A4

The experienced developer’s geide
to Jovo progromming—ne felly
updated for JDK™1.3

b 4

Completely revised coveroge of
object-otiented development ond
Swing dosses

v
thore of the rebust code exomples
professionol progrommers nesd

A 4

(D-ROM inchudes ol source code,
)25 Vessicn 1.3, Forte™ for Jovo
Community Editien, ond muth more!

THE SUN MICROSYSTEMS PRESS
JAVA SERIES ‘@Sun
CAY S. HORSTMANN . GARY CORNELL

Core Java™ 2: Volume I-Fundamentals

Cay S. Horstmann
Gary Cornell

Publisher: Prentice Hall PTR
Fifth Edition December 01, 2000

ISBN: 0-13-089468-0, 832 pages

Ask any experienced Java programmer, Core Java delivers the real-world guidance you need
to accomplish even the most challenging tasks That’s why it’s been an international best seller
for five straight years. Core Java 2, Volume I-Fundamentals covers the fundamentals of
Java 2 Platform Standard Edition, Version 1.3 and includes completely revised discussions of
object-oriented Java development, enhanced coverage of Swing user interface components,
and much more.

The fifth edition delivers even more of the robust, real-world programs previous editions are
famous for- updated to reflect JDK 1.3 deployment and performance enhancements.
Volume 1 includes thorough explanations of inner classes, dynamic proxy classes, exception
handling, debugging, the Java event model, Input/Output, and file management. For
experienced programmers, Core Java 2, Volume I-Fundamentals sets the standard-again!

Table of Contents

List of Tables, Code Examples and Figures..........cooeicineicisnicssnncsssnncsssnscssssessssssssssssssnsses 1
TABIES ..t ettt ettt s a bt et eneennes 1
C0de EXAMPIES....c..eiriiiiiiiieiierieeeetee ettt sttt st 1
FAGUICS ..ttt ettt e ettt e et e e et e e et e e et e e b e e enbeeeabeeennbeeens 3

Preface .uuuuiiiiiiiiiiiiiiiiiiinntinniieinticseissesseessessssssstssssssssesssssssssssssssssessssssssssssassssasnns 7
TO the REAACT ..c..eoueiiiiiie ettt sttt 7
ADOUL ThiS BOOK ...ttt s 8
COMVEINTIONS ..ttt ettt ettt st et e et e bt e s bt e bt e e st e e bt e sabeenbeeenbeenbeesateens 10
CDROM ...ttt ettt et e s et e e st e se e s e e st e seesaeeseeseenaeeseeseeneens 11

ACKNOWICAZIMENLS.....cuueiiirnriirnriiinniiinnisssncsssnnessssncssssscssssesssssessssesssssesssssessssssssssesssssssssses 12

Chapter 1. An Introduction to Java 13
Java as a Programming TOOLccooviiiiiiiiiiiieiccieete ettt 13
Advantages Of JAVA.........coviiiiiiiiie e 14
The Java “White Paper” BUZZWOTdScccoeeouiiriiiiieieeiieie et 15
Java and the INEIrNEt.........c.ooiiuiiiiiiiee et st 22
A Short HiStOry Of JAVA....coouiiiiiiieieeeeee et e 24
Common Misconceptions ADBOUL JAVA.........coueriiriiriiniiiiinieneeere et 26

Chapter 2. The Java Programming Environmenteeeeeeneensnensnecsnenssecssseessnscaees 30
Installing the Java Software Development Kit..........cccoeviiriininiiniininiiiecciciceee 30
Development ENVIFONMENTScccuieriieeiieriieeiienieeieesteeieeeeeesieessseessaessseesseessseessnesnsens 34
Using the Command Line TOOISccccoiiviiiiiniiiiiiiiiieccceeeeeee e 35
Using an Integrated Development Environment............c.cocoveeevierieeiienieecieenieeieesee e 38
Compiling and Running Programs from a Text Editor..........ccoccevirieniinniincncnicnnne 42
Graphical APPIICALIONS.cccuieieiieiieiie ettt ettt ettt eee e e taeebeestaeesbeessseensaenaneens 46
AADPLEES ettt ettt bt et e e bt e sat e e bt e neeeneen 49

Chapter 3. Fundamental Programming Structures in Javaceeeeenneensecnsnecsencnenns 54
A Simple Java Program...........cccooeeviiiiniiiiiiiicienteseeeeeee ettt 54
COMUMEIES. ...ttt ettt st e bttt e bt e st e e bt e eab e e bt e sabe e bt e enbeenseesaneens 57
DAt TYPES...eeeeiiteeitte ettt ettt et ettt ettt e et esaeeas 58
VATTADIES ...ttt ettt et b et h et st esbe et 62
Assignments and INIHAZATIONSccueiiiiiriiiiiieie e 63
OPCTALOTS ..teeeieieeeiite ettt e etee et te et ee ettt eesteeestaeeentaeeassaeesaseeeasseeensseeensseessseesnsseesnsseesnseenns 65
SEIINES . ¢ttt ettt ettt et st b et e b bt et s a e bttt ebt b e et et 73
CONLIOL FLOW ..ottt sb et ettt sbe e 87
Bi@ NUIMDETSeeviiiiiieeiie ettt ettt tee e et e e s ae e e s taeesssaeesssaeessseeessseeennseennns 106
YN 0 22 USSR 108

Chapter 4. Objects and Classes 123
Introduction to Object-Oriented Programming...........ccceeeveerieeiienieenieenieeieenie e 123
USING EXIStING CLASSES ...vveeviieiiiieeiiie ettt estee et ee et e e ve e e e e stae e saeeesbeeeenseeennseeennne 131
Building YOour OWn CIaSSEScc.eevuiiiiiiiieeiieeiie ettt see ettt e saeebee e eeeeseae e 143
Static Fields and Methodscooiiiiiiiiii e 155
Method Parameters.eeueriiriiiieiieieeieetes ettt sttt s 161
ODbJECt CONSITUCTION.veiietieeeiiieeeieeete e ettt e eeeesteeesteeeseaeeesaeeeaaeeessaeessseeensseeensseeennsens 168
PACKAZES ..ottt ettt et e et e b e e neeeareennaeenne 177
Documentation COMMENEScc..eeiuiiiiieiiieiie ettt ettt ettt e et esibe e b e saeeeeee 187
Class DS HINESc..oeiiiiiiiiiiieiiesiie ettt ettt ettt et e saeenbeesaaeenseennees 192

Chapter 5. Inheritance 195

EXteNdING ClaSSES ...cveeviriiiriiiiieiieeitete ettt sttt sttt ettt sttt ettt eane b 195

Object: The CoSMIC SUPETCIASScoueiiiriiriiiiiiiiieeeee e 216

THE CLass ClaSS .ccuuiiiiiiiiiiieieee ettt sttt ettt st be et eaes 240
RETTECHION ...ttt ettt st 244
Design Hints for INhEritancec.oeovieriiiiiienieeiieieeieee et 262
Chapter 6. Interfaces and Inner Classesccuveeervrecsvenicssnrcssssncsssressssncssssressssscsssscses 265
INEEITACES ...ttt sttt et ettt 265
100 1<To1 A0 1)1 2 ¥ SRR 276
INNET CLASSES ..enveiutiiietieiteeit ettt ettt ettt ettt st ettt sttt et e s bt et eat e s bt et e sanenaes 282
PLOXIES .ottt ettt ettt ettt e bt e et ettt e b e 299
Chapter 7. Graphics Programmingccceeececcssnnccssssnsncsssssssecssssssssssssssssssssssssssssssssss 306
INtrodUCHION 10 SWINE...veiiiiiiiiiieeciee ettt e st e e et e e e eaeeeaeeesnseeeesseeesseeennseas 306
Creating @ FTAMEcocuiiiiiiiieeieeeece et ettt et e et eseae b e s ebeenees 310
Frame POSIHIONINGcccuviiiiiiieiiiieciie ettt ettt e e sae e e eesiaeeessbaeesaaeessseeennsaeenns 314
Displaying Information in a Panelcccccoooiiiiiiiiiniiicee e 319
2D SRAPES....uviieeiiiieciie ettt et et e e e s e e et e et e e e tbe e et e e e abeeeaaeeebeeeenbeeennreeennns 326
L070) 1) 4SO TP PRSP U SRR 335
TeXt ANA FONES ...ttt e 340
TINAGES ..ottt ettt ettt et e et e et e et esab e e ateesaneas 351
Chapter 8. Event HANAIING......ccocveevvuriiiviinisiinisninssninssnncssssncsssnessssnsssssssssssssssssssssssssses 358
Basics of Event Handlingcccooviiiiiiiiiiiicece e 358
The AWT Event HIeTarchycccoiviiiiiiiiiiie ettt 378
Semantic and Low-Level Events in the AWTccccoooiiiiiiiiiiiieieeeeee e 380
LOoW-LevVel EVENE TYPES ...ciciiiiiiiiiie ettt ettt tee e sitee e saveeessseeesaveeenes 384
ALCHIONS ittt et b et st a ettt b et et sb et a e b et 402
IMUIICASTINE . .. eetieeeiie ettt ettt st e et e et e e et eeetaeeestaeessnseesssaeessseeesseeesseesnsseennnns 411
The EVENt QUEUEC.......ccviiiiiieeiee ettt et ettt e aa e e vee e ebe e e earee e aneeeeaneas 414
Chapter 9. User Interface Components with SWINg........cccceeevvriccsrinssercsssercssercssnnenes 424
The Model-View-Controller Design Pattern...........ccceevuieeiienieniiieiieieeee e 424
An Introduction to Layout Management.............ceccveeeciieeeiiieeniieenieeesieeesveeesveeeeveeenns 430
TEXE TPUL ..ttt ettt e et e e st e e st e e e sabeeeabeesaeeas 437
IMAKING CROICES. . eeeuvvieieiieeiieeiie ettt e ettt eetteesstteeeteeestaeestaeesssaeessseeessseeessseeessseesnsseeanns 464
IMIEIIUS ..ttt ettt ettt ettt e b e st h ettt ae e s e i e e 488
Sophisticated Layout Managementcccveeeriieeeiieeeiieeeiieeeiee e eeveeeeveeesaeeeenees 512
DIAL0Z BOXES ...ttt ettt ettt ettt ettt ettt e et e e e e taesebeenaeeenbeenees 540
Chapter 10. APPIetS.....ccccneiciiserensnicssricsssicssnicssssisssssesssssessssessssssssssssssssssssssssssssssssssssses 582
APPLEE BASICS....eiiviieiiiieiiecie ettt ettt et eneeenaeenne 582
The Applet HTML Tags and AttribULesceeeeciiieiiieeciieeciee e 600
IMUIMEAIA ...ttt sttt ettt ettt st e b e e eaaenbeens 614
The APPIEt CONEXE ...cuviiiieiieeiiie ettt et e sae e e ste e e eeeeeaaeessaeeessbeeeesseeesseeeneeas 617
JAR FILES ..ttt sttt st 628
Chapter 11. Exceptions and DebDuggingcccceeevercrcricssnrisssnnisssnrcsssressssncssssscssssessnns 640
Dealing With EITOTSccuiiiuiiiiieiie ettt 640
CatChing EXCOPLIONSviiiiiieiiieeciieeeiee ettt e et e e ee e et e e s aaeesteeessaaeessseeessaeesseeenseas 648
Some Tips on USing EXCEPLIONSccvieruiieiiieiiieiieeieeiiesie ettt sae et seeeseesneeeee e 658
Debugging TeChNIGUES.cvieiiiieeiiie ettt e e e e st eesbee e seaeeessaeeenareeenes 661
USING @ DEDUZEETeiiiieeiiieiie ettt ettt et eebe e s e easeeseae e 684
Chapter 12. Streams and Filesoiioeiiivviinivninisniinisnninssnninsssncsssnesssncsssnesssssesssssoses 693
N0 (e 141U USRS 693
The Complete Stream Z00cc.eeevieriieeiieiieeie ettt et seeereesreeebeessaeensaesaneesseensnas 696

ZUIP FILE STICAIMIS ..eeeeeeee ettt eeaaaaaaeeeeeeeeeanaaeas 718

Putting Streams to Use

Object Streams ...
File Management

Appendix Java KeYWOrdSeiiiiiiisinnneinseinsnensennsniisessssecssessscssesssesssessssesssssssss

Core Java™ 2: Volume I-Fundamentals

List of Tables, Code Examples and Figures

Tables

Table 2-1

Table 4-1

: Java directory tree
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:

Java integer types

Floating-point types

Special characters

Operator precedence

Growth of an investment at different interest rates

: UML notation for class relationships
Table 7-1:
Table 7-2:
Table 8-1:
Table 8-2:
Table 8-3:
Table 8-4:
Table 9-1:

Standard colors

System colors

Event handling summary

Sample cursor shapes

Predefined action table names

Input map conditions

The accessor methods of the ButtonModel interface

Table 10-1: Applet positioning attributes

Table 10-2: Translating between APPLET and OBJECT attributes
Table 10-3: showDocument arguments

Table 10-4: jar program options

Table 11-1: Timing data

Table 11-2: HPROF options

Table 11-3: Debugging commands

Table 12-1: Basic character encodings (in rt.jar)

Table 12-2: Extended Character Encodings (in 118n.jar)

Code Examples

Example 2-1: Welcome.java
Example 2-2: ImageViewer.java
Example 2-3: WelcomeApplet.html
Example 2-4: WelcomeAppletPlugin.html
Example 2-5: WelcomeApplet.java
Example 3-1: FirstSample.java
Example 3-2: InputTest.java
Example 3-3: Retirement.java
Example 3-4: Retirement2.java
Example 3-5: LotteryOdds.java
Example 3-6: BigIntegerTest.java
Example 3-7: LotteryDrawing.java
Example 3-8: CompoundInterest.java
Example 3-9: LotteryArray.java
Example 4-1: CalendarTest.java
Example 4-2: EmployeeTest.java
Example 4-3: StaticTest.java
Example 4-4: ParamTest.java
Example 4-5: ConstructorTest.java

Example 4-6:
Example 4-7:
Example 5-1:
Example 5-2:
Example 5-3:
Example 5-4:
Example 5-5:
Example 5-6:
Example 5-7:
Example 5-8:
Example 6-1:
Example 6-2:
Example 6-3:
Example 6-4:
Example 6-5:
Example 6-6:
Example 6-7:
Example 7-1:
Example 7-2:
Example 7-3:
Example 7-4:
Example 7-5:
Example 7-6:
Example 7-7:
Example 8-1:
Example 8-2:
Example 8-3:
Example 8-4:
Example 8-5:
Example 8-6:
Example 8-7:
Example 9-1:
Example 9-2:
Example 9-3:
Example 9-4:
Example 9-5:
Example 9-6:
Example 9-7:
Example 9-8:
Example 9-9:

PackageTest.java
Employee.java
ManagerTest.java
PersonTest.java
EqualsTest.java
ArrayListTest.java
ReflectionTest.java
ObjectAnalyzerTest.java
ArrayGrowTest.java
MethodPointerTest.java
EmployeeSortTest.java
TimerTest.java
CloneTest.java
InnerClassTest.java
AnonymousInnerClassTest.java
StaticInnerClassTest.java
ProxyTest.java
SimpleFrameTest.java
CenteredFrameTest.java
NotHelloWorld.java
DrawTest.java
FillTest.java
FontTest.java
ImageTest.java
ButtonTest.java
PlafTest.java
Sketch.java
MouseTest.java
ActionTest.java
MulticastTest.java
CustomEventTest.java
TextTest.java
ValidationTest.java
TextAreaTest.java
TextEditTest.java
CheckBoxTest.java
RadioButtonTest.java
BorderTest.java
ComboBoxTest.java
SliderTest.java

Example 9-10: MenuTest.java
Example 9-11: ToolBarTest.java
Example 9-12: Calculator.java
Example 9-13: BoxLayoutTest.java
Example 9-14: FontDialog.java
Example 9-15: CircleLayoutTest.java
Example 9-16: OptionDialogTest.java
Example 9-17: DialogTest.java
Example 9-18: DataExchangeTest.java
Example 9-19: FileChooserTest.java

Core Java™ 2: Volume I-Fundamentals

Core Java™ 2: Volume I-Fundamentals

Example 9-20: ColorChooserTest.java

Example 10-1: NotHelloWorldApplet.java
Example 10-2: NotHelloWorldAppletPlugin.html
Example 10-3: Calculator.html (before processing with the HTML converter)
Example 10-4: CalculatorApplet.java

Example 10-5: PopupCalculatorApplet.java
Example 10-6: Chart.java

Example 10-7: Bookmark.html

Example 10-8: Left.html (before processing with the HTML converter)
Example 10-9: Right.html

Example 10-10: Bookmark.java

Example 10-11: AppletFrame.java

Example 10-12: CalculatorAppletApplication.java
Example 10-13: ResourceTest.html

Example 10-14: ResourceTest.java

Example 11-1: ExceptTest.java

Example 11-2: ExceptionalTest.java

Example 11-3: ConsoleWindow.java

Example 11-4: EventTracer.java

Example 11-5: EventTracerTest.java

Example 11-6: RobotTest.java

Example 11-7: WordCount.java

Example 11-8: BuggyButtonTest.java

Example 11-9: BuggyButtonFrame.java

Example 11-10: BuggyButtonPanel.java
Example 12-1: ZipTest.java

Example 12-2: DataFileTest.java

Example 12-3: RandomFileTest.java

Example 12-4: ObjectFileTest.java

Example 12-5: ObjectRefTest.java

Example 12-6: SerialCloneTest.java

Example 12-7: FindDirectories.java

Figures

Figure 1-1: The Jmol applet

Figure 2-1: Compiling and running Welcome.java

Figure 2-2: Starting Forte

Figure 2-3: The edit window of Forte

Figure 2-4: The output window of Forte

Figure 2-5: Error messages in Forte

Figure 2-6: Starting a new program in Forte

Figure 2-7: Compiling a program with Xemacs

Figure 2-8: Running a program from within Xemacs

Figure 2-9: Locating compilation errors in TextPad

Figure 2-10: Running a Java program from TextPad

Figure 2-11: Running the ImageViewer application

Figure 2-12: The WelcomeApplet applet as viewed by the applet viewer
Figure 2-13: Running the WelcomeApplet applet in a browser
Figure 3-1: Legal conversions between numeric types

Core Java™ 2: Volume I-Fundamentals

Figure 3-2: The three panes of the API documentation
Figure 3-3: Class description for the String class

Figure 3-4: Method summary of the String class

Figure 3-5: Detailed description of a String method

Figure 3-6: An input dialog

Figure 3-7: Flowchart for the if statement

Figure 3-8: Flowchart for the if/else statement

Figure 3-9: Flowchart for the if/else if (multiple branches)
Figure 3-10: Flowchart for the while statement

Figure 3-11: Flowchart for the do/while statement

Figure 3-12: Flowchart for the for statement

Figure 3-13: Flowchart for the switch statement

Figure 3-14: Copying an array variable

Figure 3-15: Copying values between arrays

Figure 3-16: A two-dimensional array

Figure 4-1: A class diagram

Figure 4-2: Procedural vs. OO programming

Figure 4-3: Creating a new object

Figure 4-4: Object variables that refer to the same object
Figure 4-5: Returning a reference to a mutable data field
Figure 4-6: Modifying a numeric parameter has no lasting effect
Figure 4-7: Modifying an object parameter has a lasting effect
Figure 4-8: Swapping object parameters has no lasting effect
Figure 4-9: Changing the warning string in an applet window
Figure 5-1: Employee inheritance hierarchy

Figure 5-2: Inheritance diagram for Person and its subclasses
Figure 6-1: Copying and cloning

Figure 6-2: A shallow copy

Figure 6-3: An inner class object has a reference to an outer class object
Figure 7-1: The Windows look and feel of Swing

Figure 7-2: The Motif look and feel of Swing

Figure 7-3: The Metal look and feel of Swing

Figure 7-4: The simplest visible frame

Figure 7-5: Inheritance hierarchy for the JFrame and JPanel classes
Figure 7-6: A simple graphical program

Figure 7-7: The internal structure of a Jframe

Figure 7-8: 2D rectangle classes

Figure 7-9: The bounding rectangle of an ellipse

Figure 7-10: Relationships between the shape classes

Figure 7-11: Rectangles and ellipses

Figure 7-12: Filled rectangles and ellipses

Figure 7-13: Typesetting terms illustrated

Figure 7-14: Drawing the baseline and string bounds

Figure 7-15: Window with tiled graphics image

Figure 8-1: Event notification

Figure 8-2: A panel filled with buttons

Figure 8-3: Switching the Look and Feel

Figure 8-4: A window listener

Figure 8-5: Inheritance diagram of the AWT event classes
Figure 8-6: Relationship between event sources and listeners

Core Java™ 2: Volume I-Fundamentals

Figure 8-7: A sketch program

Figure 8-8: A mouse test program

Figure 8-9: Buttons display the icons from the Action objects
Figure 8-10: All frames listen to the Close all command
Figure 8-11: Using custom timer events to simulate rainfall
Figure 9-1: Model and view of a text field

Figure 9-2: Two separate views of the same model

Figure 9-3: A window place

Figure 9-4: Interactions between model, view, and controller objects
Figure 9-5: A panel with three buttons

Figure 9-6: A panel with six buttons managed by a flow layout
Figure 9-7: Changing the panel size rearranges the buttons automatically
Figure 9-8: Border layout

Figure 9-9: A single button managed by a border layout
Figure 9-10: A panel placed at the south end of the frame
Figure 9-11: Text field example

Figure 9-12: A text area

Figure 9-13: Testing text editing

Figure 9-14: Check boxes

Figure 9-15: A radio button group

Figure 9-16: Testing border types

Figure 9-17: A combo box

Figure 9-18: Sliders

Figure 9-19: A menu with a submenu

Figure 9-20: Icons in menu items

Figure 9-21: A checked menu item and menu items with radio buttons
Figure 9-22: A pop-up menu

Figure 9-23: Keyboard mnemonics

Figure 9-24: Accelerators

Figure 9-25: Disabled menu items

Figure 9-26: A tool bar

Figure 9-27: Dragging the tool bar

Figure 9-28: Dragging the tool bar to another border

Figure 9-29: Detaching the tool bar

Figure 9-30: A tool tip

Figure 9-31: Inheritance hierarchy for the Component class
Figure 9-32: A calculator

Figure 9-33: Box layouts

Figure 9-34: Font dialog box

Figure 9-35: Dialog box grid used in design

Figure 9-36: Circle layout

Figure 9-37: Geometric traversal order

Figure 9-38: An option dialog

Figure 9-39: The OptionDialogTest program

Figure 9-40: An About dialog box

Figure 9-41: Password dialog box

Figure 9-42: File chooser dialog box

Figure 9-43: A file dialog with a preview accessory

Figure 9-44: The “swatches” pane of color chooser

Figure 9-45: The HSB pane of a color chooser

Core Java™ 2: Volume I-Fundamentals

Figure 9-46: The RGB pane of a color chooser

Figure 10-1: Selecting the Java Virtual Machine in the Java Plug-In
Figure 10-2: Applet inheritance hierarchy

Figure 10-3: Viewing an applet in the applet viewer
Figure 10-4: The Java Plug-In Control Panel

Figure 10-5: The Java Console

Figure 10-6: The Java Plug-In HTML converter
Figure 10-7: Viewing an applet in a browser

Figure 10-8: A calculator applet

Figure 10-9: A pop-up window inside a browser
Figure 10-10: Applet alignment

Figure 10-11: A chart applet

Figure 10-12: A bookmark applet

Figure 10-13: The calculator as an application

Figure 10-14: The calculator as an applet

Figure 10-15: Displaying a resource from a JAR file
Figure 11-1: Exception hierarchy in Java

Figure 11-2: A program that generates exceptions
Figure 11-3: The console window

Figure 11-4: The EventTracer class at work

Figure 11-5: A breakpoint in the Forte debugger
Figure 11-6: The breakpoint list

Figure 11-7: The Forte watch window

Figure 12-1: Input and Output stream hierarchy
Figure 12-2: Reader and Writer hierarchy

Figure 12-3: A sequence of filtered stream

Figure 12-4: The ZipTest program

Figure 12-5: Two managers can share a mutual employee
Figure 12-6: Here, Harry is saved three times

Figure 12-7: An example of object serialization
Figure 12-8: Objects saved in random order

Figure 12-9: The graphical version of the serialver program
Figure 12-10: Reading an object with fewer data fields
Figure 12-11: Reading an object with more data fields

Core Java™ 2: Volume I-Fundamentals

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene and gained instant
celebrity status. The promise of Java is that it will become the universal glue that connects
users with information, whether that information comes from Web servers, databases,
information providers, and any other imaginable source. Indeed Java is in a unique position to
fulfill this promise. It is an extremely solidly engineered language that has gained acceptance
by all major vendors, except for Microsoft. Its built-in security and safety features are
reassuring both to programmers and to the users of Java programs. Java even has built-in
support that makes advanced programming tasks, such as network programming, database
connectivity, and multithreading, straightforward.

Since then, Sun Microsystems has released four major revisions of the Java Software
Development Kit. Version 1.02, released in 1996, supported database connectivity and
distributed objects. Version 1.1, released in 1997, added a robust event model,
internationalization, and the Java Beans component model. Version 1.2, released at the end of
1998, has numerous enhancements, but one major improvement stands out: the “Swing” user
interface toolkit that finally allows programmers to write truly portable GUI applications.
Version 1.3, released in the spring of 2000, delivered many incremental improvements.

The book you have in your hand is the first volume of the fifth edition of the Core Java book.
Each time, the book followed the release of the Java development kit as quickly as possible,
and each time, we rewrote the book to take advantage of the newest Java features.

As with the previous editions of this book, we still target serious programmers who want to
put Java to work on real projects. We still guarantee no nervous text or dancing tooth-shaped
characters. We think of you, our reader, as a programmer with a solid background in a
programming language. But you do not need to know C++ or object-oriented programming.
Based on the responses we have received to the earlier editions of this book, we remain
confident that experienced Visual Basic, C, or COBOL programmers will have no trouble
with this book. (You don't even need any experience in building graphical user interfaces in
Windows, Unix, or the Macintosh.)

What we do is assume you want to:

e Write real code to solve real problems
and

o Don't like books filled with toy examples (such as kitchen appliances or fruit trees).
You will find lots of sample code on the accompanying CD that demonstrates almost every
language and library feature that we discuss. We kept the sample programs purposefully

simple to focus on the major points, but, for the most part, they aren't fake and they don't cut
corners. They should make good starting points for your own code.

Core Java™ 2: Volume I-Fundamentals

We assume you are willing, even eager, to learn about all the advanced features that Java puts
at your disposal. For example, we give you a detailed treatment of:

e Object-oriented programming

e Reflection and proxies

o Interfaces and inner classes

e The event listener model

e Graphical user interface design with the Swing UI toolkit
e Exception handling

o Stream input/output and object serialization

We still don't spend much time on the fun but less serious kind of Java programs whose sole
purpose is to liven up your Web page. There are quite a few sources for this kind of material
already—we recommend John Pew's book Instant Java, also published by Sun Microsystems
Press/Prentice Hall.

Finally, with the explosive growth of the Java class library, a one-volume treatment of all the
features of Java that serious programmers need to know is no longer possible. Hence, we
decided to break the book up into two volumes. The first volume, which you hold in your
hands, concentrates on the fundamental concepts of the Java language, along with the basics
of user-interface programming. The second volume goes further into the enterprise features
and advanced user-interface programming. It includes detailed discussions of:

e Multithreading

e Network programming

o Distributed objects

e Collection classes

e Databases

e Advanced graphics

e Advanced GUI components
e Internationalization

e Native methods

e JavaBeans

When writing a book, errors and inaccuracies are inevitable. We'd very much like to know
about them. But, of course, we'd prefer to learn about each of them only once. We have put up
a list of frequently asked questions, bugs fixes, and workarounds in a Web page at
http://www.horstmann.com/corejava.html. Strategically placed at the end of the FAQ (to
encourage you to read through it first) is a form you can use to report bugs and suggest
improvements. Please don't be disappointed if we don't answer every query or if we don't get
back to you immediately. We do read all e-mail and appreciate your input to make future
editions of this book clearer and more informative.

We hope that you find this book enjoyable and helpful in your Java programming.
About This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out to do and to

Core Java™ 2: Volume I-Fundamentals

what extent they succeeded. Then, we give a short history of how Java came into being and
how it has evolved.

In Chapter 2, we tell you how to install Java and the companion software for this book from
the CD-ROM onto your computer. Then we guide you through compiling and running three
typical Java programs, a console application, a graphical application, and an applet.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, this is smooth
sailing because the syntax for these language features is essentially the same as in C. If you
come from a non-C background such as Visual Basic or COBOL, you will want to read this
chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming practice, and
Java is completely object oriented. Chapter 4 introduces encapsulation, the first of two
fundamental building blocks of object orientation, and the Java language mechanism to
implement it, that is, classes and methods. In addition to the rules of the Java language, we
also give advice on sound OOP design. Finally, we cover the marvelous javadoc tool that
formats your code comments as a set of hyperlinked web pages. If you are familiar with C++,
then you can browse through this chapter quickly. Programmers coming from a non-object-
oriented background should expect to spend some time mastering OOP concepts before going
further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces the
other, namely, inheritance. Inheritance lets you take an existing class and modify it according
to your needs. This is a fundamental technique for programming in Java. The inheritance
mechanism in Java is quite similar to that in C++. Once again, C++ programmers can focus
on the differences between the languages.

Chapter 6 shows you how to use Java's notion of an interface. Interfaces let you go beyond
the simple inheritance model of Chapter 5. Mastering interfaces allows you full access to the
power of Java's completely object-oriented approach to programming. We also cover a useful
technical feature of Java here. These are called inner classes. Inner classes help make your
code cleaner and more concise.

In Chapter 7, we begin application programming in earnest. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to format text in
multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract windows
toolkit. (We discuss the event model that was added to Java 1.1, not the obsolete and
simplistic 1.0 event model.) You'll see how to write the code that responds to events like
mouse clicks or key presses. Along the way you'll see how to handle basic GUI elements like
buttons and panels.

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit is how you can
use Java to build a cross-platform graphical user interface. You'll learn all about the various
kinds of buttons, text components, borders, sliders, list boxes, menus, and dialog boxes.
However, some of the more advanced components are discussed in Volume 2.

Core Java™ 2: Volume I-Fundamentals

After you finish Chapter 9, you finally have all mechanisms in place to write applets, those
mini-programs that can live inside a Web page, and so applets are the topic of Chapter 10. We
show you a number of useful and fun applets, but more importantly, we show you what goes
on behind the scenes. And we show you how to use the Java Plug-in that enables you to roll
out applets that take advantage of all the newest Java features, even if your users use old
browsers or browsers made by hostile vendors.

Chapter 11 discusses exception handling, Java's robust mechanism to deal with the fact that
bad things can happen to good programs. For example, a network connection can become
unavailable in the middle of a file download, a disk can fill up, and so on. Exceptions give
you an efficient way of separating the normal processing code from the error handling. Of
course, even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the second half of this chapter, we give you a large number
of useful debugging tips. Finally, we guide you through sample sessions with various tools:
the JDB debugger, the debugger of the Forte development environment, a profiler, a code
coverage testing tool and the AWT robot.

We finish the book with input and output handling. In Java, all I/O is handled through so-
called streams. Streams let you deal in a uniform manner with communicating with any
source of data, such as files, network connections, or memory blocks. We include detailed
coverage of the reader and writer classes, which make it easy to deal with Unicode; and we
show you what goes on under the hood when you use object serialization mechanism, which
makes saving and loading objects easy and convenient.

An appendix lists the Java language keywords.
Conventions
As is common in many computer books, we use courier type to represent computer code.
¥ . [There are many C++ notes that explain the difference between Java and
C++. You can skip over them if you don't have a background in C++ or if

you consider your experience with that language a bad dream of which
you'd rather not be reminded.

Notes and tips are tagged with “note” and “tip” icons that look like these.

10

Core Java™ 2: Volume I-Fundamentals

When there is danger ahead, we warn you with a “Caution” icon.

Java comes with a large programming library or Application
A P11 Programming Interface (API). When using an API call for the first time,

we add a short summary description tagged with an API icon at the end of
the section. These descriptions are a bit more informal, but we hope also
a little more informative than those in the official on-line API
documentation.

Programs whose source code is on the CD-ROM are listed as examples, for instance
Example 2-5: WelcomeApplet.java.

CD-ROM

The CD-ROM on the back of the book contains the latest version of the Java Software
Development Kit. At the time we are writing this, these materials are available only for
Windows 95/NT or Solaris 2.

Of course, the CD-ROM contains all sample code from the book, in compressed form. You
can expand the file either with one of the familiar unzipping programs or simply with the jar
utility that is part of the Java Software Development Kit.

The CD-ROM also contains a small selection of “best of breed” programs that you may find
helpful for your development. Generally, these programs require that you pay the vendors
some amount of money if you use them beyond a trial period. We have no connection with
the vendors, except as satisfied users of their products. Please contact the vendors directly
with any questions you may have about the programs.

NOTE

People have often asked what the licensing requirements for using the
sample code in a commercial situation are. You can freely use any code
from this book for non-commercial use. However, if you do want to use
the code as a basis for a commercial product, we simply require that
every Java programmer on the development team for that project own a
copy of Core Java.

11

Core Java™ 2: Volume I-Fundamentals

Acknowledgments

Writing a book is always a monumental effort, and rewriting doesn't seem to be much easier,
especially with continuous change in Java technology. Making a book a reality takes many
dedicated people, and it is my great pleasure to acknowledge the contributions of the entire
Core Java team.

A large number of individuals at Prentice-Hall PTR, Sun Microsystems Press and Navta Inc.
provided valuable assistance, but they managed to stay behind the scenes. I'd like them all to
know how much I appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench of Prentice-Hall PTR, and his assistant, Mary Treacy, for steering the book through
the writing and production process, and for allowing me to be blissfully unaware of the
existence of all those folks behind the scenes. My thanks also to my co-author of earlier
editions, Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported many embarrassing errors and
made lots of thoughtful suggestions for improvement. I am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail and
saved me from many more embarrassing errors. The reviewers are: Bob Lynch, Bradley A.
Smith, Paul E. Sevinc from Teamup AG, Mark Morrissey from the Oregon Graduate Institute,
Peter Sander from ESSI University, Nice, France, and Chuck Allison, Contributing Editor,
C/C++ Users Journal.

Most importantly, my love, gratitude, and apologies go to my wife Hui-Chen and my children
Thomas and Nina for their continuing support of this never-ending project.

Cay Horstmann

Cupertino, November 2000

12

Core Java™ 2: Volume I-Fundamentals

Chapter 1. An Introduction to Java

e Java as a Programming Tool

e Advantages of Java

e The Java “White Paper” Buzzwords
e Java and the Internet

e A Short History of Java

e Common Misconceptions about Java

For a long time, to open a computer magazine that did not have a feature article on Java
seemed impossible. Even mainstream newspapers and magazines like The New York Times,
The Washington Post, and Business Week have run numerous articles on Java. It gets better
(or worse, depending on your perspective): can you remember the last time National Public
Radio ran a 10-minute story on a computer language? Or a $100,000,000 venture capital fund
was set up solely for products produced using a specific computer language? CNN, CNBC,
you name the mass medium, it seems everyone was, and to a certain extent still is, talking
about how Java will do this or Java will do that.

However, we decided to write this book for serious programmers, and because Java is a
serious programming language, there's a lot to tell. So, rather than immediately getting caught
up in an analysis of the Java hype and trying to deal with the limited (if still interesting) truth
behind the hype, we will write in some detail about Java as a programming language
(including, of course, the features added for its use on the Internet that started the hype). After
that, we will try to separate current fact from fancy by explaining what Java can and cannot
do.

In the early days of Java, there was a huge disconnect between the hype and the actual
abilities of Java. As Java is maturing, the technology is becoming a lot more stable and
reliable, and expectations are coming down to reasonable levels. As we write this, Java is
being increasingly used for “middleware” to communicate between clients and server
resources such as databases. While not glitzy, this is an important area where Java, primarily
due to its portability and multithreading and networking capabilities, can add real value. Java
is making great inroads in embedded systems, where it is well positioned to become
a standard for hand-held devices, Internet kiosks, car computers, and so on. However, early
attempts to rewrite familiar PC programs in Java were not encouraging—the applications
were underpowered and slow. With the current version of Java, some of these problems have
been overcome, but still, users don't generally care what programming language was used to
write their applications. We think that the benefits of Java will come from new kinds of
devices and applications, not from rewriting existing ones.

Java as a Programming Tool

As a computer language, Java's hype is overdone: Java is certainly a good programming
language. There is no doubt that it is one of the better languages available to serious
programmers. We think it could potentially have been a great programming language, but it is
probably too late for that. Once a language is out in the field, the ugly reality of compatibility
with existing code sets in. Moreover, even in cases where changes are possible without
breaking existing code, it is hard for the creators of a language as acclaimed as Java to sit
back and say, “Well, maybe we were wrong about X, and Y would be better.” In sum, while

13

Core Java™ 2: Volume I-Fundamentals

we expect there to be some improvements over time, basically, the structure of the Java
language tomorrow will be much the same as it is today.

Having said that, the obvious question is, Where did the dramatic improvements of Java come
from? The answer is that they didn't come from changes to the underlying Java programming
language, they came from major changes in the Java libraries. Over time, Sun Microsystems
changed everything from the names of many of the library functions (to make them more
consistent), to how graphics works (by changing the event handling model and rewriting parts
from scratch), to adding important features like printing that were not part of Java 1.0.
The result is a far more useful programming platform that has become enormously more
capable and useful than early versions of Java.

NOTE

Microsoft has released a product called J++ that shares a family
relationship with Java. Like Java, J++ is interpreted by a virtual machine
that is compatible with the Java Virtual Machine for executing Java
bytecodes, but there are substantial differences when interfacing with
external code. The basic language syntax is almost identical to Java.
However, Microsoft added language constructs that are of doubtful
utility except for interfacing with the Windows API. In addition to Java
and J++ sharing a common syntax, their foundational libraries (strings,
utilities, networking, multithreading, math, and so on) are essentially
identical. However, the libraries for graphics, user interfaces, and remote
object access are completely different. At this point, Microsoft is no
longer supporting J++ but has instead introduced another language called
C# that also has many similarities with Java but uses a different virtual
machine. We do not cover J++ or C# in this book.

Advantages of Java

One obvious advantage is a runtime environment that provides platform independence: you
can use the same code on Windows, Solaris, Linux, Macintosh, and so on. This is certainly
necessary when programs are downloaded over the Internet to run on a variety of platforms.

Another programming advantage is that Java has a syntax similar to that of C++, making it
easy for C and C++ programmers to learn. Then again, Visual Basic programmers will
probably find the syntax annoying.

NOTE

If you are coming from a language other than C++, some of the terms
used in this section will be less familiar—just skip those sections. You
will be comfortable with all of these terms by the end of Chapter 6.

14

Core Java™ 2: Volume I-Fundamentals

Java is also fully object oriented—even more so than C++. Everything in Java, except for a
few basic types like numbers, is an object. (Object-oriented programming has replaced earlier
structured techniques because it has many advantages for dealing with sophisticated projects.
If you are not familiar with Object-oriented programming, Chapters 3 through 6 provide what
you need to know.)

However, having yet another, somewhat improved, dialect of C++ would not be enough. The
key point is this: ¢ is far easier to turn out bug-free code using Java than using C++.

Why? The designers of Java thought hard about what makes C++ code so buggy. They added
features to Java that eliminate the possibility of creating code with the most common kinds of
bugs.

e The Java designers eliminated manual memory allocation and deallocation.

Memory in Java is automatically garbage collected. You never have to worry about
memory corruption.

e They introduced true arrays and eliminated pointer arithmetic.

You never have to worry about overwriting an area of memory because of an off-by-
one error when working with a pointer.

o They eliminated the possibility of confusing an assignment with a test for equality in a
conditional statement.

You cannot even compile if (ntries = 3). . . .(Visual Basic programmers may
not see the problem, but, trust us, this is a common source of confusion in C/C++
code.)

e They eliminated multiple inheritance, replacing it with a new notion of interface that
they derived from Objective C.

Interfaces give you most of what you want from multiple inheritance, without the
complexity that comes with managing multiple inheritance hierarchies. (If inheritance

is a new concept for you, Chapter 5 will explain it.)

NOTE

The Java language specification is public. You can find it on the Web at
http://java.sun.com/docs/books/jls/html/index.html.

The Java “White Paper” Buzzwords

The authors of Java have written an influential White Paper that explains their design goals
and accomplishments. Their paper is organized along the following eleven buzzwords:

15

Core Java™ 2: Volume I-Fundamentals

Simple Portable

Object Oriented Interpreted
Distributed High Performance
Robust Multithreaded
Secure Dynamic

Architecture Neutral

We touched on some of these points in the last section. In this section, we will:

e Summarize via excerpts from the White Paper what the Java designers say about each
buzzword, and

e Tell you what we think of that particular buzzword, based on our experiences with the
current version of Java.

NOTE

As we write this, the White Paper can be found at
http://java.sun.com/doc/language environment.

Simple

We wanted to build a system that could be programmed easily without a lot of
esoteric training and which leveraged today's standard practice. So even
though we found that C++ was unsuitable, we designed Java as closely to
C++ as possible in order to make the system more comprehensible. Java omits
many rarely used, poorly understood, confusing features of C++ that, in our
experience, bring more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no need
for header files, pointer arithmetic (or even a pointer syntax), structures, unions, operator
overloading, virtual base classes, and so on. (See the C++ notes interspersed throughout the
text for more on the differences between Java and C++.) The designers did not, however,
attempt to fix all of the clumsy features of C++. For example, the syntax of the switch
statement is unchanged in Java. If you know C++, you will find the transition to the Java
syntax easy.

If you are used to a visual programming environment (such as Visual Basic), you will not find
Java simple. There is much strange syntax (though it does not take long to get the hang of it).
More importantly, you must do a lot more programming in Java. The beauty of Visual Basic
is that its visual design environment provides a lot of the infrastructure for an application
almost automatically. The equivalent functionality must be programmed manually, usually
with a fair bit of code, in Java. There are, however, third-party development environments
that provide “drag-and-drop” style program development.

Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone in small

16

Core Java™ 2: Volume I-Fundamentals

machines. The size of the basic interpreter and class support is about 40K
bytes,; adding the basic standard libraries and thread support (essentially a
self-contained microkernel) adds an additional 175K.

This is a great achievement. Note, however, that the graphical user interface (GUI) libraries
are significantly larger.

Object Oriented

Simply stated, object-oriented design is a technique for programming that
focuses on the data (= objects) and on the interfaces to that object. To make an
analogy with carpentry, an “object-oriented” carpenter would be mostly
concerned with the chair he was building, and secondarily with the tools used
to make it; a “non-object-oriented” carpenter would think primarily of his
tools. The object-oriented facilities of Java are essentially those of C++.

Object orientation has proven its worth in the last 30 years, and it is inconceivable that a
modern programming language would not use it. Indeed, the object-oriented features of Java
are comparable to C++. The major difference between Java and C++ lies in multiple
inheritance, for which Java has found a better solution, and in the Java metaclass model. The
reflection mechanism (see Chapter 5) and object serialization feature (see Chapter 12) make it
much easier to implement persistent objects and GUI builders that can integrate off-the-shelf
components.

NOTE
If you do not have any experience with object-oriented programming
languages, you will want to carefully read Chapters 4 through 6. These
chapters explain what object-oriented programming is and why it is more
useful for programming sophisticated projects than traditional,
procedure-oriented languages like C or Basic.
Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net
via URLs with the same ease as when accessing a local file system.

We have found the networking capabilities of Java to be both strong and easy to use. Anyone
who has tried to do Internet programming using another language will revel in how simple
Java makes onerous tasks like opening a socket connection. An elegant mechanism, called
servlets, makes server-side processing in Java extremely efficient. Many popular web servers
support servlets. (We will cover networking in Volume 2 of this book.) The remote method
invocation mechanism enables communication between distributed objects (also covered in
Volume 2).

17

Core Java™ 2: Volume I-Fundamentals

Robust

Java is intended for writing programs that must be reliable in a variety of
ways. Java puts a lot of emphasis on early checking for possible problems,
later dynamic (run-time) checking, and eliminating situations that are error-
prone... . The single biggest difference between Java and C/C++ is that Java
has a pointer model that eliminates the possibility of overwriting memory and
corrupting data

This feature is also very useful. The Java compiler detects many problems that, in other
languages, would show up only at run time. As for the second point, anyone who has spent
hours chasing memory corruption caused by a pointer bug will be very happy with this feature
of Java.

If you are coming from a language like Visual Basic or Cobol that doesn't explicitly use
pointers, you are probably wondering why this is so important. C programmers are not so
lucky. They need pointers to access strings, arrays, objects, even files. In Visual Basic, you do
not use pointers for any of these entities, nor do you need to worry about memory allocation
for them. On the other hand, there are many data structures that are difficult to implement in a
pointerless language. Java gives you the best of both worlds. You do not need pointers for
everyday constructs like strings and arrays. You have the power of pointers if you need it, for
example, for linked lists. And you always have complete safety, since you can never access a
bad pointer, make memory allocation errors, or have to protect against memory leaking away.

Secure

Java is intended to be used in networked/distributed environments. Toward
that end, a lot of emphasis has been placed on security. Java enables the
construction of virus-free, tamper-free systems.

In the first edition of Core Java we said: “Well, one should 'never say never again,” and we
turned out to be right. A group of security experts at Princeton University found the first bugs
in the security features of Java 1.0—mnot long after the first version of the Java Development
Kit was shipped. Moreover, they and various other people have continued to find other bugs
in the security mechanisms of all subsequent versions of Java. For opinions from outside
experts on the current status of Java's security mechanisms, you may want to check the URL
for the Princeton group (http://www.cs.princeton.edu/sip/) and the comp.risks newsgroup.
The good side is that the Java team has said that they will have a “zero tolerance” for security
bugs and will immediately go to work on fixing any bugs found in the applet security
mechanism. In particular, by making public the internal specifications of how the Java
interpreter works, Sun is making it far easier for people to find any bugs in Java's security
features—essentially enlisting the outside community in the ever-so-subtle security bug
detection. This makes one more confident that security bugs will be found as soon as possible.
In any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs
found so far have been very subtle and (relatively) few in number.

18

Core Java™ 2: Volume I-Fundamentals

NOTE

Sun's URL for security-related issues is currently at
http://java.sun.com/sfaq/

Here is a sample of what Java's security features are supposed to keep a Java program from
doing:

1. Overrunning the runtime stack, like the infamous Internet worm did

2. Corrupting memory outside its own process space

3. Reading or writing local files when invoked through a security-conscious class loader,
like a Web browser that has been programmed to forbid this kind of access

All of these features are in place and for the most part seem to work as intended. Java is
certainly the most secure programming language to date. But, caution is always in order.
Though the bugs found in the security mechanism to date were not trivial to find and full
details are often kept secret, still it may be impossible to prove that Java is secure.

A number of security features have been added to Java over time. Since version 1.1, Java has
the notion of digitally signed classes (see Volume 2). With a signed class, you can be sure of
who wrote it. Any time you trust the author of the class, the class can be allowed more
privileges on your machine.

NOTE

A competing code delivery mechanism from Microsoft based on its
ActiveX technology relies on digital signatures alone for security.
Clearly this is not sufficient—as any user of Microsoft's own products
can confirm, programs from well-known vendors do crash and in so
doing, create damage. Java has a far stronger security model than
ActiveX since it controls the application as it runs and stops it from
wreaking havoc.

Architecture Neutral

The compiler generates an architecture-neutral object file format—the
compiled code is executable on many processors, given the presence of the
Java run time system. The Java compiler does this by generating bytecode
instructions which have nothing to do with a particular computer architecture.
Rather, they are designed to be both easy to interpret on any machine and
easily translated into native machine code on the fly.

This is not a new idea. More than twenty years ago, both Niklaus Wirth's original

implementation of Pascal and the UCSD Pascal system used the same technique. With the use
of bytecodes, performance takes a major hit (but just-in-time compilation mitigates this in

19

Core Java™ 2: Volume I-Fundamentals

many cases). The designers of Java did an excellent job developing a bytecode instruction set
that works well on today's most common computer architectures. And the codes have been
designed to translate easily into actual machine instructions.

Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the
behavior of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit
integer, a 32-bit integer, or any other size that the compiler vendor likes. The only restriction
is that the int type must have at least as many bytes as a short int and cannot have more
bytes than a long int. Having a fixed size for number types eliminates a major porting
headache. Binary data is stored and transmitted in a fixed format, eliminating the “big
endian/little endian” confusion. Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For
example, there is an abstract Window class and implementations of it for
UNIX, Windows, and the Macintosh.

