 Collections.sort(children);
 104 }
 105 }
 106 private void addDescendants(TraceBack traceBack, int
depth)

 107 {
 108 if (traceBack.thread != null &&
!traceBack.thread.enabled)

 109 return;
 110 if (depth >= 0)
 111 {
 112 String procName =
 113 ((TraceBack.TraceBackEntry)traceBack.
 114 entries.get(depth)).procName;
 115 KidInfo ki = (KidInfo)kidInfo.get(procName);
 116 CallerInclusive ci;
 117 if (ki == null)
 118 ci = add(new ProcCountInfo(new
Procedure(procName)));

 119 else
 120 ci = ki.kid;
 121 ci.addDescendants(traceBack, depth - 1);
 122 }
 123 else

 124 ((ProcCountInfo)getUserObject()).myCount +=
traceBack.
traceCount;

 125 }
 126 public int compareTo(Object o)
 127 {
 128 return
((ProcCountInfo)getUserObject()).compareTo(

 129 ((PerfTree.PerfTreeNode)o).getUserObject());
 130 }
 131 public String toString()
 132 {
 133 ProcCountInfo rootPci = (ProcCountInfo)

 - 653 -

 134
((PerfTree.PerfTreeNode)getRoot()).getUserObject();

 135 if (getLevel() == 0)
 136 return "Method Times by Caller (times
inclusive): " +

 137 rootPci.count + " ticks";
 138 ProcCountInfo pci =
(ProcCountInfo)getUserObject();

 139 return pci.toString(rootPci.count);
 140 }
 141 public String getProcName()
 142 {
 143 return
((ProcCountInfo)getUserObject()).procedure.procName;

 144 }
 145 static class ProcCountInfo implements Comparable
 146 {
 147 Procedure procedure;
 148 int count = 0;
 149 int myCount = 0;
 150 static DecimalFormat format = new
DecimalFormat("##0.##%");

 151 ProcCountInfo(Procedure p)
 152 {
 153 procedure = p;
 154 }
 155 public String toString(int totalCount)
 156 {
 157 return procedure.procName + ": " +
 158 format.format((double)count /
(double)totalCount) +

 159 " (" + count + " inclusive / " +
myCount +
" exclusive)";

 160 }
 161 public int compareTo(Object o)
 162 {
 163 return ((ProcCountInfo)o).count - count;
 164 }
 165 public boolean equals(Object o)
 166 {
 167 return count == ((ProcCountInfo)o).count;
 168 }
 169 }
 170 static class KidInfo implements Comparable
 171 {
 172 String kidName;
 173 CallerInclusive kid;
 174 KidInfo(String kn, CallerInclusive k)
 175 {
 176 kidName = kn;
 177 kid = k;
 178 }
 179 public int compareTo(Object o)
 180 {

 - 654 -

 181 return
kidName.compareTo(((KidInfo)o).kidName);

 182 }
 183 }
 184 }

LineExclusive (see Listing B.7) encapsulates the tree presented in the lower-right
window of the main GUI, providing per-line-number performance information, exclusive of
subroutine calls.

 Listing B.7 LineExclusive.java

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3 import javax.swing.tree.*;
 4 import java.text.*;
 5
 6 // This class encapsulates a tree, consisting of
DefaultMutableTreeNodes,

 7 // of performance data by procedure, broken down by line
number,
exclusive

 8 // of called procedures.
 9 class LineExclusive extends PerfTree.PerfTreeNode
implements Comparable

 10 {
 11 LineExclusive(HashMap procedures, int totalCount)
 12 {
 13 super(new ProcCountInfo("", totalCount));
 14 // Build a list of procedures, sorted by usage
 15 Iterator iterator =
procedures.values().iterator();

 16 while (iterator.hasNext())
 17 {
 18 Procedure procedure =
(Procedure)iterator.next();

 19 ProcCountInfo thisProcInfo =
 20 new ProcCountInfo(procedure.procName, 0);
 21 LineExclusive li = new
LineExclusive(thisProcInfo);

 22 add(li);
 23 Iterator lines = procedure.lines.iterator();
 24 ProcCountInfo prev = null;
 25 while (lines.hasNext())
 26 {
 27 Procedure.Line line =
(Procedure.Line)lines.next();

 28 if (line.thread != null &&
!line.thread.enabled)
continue;

 29 thisProcInfo.count +=
line.countExclusive;

 30 if (prev != null &&
prev.procName.equals(line.lineInfo))

 31 prev.count += line.countExclusive;
 32 else li.add(new LineExclusive(prev =
 33 new ProcCountInfo(line.lineInfo,

 - 655 -

line.
countExclusive)));

 34 }
 35 if (li.children != null)
Collections.sort(li.children);

 36 }
 37 if (children != null) Collections.sort(children);
 38 }
 39 TreePath findThisProc(String procName)
 40 {
 41 // Linear search for child with given name
 42 Iterator iterator = children.iterator();
 43 while (iterator.hasNext())
 44 {
 45 LineExclusive child =
(LineExclusive)iterator.next();

 46 ProcCountInfo pci =
(ProcCountInfo)child.getUserObject();

 47 if (pci.procName.equals(procName))
 48 return new TreePath(child.getPath());
 49 }
 50 return null;
 51 }
 52 private LineExclusive(ProcCountInfo pci)
 53 {
 54 super(pci);
 55 }
 56 public int compareTo(Object o)
 57 {
 58 return
((ProcCountInfo)getUserObject()).compareTo(

 59 ((PerfTree.PerfTreeNode)o).getUserObject());
 60 }
 61 public String toString()
 62 {
 63 ProcCountInfo rootPci = (ProcCountInfo)
 64
((PerfTree.PerfTreeNode)getRoot()).getUserObject();

 65 if (getLevel() == 0)
 66 return "Method Times by Line Number (times
exclusive): " +

 67 rootPci.count + " ticks";
 68 ProcCountInfo pci =
(ProcCountInfo)getUserObject();

 69 return pci.toString(rootPci.count);
 70 }
 71 public String getProcName()
 72 {
 73 if (getLevel() > 1)
 74 return
((PerfTree.PerfTreeNode)getParent()).getProcName();

 75 return ((ProcCountInfo)getUserObject()).procName;
 76 }
 77 static class ProcCountInfo implements Comparable
 78 {
 79 String procName;

 - 656 -

 80 int count;
 81 static DecimalFormat format = new
DecimalFormat("##0.##%");

 82 ProcCountInfo(String p, int c)
 83 {
 84 procName = p;
 85 count = c;
 86 }
 87 public String toString(int totalCount)
 88 {
 89 return procName + ": " +
 90 format.format((double)count /
(double)totalCount) +

 91 " (" + count + " exclusive)";
 92 }
 93 public int compareTo(Object o)
 94 {
 95 return ((ProcCountInfo)o).count - count;
 96 }
 97 public boolean equals(Object o)
 98 {
 99 return count == ((ProcCountInfo)o).count;
 100 }
 101 }
 102 }

 LineInclusive (see Listing B.8) is structured almost identically to LineExclusive,

but adds time spent in subroutine calls to the per-line performance information.

 Listing B.8 LineInclusive.java

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3 import javax.swing.tree.*;
 4 import java.text.*;
 5
 6 // This class encapsulates a tree, consisting of
DefaultMutableTreeNodes,

 7 // of performance data by procedure, broken down by line
number,
inclusive

 8 // of called procedures.
 9 class LineInclusive extends PerfTree.PerfTreeNode
implements Comparable

 10 {
 11 LineInclusive(HashMap procedures, int totalCount)
 12 {
 13 super(new ProcCountInfo("", totalCount));
 14 // Build a list of procedures, sorted by usage
 15 Iterator iterator =
procedures.values().iterator();

 16 while (iterator.hasNext())
 17 {
 18 Procedure procedure =
(Procedure)iterator.next();

 - 657 -

 19 ProcCountInfo thisProcInfo =
 20 new ProcCountInfo(procedure.procName, 0);
 21 LineInclusive li = new
LineInclusive(thisProcInfo);

 22 add(li);
 23 Iterator lines = procedure.lines.iterator();
 24 ProcCountInfo prev = null;
 25 while (lines.hasNext())
 26 {
 27 Procedure.Line line =
(Procedure.Line)lines.next();

 28 if (line.thread != null &&
!line.thread.enabled)
continue;

 29 thisProcInfo.count +=
line.countInclusive;

 30 if (prev != null &&
prev.procName.equals(line.lineInfo))

 31 prev.count += line.countInclusive;
 32 else li.add(new LineInclusive(prev =

 33 new ProcCountInfo(line.lineInfo,
line.
countInclusive)));

 34 }
 35 if (li.children != null)
Collections.sort(li.children);

 36 }
 37 if (children != null) Collections.sort(children);
 38 }
 39 TreePath findThisProc(String procName)
 40 {
 41 // Linear search for child with given name
 42 Iterator iterator = children.iterator();
 43 while (iterator.hasNext())
 44 {
 45 LineInclusive child =
(LineInclusive)iterator.next();

 46 ProcCountInfo pci =
(ProcCountInfo)child.getUserObject();

 47 if (pci.procName.equals(procName))
 48 return new TreePath(child.getPath());
 49 }
 50 return null;
 51 }
 52 private LineInclusive(ProcCountInfo pci)
 53 {
 54 super(pci);
 55 }
 56 public int compareTo(Object o)
 57 {
 58 return
((ProcCountInfo)getUserObject()).compareTo(

 59 ((PerfTree.PerfTreeNode)o).getUserObject());
 60 }
 61 public String toString()
 62 {

 - 658 -

 63 ProcCountInfo rootPci = (ProcCountInfo)
 64
((PerfTree.PerfTreeNode)getRoot()).getUserObject();

 65 if (getLevel() == 0)
 66 return "Method Times by Line Number (times
inclusive): " +

 67 rootPci.count + " ticks";
 68 ProcCountInfo pci =
(ProcCountInfo)getUserObject();

 69 return pci.toString(rootPci.count);
 70 }
 71 public String getProcName()
 72 {
 73 if (getLevel() > 1)
 74 return
((PerfTree.PerfTreeNode)getParent()).getProcName();

 75 return ((ProcCountInfo)getUserObject()).procName;
 76 }
 77 static class ProcCountInfo implements Comparable
 78 {
 79 String procName;
 80 int count;
 81 static DecimalFormat format = new
DecimalFormat("##0.##%");

 82 ProcCountInfo(String p, int c)
 83 {
 84 procName = p;
 85 count = c;
 86 }
 87 public String toString(int totalCount)
 88 {
 89 return procName + ": " +
 90 format.format((double)count /
(double)totalCount) +

 91 " (" + count + " inclusive)";
 92 }
 93 public int compareTo(Object o)
 94 {
 95 return ((ProcCountInfo)o).count - count;
 96 }
 97 public boolean equals(Object o)
 98 {
 99 return count == ((ProcCountInfo)o).count;
 100 }
 101 }
 102 }

PerfAnal (see Listing B.9) implements the top-level interface. The constructor (lines 24-
131) builds the main GUI and drives parsing of the analysis file. Other methods in this
class implement the callbacks for various pull-down and pop-up menu selections.

 Listing B.9 PerfAnal.java

 1 package com.macmillan.nmeyers;
 2 import java.io.*;

 - 659 -

 3 import java.util.*;
 4 import javax.swing.*;
 5 import java.awt.*;
 6 import java.awt.event.*;
 7
 8 class PerfAnal extends JFrame implements
PerfTree.FindMethod,

 9
SaveDialog.DoSave,

 10
SelectThreads.ChooseThread

 11 {
 12 HashMap traceBacks = new HashMap(); // For holding
TraceBack objects

 13 HashMap procedures = new HashMap(); // For holding
Procedure objects

 14 HashMap threads = new HashMap(); // For holding
ThreadInfo
objects

 15 CallerInclusive callerInclusive;
 16 CalleeInclusive calleeInclusive;
 17 LineInclusive lineInclusive;
 18 LineExclusive lineExclusive;
 19 PerfTree tree1, tree2, tree3, tree4;
 20 SelectMethod selectMethod;
 21 SelectThreads selectThreads;
 22 int totalCount = 0;
 23 static int frameCount = 0;
 24 PerfAnal(String fileName, Reader reader)
 25 {
 26 super("Performance Analysis: " + fileName);
 27 // Build our one little menu
 28 JMenuBar menuBar = new JMenuBar();
 29 setJMenuBar(menuBar);
 30 JMenu fileMenu = new JMenu("File");
 31 menuBar.add(fileMenu);
 32 // Button to save analysis data to a file
 33 JMenuItem menuItem = new JMenuItem("Save...");
 34 fileMenu.add(menuItem);
 35 menuItem.addActionListener(new ActionListener() {
 36 public void actionPerformed(ActionEvent e)
 37 {
 38 new SaveDialog(PerfAnal.this,
PerfAnal.this);

 39 }
 40 });
 41 fileMenu.add(new JSeparator());
 42 // Button to quit
 43 menuItem = new JMenuItem("Exit");
 44 menuItem.addActionListener(new ActionListener() {
 45 public void actionPerformed(ActionEvent e)
 46 {
 47 System.exit(0);
 48 }
 49 });

 - 660 -

 50 fileMenu.add(menuItem);
 51 getContentPane().setLayout(new GridLayout(2, 2));
 52 // Start parsing input file. Look for lines that
mark the start

 53 // of a stack trace or info on a thread
 54 LineNumberReader lineReader = null;
 55 if (reader != null) try
 56 {
 57 lineReader = new LineNumberReader(reader);
 58 String line;
 59 while ((line = lineReader.readLine()) !=
null)

 60 {
 61 // Check for start of the next section
 62 if (line.startsWith("CPU SAMPLES BEGIN"))
break;

 63 if (line.startsWith("THREAD START") &&
 64 line.indexOf("name=") != -1)
 65 {
 66 ThreadInfo info =
ThreadInfo.parse(line);

 67 if (info != null)
 68 threads.put(new
Integer(info.threadNumber),

 69 info);
 70 }

 71 if (line.startsWith("TRACE ") &&
line.indexOf(':') !=
-1)

 72 {
 73 // This looks like a real traceback.

 74 TraceBack traceBack =
TraceBack.parse(line,
lineReader,

 75
threads);

 76 if (traceBack == null)

 77 throw new IOException("Cannot
parse stack
trace");

 78 traceBacks.put(new
Integer(traceBack.traceNumber),

 79 traceBack);
 80 }
 81 }
 82 // We're to the second section — the CPU
sample counts.

 83 // Waste the next line, which is a header.
 84 lineReader.readLine();
 85 // Now start parsing these entries, building
our list of

 86 // procedure references and counts as we go.
 87 while ((line = lineReader.readLine()) !=
null)

 88 {
 89 // Check for end of this section
 90 if (line.startsWith("CPU SAMPLES END"))
break;

 - 661 -

 91 totalCount += Procedure.parse(line,
procedures,
traceBacks);

 92 }
 93 }
 94 catch (IOException e)
 95 {
 96 displayError("Line " +
lineReader.getLineNumber() + ": " +

 97 e, this);
 98 }
 99 // Create our method selection dialog
 100 selectMethod = new SelectMethod(this, this,
procedures);

 101 // Create our thread selection dialog
 102 selectThreads = new SelectThreads(this, this,
threads);

 103 // Create trees for our inclusive procedure call
counts

 104 callerInclusive = new CallerInclusive(procedures,
totalCount);

 105 lineInclusive = new LineInclusive(procedures,
totalCount);

 106 calleeInclusive = new CalleeInclusive(procedures,
totalCount);

 107 lineExclusive = new LineExclusive(procedures,
totalCount);

 108 // Ready to roll
 109 getContentPane().add(tree1 = new
PerfTree(callerInclusive, this, this));

 110 getContentPane().add(tree2 = new
PerfTree(lineInclusive, this,
this));

 111 getContentPane().add(tree3 = new
PerfTree(calleeInclusive, this, this));

 112 getContentPane().add(tree4 = new
PerfTree(lineExclusive, this,
this));

 113 pack();
 114 // Try to keep this from getting too big

 115 Dimension screenSize =
Toolkit.getDefaultToolkit().
getScreenSize();

 116 Dimension mySize = getSize();
 117 if (mySize.width > 3 * screenSize.width / 4)
 118 mySize.width = 3 * screenSize.width / 4;
 119 if (mySize.height > 3 * screenSize.height / 4)
 120 mySize.height = 3 * screenSize.height / 4;
 121 setSize(mySize);
 122 setVisible(true);
 123 incFrameCount();
 124 addWindowListener(new WindowAdapter() {
 125 public void windowClosing(WindowEvent ev)
 126 {
 127 dispose();
 128 decFrameCount();
 129 }
 130 });

 - 662 -

 131 }
 132 public void findMethod(String s)
 133 {
 134 if (s == null)
 135 selectMethod.setVisible(true);
 136 else
 137 {
 138 tree1.selectThisProc(s);
 139 tree2.selectThisProc(s);
 140 tree3.selectThisProc(s);
 141 tree4.selectThisProc(s);
 142 }
 143 }
 144 public void chooseThread()
 145 {
 146 selectThreads.setVisible(true);
 147 }
 148 public void recomputeTotals()
 149 {
 150 super.setEnabled(false);
 151
super.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

