Java™ Data Objects

Java™ Data Objects

VAV Addison-Wesley

An imprint of Pearson Education

London - Boston - Indianapolis - New York - Mexico City - Toronto
Sydney - Tokyo - Singapore - Hong Kong - Cape Town - New Delhi
Madrid - Paris - Amsterdam - Munich - Milan - Stockholm

ROBIN M. ROOS

Pearson Education Limited

Head Office: London Office:
Edinburgh Gate 128 Long Acre

Harlow CM20 2JE London WC2E 9AN

Tel: +44 (0)1279 623623 Tel: +44 (0)20 7447 2000
Fax: +44 (0)1279 431059 Fax: +44 (0)20 7447 2170

Website: www.it-minds.com
www.awprofessional.com

First published in Great Britain in 2003
© Pearson Education Ltd 2003

The rights of Robin M. Roos to be identified as Author of this Work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

ISBN 0-321-12380-8

British Library Cataloguing in Publication Data
A CIP catalogue record for this book can be obtained from the British Library.

Library of Congress Cataloging in Publication Data
Roos, Robin M., 1969-
Java data objects / Robin M. Roos.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-12380-8 (pbk.)
1. Java (Computer program language) 2. Application program interfaces (Computer
software) 3. Object-oriented programming (Computer science) 4. Computer
software--Standards. 1. Title.

QA76.73.J38 R67 2002

005.13'3--dc21
2002074864

All rights reserved; no part of this publication may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise without either the prior written permission of the Publishers or a licence permitting
restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1P OLP. This book may not be lent, resold, hired out or
otherwise disposed of by way of trade in any form of binding or cover other than that in which it is
published, without the prior consent of the Publishers.

The programs in this book have been included for their instructional value. The publisher does not
offer any warranties or representations in respect of their fitness for a particular purpose,
nor does the publisher accept any liability for any loss or damage arising from their use.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Pearson Education Limited has made every

attempt to supply trademark information about manufacturers and their products mentioned
in this book.

Trademark Notice
Java™ is a registered trademark of Sun Microsystems.

10987654321

Typeset by Pantek Arts Ltd, Maidstone, Kent
Printed and bound in the UK by Biddles Ltd of Guildford and King’s Lynn

The Publishers’ policy is to use paper manufactured from sustainable forests.

Contents

Acknowledgements ix

Foreword xi

Preface xiii
What is JDO? xiii
To whom will JDO be important? xiv
Who should read this book? xiv
Organization xv
CD contents xvi
JDO version information xvii
About the author xvii
About the cover illustration xvii

1 Understanding object persistence 1
1.1 What is object persistence? 2
1.2 Current techniques for persistence 2
1.3 Object persistence with JDO 5
1.4 JDO positioning 8
What's next? 9

2 Developing a simple example 10
2.1 Order processing domain 10
2.2 Discussion 15
2.3 Application source code 18
What's next? 20

3 JDO architecture 21
3.1 JDO implementations and vendors 21
3.2 JDO instances 22
3.3 JDO environments 22
3.4 Persistent vs. transient 25

vi Contents

3.5 Transactional vs. non-transactional 25
3.6 Support for transactional/persistent instances 26
3.7 JDO identity 27

What’s next? 32

4 Instance lifecycle 33
4.1 Determining the state of an instance 33
4.2 Required lifecycle states 34
4.3 Required lifecycle state transitions 37
4.4 Optional lifecycle states 45
4.5 Optional lifecycle transitions 45
4.6 InstanceCallbacks 49
What's next? 52

5 Persistent object model 53
5.1 Transparency 53
5.2 JDO instances 55
5.3 First and second class objects 56
5.4 “Third-class” objects — arrays 61
5.5 Type restrictions for persistent fields 61
5.6 Inheritance 81
5.7 Interlude: order processing GUI 88
What’s next? 89

6 Primary interfaces and classes 90
6.1 JDOHelper 90
6.2 JDO properties explained 97
6.3 PersistenceManagerFactory 103
6.4 PersistenceManager 105
6.5 Extent 112
6.6 PersistenceCapable 115
What's next? 116

7 Transaction management 117
71 Transactions 117
7.2 Transaction interface 118

7.3
7.4
7.5
7.6

Transaction strategies 119

Advanced transaction options 125
Transaction modes to improve efficiency 126
Synchronization with JDO transactions 127
What's next? 128

8 Queries with JDOQL 129

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Query architecture 129
Constructing queries 131

Query interface 132

Query examples 134

Query filter expressions 136
Further examples 141
Unconstrained query variables 143
Dynamic Query Window 143
What's next? 145

9 JDO exceptions 146

9.1
9.2
9.3

JDO exception hierarchy 146
Base exception classes 147
Application exceptions 150
What's next? 150

10 Persistence descriptor 151

10.1
10.2
10.3
10.4
10.5
10.6

XML overview 151
Naming the persistence descriptor 152
Persistence descriptor elements 153

Example — persistence descriptor “op.jdo” 158

Facilities for vendor-specific extensions 161
Example — deletion semantics 161
What's next? 163

11 J2EE integration 164

11.1
11.2
11.3
11.4
11.5

The managed environment 164
JLEE overview 164

Serialization of JDO instances 168
JDO vs. J2EE transactions 170
JDO integration with EJB 171

Contents vii

viii Contents

11.6 JDO integration with stateless session beans 172

11.7 JDO integration with stateful session beans 175

11.8 JDO integration with entity beans 179

11.9 JDO integration with message-driven beans 188

11.10 JDO integration with the web tier 190

11.11 Bootstrapping JDO in the managed environment 195
What’s next? 195

12 JDO implementations 196
12.1 endin™ by Versant 198
12.2 FastObjects™ by Poet Software 199
12.3 FrontierSuite for JDO™ by ObjectFrontier 201
12.4 IntelliBO™ by Signsoft 203
12.5 JDOGenie™ by Hemisphere Technologies 204
12.6 JRelay™ by Object Industries 205
12.7 Kodo JDO™ by SolarMetric 206
12.8 LiDO™ by LIBeLIS 208
12.9 OpenFusion JDO™ by PrismTechnologies 210
12.10 Orient™ by Orient Technologies 212
12.11 PE:J™ The Productivity Environment™ for Java by
HYWY Software 213

13 Epilogue 216
13.1 Beyond JDO 1.0 216
13.2 Sources of further information 220

Appendices 222

A: Properties for JDOHelper bootstrap 222
B: Strings for supported options 223

C: JDO persistence descriptor DTD 224

D: PersistenceManagerFactory 225

E: JDOQL BNF 226

Glossary 231
Bibliography 239

Index 241

Acknowledgments

A number of people have been instrumental in my successful completion of this
work. Specifically I would like to recognize the contributions I received from my
editor, Simon Plumtree of Pearson Education, the support, encouragement and
advice of my wife Catherine, and the patience of my daughter Genevieve.
My reviewers made invaluable contributions to the content, readability,
accuracy, and overall quality of the manuscript. They were:
Andrew Roos, ExiNet
Eric Samson (JDO expert), LIBeLIS
Heiko Bobzin (JDO expert), Poet Software
John Cosby, Sun Microsystems
John Russell, Prism Technologies
Keiron McCammon (JDO expert), Versant
Leo Crawford
Matthew Adams (JDO expert), People Redesigned
Robert Hoeppe, Poet Software
Stephen Johnson (JDO expert), Prism Technologies
Trish Scott Deetz
Material for the summary of available implementations, presented in
Chapter 12, was generously provided by:
Alexander Kraft, Object Industries
Eric Samson (JDO expert), LIBeLIS
Greg Chase (JDO expert), Poet Software
Heiko Bobzin (JDO expert), Poet Software
Keiron McCammon (JDO expert), Versant
Matthew Pope (JDO expert), HYWY Software
John Russell, Prism Technologies
Luca Garulli JDO expert), Orient Technologies
Neelan Choksi, SolarMetric
Torsten Busch, Signsoft
David Tinker, Hemisphere Technologies
Srikanth Rukkannagari, ObjectFrontier

X

Acknowledgments

Thanks also go to all the members of the two most influential vendor-inde-
pendent JDO discussion forums for their interesting, informative, and
challenging postings:

JavaDataObijects
http://groups.yahoo.com/group/JavaDataObjects/

JDOcentral.com
http://www.JDOcentral.com
Finally, my thanks go to Craig Russell, JDO Specification Lead, and to all of

the members of the JDO Expert Group, without whom JDO could not have
been created.

Foreword

The JDO (Java™ Data Objects) standard has a long history, only some of which
is visible by looking at the development of the standard itself. Its roots are in
the ODMG (Object Data Management Group), which was an early attempt to
standardize transparent access to databases from object oriented programming
languages. The ODMG standard predates Java, having been developed when
the biggest debate in the object development community was whether
Smalltalk or C++ would be the dominant object oriented programming lan-
guage. The debate turned out to be academic, as Java became the de facto
standard for writing object oriented applications. And the ODMG responded by
adapting its C++ and Smalltalk interfaces to Java.

The process of adapting the ODMG standard to Java was problematic. It was
written when two-tier architectures were dominant. Application servers were
difficult to model. And the standard had no compliance test; any vendor who
had an implementation that looked anything like ODMG was free to claim
compliance with the standard.

Enter the Java Community Process (JCP). At first glance, it appeared to solve
the most immediate problems inherent in the ODMG process; the requirement
for a reference implementation and compliance test suite. After further investi-
gation, the process was adopted and the Java Specification Request was
submitted and approved for development, with support from major database
players, middleware vendors, and tools suppliers.

Development of the JDO standard proceeded in parallel with two other stan-
dards: the Java Connector Architecture (JCA), and container-managed
persistence (CMP). The expert group felt strongly that keeping JDO in line with
these two standards would be of primary importance, yet ease of use for simple
applications was still an absolute objective.

The JCP requirements for a reference implementation and compliance test
suite turned out to be the determining factor in the timing of the final release
of the standard. The reference implementation was staffed with one full-time
engineer, and the test suite with one contractor. By normal engineering stan-
dards, the projects were woefully understaffed. But this turned out to have a
bright side, as commercial implementations were developed in parallel with the
development of the reference implementation and test suite. While deficiencies
were found in the standard by the reference implementation, even more were
found in the attempt to adapt commercial database products to the standard. In
fact, several products shipped even before the tests were complete, building
more support for the standard-under-development.

xi

xii Foreword

I am gratified to see the adoption of JDO in the user community as well as in
the vendor community. Its widespread availability in two- and multi-tier archi-
tectures and across database implementations brings new meaning to Java's
promise of “write once, run anywhere.”

Craig Russell

JDO Specification Lead

Sun Microsystems
Mountain View, California

April 2002

Preface

It’s official! For the last two weeks, the executive committee of JCP has been
considering the JDO specification and voting on it. JDO has now been
approved as a standard, and as I write these words the first announcements of
JDO 1.0 are being made on JavaDataObjects at Yahoo!Groups and on
JDOcentral.com.

I believe that JDO will have a profoundly positive impact on the way that we
architect, design, and implement Java applications. Conservative improvements
of 20% in the development time (and therefore cost) of enterprise applications
are being quoted, with some analysts suggesting that the actual savings may be
much higher.

Support for the standard is considerable; there is already a significant
number of products on the market, most of which target full compliance with
JDO 1.0 in the immediate future.

Robin M. Roos
March 2002

What is JDO?

Java Data Obijects is an interface-based definition of object persistence for the
Java language, which describes the storage, querying, and retrieval of objects
from data stores.

JDO is extremely compelling due to the notion of transparent persistence
that it supports. This can be summarized briefly as follows:

e JDO transparently handles the mapping of JDO instances to the underlying
data store; the so-called object-relational impedance mismatch.

e JDO is transparent to the Java objects being persisted; you do not have to
add specific methods or attributes to your Java classes or alter the visibility
modifiers of your class members. Fields with private visibility, and fields
without get and set methods, are no problem for JDO!

® JDO can be used against a number of different data storage paradigms,
including (but not limited to) relational databases, object databases, file sys-
tems, and XML documents. In due course JDO implementations will emerge
for accessing persistent data held in legacy applications, for use in Enterprise
Application Integration projects.

xiii

xiv

Preface

e JDO is transparent to the data store itself, so applications can be ported to
any data store for which an appropriate JDO implementation is available.
The binary compatibility of JDO instances, guaranteed by the JDO specifica-
tion, means that this can be achieved without even recompilation, let alone
any alterations at source code level.

e If an application references a persistent object and alters any of its persistent
state in the memory, the JDO implementation will implicitly update the data
store when the active transaction is committed. This relieves the developer
of repeatedly coding explicit save operations.

To whom will JDO be important?

JDO will be important to Java architects, because they can use it to build flexible
application architectures that integrate seamlessly with Java 2 Enterprise Edition
(J2EE™). They will appreciate its portability across relational, object and other data
storage paradigms, as well as JDO’s applicability to enterprise, simple client-server,
and - in due course — embedded Java 2 Micro Edition (J2ME™) environments.

JDO will be important to Java designers, because they can finally use all the
good object modeling techniques (including interfaces and inheritance) that
previously caused significant complication to the persistence infrastructure of
their applications.

JDO will be important to Java developers, because it is intuitive and works at
the domain object level — without them having to implement a persistence
infrastructure for their applications. They will also appreciate the new Query
Language with its Java-like syntax and semantics.

Finally, JDO will be important to development and project managers, because it
will streamline the development of applications. Designers and developers can
concentrate on the functional aspects of the application, without spending
huge amounts of time and money implementing, and subsequently debugging,
non-functional persistence infrastructures.

Who should read this book?

Although it has been written primarily for Java developers, this book’s coverage
of JDO will also be of significant interest to designers and architects.

I do expect my readers to have a good knowledge of the Java language and
its syntax.

Traditionally, Java applications store data to relational databases using
JDBC™ and SQL. JDO is capable of completely replacing both of these tech-
nologies. Therefore no knowledge of JDBC or SQL is required in order to learn
JDO. Of course, developers with prior knowledge and experience in storing
objects in databases will benefit from their background.

JDO can be used very successfully with or without a J2EE application server.
It has application from standard Java clients, as well as web components
(Servlets and JavaServer Pages) and enterprise components (Session, Message-
Driven and Entity Beans).

Since JDO is applied largely to domain objects, I have placed significant
emphasis on the design of flexible domain object models. This will be of inter-
est to Java designers, who may then choose to skim through the syntactic
examples.

Integration of JDO with the full suite of J2EE components will be of interest
to Java architects as well as developers, and a chapter is dedicated to this topic.
Chapter 11 begins with an explanation of each J2EE component for those not
familiar with them. Thus no previous exposure to J2EE is necessary, although
readers who do have such experience will naturally gain more insight than
those without.

Organization

Chapter 1 Understanding object persistence
An introduction to the storage of objects in data stores, mentioning previous
technology solutions.

Chapter 2 Developing a simple example
A step-by-step walk through a simple JDO example.

Chapter 3 JDO architecture
A look at essential architectural concepts, such as environments, transactional-
ity, and identity.

Chapter 4 Instance lifecycle
Coverage of the lifecycle states of JDO instances, and the invocations which
applications can make in order to initiate lifecycle transitions.

Chapter 5 Persistent object model
A detailed look at the manner in which JDO treats domain object models.

Chapter 6 Primary interfaces and classes
The essentials of JDO from a programmatic standpoint.

Chapter 7 Transaction management
How to manage transactions, with particular emphasis on optimistic transac-
tion strategies.

Chapter 8 Queries with J[DOQL
The new JDO Query Language.

Chapter 9 JDO exceptions
Exceptions defined by JDO.

Preface xv

xvi

Preface

Chapter 10 Persistence descriptor
A detailed look at the structure of XML persistence descriptors.

Chapter 11 J2EE integration
How to use JDO from EJB components (Session Beans, Entity Beans and
Message-Driven Beans) and web components (Servlets and JavaServer Pages).

Chapter 12 JDO implementations
A summary of the available implementations. JDO is remarkably well imple-
mented given its relative newness in the market.

Chapter 13 Epilogue
A look beyond JDO 1.0, considering features that might be expected in future
versions of JDO.

Appendix A Properties for JDOHelper bootstrap
Useful property names for initializing JDO.

Appendix B Strings for supported options
Useful string constants.

Appendix C JDO persistence descriptor DTD
The DTD which constrains persistence descriptors.

Appendix D PersistenceManagerFactory
A list of the methods of the PersistenceManagerFactory, which has not been
given in the text.

Appendix E JDOQL BNF
The formal grammar notation of JDOQL

A bibliography is also provided.

CD contents

The CD accompanying this book contains trial versions of the following JDO
implementations:

FastObjects™ by Poet

Kodo JDO™ by Solarmetric

LiDO™ by LIBeLIS

OpenFusion JDO™ by Prism Technologies.

Each of these products is described in Chapter 12, “JDO implementations.”
Please refer to the CD’s “readme.pdf” file for further information.

Source code for the significant examples from each chapter is available from
the author’s website:

http://www.0OgilviePartners.com

Preface xvii

JDO version information

This book covers J]DO 1.0.
The Java examples are compliant with JDK 1.3.1_01 and J2EE 1.3.

About the author

Robin Roos studied at St. Andrews College and Rhodes University, South Africa,
graduating with a B.Sc. in Computer Science and Physics, 1988, and a B.Sc.
(Hons) in Computer Science in 1989. He worked extensively with relational
databases and various procedural and object-orientated languages (including
Forte) before learning Java in 1996. Since then, Robin has worked on numerous
Java and J2EE projects. His experience of database access through Java using
both JDBC and Entity Bean technology led him to believe there had to be a
better way. He joined the JDO Expert Group (JSR12) during 2001.

Robin is Principal Consultant at Ogilvie Partners Ltd, a UK-based consulting
company that delivers training, mentoring, and consultancy to an increasingly
worldwide client base. Ogilvie Partners’ focus on JDO is complemented by its
project-related background in core Java J2EE technologies.

Robin has spoken on the topic of JDO at user groups and conferences across
the UK, Europe and the USA. His contact details are:

Robin@QgilviePartners.com
http://www.OgilviePartners.com

About the cover illustration

The illustration on the cover of Java Data Objects is the work of Sara Connell
based on a theme by the Author. The cover was designed by Mike Rogers. The
coffee beans fed into the process represent ordinary Java classes. The process
itself, culminating in a Delft coffee grinder that hangs in the Author’s kitchen,
represents JDO enhancement. Finally, the ground coffee obtained by turning
the grinder’s handle represents persistence-capable classes.

Understanding object
persistence

omething fantastic is happening in the world of Java. For years, the sup-

posedly straightforward task of loading and storing data has unnecessarily

complicated the development of Java applications. However, the arrival of
a new standard for object persistence will finally lay these issues to rest.

Java Data Objects (JDO) promises to revolutionize our industry. No longer
the delicate coding of Java Database Connectivity (JDBC) and Structured Query
Language (SQL) code, which has little or nothing to do with the business
requirements for an application! No longer the complexities of the Entity
Enterprise Java Beans (EJB) model of persistent data! No longer the lock-in to
relational storage technology! Finally we have, in JDO, an interface-based stan-
dard for the storage and retrieval of data, so-called object persistence.

The standard is just that, a standard. Developers write code against the stan-
dard. The code is executed in conjunction with an implementation of the
standard, called a JDO implementation. The choice of implementation will not
be dictated by core functionality, which is mandated by the JDO specification.
Instead this choice will be motivated by quality of service factors: performance,
scalability, customer service, price, support for the target data store, and also
the support provided for certain “optional” features of JDO, which are specified
as such and may be relevant for certain applications. Binary compatibility,
which the standard guarantees, facilitates the portability of an application from
one JDO implementation to another. This includes portability from implemen-
tations targeting relational databases to others targeting object databases.

Writing applications that can be executed against relational or object data-
bases without recompilation? This has got to be good!

As you will see throughout this book, the programming paradigm of JDO is
very simple to use. As with all application programming interfaces (API), JDO
has its complex aspects, but most of what developers require from a persistence
infrastructure is achieved quickly. This ease of development is so significant
that some Java architects are anticipating 20% reductions in development time
for applications utilizing JDO instead of JDBC, SQL and Entity EJBs.

To cap it all, JDO can be fully integrated with J2EE application server tech-
nology and its declarative and distributed transaction model.

So let’s get down to looking at JDO itself. The entire focus of JDO is the
transparent persistence of Java objects. You're going to hear these terms repeat-
edly throughout all of the chapters, so it would seem appropriate to begin by
establishing a common understanding of what they mean.

2 Understanding object persistence

1.1 What is object persistence?

In Java (and other object oriented programming languages) an object is an
instance of a class. As such it has state (its attribute values) and behavior (its
methods). The collection of all class definitions that comprise an application is
known as the application’s object model. These classes perform a variety of func-
tions: some render user interfaces; some manage system resources; some
represent application events. However, within each object model there is usu-
ally a distinct set of objects that are direct abstractions of business concepts —
typically with names to which non-technical business people would ascribe
meaning. In an order processing application these may be “Customer,” “Order,”
and “Product.” For a financial application they might be “Client,” “Account,”
“Credit Entry,” and “Debit Entry.” In each case these objects are modeling the
business domain in which the specific application will operate, and thus they
are collectively referred to as the domain object model.

The domain object model is of particular importance to application design-
ers. It is these objects that represent the primary state and behavior available
to the application. They will be the focus of many design workshops, since
they represent concepts which the application’s target user community under-
stand, and in which they have specific expertise. Perhaps most importantly, it
is these objects that typically need to be stored (somewhere and somehow)
between invocations of the application and shared between multiple simulta-
neous users.

The storage of these objects, beyond the lifetime of the Java Virtual Machine
(JVM) in which they were instantiated, is called object persistence.

There are, of course, other classes beyond those which fit naturally into the
domain object model, which may require persistence services (e.g. log messages).
Object persistence is by no means restricted to the domain object model, but it is
here that we find the majority of classes for which persistence must be provided.

1.2 Current techniques for persistence

Persistence requires the storage of object state for future retrieval. Various
underlying mechanisms are in use in the industry, but by far the most
common approach is to use a relational database management system
(RDBMS) accessed through a combination of JDBC and SQL. Alternative mech-
anisms include file system-based storage and object database management
systems (ODBMS). A persistence infrastructure is often layered on top of the
data store, examples being Entity Beans and Enterprise Application Integration
(EAI) frameworks.

Current techniques for persistence 3

1.2.1 Relational databases

RDBMS technology has been widely adopted in the last 15 years because of its
freeform definition of data (rows and columns), flexibility of ad hoc queries, and
transactional reliability (begin, rollback, commit). Due to extensive standardization
efforts in the RDBMS market, all such databases can be invoked using the SQL.
Although variations exist in the SQL dialects used by various databases, support for
the SQL-92 standard is relatively widespread.

What are transactions?

A transaction is a grouping of work that an application wants to happen all
together, or not at all. Typically transactions include multiple updates to
data, either in the same database or in different databases. However, it is
also viable for a transaction to contain one or no updates to databases.

The application is responsible for demarcating transactions, i.e. specify-
ing where they begin and end. All work performed between these two
points is deemed to be part of the transaction.

When the transaction is committed, all of the updates made are written
to the respective data stores. If any one of the updates cannot be per-
formed, then all of the updates are undone. This allows data to be kept in a
consistent state. The undoing of work is referred to a “rollback.” As well as
being a possible result of the commit process, the application can instruct
a transaction to rollback instead of commit.

Transactions are said to have four properties, the so-called ACID properties:

e Atomic (all or none of the work is performed).
e Consistent (data consistency is maintained).

e Isolated (the degree to which updates in one transaction may be seen by
reads in another transaction can often be controlled).

e Durable (work which is committed as part of a transaction remains
committed).

Transaction management in JDO is covered in detail in Chapters 7 and 11.

Java applications using relational databases for persistence typically invoke
the database by passing SQL commands to the database server through an API
called Java Database Connectivity (JDBC). SQL statements are constructed as
string objects, which are then passed to the database server for compilation and
execution. The statements may be parameterized in certain circumstances,
enabling the execution of that statement multiple times for the expense of a
single compilation. Data retrieved from the database is returned to the Java
application in the form of a Resu1tSet, containing multiple rows and columns.

4 Understanding object persistence

Use of JDBC for the persistence of objects, although widespread, presents a
number of difficulties. Firstly, the developer must know SQL and use it to
implement every manipulation of persistent data. Secondly, the developer must
map object attributes to the columns of one or more tables. This mapping is
often non-intuitive, and is required because of the so-called “impedance mis-
match” between the notions of an object and a database row. Thirdly, once
implemented, the relative lack of portability offered by SQL may restrict the
persistence code from working unaltered against an alternative RDBMS imple-
mentation, thereby locking the application into one vendor’s technology.
Finally, the weak type-checking and deferred compilation of SQL statements
means that many errors cannot be detected at compilation time, although this
can be mitigated when tools such as SQL/J are used.

1.2.2 File system

File systems are usually considered to be lightweight storage solutions. A file
system is capable of storing data in files of a user-defined format, but does not
inherently support transactions or automatic data integrity functions.

The one advantage that file systems do provide is that they require little by way
of supporting services beyond the operating system itself. As such they are com-
monly used for persistence within embedded applications where system resources
are constrained (e.g. the contact list on your mobile phone). However, they are
generally not considered appropriate for business-critical transactional information.

Java applications storing data in a file system would usually do so with the
java.io API, and may additionally use Java’s object serialization facilities. This
turns any Serializable object graph into a stream of bytes for network trans-
mission or storage, from which a copy of the original object graph may later be
reconstructed. Serialization techniques such as this suffer from the abject lack
of any query capabilities, and are typically used only when the total data set
can be conveniently held in memory.

1.2.3 Object databases

ODBMS are storage environments for objects. The internal representation in
which each object is held is hidden from the application developer, who
instead uses an API for persisting and retrieving objects. Although they can be
extremely efficient at such activity, ODBMS have historically suffered from a
lack of ad hoc query capabilities, or inefficiencies where such capabilities do
exist. The lack of well-implemented standards for the invocation of persistence
services, and the inevitable lock-in of an application to a proprietary vendor’s
product, have also constrained the adoption of this technology. The ODMG did
put together a standard API for accessing object databases, but this has done rel-
atively little to improve the industry’s uptake of object database technology.

Object persistence with JDO 5

1.2.4 Entity beans

Entity beans are part of the J2EE EJB specification. They provide a standard way
of representing persistent data application components that can be shared across
many simultaneous remote and local client connections. Although the session
bean and message-driven bean aspects of EJB have been widely successful, a vari-
ety of design flaws in the entity bean model hinder its suitability for the
representation of persistent data.

Some of these flaws have been addressed in the EJB 2.0 specification (e.g. new
local interfaces providing an alternative to the slower remote interface previously
available). However, the semantic differences between local (pass by reference)
and remote (pass by value) invocation introduce further issues. Other concerning
aspects of entity beans remain (e.g. the lack of meaningful support for inheri-
tance). Additionally, the persistence and query functions of entity beans must
usually be coded by hand (in SQL with JDBC) or described by hand (in Enterprise
JavaBean Query Language (EJBQL) which stems from SQL). Finally, the concur-
rency issues endemic in EJB’s threading model, combined with the capability for
gross inefficiency when manipulating large data sets, mean that entity beans have
regularly failed to meet applications’ requirements for object persistence.

1.3 Object persistence with JDO

JDO is different. Rather than providing the means for developers to write persis-
tence infrastructure code that accesses a data store, JDO successfully eliminates
the need for such development effort.

Developers first write the classes for which persistence services are required (the
so-called persistence-capable classes) — typically this constitutes the domain object
model. Then an eXtensible Markup Language (XML) document called the persistence
descriptor is written. This text document, in its simplest form, merely identifies the
names of the persistence-capable classes. An enhancement process is invoked which
reads the XML descriptor, and adds into each nominated class the additional methods
required for the setting and retrieving of attribute values by a JDO implementation.

Enhancement vs. hand-coding

Whilst all JDO instances must implement the PersistenceCapable
interface, and this is the primary purpose of enhancement, JDO does
not mandate that the enhancement tool be used for this purpose. It is
perfectly legal for a developer to hand-code a class to implement the
PersistenceCapable interface.

However, the corresponding method implementations must be coded
very carefully, and there would appear to be no advantage to hand-coding
over the transparency, accuracy, and ease of tool-based enhancement.

6 Understanding object persistence

A side effect of the enhancement process may be the generation of Data
Definition Language (DDL) scripts for the definition of the necessary storage in
a specified data store. Some JDO vendors choose to provide a separate schema
tool for this purpose, while it is common for object database implementations
not to require such a step. Once these scripts have been executed, everything is
in place for persistence to occur.

Naturally it tends not to be domain objects that invoke persistence services
themselves, but rather it is application objects that do so in order to persist and
retrieve instances of the domain objects. The application developer writes these
invocations against a standard JDO interface called PersistenceManager. The
invocations themselves are easy to use (see Chapter 2).

With the persistence descriptor written, the domain objects enhanced, the
storage defined as required, and the application’s invocation of the persistence
manager written, the application is ready to run.

Notice that we have referred to a data store, but not stated what type of data store
is in use. JDO itself provides the interfaces by which persistence services can be
invoked. These services are invoked on a JDO implementation, which is a product
purchased not directly for its functionality (since JDO defines that functionality) but
rather for its quality of service against the target data store. For the application to
execute against a particular relational database, we would define the storage in that
database and use an appropriate JDO implementation. To use a different data store
(perhaps an object database) we merely define the storage in that data store as
required, and use an alternative JDO implementation. No developer effort is required
(not even recompilation) when migrating a JDO-based application from one data
store to another, even when moving across storage paradigms (e.g. between rela-
tional databases, object databases, and lightweight file systems for embedded usage).

Closure of instances

I have referred to the “closure of all persistent instances referenced from
any one persistent instance,” which warrants further explanation.

Imagine a simple banking object model where a C1ient has references
to many Account objects, and each Account has reference to many
AccountActivity objects (perhaps including Deposit, Withdrawal, and
ChequePayment activities).

Given a particular client, the closure of instances includes all the
Account instances referenced by the Client, plus all of the
AccountActivitys referenced by each Account.

A group of objects that reference each other is called an object graph.
Obiject graphs can be fairly large, particularly when considering the graph
of objects reachable from the Bank object, which presumably holds refer-
ences to every Client.

Of course, a persistence-capable class may have some fields that are
themselves persistent, and other fields that are not. The default assign-

Object persistence with JDO 7

ments can be overridden in the persistence descriptor by assigning field-
level persistence modifiers of persistent, transactional, or none.

The closure of all persistent instances referenced from any one persis-
tent instance is the object graph arising from traversal of persistent field
references only (not those marked transactional or none).

JDO manages this transparently, allowing the application to believe that
the entire persistent object graph is in memory, when actually it is in the
data store and a small subset is present in the persistence manager’s cache.

In Chapter 11, we will consider the serialization of JDO instances. You
will see then that the serialized object graph contains instances referenced
by all persistent fields except those fields that are “non-serializable.” Non-
serializable fields are defined with the Java modifier transient. Thus
application designers can limit the size of serialized object graphs without
impacting the transparent persistent features afforded by JDO.

When we say that J]DO implements transparent persistence, one of the three
meanings we ascribe the phrase is that which was conveyed above; portability
across data storage paradigms and products. Another one is the illusion given to an
application that it has in-memory access to the closure of all persistence instances
referenced from any one persistent instance (despite the fact that most of this
potentially large set of instances will be on disk and not actually in memory).

For me, however, the most important meaning is that of persistence being
transparent to the domain object model: designers are largely free to design the
domain model so that it most accurately abstracts the business domain, and
can then apply persistence to that model, without having designed the model
with persistence foremost in mind. The ability of JDO to persist graphs of
objects including inheritance and implementation hierarchies, in much the
same manner as an ODBMS but with the advantages of a standard API and a
pluggable (potentially non-object oriented) data store, finally frees the designer
to use all that is good in object modeling techniques.

Hopefully the power of this new technology is becoming apparent to you.
Developers can write applications that exploit highly performant and transac-
tionally robust persistence services:

without writing any supporting infrastructure code;
without lock-in to a particular data store vendor’s product;
without any requirement for SQL knowledge, let alone SQL expertise;

with complete portability and binary compatibility across those data storage
paradigms and products for which a JDO implementation is available;

e with transparency to the domain object model;

e with transparency to the state (in-memory or on-disk) of the closure of refer-
enced persistent object instances;

e with a standard API by which applications can invoke persistence services.

8 Understanding object persistence

As a result, developers are finally able to concentrate their efforts on the business
domain aspects of the applications they write, instead of spending 40-60% of
their time writing supporting infrastructure which is essentially non-functional.
This focus on functional aspects is accentuated when JDO is combined with
session and message-driven beans, in order to exploit the declarative security and
transaction management afforded by J2EE-compliant application servers.

1.4 JDO positioning

Before we move on to discuss a simple JDO example, I present in Table 1.1 a
brief comparison of the persistence mechanisms discussed above. This is
intended to help position JDO with respect to alternative persistence APIs. The
superscripts! through* refer to notes that appear beneath the table.

Table 1.1 Comparison of persistence technologies

Serialization JDBC ODBMS EJB JDO
Transactional v 4 v 4
Query facility t 4 v v v v
Standard API v java.io v JDBC % ODMG! v EJB v JDO
Standard query
language ® % SQL? ® OQL v EJBQL v JDOQL
Supported data File system RDBMS ODBMS RDBMS, RDBMS,
store paradigm EAI ODBMS,
EAl, File system,
others
Transparent to closure of
persistent instances x x v 3 v
Transparent to domain model ® ® v 3 4
True object database 3 ® v ® %3
Supports existing table
structure ® v 3 v
Notes:

1. This standard is not widely implemented.

2. Although widely implemented, vendor-specific interpretations and extensions of the standard proliferate.

3. JDO queries only support the invocation of methods which (a) return a single persistent field value, and (b) are
non-mutating. True object databases would support the invocation of any method. However, JDO is not an
object database, but an object oriented interface to data storage which may or may not be implemented in the
ODBMS paradigm. The restriction stated above facilitates the implementation of JDO against non-object data
stores, and provides for extremely efficient query execution (as there is no need to instantiate objects in order
to determine whether they fulfill query filter criteria).

4. Although this is not mandated or standardized by the JDO specification, all JDO vendors with implementations
for relational databases expose the object-relational mapping to the developer.

JDO positioning 9

What’s next?

In the next chapter we will look at the Java code and XML persistence descrip-
tor for a simple example of persisting objects with JDO.

Developing a simple
example

tion. The application uses JDO to create and persist instances of that class in

I n this chapter we develop a single persistence-capable class and an applica-
the database and to list all instances of the class that have been persisted.

2.1 Order processing domain

The first thing we need for a simple example is a business domain within which
to work. I have chosen to model an order processing application. In the fullness
of time; our model will contain classes called “BusinessPartner,” “Customer,”
“Order,” “OrderLine,” “Product,” etc. However, in the first case we will start
with just one business entity, the “BusinessPartner” class.

A BusinessPartner is an entity with which the user of the application does
business. In our example this will represent a company or individual that places
orders for our products. Simplistic treatments of this topic would call the class
“Customer,” but “Customer” is actually one of many roles that may be played
by a business partner, hence my choice of class names.

The attributes of our BusinessPartner class will be partner number, name,
and address. For now we will provide simple accessor (get) and mutator (set)
methods for each attribute.

Please note that JDO does not require field accessor or mutator methods to be
defined in persistence-capable classes. JDO reads and writes the values of persistent
or transactional fields through methods of the PersistenceCapable interface,
which all enhanced classes implement. We provide accessors and mutators in
this example, but they are for the application’s use and are not required by JDO.
(Earlier attempts at persistence services for Java typically required such methods,
which adversely affect both transparency and encapsulation.)

Using “property” notation (instead of listing each attribute and each accessor
and mutator method independently), the Unified Modeling Language (UML)
class diagram for BusinessPartner is shown on Figure 2.1.

The package structure used for this example, and throughout, is shown in
Table 2.1.

10

Order processing domain

BusinessPartner <« class name

<« attributes

+toString():String <«——— methods

name:String
address:String
partnerNumber:String

«—— properties

Figure 2.1 UML representation of BusinessPartner

Here is the Java code that implements the BusinessPartner class:

Table 2.1 Package structure

Package

Description

com.ogilviepartners.jdo
com.ogilviepartners.jdo.gui
com.ogilviepartners.jdobook
com.ogilviepartners.jdobook.op
com.ogilviepartners.jdobook.op.pk
com.ogilviepartners.jdobook.op.ex
com.ogilviepartners.jdobook.op.j2ee
com.ogilviepartners.jdobook.other
com.ogilviepartners.jdobook.app
com.ogilviepartners.jdobook.app.gui

JDO support classes for use in your own projects
Dynamic query window

Examples specific to this book

The order processing domain package

Primary key classes

Exception classes

J2EE components and helper classes

Examples outside the order processing domain
Text-based application code

GUI-based application code

BusinessPartner.java

package com.ogilviepartners.jdobook.op;

public class BusinessPartner {

protected String name;
protected String partnerNumber;

protected String address;

public String toString() {

return "BusinessPartner (number=

+ partnerNumber
+ name +

+ "name=

"address=" + address + ")";

11

12 Developing a simple example

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

public void setAddress(String address) {
this.address = address;

public String getAddress() {
return address;

public void setPartnerNumber (String partnerNumber) {
this.partnerNumber = partnerNumber;

public String getPartnerNumber() {
return partnerNumber;

}

The application will manage the persistence lifecycle of BusinessPartner
instances through the PersistenceManager interface. An instance of a class
implementing the PersistenceManager interface is obtained from an appro-
priately configured PersistenceManagerFactory.

To obtain a reference to the PersistenceManager I make use of a supporting
class called JDOBootstrap. This is not part of the javax.jdo package; it is one
that I have provided, the source code for which is described later. This class reads
properties from the file jdo.properties that defines the connection factory infor-
mation required to initialize a PersistenceManagerFactory. It then provides a
single method getPersistenceManager () that returns a PersistenceManager
object. The JDO implementation I am using will store objects in any JDBC-compli-
ant data store, so the properties passed to the PersistenceManagerFactory
largely contain JDBC connection information. An example property file is shown
below. The JDOBootstrap class will be discussed at a later stage.

jdo.properties

javax.jdo.PersistenceManagerFactoryClass=\
com.prismt.j2ee.jdo.PersistenceManagerFactoryImpl
javax.jdo.option.ConnectionUserName=sa
javax.jdo.option.ConnectionPassword=
javax.jdo.option.ConnectionURL=jdbc:hsqldb:hsql://Tocalhost
javax.jdo.option.ConnectionDriverName=org.hsqldb.jdbcDriver

(Note that the backslash character \ above indicates the first line should be
continuous.)

Order processing domain 13

The application itself will be run from the command-line. It will accept, as
command-line arguments, values for each attribute of a BusinessPartner to be
created. Since everything will happen within the application’s main() method,
all variables can be local to that method. We need to hold references to the
JDOBootstrap, PersistenceManagerFactory, PersistenceManager,
Transaction, and BusinessPartner.

JDOBootstrap bootstrap;
PersistenceManagerFactory pmf;
PersistenceManager pm;
Transaction t;
BusinessPartner bp;

First of all we instantiate the JDOBootstrap, which reads jdo.properties and
configures a PersistenceManagerFactory object, and then we invoke its
getPersistenceManagerFactory () method to obtain our reference to the fac-
tory. From this a persistence manager is acquired with a call to
getPersistenceManager (). That done, a reference to the persistence manager’s
Transaction object is obtained.

bootstrap = new JDOBootstrap();

pmf = bootstrap.getPersistenceManagerFactory();
pm = pmf.getPersistenceManager();

t = pm.currentTransaction();

The command-line arguments are then used to construct and initialize a new
BusinessPartner object. At this point the object is transient - it has not yet
been made persistent and its lifetime is constrained by the lifetime of the JVM
in which it was instantiated.

bp = new BusinessPartner();
bp.setPartnerNumber (args[0]);
bp.setName(args[1]);
bp.setAddress(args[2]);

Now it is time to begin a transaction and store (make persistent) the new
BusinessPartner object. After doing this, the current transaction is committed.

t.begin();
pm.makePersistent (bp);
t.commit();

Having persisted the new BusinessPartner object, the application lists all
persistent BusinessPartner objects from the data store. This is achieved using
the Extent interface. An extent represents the complete set of all instances of a
given class in the data store, optionally including or excluding subclasses.
Extents have no filter facilities and as such are very distinct from queries.

Note that constructing the Extent object does not actually cause the
retrieval or caching of any data store entities. An Extent is a small object that

14 Developing a simple example

merely encapsulates information about the class hierarchy it represents, and
provides methods for obtaining and closing Iterators.

Here we get the Extent of all BusinessPartner objects (including sub-
classes, even though there aren’t any yet), obtain an Iterator of the extent
and print each instance in turn. The Iterator is closed on the Extent at the
end. Once again the Transaction is committed.

Extent extPartner = pm.getExtent(BusinessPartner.class, true);
Iterator i = extPartner.iterator();
System.out.printin("Listing partners:");
while (i.hasNext()) {
System.out.println(i.next());
}
System.out.println("Done.");
extPartner.close(i);//close the Iterator
t.commit();

Finally we close the PersistenceManager (so that it can neatly relinquish its
resources) before allowing the application to exit. This should be placed into
the finally block of a try statement, to ensure that it always occurs despite
the throwing of any exceptions. This has been ignored here for brevity.

pm.close();

The full source code for the application appears at the end of this chapter so that
these extracts can be seen in context with the appropriate imports and so on.

Now that we have the domain object and the application, it’s time to write
the persistence descriptor. We will use a simple persistence descriptor that has
the same name as the BusinessPartner class and merely identifies that class
for enhancement.

BusinessPartner.jdo

<?xm1 version="1.0" encoding="UTF-8" 7>
<IDOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">
<jdo>
<package name="op">
<class name="BusinessPartner" />
</package>
</jdo>

The enhancement phase is next. I have encapsulated the enhancer invocation
command into a simple script called “enhance” that takes a single persistence
descriptor filename as an argument.

C:\jdowork\ex1-2>enhance BusinessPartner.jdo
Enhancing xml1\BusinessPartner.jdo
Parsing JDO Descriptor File(s).

Discussion 15

Analysing op.BusinessPartner
Analysis complete.

Enhancing op.BusinessPartner
Class Enhancement completed.
Populating Meta.

Writing Meta Classes.
Generating SQL Output.

C:\jdowork\ex1-2>

The enhancer I am using generates a DDL file called 1oad_a11.sq1, which I
then run in the SQL monitor of my database server in order to define the
required tables and columns. Once this is done, the application can be executed:

C:\jdowork\ex1-2>java app.TestBusinessPartner 1 Robin
"Milton Keynes"

Persisting BusinessPartner (number=1 name=Robin
address=Milton Keynes)

Listing partners:

BusinessPartner (number=1 name=Robin address=Milton Keynes)
Done.

C:\jdowork\ex1-2>
A second execution proves that the first BusinessPartner has in fact been persisted:

C:\jdowork\ex1-2>java app.TestBusinessPartner 1 Cathy London
Persisting BusinessPartner (number=2 name=Cathy
address=London)

Listing partners:

BusinessPartner (number=2 name=Cathy address=London)
BusinessPartner (number=1 name=Robin address=Milton Keynes)
Done.

C:\jdowork\ex1-2>

2.2 Discussion

The book’s accompanying CD contains trial versions of several JDO implemen-
tations, whilst the source code and the enhance and compile scripts that I
used for the examples are available from my website:

http://www.0OgilviePartners.com

I recommend you now install the software and compile, enhance, and execute
this example.

16 Developing a simple example

It would now seem appropriate to discuss briefly what the application
is actually doing and how it works; more detail will follow in the forthcoming
chapters.

The first thing to notice is that we are using a relational database. However,
the only information specific to this fact are the lines of the jdo.proper-
ties file pertinent to the connection factory (the ConnectionURL and
ConnectionDriver properties). There is no JDBC code, there is no SQL, and
the classes we have written could easily be executed against an alternative
JDO implementation without recompilation, let alone any alteration at source
code level.

The flow of activities described for this simple example shows the applica-
tion being written before the enhancement phase. In this case there is no
dependency between these actions. However, where more complicated domain
object models are being used and the enhancer is responsible for generating pri-
mary key classes, the enhancement phase must be performed before the
application can be compiled.

Note that this is only a requirement where the enhancer tool is generating
class files that are referenced by the application, and only if the corresponding
Object ID class is non-existent or the primary key fields have been altered.
Class files do not have to be enhanced again when porting from one imple-
mentation to another, thanks to the binary compatibility mandated by the
JDO specification.

2.2.1 Enhancement and PersistenceCapable

The enhancement tool has worked some magic on our BusinessPartner
class. The enhancer actually reads one set of byte code and generates a new set
of byte code, and so can be used without access to class source code. The
enhanced BusinessPartner class implements an interface from the
javax.jdo.spi package called PersistenceCapable. This interface, part of
the service provider’s interface (SPI) package, is internal to JDO and should
never be referred to by the application. It provides methods by which a
PersistenceManager can read and write the values of persistent and transac-
tional fields.

Our simple persistence descriptor did not specify which fields of
BusinessPartner were to be made persistent, so by default all fields (regard-
less of visibility) are persistent except for those defined with the Java modifiers
final, static, or transient. In this case it is clear that the partner number,
name, and address fields will all be persistent fields by default.

Attributes vs. fields

In Java we refer to classes having attributes and methods.

When using relational databases we refer to the columns of an individ-
ual table row as being its fields.

This name has been applied in JDO, and the persistent attributes of per-
sistence-capable classes are referred to as persistent fields.

Although enhanced classes implement the PersistenceCapable interface,
you can largely ignore it as you, the application developer, should never directly
invoke methods of the PersistenceCapable interface on your domain objects.

2.2.2 JDOBootstrap and the PersistenceManagerFactory

Persistence manager instances are initially obtained from a persistence manager
factory. JDO provides a standard mechanism for instantiating the factory that
uses a Properties object to specify factory configuration information. The
method used to achieve this is:

JDOHelper.createPersistenceManagerFactory (Properties p)

There is no specific reason why an application should not invoke this method
directly. However, I have chosen to encapsulate this method within the
JDOBootstrap class, which obtains the property values from a text file
jdo.properties. Neither the JDOBootstrap class nor the jdo.properties
file are part of the JDO standard, although the names of the properties for use
in configuring the factory most certainly are (see Appendix A). The source code
for JDOBootstrap is included in the downloadable distribution
(http://www.OgilviePartners.com) and I hope you will find it useful in
your own JDO-based projects.

2.2.3 Transactions

We deal with JDO transactions in detail in Chapter 7, but for now you need to
know that a single persistence manager has, at most, one active transaction. As
such there is only ever one Transaction object associated with a given persis-
tence manager. It is necessary for the developer to perform begin() and
commit () method invocations against this Transaction object. Applications
requiring multiple simultaneous independent transactions must obtain a corre-
sponding number of persistence managers from the factory.

Transaction management gets significantly more involved when JDO is used
within a J2EE application server, but that is an advanced topic that we will not
discuss in detail until Chapter 11.