As anyone who has ever tried knows, it is an effort of heroic proportions to write a program
that looks good on Windows, the Macintosh, and 10 flavors of UNIX. Java 1.0 made the
heroic effort, delivering a simple toolkit that mapped common user-interface elements to a
number of platforms. Unfortunately, the result was a library that, with a lot of work, could
give barely acceptable results on different systems. (And there were often different bugs on
the different platform graphics implementations.) But it was a start. There are many
applications in which portability is more important than user interface slickness, and these
applications did benefit from early versions of Java. By now, the user interface toolkit has
been completely rewritten so that it no longer relies on the host user interface. The result is far
more consistent and, we think, more attractive than in earlier versions of Java.

Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter has been ported. Since linking is a more incremental and
lightweight process, the development process can be much more rapid and
exploratory.

Perhaps this is an advantage while developing an application, but it is clearly overstated. In
any case, we have found the Java compiler that comes with the Java Software Development
Kit (SDK) to be quite slow. (Some third party compilers, for example those by IBM, are quite
a bit faster.) And recompilation speed is only one of the ingredients of a development
environment with fast turnaround. If you are used to the speed of the development cycle of
Visual Basic, you will likely be disappointed with the performance of Java development
environments.

20

Core Java™ 2: Volume I-Fundamentals

High Performance

While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can
be translated on the fly (at run time) into machine code for the particular CPU
the application is running on.

If you use an interpreter to execute the bytecodes, “high performance” is not the term that we
would use. However, on many platforms, there is also another form of compilation, the just-
in-time (JIT) compilers. These work by compiling the bytecodes into native code once,
caching the results, and then calling them again if needed. This approach speeds up
commonly used code tremendously since one has to do the interpretation only once. Although
still slightly slower than a true native code compiler, a just-in-time compiler can give you a
10- or even 20-fold speedup for some programs and will almost always be significantly faster
than the Java interpreter. This technology is being improved continuously and may eventually
yield results that cannot be matched by traditional compilation systems. For example, a just-
in-time compiler can monitor which code is executed frequently and optimize just that code
for speed.

Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-
time behavior.

If you have ever tried to do multithreading in another language, you will be pleasantly
surprised at how easy it is in Java. Threads in Java also have the capacity to take advantage of
multiprocessor systems if the base operating system does so. On the downside, thread
implementations on the major platforms differ widely, and Java makes no effort to be
platform independent in this regard. Only the code for calling multithreading remains the
same across machines; Java offloads the implementation of multithreading to the underlying
operating system or a thread library. (Threading will be covered in volume 2.) Nonetheless,
the ease of multithreading is one of the main reasons why Java is such an appealing language
for server-side development.

Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new
methods and instance variables without any effect on their clients. In Java,
finding out run time type information is straightforward.

This is an important feature in those situations where code needs to be added to a running
program. A prime example is code that is downloaded from the Internet to run in a browser.
In Java 1.0, finding out runtime type information was anything but straightforward, but
current versions of Java give the programmer full insight into both the structure and behavior
of its objects. This is extremely useful for systems that need to analyze objects at run time
such as Java GUI builders, smart debuggers, pluggable components, and object databases.

21

Core Java™ 2: Volume I-Fundamentals

Java and the Internet

The idea here is simple: users will download Java bytecodes from the Internet and run them
on their own machines. Java programs that work on Web pages are called applets. To use an
applet, you need a Java-enabled Web browser, which will interpret the bytecodes for you.
Because Sun is licensing the Java source code and insisting that there be no changes in the
language and basic library structure, you can be sure that a Java applet will run on any
browser that is advertised as Java enabled. Note that Netscape 2.x and Netscape 3.x are only
Java 1.02 enabled, as is Internet Explorer 3.0. Netscape 4 and Internet Explorer 4 run
different subsets of Java 1.1. This sorry situation made it increasingly difficult to develop
applets that take advantage of the most current Java version. To remedy this problem, Sun has
developed the Java Plug-in, a tool that makes the newest Java runtime environment available
to both Netscape and Internet Explorer (see Chapter 10).

We suspect that most of the initial hype around Java stemmed from the lure of making money
from special-purpose applet software. You have a nifty “Will Writer” program. Convert it to
an applet, and charge people per use—presumably, most people would be using this kind of
program infrequently. Some people predict a time when everyone downloads software from
the Net on a per-use basis. This might be great for software companies, but we think it is
absurd, for example, to expect people to download and pay for a spell-checker applet each
time they send an e-mail message.

Another early suggested use for applets was for so-called content and protocol handlers that
allow a Java-enabled Web browser to deal with new types of information dynamically.
Suppose you invent a new fractal compression algorithm for dealing with humongous
graphics files and want to let someone sample your technology before you charge them big
bucks for it. Write a Java content handler that does the decompression and send it along with
the compressed files. The HotJava browser by Sun Microsystems supports this feature, but
neither Netscape nor Internet Explorer ever did.

Applets can also be used to add buttons and input fields to a Web page. But downloading
those applets over a dialup line is slow, and you can do much of the same with Dynamic
HTML, HTML forms, and a scripting language such as JavaScript. And, of course, early
applets were used for animation: the familiar spinning globes, dancing cartoon characters,
nervous text, and so on. But animated GIFs can do much of this, and Dynamic HTML
combined with scripting can do even more of what Java applets were first used for.

As a result of the browser incompatibilities and the inconvenience of downloading applet
code through slow net connections, applets on Internet Web pages have not become a huge
success. The situation is entirely different on intranets. There are typically no bandwidth
problems, so the download time for applets is no issue. And in an intranet, it is possible to
control which browser is being used or to use the Java Plug-in consistently. Employees can't
misplace or misconfigure programs that are delivered through the Web with each use, and the
system administrator never needs to walk around and upgrade code on client machines. Many
corporations have rolled out programs such as inventory checking, vacation planning, travel
reimbursement, and so on, as applets that use the browser as the delivery platform.

22

Core Java™ 2: Volume I-Fundamentals

Applets at Work

This book includes a few sample applets; ultimately, the best source for applets is the Web
itself. Some applets on the Web can only be seen at work; many others include the source
code. When you become more familiar with Java, these applets can be a great way to learn
more about Java. A good Web site to check for Java applets is Gamelan—it is now hosted as
part of the developer.com site, but you can still reach it through the URL
http://www.gamelan.com/. (By the way, gamelan also stands for a special type of Javanese
musical orchestra. Attend a gamelan performance if you have a chance—it is gorgeous
music.)

When the user downloads an applet, it works much like embedding an image in a Web page.
(For those who know HTML, we mean one set with an IMG tag.) The applet becomes a part
of the page, and the text flows around the space used for the applet. The point is, the image is
alive. Tt reacts to user commands, changes its appearance, and sends data between the
computer viewing the applet and the computer serving it.

Figure 1-1 shows a good example of a dynamic web page that carries out sophisticated
calculations, an applet to view molecules. By using the mouse, you can rotate and zoom each
molecule to better understand its structure. This kind of direct manipulation is not achievable
with static web pages, but applets make it possible. (You can find the applet at
http://www.openscience.org/jmol/Jmol Applet.html.)

Figure 1-1. The Jmol applet

Fila El View G2 Comsunicalr Ilm|

R e SN G e
Back Foreand Fabead Hame Search Hatpcage Prist Sy Siap

] wi " Bovimais JI. Locaien: rrp: vy epemscionca angdjmels ;‘If_" Whal's Felbed
F.‘m.‘w‘l’m"WFQHIM‘FM*JM‘EWMM

A 1mol Agplel B JITIH| .Pﬁpplat
m T [agm b and A, Smith dpeldara } haree dora some amazing work corverting Jmed for use as an
m Appar My ww o Pimpheg of B =l dppler with Calfaise (VT and Mokl {EML)

1 LS
[Coniibutor | © |, TR PN
; - ¥
o]
| Buns | e o & .
G- S T-AL
Ie. & o T
e Lo
N ¥ T

L e e

Server-side Java

At the time of this writing, the pendulum has swung back from client-focused programs to
server-side programming. In particular, application servers can use the monitoring
capabilities of the Java virtual machine to perform automatic load balancing, database
connection pooling, object synchronization, safe shutdown and restart, and other services that

23

Core Java™ 2: Volume I-Fundamentals

are needed for scalable server applications but are notoriously difficult to implement
correctly. Thus, application programmers can buy rather than build these sophisticated
mechanisms. This increases programmer productivity—programmers focus on their core
competency, the business logic of their programs, and not on tweaking server performance.

A Short History of Java

This section gives a short history of Java's evolution. It is based on various published sources
(most importantly, on an interview with Java's creators in the July 1995 issue of SunWorld's
on-line magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton and Sun
Fellow (and all-around computer wizard) James Gosling, wanted to design a small computer
language that could be used for consumer devices like cable TV switchboxes. Since these
devices do not have a lot of power or memory, the language had to be small and generate very
tight code. Also, because different manufacturers may choose different central processing
units (CPUs), it was important not to be tied down to any single architecture. The project got
the code name “Green.”

The requirements for small, tight, and platform-neutral code led the team to resurrect the
model that some Pascal implementations tried in the early days of PCs. What Niklaus Wirth,
the inventor of Pascal, had pioneered, and UCSD Pascal did commercially, was to design a
portable language that generated intermediate code for a hypothetical machine. (These are
often called virtual machines—hence, the Java Virtual Machine or JVM.) This intermediate
code could then be used on any machine that had the correct interpreter. The Green project
engineers used a virtual machine as well, so this solved their main problem.

The Sun people, however, come from a UNIX background, so they based their language on
C++ rather than Pascal. In particular, they made the language object oriented rather than
procedure oriented. But, as Gosling says in the interview, “All along, the language was a tool,
not the end.” Gosling decided to call his language “Oak.” (Presumably because he liked the
look of an oak tree that was right outside his window at Sun.) The people at Sun later realized
that Oak was the name of an existing computer language, so they changed the name to Java.

In 1992, the Green project delivered its first product, called “*7.” It was an extremely
intelligent remote control. (It had the power of a SPARCstation in a box that was 6 inches by
4 inches by 4 inches.) Unfortunately, no one was interested in producing this at Sun, and the
Green people had to find other ways to market their technology. However, none of the
standard consumer electronics companies were interested. The group then bid on a project to
design a cable TV box that could deal with new cable services such as video on demand. They
did not get the contract. (Amusingly, the company that did was led by the same Jim Clark
who started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and half of
1994 looking for people to buy its technology—no one was found. (Patrick Naughton, one of
the founders of the group and the person who ended up doing most of the marketing, claims to
have accumulated 300,000 air miles in trying to sell the technology.) First Person was
dissolved in 1994.

24

Core Java™ 2: Volume I-Fundamentals

While all of this was going on at Sun, the World Wide Web part of the Internet was growing
bigger and bigger. The key to the Web is the browser that translates the hypertext page to the
screen. In 1994, most people were using Mosaic, a noncommercial Web browser that came
out of the supercomputing center at the University of Illinois in 1993. (Mosaic was partially
written by Marc Andreessen for $6.85 an hour as an undergraduate student on a work-study
project. He moved on to fame and fortune as one of the cofounders and the chief of
technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers realized
that “We could build a real cool browser. It was one of the few things in the client/server
mainstream that needed some of the weird things we'd done: architecture neutral, real-time,
reliable, secure—issues that weren't terribly important in the workstation world. So we built a
browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and evolved into the
HotJava browser that we have today. The HotJava browser was written in Java to show off the
power of Java. But the builders also had in mind the power of what are now called applets, so
they made the browser capable of executing code inside web pages. This “proof of
technology” was shown at SunWorld '95 on May 23, 1995, and inspired the Java craze that
continues unabated today.

The big breakthrough for widespread Java use came in the fall of 1995, when Netscape
decided to make the Navigator browser Java enabled in January 1996. Other licensees include
IBM, Symantec, Inprise, and many others. Even Microsoft has licensed Java. Internet
Explorer is Java enabled, and Windows ships with a Java virtual machine. (Note that
Microsoft does not support the most current version of Java, however, and that its
implementation differs from the Java standard.)

Sun released the first version of Java in early 1996. It was followed by Java 1.02 a couple of
months later. People quickly realized that Java 1.02 was not going to cut it for serious
application development. Sure, you could use Java 1.02 to make a nervous text applet that
moves text randomly around in a canvas. But you couldn't even print in Java 1.02. To be
blunt, Java 1.02 was not ready for prime time.

The big announcements about Java's future features trickled out over the first few months of
1996. Only at the JavaOne conference held in San Francisco in May of 1996 did the bigger
picture of where Java was going become clearer. At JavaOne the people at Sun Microsystems
outlined their vision of the future of Java with a seemingly endless stream of improvements
and new libraries.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2, which
replaces the early toy-like GUI and graphics toolkits with sophisticated and scalable versions
that come a lot closer to the promise of “Write Once, Run Anywhere”™ than their
predecessors. Three days after (!) its release in December 1998, the name was changed to
Java 2.

Since then, the core Java platform has stabilized. The current release, with the catchy name
Java 2 Software Development Kit, Standard Edition version 1.3, is an incremental
improvement over the initial Java 2 release, with a small number of new features, increased
performance and, of course, quite a few bug fixes. Now that a stable foundation exists,

25

Core Java™ 2: Volume I-Fundamentals

innovation has shifted to advanced Java libraries such as the Java 2 Enterprise Edition and the
Java 2 Micro Edition.

Common Misconceptions About Java

In summary, what follows is a list of some common misconceptions about Java, along with
commentary.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a Web page.
They have nothing in common except that there are HTML extensions for placing Java
applets on a Web page.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to distinguish
between how easy it is to write toy programs and how hard it is to do serious work. Also,
consider that only four chapters in this book discuss the Java language. The remaining
chapters of both volumes show how to put the language to work, using the Java libraries. The
Java libraries contain thousands of classes and interfaces, and tens of thousands of functions.
Luckily, you do not need to know every one of them, but you do need to know surprisingly
many to use Java for anything realistic.

Java is an easy environment in which to program.

The Java SDK is not an easy environment to use—except for people who are accustomed to
command-line tools. There are integrated development environments that feature integrated
editors, compilers, drag-and-drop form designers combined with decent debugging facilities,
but they can be somewhat complex and daunting for the newcomer. They also work by
generating what is often hundreds of lines of code. We don't think you are well served when
first learning Java by starting with hundreds of lines of computer-generated Ul code filled
with comments that say DO NOT MODIFY or the equivalent. We have found in teach ing
Java that using your favorite text editor is still the best way to learn Java, and that is what we
will do.

Java will become a universal programming language for all platforms.

This is possible, in theory, and it is certainly the case that every vendor but Microsoft seems
to want this to happen. However, there are many applications, already working perfectly well
on desktops, that would not work well on other devices or inside a browser. Also, these
applications have been written to take advantage of the speed of the processor and the native
user-interface library and have been ported to all of the important platforms anyway. Among
these kinds of applications are word processors, photo editors, and web browsers. They are
typically written in C or C++, and we see no benefit to the end user in rewriting them in Java.
And, at least in the short run, there would be significant disadvantages since the Java version
is likely to be slower and less powerful.

26

Core Java™ 2: Volume I-Fundamentals

Java is just another programming language.

Java is a nice programming language; most programmers prefer it over C or C++. But there
have been hundreds of nice programming languages that never gained widespread popularity,
whereas languages with obvious flaws, such as C++ and Visual Basic, have been wildly
successful.

Why? The success of a programming language is determined far more by the utility of the
support system surrounding it than by the elegance of its syntax. Are there useful, convenient,
and standard libraries for the features that you need to implement? Are there tool vendors that
build great programming and debugging environments? Does the language and the tool set
integrate with the rest of the computing infrastructure? Java is successful on the server
because its class libraries let you easily do things that were hard before, such as networking
and multithreading. The fact that Java reduces pointer errors is a bonus and so programmers
seem to be more productive with Java, but these are not the source of its success.

This is an important point that one vendor in particular—who sees portable libraries as a
threat—tries to ignore, by labeling Java “just a programming language” and by supplying a
system that uses a derivative of Java and a proprietary and nonportable library. The result may
well be a very nice language that is a direct competitor to Visual Basic but has little to do with
Java.

Java is interpreted, so it is too slow for serious applications on a specific platform.

Many programs spend most of their time on things like user-interface interactions or waiting
for data from a network connection. All programs, no matter what language they are written
in, will detect a mouse click in adequate time. It is true that we would not do CPU-intensive
tasks with the interpreter supplied with the Java SDK. However, on platforms where a just-in-
time compiler is available, all you need to do is run the bytecodes through it and most
performance issues simply go away. Finally, Java is great for network-bound programs.
Experience has shown that Java can comfortably keep up with the data rate of a network
connection, even when doing computationally intensive work such as encryption. As long as
Java is faster than the data that it processes, it does not matter that C++ might be faster still.
Java is easier to program, and it is portable. This makes Java a great language for
implementing network services.

All Java programs run inside a Web page.

All Java applets run inside a Web browser. That is the definition of an applet—a Java
program running inside a browser. But it is entirely possible, and quite useful, to write stand-
alone Java programs that run independently of a Web browser. These programs (usually
called applications) are completely portable. Just take the code and run it on another machine!
And because Java is more convenient and less error-prone than raw C++, it is a good choice
for writing programs. It is an even more compelling choice when it is combined with database
access tools like Java Database Connectivity (see Volume 2). It is certainly the obvious choice
for a first language in which to learn programming.

Most of the programs in this book are stand-alone programs. Sure, applets are fun. But stand-
alone Java programs are more important and more useful in practice.

27

Core Java™ 2: Volume I-Fundamentals

Java applets are a major security risk.

There have been some well-publicized reports of failures in the Java security system. Most
have been in the implementation of Java in a specific browser. Researchers viewed it as a
challenge to try to find chinks in the Java armor and to defy the strength and sophistication of
the applet security model. The technical failures that they found have all been quickly
corrected, and to our knowledge, no actual systems were ever compromised. To keep this in
perspective, consider the literally millions of virus attacks in Windows executable files and
Word macros that cause real grief but surprisingly little criticism of the weaknesses of the
attacked platform. Also, the ActiveX mechanism in Internet Explorer would be a fertile
ground for abuse, but it is so boringly obvious how to circumvent it that few have bothered to
publicize their findings.

Some system administrators have even deactivated Java in company browsers, while
continuing to permit their users to download executable files, ActiveX controls, and Word
documents. That is pretty ridiculous—currently, the risk of being attacked by hostile Java
applets is perhaps comparable to the risk of dying from a plane crash; the risk of being
infected by opening Word documents is comparable to the risk of dying while crossing a busy
freeway on foot.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside Web pages, was invented by Netscape
and originally called LiveScript. JavaScript has a syntax that is reminiscent of Java, but
otherwise there are no relationships (except for the name, of course). A subset of JavaScript is
standardized as ECMA-262, but the extensions that you need for real work have not been
standardized, and as a result, writing JavaScript code that runs both in Netscape and Internet
Explorer is an exercise in frustration.

You should use Java instead of Perl for CGI scripting.

This is half right. Not only should you no longer use Perl, you should also not use CGI scripts
for server-side processing. Java servlets are a superior solution. Servlets execute much more
efficiently than CGI scripts, and you can use Java— a real programming language—to
implement them.

Java will revolutionize client-server computing.

This is possible and it is where much of the best work in Java is being done. There are quite a
few application servers such as BEA Weblogic that are built entirely in Java. The JDBC
discussed in Volume 2 certainly makes using Java for client-server development easier. As
third-party tools continue to be developed, we expect database development with Java to be as
easy as the Net library makes network programming. Accessing remote objects is
significantly easier in Java than in C++ (see Volume 2).

Java will allow the component-based model of computing to take off.
No two people mean the same thing when they talk about components. Regarding visual

controls, like ActiveX components that can be dropped into a GUI program, Java 1.1 includes
the JavaBeans initiative (see Volume 2). Java beans can do the same sorts of things as

28

Core Java™ 2: Volume I-Fundamentals

ActiveX components except they are automatically cross-platform. On the server side,
reusable enterprise beans can potentially be deployed in a wide variety of application servers.
It is possible that a market for these components will materialize, similar to the market of
ActiveX components in the Wintel world.

1

With Java, I can replace my computer with a $500 “Internet appliance.’

Some people are betting big that this is going to happen. We believe it is pretty absurd to
think that home users are going to give up a powerful and convenient desktop for a limited
machine with no local storage. However, a Java-powered network computer is a viable option
for a “zero administration initiative” to cut the costs of computer ownership in a business.

We also see an Internet appliance as a portable adjunct to a desktop. Provided the price is
right, wouldn't you rather have an Internet-enabled device with a screen on which to read your
e-mail or see the news? Because the Java kernel is so small, Java is the obvious choice for
such a telephone or other Internet “appliance.”

29

Core Java™ 2: Volume I-Fundamentals

Chapter 2. The Java Programming Environment

o [Installing the Java Software Development Kit

e Development Environments

o Using the Command Line Tools

e Using an Integrated Development Environment

e Compiling and Running Programs from a Text Editor
e Graphical Applications

e Applets

In this chapter, you will learn how to install the Java Software Development Kit (SDK) and
how to compile and run various types of programs: console programs, graphical applications,
and applets. You run the SDK tools by typing commands in a shell window. However, many
programmers prefer the comfort of an integrated development environment. We show you
how to use the freely available Forte environment to compile and run Java programs. There
are many other environments for developing Java applications with similar user interfaces.
While easier to learn and use, integrated development environments take a long time to load
and require heavy resources. As a middle ground, you may want to use a text editor that can
call the Java compiler and interpreter. We show you a couple of text editors with Java
integration. Once you have mastered the techniques in this chapter and picked your
development tools, you are ready to move on to Chapter 3, where you will begin exploring
the Java programming language.

NOTE

A good, general source of information on Java can be found via the links
on the Java frequently asked questions (FAQ) page:
http://java.sun.com/people/linden/intro.html.

Installing the Java Software Development Kit

The most complete versions of Java are available for Sun's Solaris 2.x, Windows NT/2000, or
Windows 95/98. (We will refer to these platforms collectively as “Windows.” Note that this
does not include Windows 3.1.) Versions of Java in various states of development exist for
Linux, OS/2, Macintosh, Windows 3.1, and many other platforms.

The CD that accompanies this book contains a version of the Java SDK for Windows and
Solaris. You can also download versions of the Java SDK for other platforms. Installation
directions differ on each platform.

NOTE

Only the installation and compilation instructions for Java are system
dependent. Once you get Java up and running, everything else in this
book should apply to you. System independence is a major benefit of
Java.

30

Core Java™ 2: Volume I-Fundamentals

On Windows, simply run the self-installing executable file. On Solaris, look inside the
compressed tar file for a README file. For other platforms, you'll need to consult the
platform-specific installation instructions.

NOTE

The setup procedure offers a default for the installation directory that
contains the Java SDK version number, such as jdk1.2.3. If you prefer,
you can change the installation directory to jdk. However, if you are a
Java enthusiast who enjoys collecting different versions of the Java SDK,
go ahead and accept the default. In this book, we will refer to the
installation directory as jdk. For example, when we refer to the jdk/bin
directory, we mean the directory named bin under the Java SDK
installation directory. Also note that we use UNIX style directory names.
Under Windows, you'll have to use backslashes and drive letters such as
c:\jdk\bin.

Setting the Execution Path

After you are done installing the Java SDK, you need to carry out one additional step: add the
jdk/bin directory to the execution path, the list of directories that the operating system
traverses to locate executable files. Directions for this step also vary among operating
systems.

In UNIX (including Solaris or Linux), the procedure for editing the execution path
depends on the shell that you are using. If you use the C shell (which is the Solaris
default), then add a line such as the following to the end of your ~/.cshrc file:

set path=(/usr/local/jdk/bin S$path)

If you use the Bourne Again shell (which is the Linux default), then add a line such as
the following to the end of your ~/.bashrc or ~/.bash _profile file:

export PATH=/usr/local/jdk/bin:$PATH

For other UNIX shells, you'll need to find out how to carry out the analogous
procedure.

Under Windows 95/98, place a line such as the following at the end of your
AUTOEXEC.BAT file:

SET PATH=c:\jdk\bin;$PATHS%

Note that there are no spaces around the =. You must reboot your computer for this
setting to take effect.

31

Core Java™ 2: Volume I-Fundamentals

e Under Windows NT/2000, start the control panel, select System, then Environment.
Scroll through the User Variables window until you find a variable named paTH. Add
the jdk\bin directory to the beginning of the path, using a semicolon to separate the
new entry, like this:

c:\jdk\bin; other stuff
Save your settings. Any new console windows that you start have the correct path.
Here is how you test whether you did it right:

Start a shell window. How you do this depends on your operating system. Type the line

java -version

and press the enter key. You should get a display such as this one:

java version "1.3.0"
Java (TM) 2 Runtime Environment, Standard Edition
Java HotSpot (TM) Client VM

If instead you get a message such as “java: command not found,” “Bad command or file
name,” or “The name specified is not recognized as an internal or external command,
operable program or batch file,” then you need to go back and double-check your installation.

Installing the Library Source and Documentation

The library source files are delivered in the Java SDK as a compressed file src.jar , and you
must unpack that file to get access to the source code. We highly recommend that you do that.
Simply do the following:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

2. Open a command shell.

Change to the jdk directory (e.g. /usr/local/jdk or C:\jdk).

4. Execute the command:

(98]

jar xvf src.jar

TIP

The src.jar file contains the source code for all public libraries. To get
even more source (for the compiler, the virtual machine, the native
methods, and the private helper classes), go to
http://www.sun.com/software/communitysource/java2.

32

Core Java™ 2: Volume I-Fundamentals

The documentation is contained in a compressed file that is separate from the Java SDK.
Several formats (.zip, .gz, and .Z) are available. Uncompress the format that works best for
you. If in doubt, use the zip file because you can uncompress it with the jar program that is a
part of the Java SDK. If you decide to use jar, follow these steps:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

2. Copy the documentation zip file into the directory that contains the jdk directory
(such as /usr/local or c:\). The file is called jdkversion-doc.zip, where
version is something like 1 2 3.

3. Open a command shell.

4. Change to the directory that contains the jdk directory and the compressed
documentation file.

5. Execute the command:

jar xvf jdkversion-doc.zip
where version is the appropriate version number.
Installing the Core Java Program Examples

You also want to install the Core Java program examples. You can find them on the CD-ROM
or download them from http://www.phptr.com/corejava. The programs are packaged into a
zip file corejava.zip. You should unzip them into a separate directory—we recommend you
call it coregavaBook. You can use any zip file utility such as WinZip (on the CD ROM and at
http://www.winzip.com/), or you can simply use the jar utility that is part of the Java SDK. If
you use jar, do the following:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

Make a directory CoreJavaBook.

Copy the corejava.zip file to that directory.

Open a command shell.

Change to the CoregavaBook directory.

Execute the command:

SARRANE e N

jar xvf corejava.zip
Navigating the Java Directories

In your explorations of Java, you will occasionally want to peek inside the Java source files.
And, of course, you will need to work extensively with the library documentation. Table 2-1
shows the Java directory tree. The layout will be different if you have an integrated
development environment, and the root will be different depending on the Java SDK version
that you installed.

33

Core Java™ 2: Volume I-Fundamentals

Table 2-1. Java directory tree
jdk |(the name may be different, for example, jdk1.2)

docs library documentation in HTML format is here

bin the compiler and tools are here

demo look here for demos

include (files for native methods (see volume 2)

lib library files

src look in the various subdirectories for the library source (after expanding src.jar)
jre Java runtime environment files

The two most important subdirectories in this tree are docs and src. The docs directory
contains the Java library documentation in HTML format. You can view it with any web
browser, such as Netscape.

TIP

Set a bookmark in your browser to the local version of
/ docs\apilindex.html. You will be referring to this page a lot as you
\J explore the Java platform.

The src directory contains the source code for the public part of the Java libraries. As you
become more comfortable with Java, you may find yourself in situations for which this book
and the on-line information do not provide what you need to know. At this point, the source
code for Java is a good place to begin digging. It is occasionally reassuring to know that you
can always dig into the source to find out what a library function really does. For example, if
you are curious about the inner workings of the system class, you can look inside

src/java/lang/System. java.
Development Environments

If your programming experience comes from Visual Basic or Visual C++, you are accustomed
to a development environment with a built-in text editor and menus to compile and launch a
program along with an integrated debugger. The basic Java SDK contains nothing even
remotely similar. Everything is done by typing in commands in a shell window. We tell you
how to install and use the basic Java SDK, because we have found that the full-fledged
development environments don't necessarily make it easy to learn Java—they can be complex
and they hide some of the interesting and important details from the programmer.

Integrated development environments tend to be more cumbersome to use for a simple
program since they are slower, require more powerful computers, and often require a
somewhat tedious project setup for each program you write. These environments have the
edge if you write larger Java programs consisting of many source files. And these
environments also supply debuggers, which are certainly necessary for serious development—
the command-line debugger that comes for free with the Java SDK is extremely awkward to
use. We will show you how to get started with Forte Community Edition, a freely available
development environment that is itself written in Java. Of course, if you already have a

34

Core Java™ 2: Volume I-Fundamentals

development environment such as JBuilder, Kawa, CodeWarrior or Café that supports the
current version of Java, then you can certainly use it with this book.

For simple programs, a good middle ground between command-line tools and an integrated
development environment is an editor that integrates with the Java SDK. On Linux, our
preferred choice is Emacs. On Windows, we also like TextPad, an excellent shareware
programming editor for Windows with good Java integration. Many other editors have similar
features. Using a text editor with Java SDK integration can make developing Java programs
easy and fast. We used that approach for developing and testing most of the programs in this
book. Since you can compile and execute source code from within the editor, it can become
your de facto development environment as you work through this book.

In sum, you have three choices for a development environment:

e Use the Java SDK and your favorite text editor. Compile and launch programs in a
command shell.

o Use the Java SDK and a text editor that is integrated with the Java SDK. Emacs and
TextPad have this capability, and there are many others. Compile and launch programs
inside the editor.

e Use an integrated development environment such as the free Forte Community
Edition, or one of many other freely or commercially available environments.

Using the Command Line Tools
There are two methods for compiling and launching a Java program: from the command line,
or from another program, such as an integrated development environment or a text editor. Let

us do it the hard way first: from the command line.

Open a shell or terminal window. Go to the CoreJavaBook/v1ch2/Welcome directory. Then
enter the following commands:

javac Welcome.java
java Welcome

You should see the message shown in Figure 2-1 on the screen.

35

Core Java™ 2: Volume I-Fundamentals

Figure 2-1. Compiling and running Welcome.java

E File Edit Settings Help
~% cd CoreTavaBook/v1ch2/Welcome

~{CoreJavaBook/v1chZ Melcomed javac Welcome,java
~fCareJavaBook/v1chZ el comed % ava wWelcoma
Welcome to Core Tawva

by Cay Horstmann

and Gary Cornell

~/CoreTavaBook/vich2 felcomed JJ

T B e e e It |

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file welcome.java
into the file welcome.class. The java program is the Java interpreter. It interprets the
bytecodes that the compiler placed in the class file.

TIP

If you use the MS-DOS shell in Windows, you should use the DOSKEY
program. The DOSKEY utility keeps a command history. Type the up
and down arrow keys to cycle through the previously typed commands.
Use the left and right arrow keys to edit the current command.

To install DOSKEY automatically, simply add the line

DOSKEY /INSERT
into your AUTOEXEC. BAT file and reboot.
If you use the bash or tcsh shell under UNIX, you have the same

benefits.

The welcome program is extremely simple. It merely prints a message to the console. You
may enjoy looking inside the program shown in Example 2-1—we will explain how it works
in the next chapter.

36

Core Java™ 2: Volume I-Fundamentals

Example 2-1 Welcome.java

NeJ

10.
11.
12.
13.

O Joy g W

. public class Welcome

public static void main (String[] args)

{
String[] greeting = new String[3];

greeting[0] = "Welcome to Core Java";
greeting[1l] = "by Cay Horstmann";
greeting[2] = "and Gary Cornell";

for (int i = 0; i < greeting.length; i++)
System.out.println(greeting([il]);

Troubleshooting Hints

In the age of visual development environments, many programmers are unfamiliar with
running programs in a shell window. There are any number of things that can go wrong and
lead to frustrating results.

Pay attention to the following points:

If you type in the program by hand, make sure you pay attention to uppercase and
lowercase letters. In particular, the class name is welcome and not welcome or
WELCOME.

The compiler requires a file name welcome.java. The interpreter requires a class name
Welcome without a .java or .class extension.

If you get a message such as “Bad command or file name” or “javac: command not
found,” then you need to go back and double-check your installation, in particular the
execution path setting.

If javac reports an error “cannot read: Welcome.java,” then you should check
whether that file is present in the directory.

Under UNIX, check that you used the correct capitalization for welcome.java.

Under Windows, use the dir shell command, not the graphical Explorer tool. Some
text editors (in particular Notepad) insist on adding an extension .txt after every file.
If you use Notepad to edit Welcome.java, then it actually saves it as
Welcome.java.txt. Under the default Windows settings, Explorer conspires with
Notepad and hides the .txt extension because it belongs to a “known file type.” In that
case, you need to rename the file, using the ren shell command.

It java reports an error message complaining about
a java.lang.NoClassDefFoundError, then caﬁﬁhﬂy check the name of
the offending class.

If the interpreter complains about welcome (with a lowercase w), then you should

reissue the java Welcome command with an uppercase w. As always, case matters in
Java.

37

Core Java™ 2: Volume I-Fundamentals

If the interpreter complains about welcome/java, then you accidentally typed java
Welcome.java. Reissue the command as java Welcome

If the interpreter complains about welcome, then someone has set the class path on
your system. You need to either remove the setting of that environment variable, or
add the current directory (symbolized as a period) to the class path. See Chapter 4 for
more details.

e If you have too many errors in your program, then all the error messages fly by very
quickly. The java interpreter sends the error messages to the standard error stream
which makes it a bit tricky to capture them if they fill more than one screen.

On a UNIX or Windows NT/2000 system, this is not a big problem. You can use the
2> shell operator to redirect the errors to a file:

javac MyProg.java 2> errors.txt

Under Windows 95/98, you cannot redirect the standard error stream from the
command shell. You can download the errout program from
http://www.horstmann.com/corejava/faq.html and run

errout javac MyProg.java > errors.txt

TIP

There is an excellent tutorial at
http://java.sun.com/docs/books/tutorial/getStarted/cupojava/ that goes
into much greater detail about the “gotchas” that beginners can run into.

Using an Integrated Development Environment

In this section, we show you how to compile a program with Forte Community Edition, a free
integrated development environment from Sun Microsystems. You can download your copy
from http://www.sun.com/forte/ffj/ce/. Forte is written in Java and should run under any
platform that has a Java 2 runtime environment. Preconfigured versions exist for Solaris,
Linux, and Windows.

After starting Forte, various toolbars and windows are loaded (see Figure 2-2).

38

Core Java™ 2: Volume I-Fundamentals

Figure 2-2. Starting Forte

S}

2o LD e —————
eEEN + AsEFFassEosTe |

&2 juir fotal P artady O evelepmen
BTG R LS R L NI e e

T Tarmiral R Portn for ava Cemmunity . SunAgr 3
P4 Ixphorer [lepstemal B Properties windew [Refro. | STAT M |

Select File -> Open File from the menu, then load CoreJavaBook/vich2/
Welcome/Welcome.java. You will be asked if this file should be in the “default package.”
Click Accept. (See Chapter 4 for more information on packages. For now, all our programs
are in the default package.) You should now see a window with the program code (see
Figure 2-3).

39

Core Java™ 2: Volume I-Fundamentals

Figure 2-3. The edit window of Forte

B ke Sl 1 L D e L R e A R A e :

O e g Cae nj el ook pe Lrh sl aee
@ weicema

& @ cluss weleeme

Pusl e class welcons

i
sreeagl] preeming = new i'l:-mu[T
presciep[i] = weic)
grastieg[l] = b e bmEn® &
preeeirp[l] =

1
]
a
]
L
T
B publie wvatie word mainisScoongl] argel
E]
L}
!
3
"
3

Far {int &« = 35 & @ grastieg-length; besd
systemost.grintinigrasting 1l

Hire Welearmie
o

Sy oo BT Marids Card i w1l hasgen

Tergluin Falsm

i Terminal | % Forte for favi £ b Explorer [Filwirs.
T4 Propethes Wisdo| b Wekome | omaE P |

Select Build -> Compile from the menu. Your program is compiled. If it compiles correctly,
select Build -> Execute from the menu. The edit window goes away, and an output window
appears at the bottom of the screen. The program output is displayed in the output window
(see Figure 2-4).

Figure 2-4. The output window of Forte

T w05
L LT

To return to the edit window after the program is finished, click on the “Editing” tab at the top
of the screen.

Locating Compilation Errors
Presumably, this program did not have typos or bugs. (It was only a few lines of code, after
all.) Let us suppose, for the sake of argument, that you occasionally have a typo (perhaps even

a bug) in your code. Try it out—ruin our file, for example, by changing the capitalization of
String as follows:

string[] greeting = new Stringl[3];

40

Core Java™ 2: Volume I-Fundamentals

Now, run the compiler again. You will get error messages (see Figure 2-5). The first one
complains about an unknown string type. Simply click on the error message. The cursor
moves to the matching line in the edit window, and you can correct your error. This allows
you to fix your errors quickly.

Figure 2-5. Error messages in Forte

. T — .__ [T — —
BEEa s e x0ie 8o e amE B e b " -
wle/es 2w svuesan =EEE o A== D@D 0O0SD0

¢ public class welcome
il

] publac stabic word main{srrag[] args)
& i

i1 prieesgo) = o« v

arevegnegi] =
promnieg[i] =

;-. Foar (InE 1 = 501 < @reeTIAg, lesgThi ne+)
st Rrintlndgreening (1101

Vams . javs [1001] Incompanible myme for . Can't comert Sxringll mo soeingfl. |
strisg[] greeting = sew Strisgil; i

Soome, javs [1110] Incompanible gype for =, Con't CoenesT SrAag ©e STFIAQ.
groeting[0] = “Welcome to Core Jawa™;
A

e pEellF N

To start a new program with Forte, select File -> New from Template from the menu. In the
resulting dialog, open up the “doorlatch” labeled Classes by clicking on the icon. Then select
Empty and click the Next button (see Figure 2-6).

" Temiad LfambobmC. b Wekeme
TG roperties wind (Sifupborer (Filwys— % Compller

Figure 2-6. Starting a new program in Forte

Hew From Template - Templale Chooser

roelect a template ~Template Description

"= Templates
" A empty Java source file, Mo code

: g ‘:::.I:Drms is generated except for the
required package statement, Using
Q 3 Classes this template, you can create a
;:.‘:i::t class fram seratch.
[B Exception

Interface
1applet
Main
@ [Sample Forms
e 3)5
€ [Other
& [Swing Forms

= Freviows El MeExt > | | Finizh || Cancel | [Help

41

Core Java™ 2: Volume I-Fundamentals

You will be asked if you want to add this file to the current project. Until you use projects in
earnest, there is no harm in answering either Yes or No. Now you are ready to edit your new
file, compile it, and run it.

We will discuss the Forte debugger in Chapter 11.
Compiling and Running Programs from a Text Editor

An integrated development environment such as Forte offers many comforts, but there are
also some drawbacks. In particular, for simple programs that are not distributed over multiple
source files, an environment with its long startup time and many bells and whistles can seem
like overkill. Also, many programmers have become accustomed to their favorite text editor
and can be reluctant to use the generally wimpy editors that are part of the integrated
development environments. Fortunately, many text editors have the ability to launch the Java
compiler and interpreter and to capture error messages and program output. In this section, we
look at two text editors, Emacs and TextPad, as typical examples.

NOTE

GNU Emacs is available from http://www.gnu.org/software/emacs/. For
the Windows port of GNU Emacs, see
http://www.gnu.org/software/emacs/windows/ntemacs.html. XEmacs is
a version of Emacs with a slightly more modern user interface—you can
get it from http://www.xemacs.org/. Be sure to install the JDE package
when using Emacs for Java programming. If JDE doesn't come with your
installation, you can download it from http://sunsite.auc.dk/jde.

For example, Figure 2-7 shows XEmacs, a version of the Emacs editor that is popular among
UNIX programmers, compiling a Java program. (Choose JDE -> Compile from the menu to
run the compiler.)

42

Core Java™ 2: Volume I-Fundamentals

Figure 2-7. Compiling a program with XEmacs

File Edit Apps Oplions Buffers Tools Java JDE Help
DZ82% 288 %210 8 |
foe il

Eversion 1.11 2000-04-20
author Cay Horstmann
sl

public claz: Welcome
i
public static void main(String[] args)
{

[| string|] greer.ing = new String[3];
greeting[U] = "Welcome to Core Jawva®;
grasting[1] = "by Cay Horstmann®;
gresting[2] = "and Gary Cornmell™;

for {int 1 = 0; 1 ¢ g'raat:i_ng. length: i+s})
System. nut.printh(graatmq[i?} ;

H =

--*+_NFmaca: Welcome. java {JDE Font)=-=-==L10==C0==Al] —=====mm—mmmm e o |

cd fhomefcay/CoredavaBook,~1chZ Welcoms/ |

javac Welcome. java

Felcomes java:ll: class string not foumd.
astring[] greeting = nmew String([3]:

Welcome. java:lld: Incompatible type for declaration. Can't conwvert java.lang.Strd
ing[] to <errorx[].

string[] greeting = new Strimg[3];
2 errors

Compilation exited abnormally with codes 1 at Sat Apr 22 21:40:16

T
————— XEmacs: *compilation® (Compilation Font:exit [exit-status 1])----L3--c0|
Parsing error messages, .. done

The error messages show up in the lower half of the screen. When you move the cursor on
an error message and press the enter key, then the cursor moves to the corresponding source
line.

Once all errors are fixed, you can run the program by choosing JDE -> Run App from
the menu. The output shows up inside an editor window (see Figure 2-8).

43

Core Java™ 2: Volume I-Fundamentals

Figure 2-8. Running a program from within XEmacs

File Edit Apps Oplions Bulfers Tools Complete InfOut Signads

Help

ini
fversion 1.11 2000-04-20
author Cay Horstmann
it

public claz: Welcome
{
public static void main(String[] acgs)
i
String|] greeting = new String[3];
greeting[0] = "Welcome to Core Jawva®;
grasting[1] = "by Cay Horstmann®;
gresting[2] = "and Cary Cormell™;

for {int 1 = 0; 1 ¢ g'rast:i_ng. length: 1+s}
System. nut.printh(graatmg[i?} ;

----- EEmacs: Welcome. java ({JDE Font)--=--L10--CT--Al]l-====

PN = TR i el R A1

£

cd fhomefcay/CoredavaBook.~1chZ Welcoms/
java Welcome

Welcome to Core Java
by Cay Horstmann
and Gary Cornell

Process Welcome finished

-k _YFmacs: *Helcome® (Comint:no process)----LO--CO--All

Emacs is a splendid text editor that is freely available for UNIX and Windows. However,
many Windows programmers find the learning curve rather steep. For those programmers, we
can recommend TextPad. Unlike Emacs, TextPad conforms to standard Windows
conventions. TextPad is available on this book's CD-ROM and at http://www.textpad.com/.
Note that TextPad is shareware. You are expected to pay for it if you use it beyond a trial

period. (We have no relationship with the vendor, except as satisfied users of the program.)

To compile a program in TextPad, choose Tools -> Compile Java from the menu, or use

the ctrl+1 keyboard shortcut.

NOTE

If there is no such menu option, select Configure -> Preferences, then
select Tools from the tree on the left. On the right hand side, click the
button labeled Add until it drops down and reveals a setting JDK
commands. Select that setting, then click Ok. The JDK commands are
now added to the Tools menu.

44

Core Java™ 2: Volume I-Fundamentals

Compilation errors are displayed in a separate window (see Figure 2-9).

Figure 2-9. Locating compilation errors in TextPad

i TextPad - [Command Resulls]

5] Fie Ecit Seach View Took Macroz Cofigue Window Help == x|
Dﬁi-—] EB-;-" AR T e e F = T @Q':f{h & (i F nn\-‘?
'C:".'EE]np".UElC:DL‘.‘E.]aVa: 6: Clasa or Lnterface declaratlion expecced. T

Fublic clasa Welcome

A

Cihtemp\Welcome ., java:T: ':' expected,

{ Public Static volid main(String[] acg=s)
2 errors

Process completed vich exitc code 1

| [+ [+]

Move the cursor onto the first line of an error message and press enter to move to
the matching location in the file. Use the Search -> Jump Next command (or the f4 key) to
walk through the remaining error messages.

To run a program, select Tools -> Run Java Application from the menu, or use the ctrl+2
keyboard shortcut. The program runs in a separate shell window. Figure 2-10 shows a Java
program launched from TextPad.

Figure 2-10. Running a Java program from TextPad

ol ¢ ; i :

SET
* Bueraion SRV
= fauthor -
u [ex1z=l |\ B 5[5 Al
b TP wa
public class @ iy Hi
R and
¢ p'hi"" = . W to continue . . .
Sering
@Eeacy
greest:
fdreaty
it 1
for (1
Sys
1l
Frocest completed tucoersiuly 4 4 Edi [ire [Hom i

45

Core Java™ 2: Volume I-Fundamentals

When the program is completed, you need to press a key to continue and then close the shell
window.

Graphical Applications

The welcome program was not terribly exciting. Next, let us run a graphical application. This
program is a very simple GIF file viewer. It simply loads and displays a GIF file. Again, let us
first compile and run it from the command line.

1. Open a shell window.

2. Change to the directory CoreJavaBook/v1ch2/ImageViewer.
3. Enter:

javac ImageViewer.java
java ImageViewer

A new program window pops up with our ImageViewer application. (See Figure 2-11.)
Figure 2-11. Running the ImageViewer application

| ImageVviewer >
File

Mab;hamatibﬁ
X :
"Camputar Science

Now select File -> Open and look for a GIF file to open. (We supplied a couple of sample
files in the same directory.)

To close the program, click on the Close box in the title bar or pull down the system menu
and close the program. (To compile and run this program inside a text editor or an integrated

46

Core Java™ 2: Volume I-Fundamentals

development environment, do the same as before. For example, for Emacs, choose
JDE -> Compile, then choose JDE -> Run App.)

We hope that you find this program interesting and useful. Have a quick look at the source
code. The program is substantially longer than the first program, but it is not terribly complex
if you consider how much code it would take in C or C++ to write a similar application. In
Visual Basic, of course, it is easy to write or, rather, drag and drop, such a program—you
need only add a couple of lines of code to make it functional. The JDK does not have a visual
interface builder, so you need to write code for everything, as shown in Example 2-2. You
will learn how to write graphical programs like this in Chapters 7-9.

CAUTION

If you run this program with a version of the Java SDK prior to 1.3, then
you will get a compile-time error at the line

frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE);
In that case, comment out the line and recompile. Then the program

won't exit when you close the frame. Instead, choose the File -> Exit
menu option. See Chapter 7 for more information on this issue.

Example 2-2 ImageViewer.java

1. import java.awt.*;

2. import java.awt.event.*;

3. import java.awt.image.*;

4. import java.io.*;

5. import javax.swing.*;

6.

7. public class ImageViewer

8. {

9. public static void main (String[] args)
10. {

11. JFrame frame = new ImageViewerFrame ();
12. frame.setTitle ("ImageViewer") ;

13. frame.setSize (300, 400);

14. frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
15. frame.show () ;

16. }

17. 1}

18.

19. class ImageViewerFrame extends JFrame
20. {
21. public ImageViewerFrame ()
22. {
23. // set up menu bar
24. JMenuBar menuBar = new JMenuBar ();
25. setJMenuBar (menuBar) ;
26.
27. JMenu menu = new JMenu ("File");
28. menuBar.add (menu) ;
29.

47

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

}

Core Java™ 2: Volume I-Fundamentals

JMenulItem openltem = new JMenultem("Open"):;
menu.add (openlItem) ;
openltem.addActionListener (new FileOpenListener());

JMenultem exitItem = new JMenultem("Exit"):;
menu.add (exitItem) ;
exitItem.addActionListener (new
ActionListener ()
{
public void actionPerformed (ActionEvent event)
{
System.exit (0);
}
)

// use a label to display the images
label = new JLabel();

Container contentPane = getContentPane();
contentPane.add (label, "Center");

private class FileOpenlListener implements ActionListener

{

}

public void actionPerformed (ActionEvent evt)

{
// set up file chooser
JFileChooser chooser = new JFileChooser () ;
chooser.setCurrentDirectory(new File("."));

// accept all files ending with .gif
chooser.setFileFilter (new
javax.swing.filechooser.FileFilter ()
{
public boolean accept (File f)
{
return f.getName () .toLowerCase ()
.endsWith(".gif")
|| f.isDirectory();
}
public String getDescription ()
{
return "GIF Images";
}
});

// show file chooser dialog
int r = chooser.showOpenDialog (ImageViewerFrame.this);

// 1f image file accepted, set it as icon of the label
if (r == JFileChooser.APPROVE OPTION)
{
String name
= chooser.getSelectedFile () .getPath();
label.setIcon(new Imagelcon (name)) ;

private JLabel label;

48

Core Java™ 2: Volume I-Fundamentals

Applets

The first two programs presented in this book are Java applications, stand-alone programs
like any native programs. On the other hand, as we mentioned in the last chapter, most of the
hype about Java comes from its ability to run applets inside a web browser. We want to show
you how to build and run an applet from the command line. Then we will load the applet into
the applet viewer that comes with the JDK. Finally, we will display it in a web browser.