 152 callerInclusive = new CallerInclusive(procedures,
totalCount);

 153 lineInclusive = new LineInclusive(procedures,
totalCount);

 154 calleeInclusive = new CalleeInclusive(procedures,
totalCount);

 155 lineExclusive = new LineExclusive(procedures,
totalCount);

 156 tree1.initializeRoot(callerInclusive);
 157 tree2.initializeRoot(lineInclusive);
 158 tree3.initializeRoot(calleeInclusive);
 159 tree4.initializeRoot(lineExclusive);
 160 invalidate();
 161 validate();
 162 super.setCursor(Cursor.getDefaultCursor());
 163 super.setEnabled(true);
 164 }
 165 public void doSave(File file)
 166 {
 167 PrintWriter writer = null;
 168 try
 169 {
 170 writer = new PrintWriter(new
BufferedWriter(new FileWriter(file)));

 171 tree1.saveData(writer);
 172 writer.println("");
 173 tree2.saveData(writer);
 174 writer.println("");
 175 tree3.saveData(writer);
 176 writer.println("");
 177 tree4.saveData(writer);
 178 }

 - 663 -

 179 catch (IOException e)
 180 {
 181 displayError(e.toString(), this);
 182 }
 183 finally
 184 {
 185 if (writer != null) writer.close();
 186 }
 187 }
 188 static void displayError(String s, final JFrame
parent)

 189 {
 190 final Window dialog =
 191 (parent == null ?
 192 (Window)(new JFrame("Error")) :
 193 (Window)(new JDialog(parent, "Error",
true)));

 194 ((RootPaneContainer)dialog).getContentPane().
 195 add(new JLabel(s), BorderLayout.CENTER);
 196 JButton OKButton = new JButton("OK");
 197 ((RootPaneContainer)dialog).getContentPane().
 198 add(OKButton, BorderLayout.SOUTH);

 199
((RootPaneContainer)dialog).getRootPane().setDefaultButton(
OKButton);

 200 OKButton.addActionListener(new ActionListener() {
 201 public void actionPerformed(ActionEvent e)
 202 {
 203 dialog.dispose();
 204 if (parent == null) decFrameCount();
 205 }
 206 });
 207 dialog.addWindowListener(new WindowAdapter() {
 208 public void windowClosing(WindowEvent ev)
 209 {
 210 dialog.dispose();
 211 if (parent == null) decFrameCount();
 212 }
 213 });
 214 dialog.pack();
 215 dialog.setVisible(true);
 216 if (parent == null) incFrameCount();
 217 }
 218 static void incFrameCount()
 219 {
 220 frameCount++;
 221 }
 222 static void decFrameCount()
 223 {
 224 if (—frameCount == 0) System.exit(0);
 225 }
 226
 227 static public void main(String argv[])
 228 {

 - 664 -

 229 if (argv.length == 0)
 230 new PerfAnal("stdin",
 231 new InputStreamReader(System.in));
 232 else
 233 {
 234 for (int i = 0; i < argv.length; i++)
 235 try {
 236 new PerfAnal(argv[i],
 237 new FileReader(argv[i]));
 238 }
 239 catch (FileNotFoundException e)
 240 {
 241 displayError(e.toString(), null);
 242 }
 243 }
 244 }
 245 }

PerfTree (see Listing B.10) implements the GUI portion of the individual analysis trees
and defines the basic PerfTree.PerfTreeNode class that is specialized for each of
the four analysis trees.

 Listing B.10 PerfTree.java

 1 package com.macmillan.nmeyers;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import javax.swing.tree.*;
 5 import java.io.*;
 6 import java.util.*;
 7
 8 class PerfTree extends JScrollPane
 9 {
 10 JTree tree = null;
 11 JPopupMenu popupMenu = null;
 12 FindMethod findMethod;
 13 SelectThreads.ChooseThread chooseThread;
 14 PerfTreeNode root;
 15 MouseListener mouseListener = null;

 16 PerfTree(PerfTreeNode n, FindMethod fm,
SelectThreads.
ChooseThread ct)

 17 {
 18
setBorder(BorderFactory.createTitledBorder(n.toString()));

 19 root = n;
 20 findMethod = fm;
 21 chooseThread = ct;
 22 initializeRoot(n);
 23 }
 24 void initializeRoot(PerfTreeNode n)
 25 {
 26 if (tree != null)
 27 {

 - 665 -

 28 tree.removeMouseListener(mouseListener);
 29 }
 30 tree = new JTree(root = n);
 31 tree.setLargeModel(true);
 32 tree.setRootVisible(false);
 33
 34 if (popupMenu == null)
 35 {
 36 popupMenu = new JPopupMenu();
 37 popupMenu.add(
 38 new AbstractAction("Goto this Method") {
 39 public void
actionPerformed(ActionEvent e)

 40 {
 41 PerfTreeNode node =
 42
(PerfTreeNode)tree.getSelectionPath().

 43 getLastPathComponent();
 44
findMethod.findMethod(node.getProcName());

 45 }
 46 });
 47 popupMenu.add(
 48 new AbstractAction("Select a Method to
Analyze") {

 49 public void
actionPerformed(ActionEvent e)

 50 {
 51 findMethod.findMethod(null);
 52 }
 53 });
 54 popupMenu.add(
 55 new AbstractAction("Select Thread(s) to
Analyze") {

 56 public void
actionPerformed(ActionEvent e)

 57 {
 58 chooseThread.chooseThread();
 59 }
 60 });
 61 }
 62 popupMenu.setInvoker(tree);
 63
 64 if (mouseListener == null)
 65 mouseListener = new MouseAdapter() {
 66 public void mousePressed(MouseEvent e)
 67 {
 68 if (e.isPopupTrigger())
 69 {
 70 int x = e.getX();
 71 int y = e.getY();
 72 int row =
tree.getRowForLocation(x, y);

 73 if (row != -1)
 74 {

 - 666 -

 75 tree.setSelectionRow(row);
 76 popupMenu.show(tree, x, y);
 77 }
 78 }
 79 }
 80 public void mouseReleased(MouseEvent e)
 81 {
 82 if (e.isPopupTrigger())
 83 {
 84 int x = e.getX();
 85 int y = e.getY();
 86 int row =
tree.getRowForLocation(x, y);

 87 if (row != -1)
 88 {
 89 tree.setSelectionRow(row);
 90 popupMenu.show(tree, x, y);
 91 }
 92 }
 93 }
 94 };
 95 tree.addMouseListener(mouseListener);
 96
 97 setViewportView(tree);
 98 }
 99 void selectThisProc(String procName)
 100 {
 101 if (procName == null) return;
 102 TreePath path = root.findThisProc(procName);
 103 if (path != null)
 104 {
 105 tree.setSelectionPath(path);
 106 tree.scrollPathToVisible(path);
 107 }
 108 }
 109 void saveData(PrintWriter writer)
 110 {
 111 root.saveData(writer);
 112 }
 113 abstract static class PerfTreeNode extends
DefaultMutableTreeNode

 114 {
 115 PerfTreeNode(Object o) { super(o); }
 116 abstract String getProcName();
 117 abstract TreePath findThisProc(String procName);
 118 void saveData(PrintWriter writer)
 119 {
 120 int level = getLevel();
 121 for (int i = 0; i < level; i++)
writer.print(" ");

 122 if (level > 0) writer.print("" + level + ":
");

 123 writer.println(toString());
 124 if (children != null)

 - 667 -

 125 {
 126 Iterator iterator = children.iterator();
 127 while (iterator.hasNext())
 128
((PerfTreeNode)iterator.next()).saveData(writer);

 129 }
 130 }
 131 }
 132 interface FindMethod
 133 {
 134 void findMethod(String method);
 135 }
 136 }

 Procedure (see Listing B.11) encapsulates per-procedure information parsed from the

analysis file.

 Listing B.11 Procedure.java

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3
 4 // This class holds profile information for individual
methods.

 5 // Because the traces do not include full signature
information, we

 6 // cannot distinguish among multiple versions of a
method.

 7 class Procedure implements Comparable
 8 {
 9 public String procName;
 10 public int countInclusive = 0;
 11 public int countExclusive = 0;
 12 // "lines" keeps track of profile info for individual
lines of source.

 13 TreeSet lines = new TreeSet();
 14 // "mytraces" keeps track of which stack traces reference
us

 15 LinkedList myTraces = new LinkedList();
 16 Procedure(String str)
 17 {
 18 procName = str;
 19 }

 20 // Allocate a new Procedure object and add to the map, or
return
existing one

 21 // from the map
 22 public static Procedure factory(String str, HashMap
map)

 23 {
 24 Procedure result = (Procedure)map.get(str);
 25 if (result != null) return result;
 26 result = new Procedure(str);
 27 map.put(str, result);
 28 return result;
 29 }

 - 668 -

 30 // Parse the trace information from the CPU sample
counts, update

 31 // the caller's procedures tree and our own tree of line
number data

 32 public static int parse(String str,
 33 HashMap procedures,
 34 HashMap traceBacks)
 35 {
 36 StringTokenizer tokenizer = new
StringTokenizer(str);

 37 // Parse the sample data. Ignore rank, self, and
accum fields.

 38 tokenizer.nextToken();
 39 tokenizer.nextToken();
 40 tokenizer.nextToken();
 41 // Read the count and trace fields
 42 int count =
Integer.parseInt(tokenizer.nextToken());

 43 Integer traceNum = new
Integer(tokenizer.nextToken());

 44 TraceBack tb =
(TraceBack)traceBacks.get(traceNum);

 45 // Update the count in the traceback
 46 tb.traceCount = count;
 47 if (tb.thread != null) tb.thread.count += count;
 48 // For each entry in the callback, update
appropriate Procedure

 49 // and Line counts, and add this traceback to the
Procedure

 50 // traceback chain.
 51 if (tb != null && !tb.entries.isEmpty())
 52 {
 53 int depth = 0;
 54 Iterator iterator = tb.entries.iterator();
 55 // Keep track of procedures and lines we've
recorded from

 56 // this traceback, in an attempt to reduce
confusion caused

 57 // by recursion.
 58 TreeSet procsRecorded = new TreeSet();
 59 TreeSet linesRecorded = new TreeSet();
 60 while (iterator.hasNext())
 61 {
 62 TraceBack.TraceBackEntry traceBackEntry =
 63
(TraceBack.TraceBackEntry)iterator.next();

 64 // Find (or create) an entry for this
procedure

 65 Procedure procedure =

 66
Procedure.factory(traceBackEntry.procName,
procedures);

 67 // Find (or create) an entry for this
line

 68 Line line =
 69
Line.factory(traceBackEntry.procLineNum,

 70 procedure.lines,

 - 669 -

 71 tb.thread);

 72 // Update inclusive counts, avoiding
repeats from
recursion

 73 // in an attempt to make inclusive counts
somewhat
useful.

 74 if (procsRecorded.add(procedure))
 75 procedure.countInclusive += count;
 76 if (linesRecorded.add(procedure))
 77 line.countInclusive += count;
 78 // Update exclusive counts if we're at
top of stack

 79 if (depth == 0)
 80 {
 81 procedure.countExclusive += count;
 82 line.countExclusive += count;
 83 }
 84 // Add this stack trace to our collection
 85 procedure.myTraces.add(new TraceInfo(tb,
depth));

 86 depth++;
 87 }
 88 }
 89 return count;
 90 }
 91 public int compareTo(Object o)
 92 {
 93 return
procName.compareTo(((Procedure)o).procName);

 94 }
 95 public boolean equals(Object o)
 96 {
 97 return procName.equals(((Procedure)o).procName);
 98 }
 99 static class TraceInfo
 100 {
 101 public TraceBack traceBack;
 102 public int depth;
 103 TraceInfo(TraceBack tb, int d)
 104 {
 105 traceBack = tb;
 106 depth = d;
 107 }
 108 public String toString()
 109 {
 110 return "[traceBack=" + traceBack + ",depth="
+ depth + ']';

 111 }
 112 }
 113 // This class holds profile information for a particular
line number

 114 // of a procedure.
 115 static class Line implements Comparable
 116 {

 - 670 -

 117 public String lineInfo;
 118 public int countInclusive = 0;
 119 public int countExclusive = 0;
 120 public ThreadInfo thread = null;
 121 private Line(String str, ThreadInfo thr)
 122 {
 123 lineInfo = str;
 124 thread = thr;
 125 }
 126 // Allocate a new Line object and add to the set, or
return existing one

 127 // from the set

 128 public static Line factory(String str, TreeSet
set, ThreadInfo
thr)

 129 {
 130 Line result = new Line(str, thr);
 131 if (set.add(result)) return result;
 132 else return
(Line)set.tailSet(result).first();

 133 }
 134 public int compareTo(Object o)
 135 {
 136 int result =
lineInfo.compareTo(((Line)o).lineInfo);

 137 if (result == 0 && thread != null)
 138 result =
thread.compareTo(((Line)o).thread);

 139 return result;
 140 }
 141 public boolean equals(Object o)
 142 {
 143 return lineInfo.equals(((Line)o).lineInfo) &&
 144 (thread == null ¦¦
 145 thread.equals(((Line)o).thread));
 146 }
 147 public String toString()
 148 {
 149 return "[lineInfo=" + lineInfo +
 150 ",countInclusive=" + countInclusive +
 151 ",countExclusive=" + countExclusive +
 152 ",thread=" + thread + ']';
 153 }
 154 }
 155 public String toString()
 156 {
 157 return procName;
 158 }
 159 }

 SaveDialog.java (see Listing B.12) is a simple file-saving dialog.

 Listing B.12 SaveDialog.java

 - 671 -

 1 package com.macmillan.nmeyers;
 2 import javax.swing.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.io.*;
 6
 7 class SaveDialog extends JDialog
 8 {
 9 JFrame parent;
 10 DoSave doSave;
 11 File file;
 12 SaveDialog(JFrame frame, DoSave ds)
 13 {
 14 super(frame, "Save Analysis Data to a File",
true);

 15 parent = frame;
 16 doSave = ds;
 17 JFileChooser fileChooser = new JFileChooser() {
 18 public void approveSelection()
 19 {
 20 file = getSelectedFile();
 21 dispose();
 22 if (file.exists()) new
ApproveSaveFile(parent);

 23 else doSave.doSave(file);
 24 }
 25 public void cancelSelection()
 26 {
 27 dispose();
 28 }
 29 };
 30
fileChooser.setDialogType(JFileChooser.SAVE_DIALOG);

 31 getContentPane().add(fileChooser);
 32 pack();
 33 setVisible(true);
 34 }
 35 interface DoSave
 36 {
 37 void doSave(File f);
 38 }
 39 class ApproveSaveFile extends JDialog
 40 {
 41 ApproveSaveFile(JFrame p)
 42 {
 43 super(p, "Overwrite File?", true);

 44 getContentPane().add(new JLabel("Overwrite
file " + file +
"?"),

 45 BorderLayout.CENTER);
 46 Box box = Box.createHorizontalBox();
 47 getContentPane().add(box,
BorderLayout.SOUTH);

 48 box.add(Box.createGlue());

 - 672 -

 49 JButton button = new JButton("OK");
 50 button.addActionListener(new ActionListener()
{

 51 public void actionPerformed(ActionEvent
e)

 52 {
 53 dispose();
 54 doSave.doSave(file);
 55 }
 56 });
 57 box.add(button);
 58 box.add(Box.createGlue());
 59 button = new JButton("Cancel");
 60 button.addActionListener(new ActionListener()
{

 61 public void actionPerformed(ActionEvent
e)

 62 {
 63 dispose();
 64 }
 65 });
 66 box.add(button);
 67 getRootPane().setDefaultButton(button);
 68 box.add(Box.createGlue());
 69 pack();
 70
setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

 71 setVisible(true);
 72 }
 73 }
 74 }

SelectMethod (see Listing B.13) implements the dialog allowing the user to select a
method for analysis by name. It displays all available classes in a list, allowing the user to
select one for analysis in the four analysis windows.