Discussion

17

18 Developing a simple example

2.2.4 Transient vs. persistent

A transient object is one that does not directly reflect data in a data store. Most
objects in your Java applications are transient, and when the BusinessPartner
object is first instantiated, it too is transient (despite the fact that as an enhanced
class it is persistence-capable).

A persistent object is one that does directly reflect data in a data store. The
extent to which the data cached in the object is up to date with any recent
modifications to the data store is dependent on the transaction management
strategy being employed (more on that in Chapter 7). Alterations made to a
persistent instance will normally be reflected in the data store on commit, or
reversed on rollback of the current transaction.

To transition the new BusinessPartner object from being transient to
being persistent we simply call the PersistenceManager.makePersistent
(Object pc) method. The transient and persistent states, amongst others, are
described in more detail in Chapter 4.

2.2.,5 Ilterating the extent

The simplest way to obtain all persistent instances of a given
PersistenceCapable class is to obtain the extent of that class from the
PersistenceManager. Extents represent all persistent instances of a given
class or class hierarchy.

Extents are iterated through a java.util.Iterator obtained by invoking
the Extent’s dterator() method. Fach call to the iterator’s next () method
returns the next object in the extent; in this case the next BusinessPartner
object. Ordinarily one would cast the objects returned by next () into the appro-
priate class, but that is not necessary in this case as we are merely printing out
each object by an implicit call to the BusinessPartner.toString() method.

JDO vendors should provide Iterator implementations that handle large
volumes of data in an efficient manner. However, extents provide no filtering
facilities; an extent is always the entire extent. The JDO Query Language pro-
vides comprehensive query facilities that we will cover in Chapter 8. Since this
application does process every persistent instance, using the extent is appropri-
ate and illustrates that BusinessPartner objects are indeed being correctly
persisted to the data store.

2.3 Application source code

As promised, here then is the full source code for the application.

TestBusinessPartner.java

package com.ogilviepartners.jdobook.app;

import javax.jdo.*;
import com.ogilviepartners.jdo.JDOBootstrap;

Application source code

import com.ogilviepartners.jdobook.op.BusinessPartner;
import java.util.Iterator;

public class TestBusinessPartner
{
public static void main(String[] args) {

JDOBootstrap bootstrap;
PersistenceManagerFactory pmf;
PersistenceManager pm;
Transaction t;
BusinessPartner bp;

/'l check the arguments
if (args.length != 3) {
System.out.println("usage: java " +
"TestBusinessPartner <partnerNumber> " +
"<name> <address>");
System.exit(1);
}

/'l instantiate the PersistenceManagerFactory and obtain
/'l a PersistenceManager
bootstrap = new JDOBootstrap();
pmf = bootstrap.getPersistenceManagerFactory();
pm = pmf.getPersistenceManager();
try {
/] get a reference to the Transaction object
t = pm.currentTransaction();

/| create a (transient) BusinessPartner
bp = new BusinessPartner();
bp.setPartnerNumber (args[0]);
bp.setName(args[1]);
bp.setAddress(args[2]);

/| persist the BusinessPartner
System.out.println("Persisting " + bp);
t.begin();

pm.makePersistent (bp);

t.commit();

/] obtain Extent of BusinessPartner and iterate
/! contents
t.begin();
Extent extPartner =
pm.getExtent (BusinessPartner.class, false);

19

20 Developing a simple example

Iterator i = extPartner.iterator();

System.out.println("Listing partners:");

while (i.hasNext()) {
System.out.printin(i.next());

}

System.out.printin("Done.");

extPartner.close(i);

t.commit();

}

finally ({
/'l close resources
pm.close();

}

What’s next?

In the next chapter we will build on these concepts as we look into the JDO
architecture in significantly more detail.

JDO architecture

architectural points raised here is necessary to facilitate your correct use of

I n this chapter we discuss the JDO architecture. An understanding of the
JDO and your understanding of the more advanced topics covered later.

3.1 JDO implementations and vendors

The JDO package javax.jdo, which is freely available from Sun
Microsystems, is largely made up of interface definitions. It also contains a few
concrete classes, notably JDOHelper and the JDO exception classes. It is
through these interfaces that applications have access to the functionality of
object persistence. The most important one is PersistenceManager, through
which transient instances can be made persistent, persistent instances deleted,
and so on. However, we have already used two others, namely Transaction
and Extent.

These standard interfaces, although a comprehensive description of persis-
tence functionality, are not in themselves sufficient to actually implement
persistence. What is needed is a set of concrete classes implementing the respec-
tive interface definitions, which will undertake persistence operations when
invoked to do so. A set of such classes is known as a JDO implementation.

JDO implementations are data store-specific. Some work against any JDBC-
compliant database. Others may work with only a specific relational database in
order to exploit potential optimizations. Still others work with certain object
databases, file system formats, or provide integration to specific enterprise
applications. In some cases a spread of implementations for different data stores
may be grouped together under a single product name.

A company that markets a JDO implementation is known as a JDO vendor. A
selection of commercial and non-commercial JDO vendors and their JDO
implementations is given in Chapter 12. I maintain and regularly update an
online list of vendors and implementations on the Ogilvie Partners website,
http://www.0OgilviePartners.com. Another good source of information is
http://www.JDOcentral.com.

Most JDO implementations are shipped with an enhancement tool.
Technically this is unnecessary as the binary compatibility specified in the JDO
specification allows any class that correctly implements PersistenceCapable
(whether by hand or by enhancement) to be manipulated by any compliant
JDO implementation. Therefore it should be sufficient to use the reference

21

22 JDO architecture

enhancement tool in all cases. However, each vendor tends to add value to
the enhancement process through the use of <extension> tags in the descriptor,
and the generation of DDL scripts to define the requisite storage in the target
data store. Such scripts are extremely useful, and as a result it is common
practice to use the vendor-provided enhancement tool.

3.2 JDO instances

In our simple example (see Chapter 2) we defined a single domain object
BusinessPartner. This class was then enhanced according to its persistence
descriptor. The enhanced class implements the PersistenceCapable interface
and provides implementations of all the PersistenceCapable methods. We
then used the enhanced class in our application.

The term /DO instance is used to describe any instance of a Java language
class which implements the PersistenceCapable interface which the imple-
mentation is capable of managing. Some implementations, largely dictated by
the underlying data store, require storage areas to be explicitly defined for each
class before that class can be managed. This is more typical of object-relational
mapping implementations (with an underlying relational database) than of
object databases.

3.3 JDO environments

JDO is intended for use in two specific architectural spaces. The most straight-
forward environment is one in which an application directly invokes the
services of an implementation. Our simple BusinessPartner example from
Chapter 2 works in this way. This is the so-called non-managed environment.

The second environment is that in which the persistence functions of a per-
sistence manager are invoked by application components running within a
J2EE application server. This more complicated environment requires that ven-
dors integrate their JDO implementations with the J2EE transaction and
connector architectures. This is the so-called managed environment.

3.3.1 Non-managed environment

In the non-managed environment, an application is itself responsible for all
interactions with the implementation. This includes configuring the
PersistenceManagerFactory, obtaining the PersistenceManager, demar-
cating transactions (with appropriate begin(), commit() and rollback()
invocations), and all persistence operations on instances. Architecturally this is
shown in Figure 3.1.

Application

JDO
implementation

Data store-specific API

Data store .

Figure 3.1 The non-managed environment

Applications using JDO in this manner generally configure a factory and
obtain a PersistenceManager reference from the factory at startup and retain
that reference until the application is closed. Heavily multithreaded applica-
tions, however, may rely on the pooling characteristics of the persistence
manager factory, which maintains a pool of persistence managers. In such cases
the application will get a persistence manager from the factory, use it, and then
immediately return it to the pool by invoking its close () method.

3.3.2 Managed environment

In the managed environment JDO is integrated within a J2EE application
server. Application components executing within the application server still
invoke the PersistenceManager in the usual way. However, they would
expect to obtain the PersistenceManagerFactory reference from the Java
Naming and Directory Interface (JNDI) context of the application server.

All transaction management is coordinated between JDO and the application
server. This enables components to exploit the declarative transaction demar-
cation model provided by J2EE, or to control it manually with bean-managed
transactions (BMT) as appropriate. In the managed environment, applications
tend to access data stores through JCA, providing maximum flexibility (Figure
3.2). Finally PersistenceManagers are pooled to reduce resource usage and
facilitate scalability. Thus an application component using the services of a
PersistenceManager should obtain it from the factory, use it, and close it
immediately.

JDO environments 23

24 JDO architecture

Application server Java virtual machine

/ Application server\

infrastructure

Container/component contract

Application

Synchronization contract

component

JDO
implementation

-
< ,
Connection management
Connector contract
g

EIS-specific | API

Transaction
manager

Resource
adapter

XA resource

- /

system

Enterprise
information

Figure 3.2 Managed environment

3.3.3 Comparison

Table 3.1 illustrates the most important differences between the two environments.

Table 3.1 Non-managed environment vs. managed environment

Non-managed

Managed

Invoked by an application that is
outside a J2EE server

Application must configure the factory

Application must demarcate
transactions programmatically

Invoked by application components
inside a J2EE application server

Application components obtain a
pre-configured factory from JNDI

Application components may use
declarative (CMT) or programmatic (BMT)
transaction demarcation

Persistence managers are pooled and
application components must not hold
references to a persistence manager
beyond business method invocations

Persistent vs. transient

3.4 Persistent vs. transient

JDO instances may be persistent or transient. When an instance is first instanti-
ated via the new operator it is transient.

BusinessPartner bp = new BusinessPartner();

Such objects are no different to instances of the un-enhanced Java class (except
in so far as they can have their state interrogated via the JDOHelper class; I'll
discuss how in Chapter 6). Transient instances require no supporting persis-
tence infrastructure. By this [mean that a PersistenceManager instance
does not have to be present, although the JDO interfaces must be available
through the CLASSPATH. Furthermore they can be serialized and the serialized
form de-serialized into an instance of the un-enhanced class (possibly in a dif-
ferent JVM).

Transient objects do not directly reflect the data in the data store and are not
ordinarily subject to JDO transactions. Changes made to transient objects will
not be reflected in the data store unless the object is subsequently made persis-
tent (or unless this object is part of the closure of objects referenced - at
commit time — through the persistent fields of another instance which is made
persistent; so-called persistence by reachability). Transient objects live only as
long as they remain referenced within the JVM and the JVM continues run-
ning. If the last reference to a transient instance is discarded, through going out
of scope or being set to an alternative value, the instance will be eligible for
garbage collection. When the JVM is shut down, any remaining transient
objects will be destroyed.

Persistent instances represent persistent data that logically exists in a data
store. They have an inherent dependence upon the underlying JDO persistence
infrastructure and hold a reference to a local (same JVM) PersistenceManager
instance. Changes made to persistent instances will be reflected in the data
store, unless subject to transactional rollback.

Upon serialization, a persistent instance (which directly represents data in a
data store) is made transient. The data still exists in the data store, but the now
transient instance no longer directly represents that data. Changes subse-
quently made to the instance will not be reflected in the data store.

3.5 Transactional vs. non-transactional

As well as being transient or persistent, a JDO instance may be transactional or
non-transactional.

A transactional instance is one whose persistent and transactional field
values will be cached by the JDO implementation when the instance is first
involved with a transaction. Upon commit () the cached field values will be dis-
carded, but on rol1back () the cached values will be restored into those fields.

25

26 JDO architecture

Recall that the persistence descriptor can be used to declare a persistence
modifier for each field, identifying that field as persistent, transactional, or
none. Persistent fields are synchronized with the data store and are managed
transactionally. Transactional fields are not synchronized to the data store but
are managed transactionally. Hence the caching of field values and rollback
processing applies to fields that are persistent and fields that are transactional.

A non-transactional instance is one that is not subject to transactional roll-
back. Its persistent and transactional field values are not cached or restored by
the JDO implementation.

Most typically a transient instance would be non-transactional and a persis-
tent instance would be transactional.

3.6 Support for transactional/persistent instances

JDO is a very thorough definition of object persistence. However, not all
aspects of object persistence apply to all target data stores and applications.
Thus, whilst the core features of JDO are required, many JDO features are
declared to be optional. To be branded as JDO-compliant, an implementation
must support all of the specification’s required features. Vendors are at liberty
to choose which optional features they will support in order to best serve their
target customer base.

The JDO specification states that support is required for instances which are
persistent transactional. This is necessary in order to store data transactionally.
Transient non-transactional instances are supported by default, as they are effec-
tively standard Java objects and do not require management by JDO. The other
two combinations — transient transactional instances and persistent non-transac-
tional instances — are optional in JDO. If you intend to use them, you must select
a JDO implementation that explicitly provides the required support (Table 3.2).

Table 3.2 Support for JDO implementations

Transient Persistent
Non-transactional Unmanaged Optional
Transactional Optional Required

3.6.1 Transient transactional instances

A transient transactional instance is one that does not directly represent data in
the data store but whose persistent and transactional field values the JDO
Implementation will cache when the instance is first altered within a transac-
tion. Upon commit () the cached field values will be discarded, but on
rollback () the cached values will be restored into the instance’s fields.

The persistent fields are those that were deemed persistent by the enhancer,
whether explicitly (by individual mention in the persistence descriptor) or
implicitly (defaults being applied to fields that are not explicitly mentioned).
Despite use of the term persistent, these values are not actually stored whilst the
instance is transient.

Transient transactional instances might be used whenever a non-persistent
Java class, being altered within a transaction, must have its state kept in sync
with the state of persistent transactional instances being manipulated in the
same transaction.

If the JDO implementation in use does not support transient transactional
instances, an alternative approach would be to make use of the synchroniza-
tion capabilities of the transaction object. Such an approach is, however, far
more restrictive.

3.6.2 Persistent non-transactional instances

A persistent non-transactional instance is one which exists in the persistence
manager’s cache but which is not necessarily consistent with the data store.
They are used extensively in optimistic transactions.

The transaction interface, synchronization objects, and optimistic transac-
tions are all discussed in Chapter 7.

3.7 JDO identity

Some form of persistent object identity is required for each instance.
Applications use this to retrieve specific instances from the data store. Object
identity can also be used to maintain uniqueness constraints over the domain
objects where this is warranted (e.g. no two orders with the same order number).

In the Java language there are two forms of identity: equality and equivalence.

Equality is used to determine whether two Java references actually point to
the same object in memory, and makes use of the == operator. Equality does not
take into account the state (attribute values) of an object and cannot traverse
JVM processes in distributed applications. As such it is limited in its application.

Equivalence compares two (potentially non-equal) objects to determine whether
they both represent the same logical object, and makes use of the equals ()
method. Most applications already employ equality for their own comparisons.

In order to improve the transparency with which JDO can be applied to
existing object models, JDO defines its own concept of identity. Both of the
above techniques remain unaffected.

The three different types of identity defined by JDO are application identity,
datastore identity, and non-durable identity. The desired identity for each
instance is specified in the persistence descriptor.

JDO identity 27

28 JDO architecture

Internally the JDO implementation is responsible for ensuring that there is,
at most, one persistent JDO instance associated with a specific data store object
per persistence manager. This process is referred to as uniquing. The object that
encapsulates the identity of an instance is known as its Object ID, and the
underlying class definition its Object ID class.

3.7.1 Datastore identity

Datastore identity is the default identity mechanism. Identity is ascribed to the
object when it is made persistent. The manner in which this is achieved, and
the nature of the Object ID Class, are internal to the JDO implementation and
the data store. However, once the identity is determined it can be used in future
requests to retrieve that particular object.

Datastore identity is typically used for dependent objects. For instance, an
Order may have application identity (see 3.7.2) with a primary key comprised
of its order number, and the OrderLine objects contained within the order
may have datastore identity. Two OrderLine objects remain distinct from one
another through their internally-assigned identity (Figure 3.3).

Order OrderLine

orderLines

Application identit)j Datastore identityj

Figure 3.3 Order composition of OrderLine

Indeed this is such a common arrangement that it should be considered
wherever the UML composition relationship, indicated by the solid black dia-
mond, is used.

3.7.1.1 Example

In our simple example, the BusinessPartner class has datastore identity by
default. The identity type can be specified explicitly with the identity-type
attribute of the <class> tag, as shown below.

BusinessPartner.jdo

<?xml version="1.0" encoding="UTF-8" 7>
<IDOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">
<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="BusinessPartner"
identity-type="datastore" />
</package>
</jdo>

3.7.2 Application identity

With application identity the application is responsible for the identity of an
instance, which is derived from the values of a subset of its persistent fields. The
persistence descriptor is used to specify one or more persistent fields that will
make up a primary key for the instance, alongside a name for the class that will
act as the Object ID class. As such, application identity is often referred to as
primary key identity, and the Object ID class for such an instance is often referred
to as the primary key class. The application developer usually writes the primary
key class, although some enhancer tools are capable of generating them when
enhancing classes that use application identity.

Some restrictions exist regarding the primary key class. The class must be
public and implement java.io.Serializable. A no-argument constructor
and a string constructor must both exist. The toString() method must have
been overridden so that the string it returns can be used as an argument to the
string constructor, in order to create an equivalent instance of the primary key.
(The actual format for this string is the developer’s choice.) All non-static fields
must be primitives, or references to Serializable classes, and must be public.

For every field identified in the persistence descriptor as a primary key field
there must be a corresponding and identically named field in the primary key
class; all of these (and only these) fields must be utilized by the primary key
class’s equals () and hashcode () methods for the determination of equiva-
lence. There may be additional fields in the primary key class, but this is
unusual as they would play no part in the uniquing process.

The restrictions above enable a JDO primary key class to be interchangeable
with an Entity Bean primary key class, simplifying the integration of JDO with
the EJB architecture. This integration is covered in detail in Chapter 11.

3.7.2.1 Example

By virtue of its default datastore identity, the uniquing of BusinessPartner
instances has nothing to do with attribute values. Thus multiple BusinessPartner
instances may share the same partner number. Each one will have its own unique
Object ID assigned by the JDO implementation when it was made persistent.

JDO identity 29

30 JDO architecture

We can now correct this by assigning application identity to the
BusinessPartner class with a primary key comprised of its partner number.
First of all, I show below the primary key class BusinessPartnerPK. I have
chosen to put the primary key classes into a pk subpackage.

BusinessPartnerPK.java
package com.ogilviepartners.jdobook.op.pk;

public class BusinessPartnerPK

{

public String partnerNumber;

public boolean equals(Object that) {

try {
return equals((BusinessPartnerPK) that);
}

catch (ClassCastException cce) {
return false;
}
}

public boolean equals(BusinessPartnerPK that) ({
if (that == null) return false;
if (this == that) return true; // "equality" within
/1 the JVM
if (this.partnerNumber == null)
return that.partnerNumber == null;
return this.partnerNumber.equals(that.partnerNumber);

}

public int hashCode() {
return partnerNumber .hashCode();

}

public BusinessPartnerPK(String arg) {
this.partnerNumber = arg;

}

public BusinessPartnerPK() {

}

public String toString() {
return partnerNumber;

}

It is possible for an enhancer tool to generate Object ID classes when the developer
has not already written these. I perceive this as a good approach and very rarely
hand-write such classes. However, developers should be aware that applications
tend to have compile-time dependencies on the primary key classes, and so the
enhancement phase must have occurred prior to compiling the application classes.

Here then is the persistence descriptor that configures the application iden-
tity for BusinessPartner. The persistent fields that are part of the primary
key must now be explicitly listed. Any unlisted fields will be made persistent or
not according to the defaults mentioned in Chapter 2.

BusinessPartner.jdo

<?xm1 version="1.0" encoding="UTF-8" 7>
<IDOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">
<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="BusinessPartner"
identity-type="application”
objectid-class="com.ogilviepartners/
.jdobook.op.pk.BusinessPartnerPK">
<field name="partnerNumber"
primary-key="true" />
</class>
</package>
</jdo>

3.7.3 Non-durable JDO identity

Non-durable JDO identity is used for persistent objects where it is meaningless
to try to distinguish one from another. Since the determination and creation of
a data store key can be a resource-intensive operation, non-durable JDO identity
is most often used to support the rapid persistence of new instances.

An example of this might be the implementation of a JDO instance that rep-
resents system alert messages. By using non-durable JDO identity these objects
could be persisted very rapidly.

Many alerts, most of these duplicates of previously persisted alerts, may be
created over a period of time. The semantics of manipulating instances with
non-durable JDO identity are that if one is made persistent then there is one
more persistent instance than there was before. Equally, if one is deleted then
there is one fewer persistent instance than there was before.

Thus an application may facilitate the selection and deletion of a particular
alert containing the message “Sales Transaction Abandoned.” Once this opera-
tion has committed there will be one fewer alert with the message “Sales
Transaction Abandoned” than there was previously. We are not in the least bit
concerned with which particular one of potentially many such alerts (all with
identical persistent field values) was deleted.

JDO identity 31

32 JDO architecture

3.7.3.1 Example

Below is a sample persistence descriptor for a hypothetical AlertMessage class
for which non-durable JDO identity is required:

AlertMessage.jdo

<?xm1 version="1.0" encoding="UTF-8" 7>
<IDOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">

<jdo>

<package name="com.ogilviepartners.jdobook.op">

<class name="AlertMessage"

identity-type="nondurable" />

</package>
</jdo>

3.7.1 JDO identity comparison

Table 3.3 contrasts the three different JDO identity types.

Table 3.3 JDO identity comparison

Datastore Application Non-durable
identity identity identity
Is the default v t 4 ®
Uniquely identifies
persistent instances v 4 ®
Uses an Object ID Class v v b
Developer can provide
Obiject ID class % v b
Identity determined by
attribute values x v %
Subverts uniquing process
for rapid persistence of
transient instances x % v

What’s next?

In the next chapter we will examine the lifecycle states and associated state
transitions of JDO instances, and illustrate the Java code required to effect each

state transition.

Instance lifecycle

“Here come the state transition diagrams!”
Robin M. Roos

The Java Data Objects Training Course

ciated state transitions. During this chapter we examine each of those

states, and the code that an application might use in order to effect
each state transition. By studying these you will learn how to manipulate
instances within your application, and gain a greater understanding of the
underlying technology.

T he lifecycle of a JDO instance is governed by a series of states and asso-

4.1 Determining the state of an instance

The PersistenceManager internally knows the state of a JDO instance.
Although it is not possible for us to determine the state of an instance precisely
(some states being invisible to the application), we can get an excellent repre-
sentation of an instance’s state by using the JDOHe1per class.

Five methods of JDOHelper give us information from which an approxima-
tion of an instance’s state can be achieved. These are:

® public static boolean isDeleted(Object pc)
Returns true if the object has been deleted in the current transaction.

e public static boolean isDirty(Object pc)
Returns true if the object has had a persistent field value altered in the
current transaction.

@ public static boolean isNew(Object pc)
Returns true if the object has been newly made persistent in the current
transaction.
e public static boolean isPersistent(Object pc)
Returns true if the object is persistent (as opposed to transient).
@ public static boolean isTransactional (Object pc)
Returns true if the object is transactional (as opposed to non-transactional).

4

33

34 Instance lifecycle

In order to determine the approximate state of an object, I have encapsulated
calls to each of these methods in a single method of a new class StateHelper.

StateHelper.java
package com.ogilviepartners.jdo;
import javax.jdo.JDOHelper;

public class StateHelper

{
public static String determineState(Object pc) {
String s = "";
s += (JDOHelper.isPersistent(pc) ? "Persistent":"Transient");
s += (JDOHelper.isDirty(pc) ? "-Dirty" :"-Clean");
s += (JDOHelper.isNew(pc) ? "-New" "My
s += (JDOHelper.isDeleted(pc) ? "-Deleted" :"");
if (JDOHelper.isPersistent(pc)) {
s += (JDOHelper.isTransactional(pc) 7?7 ""
:"-Nontransactional");
}
else {
s += (JDOHelper.isTransactional(pc) ?
"-Transactional":"");
}
return s;
}
}
When invoked with a JDO instance as its parameter, this method returns strings
such as

"Persistent-Clean"
"Persistent-New-Deleted"
"Transient-Dirty-Transactional"

As you will see, these are very similar to the names of the lifecycle states themselves.

4.2 Required lifecycle states

The JDO specification contains two categories of lifecycle states: those that are
required by all compliant JDO implementations, and those that are optional and
need be present only if the implementation supports the corresponding optional
feature. The following are the lifecycle states required of all implementations.

Required lifecycle states 35

4.21 Transient

Instances instantiated through a developer-written constructor with the new
operator do not involve the persistence environment and behave like instances
of the un-enhanced class. There is no JDO identity associated with a transient
instance, and no intermediation on behalf of JDO to fetch or store persistent
field values.

Transient instances exhibit no transactional behavior. The class will proba-
bly have fields that are persistent or transactional, as per explicit persistence
modifiers in the persistence descriptor or the application of default persistence
modifiers. However, because the instance is transient, these fields will not
have their values cached and rolled back in sync with the persistence
manager’s transaction.

Persistence by reachability applies if this object is part of the closure of objects
referenced through the persistent fields of another instance that is made persis-
tent. In such a case the transient instance would become provisionally
persistent (and therefore transactional). If it was still referenced at commit time,
it would become persistent.

Method calls on transient instances do not throw any exceptions other than
those defined by the developer (and the usual unchecked exceptions which
have nothing to do with JDO). This is in contrast to non-transient instances,
the methods of which might throw runtime exceptions from the JDO exception
hierarchy. These exceptions are covered in detail in Chapter 9.

4.2.2 Persistent-New

This is the state of instances that have been made persistent during the current
transaction. During the transition from transient to persistent, the associated
persistence manager:

® becomes responsible for implementing state interrogation and further state
transitions;

® saves persistent and transactional non-persistent field values for use during
rollback;

e assigns a JDO identity to the instance.

4.2.3 Persistent-New-Deleted

JDO instances that have been newly made persistent and subsequently deleted,
both within the current transaction, are assigned the state Persistent-New-Deleted.
Attempts to read any persistent fields of the instance will throw a
JDOUserException unless the persistence-capable class employs application
identity, in which case read access to the primary key fields is permitted.

36

Instance lifecycle

4.2.4 Hollow

JDO instances that represent specific persistent data in the data store, but
whose field values have not been read from the data store, are Hollow. Hollow
instances have their JDO identity loaded, but not the values of their ordinary
(as opposed to primary key) persistent fields. This state provides for the guaran-
tee of uniqueness for transactional instances between transactions.

A JDO Implementation is permitted to effect a legal state transition from
Hollow at any time, as if a field had been read. Therefore the Hollow state may
not be visible to the application.

4.2.5 Persistent-Clean

JDO instances that represent specific transactional persistent data in the data
store and whose values have been read in the current transaction, but not
altered, are Persistent-Clean.

If no field values had been read in the current transaction then the instance
is more likely to be Hollow.

4.2.6 Persistent-Dirty

JDO instances that represent persistent data that was changed during the cur-
rent transaction are Persistent-Dirty.

If a field of a Persistent-Clean instance is modified, but the new value equals
the old one, the JDO vendor may choose whether to transition to Persistent-
Dirty. If no modification was made to any field, the instance will not be
transitioned to Persistent-Dirty. If a modification was made to any field which
changed that field’s value, the instance will be transitioned to Persistent-Dirty.

An instance can be made dirty through the makeDirty() method of the
JDOHelper class. This is useful only when recording changes made to persistent
fields of array type, since JDO does not mandate the automatic tracking of changes
for array fields. This technique and the JDOHe1per class are discussed in Chapter 6.

When the transaction is committed or rolled back, the state to which
Persistent-Dirty instances transition is dependent upon the setting of the
RetainValues and RestoreValues flags of the transaction. These flags can be
set on the Transaction object before the transaction has been begun, as long
as the implementation provides support for the corresponding optional features.

The RetainValues flag indicates whether instances should remain cached after
commit. Upon commit, the dirty instance transitions to Hollow if RetainValues is
false, and to Persistent-Nontransactional if RetainValues is true.

The RestoreValues flag indicates whether instances should remain cached after
rollback. Upon rollback, the dirty instance transitions to Hollow if RestoreValues
is false, and to Persistent-Nontransactional if RestoreValues is true.

The state transition diagrams that follow throughout this chapter presume
that both flags are false.

Required lifecycle state transitions 37

4.2.7 Persistent-Deleted

JDO instances that represent specific persistent data in the data store, and that
have been deleted in the current transaction, are Persistent-Deleted. (Note that
if the deleted instance had been newly made persistent in the current transac-
tion, it would instead transition to Persistent-New-Deleted.)

Read access to primary key fields is permitted for an instance in this state,
but access to other persistent fields will throw a JDOUserException.

On commit, such an instance transitions to Transient, having had its state
cleared (persistent fields set back to their default values) and its JDO identity
removed.

4.3 Required lifecycle state transitions
Now that we’ve met the different states we can examine the transitions

between them. These will each be illustrated with a code snippet that would
effect the transition.

4.3.1 Persisting a transient instance

makeTransient

makePersistent

commit

Persistent
New

Transient

rollback

Figure 4.1 Persisting a transient instance

To persist a transient instance, pass it to the makePersistent () method of
a PersistenceManager (Figure 4.1). This is essentially a request to create a
new entity in the data store. Where application identity is used this request will
fail if the primary key already exists in the datastore. With data store identity
the entity will be persisted even if another persistent entity already exists with
identical persistent field values, as the JDO identities (created by the implemen-
tation when each instance is made persistent) will be different.

/| assume pm references a PersistenceManager
Transaction t = pm.currentTransaction();
t.begin();

BusinessPartner bp = new BusinessPartner();
pm.makePersistent (bp);

t.commit();

38 Instance lifecycle

4.3.2 Create/delete in one transaction

makeTransient

makePersistent

Persistent \ commit

New

Transient
rollback

deletePersistent

commit,
rollback Persistent

New Deleted

Figure 4.2 Create/delete in one transaction

When an instance is both made persistent and deleted within the same
transaction, it transitions to the Persistent-New-Deleted state (Figure 4.2). Upon
commit, the Persistent-New-Deleted instance transitions to Transient since the
Java object no longer directly represents a persistent entity in the data store.

/| assume pm references a PersistenceManager
BusinessPartner bp = new BusinessPartner(); // partner

/1 is Transient
Transaction t = pm.currentTransaction();
t.begin();
pm.makePersistent (bp); //transition to Persistent-New

/1 potentially other code, as long as it does not commit the
/'l current transaction

pm.deletePersistent(bp); // transition to Persistent-
/1 New-Deleted

t.commit(); /] transition to Transient

4.3.3 Reading field values

When field values of a Hollow instance are first read, the instance transitions to
Persistent-Clean. Upon commit, a Persistent-Clean instance transitions to Hollow.

/1 assume pm references a PersistenceManager
/| assume c references a BusinessPartner in the Hollow state

Required lifecycle state transitions

Transaction t = pm.currentTransaction();
t.begin();

c.getName(); // transition to Persistent-Clean
t.commit();

4.3.4 Eviction

Please refer to Figure 4.3. Occasionally an application may wish to notify the
PersistenceManager that it is no longer using a particular instance, in order
that the PersistenceManager may more efficiently manage its instance
cache. This can be done with a call to the evict () method. However, it should
be noted that this merely gives a hint to the PersistenceManager; whether or
not any action is taken in response to that hint is implementation-specific.

commit, rollback, evict

Persistent
Clean

read access to
persistent fields

Figure 4.3 Reading field values and evicting instances

Eviction is most commonly used when an application is serially processing a
large number of instances, such as when iterating an extent.

/1 assume pm references a PersistenceManager
Transaction t = pm.currentTransaction();
t.begin();
Extent extPartner = pm.getExtent(BusinessPartner.class, false);
Iterator I = extPartner.iterator();
while (i.hasNext()) {
BusinessPartner bp = (BusinessPartner) i.next();
/1 do something useful with bp
pm.evict(c);
}
extPartner.close(i);
t.commit();

Do not use eviction if you will later access persistent field values of the same
instance within the same transaction. Doing so would cause the implementa-
tion to read the entity from the data store again, with the performance
degradation that would imply.

39

40

Instance lifecycle

4.3.5 Updating field values

When the field values of an instance are first changed in the current transac-
tion, it transitions to Persistent-Dirty (Figure 4.4).

Persistent
Dirty
commit,
rollback

change to change
any field to any
field

commit, rollback, evict

Persistent
Clean

read access to
persistent fields

Figure 4.4 Updating field values

In the code example below, the name field is first read, effectively forcing a
transition to Persistent-Clean, before the value is changed and the instance
transitions to Persistent-Dirty. This is not necessary; it is perfectly legitimate to
alter a field without first reading its value in the current transaction. Upon
commit, a Persistent-Dirty instance transitions to Hollow.

/'l assume pm references a PersistenceManager
/| assume bp references a BusinessPartner in the Hollow state
Transaction t = pm.currentTransaction();

t.begin();

String s = bp.getName(); // transition to Persistent-Clean
bp.setName(s + "!"); /1 transition to Persistent-Dirty
t.commit(); /1 transition to Hollow

4.3.6 Refreshing field values

When an instance’s field values are changed it transitions to Persistent-Dirty.
Usually upon commit the changes are synchronized to the data store and the
instance transitions to Hollow. However, it is sometimes necessary to reverse the
changes made to an instance during the current transaction without rolling back
the transaction as a whole. This can be achieved by refreshing the instance. The
instance’s persistent field values are reset to their values as at the start of the
transaction, and the instance transitions back to Persistent-Clean (Figure 4.5).

Required lifecycle state transitions

Persistent
Dirty

commit,
rollback

change to change
any field efresh to any
field

commit, rollback, evict Y

Persistent
Clean

read access to
persistent fields

Figure 4.5 Refreshing field values

/1 assume pm references a PersistenceManager

/! assume bp references a BusinessPartner in the Hollow or
/1 Persistent-Clean states

Transaction t = pm.currentTransaction();

t.begin();

String name = bp.getName();

bp.setName(name + "!"); /1 transition to Persistent-Dirty
pm.refresh(bp); /1 transition to Persistent-Clean
t.commit(); // transition to Hollow

4.3.7 Deleting a persistent instance

When an instance which was persistent prior to the current transaction is
found and deleted, it transitions to the Persistent-Deleted state (Figure 4.6).
Upon commit the deletion will be synchronized with the data store and the
instance will transition to Transient.

/1 assume pm references a PersistenceManager

/1 assume bpId is the JDO Object ID of a BusinessPartner to
/| be deleted

Transaction t = pm.currentTransaction();

t.begin();

BusinessPartner bp;

= (BusinessPartner) pm.getObjectById(bpId);
pm.deletePersistent(bp); // transition to Persistent-Deleted
t.commit(); /] transition to Transient

a1

42 Instance lifecycle

Transient

Persistent
Clean

Hollow

read access to
persistent fields

delete
Persistent

commit

Persistent
Deleted

Figure 4.6 Deleting a persistent instance

Transient

4.3.8 Deleting a Persistent-Dirty instance

When an instance which was persistent prior to the current transaction is
found, altered, and subsequently deleted in one transaction, it transitions from
Persistent-Clean to Persistent-Dirty and then to Persistent-Deleted (Figure 4.7).

Persistent
Dirty

change to
any field

Persistent
Clean

read access to
persistent fields

delete
Persistent

rollback

commit

Persistent
Deleted

Figure 4.7 Deleting a Persistent-Dirty Instance

Required lifecycle state transitions

Upon commit the deletion will be synchronized with the data store and the
instance will transition to Transient.

/1 assume pm references a PersistenceManager

/| assume bp references a BusinessPartner in the Hollow or

/| Persistent-Clean states

Transaction t = pm.currentTransaction();

t.begin();

String name = bp.getName(); // transition to Persistent-Clean
// if it was Hollow

bp.setName(name + "!"); /'l transition to Persistent-Dirty
pm.deletePersistent (bp); [/ transition to Persistent-Deleted
t.commit(); /'l transition to Transient

4.3.9 Making an instance transient

Despite the fact that the core focus of object persistence is on making transient
objects persistent, it is occasionally useful to make a persistent instance transient
again (Figure 4.8). This is particularly useful when an instance is being sent to
another JVM for some purpose, and occurs implicitly during the serialization process.

makeTransient

makeTransient

commit, rollback, evict

Persistent
Clean

Transient

Figure 4.8 Making an instance transient

read access to
persistent fields

Note that making an instance transient does not affect the underlying data
store entity in any way. Making the instance transient does not delete the data;
it merely disassociates the instance from the data store. Any subsequent
changes to the instance will not be synchronized with the data store.

/| assume pm references a PersistenceManager

/1 assume bp references a BusinessPartner in the Hollow or

/| Persistent-Clean states

Transaction t = pm.currentTransaction();

t.begin();

pm.makeTransient (bp); /'l transition to Transient

bp.setName("new name"); // this change will not be synchronized
/1 to the data store

43

44 Instance lifecycle

/! since the instance is transient,
/1 not persistent
t.commit();

If the instance were later passed as an argument to makePersistent (), the JDO
implementation would attempt to create a new data store entity corresponding to
the field values of the instance. The attempt to make the transient instance persis-
tent again may result in an exception if application identity is being used and the
primary key field values are identical to those of a currently persistent instance.

I mention this because it is a common misconception that a persistent instance
can be altered by making it transient (possibly via serialization), altering its field
values, and then making it persistent again. This would serve to create a new data
store entity and could not update the existing one. Essentially, the instance loses its
JDO identity in the transition from any persistent state to transient.

The correct way in which to update a persistent instance is to alter its persistent
field values (by making calls on its public methods), and then commit the persis-
tence manager’s transaction. The alteration of field values makes the instance
Persistent-Dirty, and the commit causes these values to be flushed to the data store.

Persistent
Dirty
commit,
rollback

makeTransient change to

any field
refresh change

makeTransient

makePersistent commit commit, rollback, evict

Persistent
New

Persistent
Clean

Transient

rollback

read access to

delete persistent fields

Persistent

commit,
rollback delete

Persistent

Persistent
New Deleted

delete
Persistent

delete
Persistent

rollback

Persistent

. Deleted
commit

Figure 4.9 All required state transitions

Optional lifecycle states 45

4.3.10 All required state transitions

We have now completed our discussion of those lifecycle state transitions that are
required by the JDO specification. Before we discuss the optional transitions, I have
included a transition diagram (Figure 4.9) that combines those discussed. Please
note that not every possible transition is necessarily represented here.

4.4 Optional lifecycle states

All JDO implementations must support the required states detailed so far. The
following optional states, however, are defined in support of various optional
features of the specification. Only those JDO vendors providing support for the
associated feature will implement these states.

4.4.1 Persistent-Nontransactional

This state is used in the implementation of optimistic transaction management.
It is applied to JDO instances that represent specific persistent data in the data
store, whose field values are currently loaded but are not necessarily transac-
tionally consistent. It allows persistent instances to be managed as a cache of
instances that are updated asynchronously. There is a JDO identity associated
with such instances.

4.4.2 Transient-Clean

The states Transient-Clean and Transient-Dirty are used in the implementation
of transient transactional instances.

Transient transactional JDO instances, whose persistent and transactional field
values have not been changed in the current transaction, are Transient-Clean.
(Note that although the persistence-capable class may have “persistent” fields,
they will not be synchronized with the data store, as the instance is transient.)

4.4.3 Transient-Dirty

Transient transactional instances whose values have been changed in the cur-
rent transaction are assigned the state Transient-Dirty.

4.5 Optional lifecycle transitions

The following state transitions involve optional states and apply only to imple-
mentations where the associated optional feature is supported.

46

Instance lifecycle

4.5.1 Optimistic transactions

Persistent
Dirty
commit,
rollback

change to change
any field refresh to any
field

A4

Persistent
Nontransactional

commit, rollback, evict

read access to
persistent fields

Figure 4.10 Optimistic transactions

Support for optimistic transactions is implemented with the state Persistent-
Nontransactional (Figure 4.10). Whereas a Persistent-Clean instance has its state
constantly synchronized with the data store, a Persistent-Nontransactional
instance may remain unaltered in the persistence manager’s cache even though
the underlying data entity has been altered.

When optimistic locking is in use, the reading of field values from a Ho11ow
instance causes a transition to Persistent-Nontransactional. Only when a field
value is altered (within a transaction) does the transition to Persistent-Dirty
occur. At that point the state of the instance is cached for rollback purposes
and to verify the optimistic concurrency assumptions when the transaction is
later committed.

On commit, if the optimistic concurrency assumptions are correct (i.e. no
other transaction has committed changes to the data store entity since the
instance became Persistent-Nontransactional), the data is written and the trans-
action completed. If the concurrency assumptions turn out to be invalid
(because the underlying data has been changed), a JDOUserException is
thrown and the transaction rolled back.

/1 assume pm references a PersistenceManager
/| assume bp references a BusinessPartner in the Hollow state
Transaction t = pm.currentTransaction();
t.setOptimistic(true); /'l the implementation must support
/1l this optional feature
t.begin();
String s = bp.getName(); // transition to Persistent-
/1 Nontransactional
bp.setName(s + "!"); /'l transition to Persistent-Dirty

Optional lifecycle transitions

t.commit(); /'l throws JDOUserException if
/'l optimistic concurrency
/| assumptions prove to be invalid

4.5.2 Persistent access outside transactions

evict

read/write
Persistent access to
Nontransactional persistent
fields

read/write access to
persistent fields

Figure 4.11 Persistent access outside transactions

Support for non-transactional access to persistent instances is optional in the
JDO specification (Figure 4.11). If supported, this is once again implemented
using the lifecycle state Persistent-Nontransactional. As long as there is
no transaction active, fields may be read and written non-transactionally.

As soon as a field value is read within a data store transaction, or updated
within an optimistic transaction, the instance will become transactional again.

In the example below, a persistent BusinessPartner instance, is made non-
transactional. It is then altered, firstly outside a transaction and secondly
within a transaction. The transaction is subsequently rolled back. The com-
ments in this example in this example illustrate the instance’s behavior as it
transitions between the appropriate states.

/1 assume pm references a PersistenceManager

/| assume bp references a BusinessPartner in the Hollow or

/| Persistent-Clean states with the name "Genevieve".

/| assume NontransactionalRead and NontrasactionalWrite-enabled
Transaction t = pm.currentTransaction();

pm.makeNontransactional (bp); // transition to Persistent-
/1 Nontransactional
String name;

name = bp.getName(); /'l read outside a transaction,
/1 no transition

System.out.println(name); /] prints "Genevieve"

bp.setName("Cathy"); /1 alter outside transaction,

/] no transition

a7

48

Instance lifecycle

t.begin();

bp.setName("Robin"); /'l transition to Persistent-
/1 Dirty

t.rollback();

name = bp.getName();

System.out.printin(name); /1l prints "Cathy"

4.5.3 Transactional access to transient instances

Transient

makeTransactional makeNontransactional

Transient
Clean

write field commit, rollback

Transient
Dirty

Figure 4.12 Transient transactional instances

Support for transactional access to transient instances is optional in the J]DO
specification. If supported by the implementation, it involves the optional life-
cycle states Transient-Clean and Transient-Dirty (Figure 4.12).

A transient non-transactional instance that is made transactional, transitions
to Transient-Clean. (For fun, try reading the previous sentence out loud!) When
any field value is altered it transitions to Transient-Dirty, after having had its
field values cached before the update was applied.

Upon commit, a Transient-Dirty instance merely transitions to Transient-
Clean and the cache of field values is discarded. Upon rollback, a Transient-Dirty
instance has its field values restored from the cache and transitions to Transient-
Clean. Upon being made non-transactional, a Transient-Clean instance
transitions to Transient.

/1 assume pm references a PersistenceManager
BusinessPartner bp = new BusinessPartner ();
// bp is newly instantiated, so Transient

bp.setName ("Robin Roos");

InstanceCallbacks

Transaction t = pm.currentTransaction();

t.begin();

pm.makeTransactional (bp) ; /1
/1
11
/1

String name;

name = bp.getName();// read field, no

System.out.printin(name); /1
/1

bp.setName(name + "!"); /1
/1

System.out.printin(bp.getName()); //
/1

t.rollback(); /1
/1
/1

System.out.printin(bp.getName()); //
/1

/1 we’ve illustrated a Transient Transactional instance,

/1 just to complete the

transitions to Transient-
Clean and caches

field values in case

of rollback

transition

prints original field
value: Robin Roos
alter name, transition
to Transient-Dirty
prints altered field
value: Robin Roos!
restore values from
cache and transition
to Transient-Clean
prints original field
value: Robin Roos

but

/| process let’s make the instance Transient
/1 (but no Tonger Transactional) again.

pm.makeNontransactional (bp) ; /1

4.6 InstanceCallbacks

transition to Transient

The above discussion about the required and optional states and state transi-
tions should have given you a good feel for the way an application invokes the
PersistenceManager in order to manipulate instances. We will look at this in
more detail in Chapter 6. The final topic for this chapter illustrates how
instances can be made aware of specific lifecycle events occurring to them, so
that the application developer can invoke an appropriate action if required.

InstanceCallbacks is itself an interface containing four method signa-
tures. Classes implementing the interface must provide implementations of the
callback methods explicitly — the enhancer will not undertake this task. The
JDO implementation will then invoke the callback methods as appropriate. The
UML for the InstanceCallbacks interface is shown in Figure 4.13.

49

50

Instance lifecycle

interface
InstanceCallbacks

+jdoPostLoad():void
+jdoPreStore():void
+jdoPreClear():void
+jdoPreDelete():void

Figure 4.13 UML for InstanceCallbacks interface

4.6.1 Postload

The post load callback void jdoPostLoad () is invoked on the instance after
the default fetch group fields have been loaded. If the instance uses application
identity then the primary key fields, which must not be part of the default
fetch group, will already have had their values loaded.

This method is a suitable place to initialize any non-persistent fields in the
instance. However, it should be noted that it is illegal to attempt access to fields
other than primary key fields and those in the default fetch group.
Additionally, access to other persistent JDO instances is disallowed. If present,
this method is not modified during enhancement.

4.6.2 Pre store

The pre store callback void jdoPreStore() is invoked immediately before
the persistent fields of a persistent instance are synchronized (i.e. written) to
the data store. Persistent fields whose values are dependent on other (perhaps
non-persistent) fields should have their values assigned here. Access to other
persistent JDO instances is allowed.

This method, if present, is modified during enhancement so that alterations
made to persistent fields are correctly reflected in the data store.

The preStore() method is also a useful place for the validation of data
within the instance. Code in this method could throw a JDOUserException if
the validation failed, and so cause the transaction to rollback.

4.6.3 Pre clear

The pre clear callback void jdoPreClear () is invoked immediately before persis-
tent field values are cleared, and occurs during the transition to the Hollow state.

During this method any non-persistent non-transactional fields should have
their values reset to appropriate defaults, otherwise such state may be “inher-
ited” by the next data store entity that happens to be represented by that
particular instance. Additionally, any references to runtime objects (e.g.
threads) should be set to null.

This method, if present, is not modified during enhancement.

4.6.4 Pre delete

The pre delete callback void jdoPreDelete() is called immediately before a
transition to the Persistent-Deleted or Persistent-New-Deleted states. Access to per-
sistent field values is valid from within this method, but is not valid subsequently.