First, go to the directory CoreJavaBook/vlch2/WelcomeApplet, then enter the following
commands:

javac WelcomeApplet.java
appletviewer WelcomelApplet.html

Figure 2-12 shows what you see in the applet viewer window.
Figure 2-12. The WelcomeApplet applet as viewed by the applet viewer

| Applet Viewer: WelcomeApplet.class >

Applet

Welcome to Core Java!

Cay Harstmann Gary Caornell

Applet started.
1 1

The first command is the now-familiar command to invoke the Java compiler. This compiles
the welcomeApplet.java source into the bytecode file welcomeapplet.class.

This time, however, we do not run the Java interpreter. We invoke the appletviewer
program instead. This program is a special tool included with the Java SDK that lets you
quickly test an applet. You need to give it an HTML file, rather than the name of a Java class
file. The contents of the WwelcomeApplet.html file are shown below in Example 2-3.

49

Core Java™ 2: Volume I-Fundamentals

Example 2-3 WelcomeApplet.html

1. <HTML>

2. <TITLE>WelcomeApplet</TITLE>

3. <BODY>

4., <HR>

5. <p>

6. This applet is from the book

7.

8. Core Java by <I>Cay Horstmann</I> and <I>Gary Cornell</I>,
9. published by Sun Microsystems Press.

10. </P>

11. <APPLET CODE=WelcomeApplet.class WIDTH=400 HEIGHT=200>
12. <PARAM NAME=greeting VALUE="Welcome to Core Java!">
13. </APPLET>

14. <HR>

15. <P>The source.</P>
16. </BODY>

17. </HTML>

If you are familiar with HTML, you will notice some standard HTML instructions and
the APPLET tag, telling the applet viewer to load the applet whose code is stored in
WelcomeApplet.class. The applet viewer ignores all HTML tags except for the APPLET tag.

The other HTML tags show up if you view the HTML file in a browser. However, there is
a problem. The applet uses features of the Java 2 platform, whereas at the time of this writing,
the most commonly used browsers (Netscape 4 and Microsoft Internet Explorer 5) only
support version 1.1. Thus, you cannot simply load the HTML file into these browsers. You
have two options:

1. Install the Java Plug-in into your Netscape 4 or Internet Explorer 5 browser. You can
download the plug-in from http://java.sun.com/plugin. You then need to use
a different HTML page that loads the plug-in and tells the plug-in to load the applet
code. Unfortunately, this requires rather messy HTML tags—see Example 2-4. (This
code has been automatically generated by the Java Plug-in HTML converter—see
Chapter 10 for details.)

2. Use a browser that supports the Java 2 platform, such as Netscape 6 or Opera
(http://www.opera.com/). You can then use the same simple HTML file that works
with the applet viewer.

Provided you have a browser with Java 2 platform support, you can try loading the applet
inside the browser.

1. Start your browser.
2. Select File -> Open File (or the equivalent).
3. Go to the coreJavaBook/v1ch2/WelcomeApplet directory.

You should see the WelcomeApplet.html and WelcomeAppletPlugin.html files in the file

dialog. Load the file that is appropriate for your setup. Your browser now loads the applet,
including the surrounding text. It will look something like Figure 2-13.

50

Core Java™ 2: Volume I-Fundamentals

Figure 2-13. Running the WelcomeApplet applet in a browser

B Welcomatpplet - Netzcaps

Fide Ect Yew GSearch Go Bookmarks Tasks Heip

‘f:l.li: A0 fCay books i) S/ code/vlchd ffelcon m

Thiz applet s from the book Core Java by Cay Horstrann and Gary Carmell, published by Sun
Mlicrosystems Fress

Welcome to Core Java!

The source

You can see that this application is actually alive and willing to interact with the Internet.
Click on the Cay Horstmann button. The applet directs the browser to display Cay's web page.
Click on the Gary Cornell button. The applet directs the browser to pop up a mail window,
with Gary's e-mail address already filled in.

Notice that neither of these two buttons works in the applet viewer. The applet viewer has no
capabilities to send mail or display a web page, so it ignores your requests. The applet viewer
is good for testing applets in isolation, but you need to put applets inside a browser to see how
they interact with the browser and the Internet.

TIP

You can also run applets from inside your editor or integrated
development environment. In Emacs, select JDE -> Run Applet from the
menu. In TextPad, choose Tools -> Run Java Applet or use the ctrl+3
keyboard shortcut. You will be presented with a dialog that lists all
HTML files in the current directory. If you press esc, TextPad
automatically creates a minimal HTML file for you. In Forte, you simply
load the HTML page with the applet tags. Forte contains a simple
browser that shows the applet running inside the web page.
Alternatively, you can right-click on the source file and set the value of
the “Executor” property in the Execution tab to “Applet Execution.”

Finally, the code for the Welcome applet is shown in Example 2-5. At this point, do not give
it more than a glance. We will come back to writing applets in Chapter 10.

51

Core Java™ 2: Volume I-Fundamentals

In this chapter, you learned about the mechanics of compiling and running Java programs.
You are now ready to move on to Chapter 3 where you will start learning the Java language.

Example 2-4 WelcomeAppletPlugin.html

1. <HTML>

2. <TITLE>WelcomeApplet</TITLE>

3. <BODY>

4., <HR>

5. <p>

6. This applet is from the book

7.

8. Core Java by <I>Cay Horstmann</I> and <I>Gary Cornell</I>,
9. published by Sun Microsystems Press.
10. </P>
11. <!——"CONVERTED_APPLET"——>
12. <!-- CONVERTER VERSION 1.0 -->
13. <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
14. WIDTH = 400 HEIGHT = 200 codebase="http://java.sun.com/products/

plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">

15. <PARAM NAME = CODE VALUE = WelcomeApplet.class >

16.

17. <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">

18.

19. <PARAM NAME = greeting VALUE ="Welcome to Core Java!">

20. <COMMENT>

21. <EMBED type="application/x-java-applet;version=1.2" java CODE =
WelcomeApplet.class WIDTH = 400 HEIGHT = 200 greeting = "Welcome to
Core Java!" pluginspage="http://java.sun.com/products/
plugin/l.2/plugin-install.html"><NOEMBED></COMMENT>

22.

23. </NOEMBED></EMBED>

24. </OBJECT>

25.

26. <!--

27. <APPLET CODE = WelcomeApplet.class WIDTH = 400 HEIGHT = 200 >
28. <PARAM NAME = greeting VALUE ="Welcome to Core Java!">
29.

30.

31. </APPLET>

32. -->

33. <!--"END CONVERTED APPLET"-->

34.

35. <HR>

36. <P>The source.</P>
37. </BODY>
38. </HTML>

52

Core Java™ 2: Volume I-Fundamentals

Example 2-5 WelcomeApplet.java

GQrd DD DD DSDDEDNWWWWWWWwwwwhhNhhDNDNdDNDNDNNNdDNMDNNRERERERRRRRRRRE
QWO JO Uk WNREFP OWOJOUd WNNE OWOJOU B WNDNEFE OWOJoUld WP O

O Joy g W

import javax.swing.*;
import Jjava.awt.*;
import java.awt.event.*;
import Jjava.net.*;

public class WelcomeApplet extends JApplet

{

public void init ()

{
Container contentPane = getContentPane();
contentPane.setlayout (new BorderLayout()) ;

JLabel label = new JLabel (getParameter ("greeting"),
SwingConstants.CENTER) ;

label.setFont (new Font ("TimesRoman", Font.BOLD, 18));

contentPane.add (label, "Center");

JPanel panel = new JPanel();

JButton cayButton = new JButton ("Cay Horstmann");

cayButton.addActionListener (getURLActionListener
("http://www.horstmann.com")) ;

panel.add (cayButton) ;

JButton garyButton = new JButton ("Gary Cornell");

garyButton.addActionListener (getURLActionListener
("mailto:gary@thecornells.com")) ;

panel.add (garyButton) ;

contentPane.add (panel, "South");

}

public ActionListener getURLActionListener(final String
urlString)
{
return new
ActionListener ()
{
public void actionPerformed (ActionEvent evt)
{
try
{
URL u = new URL(urlString);
getAppletContext () .showDocument (u) ;
}

catch (Exception e) { e.printStackTrace(); }

53

Core Java™ 2: Volume I-Fundamentals

Chapter 3. Fundamental Programming Structures in
Java

e A Simple Java Program

o Comments

o Data Types

e Variables

e Assignments and Initializations
e Operators

e Strings

o Control Flow

e Big Numbers

e Arrays

At this point, we are assuming that you successfully installed Java and were able to run
the sample programs that we showed you in Chapter 2. It's time to start programming. This
chapter shows you how the basic programming concepts such as data types, branches, and
loops are implemented in Java.

Unfortunately, in Java you can't easily write a program that uses a graphical user interface—
you need to learn a fair amount of machinery to put up windows, add text boxes and buttons
that respond to them, and so on. Since introducing the techniques needed to write GUI-based
Java programs would take us too far away from our goal of introducing the basic
programming concepts, the sample programs in this chapter will be “toy” programs, designed
to illustrate a concept. All these examples will simply send output to the console. (For
example, if you are using Windows, the console is an MS-DOS window.) When it comes to
getting user input, we will stick to reading the information from a pop-up window. In
particular, we will be writing applications rather than applets in this chapter.

Finally, if you are an experienced C++ programmer, you can get away with just skimming
this chapter: concentrate on the C/C++ notes that are interspersed throughout the text.
Programmers coming from another background, such as Visual Basic, will find most of the
concepts familiar and all of the syntax very different—you will want to read this chapter very
carefully.

A Simple Java Program

Let's look more closely at about the simplest Java program you can have—one that simply
prints a message to the console window:

public class FirstSample

{

public static void main(String[] args)

{
System.out.println("We will not use 'Hello, World!'"™);

}

54

Core Java™ 2: Volume I-Fundamentals

It is worth spending all the time that you need in order to become comfortable with
the framework of this sample; the pieces will recur in all applications. First and foremost,
Java is case sensitive. If you made any mistakes in capitalization (such as typing Main instead
of main), the program will not run.

Now let's look at this source code line by line. The keyword public is called an access
modifier; these modifiers control what other parts of a program can use this code. We will
have more to say about access modifiers in Chapter 5. The keyword class is there to remind
you that everything in a Java program lives inside a class. Although we will spend a lot more
time on classes in the next chapter, for now think of a class as a container for the program
logic that defines the behavior of an application. As mentioned in Chapter 1, classes are the
building blocks with which all Java applications and applets are built. Everything in a Java
program must be inside a class.

Following the keyword class is the name of the class. The rules for class names in Java are
quite generous. Names must begin with a letter, and after that, they can have any combination
of letters and digits. The length is essentially unlimited. You cannot use a Java reserved word
(such as public or if) for a class name. (See Appendix I for a list of reserved words.)

As you can see in the name FirstSample, the convention is that class names are nouns that
start with an uppercase letter.

You need to make the file name for the source code the same as the name of the public class,
with the extension .java appended. Thus, we must store this code in a file called
FirstSample.java. (Again, case is important—don't use firstsample.java.) If you don't
do this, you'll get a pretty obvious error message when you try to run this source code through
a Java compiler (“Public class FirstSample must be defined in a file called
'FirstSample.java").

If you have named the file correctly and not made any typos in the source code, then when
you compile this source code, you end up with a file containing the bytecodes for this class.
The Java compiler automatically names the bytecode file FirstSample.class and stores it in
the same directory as the source file. Finally, run the bytecode file through the Java interpreter
by issuing the command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply
displays the string we will not use 'Hello, World'! on the console.

NOTE

Applets have a different structure—see Chapter 10 for information on
applets.

55

Core Java™ 2: Volume I-Fundamentals

When you use

java NameOfClass

to run a compiled program, the Java interpreter always starts execution with the code in
the main method in the class you indicate. Thus, you must have a main method in the source
file for your class in order for your code to execute. You can, of course, add your own
methods to a class and call them from the main method. (We cover writing your own methods
in the next chapter.)

Next, notice the braces in the source code. In Java, as in C/C++, braces are used to delineate
the parts (usually called blocks) in your program. In Java, the code for any method must be
started by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We use a style that
lines up matching braces. Since white space is irrelevant to the Java compiler, you can use
whatever brace style you like. We will have more to say about the use of braces when we talk
about the various kinds of loops.

For now, don't worry about the keywords static void—just think of them as part of what
you need to get a Java program to compile. By the end of Chapter 4, you will understand this
incantation completely. The point to remember for now is that every Java application must
have a main method whose header is identical to the one shown here.

public class ClassName

{

public static void main (String[] args)

{

program instructions

}

C++ NOTE

SRR You know what a class is. Java classes are similar to C++ classes, but
there are a few differences that can trap you. For example, in Java all
functions are methods of some class. (The standard terminology refers to
them as methods, not member functions.) Thus, in Java you must have a
shell class for the main method. You may also be familiar with the idea
of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The main method in Java is
always static. Finally, as in C/C++, the void keyword indicates that this
method does not return a value. Unlike C/C++, the main method does not
return an “exit code” to the operating system. If the main method exits
normally, the Java program has the exit code 0, indicating successful
completion. To terminate the program with a different exit code, use the
System.exit method.

56

Core Java™ 2: Volume I-Fundamentals

Next, turn your attention to this fragment.

{

System.out.println ("We will not use 'Hello world!'");

}

Braces mark the beginning and end of the body of the method. This method has only one
statement in it. As with most programming languages, you can think of Java statements as
being the sentences of the language. In Java, every statement must end with a semicolon. In
particular, carriage returns do not mark the end of a statement, so statements can span
multiple lines if need be.

The body of the main method contains a statement that outputs a single line of text to
the console.

Here, we are using the system.out object and calling its print1n method. Notice the periods
used to invoke a method. Java uses the general syntax

object.method(parameters)
for its equivalent of function calls.

In this case, we are calling the print1n method and passing it a string parameter. The method
displays the string parameter on the console. It then terminates the output line so that each call
to print1n displays its output on a new line. Notice that Java, like C/C++, uses double quotes
to delimit strings. (You will find more information about strings later in this chapter.)

Methods in Java, like functions in any programming languages, can use zero, one, or more
parameters (some languages call them arguments). Even if a method takes zero parameters,
you must still use empty parentheses. For example, there is a variant of the print1n method
with no parameters that just prints a blank line. You invoke it with the call

System.out.println();

CAUTION

There also is a print method in System.out that doesn't add a new line
character to the output. For example, system.out.print ("Hello")
prints "Hello" without a new line. The next output appears immediately
after the "o".

Comments

Comments in Java, like comments in most programming languages, do not show up in the
executable program. Thus, you can add as many comments as needed without fear of bloating
the code. Java has three ways of showing comments. The most common method is a //. You
use this for a comment that will run from the // to the end of the line.

57

Core Java™ 2: Volume I-Fundamentals

System.out.println("We will not use 'Hello world!'");
// 1s this too cute?

When longer comments are needed, you can mark each line with a //. Or you can use the /*
and */ comment delimiters that let you block off a longer comment. This is shown in
Example 3-1.

Example 3-1 FirstSample.java

1. /%

2. This is the first sample program in Core Java Chapter 3
3. Copyright (C) 1996...2000 Cay Horstmann and Gary Cornell
4. */

5.

6. public class FirstSample

7. |

8. public static void main (String[] args)

9. {

10. System.out.println ("We will not use 'Hello, World!'");
11. }

12. }

Finally, there is a third kind of comment that can be used to generate documentation
automatically. This comment uses a /** to start and a */ to end. For more on this type of
comment and on automatic documentation generation, please see Chapter 4.

CAUTION

/* */ comments do not nest in Java. That is, you cannot deactivate code
simply by surrounding it with /* and */ since the code that you want to
deactivate might itself contain a */ delimiter.

Data Types

Java is a strongly typed language. This means that every variable must have a declared type.
There are eight primitive types in Java. Four of them are integer types; two are floating-point
number types; one is the character type char, used for characters in the Unicode encoding
(see the section on the char type), and one is a boolean type for truth values.

NOTE
Java has an arbitrary precision arithmetic package. However, “Big

numbers,” as they are called, are Java objects and not a new Java type.
You will see how to use them later in this chapter.

58

Core Java™ 2: Volume I-Fundamentals

Integers

The integer types are for numbers without fractional parts. Negative values are allowed. Java
provides the four integer types shown in Table 3-1.

Table 3-1. Java integer types
Type |Storage Requirement |Range (inclusive)

int 4 bytes -2,147,483,648 to 2,147,483, 647 (just over 2 billion)

short |2 bytes -32,768 to 32,767

long |8 bytes -9,223,372,036,854,775,808L to 9,223,372,036,854,775,807L
byte |1 byte -128 to 127

In most situations, the int type is the most practical. If you want to represent the number of
inhabitants of our planet, you'll need to resort to a 1ong. The byte and short types are mainly
intended for specialized applications, such as low-level file handling, or for large arrays when
storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on which you will
be running the Java code. This alleviates a major pain for the programmer who wants to move
software from one platform to another, or even between operating systems on the same
platform. In contrast, C and C++ programs use the most efficient integer type for each
processor. As a result, a C program that runs well on a 32-bit processor may exhibit integer
overflow on a 16-bit system. Since Java programs must run with the same results on all
machines, the ranges for the various types are fixed.

Long integer numbers have a suffix Example (for example, 40000000001). Hexadecimal
numbers have a prefix 0x (for example, 0xcarg). Octal numbers have a prefix 0. For example,
010 is 8. Naturally, this can be confusing, and we recommend against the use of octal
constants.

C++NOTE

¥ aa [In C and C++, int denotes the integer type that depends on the target
machine. On a 16-bit processor, like the 8086, integers are 2 bytes. On a
32-bit processor like the Sun SPARC, they are 4-byte quantities. On an
Intel Pentium, the integer type of C and C++ depends on the operating
system: for DOS and Windows 3.1, integers are 2 bytes. When using 32-
bit mode for Windows programs, integers are 4 bytes. In Java, the sizes
of all numeric types are platform independent.

Note that Java does not have any unsigned types.

Floating-Point Types

The floating-point types denote numbers with fractional parts. There are two floating-point
types, as shown in Table 3-2.

59

Core Java™ 2: Volume I-Fundamentals

Table 3-2. Floating-point types

Type |[Storage Range
Requirement
float |4 bytes approximately +3.40282347E+38F (6—7 significant decimal digits)
double 8 bytes approximately +1.79769313486231570E+308 (15 significant decimal
digits)

The name double refers to the fact that these numbers have twice the precision of the float
type. (Some people call these double-precision numbers.) Here, the type to choose in most
applications is double. The limited precision of float is simply not sufficient for many
situations. Seven significant (decimal) digits may be enough to precisely express your annual
salary in dollars and cents, but it won't be enough for your company president's salary. The
only reason to use float is in the rare situations in which the slightly faster processing of
single-precision numbers is important, or when you need to store a large number of them.

Numbers of type float have a suffix F, for example, 3.402F. Floating-point numbers without
an F suffix (such as 3.402) are always considered to be of type double. You can optionally
supply the D suffix such as 3.402D.

All floating-point computations follow the IEEE 754 specification. In particular, there are
three special floating-point values:

e positive infinity
e negative infinity
e NaN (not a number)

to denote overflows and errors. For example, the result of dividing a positive number by 0 is
positive infinity. Computing 0/0 or the square root of a negative number yields NaN.

NOTE

There are constants Double.POSITIVE INFINITY, Double.NEGATIVE
INFINITY and Double.NaN (as well as corresponding Float constants)
to represent these special values. But they are rarely used in practice. In
particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaNn. All “not a
number” values are considered distinct. However, you can use the
Double. isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

60

Core Java™ 2: Volume I-Fundamentals

The Character Type

First, single quotes are used to denote char constants. For example, 'H' is a character. It is
different from "u", a string containing a single character. Second, the char type denotes
characters in the Unicode encoding scheme. You may not be familiar with Unicode, and,
fortunately, you don't need to worry much about it if you don't program international
applications. (Even if you do, you still won't have to worry about it too much because
Unicode was designed to make the use of non-Roman characters easy to handle.) Because
Unicode was designed to handle essentially all characters in all written languages in the
world, it is a 2-byte code. This allows 65,536 characters, of which about 35,000 are currently
in use. This is far richer than the ASCII codeset, which is a 1-byte code with 128 characters,
or the commonly used ISO 8859-1 extension with 256 characters. That character set (which
some programmers call the “Latin-1 character set) is a subset of Unicode. More precisely, it
is the first 256 characters in the Unicode coding scheme. Thus, character codes like 'a', "1,
"[' and 'a' are valid Unicode characters with character codes < 256. Unicode characters
have codes between 0 and 65535, but they are usually expressed as hexadecimal values that
run from '\u0000"' to '\uFFFEF' (With '\u0000"' to '\u00FF' being the ordinary ISO 8859-1
characters). The \u prefix indicates a Unicode value, and the four hexadecimal digits tell you
what Unicode character. For example, \u2122 is the trademark symbol (™). For more
information on Unicode, you might want to check out the Web site at
http://www.unicode.org/.

Besides the \u escape character that indicates the encoding of a Unicode character, there are
several escape sequences for special characters shown in Table 3-3.

Table 3-3. Special characters

Escape Sequence Name Unicode Value
\b backspace \u0008
\t tab \u0009
\n linefeed \u000a
\r carriage return \u000d
\" double quote \u0022
\! single quote \u0027
AN\ backslash \u005c
NOTE

Although you can theoretically use any Unicode character in a Java
application or applet, whether you can actually see it displayed depends
on your browser (for applets) and (ultimately) on your operating system
for both. For example, you cannot use Java to output Kanji on a machine
running the U.S. version of Windows. For more on internationalization
issues, please see Chapter 12 of Volume 2.

The boolean Type
The boolean type has two values, false and true. It is used for evaluating logical

conditions. You cannot convert between integers and boolean values.

61

Core Java™ 2: Volume I-Fundamentals

C++ NOTE
¥ aa [In C++, numbers and even pointers can be used in place of boolean
values. The value 0 is equivalent to the boo1l value false, and a non-zero
value is equivalent to true. This is not the case in Java. Thus, Java

e : .
programmers are shielded from accidents such as
if (x = 0) // oops...meant x == 0
In C++, this test compiles and runs, always evaluating to false. In Java,
the test does not compile because the integer expression x = 0 cannot be
converted to a boolean value.
Variables

In Java, every variable has a fype. You declare a variable by placing the type first, followed
by the name of the variable. Here are some examples:

double salary;

int vacationDays;
long earthPopulation;
char yesChar;

boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary because a
declaration is a complete Java statement.

The rules for a variable name are as follows:

A variable name must begin with a letter, and must be a sequence of letters or digits. Note that
the terms “letter” and “digit* are much broader in Java than in most languages. A letter is
defined as 'a'-'z', 'a'-'z', ' ', or any Unicode character that denotes a letter in a
language. For example, German users can use umlauts such as ' a' in variable names; Greek
speakers could use a p. Similarly, digits are '0'-'9' and any Unicode characters that denote a
digit in a language. Symbols like '+' or '©' cannot be used inside variable names, nor can
spaces. A/l characters in the name of a variable are significant and case is also significant. The
length of a variable name is essentially unlimited.

TIP

If you are really curious as to what Unicode characters are “letters” as far
as Java is concerned, you can use the isJavaldentifierStart and
isJavaIdentifierPart methods in the Character class to check.

You also cannot use a Java reserved word for a variable name. (See Appendix I for a list of
reserved words.)

62

Core Java™ 2: Volume I-Fundamentals

You can have multiple declarations on a single line

int i, j; // both are integers

However, we don't recommend this style. If you define each variable separately, your
programs are easier to read.

NOTE

As you saw, names are case-sensitive, for example hireday and
hireDay are two separate names. In general, you should not have two
names that only differ in their letter case. However, sometimes it is
difficult to come up with a good name for a variable. Many programmers
then give the variable the same name of the type, such as

Box box; // ok--Box 1is the type and box is the variable
name

However, a better solution is to use an “a” prefix for the variable:

Box aBox;

Assignments and Initializations

After you declare a variable, you must explicitly initialize it by means of an assignment
statement—you can never use the values of uninitialized variables. You assign to a previously
declared variable using the variable name on the left, an equal sign (=), and then some Java
expression that has an appropriate value on the right.

int vacationDays; // this is a declaration
vacationDays = 12; // this is an assignment

Here's an example of an assignment to a character variable:

char yesChar;
yesChar = 'Y';

One nice feature of Java is the ability to both declare and initialize a variable on the same line.
For example:

int vacationDays = 12; // this is an initialization

Finally, in Java you can put declarations anywhere in your code. For example, the following
is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // ok to declare variable here

63

Core Java™ 2: Volume I-Fundamentals

Of course, you cannot declare two variables with the same name in the same scope.

C++ NOTE

¥ o [C and C++ distinguish between the declaration and definition of

variables. For example,

A
int 1 = 10;
is a definition, whereas
extern int 1i;
is a declaration. In Java, there are no declarations that are separate from
definitions.
Constants

In Java, you use the keyword final to denote a constant. For example,

public class Constants
{
public static void main (String[] args)
{
final double CM PER INCH = 2.54;
double paperWidth = 8.5;
double paperHeight = 11;
System.out.println ("Paper size in centimeter:
+ paperWidth * CM PER INCH + " by "
+ paperHeight * CM PER INCH) ;

"w

The keyword final indicates that you can assign to the variable once, then its value is set
once and for all. It is customary to name constants in all upper case.

It is probably more common in Java to want a constant that is available to multiple methods
inside a single class. These are usually called class constants. You set up a class constant with
the keywords static final. Here is an example of using a class constant:

public class Constants?2

{
public static final double CM PER INCH = 2.54;;

public static void main(String[] args)
{
double paperWidth = 8.5;
double paperHeight = 11;
System.out.println ("Paper size in centimeter:
+ paperWidth * CM PER INCH + " by "
+ paperHeight * CM PER INCH);

"w

64

Core Java™ 2: Volume I-Fundamentals

Note that the definition of the class constant appears outside the main method. Thus, the
constant can also be used in other methods of the same class. Furthermore, if (as in our
example) the constant is declared public, methods of other classes can also use the
constant—in our example, as Constants2.CM PER INCH.

C++ NOTE

¥ o [const is a reserved Java keyword, but it is not currently used for
anything. You must use final for a constant.

Operators

The wusual arithmetic operators + — * / are used in Java for addition, subtraction,
multiplication, and division. The / operator denotes integer division if both arguments are
integers, and floating-point division otherwise. Integer remainder (that is, the mod function) is
denoted by ¢. For example, 15 / 21is 7,15 % 2isl,and 15.0 / 21is7.5.

Note that integer division by 0 raises an exception, whereas floating-point division by 0 yields
an infinite or NaN result.

You can use the arithmetic operators in your variable initializations:

int n = 5;
int a 2 *n; // a is 10

There is a convenient shortcut for using binary arithmetic operators in an assignment. For
example,

(In general, place the operator to the left of the = sign, such as *= or %=.)

65

NOTE

Core Java™ 2: Volume I-Fundamentals

One of the stated goals of the Java programming language is portability.
A computation should yield the same results no matter on which virtual
machine it executes. For arithmetic computations with floating-point
numbers, it is surprisingly difficult to achieve this portability.
The double type uses 64 bits to store a numeric value, but some
processors use 80 bit floating-point registers. These registers yield added
precision in intermediate steps of a computation. For example, consider
the computation:

double w = x * y / z;

Many Intel processors compute x * y and leave the result in an 80-bit
register, then divide by z and finally truncate the result back to 64 bits.
That can yield a more accurate result, and it can avoid exponent
overflow. But the result may be different from a computation that uses 64
bits throughout. For that reason, the initial specification of the Java
virtual machine mandated that all intermediate computations must be
truncated. The numeric community hated it. Not only can the truncated
computations cause overflow, they are actually slower than the more
precise computations because the truncation operations take time. For
that reason, the Java programming language was updated to recognize
the conflicting demands for optimum performance and perfect
reproducibility. By default, virtual machine designers are now permitted
to use extended precision for intermediate computations. However,
methods tagged with the strictfp keyword must use strict floating-
point operations that yield reproducible results. For example, you can tag

main as

public static strictfp void main(String[] args)

Then all instructions inside the main method use strict floating-point
computations. If you tag a class as strictfp, then all of its methods use
strict floating-point computations.

The gory details are very much tied to the behavior of the Intel
processors. In default mode, intermediate results are allowed to use an
extended exponent, but not an extended mantissa. (The Intel chips
support truncation of the mantissa without loss of performance.)
Therefore, the only difference between default and strict mode is that
strict computations may overflow when default computations don't.

If your eyes glazed over when reading this note, don't worry. For most
programmers, this issue is not important. Floating-point overflow isn't a
problem that one encounters for most common programs. We don't use
the strictfp keyword in this book.

66

Core Java™ 2: Volume I-Fundamentals

Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with a numeric
variable is to add or subtract 1. Java, following in the footsteps of C and C++, has both
increment and decrement operators: x++ adds 1 to the current value of the variable x, and x--
subtracts 1 from it. For example, the code

int n = 12;
n++;

changes n to 13. Because these operators change the value of a variable, they cannot be
applied to numbers themselves. For example, 4++ is not a legal statement.

There are actually two forms of these operators; you have seen the “postfix” form of the
operator that is placed after the operand. There is also a prefix form, ++n. Both change the
value of the variable by 1. The difference between the two only appears when they are used
inside expressions. The prefix form does the addition first; the postfix form evaluates to the
old value of the variable.

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside other expressions as this often leads to confusing code
and annoying bugs.

(Of course, while it is true that the ++ operator gives the C++ language its name, it also led to
the first joke about the language. C++ haters point out that even the name of the language
contains a bug: “After all, it should really be called ++C, since we only want to use a
language after it has been improved.”)

Relational and boolean Operators

Java has the full complement of relational operators. To test for equality you use a double
equal sign, ==. For example, the value of

3 ==
is false.

Use a ! = for inequality. For example, the value of
3 =7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >=
(greater than or equal) operators.

67

Core Java™ 2: Volume I-Fundamentals

Java, following C++, uses «s for the logical “and” operator and || for the logical “or”
operator. As you can easily remember from the != operator, the exclamation point ! is the
logical negation operator. The ss and | | operators are evaluated in “short circuit” fashion.
This means that when you have an expression like:

A && B

once the truth value of the expression a has been determined to be false, the value for the
expression B is not calculated. For example, in the expression

x !=06& 1/ x>x + vy // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if x is zero,
and no divide-by-zero error can occur.

Similarly, if A evaluates to be true, then the value of o || B is automatically true, without
evaluating B.

Finally, Java supports the ternary 2: operator that is occasionally useful. The expression
condition ? el : e2

evaluates to e1 if the conditionis true, to e2 otherwise. For example,

X <y?x:y

gives the smaller of x and y.

Bitwise Operators

When working with any of the integer types, you have operators that can work directly with

the bits that make up the integers. This means that you can use masking techniques to get at
individual bits in a number. The bitwise operators are:

& (“and”) | (“or”) ~ (“xor”) ~ (“not”)
These operators work on bit patterns. For example, if n is an integer variable, then
int fourthBitFromRight = (n & 8) / 8;

gives you a one if the fourth bit from the right in the binary representation of n is one, and a
zero if not. Using & with the appropriate power of two lets you mask out all but a single bit.

NOTE

When applied to boolean values, the & and | operators yield a boolean
value. These operators are similar to the s& and | | operators, except that
the s and | operators are not evaluated in “short-circuit” fashion. That is,
both arguments are first evaluated before computing the result.

68

Core Java™ 2: Volume I-Fundamentals

There are also >> and << operators, which shift a bit pattern to the right or left. These
operators are often convenient when you need to build up bit patterns to do bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, there is even a >>> operator that fills the top bits with zero, whereas >> extends the
sign bit into the top bits. There is no <<< operator.

CAUTION

The right hand side argument of the shift operators is reduced modulo 32
(unless the left hand side is a 1ong in which case the right hand side is
reduced modulo 64). For example, the value of 1 << 35 is the same as 1
<< 3or8.

C++ NOTE

¥ . [In C/C++, there is no guarantee as to whether >> performs an arithmetic
shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whatever is more efficient. That means
the C/C++ >> operator is really only defined for non-negative numbers.

Java removes that ambiguity.

Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you may occasionally
need, depending on the kind of programming that you do.

To take the square root of a number, you use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

NOTE

There is a subtle difference between the printin method and the sqrt
method. The print1ln method operates on an object, System.out, and
has a second parameter, namely y, the value to be printed. (Recall that
out 1s an object defined in the system class that represents the standard
output device.) But the sqrt method in the Math class does not operate
on any object. It has a single parameter, x, the number of which to
extract the square root. Such a method is called a static method. You will
learn more about static methods in Chapter 4.

69

Core Java™ 2: Volume I-Fundamentals

The Java programming language has no operator for raising a quantity to a power: you must
use the pow method in the Math class. The statement

double y =

Math.pow(x, a);

sets y to be x raised to the power a (x). The pow method has parameters that are both of type

double, and

it returns a double as well.

The Math class supplies the usual trigonometric functions

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan?2

and the exponential function and its inverse, the natural log:

Math.exp
Math.log

Finally, there are two constants

Math.PI
Math.E

that denote the closest possible approximations to the mathematical constants p and e.

NOTE

The functions in the mMath class use the routines in the computer's
floating-point unit for fastest performance. If completely predictable
results are more important than fast performance, use the strictMath
class instead. It implements the algorithms from the “Freely
Distributable Math Library” £d1ibm, guaranteeing identical results on all
platforms. See http://www.netlib.org/fdlibm/index.html for the source of
these algorithms. (Where £d1ibm provides more than one definition for a
function, the strictMath class follows the IEEE 754 version whose

9

name starts with an “e”.

Conversions Between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3-1 shows the legal

conversions:

70

Core Java™ 2: Volume I-Fundamentals

Figure 3-1. Legal conversions between numeric types

char

byte — short — int — long

float ——= double

The six black arrows in Figure 3-1 denote conversions without information loss. The three
grey arrows denote conversions that may lose precision. For example, a large integer such as
123456789 has more digits than the f1oat type can represent. When converting it to a float,
the resulting value has the correct magnitude, but it loses some precision.

int n

= 123456789;
float £ =

n; // £ is 1.23456792E8

When combining two values with a binary operator (such as n + f where n is an integer and
f is a floating-point value), both operands are converted to a common type before the
operation is carried out.

o If any of the operands is of type double, the other one will be converted to a double.

o Otherwise, if any of the operands is of type float, the other one will be converted to
a float.

e Otherwise, if any of the operands is of type 1ong, the other one will be converted to
a long.

e Otherwise, both operands will be converted to an int.

Casts

In the preceding section, you saw that int values are automatically converted to double
values when necessary. On the other hand, there are obviously times when you want to
consider a double as an integer. Numeric conversions are possible in Java, but of course
information may be lost. Conversions where loss of information is possible are done by means
of casts. The syntax for casting is to give the target type in parentheses, followed by the
variable name. For example:

double x = 9.997;
int nx = (int)x;

Then, the variable nx has the value 9, as casting a floating-point value to an integer discards
the fractional part.

71

Core Java™ 2: Volume I-Fundamentals

If you want to round a floating-point number to the nearest integer (which is the more useful
operation in most cases), use the Math. round method:

double x = 9.997;
int nx = (int)Math.round (x);

Now the variable nx has the value 10. You still need to use the cast (int) when you call
round. The reason is that the return value of the round method is a 1ong, and a 1ong can only
be assigned to an int with an explicit cast since there is the possibility of information loss.

NOTE
If you try to cast a number of one type to another that is out of the range
for the target type, the result will be a truncated number that has a
different value. For example, (byte) 300 is actually 44. It is, therefore, a
good idea to explicitly test that the value is in the correct range before
you perform a cast.

C++ NOTE

g

You cannot cast between boolean values and any numeric type. This
prevents common errors. In the rare case that you want to convert a
boolean value to a number, you can use a conditional expression such as
b ? 1 : 0.

Parentheses and Operator Hierarchy
As in all programming languages, you are best off using parentheses to indicate the order in
which you want operations to be carried out. However, in Java the hierarchy of operations is

as shown in Table 3-4.

Table 3-4. Operator precedence

Operators Associativity
[1 . () (method call) left to right
! ~ ++ -- + (unary)— (unary) () (cast) new right to left
* /% left to right
+ - left to right
<< >> >>> left to right
< <= > >= instanceof left to right
== I= left to right
left to right
left to right
| left to right
&& left to right
I left to right
?: left to right

72

Core Java™ 2: Volume I-Fundamentals

= 4= -= *= /= %= &= |= "= <<= >>= >>>= right to left

If no parentheses are used, operations are performed in the hierarchical order indicated.
Operators on the same level are processed from left to right, except for those that are right
associative, as indicated in the table.

C++ NOTE

¥ o [Unlike C or C++, Java does not have a comma operator. However, you
can use a comma-separated list of expressions in the first and third slot of
a for statement.

Strings

Strings are sequences of characters, such as "Hello". Java does not have a built-in string
type. Instead, the standard Java library contains a predefined class called, naturally enough,
string. Each quoted string is an instance of the string class:

String e = ""; // an empty string
String greeting = "Hello";

Concatenation

Java, like most programming languages, allows you to use the + sign to join (concatenate) two
strings together.

String expletive = "Expletive";

String PG1l3 = "deleted";
String message = expletive + PG13;

The above code makes the value of the string variable message "Expletivedeleted". (Note
the lack of a space between the words: the + sign joins two strings together in the order
received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is converted to a

string. (As you will see in Chapter 5, every Java object can be converted to a string.) For
example:

int age = 13;
String rating = "PG" + age;

sets rating to the string "pG13".

This feature is commonly used in output statements; for example,

System.out.println ("The answer is " + answer);

73

Core Java™ 2: Volume I-Fundamentals

is perfectly acceptable and will print what one would want (and with the correct spacing
because of the space after the word is).

Substrings

You extract a substring from a larger string with the substring method of the string class.
For example,

String greeting = "Hello";
String s = greeting.substring (0, 4);

creates a string consisting of the characters "He11". Java counts the characters in strings in a
peculiar fashion: the first character in a string has position 0, just as in C and C++. (In C, there
was a technical reason for counting positions starting at 0, but that reason has long gone away,
and only the nuisance remains.)

For example, the character 'H' has position 0 in the string "Hel1o", and the character 'o' has
position 4. The second parameter of substring is the first position that you do not want to
copy. In our case, we want to copy the characters in positions 0, 1, 2, and 3 (from position 0 to
position 3 inclusive). As substring counts it, this means from position 0 inclusive to position
4 exclusive.

There is one advantage to the way substring works: it is easy to compute the length of the
substring. The string s.substring(a, b) always has b - a characters. For example, the
substring "He11" has length 4 — 0 = 4.

String Editing
To find out the length of a string, use the 1ength method. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5.

Just as char denotes a Unicode character, string denotes a sequence of Unicode characters.
It is possible to get at individual characters of a string. For example, s.charat (n) returns the
Unicode character at position n, where n is between 0 and s. length () — 1. For example,

char last = greeting.charAt(4); // fourth is 'o'

However, the string class gives no methods that let you change a character in an existing
string. If you want to turn greeting into "Hell!", you cannot directly change the last
position of greeting into a '!'. If you are a C programmer, this will make you feel pretty
helpless. How are you going to modify the string? In Java, it is quite easy: take the substring
that you want to keep, and then concatenate it with the characters that you want to replace.

greeting = greeting.substring (0, 4) + "!";
This changes the current value of the greeting variable to "He11!™".

Since you cannot change the individual characters in a Java string, the documentation refers to
the objects of the string class as being immutable. Just as the number 3 is always 3, the

74

Core Java™ 2: Volume I-Fundamentals

string "Hello" will always contain the character sequence 'u', 'e', '1', '1', 'o'. You
cannot change these values. You can, as you just saw however, change the contents of the
string variable greeting and make it refer to a different string, just as you can make a
numeric variable currently holding the value 3 hold the value 4.

Isn't that a lot less efficient? It would seem simpler to change the characters than to build up a
whole new string from scratch. Well, yes and no. Indeed, it isn't efficient to generate a new
string that holds the concatenation of "He11" and "!". But immutable strings have one great
advantage: The compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a common pool. String
variables then point to locations in the pool. If you copy a string variable, both the original
and the copy share the same characters. Overall, the designers of Java decided that the
efficiency of sharing outweighs the inefficiency of string editing by extracting substrings and
concatenating.

Look at your own programs; we suspect that most of the time, you don't change strings—you
just compare them. Of course, there are some cases in which direct manipulation of strings is
more efficient. (One example is when assembling strings from individual characters that come
from a file or the keyboard.) For these situations, Java provides a separate StringBuffer
class that we describe in Chapter 12. If you are not concerned with the efficiency of string
handling (which is not a bottleneck in many Java applications anyway), you can ignore
StringBuffer and just use string.

C++ NOTE

P C programmers generally are bewildered when they see Java strings for
the first time, because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is the wrong analogy: a Java string is roughly analogous to a char®
pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does
roughly the following:

char* temp = malloc(6);
strncpy (temp, greeting, 4);
strncpy (temp + 4, "!", 2);
greeting = temp;

Sure, now greeting points to the string "Hel11!". And even the most
hardened C programmer must admit that the Java syntax is more pleasant
than a sequence of strncpy calls. But what if we make another
assignment to greeting?

greeting = "Howdy";

75

Core Java™ 2: Volume I-Fundamentals

Don't we have a memory leak? After all, the original string was allocated
on the heap. Fortunately, Java does automatic garbage collection. If a
block of memory is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI
C++, you will be much more comfortable with the Java string type.
C++ string objects also perform automatic allocation and deallocation
of memory. The memory management is performed explicitly by
constructors, assignment operators, and destructors. However, C++
strings are mutable—you can modify individual characters in a string.

Testing Strings for Equality

To test whether or not two strings are equal, use the equals method; the expression

s.equals (t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can be string
variables or string constants. For example,

"Hello".equals (command)

is perfectly legal. To test if two strings are identical except for the upper/lowercase letter
distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase ("hello")

Do not use the == operator to test if two strings are equal! It only determines whether or not
the strings are stored in the same location. Sure, if strings are in the same location, they must
be equal. But it is entirely possible to store multiple copies of identical strings in different
places.

String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello")

// probably true
if (greeting.substring (0, 4) == "Hell")

// probably false

If the virtual machine would always arrange for equal strings to be shared, then you could use
== for testing equality. But only string constants are shared, not strings that are the result of
operations like + or substring. Therefore, never use == to compare strings or you will have a
program with the worst kind of bug—an intermittent one that seems to occur randomly.

76

Core Java™ 2: Volume I-Fundamentals

C++ NOTE

¥ aa [If you are used to the C++ string class, you have to be particularly
careful about equality testing. The C++ string class does overload the
== operator to test for equality of the string contents. It is perhaps
unfortunate that Java goes out of its way to give strings the same “look
and feel” as numeric values but then makes strings behave like pointers
for equality testing. The language designers could have redefined == for
strings, just as they made a special arrangement for +. Oh well, every
language has its share of inconsistencies.

C programmers never use == to compare strings but use strcmp instead.
The Java method compareTo is the exact analog to strcmp. You can use

if (greeting.compareTo ("Help") == 0)

but it seems clearer to use equals instead.

The string class in Java contains more than 50 methods. A surprisingly large number of
them are sufficiently useful so that we can imagine using them frequently. The following API
note summarizes the ones we found most useful.

NOTE

You will find these API notes throughout the book to help you
understand the Java Application Programming Interface (API). Each API
note starts with the name of a class such as java.lang.String—the
significance of the so-called package name java.lang will be explained
in Chapter 5. The class name is followed by the names, explanations, and
parameter descriptions of one or more methods.

We typically do not list all methods of a particular class but instead

select those that are most commonly used, and describe them in a concise
form. For a full listing, consult the on-line documentation.

java.lang.String

e char charAt (int index)

returns the character at the specified location.

77

Core Java™ 2: Volume I-Fundamentals

int compareTo (String other)

returns a negative value if the string comes before other in dictionary order, a positive
value if the string comes after other in dictionary order, or 0 if the strings are equal.

boolean endsWith (String suffix)

returns true if the string ends with suffix.

boolean equals (Object other)

returns true if the string equals other.

boolean equalsIgnoreCase (String other)

returns true if the string equals other, except for upper/lowercase distinction.

int indexOf (String str)
int indexOf (String str, int fromIndex)

return the start of the first substring equal to str, starting at index 0 or at fromIndex.

int lastIndexOf (String str)
int lastIndexOf (String str, int fromIndex)

return the start of the last substring equal to str, starting at index O or at fromIndex.
int length ()

returns the length of the string.

String replace (char oldChar, char newChar)

returns a new string that is obtained by replacing all characters oldchar in the string
with newChar.

boolean startsWith(String prefix)
returns true if the string begins with prefix.

String substring (int beginIndex)
String substring(int beginIndex, int endIndex)

return a new string consisting of all characters from beginIndex until the end of the
string or until endIndex (exclusive).

String toLowerCase ()

returns a new string containing all characters in the original string, with uppercase
characters converted to lower case.

78

Core Java™ 2: Volume I-Fundamentals

e String toUpperCase ()

returns a new string containing all characters in the original string, with lowercase
characters converted to upper case.

e String trim()
returns a new string by eliminating all leading and trailing spaces in the original string.
Reading the On-line APl Documentation

As you just saw, the string class has lots of methods. Furthermore, there are hundreds of
classes in the standard libraries, with many more methods. It is plainly impossible to
remember all useful classes and methods. Therefore, it is essential that you become familiar
with the on-line API documentation that lets you look up all classes and methods in the
standard library. The API documentation is part of the Java SDK. It is in HTML format. Point
your web browser to the docs/api/index.html subdirectory of your Java SDK installation.
You will see a screen as in Figure 3-2.

Figure 3-2. The three panes of the APl documentation

JdavaTM} F Faidndn, B teadanl Fditeiii, 1,70 &P Spncaiealin - B0 gt

Fit Bl Vv Gearch Go Soolreks Twks Mg

VAR A L L § 1B 4/ B iR BAn]

Java™ 2 Platform = | [EEEEIRPackage Class Use Tre Deprvcated Indox Holp

Srandard Edition PAEY KEXT THAMLS HO TRAMES

Al Clakies

Java™ 2 Platform, Standard Edition, v1.2.2
API Specification

This decument is tee AF] specfication of the [ava2 Flatform, Standard Editan, version 12 2.

Sow:
Dexcriplion

Packages

Preides the clnsses necsssary b creabe oo appist and e clisses

i Lt . o
BEASPILE 20 spelet uses 1o communicate with iz applet camex

Corviadng 3l of the classes for creating user interfaces and for
paintiog; grephics and meges.
Javaawt.colar Preeides clagses (o colar Fpales

Precvides nberfaces aod classes for transferring data betwesn and
i B
jnvaawt. datarranster within appkcations.

R e

Dirse and Dirog is & direct martnulaSan gesture faund in many >
el |0 2000032406 of

The screen is organized into three windows. A small window on the top left shows all
available packages. Below it, a larger window lists all classes. Click on any class name, and
the API documentation for the class is displayed in the large window to the right (see
Figure 3-3). For example, to get more information on the methods of the string class, scroll
the second window until you see the String link, then click on it.