 Listing B.13 SelectMethod.java

 1 package com.macmillan.nmeyers;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5 import java.util.*;
 6
 7 class SelectMethod extends JDialog
 8 {
 9 JList list;
 10 PerfTree.FindMethod findMethod;
 11 SelectMethod(JFrame owner, PerfTree.FindMethod fm,
 12 HashMap procedures)
 13 {
 14 super(owner, "Select a Method to Analyze", true);

 15 // For performance reasons, we keep procedures in
a hashmap
instead

 - 673 -

 16 // of treemap, and sort when we need to
 17 Object[] procs = procedures.values().toArray();
 18 Arrays.sort(procs);
 19 list = new JList(procs);
 20 list.addMouseListener(new MouseAdapter() {
 21 public void mouseClicked(MouseEvent e) {
 22 if (e.getClickCount() == 2)
 23 {
 24 setVisible(false);
 25 Object result =
list.getSelectedValue();

 26 if (result != null)
 27
findMethod.findMethod(result.toString());

 28 }
 29 }
 30 });
 31 findMethod = fm;

 32 getContentPane().add(new JScrollPane(list),
BorderLayout.
CENTER);

 33 Box box = Box.createHorizontalBox();
 34 getContentPane().add(box, BorderLayout.SOUTH);
 35 box.add(Box.createGlue());
 36 JButton button = new JButton("OK");
 37 button.addActionListener(new ActionListener() {
 38 public void actionPerformed(ActionEvent e)
 39 {
 40 setVisible(false);
 41 Object result = list.getSelectedValue();
 42 if (result != null)
 43
findMethod.findMethod(result.toString());

 44 }
 45 });
 46 box.add(button);
 47 getRootPane().setDefaultButton(button);
 48 box.add(Box.createGlue());
 49 button = new JButton("Cancel");
 50 button.addActionListener(new ActionListener() {
 51 public void actionPerformed(ActionEvent e)
 52 {
 53 setVisible(false);
 54 }
 55 });
 56 box.add(button);
 57 box.add(Box.createGlue());
 58 pack();
 59 }
 60 }

 SelectThreads (see Listing B.14) implements the thread selection dialog. It presents a

list of threads, each with its own check box, that can be selected for analysis.

 - 674 -

 Listing B.14 SelectThreads.java

 1 package com.macmillan.nmeyers;
 2 import javax.swing.*;
 3 import java.util.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6
 7 class SelectThreads extends JDialog
 8 {
 9 Box box1;
 10 ChooseThread chooseThread;
 11 SelectThreads(JFrame owner, ChooseThread ct, HashMap
threads)

 12 {
 13 super(owner, "Select Thread(s) to Analyze",
true);

 14 chooseThread = ct;
 15 ArrayList list = new ArrayList(threads.values());
 16 Collections.sort(list, new Comparator() {
 17 public int compare(Object o1, Object o2)
 18 {
 19 return ((ThreadInfo)o2).count -
((ThreadInfo)o1).count;

 20 }
 21 public boolean Equals(Object o)
 22 {
 23 return false;
 24 }
 25 });
 26 box1 = Box.createVerticalBox();

 27 getContentPane().add(new JScrollPane(box1),
BorderLayout.
CENTER);

 28 for (Iterator i = list.iterator(); i.hasNext();)
 29 {

 30 ThreadCheckBox checkBox = new
ThreadCheckBox((ThreadInfo)i.
next());

 31 box1.add(checkBox);
 32 }
 33 Box box2 = Box.createHorizontalBox();
 34 getContentPane().add(box2, BorderLayout.SOUTH);
 35 box2.add(Box.createGlue());
 36 JButton button = new JButton("OK");
 37 button.addActionListener(new ActionListener() {
 38 public void actionPerformed(ActionEvent e)
 39 {
 40 setVisible(false);
 41 Object[] boxes = box1.getComponents();
 42 for (int i = 0; i < boxes.length; i++)
 43
((ThreadCheckBox)boxes[i]).thread.enabled =

 44
((ThreadCheckBox)boxes[i]).isSelected();

 - 675 -

 45 chooseThread.recomputeTotals();
 46 }
 47 });
 48 box2.add(button);
 49 getRootPane().setDefaultButton(button);
 50 box2.add(Box.createGlue());
 51 button = new JButton("Set All");
 52 button.addActionListener(new ActionListener() {
 53 public void actionPerformed(ActionEvent e)
 54 {
 55 Object[] boxes = box1.getComponents();
 56 for (int i = 0; i < boxes.length; i++)
 57
((ThreadCheckBox)boxes[i]).setSelected(true);

 58 }
 59 });
 60 box2.add(button);
 61 box2.add(Box.createGlue());
 62 button = new JButton("Clear All");
 63 button.addActionListener(new ActionListener() {
 64 public void actionPerformed(ActionEvent e)
 65 {
 66 Object[] boxes = box1.getComponents();
 67 for (int i = 0; i < boxes.length; i++)
 68
((ThreadCheckBox)boxes[i]).setSelected(false);

 69 }
 70 });
 71 box2.add(button);
 72 box2.add(Box.createGlue());
 73 button = new JButton("Cancel");
 74 button.addActionListener(new ActionListener() {
 75 public void actionPerformed(ActionEvent e)
 76 {
 77 setVisible(false);
 78 }
 79 });
 80 box2.add(button);
 81 box2.add(Box.createGlue());
 82 pack();
 83 }
 84 static class ThreadCheckBox extends JCheckBox
 85 {
 86 ThreadInfo thread;
 87 ThreadCheckBox(ThreadInfo thr)
 88 {
 89 super(thr.toString());
 90 thread = thr;
 91 }
 92 }
 93 public interface ChooseThread
 94 {
 95 public void chooseThread();

 - 676 -

 96 public void recomputeTotals();
 97 }
 98 public void setVisible(boolean vis)
 99 {
 100 if (vis)
 101 {
 102 Object[] boxes = box1.getComponents();
 103 for (int i = 0; i < boxes.length; i++)
 104 ((ThreadCheckBox)boxes[i]).

 105
setSelected(((ThreadCheckBox)boxes[i]).thread.
enabled);

 106 }
 107 super.setVisible(vis);
 108 }
 109 }

 ThreadInfo. (see Listing B.15) encapsulates the per-thread information parsed out of

the analysis file.

 Listing B.15 ThreadInfo.java

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3
 4 // This class holds info on threads.
 5 class ThreadInfo implements Comparable
 6 {
 7 public String threadName;
 8 public int threadNumber;
 9 public int count = 0;
 10 public boolean enabled = true;
 11 ThreadInfo(String str, int n)
 12 {
 13 threadName = str;
 14 threadNumber = n;
 15 }
 16 static ThreadInfo parse(String str)
 17 {
 18 int idx = str.indexOf("id = ");
 19 if (idx == -1) return null;
 20 int comma = str.indexOf(',', idx);
 21 if (comma == -1) return null;

 22 int threadNumber =
Integer.parseInt(str.substring(idx + 5,
comma));

 23 int quote1 = str.indexOf("\"");
 24 if (quote1 == -1) return null;
 25 int quote2 = str.indexOf("\"", ++quote1);
 26 if (quote2 == -1) return null;
 27 String threadName = str.substring(quote1,
quote2);

 28 return new ThreadInfo(threadName, threadNumber);
 29 }

 - 677 -

 30 public int compareTo(Object o)
 31 {
 32 return threadNumber -
((ThreadInfo)o).threadNumber;

 33 }
 34 public boolean equals(Object o)
 35 {
 36 return threadNumber ==
((ThreadInfo)o).threadNumber;

 37 }
 38 public String toString()
 39 {
 40 return "Thread #" + threadNumber + ": " +
threadName +

 41 " (" + count + " ticks)";
 42 }
 43 }

 TraceBack (see Listing B.16) encapsulates the information for each traceback parsed

out of the analysis file.

 Listing B.16 TraceBack.java

 1 package com.macmillan.nmeyers;
 2 import java.util.*;
 3 import java.io.*;
 4
 5 // This class holds the data parsed from a stack trace in
the

 6 // profiler output. For each trace, we store the trace
number

 7 // (which is also the sort key), the trace count, and an
array

 8 // of entries corresponding to the traceback.
 9 class TraceBack
 10 {
 11 public int traceNumber;
 12 public int traceCount = 0;
 13 public LinkedList entries = new LinkedList();
 14 public ThreadInfo thread = null;
 15 TraceBack(int t, ThreadInfo th)
 16 {
 17 traceNumber = t;
 18 thread = th;
 19 }
 20 // A TraceBack class factory that parses the traceback
data from

 21 // the input file.
 22 public static TraceBack parse(String currentLine,
 23 BufferedReader reader,
 24 HashMap threads)
 25 throws IOException
 26 {
 27 // Current line is of the form "TRACE <number>:"
 28 StringTokenizer tokenizer = new

 - 678 -

StringTokenizer(currentLine);
 29 int traceNumber = 0;
 30 ThreadInfo thread = null;
 31 try
 32 {
 33 // Extract the trace number...
 34 if (!tokenizer.nextToken().equals("TRACE"))
return null;

 35 String numberToken = tokenizer.nextToken("
\t\n\r\f:");

 36 // ... and parse it
 37 traceNumber = Integer.parseInt(numberToken);
 38 try
 39 {
 40 if
(tokenizer.nextToken("=").indexOf("thread") != -1);

 41 Integer threadNum = new
Integer(tokenizer.nextToken(
"=)"));

 42 thread =
(ThreadInfo)threads.get(threadNum);

 43 }
 44 catch (NoSuchElementException e) {}
 45 catch (NumberFormatException e) {}
 46 }
 47 catch (NoSuchElementException e) { return null; }
 48 catch (NumberFormatException e) { return null; }
 49 // So far so good. Allocate an instance.
 50 TraceBack result = new TraceBack(traceNumber,
thread);

 51 // Start parsing lines. We'll do this by calling
the
TraceBackEntry

 52 // factory.
 53 TraceBackEntry traceBackEntry;
 54 while ((traceBackEntry =
TraceBackEntry.parse(reader)) != null)

 55 result.entries.add(traceBackEntry);
 56 return result;
 57 }
 58 public boolean equals(Object o)
 59 {
 60 return traceNumber == ((TraceBack)o).traceNumber;
 61 }
 62 // This class represents individual entries in the stack
traceback data.

 63 // Encapsulates info on the procedure name and the line
number.

 64 public static class TraceBackEntry
 65 {
 66 public String procName;
 67 public String procLineNum;
 68 private TraceBackEntry(String pN, String pLN)
 69 {
 70 procName = pN;
 71 procLineNum = pLN;

 - 679 -

 72 }
 73 // Parse a traceback entry from the input file.
 74 public static TraceBackEntry parse(BufferedReader
reader)

 75 throws IOException
 76 {
 77 // The lines we care about begin with a tab
 78 reader.mark(1);
 79 if (reader.read() != '\t')
 80 {
 81 reader.reset();
 82 return null;
 83 }

 84 // Get the line and look for the start of the
line number
info

 85 String procName = reader.readLine();
 86 int pos = procName.indexOf('(');
 87 if (pos == -1) return null;
 88 String procLineNum = procName.substring(pos);
 89 procName = procName.substring(0, pos);
 90 // We've got all of the info. Build a
TraceBackEntry.

 91 return new TraceBackEntry(procName,
procLineNum);

 92 }
 93 public String toString()
 94 {
 95 return "[" + procName + procLineNum + "]";
 96 }
 97 }
 98 public String toString()
 99 {
 100 return "[traceNumber=" + traceNumber +
 101 ",traceCount=" + traceCount +
 102 ",entries=" + entries;
 103 }
 104 }

 Profiler: Analyze CPU Time Spent in Native Code

Chapter 64, "Profiling User-Space Native Code," presented a tool to analyze time spent
by a Java application in native code, including native methods, JVM, and JIT-compiled
code.

 Platform: JDK1.2

 Profiler is a native shared library that interfaces with JDK1.2 through the JVM Profiling

Interface. Listing B.17 contains the C++ source file.

 Listing B.17 Profiler.C

 1 #include <jvmpi.h>
 2 #include <iostream.h>

 - 680 -

 3 #include <strstream.h>
 4 #include <fstream.h>
 5 #include <pfstream.h>
 6 #include <stdlib.h>
 7 #include <unistd.h>
 8 #include <string.h>
 9 #include <sys/times.h>
 10 #include <sys/utsname.h>
 11 #include <vector>
 12 #include <string>
 13 #include <algorithm>
 14

 15 // Our main profiler class, which sets up, starts, and
stops the
profiler.

 16 // Everything in this class is static... the static
functions are usable

 17 // with the C interfaces required by JVMPI.
 18
 19 class profiler
 20 {
 21 public:
 22 static JVMPI_Interface *jvmpi_interface;
 23 static unsigned long size, user_scale, scale, expand;
 24 static unsigned long low_address;
 25 static unsigned long high_address;
 26 static unsigned long address_range;
 27 static unsigned long array_size;
 28 static int expand_is_percent, global;
 29 static string filename;
 30 static jint JVM_OnLoad(JavaVM *jvm, char *options);
 31 static void NotifyEvent(JVMPI_Event *event);
 32 static jint usage();
 33 static ostream *outfile;
 34 static struct tms initial_times;
 35 };
 36
 37 // This class encapsulates data on hot spots
 38 class hotspot
 39 {
 40 public:
 41 string label;
 42 unsigned int count;
 43 hotspot() : label(""), count(0) {}
 44 hotspot(string s, unsigned int c) :
 45 label(s), count(c) {}
 46 hotspot& operator=(const hotspot &src)
 47 {
 48 label = src.label;
 49 count = src.count;
 50 return *this;
 51 }
 52 friend int operator==(const hotspot &lhs, const
hotspot &rhs)

 - 681 -

 53 {
 54 return lhs.label == rhs.label;
 55 }
 56 static int compare(const hotspot &lhs, const hotspot
&rhs)

 57 {
 58 return lhs.count > rhs.count;
 59 }
 60 hotspot& operator+=(const hotspot &hs)
 61 {
 62 count += hs.count;
 63 return *this;
 64 }
 65 };
 66
 67 // This class encapsulates a line of data from the
/proc/<pid>/maps file

 68 // describing the address range covered by a mapped
shared library

 69 class shared_library
 70 {
 71 shared_library() : lib_total_time(0),
 72 lib_no_procedure_time(0),
 73 nm_pipe(0),
 74 current_addr(0),
 75 next_addr(0),
 76 current_proc(""),
 77 next_proc("") {}
 78 public:
 79 unsigned long range_start, range_end;
 80 unsigned long lib_total_time;
 81 unsigned long lib_no_procedure_time;
 82 string filename;
 83 static shared_library *factory(string &);
 84 istream *nm_pipe;
 85 string current_proc, next_proc;
 86 unsigned long current_addr, next_addr;
 87 static int compare(shared_library *a,
 88 shared_library *b)
 89 {
 90 return a->range_start < b->range_start;
 91 }
 92 static int compare2(shared_library *a,
 93 shared_library *b)
 94 {
 95 return a->lib_total_time > b->lib_total_time;
 96 }
 97 void charge_time(unsigned long, unsigned long,
unsigned int, int);

 98 vector<hotspot> hotspots;
 99 void cleanup()
 100 {
 101 if (nm_pipe) delete nm_pipe;
 102 nm_pipe = 0;

 - 682 -

 103 }
 104 ~shared_library() { cleanup(); }
 105 };
 106
 107 // This class encapsulates data read from the
/proc/<pid>/maps file

 108 class memory_map
 109 {
 110 public:
 111 vector<shared_library *> libraries;
 112 memory_map();
 113 ~memory_map();
 114 };
 115
 116 // External entry point to match JVMPI's requirements -
calls a static

 117 // class function to handle initialization.
 118 extern "C"
 119 jint JNICALL JVM_OnLoad(JavaVM *jvm, char *options, void
*)

 120 {
 121 return profiler::JVM_OnLoad(jvm, options);
 122 }
 123
 124 JVMPI_Interface *profiler::jvmpi_interface;
 125 unsigned long profiler::size = 0;
 126 unsigned long profiler::user_scale = 1024;
 127 unsigned long profiler::scale;
 128 unsigned long profiler::expand = 0;
 129 unsigned long profiler::low_address;
 130 unsigned long profiler::high_address;
 131 unsigned long profiler::address_range;
 132 unsigned long profiler::array_size;
 133 ostream *profiler::outfile;
 134 struct tms profiler::initial_times;
 135 int profiler::expand_is_percent = 0;
 136 int profiler::global = 1;
 137 string profiler::filename = "";
 138 u_short *profile_buffer = 0;
 139
 140 // Handle initialization: load the JVMPI pointer, parse
args, set up

 141 // profiling.
 142 jint profiler::JVM_OnLoad(JavaVM *jvm, char *options)
 143 {
 144 // Get our JVM interface pointer
 145 if (jvm->GetEnv((void **)&jvmpi_interface,
JVMPI_VERSION_1) < 0)

 146 return JNI_ERR;
 147
 148 // Set up pointer to our NotifyEvent function
 149 jvmpi_interface->NotifyEvent = NotifyEvent;
 150
 151 // Initialize output file

 - 683 -

 152 outfile = &cerr;
 153
 154 // Legal options:
 155 // size=<#bytes> Allocate #bytes for the profile
array

 156 // scale=<scale> Map <scale> bytes per profile
array entry

 157 // expand=<#bytes> Allow for <#bytes> growth of
shared lib space

 158 // expand=<percent>% Allow for <percent> grown of
shared lib
space

 159 // scope=local Report local & global addresses
 160 // scope=global Report global addresses (default)
 161 // help
 162 while (options && *options)
 163 {
 164 char *p2;
 165 if (!strncmp(options, "file=", 5))
 166 {
 167 options += 5;
 168 p2 = strchr(options, ',');
 169 int len = p2 ? p2 - options :
strlen(options);