Pre delete is typically used to implement delete restrict and delete cascade
behavior. To implement delete restrict, evaluate the condition under which
deletion is disallowed and throw an instance of JDOUserException to prevent
the deletion from proceeding. When a UML Containment is being modeled,
delete cascade is implemented by passing all contained child instances as argu-
ments to a deletePersistent () invocation on the persistence manager.

An example is shown below which illustrates both delete restrict and delete
cascade functionality.

public void jdoPreDelete() {
System.out.printin("jdoPreDelete called for Order" +
orderNumber) ;
if (isDispatched()) {
System.out.printin("Order 1is Dispatched!");
throw new JDOUserException("cannot delete order" +
orderNumber + "as it has been dispatched.");

/1 deletion will proceed - delete contained instances

System.out.println("Deleting OrderLines");
JDOHelper.getPersistenceManager(this).
deletePersistentAll(orderLines);

}

The example above is an extract from a class Order, which maintains a
Collection (implemented as a HashSet) of OrderLines. The implementation
of jdoPreDelete () restricts the deletion if the order has been dispatched by
testing the value of a boolean property. If the deletion is to proceed, all con-
tained OrderLine instances (i.e. the contents of the orderLines collection)
are also deleted.

To delete the order lines, a reference to a PersistenceManager is required.
This is obtained through the JDOHelpers getPersistenceManager (Object
pc), which returns a reference to the PersistenceManager associated with the
designated instance. By passing this to the method we obtain a reference to the
specific PersistenceManager responsible for this instance. The method
deletePersistentAl1 () is used to delete an entire collection of instances in
one invocation.

InstanceCallbacks 51

52

Instance lifecycle

What’s next?

We've now studied the lifecycle states (required and optional) and the associ-
ated state transitions, and have seen code extracts which illustrate how an
application can effect these state transitions on instances it is manipulating. We
will see further syntactic detail of this in Chapter 6.

In the next chapter we examine the persistent object model implemented by
JDO. We specifically cover the notion of first- and second-class objects, showing
how the developer can specify this in the persistence descriptor and illustrating
how first- and second-class objects interact with each other.

Persistent object model

that constrains the allowable types and configurations of objects
managed by a PersistenceManager and specifies the ways in which
they interact.

JDO has been designed so that domain object models can be persisted with-
out having been specifically designed with persistence in mind. However, it is
necessary for you to understand the intricacies of JDO’s persistent object model
in order to apply the technology appropriately.

T he term persistent object model is used to describe the set of rules

5.1 Transparency

Generally it is objects of the domain object model that will be persisted by an
application. These objects typically reference each other to the extent that the
closure of referenced instances represents the entire contents of the data store.
Whilst the application is running, its JVM will contain many transient
instances. Most of these will be normal (non persistence-capable) objects. Some,
however, will be (or will reference) instances of persistence-capable classes.

Each JDO persistence manager maintains an active cache of instances. As an
application navigates a reference from one instance to another that is not in
the cache, JDO loads the required instance into the cache

This is illustrated in Figure 5.1. A single JVM process is active in which an
application is using JDO. The application has a number of transient object
instances. Some of these reference persistent instances currently loaded in the
JDO cache. Some transient objects, and some of the cached persistent instances,
reference other persistent instances which are not yet instantiated in the cache,
but which will be upon demand.

In order that persistent objects may be stored in or retrieved from a given
data store, a mapping function exists between the object definitions and the
storage. Every implementation must provide a suitable mapping, although the
mapping itself is implementation-specific and not standardized by JDO.

53

54 Persistent object model

Java Virtual Machine

Mapping
function

o
x

S

l

Instantiated persistent objects

Persistent objects -

[= o

Transient objects

Data
store

Figure 5.1 Transparency

5.1.2 Transparent persistence
The term transparent persistence refers to:

1 The illusion that all persistent instances are in memory and immediately
available.

2 The implicit update of dirty persistent instances with the data store upon
transaction commit.

3 The automatic mapping of Java types to the native types of the underlying
data store.

Transparent persistence

People ascribe various meanings to the phrase transparent persistence
depending upon their perspective, and there is no definitive list. I asked
people for their interpretations in a message posted on JDOcentral.com,
and here are some of those that were suggested:

e Automatic caching of a before-image of instance which is changed
within a transaction, according to the transaction properties.

@ Automatic change-tracking of instances, so they become dirty when
they are changed.

e Automatic synchronization of dirty instances with the data store upon
commit (so that applications do not have to explicitly save changes).

e® Automatic construction of instances in the persistence manager’s cache
when an application navigates to them over a persistent reference.

® Automatic retrieval of data from the data store when fields not in the
default fetch group are accessed.

e Automatic mapping of Java types to the field types of the underlying
data store.

e Automatic persistence of transient objects, which are referenced by
persistent fields of an object newly made persistent, when the
transaction commits.

e This and everything else JDO does to make the database seem to disap-
pear: the application can primarily operate on instances in memory and
traverse the object model without any concern for the database, yet it is
still there and being accessed “under the covers.”

Thanks to David Ezzio, Keiron McCammon, Heiko Bobzin, and David
Jordan who contributed to this thread at JDOcentral.com.

5.2 JDO instances

JDO instances may have persistent and non-persistent fields. The persistence
descriptor dictates whether or not specific fields are persistent. By default, any
fields declared to be of supported or persistence-capable types and not static,
final or transient are made persistent. However, this can be set explicitly on
a field-by-field basis.

Non-persistent fields are not directly managed by the JDO persistence infra-
structure, and there are no restrictions as to the specific Java types that are
permissible for such fields.

Persistent fields are managed by JDO. All Java modifiers are supported, i.e. per-
sistent fields may be any valid combination of private, public, protected,
package/friendly, static, transient, abstract, final, synchronized, and
volatile. In order to facilitate this management there are various restrictions
that apply to the permissible Java types for such fields. Some of these restrictions
depend on optional features support by your chosen implementation.

JDO differentiates between those classes that, through enhancement or by
hand-coding, implement the PersistenceCapable interface and those that
do not. Most of the domain objects you write will implement
PersistenceCapable. Most of your application classes will not, as these tend
to represent processing to be undertaken whilst the application is running,
instead of persistent state.

JDO instances 55

56 Persistent object model

Most system classes (e.g. packages java.lang, java.io and java.net) rep-
resent aspects of the runtime environment (e.g. threads, I/O streams and
network sockets) that cannot be persisted. Such runtime context would not be
valid at an arbitrary later point in time when the objects were retrieved from
the data store.

However, some standard Java classes, such as those that represent large num-
bers, locale information, and collections of other objects, do warrant
persistence. The JDO specification dictates a set of standard classes for which
persistence must be supported by all compliant implementations. Beyond that
list, support for other standard Java classes is optional in the specification. Thus
it is important to note that, although the Collection interface must be sup-
ported by an implementation, not every concrete Collection class is
necessarily supported. Indeed, the only concrete Collection class that JDO
requires all implementations to support is HashSet.

5.3 First- and second-class objects

JDO divides instances into first-class and second-class objects. There are specific
differences between the operation of shared instances when those instances are
first or second class, and the developer must appreciate these differences.

First-class objects are instances of PersistenceCapabTle classes, which have a
JDO identity and therefore support uniquing in the PersistenceManager’s
cache. Recall that uniquing is the process by which the PersistenceManager
ensures that only one cached persistent instance of a particular
PersistenceCapable class exists with a given identity.

When field values of a first-class object are altered, that object is transitioned
to an appropriate dirty state (e.g. from Hollow or Persistent-Clean to Persistent-
Dirty). A first-class object may usefully be referenced by multiple other first-class
objects (e.g. a single Customer could be referenced by multiple Order objects).

A second-class object is an instance of a PersistenceCapable class or, in
the case of standard Java classes, an instance of a class which does not imple-
ment PersistenceCapable but for which specific persistence support has
been provided by the implementation.

Second-class objects do not have a JDO identity and therefore do not support
uniquing. They are only ever stored as part of a first-class object. When a
second-class object is altered it does not itself assume a dirty state. Instead it
conveys the fact that it has changed to its owning first-class object, which
becomes dirty.

To see how this works, let’s consider the UML composition between the
Order and OrderLine classes as shown on Figure 5.2.

First- and second-class objects 57

Order OrderLine

orderLines

Figure 5.2 Order composition of OrderLine

Let us implement the composition using the concrete Collection class
HashSet. Thus the Order class would contain a line of code similar to:

private Collection orderLines;

At some point, when a new Order is instantiated (i.e. in the Order constructor),
we would expect to see

orderLines = new HashSet();

The persistence descriptor for the Order class will annotate the orderLines
field as a persistent field that is a collection of OrderLine objects. Below is an
extract from the persistence descriptor to this effect:

<field name="orderLines" default-fetch-group="true">
<collection element-type=
"com.ogilviepartners.jdobook. op.OrderLine" />
</field>

Facilities would exist by which OrderLine objects could be instantiated and
added to the orderLines collection, but these ordinary Java methods are not
shown here.

In terms of first- and second-class objects, the Order and OrderLine classes
would be enhanced to be PersistenceCapable. These are first-class objects
(more on why later). The instance of HashSet is, at this point, an ordinary
(transient) instance of an un-enhanced standard Java class.

When the Order object is made persistent, the implementation will detect
that the orderLines field references an instance of HashSet. In order to per-
sist the contents of the HashSet a new instance will be created of a class that
has all the functionality of a HashSet but is persistable. Furthermore this new
class has been specifically implemented so that it will notify its owning first-
class object if the collection content is altered.

We now have a situation where the JDO cache contains the Order object, now
persistent, a persistent HashSet (not the original HashSet instance but an instance
of a vendor-supplied persistence-capable HashSet), and potentially a number of
OrderLine objects. Recall that through persistence by reachability, when a
PersistenceCapable object is made persistent, the entire graph of
PersistenceCapable objects reachable from that one instance is made persistent.

The persistent HashSet is a second-class object. This means that it has no JDO
identity of its own. We may search for an Order by its identity and, if appropri-
ate, we might search for an OrderLine by its identity. However, the HashSet

58 Persistent object model

which, although an object, represents a field of the Order, is not something we
would wish to search for. Since it has no identity, the persistent HashSet does
not support uniquing. Thus two distinct Order objects could have identical collec-
tions of OrderLines without this causing a problem. Again, since the HashSet
object is merely representative of a single field of the Order, this is appropriate.

5.3.1 Visibility of changes

The final thing to note is that the original transient HashSet may still exist in
memory but is no longer referenced by the now-persistent Order object. If the
application retained its own references to the HashSet, alterations to its con-
tents would not be reflected in the JDO cache and subsequently in the data
store. This is referred to as the second-class object “losing its Java identity,” typ-
ically upon commit of the transaction.

The most significant difference between first- and second-class objects is the
visibility of changes made to shared objects. Naturally second-class objects are
intended for use in situations where they are not shared, but are associated with
a single first-class object. However, to illustrate the loss of identity, consider the
following examples with reference to Figure 5.3.

A
(1st class)

(1st class) (2nd class)

(1st class)

Figure 5.3 Visibility of changes

If a first-class object F is shared between (i.e. referenced by) two transient
PersistenceCapable classes A and B, which are then made persistent,
changes subsequently made to F (which is now persistent thanks to persistence
by reachability) will be seen by both A and B.

On the other hand, presume that a second-class HashSet S is shared between
(i.e. referenced by) two transient PersistenceCapable classes A and B, which

First- and second-class objects 59

are then made persistent. As part of the commit process two new second-class
instances will be instantiated to represent the HashSet. In the JDO cache, each
of the first-class objects will have a reference to its own second-class instance.
Changes subsequently made to S will not be seen by either A or B. Furthermore,
changes made to the persistence-capable HashSet referenced by A would not be
seen in the persistence-capable HashSet referenced by B, and vice versa.

5.3.2 PersistenceCapable classes as second-class objects

I mentioned earlier in this chapter that persistence-capable classes, although
usually first-class objects, could also be second-class objects. This is decided by
the persistence descriptor of the owning first-class object. For the purpose of
illustrating this point, consider that the BusinessPartner class contains a ref-
erence to an Address object. Figure 5.4 is the UML class diagram illustrating
this, and a sample persistence descriptor. Since the persistence descriptor
describes more than one persistence-capable class it is named after the package.

Address BusinessPartner

address

+Address(address:String)

address:String partnerld:String
name:String
address:Address

Figure 5.4 UML for BusinessPartner references Address

op.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="Address" />
<class name="BusinessPartner">
<field name="address"
embedded="true" />
</class>
</package>
</jdo>

The persistence descriptor specifies that the Address is an embedded object
within the BusinessPartner. As a result the address of a BusinessPartner
will be persisted as a second-class object; it will have no JDO identity of its own
and address changes will be conveyed to the BusinessPartner, which will
assume the dirty state.

Consider now the following code extracts:

60 Persistent object model

/1 assume pm references a PersistenceManager instance
Address a = new Address("Milton Keynes, United Kingdom");
pm.makePersistent(a);

In the first extract, an Address object is constructed and persisted. This will be
persisted as a first-class object. It has its own (datastore) identity and when
altered itself becomes dirty.

/1 assume pm references a PersistenceManager instance
BusinessPartner bp = new BusinessPartner();

Address a = new Address("London, United Kingdom");
bp.setAddress(a);

pm.makePersistent (bp) ;

In the second extract, the address is persisted only because it is referenced by
the BusinessPartner. Since the reference is stated in the persistence descrip-
tor to be embedded, Address will be persisted as a second-class object (with no
JDO identity of its own, and conveying changes to the BusinessPartner
object which will assume the dirty state).

Thus it is possible to have a single class (in this case Address) of which some
persistent instances are first-class and some persistent instances are second-class.

The judicious definition of instances as second-class objects allows signifi-
cant optimization to be performed by the implementation. Second-class objects
do not have an Object ID so the cost (in performance terms) of establishing
unique IDs is avoided. They may be stored in the same data store entity as the
fields of the owning first-class object (specifically where one-to-one relation-
ships exist), thus reducing the associated data store interaction when instances
are fetched and stored.

Should all dependent objects be second class?

I define dependent objects as those which cannot exist for longer than the
owning object, and which cannot be shared between multiple owning
objects. They are typically referenced in one of two ways: singleton refer-
ence from the owning object, or a UML composition relationship
implemented with a Collection class.

Dependent objects are certainly candidates for embedded objects, but
can this be applied as a rule? The answer here is most definitely “no.”

Second-class objects do not have a JDO identity, and therefore they
cannot be independently retrieved from the persistence manager by Object
ID. Instead the owning parent must be obtained and its persistent fields
navigated to reach the second-class object.

This issue comes down to a design choice as to whether Object IDs are
desirable for the dependent objects.

“Third-class” objects - arrays 61

5.4 “Third-class” objects - arrays

The JDO specification does not use the term “third-class,” but I have coined it
here to describe array support in JDO. Support for array objects is not required in
JDO, it is an optional feature. Where arrays are supported by an implementation,
the change tracking feature, by which second-class objects notify their owning
first-class objects of changes, is itself optional. Thus, although a particular vendor
may provide an array implementation that does fulfill the change tracking
semantics of second-class objects, this behavior should not be relied upon.
Portable applications that make use of array persistence must implement func-
tionality by which changes to the array contents is reflected by explicitly making
the owning first-class object dirty. This can be achieved by calling the
makeDirty (Object pc) method of the JDOHelper class.

5.5 Type restrictions for persistent fields

The XML Document Type Definition (DTD) for the persistence descriptor
allows individual fields of a persistence-capable class to be marked as persis-
tent, transactional, or none. Fields that are persistent are by default
transactional as well.

5.5.1 Non-persistent non-transactional fields

For non-persistent non-transactional fields there are no type restrictions, and
such fields in a persistence-capable class may be of any allowable Java type. JDO
does not manage the values of such fields in any way.

5.5.2 Transactional non-persistent fields

For non-persistent but transactional fields, there are once again no type restric-
tions. JDO will manage these fields’ values only in so far as they are cached at the
beginning of a transaction, and the cached values restored on transaction rollback.

5.5.3 Persistent fields

In the remainder of this section we discuss the allowable Java types for persis-
tent fields.

5.5.3.1 Primitive types

All Java primitive types are supported. The Java primitives are: boolean, byte,
short, int, Tong, char, float, and double.

62 Persistent object model

5.5.3.2 Immutable object class types

Immutable classes are those whose objects encapsulate values that cannot be
altered after instantiation. All implementations support the following
immutable class types as persistent fields:

Package java.lang:
Boolean, Character, Byte, Short, Integer, Long, Float, Double, String

Package java.util:
Locale

Package java.math:
BigDecimal, BigInteger

Although support for these class types is required, the implementation may
choose to support them as first- or second-class objects. Portable applications
should not rely upon a particular implementation’s choices. Thus you should
not habitually rely upon different persistent fields referencing the same
immutable object.

5.5.3.3 Mutable object class types

Support for the following mutable object classes as types for persistent fields is
required of all JDO implementations:

Package java.util:
Date, HashSet

Support for the following mutable object classes is optional:

Package java.util:
ArrayList, HashMap, Hashtable, LinkedList, TreeMap, TreeSet, Vector

Once again, implementations may choose whether support for these class types
is to be provided as first-class or second-class objects. Note that HashSet is the
only Collection class for which support can be guaranteed across all imple-
mentations. Support for the other common collections (ArrayList, Vector
and HashMap) is, however, widespread across implementations. For details of
this support refer to Table 12.1 (page 196).

Type restrictions for persistent fields 63

What about the other concrete Collections?

To be JDO compliant an implementation must support the Collection and
Set interfaces and the HashSet class.

However, as Table 12.1 illustrates, there is widespread support for the
other Collection interfaces and classes, specifically the List, ArrayList,
Vector, Hashtable and TreeSet.

The required set of Collections was limited to more easily facilitate the
application of JDO, and the porting of JDO-compliant applications, to
embedded environments using J2ME, where the Java 2 Collections hierar-
chy is not present.

5.5.3.4 PersistenceCapable class types

All implementations must support persistent fields of types that are themselves
PersistenceCapable classes. Support must be provided as first-class objects.
Support for these types as second-class objects, as per the embedded attribute in
the persistence descriptor, is optional, with implementations at liberty to store
as first-class objects instead.

Applications using second-class persistence-capable types, with embedded=
“true,” should not rely on the second-class treatment of such objects.

Can | subclass the concrete Collections?

Let’s discuss this with reference to HashSet, although the discussion also
applies to the other concrete Collections.

In JDO, if you persist an instance which references a HashSet object,
then the implementation is at liberty to substitute its own persistence-
capable subclass of HashSet for use whenever you access that particular
field. We will refer to this class as VendorHashSet.

Now presume that you have subclassed HashSet to create MyHashSet
and added specific functionality to that class. You now persist a transient
instance that references an instance of MyHashSet. Since your class is an
“instance of” HashSet, the implementation might substitute it with an
instance of VendorHashSet, in which case your added functionality
would no longer apply to that field.

To get around the issue, you could enhance MyHashSet so that it
becomes persistence-capable in its own right. Fields defined as type
MyHashSet (and not just HashSet) should now be persisted correctly.
However, it is evident that an element of transparency has been lost, as
such fields must be defined as the concrete class type instead of the inter-
face type.

64 Persistent object model

BusinessPartner

—name:String
—address:String

5.5.3.5 Example — BusinessPartner references Customer

Simplistic object models, dealing with the order processing domain, might
model customers as representing some or other entity that places orders, and
ascribe to the Customer object attributes such as Name, Address, etc. Such a
design is illustrated in Figure 5.5.

Customer Order
0..*
—creditLimit:int
—address:String orders
—-name:String 1
customer

Figure 5.5 Inflexible design — Customer aggregates Order

Unfortunately this approach has many limitations. How do we model a sup-
plier, which also has a Name and Address but which does not place Orders?
How do we cope with a supplier that is also a customer? The solution to these
problems lies in making Customer and Supplier roles, which are played by a
BusinessPartner. Thus a single business partner may be a customer and/or a
supplier. The BusinessPartner provides the central class where common fea-
tures, such as Name and Address, are modeled.

To illustrate attributes that reference persistence-capable classes we will intro-
duce a Customer role into our object model. The UML is shown in Figure 5.6.

Customer Order

—creditLimit:int

businessPartner orders

customer 0..1 1 customer

Figure 5.6 Customer is now a role played by a BusinessPartner

Every BusinessPartner references zero or one Customer objects. Each
Customer in return holds a reference (cardinality: exactly one) to its
BusinessPartner. These are dependent objects, in that the life of the
Customer is entirely constrained by the life of the BusinessPartner to which
it relates. Specific attribution that pertains only to the customer role of the
BusinessPartner is ascribed to the Customer class, e.g. credit limit.

In order to complete the picture, BusinessPartner is the factory for creat-
ing Customer objects through a makeCustomer () method. The complete UML
notation for these classes is shown in Figure 5.7.

BusinessPartner

+toString():String
+makeCustomer():void

Type restrictions for persistent fields

Customer

customerFlag:boolean
name:String
address:String
partnerNumber:String
customer:Customer

businessPartner

0..1

—businessPartner:BusinessPartner
—creditLimit:double

customer

#Customer()
#Customer(businessPartner:BusinessPartner)
+getBusinessPartner():BusinessPartner
+getCreditLimit():double
+setCreditLimit(creditLimit:double):void
+toString():String

Figure 5.7 Completed UML for BusinessPartner and Customer role

Here is the source code for the Customer object. There is nothing unusual
here - just standard Java methods with no JDO specifics whatsoever.

package com.ogilviepartners.jdobook.op;

public class Customer

{

Customer.java

private BusinessPartner businessPartner;
private double creditLimit;

protected Customer() ({

}

protected Customer (BusinessPartner businessPartner) {
this.businessPartner = businessPartner;

public BusinessPartner getBusinessPartner() {
return businessPartner;

public double getCreditLimit() {

return creditLimit;

public void setCreditLimit(double creditLimit) {

this.creditLimit

creditLimit;

65

66 Persistent object model

public String toString() {
return "Customer (partnerId=" +
businessPartner.getPartnerNumber () +

}

"partnerName=" + businessPartner.getName() + ")";

Here then is the BusinessPartner source code. We see that BusinessPartner
holds a reference to Customer (the reference is the attribute “customer”) and that
in its makeCustomer () method the BusinessPartner constructs a Customer
object and stores its reference. Once again there is nothing JDO-specific.

BusinessPartner.java

package com.ogilviepartners.jdobook.op;

public abstract class BusinessPartner {

protected String name;
protected String partnerNumber;
protected String address;
protected boolean customerFlag;
protected Customer customer;

public

public

public

public

public

String toString() {
return "BusinessPartner (number=
+ "name=" + name +
"address=" + address + "customerFlag=" +
getCustomerFlag() + ")";

+ partnerNumber

boolean getCustomerFlag() ({

return customerFlag;

void setName(String name)
this.name = name;

String getName() {
return name;

void setAddress(String address) {
this.address = address;

Type restrictions for persistent fields

public String getAddress() {
return address;

public void setPartnerNumber (String partnerNumber) {
this.partnerNumber = partnerNumber;

public String getPartnerNumber() {
return partnerNumber;

public Customer getCustomer() {
return customer;

public void makeCustomer () {
if (customer == null) customer = new Customer(this);
if (!customerFlag) customerFlag = true;

}

In order to make this object model persistence-capable we write the appropriate
persistence descriptor and enhance the classes. All we need to do is make sure that
both BusinessPartner and Customer are enhanced to become persistence-capa-
ble. We do not have to declare the reference between them to JDO in any way.

op.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="BusinessPartner" />
<class name="Customer" />
</package>
</jdo>

Once the classes have been enhanced the object graph can be persisted through
JDO. Here is an extract from an application that works with these two objects
illustrating their persistence.

JDOBootstrap bootstrap;
PersistenceManagerFactory pmf;
PersistenceManager pm;
BusinessPartner bp;
Transaction t;

Object oid;

67

68 Persistent object model

/'l initialize everything

bootstrap = new JDOBootstrap();

pmf = bootstrap.getPersistenceManagerFactory();
pm = pmf.getPersistenceManager();

t = pm.currentTransaction();

/'l create a new (therefore transient) BusinessPartner
bp = new BusinessPartner();
bp.setName("Ogilvie Partners");

/| persist the BusinessPartner and get its Object ID

t.begin();

pm.makePersistent (bp);

oid = pm.getObjectId(bp);

System.out.printin("Is bp a Customer?" +
bp.getCustomerFlag());

t.commit();

/| make the BusinessPartner a Customer

t.begin();

bp.makeCustomer () ;

t.commit(); // no need to "save" bp - that’s part of
/| transparent persistence

bp = null;

/'l retrieve the BusinessPartner by Object ID and see that it

/1 is a Customer

t.begin();

bp = (BusinessPartner) pm.getObjectById(oid);

System.out.printin("Is bp a Customer?" +
bp.getCustomerFlag());

t.commit();

5.5.3.6 Object class type

All implementations are required to support persistent fields of type Object.
However, the treatment of these as first- or second-class objects is an implemen-
tation choice. Most implementations will restrict the set of types that can be
stored in such fields (e.g. restriction to only persistence-capable types for which
storage has been defined in the data store). In such cases, a
ClassCastException will be thrown for an invalid type assignment.

Type restrictions for persistent fields 69

5.5.3.7 Example — BusinessPartner references Customer through
Object reference

We can illustrate the use of object class type for persistent fields very simply. To
do this we alter the BusinessPartner class so that its Customer reference is
in fact defined to be an Object reference. So the declaration

protected Customer customer;
is replaced by
protected Object customer;

A few (Customer) typecasts must be added wherever methods of the Customer class
were to be invoked. The developer should beware of ClassCastExceptions
should incompatible (or compatible but non persistence-capable) objects be
assigned to the reference. However, since this is a runtime (un-checked) exception I
have not caught it here.

public Customer getCustomer() {
return (Customer) customer;

}

The persistence descriptor remains unaltered.

Use of Object references in this manner is not something that I would rec-
ommend when the actual type of the reference is known (Customer in this
case). It is presented here to illustrate JDO’s capability to operate across generic
Object references when required to do so.

5.5.3.8 Collection interface types

All implementations are required to support persistent fields of the following
interface types:

Package java.util:
Collection, Set.

implementations may optionally support the following interface types:

Package java.util:
Map, List

This is shown in Figure 5.8, which provides a simplified class diagram for the
Java 2 Collections (all classes shown belong to the java.util package).

70 Persistent object model

Interface Support for persistent
Collection fields of these three
________ types is required by all
compliant JDO
implementations
7 4 !
, |
4 |
Ve
, |
’ |
|
Interface Interface | Interface
List Set | Map
|
|
|
|
|
|
AN A % | A N
7 AN N
, | N | N | | |
, 7 | N . | A | | |
, | N | N | | |
1 1 1 1 1
ArraylList LinkedList Vector TreeSet HasSet TreeMap HashMap

Figure 5.8 Simplified UML class diagram for the Java 2 Collections

Customer E‘j InstanceCallbacks
Order
—orders:Set
—businessPartner:BusinessPartner
—creditLimit:double
itLimi u customer +Order()
#Customer() +0Order(customer:Customer,orderNumber:int)
#Customer(businessPartner:BusinessPartner) +toString():String
tOrd :Set -
+getOrders():5e . o orders totalltems:int
#setOrders(orders:Set):void
. P totalValue:double
+getBusinessPartner():BusinessPartner .
s orderNumber:int
+getCreditLimit():double t Cust
+setCreditLimit(creditLimit:double):void customer:tustomer

+createOrder(orderNumber:int):Order
+removeOrder(o:Order):void
+toString():String

Figure 5.9 UML for Customer aggregates Order

Type restrictions for persistent fields 71

5.5.3.9 Example — Customer references Order

To illustrate persistent fields of Col1ection type we will implement the notion
that customers manage collections of orders. The Order class is not very com-
plicated; for now it will merely encapsulate an order number, number of items,
and order value (Figure 5.9).

Here is the source code for our simple Order class:

Order.java
package com.ogilviepartners.jdobook.op;

public class Order {
private int orderNumber;
private int totalltems;
private double totalValue;
private Customer customer;

public Order() {
}

public int getTotalItems()
return totalltems;

}

public void setTotalltems(int totalItems)
this.totalltems = totalltems;

}

public double getTotalValue() {
return totalValue;

}

public Order (Customer customer, int orderNumber) {
this.customer = customer;
this.orderNumber = orderNumber;

}

public int getOrderNumber() {
return orderNumber;

}

public String toString() {
return "Order (number=

+ orderNumber + ")";

}

72 Persistent object model

public Customer getCustomer() {
return customer;
}
}

The customer class now has an attribute of type Collection called “orders.”
When the Customer 1is instantiated by a developer wusing the
Customer (BusinessPartner bp) constructor, the Collection is initialized to
be a new HashSet. The no-argument constructor, which will be used by the JDO
implementation when introducing new Customer instances to the cache, does
not initialize the orders collection. This is because the implementation will
retrieve the appropriate collection from the data store.

Customer.java
package com.ogilviepartners.jdobook.op;

import java.util.HashSet;
import java.util.Set;
import java.util.Collections;

public class Customer

{
private Set orders;
private BusinessPartner businessPartner;
private double creditLimit;

protected Customer() {

}

protected Customer (BusinessPartner businessPartner) {
this.businessPartner = businessPartner;
orders = new HashSet();

}

public Iterator orders() {
/] return an iterator of an unmodifiable collection
/| of orders to maintain encapsulation
return getOrders().iterator();

}

public Set getOrders() {
// return an unmodifiable collection of orders to
// maintain encapsulation
return Collections.unmodifiableSet (orders);

Type restrictions for persistent fields 73

}

public BusinessPartner getBusinessPartner() {
return businessPartner;

}

public double getCreditLimit() {
return creditLimit;

}

public void setCreditLimit(double creditLimit) {
this.creditLimit = creditLimit;

}

public Order createOrder(int orderNumber) {
Order o = new Order(this, orderNumber);
orders.add(o);
return o;

}

public void removeOrder (Order o) {
orders.remove(0) ;

}

public String toString() {
return "Customer (partnerId=" +
businessPartner.getPartnerNumber() +
"partnerName=" + businessPartner.getName() + ")";

}

New orders may be added to the collection by invoking the makeOrder (int
orderNum) method. An Iterator of orders is obtained by calling the orders ()
method. The actual collection is entirely encapsulated within the Customer
class. Many developers try to achieve this, but unwittingly break encapsulation
rules by providing a public method that returns a reference to the actual collec-
tion. That reference could be used by an application to directly manipulate the
supposedly encapsulated data. Here deliberately construct an un-modifiable Set,
which is then exposed. Thus, even attempts to execute remove () methods on
the returned Set or its Iterator will not affect the underlying collection.

Notice that I have implemented the orders collection using HashSet, the
only concrete Collection class for which support is required by all compliant
implementations. If your domain object model involves ArrayList, Vector or
other Collection implementations, you should establish that your vendor
supports these classes explicitly.

74 Persistent object model

The persistence descriptor must now explicitly identify those fields that will
hold collections of persistence-capable objects. Additionally, since collections in
Java are not typed (they hold Objects, not specifically Orders or some other
designated class), the persistence descriptor specifies the name of the class type,
instances of which will comprise the collection.

op.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="Customer" identity-type ="datastore">
<field name="orders" default-fetch-group="true">
<collection element-type =
"com.ogilviepartners.jdobook.op.Order"/>
</field>
</class>

<class name="Order"
identity-type="application”
objectid-class=
"com.ogilviepartners.jdobook.op.pk.OrderPK">
</class>
</package>
</jdo>

In this case the objects held in the orders collection are all instances of the
Order class. However, if warranted by the domain object model, such collec-
tions could contain objects spanning an inheritance hierarchy or an
implementation hierarchy. For inheritance hierarchies, the type ascribed to the
collection would be the common superclass. For implementation hierarchies,
the type ascribed to the collection would be the common interface.

Here is a simple application that illustrates persistence of the collection.

JDOBootstrap bootstrap;
PersistenceManagerFactory pmf;
PersistenceManager pm;
Customer c;

Transaction t;

Object oid;

/1 initialize everything

bootstrap = new JDOBootstrap();

pmf = bootstrap.getPersistenceManagerFactory();
pm = pmf.getPersistenceManager();

t = pm.currentTransaction();

Type restrictions for persistent fields 75

/| create a new (transient) BusinessPartner, make it a
/] Customer and add 2 Orders

BusinessPartner bp = new BusinessPartner();
bp.setName("Ogilvie Partners");

bp.makeCustomer () ;

Customer ¢ = bp.getCustomer();

c.createOrder(1);

c.createOrder(2);

/'l persist the current object graph
t.begin();

pm.makePersistent (bp);

oid = pm.getObjectId(bp);
t.commit();

/1 in a separate transaction, add another Order
t.begin();

c.createOrder(3);

t.commit();

bp = null;

// find the BusinessPartner by Object ID and print its Orders.
t.begin();
bp = (BusinessPartner) pm.getObjectById(oid);
Iterator i = bp.getCustomer().orders();
while (i.hasNext()) {
System.out.printin(i.next());
}

t.commit();

5.5.3.10 Other (non-Collection) interface types

All implementations will support persistent fields of all non-Collection
interface types. implementations may restrict the set of allowable objects that
can be assigned to persistent fields of such types, and will throw a
ClassCastException as appropriate. Typically the implementation will only
support the assignment of objects that implement the interface type as well as
implementing PersistenceCapable and for which appropriate storage has
been defined (if appropriate).

76 Persistent object model

5.5.3.11 Example — OrderLine references Sellableltem interface

An order needs products that can be ordered. This is most simplistically achieved
by introducing an OrderLine class and a Product class. Each order is composed
of zero or more OrderLine objects, and each OrderLine object references a spe-
cific product that is being ordered. Such a design is illustrated in Figure 5.10.

Order

OrderLine Product

orderLines item

» g

Figure 5.10 OrderLine references Product directly

Such a design is too rigid for most real-world domains. What happens when
new items are added to the catalog which aren’t exactly products but which
must be orderable? The simple solution of subclassing Product is not usually
sufficient. A more flexible design would be to introduce an interface describing
all things that are sellable, and the OrderLine object should reference this inter-
face. Product is altered to implement this interface. Subsequently, new things
can be made orderable without requiring them to be subclasses of Product.

In the UML diagram in Figure 5.11 I have introduced a new interface,
SellableItem. Product implements this interface, as does a new class
ServiceContract (also orderable, but not strictly a physical product). Finally
OrderLine holds a reference to the Sellableltem interface, instead of the
Product class.

Order

OrderLine Interface

. . Sellableltem
orderLines item

+getDescription():String
+getPrice():double

B B

ServiceContract Product

Figure 5.11 OrderlLine references Sellableltem interface

Type restrictions for persistent fields 77

Here is one final design note. Experienced designers, particularly those well
versed in the work on UML modeling of Peter Coad and his colleagues [Java
Modeling in Color with UML (Coad et al., 1999)], will notice that OrderLine, itself
a moment-interval, should not ordinarily hold a direct reference to Product, but
rather to a role played by Product called ProductInSale. Such a design would
be significantly more flexible than that described above. However, since this book
is on the topic of JDO and not on UML design, I have chosen to keep the domain
model only just complex enough to illustrate the various capabilities of JDO.

Further reading on object modeling

If you enjoy reading about good design practices in a bid to improve your
object modeling skills, I would recommend two further books.

Firstly, Java Design (Coad et al., 1999) gives a thorough grounding in the
design principles involved in common Java application tasks. Secondly,
Streamlined Object Modeling, Patterns, Rules and Implementation (Nicola et al.,
2002) builds on Coad’s work with the four archetypes and the domain
neutral component and distils a core set of analysis patterns.

The management of Order’s collection of OrderLines is as per the aggrega-
tion of Order by Customer. What is illustrative here is the reference from
OrderLine to SellableItem (Figure 5.12).

Order Interface
Sellableltem

+getDescription():String
+getPrice():double

A A

ServiceContract Product

orderLines

OrderLine

—item:Sellableltem

+OrderLine()
+OrderLine(item:Sellableltem,qu

+toString():String price:_do_uble _ price:_do_uble _
description:String description:String

quality:int endDate:Date weight:double

description:String startDate:Date dimensions:Dimension

Figure 5.12 UML expanded

78 Persistent object model

Sellableltem.java
package com.ogilviepartners.jdobook.op;

public interface Sellableltem

{
public double getPrice();

public String getDescription();

OrderLine.java
package com.ogilviepartners.jdobook.op;
public class OrderLine {

private Sellableltem 1item;
private int quantity;
public OrderLine() {

}

public OrderLine(Sellableltem item, int quantity) {
this.item = item;
this.quantity = quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;
}

public int getQuantity() {
return quantity;

}

public String getDescription() {
return item.getDescription();

}

public String toString() {
return "OrderLine (description=" + getDescription() +
"quantity=" + quantity + ")";

Type restrictions for persistent fields 79

For brevity, the Product and ServiceContract classes have not been shown
here. Suffice it to say that these classes will explicitly implement the
SellableItem interface, and that they will be enhanced to become persis-
tence-capable.

Here is the persistence descriptor that describes the classes:

op.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="OrderLine" />
<class name="Product" />
<class name="ServiceContract" />
</package>
</jdo>

Why is it so simple? Don’t we have to identify the “item” field of the OrderLine
class as a reference to an interface with persistence-capable implementations? The
answer is no, you don’t have to do this. The JDO implementation does not need
any information beyond that in the classes themselves. All you have to do as a
developer is watch out for potential ClassCastExceptions if you assign to the
“item” field an instance of a class which does implement the SellableItem
interface, but which is not persistence-capable.

5.5.3.12 Array types

Support for arrays is an optional feature of implementations. If supported, the
vendor may implement arrays as first- or second-class objects. If implemented
as second-class objects, the requirement to track changes and notify the owning
first-class object (which is mandatory for all other second-class objects) is
optional in the case of arrays.

5.5.3.13 Example

Very few object modelers regularly use arrays in their designs. The restriction
that array size must be known when the array is instantiated and cannot be
altered thereafter means that the far more flexible Collection classes are used
almost to the exclusion of arrays.

To illustrate array persistence I have generated a small example below. This
does not have anything to do with the order processing domain. Instead I have
defined a simple class that maintains an array of five string objects. The class is
called FiveHolder (Figure 5.13).

80 Persistent object model

FiveHolder

—content:String|[]

+FiveHolder(s1:String,s2:String,s3:String,s4:String,s5:String
+setltem(index:int,s:String):void
+toString():String

Figure 5.13 UML for FiveHolder

Here is my implementation of the class.

FiveHolder.java
package com.ogilviepartners.jdobook.other;
import javax.jdo.JDOHelper;
public class FiveHolder ({
public FiveHolder(String s0, String s1, String s2,

String s3, String s4) {
content = new String[5];

content[0] = sO0;
content[1] = s1;
content[2] = s2;
content[3] = s3;
content[4] = s4;

}

public void setItem(int index, String s) {
/1 instruct JDO that the field "content" 1is about
/1 to be altered
JDOHelper.makeDirty(this,"content");
content[index] = s;

}

public String toString() {
System.out.printin("FiveHolder: 0=" + content[0] +
"1=" + content[1] +
" 2=" + content[2] + "3=" + content[3] + "4=" +
content[4]);

}

private String[] content;

In order to persist instances of the FiveHolder class we have the persistence
descriptor.

FiveHolder.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.other">
<class name="FiveHolder" />
</package>
</jdo>

Arrays

Notice that the program FiveHolder.java includes a compile-time
dependency on the javax.jdo package. This is because the class must
notify its persistence manager whenever the contents of the array may
be changed. This is one area where the transparency of JDO to the object
model falls short.

Remember that the call to makeDirty () must occur before the array
contents are changed, to ensure that the original values are correctly
restored on transaction rollback.

5.5.3.14 Strings

Strings are immutable system classes and are therefore likely to be stored as
second-class objects by the implementation. The above example could easily
have been implemented with an array of some persistence-capable object (e.g.
Product), but the Java code and persistence descriptor would not have been
substantially different.

5.6 Inheritance

JDO'’s support for implementation and inheritance hierarchies is a major bene-
fit of the technology. It enables the design of domain object models that closely
represent the business domain.

The support for inheritance is particularly flexible. A class might be persis-
tence-capable even if its superclass is not. Equally, that class’s subclasses may
be persistence-capable or not as required by the developer. Thus, in an inheri-
tance hierarchy, classes may be independently persistence-capable and
non-persistence-capable.

Inheritance 81

82 Persistent object model

When one class in an inheritance hierarchy is defined as persistence-capable
in a persistence descriptor, the persistence modifiers ascribed to its fields (per-
sistent, transactional or none) are inherited by subclasses. Thus fields
identified as persistent will be persistent in the subclasses, fields identified as
transactional will be transactional in the subclasses, and fields identified as
none will be neither persistent nor transactional in the subclasses. Furthermore,
the identified fields must be defined in that class, and not inherited from a
superclass. This allows the PersistenceManager to take control of field
values, and not have to rely on behavior in a superclass.

Please note that the current version of JDO does not automatically persist
fields of non-persistence-capable superclasses. If a persistence-capable class has
a superclass that is not persistence-capable, then fields defined in the superclass
will not be synchronized to the data store by JDO. If the values of these fields
must be stored, you should define the superclass to be persistence-capable if
possible. This is by far the easiest and most logical option in most cases. If the
superclass cannot be made persistence-capable, you must redefine in the sub-
class those fields of the superclass which are to be persisted. It is then up to you
to guarantee that these new, but identically named, fields are updated when-
ever the corresponding fields in the superclass are updated - a tricky and
sometimes impossible task.

5.6.1 Complicated inheritance scenario

Warning: Do not try this at home!

The discussion which follows considers a hypothetical case where an inheri-
tance hierarchy will indeed have alternately persistence-capable and non-
persistence-capable classes. This is an unusual scenario. Indeed, in object orienta-
tion terms, it is probably nonsensical for this to be the case. The entire situation
is massively simplified if the least-derived class of the hierarchy is persistence-
capable (even though it may be abstract) and all of the subclasses are as well.

I do not recommend that you implement inheritance hierarchies in the
manner I am about to describe. By all means read through the discussion, but
then focus your attention on the “solution,” which is to make the entire hierar-
chy persistence-capable. Such an inheritance hierarchy is discussed in the
example “BusinessPartner as an abstract superclass” given on page 86.

To illustrate our discussion we will use the hypothetical inheritance hierar-
chy illustrated by the UML class diagram in Figure 5.14. Furthermore, we will
presume that we wish to store instances of classes Two and Four in our data
store, and not instances of classes One or Three.

To achieve this we will write a persistence descriptor for the package. We'll
use the notional package name ‘inherit.” The enhancer will use this descriptor
to enhance classes Two and Four. This is achieved by specifying the appropriate
superclass for all but the least-derived (topmost) persistence-capable class. Note
that since One and Three are not to be made persistence-capable, they will not
be described in the descriptor.

Interface
PersistenceCapable

One Two Three Four

Figure 5.14 UML for hypothetical inheritance hierarchy

inherit.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.inherit">
<class name="Two" />
<class name="Four"
persistence-capable-superclass="Two" />
</package>
</jdo>

The situation we have described is as follows. Class Two is persistence-capable,
and its fields have appropriate default persistence modifiers. Class Four is persis-
tence-capable, and its fields have appropriate default persistence modifiers. It has
a persistence-capable super class of class Two, so all fields of class Two will have
their persistence modifiers inherited. Thus whenever an instance of Four is per-
sisted or retrieved, the values for fields inherited from class Two will be managed
appropriately by JDO according to the inherited persistence modifiers.

5.6.1.1 Determining persistability

Note that in the hierarchy, the top-most persistence-capable class will implement
the PersistenceCapable interface (in this case class Two will do so after
enhancement; the implementation was shown in the UML diagram as a
reminder). This class and all subclasses thereof are therefore instances of
PersistenceCapable (as per the instanceof operator). The fact that a class is
an instance of PersistenceCapable is not sufficient to determine whether it
can be stored via JDO (e.g. class Three). This is true of all PersistenceCapable
classes, but is most evident in inheritance hierarchies of independently persis-
tence-capable and non persistence-capable classes.

Any non-persistence-capable class that is the direct superclass of a persis-
tence-capable class which does not have a no-argument constructor must itself
have a no-argument constructor. This is because the enhanced persistence-

Inheritance 83

84 Persistent object model

capable class will have a no-argument constructor which, if not provided by the
developer, will by default call super () and the appropriate constructor must
therefore be present in the superclass.

Let us now add some attributes to the inheritance hierarchy in order to con-
sider a specific case (Figure 5.15).

One Two
—fieldOne:String <+———— —fieldTwo:String
+getFieldOne():String +getFieldTwo():String
+mysteriousOne():void +setFieldTwo(fieldTwo:String):void
+setFieldOne(fieldOne:String):void T
|

To become
persistence-capable
T

Three Four
—fieldThree:String <+—— —fieldFour:String
+Three(s:String) +Four(s:String)
+getFieldThree():String +getFieldFour():String
+mysteriousThree():void +setFieldFour(fieldFour:String):void
+setFieldThree(fieldThree:String):void

Figure 5.15 Hypothetical inheritance hierarchy with attributes

Each of the four classes (One, Two, etc.) now has a single attribute
(fieldOne, fieldTwo, etc.). The persistence descriptor will be the same as
inherit.jdo shown above. Enhancement of the classes as shown above is not
viable as neither class Four, nor its immediate superclass Three, have a no-
argument constructor. To remedy this, a no-argument constructor must be
added to either one - the choice of which is up to the designer.

After enhancement, JDO will manage the value of fieldTwo in instances of
Two. In class Four, JDO will manage the values of fieldFour (specific to that
class) and fieldTwo (inherited from Two). However, it becomes apparent that
fields fieldOne and fieldThree remain unmanaged despite being inherited
through the hierarchy. Thus, values assigned to fieldOne in instances of class
Two, and fieldOne and fieldThree in instances of class Four, will not be per-
sisted to, or ultimately retrieved from, the data store.

The problem arises because only fields defined in a class can be described in
its deployment descriptor. Thus class Two can have persistence modifiers set for
its field fieldTwo, but not for the inherited field fieldOne. This can be reme-
died in part by redefining fieldOne as an attribute of class Two. The
persistence modifier can then be set in the descriptor for class Two. The field’s

values will then be persisted as part of persistent instances of class Two. Also,
through the inheritance of persistence modifiers, the same field’s values will be
stored as parts of persistent instances of class Three.

Unfortunately our workaround, the redefinition of fields in a subclass, is not
universally applicable. When fieldOne is declared in class Two, it is a new field
that replaces the inherited field of the same name. Manipulation of the attribute
within methods of class One will affect the value of the original field (scoped to
class One) and not the new and persistent field (scoped to class Two). If access to
fieldOne by methods of class One is always made through accessor methods
(also defined in class One), the situation can be corrected by implementing these
accessor methods in the subclass Two. However, if methods of class One might
manipulate the value of fieldOne directly, it is not possible to persist fieldOne
reliably without making class One itself a persistence-capable class.

The final UML class diagram is shown in Figure 5.16.