79

Core Java™ 2: Volume I-Fundamentals

Figure 3-3. Class description for the String class

dnwaTM} & Plaiin eudarl Fuitmi, wi.7.7 &M Spoeciication - Hsaps
Fie Bal e Gewoh G0 Bodrewis Tmks Help

ST F P Ll R, E LB apld e anl

Java™ 2 Platform = | Trverview Packoge [SFER the Treo Deprecated Index Help
Standard Edition ALY CLASS EXT CLASS [RAMLS 1) TRAMES

BUHHARY. INMER | FIEELD | CORSTR | METHOD DETAIL: FIELD: | COMETR | HETHON
AL Clngges

java.lang
Class String

Stresen Telienkzer
Sirig vn Lang Obiscs
String Buffer |
Strisd Bufferinputire am +n java. Lang Steing
Sirg Chacacter[terater
Strieg Crotent

Strisg Halder

StringInd e Tt G Bovand s publc fnal class Strimg
StrigReader extends Dhisct

fitred S election implereents Serinkzahle, Comparstle
String T okentrer
Strieg Writer Thee $tring class represents character striegs AL string beerals i Java programs, such a6 “abe®, ore tmplemented &
E 1 Instances of tals claay,

Strucilember = Fuings are constanl; ther values caonat be changed after they are created, Strisg, buffers suppert mutable stringe
SnihNolFsundException I Becouse String objects are fmmatehle they con be shered. Por exemple:

i . String stx = “ahc™;
m-t Daorw (8318 mea)

Then scroll the window on the right until you reach a summary of all methods, sorted in
alphabetical order (see Figure 3-4). Click on any method name for a detailed description of
the method (see Figure 3-5). For example, if you click on the compareToIgnorecase link,
you get the description of the compareToIgnorecase method.

Figure 3-4. Method summary of the String class

dava{TM) & Platdnan, Stastanl Fditaii, 1,72 &AM Specficadinn - Wt

Fit Bl Wew Gearch Go Soolrks Twks Ml

TR A L L § 1B 4 B ivlaR BAnl

Java™ 2 Flatform = | |Method Summary
Standard Edition ehir | ghar AL {ine isedax)

Al Clnises Fetured (et chaeacter of the specificd index.

int | pompareTeiiblsct ol
Campares thix String to another Chject

S TEEMTC T TEr T o ink| comgaraTalEtcing anstharseeing)
Srrrre'nT:\-:-'.tni.‘r:- - Cumpares o suings ledeagraphically
S ink| pompareTelgnoretasn (Ftiing sta)
Strims Buifer Campares two strings lexicographically, ignoring case considerations.
Strisg BufferinpatStre am #toing | pepeak{Stoing Ate)
S Chacacterteratar Cancateneies the specilisd string ta the end of this string
%’% statls atcin | popyvalmef (chas|] dxta)
ﬁ.l-':l_*."_ — Fietureie 3 String that is equivalent 1o the specified characier array.

R ANUEX AU S D Dana Y
Strig Reader atatle Sloing | copyWalpedf (ckar|] dsta. amt of fset. 1nk count)
‘:Iﬁ.—f‘;r":'rﬁﬂ‘\. Beturns a Siring that i aqubvalent 1o the spacifed character array.
e S
String T ok engeer Beolisa | gpddaWithiitoing suffix)
Strizg Wiriter Testi if thiz iadng ends with the ipecibed sulfix

beslesa | ggpals{0byect anibject)

- Compares this string to the specfied chjact.
Structlember I doaloa | pealalyooreGase (Stiing anstherSieing)

WmFayndExes
E:Jh:: wlEsundExteplan Campares tis Stoing 19 Bssther String, iering case caniderstans,

el ceeee o
Donurnent Diores (B 316 si08)

80

Core Java™ 2: Volume I-Fundamentals

Figure 3-5. Detailed description of a String method

JdavaTM} F Falfomn, Steedanl Fditmii, 1.7.7 AP Specalicadion - Bac g

Fie Edt e Gemch Go Gooireris Tiks e

A AP Dl R, § 2S00 df Al Livlas sl

Srandard Edition

AL Clngges

compareTolpnoreCase

public int coeparelolgeoreCase(Siiing sto)
Packages -

fl s [Comperes twa strings lexicogreghically, igroring case considerstons. This method returms an mheger wiose
—STEEMC O I CEp T #ign i that of this eolppasDased] BclowerCmes(] compazeTo] atr bslfppecCess () bsLowerCaas i)

Stresen Telienkzer
Hate that thiz rmethed dees mas take lacale o sccows, and will rerul in an v sSfachary ondiering for cerais
locses. The [avatest package pravides clarery to alow lacads-sensitive srdesing.
Strie BulferinpatStrenm
SirbgChacacier [feratar Paramiters:
stf = the $iring to he compared.
Strisg Halder Ratarmas
StringInd e Tt G Bovand s anegative integer, zere, or o pesitive inte ger as the the specified String |5 preater thae, egual te, or less
Strizg Reader than thiz Fiing, ignering caie conrkderatisng

Simee:

Siricg T ok erceer IDELR
Strizg Wiriter Ton Alsm:
ik Gollstas coagareiStiing, Etringd

reglon Matches

Deoret (B0 S 2aca)

TIP

Reading Input

You saw that it is easy to print output to the “standard output device” (that is, the console
window) just by calling system.out.println. Unfortunately, it is quite a bit more complex
to read keyboard input from the “standard input device.”

However, it is easy to supply a dialog box for keyboard input. The method call
JOptionPane.showInputDialog (promptString)

puts up a dialog box that prompts the user for input (see Figure 3-6). The return value is the
string that the user typed.

81

Core Java™ 2: Volume I-Fundamentals

Figure 3-6. An input dialog

What is your name?

cay |

oK Cancel

For example, here is how you can query the name of the user of your program:

String name = JOptionPane.showInputDialog ("What is your name?");

To read in a number, you have to work a little harder. The JoptionPane. showInputDialog
method returns a string, not a number. You use the Integer.parseInt or
Double.parseDouble method to convert the string to its numeric value. For example,

String input = JOptionPane.showInputDialog("How old are you?");
int age = Integer.parselnt (input);

If the user types 40, then the string variable input is set to the string "40". The
Integer.parseInt method converts the string to its numeric value, the number 40.

NOTE

If the parameter of the parseInt method contains non-digits, then
the method throws an exception. Unless your program ‘“catches”
the exception, the virtual machine terminates the program and prints
an error message to the console. You will see in Chapter 11 how to catch
exceptions.

The program in Example 3-2 asks for the user's name and age and then prints out a message
like

Hello, Cay. Next year, you'll be 41

When you run the program, you will see that a first dialog appears to prompt for the name.
The dialog goes away, and a second dialog asks for the age. Finally, the reply is displayed in
the console window, not in a dialog window. This is not very elegant, of course. You will see
in later chapters how to program much more pleasant user interfaces. For now, we'll stick to
JOptionPane.showInputDialog and System.out.println because they are easy to use.

Note that the program ends with the method call:
System.exit (0);
Whenever your program calls joptionPane.showInputDialog, you need to end it with a call

to system.exit (0). The reason is a bit technical. Showing a dialog box starts a new thread of
control. When the main method exits, the new thread does not automatically terminate. To

82

Core Java™ 2: Volume I-Fundamentals

end all threads, you need to call the system.exit method. (For more information on threads,
see Chapter 1 of Volume 2.)

The system.exit method receives an integer parameter, the “exit code” of the program. By
convention, a program exits with exit code 0 if it completed successfully, and with a non-zero
exit code otherwise. You can use different exit codes to indicate different error conditions.
The exiting program communicates the exit code to the operating system. Shell scripts and
batch files can then test the exit code.

Finally, note the line
import javax.swing.*;

at the beginning of the program. The JoptionPane class is defined in the javax.swing
package. Whenever you use a class that is not defined in the basic java.lang package, you
need to use an import directive. We will look at packages and import directives in more
detail in Chapter 5.

Example 3-2 InputTest.java

1. import javax.swing.*;

2

3. public class InputTest

4. |

5. public static void main(String[] args)

6 {

7 // get first input

8. String name = JOptionPane.showInputDialog
9. ("What is your name?");

10.

11. // get second input

12. String input = JOptionPane.showInputDialog
13. ("How old are you?");

14.

15. // convert string to integer value

16. int age = Integer.parselnt (input);

17.

18. // display output on console

19. System.out.println("Hello, " + name +
20. ". Next year, you'll be " + (age + 1));
21.
22. System.exit (0) ;
23. }
24, '}

javax.swing.JOptionPane

e static String showInputDialog (Object message)

83

Core Java™ 2: Volume I-Fundamentals
displays a dialog box with a message prompt, an input field, and “Ok” and “Cancel”
buttons. The method returns the string that the user typed.

java.lang.System

[e

il

e static void exit(int status)

terminates the virtual machine and passes the status code to the operating system. By
convention, a non-zero status code indicates an error.

Formatting Output

You can print a number x to the console with the statement System.out.print (x). That
command will print x with the maximum number of non-zero digits for that type. For
example,

x = 10000.0 / 3.0;
System.out.print (x);

prints

3333.3333333333335
That is a problem if you want to display, for example, dollars and cents.

You can control the display format to arrange your output neatly. The NumberFormat class in
the java.text package has three methods that yield standard formatters for

e numbers
e currency values
e percentage values

Suppose that the United States locale is your default locale. (A locale is a set of specifications
for country-specific properties of strings and numbers, such as collation order, currency
symbol, and so on. Locales are an important concept for writing internationalized
applications—programs that are acceptable to users from countries around the world. We will
discuss internationalization in Volume 2.) Then, the value 10000.0 / 3.0 will print as

3,333.333
$3,333.33
333,333%

in these three formats. As you can see, the formatter adds the commas that separate the
thousands, currency symbols ($), and percent signs.

To obtain a formatter for the default locale, use one of the three methods:

84

Core Java™ 2: Volume I-Fundamentals

NumberFormat.getNumberInstance ()
NumberFormat.getCurrencyInstance ()
NumberFormat.getPercentInstance ()

Each of these methods returns an object of type NumberFormat. You can use that object to
format one or more numbers. You then apply the format method to the NumberFormat object
to get a string that contains the formatted number. Once you have the formatted string, you
will probably simply display the newly formatted number by printing the string:

double x = 10000.0 / 3.0;

NumberFormat formatter = NumberFormat.getNumberInstance() ;
String s = formatter.format(x); // the string "3,333.33"
System.out.println(s);

You also may want to set the minimum and maximum number of integer digits or fractional
digits to display. You <can do this with the setMinimumIntegerDigits,
setMinimumFractionDigits, setMaximumIntegerDigits, and
setMaximumFractionDigits methods in the NumberFormat class. For example,

double x = 10000.0 / 3.0;

NumberFormat formatter = NumberFormat.getNumberInstance () ;
formatter.setMaximumFractionDigits (4) ;
formatter.setMinimumIntegerDigits (6) ;

String s = formatter.format(x); // the string "003,333.3333"

Setting the maximum number of fractional digits is often useful. The last displayed digit is
rounded up if the first discarded digit is 5 or above. If you want to show trailing zeroes, set the
minimum number of fractional digits to the same value as the maximum. Otherwise, you
should leave the minimum number of fractional digits at the default value, 0.

Setting the number of integer digits is much less common. By specifying a minimum number,
you force leading zeroes for smaller values. Specifying a maximum number is downright
dangerous—the displayed value is silently truncated, yielding a nicely formatted but very
wrong result.

NOTE

If you are familiar with the C printf function and are longing for its
simplicity, check out the Format class at
http://www.horstmann.com/corejava.html. It is a Java class that faithfully
replicates the behavior of printf. For example,
Format.printf ("$8.2f", 10000.0 / 3.0) prints the string "
3333.33" (with a leading space to yield a field width of 8 digits, and 2
digits after the decimal point).

You can also obtain number formats that are appropriate for different locales. For example, let
us look up the number formats that are used by the German locale and use them to print our
test output. There is a predefined object named Locale.GERMANY of a type called Locale that
knows about German number formatting rules. When we pass that Locale object to the
getNumberInstance method, we obtain a formatter that follows those German rules.

85

Core Java™ 2: Volume I-Fundamentals

double x = 10000.0 / 3.0;
NumberFormat formatter

= NumberFormat.getNumberInstance (Locale.GERMANY) ;
System.out.println (formatter.format (x));
formatter = NumberFormat.getCurrencyInstance (Locale.GERMANY) ;
System.out.println (formatter.format (x));

This code prints the numbers:

3.333,333
3.333,33 DM

Note that the German convention for periods and commas in numbers is the exact opposite of
the U.S. convention: a comma is used as the decimal separator, and a period is used to
separate thousands. Also, the formatter knows that the currency symbol (DM) is placed after
the number.

java. text.NumberFormat

e static NumberFormat getCurrencylInstance ()

returns a NumberFormat object to convert currency values to strings using
the conventions of the current locale.

e static NumberFormat getNumberInstance ()

returns a NumberFormat object to format numbers using the conventions of the current
locale.

e static NumberFormat getPercentInstance ()
returns a NumberFormat object to convert percentages to strings.
e void setMaximumFractionDigits (int digits)

Parameters: digits the number of digits to display

o sets the maximum number of digits after the decimal point for the format object. The
last displayed digit is rounded.

e void setMaximumIntegerDigits (int digits)
Parameters: digits the number of digits to display

e sets the maximum number of digits before the decimal point for the format object. Use
this method with extreme caution. If you specify too few digits, then the number is
simply truncated, displaying a dramatically wrong result!

e void setMinimumFractionDigits (int digits)

86

Core Java™ 2: Volume I-Fundamentals

Parameters: digits the number of digits to display

e sets the minimum number of digits after the decimal point for the format object. If the
number has fewer fractional digits than the minimum, then trailing zeroes are
supplied.

e void setMinimumIntegerDigits (int digits)
Parameters: digits the number of digits to display

e sets the minimum number of digits before the decimal point for the format object. If
the number has fewer digits than the minimum, then leading zeroes are supplied.

Control Flow

Java, like any programming language, supports both conditional statements and loops to
determine control flow. We start with the conditional statements and then move on to loops.
We end with the somewhat cumbersome switch statement that you can use when you have to
test for many values of a single expression.

C++ NOTE

P The Java control flow constructs are identical to those in C and C++,
with two exceptions. There is no goto, but there is a “labeled” version of
break that you can use to break out of a nested loop (where you perhaps
would have used a goto in C).

Block Scope
Before we get into the actual control structures, you need to know more about blocks.

A block or compound statement is any number of simple Java statements that are surrounded
by a pair of braces. Blocks define the scope of your variables. Blocks can be nested inside
another. Here is a block that is nested inside the block of the main method.

public static void main (String[] args)

{
int n;
{
int k;

} // k is only defined up to here
}

However, it is not possible to declare identically named variables in two nested blocks. For
example, the following is an error and will not compile:

87

Core Java™ 2: Volume I-Fundamentals

public static void main(String[] args)

{
int n;
{
int k;
int n; // error--can't redefine n in inner block

C++ NOTE

r

In C++, it is possible to redefine a variable inside a nested block. The
inner definition then shadows the outer one. This can be a source of
programming errors; hence Java does not allow it.

Conditional Statements

The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute multiple
statements when a single condition is true. In this case, you use a block statement that takes
the form:

statement,
statement,

For example:

if (yourSales >= target)
{

performance = "Satisfactory";
bonus = 100;

In this code all the statements surrounded by the braces will be executed when yoursales is
greater than or equal to target. (See Figure 3-7.)

88

Core Java™ 2: Volume I-Fundamentals

Figure 3-7. Flowchart for the if statement

yourSalesztarget

performance
="Satisfactory”

bonus=100

NOTE

A block (sometimes called a compound statement) allows you to have
more than one (simple) statement in any Java programming structure that
might otherwise have a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3-8):

89

Core Java™ 2: Volume I-Fundamentals

Figure 3-8. Flowchart for the i f/else statement

yourSalesztarget

performance
="Satisfactory”

Y

bonus=
100+0.01*
(yourSales—target)

performance
="Unsatisfactory”

bonus=0

if (condition) statement,; else statement,;

For example:

if (yourSales >= target)
{

performance = "Satisfactory";

bonus = 100 + 0.01 * (yourSales - target);
}
else
{

performance = "Unsatisfactory";

bonus = 0;

The else part is always optional. An else groups with the closest i £. Thus, in the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the e1se belongs to the second if.

90

Core Java™ 2: Volume I-Fundamentals

Repeated if . . . else if . . . alternatives are very common (see Figure 3-9). For

example:

if (yourSales >= 2 * target)
{
performance = "Excellent";
bonus = 1000;
}
else if {yourSales >= 1.5 * target)
{
performance = "Fine";
bonus = 500;
}
else if (yourSales >= target)
{
performance = "Satisfactory";
bonus = 100;
}
else

{

System.out.println ("You're fired");

}

91

Core Java™ 2: Volume I-Fundamentals

Figure 3-9. Flowchart for the i£/else if (multiple branches)

ourSalesz2"largel parformanice =
yourSa 9 ="Excellent’ #| bonus=1000
yourSalesz1.5"target peﬂ?;ma?ce ——| bonus=500 Y
="Fine
performance . b =100 Y
="Satisfactory” onus=
Prim
"You're fired”

l-.
Indeterminate Loops
In Java, as in all programming languages, there are control structures that let you repeat
statements. There are two forms for repeating loops that are best when you do not know how

many times a loop should be processed (these are “indeterminate loops™).

First, there is the while loop that only executes the body of the loop while a condition is
true. The general form is:

while (condition) statement

The while loop will never execute if the condition is false at the outset (see Figure 3-10).

92

Core Java™ 2: Volume I-Fundamentals

Figure 3-10. Flowchart for the while statement

halance<qoal

update
balance

years++

Print years

In Example 3-3, we write a program to determine how long it will take to save a specific
amount of money for your well-earned retirement, assuming that you deposit the same
amount of money per year and the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently
accumulated in the body of the loop until the total exceeds the targeted amount.

while (balance < goal)

{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;

93

Core Java™ 2: Volume I-Fundamentals

(Don't rely on this program to plan for your retirement. We left out a few niceties such as
inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block may never be executed. If you
want to make sure a block is executed at least once, you will need to move the test to the
bottom. This is done with the do/while loop. Its syntax looks like this:

do statement while (condition);

This statement executes the block and only then tests the condition. It then repeats the block
and retests the condition, and so on. For instance, the code in Example 3-4 computes the new
balance in your retirement account and then asks you if you are ready to retire:

do
{

balance += payment;

double interest = balance * interestRate / 100;
balance += interest;

year++;

// print current balance

// ask if ready to retire and get input

}
while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3-11). This program is a

good example of a loop that needs to be entered at least once, because the user needs to see
the balance before deciding whether it is sufficient for retirement.

94

Core Java™ 2: Volume I-Fundamentals

Figure 3-11. Flowchart for the do/while statement

update
balance

print balance
ask "Ready
to retire?
(Y/MN)"

read
input

YES

NO

Example 3-3 Retirement.java

1. import javax.swing.*;

2.

3. public class Retirement

4. |

5. public static void main (String[] args)

6. {

7. // read inputs

8. String input = JOptionPane.showInputDialog
9. ("How much money do you need to retire?");
10. double goal = Double.parseDouble (input) ;
11.

95

12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

Core Java™ 2: Volume I-Fundamentals

input = JOptionPane.showInputDialog
("How much money will you contribute every year?");
double payment = Double.parseDouble (input) ;

input = JOptionPane.showInputDialog

("Interest rate in %:");
double interestRate = Double.parseDouble (input);

double balance = 0;
int years = 0;

// update account balance while goal isn't reached
while (balance < goal)
{ // add this year's payment and interest

balance += payment;
double interest = balance * interestRate / 100;
balance += interest;

years++;

}

System.out.println
("Your can retire in " + years + " years.");
System.exit (0) ;

Example 3-4 Retirement2.java

WwhNhNDNDDNDNDNDNDNNDNNNDNNRERRPRERERRRERRRE
P O WOow-JoUd WNEFE OWOJo)U B wWwh - O

O Joy 0w

import java.text.*;
import javax.swing.*;

public class Retirement?2
{
public static void main(String[] args)
{
String input = JOptionPane.showInputDialog
("How much money will you contribute every year?");
double payment = Double.parseDouble (input) ;

input = JOptionPane.showInputDialog
("Interest rate in %:");
double interestRate = Double.parseDouble (input) ;

double balance = 0;
int year = 0;

NumberFormat formatter
= NumberFormat.getCurrencylInstance () ;

// update account balance while user isn't ready to retire
do
{

// add this year's payment and interest

balance += payment;

double interest = balance * interestRate / 100;

balance += interest;

year++;

96

Core Java™ 2: Volume I-Fundamentals

32. // print current balance

33. System.out.println ("After year " + year
34. + ", your balance is "

35. + formatter.format (balance)) ;

36.

37. // ask if ready to retire and get input
38. input = JOptionPane.showInputDialog

39. ("Ready to retire? (Y/N)");

40. input = input.toUpperCase() ;

41. }

42 . while (input.equals("N"));

43.

44 . System.exit (0);

45. }

46. }

Determinate Loops

The for loop is a very general construct to support iteration that is controlled by a counter or
similar variable that is updated after every iteration. As Figure 3-12 shows, the following loop
prints the numbers from 1 to 10 on the screen.

for (int i = 1; 1 <= 10; 1i++)
System.out.println (i) ;

97

Core Java™ 2: Volume I-Fundamentals

Figure 3-12. Flowchart for the for statement

NO

YES

Print i

'

The first slot of the for statement usually holds the counter initialization. The second slot
gives the condition which will be tested before each new pass through the loop, and the third
slot explains how to update the counter.

Although Java, like C++, allows almost any expression in the various slots of a for loop, it is
an unwritten rule of good taste that the three slots of a for statement should only initialize,
test, and update the same counter variable. One can write very obscure loops by disregarding
this rule.

Even within the bounds of good taste, much is possible. For example, you can have loops that
count down:

for (int i = 10; i > 0; i--)

System.out.println ("Counting down . . . " + 1);
System.out.println ("Blastoff!");

98

Core Java™ 2: Volume I-Fundamentals

NOTE

Be careful about testing for equality of floating-point numbers in loops.
A for loop that looks like this:

for (double x = 0; x != 10; x += 0.1)

may never end. Due to roundoff errors, the final value may not be
reached exactly. For example, in the loop above, x jumps from
9.99999999999998 to 10.09999999999998, because there is no exact
binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that variable
extends until the end of the body of the for loop.

for (int i = 1; 1 <= 10; i++)

{
}

// 1 no longer defined here

In particular, if you define a variable inside a for statement, you cannot use the value of that
variable outside the loop. Therefore, if you wish to use the final value of a loop counter
outside the for loop, be sure to declare it outside the header for the loop!

int i;

for (1 = 1; i <= 10; i++)
{

}
// 1 still defined here

On the other hand, you can define variables with the same name in separate for loops:

for (int i = 1; 1 <= 10; i++)

11; i <= 20; i++) // ok to redefine i

H
QO -
=
- e
=}
o+
-
Il

Of course, a for loop is equivalent to a while loop. More precisely,

for (statement,; expression;; expression,) statement,;

is completely equivalent to:

99

Core Java™ 2: Volume I-Fundamentals

statement;;
while (expression;)

{
statement,;
expression,;

Example 3-5 shows a typical example of a for loop.
The program computes the odds on winning a lottery. For example, if you must pick 6
numbers from the numbers 1 to 50 to win, then there are (50 x 49 x 48 x 47 x 46 x 45)/(1 x 2
X 3 x4 x 5 x 6) possible outcomes, so your chance is 1 in 15,890,700. Good luck!
In general, if you pick k£ numbers out of », there are

HX(m=1)x(n=1)x...X(nh=k)

1X2X3x%, . . Xk

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;
for (int 1 = 1; 1 <= k; i++)
lotteryOdds = lotteryOdds * (n - 1 + 1) / 1i;

Example 3-5 LotteryOdds.java

1. import javax.swing.*;

2

3. public class LotteryOdds

4. |

5. public static void main(String[] args)

6 {

7 String input = JOptionPane.showInputDialog

8. ("How many numbers do you need to draw?");
9. int k = Integer.parselnt (input);
10.
11. input = JOptionPane.showInputDialog
12. ("What is the highest number you can draw?");
13. int n = Integer.parselnt (input);

14.

15. /*

16. compute binomial coefficient

17. n*(n-1) * (n-2) * . . .* (n-%+1)
18. e
19. 1 *x2*3* . . . %Kk
20. */
21.
22. int lotteryOdds = 1;
23. for (int 1 = 1; 1 <= k; i++)
24 . lotteryOdds = lotteryOdds * (n - 1 + 1) / 1i;
25.

100

Core Java™ 2: Volume I-Fundamentals

26. System.out.println

27. ("Your odds are 1 in " + lotteryOdds + ". Good luck!"™);
28.

29. System.exit (0) ;

30. }

31. }

Multiple Selections—the switch Statement

The if/else construct can be cumbersome when you have to deal with multiple selections
with many alternatives. Java has a switch statement that is exactly like the switch statement
in C and C++, warts and all.

For example, if you set up a menuing system with four alternatives like that in Figure 3-13,
you could use code that looks like this:

String input = JOptionPane.showInputDialog
("Select an option (1, 2, 3, 4)");

int choice = Integer.parselnt (input);

switch (choice)

{

case 1:
break;
case 2:
break;
case 3:
break;
case 4:
break;
default:
// bad input

break;

101

Core Java™ 2: Volume I-Fundamentals

Figure 3-13. Flowchart for the switch statement

(default)

bad input

102

Core Java™ 2: Volume I-Fundamentals

Execution starts at the case label that matches the value on which the selection is performed
and continues until the next break or the end of the switch. If none of the case labels matches,
then the default clause is executed, if it is present.

Note that the case labels must be integers. You cannot test strings. For example, the
following is an error:

String input = . .7
switch (input) // ERROR
{

case "A": // ERROR

break;

CAUTION

It is possible for multiple cases to be triggered. If you forget to add a
break at the end of a case, then execution falls through to the next case!
This behavior is plainly dangerous and a common cause for errors. For
that reason, we never use the switch statement in our programs.

Breaking Control Flow

Although the designers of Java kept the goto as a reserved word, they decided not to include
it in the language. In general, goto statements are considered poor style. Some programmers
feel the anti-goto forces have gone too far (see, for example, the famous article of Donald
Knuth called “Structured Programming with goto's”). They argue that unrestricted use of
goto 1s error-prone, but that an occasional jump out of a loop is beneficial. The Java designers
agreed and even added a new statement to support this programming style, the labeled break.

Let us first look at the unlabeled break statement. The same break statement that you use to
exit a switch can also be used to break out of a loop. For example,

while (years <= 100)
{
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance >= goal) break;
years++;

Now the loop is exited if either years > 100 occurs on the top of the loop or balance >=
goal occurs in the middle of the loop. Of course, you could have computed the same value for
years without a break, like this:

103

Core Java™ 2: Volume I-Fundamentals

while (years <= 100 && balance < goal)
{

balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance < goal)
years++;

But note that the test balance < goal is repeated twice in this version. To avoid this
repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of multiple
nested loops. Occasionally something weird happens inside a deeply nested loop. In that case,
you may want to break completely out of all the nested loops. It is inconvenient to program
that simply by adding extra conditions to the various loop tests.

Here's an example that shows this at work. Notice that the label must precede the outermost
loop out of which you want to break. It also must be followed by a colon.

int n;
read_data:
while (. . .) // this loop statement is tagged with the label
{
for (. . .) // this inner loop is not labeled

{
String input
= JOptionPane.showInputDialog ("Enter a number >= 0");
n = Integer.parselnt (input);
if (n < 0) // should never happen—can't go on
break read data;
// break out of read data loop

}

// this statement is executed immediately after the break
if (n < 0) // check for bad situation

{
// deal with bad situation

}

else

{

// carry out normal processing

}
If there was a bad input, the labeled break moves past the end of the labeled block. As with

any use of the break statement, you then need to test if the loop exited normally or as a result
of a break.

104

Core Java™ 2: Volume I-Fundamentals

NOTE

Curiously, you can apply a label to any statement, even an if statement
or a block statement, like this:

label:
{

if (condition) break label; // exits block

}

// jumps here when the break statement executes

Thus, if you are lusting after a goto, and if you can place a block that
ends just before the place to which you want to jump, you can use a
break statement! Naturally, we don't recommend this approach. Note,
however, that you can only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks the regular flow
of control. The continue statement transfers control to the header of the innermost enclosing
loop. Here is an example:

while (sum < goal)

{

String input = JOptionPane.showInputDialog ("Enter a number");
n = Integer.parselnt (input);

if (n < 0) continue;

sum += n; // not executed if n < 0

If n < 0, then the continue statement jumps immediately to the loop header, skipping the
remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the for loop.
For example, consider this loop.

for (count = 0; count < 100; count++)

{
String input = JOptionPane.showInputDialog ("Enter a number");
n = Integer.parselnt (input);

if (n < 0) continue;
sum += n; // not executed if n < 0

Ifn < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the header of the loop
with the matching label.

105

Core Java™ 2: Volume I-Fundamentals

TIP

Many programmers find the break and continue statements confusing.
These statements are entirely optional—you can always express the same
logic without them. In this book, we never use break or continue.

Yy

Big Numbers

If the precision of the basic integer and floating-point types is not sufficient, you can turn to a
couple of handy classes in the java.math package, called BigInteger and BigDecimal.
These are classes for manipulating numbers with an arbitrarily long sequence of digits. The
BigInteger class implements arbitrary precision integer arithmetic, and Bigbecimal does the
same for floating-point numbers.

Use the static valueof method to turn an ordinary number into a big number:

BigInteger a = BigInteger.valueOf (100);

Unfortunately, you cannot use the familiar mathematical operators such as + and * to combine
big numbers. Instead, you must use methods such as add and multiply in the big number
classes.

BigInteger ¢ = a.add(b); // c=a + Db
BigInteger d = c.multiply(b.add(BigInteger.valueOf (2)));
// d=c * (b + 2)

C++NOTE

P Unlike C++, Java has no programmable operator overloading. There was
no way for the programmer of the BigInteger class to redefine the + and
* operators to give the add and multiply operations of the BigInteger
classes. The language designers did overload the + operator to denote
concatenation of strings. They chose not to overload other operators, and
they did not give Java programmers the opportunity to overload operators
themselves.

Example 3-6 shows a modification of the lottery odds program of Example 3-5, updated to
work with big numbers. For example, if you are invited to participate in a lottery in which you
need to pick 60 numbers out of a possible 490 numbers, then this program will tell you that
your odds are 1 in 716395843461995557415116222540092933411717612789263493493351
013459481104668848. Good luck!

The program in Example 3-5 computed the following statement:

lotteryOdds = lotteryOdds * (n - 1 + 1) / 1i;

106

Core Java™ 2: Volume I-Fundamentals

When using big numbers, the equivalent statement becomes:

lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1))
.divide (BigInteger.valueOf (1))

Example 3-6 BigintegerTest.java

1. import javax.swing.*;

2. import java.math.*;

3

4. public class BigIntegerTest

5. {

6 public static void main (String[] args)

7 {

8 String input = JOptionPane.showInputDialog

9. ("How many numbers do you need to draw?");
10. int k = Integer.parselnt (input);
11.
12. input = JOptionPane.showInputDialog
13. ("What is the highest number you can draw?");
14. int n = Integer.parselnt (input);
15.
16. /*
17. compute binomial coefficient
18. n* (n-1) * (n-2) * . . . * (n-%k+1)
19. e
20. 1 *2 >3 * . . . *k
21. */
22.
23. BigInteger lotteryOdds = BigInteger.valueOf(1l);
24.
25. for (int 1 = 1; 1 <= k; i++)
26. lotteryOdds = lotteryOdds
27. .multiply(BigInteger.valueOf(n - i + 1))
28. .divide (BigInteger.valueOf (1))
29.
30. System.out.println ("Your odds are 1 in " + lotteryOdds +
31. ". Good luck!");
32.
33. System.exit (0);
34. }
35. }

java.math.BigInteger

e BigInteger add(BigInteger other)

e BiglInteger subtract (BigInteger other)
e BigInteger multiply(BigInteger other)
e BigInteger divide (BigInteger other)

e BigInteger mod(BigInteger other)

Return the sum, difference, product, quotient, and remainder of this big integer and

other.

107

Core Java™ 2: Volume I-Fundamentals

e int compareTo (BigInteger other)

Returns 0 if this big integer equals other, a negative result if this big integer is less
than other, and a positive result otherwise.

e static BigInteger valueOf (long x)

Returns a big integer whose value equals x.

java.math.BigDecimal

e BigDecimal add(BigDecimal other)

e BigDecimal subtract (BigDecimal other)

e BigDecimal multiply(BigDecimal other)

e BigDecimal divide (BigDecimal other, int roundingMode)

Return the sum, difference, product, or quotient of this big decimal and other. To
compute the quotient, you need to supply a rounding mode. The mode
BigDecimal.ROUND HALF UP is the rounding mode that you learned in school (i.e.
round down digits O ... 4, round up digits 5 ... 9). It is appropriate for routine
calculations. See the API documentation for other rounding modes.

e int compareTo (BigDecimal other)

Returns 0 if this big Decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

e static BigDecimal valueOf (long x)
e static BigDecimal valueOf (long x, int scale)

Return a big decimal whose value equals x or x /10s°a*<,
Arrays
An array is a data structure that stores a collection of values of thesame type. You access each
individual value through an integer index. For example, if a is an array of integers, then a[i]
is the ith integer in the array.
You declare an array variable by specifying the array type—which is the element type

followed by []—and the array variable name. For example, here is the declaration of an array
a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a with an actual
array. You use the new operator to create the array.

108

Core Java™ 2: Volume I-Fundamentals

int[] a = new int[100];

This statement sets up an array that can hold 100 integers. The array entries are numbered
from 0 to 99 (and not 1 to 100). Once the array is created, you can fill the entries in an array,
for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
ali]l = i; // fills the array with 0 to 99
CAUTION

If you construct an array with 100 element and then try to access the
element a[100] (or any other index outside the range 0 ... 99), then your
program will terminate with an “array index out of bounds” exception.

To find the number of elements of an array, use arrayName.length. For example,

for (int i = 0; i1 < a.length; i++)
System.out.println(ali]);

Once you create an array, you cannot change its size (although you can, of course, change an
individual array element). If you frequently need to expand the size of an array while
a program is running, you should use a different data structure called an array list. (See
Chapter 5 for more on array lists.)

NOTE

You can define an array variable either as

int[] a;

or as

int all;
Most Java programmers prefer the former style because it neatly
separates the type int [] (integer array) from the variable name.

Array Initializers and Anonymous Arrays

Java has a shorthand to create an array object and supply initial values at the same time.
Here's an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

109

Core Java™ 2: Volume I-Fundamentals

Notice that you do not use a call to new when you use this syntax.
You can even initialize an anonymous array:
new int([] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces. It counts
the number of initial values and sets the array size accordingly. You can use this syntax to
reinitialize an array without creating a new variable. For example,

smallPrimes = new int([] { 17, 19, 23, 29, 31, 37 };
is a shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE

It is legal to have arrays of length 0. Such an array can be useful if you
write a method that computes an array result, and the result happens to
be empty. You construct an array of length 0 as

new elementType[0]

Note that an array of length 0 is not the same as null. (See Chapter 4 for
more information about null.)

Copying Arrays
You can copy one array variable into another, but then both variables refer to the same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers([5] = 12; // now smallPrimes[5] is also 12

Figure 3-14 shows the result. If you actually want to copy all values of one array into another,
you have to use the arraycopy method in the system class. The syntax for this call is

System.arraycopy (from, fromIndex, to, toIndex, count);

110

Core Java™ 2: Volume I-Fundamentals

Figure 3-14. Copying an array variable

smallPrimes = < 2

3

luckyNumbers = 5
7

11

13

The to array must have sufficient space to hold the copied elements.

For example, the following statements, whose result is illustrated in Figure 3-15, set up two
arrays and then copy the last four entries of the first array to the second array. The copy starts
at position 2 in the source array and copies 4 entries, starting at position 3 of the target.

int[] smallPrimes = {2, 3, 5, 7, 11, 13};

int[] luckyNumbers = {1001, 1002, 1003, 1004, 1005, 1006, 1007};

System.arraycopy(smallPrimes, 2, luckyNumbers, 3, 4);

for (int 1 = 0; 1 < luckyNumbers.length; i++)
System.out.println(i + ": " + luckyNumbers([i]);

Figure 3-15. Copying values between arrays

smallPrimes = g

~j]|w| M

.
m—l.

luckyNumbers = > 1001
1002
1003

1
13

111

Core Java™ 2: Volume I-Fundamentals

The output is:

1001
1002
1003
5

7

11
13

o U b w N O

C++ NOTE

¥ o [A Java array is quite different from a C++ array on the stack. It is,
however, essentially the same as a pointer to an array allocated on the
heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking.
Furthermore, there is no pointer arithmetic—you can't increment a to
point to the next element in the array.

Command Line Parameters

You have already seen one example of Java arrays repeated quite a few times. Every Java
program has a main method with a string[] args parameter. This parameter indicates that
the main method receives an array of strings, namely, the arguments specified on the
command line.

For example, consider this program:

public class Message
{
public static void main (String[] args)
{
if (args[0].equals("-h"))
System.out.print ("Hello,");
else 1if (args[0].equals("-g"))
System.out.print ("Goodbye, ") ;
// print the other command line arguments
for (int i = 1; i1 < args.length; i++)
System.out.print (" " + args[il]);
System.out.println("!");

112

Core Java™ 2: Volume I-Fundamentals

If the program is called as

java Message -g cruel world

then the args array has the following contents:

args[0]: "-g"
args[l]: "cruel"
args[2]: "world"

The program prints the message

Goodbye, cruel world!

C++ NOTE
¥ an [In the main method of a Java program, the name of the program is not
stored in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args (0] will be "-h" and not "Message"
or "java"

Sorting an Array

If you want to sort an array of numbers, you can use one of the sort methods in the Arrays
class:

int[] a = new int[10000];

Arrays.sort (a)

This method uses a tuned version of the QuickSort algorithm that is claimed to be very
efficient on most data sets. The arrays class provides several other convenience methods for
arrays that are included in the API notes at the end of this section.

The program in Example 3-7 puts arrays to work. This program draws a random combination
of numbers for a lottery game. For example, if you play a “choose 6 numbers from 49”
lottery, then the program might print:

Bet the following combination. It'll make you rich!
4
7
8
19
30
44

To select such a random set of numbers, we first fill an array numbers with the values 1, 2,

.., N0

113

Core Java™ 2: Volume I-Fundamentals

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
numbers([i] = 1 + 1;

A second array holds the numbers to be drawn:

int[] result = new intl[k];

Now we draw k numbers. The Math.random method returns a random floating point number
that is between 0 (inclusive) and 1 (exclusive). By multiplying the result with n, we obtain
a random number between 0 and n - 1.

int r = (int) (Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r itself, but as you'll
see presently, the contents of the numbers array is changed after each draw.

result[i] = numbers(r];

Now we must be sure never to draw that number again—all lottery numbers must be distinct.
Therefore, we overwrite numbers [r] with the /ast number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index points into an
array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing output:

Arrays.sort (result);
for (int i = 0; i1 < result.length; i++)
System.out.println (result[i]);

Example 3-7 LotteryDrawing.java

1. import java.util.*;

2. import javax.swing.*;

3.

4. public class LotteryDrawing

5. {

6. public static void main(String[] args)

7. {

8. String input = JOptionPane.showInputDialog

9. ("How many numbers do you need to draw?");
10. int k = Integer.parselnt (input);

11.

12. input = JOptionPane.showInputDialog

13. ("What is the highest number you can draw?");
14. int n = Integer.parselnt (input);

15.

16. // fill an array with numbers 1 2 3 . . . n
17. int[] numbers = new int[n];

18. for (int i = 0; i < numbers.length; i++)

19. numbers[i] = 1 + 1;

N
(@)

114

Core Java™ 2: Volume I-Fundamentals

21. // draw k numbers and put them into a second array
22.

23. int[] result = new int[k];

24. for (int 1 = 0; 1 < result.length; i++)

25. {

26. // make a random index between 0 and n - 1

27. int r = (int) (Math.random() * n);

28.

29. // pick the element at the random location

30. result[i] = numbers(r];

31.

32. // move the last element into the random location
33. numbers|[r] = numbers[n - 1];

34. n--;

35. }

36.

37. // print the sorted array

38.

39. Arrays.sort (result);

40. System.out.println

41. ("Bet the following combination. It'll make you rich!");
42 for (int i = 0; i < result.length; i++)

43. System.out.println (result[i]);

44 .

45, System.exit (0) ;

46. }

47. }

java.lang.System

e static void arraycopy(Object from, int fromIndex, Object to, int
toIndex, int count)

Parameters:|from an array of any type (Chapter 5 explains why this is a parameter of
type Object)
fromIndex the starting index from which to copy elements

to an array of the same type as from
toIndex |the starting index to which to copy elements
count the number of elements to copy

e copies elements from the first array to the second array.

java.util.Arrays

e static void sort(Xxx[] a)

115

Core Java™ 2: Volume I-Fundamentals

Parameters: |a an array of type int, long, short, char, byte, boolean, float or double

sorts the array, using a tuned QuickSort algorithm.
static int binarySearch(Xxx[] a, Xxx V)

Parameters:|a|a sorted array of type int, long, short, char, byte, boolean, float or
double

v a value of the same type as the elements of a

uses the BinarySearch algorithm to search for the value v. If it is found, its index is
returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

static void fill (Xxx[] a, Xxx V)

Parameters: |a an array of type int, long, short, char, byte, boolean, float or double
Vv a value of the same type as the elements of a

sets all elements of the array to v.
static boolean equals (Xxx[] a, Object other)

Parameters:|a an array of type int, long, short, char, byte, boolean, float or
double

other|an object

returns true if other is an array of the same type, if it has the same length, and if the
elements in corresponding indexes match.

Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements. They are used for
tables and other more complex arrangements. You can safely skip this section until you have
a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an investment of $10,000
will grow under different interest rate scenarios in which interest is paid annually and
reinvested. Table 3-5 illustrates this scenario.

10%

Table 3-5. Growth of an investment at different interest rates
11% 12% 13% 14% 15%

$10,000.00 $10,000.00 $10,000.00 $10,000.00 $10,000.00 $10,000.00
$11,000.00 $11,100.00 $11,200.00 $11,300.00 $11,400.00 $11,500.00
$12,100.00 $12,321.00 $12,544.00 $12,769.00 $12,996.00 $13,225.00
$13,310.00 $13,676.31 $14,049.28 $14,428.97 $14,815.44 $15,208.75
$14,641.00 $15,180.70 $15,735.19 $16,304.74 $16,889.60 $17,490.06
$16,105.10 $16,850.58 $17,623.42 $18,424.35 $19,254.15 $20,113.57
$17,715.61 $18,704.15 $19,738.23 $20,819.52 $21,949.73 $23,130.61
$19,487.17 $20,761.60 $22,106.81 $23,526.05 $25,022.69 $26,600.20
$21,435.89 $23,045.38 $24,759.63 $26,584.44 $28,525.86 $30,590.23
$23,579.48 $25,580.37 $27,730.79 $30,040.42 $32,519.49 $35,178.76

116

Core Java™ 2: Volume I-Fundamentals

The obvious way to store this information is in a two-dimensional array (or matrix), which we
will call balance.

Declaring a matrix in Java is simple enough. For example:

double[] [] balance;

As always, you cannot use the array until you initialize it with a call to new. In this case, you
can do the initialization as follows:

balance = new double[NYEARS] [NRATES];

In other cases, if you know the array elements, you can use a shorthand notion for initializing
multidimensional arrays without needing a call to new. For example;

int[][] magicSquare =
{
{le, 3, 2, 13},
{5, 10, 11, 8},
{9, o, 7, 12},
{4, 15, 14, 1}
i

Once the array is initialized, you can access individual elements, by supplying two brackets,
for example balance[i][7].

The example program stores a one-dimensional array interest of interest rates and a two-
dimensional array balance of account balances, one for each year and interest rate. We
initialize the first row of the array with the initial balance:

for (int j = 0; j < balance[0].length; j++)
balance[0][j] = 10000;

Then we compute the other rows, as follows:

for (int 1 = 1; i < balance.length; i++)

{
for (int j = 0; J < balance[i].length; j++)

{

double oldBalance = balance[i - 11[3];
double interest = . . .;
balance[i][j] = oldBalance + interest;

Example 3-8 shows the full program.

117

Core Java™ 2: Volume I-Fundamentals

Example 3-8 CompoundInterest.java

QOO OO DD DSDDDDAEDNWWWWWWWWwWwwwNhNDNDNDNDNDNNDNNDNMNNREREREPRRRRRRRE
D WNRPRPOWOJOUd WNREFEOWOMTOHOUDD WNEFEOWOWLW-TIOU D WNREOWOWJIOoU dWNDE O

O Joy g W

import java.text.*;
import javax.swing.*;

public class CompoundInterest

{

public static void main(String[] args)

{

final int STARTRATE = 10;
final int NRATES = 6;
final int NYEARS = 10;

// set interest rates to 10 . . . 15%

double[] interestRate = new double[NRATES];

for (int j = 0; Jj < interestRate.length; j++)
interestRate[j] = (STARTRATE + j) / 100.0;

double[] [] balance = new double [NYEARS] [NRATES];

// set initial balances to 10000
for (int j = 0; Jj < balance[0].length; j++)
balance[0][j] = 10000;

// compute interest for future years

for (int i = 1; i < balance.length; i++)

{
for (int j = 0; Jj < balance[i].length; j++)

{
// get last year's balance from previous row
double oldBalance = balancel[i - 11[3];

// compute interest
double interest = oldBalance * interestRate[]j];

// compute this year's balance
balance[i] [j] = oldBalance + interest;

}

// print one row of interest rates

NumberFormat formatter = NumberFormat.getPercentInstance();
for (int j = 0; Jj < interestRate.length; j++)

{

System.out.print (" "y
System.out.print (formatter.format (interestRate[j]));

}
System.out.println();
// print balance table

formatter = NumberFormat.getCurrencylInstance();

118

Core Java™ 2: Volume I-Fundamentals

55. for (int i = 0; i < balance.length; i++)

56. {

57. // print table row

58. for (int j = 0; Jj < balance[i].length; j++)
59. {

60. System.out.print (" ");

61. System.out.print (formatter. format (balance[i][]j]));

62. }

63. System.out.println();
64. }

65. }

66. }

Ragged Arrays

So far, what you have seen is not too different from other programming languages. But there
is actually something subtle going on behind the scenes that you can sometimes turn to your
advantage: Java has no multidimensional arrays at all, only one-dimensional arrays.

Multidimensional arrays are faked as “arrays of arrays.”

For example, the balance array in the preceding example is actually an array that contains ten
elements, each of which is an array of six floating-point numbers (see Figure 3-16).

Figure 3-16. A two-dimensional array

Y

balance = | I -

10000.0

balance[1] = —

100000

10000.0

10000.0

10000.0

10000.0

11000.0

11100.0

balance[1][2] =

11200.0

11300.0

11400.0

11500.0

23579.48

25580.37

27730.79

30040.42

32519.49

35178.76

The expression balance[i] refers to the ith subarray, that is, the ith row of the table. It is,

itself, an array, and balance[i] [§] refers to the jth entry of that array.

119

Core Java™ 2: Volume I-Fundamentals

Because rows of arrays are individually accessible, you can actually swap them!

double[] temp = balance[il];
balance[i] = balance[i + 1];
balance[i + 1] = temp;

It is also easy to make “ragged” arrays, that is, arrays in which different rows have different
lengths. Here is the standard example. Let us make an array in which the entry at row i and
column j equals the number of possible outcomes of a “choose 5 numbers from i numbers”
lottery.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Because j can never be larger than i, the matrix is triangular. The ith row has i + 1
elements. (We allow choosing 0 elements; there is one way to make such a choice.) To build
this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows.

for (n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way, provided we
do not overstep the bounds.

for (n = 0; n < odds.length; n++)
for (k = 0; k < odds[n].length; k++)

{
// compute lotteryOdds

odds [n] [k] = lotteryOdds;

Example 3-9 gives the complete program.
C++ NOTE

A The Java declaration

e double[][] balance = new double[1l0][6]; // Java

is not the same as

120

Core Java™ 2: Volume I-Fundamentals

double balance[10][6]; // C++

or €ven

double (*balance)[6] = new double[10][6]; // C++

in C++. Instead, an array of five pointers is allocated:

double** balance = new double*[10]; // C++

Then, each element in the pointer array is filled with an array of 6
numbers:

for (i = 0; 1 < 10; i++)
balance([i] = new double[6];

Mercifully, this loop is automatic when you ask for a new
double[10][6]. When you want ragged arrays, you allocate the row
arrays separately.

Example 3-9 LotteryArray.java

NSRS I R S N R N R e N el =l
W T U™ WNFEOWOJIOU D WNR O W

O Joy bW

public class LotteryArray

{

public static void main (String[] args)

{

final int NMAX = 10;

// allocate triangular array

int[][] odds = new int[NMAX + 1][];
for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

// £ill triangular array

for (int n = 0; n < odds.length; n++)
for (int k = 0; k < odds[n].length; k++)
{

/*
compute binomial coefficient
n* (n-1) * (n-2) * . . . * (n -k + 1)
1*2*3* *k

*/

int lotteryOdds = 1;
for (int i = 1; 1 <= k; i++)
lotteryOdds = lotteryOdds * (n - i + 1) / i;

odds [n] [k] = lotteryOdds;

121

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .

Core Java™ 2: Volume I-Fundamentals

// print triangular array

for

{

(int n = 0; n < odds.length; n++)

for (int k = 0; k < odds[n].length; k++)

{
// pad output with spaces
String output = " " + odds|[n] [k];
// make output field 4 characters wide
output = output.substring(output.length ()
System.out.print (output) ;

}

System.out.println();

122

Core Java™ 2: Volume I-Fundamentals

Chapter 4. Objects and Classes

e Introduction to Object-Oriented Programming
o Using Existing Classes

e Building Your Own Classes

o Static Fields and Methods

e Method Parameters

e Object Construction

e Packages

e Documentation Comments

e Class Design Hints

This chapter will:

e Introduce you to object-oriented programming

e Show you how you can create objects that belong to classes in the standard Java
library

e Show you how to write your own classes

If you do not have a background in object-oriented programming, you will want to read this
chapter carefully. Object-oriented programming requires a different way of thinking than for
procedure-oriented languages. The transition is not always easy, but you do need some
familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, will present
familiar information; however, there are enough differences between the two languages that
you should read the later sections of this chapter carefully. You'll find the C++ notes helpful
for making the transition.

Introduction to Object-Oriented Programming

Object-oriented programming (or OOP for short) is the dominant programming paradigm
these days, having replaced the “structured,” procedure-based programming techniques that
were developed in the early '70s. Java is totally object oriented, and it is impossible to
program it in the procedural style that you may be most comfortable with. We hope this
section—especially when combined with the example code supplied in the text and on the
CD—will give you enough information about OOP to become productive with Java.

Let's begin with a question that, on the surface, seems to have nothing to do with
programming: How did companies like Compaq, Dell, Gateway, and the other major personal
computer manufacturers get so big, so fast? Most people would probably say they made
generally good computers and sold them at rock-bottom prices in an era when computer
demand was skyrocketing. But go further—how were they able to manufacture so many
models so fast and respond to the changes that were happening so quickly?

Well, a big part of the answer is that these companies farmed out a lot of the work. They

bought components from reputable vendors and then assembled them. They often didn't invest
time and money in designing and building power supplies, disk drives, motherboards, and

123

Core Java™ 2: Volume I-Fundamentals

other components. This made it possible for the companies to produce a product and make
changes quickly for less money than if they had done the engineering themselves.

What the personal computer manufacturers were buying was “prepackaged functionality.” For
example, when they bought a power supply, they were buying something with certain
properties (size, shape, and so on) and a certain functionality (smooth power output, amount
of power available, and so on). Compaq provides a good example of how effective this
operating procedure is. When Compaq moved from engineering most of the parts in their
machines to buying many of the parts, they dramatically improved their bottom line.

OOP springs from the same idea. Your program is made of objects, with certain properties
and operations that the objects can perform. Whether you build an object or buy it might
depend on your budget or on time. But, basically, as long as objects satisfy your
specifications, you don't care how the functionality was implemented. In OOP, you only care
about what the objects expose. So, just as computer manufacturers don't care about the
internals of a power supply as long as it does what they want, most Java programmers don't
care how an object is implemented as long as it does what they want.

Traditional structured programming consists of designing a set of functions (or algorithms) to
solve a problem. After the functions were determined, the traditional next step was to find
appropriate ways to store the data. This is why the designer of the Pascal language, Niklaus
Wirth, called his famous book on programming Algorithms + Data Structures = Programs
(Prentice Hall, 1975). Notice that in Wirth's title, algorithms come first, and data structures
come second. This mimics the way programmers worked at that time. First, you decided how
to manipulate the data; then, you decided what structure to impose on the data to make the
manipulations easier. OOP reverses the order and puts data first, then looks at the algorithms
that operate on the data.

The key to being most productive in OOP is to make each object responsible for carrying out
a set of related tasks. If an object relies on a task that isn't its responsibility, it needs to have
access to another object whose responsibilities include that task. The first object then asks the
second object to carry out the task. This is done with a more generalized version of the
function call that you are familiar with in procedural programming. (Recall that in Java these
function calls are usually called method calls.)

In particular, an object should never directly manipulate the internal data of another object,
nor should it expose data for other objects to access directly. All communication should be via
method calls. By encapsulating object data, you maximize reusability, reduce data
dependency and minimize debugging time.

Of course, just as with modules in a procedure-oriented language, you will not want an
individual object to do foo much. Both design and debugging are simplified when you build
small objects that perform a few tasks, rather than humongous objects with internal data that
are extremely complex, with hundreds of functions to manipulate the data.

The Vocabulary of OOP
You need to understand some of the terminology of OOP to go further. The most important

term is the class, which you have already seen in the code examples of Chapter 3. A class is
the template or blueprint from which objects are actually made. This leads to the standard way

124

Core Java™ 2: Volume I-Fundamentals

of thinking about classes: as cookie cutters. Objects are the cookies themselves. When you
construct an object from a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard Java library
supplies several thousand classes for such diverse purposes as user interface design, dates and
calendars, and network programming. Nonetheless, you still have to create your own classes
in Java, to describe the objects of the problem domains of your applications, and to adapt the
classes that are supplied by the standard library to your own purposes.

Encapsulation (sometimes called data hiding) is a key concept in working with objects.
Formally, encapsulation is nothing more than combining data and behavior in one package
and hiding the implementation of the data from the user of the object. The data in an object
are called its instance fields, and the functions and procedures that operate on the data are
called its methods. A specific object that is an instance of a class will have specific values for
its instance fields. The set of those values is the current state of the object. Whenever you
apply a method to an object, its state may change.

It cannot be stressed enough that the key to making encapsulation work is to have methods
never directly access instance fields in a class other than their own. Programs should interact
with object data only through the object's methods. Encapsulation is the way to give the object
its “black box” behavior, which is the key to reuse and reliability. This means a class may
totally change how it stores its data, but as long as it continues to use the same methods to
manipulate the data, no other object will know or care.

When you do start writing your own classes in Java, another tenet of OOP makes this easier:
classes can be built on other classes. We say that a class that builds on another class extends
it. Java, in fact, comes with a “cosmic superclass” called, naturally enough, object, because
it is the factory for all objects. All other classes extend this class. You will see more about the
Object class in the next chapter.

When you extend an existing class, the new class has all the properties and methods of the
class that you extend. You supply new methods and data fields that apply to your new class
only. The concept of extending a class to obtain another class is called inheritance. See the
next chapter for details on inheritance.

Objects

To work with OOP, you should be able to identify three key characteristics of objects. The
three key characteristics are:

e The object's behavior—what can you do with this object, or what methods can you
apply to it?

o The object's state—how does the object react when you apply those methods?

o The object's identity—how is the object distinguished from others that may have the
same behavior and state?

All objects that are instances of the same class share a family resemblance by supporting the
same behavior. The behavior of an object is defined by the methods that you can call.

125

Core Java™ 2: Volume I-Fundamentals

Next, each object stores information about what it currently looks like. This is the object's
state. An object's state may change over time, but not spontaneously.

A change in the state of an object must be a consequence of method calls. (If the object state
changed without a method call on that object, someone broke encapsulation.)

However, the state of an object does not completely describe it, since each object has a
distinct identity. For example, in an order-processing system, two orders are distinct even if
they request identical items. Notice that the individual objects that are instances of a class
always differ in their identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can
influence its behavior. (If an order is “shipped” or “paid,” it may reject a method call that asks
it to add or remove items. Conversely, if an order is “empty,” that is, no items have yet been
ordered, it should not allow itself to be shipped.)

In a traditional procedure-oriented program, you start the process at the top, with the main
function. When designing an object-oriented system, there is no “top,” and newcomers to
OOP often wonder where to begin. The answer is: You first find classes and then you add
methods to each class.

TIP

A simple rule of thumb in identifying classes is to look for nouns in the
/ problem analysis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of these nouns are:

o Item

e Order

e Shipping address
e Payment

e Account
These nouns may lead to the classes Item, Order, and so on.

Next, one looks for verbs. Items are added to orders. Orders are shipped or canceled.
Payments are applied to orders. With each verb, such as “add,” “ship,” “cancel,” and “apply,”
you have to identify the one object that has the major responsibility for carrying it out. For
example, when a new item is added to an order, the order object should be the one in charge
since it knows how it stores and sorts items. That is, add should be a method of the order
class that takes an Ttem object as a parameter.

Of course, the “noun and verb” rule is only a rule of thumb, and only experience can help you
decide which nouns and verbs are the important ones when building your classes.

126

Core Java™ 2: Volume I-Fundamentals

Relationships Between Classes
The most common relationships between classes are:

e Dependence (“uses—a”)
o Aggregation (“has—a”)
e [Inheritance (“is—a”

The dependence or “uses—a” relationship is the most obvious and also the most general. For
example, the order class uses the account class, since order objects need to access Account
objects to check for credit status. But the Ttem class does not depend on the Account class,
since Ttem objects never need to worry about customer accounts. Thus, a class depends on
another class if its methods manipulate objects of that class.

TIP

Try to minimize the number of classes that depend on each other. The
point is, if a class A is unaware of the existence of a class B, it is also
unconcerned about any changes to B! (And this means that changes to B
do not introduce bugs into 2.) In software engineering terminology, you
want to minimize the coupling between classes.

The aggregation or ‘“has-a’relationship is easy to understand because it is concrete; for
example, an Oorder object contains Item objects. Containment means that objects of class a
contain objects of class B.

NOTE

Some methodologists view the concept of aggregation with disdain and
prefer to use a more general “association” relationship. From the point of
view of modeling, that is understandable. But for programmers, the “has-
a” relationship makes a lot of sense. We like to use aggregation for a
second reason—the standard notation for associations is less clear. See
Table 4-1.

The inheritance or “is-a” relationship expresses a relationship between a more special and a
more general class. For example, a Rushorder class inherits from an order class. The
specialized rRushorder class has special methods for priority handling and a different method
for computing shipping charges, but its other methods, such as adding items and billing, are
inherited from the order class. In general, if class A extends class B, class A inherits methods
from class B but has more capabilities. (We will describe inheritance more fully in the next
chapter, in which we discuss this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class
diagrams that describe the relationships between classes. You can see an example of such a
diagram in Figure 4-1. You draw classes as rectangles, and relationships as arrows with
various adornments. Table 4-1 shows the most common UML arrow styles:

127

Core Java™ 2: Volume I-Fundamentals

Figure 4-1. A class diagram

File Edit Objent Search Wiew Selemr Gprions Tedls Help
D@ =i nlKEHEHEBIE + =+ 1% a
o 2y (gl =demis |
&[0 (] p =
|= ¥ Corejawa]
cduafmiles
5 B accoum: 0
% B 2ushorder i
w B iam E: "":
5 B order - |_ordar |
o igmy eml] b .
e m— ACCOUnT
B I
.|
=l
I} Apply]
p— Srder - ALL Il G
L wfault
puckage— <l A Canorsted By aETHer ¥, =
[snereinppe | = :
[T
F fite Crder javn e
b esmends * GsuppTierCirdinality N
I implemenni sdd new walus.. |] ¥ @link sggrenstdan
b pubiic ¥ J o
k- final private [tea[] 1tams;
|- shatrect -
b imarfuce 'l af Tal |
prepemics [RARRDGRETRAR] | || Lip crerimes]
v In a3 Col: 3
T e |

Table 4-1. UML notation for class relationships

Relationship UML Connector

Inheritance -
Dependency =~ === | mmcecemmeecemmmemmmmmeem—a- [~
Aggregation G

Association

Directed Associtation

'

Figure 4-1 shows an example of a class diagram.
NOTE

The diagram in Figure 4-1 was created using the whiteboard edition of
Together/J, a Java application to keep design diagrams and Java code
synchronized. You can find the program on the book's CD-ROM or
download it from http://www.togethersoft.com/.

Contrasting OOP with Traditional Procedural Programming Techniques
We want to end this short introduction to OOP by contrasting OOP with the procedural model

that you may be more familiar with. In procedure-oriented programming, you identify the
tasks to be performed and then:

128

Core Java™ 2: Volume I-Fundamentals

e By a stepwise refinement process, break the task to be performed into subtasks, and
these into smaller subtasks, until the subtasks are simple enough to be implemented
directly (this is the top-down approach).

e Write procedures to solve simple tasks and combine them into more sophisticated
procedures, until you have the functionality you want (this is the bottom-up approach).

Most programmers, of course, use a mixture of the top-down and bottom-up strategies to
solve a programming problem. The rule of thumb for discovering procedures is the same as
the rule for finding methods in OOP: look for verbs, or actions, in the problem description.
The important difference is that in OOP, you first isolate the classes in the project. Only then
do you look for the methods of the class. And there is another important difference between
traditional procedures and OOP methods: each method is associated with the class that is
responsible for carrying out the operation.

For small problems, the breakdown into procedures works very well. But for larger problems,
classes and methods have two advantages. Classes provide a convenient clustering
mechanism for methods. A simple Web browser may require 2,000 functions for its
implementation, or it may require 100 classes with an average of 20 methods per class.
The latter structure is much easier to grasp by a programmer. It is also much easier to
distribute over a team of programmers. The encapsulation built into classes helps you here as
well: classes hide their data representations from all code except their own methods. As
Figure 4-2 shows, this means that if a programming bug messes up data, it is easier to search
for the culprit among the 20 methods that had access to that data item than among 2,000
procedures.

129

Core Java™ 2: Volume I-Fundamentals

Figure 4-2. Procedural vs. OO programming

function

function

_function_f ~ pal data

function :

function |

method

method p| Object data

method
method »| Object data

method :

method | Object data

You may say that this doesn't sound much different than modularization. You have certainly
written programs by breaking the program up into modules that communicate with each other
through procedure calls only, not by sharing data. This (if well done) goes far in
accomplishing encapsulation. However, in many programming languages, the slightest
sloppiness in programming allows you to get at the data in another module—encapsulation is
easy to defeat.

There is a more serious problem: while classes are factories for multiple objects with the same
behavior, you cannot get multiple copies of a useful module. Suppose you have a module
encapsulating a collection of orders, together with a spiffy balanced binary tree module to
access them quickly. Now it turns out that you actually need two such collections, one for
the pending orders and one for the completed orders. You cannot simply link the order tree

130

Core Java™ 2: Volume I-Fundamentals

module twice. And you don't really want to make a copy and rename all procedures for
the linker to work! Classes do not have this limitation. Once a class has been defined, it is
easy to construct any number of instances of that class type (whereas a module can have only
one instance).

We have only scratched a very large surface. The end of this chapter has a short section on
“Class Design Hints,” but for more information on understanding the OO design process, see
the following note for some book recommendations.

NOTE

There are many books on UML. We like The Unified Modeling
Language User Guide by Grady Booch, Ivar Jacobson, and James
Rumbaugh (Addison-Wesley 1999).

You can also check out Rational's Web site for lots of free information
about UML (http://www.rational.com/uml). You can find a lighter
version of the methodology adapted to both C++ and Java in Practical
Object-Oriented Development in C++ and Java, by Cay S. Horstmann
(John Wiley & Sons, 1997).

Using Existing Classes

Since you can't do anything in Java without classes, you have already seen several classes at
work. Unfortunately, many of these are quite anomalous in the Java scheme of things. A good
example of this is the Math class. You have seen that you can use methods of the Math class,
such as Math.random, without needing to know how they are implemented—all you need to
know is the name and parameters (if any). That is the point of encapsulation and will certainly
be true of all classes. Unfortunately, the Math class only encapsulates functionality; it neither
needs nor hides data. Since there is no data, you do not need to worry about making objects
and initializing their instance fields—there aren't any!

In the next section, we will look at a more typical class, the pate class. You will see how to
construct objects and call methods of this class.

Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then you apply
methods to the objects.

In the Java programming language, you use constructors to construct new instances. A
constructor is a special method whose purpose is to construct and initialize objects. Let us
look at an example. The standard Java library contains a Date class. Its objects describe points
in time, such as “December 31, 1999, 23:59:59 GMT.”

131

Core Java™ 2: Volume I-Fundamentals

NOTE

You may be wondering: Why use classes to represent dates rather than
(as in some languages) a built-in type? For example, Visual Basic has
a built-in date type and programmers can specify dates in the format
#6/1/19954. On the surface, this sounds convenient—programmers can
simply use the built-in date type rather than worrying about classes. But
actually, how suitable is the Visual Basic design? In some locales, dates
are specified as month/day/year, in others as day/month/year. Are the
language designers really equipped to foresee these kinds of issues? If
they do a poor job, the language becomes an unpleasant muddle, but
unhappy programmers are powerless to do anything about it. By using
classes, the design task is offloaded to a library designer. If the class is
not perfect, other programmers can easily write their own classes to
enhance or replace the system classes.

Constructors always have the same name as the class name. Thus, the constructor for the pate
class is called pate. To construct a Date object, you combine the constructor with the new
operator, as follows:

new Date ()
This expression constructs a new object. The object is initialized to the current date and time.

If you like, you can pass the object to a method:

System.out.println (new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the
methods of the pate class is the tostring method. That method yields a string representation
of the date. Here is how you would apply the tostring method to a newly constructed pate
object.

String s = new Date() .toString();
In these two examples, the constructed object is used only once. Usually, you will want to

hang on to the objects that you construct so you can keep using them. Simply store the object
in a variable:

Date birthday = new Date();

Figure 4-3 shows the object variable birthday which refers to the newly constructed object.

132

Core Java™ 2: Volume I-Fundamentals

Figure 4-3. Creating a new object

birthday = —] Date

There is an important difference between objects and object variables. For example,
the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type pate. It is important to
realize that the variable deadline is not an object and, in fact, doesnot yet even refer to an
object. You cannot use any Date methods on this variable at this time. The statement

s = deadline.toString(); // not yet
would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course, you can
initialize the variable with a newly constructed object:

deadline = new Date();
Or you can set the variable to refer to an existing object:
deadline = birthday;

Now both variables refer to the same object. (See Figure 4-4.)

Figure 4-4. Object variables that refer to the same object

birthday = —] Date

deadline = —\

It is important to realize that an object variable doesn't actually contain an object. It only
refers to an object.

133

Core Java™ 2: Volume I-Fundamentals
In Java, the value of any object variable is a reference to an object that is stored elsewhere.
The return value of the new operator is also a reference. A statement such as

Date deadline = new Date();

has two parts. The expression new Date () makes an object of type pate, and its value is a
reference to that newly created object. That reference is then stored in the deadline variable.

You can explicitly set an object variable to null to indicate that it currently refers to no
object.

deadline = null;

if (deadline != null)
System.out.println (deadline) ;

If you apply a method to a variable that holds nu11, then a run-time error occurs.

birthday null;
String s = birthday.toString(); // runtime error!

Local object variables are not automatically initialized to null. You must initialize them,
either by calling new or by setting them to nul1l.

C++ NOTE

¥ o [Many people mistakenly believe that Java object variables behave like
C++ references. But in C++ there are no null references, and references
cannot be assigned. You should think of Java object variables as
analogous to object pointers in C++. For example,

Date birthday; // Java

is really the same as

Date* birthday; // C++

Once you make this association, everything falls into place. Of course, a
Date* pointer isn't initialized until you initialize it with a call to new. The
syntax is almost the same in C++ and Java.

Date* birthday = new Date(); // C++

If you copy one variable to another, then both variables refer to the same
date—they are pointers to the same object. The equivalent of the Java
null reference is the C++ NULL pointer.

All Java objects live on the heap. When an object contains another object

variable, that variable still contains just a pointer to yet another heap
object.

134

Core Java™ 2: Volume I-Fundamentals

In C++, pointers make you nervous because they are so error-prone. It is
easy to create bad pointers or to mess up memory management. In Java,
these problems simply go away. If you use an uninitialized pointer, the
run-time system will reliably generate a run-time error, instead of
producing random results. You don't worry about memory management
because the garbage collector takes care of it.

C++ makes quite an effort, with its support for copy constructors and
assignment operators, to allow the implementation of objects that copy
themselves automatically. For example, a copy of a linked list is a new
linked list with the same contents but with an independent set of links.
This makes it possible to design classes with the same copy behavior as
the built-in types. In Java, you must use the clone method to get a
complete copy of an object.

The Gregoriancalendar Class of the Java Library

In the preceding examples, we used the pate class that is a part of the standard Java library.
An instance of the pate class has a state, namely a particular point in time.

Although you don't need to know this when you use the pate class, the time is represented by
the number of milliseconds (positive or negative) from a fixed point, the so-called epoch,
which is 00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal Time, the
scientific time standard that is, for practical purposes, the same as the more familiar GMT or
Greenwich Mean Time.

But as it turns out, the pate class is not very useful for manipulating dates. The designers of
the Java library take the point of view that a date description such as “December 31, 1999,
23:59:59” is an arbitrary convention, governed by a calendar. This particular description
follows the Gregorian calendar, which is the calendar used in most places of the world. The
same point in time would be described quite differently in the Chinese or Hebrew lunar
calendars, not to mention the calendar used by your customers from Mars.

NOTE

Throughout human history, civilizations grappled with the design of
calendars that attached names to dates and brought order to the solar and
lunar cycles. For a fascinating explanation of calendars around the world,
from the French revolutionary calendar to the Mayan long count, see
Calendrical Calculations by Nachum Dershowitz and Edward M.
Reingold (Cambridge University Press, 1997).

The library designers decided to separate the concerns of keeping time and attaching names to
points in time. Therefore, the standard Java library contains two separate classes: the pate
class which represents a point in time, and the GregorianCalendar class which expresses
dates in the familiar calendar notation. In fact, the Gregoriancalendar class extends a more
generic Calendar class that describes the properties of calendars in general. In theory, you

135

Core Java™ 2: Volume I-Fundamentals

can extend the Calendar class and implement the Chinese lunar calendar or a Martian
calendar. However, the standard library does not contain any calendar implementations
besides the Gregorian calendar.

Separating time measurement from calendars is good object-oriented design. In general, it is a
good idea to use separate classes to express different concepts.

The pate class has only a small number of methods that allow you to compare two points in
time. For example, the before and after methods tell you if one point in time comes before
or after another.

if (today.before (birthday))
System.out.println("Still time to shop for a gift.");

NOTE

Actually, the pate class has methods such as getbay, getMonth, and
getYear, but these methods are deprecated. A method is deprecated
when a library designer realizes that the method should have never been
introduced in the first place.

These methods were a part of the pate class before the library designers
realized that it makes more sense to supply separate calendar classes.
When the calendar classes were introduced, the pate methods were
tagged as deprecated. You can still use them in your programs, but you
will get unsightly compiler warnings if you do. It is a good idea to stay
away from using deprecated methods because they may be removed in
a future version of the library.

The GregorianCalendar class has many more methods than the pate class. In particular, it
has several useful constructors. The expression

new GregorianCalendar ()
constructs a new object that represents the date and time at which the object was constructed.

You can construct a calendar object for midnight on a specific date by supplying year, month
and day:

new GregorianCalendar (1999, 11, 31)

Somewhat curiously, the months are counted from 0. Therefore, 11 is December. For greater
clarity, there are constants like Calendar.DECEMBER.

new GregorianCalendar (1999, Calendar.DECEMBER, 31)

You can also set the time:

new GregorianCalendar (1999, Calendar.DECEMBER, 31, 23, 59, 59)

136

Core Java™ 2: Volume I-Fundamentals

Of course, you will usually want to store the constructed object in an object variable:

GregorianCalendar deadline = new GregorianCalendar(. . .);

The Gregoriancalendar has encapsulated instance fields to maintain the date to which it is
set. Without looking at the source code, it is impossible to know the representation that the
class uses internally. But, of course, the whole point is that this doesn't matter. What matters
are the methods that a class exposes.

Mutator and accessor methods

At this point, you are probably asking yourself: How do I get at the current day or month or
year for the date encapsulated in a specific GregorianCalendar object? And how do I change
the values if I am unhappy with them? You can find out how to carry out these tasks by
looking at the online documentation or the API notes at the end of this section. We will go
over the most important methods in this section.

The job of a calendar is to compute attributes, such as the date, weekday, month, or year, of a
certain point in time. To query one of these settings you use the get method of the
GregorianCalendar class. To select the item that you want to get, you pass a constant
defined in the calendar class, such as Calendar.MONTH oOr Calendar.DAY OF WEEK:

GregorianCalendar now = new GregorianCalendar();
int month = now.get (Calendar.MONTH) ;
int day = now.get (Calendar.DAY OF WEEK) ;

The API notes list all the constants that you can use.

You change the state with a call to the set method:

deadline.set (Calendar.YEAR, 2001);
deadline.set (Calendar.MONTH, Calendar.APRIL);
deadline.set (Calendar.DAY, 15);

There is also a convenience method to set the year, month, and day with a single call:
deadline.set (2001, Calendar.APRIL, 15);

Finally, you can add a number of days, weeks, months, etc., to a given date.
deadline.add(Calendar.MONTH, 3); // move deadline by 3 months

If you add a negative number, then the calendar is moved backwards.

There is a conceptual difference between the get method on the one hand and the set and
add methods on the other hand. The get method only looks up the state of the object and
reports on it. The set and add methods modify the state of the object. Methods that change
instance fields are called mutator methods and those that only access instance fields without
modifying them are called accessor methods.

137

Core Java™ 2: Volume I-Fundamentals

C++ NOTE

SRy In C++, the const suffix is used to denote accessor methods. A method
that is not declared as const is assumed to be a mutator. However, in
the Java programming language there is no special syntax to distinguish
between accessors and mutators.

A common convention is to prefix accessor methods with the prefix get and mutator methods
with the prefix set. For example, the GregorianCalendar class has methods getTime and
setTime that get and set the point in time that a calendar object represents.

Date time = calendar.getTime() ;
calendar.setTime (time) ;

These methods are particularly useful to convert between the GregorianCalendar and Date
classes. Here is an example. Suppose you know the year, month, and day and you want to
make a Date object with those settings. Since the pDate class knows nothing about calendars,
first construct a GregorianCalendar object and then call the getTime method to obtain a
date:

GregorianCalendar calendar
= new GregorianCalendar (year, month, day);
Date hireDay = calendar.getTime () ;

Conversely, if you want to find the year, month, or day of a pate object, you construct a
GregorianCalendar object, set the time, and then call the get method:

GregorianCalendar calendar = new GregorianCalendar ()
calendar.setTime (hireDay) ;
int year = calendar.get (Calendar.YEAR);

We will finish this section with a program that puts the Gregoriancalendar class to work.
The program displays a calendar for the current month, like this:

Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
le 17 18 19* 20 21 22
23 24 25 26 27 28 29
30 31

The current day is marked with an *, and the program knows how to compute the days of the
week.

Let us go through the key steps of the program. First, we construct a calendar object that is
initialized with the current date and time. (We don't actually care about the time for this

application.)

GregorianCalendar d = new GregorianCalendar () ;

138

Core Java™ 2: Volume I-Fundamentals

We capture the current day and month by calling the get method twice.

int today = d.get (Calendar.DAY OF MONTH) ;
int month = d.get (Calendar.MONTH) ;

Then we set d to the first of the month and get the weekday of that date.

d.set (Calendar.DAY OF MONTH, 1);
int weekday = d.get (Calendar.DAY OF WEEK) ;

The variable weekday is set to 0 if the first day of the month is a Sunday, to 1 if it is
a Monday, and so on.

Next, we print the header and the spaces for indenting the first line of the calendar.

For each day, we print a space if the day is < 10, then the day, and then a * if the day equals
the current day. Each Saturday, we print a new line.

Then we advance d to the next day:

d.add(Calendar.DAY OF MONTH, 1);

When do we stop? We don't know whether the month has 31, 30, 29 or 28 days. Instead, we
keep iterating while d is still in the current month.

do
{

}
while (d.get(Calendar.MONTH) == month);

Once d has moved into the next month, the program terminates.

Example 4-1 shows the complete program.

As you can see, the GregorianCalendar class makes it is simple to write a calendar program
that takes care of complexities such as weekdays and the varying month lengths. You don't
need to know how the GregorianCalendar class computes months and weekdays. You just

use the interface of the class—the get, set, and add methods.

The point of this example program is to show you how you can use the interface of a class to
carry out fairly sophisticated tasks, without ever having to know the implementation details.

139

Core Java™ 2: Volume I-Fundamentals

Example 4-1 CalendarTest.java

O Joy g W

DD DS DDA WWWWWwwwwwdhhhhNDNDNDNDNNNMdDNNMDNRERRERRRRRRRE
O WP OWOWOJdJoUldWNHDEFPFOWOJIoOUd WNRE O WOJoyUdwNEFE OV

47.
48.
49.
50.
51.
52.
53 }

import java.util.*;

public class CalendarTest

{

public static void main(String[] args)

{

// construct d as current date
GregorianCalendar d = new GregorianCalendar () ;

int today = d.get(Calendar.DAY OF MONTH) ;
int month = d.get (Calendar.MONTH) ;

// set d to start date of the month
d.set (Calendar.DAY OF MONTH, 1);

int weekday = d.get (Calendar.DAY OF WEEK) ;

// print heading

System.out.println ("Sun Mon Tue Wed Thu Fri Sat");

// indent first line of calendar

for (int i1 = Calendar.SUNDAY; 1 < weekday; i++

System.out.print (" ") ;
do

// print day

int day = d.get(Calendar.DAY OF MONTH) ;
if (day < 10) System.out.print("™ ");
System.out.print (day) ;

// mark current day with *
if (day == today)

System.out.print ("* ");
else
System.out.print (" ");

// start a new line after every Saturday
if (weekday == Calendar.SATURDAY)
System.out.println();

// advance d to the next day
d.add(Calendar.DAY OF MONTH, 1);
weekday = d.get (Calendar.DAY OF WEEK) ;

}
while (d.get(Calendar.MONTH) == month);

// the loop exits when d is day 1 of the next month

// print final end of line if necessary
if (weekday != Calendar.SUNDAY)
System.out.println();

)

140

Core Java™ 2: Volume I-Fundamentals

java.util.GregorianCalendar

e GregorianCalendar ()

constructs a calendar object that represents the current time in the default time zone
with the default locale.

e GregorianCalendar (int year, int month, int date)
constructs a Gregorian calendar with the given date.

Parameters: year [the year of the date
month the month of the date. This value is 0-based; for example, 0 for January
date |the day of the month

e GregorianCalendar (int vyear, int month, int date, int hour, int
minutes, int seconds)

constructs a Gregorian calendar with the given date and time.

Parameters: year the year of the date
month the month of the date. This value is 0-based; for example, 0 for January
date the day of the month
hour the hour (between 0 and 23)
minutes the minutes (between 0 and 59)
seconds the seconds (between 0 and 59)

e Dboolean equals (Object when)

compares this calendar object with when and returns true if the objects represent the
same point in time.

e Dboolean before (Object when)

compares this calendar object with when and returns true if it comes before when.
e Dboolean after (Object when)

compares this calendar object with when and returns true if it comes after when.
e int get(int field)

gets the value of a particular field.

141

Core Java™ 2: Volume I-Fundamentals

Parameters: field |one of Calendar.ERA, Calendar.YEAR,
Calendar.MONTH, Calendar.WEEK OF YEAR,
Calendar.WEEK OF MONTH,
Calendar.DAY OF MONTH,
Calendar.DAY OF YEAR,
Calendar.DAY OF WEEK,

Calendar.DAY OF WEEK IN MONTH,
Calendar.AM PM, Calendar.HOUR,
Calendar.HOUR OF DAY, Calendar.MINUTE,
Calendar.SECOND, Calendar .MILLISECOND,
Calendar.ZONE OFFSET,Calendar.DST OFFSET

void set (int field, int wvalue)
sets the value of a particular field.

Parameters: field one of the constants accepted by get
value the new value

void set (int year, int month, int day)
sets the date fields to a new date.

Parameters: |year the year of the date
month [the month of the date. This value is 0-based; for example, 0 for January
day |the day of the month

void set(int year, int month, int day, int hour, int minutes, int
seconds)

sets the date and time fields to new values.

Parameters: year the year of the date
month the month of the date. This value is 0-based; for example, 0 for January
day the day of the month
hour the hour (between 0 and 23)
minutes the minutes (between 0 and 59)
seconds the seconds (between 0 and 59)

void add(int field, int amount)
is a date arithmetic method. Adds the specified amount of time to the given time field.

For example, to add 7 days to the current calendar date, call
c.add(Calendar.DAY OF MONTH, 7).

Parameters:|field [the field to modify (using one of the constants documented in the get
method)

amount |the amount by which the field should be changed (can be negative)

142

Core Java™ 2: Volume I-Fundamentals

e void setTime(Date time)
sets this calendar to the given point in time.
Parameters: time a pointin time
e Date getTime ()
gets the point in time that is represented by the current value of this calendar object.
Building Your Own Classes

In Chapter 3, you started writing simple classes. However, all those classes had just a single
main method. Now the time has come to show you how to write the kind of “workhorse
classes” that are needed for more sophisticated applications. These classes typically do not
have a main method. Instead, they have their own instance fields and methods. To build a
complete program, you combine several classes, one of which has a main method.

An Employee Class

The simplest form for a class definition in Java is:

class NameOfClass

{
constructor;
constructor,

method;
method,
field;
field,

NOTE

We adopt the style that the methods for the class come first and the fields
come at the end. Perhaps this, in a small way, encourages the notion of
looking at the interface first and paying less attention to the
implementation.

Consider the following, very simplified version of an Employee class that might be used by
a business in writing a payroll system.

143

Core Java™ 2: Volume I-Fundamentals

class Employee
{
// constructor
public Employee(String n, double s,
int year, int month, int day)
{
name = n;
salary = s;
hireDay = new GregorianCalendar (year, month - 1, day);

}
// method 1

public String getName ()
{

return name;

}

// more methods

// instance fields
private String name;

private double salary;
private Date hireDay;

We will break down the implementation of this class in some detail in the sections that follow.
First, though, Example 4-2 shows a program code that shows the Employee class in action.

In the program, we construct an Employee array and fill it with three employee objects:

Employee[] staff = new Employeel[3];

staff[0] = new Employee("Carl Cracker",) ;
staff[l] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee ("Tony Tester", . . .);

Next, we use the raisesalary method of the Employee class to raise every employee's salary
by 5%:

for (i = 0; i < staff.length; i++)
staff[i] .raiseSalary(5);

Finally, we print out information about each employee, by calling the getName, getSalary
and getHireDay methods:

for (int i = 0; i < staff.length; i++)
{
Employee e = staff[i];
System.out.println ("name=" + e.getName ()
+ ",salary=" + e.getSalary()
+ ",hireDay=" + e.getHireDay());

144

Core Java™ 2: Volume I-Fundamentals

Note that the example program consists of two classes: the Employee class and a class
EmployeeTest With the public access specifier. The main method with the instructions that
we just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java since the name of the file must match
the name of the public class. You can only have one public class in a source file, but you can
have any number of non-public classes.

Next, when you compile this source code, the compiler creates two class files in the directory:
EmployeeTest.classandEmployee.clas&

You start the program by giving the bytecode interpreter the name of the class that contains
the main method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the EmployeeTest
class. This code in turn constructs three new Employee objects and shows you their state.

Example 4-2 EmployeeTest.java

1. import java.util.x*;

2.

3. public class EmployeeTest

4. {

5. public static void main (String[] args)

6. {

7. // f£ill the staff array with three Employee objects
8. Employee[] staff = new Employeel[3];

9.

10. staff[0] = new Employee("Carl Cracker"™, 75000,
11. 1987, 12, 15);

12. staff[l] = new Employee ("Harry Hacker", 50000,
13. 1989, 10, 1);

14. staff[2] = new Employee("Tony Tester", 40000,
15. 1990, 3, 15);

16.

17. // raise everyone's salary by 5%

18. for (int 1 = 0; 1 < staff.length; i++)

19. staffl[i] .raiseSalary(5);
20.
21. // print out information about all Employee objects
22. for (int i = 0; i < staff.length; i++)
23. {
24, Employee e = staff[i];
25. System.out.println ("name=" + e.getName ()
26. + ",salary=" + e.getSalary ()
27. + ",hireDay=" + e.getHireDay());
28. }
29. }
30. }
31

145

Core Java™ 2: Volume I-Fundamentals

32. class Employee

33. {

34. public Employee (String n, double s,

35. int year, int month, int day)

36. {

37. name = n;

38. salary = s;

39. GregorianCalendar calendar

40. = new GregorianCalendar (year, month - 1, day);
41. // GregorianCalendar uses 0 for January
42 . hireDay = calendar.getTime () ;

43, }

44 .

45, public String getName ()

46. {

47. return name;

48 . }

49.

50. public double getSalary()

51. {

52. return salary;

53. }

54.

55. public Date getHireDay ()

56. {

57. return hireDay;

58. }

59.

60. public void raiseSalary(double byPercent)
61. {

62. double raise = salary * byPercent / 100;
63. salary += raise;

64. }

65.

66. private String name;

67. private double salary;

68. private Date hireDay;

69. }

Using Multiple Source Files

The program in Example 4-2 has two classes in a single source file. Many programmers
prefer to put each class into its own source file. For example, you can place the class
EmployeeinK)afﬂeEmployee.javaandEmployeeTestinK)EmployeeTest.java

If you like this arrangement, then you have two choices for compiling the program/ You can
invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files. Or, you can
simply type:

javac EmployeeTest.java

You may find it surprising that the second choice works since the Employee.java file is
never explicitly compiled. However, when the Java compiler sees the Employee class being

146

Core Java™ 2: Volume I-Fundamentals

used inside EmployeeTest.java, it will look for a Employee.class file. If it does not find
that file, it automatically searches for Employee.java and then compiles it. Even more is
true: if the time stamp of the version of Employee.java that it finds is newer than that of the
existing Employee.class file, the Java compiler will automatically recompile the file.

NOTE

If you are familiar with the “make” facility of UNIX (or one of its
Windows cousins such as “nmake”), then you can think of the Java
compiler as having the “make” functionality already built in.

Analyzing the Employee Class

In the sections that follow, we want to dissect the Employee class. Let's start with the methods
in this class. As you can see by examining the source code, this class has one constructor and
four methods:

public Employee(String n, double s, int year, int month, int day)
public String getName ()

public double getSalary()

public Date getHireDay ()

public void raiseSalary(double byPercent)

All methods of this class are all tagged as public. The keyword public means that any
method in any class can call the method. (There are four possible access levels; they are
covered in this and the next chapter.)

Next, notice that there are three instance fields that will hold the data we will manipulate
inside an instance of the Employee class.

private String name;
private double salary;
private Date hireDay;

The private keyword makes sure that the only methods that can access these instance fields

are the methods of the Employee class itself. No outside method can read or write to these
fields.

NOTE

It is possible to use the public keyword with your instance fields, but it
would be a very bad idea. Having public data fields would allow any
part of the program to read and modify the instance fields. That
completely ruins encapsulation. We strongly recommend that you always
make your instance fields private.

147

Core Java™ 2: Volume I-Fundamentals

Finally, notice that two of the instance fields are themselves objects: The name and hireDay
fields are refererences to string and Date objects. This is quite usual: classes will often
contain instance fields of class type.

First Steps with Constructors

Let's look at the constructor listed in our Employee class.

public Employee (String n, double s, int year, int month, int day)
{
name = n;
salary = s;
GregorianCalendar calendar
= new GregorianCalendar (year, month - 1, day);
hireDay = calendar.getTime() ;

As you can see, the name of the constructor is the same as the name of the class. This
constructor runs when you construct objects of the Employee class—giving the instance fields
the initial state you want them to have.

For example, when you create an instance of the Employee class with code like this:

new Employee ("James Bond", 100000, 1950, 1, 1);

you have set the instance fields as follows:

name = "James Bond";
salary = 100000;
hireDay = January 1, 1950;

There is an important difference between constructors and other methods: A constructor can
only be called in conjunction with the new operator. You can't apply a constructor to an
existing object to reset the instance fields. For example,

james.Employee ("James Bond", 250000, 1950, 1, 1); // ERROR
is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep the following
in mind:

e A constructor has the same name as the class.

o A class can have more than one constructor.

e A constructor may take zero, one, or more parameters.
e A constructor has no return value.

e A constructor is always called with the new operator.

148

Core Java™ 2: Volume I-Fundamentals

C++NOTE

F o~ [Constructors work the same way in Java as they do in C++. But keep in
mind that all Java objects are constructed on the heap an that
a constructor must be combined with new. It is a common C++

e
programmer error to forget the new operator:
Employee number007 ("James Bond", 100000, 1950, 1, 1);
// C++, not Java
That works in C++ but does not work in Java.
CAUTION

Be careful not to introduce local variables with the same names as
the instance fields. For example, the following constructor will not set
the salary.

public Employee (String n, double s, . . .)

{
String name = n; // ERROR
double salary = s; // ERROR

The constructor declares [local variables name and salary. These
variables are only accessible inside the constructor. They shadow
the instance fields with the same name. Some programmers—such as
the authors of this book—write this kind of code when they type faster
than they think, because their fingers are used to adding the data type.
This is a nasty error that can be hard to track down. You just have to be
careful in all of your methods that you don't use variable names that
equal the names of instance fields.

The Methods of the Employee Class

The methods in our Employee class are quite simple. Notice that all of these methods can
access the private instance fields by name. This is a key point: instance fields are always
accessible by the methods of their own class.

For example,

public void raiseSalary(double byPercent)

{
double raise = salary * byPercent / 100;
salary += raise;

sets a new value for the salary instance field in the object that executes this method. (This
particular method does not return a value.) For example, the call

149

Core Java™ 2: Volume I-Fundamentals

number007.raiseSalary(5);

raises number007's salary by increasing the number007.salary variable by 5%. More
specifically, the call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raisesalary method has two parameters. The first parameter, called the implicit
parameter, is the object of type Employee that appears before the method name. The second
parameter, the number inside the parentheses after the method name, is an explicit parameter.

As you can see, the explicit parameters are explicitly listed in the method declaration, for
example, double byPercent. The implicit parameter does not appear in the method
declaration.

In every method, the keyword this refers to the implicit parameter. If you like, you can write
the raisesalary method as follows:

public void raiseSalary(double byPercent)

{
double raise = this.salary * byPercent / 100;
this.salary += raise;

Some programmers prefer that style because it clearly distinguishes between instance fields
and local variables.

C++ NOTE

¥ o [In C++, you generally define methods outside the class:

void Employee::raiseSalary(double DbyPercent) // C++, not
| Java
{

}

If you define a method inside a class, then it is automatically an inline
method.

class Employee

{

int getName () { return name; } // inline in C++

In the Java programming language, all methods are defined inside
the class itself. This does not make them inline.

Finally, let's look more closely at the rather simple getName, getSalary, and getHireDay
methods.

150

Core Java™ 2: Volume I-Fundamentals

public String getName ()
{

return name;

}

public double getSalary()
{

return salary;

}

public Date getHireDay ()
{

return hireDay;

}

These are obvious examples of accessor methods. Because they simply return the values of
instance fields, they are sometimes called field accessors.

Wouldn't it be easier to simply make the name, salary, and hireDay fields public, instead of
having separate accessor methods?

The point is that the name field is a “read only” field. Once you set it in the constructor, there
is no method to change it. Thus, we have a guarantee that the name field will never be
corrupted.

The salary field is not read-only, but it can only be changed by the raisesalary method. In
particular, should the value ever be wrong, only that method needs to be debugged. Had the
salary field been public, the culprit for messing up the value could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance field. Then you
need to supply three items:

e A private data field
e A public field accessor method

e A public field mutator method

This is a lot more tedious than supplying a single public data field, but there are considerable
benefits:

1. The internal implementation can be changed without affecting any code other than the
methods of the class.

For example, if the storage of the name is changed to

String firstName;
String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

151

Core Java™ 2: Volume I-Fundamentals

Of course, the accessor and mutator methods may need to do a lot of work and convert
between the old and the new data representation. But that leads us to our second benefit.

2. Mutator methods can perform error-checking, whereas code that simply assigns to a
field may not go through the trouble.

For example, a setsalary method might check that the salary is never less than 0.

CAUTION

Be careful not to write accessor methods that return references to mutable
objects. Consider the following example where we store the hirebay field as
a GregorianCalendar object instead of a Date object.

class Employee

{
public GregorianCalendar getHireDay ()
{
return hireDay;

}

private GregorianCalendar hireDay;

This breaks the encapsulation! Consider the following rogue code:
Employee harry = . ;
GregorianCalendar d = harry.getHireDay () ;

d.add (Calendar.YEAR, -10);
// let's give Harry ten years added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see
Figure 4-5). Applying mutator methods to d automatically changes the private

state of the employee object!

Figure 4-5. Returning a reference to a mutable data field

nary - E\. —
d= MAMme = :
1

Why didn't the pate class in our original implementation suffer from

152

Core Java™ 2: Volume I-Fundamentals

the same problem? Couldn't someone get the date and change it? No. The
Date class is immutable. There is no method that can change a pate object.
In contrast, GregorianCalendar objects are mutable.

If you need to return a reference to a mutable object, you should clone it first.
A clone is an exact copy of an object that is stored in a new location. We will
discuss cloning in detail in Chapter 6. Here is the corrected code:

class Employee

{

public GregorianCalendar getHireDay ()

{

return (GregorianCalendar)hireDay.clone();

}

As a rule of thumb, always use clone whenever you need to return a copy of
a mutable data field.

Method Access to Private Data

You know that a method can access the private data of the object on which it is invoked. What
many people find surprising is that a method can access the private data of all objects of its
class. For example, consider a method equals that compares two employees.

class Employee

{

boolean equals (Employee other)

{

return name.equals (other.name) ;

}
}

A typical call is
if (harry.equals (boss))

This method accesses the private fields of harry, which is not surprising. It also accesses the
private fields of boss. This is legal because boss is an object of type Employee, and a method
of the Employee class is permitted to access the private fields of any object of type Employee.

C++ NOTE

¥ o [C+Ht has the same rule. A method can access the private features of any
object of its class, not just of the implicit parameter.

153

Core Java™ 2: Volume I-Fundamentals

Private Methods

When implementing a class, we make all data fields private, since public data are dangerous.
But what about the methods? While most methods are public, private methods occur quite
frequently. These methods can be called only from other methods of the same class. The
reason is simple: to implement certain methods, you may wish to break up the code into many
separate methods. Some of these internal methods may not be particularly useful to the public.
(For example, they may be too close to the current implementation or require a special
protocol or calling order.) Such methods are best implemented as private.

To implement a private method in Java, simply change the public keyword to private.

By making a method private, you are under no obligation to keep it available if you change to
another implementation. The method may well be harder to implement or unnecessary if the
data representation changes: this is irrelevant. The point is that as long as the method is
private, the designers of the class can be assured that it is never used outside the other class
operations and can simply drop it. If a method is public, you cannot simply drop it because
other code might rely on it.

In sum, choose private methods:

o For those methods that are of no concern to the class user
o For those methods that could not easily be supported if the class implementation were
to change

Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the object is
constructed. That is, it must be guaranteed that the field value is set after the end of every
constructor. Afterwards, the field may not be modified again. For example, the name field of
the Employee class may be declared as final since it never changes after the object is
constructed—there is no setName method.

class Employee

{

private final String name;

TIP

It is a good idea to tag fields that don't change during an object's lifetime
as final. If all fields of a class are final, then the class is immutable—its
objects never change after they are constructed. For example, the string
and pate classes are immutable. Immutable classes have one important
advantage—you don't have to worry about sharing references.

154

Core Java™ 2: Volume I-Fundamentals

Static Fields and Methods

In all sample programs that you have seen, the main method is tagged with the static
modifier. We are now ready to discuss the meaning of this modifier.

Static Fields

If you define a field as static, then there is only one such field per class. In contrast, each
object has its own copy of all instance fields. For example, let's suppose we want to assign a
unique identification number to each employee. We add an instance field id and a static field
nextId to the Employee class:

class Employee

{

private int id;
private static int nextId = 1;

Now, every employee object has its own id field, but there is only one next1d field that is
shared among all instances of the class. Let's put it another way. If there are one thousand
objects of the Employee class, then there are one thousand instance fields id, one for each
object. But there is a single static field next1d. Even if there are no employee objects, the
static field next1d is present. It belongs to the class, not to any individual object.

NOTE

In most object-oriented programming languages, static fields are called
class fields. The term “static” is a meaningless holdover from C++.

Let's implement a simple method:

public void setId()

{
id = nextId;
nextId++;

Suppose you set the employee identification number for harry:
harry.setId();

Then the id field of harry is set, and the value of the static field nextId is incremented:

harry.id = . . .;
Employee.nextId++;

155

Core Java™ 2: Volume I-Fundamentals

Constants

Static variables are quite rare. However, static constants are more common. For example, the
Math class defines a static constant:

public class Math
{

public static final double PI = 3.14159265358979323846;

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then pT would have been an instance field of the
Math class. That is, you would need an object of the Math class to access p1, and every object
would have its own copy of pI.