 170 if (!len) return usage();
 171 filename = options;
 172 filename.erase(len);
 173 options = p2 ? p2 : options + len;
 174 }
 175 else if (!strncmp(options, "size=", 5))
 176 {
 177 options += 5;
 178 size = strtol(options, &p2, 0);
 179 if (p2 == options) return usage();
 180 options = p2;
 181 }
 182 else if (!strncmp(options, "scale=", 6))
 183 {
 184 options += 6;
 185 user_scale = strtol(options, &p2, 0);
 186 if (user_scale < 1) user_scale = 1;
 187 if (p2 == options) return usage();
 188 options = p2;
 189 }
 190 else if (!strncmp(options, "expand=", 7))
 191 {
 192 options += 7;
 193 expand = strtol(options, &p2, 0);
 194 if (p2 == options) return usage();
 195 options = p2;
 196 if ((expand_is_percent = (*options == '%')))
options++;

 197 }
 198 else if (!strncmp(options, "scope=local", 11))
 199 {

 - 684 -

 200 options += 11;
 201 global = 0;
 202 }
 203 else if (!strncmp(options, "scope=global", 12))
 204 {
 205 options += 12;
 206 global = 1;
 207 }
 208 else return usage();
 209 if (*options && *options++ != ',') return
usage();

 210 }
 211
 212 if (filename.length())
 213 {
 214 outfile = new ofstream(filename.c_str());
 215 if (outfile->fail())
 216 {
 217 cerr << "Cannot open " << filename << " for
output\n";

 218 return JNI_ERR;
 219 }
 220 }
 221
 222 // Indicate that we want only the init-done and
shutdown events

 223 jvmpi_interface-
>EnableEvent(JVMPI_EVENT_JVM_INIT_DONE, 0);

 224 jvmpi_interface-
>EnableEvent(JVMPI_EVENT_JVM_SHUT_DOWN, 0);

 225 }
 226
 227 jint profiler::usage()
 228 {
 229 cerr << "Profiler usage: -
XrunProfiler:[<option>=<value>, ...]\n\n"

 230 << "Option Name and Value Description\n"
 231 << "——————————- —————-\n"

 232 << "size=<#bytes> Allocate #bytes for
profile
array\n"

 233 << "scale=<#bytes> Alternative to
#bytes; map
#bytes\n"

 234 << " per profile array
entry\n"

 235 << "expand=<#bytes> Allow for #byte
expansion in
shared\n"

 236 << " libs\n"

 237 << "expand=<percent>% Allow for
<percent>% expansion
in\n"

 238 << " shared libs\n"

 239 << "scope=global Report time against
global
procedures\n"

 - 685 -

 240 << " (default)\n"

 241 << "scope=local Report time against
local
labels\n"

 242 << "file=<filename> Save output to
specified
file\n\n";

 243 return JNI_ERR;
 244 }
 245
 246 // Memory map constructor. Read the contents of the
/proc/<pid>/maps

 247 // file and build a map of shared library regions.
 248 memory_map::memory_map()
 249 {
 250 // Figure out the name of the memory map file
 251 char namebuf[NAME_MAX + 1];
 252 ostrstream(namebuf, sizeof(namebuf)) << "/proc/" <<
getpid()

 253 << "/maps" <<
'\0';

 254 // Open the mapfile
 255 ifstream mapfile(namebuf);
 256 // Start reading...
 257 string line;
 258 while (!getline(mapfile, line).fail())
 259 {
 260 // See if we can build a shared_library entry
from it

 261 shared_library *range =
 262 shared_library::factory(line);
 263 // Got one... add it to our vector
 264 if (range) libraries.push_back(range);
 265 }
 266 // Sort our vector, although it's probably already in
order

 267 sort(libraries.begin(), libraries.end(),
shared_library::compare);

 268 }
 269
 270 // Memory map destructor: free our entries.
 271 memory_map::~memory_map()
 272 {
 273 vector<shared_library *>::iterator first =
libraries.begin();

 274 vector<shared_library *>::iterator last =
libraries.end();

 275 while (first != last) delete(*first++);
 276 }
 277
 278 // NotifyEvent: Here is where we get the events that
start and stop

 279 // profiling
 280 void profiler::NotifyEvent(JVMPI_Event *event)
 281 {
 282 // Create a map of shared libraries. We do this
twice, once at

 - 686 -

 283 // startup to figure out how large an area to
profile, and again

 284 // at shutdown to map the addresses profiled to the
shared

 285 // libraries.
 286 memory_map map;
 287 if (event->event_type == JVMPI_EVENT_JVM_INIT_DONE)
 288 {
 289 // Sanity check
 290 if (map.libraries.empty())
 291 {

 292 cerr << "Profiler: Could not identify shared
libs to
profile\n";

 293 // Figure out our Linux release; complain if
<2.2.

 294 struct utsname utsbuf;
 295 uname(&utsbuf);
 296 int major, minor;
 297 char ch;
 298 if ((istrstream(utsbuf.release) >> major
 299 >> ch
 300 >>
minor).fail() ¦¦

 301 major < 2 ¦¦ major == 2 && minor < 2)
 302 cerr << "Profiler requires Linux version
>= 2.2\n";

 303 jvmpi_interface->ProfilerExit(1);
 304 }
 305 // We're starting up. Figure out where shared
libs start and end

 306 low_address = map.libraries.front()->range_start;
 307 high_address = map.libraries.back()->range_end;
 308 // Another sanity check
 309 if (high_address <= low_address)
 310 {

 311 cerr << "Profiler: Could not identify address
range to
profile\n";

 312 jvmpi_interface->ProfilerExit(1);
 313 }
 314 // Compute the size of the address range to
profile

 315 address_range = high_address - low_address;
 316 // If a fudge factor was specified, apply it
 317 if (expand > 0)
 318 {
 319 address_range += expand_is_percent ?
 320 address_range * expand /
100:

 321 expand;
 322 }
 323 // Announce the address range of the shared libs
we're profiling

 324 cerr << "Profiler: profiling over " <<
address_range

 325 << "-byte address range\n";

 - 687 -

 326 // Compute the dimension of the array we need
 327 array_size = (size > 0) ?
 328 size / sizeof(u_short) :
 329 address_range / (user_scale) + 1;
 330 // Announce it
 331 cerr << "Profiler: allocating " << array_size
 332 << " profiling elements\n";
 333 // Allocate the array
 334 profile_buffer = new u_short[array_size];
 335 if (!profile_buffer)
 336 {
 337 // Bomb if necessary
 338 cerr << "Profiler: failed to allocate profile
buffer\n";

 339 jvmpi_interface->ProfilerExit(1);
 340 }
 341 cerr << '\n';
 342 // Clear the counters
 343 memset(profile_buffer, 0, array_size *
sizeof(u_short));

 344 // Compute the scale value profil() needs
 345 scale = (unsigned long)
 346 ((unsigned long long)array_size * 131072 /
address_range);

 347 if (scale < 1) scale = 1;
 348 // Record current user time
 349 times(&initial_times);
 350 // Turn on profiling
 351 profil(profile_buffer, array_size *
sizeof(u_short),

 352 low_address, (u_int)scale);
 353 }
 354 else if (event->event_type ==
JVMPI_EVENT_JVM_SHUT_DOWN)

 355 {
 356 // Shutdown... we're done profiling
 357 profil(0, 0, 0, 0);
 358 struct tms curr_times;
 359 times(&curr_times);
 360 // Step through the profile addresses and the
library addresses

 361 // in parallel, looking for libraries and
functions to charge.

 362 // Depending on how much address space is covered
by a profiling

 363 // element, a count might be chargeable to a
single procedure,

 364 // to a single library, or to the entire
application. Record

 365 // each case appropriately.

 366 vector<shared_library *>::iterator first =
map.libraries.
begin();

 367 vector<shared_library *>::iterator last =
map.libraries.end();

 368 unsigned long app_total_time = 0;
 369 unsigned long app_no_library_time = 0;

 - 688 -

 370 for (int i = 0; i < array_size; i++)
 371 {
 372 // Do we have a hit in the profile buffer?
 373 if (profile_buffer[i])
 374 {
 375 // Yes.
 376 app_total_time += profile_buffer[i];
 377 // See where it falls in the libraries.
 378 unsigned long addr1 =
 379 (unsigned long)
 380 ((unsigned long long)i * 131072 /
scale) +

 381 low_address;
 382 unsigned long addr2 =
 383 (unsigned long)
 384 ((unsigned long long)(i+1) *
131072 / scale) +

 385 low_address;
 386 while (first != last && addr1 > (*first)-
>range_end)

 387 {
 388 // Move on to the next library,
performing cleanup

 389 // for the current one
 390 (*first++)->cleanup();
 391 }
 392 // If first != last, we've found the
library where this

 393 // profile range starts. Does it also end
in this
library?

 394 if (first != last && addr2 <= (*first)-
>range_end)

 395 {
 396 // Yes. Charge time to this library.
 397 (*first)->charge_time(addr1, addr2,
 398 (unsigned int)profile_buffer[i],
global);

 399 }
 400 else app_no_library_time +=
profile_buffer[i];

 401 }
 402 }
 403 // Report results
 404 *outfile << "Total time: "
 405 << (curr_times.tms_utime +
curr_times.tms_stime -

 406 initial_times.tms_utime -
initial_times.tms_
stime) *

 407 1000 / CLK_TCK
 408 << " ms ("
 409 << (curr_times.tms_utime -
initial_times.tms_utime) *

 410 1000 / CLK_TCK
 411 << " ms user, "
 412 << (curr_times.tms_stime -

 - 689 -

initial_times.tms_stime) *
 413 1000 / CLK_TCK
 414 << " ms system)\n";
 415 *outfile << "Total time profiled: " <<
app_total_time * 10

 416 << " ms\n";
 417 if (app_no_library_time)
 418 *outfile << "Non-library time profiled: "
 419 << app_no_library_time * 10 << "
ms\n";

 420 *outfile << "\nObserved total time > profiled
time "

 421 << "can be due to:\n"
 422 << " + JIT-compiled code not running in
the shared "

 423 << "library address space\n"

 424 << " + Unprofiled dynamically loaded
shared
libraries "

 425 << "(use expand= option)\n"
 426 << "Observed total time < profiled time
"

 427 << "can be due to:\n"
 428 << " + Native-threaded apps can confuse
the times(2) "

 429 << "system call\n";
 430 if (app_no_library_time)
 431 {
 432 *outfile << "Non-library time profiled can be
due to:\n"

 433 << " + Dynamically loaded shared
libraries (use "

 434 << "expand= option)\n";
 435 if (user_scale > 1)

 436 *outfile << " + Profile data that cannot
be resolved
to "

 437 << "a single library\n"
 438 << " (use smaller scale=
option, "

 439 << "current value = " <<
user_scale

 440 << ")\n";
 441 }
 442 *outfile << "\nCPU Use by Library"
 443 << "\n—————————\n";
 444 first = map.libraries.begin();
 445 last = map.libraries.end();
 446 sort(first, last, shared_library::compare2);
 447 vector<hotspot> global_hotspot_list;
 448 int found_non_procedure_time = 0;
 449 while (first != last)
 450 {
 451 // Any hits for this library?
 452 if ((*first)->lib_total_time)
 453 {
 454 // Yes. Report them

 - 690 -

 455 *outfile << (*first)->filename << "\n"
 456 << " Total time: "
 457 << (*first)->lib_total_time * 10
 458 << " ms\n";
 459 if ((*first)->lib_no_procedure_time)
 460 {
 461 *outfile << " Non-procedure time: "
 462 << (*first)-
>lib_no_procedure_time * 10

 463 << " ms\n";
 464 found_non_procedure_time = 1;
 465 }
 466 // Any hotspots recorded for this
library?

 467 if (!(*first)->hotspots.empty())
 468 {
 469 // Add them to the global list
 470 global_hotspot_list.insert(
 471 global_hotspot_list.end(),
 472 (*first)->hotspots.begin(),
 473 (*first)->hotspots.end());
 474 }
 475 }
 476 // Move on to the next library
 477 first++;
 478 }
 479 if (found_non_procedure_time && user_scale > 1)
 480 {
 481 *outfile << "\nNon-procedure time can be due
to:\n"

 482 << " + Profile data that cannot be
resolved
to a "

 483 << "single procedure\n"
 484 << " (use smaller scale= option,
"

 485 << "current value = " << user_scale
 486 << ")\n";
 487 }
 488 if (!global_hotspot_list.empty())
 489 {
 490 *outfile << "\nHot Spots\n————-\n";
 491 if (found_non_procedure_time && user_scale >
1)

 492 *outfile << "Hot spot information is
reported for "

 493 << "profiling data that can\nbe
resolved to "

 494 << "individual library
procedures. The most "

 495 << "accurate\nresults will
generated by
using "

 496 << "small values for the
scale=\noption "

 497 << "(current value = " <<
user_scale

 - 691 -

 498 << ")\n\n";
 499 sort(global_hotspot_list.begin(),
 500 global_hotspot_list.end(),
 501 hotspot::compare);
 502 for (vector<hotspot>::iterator hsit =
 503 global_hotspot_list.begin();
 504 hsit != global_hotspot_list.end();
 505 hsit++)
 506 {
 507 *outfile << hsit->label
 508 << ": " << hsit->count * 10
 509 << " ms\n";
 510 }
 511 }
 512 }
 513 }
 514
 515 void shared_library::charge_time(unsigned long addr1,
 516 unsigned long addr2,
 517 unsigned int ticks,
 518 int global)
 519 {
 520 // Charge the tick count to the total time
 521 lib_total_time += ticks;
 522 // Have we started reading nm data from the shared
library?

 523 if (!nm_pipe)
 524 {
 525 // No. Give it a try. Put together a command
string to gather

 526 // the data and massage it appropriately
 527 string cmdline = "¦nm —portability ";
 528 cmdline += filename;
 529 cmdline += " ¦ grep ";
 530 if (!global) cmdline += "-i ";
 531 cmdline += "' T ' ¦ sort +2 2>/dev/null";
 532 nm_pipe = new ipfstream(cmdline.c_str());
 533 }
 534 string line, tempbuf;
 535 // Read library addresses until we find nearest label
<= IP

 536 while (!current_addr ¦¦ addr1 >= next_addr)
 537 {
 538 current_proc = next_proc;
 539 current_addr = next_addr;
 540 // Can we read more?
 541 if (getline(*nm_pipe, line).fail())
 542 {
 543 // No. fix final address range.
 544 next_addr = range_end;
 545 }
 546 else
 547 {

 - 692 -

 548 // Yes. Read next address
 549 istrstream(line.c_str()) >> hex >> next_proc
>> tempbuf

 550 >> next_addr;
 551 next_proc = filename + ":" + next_proc;
 552 next_addr += range_start;
 553 }
 554 }
 555 // While the next label is at same address, skip
ahead

 556 while (current_addr == next_addr &&
 557 !getline(*nm_pipe, line).fail())
 558 {
 559 istrstream(line.c_str()) >> hex >> next_proc >>
tempbuf

 560 >> next_addr;
 561 next_proc = filename + ":" + next_proc;
 562 next_addr += range_start;
 563 }
 564 if (addr1 >= current_addr && addr2 <= next_addr)
 565 {
 566 // We have a hit on the current procedure. Find
it in the

 567 // hotspot array or append it
 568 hotspot newspot(current_proc, ticks);
 569 if (!hotspots.empty() && hotspots.back() ==
newspot)

 570 hotspots.back() += newspot;
 571 else hotspots.push_back(newspot);
 572 }
 573 else
 574 {
 575 // The address range did not fit within the
boundaries of one

 576 // procedure. Don't credit it to a particular
procedure.

 577 lib_no_procedure_time += ticks;
 578 }
 579 }
 580
 581 // shared_library::factory - build an element from an
input line

 582 // read from /proc/<pid>/maps, if it is relevant. A
relevant line

 583 // will be in the address range used by shared libraries,
have

 584 // the executable bit set, and show a filename - the
latter is

 585 // a Linux 2.2 feature.
 586 shared_library *shared_library::factory(string &line)
 587 {
 588 shared_library *result = 0;
 589 long range_start, range_end;
 590 string tempbuf, permissions, filename;
 591 char dash;
 592 // Extract the fields we care about

 - 693 -

 593 if (!(istrstream(line.c_str()) >> hex >> range_start
>> dash

 594 >> range_end >>
permissions >>
tempbuf

 595 >> tempbuf >> tempbuf
>> filename).
fail()

 596 && range_start >= 0x40000000
 597 && range_end < 0x80000000
 598 && permissions.substr(2, 1) == "x")
 599 {
 600 result = new shared_library;
 601 result->range_start = range_start;
 602 result->range_end = range_end;
 603 result->filename = filename;
 604 }
 605 return result;
 606 }

 JVMPI-based profilers are called, when first loaded, at a fixed entry point (lines 118–122),

to perform load-time configuration.

 Initialization is handled in lines 142–225 and consists of parsing the options, setting up

the output file, and registering the profiling events we care about (lines 223–224).

