

Core Java™ 2: Volume I–Fundamentals

Cay S. Horstmann
Gary Cornell

Publisher: Prentice Hall PTR

Fifth Edition December 01, 2000

ISBN: 0-13-089468-0, 832 pages

Ask any experienced Java programmer, Core Java delivers the real-world guidance you need
to accomplish even the most challenging tasks That’s why it’s been an international best seller
for five straight years. Core Java 2, Volume 1-Fundamentals covers the fundamentals of
Java 2 Platform Standard Edition, Version 1.3 and includes completely revised discussions of
object-oriented Java development, enhanced coverage of Swing user interface components,
and much more.

The fifth edition delivers even more of the robust, real-world programs previous editions are
famous for- updated to reflect JDK 1.3 deployment and performance enhancements.
Volume 1 includes thorough explanations of inner classes, dynamic proxy classes, exception
handling, debugging, the Java event model, Input/Output, and file management. For
experienced programmers, Core Java 2, Volume 1-Fundamentals sets the standard-again!

Table of Contents

List of Tables, Code Examples and Figures... 1
Tables ... 1
Code Examples... 1
Figures.. 3

Preface ... 7
To the Reader ... 7
About This Book .. 8
Conventions.. 10
CD-ROM.. 11

Acknowledgments... 12
Chapter 1. An Introduction to Java ... 13

Java as a Programming Tool .. 13
Advantages of Java... 14
The Java “White Paper” Buzzwords .. 15
Java and the Internet... 22
A Short History of Java.. 24
Common Misconceptions About Java.. 26

Chapter 2. The Java Programming Environment .. 30
Installing the Java Software Development Kit... 30
Development Environments... 34
Using the Command Line Tools .. 35
Using an Integrated Development Environment .. 38
Compiling and Running Programs from a Text Editor .. 42
Graphical Applications... 46
Applets ... 49

Chapter 3. Fundamental Programming Structures in Java .. 54
A Simple Java Program.. 54
Comments... 57
Data Types.. 58
Variables... 62
Assignments and Initializations ... 63
Operators .. 65
Strings... 73
Control Flow .. 87
Big Numbers .. 106
Arrays ... 108

Chapter 4. Objects and Classes... 123
Introduction to Object-Oriented Programming .. 123
Using Existing Classes ... 131
Building Your Own Classes... 143
Static Fields and Methods .. 155
Method Parameters... 161
Object Construction.. 168
Packages ... 177
Documentation Comments... 187
Class Design Hints ... 192

Chapter 5. Inheritance... 195
Extending Classes .. 195

Object: The Cosmic Superclass ... 216
The Class Class ... 240
Reflection ... 244
Design Hints for Inheritance .. 262

Chapter 6. Interfaces and Inner Classes .. 265
Interfaces .. 265
Object Cloning ... 276
Inner Classes .. 282
Proxies.. 299

Chapter 7. Graphics Programming.. 306
Introduction to Swing... 306
Creating a Frame .. 310
Frame Positioning .. 314
Displaying Information in a Panel ... 319
2D Shapes... 326
Colors ... 335
Text and Fonts .. 340
Images .. 351

Chapter 8. Event Handling.. 358
Basics of Event Handling... 358
The AWT Event Hierarchy .. 378
Semantic and Low-Level Events in the AWT ... 380
Low-Level Event Types ... 384
Actions ... 402
Multicasting.. 411
The Event Queue.. 414

Chapter 9. User Interface Components with Swing.. 424
The Model-View-Controller Design Pattern.. 424
An Introduction to Layout Management .. 430
Text Input ... 437
Making Choices.. 464
Menus ... 488
Sophisticated Layout Management .. 512
Dialog Boxes .. 540

Chapter 10. Applets.. 582
Applet Basics.. 582
The Applet HTML Tags and Attributes ... 600
Multimedia ... 614
The Applet Context .. 617
JAR Files .. 628

Chapter 11. Exceptions and Debugging ... 640
Dealing with Errors .. 640
Catching Exceptions... 648
Some Tips on Using Exceptions .. 658
Debugging Techniques... 661
Using a Debugger... 684

Chapter 12. Streams and Files .. 693
Streams ... 693
The Complete Stream Zoo ... 696
ZIP File Streams... 718