Another static constant that you have used many times is System.out. It is declared in the
System class as:

public class System

{

public static final PrintStream out = . . .;

As we mentioned several times, it is never a good idea to have public fields because everyone
can modify them. However, public constants (that is, final fields) are ok. Since out has been
declared as final, you cannot reassign another print stream to it:

out = new PrintStream(. . .); // ERROR--out is final
NOTE

If you look at the system class, you will notice a method setout that lets
you set System.out to a different stream. You may wonder how that
method can change the value of a final variable. However, the setout
method is a native method, not implemented in the Java programming
language. Native methods can bypass the access control mechanisms of
the Java language. This is a very unusual workaround that you should not
emulate in your own programs.

Static Methods

Static methods are methods that do not operate on objects. For example, the pow method of
the Math class is a static method. The expression:

Math.pow (%, V)

156

Core Java™ 2: Volume I-Fundamentals

computes the power x’. It does not use any Math object to carry out its task. In other words, it
has no implicit parameter.

In other words, you can think of static methods as methods that don't have a this parameter.

Because static methods don't operate on objects, you cannot access instance fields from a
static method. But static methods can access the static fields in their class. Here is an example
of such a static method:

public static int getNextId()
{

return nextId; // returns static field

}

To call this method, you supply the name of the class:

int n = Employee.getNextId() ;

Could you have omitted the keyword static for this method? Yes, but then you would need
to have an object reference of type Employee to invoke the method.

NOTE

It is legal to use an object to call a static method. For example, if harry
1S an Employee object, then you can call harry.getNext1d () instead of
Employee.getnextId (). However, we find that notation confusing. The
getNextTd method doesn't look at harry at all to compute the result. We
recommend that you use class names, not objects, to invoke static
methods.

You use static methods in two situations:

1. When a method doesn't need to access the object state because all needed parameters
are supplied as explicit parameters (example: Math.pow)

2. When a method only needs to access static fields of the class (example:
Employee.getNextId)

C++NOTE

P Static fields and methods have the same functionality in Java and C++.
However, the syntax is slightly different. In C++, you use the : : operator
to access a static field or method outside its scope, such as Math: : PI.

The term “static” has a curious history. At first, the keyword static was
introduced in C to denote local variables that don't go away when exiting
a block. In that context, the term “static”” makes sense: the variable stays
around and is still there when the block is entered again. Then static
got a second meaning in C, to denote global variables and functions that
cannot be accessed from other files. The keyword static was simply

157

Core Java™ 2: Volume I-Fundamentals

reused, to avoid introducing a new keyword. Finally, C++ reused the
keyword for a third, unrelated interpretation, to denote variables and
functions that belong to a class but not to any particular object of the
class. That is the same meaning that the keyword has in Java.

Factory Methods

Here is another common use for static methods. Consider the methods

NumberFormat.getNumberInstance ()
NumberFormat.getCurrencyInstance ()

that we discussed in Chapter 3. Each of these methods returns an object of type
NumberFormat. For example,

NumberFormat formatter = NumberFormat.getCurrencyInstance();
System.out.println (formatter.format (salary));
// prints salary with currency symbol

As you now know, these are static methods—you call them on a class, not an object.
However, their purpose is to generate an object of the same class. Such a method is called a
factory method.

Why don't we use a constructor instead? There are two reasons. You can't give names to
constructors. The constructor name is always the same as the class name. In the
NumberFormat example, it makes sense to have two separate names for getting number and
currency formatter objects. Furthermore, the factory method can return an object of the type
NumberFormat, or an object of a subclass that inherits from NumberFormat. (See Chapter 5
for more on inheritance.) A constructor does not have that flexibility.

The main Method

Note that you can call static methods without having any objects. For example, you never
construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.

public class Application
{

public static void main (String[] args)

{

// construct objects here

The main method does not operate on any objects. In fact, when a program starts, there aren't
any objects yet. The static main method executes, and constructs the objects that the program
needs.

158

Core Java™ 2: Volume I-Fundamentals

TIP

Every class can have a main method. That is a handy trick for unit
/ testing of classes. For example, you can add a main method to the

_r Employee class:

class Employee

{

public Employee (String n, double s,
int year, int month, int day)

{
name = n;
salary = s;
GregorianCalendar calendar

= new GregorianCalendar (year, month - 1, day);

hireDay = calendar.getTime () ;

}

public static void main(String[] args) // unit test
{
Employee e = new Employee ("Romeo", 50000) ;
e.raiseSalary(10);
System.out.println(e.getName() + " " +
e.getSalary());

If you want to test the Employee class in isolation, you simply execute

java Employee

If the employee class is a part of a larger application, then you start the
application with

java Application

and the main method of the Employee class is never executed.

The program in Example 4-3 contains a simple version of the Employee class with a static
field count and a static method getCount. We fill an array with three Employee objects and
then print the employee information. Finally, we print the number of identification numbers
assigned.

Note that the Employee class also has a static main method for unit testing. Try running both
java Employee

and

java StaticTest

to execute both main methods.

159

Core Java™ 2: Volume I-Fundamentals

Example 4-3 StaticTest.java

O Joy g W

NeJ

e e
N O

o e
(SN

o e
w J o

=
NeJ

N
(@}

DN DN DN
adh w N

-}

N
[e)}

27

28.

.public class StaticTest
-

public static void main (String[] args)

{

// fill the staff array with three Employee objects
Employee[] staff = new Employee[3];

staff[0] = new Employee ("Tom", 40000);
staff[l] = new Employee ("Dick", 60000);
staff[2] = new Employee ("Harry", 65000);

// print out information about all Employee objects
for (int 1 = 0; 1 < staff.length; i++)
{
Employee e = staff[i];
e.setId():;
System.out.println ("name=" + e.getName ()
+ ",id=" + e.getId()
+ ",salary=" + e.getSalary());
}

int n = Employee.getNextId(); // calls static method
System.out.println ("Next available id=" + n);

.class Employee

{

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

public Employee (String n, double s)

{

}

name = n;
salary = s;
id = 0;

public String getName ()

{

}

return name;

public double getSalary()

{

}

return salary;

public int getId()

{

}

return id;

public void setId()

{

id = nextId; // set id to next available id
nextId++;

160

Core Java™ 2: Volume I-Fundamentals

57. public static int getNextId()

58. {

59. return nextId; // returns static field

60. }

61.

62. public static void main(String[] args) // unit test
63. {

64. Employee e = new Employee ("Harry", 50000);

65. System.out.println(e.getName() + " " + e.getSalary());
66. }

67.

68. private String name;

69. private double salary;

70. private int id;

71. private static int nextId = 1;

72.}

Method Parameters

Let us review the computer science terms that describe how parameters can be passed to a
method (or a function) in a programming language. The term call by value means that the
method gets just the value that the caller provides. In contrast, call by reference means that
the method gets the location of the variable that the caller provides. Thus, a method can
modify the value stored in a variable that is passed by reference but not in one that is passed
by value.These “call by ... ” terms are standard computer science terminology that describe
the behavior of method parameters in various programming languages, not just Java. (In fact,
there is also a call by name that is mainly of historical interest, being employed in the Algol
programming language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means, the method gets a
copy of all parameter values. In particular, the method cannot modify the contents of any
parameter variables that are passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary (percent) ;

No matter how the method is implemented, we know that after the method call, the value of
percent 18 still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the value of
a method parameter:

public static void tripleValue (double x) // doesn't work
{
x = 3 * x;

}

Let's call this method:

double percent = 10;
tripleValue (percent) ;

161

Core Java™ 2: Volume I-Fundamentals
However, this does not work. After the method call, the value of percent is still 10. Here is
what happens:

1. xis initialized with a copy of the value of percent (that is, 10).
2. xis tripled—it is now 30. But percent is still 10 (see Figure 4-6).

Figure 4-6. Modifying a numeric parameter has no lasting effect

Avalue copied
;f
’
’
’!
f
!
5
£
F
!
/!
'
7
#
/
s
JJ'
percent = 210
L)
I
A
X = i 30
\
A
N
LY
A
%
A
\
LY
b
A
N
\
\
b
A
\
A

Yvalue tripled

3. The method ends, and the parameter variable x is no longer in use.
There are, however, two kinds of method parameters:

e Primitive types (numbers, Boolean values)
e Object references

You have seen that it is impossible for a method to change a primitive type parameter. The

situation is different for object parameters. You can easily implement a method that triples the
salary of an employee:

162

Core Java™ 2: Volume I-Fundamentals

public static void tripleSalary(Employee x) // works
{

x.raiseSalary(200);

}
When you call

harry = new Employee(. . .);
tripleSalary (harry);

then the following happens:

1. xis initialized with a copy of the value of harry, that is, an object reference.

2. The raisesalary method is applied to that object reference. The Employee object to
which both x and harry refer gets its salary raised by 200%.

3. The method ends, and the parameter variable x is no longer in use. Of course,
the object variable harry continues to refer to the object whose salary was tripled (see
Figure 4-7).

Figure 4-7. Modifying an object parameter has a lasting effect

Jreference
/" |copied

J|salary tripled

harry =

¥
&
¥
L4
’
-
#
#
&+
&
£
#
£
£
#
&
[l
}(=| ! E—,

As you have seen, it is easily possible—and in fact very common—to implement methods that
change the state of an object parameter. The reason is simple. The method gets a copy of
the object reference, and both the original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two methods for
parameter passing: call by value and call by reference. Some programmers (and unfortunately
even some book authors) claim that the Java programming language uses call by reference for
objects. However, that is false. Because this is such a common misunderstanding, it is worth
examining a counterexample in detail.

Let's try to write a method that swaps two employee objects:

163

Core Java™ 2: Volume I-Fundamentals

public static void swap (Employee x, Employee y) // doesn't work
{

Employee temp = x;

X =Yy

y = temp;

If the Java programming language used call by reference for objects, this method would work:

Employee a new Employee ("Alice", . . .);
Employee b = new Employee ("Bob", . . .);
swap (a, b);

// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are stored in the
variables a and b. The x and y parameters of the swap method are initialized with copies of
these references. The method then proceeds to swap these copies.

// x refers to Alice, y to Bob
Employee temp = x;

X = Yy;

y = temp;

// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter variables x and y

are abandoned. The original variables a and b still refer to the same objects as they did before
the method call.

164

Figure 4-8. Swapping object parameters has no lasting effect

references
copied

Core Java™ 2: Volume I-Fundamentals

I}
F

alice X

‘\

bob

g
1]
~
"‘
. 5
o FFv=t=a]

references
swapped

This discussion demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in the Java

programming language:

e A method cannot modify a parameter of primitive type (that is, numbers or Boolean

values).

e A method can change the state of an object parameter.
e A method cannot make an object parameter refer to a new object.

The program in Example 4-4 demonstrates these facts. The program first tries to triple a value
of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0
End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:

Before: salary=50000.0

End of method:salary=150000.0
After: salary=150000.0

165

Core Java™ 2: Volume I-Fundamentals

After the method, the state of the object to which harry refers has changed. This is possible
because the method modified the state through a copy of the object reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:

Before: a=Alice
Before:b=Bob

End of method: x=Bob
End of method: y=Alice
After: a=Alice

After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a and b are not
affected.

C++ NOTE

S C++ has both call by value and call by reference. You tag reference
parameters with . For example, you can easily implement methods void
tripleValue (double& x) Or void swap (Employee& x, Employeeé&
y) that modify their reference parameters.

Example 4-4 ParamTest.java

l.public class ParamTest

2.4

3. public static void main(String[] args)

4. {

5. /*

6. Test 1: Methods can't modify numeric parameters
7. */

8. System.out.println ("Testing tripleValue:");

9. double percent = 10;

10. System.out.println ("Before: percent=" + percent);
11. tripleValue (percent) ;

12. System.out.println ("After: percent=" + percent);
13.

14. /*

15. Test 2: Methods can change the state of object
16. parameters

17. */

18. System.out.println ("\nTesting tripleSalary:");

19. Employee harry = new Employee ("Harry", 50000);
20. System.out.println ("Before: salary=" + harry.getSalary());
21. tripleSalary (harry);
22. System.out.println ("After: salary=" + harry.getSalary()):;
23.
24. /*
25. Test 3: Methods can't attach new objects to
26. object parameters
27. */
28. System.out.println ("\nTesting swap:");
29. Employee a = new Employee ("Alice", 70000);
30 Employee b = new Employee ("Bob", 60000);

166

31.
32.
33.
34.
35.
36.

Core Java™ 2: Volume I-Fundamentals

System.out.println ("Before: a=" + a.getName());

System.out.println ("Before: b=" + b.getName());

swap (a, b);

System.out.println ("After: a=" + a.getName());

System.out.println ("After: b=" + b.getName());
}

37.

38.
39.
40.
41.
42.

{

x = 3 * x;

System.out.println ("End of method: x=" + x);
}

43.

44,
45.
46.
47.
48.
49.

{
x.raiseSalary(200);
System.out.println ("End of method: salary="
+ x.getSalary());
}

50.

51.
52.
53.
54.

55

56.
57.
58.

59

public static void swap (Employee x, Employee V)
{

Employee temp = x;

X =Y;

y = temp;

-}

60.

61

62.
63.
64.
65.
66.
67.

.class Employee // simplified Employee class
{
public Employee (String n, double s)
{
name = n;
salary = s;

}

68.

69.
70.
71.
72.

public String getName ()
{

return name;

}

73.

74.
75.
76.
7.

public double getSalary()
{

return salary;

}

78.

79.
80.
81.
82.
83.

public void raiseSalary(double byPercent)

{
double raise = salary * byPercent / 100;
salary += raise;

}

84.

85.
86.

87

private String name;
private double salary;

-}

public static void tripleValue (double x) // doesn't work

public static void tripleSalary (Employee x) // works

System.out.println ("End of method: x=" + x.getName());
System.out.println ("End of method: y=" + y.getName());

167

Core Java™ 2: Volume I-Fundamentals

Object Construction

You have seen how to write simple constructors that define the initial state of your objects.
However, because object construction is so important, Java offers quite a variety of
mechanisms for writing constructors. We will go over these mechanisms in the sections that
follow.

Overloading

Recall that the GregorianCalendar class had more than one constructor. We could use:

GregorianCalendar today = new GregorianCalendar () ;

or:

GregorianCalendar deadline
= new GregorianCalendar (2099, Calendar.DECEMBER, 31);

This capability is called overloading. Overloading occurs if several methods have the same
name (in this case, the GregorianCalendar constructor method) but different parameters.
The compiler must sort out which method to call. It picks the correct method by matching the
parameter types in the headers of the various methods with the types of the values used in the
specific method call. A compile-time error occurs if the compiler cannot match the parameters
or if more than one match is possible. (This process is called overloading resolution.)

NOTE

Java allows you to overload any method—not just constructor methods.
Thus, to completely describe a method, you need to specify the name of
the method together with its parameter types. This is called the signature
of the method. For example, the string class has four methods called
index0f. They have signatures

indexOf (int)

indexOf (int, int)
indexOf (String)
indexOf (String, int)

The return type is not part of the method signature. That is, you cannot
have two methods with the same names and parameter types but different
return types.

Default Field Initialization
If you don't set a field explicitly in a constructor, it is automatically set to a default value:
numbers to zero, Booleans to false, and object references to null. But it is considered poor

programming practice to rely on this. Certainly, it makes it harder for someone to understand
your code if fields are being initialized invisibly.

168

Core Java™ 2: Volume I-Fundamentals

NOTE

This is an important difference between fields and local variables. You
must always explicitly initialize local variables in a method. But if you
don't initialize a field in a class, it is automatically initialized to a default
(zero, false or null).

For example, consider the Employee class. Suppose you don't specify how to initialize some
of the fields in a constructor. By default, the salary field would be initialized with 0 and the
name and hirebay fields would be initialized with nu11.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, then they would get a nu11 reference that they probably don't expect:

Date h = harry.getHireDay();
calendar.setTime (h); // throws exception if h is null

Default Constructors

A default constructor is a constructor with no parameters. (This constructor is sometimes
called a no-arg constructor.) For example, here is a default constructor for the Employee
class:

public Employee ()
{

name = "";
salary = 0;
hireDay = new Date();

If you write a class with no constructors whatsoever, then a default constructor is provided for
you. This default constructor sets all the instance fields to their default values. So, all numeric
data contained in the instance fields would be zero, all Booleans would be false, and all
object variables would be set to nu11.

If a class supplies at least one constructor but does not supply a default constructor, it is

illegal to construct objects without construction parameters. For example, our original
Employee class in Example 4-2 provided a single constructor:

Employee (String name, double salary, int y, int m, int d)

With that class, it was not legal to construct default employees. That is, the call

e = new Employee();

would have been an error.

169

Core Java™ 2: Volume I-Fundamentals

CAUTION

Please keep in mind that you get a free default constructor only when
your class has no other constructors. If you write your class with even
a single constructor of your own, and you want the users of your class to
have the ability to create an instance via a call to

new ClassName ()

then you must provide a default constructor (with no parameters). Of
course, if you are happy with the default values for all fields, you can

simply supply:

public ClassName ()
{
}

Explicit Field Initialization

Since you can overload the constructor methods in a class, you can obviously build in many
ways to set the initial state of the instance fields of your classes. It is always a good idea to
make sure that, regardless of the constructor call, every instance field is set to something
meaningful.

You can simply assign a value to any field in the class definition. For example,

class Employee

{

private String name = "";

This assignment is carried out before the constructor executes. This syntax is particularly
useful if all constructors of a class need to set a particular instance field to the same value.

The initialization value doesn't have to be a constant value. Here is an example where a field
is initialized with a method call. Consider an Employee class where each employee has an id
field. You can initialize it as follows:

class Employee

{

static int assignId()
{ int r = nextId;
nextId++;
return r;

}

private int id = assignId();

170

Core Java™ 2: Volume I-Fundamentals

C++NOTE

¥ o [In C++, you cannot directly initialize instance fields of a class. All fields
must be set in a constructor. However, C++ has a special initializer list
syntax, such as:

Employee: :Employee (String n, double s,
int y, int m, int d) // C++
name (n),
salary(s),
hireDay(y, m, d)

C++ uses this special syntax to call field constructors. In Java, there is no
need for it because objects have no subobjects, only pointers to other
objects.

Parameter Names

When you write very trivial constructors (and you'll write a lot of them), then it can be
somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee (String n, double s)
{

name = n;
salary = s;

However, the drawback is that you need to read the code to tell what the n and s parameters
mean.

C_ 9

Some programmers prefix each parameter with an “a”:

public Employee (String aName, double aSalary)
{

name = aName;
salary = aSalary;

That is quite neat. Any reader can immediately figure out the meaning of the parameters.

There is another commonly used trick. It relies on the fact that parameter variables shadow
instance fields with the same name. For example, if you call a parameter salary, then salary
refers to the parameter, not the instance field. But you can still access the instance field as
this.salary. Recall that this denotes the implicit parameter, that is, the object that is being
constructed. Here is an example:

171

Core Java™ 2: Volume I-Fundamentals

public Employee (String name, double salary)
{

this.name = name;
this.salary = salary;

C++ NOTE

SRy In C++, it is common to prefix instance fields with an underscore or a
fixed letter. (The letters "m" and "x" are common choices.) For example,
the salary field might be called salary or msalary. Programmers don't
usually do that in the Java programming language.

Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However, there is a second
meaning for the keyword.

If the first statement of a constructor has the form this (. . .), then the constructor calls
another constructor of the same class. Here is a typical example:

public Employee (double s)

{
// calls Employee (String, double)
this ("Employee #" + nextId, s);
nextId++;

When you call new Employee (60000), then the Employee (double) constructor calls the
Employee (String, double) constructor.

Using the this keyword in this manner is useful—you only need to write common
construction code once.

C++ NOTE

¥ a2 [The this object in Java is identical to the this pointer in C++. However,
in C++ it is not possible for one constructor to call another. If you want
to factor out common initialization code in C++, you must write a
separate method.

Initialization Blocks
You have already seen two ways to initialize a data field:

e By setting a value in a constructor
e By assigning a value in the declaration

172

Core Java™ 2: Volume I-Fundamentals

There is a actually a third mechanism in Java; it's called an initialization block. Class
declarations can contain arbitrary blocks of code. These blocks are executed whenever an
object of that class is constructed. For example,

class Employee

{
public Employee (String n, double s)

{
name = n;
salary = s;

}

public Employee ()
{

name = "";
salary = 0;

// object initialization block

id = nextId;
nextId++;

}

private String name;
private double salary
private int id;

private static int nextId;

In this example, the id field is initialized in the object initialization block, no matter which
constructor is used to construct an object. The initialization block runs first, and then the body
of the constructor is executed.

This mechanism is never necessary and is not common. It usually is more straightforward to
place the initialization code inside a constructor.

With so many ways of initializing data fields, it can be quite confusing to give all possible
pathways for the construction process. Here is what happens in detail when a constructor is
called.

—_—

All data fields are initialized to their default value (0, false, or nuil)

2. If the first line of the constructor calls another constructor, then that constructor is
executed. Otherwise, all field initializers and initialization blocks are executed, in
the order in which they occur in the class declaration.

3. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that it is easy to
understand without having to be a language lawyer. For example, it would be quite strange
and somewhat error-prone to have a class whose constructors depend on the order in which
the data fields are declared.

You initialize a static field either by supplying an initial value or by using a static
initialization block. You have already seen the first mechanism:

173

Core Java™ 2: Volume I-Fundamentals

static int nextId = 1;

If the static fields of your class require complex initialization code, use a static initialization
block.

Place the code inside a block and tag it with the keyword static. Here is an example. We
want the employee ID numbers to start at a random integer less than 10,000:

// static initialization block
static

{
Random generator = new Random() ;
nextId = generator.nextInt (10000) ;

Static initialization occurs when the class is first loaded. Like instance fields, static fields are
0, false or null unless you explicitly set them to another value. All static field initializers
and static initialization blocks are executed in the order in which they occur in the class
declaration.

NOTE

Here is a Java trivia fact to amaze your fellow Java coders: You can
write a “Hello, World” program in Java without ever writing a main
method.

public class Hello
{

static

{
System.out.println ("Hello, World"):;

}

When you invoke the class with java Hello, the class is loaded, the
static initialization block prints "Hello, World", and only then do you get
an ugly error message that main is not defined. You can avoid that
blemish by calling system.exit (0) at the end of the static initialization
block.

The program in Example 4-5 shows many of the features that we discussed in this section:

¢ Overloaded constructors

e (Calling another constructor with this(...)
e A default constructor

e An object initialization block

e A static initialization block

¢ An instance field initialization

174

Core Java™ 2: Volume I-Fundamentals

Example 4-5 ConstructorTest.java

1
2
3
4
5.
6
7
8

- A

9.
10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.

23

-}

24.
.class Employee

25

26.

{

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

.import java.util.*;

.public class ConstructorTest

public static void main(String[] args)

{

// £ill the staff array with three Employee objects
Employee[] staff = new Employee[3];

staff[0] = new Employee ("Harry", 40000);
staff[1l] new Employee (60000) ;
staff[2] new Employee () ;

// print out information about all Employee objects
for (int 1 = 0; i < staff.length; i++)
{
Employee e = staff[i];
System.out.println ("name=" + e.getName ()
+ ",id=" + e.getId()
+ ",salary=" + e.getSalary()):;

// three overloaded constructors
public Employee (String n, double s)

{

}

name = n;
salary = s;

public Employee (double s)

{

}

// calls the Employee (String, double) constructor
this ("Employee #" + nextId, s);

// the default constructor
public Employee ()

{

}

// name initialized to ""--see below
// salary not explicitly set--initialized to O
// id initialized in initialization block

public String getName ()

{

}

return name;

public double getSalary()

{

}

return salary;

175

Core Java™ 2: Volume I-Fundamentals

58. public int getId()

59. {

60. return id;

61. }

62.

63. // object initialization block

64. {

65. id = nextId;

66. nextId++;

67. }

68.

69. // static initialization block

70. static

71. {

72. Random generator = new Random() ;
73. // set nextId to a random number between 0 and 9999
74. nextId = generator.nextInt (10000);
75. }

76.

77. private String name = ""; // instance variable initialization
78. private double salary;

79. private int id;

80. private static int nextId;

81.1}

java.util.Random

e Random()
constructs a new random number generator
e int nextInt (int n)
returns a random number between 0 and n - 1
Object Destruction and the £inalize Method
Some object-oriented programming languages, notably C++, have explicit destructor methods
for any cleanup code that may be needed when an object is no longer used. The most common
activity in a destructor is reclaiming the memory set aside for objects. Since Java does
automatic garbage collection, manual memory reclamation is not needed, and Java does not
support destructors.
Of course, some objects utilize a resource other than memory, such as a file or a handle to
another object that uses system resources. In this case, it is important that the resource be

reclaimed and recycled when it is no longer needed.

You can add a finalize method to any class. The finalize method will be called before
the garbage collector sweeps away the object. In practice, do not rely on the finalize method

176

Core Java™ 2: Volume I-Fundamentals

for recycling any resources that are in short supply—you simply cannot know when this
method will be called.

NOTE

There is a method call System.runFinalizersOnExit (true) to
guarantee that finalizer methods are called before Java shuts down.
However, this method is inherently unsafe and has been deprecated.

If a resource needs to be closed as soon as you have finished using it, you need to manage it
manually. Add a dispose method that you call to clean up what needs cleaning. Just as
importantly, if a class you use has a dispose method, you will want to call it when you are
done with the object. In particular, if your class has an instance field that has a dispose
method, provide a dispose method that disposes of the instance fields.

Packages

Java allows you to group classes in a collection called a package. Packages are convenient for
organizing your work and for separating your work from code libraries provided by others.

The standard Java library is distributed over a number of packages, including java.lang,
java.util, java.net, and so on. The standard Java packages are examples of hierarchical
packages. Just as you have nested subdirectories on your hard disk, you can organize
packages by using levels of nesting. All standard Java packages are inside the java and javax
package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names. Suppose
two programmers come up with the bright idea of supplying an Employee class. As long as
both of them place their class into different packages, then there is no conflict. In fact, to
absolutely guarantee a unique package name, Sun recommends that you use your company's
Internet domain name (which is known to be unique) written in reverse. You then use
subpackages for different projects. For example, horstmann.com is a domain that one of the
authors registered. Written in reverse order, it turns into the package com.horstmann. That
package can then be further subdivided into subpackages such as com.horstmann.corejava.

The sole purpose of package nesting is to manage unique names. From the point of view of
the compiler, there is absolutely no relationship between nested packages. For example, the
packages java.util and java.util.jar have nothing to do with each other. Each is its own
independent collection of classes.

Using Packages

A class can use all classes from its own package and all public classes from other packages.

You can access the public classes in another package in two ways. The first is simply to add
the full package name in front of every classname. For example:

177

Core Java™ 2: Volume I-Fundamentals

java.util.Date today = new java.util.Date();

That is obviously tedious. The simpler, and more common, approach is to use the import
keyword. The point of the import statement is simply to give you a shorthand to refer to the
classes in the package. Once you use import, you no longer have to give the classes their full
names.

You can import a specific class or the whole package. You place import statements at the top
of your source files (but below any package statements). For example, you can import all
classes in the java.util package with the statement:

import java.util.x*;

Then you can use

Date today = new Date();

without a package prefix. You can also import a specific class inside a package.
import java.util.Date;

Importing all classes in a package is simpler. It has no negative effect on code size, so there is
generally no reason not to do it.

However, note that you can only use the * notation to import a single package. You cannot
use import java.* Or import java.*.* to import all packages with the java prefix.

NOTE

You can only import classes, not objects. For example, you would never
import System. out.

Most of the time, you just import the packages that you need, without worrying too much
about them. The only time that you need to pay attention to packages is when you have a
name conflict. For example, both the java.util and java.sql packages have a Date class.
Suppose you write a program that imports both packages.

import java.util.*;
import java.sqgl.*;

If you now use the pate class, then you get a compile-time error:
Date today; // ERROR--java.util.Date or java.sqgl.Date?

The compiler cannot figure out which pate class you want. You can solve this problem by
adding a specific import statement:

178

Core Java™ 2: Volume I-Fundamentals

import java.util.*;
import java.sgl.*;
import java.util.Date;

What if you really need both pate classes? Then you need to use the full package name with
every class name.

java.util.Date deadline = new java.util.Date();
java.sqgl.Date today = new java.sqgl.Date();

Locating classes in packages is an activity of the compiler. The bytecodes in class files always
use full package names to refer to other classes.

C++NOTE

C++ programmers usually confuse import with #include. The two have
nothing in common. In C++, you must use #include to include the
declarations of external features because the C++ compiler does not look
inside any files except the one that it is compiling and explicitly included
header files. The Java compiler will happily look inside other files
provided you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly
naming all packages, such as java.util.Date. In C++, you cannot
avoid the #include directives.

The only benefit of the import statement is convenience. You can refer
to a class by a name shorter than the full package name. For example,
after an import java.util.* (Or import java.util.Date) Statement,
you can refer to the java.util.Date class simply as Date.

The analogous construction to the package mechanism in C++ is the
namespace feature. Think of the package and import keywords in Java
as the analogs of the namespace and using directives in C++.

Adding a class into a package

To place classes inside a package, you must put the name of the package at the top of your
source file, before the code that defines the classes in the package. For example, the file
Employee.java in Example 4-7 starts out like this:

package com.horstmann.corejava;

public class Employee
{

}
If you don't put a package statement in the source file, then the classes in that source file

belong to the default package. The default package has no package name. Up to now, all our
example classes were located in the default package.

179

Core Java™ 2: Volume I-Fundamentals

You place files in a package into a subdirectory that matches the full package name. For
example, all class files in the package com.horstmann.corejava package must be in
subdirectory com/horstmann/corejava (com\horstmann\corejava on Windows). This is
the simplest setup—you'll see a couple of other options later in this chapter.

The program in Examples 4-6 and 4-7 is distributed over two packages: the packageTest
class belongs to the default package and the Employee class belongs to the
com.horstmann.corejava package. Therefore, the Employee.class file must be contained
in a subdirectory com/horstmann/ corejava. In other words, the directory structure is as
follows:

(current directory)
PackageTest.java
PackageTest.class
com/
horstmann/
corejava/
Employee.java
Employee.class

To compile this program, simply change to the directory containing packageTest.java and
run the command:

javac PackageTest.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and
compiles it.

CAUTION

The compiler does not check directories when it compiles source files.
For example, suppose you have a source file that starts with a directive:

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory
com/mycompany. The source file will compile without errors, but the
virtual machine won't find the resulting classes when you try to run the
program. Therefore, you should use the same hierarchy for source files
as for class files.

180

Core Java™ 2: Volume I-Fundamentals

Example 4-6 PackageTest.java

9.
10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.

1
2
3
4
5.
6
7
8

import com.horstmann.corejava.*;
// the Employee class is defined in that package

public class PackageTest

{

public static void main(String[] args)

{

// because of the import statement, we don't have to

// use com.horstmann.corejava.Employee here

Employee harry = new Employee ("Harry Hacker", 50000,
1989, 10, 1);

// raise salary by 5%
harry.raiseSalary(5);

// print out information about harry
System.out.println ("name=" + harry.getName ()
+ ",salary=" + harry.getSalary()):;

Example 4-7 Employee.java

WwwwhNhNDNDNDNDNDNMDNNNDNRERRERRRRRERRRE
WNRPFPOWOO-JdJoUd WNE OWOJoUd WwWwNEFE O

O Joy Ul W

package com.horstmann.corejava;
// the classes in this file are part of this package

import java.util.x*;
// import statements come after the package statement

public class Employee

{

public Employee (String n, double s,

{

}

int year, int month, int day)
name = n;
salary = s;
GregorianCalendar calendar
= new GregorianCalendar (year, month - 1, day);
// GregorianCalendar uses 0 for January
hireDay = calendar.getTime() ;

public String getName ()

{

}

return name;

public double getSalary()

{

}

return salary;

public Date getHireDay ()

{

}

return hireDay;

181

Core Java™ 2: Volume I-Fundamentals

34. public void raiseSalary(double byPercent)
35. {

36. double raise = salary * byPercent / 100;
37. salary += raise;

38. }

39.

40. private String name;

41. private double salary;

42. private Date hireDay;

43. 1}

How the virtual machine locates classes

As you have seen, classes are stored in subdirectories of the file system. The path to the class
must match the package name. You can also use the JAR utility to add class files to
an archive. An archive contains multiple class files and subdirectories inside a single file,
saving space and reducing access time. (We will discuss JAR files in greater detail in
Chapter 10.)

For example, the thousands of classes of the runtime library are all contained in the runtime
library file rt.jar. You can find that file in the jre/1ib subdirectory of the Java SDK.

TIP

JAR files use the ZIP format to organize files and subdirectories. You
/ can use any ZIP utility to peek inside rt.jar and other JAR files.

In the preceding example program, the package directory com/horstmann/ corejava was a
subdirectory of the program directory. However, that arrangement is not very flexible.
Generally, multiple programs need to access package files. To share your packages among
programs, you need to do the following:

1. Place your classes inside one or more special directories, say /home/user/classdir.
Note that this directory is the base directory for the package tree. If you add the class
com.horstmann.corejava.Employee, then the class file must be located in
the subdirectory /home/user/classdir/ com/horstmann/corejava.

2. Set the class path. The class path is the collection of all base directories whose
subdirectories can contain class files.

How to set the class path depends on your compilation nvironment. If you use the Java SDK,
then you have two choices: Specify the -classpath option for the compiler and bytecode

interpreter, or set the classpath environment variable.

Details depend on your operating system. On UNIX, the elements on the class path are
separated by colons.

/home/user/classes:.:/home/user/archives/archive.jar

182

Core Java™ 2: Volume I-Fundamentals

On Windows, they are separated by semicolons.

c:\classes; .;c:\archives\archive.jar
In both cases, the period denotes the current directory.
This class path contains:

e The base directory /home/user/classes Or c:\classes
e The current directory (.)
e The JAR file /home/user/archives/archive.jar Or c:\archives\archive.jar

The runtime library files (rt.jar and the other JAR files in the jre/1ib and jre/lib/ext
directories) are always searched for classes; you don't include them explicitly in the class
path.

NOTE

This is a change from version 1.0 and 1.1 of the Java Software
Development Kit. In those versions, the system classes were stored in a
file classes.zip which had to be part of the class path.

For example, here is how you set the class path for the compiler:

javac -classpath /home/user/classes:.:/home/user/archives/
archive.jar MyProg.java

(All instructions should be typed onto a single line. In Windows, use semicolons to separate
the items of the class path.)

NOTE

With the java bytecode interpreter (but not with the javac compiler),
you can use -cp instead of -classpath.

The class path lists all directories and archive files that are starting points for locating classes.
Let's consider a sample class path:

/home/user/classes:.:/home/user/archives/archive.jar

Suppose the interpreter searches for the class file of the com.horstmann.
corejava.Employee class. It first looks in the system class files which are stored in archives
in the jre/1ib and jre/lib/ext directories. It won't find the class file there, so it turns to
the class path. It then looks for the following files:

183

Core Java™ 2: Volume I-Fundamentals

e /home/user/classes/com/horstmann/corejava/Employee.class

e com/horstmann/corejava/Employee.class starting from the current directory

e com/horstmann/corejava/Employee.class inside

/home/user/archives/archive.jar

NOTE

The compiler has a harder time locating files than the virtual machine. If
you refer to a class without specifying its package, the compiler first
needs to find out the package that contains the class. It consults all
import directives as possible sources for the class. For example, suppose
the source file contains directives

import Jjava.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. Then the compiler tries
to find java.lang.Employee (because the java.lang package is always
imported by default), java.util.Employee,
com.horstmann.corejava.Employee, and Employee in the current
package. It searches for each of these classes in all of the locations of the
class path. It is a compile-time error if more than one class is found.
(Because classes must be unique, the order of the import statements
doesn't matter.)

The compiler goes one step further. It looks at the source files to see if
the source is newer than the class file. If so, the source file is recompiled
automatically. Recall that you can only import public classes from other
packages. A source file can only contain one public class, and the names
of the file and the public class must match. Therefore, the compiler can
easily locate source files for public classes. However, you can import
non-public classes from the current packages. These classes may be
defined in source files with different names. If you import a class from
the current package, the compiler searches all source files of the current
package to see which one defines the class.

CAUTION

The javac compiler always looks for files in the current directory, but
the java interpreter only looks into the current directory if the “.”
directory is on the class path. If you have no class path set, this is not a
problem—the default class path consists of the “.” directory. But if you
have set the class path and forgot to include the “.” directory, then your
programs will compile without error, but they won't run.

184

Core Java™ 2: Volume I-Fundamentals

Setting the class path

You can set the class path with the -classpath option for the javac and java
programs. However, that can get tedious. Alternatively, you can set the cLASSPATH
environment variable. Here are some tips for setting the CLASSPATH environment
variable on UNIX/Linux and Windows.

e On UNIX/Linux, edit your shell's startup file.

If you use the C shell, add a line such as the following to the .cshrc file in
your home directory.

setenv CLASSPATH /home/user/classdir:.

If you use the Bourne Again shell or bash, add the following line to the
.bashrc or bash profile file in your home directory.

export CLASSPATH=/home/user/classdir:.

e On Windows 95/98, edit the autoexec.bat file in the boot drive (usually the
c: drive). Add a line:

SET CLASSPATH=c:\user\classdir;.
Make sure not to put any spaces around the =.

e On Windows NT/2000, open the control panel. Then open the System icon
and select the Environment tab. In the Variable field, type cLasspaTH. In the
value field, type the desired class path such as c:\user\classdir;.

Package scope

You have already encountered the access modifiers public and private. Features tagged as
public can be used by any class. Private features can only be used by the class that defines
them. If you don't specify either public or private, then the feature (that is, the class,
method, or variable) can be accessed by all methods in the same package.

Consider the program in Example 4-2. The Employee class was not defined as a public class.
Therefore, only other classes in the same package—the default package in this case—such as
EmployeeTest can access it. For classes, this is a reasonable default. However, for variables,
this default was an unfortunate choice. Variables now must explicitly be marked private or
they will default to being package-visible. This, of course, breaks encapsulation. The problem
is that it is awfully easy to forget to type the private keyword. Here is an example from the
wWindow class in the java.awt package, which is part of the source code supplied with the
SDK:

185

Core Java™ 2: Volume I-Fundamentals

public class Window extends Container

{

String warningString;

Note that the warningString variable is not private! That means, the methods of all classes
in the java.awt package can access this variable and set it to whatever they like (such as
"Trust me!"). Actually, the only methods that access this variable are in the window class, so
it would have been entirely appropriate to make the variable private. We suspect that the
programmer typed the code in a hurry and simply forgot the private modifier. (We won't
mention the programmer's name to protect the guilty—you can look into the source file
yourself.)

NOTE

Amazingly enough, this problem has never been fixed, even though we
have pointed it out in four editions of this book—apparently the library
implementors don't read core Java. Not only that—mnew fields have
been added to the class over time, and about half of them aren't private
either.

Is this really a problem? It depends. By default, packages are not closed entities. That is,
anyone can add more classes to a package. Of course, hostile or clueless programmers can
then add code that modifies variables with package visibility. For example, in earlier versions
of the Java programming language, it was an easy matter to smuggle in another class into the
java.awt package—simply start out the class with

package java.awt;

Then place the resulting class file inside a subdirectory java\awt somewhere on the class
path, and you have gained access to the internals of the java.awt package. Through this
subterfuge, it was possible to set the warning border (see Figure 4-9).

Figure 4-9. Changing the warning string in an applet window

Egtam"_!l[]ﬁ!
I
B || Al 2] 3
4151617
a1 9|+
= Fl%] =
[Trust me!

Starting with version 1.2, the SDK implementors rigged the class loader to explicitly disallow
loading of user-defined classes whose package name starts with "java."! Of course, your
own classes won't benefit from that protection. Instead, you can use another mechanism,

186

Core Java™ 2: Volume I-Fundamentals

package sealing, to address the issue of promiscuous package access. If you seal a package,
no further classes can be added to it. You will see in Chapter 10 how you can produce a JAR
file that contains sealed packages.

Documentation Comments

The Java SDK contains a very useful tool, called javadoc, that generates HTML
documentation from your source files. In fact, the online API documentation that we
described in Chapter 3 is simply the result of running javadoc on the source code of
the standard Java library.

If you add comments that start with the special delimiter /** to your source code, you too can
produce professional-looking documentation easily. This is a very nice scheme because it lets
you keep your code and documentation in one place. If you put your documentation into
a separate file, then you probably know that the code and comments tend to diverge over time.
But since the documentation comments are in the same file as the source code, it is an easy
matter to update both and run javadoc again.

How to Insert Comments
The javadoc utility extracts information for the following items:
e Packages
o Public classes and interfaces
e Public and protected methods
e Public and protected fields

Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment is placed
immediately above the feature it describes. A comment starts with a /** and ends with a */.

Each /x* . . . */ documentation comment contains free-form text followed by tags. A tag
starts with an @, such as @author or @param.

The first sentence of the free-form text should be a summary statement. The javadoc utility
automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as ... for emphasis,
<code>...</code> for a monospaced “typewriter” font, ... for strong
emphasis, and even to include an image. You should, however, stay away from
heading <h1> or rules <hr> since they can interfere with the formatting of the document.

187

Core Java™ 2: Volume I-Fundamentals

NOTE

If your comments contain links to other files such as images (for
example, diagrams or images of user interface components), place those
files into subdirectories named doc-files. The javadoc utility will
copy these directories, and the files in them, from the source directory to
the documentation directory.

Class Comments

The class comment must be placed after any import statements, directly before the class
definition.

Here is an example of a class comment:

/**
A <code>Card</code> object represents a playing card, such
as "Queen of Hearts". A card has a suit (Diamond, Heart,
Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
12 = Queen, 13 = King).

*/

public class Card

{
}

NOTE

Many programmers start each line of a documentation with an asterisk,
like this:

/**
* A <code>Card</code> object represent a playing card,
* such as "Queen of Hearts". A card has a suit (Diamond,

* Heart, Spade or Club) and a value (1 = Ace, 2 . . . 10,
* 11 = Jack, 12 = Queen, 13 = King)
*/

We don't do this because it discourages programmers from updating
the comments. Nobody likes rearranging the * when the line breaks
change. However, some text editors have a mode that takes care of this
drudgery. If you know that all future maintainers of your code will use
such a text editor, you may want to add the border to make the comment
stand out.

Method Comments

Each method comment must immediately precede the method that it describes. In addition to
the general-purpose tags, you can use the following tags:

188

Core Java™ 2: Volume I-Fundamentals

@param variable description

This tag adds an entry to the “parameters” section of the current method. The description can
span multiple lines and can use HTML tags. All @param tags for one method must be kept
together.

@return description

This tag adds a “returns” section to the current method. The description can span multiple
lines and can use HTML tags.

@throws class description

This tag adds a note that this method may throw an exception. Exceptions are the topic of
Chapter 11.

Here is an example of a method comment:

/**
Raises the salary of an employee.
@param byPercent the percentage by which to raise the salary
(e.g. 10 = 10%)
@return the amount of the raise
*/
public double raiseSalary(double byPercent)
{

double raise = salary * byPercent / 100;
salary += raise;
return raise;

Field Comments

You only need to document public fields—generally that means static constants. For example,

/**
The "Hearts" card suit
*/
public static final int HEARTS = 1;

General Comments

The following tags can be used in class documentation comments.

@author name

This tag makes an “author” entry. You can have multiple eauthor tags, one for each author.

@version text
This tag makes a “version” entry. The text can be any description of the current version.

The following tags can be used in all documentation comments.

189

Core Java™ 2: Volume I-Fundamentals

@since text

This tag makes a “since” entry. The text can be any description of the version that introduced
this feature. For example, @since version 1.7.1

@deprecated text

This tag adds a comment that the class, method, or variable should no longer be used. The text
should suggest a replacement. For example,

@deprecated Use <code>setVisible (true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to external
documents, with the @see and @1ink tags.

@see link

This tag adds a hyperlink in the “see also” section. It can be used with both classes and
methods. Here, 1ink can be one of the following:

e package.class#feature label
e label

o "text"

The first case is the most useful. You supply the name of a class, method, or variable, and
javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.EmployeeffraiseSalary (double)

makes a link to the raiseSalary (double) method in
the com.horstmann.corejava.Employee class. You can omit the name of the package or
both the package and class name. Then, the feature will be located in the current package or
class.

Note that you must use a #, not a period, to separate the class from the method or variable
name. The Java compiler itself is highly skilled in guessing the various

meanings of the period character, as separator between packages, subpackages, classes, inner
classes, and methods and variables. But, the javadoc utility isn't quite as clever, and you have
to help it along.

If the @see tag is followed by a < character, then you need to specify a hyperlink. You can
link to any URL you like. For example,

@see The Core Java
home page

In each of these cases, you can specify an optional 1abel that will appear as the link anchor.
If you omit the label, then the user will see the target code name or URL as the anchor.

190

Core Java™ 2: Volume I-Fundamentals

If the @see tag is followed by a " character, then the text is displayed in the “see also” section.
For example,

@see "Core Java 2 volume 2"
You can add multiple @see tags for one feature, but you must keep them all together.

If you like, you can place hyperlinks to other classes or methods anywhere in any of your
comments. You insert a special tag of the form {@link package.class#feature label}
anywhere in a comment. The feature description follows the same rules as for the @see tag.

Package and Overview Comments

You place class, method, and variable comments directly into the Java source files, delimited
by /** . . . =/ documentation comments. However, to generate package comments, you
need to add a file named package.html in each package directory. All text between the tags
<BODY>...</BODY> is extracted.

You can also supply an overview comment for all source files. Place it in a file called
overview.html, located in the parent directory that contains all the source files. All text
between the tags <BODY>...</BoDY> is extracted. This comment is displayed when the user
selects “Overview” from the navigation bar.

How to Extract Comments

Here, docpirectory is the name of the directory where you want the HTML files to go.
Follow these steps:

1. Change to the directory that contains the source files you want to document. If you
have nested packages to document, such as com.horstmann.corejava, you must be
in the directory that contains the subdirectory com. (This is the directory that contains
the overview.html file, if you supplied one.)

2. Run the command

javadoc -d docDirectory nameOfPackage

for a single package. Or run

javadoc -d docDirectory nameOfPackagel nameOfPackagel...

to document multiple packages. If your files are in the default package, then run

javadoc -d docDirectory *.Jjava
instead.

If you omit the -d docDirectory option, then the HTML files are extracted to the current
directory. That can get messy, and we don't recommend it.

191

Core Java™ 2: Volume I-Fundamentals

The javadoc program can be fine-tuned by numerous command-line options. For example,
you can use the ~author and -version options to include the Gauthor and @version tags in
the documentation. (By default, they are omitted.) We refer you to the online documentation
of the javadoc utility at http://java.sun.com/products/jdk/javadoc/index.html.

NOTE

If you require further customization, for example, to produce
documentation in a format other than HTML, then you can supply your
own doclet to generate the output in any form you desire. Clearly, this is
a specialized need, and we refer you to the online documentation for
details on doclets at
http://java.sun.com/products/jdk/1.3/docs/tooldocs/javadoc/overview.html.

Class Design Hints

Without trying to be comprehensive or tedious, we want to end this chapter with some hints
that may make your classes more acceptable in well-mannered OOP circles.

1.

2.

3.

Always keep data private.

This is first and foremost: doing anything else violates encapsulation. You may need
to write an accessor or mutator method occasionally, but you are still better off
keeping the instance fields private. Bitter experience has shown that how the data are
represented may change, but how they are used will change much less frequently.
When data are kept private, changes in their representation do not affect the user of
the class, and bugs are easier to detect.

Always initialize data.

Java won't initialize local variables for you, but it will initialize instance fields of
objects. Don't rely on the defaults, but initialize the variables explicitly, either by
supplying a default or by setting defaults in all constructors.

Don't use too many basic types in a class.

The idea is to replace multiple related uses of basic types with other classes. This
keeps your classes easier to understand and to change. For example, replace
the following instance fields in a Customer class

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes to
addresses, such as the need to deal with international addresses.

192

Core Java™ 2: Volume I-Fundamentals

4. Not all fields need individual field accessors and mutators.
You may need to get and set an employee's salary. You certainly won't need to change
the hiring date once the object is constructed. And, quite often, objects have instance
fields that you don't want others to get or set, for example, an array of state
abbreviations in an Address class.
5. Use a standard form for class definitions.
We always list the contents of classes in the following order:
public features
package scope features
private features
Within each section, we list:
instance methods
static methods
instance fields
static fields
After all, the users of your class are more interested in the public interface than in the
details of the private implementation. And they are more interested in methods than in
data.
However, there is no universal agreement on what is the best style. The Sun coding
style guide for the Java programming language recommends listing fields first and
then methods.
Whatever style you use, the most important thing is to be consistent.
6. Break up classes with too many responsibilities.
This hint is, of course, vague: ’too many” is obviously in the eye of the beholder.
However, if there is an obvious way to make one complicated class into two classes
that are conceptually simpler, seize the opportunity. (On the other hand, don't go

overboard; 10 classes, each with only one method, is usually overkill.)