Profiler is next called after the JVM completes its initialization, executing lines 286–
353 to start the process of profiling. First, a map is built of all currently loaded shared
libraries (line 286—the memory_map class is described later). Based on the address
space covered by the map, and on option values, Profiler creates the profiling array
(line 334), computes the parameters required for the profil(2) call (lines 345–346),
and starts the profiler (lines 351–352).

Profiler is next called at JVM shutdown to execute lines 286 and 356–511. After
building a new map of shared libraries (line 286), Profiler steps through the profiling
array (lines 370–402) looking for nonzero profiling counts and charges the time to various
libraries and procedures within the libraries. It then collects and reports the global results
(lines 404–441), the per-library results (lines 442–487), and the hot spots (lines 488–
511).

 The two workhorse classes in Profiler are memory_map and shared_library.

The memory_map class tracks the use of the address space. At class construction, it
reads the contents of /proc/<pid>/maps and builds a vector of shared_library
records.

The shared_library class (definition in lines 69–105) encapsulates the information on
individual shared libraries. Its factory() method (lines 586–606) generates a new
instance based on a line of data parsed from the /proc/<pid>/maps file. Its
charge_time() method (lines 511–557) processes profiling data that needs to be
charged to the library. It includes logic to read the library's symbol table and correlate
profiling addresses with procedures in the library (lines 515–579). The charge_time()
method also builds the table of hot spots (lines 568–571) for procedures within a particular
library.

 ShowFonts11: Display Available Fonts

 - 694 -

ShowFonts11 was used in Chapter 14, "Configuring the Linux JSDK/JRE Environment,"
in the section "Adding, Changing, and Configuring Fonts in JDK1.1," to generate a GUI-
based catalog of fonts installed in a JDK1.1 environment.

 Platform: JDK1.1/JDK1.2

ShowFonts11 can be used to view specific fonts by name or all fonts. Note that the
method used for querying available fonts may not find all fonts in a JDK1.1 environment,
and is likely to miss most fonts in a JDK1.2 environment. The ShowFonts12 utility
(discussed in the next section) uses a JDK1.2 query that provides much better
information about available fonts.

 Synopsis:

 java com.macmillan.nmeyers.ShowFonts11 [<familynames> ...]

The optional font family names should specify only family name (serif, courier, and so
on), not style or point size information. If no family names are specified, ShowFonts11
obtains a list of available font families from Toolkit.getFontList().

Listing B.18 contains the ShowFonts11 source. Each font name is placed in its own
java.awt.Label, which is displayed in the corresponding font. Labels are laid out in a
two-wide grid in the main window. ShowFonts11 has entry points defined that make it
usable as both an application and an applet.

 Listing B.18 ShowFonts11.java

 1 package com.macmillan.nmeyers;
 2 import java.applet.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5
 6 public class ShowFonts11 extends Applet
 7 {
 8 public ShowFonts11()
 9 {
 10 initialize(null);
 11 }
 12 public ShowFonts11(String[] altfonts)
 13 {
 14 if (altfonts.length == 0) altfonts = null;
 15 initialize(altfonts);
 16 }
 17 public void initialize(String[] altfonts)
 18 {
 19 // Build a scrolled pane containing a collection
of labels

 20 // showing all of the available fonts
 21 String[] fonts = altfonts;
 22 if (altfonts == null)
 23 fonts =
Toolkit.getDefaultToolkit().getFontList();

 24 ScrollPane pane = new ScrollPane();
 25 setLayout(new GridLayout(1, 1));
 26 add(pane);

 - 695 -

 27 // We'll put our labels in a panel with a
gridlayout

 28 Panel panel = new Panel();
 29 panel.setLayout(new GridLayout(0, 2));
 30 pane.add(panel);
 31 // Start creating and adding labels with 16-point
fonts

 32 for (int i = 0; i < fonts.length; i++)
 33 {
 34 String fontname = fonts[i] + "-plain-16";
 35 Label label = new Label(fontname);
 36 label.setFont(Font.decode(fontname));
 37 label.setForeground(Color.black);
 38 label.setBackground(Color.white);
 39 panel.add(label);
 40 fontname = fonts[i] + "-bold-16";
 41 label = new Label(fontname);
 42 label.setFont(Font.decode(fontname));
 43 label.setForeground(Color.black);
 44 label.setBackground(Color.white);
 45 panel.add(label);
 46 fontname = fonts[i] + "-italic-16";
 47 label = new Label(fontname);
 48 label.setFont(Font.decode(fontname));
 49 label.setForeground(Color.black);
 50 label.setBackground(Color.white);
 51 panel.add(label);
 52 fontname = fonts[i] + "-bolditalic-16";
 53 label = new Label(fontname);
 54 label.setFont(Font.decode(fontname));
 55 label.setForeground(Color.black);
 56 label.setBackground(Color.white);
 57 panel.add(label);
 58 }
 59 }
 60 public static void main(String[] argv)
 61 {
 62 Frame frame = new Frame();
 63 ShowFonts11 api = new ShowFonts11(argv);
 64 frame.add(api);
 65 frame.pack();
 66 frame.setVisible(true);
 67
 68 frame.addWindowListener(new WindowAdapter() {
 69 public void windowClosing(WindowEvent ev)
 70 {
 71 System.exit(0);
 72 }
 73 });
 74 }
 75 }

ShowFonts12: Display Available JDK1.2 Fonts

 - 696 -

ShowFonts12 was used in Chapter 14, "Configuring the Linux JSDK/JRE Environment,"
in the section "Adding, Changing, and Configuring Fonts in JDK1.2" to generate a GUI-
based catalog of fonts installed in a JDK1.2 environment.

 Platform: JDK1.2

 The ShowFonts12 design is similar to ShowFonts11 discussed in the previous section,

but it uses several JDK1.2 additions:

•

The GraphicsEnvironment.getAvailableFontFamilyNames() method is
used to catalog the available fonts. This returns substantially more information than
the JDK1.1 Toolkit.getFontList() method.

 • Some Graphics2D rendering techniques—antialiasing and fractional font metrics—

are used to show how they affect font appearance.

 • The GUI is built on Swing.

 Synopsis:

 java com.macmillan.nmeyers.ShowFonts11 [<familynames> ...]

Listing B.19 contains the source. Except for its use of JDK1.2-isms, the design is similar
to that for ShowFonts11. This application adds an inner class,
ShowFonts12.FontLabel, that handles creating and customizing the labels.

 Listing B.19 ShowFonts12.java

 1 package com.macmillan.nmeyers;
 2 import javax.swing.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5
 6 public class ShowFonts12 extends JApplet
 7 {
 8 public ShowFonts12(String[] argv)
 9 {
 10 if (argv != null && argv.length == 0) argv =
null;

 11 initialize(argv);
 12 }
 13 public ShowFonts12()
 14 {
 15 initialize(null);
 16 }
 17 private static class FontLabel extends JLabel
 18 {
 19 FontLabel(String fontname)
 20 {
 21 super(fontname);
 22 setFont(Font.decode(fontname));
 23 setForeground(Color.black);
 24 }

 - 697 -

 25 public void paintComponent(Graphics g)
 26 {
 27 ((Graphics2D)g).addRenderingHints(new
RenderingHints(

 28 RenderingHints.KEY_TEXT_ANTIALIASING,
 29 RenderingHints.VALUE_TEXT_ANTIALIAS_ON));
 30 ((Graphics2D)g).addRenderingHints(new
RenderingHints(

 31 RenderingHints.KEY_FRACTIONALMETRICS,
 32
RenderingHints.VALUE_FRACTIONALMETRICS_ON));

 33 super.paintComponent(g);
 34 }
 35 }
 36 public void initialize(String[] families)
 37 {
 38 // Build a scrolled pane containing a collection
of labels

 39 // showing all of the available fonts
 40 Box box = Box.createVerticalBox();

 41 // Build a panel with a 2-wide gridlayout to hold
our styled
labels

 42 JPanel panel = new JPanel(new GridLayout(0, 2));
 43 panel.setBackground(Color.white);
 44 box.add(panel);
 45 getContentPane().add(new JScrollPane(box));

 46 // Get our list of font families. Even if user
has specified
families

 47 // to display, this step seems necessary to make
them available.

 48 String[] availableFamilies =
 49
GraphicsEnvironment.getLocalGraphicsEnvironment().

 50 getAvailableFontFamilyNames();
 51 if (families == null) families =
availableFamilies;

 52 // Start creating and adding labels with 16-point
fonts

 53 for (int i = 0; i < families.length; i++)
 54 {
 55 panel.add(new FontLabel(families[i] + "-
plain-16"));

 56 panel.add(new FontLabel(families[i] + "-bold-
16"));

 57 panel.add(new FontLabel(families[i] + "-
italic-16"));

 58 panel.add(new FontLabel(families[i] + "-
bolditalic-16"));

 59 }
 60 }
 61 public static void main(String[] argv)
 62 {
 63 JFrame frame = new JFrame();
 64 ShowFonts12 api = new ShowFonts12(argv);
 65 frame.getContentPane().add(api);
 66 frame.pack();

 - 698 -

 67 frame.setVisible(true);
 68
 69 frame.addWindowListener(new WindowAdapter() {
 70 public void windowClosing(WindowEvent ev)
 71 {
 72 System.exit(0);
 73 }
 74 });
 75 }
 76 }

 SlideShow: A Graphical Image File Viewer

SlideShow is an illustration of the JDK1.2 image processing capabilities, and was used
in Chapter 3, "A Look at the Java Core Classes," in the section "Package
java.awt.image" to illustrate the use of the image processing classes.

 Platform: JDK1.2

 SlideShow is a viewer for one or more graphical image files, with navigation buttons and

image controls.

 Synopsis:

 java com.macmillan.nmeyers.SlideShow [<width> <height>]

 SlideShow reads a list of image filenames from stdin and displays them in a window

of the specified size (default 100x100).

The main SlideShow GUI (see Figure B.2) contains an image viewing area, buttons to
navigate through the collection of images, and buttons to control the appearance of the
image.

 Figure B.2: The SlideShow GUI, with an image from an earlier chapter.

 The Rescale button causes SlideShow to rescale its image up or down to fit in the

viewing area (see Figure B.3).

 - 699 -

 Figure B.3: The image has been rescaled to fit in the viewing area.

 The Sharpen button applies a sharpening filter to the image (see Figure B.4).

 Figure B.4: The rescaled image has been algorithmically sharpened.

 Both the rescaling and sharpening capabilities are standard features in the JDK1.2 AWT

image pipeline.

 Listing B.20 contains the SlideShow source.

 Listing B.20 SlideShow.java

 1 package com.macmillan.nmeyers;
 2 import java.awt.*;
 3 import java.awt.geom.*;
 4 import java.awt.image.*;
 5 import java.util.*;
 6 import java.io.*;
 7 import javax.swing.*;
 8 import java.awt.event.*;
 9
 10 public class SlideShow extends JFrame
 11 {
 12 //

 - 700 -

 13 // SlideShow: View a collection of graphical images
(gif, jpeg,
etc.)

 14 // specified in stdin. Optionally scales the images
to the window

 15 // size, and optionally sharpens the images.
 16 //

 17 // Supported image types are determined by the Java
environment
itself;

 18 // if we can read the image with Toolkit.createImage,
we can view
it.

 19 //
 20 // Usage: SlideShow [width height]
 21 //

 22 // SlideShow reads the entire list of images from
stdin before
beginning.

 23 //
 24 LinkedList slides;
 25 int slideIndex = 0;
 26 Slide slide;
 27 JButton firstButton;
 28 JButton leftButton;
 29 JToggleButton rescale, sharpen;
 30 JButton rightButton;
 31 JButton lastButton;
 32 public SlideShow(LinkedList inputFiles, int width,
int height)

 33 {
 34 slides = inputFiles;
 35
 36 Box box1 = Box.createVerticalBox();
 37 getContentPane().add(box1);
 38 Box box2 = Box.createHorizontalBox();
 39 box1.add(box2);
 40 box1.add(slide = new Slide(width, height));
 41 box2.add(Box.createHorizontalGlue());
 42 firstButton = new JButton("First");
 43 firstButton.addActionListener(new
ActionListener() {

 44 public void actionPerformed(ActionEvent e)
 45 {
 46 if (slideIndex > 0)
 47 {
 48 slideIndex = 0;
 49
slide.showSlide((String)slides.get(0));

 50 leftButton.setEnabled(slideIndex >
0);

 51 rightButton.setEnabled(slideIndex <
slides.size()
- 1);

 52 }
 53 }
 54 });

 - 701 -

 55 box2.add(firstButton);
 56 box2.add(Box.createHorizontalGlue());
 57 leftButton = new JButton("Previous");
 58 leftButton.addActionListener(new ActionListener()
{

 59 public void actionPerformed(ActionEvent e)
 60 {
 61 if (slideIndex > 0)
 62 {
 63 slide.showSlide((String)slides.get(—
slideIndex));

 64 leftButton.setEnabled(slideIndex >
0);

 65 rightButton.setEnabled(slideIndex <
slides.size()
- 1);

 66 }
 67 }
 68 });
 69 box2.add(leftButton);
 70 box2.add(Box.createHorizontalGlue());
 71 rescale = new JToggleButton("Rescale");
 72 rescale.addActionListener(new ActionListener() {
 73 public void actionPerformed(ActionEvent e)
 74 {
 75 slide.reshowSlide();
 76 }
 77 });
 78 box2.add(rescale);
 79 box2.add(Box.createHorizontalGlue());
 80 sharpen = new JToggleButton("Sharpen");
 81 sharpen.addActionListener(new ActionListener() {
 82 public void actionPerformed(ActionEvent e)
 83 {
 84 slide.reshowSlide();
 85 }
 86 });
 87 box2.add(sharpen);
 88 box2.add(Box.createHorizontalGlue());
 89 rightButton = new JButton("Next");
 90 rightButton.addActionListener(new
ActionListener() {

 91 public void actionPerformed(ActionEvent e)
 92 {
 93 if (slideIndex < slides.size() - 1)
 94 {
 95
slide.showSlide((String)slides.get(++slideIndex));

 96 leftButton.setEnabled(slideIndex >
0);

 97 rightButton.setEnabled(slideIndex <
slides.size()
- 1);

 98 }
 99 }
 100 });

 - 702 -

 101 box2.add(rightButton);
 102 box2.add(Box.createHorizontalGlue());
 103 lastButton = new JButton("Last");
 104 lastButton.addActionListener(new ActionListener()
{

 105 public void actionPerformed(ActionEvent e)
 106 {
 107 if (slideIndex < slides.size() - 1)
 108 {
 109 slideIndex = slides.size() - 1;
 110
slide.showSlide((String)slides.get(slideIndex));

 111 leftButton.setEnabled(slideIndex >
0);

 112 rightButton.setEnabled(slideIndex <
slides.size()
- 1);

 113 }
 114 }
 115 });
 116 box2.add(lastButton);
 117 box2.add(Box.createHorizontalGlue());
 118 if (slides.size() > 0)
slide.showSlide((String)slides.get(0));

 119 else
 120 {
 121 firstButton.setEnabled(false);
 122 lastButton.setEnabled(false);
 123 }
 124 leftButton.setEnabled(false);
 125 rightButton.setEnabled(slides.size() > 1);
 126 }
 127 public class Slide extends JComponent implements
ImageObserver

 128 {
 129 int width, height;
 130 Image slide = null, transformedSlide;
 131 int imageWidth, imageHeight;
 132 boolean abort = false;
 133 public Slide(int w, int h)
 134 {
 135 width = w;
 136 height = h;
 137 addComponentListener(new ComponentAdapter() {
 138 public void
componentResized(ComponentEvent e)

 139 {
 140 Dimension d = getSize();
 141 width = d.width;
 142 height = d.height;
 143 reshowSlide();
 144 }
 145 });
 146 }
 147 private Dimension getSlideDimension()

 - 703 -

 148 {
 149 abort = false;
 150 imageWidth = slide.getWidth(this);
 151 imageHeight = slide.getHeight(this);
 152 while (!abort && (imageWidth == -1 ¦¦
imageHeight == -1))

 153 {

 154 // Dimensions not available yet. Wait for
other thread
to

 155 // finish loading the image
 156 synchronized(this)
 157 {
 158 try { wait(); }
 159 catch (InterruptedException e)
{}

 160 imageWidth = slide.getWidth(this);
 161 imageHeight = slide.getHeight(this);
 162 }
 163 }
 164 return new Dimension(imageWidth,
imageHeight);

 165 }

 166 public boolean imageUpdate(Image img, int
infoflags, int x,
int y,

 167 int wid, int ht)
 168 {
 169 // We hang out here waiting for the width and
height to

 170 // become available

 171 if ((infoflags & (ImageObserver.ABORT ¦
ImageObserver.
ERROR)) != 0)

 172 abort= true;
 173 boolean result = super.imageUpdate(img,
infoflags, x, y,

 174 wid, ht);
 175 synchronized(this) { notifyAll(); }
 176 return result;
 177 }
 178 public Dimension getPreferredSize()
 179 {
 180 return new Dimension(width, height);
 181 }
 182 public void showSlide(String filename)
 183 {
 184 setTitle(filename);
 185 // Read our original image
 186 slide =
Toolkit.getDefaultToolkit().createImage(filename);