Putting Streams to Use ... 727
Object Streams ... 741
File Management.. 768

Appendix Java Keywords.. 776

Core Java™ 2: Volume I–Fundamentals

1

List of Tables, Code Examples and Figures
Tables

Table 2-1: Java directory tree
Table 3-1: Java integer types
Table 3-2: Floating-point types
Table 3-3: Special characters
Table 3-4: Operator precedence
Table 3-5: Growth of an investment at different interest rates
Table 4-1: UML notation for class relationships
Table 7-1: Standard colors
Table 7-2: System colors
Table 8-1: Event handling summary
Table 8-2: Sample cursor shapes
Table 8-3: Predefined action table names
Table 8-4: Input map conditions
Table 9-1: The accessor methods of the ButtonModel interface
Table 10-1: Applet positioning attributes
Table 10-2: Translating between APPLET and OBJECT attributes
Table 10-3: showDocument arguments
Table 10-4: jar program options
Table 11-1: Timing data
Table 11-2: HPROF options
Table 11-3: Debugging commands
Table 12-1: Basic character encodings (in rt.jar)
Table 12-2: Extended Character Encodings (in i18n.jar)

Code Examples

Example 2-1: Welcome.java
Example 2-2: ImageViewer.java
Example 2-3: WelcomeApplet.html
Example 2-4: WelcomeAppletPlugin.html
Example 2-5: WelcomeApplet.java
Example 3-1: FirstSample.java
Example 3-2: InputTest.java
Example 3-3: Retirement.java
Example 3-4: Retirement2.java
Example 3-5: LotteryOdds.java
Example 3-6: BigIntegerTest.java
Example 3-7: LotteryDrawing.java
Example 3-8: CompoundInterest.java
Example 3-9: LotteryArray.java
Example 4-1: CalendarTest.java
Example 4-2: EmployeeTest.java
Example 4-3: StaticTest.java
Example 4-4: ParamTest.java
Example 4-5: ConstructorTest.java

Core Java™ 2: Volume I–Fundamentals

2

Example 4-6: PackageTest.java
Example 4-7: Employee.java
Example 5-1: ManagerTest.java
Example 5-2: PersonTest.java
Example 5-3: EqualsTest.java
Example 5-4: ArrayListTest.java
Example 5-5: ReflectionTest.java
Example 5-6: ObjectAnalyzerTest.java
Example 5-7: ArrayGrowTest.java
Example 5-8: MethodPointerTest.java
Example 6-1: EmployeeSortTest.java
Example 6-2: TimerTest.java
Example 6-3: CloneTest.java
Example 6-4: InnerClassTest.java
Example 6-5: AnonymousInnerClassTest.java
Example 6-6: StaticInnerClassTest.java
Example 6-7: ProxyTest.java
Example 7-1: SimpleFrameTest.java
Example 7-2: CenteredFrameTest.java
Example 7-3: NotHelloWorld.java
Example 7-4: DrawTest.java
Example 7-5: FillTest.java
Example 7-6: FontTest.java
Example 7-7: ImageTest.java
Example 8-1: ButtonTest.java
Example 8-2: PlafTest.java
Example 8-3: Sketch.java
Example 8-4: MouseTest.java
Example 8-5: ActionTest.java
Example 8-6: MulticastTest.java
Example 8-7: CustomEventTest.java
Example 9-1: TextTest.java
Example 9-2: ValidationTest.java
Example 9-3: TextAreaTest.java
Example 9-4: TextEditTest.java
Example 9-5: CheckBoxTest.java
Example 9-6: RadioButtonTest.java
Example 9-7: BorderTest.java
Example 9-8: ComboBoxTest.java
Example 9-9: SliderTest.java
Example 9-10: MenuTest.java
Example 9-11: ToolBarTest.java
Example 9-12: Calculator.java
Example 9-13: BoxLayoutTest.java
Example 9-14: FontDialog.java
Example 9-15: CircleLayoutTest.java
Example 9-16: OptionDialogTest.java
Example 9-17: DialogTest.java
Example 9-18: DataExchangeTest.java
Example 9-19: FileChooserTest.java