PersistenceCapable

One Two
—fieldOne:String —fieldOne:String
- - <l —fieldTwo:String
+getFieldOne():String
+mysteriousOne():void +getFieldTwo():String
+setFieldOne(fieldOne:String):void +setFieldTwo(fieldTwo:String):void

+getFieldOne():String
+setFieldOne(fieldOne:String):void

To become
persistence-capable

Three Four

—fieldThree:String <+—— —fieldThree:String
—fieldFour:String

+Three() .
+Three(s:String) +Four'(s:Str|ng) '
+getFieldThree():String +getFieldFour():String
+mysteriousThree():void +setFieldFour(fieldFour:String):void
+setFieldThree(fieldThree:String):void +getFieldThree():String

+setFieldThree(fieldThree:String):void

Figure 5.16 Completed inheritance hierarchy

The no-argument constructor has been added to class Three, and attributes
fieldOne and fieldThree have been added to classes Two and Four respectively.
Unfortunately it is not possible to guarantee that methods mysteriousOne and
mysteriousThree, which potentially update the values of fieldOne and
fieldThree directly in each class, will correctly update field values in instances of

Inheritance 85

86 Persistent object model

Two and Four and mark these instances as dirty. This consideration exists because
of the unusualness of the hierarchy. In situations where the least-derived (topmost)
class is itself persistence-capable, as are all subclasses, the situation does not arise.

5.6.1.2 Example — BusinessPartner as an abstract superclass

In order to illustrate inheritance we turn once more to the order processing
domain. BusinessPartners may have a Customer role that aggregates Order
objects on that partner’s behalf. So far a BusinessPartner has been some
entity that has a name and an address. Now we add further detail to this con-
cept by making the BusinessPartner class abstract, and subclassing it with
a number of concrete classes which will themselves be persistence-capable.

The concrete implementations will be Individual, Company, and Charity.
Each of these is a BusinessPartner (in that they can place orders on our
order processing system). However, they each have elements of common and
unique attribution. This makes them ideal candidates for an inheritance hierar-
chy. The UML diagram is shown in Figure 5.17.

1 i P
BusinessPartner businessPartner Customer
customer 0..1
+toString():String
+makeCustomer():void EIZI Company
customerFlag:boolean
name:String l<}—— +toString():String
address:String
partnerNumber:String companyRegistration:String
customer:Customer vatRegistration:String

[] Individual - Charity

+toString():String +toString():String

gender:String charityRegistration:String

Figure 5.17 BusinessPartner inheritance hierarchy

BusinessPartner has been made abstract (note the use of italics for its
name in Figure 5.17). Otherwise it is largely unchanged. It still maintains the
Customer role.

Individual, Company, and Charity each add attribution specific to them-
selves. I have assumed that every charity is a company, and hence Charity

extends Company. This is probably not correct in all cases, but does serve to
illustrate a non-trivial inheritance hierarchy.

BusinessPartner is the topmost persistence-capable class in the hierarchy,
despite the fact that it is abstract. This way it is not possible to instantiate a
BusinessPartner; you must instantiate one of the concrete subclasses
instead. However, you can obtain the extent of BusinessPartner. This extent
will include instances of the various subclasses as appropriate. Having
BusinessPartner persistence-capable also gives us this flexibility of querying
through JDOQL (see Chapter 8).

Here is a persistence descriptor that correctly specifies the inheritance.

op.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="BusinessPartner"
identity-type="application"
objectid-class="com.ogilviepartners/
.jdobook.op.pk.BusinessPartnerPK">
<field name="partnerNumber"
primary-key="true" />
</class>

<class name="Individual"
identity-type="application"
persistence-capable-superclass=
"com.ogilviepartners.jdobook.op.BusinessPartner"
objectid-class=
"com.ogilviepartners. jdobook.op.pk.IndividualPK" />

<class name="Company"
identity-type="application"
persistence-capable-superclass=
"com.ogilviepartners.jdobook.op.BusinessPartner"
objectid-class=
"com.ogilviepartners. jdobook.op.pk.CompanyPK" />

<class name="Charity"
identity-type="application”
persistence-capable-superclass=
"com.ogilviepartners.jdobook.op.Company"
/>
</package>
</jdo>

Inheritance

87

88 Persistent object model

The inheritance hierarchy illustrated above is a typical usage of JDO’s inheri-
tance support. Because the entire hierarchy is persistence-capable, everything is
very straightforward and manageable.

Note that with BusinessPartner now abstract, its primary key class
BusinessPartnerPK will itself be abstract. Furthermore, each persistence-
capable class which inherits from an abstract persistence-capable class must
define its own concrete primary key class, which inherits from the abstract pri-
mary key class. This is illustrated in the persistence descriptor above, where
Individual and Company have their own Object ID classes identified. In the
case of Charity, however, it will use the Object ID class of the non-abstract
Company from which it inherits.

5.7 Interlude: order processing GUI

The object model for the order processing domain is now complete. Before we
move on to the next chapter I need to introduce a graphical user interface
(GUI) application which allows users to manage objects in the model.

You will find this most useful for creating and persisting order processing
objects. You can later use these to practice your grasp of the JDO Query
Language with the Dynamic Query Window, which is introduced at the end of
Chapter 8.

The GUI application is called Explorer and belongs to the package
com.ogilviepartners.jdobook.op.gui. Two sample windows are shown.
Figure 5.18 shows the Explorer window listing all persistent BusinessPartner
instances. JDO’s support of inheritance is well illustrated, as the list includes
Company, Individual, and Charity instances. The “New” button is disabled
because the BusinessPartner class is abstract.

[E30rder Processing with Java Data Objects {(JDO) i [m] 4|

File Help

Business Parner] Business Parther

Individual s|Cormpany (nurmber=1 name=0gilvie Partners address=Milton ...

Campany “|Company (number=4 name=35un Microsysterns address=Mo...
, i|Cornpany (nurmber=7 name=Forte Software address=San Fra...

Charity i|Individual (hurmber=16 name=Robin Roos address=Milton Ke...

Customer “|Charity (number=12 name=Help the Aged address=London ¢...

Crder :

Ahstract lterm

Product :

Service Contract |Cum.-'||0pen ||Delete|

Figure 5.18 Explorer window listing BusinessPartners

Interlude: order processing 89

Figure 5.19 shows a Viewer window in which the Company “Forte Software”
is being created.

_. =10 x|

Save ||Refresh||Cancel||Cluse "0H| |New 0rder|

Eg’,%l:eneric Yiewer

Partner Number: |? |

Name: |F|:|rte Software |

Customer: ||

Address: |Ban Francisco |

Company Reg.: [323223 |
VAT Reg.: (72345421 |

Figure 5.19 Company Viewer window

Other windows facilitate the construction of the remaining objects in the model.

What’s next?

The next chapter discusses in detail the classes and interfaces of the javax. jdo
package.

Primary interfaces
and classes

he JDO package is comprised of a number of Java interfaces and classes
which applications use to achieve persistence. In this chapter we exam-
ine the most important of these in detail.

6.1 JDOHelper

JDOHelper is a concrete class that facilitates the bootstrapping of a JDO imple-
mentation. It also provides applications with methods to interrogate the state
of JDO instances. Although it contains a constructor, all of the methods it
defines are static and are commonly executed on the class name directly with-
out first obtaining a JDOHe1per instance.

The UML for JDOHe1per is shown in Figure 6.1.

Object
JDOHelper

+getPersistenceManager(pc:Object):PersistenceManager
+makeDirty(pc:Object,fieldName:String):void

+getObjectld(pc:Object):Object

+getTransactionalObjectld(pc:Object):Object

+isDirty(pc:Object):boolean

+isTransactional(pc:Object):boolean

+isPersistent(pc:Object):boolean

+isNew(pc:Object):boolean

+isDeleted(pc:Object):boolean
+getPersistenceManagerFactory(props:Properties):PersistenceManagerFactory
+getPersistenceManagerFactory(props:Properties,cl:ClassLoader):PersistenceManager

Figure 6.1 UML for JDOHelper

90

6.1.1 State interrogation

The following methods are used to determine the state of an instance:

isDirty(Object pc)
Returns true for persistence-capable instances that have been changed in
the current transaction. If the argument is null, references an instance that is
transient or references an object that is not persistence-capable, then the
method returns false.

isTransactional (Object pc)

Returns true for persistence-capable instances that are associated with the
current transaction. If the argument is null, references an instance that is
transient or references an object that is not persistence-capable, then the
method returns false.

isPersistent (Object pc)

Returns true for persistence-capable instances that are in a persistent state
and therefore represent persistent data in the data store. If the argument is
null, references an instance that is transient or references an object that is
non-persistence-capable, then the method returns false.

isNew(Object pc)
Returns true for persistence-capable instances that have been newly made
persistent in the current transaction. If the argument is null, references an

instance that is transient or references an object that is non-persistence-
capable, then the method returns false.

isDeleted (Object pc)

Returns true for persistence-capable instances that have been deleted in the
current transaction. If the argument is null, references an instance that is
transient or references an object that is not non-persistence-capable, then
the method returns false.

6.1.2 Administrative functions

The following methods help applications to administer their managed instances.

getPersistenceManager (Object pc) :PersistenceManager

This method returns a reference to the persistence manager responsible for
managing the instance. If the argument is null, references an instance that is
transient or references an object that is non-persistence-capable, then the
method returns null.

getObjectId(Object pc)
This method returns the JDO identity of the instance. If application identity

applies, the returned object will be of the class identified as the Object ID
Class in the persistence descriptor. Some implementations support the

JDOHelper

91

92 Primary interfaces and classes

changing of application identities, an optional feature. This facilitates the
alteration of primary key fields of persistent instances. This particular
method will return the identity as it was at the start of the transaction,
regardless of any primary key field changes that have already been made
during the transaction.

If datastore identity applies, the object returned will be of a class deter-
mined by the implementation. Such classes are not standardized, and
different implementations are likely to use different classes for this purpose.

If the argument is null, references an instance that is transient or references
an object that is non-persistence-capable, then the method returns null.

e getTransactionalObjectId(Object pc)

This method is the same as getObjectId() above, except that when appli-
cation identity applies it will return the current identity, taking into account
any alterations made to primary key fields during the current transaction.

The code extract below illustrates the difference between these two methods. It
alters the primary key of an instance with application identity and then, during the
same transaction, invokes getObjectId() and getTransactionalObjectId()
and displays the results.

package com.ogilviepartners.jdobook.app;

import javax.jdo.*;

import com.ogilviepartners.jdo.JDOBootstrap;

import com.ogilviepartners.jdobook.op.BusinessPartner;
import java.util.Collection;

public class ChangeApplicationIdentity ({

final String changeldentity =
"javax.jdo.option.ChangeApplicationldentity";

public static void main(String[] args) {
JDOBootstrap bootstrap;
PersistenceManagerFactory pmf;
PersistenceManager pm;
BusinessPartner bp;
BusinessPartnerPK oldKey;
String newPartnerNumber;
Collection supportedOptions;

Bootstrap = new JDOBootstrap();
pmf = bootstrap.getPersistenceManagerFactory();

SupportedOptions = pmf.supportedOptions();

/] is changing of application identity supported?

JDOHelper 93

if (!supportedOptions.contains(changeldentity)) {
System.err.printin("This JDO implementation does
not support the " +
"changing of application identities");
}
if (args.length != 2) {

System.err.printiln
("usage: java ChangeApplicationldentity " +
"<oldPartnerNumber> <newPartner Number>");
System.exit(1);
}

oldKey = new BusinessPartnerPK(args[0]);
newPartnerNumber = args[1];

pm = pmf.getPersistenceManager();
t = pm.currentTransaction();
t.begin();

/1 find the BusinessPartner
bp = (BusinessPartner) pm.getObjectById(oldKey);

/| change the primary key field
bp.setPartnerNumber (newPartnerNumber) ;

/1 print out the ObjectId and TransactionalObjectId

System.out.printin("ObjectId=" + pm.getObjectld(bp));

System.out.println("TransactionalObjectId=" +
pm.getTransactionalObjectId(bp));

/| done

t.commit();

pm.close();

}

The essential results of executing this application are shown below, presum-
ing that a persistent BusinessPartner exists with the partner number 6,
but none exists with the partner number 7.

C:>java ChangeApplicationIdentity 6 7
ObjectId=6
TransactionalObjectId=7

makeDirty (Object pc, String fieldname)

This method call marks the specified field name as dirty and transitions the
instance to an appropriate dirty state. If the object reference is null, refer-

94 Primary interfaces and classes

ences an instance that is transient, references an object that is non-persis-
tence-capable, or if the names field is not managed by JDO, then the method
returns silently without having any effect. Optionally the field name may be
fully qualified by package and class names.

The example below illustrates how makeDirty () might be used when
manipulating a persistence-capable instance through direct field access from
another class which is not persistence-capable.

Account.java
package com.ogilviepartners.jdobook.other;

public class PersistentAccount {
double balance; // package level ("friendly") visibility

public setBalance(double balance) {
this.balance = balance;

ChangeAccount.java

package com.ogilviepartners.jdobook.other;
/| Same package as Account

public class ChangeAccount ({
public incrementBalance(Account a) {
JDOHel1per.makeDirty(a, "balance") ;
/1 now JDO knows it is dirty
a.balance++;

Account.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.other">
<class name="Account"/>
</package>
</jdo>

Persistence-aware classes

The use of JDOHelper.makeDirty () in ChangeAccount. java has unde-
sirably introduced a compile-time dependency on the javax. jdo package.
However, since no array manipulation is involved, this is unnecessary.
Rather than alter the source code of ChangeAccount.java we could
enhance the class to be persistence-aware.

Persistence-capable classes are capable of having their state persisted in a
data store. The Account class above is persistence-capable.

Classes which are not persistence-capable, but which manipulate persis-
tence-capable instances through direct attribute manipulation (as opposed
to method invocations), should be made persistence-aware. Persistence-
aware classes cannot have their state persisted, but they are aware of other
persistence-capable instances and automatically invoke the appropriate
makeDirty () method whenever direct attribute manipulation occurs.

To make a class persistence-aware you do not declare it in the persis-
tence descriptor — doing so would instead make it persistence-capable.
Instead, the name of the class is generally passed as a command-line argu-
ment to the enhancer. The exact manner in which this is done will be
detailed in the documentation for your JDO implementation.

6.1.3 Bootstrapping functions

There are several different ways of obtaining a persistence manager within an

application, a process I refer to as bootstrapping the JDO implementation. Of the

available methods, some are required features of the specification and can be

guaranteed to work with all compliant implementations. Others are optional

features that depend upon support by the particular implementation in use.
The only standard bootstrapping methods are:

1 Use JDOHelper to construct a PersistenceManagerFactory configured
according to properties defined in a properties object.

2 Obtain a pre-instantiated PersistenceManagerFactory instance from a
naming service via JNDI, and invoke its getPersistenceManager () method.

In addition to these, the following non-standard methods could be used in a
non-managed environment if necessary:

3 Construct an instance of the implementation’s concrete class that imple-
ments the PersistenceManagerFactory interface according to the
documented public constructors. Set the necessary properties individually
and then invoke its getPersistenceManager () method.

4 Construct an instance of the implementation’s concrete class that imple-
ments the PersistenceManager interface according to the documented
public constructors.

JDOHelper

95

96 Primary interfaces and classes

6.1.3.1 Bootstrapping with JNDI lookups

The JNDI lookup of a PersistenceManagerFactory is the accepted approach
when JDO is used in a managed environment, within EJB (session, entity and
message-driven) or web components (servlets and JavaServer Pages). An exam-
ple of this is shown in Chapter 11.

6.1.3.2 Bootstrapping with JDOHelper

JDOHelper provides two methods for obtaining a PersistenceManagerFactory.
These provide the most commonly used method for bootstrapping JDO in the
managed environment.

getPersistenceManagerFactory (Properties p)
getPersistenceManagerFactory (Properties p, ClassLoader cl)

These methods are wused to instantiate appropriately configured
PersistenceManagerFactory instances. If no class loader is explicitly pro-
vided, the current thread’s default class loader is employed. The configuration
of the PersistenceManagerFactory is dictated by property settings con-
tained in the properties object. The returned PersistenceManagerFactory
will then return correspondingly configured PersistenceManager instances
when its getPersistenceManager () method is called.

This approach is the standard method of persistence manager factory con-
struction. The names of the standard properties are detailed below.

It is, however, permissible for implementations to define additional properties.
To support this and yet retain portability, implementations will ignore any proper-
ties with unrecognized names. Many of the properties invoke support for optional
JDO features. If the implementation does not support the corresponding feature,
the call to getPersistenceManager () will throw a JDOFatalUserException.

The PersistenceManagerFactory obtained in this manner is non-config-
urable; all of its property mutator (set) methods will throw an exception
if invoked.

6.1.3.3 Bootstrapping with explicit PersistenceManagerFactory
construction

The explicit construction of a PersistenceManagerFactory instance is an
alternative to using the JDOHelper methods described above. Although the
specification does not guarantee that the factory will have a no-argument con-
structor, one is present in most, if not all, implementing classes. The
application must know the name of this class (usually as a property value) and
must also know how to obtain (from JNDI) or construct an appropriate
ConnectionFactory for the underlying data store.

JDO properties explained 97

6.2 JDO properties explained

The standard JDOHe1per bootstrap properties are explained here. The property
names are additionally listed in Appendix A for your quick reference.

It is permissible for implementations to support additional properties with
names that are not standard. Details of these will be provided in the appropri-
ate product documentation.

javax.jdo.PersistenceManagerFactoryClass

This is the fully package-qualified class name of the JDO implementation’s class
implementing the PersistenceManagerFactory interface.

javax.jdo.option.Optimistic

If this property is set to true, the returned PersistenceManagerFactory will
employ optimistic transaction management.

javax.jdo.option.RetainValues

If this property is set to true, the automatic eviction of persistent instances on
transaction completion is suppressed. This may decrease the number of times
that a particular persistent instance must be loaded into the cache at the
expense of a much larger cache size.

javax.jdo.option.RestoreValues

Transactional rollback is essential in most transactional applications. However,
it brings with it overheads such as the caching of instance field values for use
during rollback.

If the RestoreValues property is set to true, instances do have their trans-
actional (and persistent) field values restored when transaction rollback occurs.
However, some applications will not refer to instances after completion. If
RestoreValues is false, instances do not have such fields restored on rollback.
When the false value is used, the implementation can achieve significant per-
formance gains: instance field values are not cached when the instance becomes
involved with a transaction, and are not restored if the transaction is rolled back.

Note that this does not affect the transactional behavior of the data store.
The persistent data will still be restored on rollback. However, the instance in
memory will not have its field values restored.

javax.jdo.option.IgnoreCache

If set to true, this property provides a hint to the JDO implementation that
JODQL queries may be resolved without reference to changes present in cached
instances but not yet synchronized to the data store. The implementation may
choose to ignore this property value and always return exact query results
including changed cached instances.

javax.jdo.option.NontransactionalRead

If this property is set to true, applications may cause persistent instances to be
read outside a transaction, typically by executing Querys or by reading (or navi-

98 Primary interfaces and classes

gating through) as yet unloaded persistent field values. If set to false, the exe-
cution of Querys or the reading of as yet unloaded values outside a transaction
will throw a JDOUserException.

javax.jdo.option.NontransactionalWrite

If this property is set to true, non-transactional instances may be changed out-
side a transaction. Otherwise updates to such instances must be performed
within a transaction, despite being unaffected by any subsequent rollback of
that transaction.

javax.jdo.option.Multithreaded

This property is used to enable or disable the synchronization of calling threads
within a persistence manager. If set to true, the PersistenceManagerFactory
will subsequently return persistence managers which internally synchronize calling
threads, thus relieving the application of such responsibility. If your application
will potentially invoke the services of a persistence manager from multiple threads,
you must set the Multithreaded property to true. However, if your application
has only a single thread, or itself performs the appropriate synchronization
between multiple threads, the value can be set to false. This will reduce unneces-
sary synchronization overheads within the PersistenceManager object.

Note that in Swing/JFC applications there are typically at least two threads —
the main thread and the Abstract Windowing Toolkit thread — and appropriate
care should be taken.

javax.jdo.option.ConnectionDriverName

This is the fully package-qualified name of the driver class for the underlying
data store.

javax.jdo.option.ConnectionUserName

This is the username to be used for authentication against the data store. It is
used by the connection factory when instantiating connections.
javax.jdo.option.ConnectionPassword

This is the password to be used for authentication against the data store. It is
used by the connection factory when instantiating connections.
javax.jdo.option.ConnectionURL

The ConnectionURL will be used by the connection factory when instantiating
connections. It should correctly identify the protocol, network location, port
number and name of the data store. The exact format of these uniform resource
locator (URL) strings is dependent on the underlying driver that the connection
factory will employ.

Here is an example URL for connecting to an Hypersonic SQL database run-
ning on its default port number on the local host:

jdbc:hsqldb:hsql://1ocalhost

JDO properties explained 99

Here is an example for connecting to an Oracle database with name “jdotest1”
on host “Ogilvie-1” at port 1521:

jdbc:oracle:oci8:@(description=(address=(host=ogilvie-
1) (protocol=tcp) (port=1521)) (connect_data=(sid=jdotest1)))

javax.jdo.option.ConnectionFactoryName

This property identifies the JNDI name of a pre-instantiated ConnectionFactory
to be used by the persistence manager. Its use supercedes and negates the other
connection properties (ConnectionUserName, ConnectionPassword and
ConnectionURL). This has most relevance in the managed environment where
factories are typically obtained through a naming service.

javax.jdo.option.ConnectionFactory2Name

Within the managed environment, standard connection factories always
return connections that are registered with the current J2EE transaction. This
is not appropriate when working with optimistic transaction management.
The ConnectionFactory2Name property is for the identification of an alter-
native JNDI connection factory name to be used by the persistence manager in
these circumstances.

6.2.1 ConnectionFactory properties

Many JDO implementations will be layered on top of standard Connector
implementations. These are likely to provide additional bootstrap property
names that correspond to the ConnectionFactory configuration parameters.
Such facilities will include the setting of the connection pool size properties
(MinPoo1 and MaxPoo1) amongst others.

The JDO specification does not standardize the names used for such properties.

6.2.2 Bootstrapping JDO implementations

Now that we have examined the standard properties for bootstrapping a persis-
tence manager factory through JDOHelper, it’s time to look at a concrete
example. During the early chapters we used a class called JDOBootstrap for
this purpose (Figure 6.2). It is not part of the standard but the source code is
shown below and included on the downloadable distribution.

The purpose of JDOBootstrap is to locate a property file called “jdo.prop-
erties,” construct a properties object from the contents of that file, and then
use the JDOHelper class to instantiate a PersistenceManagerFactory. The
properties file is located (by looking firstly in the CLASSPATH and subsequently
in the file system) when the JDOBootstrap instance is constructed. The
getPersistenceManagerFactory method returns a PersistenceManager-
Factory instance. (The method itself appears in the UML diagram as a
property called “persistenceManagerFactory” in the bottom compartment.)

100 Primary interfaces and classes

JDOBootstrap

—p:Properties=newProperties()
—pmf:PersistenceManagerFactory
—jdoPropertyNames:String|]

+JDOBootstrap()
—instantiatePersistenceManagerFactory():void
+listJDOProperties():void
+listVendorProperties():void

persistenceManagerFactory:PersistenceManagerFactory

Figure 6.2 UML for JDOBootstrap

Actual instantiation of the persistence manager takes place in the private
method instantiatePersistenceManagerFactory.)

The two remaining methods list property values. The 1istJDOProperties
method prints those standard properties that are present in the jdo.proper-
ties file. Only standard properties are listed so that any misspelling of property
names is easily evident to the developer. However, even non-standard properties
will be passed on to the JDOHelper. The TistVendorProperties() method
prints out two properties that identify the implementation: the VendorName
and the VersionNumber. These values can be determined only after instantia-
tion of the PersistenceManagerFactory, so instantiation takes place when
this method or the getPersistenceManagerFactory method is called,
whichever occurs sooner.

JDOBootstrap.java
package com.ogilviepartners.jdo;

import java.io.*;

import javax.jdo.PersistenceManagerFactory;
import javax.jdo.JDOHelper;

import java.util.Properties;

import java.util.Enumeration;

public class JDOBootstrap
{
private Properties p = new Properties();
private PersistenceManagerFactory pmf;
private String[] jdoPropertyNames = {
"javax.jdo.PersistenceManagerFactoryClass",
"javax.jdo.option.Optimistic",
"javax.jdo.option.RetainValues",

JDO properties explained

"javax.jdo.option.RestoreValues",
"javax.jdo.option.IgnoreCache",
"javax.jdo.option.NontransactionalRead",
"javax.jdo.option.NontransactionalWrite",
"javax.jdo.option.ConnectionDriverName",
"javax.jdo.option.ConnectionUserName",
"javax.jdo.option.ConnectionPassword",
"javax.jdo.option.ConnectionURL",
"javax.jdo.option.ConnectionFactoryName",
"javax.jdo.option.ConnectionFactory2Name",
"javax.jdo.option.Multithreaded"};

public JDOBootstrap()
/1 try classpath

throws BootstrapException {

InputStream propStream = getClass().getResourceAsStream

("/jdo.properties'’
if (propStream == null

/1 try Tocal
propStream =

)i
) A

getClass () .getResourceAsStream

("jdo.properties");
if (propStream == null) {
throw new BootstrapException("Could not " +

"locate or read

jdo.properties' which should " +

" be in CLASSPATH or the working directory");

}
}
try {
p.load (propStream);
propStream.close();
}

catch (java.io.IOException ioe) {
ioe.printStackTrace ();

throw new

BootstrapException("Could not Toad " +

"properties from 'jdo.properties'\n" + ioe);

private void instanti

atePersistenceManagerFactory() {

pmf = JDOHelper.getPersistenceManagerFactory (p);

public void 1istJDOProperties() {
Collection ¢ = new ArraylList();

101

102

Primary interfaces and classes

for (int i1=0; i<jdoPropertyNames.length; i++) {
c.add(jdoPropertyNames[i]);
}
System.out.printin("Listening standard JDO properties");
for (Enumeration e = p.propertyNames();
e.hasMoreElements();) {
String s = (String) e.nextElement();
if (c.contains(s))
System.out.printin(s + "=" + p.getProperty(s));
}
System.out.printin("Listening standard JDO properties");
for (Enumeration e = p.propertyNames();
e.hasMoreElements();) {
String s = (String) e.nextElement();
if (cl!contains(s))
System.out.printin(s + "=" + p.getProperty(s));

}
System.out.printin();

public void TistvendorProperties() {
if (pmf == null) {
System.out.printin(

"Instantiating PersistenceManagerFactory");
instantiatePersistenceManagerFactory();
System.out.printin();

}

System.out.printin("Listing JDO vendor properties");

System.out.printin("vendorName=" +
pmf.getProperties().getProperty("vendorName"));

System.out.printin("VersionNumber=" +
pmf.getProperties().getProperty("VersionNumber"));

System.out.printin();

public PersistenceManagerFactory getPersistenceManagerFactory()
if (pmf == null)

instantiatePersistenceManagerFactory();
return pmf;

PersistenceManagerFactory

BootstrapException.java

public class BootstrapException extends Exception {
public BootstrapException(String s) {
super(s);

}

6.2.2.1 Example

Applications use this class by first instantiating it and then optionally listing
the two sets of properties before calling getPersistenceManagerFactory (),
as shown in the code extract below.

JDOBootstrap bootstrap = new JDOBootstrap();
bootstrap.1istJDOProperties(); /1 useful debug info
bootstrap.listvendorProperties(); // useful debug info
PersistenceManagerFactory pmf =
bootstrap.getPersistenceManagerFactory();

6.3 PersistenceManagerFactory

An instance of a concrete class implementing the PersistenceManagerFactory
interface is provided as a part of each JDO implementation. This is the usual
source from which PersistenceManager instances are obtained. Although it is
possible to construct a PersistenceManager directly without doing so through a
factory, as noted earlier, this approach is less common.

The PersistenceManagerFactory interface details accessor and mutator
methods for each of its properties. The accessor (get) methods can be used at
any time to determine the corresponding property values which are assigned to
persistence managers obtained from a particular factory instance.

The mutator (set) methods may be used to configure the factory only until
the first persistence manager has been obtained from it (which occurs when the
getPersistenceManager () method is invoked). Afterwards any attempt to
alter the configuration of the factory by invoking its mutator (set) methods will
throw an exception.

Note that if the factory was obtained through JDOHelper, with its configu-
ration dictated by a properties object, the factory cannot be reconfigured even
before its getPersistenceManager () method has been called.

The 17 “set” methods and 16 “get” methods (the ConnectionPassword prop-
erty is write-only, so the single method setConnectionPassword () is provided)
are not listed here. The full set of PersistenceManagerFactory configuration
methods is tabled in Appendix D. The meanings of the property names have
already been described in section 6.2.

103

104 Primary interfaces and classes

The most important non-configuration methods are detailed below.

PersistenceManager getPersistenceManager ()
PersistenceManager getPersistenceManager
(String user, String password)

These methods return an appropriately configured PersistenceManager
instance. The configuration is determined by the values of the various proper-
ties of the PersistenceManagerFactory itself. Property values may have
been set by explicit calls to corresponding set methods prior to the first invoca-
tion of either getPersistenceManager method, or by a properties object
passed to a getPersistenceManagerFactory method in the JDOHelper
when the factory instance was originally obtained.

The method that takes user and password as parameters will return a persis-
tence manager with an appropriately configured connection to the data store.
Note that specifying user details in this way may subvert both the pooling of
connections by the connection factory and the pooling of persistence managers
by the persistence manager factory.

Properties getProperties()

The return value from this method is a properties object describing the configu-
ration of the factory.

6.3.1 Optional feature support

Since the JDO specification contains a large number of optional features, a
means is required by which a particular implementation’s support for optional
features can be determined. This is achieved through the factory’s
supportedOptions () method.

Collection supportedOptions|()

The return value of this method is a collection comprised of string objects. JDO
defines a set of strings that may be present in the returned collection to indi-
cate support for the corresponding optional feature.

For example, if the implementation supports application identity, the string
"javax.jdo.option.ApplicationIdentity"” will be present in the collec-
tion. If the implementation supports datastore identity, the String
"javax.jdo.option.Datastoreldentity"” will be present in the collec-
tion. (Recall that to be JDO compliant, an implementation must support at
least one of these.)

The full list of supported option strings is provided in Appendix B.

PersistenceManager

6.3.1.1 Example — optional feature support

Below is an example application that bootstraps a JDO implementation and
then lists the optional features it supports.

OptionalSupport.java
package com.ogilviepartners.jdobook.app;

import javax.jdo.*;

import com.ogilviepartners.jdo.JDOBootstrap;
import java.util.Collection;

import java.util.Iterator;

public class OptionalSupport
{

public static void main(String[] args) {

/] instantiate the PersistenceManagerFactory
JDOBootstrap bootstrap = new JDOBootstrap();
bootstrap.1istJDOProperties();
bootstrap.listVendorProperties();
PersistenceManagerFactory pmf =
bootstrap.getPersistenceManagerFactory();

/1 determine and print supported optional features
System.out.printin("Supported Optional Features:");
Collection ¢ = pmf.supportedOptions();
Iterator i = c.iterator();
while (i.hasNext()) {

System.out.printin(i.next());

}

6.4 PersistenceManager

The PersistenceManager interface is the application developer’s primary
means of affecting the state of persistence-capable instances. In Chapter 4, I
presented examples illustrating the use of a persistence manager’s state man-
agement methods (makePersistent, deletePersistent, makeTransient,
evict, refresh, etc.). We will now examine the PersistenceManager inter-
face in more detail, but without unnecessarily reproducing Chapter 4’s examples.
The PersistenceManager interface presents overloaded variants of most
cache management and instance lifecycle methods. One of these manipulates a
single instance, whilst others perform the same manipulation to collections or

105

106 Primary interfaces and classes

arrays of instances, and potentially another applies the manipulation to all
applicable instances in the cache. The precise meanings of these overloaded
methods will be described only for the eviction methods.

6.4.1 Cache management

The following methods allow an application to influence the management of a
persistence manager’s cache.

6.4.1.1 Evict
void evict(Object pc)

Evict the identified persistence-capable instances from the cache.

void evictAll1(Collection c)

Evict all members of the identified collection of persistence-capable instances
from the cache.

void evictAl1(Object[] o)

Evict all members of the identified array of persistence-capable instances from
the cache.

void evictAll()

Evict all cached persistence-capable instances from the cache.

Eviction is a hint to the persistence manager that an instance should be
removed from its cache. Under usual circumstances this happens automatically
during transaction completion, and it is not necessary for an application to pro-
grammatically evict instances.

The persistence manager will ignore requests to evict instances that are in an
inappropriate state, e.g. those that are dirty.

6.4.1.2 refresh

void refresh(Object pc)

void refreshAl11(Collection c)

void refreshAl1 (Object[] o)

void refreshAl1 ()

The instance’s persistent field values are reset to their values as at the start of the
transaction, and the instance transitions back to Persistent-Clean if it was
Persistent-Dirty. Persistent-Nontransactional (e.g. optimistically locked) instances

have their fields refreshed but remain in the same state. See Chapter 7, for more
information about optimistic transaction strategies.

PersistenceManager

6.4.1.3 retrieve

void retrieve(Object pc)
void retrieveAll(Collection c)
void retrieveAll (Object[] o)

The retrieve methods cause the instance’s as yet unread fields to be read from
the data store.

If your application has a reference to a Collection of JDO instances (per-
haps reference called orders to a HashSet containing Order objects) and you
are about to iterate through the Collection, you might consider calling
retrieveAll (orders). This will cause the implementation to read all the
field values of each referenced Order instance. This minimizes subsequent data
store activity as the application accesses each Order.

Avoid doing so if your Col1ection is known to contain an enormous number
of instances, or if you do not intend to work through the whole of its contents.

6.4.2 Instance lifecycle

The following methods are used by an application to alter the state of a
JDO instance.

6.4.2.1 makePersistent

void makePersistent (Object pc)
void makePersistentAl1(Collection c)
void makePersistentAl11(Object[] o)

This is a request to create a new entity in the data store.

Where application identity is used and the primary key already exists in the
data store, the instance cannot be persisted. Depending on the implementation,
an exception will be thrown either when makePersistent () is called or when
the transaction is committed.

With datastore identity the entity will be persisted even if another persistent
entity already exists with identical persistent field values, as the JDO identity
for each object (created at persist time by the implementation) will be different.

At the time that a transient instance is made persistent, the implementation
marks any other transient instances that are referenced by persistent fields of
the newly persistent instance as being provisionally persistent. This occurs
recursively, until the closure (complete set) of transient instances referenced by
such persistent fields is provisionally persistent. At commit time, those provi-
sionally persistent instances which are still part of this closure are made
persistent. This is called “persistence by reachability”.

By way of an example, consider a transient Order instance that holds a col-
lection of references to (transient) OrderLine instances. When the Order is

107

108 Primary interfaces and classes

passed as a parameter to makePersistent (), each referenced OrderLine will
be made provisionally persistent. However, it is still possible to alter the order-
Tines collection before the transaction is committed. At commit time, only
those OrderLine instances which are referenced by the Order will be made
persistent. Any OrderLine instances which were referenced at the time of
makePersistent (), but are no longer referenced at the time of commit (),
will remain transient.

When to use makePersistent()

Readers with a background in relational databases will be used to “inserting”
new entities into the data store. This is essentially what makePersistent ()
does, although with a little more flair (e.g. persistence by reachability).

However, if you had to call makePersistent () every time you instanti-
ated a new object that was to be stored, you would quickly find JDO to be
less than transparent!

The truth is that applications only rarely need to invoke
makePersistent (). Most of the time, newly created (and therefore transient)
instances are referenced by existing persistent instances, either via singleton
references or membership of a collection. In such cases, the new instance will
be transparently made persistent when the transaction is committed.

Two occasions when you will nevertheless call makePersistent () are:

® when you are persisting an instance which is not immediately being refer-
enced by another persistent instance;

e when you need to obtain the Object ID for your new Instance before the
transaction has been committed.

6.4.2.2 deletePersistent

void deletePersistent (Object pc)
void deletePersistentAl11(Collection c)
void deletePersistentAl11(0Object[] o)

These methods delete persistent instances from the database. They must be
called in the context of an active transaction (albeit an optimistic transaction).
The instance transitions to Persistent-Deleted or Persistent-New-Deleted as
appropriate. After the transaction has been successfully committed it transitions
to Transient. The Java object thus remains, but no longer represents the persis-
tent data store entity, which has been deleted.

Please note that deletePersistent() is not the exact opposite of
makePersistent (). Persistence by reachability permits the makePersistent ()
call to persist a closure of instances. However, JDO merely specifies that
deletePersistent () will delete the particular instance (or instances if a collec-
tion is given).

PersistenceManager

JDO vendors may choose to add value to their implementations by specify-
ing deletion constraints, which cause deletes to cascade to dependent objects.
However, there is no guarantee that the set of objects deleted in this manner
would be the same as the set of objects that would have been persisted through
reachability. Furthermore, portable applications should not rely on such delete
cascade functionality, which is beyond the JDO specification and may not be
supported by alternative implementations.

6.4.2.3 makeTransient

void makeTransient (Object pc)
void makeTransientAl1(Collection c)
void makeTransientAl1(Object[] o)

Make a persistent instance transient again. Note that this does not affect the
underlying data store entity in any way. Making the instance transient does not
delete the data; it merely disassociates the instance from the data store. Any sub-
sequent changes to the instance will not be synchronized with the data store.

Please note that when an instance is passed as a parameter to makeTransient (),
only that instance transitions to the transient state. If it holds references to other
persistent instances, they do not become transient. In this way makeTransient (),
like deletePersistent (), is not the opposite of makePersistent ().

6.4.2.4 makeTransactional

void makeTransactional (Object pc)
void makeTransactionalAll(Collection c)
void makeTransactionalAll (Object[] o)

Make a non-transactional instance transactional, so that its persistent and
transactional field values become subject to transaction rollback.

6.4.2.5 makeNontransactional

void makeNontransactional (Object pc)
void makeNontransactionalAl1l(Collection c)
void makeNontransactionalAl1l(Object[] o)

Make a transactional instance non-transactional.

The state Persistent-Nontransactional applies to persistent instances whose
field values are not necessarily in sync with the data store. This applies to per-
sistent instances whose field values have been read, but not yet altered, in an
optimistic transaction.

A Persistent instance can explicitly be made Persistent-Nontransactional
through the persistence manager’s makeNontransactional () method, although
it is unlikely that an application would choose to do so. As soon as field values are
read in a data store (pessimistic) transaction, or as soon as field values are updated

109

110 Primary interfaces and classes

in either type of transaction, the instance transitions to Persistent-Dirty.

Applications will, however, make transient instances transactional. The
makeNontransactional () method is intended for applications to reverse
that process.

6.4.3 Working with JDO identities

PersistenceManager provides two methods for determining the identity of
an instance. They are identical to the equivalent static methods of the
JDOHelper class. Where they are used, the methods must be invoked on the
particular PersistenceManager instance that is responsible for managing the
persistence-capable instance. Since many PersistenceManagers may be active
in a complex application (particularly likely when multiple data stores are
accessed), it is more usual for the JDOHelper methods to be used.

Class getObjectIdClass (Object pc)

This method returns the class descriptor for the class that forms the JDO iden-
tity of the specified persistence-capable instance. Where application identity
applies, this will be the class identified in the persistence descriptor. Where
datastore identity applies, this will be the class chosen for that purpose by the
implementation.

Object getObjectId(Object pc)
This method returns the JDO identity of the instance.

Object getTransactionalObjectId(Object pc)

This method is the same as getObjectId above, except that where application
identity applies it will return the current identity, taking into account any alter-
ations made to primary key fields during the current transaction.

Object newObjectIdinstance(Class cls, String representation)

It is a requirement of Object ID classes that they support a toString()
method outputting a string representation of the key, and a string constructor
that can accept such a representation and equivalently initialize an appropriate
Object ID instance.

The newObjectIdinstance method accepts the class descriptor for a persis-
tence-capable class, and a string representation of an Object ID. The method
identifies the appropriate Object ID class for the indicated persistence-capable
class, and returns a new instance initialized from the string representation.

6.4.4 Administrative functions

The following functions facilitate an application’s administration of persistence
managers.

void close()
void isClosed()

When an application has finished using a PersistenceManager instance it
should call the close () method. After close() has been called, any further

PersistenceManager

invocation of its methods throws a JDOFatalUserException, apart from the
isClosed () method that returns true.

When a persistence manager is closed, the implementation may choose what
to do with it. In a non-managed environment the object is likely to be dis-
carded (and subsequently garbage-collected), whilst in a managed environment
the object is likely to be returned to a pool of free persistence managers.

setUserObject (Object o)

Object getUserObject ()

These methods allow an application to associate any single but arbitrary object
with a persistence manager. This may be used by an application framework for
infrastructure or administrative purposes.

PersistenceManagerFactory getPersistenceManagerFactory ()

This method returns a reference to the factory from which the persistence man-
ager was originally obtained.

Transaction currentTransaction()

This method returns a reference to the persistence manager’s transaction object
(an instance of javax.jdo.Transaction). Each persistence manager has only
one such object, through which the application can demarcate transactions
serially. If separate transactions are required in parallel, separate persistence
managers will have to be used.

void setMultithreaded(boolean multithreaded)
boolean getMultithreaded()

These methods allow manipulation of the Mult1ithreaded option within a per-
sistence manager. If supported by the implementation, setting Multithreaded
to true enables the application to invoke its methods from multiple threads
simultaneously, at the expense of added thread synchronization overheads
within the persistence manager.

void setIgnoreCache(boolean ignoreCache)

boolean getIgnoreCache ()

These methods allow the manipulation of the IgnoreCache option. If
IgnoreCache is set to true then the implementation is permitted (but not
required) to optimize query execution by ignoring optimistically locked
instances that have been changed in the current transaction.

6.4.5 Obtaining instances

Extent getExtent(class cl1, boolean subclasses)

Given the class descriptor for a persistence-capable class, this method returns
the extent of all persistent instances of that class. If the subclasses parameter is
true, the extent includes all persistent instances of that class and its subclasses.

111

112 Primary interfaces and classes

Object getObjectByld(Object 1id)
This method retrieves a single persistent instance from the data store based on
the identified Object ID instance.

It is possible for an application to determine an instance’s identity from a per-
sistence manager of a particular implementation, and to subsequently attempt
to get the corresponding instance using the getObjectBylId () method of
another persistence manager that is part of a different implementation. In such
cases, the Object ID is guaranteed to be portable only if the JDO instance has
application identity. For datastore identity the actual class acting as Object ID is
an implementation choice, and portability across implementations is not even
likely, let alone guaranteed.

6.4.6 Query factory methods

A persistence manager acts as the factory for JDO Query objects. This is pro-
vided through nine overloaded variants of the method newQuery (). Each of
these will be discussed in Chapter 8.

6.5 Extent

The extent of a class (the so-called candidate class) represents the complete set of
all persistent instances of that class. In pure object oriented terms, an extent
actually contains all classes that are instances of the candidate class, although
JDO allows the construction of an extent to optionally include or exclude sub-
classes of the candidate class.

Extents without subclasses

There are a number of JDO experts, myself included, who believe that the
concept of an extent of a candidate class without subclasses does not make
sense in terms of object orientation.

We recognize that extents without subclasses do facilitate performance
improvements with some Implementations. However, it is our opinion
that the subclasses = false setting should be considered as a hint to the
implementation that it may optimize execution by ignoring any sub-
classes, rather than a mandatory requirement to specifically exclude any
persistent subclasses which may exist.

I present this argument in more detail in Chapter 13.

An extent is merely a holder for the class descriptor, subclasses flag, and a
collection of open Iterator objects. In this regard the JDO specification does
not expect the obtaining of an extent, by calling getExtent () on a persistence

manager, to actually read instances from the database. Only when an Iterator
is obtained and its next () method invoked does the data retrieval process com-
mence. Therefore it is quite legitimate to obtain a particular extent at the
beginning of an application, and use it to obtain Iterators as required, and in
different transactions, until the application is closed. Of course, if you take this
approach you should be doubly sure to close each Iterator as soon as you've
finished with it in order to conserve system resources. These Iterators are
closed through the close () methods of the Extent.

Extent of an interface

In some implementations, it may be possible to obtain the extent of an
interface. This may require the interface to have been enhanced. Iterators
obtained from such an extent would yield all of the persistent J]DO
instances that implement the chosen interface.

In theory, the extent of the SellableItem interface could be used to
list items that can be placed on an order. However, this is not quite as
useful as it might seem. Since interfaces have only methods and not true
attributes, there can be no concept of the “persistent fields” of an interface.
The JDO Query Language (JDOQL) requires that persistent fields be sup-
ported within query filters; arbitrary method invocations are not
supported. Thus it may be impossible to execute meaningful JDOQL
queries against such extents in a portable manner. For more information
about JDOQL, see Chapter 8.

Support for the extent of an interface should be considered non-stan-
dard unless it is explicitly included in a future version of JDO.

We have already used extents in several examples when iterating through all
persistent instances of a candidate class. However, the primary purpose of an
extent is to provide a candidate collection of instances to a query. The query
will then apply its filtering semantics to the extent. The result of query execu-
tion is a collection that is a subset of the extent containing only those instances
that match the specified filter criteria.

How do queries actually use extents?

Although, logically, a query applies a filter to an extent, it is not expected to
do this merely by iterating from start to finish. In most cases, information
from the extent will merely be used to create an equivalent query in the data
store’s native query language. Implementations will compete amongst each
other in an effort to provide the most efficient query resolution possible, by
maximizing the capabilities of the underlying data store in this regard.

We discuss JDOQL and the Query interface in detail in Chapter 8.

Extent

113

114 Primary interfaces and classes

interface
Extent

+iterator():Iterator

+hasSubclasses():boolean

+getCandidateClass():Class
+getPersistenceManager():PersistenceManager
+closeAll():void

+close(it:Iterator)void

Figure 6.3 UML for extent interface

The extent interface (Figure 6.3) contains the following methods.

boolean hasSubclasses()

True is returned if subclasses were included in the call to getExtent ().

Note that this does not mean that the extent necessarily contains any
instances of subclasses. Consider the code extract below:

Extent e = pm.getExtent(BusinessPartner.class, true);
System.out.printin("Has Subclasses: " + e.hasSubclasses());

The output printed will be:
Has Subclasses: true

However, the extent will contain subclasses of BusinessPartner only if such
persistent instances actually existed in the data store.

If hasSubclasses () returns true, the extent can be considered complete
(any persistent instances of subclasses will be present). If false is returned, the
extent might not be complete.

Class getCandidateClass()

This method returns the class descriptor of the candidate class (the class identi-
fied in the call to the persistence manager’s getExtent () method).

The example below uses this to determine further information about an extent.

public void printExtentInfo(Extent e) {
System.out.printin("Candidate Class: " +
e.getCandidateClass () .getName());
System.out.printin("Has Subclasses: " +
e.hasSubClasses());

}

If invoked with the extent of BusinessPartner constructed above, the output
would be:

Candidate Class: BusinessPartner
Has Subclasses: true

PersistenceManager getPersistenceManager ()

This method returns a reference to the persistence manager from which the
extent was obtained.

void close(Iterator i)

This method closes an Iterator previously obtained from the Extent.
Subsequent to this, the iterator’s hasNext () method will return false.
However, the extent can still be used to obtain further iterators or as the candi-
date collection for queries.

void closeAll ()

This method closes all open (i.e. not yet closed) I'terators that have been pre-
viously obtained from the extent.