 187 reshowSlide();
 188 }
 189 public void reshowSlide()
 190 {
 191 if (slide == null) return;

 - 704 -

 192 transformedSlide = slide;
 193 // If we want to rescale, set up the filter
 194 if (rescale.isSelected())
 195 {
 196 // Find our current image size
 197 Dimension dim = getSlideDimension();
 198 if (dim == null) return;
 199 double xscale = (double)width /
(double)dim.width;

 200 double yscale = (double)height /
(double)dim.height;

 201 double xyscale = Math.min(xscale,
yscale);

 202 // Set hints for maximum quality
 203 RenderingHints hints =
 204 new RenderingHints(
 205 RenderingHints.KEY_ANTIALIASING,
 206
RenderingHints.VALUE_ANTIALIAS_ON);

 207 hints.add(
 208 new RenderingHints(
 209
RenderingHints.KEY_COLOR_RENDERING,

 210
RenderingHints.VALUE_COLOR_RENDER_QUALITY));

 211 ImageFilter rescaleFilter =
 212 new BufferedImageFilter(
 213 new AffineTransformOp(

 214
AffineTransform.getScaleInstance(xyscale,
xyscale),

 215 hints));

 216 transformedSlide =
Toolkit.getDefaultToolkit().
createImage(

 217 new FilteredImageSource(

 218
transformedSlide.getSource(),
rescaleFilter));

 219 }
 220 // If we want to sharpen, set up the filter
 221 if (sharpen.isSelected())
 222 {
 223 float ctr = 2, offc = -.125f;
 224 ImageFilter sharpenFilter =
 225 new BufferedImageFilter(
 226 new ConvolveOp(
 227 new Kernel(3, 3, new float[]
 228 { offc, offc,
offc,

 229 offc, ctr ,
offc,

 230 offc, offc,
offc })));

 231 transformedSlide =
Toolkit.getDefaultToolkit().
createImage(

 232 new FilteredImageSource(

 - 705 -

 233
transformedSlide.getSource(),
sharpenFilter));

 234 }
 235 repaint();
 236 }
 237 public void paintComponent(Graphics g)
 238 {
 239 g.drawImage(transformedSlide, 0, 0, this);
 240 }
 241 }
 242 static public void main(String[] argv)
 243 {
 244 int width = 100, height = 100;
 245 // Handle the args
 246 if (argv.length == 2)
 247 {
 248 try
 249 {
 250 width = Integer.parseInt(argv[0]);
 251 height = Integer.parseInt(argv[1]);
 252 }
 253 catch (NumberFormatException e)
 254 {
 255 usage();
 256 }
 257 }
 258 else if (argv.length != 0) usage();
 259
 260 // Build our list of input files
 261 LinkedList inputFiles = new LinkedList();
 262 BufferedReader reader =
 263 new BufferedReader(
 264 new InputStreamReader(System.in));
 265 // Read words until we can't... could use
StreamTokenizer here,

 266 // but its defaults are too strange for this.
 267 try
 268 {
 269 for (;;)
 270 {
 271 // Skip whitespace
 272 int ch;
 273 while ((ch = reader.read()) != -1 &&
 274 Character.isWhitespace((char)ch));
 275 if (ch == -1) break;
 276 StringBuffer buffer = new StringBuffer();
 277 // Read a filename
 278 buffer.append((char)ch);
 279 while ((ch = reader.read()) != -1 &&
 280 !Character.isWhitespace((char)ch))
 281 buffer.append((char)ch);
 282 // Add to the list

 - 706 -

 283 inputFiles.add(buffer.toString());
 284 if (ch == -1) break;
 285 }
 286 }
 287 catch (IOException e) {}
 288 SlideShow slideShow = new SlideShow(inputFiles,
width, height);

 289 slideShow.addWindowListener(new WindowAdapter() {
 290 public void windowClosing(WindowEvent ev)
 291 {
 292 System.exit(0);
 293 }
 294 });
 295 slideShow.pack();
 296 slideShow.setVisible(true);
 297 }
 298 static public void usage()
 299 {
 300 System.err.println("Usage: SlideShow [<width>
<height>]");

 301 System.exit(1);
 302 }
 303 }

 The main() procedure (lines 241–302) builds a list of files to display and instantiates the
SlideShow object.

 The SlideShow constructor (lines 32–126) builds the GUI, installs handlers for the

buttons, and creates an instance of the nested SlideShow.Slide class.

The SlideShow.Slide class implements the core functionality. The standard model for
image loading and rendering in the AWT uses an asynchronous mechanism: a
Toolkit.createImage() call initiates loading, and a callback mechanism is used to
return results.

The loading of the original image is triggered on line 186. If the image requires any
rescaling, it is piped through another stage (lines 194–219). If sharpening is required, it is
piped through yet another stage (lines 221–234). Any coordination between application
logic and the asynchronous loading of the image is handled through the ImageObserver
interface and its imageUpdate() callback B.20 SlideShow.java(lines 166–177).

WaterFall: Show Cascading Typeface Examples

WaterFall was used in Chapter 3, "A Look at the Java Core Classes," in the section
"Package java.awt," to illustrate the effect of JDK1.2 font rendering capabilities on the
appearance of rendered characters.

 Platform: JDK1.2

In the typography business, a waterfall chart is a tool for examining a typeface in a range
of sizes. This program draws two waterfall charts in separate GUI windows, with and
without antialiasing and fractional font metrics enabled, to illustrate their effects on
appearance of text.

 Synopsis:

 - 707 -

 java com.macmillan.nmeyers.WaterFall <family> <style> <minsize> \
 <maxsize> <increment>

WaterFall will display the charts in two separate windows. The JDK1.2 AWT has two
different paths for obtaining fonts (discussed in Chapter 14 in the section "Adding,
Changing, and Configuring Fonts in JDK1.2"). If the font is realized by the AWT's built-in
font rasterizers, the two windows will have visibly different results. If, instead, the font is
obtained from the X server, the AWT cannot use its advanced rendering techniques and
the two windows will look identical.

 Arguments:

•

<family>—The family name of the font: either a standard Java logical name, or an
actual font family name. You can use the ShowFonts12 utility to obtain a list of
available fonts.

 • <style>—The font style, either plain, bold, italic, or bold-italic.

 • <minsize>—The smallest font size, in points, to be displayed.

 • <maxsize>—The largest font size, in points, to be displayed.

 • <increment>—The size increment. The window will show a range of sizes from

<minsize> to <maxsize>, incrementing by <increment> points between samples.

 Example:

 java com.macmillan.nmeyers.WaterFall sansserif plain 20 40 1

 Listing B.21 contains the WaterFall source.

 Listing B.21 WaterFall.java

 1 package com.macmillan.nmeyers;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5
 6 class WaterFall extends JFrame
 7 {
 8 String fontname, style;
 9 String testString = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 10 int size1, size2, sizeInc;
 11 static int frameCount = 0;
 12 RenderingHints renderingHints;
 13 WaterFall(String fn, String st, int s1, int s2, int
si,

 14 RenderingHints hints)
 15 {
 16 fontname = fn;
 17 style = st;
 18 size1 = s1;
 19 size2 = s2;
 20 sizeInc = si;

 - 708 -

 21 renderingHints = hints;
 22 getContentPane().add(new WaterFallComponent());
 23 pack();
 24 setVisible(true);
 25 incFrameCount();
 26 addWindowListener(new WindowAdapter() {
 27 public void windowClosing(WindowEvent ev)
 28 {
 29 dispose();
 30 decFrameCount();
 31 }
 32 });
 33 }
 34 static void incFrameCount()
 35 {
 36 frameCount++;
 37 }
 38 static void decFrameCount()
 39 {
 40 if (—frameCount == 0) System.exit(0);
 41 }
 42 private class WaterFallComponent extends JComponent
 43 {
 44 WaterFallComponent()
 45 {
 46 setBackground(Color.white);
 47 setForeground(Color.black);
 48 }
 49 public void paintComponent(Graphics g)
 50 {
 51 final Graphics2D g2 = (Graphics2D)g;
 52 int offset = 0;
 53 Rectangle bounds = g2.getClipBounds();
 54 g2.setColor(getBackground());

 55 g2.fillRect(bounds.x, bounds.y, bounds.width,
bounds.
height);

 56 g2.setColor(getForeground());

 57 if (renderingHints != null)
g2.addRenderingHints(
renderingHints);

 58 if (size1 > 0 && sizeInc > 0)
 59 {
 60 for (int i = size1; i <= size2; i +=
sizeInc)

 61 {

 62 Font font = Font.decode(fontname + "-
" + style +
"-" + i);

 63 g2.setFont(font);
 64 FontMetrics metrics =
g2.getFontMetrics();

 65 offset += metrics.getAscent();
 66 g2.drawString(testString, 0, offset);
 67 offset += metrics.getDescent();

 - 709 -

 68 }
 69 }
 70 }
 71 public Dimension getPreferredSize()
 72 {
 73 Graphics g = getGraphics();
 74 FontMetrics m1 = g.getFontMetrics(
 75 Font.decode(fontname + "-" + style + "-"
+ size1));

 76 FontMetrics m2 = g.getFontMetrics(
 77 Font.decode(fontname + "-" + style + "-"
+ size2));

 78 int totalAscentPlusDescent =
 79 (m1.getAscent() + m1.getDescent() +
 80 m2.getAscent() + m2.getDescent()) *
 81 ((size2 - size1) / sizeInc + 1) / 2;
 82 int width = m2.stringWidth(testString);
 83 return new Dimension(width,
totalAscentPlusDescent);

 84 }
 85 }
 86 public static void main(String[] argv)
 87 {
 88 String fontname = "";
 89 String style = "";
 90 int size1 = 0, size2 = 0, sizeInc = 0;
 91 if (argv.length != 5)
 92 {

 93 System.err.println("Usage: WaterFall
<style>
<min_size> " +

 94 "<max_size> <increment>");
 95 System.exit(1);
 96 }
 97 try
 98 {
 99 fontname = argv[0];
 100 style = argv[1];
 101 size1 = Integer.parseInt(argv[2]);
 102 size2 = Integer.parseInt(argv[3]);
 103 sizeInc = Integer.parseInt(argv[4]);
 104 }
 105 catch (NumberFormatException e)
 106 {
 107 System.err.println("Usage: WaterFall
<min_size> " +

 108 "<max_size> <increment>");
 109 System.exit(1);
 110 }
 111
 112
GraphicsEnvironment.getLocalGraphicsEnvironment().

 113 getAvailableFontFamilyNames();
 114 new WaterFall(fontname, style, size1, size2,
sizeInc, null);

 - 710 -

 115
 116 RenderingHints renderingHints = new
RenderingHints(

 117 RenderingHints.KEY_TEXT_ANTIALIASING,
 118 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);
 119
renderingHints.put(RenderingHints.KEY_FRACTIONALMETRICS,

 120
RenderingHints.VALUE_FRACTIONALMETRICS_ON);

 121

 122 new WaterFall(fontname, style, size1, size2,
sizeInc,
renderingHints);

 123 }
 124 }

The main() method parses command-line arguments (lines 99–103) and creates two
instances of WaterFall, one with no rendering hints (line 114), and one with rendering
hints requesting antialiasing and fractional font metrics (lines 116–122). The call to
GraphicsEnvironment.getAvailableFontFamilyNames() ensures that the AWT
can find all installed fonts.

The two interesting methods in WaterFall are paintComponent() (lines 49–70), which
steps through the font sizes and draws the text, and getPreferredSize() (lines 71–84),
which examines the font metrics to determine a window size that should just contain the
text being drawn.

 XClipboard: Access the X Primary Selection Buffer

XClipboard was presented in Chapter 56, "X Window System Tips and Tricks," in the
section "XClipboard: A JNI-Based Cut-and-Paste Tool," as an example of accessing
native X Window System capabilities not supported by Java.

 Platforms: JDK1.1/JDK1.2

 XClipboard consists of a Java front end and a JNI-based native back end that does

most of the real work. Listing B.22 shows the front end, and Listing B.23 the back end.

 Listing B.22 XClipboard.java

 1 package com.macmillan.nmeyers;
 2
 3 public class XClipboard
 4 {
 5 // Static constructor: get our library
 6 static {
 7 System.loadLibrary("XClipboard");
 8 }
 9 public XClipboard()
 10 {
 11 SecurityManager security =
System.getSecurityManager();

 12 if (security != null)
security.checkSystemClipboardAccess();

 13 privateXData = openXConnection();
 14 }

 - 711 -

 15
 16 protected void finalize()
 17 {
 18 closeXConnection(privateXData);
 19 }
 20
 21 // Public methods for buffer access
 22
 23 public byte[] readCutBuffer0()
 24 {
 25 return readCutBuffer0(privateXData);
 26 }
 27
 28 protected synchronized native Object
 29 readSelection(byte[] dp, byte[] selection, byte[]
target);

 30
 31 public String readPrimarySelectionString()
 32 {
 33 byte[] result =
(byte[])readSelection(privateXData,

 34 new String("PRIMARY").getBytes(),
 35 new String("STRING").getBytes());
 36 return (result == null) ? null : new
String(result);

 37 }
 38
 39 public String readSecondarySelectionString()
 40 {
 41 byte[] result =
(byte[])readSelection(privateXData,

 42 new String("SECONDARY").getBytes(),
 43 new String("STRING").getBytes());
 44 return (result == null) ? null : new
String(result);

 45 }
 46
 47 public String readClipboardSelectionString()
 48 {
 49 byte[] result =
(byte[])readSelection(privateXData,

 50 new String("CLIPBOARD").getBytes(),
 51 new String("STRING").getBytes());
 52 return (result == null) ? null : new
String(result);

 53 }
 54
 55 public static void main(String[] argv)
 56 {
 57 XClipboard xc = new XClipboard();
 58 String selection =
xc.readPrimarySelectionString();

 59 if (selection != null)
 60 System.out.println("Primary Selection (length
= " +

 61 selection.length() + "): " +

 - 712 -

selection);
 62 selection = xc.readSecondarySelectionString();
 63 if (selection != null)
 64 System.out.println("Secondary Selection
(length = " +

 65 selection.length() + "): " +
selection);

 66 selection = xc.readClipboardSelectionString();
 67 if (selection != null)
 68 System.out.println("Clipboard Selection
(length = " +

 69 selection.length() + "): " +
selection);

 70 selection = new String(xc.readCutBuffer0());
 71 if (selection != null)
 72 System.out.println("CutBuffer0 (length = " +
 73 selection.length() + "): " +
selection);

 74 }
 75
 76 // Private native methods to do the grunt work
 77 private synchronized native byte[]
readCutBuffer0(byte[] dp);

 78 private synchronized native byte[] openXConnection();
 79 private synchronized native long
closeXConnection(byte[] dp);

 80 protected byte[] privateXData;
 81 }

The constructor (lines 11–13) checks the Java security methods for permission to access
the Clipboard and then calls the native openXConnection() method to create the
needed X resources. The method returns a string of bytes, containing structures
allocated and used by the native code, that will be stored in the object. These bytes are
passed to the native code in subsequent native calls.

 Lines 23–26 provide a method to read CutBuffer0, an ancient cut/paste method used

only by ancient X clients.

Lines 28–29 describe the core native method, readSelection(), that powers this
class. We'll see it in more detail in the native listing, shown in Listing B.23. Identical
native technology is used to read the primary selection (lines 31–37), the secondary
selection (lines 39–45), and the Clipboard (lines 47–53). Reading the Clipboard
duplicates, in a modest way, capabilities found in
java.awt.datatransfer.Clipboard. The other capabilities are unique to this class.

Lines 55–74 contain a main() method that tests this class by reading and dumping
current clipboard and selection values. Normally, you would use this class by calling its
various read methods; main() provides a trivial test you can run (just execute the class)
without additional programming.