Core Java™ 2: Volume I–Fundamentals

3

Example 9-20: ColorChooserTest.java
Example 10-1: NotHelloWorldApplet.java
Example 10-2: NotHelloWorldAppletPlugin.html
Example 10-3: Calculator.html (before processing with the HTML converter)
Example 10-4: CalculatorApplet.java
Example 10-5: PopupCalculatorApplet.java
Example 10-6: Chart.java
Example 10-7: Bookmark.html
Example 10-8: Left.html (before processing with the HTML converter)
Example 10-9: Right.html
Example 10-10: Bookmark.java
Example 10-11: AppletFrame.java
Example 10-12: CalculatorAppletApplication.java
Example 10-13: ResourceTest.html
Example 10-14: ResourceTest.java
Example 11-1: ExceptTest.java
Example 11-2: ExceptionalTest.java
Example 11-3: ConsoleWindow.java
Example 11-4: EventTracer.java
Example 11-5: EventTracerTest.java
Example 11-6: RobotTest.java
Example 11-7: WordCount.java
Example 11-8: BuggyButtonTest.java
Example 11-9: BuggyButtonFrame.java
Example 11-10: BuggyButtonPanel.java
Example 12-1: ZipTest.java
Example 12-2: DataFileTest.java
Example 12-3: RandomFileTest.java
Example 12-4: ObjectFileTest.java
Example 12-5: ObjectRefTest.java
Example 12-6: SerialCloneTest.java
Example 12-7: FindDirectories.java

Figures

Figure 1-1: The Jmol applet
Figure 2-1: Compiling and running Welcome.java
Figure 2-2: Starting Forte
Figure 2-3: The edit window of Forte
Figure 2-4: The output window of Forte
Figure 2-5: Error messages in Forte
Figure 2-6: Starting a new program in Forte
Figure 2-7: Compiling a program with Xemacs
Figure 2-8: Running a program from within Xemacs
Figure 2-9: Locating compilation errors in TextPad
Figure 2-10: Running a Java program from TextPad
Figure 2-11: Running the ImageViewer application
Figure 2-12: The WelcomeApplet applet as viewed by the applet viewer
Figure 2-13: Running the WelcomeApplet applet in a browser
Figure 3-1: Legal conversions between numeric types

Core Java™ 2: Volume I–Fundamentals

4

Figure 3-2: The three panes of the API documentation
Figure 3-3: Class description for the String class
Figure 3-4: Method summary of the String class
Figure 3-5: Detailed description of a String method
Figure 3-6: An input dialog
Figure 3-7: Flowchart for the if statement
Figure 3-8: Flowchart for the if/else statement
Figure 3-9: Flowchart for the if/else if (multiple branches)
Figure 3-10: Flowchart for the while statement
Figure 3-11: Flowchart for the do/while statement
Figure 3-12: Flowchart for the for statement
Figure 3-13: Flowchart for the switch statement
Figure 3-14: Copying an array variable
Figure 3-15: Copying values between arrays
Figure 3-16: A two-dimensional array
Figure 4-1: A class diagram
Figure 4-2: Procedural vs. OO programming
Figure 4-3: Creating a new object
Figure 4-4: Object variables that refer to the same object
Figure 4-5: Returning a reference to a mutable data field
Figure 4-6: Modifying a numeric parameter has no lasting effect
Figure 4-7: Modifying an object parameter has a lasting effect
Figure 4-8: Swapping object parameters has no lasting effect
Figure 4-9: Changing the warning string in an applet window
Figure 5-1: Employee inheritance hierarchy
Figure 5-2: Inheritance diagram for Person and its subclasses
Figure 6-1: Copying and cloning
Figure 6-2: A shallow copy
Figure 6-3: An inner class object has a reference to an outer class object
Figure 7-1: The Windows look and feel of Swing
Figure 7-2: The Motif look and feel of Swing
Figure 7-3: The Metal look and feel of Swing
Figure 7-4: The simplest visible frame
Figure 7-5: Inheritance hierarchy for the JFrame and JPanel classes
Figure 7-6: A simple graphical program
Figure 7-7: The internal structure of a Jframe
Figure 7-8: 2D rectangle classes
Figure 7-9: The bounding rectangle of an ellipse
Figure 7-10: Relationships between the shape classes
Figure 7-11: Rectangles and ellipses
Figure 7-12: Filled rectangles and ellipses
Figure 7-13: Typesetting terms illustrated
Figure 7-14: Drawing the baseline and string bounds
Figure 7-15: Window with tiled graphics image
Figure 8-1: Event notification
Figure 8-2: A panel filled with buttons
Figure 8-3: Switching the Look and Feel
Figure 8-4: A window listener
Figure 8-5: Inheritance diagram of the AWT event classes
Figure 8-6: Relationship between event sources and listeners