Iterator iterator()

The Iterator returned from this method can be used to iterate through the
contents of the extent. The objects returned at each call to the iterator’s
next () method will be persistent JDO instances of the candidate class or sub-
classes thereof.

6.6 PersistenceCapable

JDO is split into two packages. Package javax.jdo is the API and contains classes
and interfaces that applications will use. Package javax.jdo.spi is the SPI con-
taining those classes and interfaces internal to JDO implementations. The
PersistenceCapable interface, which is implemented by hand coding or by
enhancement by all persistence-capable classes, is part of the SPI.

The operations present in the PersistenceCapable interface all have
names beginning with “jdo”. Thus, to avoid potential conflicts, you should
not use this prefix for methods in your persistence-capable classes. These
methods allow the persistence infrastructure to interrogate and manipulate
persistent field values and perform a number of administrative functions,
such as state interrogation.

Application developers should never make use of the PersistenceCapable
interface. All of the functionality they require is available through the
PersistenceManager interface and the JDOHelper class. Indeed, even the
name and structure of the PersistenceCapable interface represent imple-
mentation choices internal to JDO. The principle of encapsulation dictates that
applications maintain a clear separation between the external and internal

116 Primary interfaces and classes

interfaces of components, and no dependency of an application on
PersistenceCapable should be tolerated.

What’s next?

In the next chapter we consider transaction management and the JDO
Transaction interface. Specific focus is given to optimistic transaction strategies.

Transaction management

tence. This chapter discusses JDO transactions in the context of the
non-managed environment. Chapter 11, contains in-depth discussions
of transaction management in the managed environment.

E ffective transaction management is a critical aspect of object persis-

7.1 Transactions

A transaction is a grouping together of work - typically changes to persistent
data — that must be completed in its entirety or not at all. The fundamental aim
of a transaction is to ensure that partial completion, where some data changes
persist in the data store and others in the same transaction don’t, does not
occur. This so-called atomic property of transactions is integral to the mainte-
nance of data integrity.

Another fundamental property of transactions is that they must be isolated,
to a given degree, from each other. Isolation levels dictate the consistency with
which data, being manipulated in one transaction, is presented, in the context
of another transaction.

Experienced database programmers will be familiar with the four transaction
isolation levels that are recognized by JDBC: Read Uncommitted, Read
Committed, Repeatable Read, and Read Serializable. Some database products,
particularly object databases, define much richer sets.

JDO does not explicitly specify the isolation level that will be applied.
instances may have fields read at different times and, conceivably, from differ-
ent data sources. Developers should not rely on any isolation level greater than
Read Committed. For reference, Read Committed is defined as:

This isolation level does not allow other transactions to see state changes
made by this transaction until a commit has been issued.

Nothing in JDO actually specifies that the locking of data in the data store
should take place. Locking strategies do, however, account for the most
common method of implementing the Read Committed level of isolation.

118 Transaction management

7.2 Transaction interface

A JDO persistence manager has at most one active transaction at any point in
time. The PersistenceManager interface defines the currentTransaction ()
method, which returns an instance of the transaction interface. This transaction
instance is the application developer’s means for demarcating transaction
boundaries within JDO.

From the time a persistence manager is obtained until the time it is closed,
calls to currentTransaction() will return the identical Transaction
instance. Thus it is common practice, in single-threaded client-server applica-
tions that typically maintain a single persistence manager instance for an
extended period, to obtain the transaction as soon as the persistence manager is
available. This object is then used for transaction demarcation until the persis-
tence manager is finally closed. During this time many independent JDO
transactions may be started and completed — one after the other — through the
single Transaction instance.

Those applications that require multiple independent transactions to be
active simultaneously must employ a corresponding number of persistence
managers. Finally, JDO does not support the concept of “nested” transactions.

The UML notation of the transaction interface is shown in Figure 7.1.

interface
Transaction

+begin():void

+commit():void

+rollback():void

+isActive():boolean
+setNontransactionalRead(nontransactionalRead:boolean):void
+getNontransactionalRead():boolean
+setNontransactionalWrite(nontransactionalWrite:boolean):void
+getNontransactionalWrite():boolean
+setRetainValues(retainValues:boolean):void
+getRetainValues():boolean
+setRestoreValues(restoreValues:boolean):void
+getRestoreValues():boolean
+setOptimistic(optimistic:boolean):void

+getOptimistic():boolean
+setSynchronization(sync:Synchronization):void
+getSynchronization():Synchronization
+getPersistenceManager():PersistenceManager

Figure 7.1 UML for Transaction interface

Transaction strategies

7.3 Transaction strategies

JDO supports two specific transaction strategies. Pessimistic transactions are a
required feature of the specification, and are therefore supported by all compli-
ant implementations. Optimistic transactions are an optional feature of the
specification. They will be supported by many, but not all, implementations.
Support for this feature does not depend on native support for optimistic trans-
actions in the underlying data store — vendors may choose to simulate this
feature where such native support is lacking.

7.3.1 Pessimistic (data store) transactions

Pessimistic transactions are the default in JDO. They are suitable when the
transaction is very short-lived, typically because there is no user interaction or
other blocking activity between the transaction’s start and end. When data is
read or changed during a pessimistic transaction, other transactions are
excluded from accessing that data until the first transaction has been com-
pleted. Pessimistic JDO transactions are usually implemented through native
pessimistic transactions in the underlying data store.

We have already seen examples of pessimistic transactions in previous chap-
ters — any transaction begun with the optimistic property of the transaction set
to false is a pessimistic transaction.

In the example below, a pessimistic transaction is used to undertake an ele-
ment of work. If any exceptions occur while the work is being performed, the
transaction is rolled back if it is still active.

Transaction t = pm.currentTransaction();
t.setOptimistic(false); // I'm being explicit in case it was
/'l previously set true
t.begin()
try {
/'l do some work here which does not involve significant
/'l delays, therefore
/'l this is a short-lived transaction
/'l eg. Obtain a BusinessPartner and immediately update it
}
catch (Exception e) {
/'l rollback the transaction if it is still active
if (t.isActive()) t.rollback();

}
finally {

try {
/! commit the transaction if it is still active

if (t.isActive()) t.commit();

119

120 Transaction management

catch (JDOException je) {
/1l transaction rolled back - advise the user or take
/| other appropriate action

}

Long-lived transactions typically occur when transaction demarcation is depen-
dent upon intervening user activity. An example would be a transaction that is
held open whilst a user enters data. In such cases the use of pessimistic transac-
tions may cause excessive locking to occur in the data store, thereby reducing
the overall concurrency of the system.

Although pessimistic transactions can be used in such cases, optimistic trans-
actions provide an extremely useful alternative.

7.3.2 Optimistic transactions

When working with long-lived transactions, it is often unacceptable to physi-
cally lock data in the data store for the duration. Optimistic transactions stem
from an approach to increase concurrency (reduce locking) in such instances.

The basis for doing this is a set of optimistic concurrency assumptions; it is
presumed that any data altered in the optimistic transaction will not actually be
altered by any other transaction until the first has been committed. Since in
many cases this assumption is indeed true 99% or more of the time, there is no
need to physically lock the underlying data. The only thing that needs to be
done is to verify that the assumptions are indeed true before our changes are
actually written to the data store.

A typical optimistic transaction under which a BusinessPartner is to be
changed, and which is executed against a database that does not provide native
support for optimistic transactions, would have the following steps (for those
data stores which do support optimistic transactions, these steps would concep-
tually still apply but the implementation would be much simpler):

1 Read the business partner from the data store and obtain some piece of infor-
mation by which we can later tell whether this object has had changes
committed to the data store; this typically involves a timestamp or an object
version number. Where the database schema has been previously dictated it
may not be possible for such version number or timestamp information to be
added to the tables. In these cases the entire state of the data store entity may
be used for comparative purposes. (Where the data store natively supports
optimistic transactions there will be no need for this additional information.)

2 Allow the business partner to be updated. These updates may occur over a
period of time, during which the corresponding data store entity is not locked.

3 When the transaction is finally committed, a short-lived pessimistic transaction
is started on the underlying data store. The data store is checked to determine

Transaction strategies

whether the business partner object has been changed. This check verifies the
optimistic concurrency assumptions and locks the underlying entity.

4 Assuming that the data store entity has not been changed, the updated data
is synchronized to the data store and the short-lived pessimistic transaction
is immediately committed.

5 The results of this commit are relayed back to the application. Thus, if the
pessimistic transaction was rolled back for any reason, the application would
be informed through an appropriate exception.

6 The optimistic concurrency assumptions would be false if the data was
changed by someone else after the business partner was read, but before the
optimistic transaction was committed. In this case, the short-lived pes-
simistic transaction would be rolled back and an appropriate exception
thrown to the application.

So that’s how it works internally. Let’s take a look at a code example of an opti-
mistic transaction:

Transaction t = pm.currentTransaction();

t.setOptimistic(true);

t.begin()

try {
/1 do some work here which might take an extended time,
/'l hence the use of optimistic locking. e.g. obtain a
/| BusinessPartner, show the field values to the user
// and wait for the user to alte the data and press a
/'l "save" button, before which the user might go out
/'l for Tunch!

}

catch (Exception e) {
/'l rollback the transaction if it is still active
if (t.isActive()) t.rollback();

}
finally {
try {
// commit the transaction if it is still active
if (t.isActive()) t.commit();
}
catch (JDOUserException je) {
/] transaction rolled back - advise the user that
/'l the work they did has not been saved and must
/'l be done again
}
}

The only significant code differences between the two locking strategies are the
setting of the Optimistic transaction property to false, and the catching of
JDOUserException after commit ().

121

122 Transaction management

Here we now see the fundamental difference between the two approaches. In
the pessimistic case, an exception at commit time might mean that the user
entered data that violated integrity constraints or was otherwise invalid. If the
user’s data had been valid, the commit would have been successful (system fail-
ures aside).

In the optimistic case, even valid data changes might be rolled back at trans-
action completion time, simply because the data had been changed by
someone else in the interim. The user must review the now-changed data, and
then perform the required changes again if they still apply.

Given that the likelihood of concurrency assumptions failing is usually
small, such rework is unlikely to be required often. In some cases this is accept-
able — if a user does go out for lunch whilst updating a business partner’s
details, they increase the risk of having to redo the work. They should complete
the task at hand before leaving!

In other cases, however, such strategies are not acceptable. Almost all server-
side transactions will be pessimistic (except those which must be open across
user interaction on a remote client). It is up to the designer to make an appro-
priate choice based upon the concurrency requirements of the system, and the
“cost” (in terms of staff time and morale as well as any financial implications)
of work needing to be redone should optimistic concurrency assumptions fail.

7.3.3 Optimistic transactions and refresh

Before we look at more advanced transaction management features, I'd like to
mention two potential uses of the persistence manager’s refresh() methods
within optimistic transactions.

7.3.3.1 Last commit wins

When an instance is passed as an argument to one of the persistence manager’s
refresh () methods, the field values are restored to those currently in the data
store. After an instance has become part of an optimistic transaction, there is a
possibility that the persistent entity will have been changed before the opti-
mistic transaction is committed, causing optimistic concurrency assumptions to
fail and the transaction to be rolled back.

The incidence of this can be reduced if field values in an optimistically
locked instance are refreshed immediately before they are updated. By retriev-
ing field values, the optimistic currency assumptions are reset to reflect the
current state of the instance. If refresh() is invoked immediately before the
instance is updated and the transaction committed, then the likelihood of con-
currency assumptions proving to be incorrect is greatly reduced.

Transaction strategies

A code example of this is shown below:

Transaction t = pm.currentTransaction();
t.setOptimistic(true);
t.begin()
try {
String bpKey = "123"; // some valid key value
BusinessPartner bp = (BusinessPartner)
pm.getObjectById(bkKey) ;
String name = bp.getName();
/1 bp transitions to Persistent-Nontransactional

/1 do some work here which might take an extended time;
/'l display the name

/'l to the user and allow them to change it, before which
/] the user might go out for Tlunch!

/'l retrieve the instance and update
pm.refresh(bp); // bp remains Persistent-Nontransactional
bp.setName(name); // bp transitions to Persistent-Dirty
}
catch (Exception e) {
/'l rollback the transaction if it is still active
if (t.isActive()) t.rollback();

}
finally {
/1 commit the transaction if it is still active
try {
/! commit the transaction if it is still active
if (t.isActive()) t.commit();
}
catch (JDOUserException je) {
/! transaction rolled back - advise the user that
/'l the work they did has
/'l not been saved and must be done again
}
}

The instance is refreshed immediately before it is updated. The chance of con-
currency assumptions being invalid is greatly reduced. However, what we have
is no longer a true optimistic transaction strategy — instead we have a “last
commit wins” situation. This is equivalent to using one short-lived pessimistic
transaction to read an instance, allowing the read data to be updated non-trans-
actionally, and then committing that to the database without any regard for
changes that may have occurred in the interim.

123

124 Transaction management

7.3.3.2 Reacting to optimistic concurrency assumption failures

The premise of optimistic transactions is that the data probably will not change
during the transaction. The risk of this happening is justified by the increased
concurrency afforded by an optimistic strategy.

Occasionally, however, the data associated with an optimistic transaction is
changed by another (optimistic or pessimistic) transaction. The application
must be able to cope with this.

Highly evolved applications may attempt some form of data reconciliation,
essentially merging changes with the now updated persistent instance values.
However, such strategies are inherently complex, and their implementation
depends heavily on the business domain being modeled.

The simplest form of resolution involves telling the user their changes could
not be saved and must be done again. The instances are refreshed from the data
store, and these values are presented to the user.

7.3.3.3 Example without explicit refresh

Before we consider the mechanics of such a policy, let us closely examine
the intricacies of optimistic transaction failure. For this purpose, presume that
we are working with the Product class. Our transaction will update the
description field.

To start with, presume we have two products: one with a description of
“Green Chairs” and the other “Green Tables.” We are going to examine the
potential conflict of two transactions. For ease of reference we will refer to two
users, Userl and User2, although the issue also pertains to situations where a
single user has multiple transactions simultaneously active through different
persistence managers in the same JVM.

Userl starts an optimistic transaction within which both products, “Green
Chairs” and “Green Tables,” are read. The instances will transition Persistent-
Nontransactional at this point since they have been read in an optimistic
transaction. User]l now goes to lunch without completing the transaction.

User2 begins a new transaction — optimistic or pessimistic, it doesn’t matter
which. Both products are read and their descriptions updated to “Red Chairs”
and “Red Tables” respectively. The transaction is committed, and the commit is
successful. The persistent data has now been changed.

Userl, having returned from lunch, changes the description of the second
product to “Blue Tables.” That instance transitions to Persistent-Dirty. By press-
ing the Save button (imagine a carefully crafted Swing interface if you will!), the
transaction commit is attempted. However we know that the transaction will
fail, as the underlying data store entities have been altered by another transac-
tion. According to the state transition tables of the JDO specification, the dirty
instance will transition back to Hollow. Note that, according to the same state
tables, the unaltered instance remains in the Persistent-Nontransactional state.

Advanced transaction options

Now we see the problem. A JDOUserException is thrown by the JDO imple-
mentation when the commit of the optimistic transaction was attempted. I
presume that the application will redisplay the data and invite Userl to make his
changes again (manual resolution). When the fields of the Hollow instance are
read and displayed, the values will be retrieved from the data store, and the
description “Red Tables” will be shown. However, the Persistent-Nontransactional
instance will likely yield an outdated description of “Green Tables.”

Thus, in response to an optimistic transaction failure, the user is being pre-
sented with transactionally inconsistent data. (This specific problem arises
when an instance is read in an optimistic transaction and is not altered within
that transaction, but is altered by another transaction.)

Some implementations may choose to invalidate all instances involved in a
failed optimistic transaction, essentially making them Hollow. This is not strictly
correct, but — as has been illustrated above — would be extremely helpful.

7.3.4 Resolution using explicit refresh

The solution to the quandary described above is to explicitly refresh each
instance involved in an optimistic transaction failure before the data is redis-
played to the user. Unfortunately there is no means to achieve this automatically
through the JDO API, which requires the application to maintain a list of
instances involved in an optimistic transaction expressly for this purpose. Since
the code which handles commit failures may not be part of the code that
manipulates instances within the transaction, this problem may be non-trivial.

Most of the JDO vendors agree that optimistic transactions are under-speci-
fied in JDO, and will be adding additional API calls to handle cases such as this.
No doubt a future version of JDO will combine their best efforts under a revi-
sion of the standard API.

7.4 Advanced transaction options

We now look at ways in which applications can access persistent data outside
the context of an active transaction. Recall that persistence and transactionality
can be applied to instances in any combination. We say that the two concepts
are orthogonal; just because the instance is persistent does not mean that it is
necessarily transactional.

7.4.1 NontransactionalRead and Write

If the NontransactionalRead flag on a Transaction is true, then the field
values of Hollow and Non-transactional instances can be read without an
active transaction.

125

126 Transaction management

If the NontransactionalWrite flag on a Transaction is true, then the
field values of Persistent-Nontransactional instances can be updated without
an active transaction.

Each of these capabilities is an optional feature in the JDO specification.

7.5 Transaction modes to improve efficiency

JDO defines two additional transaction modes intended to improve efficiency.
These are RestoreValues and RetainValues. Note that the setting of these
flags only affects instances in memory, and does not alter the effect of commit
or rollback processing on the data store.

7.5.1 RestoreValues

The setting of the RestoreValues flag affects the treatment of instances in
memory as a result of transaction rollback.

If the RestoreValues flag is true, instances involved in a transaction that
is rolled back will have their field values restored to their original values. These
were cached when the transaction was begun.

If the RestoreValues flag is false, instances involved in a transaction that
is rolled back will be transitioned to Hollow. In such a state they do not have
field values loaded, and thus the field values do not need to be restored to their
original values. This allows JDO vendors to optimize their implementations so
that instance values are not cached in the first place. If the now Hollow
instance is accessed by the application, persistent fields will be loaded from the
data store at that time.

Setting RestoreValues to false can yield significant performance improve-
ments if your application does not refer to instances after transaction rollback.

7.5.2 RetainValues

This flag determines what action is taken by the persistence manager on persis-
tent instances in memory after a transaction has been successfully committed.

If RetainValues is false (the default setting), instances are automatically
evicted on transaction commit, transitioning to Hollow. This limits the size of
the instance cache and improves performance.

If RetainValues is true, this automatic eviction does not take place. The per-
sistent instances remain cached in the Persistent-Nontransactional state until
they are once again used transactionally, or evicted. Eviction may be performed
explicitly by the developer, or implicitly by the persistence manager to free up
cache resources. This setting can improve performance of applications that work
with the same set of instances across a number of independent transactions, at
the expense of greater resource utilization by the persistence manager.

Synchronization with JDO transactions 127

Improving upon RetainValues

As it is currently defined, RetainValues applies globally to the entire
contents of the persistence manager’s cache. There is scope for this concept
to be improved in future versions of JDO, so that instances of some specific
persistence-capable classes can be retained but not others. Persistence-capa-
ble classes that represent infrequently changed reference data could then
be retained in the cache, in order to reduce unnecessary data store access.
A more advanced specification could facilitate timeouts for instances
cached in this manner, so that the data store would indeed be checked if
the instance was accessed after the designated period had elapsed.

7.6 Synchronization with JDO transactions

It is sometimes useful for an application to be notified when a transaction is about to
be committed or has been completed (successfully or not). The transaction interface
facilitates this by providing for the registration of a user-provided callback object. The
callback object must implement the javax. transaction.Synchronization inter-
face. Its beforeCompletion() and afterCompletion() methods will be called to
notify the application of these events.

The synchronization interface is shown in Figure 7.2.

interface
javax.transaction.Synchronization

+afterCompletion(:int):void
+beforeCompletion():void

Figure 7.2 UML for javax.transaction.Synchronization interface

An instance of an application class that implements the Synchronization
instance may be registered for transaction callbacks via the Transaction inter-
face’s setSynchronization() method.

setSynchronization(javax.transaction.Synchronization sync)

Replaces the previously registered synchronization object with the object
sync. If the reference is null, then no object will receive transaction comple-
tion callbacks.

The synchronization object’s beforeCompletion() method will be
invoked during the transaction’s commit processing. If the method throws a

128 Transaction management

JDOUserException, the transaction will be rolled back. The method is not
called if a rollback is instigated instead of commit.

The synchronization object’s afterCompletion(int status) method will
be called once the transaction is complete. The status parameter indicates the
success or failure of the transaction, and will have one of two values:

javax.transaction.Status.STATUS_COMMITTED
javax.transaction.Status.STATUS_ROLLEDBACK

Validation during commit

There are two different ways in which instances may be validated before
they are committed to the data store. The first is to have the instances
implement the InstanceCallbacks interface, and perform the validation
in the jdoPreStore () method. The second is to register a callback object
using the transaction interface’s setSynchronization() method, and to
perform the validation from its beforeCompletion() method.

I am not particularly in favor of the first approach, since it is less than
transparent to the domain object model; the InstanceCallbacks inter-
face is specific to JDO. Also, the jdoPreStore () method may be called
multiple times on one instance in a single transaction, as it is invoked
whenever the implementation flushes data to the data store.

Use of synchronization objects may seem to be an easy alternative.
However, the synchronization object must maintain a list of dirty
instances to be validated. Instances may be involved in other transactions
where no synchronization object is registered, and so critical validation
cannot be guaranteed in this way.

For the time being, therefore, jdoPreStore () may actually be the
better of the two alternatives. This is an area that will be the subject of
much debate as JDO becomes more widely used. I anticipate that, in a
future version of JDO, persistence descriptor tags will be defined to provide
declarative support for validation. These may include Delete Restrict and
Delete Cascade functionality, as well as the identification of a validation
method for each persistence-capable class, to be automatically invoked on
instances during the commit process.

What’s next?

In the next chapter, I introduce the new query language, JDOQL, which provides
a Java-like syntax for the efficient querying of persistent data through JDO.

Queries with JDOQL

persistent fields of an instance that are references to other persistent
instances. As the application de-references these objects, those that are
not present in the persistence manager’s cache are loaded from the data store.
This gives the application the impression that the entire inter-connected graph
of persistent instances is immediately available in memory.
The issue remains as to how an application should obtain the first persistent
instance. Three methods are available.

' DO'’s transparent persistence allows applications to navigate through the

1 The application can use the persistence manager’s getObjectById ()
method if it is able to construct the Object ID instance. The Object ID may
have been previously stored by the application for this purpose.
Alternatively, an instance of the Object ID for a class with application iden-
tity may be constructed based on data input by the user. This is the most
efficient way to retrieve a single specific instance.

2 The application could obtain an Iterator from the Extent of a persis-
tence-capable class and iterate through the persistent instances. This
approach might be used when it is the application’s intention that every
instance be processed. However, it is probably inefficient when trying to
retrieve a single specific instance or a small group of instances.

3 The application can employ the Query interface and the new JDOQL. This
employs a Java-like syntax for query definition, allowing the developer to
specify filter criteria. Queries are implemented using the most efficient exe-
cution methods available in the target data store.

This chapter describes JDOQL in detail.

8.1 Query architecture

The JDO specification provides the Query interface and the JDOQL Query defi-
nition as an object-oriented and data-store independent means for the
definition and execution of queries. By utilizing these features, application
query requirements can be met without compromising the portability of the
application amongst different implementations.

JDOQL is intended to be neutral to the native query language of the underly-
ing data store. Most implementations will map the elements of JDOQL into the
data store’s native query language. Of course, some data stores do not have their
own query language, e.g. file systems and XML documents, and in such cases the
implementation will have to provide client-side query execution functionality.

129

130 Queries with JDOQL

The philosophy of JDOQL revolves around the concept of a so-called candidate
collection of instances to which the query’s filter criteria will be applied. The result
of query execution is an unmodifiable Co11ect1ion, comprised of those members
of the candidate collection for which the filter criteria evaluated to true.

Queries can include parameterized values. They can also define and use local
reference variables to which values are assigned during query execution, and by
which the query filter may traverse connected instances.

Queries consist of the following mandatory elements:

e The candidate class. All instances of the candidate collection will be
instances of this class. The unmodifiable collection returned after query exe-
cution will contain only instances of the candidate class. Polymorphism is
fully supported, so “instances of” implicitly includes any subclasses of the
candidate class.

e The candidate collection. This may be a true Collection object containing
zero or more objects, all of which must be instances of the candidate class.
Alternatively this may be the Extent of the candidate class, implicitly
including all persistent instances as candidates for the query. (The extent
may optionally include or exclude subclasses of the candidate class.)

@ The query filter. This is expressed as a Java-like boolean expression. The
result of query execution will include only those candidates for which the
expression evaluates to true.

Queries may additionally contain:

e parameter declarations, comprising one or more pairs of identifier names
and types;

e parameter values, provided at execution time, which are bound to the
declared parameter identifiers. Values are usually assigned to declared identi-
fiers as “positional parameters,” but can also be passed as “named
parameters” depending on the application’s requirements;

e variable declarations, comprising one or more pairs of identifier names and
types. Variables are typically used to hold references that allow query filters
to span graphs of connected instances;

e import declarations, used to import non-standard class names that are to be
used as types for parameters or variables;

e an ordering specification allowing arbitrary ordering of the query results.

Queries also include the notion of namespaces. A given identifier name may
not be defined more than once in a particular namespace. There are two name-
spaces for each query:

e Type Namespace. All type names used by the query reside in this namespace.
Thus a query may not use two different types that have the same name. The
candidate class and all public types in the java.1ang package are implicitly
imported into this namespace. Other types must be imported explicitly as
required through the import declaration for the query.

Constructing queries

e Identifier Namespace. All parameter names, variable names, and persistent
field names reside in this namespace. The persistent field names include all
persistent fields of all classes referenced in the query. Thus it is not legal to
define a parameter or variable with the same name as a persistent field of the
candidate class or other persistence-capable class referenced in the query. Nor
is it legal to define both a parameter and a variable with the same name.

JDOQL is very Java-like in syntax and therefore easy for Java developers to
master. Nevertheless, the query interface has been designed so that it can be
used with an alternative query language if the application so chooses, presum-
ing that this alternative language is supported by the implementation.

8.2 Constructing queries

A persistence manager acts as the factory for queries, and provides a set of
newQuery () methods by which an application can construct queries. These
methods are detailed below.

Query newQuery ()

Constructs a new query instance, bound to the current persistence manager. All
of the query’s properties can then be set directly, including the query language.
Query newQuery (Object query)

Constructs a query instance from another query. The new query shares the orig-
inal query’s elements except for the candidate collection or extent. The new
query is bound to the persistence manager on which newQuery () was exe-
cuted, even though the original query may have been obtained from a different
persistence manager. This, combined with the requirement that all query imple-
mentation classes are serializable, facilitates the construction of a new query
based on one earlier constructed against a different JDO implementation.

This method presumes that the implementation’s default query language
(typically JDOQL) is to be used.

Query newQuery (String language, Object query)
Constructs a new query from an existing query using the specified query language.

Query newQuery(Class cls)
Construct a new query with the specified candidate class.

Query newQuery (Extent cln)

Construct a new query with the candidate class derived from the Extent, and a
candidate collection comprised of all persistent instances of the Extent.

Query newQuery(Class cls, Collection cln)

Construct a new query with the specified candidate class and candidate collec-
tion. The collection may contain zero or more objects, all of which must be
instances of the candidate class.

131

132 Queries with JDOQL

Query newQuery(Class cls, Collection cln, String filter)
Construct a new query with the specified candidate class, candidate collection,
and filter expression. The collection may contain zero or more objects, all of
which must be instances of the candidate class.

Query newQuery(Extent cln, String filter)

Construct a new query with the candidate class derived from the Extent, a
candidate collection comprised of all persistent instances of the Extent, and
the specified filter expression.

Query newQuery(Class cls, String filter)

Construct a new query with the specified candidate class and filter expression.

8.3 Query interface
The object returned from the query factory methods of a persistence manager is

an instance of the Query interface. The UML for the Query interface is shown
in Figure 8.1.

. java.io.Serializable
interface

Query

+setClass(cls:Class):void
+setCandidates(pcs:Extent):void
+setCandidates(pcs:Collection):void
+setFilter(filter:String):void
+declarelmports(imports:String):void
+declareParameters(parameters:String):void
+declareVariables(variables:String):void
+setOrdering(ordering:String):void
+setlgnoreCache(ignoreCache:boolean):void
+getlgnoreCache():boolean

+compile():void

+execute():Object

+execute(p1:0bject):Object
+execute(p1:0bject,p2:0bject):Object
+execute(p1:0bject,p2:0bject,p3:0bject):Object
+executeWithMap(parameters:Map):Object
+executeWithArray(parameters:Object()):Object
+getPersistenceManager():PersistenceManager
+close(queryResult:Object):void

+closeAll():void

Figure 8.1 UML for Query interface

Query interface 133

I will describe each of the Query interface’s methods briefly before we look at
our first JDOQL examples.

PersistenceManager getPersistenceManager ()
Returns a reference to the persistence manager with which the query is associated.

void setClass()
Sets the candidate class for the query.

void setCandidates(Collection candidateCollection)
Sets the candidate collection for the query.

void setCandidates (Extent candidateExtent)

Sets the candidate class and candidate collection for the query, from the values
encapsulated in the Extent.

void setFilter(String filter)

Sets the filter criteria for the query. The filter should be valid according to the
chosen query language.

void declarelImports(String imports)

Provides an import declaration. This will import classes into the “type” name-
space, so that these types can be used for the declaration of query parameters
and variables.

void declareVariables(String variables)
void declareParameters(String parameters)
void setOrdering(String ordering)

Provide the variable, parameter and ordering declarations for the query.

void setIgnoreCache (boolean ignoreCache)
Boolean getIgnoreCache ()

These methods access the value for the IgnoreCache query property. If the
property is set to true, the query might be executed such that changed
instances in the persistence manager cache but not yet committed to the data
store are ignored, and the currently persistent versions of those instances are
queried instead.

This may improve query execution speeds with some JDO implementations,
at the expense of generating only approximate query results. As such it should
probably be applied only to read-only transactions, within which data is
queried but never altered.

void compile()

JDOQL does not require queries to be compiled. However, compilation of queries
has two advantages. Firstly, any syntactic errors can be reported in advance of
query execution. Secondly, a compiled query may execute more quickly than an
uncompiled equivalent, although this is entirely implementation-dependent.

134 Queries with JDOQL

Query compilation is generally recommended when the same query will be exe-
cuted multiple times (albeit with different parameter values), or when queries are
defined and then stored for later execution.

8.3.1 Query execution

The following methods of the Query interface are used to execute a query, each
with a different argument list for incoming query parameter values.

The methods are all defined to return Object for flexibility in future
enhancements to JDOQL. However, under the current version of JDO, all execu-
tions result in an unmodifiable collection object. The returned reference should
be manually cast to collection by the application developer.

Object execute()

Object execute(Object p1)

Object execute(Object p1, Object p2)

Object execute(Object p1, Object p2, Object p3)

Execute a query taking zero, one, two, or three parameters. Parameters are
“positional,” and must be passed in the order in which they were declared.
Object executeWithArray(Object[] parameters)

Execute a query that takes any number of parameters (zero or more). Parameters
are “positional,” and must appear in the array in the order in which they were
declared in the query.

Object executeWithMap(Map parameters)

Execute a query that takes any number of parameters (zero or more). Parameters
are “named” instead of “positional”. The map contains key and value pairs.
Each parameter of the query will be assigned the value corresponding to the
map entry with the parameter name as key.

8.3.2 Closing query results
void close(Object queryResult)

Close the resources associated with a given query result.

void closeAll()

Close the resources associated with all query results obtained from executions
of this query.
8.4 Query examples

Although we have yet to discuss the syntax of query filters, we are now in a
position to examine some simple queries.

8.4.1

Query examples

Query without filter

Our first example is a query that lists all instances of the BusinessPartner
class. I have presented this as a small application with a main () method which
can be run from the command line, although future query examples will be
shown as code snippets.

SimpleQuery.Java

package com.ogilviepartners.jdobook.app;

import java.util.Collection;
import java.util.Iterator;
import javax.jdo.*;

public class SimpleQuery

{

}

public static void main() {

JDOBootstrap bootstrap = new JDOBootstrap();
PersistenceManagerFactory pmf =
bootstrap.getPersistenceManagerFactory();
PersistenceManager pm = pmf.getPersistenceManager();
Transaction t = pm.currentTransaction();

t.begin();

Extent partnerExt = pm.getExtent(
BusinessPartner.class, true);

Query g = pm.newQuery (partnerExt);

Collection ¢ = (Collection) q.execute();

Iterator i c.iterator();
System.out.printin(
"Listing all BusinessPartner instances:");
while(i.hasNext()) {
Object o = 1i.next();
System.out.printin(o);

}
System.out.printin("Done.");

q.close(c);
t.commit();

The above example is indeed very simple. There is no filter defined, nor are
there any parameter, variable, import, or ordering declarations. The candidate

135

136 Queries with JDOQL

collection is the entire extent of BusinessPartner (including subclasses). It is
important to note that the objects being returned each time next () is called
on the Iterator are in fact instances of the concrete subclasses of
BusinessPartner: Company, Charity, and Individual.

8.4.2 Query with ordering

The next step is to add a simple ordering declaration. The example below orders
the query results according to name, and then according to partnerlId
descending. Thus if multiple partners had the same name they would appear in
the descending sequence of their partnerlIds.

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
Query q = pm.newQuery (partnerExt);

q.setOrdering("name ascending, partnerld descending");
Collection ¢ = (Collection) qg.execute();

The ordering declaration comprises any number of persistent field names, each
paired with the keyword ascending or descending as appropriate. These pairs
are separated with commas.

8.4.3 Query with filter

For our next example, let’s apply a simple filter to the query. We will discuss the
full suite of available filter operators shortly. For now we will use the == opera-
tor to select only those business partners with a specific name.

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter = "name == \"Ogilvie Partners\"";

Query q = pm.newQuery(partnerExt, filter);
g.setOrdering("name ascending, partnerId descending");
Collection ¢ = (Collection) q.execute();

We are now using a different newQuery () method that returns a query with
the filter declaration assigned. The filter declaration is a String containing the
boolean expression. Although this expression is based on Java syntax there are
significant differences, such as the use of the == operator for testing string
equivalence above. In the next section we examine the capabilities and syntax
of filter expressions in detail.

8.5 Query filter expressions
The filter expression for a query is optional. If no filter is set, the filter will be

deemed to evaluate to true in all cases, and the query result will be the whole
candidate collection.

Query filter expressions

Query filters are expressions that evaluate to a boolean value. They are
structured as zero, one, or more boolean expressions separated by logical NOT
(complement), AND, and OR operators, in that order of evaluation. Parentheses
may be used to alter the default order of evaluation.

For readers well versed in formal grammars, the grammar for JDOQL is repro-
duced in Appendix E, in Backus-Naur Form (BNF).

8.5.1 Supported operators

Five logical operators are defined. These are listed and described in Table 8.1.

Table 8.1 Logical operators

Operator Description

! NOT (complement)
Negates the logical expression to its right

& Unconditional AND
Causes the expressions to its left and right to be evaluated,
and returns the result of a logical AND operation of the
resulting boolean values

&& Conditional AND
Causes the evaluation of the expression to its left. If this is false,
the result of the AND expression is false; otherwise the
expression on its right is evaluated, the result of the AND
expression being the result of the right-hand boolean expression

Unconditional OR

Causes the expressions to its left and right to be evaluated,
and returns the result of a logical OR operation of the resulting
boolean values

|| Conditional OR
Causes the evaluation of the expression to its left. If this is true,
the result of the OR expression is true; otherwise the expression
on its right is evaluated, the result of the OR expression being the
result of the right-hand boolean expression

JDOQL filters must be non-mutating, which means that their evaluation will
have no side effects. Thus there is no justification for using the unconditional
logical operators (&, |), and the conditional ones (&&, ||) should be used as a
matter of course. Indeed, many JDO implementations replace & with && and |
with | | during query execution.

JDOQL supports a complete set of comparative operators. These return
boolean values based on evaluating the results of the left and right-hand
expressions. They are shown in Table 8.2.

137

138 Queries with JDOQL

Table 8.2 Comparative operators

Operator Description

== Equal

1= Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

+ Numeric addition and string concatenation
* Multiplication

/ Division

JDOQL supports the casting and de-referencing of fields that are reference
types. Both are performed using the familiar Java operators, shown in Table 8.3.

Table 8.3 Reference operators

Operator Description

(Class) Object casting
De-reference a reference type field (as in field1.field2)

Finally JDOQL supports the following unary operators, which apply to the
expression immediately to their right (Table 8.4).

Table 8.4 Unary operators

Operator Description

~ Integral bit-wise complement
- Numeric sign inversion

8.5.2 Supported keywords

The keyword this is a reserved word in JDOQL. It is used in filter expressions
to refer to the instance of the candidate collection for which the filter expres-
sion is currently being evaluated. It can also be used to differentiate between
persistent fields of the candidate class and identically named query parameters.
An example of such usage is given under section 8.6.1.

Query filter expressions

8.5.3 Differences between JDOQL and Java operators

There are a number of differences between the usage of these operators in
JDOQL and their usage in Java. Many of the differences serve to streamline the
query language, making it more intuitive.

8.5.3.1 Method invocation

JDOAQL is a language for querying persistent instances from a data store. It is
not, as some people have believed, a fully fledged object query language. This is
borne out by the restriction that method invocations are largely illegal in
JDOQL filters.

This restriction means that a JDO implementation is not required to instanti-
ate an instance in order to determine whether it matches the given query filter
criteria. Query performance is therefore greatly improved.

Four legal method invocations are defined. The filter may apply the follow-
ing invocations to persistent fields of Collection type:

isEmpty ()

Returns true if the persistent field is null or references a Collection that con-
tains no elements.

contains (Object o)

Returns true if the persistent field references a Col1lection that contains the
identified persistence-capable object. The object o must be a persistence-capable
instance. Equality between persistent instances always uses JDO identity, and is
irrespective of any equals () method that may be defined.

Conceptually the contains (Object o) method is used to iterate the local
variable o over the elements of a Collection. It is used as the left-hand side of
a boolean expression, and evaluates to true if any one element of the
Collection satisfies that expression.

The filter may apply the following invocations to persistent fields of String type:

startsWith(String s)

Returns true if the persistent field to which the method is applied starts with
the designated string.

endsWith(String s)

Returns true if the persistent field to which the method is applied ends with
the designated string.

Vendors may add support for other method invocations as long as these are non-
mutating. A non-mutating method is one that does not alter the state of any objects.
Such additions will be well documented, but should not be considered portable
across implementations. A few vendors are already supporting the String methods
index0f () and toLower (), with support for further invocations to follow.

139

140 Queries with JDOQL

8.5.3.2. Equality

The equality operator == can be used between primitives and instances of the cor-
responding wrapper types. Thus, if an identifier (field or parameter) called
intPrimitive is of type int, and identifier intWrapper is of type Integer, the
following comparison is legal in JDOQL (but would be illegal in Java):

intPrimitive == intWrapper

This is also extended to equality of String and Date objects.

Note that equality comparisons (== and !=) between floating point values are
inherently inexact and should be used with caution. The results of such com-
parisons may vary across different JDO implementations.

8.5.3.3 Ordering

As with equality, the ordering operators (>, <, >=, <=) can be used between primi-
tives and instances of the corresponding wrapper types. With the identifiers defined
above, the following comparison is legal in JDOQL (but would be illegal in Java):

intPrimitive > intWrapper

This is again extended to ordering of String and Date objects.

8.5.3.4 Assignment

A query filter may not do anything that might change the value of a persistent
field. Specifically the assignment operators (=, +=, /=, etc.) and the pre/post
increment/decrement operators (++ and - -) are illegal.

Implementations may optionally permit the invocation of methods, on per-
sistence-capable or system classes, as long as these methods are themselves
non-mutating.

8.5.3.5 Navigation

JDOQL explicitly supports navigation from one instance to another, by use of
the de-reference operator (the period). Queries can navigate from one instance
to another through a singleton (non-collection) reference. Queries can
also navigate through multivalued Collection fields by using the
Collection.contains () method.

Attempted navigation through a null reference causes that subexpression to
evaluate to false. Other subexpression evaluations, combined with the logical
operators, may still cause the instance to be included in the query’s result.

Further examples

8.6 Further examples

Now that you know a bit more about JDOQL'’s capabilities and syntax, let’s look
at some slightly more complicated examples.

8.6.1 Parameterization
Our previous example employed the simple JDOQL filter
name == "Ogilvie Partners"

Now we'll add parameterization. The test will no longer be against the string lit-
eral “Ogilvie Partners,” but against an incoming string parameter.

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter = "name == searchName";

Query q = pm.newQuery(partnerExt, filter);

gq.declareParameters ("String searchName") ;

q.setOrdering("name ascending, partnerld descending");
Collection ¢ = (Collection) qg.execute("Ogilvie Partners");

The filter has been changed, so that name is compared with searchName. In
turn, searchName is declared as a parameter to the query. Finally a String is
passed to the query execution method.

It is permissible for the query parameter to have the same name as a persis-
tent field. In such cases, the keyword "this" is used to differentiate between
the two, as per the example below.

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter = "this.name == name";

Query q = pm.newQuery(partnerExt, filter);
g.declareParameters("String name");

g.setOrdering("name ascending, partnerId descending");
Collection ¢ = (Collection) q.execute("Ogilvie Partners");

There is only one parameter in this case. If there had been multiple parameters,

the parameter declaration would be comma-delimited. Parameters would be

bound to values at runtime according to the sequences with which parameter dec-

larations and values were given. In this regard they are “positional parameters.”
Here is an example with multiple parameters:

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter =

"name == searchName && address ==
searchAddress";
Query q = pm.newQuery(partnerkExt, filter);
gq.declareParameters("String searchName, String searchAddress");
g.setOrdering("name ascending, partierld descending");
Collection c;
c = (Collection) q.execute("Ogilvie Partners", "Milton Keynes");

141

142 Queries with JDOQL

Now that it has multiple parameters, the query execution can be rewritten to
show the meaningful use of named parameters. This is particularly useful when
the code executing the query is separate from the code constructing the query
and requesting parameter values. Here we use a HashMap to hold the parameters:

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter

= "name == searchName && address == searchAddress";
Query q = pm.newQuery (partnerExt, filter);
g.declareParameters("String searchName, String searchAddress");
gq.setOrdering("name ascending, partnerId descending");

Map m = new HashMap();
m.add ("searchAddress", "Milton Keynes");
m.add ("searchName", "Ogilvie Partners");

Collection ¢ = (Collection) q.executeWithMap(m);

Notice that the order in which parameters are added to the map is insignificant. I
have deliberately shown the reverse order being used to reinforce this concept.

8.6.2 Singleton field navigation

The next item to illustrate is the de-referencing of persistent fields that refer to
other persistent objects. Let’s write a query that retrieves all business partners
with a credit limit greater than a parameter value. Notice that the credit limit is
stored on the Customer instance.

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter = "customer.creditLimit > searchCredit";

Query q = pm.newQuery(partnerExt, filter);
g.declareParameters("double searchCredit");

Double credit = new Double(1000);

Collection ¢ = (Collection) q.execute(credit);

The above query de-references a singleton field. The customer field either references
a single Customer object, or it is null. If the field is null, then attempts to de-refer-
ence it will cause that filter subexpression to evaluate to false. Since there is only
one such subexpression, the filter will evaluate to false. Thus, BusinessPartners
that are not Customers will be excluded from the query results.

8.6.3 Collection field navigation

Our final query example illustrates navigation through collections. Here we
identify the list of BusinessPartners that have at least one Order that has
not yet been dispatched. This requires the definition of a variable to reference
each Order that is examined.

Unconstrained query variables

Extent partnerExt = pm.getExtent(BusinessPartner.class, true);
String filter =

"customer.orders.contains(o) && o.dispatched == false";
Query g = pm.newQuery(partnerExt, filter);
g.declareVariables("Order o");
Collection ¢ = (Collection) q.execute();

The filter criteria could also be legally written using the logical complement
operator (!) as follows:

customer.orders.contains(o) && !o.dispatched

Conceptually, o is set to each contained Order in turn and !o.dispatched is
then evaluated. In practice, queries are usually translated into the native query
language of the underlying data store in order to take best advantage of the
available indexing and query tuning strategies. Thus explicit serial evaluation of
individual order entities is unlikely.

8.7 Unconstrained query variables

The primary purpose of JDOQL variables is as identifiers for use in contains ()
clauses, facilitating the iteration through persistent fields of Collection type.
However, the JDO specification does allow for the definition of query variables
that are subsequently referenced in the filter expression, but not subject to a
contains () clause. Such identifiers, known as unconstrained query variables,
conceptually iterate across the entire extent (including subclasses) of their per-
sistence-capable type.

The specification is particularly vague about the portability of query filters
using unconstrained variables, and I will not discuss the concept further here.
It has, however, been the subject of several threads of discussion at JDOcentral,
and will certainly be clarified in the next version of the specification document.

8.8 Dynamic Query Window

You will have noticed that all query elements are passed as strings. This has one
disadvantage; query syntax is checked only at query compilation or execution
time. In most cases, query errors will be detected only during the running of
the application. However, it does facilitate the writing of applications that exe-
cute ad hoc queries, the details of which are not known at compile time.

An example is the Dynamic Query Window, shown in Figure 8.2. This is a rel-
atively simple Swing application. It uses the JDOBootstrap class to initialize
JDO, so all of the configuration parameters can go into the jdo.properties
file. It then allows the user to enter the various query element strings. Upon

143

144 Queries with JDOQL

pressing the Prepare button, a new Query is obtained from the persistence man-
ager and the user’s query elements bound to it. The Execute button parses the
list of parameter values, constructs the appropriate array of parameters, and exe-
cutes the query. Queries may optionally be compiled before they are executed.
Query results are shown by iterating through the returned Collection and

invoking the toString () method of each object reference.

[.Z:l:--.-u.«-nu Dy Wi _.MEI

Candidsie Class Hame
[l:urn.uuih-'iuparlnﬂs.idntluuk.nn.EumzsuP‘-urlnH |
lenpuinl Dieciaralions

|l3|:ll'|"|.[lﬂ||'ll'|B|]3l1l1ETEJl]lII[Il]k.EII].' |
Wariahila Declarainns

[o |
Paramueter Declarstions

|D|:|ul'.'1E' searchivalue |
Filter

|l:-|.IE|J:l"I'|E’|'.UI'E|BFE- tordainsn) && o totalYalue = seachYalue |
Parameter Waluns

[1o00) |
O dering

|raimes ascending |

Evering... 003 seconds etapsed

Cornpany (rumser=T name=Fore Bofware addese=5an Frantis
bC: hantty {number=12 name=Help te Sged addmss=London comp
Cornpany (PumEer=1 name=00e Parners sddne-ss=mMiton Ky
Iridividudl (numbe=18 name=Robin Roos adiress=Kllon Feme
(G ompany [rumsiar=4 name=Sun Mcrosyskems addrass=Mdountal

Figure 8.2 Dynamic Query Window

Dynamic Query Window 145

Dynamic Query Window enhancements

The Dynamic Query Window was written by Ogilvie Partners and is avail-
able in the downloadable distribution. It gives developers an excellent way
to learn and experiment with JDOQL. It may also prove useful for manu-
ally tuning complex queries.