Here is an example of a bad design.

193

Core Java™ 2: Volume I-Fundamentals

class CardDeck // bad design

{
public CardDeck() { . . . }
public void shuffle() { . . . }
public int getTopValue() { . . . }
public int getTopSuit() { . . . }
public void draw() { . . . }

private int[] wvalue;
private int[] suit;

This class really implements two separate concepts: a deck of cards, with its shuffle
and draw methods, and a card, with the methods to inspect the value and suit of
a card. It makes sense to introduce a card class that represents an individual card.
Now you have two classes, each with its own responsibilities:

class CardDeck

{
public CardDeck() { . . . }
public void shuffle() { . . . }
public Card getTop() { . . . }
public void draw() { . . . }

private Card[] cards;

}

class Card

{

public Card(int avalue, int aSuit) { . . . }
public int getValue() { . . . }
public int getSuit() { . . . }

private int value;
private int suit;

7. Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they represent, so
should classes. (The standard library certainly contains some dubious examples, such
as the pate class that describes time.)

A good convention is that a class name should be a noun (order) or a noun preceded by an
adjective (Rushorder) or a gerund (an “-ing” word, like BillingAddress). As for methods,
follow the standard convention that accessor methods begin with a lowercase get
(getsalary), and mutator methods use a lowercase set (setSalary).

194

Core Java™ 2: Volume I-Fundamentals

Chapter 5. Inheritance

o Extending Classes

e Object: The Cosmic Superclass
e The class Class

e Reflection

e Design Hints for Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you will learn about
inheritance, another fundamental concept of object-oriented programming. The idea behind
inheritance is that you can create new classes that are built upon existing classes. When you
inherit from an existing class, you reuse (or inherit) methods and fields, and you add new
methods and fields to adapt your new class to new situations. This technique is essential in
Java programming.

As with the previous chapter, if you are coming from a procedure-oriented language like C,
Visual Basic, or COBOL, you will want to read this chapter carefully. For experienced C++
programmers or those coming from another object-oriented language like Smalltalk, this
chapter will seem largely familiar, but there are many differences between how inheritance is
implemented in Java and how it is done in C++ or in other object-oriented languages.

The latter part of this chapter covers reflection, the ability to find out more about classes and
their properties in a running program. Reflection is a powerful feature, but it is undeniably
complex. Since reflection is of greater interest to tools builders than to application
programmers, you can probably glance over that part of the chapter upon first reading and
come back to it later.

Extending Classes

Let's return to the Employee class that we discussed in the previous chapter. Suppose (alas)
you work for a company at which managers are treated differently than other employees.
Managers are, of course, just like employees in many respects. Both employees and managers
are paid a salary. However, while employees are expected to complete their assigned tasks in
return for receiving their salary, managers get bonuses if they actually achieve what they are
supposed to do. This is the kind of situation that cries out for inheritance. Why? Well, you
need to define a new class, Manager, and add functionality. But you can retain some of what
you have already programmed in the Employee class, and all the fields of the original class
can be preserved. More abstractly, there is an obvious “is—a” relationship between Manager
and Employee. Every manager is an employee: this “is—a” relationship is the hallmark of
inheritance.

Here is how you define a Manager class that inherits from the Employee class. You use
the Java keyword extends to denote inheritance.

class Manager extends Employee

{
added methods and fields

}

195

Core Java™ 2: Volume I-Fundamentals

C++ NOTE

e Inheritance is similar in Java and C++. Java uses the extends keyword
instead of the : token. All inheritance in Java is public inheritance; there
is no analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from an existing
class. The existing class is called the superclass, base class, or parent class. The new class is
called the subclass, derived class, or child class. The terms superclass and subclass are those
most commonly used by Java programmers, although some programmers prefer the
parent/child analogy, which also ties in nicely with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its subclass or contains
more functionality. In fact, the opposite is true: subclasses have more functionality than their
superclasses. For example, as you will see when we go over the rest of the Manager class
code, the Manager class encapsulates more data and has more functionality than its superclass
Employee.

NOTE

The prefixes super and sub come from the language of sets used in
theoretical computer science and mathematics. The set of all employees
contains the set of all managers, and this is described by saying it is
a superset of the set of managers. Or, put it another way, the set of all
managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to set it:

class Manager extends Employee

{

public void setBonus (double b)
{

bonus = b;

}

private double bonus;

There is nothing special about these methods and fields. If you have a manager object, you
can simply apply the setBonus method.

Manager boss = . . .;
boss.setBonus (5000) ;

Of course, if you have an Employee object, you cannot apply the setBonus method—it is not
among the methods that are defined in the Employee class.

196

Core Java™ 2: Volume I-Fundamentals

However, you can use methods such as getName and getHireDay with Manager objects.
Even though these methods are not explicitly defined in the Manager class, they are
automatically inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are inherited from the superclass. Every
Manager(ﬂﬁecthasfburﬁekhiname,salary,hireDayandbonu&

When defining a subclass by extending its superclass, you only need to indicate
the differences between the subclass and the superclass. When designing classes, you place
the most general methods into the superclass, and more specialized methods in the subclass.
Factoring out common functionality by moving it to a superclass is very common in
object-oriented programming.

However, some of the superclass methods are not appropriate for the Manager subclass. In
particular, the getsalary method should return the sum of the base salary and the bonus. You
need to supply a new method to override the superclass method:

class Manager extends Employee

{

public double getSalary()
{

}

How can you implement this method? At first glance, it appears to be simple: Just return
the sum of the salary and bonus fields:

public double getSalary ()
{

return salary + bonus; // won't work

}

However, that won't work. The getsalary method of the Manager class has no direct access
to the private fields of the superclass. This means that the getsalary method of the Manager
class cannot directly access the salary field, even though every Manager object has a field
called salary. Only the methods of the Employee class have access to the private fields. If
the Manager methods want to access those private fields, they have to do what every other
method does—use the public interface, in this case, the public getsalary method of the
Employee class.

So, let's try this again. You need to call getsalary instead of simply accessing the salary
field.

public double getSalary()

{
double baseSalary = getSalary(); // still won't work
return baseSalary + bonus;

197

Core Java™ 2: Volume I-Fundamentals

The problem is that the call to getsalary simply calls itself, because the Manager class has
a getsalary method (namely the method we are trying to implement). The consequence is
an infinite set of calls to the same method, which leads to a program crash.

We need to indicate that we want to call the getSalary method of the Employee superclass,
not the current class. You use the special keyword super for this purpose: The call

super.getSalary ()

calls the getsalary method of the Employee class. Here is the correct version of
the getsalary method for the Manager class:

public double getSalary()

{
double baseSalary = super.getSalary();

return baseSalary + bonus;

NOTE

Some people think of super as being analogous to the this reference.
However, that analogy is not quite accurate—super is not a reference to
an object. For example, you cannot assign the value super to another
object variable. Instead, super is a special keyword that directs
the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add or override methods of the superclass.

However, inheritance can never take away any fields or methods.

C++ NOTE

. -

Java uses the keyword super to call a superclass method. In C++, you
would use the name of the superclass with the :: operator instead. For
example, the getsalary method of the Manager class would call
Employee::getSalaryinMBadOfsuper.getSalary

Finally, let us supply a constructor.

public Manager (String n, double s, int year, int month, int day)

{
super (n, s, year, month, day);
bonus = 0;

Here, the keyword super has a different meaning. The instruction

super (n, s, year, month, day);

198

Core Java™ 2: Volume I-Fundamentals

is shorthand for “call the constructor of the Employee superclass with n, s, year, month, and
day as parameters.”

Since the Manager constructor cannot access the private fields of the Employee class, it must
initialize them through a constructor. The constructor is invoked with the special super
syntax. The call using super must be the first statement in the constructor for the subclass.

If the subclass constructor does not call a superclass constructor explicitly, then the superclass
uses its default (no-parameter) constructor. If the superclass has no default constructor and the
subclass constructor does not call another superclass constructor explicitly, then the Java
compiler reports an error.

NOTE

Recall that the this keyword has two meanings: to denote a reference to
the implicit parameter, and to call another constructor of the same class.
Likewise, the super keyword has two meanings: to invoke a superclass
method, and to invoke a superclass constructor. When used to invoke
constructors, the this and super keywords are closely related. The
constructor calls can only occur as the first statement in another
constructor. The construction parameters are either passed to another
constructor of the same class (this) or a constructor of the superclass

(super).

C++NOTE

. -

In a C++ constructor, you do not call super, but you use the initializer
list syntax to construct the superclass. The Manager constructor looks
like this in C++:

Manager: :Manager (String n, double s, int year, int month,
int day) // C++

: Employee(n, s, year, month, day)

{

bonus = 0;

}
Having redefined the getsalary method for Manager objects, managers will automatically
have the bonus added to their salaries.

Here's an example of this at work: we make a new manager and set the manager's bonus:

Manager boss = new Manager ("Carl Cracker", 80000,
1987, 12, 15);
boss.setBonus (5000) ;

We make an array of three employees:

199

Core Java™ 2: Volume I-Fundamentals

Employee[] staff = new Employeel[3];

We populate the array with a mix of managers and employees:

staff[0] = boss;

staff[l] = new Employee ("Harry Hacker", 50000,
1989, 10, 1);

staff[2] = new Employee ("Tony Tester", 40000,

1990, 3, 15);

We print out everyone's salary:

for (int 1 = 0; 1 < staff.length; i++)
{
Employee e = staff[i];
System.out.println(e.getName() + " "
+ e.getSalary());;

This loop prints the following data:

Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects.
However, staff[0] iS a Manager object and its getSalary method adds the bonus to the
base salary.

What is remarkable is that the call

e.getSalary ()

picks out the correct getsalary method. Note that the declared type of e is Employee, but
the actual type of the object to which e refers can be either Employee (that is, when i is 1 or
2) or Manager (when 1 is 0).

When e refers to an Employee object, then the call e.getsalary() calls the getsSalary
method of the Employee class. However, when e refers to a Manager object, then the
getSalary method of the Manager class is called instead. The virtual machine knows about
the actual type of the object to which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable) can refer to multiple actual types is
called polymorphism. Automatically selecting the appropriate method at runtime is called

dynamic binding. We will discuss both topics in more detail in this chapter.

C++NOTE

r'

In Java, you do not need to declare a method as virtual. Dynamic binding
is the default behavior. If you do not want a method to be virtual, you tag
itas final. (We discuss the final keyword later in this chapter.)

200

Core Java™ 2: Volume I-Fundamentals

Example 5-1 contains a program that shows how the salary computation differs for Employee
and Manager objects.

Example 5-1 ManagerTest.java

WwhhDhDMDDNDNDNDNDNNDNNNDNNREPRRPRERRRERERRE
P O WOow-JoUld WNEFE OWOoJoU b wWwh - O

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

O Joy bW

import java.util.*;

public class ManagerTest

{

public static void main (String[] args)

{

}

// construct a Manager object

Manager boss = new Manager ("Carl Cracker", 80000,
1987, 12, 15);

boss.setBonus (5000) ;

Employee[] staff = new Employee[3];

// fill the staff array with Manager and Employee objects

staff[0] = boss;

staff[l] = new Employee ("Harry Hacker", 50000,
1989, 10, 1);

staff[2] = new Employee ("Tommy Tester", 40000,

1990, 3, 15);

// print out information about all Employee objects
for (int i = 0; i < staff.length; i++)
{
Employee e = staffl[il]l;
System.out.println ("name=" + e.getName ()
+ ",salary=" + e.getSalary()):;

class Employee

{

public Employee(String n, double s,

{

}

int year, int month, int day)

name = n;
salary = s;
GregorianCalendar calendar
= new GregorianCalendar (year, month - 1, day);
// GregorianCalendar uses 0 for January
hireDay = calendar.getTime () ;

public String getName ()

{

}

return name;

public double getSalary()

{

}

return salary;

201

Core Java™ 2: Volume I-Fundamentals

55. public Date getHireDay ()

56. {

57. return hireDay;

58. }

59.

60. public void raiseSalary(double byPercent)
61. {

62. double raise = salary * byPercent / 100;
63. salary += raise;

64. }

65.

66. private String name;

67. private double salary;

68. private Date hireDay;

69. }

70.

71. class Manager extends Employee

72. |

73. /**

74. @param n the employee's name
75. @param s the salary

76. @param year the hire year

77. @param month the hire month
78. @param day the hire day

79. */

80. public Manager (String n, double s,
81. int year, int month, int day)
82. {

83. super (n, s, year, month, day);
84. bonus = 0;

85. }

86.

87. public double getSalary()

88. {

89. double baseSalary = super.getSalary();
90. return baseSalary + bonus;

91. }

92.

93. public void setBonus (double Db)
94. {

95. bonus = b;

96. }

97.

98. private double bonus;

99. 1}

Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an Executive class
that derives from Manager, for example. The collection of all classes extending from
a common superclass is called an inheritance hierarchy, as shown in Figure 5-1. The path
from a particular class to its ancestors in the inheritance hierarchy is its inheritance chain.

202

Core Java™ 2: Volume I-Fundamentals

Figure 5-1. Employee inheritance hierarchy

Employee
i
| |
Manager Secretary Frogrammer
Executive

There is usually more than one chain of descent from a distant ancestor class. You could
derive a Programmer class from Employee class or a Secretary class from Employee, and
they would have nothing to do with the Manager class (or with each other). This process can
continue as long as is necessary.

Polymorphism

There is a simple rule to know whether or not inheritance is the right design for your data. The
“is-a” rule states that every object of the subclass is an object of the superclass. For example,
every manager is an employee. Thus, it makes sense for the Manager class to be a subclass of
the Employee class. Naturally, the opposite is not true—not every employee is a manager.

Another way of formulating the “is-a” rule is the substitution principle. That principle states
that you can use a subclass object whenever the program expects a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable of type
Employee can refer to an object of type Employee or an object of any subclass of the
EmployeeCkws(SudlaSManager,Executive,Secretary,andSO(HD.

We took advantage of this principle in Example 5-1:

Employee[] staff = new Employee[3];
Manager boss = new Manager (. . .);
staff[0] = boss;

In this case, the variables staff [0] and boss refer to the same object. However, staff[0] is
considered to be only an Employee object by the compiler.

203

Core Java™ 2: Volume I-Fundamentals

That means, you can call

boss.setBonus (5000); // OK
but you can't call

staff[0].setBonus (5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a method of the
Employee class.

However, you cannot assign a superclass reference to a subclass variable. For example, it is
not legal to make the assignment:

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment were to succeed and m
were to refer to an Employee object that is not a manager, then it would later be possible to

call m.setBonus (.. .), and a runtime error would occur.
C++ NOTE
P Java does not support multiple inheritance. (For ways to recover much of

the functionality of multiple inheritance, see the section on Interfaces in
the next chapter.)

Dynamic Binding

It is important to understand what happens when a method call is applied to an object. Here
are the details:

1. The compiler looks at the declared type of the object and the method name. Let's say
we call x. f (args), and the implicit parameter x is declared to be an object of class c.
Note that there may be multiple methods, all with the same name £, but with different
parameter types. For example, there may be a method f(int) and a method
f (string). The compiler enumerates all methods called f in the class ¢ and all
public methods called f in the superclasses of c.

Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the parameters that are supplied in the
method call. If among all the methods called £ there is a unique method whose
parameter types are a best match for the supplied parameters, then that method is
chosen to be called. This process is called overloading resolution. For example, in
acall x.f("Hello"), the compiler picks f (Sstring) and not f (int). The situation
can get complex because of type conversions (int to double, Manager to Employee,
and so on). If the compiler cannot find any method with matching parameter types, or

204

Core Java™ 2: Volume I-Fundamentals

if there are multiple methods that all match after applying conversions, then
the compiler reports an error.

Now the compiler knows the name and parameter types of the method that needs to be
called.

NOTE

3.

Recall that the name and parameter type list for a method is called
the method's signature. For example, f (int) and f(String) are two
methods with the same name but different signatures. If you define
amethod in a subclass that has the same signature as a superclass
method, then you override that method. However, the return type is not
part of the signature. Therefore, you cannot define a method
int f(String) in a superclass and a method void f(String) in
a subclass.

If the method is private, static, final, or a constructor, then the compiler knows
exactly which method to call. (The final modifier is explained in the next section.)
This is called static binding. Otherwise, the method to be called depends on the actual
type of the implicit parameter, and dynamic binding must be used at run time. In our
example, the compiler would generate an instruction to call f (string) with dynamic
binding.

When the program runs and uses dynamic binding to call a method, then the virtual
machine must call the version of the method that is appropriate for the actual type of
the object to which x refers. Let's say the actual type is D, a subclass of c. If the class b
defines a method £ (string), that method is called. If not, D's superclass is searched
for a method £ (string), and so on.

It would be time-consuming to carry out this search every time a method is called.
Therefore, the virtual machine precomputes a method table for each class that lists all
method signatures and the actual methods to be called. When a method is actually
called, the virtual machine simply makes a table lookup. In our example, the virtual
machine consults the method table for the class b and looks up the method to call for
f (string). That method may be D.f (String) or X.f (String), where X is some
superclass of D .

There is one twist to this scenario. If the call is super.f (args), then the compiler
consults the method table of the superclass of the implicit parameter.

Let's look at this process in detail in the call e.getsalary() in Example 5-1. The declared
type of e is Employee. The Employee class has a single method called getsalary, and there
are no method parameters. Therefore, in this case, we don't worry about overloading
resolution.

Since the getsalary method is not private, static, or final, it is dynamically bound. The
compiler produces method tables for the Employee and Manager classes. The Employee table
shows that all methods are defined in the Employee class itself:

205

Core Java™ 2: Volume I-Fundamentals

Employee:
getName () -> Employee.getName ()
getSalary() -> Employee.getSalary()
getHireDay () -> Employee.getHireDay ()
raiseSalary (double) -> Employee.raiseSalary(double)

Actually, that isn't quite true—as you will see later in this chapter, the Employee class has a
superclass object from which it inherits a number of methods. We ignore the object
methods for now.

The Manager method table is slightly different. Three methods are inherited, one method is
redefined and one method is added.

Manager:
getName () -> Employee.getName ()
getSalary () -> Manager.getSalary()
getHireDay () -> Employee.getHireDay ()
raiseSalary(double) -> Employee.raiseSalary(double)
setBonus (double) -> Manager.setBonus (double)

At run time, the call e.getSalary () is resolved as follows.

1. First, the virtual machine fetches the method table for the actual type of e. That may
be the table for Employee, Manager, or another subclass of Employee.

2. Then, the virtual machine looks up the defining class for the getsalary() signature.
Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: it makes programs extensible without the
need for recompiling existing code. Suppose a new class Executive is added, and there is the
possibility that the variable e refers to an object of that class. The code containing the call
e.getSalary() need not be recompiled. The Executive.getSalary() method is called
automatically if e happens to refer to an object of type Executive.

CAUTION

When you override a method, the subclass method must be at least as
visible as the superclass method. In particular, if the superclass method is
public, then the subclass method must also be declared as public. It is
a common error to accidentally omit the public specifier for the
subclass method. Then the compiler complains that you try to supply a
weaker access privilege.

Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from deriving a class from one of your classes.
Classes that cannot be extended are called final classes, and you use the final modifier in
the definition of the class to indicate this. For example, let us suppose we want to prevent
others from subclassing the Executive class. Then, we simply declare the class using the
final modifier as follows:

206

Core Java™ 2: Volume I-Fundamentals

final class Executive extends Manager

{
}

You can also make a specific method in a class final. If you do this, then no subclass can
override that method. (All methods in a final class are automatically final.) For example,

class Employee

{

public final String getName ()

{
}

return name;

NOTE

Recall that fields can also be declared as final. A final field cannot be
changed after the object has been constructed. However, if a class is
declared as final, only the methods, not the fields, are automatically
final.

You will want to make a class or method final for one of two reasons:

1.

Efficiency

Dynamic binding has more overhead than static binding—thus, programs with
dynamic calls run slower. More importantly, the compiler cannot replace a trivial
method with inline code because it is possible that a subclass would override that
trivial code. The compiler can put final methods inline. For example, if
e.getName () 1s final, the compiler can replace it with e.name.

CPUs hate procedure calls because procedure calls interfere with their strategy of
getting and decoding the next instructions while processing the current one. Replacing
calls to trivial procedures with inline code is a big win. Naturally, this is an issue for
a compiler, not for a bytecode interpreter.

Safety

The flexibility of the dynamic dispatch mechanism means that you have no control
over what happens when you call a method. When you send a message, such as
e.getName (), it is possible that e is an object of a subclass that redefined the getName
method to return an entirely different string. By making the method fina1, you avoid
this possible ambiguity.

For example, the string class is a final class. That means, nobody can define a subclass of
String, and the compiler and virtual machine can optimize calls to string methods.

207

Core Java™ 2: Volume I-Fundamentals

C++NOTE

F o [In C++, a method is not dynamically bound by default, and you can tag it
as inline to have method calls replaced with the method source code.
However, there is no mechanism that would prevent a subclass from

- overriding a superclass method. In C++, it is possible to write classes
from which no other class can derive, but it requires an obscure trick, and
there are few reasons to do so. (The obscure trick is left as an exercise to
the reader. Hint: Use a virtual base class.)

Casting

Recall from Chapter 3 that the process of forcing a conversion from one type to another is
called casting. The Java programming language has a special notation for casts. For example:

double x = 3.405;
int nx = (int)x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer, you also need
to convert an object reference from one class to another. To actually make a cast of an object
reference, you use a syntax similar to what you use for casting a numeric expression.
Surround the target class name with parentheses and place it before the object reference you
want to cast. For example:

Manager boss = (Manager)staff[0];

There is only one reason why you would want to make a cast—to use an object in its full
capacity after its actual type has been temporarily forgotten. For example, in the Manager
class, the staff array had to be an array of Employee objects since some of its entries were
regular employees. We would need to cast the managerial elements of the array back to
Manager to access any of its new variables. (Note that in the sample code for the first section,
we made a special effort to avoid the cast. We initialized the boss variable with a Manager
object before storing it in the array. We needed the correct type to set the bonus of the
manager.)

As you know, in Java, every object variable has a type. The type describes the kind of object
the variable refers to and what it can do. For example, staff[i] refers to an Employee object
(so it can also refer to a Manager object).

You rely on these descriptions in your code, and the compiler checks that you do not promise
too much when you describe a variable. If you assign a subclass object to a superclass
variable, you are promising less, and the compiler will simply let you do it. If you assign a
superclass object to a subclass variable, you are promising more, and you must confirm that
you mean what you say to the compiler with the (subclass) cast notation.

What happens if you try to cast down an inheritance chain and you are “lying” about what an
object contains?

208

Core Java™ 2: Volume I-Fundamentals

Manager boss = (Manager)staff[l]; // ERROR

When the program runs, the Java runtime system notices the broken promise, and generates
an exception. If you do not catch the exception, your program terminates. Thus, it is good
programming practice to find out whether a cast will succeed before attempting it. Simply use
the instanceof operator. For example:

if (staff[l] instanceof Manager)

{
boss = (Manager)staffl[l];

Finally, the compiler will not let you make a cast if there is no chance for the cast to succeed.
For example, the cast

Date ¢ = (Date)staff[l];
is a compile-time error because Date is not a subclass of Employee.
To sum up:

e You can cast only within an inheritance hierarchy.
e Use instanceof to check before casting from a superclass to a subclass.

NOTE

The test

X instanceof C

does not generate an exception if x is null. It simply returns false. That
makes sense. Since null refers to no object, it certainly doesn't refer to
an object of type c.

Actually, converting the type of an object by performing a cast is not usually a good idea. In
our example, you do not need to cast an Employee object to a Manager object for most
purposes. The getsalary method will work correctly on both types because the dynamic
binding that makes polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to managers, such as
setBonus. If you for some reason find yourself wanting to call setBonus on Employee
objects, ask yourself whether this is an indication of a design flaw in the superclass. It may
make sense to redesign the superclass and add a setBonus method. Remember, it takes only
one bad cast to terminate your program. In general, it is best to minimize the use of casts and
the instanceof operator.

Casts are commonly used with generic containers such as the arrayList class, which will be
introduced later in this chapter. When retrieving a value from a container, its type is known

209

Core Java™ 2: Volume I-Fundamentals

only as the generic type object, and you must use a cast to cast it back to the type of the
object that you inserted into the container.

C++NOTE

F o [Java uses the cast syntax from the “bad old days” of C, but it works like
the safe dynamic_cast operation of C++. For example,

Manager boss = (Manager)staff([l]; // Java

is the same as

Manager* boss = dynamic cast<Manager*>(staff[l]); // C++

with one important difference. If the cast fails, it does not yield a null
object, but throws an exception. In this sense, it is like a C++ cast of
references. This is a pain in the neck. In C++, you can take care of the
type test and type conversion in one operation.

Manager* boss = dynamic cast<Manager*>(staff[l]); // C++
if (boss != NULL)

In Java, you use a combination of the instanceof operator and a cast.

if (staff[l] instanceof Manager)
{

Manager boss = (Manager)staff[l];

Abstract Classes

As you move up the inheritance hierarchy, classes become more general and probably more
abstract. At some point, the ancestor class becomes so general that you think of it more as
a basis for other classes than as a class with specific instances you want to use. Consider, for
example, an extension of our Employee class hierarchy. An employee is a person, and so is
a student. Let us extend our class hierarchy to include classes Person and Student.
Figure 5-2 shows the inheritance relationships between these classes.

210

Core Java™ 2: Volume I-Fundamentals

Figure 5-2. Inheritance diagram for Person and its subclasses

Person

Employee Student

Why bother with so high a level of abstraction? There are some attributes that make sense for
every person, such as the name. Both students and employees have names, and introducing
a common superclass lets us factor out the getName method to a higher level in the
inheritance hierarchy.

Now let's add another method, getbDescription, whose purpose is to return a brief
description of the person, such as:

an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and student classes. But what
information can you provide in the person class? The person class knows nothing about
the person except for the name. Of course, you could implement Person.getDescription ()
to return an empty string. But there is a better way. If you use the abstract keyword, you do
not need to implement the method at all.

public abstract String getDescription();
// no implementation required

For added clarity, a class with one or more abstract methods must itself be declared abstract.

abstract class Person

{ . ..
public abstract String getDescription();

}

211

Core Java™ 2: Volume I-Fundamentals

In addition to abstract methods, abstract classes can have concrete data and methods. For
example, the Person class stores the name of the person and has a concrete method that
returns it.

abstract class Person

{

public Person(String n)

{
name = n;

}
public abstract String getDescription();

public String getName ()
{

return name;

}

private String name;

TIP

Many programmers think that abstract classes should have only abstract
/ methods. However, this is not true. It always makes sense to move as
\..f much functionality as possible into a superclass, whether or not it is
abstract. In particular, move common fields and nonabstract methods to

the abstract superclass.

Abstract methods act as placeholder methods that are implemented in the subclasses. When
you extend an abstract class, you have two choices. You can leave some or all of the abstract
methods undefined. Then you must tag the subclass as abstract as well. Or you can define all
methods. Then the subclass is no longer abstract.

For example, we will define a student class that extends the abstract person class and
implements the getbescription method. Because none of the methods of the student class
are abstract, it does not need to be declared as an abstract class.

A class can even be declared as abstract even though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no objects
of that class can be created. For example, the expression

new Person ("Vince Vvu")
is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable must
refer to an object of a nonabstract subclass. For example,

Person p = new Student ("Vince Vu", "Economics");

212

Core Java™ 2: Volume I-Fundamentals

Here p is a variable of the abstract type Person that refers to an instance of the nonabstract
subclass student.

C++ NOTE

r'

In C++, an abstract method is called a pure virtual function and is tagged
with a trailing = 0 , such as in

class Person // C++

{
public:
virtual string getDescription() = 0;

}i

A C++ class is abstract if it has at least one pure virtual function. In C++,
there is no special keyword to denote abstract classes.

Let us define a concrete subclass student that extends the abstract Person class:

class Student extends Person

{
public Student (String n, String m)

{
super (n) ;
major = m;

}

public String getDescription ()
{

return "a student majoring in " + major;

}

private String major;

The student class defines the getDescription method. Therefore, all methods in the
student class are concrete, and the class is no longer an abstract class.

The program shown in Example 5-2 defines the abstract superclass person and two concrete
subclasses Employee and student. We fill an array of person references with employee and
student objects.

Person[] people = new Personl[2];
people[0] = new Employee(. . .);
people[l] = new Student(. . .);

We then print the names and descriptions of these objects:

for (int i = 0; i < people.length; i++)
{
Person p = peoplelil;
System.out.println(p.getName() + ", " + p.getDescription());

213

Core Java™ 2: Volume I-Fundamentals

Some people are baffled by the call:

p.getDescription ()

Isn't this a call an undefined method? Keep in mind that the variable p never refers to a
Person object since it is impossible to construct a Person object. The variable p always refers
to an object of a concrete subclass such as Employee or student. For these objects, the
getDescription method is defined.

Could you have omitted the abstract method altogether from the person superclass and
simply defined the getDescription methods in the Employee and student subclasses? Then
you wouldn't have been able to invoke the getbDescription method on the variable p. The
compiler ensures that you only invoke methods that are declared in the class.

Abstract methods are an important concept in the Java programming language. You will
encounter them most commonly inside interfaces. For more information about interfaces,
please turn to Chapter 6.

Example 5-2 PersonTest.java

1. import java.text.*;

2.

3. public class PersonTest

4.

5. public static void main (String[] args)

6. {

7. Person[] people = new Personl[2];

8.

9. // fill the people array with Student and Employee objects
10. people[0]
11. = new Employee ("Harry Hacker", 50000);
12. people[1l]
13. = new Student ("Maria Morris", "computer science");
14.
15. // print out names and descriptions of all Person objects
16. for (int 1 = 0; i < people.length; i++)
17. {
18. Person p = people[il];
19. System.out.println(p.getName() + ", "
20. + p.getDescription());
21. }
22. }
23. }
24,
25. abstract class Person
26. |
27. public Person(String n)
28. {
29. name = nj;
30 }
31
32. public abstract String getDescription();
33.
34 public String getName ()
35 {
36 return name;
37 }

214

Core Java™ 2: Volume I-Fundamentals

38.

39. private String name;

40. }

41.

42. class Employee extends Person

43. {

44. public Employee (String n, double s)

45, {

46. // pass name to superclass constructor
47 . super (n) ;

48. salary = s;

49, }

50.

51. public double getSalary()

52. {

53. return salary;

54. }

55.

56. public String getDescription ()

57. {

58. NumberFormat formatter

59. = NumberFormat.getCurrencyInstance()
60. return "an employee with a salary of "
ol. + formatter.format (salary);

62. }

63.

64. public void raiseSalary(double byPercent)
65. {

66. double raise = salary * byPercent / 100;
67. salary += raise;

68. }

69.

70. private double salary;

71. }

72.

73. class Student extends Person

74. |

75. /*x*

76. @param n the student's name

77. @param m the student's major

78. */

79. public Student (String n, String m)

80. {

81. // pass n to superclass constructor
82. super (n) ;

83. major = m;

84. }

85.

86. public String getDescription ()

87. {

88. return "a student majoring in " + major;
89. }

90.

91. private String major;

92. 1}

Protected Access

As you know, fields in a class are best tagged as private, and methods are usually tagged as
public. Any features declared private won't be visible to other classes. As we said at the

215

Core Java™ 2: Volume I-Fundamentals

beginning of this chapter, this is also true for subclasses: a subclass cannot access the private
fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only, or, less
commonly, to allow subclass methods to access a superclass field. In that case, you declare a
class feature as protected. For example, if the superclass Employee declares the hirebay
field as protected instead of private, then the Manager methods can access it directly.

However, the Manager class methods can only peek inside the hirepay field of Manager
objects, not of other Employee objects. This restriction is made so that you can't abuse the
protected mechanism and form subclasses just to gain access to the protected fields.

In practice, use the protected attribute with caution. Suppose your class is used by other
programmers and you designed it with protected fields. Unbeknownst to you, other
programmers may inherit classes from your class and then start accessing your protected
fields. In this case, you can no longer change the implementation of your class without
upsetting the other programmers. That is against the spirit of OOP, which encourages data
encapsulation.

Protected methods make more sense. A class may declare a method as protected if it is
tricky to use. This indicates that the subclasses (which, presumably, know their ancestors
well) can be trusted to use the method correctly, but other classes cannot.

A good example of this kind of method is the clone method of the object class—see
Chapter 6 for more details.

C++ NOTE

" o [As it happens, protected features in Java are visible to all subclasses as
well as all other classes in the same package. This is slightly different
from the C++ meaning of protected, and it makes the notion of
protected in Java even less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

Visible to the class only (private).

Visible to the world (public).

Visible to the package and all subclasses (protected).

Visible to the package—the (unfortunate) default. No modifiers are needed.

b=

object: The Cosmic Superclass

The object class is the ultimate ancestor—every class in Java extends object. However, you
never have to write:

class Employee extends Object

216

Core Java™ 2: Volume I-Fundamentals

The ultimate superclass object is taken for granted if no superclass is explicitly mentioned.
Because every class in Java extends object, it is important to be familiar with the services
provided by the object class. We will go over the basic ones in this chapter and refer you to
later chapters or to the on-line documentation for what is not covered here. (Several methods
of 0bject come up only when dealing with threads—see Volume 2 for more on threads.)

You can use a variable of type object to refer to objects of any type:

Object obj = new Employee ("Harry Hacker", 35000);

Of course, a variable of type object is only useful as a generic holder for arbitrary values. To
do anything specific with the value, you need to have some knowledge about the original type
and then apply a cast:

Employee e = (Employee)obij;
C++ NOTE

F

In C++, there is no cosmic root class. Of course, in C++, every pointer
can be converted to a void* pointer. Java programmers often use object
references for generic programming, to implement data structures and
algorithms that support a variety of data types. In C++, templates are
commonly used for generic programming. But Java has no templates, so
Java programmers often have to give up compile-time typing and make
do with code that manipulates object references.

The equals and tostring methods

The equals method in the object class tests whether or not one object is equal to another.
The equals method, as implemented in the object class, determines whether or not two
objects point to the same area of memory. This is not a useful test. If you want to test objects
for equality, you will need to override equals for a more meaningful comparison. For
example,

class Employee

{ 7/
public boolean equals (Object otherObject)

{
// a quick test to see if the objects are identical
if (this == otherObject) return true;

// must return false if the explicit parameter is null
if (otherObject == null) return false;

// 1f the classes don't match, they can't be equal
if (getClass () != otherObject.getClass())

return false;

// now we know otherObject is a non-null Employee
Employee other = (Employee)otherObject;

217

Core Java™ 2: Volume I-Fundamentals

// test whether the fields have identical values
return name.equals (other.name)

&& salary == other.salary
&& hireDay.equals (other.hireDay) ;

The getclass method returns the class of an object—we will discuss this method in detail
later in this chapter. For two objects to be equal, they must first be objects of the same class.

NOTE

How should the equals method behave if the implicit and explicit
parameters don't belong to the same class? Unfortunately, different
programmers take different actions in this case. We recommend that
equals should return false if the classes don't match exactly. But many
programmers use a test:

if (! (otherObject instanceof Employee)) return false;

This leaves open the possibility that otherobject can belong to a
subclass. Other programmers use no test at all. Then the equals method
throws an exception if otherObject cannot be cast to an Employee
object. Technically speaking, both of these approaches are wrong. Here
is why. The Java Language Specification requires that the equals
method has the following properties:

1. It is reflexive: for any non-null reference x, x.equals (x) should
return true.

2. It is symmetric: for any references x and vy, x.equals (y) should
return true if and only if y.equals (x) returns true.

3. It is tranmsitive: for any references x, y, and z, if x.equals(y)
returns true and y.equals (z) returns true, then x.equals (z)
should return true.

4. It is consistent: If the objects to which x and y refer haven't
changed, then repeated calls to x.equals(y) return the same
value.

5. For any non-null reference x, x.equals(null) should return
false.

Rule 5 mandates that you include the test
if (otherObject == null) return false;

in your equals method. What is less obvious is that Rule 2 requires you
to test for class equality. Consider a call

e.equals (m)

where e is an Employee object and m is a Manager object, both of which
happen to have the same name, salary, and hire date. If you don't check

218

Core Java™ 2: Volume I-Fundamentals

that the class of m is the same as the class of e, this call returns true. But
that means that the reverse call

m.equals (e)

also needs to return true—Rule 2 does not allow it to return false, or to
throw an exception.

Unfortunately, the Java Language Specification does a poor job of
explaining this consequence, and the majority of programmers seem to
be unaware of it. The standard Java library contains over 150
implementations of equals methods, with a mishmash of using
instanceof, caHjng getClass, Cauﬁﬁng a ClassCastException, Or
doing nothing at all. Only a tiny minority of implementations fulfills
Rule 2. You can do better, by following our recipe for the perfect equals
method.

Here is a recipe for writing the perfect equals method:

1.

2.

Call the explicit parameter otherobject—Iater, you need to cast it to another variable
that you should call other.
Test whether this happens to be identical to otherObject:

if (this == otherObject) return true;

This is just an optimization. In practice, this is a common case. It is much cheaper to
check for identity than to compare the fields.

Test whether otherObject is null and return false if it is. This test is required.
if (otherObject == null) return false;

Test whether this and otherobject belong to the same class. This test is required by
the “symmetry rule”.

if (getClass() != otherObject.getClass()) return false;
Cast otherObject to a variable of your class type:

ClassName other = (ClassName)otherObject

Now compare all fields. Use == for primitive type fields, equals for object fields.
Return true if all fields match, false otherwise.

return fieldl == other.fieldl
&& field2.equals (other.field?2)
&& . .)

In a subclass, first call equals on the superclass. If that test doesn't pass, then the objects can't
be equal. If it does, then you are ready to compare the instance fields of the subclass.

219

Core Java™ 2: Volume I-Fundamentals

class Manager extends Employee

{

public boolean equals (Object otherObject)

{

if (!super.equals (otherObject)) return false;
Manager other = (Manager)otherObject;

// super.equals checked that this and otherObject
// belong to the same class

return bonus == other.bonus;

Another important method in object is the tostring method that returns a string that
represents the value of this object. Almost any class will override this method to give you a
printed representation of the object's current state. Here is a typical example. The tostring
method of the Point class returns a string like this:

java.awt.Point [x=10,y=20]

Most (but not all) tostring methods follow this format: the name of the class, followed by
the field values enclosed in square brackets. Here is an implementation of the tostring
method for the Employee class:

public String toString()

{

return "Employee[name=" + name

+ ",salary=" + salary
+ ",hireDay=" + hireDay
+ "]"’.

Actually, you can do a little better. Rather than hardwiring the class name into the toString

method, call getClass () .getName () to obtain a string with the class name.

public String toString()

{

return getClass () .getName ()

+ " [name=" + name

+ ",salary=" + salary

+ ",hireDay=" + hireDay
+

H]H.
’

Then the tostring method also works for subclasses.

Of course, the subclass programmer should define its own tostring method and add
the subclass fields. If the superclass uses getClass () .getName (), then the subclass can
simply call super.tostring(). For example, here is a toString method for the Manager

class:

220

Core Java™ 2: Volume I-Fundamentals

class Manager extends Employee

{

public String toString/()
{
return super.toString/()
+ "[bonus=" + bonus
+ "]";

Now a Manager object is printed as:

Manager [name=...,salary=...,hireDay=...] [bonus=...]

The tostring method is ubiquitous for an important reason: whenever an object is
concatenated with a string, using the “+” operator, the Java compiler automatically invokes
the tostring method to obtain a string representation of the object. For example,

Point p = new Point (10, 20);
String message = "The current position is " + p;
// automatically invokes p.toString()

TIP

Instead of writing x.toString(), you can write "" + x. This
/ concatenates the empty string with the string representation of x that is

\j exactly x.toString ().

If x is any object and you call
System.out.println (x);
then the print1n method simply calls x.tosString () and prints the resulting string.

The object class defines the tostring method to print the class name and the memory
location of the object. For example, the call

System.out.println (System.out)

produces an output that looks like this:

java.io.PrintStream@2£f6684

The reason is that the implementor of the Printstream class didn't bother to override the
toString method.

The tostring method is a great debugging tool. Many classes in the standard class library
define the tostring method so that you can get useful debugging information. Some

221

Core Java™ 2: Volume I-Fundamentals

debuggers let you invoke the tostring method to display objects. And you can always insert
trace messages like this:

System.out.println ("Current position = " + position);

TIP

Yy

We strongly recommend that you add a tostring method to each class
that you write. You, as well as other programmers who use your classes,
will be grateful for the debugging support.

The program in Example 5-3 implements the equals and tostring methods for the
Employee and Manager classes.

Example 5-3 EqualsTest.java

9.
10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

1
2
3
4.
5.
6
7
8

import java.util.*;

public class EqualsTest

{

public static void

{

Employee alicel

1987, 12, 15);

Employee alice?2
Employee alice3
1987, 12, 15)

main (String|[]

’

new Employee ("Alice Adams", 75000,

= alicel;
= new Employee ("Alice Adams", 75000,

’

Employee bob = new Employee ("Bob Brandson", 50000,

1989, 10, 1);

System.out.println("alicel == alice2:

+ (alicel ==

System.out.println("alicel == alice3:

alice?));

+ (alicel == alice3));

System.out.println("alicel.equals(alice3):
+ alicel.equals(alice3d));

System.out.println("alicel.equals (bob) :

+ alicel.equals (bob));

System.out.println ("bob.toString() :

Manager carl =
1987, 12, 15)

Manager boss =
1987, 12, 15)

’

’

boss.setBonus (5000) ;

System.out.println ("boss.toString() :
System.out.println("carl.equals (boss):

+ carl.equals(boss));

1]

"w

"w

"w

" + bob);
new Manager ("Carl Cracker", 80000,

new Manager ("Carl Cracker", 80000,

" + boss);

"

222

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

Core Java™ 2: Volume I-Fundamentals

class Employee

{

public Employee (String n, double s,

{

}

int year, int month, int day)

name = n;
salary = s;
GregorianCalendar calendar

= new GregorianCalendar (year, month - 1, day);
hireDay = calendar.getTime() ;

public String getName ()

{

}

return name;

public double getSalary()

{

}

return salary;

public Date getHireDay ()

{

}

return hireDay;

public void raiseSalary(double byPercent)

{

}

double raise = salary * byPercent / 100;
salary += raise;

public boolean equals (Object otherObject)

{

// a quick test to see if the objects are identical
if (this == otherObject) return true;

// must return false if the explicit parameter is null
if (otherObject == null) return false;

// 1f the classes don't match, they can't be equal
if (getClass () != otherObject.getClass())
return false;

// now we know otherObject is a non-null Employee
Employee other = (Employee)otherObject;

// test whether the fields have identical values
return name.equals (other.name)

&& salary == other.salary

&& hireDay.equals (other.hireDay) ;

223

94.

95.

96.

97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
1009.
110.
111.
112.
113.
114.
115.
1le6.
117.
118.
1109.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.

}

Core Java™ 2: Volume I-Fundamentals

public String toString()
{
return getClass () .getName ()

+ " [name=" + name
+ ",salary=" + salary
+ ",hireDay=" + hireDay
+ "]";

}

private String name;

private double salary;
private Date hireDay;

class Manager extends Employee

{

public Manager (String n, double s,
int year, int month, int day)

{
super (n, s, year, month, day);
bonus = 0;

}

public double getSalary()

{
double baseSalary = super.getSalary();
return baseSalary + bonus;

}

public void setBonus (double b)
{
bonus = b;

}

public boolean equals (Object otherObject)
{
if (!super.equals (otherObject)) return false;
Manager other = (Manager)otherObject;
// super.equals checked that this and other belong to the
// same class
return bonus == other.bonus;

}

public String toString()
{
return super.toString()
+ "[bonus=" + bonus
+ "]";

}

private double bonus;

Generic Programming

All values of any class type can be held in variables of type object. In particular, string
values are objects:

Object obj = "Hello"; // OK

224

Core Java™ 2: Volume I-Fundamentals

However, numbers, characters, and boolean values are not objects.

obj = 5; // ERROR
obj = false; // ERROR

You will see later in this chapter how you can turn these types into objects by using wrapper
classes such as Integer and Boolean.

Furthermore, all array types, no matter whether they are arrays of objects or arrays of
primitive types, are class types that derive from object.

Employee[] staff = new Employee[l1l0];
Object arr = staff; // OK
arr = new int[10]; // OK

An array of objects of class type can be converted to an array of objects. For example, an
Employee [] array can be passed to a method that expects an object [] array. That conversion
is useful for generic programming.

Here is a simple example that illustrates the concept of generic programming. Suppose you
want to find the index of an element in an array. This is a generic situation, and by writing the
code for objects, you can reuse it for employees, dates, or whatever.

static int find(Object[] a, Object key)
{
int 1i;
for (i = 0; i < a.length; i++)
if (al[i].equals(key)) return i;
return -1; // not found

For example,

Employee[] staff = new Employee[l1l0];
Employee harry;

int n = find(staff, harry);

Note that you can only convert an array of objects into an oObject[] array. You cannot
convert an int[] array into an Object[] array. (However, as previously pointed out, both
arrays can be converted to Object.)

If you convert an array of objects to an Object [] array, the generic array still remembers its
original type at run time. You cannot store a foreign object into the array.

Employee[] staff = new Employee[l1l0];
// fill with Employee objects
Object[] arr = staff;

arr[0] = new Date();
// not legal, but suppose it was
for (1 = 0; i < n; i++) staffli].raiseSalary(3);

// ouch, now the date gets a raise!

225

Core Java™ 2: Volume I-Fundamentals

Of course, this must be checked at run time. The code above compiles without error—it is
legal to store a pate value in arr[0], which has type object. But when the code executes,
the array remembers its original type and monitors the type of all objects that are stored in it.
If you store an incompatible type into an array, an exception is thrown.

C++NOTE

¥ aa [CHt programmers may be surprised that the cast from Employee[] to
object[] is legal. Even if object was a superclass of Employee in C++,
the equivalent cast from Employee** to Object** would not be legal.
(Of course, the cast from Employee* to Object* is legal in C++.)

There is a security reason behind this restriction. If the cast “subclass**
? Superclass**” were permitted, you could corrupt the contents of an
array. Consider this code:

Employee** staff; // C++
Object** arr = staff;
// not legal, but suppose it was

arr[0] = new Date();
// legal, Date also inherits from Object
for (1 = 0; i < n; i++) staff[i]->raiseSalary(3);

// ouch, now the date gets a raise!
In Java, this problem is averted by remembering the original type of all

arrays and by monitoring all array stores for type compatibility at run
time.

java.lang.Object

e C(Class getClass()
returns a class object that contains information about the object. As you will see later
in this chapter, Java has a runtime representation for classes that is encapsulated in the
class class that you can often use to your advantage.

e Dboolean equals (Object otherObject)

compares two objects for equality; returns true if the objects point to the same area of
memory, and false otherwise. You should override this method in your own classes.

e Object clone()

creates a clone of the object. The Java runtime system allocates memory for the new
instance and copies the memory allocated for the current object.

226

Core Java™ 2: Volume I-Fundamentals

NOTE

Cloning an object is important, but it also turns out to be a fairly subtle
process filled with potential pitfalls for the unwary. We will have a lot
more to say about the c1one method in Chapter 6.

e String toString()

returns a string that represents the value of this object. You should override this
method in your own classes.

java.lang.Class

e String getName ()
returns the name of this class.
e (Class getSuperclass/()
returns the superclass of this class as a c1ass object.
Array Lists

In many programming languages—in particular in C—you have to fix the sizes of all arrays at
compile time. Programmers hate this because it forces them into uncomfortable trade-offs.
How many employees will be in a department? Surely no more than 100. What if there is a
humongous department with 150 employees? Do we want to waste 90 entries for every
department with just 10 employees?

In Java, the situation is much better. You can set the size of an array at run time.

int actualSize = . . .;
Employee[] staff = new EmployeelactualSize];

Of course, this code does not completely solve the problem of dynamically modifying arrays
at run time. Once you set the array size, you cannot change it easily. Instead, the easiest way
in Java to deal with this common situation is to use another Java class that works much like an
array that will shrink and grow automatically. This class is called ArrayrList. Thus, in Java,
array lists are arraylike objects that can grow and shrink automatically without you needing to
write any code.