Core Java™ 2: Volume I–Fundamentals

5

Figure 8-7: A sketch program
Figure 8-8: A mouse test program
Figure 8-9: Buttons display the icons from the Action objects
Figure 8-10: All frames listen to the Close all command
Figure 8-11: Using custom timer events to simulate rainfall
Figure 9-1: Model and view of a text field
Figure 9-2: Two separate views of the same model
Figure 9-3: A window place
Figure 9-4: Interactions between model, view, and controller objects
Figure 9-5: A panel with three buttons
Figure 9-6: A panel with six buttons managed by a flow layout
Figure 9-7: Changing the panel size rearranges the buttons automatically
Figure 9-8: Border layout
Figure 9-9: A single button managed by a border layout
Figure 9-10: A panel placed at the south end of the frame
Figure 9-11: Text field example
Figure 9-12: A text area
Figure 9-13: Testing text editing
Figure 9-14: Check boxes
Figure 9-15: A radio button group
Figure 9-16: Testing border types
Figure 9-17: A combo box
Figure 9-18: Sliders
Figure 9-19: A menu with a submenu
Figure 9-20: Icons in menu items
Figure 9-21: A checked menu item and menu items with radio buttons
Figure 9-22: A pop-up menu
Figure 9-23: Keyboard mnemonics
Figure 9-24: Accelerators
Figure 9-25: Disabled menu items
Figure 9-26: A tool bar
Figure 9-27: Dragging the tool bar
Figure 9-28: Dragging the tool bar to another border
Figure 9-29: Detaching the tool bar
Figure 9-30: A tool tip
Figure 9-31: Inheritance hierarchy for the Component class
Figure 9-32: A calculator
Figure 9-33: Box layouts
Figure 9-34: Font dialog box
Figure 9-35: Dialog box grid used in design
Figure 9-36: Circle layout
Figure 9-37: Geometric traversal order
Figure 9-38: An option dialog
Figure 9-39: The OptionDialogTest program
Figure 9-40: An About dialog box
Figure 9-41: Password dialog box
Figure 9-42: File chooser dialog box
Figure 9-43: A file dialog with a preview accessory
Figure 9-44: The “swatches” pane of color chooser
Figure 9-45: The HSB pane of a color chooser

Core Java™ 2: Volume I–Fundamentals

6

Figure 9-46: The RGB pane of a color chooser
Figure 10-1: Selecting the Java Virtual Machine in the Java Plug-In
Figure 10-2: Applet inheritance hierarchy
Figure 10-3: Viewing an applet in the applet viewer
Figure 10-4: The Java Plug-In Control Panel
Figure 10-5: The Java Console
Figure 10-6: The Java Plug-In HTML converter
Figure 10-7: Viewing an applet in a browser
Figure 10-8: A calculator applet
Figure 10-9: A pop-up window inside a browser
Figure 10-10: Applet alignment
Figure 10-11: A chart applet
Figure 10-12: A bookmark applet
Figure 10-13: The calculator as an application
Figure 10-14: The calculator as an applet
Figure 10-15: Displaying a resource from a JAR file
Figure 11-1: Exception hierarchy in Java
Figure 11-2: A program that generates exceptions
Figure 11-3: The console window
Figure 11-4: The EventTracer class at work
Figure 11-5: A breakpoint in the Forte debugger
Figure 11-6: The breakpoint list
Figure 11-7: The Forte watch window
Figure 12-1: Input and Output stream hierarchy
Figure 12-2: Reader and Writer hierarchy
Figure 12-3: A sequence of filtered stream
Figure 12-4: The ZipTest program
Figure 12-5: Two managers can share a mutual employee
Figure 12-6: Here, Harry is saved three times
Figure 12-7: An example of object serialization
Figure 12-8: Objects saved in random order
Figure 12-9: The graphical version of the serialver program
Figure 12-10: Reading an object with fewer data fields
Figure 12-11: Reading an object with more data fields

Core Java™ 2: Volume I–Fundamentals

7

Preface
To the Reader

In late 1995, the Java programming language burst onto the Internet scene and gained instant
celebrity status. The promise of Java is that it will become the universal glue that connects
users with information, whether that information comes from Web servers, databases,
information providers, and any other imaginable source. Indeed Java is in a unique position to
fulfill this promise. It is an extremely solidly engineered language that has gained acceptance
by all major vendors, except for Microsoft. Its built-in security and safety features are
reassuring both to programmers and to the users of Java programs. Java even has built-in
support that makes advanced programming tasks, such as network programming, database
connectivity, and multithreading, straightforward.