We plan an enhancement to generate the JDO-compliant code for each
query at the user’s request. This is intended as a means to coding JDOQL
queries more efficiently and accurately.

Refer to http://www.0OgilviePartners.com for further details.

What’s next?

In the next chapter we briefly examine JDO’s exception strategy, the exception
classes JDO defines, and situations that might give rise to their being thrown.

JDO exceptions

might arise in the various layers of an implementation. These are all
defined to be runtime exceptions. Since the compiler does not check
such exceptions, the application is free to catch only those exceptions that war-
rant a particular response. This philosophy allows JDO to be more transparently
applied to existing domain models and application components than would
have been the case if checked exceptions were employed.
In this chapter we look at the JDO exception hierarchy, examine the base
class exceptions and their subclass exceptions, and look at a selection of situa-
tions that might give rise to them.

'DO defines a number of exceptions to represent error conditions that

Why runtime and not checked exceptions?

The choice of whether to use checked or runtime (unchecked) exceptions
in a new API is one which must be considered carefully, as each style of
exception has its place.

For instance, in Remote Method Invocation (RMI), RemoteException
is a checked exception. The choice was made deliberately so that develop-
ers would always know when they were executing a remote method call.
This was deemed necessary, as remote calls are particularly slow.

In JDO, however, the primary focus is transparency. We aim to provide a
persistence infrastructure that can be applied easily without the addition of
JDO-specific code to domain classes.

Some methods of JDO instances, which work fine when the instance is
in the transient state, might throw JDO exceptions from other states; for
example, attempting to interact with a persistent instance when no trans-
action is active, or when the persistence manager has been closed. In order
to retain the high level of transparency desired, all of the JDO exceptions
are runtime exceptions.

9.1 JDO exception hierarchy
Exceptions arising through JDO fall into a number of categories. Exceptions

may be fatal (the requested operation cannot be completed) or can be retried
(the error can be corrected by the application and the operation attempted

146

JDO exception hierarchy

again). They may be caused by the application (user), by the data store, or by
the JDO implementation itself. The exception hierarchy defines base classes to
handle each of these situations (Figure 9.1).

java.lang.RuntimeException

JDOException
i i
JDOCanRetryException | | JDOFatalException |
i i 7
| JDOUserException | | JDOFatalUserException |
| JDODataStoreException | | JDOFatallnternalException |
| JDOUnsupportedOptionException | | JDOFatalDataStoreException |

Figure 9.1 JDO exception hierarchy

When examining the hierarchy, note the following terminology that refers
to the source of each exception:

User: the application/component invoking JDO persistence services.
DataStore: the underlying data store.
Internal: The JDO implementation.

implementations are free to define their own classes of exceptions that fit into
this hierarchy by subclassing the appropriate base class. Alternatively they may
throw instances of the base class exceptions themselves with appropriate identi-
fying attributes.

9.2 Base exception classes

Here are detailed descriptions of each of the nine JDO base exception classes.

147

148 JDO exceptions

9.2.1 JDOException

This is the base class for all JDO exceptions. It extends java.lang.Runtime
Exception so instances of this and all its subclasses do not have to be explicitly
caught by the application.

When instantiated, the JDOException is given a descriptive string, an
optional nested exception, and an optional failed object. All three of these can
be accessed by the application if the exception is caught.

9.2.1.1 JDOException constructors

The constructors for JDOException are shown below, and equivalent construc-
tors exist for every exception in the hierarchy. These are relevant to developers
as it is occasionally necessary to throw instances of JDO exceptions from within
persistence-capable objects. An example of this would be the use of the
InstanceCallbacks interface to prevent an instance from being deleted in
certain circumstances. The jdoPreDelete() method would throw a
JDOUserException if deletion were to be prevented. Such an example has
already been presented in Section 4.6.

JDOException ()

This constructor takes no arguments.

JDOException(String msg)

This constructor takes a String message only.

JDOException(String msg, Throwable[] nested)

This constructor takes a message and an array of nested exceptions.

JDOException(String msg, Throwable nested)

This constructor takes a message and a single nested exception (which itself
might contain further nested exceptions as necessary).

JDOException(String msg, Object failed)

This constructor takes a message and a reference to the “failed object.”

JDOException(String msg, Throwable[] nested, Object failed)
This constructor takes a message, an array of nested exceptions, and a reference
to the “failed object”.

JDOException(String msg, Throwable nested, Object failed)

This constructor takes a message, a single nested exception, and a reference to
the “failed object.”

Base exception classes

9.2.2 JDOFatalException

JDOFatalException is the base class for exceptions that cannot be retried.
Occurrence of this exception (or a subclass thereof) generally implies that the
transaction has been rolled back and should be abandoned by the application.

9.2.3 JDOCanRetryException

JDOCanRetryException is the base class for exceptions that can be retried
after the application has attempted to address the cause of the exception.

9.2.4 JDOUserOptionException

This is the base class for all retriable exceptions that are caused by the user. The
application must typically correct the problem causing the exception before
attempting the operation again. Potential causes would include:

e attempts to make an instance with application identity persistent, with pri-
mary key fields that are identical to an already persistent instance. Correct
the primary key field values and try again.

e attempts to fetch an instance by Object ID when no such persistent instance
exists. Correct the Object ID and try again.

e attempts to get the extent of a class or interface for which the extent is not
managed by JDO. Get the extent of a different class, or alter the persistence
descriptor and enhance the chosen class so that its extent is managed by JDO.

9.2.5 JDOUnsupportedOptionException

A JDOUnsupportedOptionException is thrown when an application
attempts to enable a particular optional feature that is not supported by the
implementation. It is a subclass of JDOUserException.

Potential causes would include:

e use of optimistic transaction management when not supported;
e the changing of an instance’s primary key field values when not supported;

e use of Persistent-Nontransactional instances when not supported.

9.2.6 JDOFatalUserException

This is the base class for all fatal (cannot be retried) exceptions caused by the
application. After a persistence manager has been closed, only its isClosed ()
method may be invoked. A JDOFatalUserException is thrown if any other
method is invoked on the PersistenceManager, or on any Transaction,
Query, Extent, or Iterator instances obtained from it.

149

150 JDO exceptions

9.2.7 JDOFatallnternalException

This is the base class for JDO implementation failures. instances of this excep-
tion should be reported to the JDO vendor.

9.2.8 JDODataStoreException

This is the base class for data store exceptions that can be retried.

9.2.9 JDOFatalDataStoreException

This is the base class for fatal data store exceptions that cannot be retried. It
might be thrown if the data store transaction is rolled back other than at a
commit/rollback request by the application.

9.3 Application exceptions

The discussion above has centered on JDO exceptions. However, it is also likely
that an application will have its own cause to throw and catch domain-specific
exceptions. These are referred to as application exceptions.

Application exceptions are designed along with the domain model, although
they typically end up in a subpackage of the domain package. Domain objects
throw and catch these exceptions according to the modeling of business processes
by the designer. Persistent instances are capable of throwing and catching the
same exceptions as their transient counterparts. No further effort is required of
developers in this regard as a result of using JDO for object persistence.

What’s next?

In the following chapter we take a detailed look at the structure of a persis-
tence descriptor. Specific focus is given to the DTD that constrains these XML
documents.

Persistence descriptor

to be made persistence-capable. Some of the information it contains
may additionally be used by the implementation at runtime — particu-
larly vendor-specific enhancements such as data store mapping information.
The persistence descriptor is an XML document. A brief overview follows for
readers not yet familiar with XML.

T he persistence descriptor is used at enhancement time to identify classes

10.1 XML overview

Markup languages, which allow text data to be structured using a set of pre-
scribed tags, have been in use for many years. XML is a particularly simple
markup language. It defines neither the tags nor the grammar according to
which the tags can be combined.

Tag names for XML documents are defined by the document author in accor-
dance with the information being marked up. This affords great flexibility. In a
JDO persistence descriptor, the tags include <jdo>, <package>, and <class>.
Tags are not case sensitive.

All XML documents must be well formed, in that each opening tag must be
matched by a corresponding closing tag. Closing tags carry a preceding forward
slash character, as in </jdo>, </package>, and </class>. The sequence in
which tags are closed must match the sequence in which they were opened.

Pairs of opening and closing tags may have content between them. Often
this content will include other tags as appropriate to the data being marked up.
Additionally, tags may contain attributes. These are name-value pairs occurring
within the opening tag. An example is the name attribute of the <class> tag:

<class name="Order">
class tag content goes here
</class>

A tag that is opened and then closed with no intervening content may be writ-
ten as a single empty tag for convenience. Empty tags may still contain
attributes and are notated with a trailing forward slash character, as in
<class/>. Thus

<class name="Order"/>
is equivalent to

<class name="Order"></class>

10

151

152 Persistence descriptor

Whilst all XML documents must be well formed, they may optionally be valid
according to a grammar. The grammar for an XML document is provided
through a DTD. This is a text file that defines the valid attribute names for each
tag, as well as the valid contents of each tag. Tag content is specified in terms of
the allowable tags that may be included, and their respective cardinality.

For example, the <class> tag has an attribute called name that is manda-
tory. Between the opening tag <class> and the closing tag </class> a
document may contain zero or more <field> or <extension> tags. The DTD
specifies this as follows:

<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>

The asterisk (*) represents a cardinality of “zero, one, or many.” You will occa-
sionally see the plus sign (+), which is used in DTDs to represent the cardinality
of “one or many.”

The DTD for JDO persistence descriptors is a file called jdo.dtd. Every per-
sistence descriptor references the DTD through a DOCTYPE directive. An
example is shown below. The actual path to jdo.dtd will vary according to
your installation.

<?xm1 version="1.0" encoding="UTF-8" 7>
<!DOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">
<jdo>

</jdo>
The full contents of jdo.dtd is shown in Appendix C. Hopefully the brief dis-
cussion above will be sufficient for you to read the DTD if you wish to do so.

For further information about XML, and the Java APIs available to manipulate
XML documents, I recommend Java and XML (McLaughlin, 2000).

10.2 Naming the persistence descriptor

A single persistence descriptor document should describe either a single
class, or a single package. The descriptor should be named appropriately with
either the class name or package name, followed by the extension “.jdo.”
This naming convention is recommended by the specification. However, it
is unlikely that enhancement tools will enforce it, particularly since the
DTD specifically provides for multiple packages to be described in a
single descriptor.

Persistence descriptor elements

10.3 Persistence descriptor elements

We will now consider the tags which are defined in the persistence descriptor
DTD, and which are used in order to specify the persistence characteristics of
persistence-capable classes.

10.3.1 <extension>

The <extension> element occurs at various places throughout the DTD. It is a
placeholder facilitating the introduction of vendor-specific extensions into per-
sistence descriptors whilst retaining conformance to the standard DTD.

It has three attributes: vendor-name, key, and value. This element will be
illustrated at the end of the chapter.

10.3.2 <jdo>
jdo.dtd (extract)

<!ELEMENT jdo ((package)+, (extension)*)>

This is the root element of the document and must be present. It has no attrib-
utes. It must contain at least one <package> element, and may contain more
than one. It may also contain zero, or more <extension> elements.

10.3.3 <package>
jdo.dtd (extract)
<!ELEMENT package ((class)+, (extension)™)>

<!ATTLIST package name CDATA #REQUIRED>

This element identifies a package from which some classes will be enhanced. It
has one attribute, the name of the package, which must be fully qualified, as in
the example below:

<PACKAGE NAME="com.ogilviepartners.jdobook.op">

</PACKAGE>

The <package> element must contain one or more <class> elements. It may
also contain zero or more <extension> elements.

153

154 Persistence descriptor

10.3.4 <class>

jdo.dtd (extract)

<!ELEMENT class (field|extension)*>

<!ATTLIST class name CDATA #REQUIRED>

<IATTLIST class identity-type (application|datastore|none)
'datastore'>

<IATTLIST class objectid-class CDATA #IMPLIED>

<IATTLIST class requires-extent (true|false) 'true'>

<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>

This element identifies a single persistence-capable class. It has four attributes:

The name attribute identifies the name of the class. The name is relative to
the enclosing <package> element.

The identity-type attribute specifies the required JDO identity, and must
be one of application, datastore, and nondurable. The default identity
is datastore.

An objectid-class attribute must be specified only for classes with appli-
cation identity. The identified Object ID class is relative to the enclosing
package element. Inner classes are identified using the $ symbol following
the standard set by the Java compiler. If the class is part of an inheritance
hierarchy of persistence-capable classes, the Object ID class must be part of a
corresponding inheritance hierarchy of Object ID classes.

The requires-extent attribute specifies whether the extent of this class
must be managed by JDO. The default is true. Persistence managers will
only return the Extent of classes for which requires-extent is true.

The <class> element may contain zero or more <field> and <extension>
elements.

10.3.5 <field>

jdo.dtd (extract)

<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>

<!IATTLIST field persistence-modifier
(persistent|transactional|none) #IMPLIED>

<!ATTLIST field primary-key (true|false) "false">

<!ATTLIST field null-value (exception|default|none) "none">
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<IATTLIST field embedded (true|false) #IMPLIED>

This element identifies the persistence characteristics of individual fields in a class.
JDO assigns default persistence modifiers to each field defined in a persistence-

Persistence descriptor elements

capable class based on the Java modifiers with which the field is defined. The
<field> element allows developers to override these defaults. The <field>
element has six attributes:

e The name attribute identifies the field and corresponds exactly to the field
name as defined in the class.

@ The persistence-modifier attribute determines the extent to which JDO
will manage field values. It must have one of three values: persistent,
transactional, or none.

If the field is persistent, then it is by default transactional. JDO will syn-
chronize the values of such fields of persistent instances with the data store.
This is done subject to transaction boundaries unless the instance is explicitly
made non-transactional. The persistence modifier persistent is the default
for fields of supported types or references to persistence-capable classes that are
not defined as static, transient or final in the un-enhanced class.

If the field’s persistence modifier is transactional, its values will be cached
when the instance is first associated with a transaction, and the cached values
restored on transaction rollback. The cache is cleared on transaction commit.
However, JDO will not persist the field’s value in the data store.

Fields with the persistence modifier none are not managed by JDO. This is
the default persistence modifier for fields declared as static, transient or
final in the un-enhanced class.

It is common practice to declare selected fields of a class with the Java modifier
transient in order to restrict the size of the object graph to which serializa-
tion would be applied. Such fields can then have their persistence modifier
explicitly set to persistent in the descriptor, overriding their default value of
none, so that their values will be transparently persisted to the data store.

e The primary-key attribute has values true or false, with false being the
default. It is used to identify those fields that comprise the Object ID of
classes with application identity.

® The null-value attribute has three possible values and is used to indicate
how null values should be handled by the implementation. The default
value is none, which requires the implementation to store null values as
such and throw a JDODataStoreException if the data store is not capable
of storing null values. The value exception requires the implementation to
throw a JDOUserException if the field contains a null value at the time it is
to be stored. The exception is more likely to occur at commit time than at
the time the null value is assigned.
The final value of default indicates that a null value should be replaced by
the field’s default value prior to storage. If such a field’s value is set to nul1
in an instance that is subsequently Persistent-New or Persistent-Dirty, the
application will typically see the default value after commit. (It is not neces-
sary for the instance to be explicitly retrieved again by Object ID, extent
iteration or query execution.)

155

156 Persistence descriptor

o The default-fetch-group attribute has values true or false. It specifies
whether a particular field’s value will be retrieved from the data store and
populated into the instance’s corresponding attribute when the instance
itself is first read. This action typically takes place during a transition away
from the Hollow state. The default value is true for fields of all Java primi-
tive types, Date (from package java.util), String and Number (from
package java.lang), BigDecimal and BigInteger (from java.math), and
all array types. Note that although arrays are in the default fetch group by
default, collections are not.

Fields that are not part of the default fetch group are not read from the data
store until their values are requested by the application.

® The embedded attribute has values true or false. If true, it is a hint to the
implementation that the object referenced by that field should be stored as
part of this instance instead of as a separate instance. Where supported by
the implementation, the targets of such references are stored as second-class
objects. Where not supported by the implementation, the targets of such ref-
erences will be stored as first-class objects.
The significant differences between first-class and second-class objects were
discussed in Chapter 5. The default value is the same as that for the
default-fetch-group attribute. Note that although arrays are embedded
by default, collections are not.

10.3.6 <collection>
jdo.dtd (extract)

<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>

This element is used to identify fields of collection types as being collections of
specific object types. By default all fields of collection types are deemed to be
collections of Object type. All implementations are required to support such
references of Object type but may restrict the class of instances that can be
assigned to these references, throwing a ClassCastException as required.

Explicitly identifying the contained object type is recommended when stor-
ing references to other persistence-capable instances, as it removes the
instance’s dependency on the implementation being capable of storing such
references as Object types. ClassCastExceptions will not then be thrown as
long as the instances added to the collection are “instances of” the declared per-
sistence-capable class.

The <co1lection> element has two attributes.

® The element-type attribute is the fully qualified name of the class,
instances of which will be contained in the collection.

Persistence descriptor elements

e The embedded-element attribute has values true or false. It identifies
whether the objects contained by the collection should all be stored as part
of the instance. If embedded-element is true and the implementation
supports this behavior, all contained instances will be stored as second-
class objects.

Support for second-class objects can improve the efficiency of the data store, as
individual identities do not have to be maintained for such objects.

In the case of an order holding a collection of OrderLine instances, the col-
lection itself is a separate object. Thus the order holds a reference to the
collection, and the collection holds zero, one, or many references to OrderLine
instances. Applications typically need to look up specific order instances by an
Object ID, so these must be first-class objects. Designers may choose to assign
OrderLine instances an Object ID as well, so that these can also be looked up
individually. However, it is not necessary for the collection object to be looked
up by an Object ID. Most implementations will treat such collection objects as
second-class objects.

This is independent of the embedded-element attribute value, which indi-
cates whether or not the contained objects will themselves be treated as
second-class objects. If the designer determines that it is not necessary for indi-
vidual OrderLine instances to be looked up independent of their containing
Order instance, then the orderLines collection should have its embedded-
element attribute set to true. This is illustrated below.

<field name="orderLines">
<collection element-type="op.0OrderLine"
embedded-element="true" />
</field>

The embedded-element attribute defaults to false for persistence-capable
objects, and true for all other object types.

Serialization and second-class objects

It has previously been stated that second-class objects may be stored as
part of their owning first-class object. One mechanism that implementa-
tions commonly use to achieve this is serialization. If the second-class
object is serializable, its serialized form can be written into a single field of
its owning first-class object’s data store entity. This technique can easily be
applied to singleton references or collections of objects.

The performance gains of retrieving the first-class object and all the
embedded (second-class) objects it references in a single read from the data
store, as opposed to multiple reads of related entities, are immense.

157

158 Persistence descriptor

10.3.7 <map>
jdo.dtd (extract)

<!ELEMENT map (extension)*>

<!ATTLIST map key-type CDATA #IMPLIED>

<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>

<!ATTLIST map embedded-value (true|false) #IMPLIED>

This element identifies a particular field as being a map, which stores key/value
pairs. By default all map fields are persistent, and the key and value types are
both object.

The <map> element has three attributes:

e The key-type attribute identifies the fully qualified class name of the
objects that serve as keys in the map.

e The value-type attribute identifies the fully qualified class name of the
objects that serve as values in the map.

® The embedded-key and embedded-value attributes identify whether keys
and values should be stored as part of the containing instance (true) or as
first-class objects in their own right (false). They default to false for per-
sistence-capable objects, and true for all other object types.

10.3.8 <array>
jdo.dtd (extract)

<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>

The <array> element identifies a field that is an array. By default, array
fields are persistent if a singleton reference of the same type would have
been persistent.

The only attribute of an array is embedded-element, which identifies
whether referenced instances will be stored as part of the containing instance
(true) or as first-class objects in their own right (false). It defaults to false
for persistence-capable objects, and true for all other object types.

10.4 Example - persistence descriptor "op.jdo"

Here is the complete persistence descriptor for our order processing domain.
This illustrates many, although not all, of the persistence descriptor elements.

Example - persistence descriptor "op-jdo"

op.jdo

<?xm1 version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jdo SYSTEM "file:///jdowork/dtd/jdo.dtd">
<jdo>

<package name="com.ogilviepartners.jdobook.op">

<class name="Customer"
identity-type = "datastore">
<field name="orders"
default-fetch-group="true">
<collection element-type =
"com.ogilviepartners.jdobook.op.Order"/>
</field>
</class>

<class name="BusinessPartner"
identity-type="application”
objectid-class=
"com.ogilviepartners.jdobook.op.pk.BusinessPartnerPK">
<field name="partnerNumber"
primary-key="true"
default-fetch-group="false"/>
<field name="customer"
embedded="false" />
</class>

<class name="Individual"
identity-type="application”
persistence-capable-superclass=
com.ogilviepartners.jdobook.op.BusinessPartner"
objectid-class=
com.ogilviepartners.jdobook.op.pk.BusinessPartnerPK" />

<class name="Company"
identity-type="application”
persistence-capable-superclass=
com.ogilviepartners.jdobook.op.BusinessPartner"
objectid-class=
"com.ogilviepartners.jdobook.op.pk.CompanyPK" />

<class name="Charity"
identity-type="application”
persistence-capable-superclass=
com.ogilviepartners.jdobook.op.Company" />

159

160 Persistence descriptor

<class name="AbstractItem"
identity-type="application"
objectid-class=
"com.ogilviepartners.jdobook.op.pk.AbstractItemPK">
<field name="itemId"
primary-key="true"
default-fetch-group="false"/>
</class>

<class name="Product"
identity-type="application"
persistence-capable-superclass=
com.ogilviepartners.jdobook.op.AbstractItem"
objectid-class=
com.ogilviepartners.jdobook.op.pk.ProductPK" />

<class name="ServiceContract"
identity-type="application"
persistence-capable-superclass=
com.ogilviepartners.jdobook.op.AbstractItem"
objectid-class=
com.ogilviepartners.jdobook.op.pk.ServiceContractPK" />

<class name="OrderLine"
identity-type="datastore" >
</class>

<class name="Order"
identity-type="application"
objectid-class=
"com.ogilviepartners.jdobook.op.pk.0OrderPK">
<field name="orderNumber"
primary-key="true" />
<field name="orderLines"
default-fetch-group="true">
<collection element-type=
"com.ogilviepartners.jdobook.op.OrderLine" />
</field>
</class>

</package>
</jdo>

Facilities for vendor-specific extensions

10.5 Facilities for vendor-specific extensions

The experts behind JDO recognize that vendors will wish to add functionality
which goes beyond that detailed in the specification — typically mapping strate-
gies — to their implementations. Furthermore, some of this functionality will
require meta-data defined in the persistence descriptor and therefore available
to the implementation at runtime. JDO defines the <extension> element
specifically to facilitate the storage of vendor-specific, and therefore non-stan-
dard, information in the descriptor.

10.5.1 <extension>
jdo.dtd (extract)

<!ELEMENT extension (extension)*>

<!ATTLIST extension vendor-name CDATA #REQUIRED>
<IATTLIST extension key CDATA #IMPLIED>
<IATTLIST extension value CDATA #IMPLIED>

By putting all non-standard data into <extension> elements, persistence
descriptors that contain such information can still be considered valid accord-
ing to the DTD.

The DTD defines the <extension> element so that a valid document can
contain it in a number of places. In fact, zero, one, or many <extension> ele-
ments may appear as content within any persistence descriptor tag. Indeed, an
<extension> tag may itself contain any number of further <extension> tags
in its own content. The <extension> tag has three attributes:

e The vendor-name attribute identifies the JDO vendor to which the particu-
lar extension relates.

e The key attribute identifies the particular extension. Each JDO vendor docu-
ments the set of supported keys for its implementation.

e The value attribute identifies the value to be associated with the key.

The use of <extension> elements is best illustrated with an example.

10.6 Example - deletion semantics

By definition, the JDO specification does not identify any valid extensions.
Extensions are intended for use by JDO vendors who wish to implement fea-
tures above and beyond the standard, and require the application of such
features to be declared in the persistence descriptor. This book is intended to
address JDO in a vendor-independent manner, but I trust that you will appreci-
ate the need for a vendor-specific example here.

161

162 Persistence descriptor

In JDO it is possible to have one persistence-capable instance reference
another instance that is subsequently deleted. Once the deletePersistent()
method has completed and the transaction committed, J]DO dictates that the
deleted instance will be transient. However, it does not dictate what should have
happened to fields that were previously referencing the now-deleted instance.

In Prism Technology’s JDO implementation “OpenFusion JDO,” an exten-
sion has been added to the <field> tag that identifies the deletion semantics
for that field. Three options are permitted, as illustrated on Table 10.1.

Table 10.1 The three options for deletion semantics in OpenFusiondDO

Deletion Description
semantics
Null If the field is referencing an instance that is subsequently deleted,

set the field to null.

Exception If the field is referencing an instance which is subsequently deleted,
throw a JDOUserException.
None If the field is referencing an instance that is subsequently deleted,

do nothing. The field will still reference the instance, which will be
in a transient state after commit.

The default behavior is none, which is consistent with the JDO specification.
Thus one needs to specify only the deletion semantics for a field if the nu11 or
exception behaviors are required. This extension is implemented in the
deployment descriptor with the vendor name “prismt,” the key “deletion-
semantics,” and the appropriate attribute value; “null,” “exception,” or “none”.

Here is an example in which the default deletion semantics are overridden,
preventing the deletion of a Customer instance that is referenced by the cus-
tomer field of a BusinessPartner instance.

BusinessPartner.jdo
<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="BusinessPartner">
<field name="customer">
<extension vendor-name="prismt"
key="deletion-semantics"
value="exception">
</field>
</class>
</package>
</jdo>

Example - deletion semantics 163

What’s next?

We have now covered all of the information you need in order to use JDO in a
non-managed environment, i.e. outside a J2EE application server. The next
chapter looks in detail at the integration of JDO with server-side J2EE compo-
nents such as Enterprise JavaBeans.

J2EE integration

is used by components executing as part of a J2EE-compliant application

server. Examples are provided of JDO access by EJB components (entity,
session, and message-driven beans) and web components (servlets and
JavaServer Pages).

T his chapter deals with the so-called managed environment, in which JDO

11.1 The managed environment

All of the examples in the preceding chapters presume JDO to be used in a non-
managed environment. This is where the application is itself responsible for
bootstrapping JDO and for demarcating transactions.

However, given the prevalence of the J2EE component architecture, JDO was
designed so that it could integrate seamlessly into J2EE application servers. J2EE
strives to abstract the component developer from having to explicitly write
code in support of infrastructure services. Instead, these services are provided by
the application server’s container, within which the components execute. The
term managed environment applies to the use of JDO from the context of a J2EE
container.

11.2 J2EE overview

J2EE is a specification for application server technology supporting the middle
tiers of an application architecture. J2EE specifically addresses two tiers: the web
tier and the EJB tier. The web tier contains components that service hypertext
transfer protocol (HTTP) requests from web browsers and dynamically generate
hypertext markup language (HTML) content in response. The EJB tier contains
components that are transactional, scalable, secure, and which facilitate the encap-
sulation of and access to data entities. Application architectures are free to employ
components from either tier or from both, as warranted by the application.

11.2.1 Enterprise JavaBeans tier

The EJB specification enables server-side application component developers to
focus on the application logic their components will provide. The developers are
abstracted from issues such as transactions and security, and code does not nor-
mally have to be written to interface with these services. After components have
been written and compiled, they are assembled into server-side applications prior

164

11

to deployment into the application server. At assembly time a deployment descrip-
tor is constructed. This XML document identifies the components comprising the
application and specifies their requirements regarding transactions, security, and
(occasionally) persistence. The fact that these services can be configured declara-
tively without recourse to component recompilation, let alone source code access
or editing, is a major benefit of the J2EE model.

The clients of EJBs may be applications running outside the J2EE application
server (e.g. Java/Swing clients, or potentially non-Java clients using the CORBA
protocol IIOP), web components in the web tier, or other EJB components.

The following types of EJB components are defined.

11.2.1.1 Session beans

These components are intended to encapsulate processing which must occur on
the server in response to a client’s request. They represent an interactive session
between the server and a client. Session beans can be pooled by the application
server to reduce instantiation delays when one is requested by a client. They
operate as dedicated client resources, in that only one client can make use of a
particular session bean instance at one time.

Two types of session bean exist. Stateful session beans are dedicated to a single
client for as long as the client requires. All method invocations by that client occur
on the same session bean instance. This allows the session bean to build up and
maintain a conversational state based on the client’s previous method invocations.
Stateless session beans are dedicated to a single client only for the duration of indi-
vidual method invocations. Stateless beans do not maintain conversational state
across client invocations. Thus successive invocations by one client may be ser-
viced by different session bean instances. As soon as one method invocation on a
session bean is complete, the bean instance is returned to a pool of free instances
and is immediately available to handle another request from any client.

Bean-managed transactions

EJB components typically rely on the application server for transaction
demarcation. This relieves the component developer of having to code
begin(), commit(), and rollback() invocations. The transaction
demarcation specifics are instead defined in the deployment descriptor on
a per-method basis, and transaction demarcation is delegated to the con-
tainer. This policy is known as container-managed transactions (CMT).

As an alternative to employing CMT, a stateful session bean may be
declared to have bean-managed transactions (BMT). In such cases the ses-
sion bean itself undertakes to demarcate transactions programmatically. The
resulting transactions may extend beyond a single method invocation and
encompass multiple invocations (roundtrips) between the client and server.

J2EE overview

165

166 J2EE integration

11.2.1.2 Entity beans

Entity beans were designed to present a remote interface to data entities. This
allows remote clients to have direct access to the entity bean and thence the
data store. Entity beans usually obtain their data from a relational database.

The class of an entity bean identifies the type of data it can provide to the
client, so a product entity bean would provide product data. Each particular
instance of an entity bean in use by a client is associated with a primary key iden-
tifying the particular data (e.g. the particular product) that the bean encapsulates.

Entity beans must have their transactions managed by the container (CMT).
However, they may choose whether to implement persistence management
programmatically with bean-managed persistence (BMP) or declaratively with
container-managed persistence (CMP).

All entity beans must implement methods for the creation, loading, storing,
and removal of data from the data store. If the bean uses BMP, these methods
will contain the code required to perform the corresponding operations on the
data store. If the bean uses CMP, these methods are merely callback methods
that, although present, are usually empty. Instead, the deployment descriptor is
complemented with sufficient information for the container to undertake the
persistence of data on behalf of the component.

11.2.1.3 Message-driven beans

Message-driven beans are an application of the Java Message Service (JMS) to
enterprise components. They represent server-side processing that will be
invoked in response to the receipt of an asynchronous JMS message. This is in
contrast to session beans, which are invoked synchronously by clients.

The code written for a message-driven bean must deal only with the actions
to be taken on receipt of a message. Other properties, such as the source of mes-
sages (a JMS destination) and the transactional nature and durability of its
connection to the underlying messaging service, are specified declaratively
through the deployment descriptor.

For further information about JMS I recommend the thorough treatment in
Java Message Service (Monson-Haefel and Chappel, 2001).

11.2.1.4 Developer-provided enterprise bean interfaces and classes

EJB components are made up of interfaces and classes provided by the bean
developer in accordance with the EJB specification. All components require a
bean class. This provides implementations of callback methods invoked by the
bean’s lifecycle, and business methods invoked at the discretion of a client.
Session and entity beans require a home interface that provides factory methods
by which clients can obtain bean instances, and a remote interface that describes
the methods that clients may execute on these instances. Entity beans addition-
ally need to have a primary key class (Table 11.1).

J2EE overview 167

Table 11.1 Interfaces and classes the developer must provide for each EJB type

Bean Home Remote Bean Primary
type interface interface class key class
Session v v v x

Entity v v 4 v
Message-driven t 3 v 4

For further information on EJB I recommend Enterprise JavaBeans, (Monson-
Haefel, 2001).

11.2.2 Web tier

The web tier is comprised of components that enhance web server functionality
with the ultimate aim of producing dynamic content for web browsers and exe-
cuting business transactions in response to web-based requests. Web
components may execute in a servlet engine or as components within a web-
aware application server. The former is typically used where an application
makes no use of EJB, and the latter where the application is comprised of com-
ponents from both tiers. Two types of web-tier component are defined: Servlets
and JavaServer Pages (JSP).

11.2.2.1 Servlets

Servlets are process-centric components that receive HTTP requests and ulti-
mately produce an appropriate response. The actual format of the response will
depend upon the nature of the client. HTML content is the most common, but
servlets are also being used to generate XML content which might be consumed
directly by an XML-aware client, or transformed to HTML as a separate step
prior to being rendered by a web browser.

During execution, the servlet instance can access parameters passed with
the request, and can make use of the full spectrum of Java APIs in order to
respond to the request correctly. This includes accessing and invoking EJB
components if required.

11.2.2.2 JavaServer Pages

Servlets are process-centric, and might contain printin() method calls to
output HTML content. This requires that any embedded quotation marks in the
desired output be correctly escaped. It also requires that any edits to HTML con-
tent be undertaken by a suitably qualified Java developer. Finally, the
presentation generated by a servlet cannot be edited in an HTML editor.

168 J2EE integration

JSP’s are components which serve to address these restrictions. They are text
files containing presentation markup (usually HTML, but potentially XML or
something else) and scripting elements in a target language (only Java is sup-
ported to date). Web designers without Java expertise can edit JSPs in HTML
editors. The scripting elements can either be hidden or be wrapped up into
custom tag libraries to ease such manipulation.

All JSPs are ultimately transformed into temporary servlet code by the
runtime environment and then compiled and executed as Servlets. The
markup content is placed into println() statements and special characters
escaped as necessary. Script code is placed verbatim into the generated servlet
and facilitates the declaration of attributes, methods, local variables, and
execution logic.

For further information on web components I recommend Core Servlets and
JavaServer Pages (Hall, 2000).

11.3 Serialization of JDO instances

J2EE components communicate with their clients (actual clients or other J2EE
components) using RMI. To improve interoperability, most application servers
channel their RMI calls over the IIOP protocol. RMI facilitates the passing of
objects by value through serialization. This technique is widely employed by
middle-tier Java designers, and is likely to be applied to persistence-capable
objects. This section examines the serialization of persistent instances.

The serialization process can be invoked explicitly on any object implement-
ing the Serializable interface. However, it is more common for it to occur
implicitly, as happens whenever a Serializable object is included as an argu-
ment to or return value from an RMI. The object is transformed into a stream of
bytes that is transferred across the network, where a new object of the same
class is constructed and initialized from the contents of the byte stream.

Java contains the transient modifier with which developers can mark
certain attributes as non-serializable. Non-serializable attributes will not form
part of the byte stream and will acquire default values in the remote copy of
the object.

JDO implements serialization such that transient and persistent instances
can be serialized and de-serialized into their corresponding un-enhanced
classes. This prevents clients from needing to have the enhanced classes present
when they do not intend to invoke JDO services directly.

Serialization of IDO instances

Serialization and closure of instances

When an instance is serialized, the result is a byte stream representing the
complete object graph of all connected serializable instances. The persis-
tence manager will retrieve these instances from the data store and fully
populate all persistent fields. The graph of instances will subsequently be
made transient (preventing any subsequent changes to them from affect-
ing the data store and eliminating their reliance on supporting JDO
infrastructure). It is these transient objects that are then converted to their
serialized form for transmission across the network.

By default, non-serialized fields, i.e. those declared with the Java modifier
transient, will not be persisted by JDO. This setting can, however, be
overridden by ascribing a persistence modifier of persistent to such
fields in the persistence descriptor. The field values will then be synchro-
nized in the data store since they are declared persistent. However, the
instances to which they refer will not form part of the serialized object
graph, since the references are non-serializable. (The Java modifier tran-
sient still applies.)

With careful application of Java’s transient modifier, designers can reduce
the size of object graphs involved in the serialization process. This is achieved
without compromising “transparent persistence,” since navigation through per-
sistent but non-serialized fields will still transparently retrieve referenced
objects from the data store as required.

By way of example, consider the BusinessPartner class. It contains a refer-
ence to a Customer object, which in turn references a collection of Order
objects. For business partners which are customers and for which many orders
exist, the object graph that is involved when the BusinessPartner object is seri-
alized could be very large. To minimize this a designer might decide to make the
Customer’s reference to its collection of Order objects transient. Thus the serial-
ization process would not include any Order objects. In order to keep the orders
field persistent it would have to have its persistence-modifier set explicitly in the
persistence descriptor. Here is an extract from the altered class and its descriptor.

Customer.java (extract)

public class Customer {

protected transient Collection orders;

169

170 J2EE integration

Customer.jdo

<jdo>
<package name="com.ogilviepartners.jdobook.op">
<class name="Customer"
<field name="orders"
persistence-modifier="persistent"/>
<collection element-type=
"com.ogilviepartners. jdobook.op.Order" />
</field>
</class>
</package>
</jdo>

11.4 JDO vs. J2EE transactions

Each of J2EE and JDO provide their own mechanisms for managing transactions.
In JDO this is the javax.jdo.Transaction object returned to applications
from the persistence manager’s currentTransaction() method. In J2EE it is
the javax.transaction.UserTransaction object. The UserTransaction is
made available to EJBs through their session, entity or message-driven context
objects, and to other J2EE components through JNDI lookups.

In the managed environment, JDO implementations can synchronize their
transactions with the distributed J2EE transactions. This design feature is central
to JDO’s ability to operate in these tiers. Where the container is managing trans-
actions on behalf of a component, transaction demarcation methods may not
be invoked by that component. This applies to all entity beans, and to those
session beans and message-driven beans for which CMT is selected. Where ses-
sion beans or message-driven beans have BMT selected, the component
developer programmatically provides transaction demarcation. In these cases
either J2EE UserTransaction or JDO Transaction objects may be used for
this purpose.

If a persistence manager is obtained from a factory before the J2EE transac-
tion is established, the begin(), commit (), and rollback() methods of the
JDO transaction object may be used for demarcation. During this process the
persistence manager will start and complete the associated J2EE transaction
appropriately.

If a persistence manager is obtained from a factory once a J2EE transaction
is already active, the demarcation methods of the JDO transaction must not be
used. All transaction demarcation should be performed through the
UserTransaction object, with which JDO will synchronize.

JDO integration with ESB

JDO Transaction vs. J2EE UserTransaction

There are two approaches for transaction demarcation, but when should
each be used?

Since the UserTransaction object is readily available to most J2EE
components and is the standard by which they accomplish transaction
demarcation, I generally use this method in preference to demarcation
with JDO’s Transaction object.

However, if a particular web component has no need of J2EE’s distrib-
uted transaction services and merely requires transactional access through
JDO, JDO transactions can and should be used. This avoids the unneces-
sary lookup of a UserTransaction through JNDI, which may not be
supported in some lightweight servlet engines.

11.5 JDO integration with EJB

The essential philosophy of JDO integration with EJB containers is as follows. A
PersistenceManagerFactory will be looked up through JNDI early on in the
bean’s lifecycle, and the reference retained as an attribute of the class. I typically
look up the factory during the setSessionContext (), setEntityContext(),
and setMessageDrivenContext () methods.

For all components (except stateful session beans with BMT) the persistence
manager should be obtained from the factory during each business method
that actually uses JDO. It should always be closed before that method returns.
Judicious use should be made of the finally clause in try blocks to ensure
that the persistence manager is closed, even in the case of an exception being
thrown from the method before its usual end point.

In the CMT case, the persistence manager must be closed because transaction
demarcation is not the component’s responsibility and therefore it should not
presume that any two method calls would necessarily be part of the same transac-
tion. Technically, a stateless session bean with BMT could maintain a single
persistence manager instance for its entire lifecycle. However, doing so would
subvert the pooling of persistence managers by the factory. It may also tempt
developers to leave transactions open across business method boundaries, which
is illegal for stateless beans.

Stateful session beans with BMT use persistence managers for longer periods
of time. If the J2EE UserTransaction object is being used for transaction
demarcation, the persistence manager should be obtained after the call to its
begin() method and closed before the call to its commit () method. If JDO
Transaction objects are to be used, the persistence manager is naturally
obtained before the transaction is begun and closed only after the transaction
has been completed. Indeed, there is no way to obtain the Transaction object
except through the persistence manager itself.

171

172 J2EE integration

11.6 JDO integration with stateless session beans

Although entity beans were originally designed to encapsulate data access, it is
far more common for session beans to manipulate data directly without doing
so through entity beans.

Session beans may be either stateless or stateful, and employ CMT or BMT.

For stateless beans, BMTs hold no benefit unless it is a requirement that a single
method invoked on the session bean invokes several serial transactions.
Therefore the stateless session bean example will use CMTs.
The bean implementation will not programmatically demarcate transactions,
and the persistence manager will be obtained after the J2EE transaction has
started. Since the application server’s container will commence transactions
before invoking the session bean’s methods, the persistence manager can
indeed be obtained at the start of each method that uses JDO. It is essential that
such methods have an appropriate transaction attribute set in the EJB deploy-
ment descriptor so that they are invoked transactionally.

The stateless session bean lifecycle is illustrated in Figure 11.1.

Does not exist

1. newlnstance()
2. setSessionContext(sc) ejbRemove()
3. ejbCreate()

business methods

Method-ready
pool

Figure 11.1 Stateless session bean lifecycle

After a session bean has been instantiated, its setSessionContext () and
ejbCreate () methods are called before it is placed into the method-ready
pool. A number of client-initiated business method invocations may occur
(although only one at a time). Finally, the bean’s ejbRemove () method is
invoked before the instance is destroyed.

Our example is an OrderDispatcher bean. This stateless bean provides
facilities for dispatching and canceling orders. As it is stateless, only a single
create () method, with no arguments, is provided in the home interface.

JDO integration with stateless session beans

OrderDispatcherHome.java
package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;
import java.rmi.RemoteException

interface OrderDispatcherHome extends EJBHome {
OrderDispatcher create() throws CreateException,
RemoteException;

}

The remote interface defines the business methods that this bean exposes to its
clients. These allow the dispatch or cancellation of an order, which is identified
by its Object ID.

OrderDispatcher.java
package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;

import com.ogilviepartners.jdobook.op.pk.*;
import com.ogilviepartners.jdobook.op.ex.*;
import java.rmi.RemoteException;

interface OrderDispatcher extends EJBObject ({
void dispatchOrder (OrderPK orderKey) throws
RemoteException;
void cancelOrder (OrderPK orderKey) throws
OrderStatusException, RemoteException;

}

Finally the bean class implements the callback and business methods. Take note
of the following:

The persistence manager factory is looked up in the setSessionContext ()
method.

® CMTs are used so no transaction demarcation code is present in the bean.

e Persistence managers are obtained, used, and closed within every business

method that requires persistence services.

173

174 J2EE integration

OrderDispatcherBean.java

package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;

import com.ogilviepartners.jdobook.op.*;
import com.ogilviepartners.jdobook.op.ex.*;
import com.ogilviepartners.jdobook.op.pk.*;
import javax.jdo.*;

import javax.naming.*;

public class OrderDispatcherBean implements SessionBean

{

SessionContext sc;
PersistenceManagerFactory pmf;
Context env;

public void setSessionContext(SessionContext sc) {

this.sc = sc;

try {
Context ic = new InitialContext();
env = (Context) ic.lookup("java:comp/env");
pmf = (PersistenceManagerFactory)
env.lookup("jdo/OrderProcessingPMF") ;

}

catch (Exception e) {
throw new EJBException(e);

}

public void dispatchOrder(OrderPK orderKey) {
PersistenceManager pm = null;
try {
pm = pmf.getPersistenceManager() ;
Order o = (Order) pm.getObjectByld(orderKey, true);
o.despatch();
}
catch (Exception e) {
throw new EJBException(e);

}
finally {

if (pm != null & !pm.isClosed()) pm.close();
}

business methods

JDO integration with stateful session beans

public void cancelOrder (OrderPK orderKey) throws
OrderStatusException {
PersistenceManager pm = null;

try {
pm = pmf.getPersistenceManager();

Order o = (Order) pm.getObjectByld(orderKey, true);

o.cancel();
}
catch (Exception e) {
throw new EJBException(e);

}
finally {

if (pm !'= null && !pm.isClosed()) pm.close();
}

public void ejbCreate() {}
public void ejbRemove() {}
public void ejbPassivate() {}
public void ejbActivate() {}

11.7 JDO integration with stateful session beans

Stateful session bean instances are dedicated to one client for a number of
method invocations, and can maintain conversational state across these meth-
ods. Stateful session beans can also employ BMTs in order to keep a transaction
open over such a series of invocations. The stateful session bean lifecycle is
illustrated in Figure 11.2.

Does not exist

1. newlnstance() timeout

2. setSessionContext(sc)
3. ejbCreate() ejbRemove()

ejbPassivate()

ejbActivate()

Figure 11.2 Stateful session bean lifecycle

175

176 J2EE integration

The stateful session bean lifecycle is similar to that of the stateless session bean.
Notable differences are that once in the method-ready state, it is assigned to a single
client. The activate () and passivate() invocations are used by the application
server when temporarily destroying the bean in order to free up system resources.

Our example of a stateful session bean is called the order entry bean and uses
BMT. It provides clients with methods to create an order, add products to the order,
and complete or discard the order. A transaction is commenced when the order is
created and committed only when the order is completed. The transaction is explic-
itly rolled back if the order is discarded. Since the bean maintains a reference to the
current order internally, the addProduct () method needs only a product Object
ID and a quantity, and does not require a separate order Object ID parameter.

The home interface contains a create() method identifying the business
partner for which orders will be created.

OrderEntryHome
package com.ogilviepartners.jdobook.op.j2ee;
import javax.ejb.*;

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

import com.ogilviepartners.jdobook.op.pk.BusinessPartnerPK;

interface OrderEntryHome extends EJBHome{
void create(BusinessPartnerPK bpKey) throws
RemoteException, CreateException;

}

The remote interface contains methods that a client uses in order to add prod-
ucts to the order and complete or discard the order.

OrderEntry.java
package com.ogilviepartners.jdobook.op.j2ee;

import java.rmi.RemoteException;
import com.ogilviepartners.jdobook.op.pk.ItemPK;
import javax.ejb.EJBObject;

interface OrderEntry extends EJBObject {
void addProduct (ItemPK pKey) throws RemoteException;
void completeOrder() throws RemoteException;
void discardOrder() throws RemoteException;

}

The bean class contains implementations of business methods and callback
methods.

JDO integration with stateful session beans

Take note of the following:

The persistence manager factory is looked up from JNDI during the
setSessionContext () method, and its reference saved for later use.

Transaction demarcation begins in the ejbCreate() method. The
UserTransaction object is used for transaction demarcation. Transactions
begin in the ejbCreate() method and are completed in the
completeOrder () and discardOrder () methods.

The persistence manager is obtained when the transaction has been com-
menced, and its reference retained until the transaction is about to be
completed. All JDO invocations within the transaction take place on the
same persistence manager instance.