 Listing B.23 XClipboard.c

 1 #include "com_macmillan_nmeyers_XClipboard.h"
 2 #include "X11/Xlib.h"
 3 #include <string.h>
 4
 5 /* Native component to XClipboard class */

 - 713 -

 6
 7 /* We will store some platform-specific values - the
Display* pointer

 8 and a Window ID - in a byte array. The following
functions handle

 9 the conversions back and forth to native values. */
 10 jbyteArray bytes_to_byte_array(JNIEnv *env, void *bytes,
int nbytes)

 11 {
 12 jbyteArray ptr_bytes = (*env)->NewByteArray(env,
nbytes);

 13 jboolean is_copy;
 14 jbyte *ptr_bytes_elts =
 15 (*env)->GetByteArrayElements(env, ptr_bytes,
&is_copy);

 16 memcpy(ptr_bytes_elts, bytes, nbytes);
 17 (*env)->ReleaseByteArrayElements(env, ptr_bytes,
ptr_bytes_elts, 0);

 18 return ptr_bytes;
 19 }
 20
 21 void byte_array_to_bytes(JNIEnv *env, jbyteArray
ptr_bytes, void *bytes,

 22 int nbytes)
 23 {
 24 jboolean is_copy;
 25 jbyte *ptr_bytes_elts =
 26 (*env)->GetByteArrayElements(env, ptr_bytes,
&is_copy);

 27 memcpy(bytes, ptr_bytes_elts, nbytes);
 28 (*env)->ReleaseByteArrayElements(env, ptr_bytes,
ptr_bytes_elts, 0);

 29 }
 30
 31 typedef struct
 32 {
 33 Display *display;
 34 Window window;
 35 } platform_data;
 36
 37 /* Open the connection at object construction. A pity the
JVM won't

 38 share its connection with us. */
 39 jbyteArray JNICALL
Java_com_macmillan_nmeyers_XClipboard_openXConnection

 40 (JNIEnv *env, jobject obj)
 41 {
 42 platform_data platform;
 43 platform.display = XOpenDisplay(0);
 44 platform.window = XCreateWindow(platform.display,
 45
DefaultRootWindow(platform.display),

 46 0, 0, 1, 1, 0,
CopyFromParent,

 47 CopyFromParent,
CopyFromParent,

 48 0, 0);

 - 714 -

 49 return bytes_to_byte_array(env, &platform,
sizeof(platform));

 50 }
 51
 52 /* Close the connection at object finalization */
 53 jlong JNICALL
Java_com_macmillan_nmeyers_XClipboard_closeXConnection

 54 (JNIEnv *env, jobject obj,
 55 jbyteArray
pdata)

 56 {
 57 platform_data platform;
 58 byte_array_to_bytes(env, pdata, &platform,
sizeof(platform));

 59 XCloseDisplay(platform.display);
 60 }
 61
 62 /* Read cutbuffer0, in the unlikely event anyone cares
about it */

 63 jbyteArray JNICALL
Java_com_macmillan_nmeyers_XClipboard_readCutBuffer0

 64 (JNIEnv *env, jobject obj, jbyteArray pdata)
 65 {
 66 int nbytes;
 67 platform_data platform;
 68 char *result;
 69 jbyteArray result_array;
 70 jboolean is_copy;
 71 jbyte *result_array_elts;
 72
 73 byte_array_to_bytes(env, pdata, &platform,
sizeof(platform));

 74 result = XFetchBytes(platform.display, &nbytes);
 75 result_array = (*env)->NewByteArray(env,
(jsize)nbytes);

 76 result_array_elts =
 77 (*env)->GetByteArrayElements(env, result_array,
&is_copy);

 78 memcpy(result_array_elts, result, nbytes);
 79 (*env)->ReleaseByteArrayElements(env, result_array,
result_array_elts, 0);

 80 return result_array;
 81 }
 82
 83 jobject JNICALL
Java_com_macmillan_nmeyers_XClipboard_readSelection

 84 (JNIEnv *env, jobject obj, jbyteArray pdata, jbyteArray
jselection,

 85 jbyteArray jtarget)
 86 {
 87 platform_data platform;
 88 Atom selection, target;
 89 jbyte *bptr;
 90 jboolean is_copy;
 91 XSelectionEvent *sel_event;
 92 XEvent event;
 93 Atom return_type;

 - 715 -

 94 long offset, length;
 95 int return_format, return_result;
 96 unsigned long return_nitems;
 97 unsigned long return_bytes_remaining;
 98 unsigned char *return_data;
 99 jobject result_array;
 100 void *result_bytes;
 101
 102 /* Recover our platform data */
 103 byte_array_to_bytes(env, pdata, &platform,
sizeof(platform));

 104 /* Get atom for the selection */
 105 bptr = (*env)->GetByteArrayElements(env, jselection,
&is_copy);

 106 selection = XInternAtom(platform.display, (char
*)bptr, True);

 107 (*env)->ReleaseByteArrayElements(env, jselection,
bptr, 0);

 108 if (selection == None) return 0;
 109 /* Get atom for the target */
 110 bptr = (*env)->GetByteArrayElements(env, jtarget,
&is_copy);

 111 target = XInternAtom(platform.display, (char *)bptr,
True);

 112 (*env)->ReleaseByteArrayElements(env, jtarget, bptr,
0);

 113 if (target == None) return 0;
 114 /* Convert the selection to the designated target
type; we'll use

 115 the selection name as the target property name. */
 116 XConvertSelection(platform.display, selection,
target, selection,

 117 platform.window, CurrentTime);
 118 /* Wait for the selection to happen */
 119 for (;;)
 120 {
 121 XNextEvent(platform.display, &event);
 122 if (event.type == SelectionNotify &&

 123 (sel_event = (XSelectionEvent *)&event)-
>selection ==
selection)

 124 break;
 125 }
 126 if (sel_event->property == None) return 0;
 127 /* We have a hit! How big? */
 128 return_result =
 129 XGetWindowProperty(platform.display,
platform.window,

 130 sel_event->property, 0L, 0L,
False,

 131 AnyPropertyType, &return_type,
 132 &return_format,
&return_nitems,

 133 &return_bytes_remaining,
&return_data);

 134 if (return_result != Success) return 0;
 135 XFree(return_data);

 - 716 -

 136 /* Allocate a result */
 137 switch (return_format)
 138 {
 139 case 8:
 140 result_array =
 141 (*env)->NewByteArray(env, (jsize)
return_bytes_remaining);

 142 result_bytes =

 143 (*env)->GetByteArrayElements(env,
result_array,
&is_copy);

 144 break;
 145 case 16:
 146 result_array =
 147 (*env)->NewShortArray(env, (jsize)
return_bytes_remaining / 2);

 148 result_bytes =

 149 (*env)->GetShortArrayElements(env,
result_array,
&is_copy);

 150 break;
 151 case 32:
 152 result_array =
 153 (*env)->NewIntArray(env, (jsize)
return_bytes_remaining / 4);

 154 result_bytes =

 155 (*env)->GetIntArrayElements(env,
result_array,
&is_copy);

 156 break;
 157 }
 158 /* Grab the bits */
 159 offset = 0;
 160 length = 1024;
 161 while (return_bytes_remaining)
 162 {
 163 return_result =
 164 XGetWindowProperty(platform.display,
platform.window,

 165 sel_event->property,
offset, length,
True,

 166 AnyPropertyType,
&return_type,

 167 &return_format,
&return_nitems,

 168 &return_bytes_remaining,
&return_data);

 169 if (return_result != Success) break;
 170 memcpy((char *)result_bytes + offset * 4,
 171 return_data,
 172 return_nitems * return_format / 8);
 173 offset += return_nitems * return_format / 32;
 174 XFree(return_data);
 175 }
 176 /* Release the result */
 177 switch (return_format)

 - 717 -

 178 {
 179 case 8:
 180 (*env)->ReleaseByteArrayElements(env,
result_array,

 181 (jbyte
*)result_bytes, 0);

 182 break;
 183 case 16:
 184 (*env)->ReleaseShortArrayElements(env,
result_array,

 185 (jshort
*)result_bytes, 0);

 186 break;
 187 case 32:
 188 (*env)->ReleaseIntArrayElements(env,
result_array,

 189 (jint
*)result_bytes, 0);

 190 break;
 191 }
 192 return result_array;
 193 }

The startup procedure, openXConnection() in lines 39–50, opens a connection to the
X server and creates an unmapped window that will be needed to implement the various
read functions. This creates some data—an X Display pointer and a Window ID—that
must be kept for the life of the object. That data is packed into a byte array and stored on
the Java side. Lines 10–35 contain utility code and structures to manage this data.

 closeXConnection(), lines 53–60, is responsible for disposing of resources when the

class is finalized.

 readCutBuffer0(), lines 63–81, supports an obsolete cut/paste method used only by

ancient X clients.

readSelection(), lines 83–193, is the core technology in this class. It requests the
current selection value (lines 105–117) and then reads events from the X server (119–
125) until it detects a result. If a selection is available, it computes the size of the result
(lines 128–133) and allocates a result-type-dependent byte, short, or int Java array
to hold the result (lines 137–157). It then reads data chunks into the new array (loop,
lines 161–175), hands the arrays back to Java memory management (lines 177–191),
and returns.

xwinwrap: Select Non-Default X Visuals and Colormaps

xwinwrap was presented in Chapter 56, "X Window System Tips and Tricks," in the
section "xwinwrap: Controlling Colormap and Visual Usage," as a way to access non-
default X Window System visuals and colormaps no available from Java.

 Platforms: Linux

 xwinwrap is a native shared library, loaded with the LD_PRELOAD mechanism of the

Linux dynamic loader. There are no Java-related calls, and it is usable with any X client.

 Listing B.24 shows the xwinwrap source file:

 Listing B.24 xwinwrap.c

 - 718 -

 1 #include <X11/X.h>
 2 #include <X11/Xlib.h>
 3 #include <X11/Xutil.h>
 4 #include <dlfcn.h>
 5 #include <stdio.h>
 6 #include <stdlib.h>
 7
 8 #define deffunc(X) typeof(X) static *p_ ## X = 0;
 9 #define findfunc(X) p_ ## X = dlsym(handle, #X);
 10 #define callfunc(X) (*p_ ## X)
 11
 12 deffunc(XAllocColor)
 13 deffunc(XCreateColormap)
 14 deffunc(XCreateGC)
 15 deffunc(XCreateWindow)
 16 deffunc(XFree)
 17 deffunc(XGetVisualInfo)
 18 deffunc(XGetWindowAttributes)
 19 deffunc(XOpenDisplay)
 20
 21 static void *handle = 0;
 22
 23 /* Initialization: Load the X11R6 library and find the
XCreateWindow()

 24 entry point. */
 25 void _init()
 26 {
 27 handle = dlopen("libX11.so.6", RTLD_GLOBAL ¦
RTLD_LAZY);

 28 if (handle)
 29 {
 30 /* Find the entry points we'll be needing */
 31 findfunc(XAllocColor)
 32 findfunc(XCreateColormap)
 33 findfunc(XCreateGC)
 34 findfunc(XCreateWindow)
 35 findfunc(XFree)
 36 findfunc(XGetVisualInfo)
 37 findfunc(XGetWindowAttributes)
 38 findfunc(XOpenDisplay)
 39 }
 40 else abort();
 41 }
 42
 43 Display *XOpenDisplay(const char* displayName)
 44 {
 45 int screenNo;
 46 VisualID user_visual_id = 0;
 47 char *env_value;
 48 /* Open the display */
 49 Display *display =
callfunc(XOpenDisplay)(displayName);

 - 719 -

 50 /* Get our environment data */
 51 if (env_value = getenv("XWINWRAP_VISUALID"))
 52 user_visual_id = strtoul(env_value, 0, 0);
 53 /* Step through the display's screens */
 54 for (screenNo = 0; screenNo < ScreenCount(display);
screenNo++)

 55 {
 56 Screen *screen = ScreenOfDisplay(display,
screenNo);

 57 XVisualInfo *info, template;
 58 Visual *visual = 0;
 59 Window bogusWin;
 60 Colormap colormap;
 61 XColor color;
 62 XSetWindowAttributes attributes;
 63 unsigned long white_pixel, black_pixel;
 64 GC gc;
 65 int count = 0;
 66 int new_depth;
 67 /* Look for desired visual */
 68 if (!user_visual_id)

 69 user_visual_id =
DefaultVisualOfScreen(screen)->
visualid;

 70 template.screen = screenNo;
 71 info = callfunc(XGetVisualInfo)(display,
 72 VisualScreenMask,
 73 &template,
 74 &count);
 75 if (info)
 76 {
 77 int visNo;
 78 for (visNo = 0; visNo < count; visNo++)
 79 {
 80 if (info[visNo].visualid ==
user_visual_id)

 81 {
 82 visual = info[visNo].visual;
 83 new_depth = info[visNo].depth;
 84 break;
 85 }
 86 }
 87 }
 88 if (!visual)
 89 {
 90 fprintf(stderr,
 91 "XWINWRAP: Requested visual ID 0x%lx
is "

 92 "not available on screen #%d\n",
 93 (long)user_visual_id, screenNo);
 94 if (info)
 95 {
 96 static char *visual_classes[] = {
 97 "StaticGray",

 - 720 -

 98 "GrayScale",
 99 "StaticColor",
 100 "PseudoColor",
 101 "TrueColor",
 102 "DirectColor",
 103 };
 104 int visNo;
 105 fprintf(stderr, "Available visuals:\n");
 106 for (visNo = 0; visNo < count; visNo++)
 107 fprintf(stderr, " 0x%lx: depth %d
%s\n",

 108 info[visNo].visualid,
 109 info[visNo].depth,
 110
visual_classes[info[visNo].class]);

 111 }
 112 continue;
 113 }
 114 /* Create a colormap for the screen */
 115 colormap = callfunc(XCreateColormap)(display,

 116
RootWindowOfScreen(
screen),

 117 visual,
AllocNone);

 118 /* Create a bogus window */
 119 attributes.colormap = colormap;
 120 bogusWin = callfunc(XCreateWindow)(display,
 121
RootWindowOfScreen(screen),

 122 0, 0, 1, 1, 0,
new_
depth,

 123 InputOutput,
visual,
CWColormap,

 124 &attributes);
 125 /* Create a GC for the bogus window */
 126 gc = callfunc(XCreateGC)(display, bogusWin, 0,
0);

 127 /* Get the two basic pixels */
 128 color.red = color.green = color.blue = 0x0;
 129 callfunc(XAllocColor)(display, colormap, &color);
 130 black_pixel = color.pixel;
 131 color.red = color.green = color.blue = 0xffff;
 132 callfunc(XAllocColor)(display, colormap, &color);
 133 white_pixel = color.pixel;
 134
 135 /* Here's where most of the magic happens. We've
created

 136 a colormap, visual, and default GC that
conform to the

 137 user's requests. Now we violate the opacity of
the

 138 Screen structure and drop these in as
defaults. Do

 139 not try this at home! */

 - 721 -

 140
 141 /* Replace the depth... */
 142 screen->root_depth = new_depth;
 143 /* Replace the root visual... */
 144 screen->root_visual = visual;
 145 /* Replace the default GC... */
 146 screen->default_gc = gc;
 147 /* Replace the default colormap... */
 148 screen->cmap = colormap;
 149 /* And replace the two standard pixels */
 150 screen->white_pixel = white_pixel;
 151 screen->black_pixel = black_pixel;
 152 /* We're done violating the screen structure. */
 153 }
 154 return display;
 155 }
 156

 157 /* XCreateWindow: This is the hijacked version executed
by the
application.