Since then, Sun Microsystems has released four major revisions of the Java Software
Development Kit. Version 1.02, released in 1996, supported database connectivity and
distributed objects. Version 1.1, released in 1997, added a robust event model,
internationalization, and the Java Beans component model. Version 1.2, released at the end of
1998, has numerous enhancements, but one major improvement stands out: the “Swing” user
interface toolkit that finally allows programmers to write truly portable GUI applications.
Version 1.3, released in the spring of 2000, delivered many incremental improvements.

The book you have in your hand is the first volume of the fifth edition of the Core Java book.
Each time, the book followed the release of the Java development kit as quickly as possible,
and each time, we rewrote the book to take advantage of the newest Java features.

As with the previous editions of this book, we still target serious programmers who want to
put Java to work on real projects. We still guarantee no nervous text or dancing tooth-shaped
characters. We think of you, our reader, as a programmer with a solid background in a
programming language. But you do not need to know C++ or object-oriented programming.
Based on the responses we have received to the earlier editions of this book, we remain
confident that experienced Visual Basic, C, or COBOL programmers will have no trouble
with this book. (You don't even need any experience in building graphical user interfaces in
Windows, Unix, or the Macintosh.)

What we do is assume you want to:

• Write real code to solve real problems

and

• Don't like books filled with toy examples (such as kitchen appliances or fruit trees).

You will find lots of sample code on the accompanying CD that demonstrates almost every
language and library feature that we discuss. We kept the sample programs purposefully
simple to focus on the major points, but, for the most part, they aren't fake and they don't cut
corners. They should make good starting points for your own code.

Core Java™ 2: Volume I–Fundamentals

8

We assume you are willing, even eager, to learn about all the advanced features that Java puts
at your disposal. For example, we give you a detailed treatment of:

• Object-oriented programming
• Reflection and proxies
• Interfaces and inner classes
• The event listener model
• Graphical user interface design with the Swing UI toolkit
• Exception handling
• Stream input/output and object serialization

We still don't spend much time on the fun but less serious kind of Java programs whose sole
purpose is to liven up your Web page. There are quite a few sources for this kind of material
already—we recommend John Pew's book Instant Java, also published by Sun Microsystems
Press/Prentice Hall.

Finally, with the explosive growth of the Java class library, a one-volume treatment of all the
features of Java that serious programmers need to know is no longer possible. Hence, we
decided to break the book up into two volumes. The first volume, which you hold in your
hands, concentrates on the fundamental concepts of the Java language, along with the basics
of user-interface programming. The second volume goes further into the enterprise features
and advanced user-interface programming. It includes detailed discussions of:

• Multithreading
• Network programming
• Distributed objects
• Collection classes
• Databases
• Advanced graphics
• Advanced GUI components
• Internationalization
• Native methods
• JavaBeans

When writing a book, errors and inaccuracies are inevitable. We'd very much like to know
about them. But, of course, we'd prefer to learn about each of them only once. We have put up
a list of frequently asked questions, bugs fixes, and workarounds in a Web page at
http://www.horstmann.com/corejava.html. Strategically placed at the end of the FAQ (to
encourage you to read through it first) is a form you can use to report bugs and suggest
improvements. Please don't be disappointed if we don't answer every query or if we don't get
back to you immediately. We do read all e-mail and appreciate your input to make future
editions of this book clearer and more informative.

We hope that you find this book enjoyable and helpful in your Java programming.

About This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. We explain what the designers of the language set out to do and to

Core Java™ 2: Volume I–Fundamentals

9

what extent they succeeded. Then, we give a short history of how Java came into being and
how it has evolved.