OrderEntryBean.java

package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;

import javax.jdo.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.transaction.UserTransaction;
import com.ogilviepartners.jdobook.op.*;
import com.ogilviepartners.jdobook.op.pk.*;

public class OrderEntryBean implements SessionBean
{

PersistenceManagerFactory pmf;

PersistenceManager pm;

Context env;

Order o;

UserTransaction ut;

SessionContext sc;

public void setSessionContext(SessionContext sc) {

this.sc = sc;

try {
Context ic = new InitialContext();
env = (Context) ic.lookup("java:comp/env");
pmf = (PersistenceManagerFactory)

env.lookup("jdo/OrderProcessingPMF") ;

ut = sc.getUserTransaction();

}

catch (Exception e) {
throw new EJBException(e);

}

177

178 J2EE integration

public BusinessPartnerPK ejbCreate(BusinessPartnerPK
bpKey, int newOrderNumber) {

try {
ut.begin();
pm = pmf.getPersistenceManager();
BusinessPartner bp = (BusinessPartner)

pm.getObjectByld (bpKey, false) ;

0 = bp.getCustomer().createOrder (newOrderNumber) ;
pm.makePersistent (0);

}

catch (Exception e) {
throw new EJBException(e);

}

return (BusinessPartnerPK) pm.getObjectId(o);

}

public void ejbPostCreate(OrderPK k) {}

public void addProduct(ItemPK k, int quantity) {
try {
Product p = (Product) pm.getObjectById(k, true);
o.addItem(p, quantity);
}
catch (Exception e) {
throw new EJBException(e);
}
}

public void completeOrder() ({
try {
pm.close();
ut.commit();
}
catch (Exception e) {
throw new EJBException(e);
}
}

public void discardOrder() {
try {
pm.close();
ut.rollback();
}
catch (Exception e) {
throw new EJBException(e);

}

JDO integration with entity beans

public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}

11.8 JDO integration with entity beans

Entity beans must employ CMTs, and so they contain no transaction demarca-
tion code.

Entity beans may delegate their persistence to the container. This is known
as container-managed persistence (CMP). In such cases the bean no longer con-
tains code to synchronize its attributes with the data store.

JDO as the underlying technology for CMP
implementations

Incidentally, an EJB container may utilize JDO internally in support of its
CMP implementation. However, that is of architectural significance only
and makes no difference to the bean implementation.

The rest of this discussion centers on bean-managed persistence. To implement a
BMP entity bean with JDO, the bean should hold a reference to one (or more) JDO
instances. The ejbLoad (), ejbStore(), ejbCreate(), and ejbRemove ()
methods manipulate this instance through a persistence manager. The business
methods, generally providing accessor (get) and mutator (set) services for these
data items, are then implemented to directly invoke the instance. The entity
bean lifecycle is particularly complex, as illustrated in Figure 11.3.

Whilst a client is maintaining a reference to a bean proxy (EJB object) for a
particular primary key, there may or may not be a bean instance associated with
that primary key in the application server. The passivation and activation life-
cycle transitions allow one instance of an entity bean to encapsulate data
corresponding to a number of different primary keys in its lifetime, transcend-
ing transaction boundaries. The implementation of JDO within an entity bean
is correspondingly complex. I have chosen to describe it in conjunction with
the example source code below.

The following example is of a product entity bean. The home interface details
the create methods available to clients wishing to insert new products into the
data store, and to find methods for retrieving already persistent instances.

179

180 J2EE integration

Does not exist

1. newlnstance()

tEntityContext
2. setEntityContext(ec) unsetEntityContext()

ejbHome(...)

Pooled

1. ejbCreate(...)

2.ejbPostCreate(...) ejbRemove()

()orendyqls
()a3enissedqfe

ejbLoad() ejbStore()

business methods

Figure 11.3 Entity bean lifecycle

ProductEntityHome.java
package com.ogilviepartners.jdobook.op.j2ee;
import javax.ejb.*;

import com.ogilviepartners.jdobook.op.pk.ItemPK;
import java.util.Collection;
import java.rmi.RemoteException;

public interface ProductEntityHome extends EJBHome {
/| create methods
ProductEntity create(String itemId) throws
RemoteException, CreateException;

ProductEntity create(String itemId, String description,
double price,String color) throws RemoteException,
CreateException;

JDO integration with entity beans 181

/| finder methods
ProductEntity findByPrimaryKey (ItemPK 1itemKey)
throws RemoteException,FinderException;
Collection findA11() throws RemoteException,
FinderException;

}

The remote interface lists the business methods with which clients may alter
the data.

ProductEntity.java
package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProductEntity extends EJBObject
{
public String getDescription() throws RemoteException;
public void setDescription(String description)
throws RemoteException;

public double getPrice() throws RemoteException;
public void setPrice(double price)
throws RemoteException;

public String getColor() throws RemoteException;
public void setColor(String color)
throws RemoteException;

public String getItemlId() throws RemoteException;
}

The entity bean class provides implementations of the business and callback
methods. It begins with the normal imports, etc.

ProductEntityBean.java

package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;

import com.ogilviepartners.jdobook.op.Product;
import com.ogilviepartners.jdobook.op.pk.ItemPK;
import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;
import javax.jdo.JDOHelper;

import javax.jdo.Extent;

import java.util.Iterator;

182 J2EE integration

import java.util.Vector;

import java.util.Collection;

import javax.naming.Context;

import javax.naming.InitialContext;

public class ProductEntityBean implements EntityBean

{

The class defines attributes in which to store the persistence manager as well as
its factory. Also note the reference to a persistence-capable class, in this case
Product. More complex entity beans might manage graphs of persistence-
capable objects.

private PersistenceManagerFactory pmf;
private PersistenceManager pm;
private Product product;

private EntityContext ec;

private Context env;

Every entity bean has a no-argument constructor used by the server when pop-
ulating the free pool.

public ProductEntityBean() {}

The setEntityContext () method is invoked only once in an entity bean
instance’s lifecycle. It is an appropriate place for one-time initialization. Storage
of the EntityContext object is standard practice. In the implementation
below we also look up the component’s environment within JNDI and subse-
quently look up the persistence manager factory.

public void setEntityContext (EntityContext ec) {
this.ec = ec;
try {
InitialContext ic = new InitialContext();
env = (Context) ic.lookup("java:comp/env");
pmf = (PersistenceManagerFactory)
env.lookup("jdo/OrderProcessingPMF") ;
}
catch (Exception e) {
throw new EJBException(e);
}
}

The ejbCreate() and ejbPostCreate() method pairs are used when new
data is inserted into the data store. This is potentially the first time this bean
instance is using JDO in the current J2EE transaction scope, so we acquire the
persistence manager from the factory before creating a transient instance and
making it persistent. This bean allows creation with only an item ID or with
additional description, price, and color information.

JDO integration with entity beans

// create methods

public void ejbPostCreate(String itemId) {}

public ItemPK ejbCreate(String itemId) {

}

/1 get the PM
pm = pmf.getPersistenceManager () ;

/'l construct transient object and make persistent
product = new Product (itemId);
pm.makePersistent (product) ;

/] obtain the key
ItemPK productKey = (ItemPK)
JDOHelper.getObjectlId(product) ;

/'l return the Key
return productKey;

public void ejbPostCreate(String itemId, String

description, double price, String color) {}

public ItemPK ejbCreate(String itemld, String description,

}

double price, String color) {
/1 get the PM
pm = pmf.getPersistenceManager () ;

/'l construct transient object and make persistent
product = new Product(itemld, description, price, color);
pm.makePersistent (product) ;

/] obtain the key
ItemPK productKey = (ItemPK)
JDOHelper.getObjectlId(product) ;

/'l return the Key
return productKey;

The ejbLoad () method is invoked by the container. It obtains a persistence
manager, which will then be synchronized with the current J2EE transaction.
JDO is then used to retrieve from the data store the persistent entity corre-
sponding to the entity bean’s primary key. The entity bean’s primary key is
obtained from the EntityContext reference ec.

183

184 J2EE integration

public void ejblLoad() ({
/1 get the PM
//get the PM
if (pm == null || pm.isClosed())
pm = pmf.getPersistenceManager () ;

/'] construct key and obtain persistent object
ItemPK productKey = (ItemPK) ec.getPrimaryKey();
product = (Product) pm.getObjectBylId(productKey, true);

}

The ejbStore() method must synchronize the data store with the attribute
values in the entity bean instance. Since the business methods of the bean have
merely been altering the persistent instance, it will already have transitioned a
dirty state if necessary. The persistence manager will synchronize this dirty
instance to the data store when the J2EE transaction is committed. Therefore
there is nothing JDO-specific for ejbStore () to do.

public void ejbStore() {
}

ejbStore()

Please note that ejbStore () should not close the persistence manager. The
EJB specification allows for ejbStore () to be called multiple times without
an intervening call to ejbLoad () or another method that might acquire a
persistence manager from the factory.

If the persistence manager were to be closed during an ejbStore () invo-
cation, a JDOFatalUserException might occur if the same persistence
manager instance, or one of its JDO instances, was subsequently invoked.

Entity beans that do close the persistence manager at this point in their
lifecycle may work in a particular application server but will not be portable.

Passivation occurs when this entity bean instance is being disassociated from its
current primary key and J2EE transaction, to be potentially activated against a
different primary key in the context of a different transaction. The
ejbPassivate () method’s action is to nullify the reference to the persistent
product instance (to speed up the garbage collection process) and close the per-
sistence manager.

public void ejbPassivate() {
/1 nullify reference to persistent instance
product = null;

/1 close the PM and nullify its reference
pm.close(); pm = null;

JDO integration with entity beans

Activation occurs when this entity bean instance is being associated with a new
entity bean primary key and J2EE transaction. The J2EE specification does not spec-
ify that ejbActivate() will be called within the context of an open transaction. Since
persistence managers must be obtained within such a context, in order to be bound
to the J2EE transaction, this is deferred to the ejbLoad() method. Thus ejbActivate()
remains empty.

public void ejbActivate() { }

The removal of an entity bean corresponds directly to the deletion of data from
the data store. This is implemented by the ejbRemove () method. In addition,
the entity EJB is transitioned to its pooled state on ejbRemove () , so the persis-
tence manager should be closed.

public void ejbRemove() {
pm.deletePersistent (product) ;
pm.close();

}

The final method in a bean’s instance lifecycle is unsetEntityContext (),
which signals to the bean that it is about to be discarded and subsequently
garbage-collected. The only action we implement is to nullify the reference to
the persistence manager factory. Once again this is done in order to speed up
the garbage-collection process.

public void unsetEntityContext() {
pmf = null;
}

The finder methods in an entity bean return individual primary keys or collec-
tions of primary keys to the container. Although entity beans are themselves
inherently stateful, each finder method invocation occurs in a stateless fashion
on an arbitrary bean of the appropriate class in the free pool. Thus a persistence
manager must be obtained and closed within the scope of such methods.

Below we implement two finder methods for the product entity bean; one
will find a single instance by primary key, and the other uses the Extent of
products to return a collection of all persistent product Object IDs.

public Collection ejbFindA11() {
/1 find all products and return a collection of
/| primary keys
pm = pmf.getPersistenceManager();
Vector v = new Vector();
try {
Extent e = pm.getExtent (Product.class, true);
Iterator i = e.iterator();
while (i.hasNext()){
v.add (JDOHelper.getObjectId(i.next()));

}

185

186 J2EE integration

}
finally {

pm.close();
}

return v;

}

public ItemPK ejbFindByPrimaryKey (ItemPK itemKey) throws
FinderException {
// find a single product corresponding to the entity
/1 primary key
try {
pm = pmf.getPersistenceManager();
Object o = pm.getObjectBylId(itemKey, true);
}
catch (Exception e) {
e.printStackTrace();
throw new FinderException("failed to locate
object through JDO " + "with itemId=" + itemKey.itemld);
}
finally {
pm.close();

}

return itemKey;

}

Business methods merely invoke the persistence-capable class as required to ful-
fill their requirements.

/! business methods

public String getDescription() {
return product.getDescription();

}

public void setDescription(String description) {
product.setDescription(description);

}

public double getPrice() {
return product.getPrice();

}

public void setPrice(double price) {
product.setPrice(price);

}

JDO integration with entity beans 187

public String getColor() {
return product.getColor();

}

public void setColor (String color) {
product.setColor(color);

}

public String getItemId() ({
return product.getItemId();

}

This concludes the ProductEnt1ityBean source code.

JDO vs. entity beans - the great debate

There has been much discussion recently on the pros and cons of entity
beans vs. JDO. In fact, as I hope you will agree, the choice is now remark-
ably clear-cut.

Entity EJBs have been a part of J2EE since its 1.0 release, and support for
them was made mandatory in J2EE 1.1. They can provide a remote inter-
face to the data they encapsulate, which in some select situations is
beneficial. Generally, however, architects choose to front remote entity
bean access with a session bean fagade. Local interfaces are available with
EJB 2.0, but the difference between local (pass by reference) and remote
(pass by value) invocation must be considered carefully.

Entity beans are not at all transparent to the domain object model, and
support for inheritance is far from complete. With J2EE 1.3 (EJB 2.0), sup-
port is now provided for container-managed relationships between entity
beans. However, this further complicates an already complex architecture.

JDO instances do not inherently provide a remote interface, but this can
be achieved with a session bean facade in which instances are accessed
directly from the session tier.

JDO provides full support for inheritance and implementation hierar-
chies. It is remarkably transparent to the domain object model, and
provides all the benefits of transparent persistence that we have described.
Many analysts have indeed commented that JDO is what entity beans
should have been.

I expect to see the widespread use of JDO in the managed environment,
and would be surprised if companies continued to use entity beans for sig-
nificant numbers of new developments. Where an existing investment has
already been made in entity beans as part of an application, JDO could be
used as a strategy for BMP until such time as the entity beans might be
replaced with JDO instances.

188 J2EE integration

In the light of this, will entity beans be removed from the J2EE specification?
I don'’t believe this will happen. However, with entity beans being used even
less frequently, it will become apparent that application servers can be smaller,
faster, easier to develop, less resource intensive, and ultimately cheaper if they
do not support entity beans. I hope that the entity bean aspects of the EJB spec-
ification will be made optional, so that those application server vendors that
choose not to support them can, nevertheless, have their products branded as
J2EE-compliant.

11.9 JDO integration with message-driven beans

After the relative complexities of the entity bean lifecycle you will be pleased to
know that the message-driven bean lifecycle is extremely straightforward — and
JDO integration is much simpler too! Figure 11.4 shows the message-driven
bean lifecycle.

A message-driven bean has a MessageDrivenContext object passed to its
setMessageDrivenContext () method when the bean is introduced into the
free pool. The ejbCreate () method is then invoked associating the instance
with a particular JMS destination, subsequent to which its onMessage ()
method may be called zero, one, or more times to handle incoming messages. At
some point the bean’s ejbRemove () method is invoked to disassociate it from
that particular JMS destination.

Does not exist

1. newlInstance()
2. setMessageDrivenContext(mdc) ejbRemove()
3. ejbCreate()

onMessage(msg) \/

Method-ready
pool

Figure 11.4 Message-driven bean lifecycle

To use JDO for persistence services from within a message-driven bean, the per-
sistence manager factory is looked up during the setMessageDrivenContext ()
method. The onMessage () method should acquire a persistence manager from

JDO integration wiht message-driven beans

the factory. This will be synchronized with the J2EE transaction. The persistence
manager should be closed before the method returns.

Our example is a message-driven bean called ProductRecipient. It receives
new product descriptions as asynchronous messages and constructs, initializes,
and persists product instances with these descriptions. It is evident that this is a
simplification of a far more complicated process, which would usually involve
the receipt of strings that are themselves entire XML documents. These, con-
taining more comprehensive product information, would be parsed in order to
initialize the product.

Message-driven beans only have a bean class and do not have any home or
remote interfaces. The bean class is shown below.

ProductRecipientBean.java
package com.ogilviepartners.jdobook.op.j2ee;

import javax.ejb.*;

import javax.jdo.*;

import javax.naming.™;

import javax.jms.*;

import com.ogilviepartners.jdobook.op.*;
import com.ogilviepartners.jdobook.op.pk.*;

public class ProductRecipientBean implements
MessageDrivenBean ({
MessageDrivenContext ctx;
PersistenceManagerFactory pmf;
Context env;

public void setMessageDrivenContext (MessageDrivenContext ctx)

this.ctx = ctx;
try {
Context ic = new InitialContext();
env = (Context) ic.Tlookup("java:comp/env");
pmf = (PersistenceManagerFactory)
env.lookup ("jdo/OrderProcessingPMF") ;
}
catch (NamingException e) {
throw new EJBException("JNDI Lookups Failed");
}
}

public void ejbRemove() {}
public void ejbCreate() {}

189

190 J2EE integration

public void onMessage(Message m) {
Object content;
Product product;
PersistenceManager pm;

try {

/1 only TextMessage types expected
if (m instanceof TextMessage) {

}

/'l retrieve message contents
TextMessage tm = (TextMessage) m;
String s = tm.getText();

/1 get pm from pmf, synchronized to the
/1 J2EE transaction
pm = pmf.getPersistenceManager () ;

/1 instantiate, initialize and persist the
/'l new product

product = new Product();
product.setDescription(s);
pm.makePersistent (product) ;

else throw new EJBException(

}

"Message was not a TextMessage");

catch (Exception e) {
throw new EJBException(e);

}
finally {

if (pm != null & !pm.isClosed()) pm.close();
}

}

That concludes our look at JDO integration with EJB components. We now turn

our attention to the web tier.

11.10 JDO integration with the web tier

As with EJB components, servlets and JSP may use JDO for object persistence.
From the web tier this is typically done in support of HTML websites, enabling
the delivery of dynamic content to a client based on parameters in the incom-
ing request, as well as the execution of business transactions in response to

these requests.

JDO integration with the web tier

11.10.1 Servlets

The servlet lifecycle starts with a call to the init () method after the instance has
been constructed (Figure 11.5). Subsequently there may be zero, one, or many invo-
cations of its service method in response to HTTP requests. These invocations will
usually be on a multithreaded basis requiring explicit synchronization of access to
attributes of the servlet class. If the servlet implements the SingleThreadModel
interface, these invocations will be strictly in serial. The service method of an
HttpServlet interprets the HTTP request and invokes the appropriate do method.
This is usually doGet () or doPost (), although other request types exist.

Does not exist

init() destroy()

service() \/

(Ready)

For servlets to use JDO, the reference to the persistence manager factory
must be obtained in the init () method. The persistence manager should then
be obtained upon a request and closed before the request is completed.
However, it should be noted that servlets do not have transactions provided for
them by the container. Thus it is necessary for servlet code to explicitly demar-
cate transactions through JDO or through J2EE.

The servlet example presented here is one that displays, in HTML format, a
list of all business partners. This is given as an HTML table with columns
labeled ID, Name, Address, and Type. The Type column contains the name of
each partner’s actual concrete subclass: Company, Charity, or Individual.
Here’s the code.

Figure 11.5 Serviet lifecycle

BusinessPartnerServlet.java
package com.ogilviepartners.jdobook.op.j2ee;
import javax.servlet.*;

import javax.jdo.*;
import op.Product;

191

192 J2EE integration

public class BusinessPartnerServlet extends HttpServlet

{

PersistenceManagerFactory pmf;

public void init(ServletConfig config) {
super.init(config);
Context ic = new InitialContext();
Context env;
env = (Context) ic.lookup("java:comp/env");
pmf env.lookup ("OrderProcessingPMF") ;

}

public void doGet (HttpRequest request,
HttpResponse response) {
processRequest (request, response);

}

public void doPost(HttpRequest request,
HttpResponse response) {
processRequest (request, response);

}

private void processRequest (HttpRequest request,
HttpResponse response) ({
/'l get the persistence manager and begin transaction
PersistenceManager pm = pmf.getPersistenceManager();
Transaction t = pm.currentTransaction();
t.begin();

/1 get the extent of BusinessPartner including
/| subclasses

Extent e;

e = pm.getExtent (BusinessPartner.class, true);
Iterator i = e.iterator();

/'l commence output
response.setContentType("text/htm1");
PrintWriter out = response.getWriter();

/| page header
out.printin("<HTML><HEAD><TITLE>" +
"Business Partners<?TITLE></HEAD>")
out.println("<BODY>");
out.printin("<H1>List of Business Partners</H1>");

/1 start of table
out.printin("<TABLE><TR><TH>ID</TH><TH>Name" +
"</TH><TH>Address</TH><TH>Type</TH></TR>") ;

JDO integration with the web tier

while(i.hasNext()) {
BusinessPartner bp = (BusinessPartner) i.next();
out.printin("<TR>");
out.printin("<TD>" + bp.getPartnerId() + "</TD>");
out.printin("<TD>" + bp.getName() + "</TD>");
out.printin("<TD>" + bp.getAddress() + "</TD>");
out.printin("<TD>" + bp.class.getName() + "</TD>");
out.printin("</TR>");

}

//end of table and document
out.println("</TABLE></BODY></HTML>");

/1 output complete
out.flush();
e.close(i);
t.commit();
pm.close() ;

}

The above example employs JDO transactions, which does not rely on any spe-
cific J2EE transaction support from the servlet container. If the servlet were
invoking EJB components for some of its processing, it would be unusual for it
to access persistent objects directly as well. Instead, all access to JDO would typ-
ically be delegated to the EJB tier. However, if necessary, the servlet can look up
the UserTransaction though JNDI and then demarcate J2EE transactions.
With such an approach, the persistence manager must not be obtained from
the factory until the J2EE transaction has been commenced.

That’s all I wish to say regarding servlets. We now look briefly at the same
example rendered as a JSP.

11.10.2 JavaServer Pages

In order to handle the JNDI lookup of the persistence manager factory, the JSP uses a
bean called PMFHolder. This simple bean looks up the persistence manager factory
according to the given JNDI name and then exposes a getPersistenceManager ()
method. The source code for the bean is shown below.

PMFHolder.java

package com.ogilviepartners.jdobook.op.j2ee;

import javax.jdo.*;
import javax.naming.*;

193

194 J2EE integration

public class PMFHolder

{
PersistenceManagerFactory pmf;
public void setJNDIName(String jndiName) {
Context ic = new InitialContext();
Context env = ic.lookup("java:comp/env");
pmf = (PersistenceManagerFactory)
env. lookup (jndiName) ;
}
public synchronized PersistenceManager
getPersistenceManager() {
return pmf.getPersistenceManager();
}
}

Here then is the JSP page itself.

BusinessPartnerList.jsp

<%@ page import javax.jdo.* %>
<%@ page import com.ogilviepartners.jdobook.op.Product %>

<%! PersistenceManagerFactory pmf %>

<jsp:useBean id="OrderProcessingPMFHolder" scope="application"
class="com.ogilviepartners.jdobook.op.j2ee.PMFHolder">
<% OrderProcessingPMFHolder.setJNDIName
("OrderProcessingPMF"); %>
</jsp:useBean>

<HTML><HEAD><TITLE>Business Partners</TITLE></HEAD>
<BODY>
<H1>List of Business Partners</H1>
<TABLE>
<TR><TH>ID</TH><TH>Name</TH><TH>Address</TH><TH>Type</TH></TR>
<%
PersistenceManager pm = OrderProcessingPMFHolder.
getPersistenceManager () ;
Transaction t = pm.currentTransaction();
t.begin();
Extent e = pm.getExtent (BusinessPartner.class, true);
Iterator i = e.iterator();
while (i.hasNext) {

Bootstrapping JDO in the managed environment

BusinessPartner bp = 1i.next();

%>
<TR>
<TD><%= bp.getPartnerlId() %></TD>
<TD><%= bp.getName() %></TD>
<TD><%= bp.getAddress() %></TD>
<TD><%= bp.class.getName() %></TD>
</TR>
<%

}

e.close(i);

t.commit();

pm.close();
%>

</BODY>

Note that a “proper” JSP should contain as little Java code as possible, instead
delegating to helper classes through custom tag libraries. The above example
ignores this precept for the sake of brevity.

It is possible that future versions of JDO will include a library of JSP tags
specifically for persistence management.

11.11 Bootstrapping JDO in the managed environment

All of our discussions in this chapter have presumed that an appropriately con-
figured PersistenceManagerFactory instance has already been instantiated
and registered with the naming service, ready to be looked up through JNDI.
But how is this achieved?

Unfortunately there is no standard method. If JDO were to be accepted as
part of the next release of J2EE, provision would be made for this bootstrapping
through the J2EE configuration file resource.properties.

In the interim, however, the mechanics of registering factories on applica-
tion server startup must be addressed in conjunction with advice and
documentation from the vendors of your chosen application server and JDO
implementation products.

What’s next?

In the next chapter I present a survey of the non-reference JDO implementations
available as at March 2002.

195

JDO implementations

ur examination of JDO 1.0 is now complete. This penultimate chapter
gives the reader an introduction to some of the most important JDO
Implementations and the companies behind them.

For each vendor there is a page or two about the company, their products,
and the extent of their support for various data stores and application servers.
Some of the products listed are object-relational mapping implementations
which work with an underlying relational database. Others are themselves
fully fledged object databases for which a JDO interface is provided.

Table 12.1 Optional feature support, as at March 2002

Product Fast JRelay Kodo IntelliBO
Objects JDO

Version 2.0 2.1 2.2 25 3.0
Status A

@
>
3
)
5
(@)
>
Y
)
=]
(@)
>
(@)
Y
)
]

TransientTransactional
NontransactionalRead
NontransactionalWrite

RetainValues
RestoreValues
Optimistic
Applicationldentity

Datastoreldentity
Nondurableldentity
ArrayList

HashMap

Hashtable
LinkedList
TreeMap
TreeSet

Vector
Map
List
Array

NullCollection
ChangeApplicationldentity
JDOQL

RS SCSKN|SSSY|SNx¥S [S|~
RES|SSSKY|SSSY|SNx¥S|[¥SS<K[KKXx
AN JIE AN S UERE AN IR AN 2 UE N NE 2 U SN
RN XSSS|SSSY|SNE¥S[SRN%¥S[KKN
AN 22 S N N N0 N I N N N N I N N N N I N N O N I N N N
AR 25 NI N N N N I U U N N I R N 20 N I N NR 2 N I N N
SRS RSSY ||| |KRKN

196

12

JDO implementations 197

Table 12.1(Continued) Optional feature support, as at March 2002

ChangeApplicationldentity
JDOQL

Product LiDO Open Orient PE.:J
Fusion
Version 1.2 1.3 1.1 2.X 2.0 2.1 2.0 3.0
Status GA Plan GA Plan GA Plan GA Plan
TransientTransactional v 4 ® ("4 % v % ®
NontransactionalRead v 4 ® v v v v v
NontransactionalWrite v 4 ® 4 4 v ® v
RetainValues v v ® v ® (4 v (%4
RestoreValues v 4 ® ® ® v ® x
Optimistic ® v ® v ® v v v
Applicationldentity v v v 4 ® ® v v
Datastoreldentity v 4 v v 4 v (4 (4
Nondurableldentity v v x x x 4 3 4
ArrayList v v v (4 v 4 (4 4
HashMap v v ® v 4 v v v
Hashtable ® v ® v v v v 4
LinkedList ® 4 "4 (4 v v ® v
TreeMap ® 4 ® ® 4 v ® v
TreeSet ® v ® ® 4 v ® v
Vector (4 v v v v (4 v (4
Map v v ® v v v v v
List v v v v 4 v v v
Array 4 v ® v 4 v v v
NullCollection ("4 4 "4 v % % v v
v v ® ® ® ® v v
v v v v ® v v v

198 JDO implementations

In addition to the textual information, each vendor was invited to supply a
list of supported features for their GA release (general availability as at March
2002), and for their next planned release if they wished. Most vendors sup-
plied this information, which is collated in Table 12.1. Since this information
was sourced, two further JDO implementations have been announced. These
are “JDOGenie” and “FrontierSuite for JDO”, each of which is discussed
during this chapter but does not feature in the comparison table.

This information is intended to raise awareness of the various companies
and products that are active in the JDO community. It is interesting to
note that, with JDO only recently finalized, many vendors already have
commercial products that will shortly implement almost the entire specifica-
tion. This is in stark contrast to previous efforts by the ODMG to standardize
access to object databases, for which the vendors of the day provided only
partial support.

Finally, please note that a number of factors must be borne in mind
in choosing an implementation. Even though a vendor may claim that
their implementation supports every optional feature in the specification,
this does not mean that the features are efficiently implemented. Non-
functional characteristics must also be considered, including, but not limited
to, factors such as performance, scalability, support, ancillary services (e.g.
training), and cost.

12.1 endin™ by Versant

Contact addresses: www . versant.com and sales@versant.com
enJin™ is a trademark of Versant Corporation.

12.1.1 About Versant

Versant Corporation (NASDAQ: VSNT) has led the industry in highly scalable,
reliable object management solutions for complex, enterprise-level systems
since its founding in 1988.

The company’s ODBMS serves as the core database for fraud detection, yield
management, real-time data collection and analysis, operation support systems,
and other large-scale applications in the telecommunications, financial services,
transportation, and defense industries.

12.1.2 About endin

Versant enJin speeds the development and performance of applications requir-
ing transactional storage, distribution, and caching of objects from EJBs and
JSPs/Servlets in the middle tier.

FastObject™ by Poet Software

12.1.3 Supported data stores
Versant ODBMS.

12.1.4 Supported application servers
The following application servers are supported:

e IBM WebSphere
e BEA WebLogic.

12.2 FastObjects™ by Poet Software

Contact addresses: www . fastobjects.comand sales@fastobjects.com
FastObjects™ is a trademark of Poet Software Corporation.

12.2.1 About Poet software

Poet Software provide embedded database components for smart devices and
turnkey software applications. FastObjects embedded databases improve the
reliability and performance of sophisticated data-intensive applications. Unlike
general-purpose data engines, FastObjects is built to meet the specific needs of
OEMs with features that improve ease of operation and simplify lifecycle man-
agement of durable long-lived products.

12.2.2 About FastObjects
All FastObjects embedded databases share the following features:

easily accepts any data structure;

rapid data storage, search, and retrieval for Java;
ensures consistency of data;

fully automated maintenance;

support for field-upgradable products;

compliant with JDO standard.

12.2.3 Product family

Each member of the FastObjects product family augments the standard features
as follows.

12.2.3.1 FastObjects j1
j1 is a JDO-compliant pure Java community edition object database.

e Free for non-commercial development.

199

200 JDO implementations

12.2.3.2 FastObjects j2
j2 Is a JDO-compliant pure Java embedded object database for smart devices.

@ Concurrent sharing of data for multithreaded applications.
® Pure Java.
e Small footprint — 450KB.

e Fault tolerance for mission-critical applications.

12.2.3.3 FastObjects e7

e7 is a J]DO-compliant embedded object database for large-scale computer-
controlled equipment.

@ Secure sharing of data between processes.

e User authorization.

e Security add-on for data encryption.

12.2.3.4 FastObjects t7
t7 is a JDO-compliant multi-tier object database for large distributed applications.

Secure sharing of data between hosts.
User authorization.

Client-side caching of objects.
Pre-fetching of object graphs.

Security add-on for data encryption.

Fault-tolerance add-on for mission-critical applications.

12.2.4 Supported data stores

FastObjects databases are specifically built to work in non-managed “embedded”
environments. Typical FastObjects applications are turnkey software applications
and computer-controlled equipment.

12.2.5 Supported application servers

FastObjects t7 is a multi-tiered version that works within J2EE application
servers. Example application servers include JBoss and Borland AppServer.

FrontierSuite for JDO™ by ObjectFrontier

12.3 FrontierSuite for JDO™ by ObjectFrontier

Contact addresses: www.0ObjectFrontier.com and sales@ObjectFrontier.com
FrontierSuite for JDO™ is a trademark of ObjectFrontier Inc.

12.3.1 About ObjectFrontier

ObjectFrontier is a provider of component and service oriented enterprise soft-
ware. ObjectFrontier’s products focus on transparent persistence for Java objects
and have been providing persistence solutions for the J2EE and J2SE platforms
for the past several years. FrontierSuite, the company’s flagship product, is a
powerful JCA compliant persistence engine and a Model Driven Architecture
(MDA) based development environment for designing, developing, and deploy-
ing enterprise applications. FrontierSuite has a mature persistence technology
for both the J2SE and J2EE (both EJB 1. 1 and EJB 2. 0) environments.

ObjectFrontier brings the mature persistence technology and the experience
gained in providing persistence in various platforms into FrontierSuite for JDO,
claiming it to be the first product with a comprehensive development environ-
ment for building JDO applications.

12.3.2 About FrontierSuite for JDO

FrontierSuite for JDO provides four modules for building and running JDO
applications using different approaches.

12.3.3 Product Family
12.3.3.1 FrontierSuite for JDO (Forward Engineering)

In this approach, building a new JDO application from scratch is supported.
The input for this approach is a UML based project model for persistent objects.
The development environment provides tools for defining or importing
UML object models. It then automates the entire process of generating
PersistenceCapable classes from the object model through Frontier Builder, a
code generator tool. Finally, mapping of the classes to an underlying
RDBMS scheme is accomplished through Frontier Fusion, an object-relational
mapping tool.

12.3.3.2 Frontier ReModeler for JDO (Reverse Engineering)

This approach to JDO application building provides a migration path for enter-
prises moving to the JDO standards whilst re-using an existing database

201

202 JDO implementations

schema. Enterprises can use this approach for migration to a JDO layer above
the existing enterprise data layer for easy maintenance and robustness. The
schema of the existing enterprise database is captured and an object model cre-
ated automatically by Frontier ReModeler for JDO. From this object model, a
JDO application that uses the existing database schema is created.

12.3.3.3 Frontier DeployDirect for JDO (Class Enhancement)

Normal non-persistent Java classes can be made persistence-capable through
Frontier DeployDirect for JDO, which includes a JDO enhancer and a mapping
tool for mapping the enhanced classes to a relational database schema. The
mapping process is totally automated and GUI based and allows much flexibil-
ity in terms of fine-tuning the default mapping schema.

12.3.3.4 Frontier DeployDirect for JDO (Bridge Pattern)

Java Applications that use a database schema and that want to migrate to the
JDO standard, while retaining the existing Java Code and the database schema,
can use the Bridge pattern supported by Frontier DeployDirect for JDO. This
approach provides a bridge between legacy applications and JDO standards by
enhancing the existing Java classes to become persistence-capable and mapping
these enhanced classes to the existing database schema through a GUI inter-
face. This provides maximum reusability, wherein both the existing Java Code
and the database schema are migrated to the JDO standard and become part of
the new JDO application.

12.3.4 Supported data stores
FrontierSuite for JDO targets JDBC compliant relational databases, specifically:

Oracle

MS SQL Server
DB2
PointBase
Cloudscape
MS Access

12.3.5 Supported application servers

FrontierSuite for JDO currently supports the following J2EE application servers:

e Weblogic
e WebSphere

IntelliBO™ by Signsoft

Orbix E2A J2EE Server
Jboss

Oracle 9i

HP AS

Orion AS

12.4 IntelliBO™ by Signsoft

Contact addresses: www.signsoft.comand sales@signsoft.com
IntelliBO™ is a trademark of Signsoft GmbH.

12.4.1 About Signsoft

Signsoft offers software solutions and services for companies needing highly
scalable and high-performance applications. The company’s products offer high
levels of integration, reliability and flexibility, and its aim is to ease the devel-
opment and integration of complex software applications. Including the
capability to integrate dynamic adoptions to applications. Signsoft makes prod-
ucts that support the growing requirements of scalability, performance, and
availability of an IT infrastructure.

Signsoft has a solid, long-term experience in the field of software develop-
ment. The outstanding knowledge of its developers makes Signsoft one of the
foremost software developers. Its staff are at the front of new technologies, and
have published a number of articles in well-known developer magazines. Its
developers often give keynote speeches at important conferences and meetings,
and have close contact with other experts worldwide. All this supports the
development of high-quality and reliable software products.

12.4.2 About IntelliBO

Signsoft IntelliBO is a flexible and easy-to-use JDO implementation. It supports
all the required and optional features of JDO, and is highly reliable. It has been
tested in many environments and supports all JDBC-compliant databases.
Many disparate databases can be used simultaneously. For a large number of
databases there are special JDBC-support drivers which enhance the capabilities
of the standard JDBC-drivers.

IntelliBO supports complex objects models and database schemas. It opti-
mizes the queries sent to the database and supports mixed JDOQL/SQL queries,
which developers can augment by defining their own functions and operators.
Beside this, IntelliBO is able to handle all kinds of mappings to existing data-
base schemas.

For improved performance, an extensive caching system is used and large
result sets are loaded incrementally.

203

204 JDO implementations

IntelliBO can be integrated seamlessly into J2EE application server environ-
ments. Additional tools that support development are provided, including:
e integrated development environment (IDE);
e Swing components;
@ JBuilder integration;
e automatic creation of persistence-capable classes from tables;
e verification of persistence descriptors.

Signsoft runs a competent support team for its clients and provides help
promptly in every phase of a client project.

12.4.3 Supported data stores
JDBC-compliant resources, including specific support for:

JDBC/ODBC Bridge
Oracle

Sybase

InterBase
InstantDB
Informix

IBM DB2

SAPDB.

12.4.4 Supported application servers

All J2EE 1.3-compliant application servers.

12.5 JDO Genie™ by Hemisphere Technologies

Contact addresses: www . hemtech.co.za and info@hemtech.co.za
JDO Genie™ is a trademark of Hemisphere Technologies.

12.5.1 About Hemisphere Technologies

Hemisphere Technologies is an independent software house specializing in Java
and related technologies. The company has completed several Java projects using
its in house Object/Relational mapping technology. JDO Genie incorporates this
experience, accrued through real life projects.

JRelay™ by Object Industries 205

12.5.2 About JDO Genie

JDO Genie is a JDO implementation for relational databases focusing on perfor-
mance, flexible mapping, optimistic transactions and distributed persistence
managers.

JDO Genie supports access to multiple physical data stores through a single
persistence manager with one object model. Persistence managers may be in
different virtual machines to the JDO server and communicate using RMI or
SOAP. This makes JDO Genie ideal for rich client deployment, as clients no
longer have to make session bean calls to access the object model.

JDO Genie supports many extensions for mapping and performance, includ-
ing multiple fetch groups, flexible caching options and reference navigation
using joins. All of these options are easily declared through the provided meta-
data editing tool.

12.5.3 Supported data stores
JDO Genie targets JDBC -compliant databases. Specifically, the following:

Oracle
Sybase

Postgres

)
°
o Informix
°
® Microsoft SQL Server

IBM DB2 will be supported in the next release, with support for XML data
stores and LDAP anticipated in a subsequent release.

12.5.4 Supported application servers

JDO Genie uses JCA for operation in the managed environment. The following
application servers are currently supported

® JBoss
e WebLogic

Support for Websphere will be provided soon.

12.6 JRelay™ by Object Industries

Contact addresses: www.objectindustries.comand sales@objectindustries.com
JRelay™ is a trademark of Object Industries GmbH.

12.6.1 About Object Industries

Object Industries provides highly optimized and sophisticated tools to speed up
Java software development. The company’s special competence lies in the field

206 JDO implementations

of persistence management, where the object-relational JDO persistence layer
JRelay is positioned.

12.6.2 About JRelay

JRelay is a JDO implementation for relational database systems. It is based on
the JDBC-API and therefore can be used with any RDBMS supporting that stan-
dard. JRelay is delivered with a JDO-compliant source-code enhancer and a
powerful graphical mapping tool, the JRelay Workbench.

The JRelay Workbench supports flexible roundtrip engineering when map-
ping classes to database tables. This includes the generation of complete
database models in one direction, and the mapping of existing tables to new or
modified classes in the other direction.

The JRelay runtime is designed for performance optimization.

12.6.3 Supported data stores

JDBC-compliant resources.

12.6.4 Supported application servers
J2EE application server support is planned for JRelay 2.1.

12.7 Kodo JDO™ by SolarMetric

Contact addresses: www.solarmetric.comand sales@solarmetric.com
Kodo JDO™ js a trademark of SolarMetric Inc.

12.7.1 About SolarMetric

SolarMetric is a global company with corporate headquarters in Washington,
D.C. A strong team of Java developers and experienced business leaders
founded SolarMetric in 2001. The core technology team has been together since
1997, working on enterprise web applications and networking products for pre-
vious employers.

SolarMetric creates enterprise development products leveraging Sun’s Java
development language. SolarMetric’s products are targeted towards enabling
application developers to focus on their application logic rather than on
deployment-specific details. SolarMetric’s client base represents all major indus-
tries and includes customers in the European Union, Switzerland, Canada,
Australia, Hong Kong, and the United States.

Kodo JDO™ by SolarMetric 207

12.7.2 About Kodo JDO

Kodo JDO is SolarMetric’s implementation of Sun’s JDO specification for trans-
parent persistence. Kodo JDO provides access to relational databases through
the JDO specification, enabling Java developers to use existing relational data-
base technology from Java without needing to know SQL or be an expert in
relational database design. It can be used with existing database schemas, or
can automatically generate its own schema.

12.7.3 Product family

There are two editions of Kodo JDO.

12.7.3.1 Kodo JDO Standard Edition

The Standard Edition is a complete solution for developers who need a fully
functional JDO solution but aren’t interested in using JDO in concert with a
J2EE application server.

12.7.3.2 Kodo JDO Enterprise Edition

The Enterprise Edition is a fully spec-compliant JDO implementation. It is an
appropriate choice for applications that will be run in a J2EE application server,
such as BEA’s WebLogic, IBM’s WebSphere, or the open source JBoss. It facili-
tates the integration of JDO operations into globally managed transactions,
letting all JDO transactional operations be governed by the application server.

12.7.4 Supported data stores

Kodo JDO targets JDBC-compliant relational databases. The following are cur-
rently supported:

IBM DB2 UDB 7.2

InstantDB 3.26

Microsoft SQLServer 8.00

MySQL 3.23.43

Sybase ASE 12.5

Oracle 8.1.7

PostgresSQL 6.5

Hypersonic SQL.

Support for other databases not on this list can easily be added to Kodo JDO,
either by a third party or by SolarMetric’s consulting team.

208 JDO implementations

12.7.5 Supported application servers
Kodo JDO currently supports the following application servers:

e BEA WebLogic
® JBoss

12.8 LiDO™ by LIBeLIS

Contact addresses: www. 1ibelis.comand sales@libelis.com
LiDO™ is a trademark of LIBeLlIS.

12.8.1 About LIBeLIS

LIBeLIS, which stands for Liberty for Large Information Systems, delivers Java tech-
nologies focussed on highly scalable transactional systems. LIBeLIS is a member of
the JDO Expert Group and a board member of the ObjectWeb consortium.

12.8.2 About LiDO

LiDO is the company’s flagship product. It is a set of universal JDO drivers,
focussed primarily on very high performance, and targetting production systems
with tough quality of service requirements and heterogeneous data sources.

LiDO for RDBMS supports the reverse engineering of existing databases and
automatic creation of new data models. LiDO implements all mandatory and
optional lifecycle JDO states. It supports all JDK collections, including vectors,
lists, maps, sets, arrays, and all attribute types including interface, object,
abstract classes, second-class objects, and embedded objects.

LiDO proposes various strategies to map inheritance (flat and vertical
models) and relationships (independent relation table, reverse foreign key, etc.).
For performance reasons, LiDO can use a configurable pool of prepared state-
ments and employ statement batching. LiDO supports the mapping of SELECT
statements and the mapping of stored procedures. UPDATE statements only
update modified attributes, and there it is possible to control how result sets are
loaded into memory (one by one, using cursor size or complete). A trace mode
allows developers to monitor LiDO’s interaction with the server by viewing SQL
statements that are issued, and so on.

12.8.3 Vendor-specific persistence descriptor extensions

LiDO supports some vendor extensions to indicate how inheritance, dates, and
collections are mapped, and which indices to create. LiDO provides a smart and
configurable naming feature to deal with table/column naming limitations.

LiDO™ by LIBeLIS

12.8.4 Product family
12.8.4.1 LiDO Professional Edition

The Professional Edition is for RDBMS, Versant ODBMS and binary files (light-
weight embedded database). Supports reverse mapping of existing databases.
Includes NAVILIS, the GUI mapping tool, a JSP tag library, and JCA/J2EE support.

12.8.4.2 LiDO Standard Edition

The Standard Edition is for binary files and open source database management
systems (DBMS) only. There is no support for JCA/J2EE and the mapping of
existing databases.

12.8.4.3 LiDO Community Edition

The Community Edition is for open source DBMS only, but is free for non-com-
mercial or education use.

12.8.4.4 NAVILIS
NAVILIS is a LiDO-based “business model” browser.

12.8.5 Supported data stores
LiDO currently supports most commercial and open source RDBMS products:

Oracle

SQL Server
DB2 (UDB)
Sybase
Informix
Cloudscape
PointBase
InstantDB
MySQL
PostgresSQL
InterBase
HyperSonicSQL.

Used in conjunction with its own binary file storage engine, LiDO provides a
fully JDO-compliant, efficient, low-memory footprint persistence system for
embedded systems.

209

210 JDO implementations

The ODBMS support provides Versant users with standard APIs such as JDO,
JTA, and JCA, making their applications fully portable. It is also much more effi-
cient and complete than the original JVI/VEC product.

JCA connectors (CCI mapping) and support for data stores comprising XML
files are being engineered. Any other data source can be supported quickly
upon request.

12.8.6 Supported application servers
LiDO has been tested with:

e WebSphere

® WebLogic

e Borland AS

® JBoss

® JOnAS (ObjectWeb).

Being fully JCA compliant, it works with any other JCA-enabled J2EE applica-
tion server.

12.9 OpenFusion JDO™ by PrismTechnologies

Contact addresses: www. prismtechnologies.com and
info@prismtechnologies.com
OpenFusion JDO™ is a trademark of Prism Technologies Ltd.

12.9.1 About Prism Technologies

Founded in 1992, PrismTech is a privately held company headquartered in the
UK, with US and European operations. PrismTech is a leader in the provision of
standards-based middleware to an impressive list of multinational companies
worldwide, operating primarily in the telecommunications, defense, financial
services, and manufacturing sectors.

PrismTech develops and markets the OpenFusion range of middleware soft-
ware products that connect and integrate the leading standards-based
distributed computing platform technologies: J2EE, CORBA, and web services.
PrismTech’s reputation for delivering high-quality, reliable, scalable, and highly-
performant software is reflected in its worldclass customer base.

PrismTech’s involvement with JDO began in late 2000 when the company
was investigating technologies that could unify the disparate persistence mech-
anisms then used in its products. It identified JDO as the best approach.
PrismTech has significant expertise in object-relational mapping, dating back to
the early days of the company, and developed through collaborations with

OpenFusion JDO™ by Prism Technologies 211

companies such as Oracle and Sybase, implementing complex data models and
resolving the issues related to their use.

PrismTech has strongly supported the development of the JDO standard and
members of its JDO development team, led by Steve Johnson, have been active
participants of the JDO Expert Group.