 158 We look for creation of top-level windows, and apply
the user
preferences

 159 to the arguments we're passing through. */
 160 Window XCreateWindow(Display *display,
 161 Window parent,
 162 int x,
 163 int y,
 164 unsigned int width,
 165 unsigned int height,
 166 unsigned int border_width,
 167 int depth,
 168 unsigned int class,
 169 Visual *visual,
 170 unsigned long valuemask,
 171 XSetWindowAttributes* attributes)
 172 {
 173 Screen *screen;
 174 XWindowAttributes win_attributes;
 175 XSetWindowAttributes tempbuf;
 176 callfunc(XGetWindowAttributes)(display, parent, &win_
attributes);

 177 /* We now have a Screen* */
 178 screen = win_attributes.screen;
 179 /* Is parent the root window */
 180 if (parent == RootWindowOfScreen(screen))
 181 {
 182 /* We need one other piece of magic. In case the
application has

 183 its own ideas about depth, visual, and
colormap, we
enforce

 184 the user's preferences here. */
 185 depth = DefaultDepthOfScreen(screen);
 186 visual = DefaultVisualOfScreen(screen);

 - 722 -

 187 valuemask ¦= CWColormap;
 188 if (!attributes) attributes = &tempbuf;
 189 attributes->colormap =

 190 }
 191 return callfunc(XCreateWindow)(display, parent, x, y,
width,

 192 border_width, depth, class,

 193 valuemask, attributes);
 194 }

 The _init() procedure, lines 25–41, is executed when the library is first loaded. It loads

 XOpenDisplay(), lines 43–155, intercepts calls to the Xlib procedure of that same

name. It opens the display (line 49) and then loops through all the screens (line 54),

 1. Look for the requested visual (lines 68–87) and complain (lines 88–113) if that visual

 5. Replace various fields in the Screen structure with the new default values (lines 141–

XCreateWindow(), lines 160–194, intercepts calls to the Xlib procedure of that same
name. It ascertains whether this is a top-level window (lines 176–180). If so, it substitutes
various nondefault parameter values (lines 185–189). It then calls the real Xlib

xwinwrap: Select Non-Default X Visuals and Colormaps

 xwinwrap was presented in Chapter 56, "X Window System Tips and Tricks," in the

section "xwinwrap: Controlling Colormap and Visual Usage," as a way to access non-

 xwinwrap is a native shared library, loaded with the LD_PRELOAD mechanism of the

 2 #include <X11/Xlib.h>
 3 #include <X11/Xutil.h>
 4 #include <dlfcn.h>

 - 723 -

 5 #include <stdio.h>
 6 #include <stdlib.h>
 7
 8 #define deffunc(X) typeof(X) static *p_ ## X = 0;
 9 #define findfunc(X) p_ ## X = dlsym(handle, #X);
 10 #define callfunc(X) (*p_ ## X)
 11
 12 deffunc(XAllocColor)
 13 deffunc(XCreateColormap)
 14 deffunc(XCreateGC)
 15 deffunc(XCreateWindow)
 16 deffunc(XFree)
 17 deffunc(XGetVisualInfo)
 18 deffunc(XGetWindowAttributes)
 19 deffunc(XOpenDisplay)
 20
 21 static void *handle = 0;
 22
 23 /* Initialization: Load the X11R6 library and find the

 24 entry point. */
 25 void _init()
 26 {
 27 handle = dlopen("libX11.so.6", RTLD_GLOBAL ¦

 28 if (handle)
 29 {
 30 /* Find the entry points we'll be needing */
 31 findfunc(XAllocColor)
 32 findfunc(XCreateColormap)
 33 findfunc(XCreateGC)
 34 findfunc(XCreateWindow)
 35 findfunc(XFree)
 36 findfunc(XGetVisualInfo)
 37 findfunc(XGetWindowAttributes)
 38 findfunc(XOpenDisplay)
 39 }
 40 else abort();
 41 }
 42
 43 Display *XOpenDisplay(const char* displayName)
 44 {
 45 int screenNo;
 46 VisualID user_visual_id = 0;
 47 char *env_value;
 48 /* Open the display */
 49 Display *display =

 50 /* Get our environment data */
 51 if (env_value = getenv("XWINWRAP_VISUALID"))
 52 user_visual_id = strtoul(env_value, 0, 0);
 53 /* Step through the display's screens */
 54 for (screenNo = 0; screenNo < ScreenCount(display);

 - 724 -

 55 {
 56 Screen *screen = ScreenOfDisplay(display,

 57 XVisualInfo *info, template;
 58 Visual *visual = 0;
 59 Window bogusWin;
 60 Colormap colormap;
 61 XColor color;
 62 XSetWindowAttributes attributes;
 63 unsigned long white_pixel, black_pixel;
 64 GC gc;
 65 int count = 0;
 66 int new_depth;
 67 /* Look for desired visual */
 68 if (!user_visual_id)
 69 user_visual_id =
DefaultVisualOfScreen(screen)->

 70 template.screen = screenNo;
 71 info = callfunc(XGetVisualInfo)(display,
 72 VisualScreenMask,
 73 &template,
 74 &count);
 75 if (info)
 76 {
 77 int visNo;
 78 for (visNo = 0; visNo < count; visNo++)
 79 {
 80 if (info[visNo].visualid ==

 81 {
 82 visual = info[visNo].visual;
 83 new_depth = info[visNo].depth;
 84 break;
 85 }
 86 }
 87 }
 88 if (!visual)
 89 {
 90 fprintf(stderr,
 91 "XWINWRAP: Requested visual ID 0x%lx

 92 "not available on screen #%d\n",
 93 (long)user_visual_id, screenNo);
 94 if (info)
 95 {
 96 static char *visual_classes[] = {
 97 "StaticGray",
 98 "GrayScale",
 99 "StaticColor",
 100 "PseudoColor",
 101 "TrueColor",
 102 "DirectColor",
 103 };

 - 725 -

 104 int visNo;
 105 fprintf(stderr, "Available visuals:\n");
 106 for (visNo = 0; visNo < count; visNo++)
 107 fprintf(stderr, " 0x%lx: depth %d

 108 info[visNo].visualid,
 109 info[visNo].depth,
 110

 111 }
 112 continue;
 113 }
 114 /* Create a colormap for the screen */
 115 colormap = callfunc(XCreateColormap)(display,
 116
RootWindowOfScreen(

 117 visual,

 118 /* Create a bogus window */
 119 attributes.colormap = colormap;
 120 bogusWin = callfunc(XCreateWindow)(display,
 121

 122 0, 0, 1, 1, 0,
new_

 123 InputOutput,
visual,

 124 &attributes);
 125 /* Create a GC for the bogus window */
 126 gc = callfunc(XCreateGC)(display, bogusWin, 0,

 127 /* Get the two basic pixels */
 128 color.red = color.green = color.blue = 0x0;
 129 callfunc(XAllocColor)(display, colormap, &color);
 130 black_pixel = color.pixel;
 131 color.red = color.green = color.blue = 0xffff;
 132 callfunc(XAllocColor)(display, colormap, &color);
 133 white_pixel = color.pixel;
 134
 135 /* Here's where most of the magic happens. We've

 136 a colormap, visual, and default GC that

 137 user's requests. Now we violate the opacity of

 138 Screen structure and drop these in as

 139 not try this at home! */
 140
 141 /* Replace the depth... */
 142 screen->root_depth = new_depth;
 143 /* Replace the root visual... */
 144 screen->root_visual = visual;
 145 /* Replace the default GC... */

 - 726 -

 146 screen->default_gc = gc;
 147 /* Replace the default colormap... */
 148 screen->cmap = colormap;
 149 /* And replace the two standard pixels */
 150 screen->white_pixel = white_pixel;
 151 screen->black_pixel = black_pixel;
 152 /* We're done violating the screen structure. */
 153 }
 154 return display;
 155 }
 156
 157 /* XCreateWindow: This is the hijacked version executed
by the

 158 We look for creation of top-level windows, and apply
the user

 159 to the arguments we're passing through. */
 160 Window XCreateWindow(Display *display,
 161 Window parent,
 162 int x,
 163 int y,
 164 unsigned int width,
 165 unsigned int height,
 166 unsigned int border_width,
 167 int depth,
 168 unsigned int class,
 169 Visual *visual,
 170 unsigned long valuemask,
 171 XSetWindowAttributes* attributes)
 172 {
 173 Screen *screen;
 174 XWindowAttributes win_attributes;
 175 XSetWindowAttributes tempbuf;
 176 callfunc(XGetWindowAttributes)(display, parent, &win_

 177 /* We now have a Screen* */
 178 screen = win_attributes.screen;
 179 /* Is parent the root window */
 180 if (parent == RootWindowOfScreen(screen))
 181 {
 182 /* We need one other piece of magic. In case the

 183 its own ideas about depth, visual, and
colormap, we

 184 the user's preferences here. */
 185 depth = DefaultDepthOfScreen(screen);
 186 visual = DefaultVisualOfScreen(screen);
 187 valuemask ¦= CWColormap;
 188 if (!attributes) attributes = &tempbuf;
 189 attributes->colormap =

 190 }
 191 return callfunc(XCreateWindow)(display, parent, x, y,

 - 727 -

width,
height,

 192 border_width, depth, class,
visual,

 193 valuemask, attributes);
 194 }

 The _init() procedure, lines 25–41, is executed when the library is first loaded. It loads

 XOpenDisplay(), lines 43–155, intercepts calls to the Xlib procedure of that same

name. It opens the display (line 49) and then loops through all the screens (line 54),

 1. Look for the requested visual (lines 68–87) and complain (lines 88–113) if that visual

 5. Replace various fields in the Screen structure with the new default values (lines 141–

XCreateWindow(), lines 160–194, intercepts calls to the Xlib procedure of that same
name. It ascertains whether this is a top-level window (lines 176–180). If so, it substitutes
various nondefault parameter values (lines 185–189). It then calls the real Xlib

Linux Support

•

The Linux Online Home Page (http://www.linux.org) is a popular first-line
resource for Linux support. The site includes an excellent collection of How-To and
Mini-How-To documents with advice on hundreds of Linux configuration and

•

Metalab, at the University of North Carolina, formerly known as SunSITE, is home to
huge Linux software repositories. The home page is http://metalab.unc.edu
and includes a search service for Linux software. Metalab's FTP repository, at
ftp://metalab.unc.edu/pub/Linux, offers access to extensive collections of

 • RPMFind (http://rpmfind.net/linux/RPM/) offers a large index of RPMs

 • FirstLinux (http://www.firstlinux.com) publishes the Linux Guide, a Linux-

 • The Linux Software Encyclopedia

(http://stommel.tamu.edu/~baum/linuxlist/linuxlist/) provides a huge

 • Linux.com (http://www.linux.com), sponsored by VA Linux Systems, focuses on

 - 728 -

 • Linux Links (http://www.linuxlinks.com) is a well-organized repository of links
to all matters Linux.

 • The Linux Center (http://www.portalux.com/) provides extensive, well-

organized collections of links to articles about Linux tools.

 • FreshMeat (http://www.freshmeat.net) is a large application repository focused

on open source software (OSS). The FreshMeat home page is probably the Web's

 • Cygnus Solutions (http://www.cygnus.com) is the publisher of the GNU compiler

suite and the site of some of the best available online documentation for gcc and

 • And, of course, the distribution vendors discussed in Chapter 8, "Installing Additional

Linux Software," all provide product support and knowledge bases on their own Web

Java Support

 • The Blackdown site (http://www.blackdown.org) is the home of the Blackdown

JDK port for Linux. In addition to information about the port, the site contains extensive

•

Sun's main Java site (http://java.sun.com) is the source for all distributions from
Sun, including many Java-only packages that are usable on Linux. The site also
boasts a wealth of documentation and some excellent tutorials on all areas of Java

•

Sun's Java Developer Connection (http://developer.java.sun.com/) focuses
on Sun development tools and on the development of Java itself. Using the site
requires you to become a member (no charge) and includes access to the Java Bug

•

Netscape's DevEdge Online (http://devedge.netscape.com/) supports all
aspects of Netscape Navigator technology. This includes Java, JavaScript, HTML, and
other technologies important to the Web. Technologies of particular interest are the
Open Java Interface (discussed in Chapter 11, "Choosing an Environment: 1.1 or
1.2?" in the section "Option 2: Netscape Open Java Interface"), the Plug-in SDK (if you
need to develop Netscape plug-ins), and tools for signing objects (to create trusted

•

The Microsoft Developers Network (http://msdn.microsoft.com) is the launch
point for information about Microsoft technologies. Technologies of particular interest
include Java/ActiveX integration (discussed in Chapter 51, "Crossing Platform
Component Models: Bringing Java to ActiveX") and tools for signing objects (to create

•

IBM's AlphaWorks Site (http://alphaworks.ibm.com) hosts some of the most
interesting Java development activity on the planet. IBM provides early access here to
many of its leading-edge Java development efforts. Even if you cannot use any of

 • JavaLobby (http://www.javalobby.org/) devotes itself to representing the

interests of Java software developers. The site provides current Java news unslanted by

 Java Bug Parade

 - 729 -

Behind its explosive growth, Java is still a young technology. One of the best inside views
of the state of the art is the Java Bug Parade, which is part of Sun's Developer
Connection site. After you have become a member
(http://developer.java.sun.com/), you can access the Bug Parade at
http://developer.java.sun.com/developer/bugParade. When you encounter
a bug in the Blackdown Linux port, this is the first place to look for known problems.

The main Bug Parade page is a query form: specify a category and some keywords to
search for bugs. The information on a particular bug report includes details about the
bugs and an opportunity for user input. You can add information, read input from other
users, and even vote on bugs. Sun uses the information to create prioritized lists of

Sun's record of responsiveness to the Bug Parade is mixed; some high-priority defects
have been known to hang around for a long time. But it's also a remarkable phenomenon.
Few commercial products dare put their defect reports on public display for public

Appendix D: Tools Not Covered

Having devoted roughly 40 chapters to development tools, this book has managed to
scratch the surface. Java development tools are a hot and volatile market, and any list is
destined for quick obsolescence. A good source of current information is the Blackdown
site (http://www.blackdown.org), whose pages include links to Java development

 This appendix lists some development tools not covered in the chapters—with due

 You can find an online version of this list at the book's home page,

 IDEs

 Many Java IDEs are, like Inprise JBuilder, implemented in Java. Here are some of

 • NetComputing's AnyJ (http://www.netcomputing.de/) includes a free license for

 • NetBeans Developer was acquired by Sun Microsystems (http://java.sun.com)

in late 1999. Sun has indicated that it plans to distribute versions for low-end (at no

 • Data Representations' Simplicity for Java

(http://www.datarepresentations.com/) boasts a "Code Sourcerer" for rapid

 • Omnicore's CodeGuide (http://www.omnicore.com) boasts incrementation

 • BulletProof's JDesignerPro (http://www.bulletproof.com/) is targeted at

 - 730 -

 • Elixir Technology's ElixirIDE (http://www.elixirtech.com/) includes a free Lite
version.

 • Penumbra Software's SuperMojo (http://www.penumbrasoftware.com/) boasts

a separate enterprise solution pack for three-tier application architectures.

 • SoftwareBuero's WipeOut (http://www.softwarebuero.de/wipeout-

eng.html) supports Java, C++, Eiffel, and Fortran development by providing an IDE

 • IST's VisaJ (http://www.ist.co.uk/visaj) is being promoted by SGI for the

 • FreeBuilder (http://www.freebuilder.org) is an open source IDE being built

 • SCubed's JIG (http://www.scubed.cc/) boasts ease of navigation through

 • Viosoft's Arriba! (http://www.viosoft.com) includes integration with Viosoft's own

 The list of available Java IDEs implemented natively on the Linux platform is small, but

 • IBM VisualAge (http://www.software.ibm.com/ad/vajava/) ships in three

versions at various price points (the lowest being free). The Linux version is in

 • Cygnus Solutions Code Fusion (http://www.cygnus.com) mates an IDE with the

native code compilation capabilities of gcj (discussed in Chapter 31, "gcj: A

 • Code Crusader (http://www.cco.caltech.edu/~jafl/jcc/) is an open source,

multilanguage IDE. Distributions are also available from standard code repositories such

 GUI Builders

 • Tek-Tools JForge (http://www.tek-tools.com/jforge/) is focused on

 • Scriptics' SpecTcl (http://www.scriptics.com/products/spectcl) is a Tcl-

based GUI builder that grew out of Sun's brief relationship with Tcl inventor John

 • IST's XDesigner (http://www.ist.co.uk/xd/) is a native application that

 • Softera's SoftModeler (http://www.softera.com/products.htm) includes

 • Lava (http://www.hnet.demon.co.uk/products/lava/index.html) is a free,

 Debuggers

 - 731 -

 • MetaMata's Debug (http://www.metamata.com/products/debug_top.html)
includes remote debugging capabilities for multiplatform distributed debugging.

 • Viosoft's VioRunner (http://www.viosoft.com) boasts multiplatform, distributed

debugging.

UML Tools

 All tools listed here are implemented in Java and should be usable on Linux.

 • Tendril Software's StructureBuilder (http://www.tendril.com) offers full UML

modeling and automatic code generation.

 • Elixir Technology's ElixirCASE (http://www.elixirtech.com/) includes a free

Lite version.

•

Object Domain System's ObjectDomain
(http://www.objectdomain.com/domain) is a UML-based modeler and code
generator.

 • Object International's TogetherJ (http://www.togetherj.com/) offers a free

"whiteboard edition" and a full enterprise version.

 Packagers

 Here is some of the competition to InstallShield (see Chapter 52, "InstallShield: Creating

Self-Installing Java Applications"):

 • Zero-G's InstallAnywhere (http://www.zerog.com/) is a full-featured packager,

whose offerings include a free, lightweight version.

•

AlphaWorks' InstallToolkit for Java
(http://alphaworks.ibm.com/tech/installtoolkit) is an IBM research
project into Java packaging technologies.

 Obfuscators/Optimizers

 Here is some of the competition to DashO-Pro (see Chapter 53, "DashO: Optimizing

Applications for Delivery").

 • 4thPass's SourceGuard (http://www.4thpass.com/) offers versions from low-end

to enterprise-level.

 • AlphaWorks' JAX (http://alphaworks.ibm.com/tech/JAX) is an IBM research

project into optimization and obfuscation of Java applications.

 • Force5's JCloak (http://www.force5.com/JCloak/ProductJCloak.html) is

focused on obfuscating applets.

 • Eastridge Technology's JShrink (http://www.e-t.com/jshrink.html) offers

obfuscation and size reduction.

 • Condensity (http://www.condensity.com/index.html) offers multiplatform

obfuscation and size reduction.

 • RetroLogic's RetroGuard (http://retrologic.com/) is an open source

obfuscator.

 - 732 -

 • Zelix's KlassMaster (http://www.zelix.com/klassmaster/) includes obfuscation

and decompilation capabilities.

 Decompilers

 • WingSoft's WingDis (http://www.wingsoft.com/wingdis.shtml) is a non-GUI

decompiler that can integrate with WingSoft's WingEditor for optional GUI capabilities.

 • Ahpah's SourceAgain (http://www.ahpah.com/) includes GUI and non-GUI

versions for various platforms, including Linux.

 • SourceTec's Decompiler (http://www.srctec.com/decompiler.htm) is a

shareware decompiler.

 • ClassCracker (http://www.pcug.org.au/~mayon/) is a GUI-based decompiler

product.