In Chapter 2, we tell you how to install Java and the companion software for this book from
the CD-ROM onto your computer. Then we guide you through compiling and running three
typical Java programs, a console application, a graphical application, and an applet.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, this is smooth
sailing because the syntax for these language features is essentially the same as in C. If you
come from a non-C background such as Visual Basic or COBOL, you will want to read this
chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming practice, and
Java is completely object oriented. Chapter 4 introduces encapsulation, the first of two
fundamental building blocks of object orientation, and the Java language mechanism to
implement it, that is, classes and methods. In addition to the rules of the Java language, we
also give advice on sound OOP design. Finally, we cover the marvelous javadoc tool that
formats your code comments as a set of hyperlinked web pages. If you are familiar with C++,
then you can browse through this chapter quickly. Programmers coming from a non-object-
oriented background should expect to spend some time mastering OOP concepts before going
further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces the
other, namely, inheritance. Inheritance lets you take an existing class and modify it according
to your needs. This is a fundamental technique for programming in Java. The inheritance
mechanism in Java is quite similar to that in C++. Once again, C++ programmers can focus
on the differences between the languages.

Chapter 6 shows you how to use Java's notion of an interface. Interfaces let you go beyond
the simple inheritance model of Chapter 5. Mastering interfaces allows you full access to the
power of Java's completely object-oriented approach to programming. We also cover a useful
technical feature of Java here. These are called inner classes. Inner classes help make your
code cleaner and more concise.

In Chapter 7, we begin application programming in earnest. We show how you can make
windows, how to paint on them, how to draw with geometric shapes, how to format text in
multiple fonts, and how to display images.

Chapter 8 is a detailed discussion of the event model of the AWT, the abstract windows
toolkit. (We discuss the event model that was added to Java 1.1, not the obsolete and
simplistic 1.0 event model.) You'll see how to write the code that responds to events like
mouse clicks or key presses. Along the way you'll see how to handle basic GUI elements like
buttons and panels.

Chapter 9 discusses the Swing GUI toolkit in great detail. The Swing toolkit is how you can
use Java to build a cross-platform graphical user interface. You'll learn all about the various
kinds of buttons, text components, borders, sliders, list boxes, menus, and dialog boxes.
However, some of the more advanced components are discussed in Volume 2.

Core Java™ 2: Volume I–Fundamentals

10

After you finish Chapter 9, you finally have all mechanisms in place to write applets, those
mini-programs that can live inside a Web page, and so applets are the topic of Chapter 10. We
show you a number of useful and fun applets, but more importantly, we show you what goes
on behind the scenes. And we show you how to use the Java Plug-in that enables you to roll
out applets that take advantage of all the newest Java features, even if your users use old
browsers or browsers made by hostile vendors.

Chapter 11 discusses exception handling, Java's robust mechanism to deal with the fact that
bad things can happen to good programs. For example, a network connection can become
unavailable in the middle of a file download, a disk can fill up, and so on. Exceptions give
you an efficient way of separating the normal processing code from the error handling. Of
course, even after hardening your program by handling all exceptional conditions, it still
might fail to work as expected. In the second half of this chapter, we give you a large number
of useful debugging tips. Finally, we guide you through sample sessions with various tools:
the JDB debugger, the debugger of the Forte development environment, a profiler, a code
coverage testing tool and the AWT robot.

We finish the book with input and output handling. In Java, all I/O is handled through so-
called streams. Streams let you deal in a uniform manner with communicating with any
source of data, such as files, network connections, or memory blocks. We include detailed
coverage of the reader and writer classes, which make it easy to deal with Unicode; and we
show you what goes on under the hood when you use object serialization mechanism, which
makes saving and loading objects easy and convenient.

An appendix lists the Java language keywords.

Conventions

As is common in many computer books, we use courier type to represent computer code.

There are many C++ notes that explain the difference between Java and
C++. You can skip over them if you don't have a background in C++ or if
you consider your experience with that language a bad dream of which
you'd rather not be reminded.

Notes and tips are tagged with “note” and “tip” icons that look like these.

Core Java™ 2: Volume I–Fundamentals

11

When there is danger ahead, we warn you with a “Caution” icon.

Java comes with a large programming library or Application
Programming Interface (API). When using an API call for the first time,
we add a short summary description tagged with an API icon at the end of
the section. These descriptions are a bit more informal, but we hope also
a little more informative than those in the official on-line API
documentation.

Programs whose source code is on the CD-ROM are listed as examples, for instance
Example 2-5: WelcomeApplet.java.

CD-ROM

The CD-ROM on the back of the book contains the latest version of the Java Software
Development Kit. At the time we are writing this, these materials are available only for
Windows 95/NT or Solaris 2.