12.9.2 About OpenFusion JDO

OpenFusion JDO is PrismTech’s implementation of the JDO specification. It is
an implementation for relational data stores only. OpenFusion JDO is written
in Java and has been tested on Solaris 8, Linux, Windows NT/4 and Windows
2000. It is also usable on a wide range of Java platforms.

OpenFusion JDO supports the mandatory features of the JDO specification as
well as some PrismTech additional functionality. The principal features of
OpenFusion JDO are:

@ Automatic creation of mappings from Java Objects to relational databases:
— a default mapping style of one table per inheritance hierarchy is provided;
— name and type mappings exposed in XML descriptors;

- a vendor extension to the persistence descriptor enables indexes for spe-
cific fields to be generated.

e Support for both datastore and application identity.
e Configurable deletion semantics:

— a PrismTech enhancement that allows developers to specify the behavior
of an application when deleting an object;

— supported options are nullify, no-action and exception.
e Simple command line interface:
- simplifies use
— easily integrated with IDEs;
— Apache 'ant’ task provided to simplify build management.

e Aligned with J2EE Connector Architecture
- integrates with compliant application servers;

— enables portable application code across multiple enterprise information
server types.

® Robust implementation.

12.9.3 Supported data stores.
The following data stores are supported:

e HSQL, Version 1.61

212

JDO implementations

IBM DB2, Version 7.1

Informix Dynamic Server 2000, Version 9.20
Oracle 8i, Version 8.1.x

Microsoft SQL Server 2000, Version 8.00.194
MySQL, Version 3.23.36

Sybase ASE, Version 11.9.2

Type mappings are exposed in an XML file, enabling users to add mappings for
additional databases if required.

12.9.4 Supported application servers

All J2EE 1.3-compliant application servers. Specific details are available upon request.

12.10 Orient™ by Orient Technologies

Contact addresses: www.orientechnology.com and
sales@orientechnology.com
Orient™ is a trademark of Orient Technologies.

12.10.1 About Orient Technologies

Orient Technologies provides solutions based on its own fast Object Database
engine. Orient was one of the first products to support the ODMG 3.0 standard
for ODBMS. A partially JDO-compliant implementation of the Orient ODBMS
was first made available in mid-2001.

Mr Luca Garulli, project leader for the Orient ODBMS products, is a member
of the JDO Expert Group.

12.10.2 About Orient

Orient is a 100% pure ODBMS. It supports worldwide standards as Sun
JDO 1.0, ODMG 3.0, and SQL. Orient is a pure object database and was built
upon object oriented concepts rather than the relational model (tables,
columns, and rows).

Its JDO implementation treats Java objects without conversion since Orient
manages objects directly, instead of mapping them to table rows as would be
the case for relational data stores. As a JDO implementation, Orient delivers
high performance at low cost, when compared with alternative solutions com-
prising an object-relational JDO Implementation and a relational database.

PE:J™ The Productivity Environment™ for Java by HYWY Software

12.10.3 Product family
12.10.3.1 Orient ODBMS Just Edition

The Just Edition works with a very small footprint (around 250Kb) and is per-
fect for embedded devices.

12.10.3.2 Orient ODBMS Enterprise Edition

The Enterprise Edition supports complex architectures with thousands of clients
in a distributed environment, with many enterprise features such as load-
balancing, fault-tolerance, and data replication.

12.10.4 Supported data stores
Orient ODBMS.

12.10.5 Supported application servers

Orient integrates with any application server that runs on JDK 1.3 or above, e.g.
BEA WebLogic Server, IBM WebSphere, JBoss, etc.

12.11 PE:J™ The Productivity Environment™ for
Java by HYWY Software

Contact addresses: www . hywy .com and sales@hywy.com
PE:J™ and Productivity Environment™ are trademarks of HYWY Software
Corporation.

12.11.1 About HYWY Software

HYWY Software Corporation is a developer of Java productivity software.
HYWY'’s products significantly reduce the complexity, cost, risk, and time-to-
market of Java development. HYWY is a Sun Developer Connection
Commercial Developer, a Forte™ for Java Framework Extension Partner, and an
IBM PartnerWorld® member.

12.11.2 About PE:J

The PE:J Productivity Environment for Java is the first environment to deliver an
integrated, standards-based, platform-independent product solution to enhance
and automate the complete Java technology productivity lifecycle; from the con-
ceptualization of a business idea to object model to scripted Java code.

213

214 JDO implementations

Much more than a JDO implementation, PE:J] boosts developer/analyst pro-
ductivity with:
® code, schema and JSP application generation from UML specifications (for-
ward engineering);
e UML diagram generation from code/schema (reverse engineering);
e intelligent merge to protect user code (roundtrip engineering);
e sample data and test harness generation.
With PE:J, developers can achieve an easy-to-extend, working, enterprise,
object-relational (JDO), deployed JSP application from a diagram in several

minutes. A free version of PE:J, limited only by a maximum number of user
classes, is available for download from the HYWY website.

12.11.3 Product family
12.11.3.1 PE:J Developer

PE:] Developer Edition significantly lowers costs and time-to-market by boost-
ing the productivity of existing developers and increasing the returns on prior
investments in training and software, including:

e RDBMS servers

e J2EE application servers

e UML modeling tools

® Java IDEs.

PE:] increases functional accuracy by enabling end users and analyst/developers
to participate in joint-application design sessions where they can quickly
model, generate, try out, and refine an industrial-strength (J2EE) application,
generated from UML specifications in minutes. PE:J features a very intuitive and
easy-to-use interface that even Java novices can master quickly. Built on stan-

dards, and offering reverse engineering of existing systems, PE:]J improves code
quality and re-use of both new and existing systems.

12.11.3.2 PE:J Systems Engineering Edition

Please see the HYWY website for forthcoming details.

12.11.4 Supported data stores

PE:] supports all JDBC-compliant relational databases and is currently certified
against:

PE:J™ The Productivity Environment™ for Java by HYWY Software 215

@ Oracle 8i

@ Oracle 9i.

12.11.5 Supported application servers

PE:] supports all J2EE 1.3-compliant application servers and is currently certi-
fied against BEA WebLogic 6.1.

Epilogue

13.1 Beyond JDO 1.0

The first 11 chapters discussed JDO 1.0 in detail. Chapter 12 illustrated how
comprehensively the specification is being adopted and implemented by the vari-
ous JDO vendors. In this final chapter I wish to discuss a few areas where further
refinement and extension of JDO can be anticipated in the future.

If you wish to contribute further ideas for enhancements or new features, an
informal list is maintained by the moderators of the JavaDataObijects discussion
forum at Yahoo!Groups (see 13.2.2).

13.1.1 Sequences

Sequence objects have been provided by relational database implementations
for many years. They provide mechanisms for obtaining a sequence of num-
bers, and are often used to populate primary key fields in top-level domain
objects, e.g. order numbers, invoice numbers, etc. (Some existing RDBMS-based
applications use sequences for the construction of internal Object IDs. This
functionality is provided in JDO by the use of datastore identity.)

JDO does not directly support sequence objects, but positions this as an issue
to be solved by the domain object model. In the short term, JDO vendors may
provide proprietary extensions by which sequence objects internal to the data
store can be accessed. However, it is an area that is likely to be considered for
specification as part of a future JDO release.

Conceptually, sequences can be used in two ways. Used transactionally, a
sequence is associated with the active transaction each time a new value is
requested. This ensures that, in the case of transaction rollback, the sequence
object will not actually have been altered. Such assurance is imperative when
assigning numbers such as check numbers or invoice numbers, where auditors
would not accept “missing” entries in the sequence. This usage does, however,
reduce overall concurrency since access to each individual sequence represents
a potential bottleneck in the application.

Used non-transactionally, sequences do not become associated with transac-
tions. When invoked they yield the next entry in the sequence, but are not
affected by subsequent rollback events. This results in significantly higher con-
currency, but is only appropriate when the occasional “hole” in the sequence is
acceptable (e.g. for delivery numbers, which are not audited in the same way as
invoice or check numbers).

216

1

13.1.2 Clarification of extent

The JDO 1.0 API provides for the construction of extents that include or
exclude subclasses. The construction of extents that do not include subclasses is
intended to facilitate performance improvements within those JDO implemen-
tations that map to underlying relational databases. By knowing that subclasses
are to be excluded, the implementation can reduce the number of table joins in
SQL queries based on that extent.

However, from an object oriented perspective, the concept of an extent that
does not include subclasses is nonsensical. By definition, any instance of a sub-
class is ascribed the types of its superclass, and the Java instanceof operator
will evaluate to true for each of them. Indeed, through its extensive support
for polymorphism, Java itself does not recognize the notion of “an instance of
this class but not any of its subclasses.”

In the same way that the implementation of extents without subclasses can
yield a performance improvement for RDBMS-based implementations, it can
cause significant complications for ODBMS-based implementations.

Finally, any application developer who employs extents without subclasses is
making the assumption, perhaps unwisely, that there will never be any sub-
classes. This goes against the tenets of object oriented design.

I believe that the notion of an extent without subclasses should be made a
hint to the implementation. The implementation would be at liberty to include
any instances of the extent’s candidate class (even subclasses thereof). However,
if it is beneficial in performance terms for the implementation to exclude sub-
classes, then it may do so. As such, extents without subclasses should be used
only when it is known that no subclasses exist, and it is necessary to achieve
the performance gains offered by a particular relational implementation.

This would maintain the object oriented “correctness” of JDO and give
RDBMS-based implementations every chance of improving performance, whilst
not burdening ODBMS-based implementations with unnecessary complications.

13.1.3 JDOQL

JDOQL holds the promise of being an efficient, vendor-neutral query language
based on familiar Java syntax. Its restriction that only persistent fields may be
accessed enables implementations to execute queries quickly. This is in contrast to
“true” object query languages that require the instantiation of all candidate
instances, many of which will fail the filter criteria before the filter can be evaluated.

However, the JDOQL we have with JDO 1.0 is just a beginning, and I list
below some of the areas where enhancements and new features can be expected.

13.1.3.1 Projection

Presently JDOQL is only capable of returning a subset of the candidate collec-
tion or extent. If you give a query a collection of orders, it will return to you a
subset of that collection — you still get just orders.

Beyond JDO 1.0 217

218 Epilogue

Imagine a situation where you have a collection of Orders and wish to iden-
tify each Product for which more than a designated quantity was ordered on a
single OrderLine. Using JDOQL you can filter the original collection of orders
to only those that contain individual OrderLines with more than the desig-
nated quantity. However, you then have to iterate through the returned
collection of Orders, and each Orders collection of OrderLines, to program-
matically locate the individual Product instances.

This would be easier if a JDOQL query could take one candidate class (Order)
and return a collection of a different class (Product) according to the filter crite-
ria. Such functionality, referred to as projection, is expected in a future release.

13.1.3.2 Aggregates

JDOQL does not define any aggregate functions (e.g. maximum, count, average,
etc.). Queries to determine the maximum value of a persistent field, such as an
order number, can be written to return the entire candidate collection in an
appropriate sequence (e.g. by orderNumber descending). However, the defini-
tion of a maximum aggregate function would be far more flexible. Aggregates
are expected in a future release.

13.1.3.3 Additional filter operators

It is also likely that the filter operators will be complemented in due course
with an operator equivalent to the Java keyword instanceof. This could be
used to restrict the result of a query to certain subbranches of inheritance or
implementation hierarchies.

13.1.3.4 String-based query definition

It is already possible to define a query as a set of strings, as illustrated by the
Dynamic Query Window presented in Chapter 8. However, there is no standard
for a single string grammar encapsulating all query elements.

If such a grammar is defined, JDO query monitors could be written that
would accept, compile, and execute queries in this form. For example, the
query shown in the Dynamic Query Window in Figure 8.2 (page 144) might be
typed into a JDO query monitor as:

EXECUTE-NEW-QUERY

CANDIDATE com.ogilviepartners.jdobook.op.BusinessPartner
IMPORTS com.ogilviepartners.jdobook.op.*

VARIABLES Order o

PARAMETERS Double searchValue

FILTER customer.orders.contains(o) && o.totalValue >
searchValue

ORDERING name ascending PARAMETER-VALUES 1000;

Or perhaps it would be useful to define a query and execute it in separate steps.
This might even facilitate the chaining of query executions, illustrated below
with a pipe | operator.

DEFINE-QUERY q1

CANDIDATE com.ogilviepartners.jdobook.op.BusinessPartner

IMPORTS com.ogilviepartners.jdobook.op.*

VARIABLES Order o

PARAMETERS Double searchValue

FILTER customer.orders.contains(o) && o.totalValue >
searchValue

ORDERING name ascending;

EXECUTE-QUERY q1 PARAMETER-VALUES 1000 | g2
PARAMETER-VALUES ... ;

Please note that the above is not supported, or even suggested syntax, but
should be sufficient to give the reader an idea of the possibilities for a standard
string-based JDOQL representation.

13.1.3.5 Query object model

I have already pointed out that SQL suffers from loose typing and deferred compi-
lation, which makes it easy to compile and deploy applications with syntactically
incorrect queries. The current form of JDOQL reduces this risk significantly, since
all mapping between JDO instances and the underlying data store is handled
internally. However, it is still possible to write a query in JDOQL that will not exe-
cute correctly, but which will be compiled by the Java compiler. This is due to the
presence of string elements within a programmatic query definition.

JDOQL will not have its current string elements (variable declaration, filter,
ordering declaration, parameter declaration, etc.) removed, as their presence
enables a wide variety of dynamic applications. However, it is likely that a
future specification of JDOQL will provide the classes and methods necessary to
describe a query in a purely programmatic manner, with no reliance on string
data. This is known as a query object model (QOM). In the interim, vendors
will be quick to provide tools for the generation and verification of queries and
query strings in JDOQL.

13.1.4 Pre-fetch patterns

JDO currently defines the default fetch group. This is a grouping of fields
which, in addition to primary key fields, will be retrieved from the data store
when the instance is first read. However, it has been argued successfully that
this simplistic treatment is inadequate in certain scenarios. It is possible that
work in this area will provide application-level functionality for influencing the
data that is initially retrieved for each instance. This functionality could then

Beyond JDO 1.0 219

220 Epilogue

be employed on an as-required basis, although in most cases the default fetch
group will remain adequate.

In the interim, look to the JDO vendors to implement their own enhance-
ments ahead of any standardization in this area.

13.1.5 Optimistic transactions

Optimistic transactions are an optional feature of JDO 1.0, although this feature
is under-specified, especially in the areas of isolation and failure recovery. In
particular, there is no straightforward and portable way of discerning the
instances for which optimistic concurrency assumptions have failed.
Furthermore, the application remains responsible for refreshing all instances
associated with failed optimistic transactions, a tedious task for which addi-
tional support should be provided.

As users of JDO employ optimistic transactions and vendors provide propri-
etary enhancements to make the task easier, the JDO Expert Group will be
working to standardize the necessary features.

13.1.6 Standardized O-R mapping

JDO 1.0 does not state how the persistent fields of an instance are mapped to
the rows and columns of pre-existing database schemas. This work is being
undertaken independently by each RDBMS-based JDO vendor in order to
achieve competitive superiority.

In due course the description of these mappings may be standardized, which
would improve the portability of such mappings between implementations.

13.1.7 Event-driven “reactive” instances

Enterprise applications are making significant use of JMS for inter-component
asynchronous communication. Increasingly, JMS is being employed in the busi-
ness-to-business arena. The content of such messages typically needs to be
persisted.

A message-driven bean can be constricted that will persist incoming data
through JDO. This was illustrated in Chapter 11. However, this approach man-
dates the presence of a J2EE application server.

It is easy to conceptualize a JDO instance which itself reacts to incoming JMS
messages, through a direct JMS/JDO connection which is independent of J2EE
and the message-driven bean architecture. It will be interesting to see how JDO
evolves in this area.

13.2 Sources of further information

Further information about JDO is available in a number of online forums that
are updated regularly.

Sources of further information 221

13.2.1 Ogilvie Partners Ltd
The author maintains a website which is dedicated to JDO:
http://www.OgilviePartners.com

Ogilvie Partners offer vendor-independent JDO consultancy, training, and men-
toring. The website includes useful downloads such as FAQs and presentations
on JDO which I have delivered at conferences and user groups worldwide.

13.2.2 JavaDataObjects at Yahoo!Groups

The JavaDataObjects discussion forum at Yahoo!Groups is lively and enjoys
contributions from many high-profile members of the JDO community:

http://groups.yahoo.com/group/JavaDataObjects/

The moderators maintain a JDO suggestions document and the group regularly
debates proposals for future inclusion in JDO.

13.2.3 JDOcentral.com

If you prefer not to receive regular email but to go online for information about
JDO, you should try JDOcentral. This comprehensive forum contains discus-
sions about JDO as well as news from the community, a calendar of
forthcoming JDO-related events, and other features. A newsletter is emailed
monthly to subscribers.

http://www.JDOcentral.com

Properties for

JDOHelper bootstrap

The following are the standard property names for use when constructing a per-
sistence manager factory through the following JDOHe1per method:

getPersistenceManagerFactory(Properties props)

Each JDO vendor may add other properties for their implementation, which will
be described in the product-specific documentation. For a detailed discussion of
each of these properties please refer to the “JDOHelper” section in Chapter 6.

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

222

jdo.
jdo.
jdo.
jdo.
jdo.
jdo.
jdo.
jdo
jdo.
jdo.
jdo.
jdo.
jdo.
jdo.

PersistenceManagerFactoryClass
option.Optimistic
option.RetainValues
option.RestoreValues
option.IgnoreCache
option.NontransactionalRead
option.NontransactionalWrite

.option.Multithreaded

option.ConnectionDriverName
option.ConnectionUserName
option.ConnectionPassword
option.ConnectionURL
option.ConnectionFactoryName
option.ConnectionFactory2Name

Strings for supported
options

The supportedOptions () method of a persistence manager factory returns a
Collection of Strings. The presence of particular strings in that collection
indicates support for the corresponding optional feature of the JDO specifica-
tion. In the same way, the absence of a string indicates that the corresponding

feature is not supported by the implementation.

The strings used for each optional feature are standardized by the JDO speci-
fication, and are listed here for quick reference. For further information, please

refer to section 6.3.1 on page 104.

"javax.jdo.option

"javax.jdo.option

"javax.jdo.option

"javax.jdo.option

"javax.jdo.option
"javax.jdo.option
"javax.jdo.option

"javax.jdo.option.
"javax.jdo.option.
.Array"

"javax.jdo.option

"javax.jdo.option.
.ChangeApplicationIdentity"”

"javax.jdo.option

.TransientTransactional"
"javax.jdo.option.
"javax.jdo.option.
"javax.jdo.option.
"javax.jdo.option.
.Optimistic"
.ApplicationIdentity"
"javax.jdo.option.
"javax.jdo.option.
.ArrayList"
"javax.jdo.option.
"javax.jdo.option.
"javax.jdo.option.
.TreeMap"
.TreeSet"
.Vector"

NontransactionalRead"
NontransactionalWrite"
RetainValues"
RestoreValues"

Datastoreldentity"
NonDurableldentity"

HashMap"
Hashtable"
LinkedList"

Map
List"

NullCollection"

"javax.jdo.query.JDOQL"

223

JDO persistence
descriptor DTD

jdo.dtd

<?xml version="1.0" encoding="UTF-8"7?>

<!ELEMENT
<!ELEMENT
<IATTLIST
<!ELEMENT
<IATTLIST
<IATTLIST

jdo ((package)+, (extension)*)>
package ((class)+, (extension)*)>
package name CDATA #REQUIRED>
class (field|extension)*>

class name CDATA #REQUIRED>

class identity-type

(application|datastore|nondurable) #IMPLIED>

<IATTLIST
<IATTLIST
<!ELEMENT
<IATTLIST
<IATTLIST

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ELEMENT
<IATTLIST
<IATTLIST
<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ELEMENT
<IATTLIST
<!ELEMENT
<IATTLIST
<IATTLIST

224

<IATTLIST class objectid-class CDATA #IMPLIED>
class requires-extent (true|false) ‘true’>
class persistence-capable-superclass CDATA #IMPLIED>
field ((collection|map|array)?, (extension)*)?>
field name CDATA #REQUIRED>
field persistence-modifier

(persistent|transactional|none) #IMPLIED>

field primary-key (true|false) ‘false’>
field null-value (exception|default|none) ‘none’>
field default-fetch-group (true|false) #IMPLIED>
field embedded (true|false) #IMPLIED>
collection (extension)*>
collection element-type CDATA #IMPLIED>
collection embedded-element (true|false) #IMPLIED>
map (extension)*>
map key-type CDATA #IMPLIED>
map embedded-key (true|false) #IMPLIED>
map value-type CDATA #IMPLIED>
map embedded-value (true|false) #IMPLIED>
array (extension)*>
array embedded-element (true|false) #IMPLIED>
extension (extension)*>
extension vendor-name CDATA #REQUIRED>
extension key CDATA #IMPLIED>

PersistenceManagerFactory

This appendix is provided as a quick reference to the get/set methods for the
PersistenceManagerFactory interface’s configuration properties (Table D.1).
It is more common to construct appropriately configured factories through the
JDOHelper «class than to configure each property through the
PersistenceManagerFactory interface directly.

Table D.1 get/set methods for configuration properties

Property Type get set
ConnectionUserName String v v
ConnectionPassword String 3 4
ConnectionURL String 4 v
ConnectionDriverName String 4 v
ConnectionFactoryName String v 4
ConnectionFactory Object 4 v
ConnectionFactory2Name String v v
ConnectionFactory2 Object v v
Multithreaded boolean 4 v
Optimistic boolean v (4
RetainValues boolean (%4 4
RestoreValues boolean %4 v
NontransactionalRead boolean 4 v
NontransactionalWrite boolean 4 v
IgnoreCache boolean v 4
MaxPool int (%4 v
MinPool int (4 v
MsWait int (%4 v

225

JDOQL BNF

Grammar notation

The grammar notation is taken from the Java Language Specification. Terminal
symbols are shown in bold in the productions of the lexical and syntactic gram-
mars, and throughout this specification whenever the text is directly referring to
such a terminal symbol. These are to appear in a program exactly as written.

Non-terminal symbols are shown in italic type. The definition of a non-ter-
minal is introduced by the name of the non-terminal being defined followed by
a colon. One or more alternative right-hand sides for the non-terminal then
follow on succeeding lines.

The suffix “opt”, which may appear after a terminal or non-terminal, indi-
cates an optional symbol. The alternative containing the optional symbol
actually specifies two right-hand sides, one that omits the optional element and
one that includes it.

When the words “one of” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or lines is an
alternative definition.

Parameter declaration

This section describes the syntax of the declareParameters () argument.

DeclareParameters:

Parameters ,opt
Parameters:

Parameter

Parameters , Parameter
Parameter:

Type Identifier

Variable declaration

This section describes the syntax of the declareVariables () argument.

DeclareVariables:
Variables ;opt
Variables:

226

Appendix

Variable

Variables ; Variable
Variable:

Type Identifier

Import declaration

This section describes the syntax of the declareImports () argument.

Declarelmports:

ImportDeclarations ;opt
ImportDeclarations:

ImportDeclaration

ImportDeclarations ; ImportDeclaration
ImportDeclaration:

import Name

import Name.*

Order specification

This section describes the syntax of the setOrdering() argument.

SetOrdering:

OrderSpecifications ,opt
OrderSpecifications:

OrderSpecification

OrderSpecifications , OrderSpecification
OrderSpecification:

Identifier ascending

Identifier descending

Filter expression

This section describes the syntax of the setFilter () argument.

Basically, the query filter expression is a Java boolean expression, where
some of the Java expressions are not permitted. Specifically, pre- and post-
increment and decrement (++ and - -), shift (>> and <<), and assignment
expressions (+=, —=, etc.) are not permitted.

The description follows the structure of the grammar for Java expression in
Chapter 19.12 of the Java Language Specification (Joy et al., 2000). The description is
bottom-up, i.e. the last rule expression is the root of the filter expression syntax.

227

228 Appendix

Please note, the grammar allows arbitrary method calls (MethodInvocation),
where JDO only permits calls to the methods contains(), isEmpty(), and a
number of string methods. This restriction cannot be expressed in terms of the
syntax and has to be ensured by a semantic check.

Primary:
Literal
this
(Expression)
FieldAccess
MethodInvocation
ArgumentList:

Expression

ArgumentlList , Expression
FieldAccess:

Primary . Identifier
MethodInvocation:

Name (ArgumentListopt)

Primary . Identifier (ArgumentListopt)
PostfixExpression:

Primary

Name
UnaryExpression:

+ UnaryExpression

— UnaryExpression

UnaryExpressionNotPlusMinus
UnaryExpressionNotPlusMinus:

PostfixExpression

~ UnaryExpression

! UnaryExpression

CastExpression
CastExpression:

(Type) UnaryExpression
MultiplicativeExpression:

UnaryExpression

MultiplicativeExpression * UnaryExpression

MultiplicativeExpression / UnaryExpression

MultiplicativeExpression % UnaryExpression
AdditiveExpression:

MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression — MultiplicativeExpression

RelationalExpression:
AdditiveExpression
RelationalExpression < AdditiveExpression

Appendix

RelationalExpression > AdditiveExpression

RelationalExpression <= AdditiveExpression

RelationalExpression >= AdditiveExpression
EqualityExpression:

RelationalExpression

EqualityExpression == RelationalExpression

EqualityExpression != RelationalExpression
AndExpression:

EqualityExpression

AndExpression & EqualityExpression
ExclusiveOrExpression:

AndExpression

ExclusiveOrExpression » AndExpression
InclusiveOrExpression:

ExclusiveOrExpression

InclusiveOrExpression | ExclusiveOrExpression
ConditionalAndExpression:

InclusiveOrExpression

ConditionalAndExpression && InclusiveOrExpression
ConditionalOrExpression:

ConditionalAndExpression

ConditionalOrExpression || ConditionalAndExpression
Expression:

ConditionalOrExpression

Types

This section describes a type specification, used in a parameter or variable decla-
ration or in a cast expression.

Type:
PrimitiveType
Name
PrimitiveType:
NumericType
boolean
NumericType:
IntegralType
FloatingPointType
IntegralType: one of
byte short int long char
FloatingPointType: one of
float double

229

230 Appendix

Literals

A literal is the source code representation of a value of a primitive type, the
String type, or the null type. Please refer to the Java Language Specification (Joy
et al., 2000) for the lexical structure of IntegerLiterals, FloatingPointLiterals,
CharacterLiterals, and StringLiterals.

IntegerLiteral:
FloatingPointLiteral:
BooleanLiteral: one of
true false
CharacterLiteral:
StringLiteral:
NullLiteral:
null
Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringlLiteral
NullLiteral

Names

Name:
Identifier
QualifiedName
QualifiedName:
Name . Identifier

Glossary

ACID Atomic, Consistent, Isolated and Durable — properties of a transaction

aggregate functions Functions which can be used as part of a query and
which generate a result based on the application of that function across the
query results; currently unavailable in JDOQL

APl Application programming interface — programming interface used by the
application developer, as opposed to the service provider.

application exception An exception defined by the application developer, as
opposed to the standard JDO exceptions present in the javax.jdo package

application identity A JDO identity type whereby the identity of an instance
is determined by the value of its so-called primary key fields

bean class (EJB) One of the classes that make up an EJB component, specifi-
cally the class that provides concrete implementations of the lifecycle and
business methods of the component

BMP Bean-managed persistence — whereby EJB entity beans contain code to
programmatically manage write/read data to/from the data store

BMT Bean-managed transactions — whereby EJB components contain code to
programmatically demarcate transactions

BNF Backus-Naur form - a formal grammar for notating programming syntax
bootstrapping The process of starting up, or initializing, a software service

candidate class (JDOQL) Every JDOQL query has a candidate class; the col-
lection or extent over which the query executes must contain only instances
of this class; the unmodifiable collection returned by query execution will
contain only instances of this class; JDO is inherently polymorphic, and
“instances of” implicitly includes subclasses

candidate collection (JDOQL) The collection of instances of the candidate
class, over which a query is to execute

candidate extent (JDOQL) The extent of the candidate class, over which a
query is to execute

CMP Container-managed persistence — whereby persistence management is
delegated to the J2EE application server’s container (entity beans only)

231

232 Glossary

CMT Container-managed transactions — whereby transaction management for
EJB components is delegated to the J2EE application server’s container

CORBA Common Obiject Request Broker Architecture

datastore identity A JDO identity type whereby the identity of an instance is
determined entirely by the data store

DBMS Database management system

DDL Data Definition Language — general term for languages that define the
data representation of entities in data stores, SQL being the most common
example

deletion The removal of the state of a persistent instance from a data store,
such that the instance is no longer persistent

detachment The removal of an object from an object graph, such that the
removed object is no longer referenced by any other objects in the graph; if
the object was a persistent JDO instance, this is not the same as deletion
since the object’s state will still exist in the data store and the object itself
can potentially be retrieved by its Object ID through iteration of its class’s
extent, or through JDOQL

domain object model A definition of one or more classes and their structural
relationships (inheritance, implementation, association), specifically
designed to represent abstractions of the business domain and containing
classes that represent concepts recognizable to project stakeholders familiar
with that business domain

DTD Document Type Definition — used to constrain XML documents
EAIl Enterprise Application Integration

EJB Enterprise JavaBean - a server-side component written according to the
J2EE specification

EJBQL Enterprise JavaBean Query Language — used to specify the persistence
of CMP entity beans

equality Two object references are equal if they reference the same single
object

equivalence Two object references are equivalent if the (potentially different)
objects that they reference represent the same thing

GA General availability — applies to JDO implementations that are commer-
cially available and supported in deployment

GUI Graphical user interface

hint A request, or part of a request, passed to a persistence manager that may
legitimately be ignored by a JDO-compliant implementation

Hollow (JDO state) The state that applies to any JDO instance that exists in
the persistence manager’s cache and contains the instance’s JDO identity, but
has not had any further persistent field values read from the data store

home interface One of the interfaces that make up an EJB component, specif-
ically the interface that provides factory methods for the client-managed
lifecycle of the bean instance

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IDE Integrated development environment
lIOP Internet Inter-ORB Protocol

J2EE Java 2 Enterprise Edition - a collection of Java APIs that must be sup-
ported by compliant application server products

J2ME Java 2 Micro Edition - the specification of Java for embedded (low-
resource) platforms

JCA Java Connector Architecture

JCP Java Community Process —facilitates broad industry involvement in the
specification of new Java APIs

JDBC Java Database Connectivity — a Java API that facilitates access to SQL-
based (generally relational) databases

JDK Java Development Kit

JDO Java Data Objects — the new Java API for the transparent persistence of
Java Obijects

JDO implementation A set of classes that implement the JDO service
providers’ interface (package javax.jdo.spi) and provide support for JDO with
a specified underlying data store

JDO instance An instance of a persistence-capable Java class, whether or not
that particular instance is persistent

JDO vendor The provider of a JDO implementation

JDOQL Java Data Objects Query Language — a dynamic language for querying
JDO instances

JMS Java Message Service — a Java API for asynchronous messaging, supporting
publish-subscribe and point-to-point semantics

JNDI Java Naming and Directory Interface

Glossary 233

234 Glossary

JSP JavaServer Page — text document containing marked-up text and option-
ally embedded Java constructs, which is translated into a Java servlet and
executed in the web server tier

JTA Java Transaction Architecture

JVM Java Virtual Machine - software that executes Java byte-code and, by
virtue of its implementation for many disparate computer platforms, ascribes
portability to the Java language

managed environment Usage of JDO by components executing in a J2EE
application server

NASDAQ Listing of technology stocks traded on the New York stock
exchange, see www.nasdaq.com

nondurable identity A JDO identity type whereby uniqueness is not main-
tained in the data store, thus facilitating the rapid persistence of new
instances

non-managed environment Usage of JDO independent of a J2EE application
server

non-serialized fields Fields (attributes) of a class that are marked with the
Java keyword transient, and which do not form part of the serialized form
instances of that class

object An instance of a Java class; the class defines the attributes and methods
of the object, and each object of that class encapsulates the specific field
values (state) that it represents

Object ID An object that uniquely identifies a JDO instance, and is unique to
that instance across the entire data store

Object ID class The class from which an Object ID is instantiated for a partic-
ular persistence-capable class; for datastore identity the Object ID class is
internal to the JDO implementation, whereas for application identity the
Object ID class is named by the developer (and implemented by the devel-
oper or by the enhancer)

object model A definition of one or more classes and their structural relation-
ships (inheritance, implementation, association)

object persistence The storage of object state in some data store from which
the objects can later be reconstituted; specifically we presume that the life-
time of object state in the data store will extend beyond the lifetime of the
process from which the object was persisted

ODBMS Obiject Database Management System — a data store that natively per-
sists objects

ODMG Object Data Management Group
OEM Original equipment manufacturer

optional JDO features Features detailed in the JDO specification, but which
an implementation is not obliged to support in order to be JDO-compliant

O-R Object-Relational — applies to any mechanism that maps between object
technology and relational technology, and specifically to JDO implementa-
tions that support an underlying relational database

orthogonal Concepts are orthogonal if they are independent of each other
(the Greek actually means “at right angles”); transactionality and persistence
are orthogonal concepts, and thus an instance may be transactional or not
transactional regardless of whether it is persistent or non-persistent

persistence by reachability The recursive algorithm by which transient
instances referenced by a persistent instance are themselves made persistent

persistence-capable A class that implements the PersistenceCapable inter-
face and which is identified to the implementation as such (as a
persistence-capable class) in the persistence descriptor

persistence descriptor An XML document that identifies the persistence-
capable classes to a JDO implementation, and facilitates the overriding of
default persistence modifiers and the specification of further persistence-rele-
vant information for such classes

persistent Stored beyond the lifetime of a single JVM process — objects (and
object graphs) which are persistent, represent data that is stored in the data
store

Persistent-Clean (JDO state) The state that applies to any JDO instance
that has some of its field values loaded, but which has not been changed in
the current transaction

Persistent-Deleted (JDO state) The state that applies to any JDO instance
that was persistent before this transaction, but has been deleted in the cur-
rent transaction

Persistent-Dirty (JDO state) The state that applies to any JDO instance that
was persistent before this transaction, but has been changed in the current
transaction

Persistent-New (JDO state) The state that applies to any JDO instance that
has been made persistent in the current transaction

Persistent-New-Deleted (JDO state) The state that applies to any JDO

Glossary 235

236 Glossary

instance that has been made persistent and subsequently deleted, all within
the current transaction

Persistent-Nontransactional (JDO state) The state that applies to any JDO
instance that represents a persistent data store entity, but which is not guar-
anteed to be transactionally consistent with that entity

persistent object model 1. The set of restrictions placed on an object model
in order for it to be persistable through JDO, and the implications of persist-
ing an object model through JDO

2. An object model comprising persistence-capable classes

primary key class (EJB) One of the classes that make up an entity bean
component, specifically the class that provides identity for the entity bean;
EJB primary key classes can be replaced by JDO Object ID classes if the
underlying BMP mechanism is JDO

primary key class (JDO) The Obiject ID class for a persistence-capable class
with application identity is sometimes referred to as the class’s primary key
class

projection The capability of a query language to return a result comprising
objects that are not instances of the candidate class; not currently available
in JDOQL

provisionally persistent A transient instance to be made persistent through
persistence by reachability is actually made provisionally persistent until the
transaction commits; on commit the instance becomes persistent if and only
if it is still reachable from a persistent instance (i.e. it has not been detached
from the object graph in the interim)

QOM Query object model

RDBMS Relational database management system - a data store that natively
persists data as tables of rows and columns; storage of objects requires that
they be decomposed into constituent field values, each of which is stored as
a column value

remote interface (EJB) One of the interfaces that make up an EJB compo-
nent, specifically the interface that identifies those business methods that
the client may invoke on the component

required JDO features Features detailed in the JDO specification that an
implementation must support in order to be JDO-compliant

RMI Remote Method Invocation — a Java API for distributed programming

SPI Service providers’ interface — programming interface used by the service
provider, as opposed to the application developer

SQL Structured Query Language

SQL-92 Structured Query Language (1992 standard)

stateful (session bean) A stateful component is dedicated to a single client
for the duration of the client’s reference to that component; it can usefully
maintain client-specific state across method invocations

stateless (session bean) A stateless component is dedicated to a single
client only for the duration of an individual method invocation by that
client on the component; it cannot meaningfully maintain client-specific
state across method invocations

transient 1. A keyword in Java that specifies attributes as being non-serialized
2. An object that does not represent persistent data

transient (JDO state) The state that applies to any JDO instance that does
not represent a data store entity, as is typical of instances newly instantiated
with the new keyword

Transient-Clean (JDO state) The state that applies to any JDO instance that
is transactional, but which has not been changed in the current transaction

Transient-Dirty (JDO state) The state that applies to any JDO instance that
is transactional, and has been changed in the current transaction

transparent persistence Everything that JDO undertakes in order to abstract

applications from the underlying complexity of object persistence, specifi-

cally:

1. persistence by reachability

2. automatic change tracking of JDO instances

3. automatic mapping of Java data types to the native data types of the
underlying data store

4. automatic mapping of persistence-capable classes to data structures in the
underlying data store

5. automatic mapping of relationships between persistent instances: refer-
ences, collections and, if supported, arrays

6. automatic support for inheritance hierarchies of persistence-capable
classes and, if supported, interface implementation hierarchies as well

7. automatic translation of JDOQL syntax to the native query language of
the underlying data store if appropriate

UML Unified Modeling Language - a set of standard notations by which soft-
ware systems, and elements thereof, can be diagrammed

uniquing The process by which a JDO implementation ensures that there is at
most one JDO instance with a given JDO identity (Object ID) in the persis-
tence manager’s cache at one time

URL Universal resource locator

valid (XML) Some XML documents are constrained by a Document Type

Glossary 237

238 Glossary

Definition (DTD); XML documents constrained by a DTD and which con-
form to the grammar defined by the DTD and are said to be valid

well formed (XML) All XML documents must be well formed, in that they
must obey the basic document structure and close all tags in the reverse of
the order in which they were opened

XML eXtensible Markup Language — a markup language specification that
defines the structure of a document, but leaves the choice of tag names to be
agreed by the document authors and readers

Bibliography

Coad, Peter, Mayfield, Mark and Kern, Jon Java Design, 2nd edition (Yourdon
Press, 1999) ISBN 0-13-911181-6.

Coad, Peter, Lefebvre, Eric, and De Luca, Jeff, Java Modeling in Color with UML:
Enterprise Components and Process (Prentice Hall, 1999) ISBN 0-13-011510-X.

Hall, Marty, Core Servlets and JavaServer Pages (Sun Microsystems Press, 2000)
ISBN 0-13-089340-4.

Joy, Bill, Steele, Guy, Grosling, James, Brache Gilad, Java Language Specification,
2nd edition (Addison-Wesley, 2000) ISBN 0-201-31008-2.

McLaughlin, Brett, Java and XML (O'Reilly, 2000) ISBN 0-596-00016-2.

Monson-Haefel, Richard, Enterprise JavaBeans, 3rd edition, (O’Reilly, 2001)
ISBN 0-596-00226-2.

Monson-Haefel, Richard, and Chappel, David A., Java Message Service (O’Reilly,
2001) ISBN 0-596-00068-5.

Nicola, Jill, Mayfield, Mark, and Abney, Mike, Streamlined Object
Modeling: Patterns, Rules, and Implementation (Prentice Hall PTR, 2002)
ISBN 0-13-066839-7.

239

abstract classes 86-8

activation (of entity beans) 185
administrative functions 91-4, 110-11
aggregate functions 218
application exceptions 150
application identity 29-30
architecture of JDO 21-32

<array> element 158

arrays 61, 79-81

assignment operators 140

atomic property of transactions 117
attributes 17, 154-8

bean-managed persistence (BMP) 166, 179
bean-managed transactions (BMT) 23, 165
boolean values 137
bootstrapping 95-103, 195
BusinessPartner class 10-13, 29-31, 59-60,
64-9, 86-8, 135-6, 169-70
source code for 18-20

cache management 106

callback methods 49-51

calling threads 98

candidate classes 112-14, 213

candidate collections of Instances 130

<class> element 154

classes for each type of EJB 167

closure of instances 6-7

Coad, Peter 77

<collection> element 156

collections, concrete 62-3

comparative operators 137-8

container-managed persistence (CMP)
166

container-managed transactions (CMT)
165-6, 170

Index

Data Definition Language (DDL) scripts 6

Datastore identity 28-9

deletion constraints 108-9

deletion of persistent Instances 41-3

deletion semantics 162

Document Type Declaration (DTD) 61,
152, 224

domain object models 2

Dynamic Query Window 143-5, 218

enhancement tools 16, 21-2, 29
enJin™ 198
Enterprise JavaBeans (EJB) 164-6
integration of JDO with 171
interfaces and classes for 167
entity beans 5, 166
activation of 185
integration of JDO with 179-88
versus JDO 187-8
equality as a form of identity 27
equality operator 140
equivalence as a form of identity 27
error conditions 146
eviction 39, 106
exceptions defined in JDO 146-50
Explorer application 88-9
<extension> element 153, 161
Extent interface 13-14
extents 18, 111-15
without subclasses 217

FastObjects™ 199-200
fatal exceptions 146, 149-50
fetch groups
<field> element 154-5
field values
reading of 38-9
updating and refreshing of 40-1

241

242 Index

fields in relational databases 17
file systems 4

filter operations

first-class Instances 60
first-class objects 56-9, 157
FiveHolder class 79-81
FrontierSuite 201

HashSet 62-3, 57-9

Hemisphere Technologies 204
Hollow Instances 36, 125

HTML websites 190

HYWY Software Corporation 213

identity, types of 27-32

IgnoreCache property 97

immutable classes 62

implementations of JDO 21, 196-215
support for 26

inheritance 81-8, 187

Instances 22, 25-7

integration of JDO 171
with entity beans 179-88
with message-driven beans 188-9
with stateful session beans 175-9
with stateless session beans 172-5
with web tier 190-1

IntelliBO™ 203

interface types (non-Collection) 75-7

interfaces (for each type of EJB) 167

isolated property of transactions 117

Java 2 Enterprise Edition (J2EE) 1, 164,
168
Java Connector Architecture JCA) 23
Java Data Objects (JDO) 1, 5-7
discussion forum 216, 221
Expert Group 220
futher refinement and extension of
216
positioning with respect to other
APIs 8
power of 7-8
properties 97-8
see also JDO

Java Database Connectivity (JDBC) 3-4
Java Message Service (JMS) 166, 220
JavaServer Pages (JSP) 167-8, 193-5
javax.jdo package 21, 81, 115
javax.jdo.spi package 115
JDO see Java Data Objects
</jdo> element 153
JDO Genie™ 204
JDO Query Language (JDOQL) 113,
129-45

enhancement of 217-19

grammar 226
JDOcentral.com 221
JDOHelper class 33, 36, 90-6, 222
JRelay™ 203

keywords 138
Kodo JDOTM 206-8

“last commit wins” situation 122-3
LIBeLIS 208
LiDOTM 208-300
lifecycle
of entity beans 180
of Instances 33-51
of message-driven beans 188
of Servlets 191
of stateful session beans 175
of stateless session beans 172
logical operators 137
long-lived transactions 120

makePersistent(), use of 108
managed and non-managed
environments 22-4, 164
<map> element 158
message-driven beans 166, 170
integration of JDO with 188-9
method invocations 139
Multithreaded property 98
mutable object classes 62

namespaces 130-1
“nested” transactions 118
Nicola, Jill 77

non-durable identity 31-2
non-persistent non-transactional
fields 61
NontransactionalRead property 97-8
NontransactionalWrite property 98

Object Data Management Group
(ODMG) 4, 196
object database management systems
2, 4,217
ObjectFontier 201
object graphs 6-7
Object IDs 28, 60
Object Industries GmbH 205
object models 2
literature on 77
object persistence 1-2
Object references 68-9
Ogilvie Partners 217
OpenFusion JDO™ 162, 210-12
operators for queries 137-40
optimistic transactions 97, 119-22, 220
optional features of JDO 26, 56, 104-5
support for 197-8
optional lifecycle transitions 45-9
O-R mapping 220
Order class 71-5, 107
order processing domains 10
ordering operator 140
OrderLine class 76-9, 107-8
Orient™ and Orient Technologies 212

<package> element 153
passivation 184
PEJ™ 213-15
persistability 83-4
persistence-aware classes 95
persistence by reachability 35, 57, 107-8
persistence-capable classes 5, 63, 83-8,
95
as second-class objects 59-60
PersistenceCapable interface 115-16
persistence descriptors 5-7, 14-16,
55, 151-62, 224
elements of 153-8

Index 243

naming of 152-3
PersistenceManager interface 6, 118
PersistenceManagerFactory interface

97,103-12, 225
persistence technologies 2-3, 8
persistent access outside transactions
47-8
persistent fields 17, 61
persistent Instances 25, 27

persistent-clean and persistent-dirty 36
persistent objects 18, 53
persistent states 35, 37, 45
pessimistic transactions

123-5
Poet Software Corporation 199
polymorphism 130, 213
post load callback 50
pre clear, pre delete and pre store callback
50-1
pre-fetch parameters 219
primary key classes 29, 88
primary key fields 37, 92
primitive types 61
Prism Technologies Ltd 162, 210
Productivity Environment™ 213
ProductRecipient bean 189-90

119-20,

queries 113
compilation of 133-4
construction of 131-2
elements of 130
examples of 134-6, 141-3
filter expressions in 136-40
navigation of 140, 142-3
operators for 137-40
parameterization of 141-2
string-based definition of 218
syntactic errors in 134
unconstrained variables 143

Query interfaces 132-4

Query Object Model 219

reachability 35, 57, 107-8
reading of field values 38-9
reference operators 138

244 Index

refreshing of field values 40-1

Relational Database Management System
(RDBMS) 2-3

Remote Method Invocation 168

reserved words 138

RestoreValues 36, 97, 126

RetainValues 36, 97, 126-7

retried exceptions 146-7, 149

rollback 3, 97, 216

second-class objects 56-60, 157

sequence objects 216

serialization 4, 7, 155, 157, 168-70

Servlets 167-8, 191-3

session beans 165-6, 170; see also
stateful session beans; stateless
session beans

Signsoft GmbH 203

SolarMetric Inc. 203

SQL see Structured Query Language

standard classes in JDO specification 56

stateful session beans 165, 175-9

integration of JDO with 175-9
StateHelper class 34
stateless session beans 165, 172-5
integration of JDO with 172-5

strings 81, 223

Structured Query Language (SQL)
3-4, 219

superclasses 82

Synchronization interface 129-30

tags 151-3
“third-class” objects 61

threads 98
transaction demarcation 171, 177
transaction management 117-27
transactional access to transient Instances
48-9
transactional Instances 25-6
transactional non-persistent fields 61
transactions 3, 17
transient-clean and transient-dirty states 45
transient fields 7
transient Instances 25-7, 35, 43-4
transactional access to 48-9
transient modifiers 169
transient objects 18
transitions between states 37-45
optional 45-9
transparent persistence 7, 54-5, 169,
187

unary operators 138
uniquing 28, 58

validation of Instances 128

vendor-specific extensions of JDO
161

Versant Corporation 199

visibility (of changes made to shared
objects) 58

web tier 167-8
integration of JDO with 190-1

XML documents 151-2