227

Core Java™ 2: Volume I-Fundamentals

NOTE

In older versions of the Java programming language, programmers used
the vector class for automatically resizing arrays. However, the
ArrayList class is more efficient, and you should generally use it
instead of vectors. See Chapter 2 of Volume 2 for more information
about vectors.

There is an important difference between an array and an array list. Arrays are a feature of the
Java language, and there is an array type T[] for each element type T. However, the
ArrayList class is a library class, defined in the java.util package. This is a single “one
size fits all” type which holds elements of type object. In particular, you will need a cast
whenever you want to take an item out of an array list.

Use the add method to add new elements to an array list. For example, here is how you create
an array list and populate it with employee objects:

ArrayList staff = new ArrayList();
staff.add(new Employee(. . .));
staff.add(new Employee(. . .));

The arrayList class manages an internal array of object references. Eventually, that array
will run out of space. This is where array lists work their magic: If you call add and the
internal array is full, the array list automatically creates a bigger array, and automatically
copies all the objects from the smaller to the bigger array.

If you already know, or have a good guess, how many elements you want to store, then call
the ensurecCapacity method before filling the array list:

staff.ensureCapacity (100);

That call allocates an internal array of 100 objects. Then you can keep calling add, and no
costly relocation takes place.

You can also pass an initial capacity to the ArrayList constructor:

ArrayList staff = new ArrayList(100);

CAUTION

Allocating an array list as

new ArrayList (100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list
and the size of an array. If you allocate an array with 100 entries, then

228

Core Java™ 2: Volume I-Fundamentals

the array has 100 slots, ready for use. An array list with a capacity of 100
elements has the potential of holding 100 elements (and, in fact, more
than 100, at the cost of additional relocations), but at the beginning, even
after its initial construction, an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For example,
staff.size()

returns the current number of elements in the staff array list. This is the equivalent of

a.length
for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can call the
trimToSize method. This method adjusts the size of the memory block to use exactly as
much storage space as is required to hold the current number of elements. The garbage
collector will reclaim any excess memory.

NOTE
Once you trim the size of an array list, adding new elements will move
the block again, which takes time. You should only use trimTosize
when you are sure you won't add any more elements to the array list.
C++ NOTE

r -

The arrayList class differs in a number of important ways from the
C++ vector template. Most noticeably, since vector is a template, only
elements of the correct type can be inserted, and no casting is required to
retrieve elements from the vector. For example, the compiler will simply
refuse to insert a bate object into a vector<Employee>. The C++ vector
template overloads the [] operator for convenient element access. Since
Java does not have operator overloading, it must use explicit method calls
instead. C++ vectors are copied by value. If a and b are two vectors, then
the assignment a = b; makes a into a new vector with the same length as
b, and all elements are copied from b to a. The same assignment in Java
makes both a and b refer to the same array list.

229

Core Java™ 2: Volume I-Fundamentals

java.util .Arraylist

e ArrayList()
constructs an empty array list.
e ArrayList(int initialCapacity)
constructs an empty array list with the specified capacity.
Parameters: |initialCapacity the initial storage capacity of the array list
e Dboolean add(Object obj)
appends an element at the end of the array list. Always returns true.
Parameters obj the element to be added
e int size()

returns the number of elements currently stored in the array list. (This is different
from, and, of course, never larger than, the array list's capacity.)

e void ensureCapacity(int capacity)

ensures that the array list has the capacity to store the given number of elements
without relocating its internal storage array.

Parameters: capacity the desired storage capacity

e void trimToSize ()
reduces the storage capacity of the array list to its current size.
Accessing array list elements
Unfortunately, nothing comes for free; the automatic growth convenience that array lists give
requires a more complicated syntax for accessing the elements. The reason is that
the ArrayList class is not a part of the Java language; it is just a utility class programmed by

someone and supplied in the standard library.

Instead of using the pleasant [] syntax to access or change the element of an array, you must
use the get and set methods.

For example, to set the ith element, you use:

230

Core Java™ 2: Volume I-Fundamentals

staff.set (i, harry);
This is equivalent to
ali] = harry;

for an array a.

Getting an array list element is more complex because the return type of the get method is

object. You need to cast it to the desired type:

Employee e = (Employee)staff.get(i);
This is equivalent to, but much more cumbersome than,
Employee e = al[i];

NOTE

Array lists, like arrays, are zero-based.

TIP

You can sometimes get the best of both worlds—flexible growth and
convenient element access—with the following trick. First, make an
array list and add all the elements.

ArrayList list = new ArrayList();
while (. . .)
{

X = . . .;
list.add(x);

When you are done, use the toarray method to copy the elements into
an array.

X[] a = new X[list.size()];
list.toArray(a);

231

Core Java™ 2: Volume I-Fundamentals

CAUTION

Do not call 1ist.set (i, x) until the size of the array list is larger than
i. For example, the following code is wrong:

ArrayList list = new ArrayList (100);//capacity 100, size 0
list.set (0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only
to replace a previously added element.

Array lists are inherently somewhat unsafe. It is possible to accidentally add an element of the
wrong type to an array list.

Date birthday = . . .;
staff.set (i, birthday);

The compiler won't complain. It is perfectly willing to convert a bate to an object, but when
the accidental date is later retrieved out of the array list, it will probably be cast into an
Employee. This is an invalid cast that will cause the program to abort. That is a problem! The
problem arises because array lists store values of type object. Had staff been an array of
Employee references, then the compiler would not have allowed a calendar inside it.

Employee[] a = new Employee[100];
al[i] = calendar; // ERROR

On very rare occasions, array lists are useful for heterogeneous collections. Objects of
completely unrelated classes are added on purpose. When an entry is retrieved, the type of
every retrieved object must be tested, as in the following code:

ArrayList list;
list.add (new Employee(. . .));
list.add(new Date (. . .));

Object obj = list.get(n);
if (obj instanceof Employee)
{
Employee e = (Employee)obj;

However, this is generally considered a poor way to write code. It is not a good idea to throw
away type information and laboriously try to retrieve it later.

java.util .Arraylist

e void set(int index, Object obj)

232

Core Java™ 2: Volume I-Fundamentals

puts a value in the array list at the specified index, overwriting the previous contents.

Parameters: index the position (must be between 0 and size () - 1)
obj the new value

e Object get (int index)
gets the value stored at a specified index.
Parameters: |index |the index of the element to get (must be between 0 and size () - 1)
Inserting and removing elements in the middle of an array list

Instead of appending elements at the end of an array list, you can also insert them in the
middle.

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new entry. If the
new size of the array list after the insertion exceeds the capacity, then the array list reallocates
its storage array.

Similarly, you can remove an element from the middle of an array list.

Employee e = (Employee)staff.remove (n);
The elements located above it are copied down, and the size of the array is reduced by one.

Inserting and removing elements is not terribly efficient. It is probably not worth worrying
about for small array lists. But if you store many elements and frequently insert and remove in
the middle of the sequence, consider using a linked list instead. We will explain how to
program with linked lists in Volume 2.

Example 5-4 is a modification of the EmployeeTest program of Chapter 4. The Employee|]
array is replaced by an ArrayList. Note the following changes:

e You don't have to specify the array size.

e Youuse add to add as many elements as you like.

e Youuse size () instead of length to count the number of elements.
e Youuse (Employee)a.get (i) instead of a[i] to access an element.

233

Core Java™ 2: Volume I-Fundamentals

Example 5-4 ArrayListTest.java

1. import java.util.*;

2.

3. public class ArrayListTest

4. |

5. public static void main(String[] args)

6. {

7. // fill the staff array list with three Employee objects
8. ArrayList staff = new ArrayList();

9.

10. staff.add (new Employee ("Carl Cracker", 75000,
11. 1987, 12, 15));

12. staff.add(new Employee ("Harry Hacker", 50000,
13. 1989, 10, 1));

14. staff.add(new Employee ("Tony Tester", 40000,
15. 1990, 3, 15));

16.

17. // raise everyone's salary by 5%

18. for (int i = 0; 1 < staff.size(); i++)

19. {
20. Employee e = (Employee)staff.get(i);
21. e.raiseSalary(5);
22. }
23.
24. // print out information about all Employee objects
25. for (int 1 = 0; 1 < staff.size(); 1i++)
26. {
27. Employee e = (Employee)staff.get(i);
28. System.out.println ("name=" + e.getName ()
29. + ",salary=" + e.getSalary()

30. + ",hireDay=" + e.getHireDay());

31. }

32. }

33. }

34.

35. class Employee

36. {

37. public Employee(String n, double s,

38. int year, int month, int day)

39. {

40. name = nj;

41. salary = s;

42. GregorianCalendar calendar

43. = new GregorianCalendar (year, month - 1, day);
44 // GregorianCalendar uses 0 for January
45, hireDay = calendar.getTime () ;

46. }

47.

48. public String getName ()

49. {

50. return name;

51. }

52.

53. public double getSalary ()

54. {

55. return salary;

56. }

57.

234

Core Java™ 2: Volume I-Fundamentals

58. public Date getHireDay ()

59. {

60. return hireDay;

61. }

62.

63. public void raiseSalary(double byPercent)
64. {

65. double raise = salary * byPercent / 100;
66. salary += raise;

67. }

68.

69. private String name;

70. private double salary;

71. private Date hireDay;

72}

java.util.Arraylist

e void add(int index, Object obj)
shifts up elements to insert an element.

Parameters: |index the insertion position (must be between 0 and size ())
obj the new element

e void remove (int index)
removes an element and shifts down all elements above it.

Parameters: index|the position of the element to be removed (must be between 0 and
size() - 1)

Object Wrappers

Occasionally, you need to convert a basic type like int to an object. All basic types have class
counterparts. For example, there is a class Integer corresponding to the basic type int.
These kinds of classes are usually called object wrappers. The wrapper classes have obvious
names: Integer, Long, Float, Double, Short, Byte, Character, Void, and Boolean.
(The first six inherit from the common wrapper Number.) The wrapper classes are final.

(So you can't override the tostring method in Integer to display numbers using Roman
numerals, sorry.) You also cannot change the values you store in the object wrapper.

Suppose we want an array list of floating-point numbers. As mentioned previously, simply
adding numbers won't work.

ArraylList list = new ArrayList();
list.add(3.14); // ERROR

235

Core Java™ 2: Volume I-Fundamentals

The floating-point number 3.14 is not an object. Here, the Double wrapper class comes in.
An instance of Double is an object that wraps the double type.

list.add (new Double (3.14));

Of course, to retrieve a number from an array list of Double objects, we need to extract the
actual value from the wrapper by using the doublevalue () method in Double.

double x = ((Double)list.get(n)).doublevValue();

Ugh. Here it really pays off to define a class we will call boublearrayList that hides all this
ugliness once and for all.

class DoubleArrayList

{
public DoubleArrayList ()
{
list = new ArrayList();

}

public void set(int n, double x)
{
list.set (n, new Double(x)):;

}

public void add(double x)
{

list.add (new Double (x)):;
}

public double get (int n)

{
return ((Double)list.get(n)) .doublevValue();
}

public int size ()
{

return list.size();

}

private ArrayList list;

CAUTION

Some people think that the wrapper classes can be used to implement
methods that can modify numeric parameters. However, that is not
correct. Recall from Chapter 4 that it is impossible to write a Java
method that increments an integer because parameters to Java methods
are always passed by value.

public static void increment (int x) // won't work
{

x++; // increments local copy

}

236

Core Java™ 2: Volume I-Fundamentals

public static void main (String[] args)

{
int a = 3;
increment (a) ;

Changing x has no effect on a. Could we overcome this by using an
Integer instead of an int?

public static void increment (Integer x) // won't work

{
}

public static void main (String[] args)

{
Integer a = new Integer(3);
increment (a) ;

After all, now a and x are references to the same object. If we managed
to update x, then a would also be updated. The problem is that Integer
objects are immutable: the information contained inside the wrapper can't
change. In particular, there is no analog to the statement x++ for Integer
objects. Thus, you cannot use these wrapper classes to create a method
that modifies numeric parameters.

NOTE

If you do want to write a method to change numeric parameters, you can
use one of the holder types defined in the org.omg.CORBA package.
There are types IntHolder, BooleanHolder, and so on. Each holder
type has a public (!) field value through which you can access the stored
value.

public static void increment (IntegerHolder x)

{

x.value++;

}

public static void main (String[] args)

{
IntegerHolder a = new IntegerHolder (3);
increment (a) ;
int result = a.value;

You will often see the number wrappers for another reason. The designers of Java found the
wrappers a convenient place to put certain basic methods, like the ones for converting strings
of digits to numbers.

237

Core Java™ 2: Volume I-Fundamentals

To convert a string to an integer, you need to use the following statement:

int x =

Integer.parselnt(s);

This has nothing to do with Integer objects—parseInt is a static method. But the Integer
class was a good place to put it.

Similarly, you can use the Double.parseDouble method to parse floating-point numbers.

NOTE

NOTE

Until Java 2, there was no parseDouble method in the Double class.
Instead, programmers had to use the cumbersome

double x = new Double(s) .doubleValue ()

or

double x = Double.valueOf (s) .doubleValue();

This statement constructs a Double object from the string s and then
extracts its value. The static Double.parseDouble method is more
efficient because no object is created.

There is another method for parsing numbers, although it isn't any
simpler. You can use the parse method of the NumberFormat class.
When s is a string and formatter is an object of type NumberFormat,
then the method call formatter.parse(s) returns an object of type
Number.

NumberFormat formatter = NumberFormat.getNumberInstance() ;
Number n = formatter.parse(s):;

Actually, Number is an abstract class, and the returned object is an object
of either type Long or Double, depending on the contents of the string s.
You can use the instanceof operator to find out the return type of the
object:

if (n instanceof Double) Double d = (Double)n;

But in practice, you don't usually care about the return type. The
doublevalue method is defined for the Number class, and it returns the
floating-point equivalent of the number object, whether it is a Long or a
Double. That is, you can use the following code:

x = formatter.parse(s.trim()) .doubleValue();

238

Core Java™ 2: Volume I-Fundamentals

Using the NumberFormat has one advantage: the string can contain group
separators for thousands such as "12,301.4".

The API notes show some of the more important methods of the Integer class. The other
number classes implement corresponding methods.

java.lang.Integer

e int intValue()

returns the value of this Integer object as an int (overrides the intvalue method in
the Number class).

e static String toString(int 1)
returns a new String object representing the specified integer in base 10.
e static String toString(int i, int radix)

lets you return a representation of the number i in the base specified by the radix
parameter.

e static int parseInt (String s)

returns the integer's value, assuming the specified st ring represents an integer in base
10.

e static int parselnt(String s, int radix)

returns the integer's value, assuming the specified string represents an integer in the
base specified by the radix parameter.

e static Integer valueOf (String s)

returns a new Integer object initialized to the integer's value, assuming the specified
String represents an integer in base 10.

e static Integer valueOf (String s, int radix)

returns a new Integer object initialized to the integer's value, assuming the specified
String represents an integer in the base specified by the radix parameter.

239

Core Java™ 2: Volume I-Fundamentals

java. text.NumberFormat

e Number parse(String s)
returns the numeric value, assuming the specified string represents a number.

The c1ass Class

While your program is running, the Java runtime system always maintains what is called
runtime type identification on all objects. This information keeps track of the class to which
each object belongs. Runtime type information is used by the virtual machine to select the
correct methods to execute.

However, you can also access this information by working with a special Java class. The class
that holds this information is called, somewhat confusingly, c1ass. The getClass () method
in the object class returns an instance of Class type.

Employee e;

Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a class object
describes the properties of a particular class. Probably the most commonly used method of
Class is getName. This returns the name of the class. For example, the statement

System.out.println(e.getClass () .getName() + " " + e.getName());
prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

You can also obtain a Class object corresponding to a string by using the static forName
method.

String className = "Manager";
Class cl = Class.forName (className) ;

You would use this method if the class name is stored in a string that varies at run time. This
works if className is the name of a class or interface. Otherwise, the forName method
throws a checked exception. See the sidebar on exceptions to see how you need to supply an
exception handler whenever you use this method.

240

Core Java™ 2: Volume I-Fundamentals

TIP

At startup, the class containing your main method is loaded. It loads all
classes that it needs. Each of those loaded classes loads the classes that
they need, and so on. That can take a long time for a big application,
frustrating the user. You can give users of your program the illusion of
a faster start, with the following trick. Make sure that the class
containing the main method does not explicitly refer to other classes.
First display a splash screen. Then manually force the loading of other
classes by calling class. forName.

A third method for obtaining an object of type class is a convenient shorthand. If T is any
Java type, then T.class is the matching class object. For example:

Class cll = Manager.class;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a class object really describes a fype, which may or may not be a class. For
example, int is not a class, but int.class is nevertheless an object of type class.

NOTE

For historical reasons, the getName method returns somewhat strange
names for array types:

System.out.println (Double[].class.getName ()) ;
// prints [Ljava.lang.Double;
System.out.println (int[].class.getName()) ;
// prints [I

Catching Exceptions

We will cover exception handling fully in Chapter 11, but in the meantime you will
occasionally encounter methods that threaten to throw exceptions.

When an error occurs at run time, a program can “throw an exception.” Throwing an
exception is more flexible than terminating the program because you can provide
a handler that “catches” the exception and deals with it.

If you don't provide a handler, the program still terminates and prints a message to
the console, giving the type of the exception. You may already have seen exception
reports when you accidentally used a null reference or overstepped the bounds of
an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions.

With checked exceptions, the compiler checks that you provide a handler. However,
many common exceptions. such as accessing a null reference. are unchecked.

241

Core Java™ 2: Volume I-Fundamentals

The compiler does not check whether you provide a handler for these errors—after
all, you should spend your mental energy on avoiding these mistakes rather than
coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The class. forName method is
an example of a method that throws a checked exception. In Chapter 11, you will
see several exception handling strategies. For now, we'll just show you the simplest
handler implementation.

Place one or more methods that might throw checked exceptions inside a try block.
Then provide the handler code in the catch clause.

try
{

statements that might throw exceptions

}

catch (Exception e)

{

handler action

}
Here is an example:

try
{
String name = . . .;// get class name
Class cl = Class.forName (name); // might throw exception
// do something with cl
}

catch (Exception e)

{

e.printStackTrace () ;

}

If the class name doesn't exist, the remainder of the code in the try block is skipped,
and the program enters the catch clause. (Here, we print a stack trace by using
the printstackTrace method of the Throwable class. Throwable is the superclass
of the Exception class.) If none of the methods in the try block throw
an exception, then the handler code in the catch clause is skipped.

You only need to supply an exception handler for checked exceptions. It is easy to
find out which methods throw checked exceptions—the compiler will complain
whenever you call a method that threatens to throw a checked exception and you
don't supply a handler.

The virtual machine manages a unique Class object for each type. Therefore, you can use
the == operator to compare class objects, for example:

if (e.getClass () == Employee.class)

Another example of a useful method is one that lets you create an instance of a class on
the fly. This method is called, naturally enough, newInstance (). For example,

242

Core Java™ 2: Volume I-Fundamentals

e.getClass () .newInstance () ;

creates a new instance of the same class type as e. The newInstance method calls the default

constructor (the one that takes no parameters) to initialize the newly created object.

Using a combination of forName and newInstance lets you create an object from a class

name stored in a string.

String s = "Manager";
Object m = Class.forName (s) .newInstance() ;

NOTE

If you need to provide parameters for the constructor of a class you want
to create by name in this manner, then you can't use statements like
the above. Instead, you must use the newInstance method in
the constructor class. (This is one of several classes in
the java.lang.reflect package. We will discuss reflection in the next
section.)

C++ NOTE

¥ o [The newInstance method corresponds to the idiom of a virtual
constructor in C++. However, virtual constructors in C++ are not
a language feature but just an idiom that needs to be supported by
a specialized library. The class class is similar to the type info class in
C++, and the getclass method is equivalent to the typeid operator.
The Java class is quite a bit more versatile than type info, though.
The C++ type info can only reveal a string with the name of the type,
not create new objects of that type.

java.lang.Class

e static Class forName (String className)
returns the Class object representing the class with name className.
e Object newlInstance ()

returns a new instance of this class.

243

Core Java™ 2: Volume I-Fundamentals

java.lang.reflect.Constructor

e Object newInstance (Object[] args)
constructs a new instance of the constructor's declaring class.

Parameters:|args the parameters supplied to the constructor. See the section on reflection for
more information on how to supply parameters.

java.lang.Throwable

e void printStackTrace ()

prints the Throwable object and the stack trace to the standard error stream.
Reflection

The class c1ass gives you a very rich and elaborate toolset to write programs that manipulate
Java code dynamically. This feature is heavily used in JavaBeans, the component architecture
for Java (see Volume 2 for more on JavaBeans). Using reflection, Java is able to support tools
like the ones users of Visual Basic have grown accustomed to. In particular, when new classes
are added at design or run time, rapid application development tools that are JavaBeans
enabled need to be able to inquire about the capabilities of the classes that were added. (This
is equivalent to the process that occurs when you add controls in Visual Basic to the toolbox.)

A program that can analyze the capabilities of classes is called reflective. The package that
brings this functionality to Java is therefore called, naturally enough, java.lang.reflect.
The reflection mechanism is extremely powerful. As the next four sections show, you can use
it to:

e Analyze the capabilities of classes at run time

o Inspect objects at run time, for example, to write a single tostring method that works
for all classes

e Implement generic array manipulation code

e Take advantage of Method objects that work just like function pointers in languages
such as C++

Reflection is a powerful and complex mechanism; however, it is of interest mainly to tool
builders, not application programmers. If you are interested in programming applications
rather than tools for other Java programmers, you can safely skip the remainder of this chapter
and return to it at a later time.

244

Core Java™ 2: Volume I-Fundamentals

Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection mechanism for letting
you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package
describe the fields, methods, and constructors of a class, respectively. All three classes have a
method called getName that returns the name of the item. The Field class has a method
getType that returns an object, again of type Class, that describes the field type. The Method
and Constructor classes have methods to report the return type and the types of the
parameters used for these methods. All three of these classes also have a method called
getModifiers that returns an integer, with various bits turned on and off, that describe the
modifiers used, such as public and static. You can then use the static methods in the
Modifier class in the java.lang.reflect package to analyze the integer that
getModifiers returns. For example, there are methods like isPublic, isPrivate, oOr
isFinal in the Modifier class that you could use to tell whether a method or constructor was
public, private, or final. All you have to do is have the appropriate method in the
Modifier class work on the integer that getModifiers returns. You can also use the
Modifier.toString method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the class class return
arrays of the public fields, operations, and constructors that the class supports. This includes
public members of superclasses. The getbDeclaredFields, getDeclaredMethods, and
getDeclaredConstructors methods of the class class return arrays consisting of all fields,
operations, and constructors that are declared in the class. This includes private and protected
members, but not members of superclasses.

Example 5-5 shows you how to print out all information about a class. The program prompts
you for the name of a class and then writes out the signatures of all methods and constructors
as well as the names of all data fields of a class. For example, if you enter

java.lang.Double

then the program prints:

class java.lang.Double extends java.lang.Number
{
public java.lang.Double(java.lang.String);
public java.lang.Double (double) ;

public int hashCode() ;

public int compareTo(java.lang.Object);

public int compareTo (java.lang.Double) ;

public boolean equals(java.lang.Object);

public java.lang.String toString();

public static java.lang.String toString(double);
public static java.lang.Double valueOf (java.lang.String);
public static boolean isNaN (double) ;

public boolean isNaN({() ;

public static boolean isInfinite (double);

public boolean isInfinite();

public byte bytevValue();

public short shortValue();

245

public
public
public
public
public
public
public
public

public
public
public
public
public
public

Core Java™ 2: Volume I-Fundamentals

int intValue();

long longValue();

float floatValue();

double doubleValue() ;

static double parseDouble (java.lang.String) ;
static native long doubleToLongBits (double) ;
static native long doubleToRawLongBits (double) ;
static native double longBitsToDouble (long);

static final double POSITIVE INFINITY;
static final double NEGATIVE INFINITY;
static final double NaNj;

static final double MAX VALUE;

static final double MIN VALUE;

static final java.lang.Class TYPE;

private double value;
private static final long serialVersionUID;

What is remarkable about this program is that it can analyze any class that the Java interpreter
can load, not just the classes that were available when the program was compiled. We will use
this program in the next chapter to peek inside the inner classes that the Java compiler
generates automatically.

Example 5-5 ReflectionTest.java

QO ~J oUW

{

{

Ne©j

= e
N PO

B e
o W

= e
o J o

=
Nej

NN DN DN
ad W NP O

NN DN
@ J o

N
Nej

w
(@)

w W W
w N =

import java.lang.reflect.*;
import javax.swing.*;

public class ReflectionTest

public static void main (String[] args)

// read class name from command line args or user input
String name;
if (args.length > 0)
name = args[0];
else
name = JOptionPane.showInputDialog
("Class name (e.g. java.util.Date): ");

try
{
// print class name and superclass name (if != Object)
Class cl = Class.forName (name) ;
Class supercl = cl.getSuperclass();
System.out.print ("class " + name);
if (supercl != null && supercl != Object.class)
System.out.print (" extends " + supercl.getName());

System.out.print ("\n{\n");
printConstructors(cl) ;
System.out.println();
printMethods (cl) ;
System.out.println();
printFields (cl);
System.out.println("}");

}

catch (ClassNotFoundException e) { e.printStackTrace(); }

246

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

Core Java™ 2: Volume I-Fundamentals

System.exit (0);

}
/**

Prints all constructors of a class
@param cl a class

*/
public static void printConstructors(Class cl)
{
Constructor[] constructors = cl.getDeclaredConstructors();
for (int i = 0; i < constructors.length; i++)
{
Constructor ¢ = constructors[i];
String name = c.getName() ;
System.out.print (Modifier.toString(c.getModifiers()));
System.out.print (" " + name + "(");

}
/‘k‘k

// print parameter types
Class[] paramTypes = c.getParameterTypes();
for (int j = 0; j < paramTypes.length; j++)
{
if (3 > 0) System.out.print(", ");
System.out.print (paramTypes[]j].getName()) ;
}
System.out.println(");");

Prints all methods of a class
@param cl a class

*/

public static void printMethods (Class cl)

{

Method[] methods = cl.getDeclaredMethods () ;

for

{

(int i = 0; i < methods.length; i++)
Method m = methods[i];
Class retType = m.getReturnType () ;

String name = m.getName () ;

// print modifiers, return type and method name

System.out.print (Modifier.toString(m.getModifiers()));
System.out.print (" " + retType.getName() + " " + name
I "(");

// print parameter types
Class[] paramTypes = m.getParameterTypes|();
for (int j = 0; j < paramTypes.length; j++)
{
if (j > 0) System.out.print(", ");
System.out.print (paramTypes[j].getName()) ;
}
System.out.println(");");

247

93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
1009.
110.
111.

Core Java™ 2: Volume I-Fundamentals

/**
Prints all fields of a class
@param cl a class
*/
public static void printFields(Class cl)
{
Field[] fields = cl.getDeclaredFields();

for (int 1 = 0; 1 < fields.length; i++)
{

Field £ = fields[i];

Class type = f.getTypel();

String name = f.getName () ;
System.out.print (Modifier.toString(f.getModifiers()));
System.out.println (" " + type.getName() + " " + name
+ ")
}
}
}
.lang.Class

Field[] getFields()
Field[] getDeclaredFields()

The getFields method returns an array containing Field objects for the public fields.
The getDeclaredField method returns an array of Field objects for all fields. The
methods return an array of length 0 if there are no such fields, or if the c1ass object
represents a primitive or array type.

Method[] getMethods ()
Method[] getDeclaredMethods ()

return an array containing Method objects that give you all the public methods (for
getMethods) or all methods (for getDeclaredMethods) of the class or interface. This
includes those inherited from classes or interfaces above it in the inheritance chain.

Constructor[] getConstructors()
Constructor[] getDeclaredConstructors()

return an array containing Constructor objects that give you all the public

constructors (for getConstructors) or all constructors (for
getDeclaredConstructors) of the class represented by this Class object.

248

java

Core Java™ 2: Volume I-Fundamentals

.lang.reflect.Field

Class getDeclaringClass ()
returns the class object for the class that defines this constructor, method, or field.
Class/[] getExceptionTypes()(ﬁlConstructorandthhodewseQ

returns an array of Class objects that represent the types of the exceptions thrown by
the method.

int getModifiers ()

returns an integer that describes the modifiers of this constructor, method, or field. Use
the methods in the Modifier class to analyze the return value.

String getName ()
returns a string that is the name of the constructor, method, or field.
Class[] getParameterTypes () (in Constructor and Method classes)

returns an array of Class objects that represent the types of the parameters.

.lang.reflect.Modifier

static String toString(int modifiers)

returns a string with the modifiers that correspond to the bits set in modifiers.

249

Core Java™ 2: Volume I-Fundamentals

Using Reflection to Analyze Objects at Run Time

In the preceding section, we saw how we can find out the names and types of the data fields of
any object:

o Get the corresponding Class object.
e Call getDeclaredFields on the Class object.

In this section, we go one step further and actually look at the contents of the data fields. Of
course, it is easy to look at the contents of a specific field of an object whose name and type
are known when you write a program. But reflection lets you look at fields of objects that
were not known at compile time.

The key method to achieve this is the get method in the Field class. If £ is an object of type
Field (for example, one obtained from getDeclaredFields) and obj is an object of the class
of which £ is a field, then f.get (obj) returns an object whose value is the current value of
the field of obj. This is all a bit abstract, so let's run through an example.

Employee harry = new Employee ("Harry Hacker", 35000,
10, 1, 1989);

Class cl = harry.getClass();
// the class object representing Employee

Field f = cl.getField("name");
// the name field of the Employee class

Object v = f.get (harry);
// the value of the name field of the harry object
// i.e. the String object "Harry Hacker"

Actually, there is a problem with this code. Since the name field is a private field, the get
method will throw an T11egalaccessException. You can only use the get method to get the
values of accessible fields. The security mechanism of Java lets you find out what fields any
object has, but it won't let you read the values of those fields unless you have access
permission.

The default behavior of the reflection mechanism is to respect Java access control. However,
if a Java program is not controlled by a security manager that disallows it, it is possible to
override access control. To do this, invoke the setAccessible method on a Field, Method,
or Constructor object, for example:

f.setAccessible (true) ;
// now OK to call f.get (harry);

The setAccessible method is a method of the AccessibleObject class, the common
superclass of the Field, Method, and Constructor. This feature is provided for debuggers,
persistent storage, and similar mechanisms. We will use it for a generic tostring method
later in this section.

There is another issue with the get method that we need to deal with. The name field is a
String, and so it is not a problem to return the value as an object. But suppose we want to
look at the salary field. That is a double, and in Java, number types are not objects. To
handle this, you can either use the getDouble method of the Field class, or you can call get,

250

Core Java™ 2: Volume I-Fundamentals

where the reflection mechanism automatically wraps the field value into the appropriate
wrapper class, in this case, Double.

Of course, you can also set the values that you can get. The call £.set (obj, value) sets the
field represented by f of the object obj to the new value.

Example 5-6 shows how to write a generic toString method that works for any class. It uses
getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience
method to make all fields accessible. For each field, it obtains the name and the value. Each
value is turned into a string by invoking its toString method. The tostring method
examines all superclass fields until it reaches the object class.

class ObjectAnalyzer
{
public static String toString(Object obj)

{
Class cl = obj.getClass();
String r cl.getName () ;

// inspect the fields of this class and all superclasses
do
{
r +="[";
Field[] fields = cl.getDeclaredFields();
AccessibleObject.setAccessible (fields, true);

// get the names and values of all fields
for (int i = 0; i < fields.length; i++)
{
Field £ = fields[i];
r += f.getName() + "=";
try
{
Object val = f.get(obj);
r += val.toString();
}
catch (Exception e) { e.printStackTrace(); }
if (1 < fields.length - 1)

r += "’";
}
r 4= n]n;
cl = cl.getSuperclass();
}
while (cl != Object.class);

return r;

You can use this tostring method to peek inside any object. For example, here is what you
get when you look inside the system.out object:

java.io.PrintStream[autoFlush=true, trouble=false,
textOut=java.io.BufferedWriter@8786b,
charOut=java.io.OutputStreamWriter@19c082,

closing=false] [out=java.io.BufferedOutputStream@2dd2dd] []

251

Core Java™ 2: Volume I-Fundamentals

In Example 5-6, the generic tostring method is used to implement the tostring of the
Employee class:

public String toString()

{

}

return ObjectAnalyzer.toString(this);

This is a hassle-free method for supplying a tostring method, and it is highly recommended,
especially for debugging. The same recursive approach can also be used to define a generic
equals method. See the code in the example program Example 5-6 for details.

Example 5-6 ObjectAnalyzerTest.java

NeJ

10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

QO Joy bW

import java.lang.reflect.*;
import java.util.*;

public class ObjectAnalyzerTest

{

public static void main(String[] args)

{

}

// test toString method of Employee

Employee harry = new Employee ("Harry Hacker", 35000,
1996, 12, 1);

System.out.println ("harry=" + harry);

// test equals method of Employee

Employee coder = new Employee ("Harry Hacker", 35000,
1996, 12, 1);

System.out.println (
"Before raise, harry.equals(coder) returns
+ harry.equals (coder)) ;

harry.raiseSalary(5);

System.out.println (
"After raise, harry.equals(coder) returns
+ harry.equals (coder)) ;

w

"w

Manager carl = new Manager ("Carl Cracker", 80000,
1987, 12, 15);
Manager boss = new Manager ("Carl Cracker", 80000,

1987, 12, 15);
boss.setBonus (5000) ;

System.out.println ("boss=" + boss);
System.out.println (
"carl.equals (boss) returns " + carl.equals(boss));

class ObjectAnalyzer

{

/**

*/

Converts an object to a string representation that lists
all fields.

@param obj an object

@return a string with the object's class name and all
field names and values

252

44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

Core Java™ 2: Volume I-Fundamentals

public static String toString (Object obj)
{

Class cl obj.getClass () ;

String r = cl.getName() ;

// inspect the fields of this class and all superclasses
do
{
r += "[";
Field[] fields = cl.getDeclaredFields();
AccessibleObject.setAccessible (fields, true);

// get the names and values of all fields
for (int 1 = 0; 1 < fields.length; i++)
{
Field f = fields[i];
r += f.getName () + "=";
try
{
Object val = f.get (obj);
r += val.toString();
}
catch (Exception e) { e.printStackTrace(); }
if (i < fields.length - 1)

r += n,n,.
}
r += n]n;
cl = cl.getSuperclass();
}
while (cl != Object.class);

return r;

/**
Tests whether two objects are equal by checking if all
field values are equal
@param a an object
@param b another object
@return true if a and b are equal
*/
public static boolean equals (Object a, Object b)
{

if (a == b) return true;

if (a == null || b == null) return false;
Class cl = a.getClass();

if (cl != b.getClass()) return false;

// inspect the fields of this class and all superclasses
do
{
Field[] fields = cl.getDeclaredFields();
AccessibleObject.setAccessible (fields, true);
for (int 1 = 0; 1 < fields.length; i++)
{
Field f = fields[i];
// 1f field values don't match, objects aren't equal
try
{
if (!f.get(a).equals(f.get(b)))
return false;

253

105.
106.
107.
108.
1009.
110.
111.
112.
113.
114.
115.
1le6.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.

}

Core Java™ 2: Volume I-Fundamentals

}

catch (Exception e) { e.printStackTrace();

}

cl = cl.getSuperclass();

}
while (cl != Object.class);

return true;

class Employee

{

public Employee (String n, double s,
int year, int month, int day)
{
name = n;
salary = s;
GregorianCalendar calendar
= new GregorianCalendar (year, month - 1,
// GregorianCalendar uses 0 for January
hireDay = calendar.getTime () ;

}

public String getName ()
{

return name;

}

public double getSalary()
{

return salary;

}

public Date getHireDay ()
{

return hireDay;

}

public void raiseSalary(double byPercent)

{
double raise = salary * byPercent / 100;
salary += raise;

}

public String toString()

{
return ObjectAnalyzer.toString(this);

}

public boolean equals (Object b)
{

return ObjectAnalyzer.equals(this, b);
}

private String name;
private double salary;
private Date hireDay;

day) ;

}

254

Core Java™ 2: Volume I-Fundamentals

165. class Manager extends Employee

166. {

167. public Manager (String n, double s,
168. int year, int month, int day)
169. {

170. super (n, s, year, month, day):;
171. bonus = 0;

172. }

173.

174. public double getSalary ()

175. {

176. double baseSalary = super.getSalary();
177. return baseSalary + bonus;
178. }

179.

180. public void setBonus (double b)
181. {

182. bonus = b;

183. }

184.

185. private double bonus;

186. }

java.lang.reflect.AccessibleObject

e void setAccessible (boolean flag)
sets the accessibility flag for this reflection object. A value of true indicates that Java
language access checking is suppressed, and that the private properties of the object
can be queried and set.
e Dboolean isAccessible ()
gets the value of the accessibility flag for this reflection object.
e static void setAccessible (AccessibleObject[] array, boolean flag)
is a convenience method to set the accessibility flag for an array of objects.
Using Reflection to Write Generic Array Code
The aArray class in the java.lang.reflect package allows you to create arrays dynamically.
For example, when you use this feature with the arrayCopy method from Chapter 3, you can
dynamically expand an existing array while preserving the current contents.
The problem we want to solve is pretty typical. Suppose you have an array of some type that

is full and you want to grow it. And suppose you are sick of writing the grow-and-copy code
by hand. You want to write a generic method to grow an array.

255

Core Java™ 2: Volume I-Fundamentals

Employee[] a = new Employee[100];

// array is full
a = (Employee[])arrayGrow(a);

How can we write such a generic method? It helps that an Employee[] array can be converted
to an Object[] array. That sounds promising. Here is a first attempt to write a generic
method. We simply grow the array by 10% + 10 elements (since the 10% growth is not
substantial enough for small arrays).

static Object[] arrayGrow (Object[] a) // not useful
{
int newlLength = a.length * 11 / 10 + 10;
Object[] newArray = new Object[newLength];
System.arraycopy(a, 0, newArray, 0, a.length);
return newArray;

However, there is a problem with actually using the resulting array. The type of array that this
code returns is an array of objects (0Object []1) because we created the array using the line of
code:

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). Java would
generate a ClassCast exception at run time. The point is, as we mentioned earlier, that a Java
array remembers the type of its entries, that is, the element type used in the new expression
that created it. It is legal to cast an Employee[] temporarily to an object[] array and then
cast it back, but an array that started its life as an object[] array can never be cast into an
Employee[] array. To write this kind of generic array code, we need to be able to make a new
array of the same type as the original array. For this, we need the methods of the Array class
in the java.lang.reflect package. The key is the static newInstance method of the Array
class that constructs a new array. You must supply the type for the entries and the desired
length as parameters to this method.

Object newArray = Array.newlInstance (componentType, newlLength) ;
To actually carry this out, we need to get the length and component type of the new array.

The length is obtained by calling Array.getLength (a). The static getLength method of the
Array class returns the length of any array. To get the component type of the new array:

1. First, get the class object of a.

2. Confirm that it is indeed an array.

3. Use the getComponentType method of the class class (which is defined only for
class objects that represent arrays) to find the right type for the array.

Why is getLength a method of Array but getComponentType a method of class? We don't
know—the distribution of the reflection methods seems a bit ad hoc at times.

Here's the code:

256

Core Java™ 2: Volume I-Fundamentals

static Object arrayGrow (Object a) // useful

{
Class cl = a.getClass{();
if (!cl.isArray()) return null;
Class componentType = cl.getComponentType() ;
int length = Array.getlLength(a);
int newlLength = length * 11 / 10 + 10;
Object newArray = Array.newlnstance (componentType,

newLength) ;

System.arraycopy(a, 0, newArray, 0, length);
return newArray;

Note that this arrayGrow method can be used to grow arrays of any type, not just arrays of
objects.

int[] ia = {1, 2, 3, 4 };
ia = (int[])arrayGrow(ia);

To make this possible, the parameter of arrayGrow is declared to be of type object, not an
array of objects (Object [1). The integer array type int [] can be converted to an object, but
not to an array of objects!

Example 5-7 shows both array grow methods in action. Note that the cast of the return value
of badArrayGrow will throw an exception.

Example 5-7 ArrayGrowTest.java

1. import java.lang.reflect.*;

2. import java.util.*;

3.

4. public class ArrayGrowTest

5. {

6. public static void main(String[] args)

7. {

8. intf{] a= {1, 2, 3 };

9. a = (int[])goodArrayGrow (a) ;
10. arrayPrint (a) ;
11.
12. String[] b = { "Tom", "Dick", "Harry" };
13. b = (String[])goodArrayGrow (b) ;
14. arrayPrint (b) ;

15.

16. System.out.println

17. ("The following call will generate an exception.");
18. b = (String[])badArrayGrow (b);

19. }
20.
21. /**
22. This method attempts to grow an array by allocating a
23. new array and copying all elements.

24. @param a the array to grow

25. @return a larger array that contains all elements of a.
26. However, the returned array has type Object[], not
27. the same type as a

28. */

257

Core Java™ 2: Volume I-Fundamentals

29. static Object[] badArrayGrow (Object[] a)

30. {

31. int newlLength = a.length * 11 / 10 + 10;

32. Object[] newArray = new Object[newLength];

33. System.arraycopy(a, 0, newArray, 0, a.length);

34. return newArray;

35. }

36.

37. /*x*

38. This method grows an array by allocating a

39. new array of the same type and copying all elements.
40. @param a the array to grow. This can be an object array
41. or a fundamental type array

42. @return a larger array that contains all elements of a.
43.

44 . */

45. static Object goodArrayGrow (Object a)

46. {

47 . Class cl = a.getClass();

48. if (!cl.isArray()) return null;

49. Class componentType = cl.getComponentType () ;

50. int length = Array.getlLength(a);

51. int newlLength = length * 11 / 10 + 10;

52.

53. Object newArray = Array.newlnstance (componentType,
54. newlLength) ;

55. System.arraycopy(a, 0, newArray, 0, length);

56. return newArray;

57. }

58.

59. /**

60. A convenience method to print all elements in an array
6l. @param a the array to print. can be an object array
62. or a fundamental type array

63. */

04. static void arrayPrint (Object a)

65. {

66. Class cl = a.getClass{();

67. if (!cl.isArray()) return;

68. Class componentType = cl.getComponentType () ;

69. int length = Array.getlLength(a);

70. System.out.print (componentType.getName ()

71. + "[" + length + "] = { ");

72. for (int 1 = 0; 1 < Array.getlLength(a); i++)

73. System.out.print (Array.get(a, 1)+ " ");

74 . System.out.println("}");

75. }

76. }

Method Pointers!

On the surface, Java does not have method pointers—ways of giving the location of a method
to another method so that the second method can invoke it later. In fact, the designers of Java
have said that method pointers are dangerous and error-prone and that Java interfaces
(discussed in the next chapter) are a superior solution. However, it turns out that Java now
does have method pointers, as a (perhaps accidental) byproduct of the reflection package.

258

Core Java™ 2: Volume I-Fundamentals

NOTE

Among the nonstandard language extensions that Microsoft added to its
Java derivative J++ (and its successor, C#) is another method pointer
type that is different from the Method class that we discuss in this
section. However, as you will see in chapter 6, inner classes are a more
useful and general mechanism.

To see method pointers at work, recall that you can inspect a field of an object with the get
method of the Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature for the invoke
method is:

Object invoke (Object obj, Object[] args)

The first parameter is the implicit parameter, and the array of objects provides the explicit
parameters. For a static method, the first parameter is ignored—you can set it to null. If the
method has no explicit parameters, you can pass null or an array of length O for the args
parameter. For example, if m1 represents the getName method of the Employee class,
the following code shows how you can call it:

String n = (String)ml.invoke (harry, null);

As with the get and set methods of the Field type, there's a problem if the parameter or
return type is not a class but a basic type. You must wrap any of the basic types into their
corresponding wrappers before inserting them into the args array. Conversely, the invoke
method will return the wrapped type and not the basic type. For example, suppose that m2
represents the raisesalary method of the Employee class. Then, you need to wrap the
double parameter into a Double object.

Object[] args = { new Double(5.5) };
m2.invoke (harry, args);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and
search through the returned array of Method objects until you find the method that you want.
Or, you can call the getMethod method of the class class. This is similar to the getField
method that takes a string with the field name and returns a Fie1d object. However, there may
be several methods with the same name, so you need to be careful that you get the right one.
For that reason, you must also supply an array that gives the correct parameter types. For
example, here is how you can get method pointers to the getName and raiseSalary methods
of the Employee class.

Method ml = Employee.class.getMethod ("getName", null);
Methodm2 = Employee.class.getMethod ("raiseSalary",
new Class[] { double.class });

The second parameter of the getMethod method is an array of class objects. Since the
raiseSalary method has one parameter of type double, we must supply an array with a
single element, double.class. It is usually easiest to make that array on the fly, as we did in
the example above. The expression

259

Core Java™ 2: Volume I-Fundamentals

new Class[] { double.class }

denotes an array of Class objects, filled with one element, namely, the class object
double.class

Now that you have seen the syntax of Method objects, let's put them to work. Example 5-8 is a
program that prints a table of values for a mathematical function such as Math.sqrt or
Math.sin. The printout looks like this:

public static native double java.lang.Math.sgrt (double)

1.0000 | 1.0000
2.0000 | 1.4142
3.0000 | 1.7321
4.0000 | 2.0000
5.0000 | 2.2361
6.0000 | 2.4495
7.0000 | 2.6458
8.0000 | 2.8284
9.0000 | 3.0000
10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function that is being
tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
double y = f(x);
// where f is the function to be tabulated
// not the actual syntax--see below
System.out.println(x + " | " + y);

We want to write a generic printTable method that can tabulate any function. We will pass
the function as a parameter of type Method.

static void printTable (double from, double to, int n, Method f)

Of course, £ is an object and not a function, so we cannot simply write £ (x) to evaluate it.
Instead, we must supply x in the parameter array (suitably wrapped as a Double), use the
invoke method, and unwrap the return value.

Object[] args = { new Double (x) };
Double d = (Double) f.invoke(null, args);
double y = d.doubleValue();

The first parameter of invoke is null because we are calling a static method.

Here is a sample call to printTable that tabulates the square root function.

printTable (1, 10, 10,
java.lang.Math.class.getMethod ("sqrt",
new Class|[] { double.class }));

260

Core Java™ 2: Volume I-Fundamentals

The hardest part is to get the method object. Here, we get the method of the java.lang.Math
class that has the name sqrt and whose parameter list contains just one type, double.

Example 5-8 shows the complete code of the printTable method and a couple of test runs.

Example 5-8 MethodPointerTest.java

1. import java.lang.reflect.*;
2. import java.text.*;
3.
4. public class MethodPointerTest
5. {
6. public static void main(String[] args) throws Exception
7. {
8. // get method pointers to the square and sgrt methods
9. Method square = MethodPointerTest.class.getMethod ("square",
10. new Class[] { double.class });
11. Method sqgrt = java.lang.Math.class.getMethod ("sqgrt",
12. new Class[] { double.class });
13.
14. // print tables of x- and y-values
15.
16. printTable (1, 10, 10, square);
17. printTable(1, 10, 10, sqgrt);
18. }
19.
20. /x*
21. Returns the square of a number
22. @param x a number
23. @return x squared
24. */
25. public static double square (double x)
26. {
27. return x * x;
28. }
29.
30 Ve
31 Prints a table with x- and y-values for a method
32. @param from the lower bound for the x-values
33. @param to the upper bound for the x-values
34. @param n the number of rows in the table
35. @param f a method with a double parameter and double
36 return value
37 */
38 public static void printTable (double from, double to,
39. int n, Method f)
40. {
41. // print out the method as table header
42 . System.out.println (f);
43.
44, // construct formatter to print with 4 digits precision
45.
46. NumberFormat formatter = NumberFormat.getNumberInstance() ;
47. formatter.setMinimumFractionDigits (4) ;
48. formatter.setMaximumFractionDigits (4) ;
49, double dx = (to - from) / (n - 1);
50

261

Core Java™ 2: Volume I-Fundamentals

51. for (double x = from; x <= to; X += dx)

52. {

53. // print x-value

54. String output = formatter.format (x);

55. // pad with spaces to field width of 10

56. for (int i = 10 - output.length(); i > 0; i--)
57. System.out.print (' ');

58. System.out.print (output + " [|");

59.

60. try

61. {

62. // invoke method and print y-value

63. Object[] args = { new Double (x) };

o04. Double d = (Double) f.invoke(null, args);
65. double y = d.doubleValue();

66.

67. output = formatter.format (y);

68. // pad with spaces to field width of 10
69. for (int 1 = 10 - output.length(); i > 0; i--)
70. System.out.print (' '");

71.

72. System.out.println (output) ;

73. }

74 . catch (Exception e) { e.printStackTrace(); }
75. }

76. }

77. }

As this example sho