Of course, the CD-ROM contains all sample code from the book, in compressed form. You
can expand the file either with one of the familiar unzipping programs or simply with the jar
utility that is part of the Java Software Development Kit.

The CD-ROM also contains a small selection of “best of breed” programs that you may find
helpful for your development. Generally, these programs require that you pay the vendors
some amount of money if you use them beyond a trial period. We have no connection with
the vendors, except as satisfied users of their products. Please contact the vendors directly
with any questions you may have about the programs.

NOTE

People have often asked what the licensing requirements for using the
sample code in a commercial situation are. You can freely use any code
from this book for non-commercial use. However, if you do want to use
the code as a basis for a commercial product, we simply require that
every Java programmer on the development team for that project own a
copy of Core Java.

Core Java™ 2: Volume I–Fundamentals

12

Acknowledgments
Writing a book is always a monumental effort, and rewriting doesn't seem to be much easier,
especially with continuous change in Java technology. Making a book a reality takes many
dedicated people, and it is my great pleasure to acknowledge the contributions of the entire
Core Java team.

A large number of individuals at Prentice-Hall PTR, Sun Microsystems Press and Navta Inc.
provided valuable assistance, but they managed to stay behind the scenes. I'd like them all to
know how much I appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench of Prentice-Hall PTR, and his assistant, Mary Treacy, for steering the book through
the writing and production process, and for allowing me to be blissfully unaware of the
existence of all those folks behind the scenes. My thanks also to my co-author of earlier
editions, Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported many embarrassing errors and
made lots of thoughtful suggestions for improvement. I am particularly grateful to the
excellent reviewing team that went over the manuscript with an amazing eye for detail and
saved me from many more embarrassing errors. The reviewers are: Bob Lynch, Bradley A.
Smith, Paul E. Sevinc from Teamup AG, Mark Morrissey from the Oregon Graduate Institute,
Peter Sander from ESSI University, Nice, France, and Chuck Allison, Contributing Editor,
C/C++ Users Journal.

Most importantly, my love, gratitude, and apologies go to my wife Hui-Chen and my children
Thomas and Nina for their continuing support of this never-ending project.

Cay Horstmann

Cupertino, November 2000

Core Java™ 2: Volume I–Fundamentals

13

Chapter 1. An Introduction to Java
• Java as a Programming Tool
• Advantages of Java
• The Java “White Paper” Buzzwords
• Java and the Internet
• A Short History of Java
• Common Misconceptions about Java

For a long time, to open a computer magazine that did not have a feature article on Java
seemed impossible. Even mainstream newspapers and magazines like The New York Times,
The Washington Post, and Business Week have run numerous articles on Java. It gets better
(or worse, depending on your perspective): can you remember the last time National Public
Radio ran a 10-minute story on a computer language? Or a $100,000,000 venture capital fund
was set up solely for products produced using a specific computer language? CNN, CNBC,
you name the mass medium, it seems everyone was, and to a certain extent still is, talking
about how Java will do this or Java will do that.

However, we decided to write this book for serious programmers, and because Java is a
serious programming language, there's a lot to tell. So, rather than immediately getting caught
up in an analysis of the Java hype and trying to deal with the limited (if still interesting) truth
behind the hype, we will write in some detail about Java as a programming language
(including, of course, the features added for its use on the Internet that started the hype). After
that, we will try to separate current fact from fancy by explaining what Java can and cannot
do.

In the early days of Java, there was a huge disconnect between the hype and the actual
abilities of Java. As Java is maturing, the technology is becoming a lot more stable and
reliable, and expectations are coming down to reasonable levels. As we write this, Java is
being increasingly used for “middleware” to communicate between clients and server
resources such as databases. While not glitzy, this is an important area where Java, primarily
due to its portability and multithreading and networking capabilities, can add real value. Java
is making great inroads in embedded systems, where it is well positioned to become
a standard for hand-held devices, Internet kiosks, car computers, and so on. However, early
attempts to rewrite familiar PC programs in Java were not encouraging—the applications
were underpowered and slow. With the current version of Java, some of these problems have
been overcome, but still, users don't generally care what programming language was used to
write their applications. We think that the benefits of Java will come from new kinds of
devices and applications, not from rewriting existing ones.

Java as a Programming Tool

As a computer language, Java's hype is overdone: Java is certainly a good programming
language. There is no doubt that it is one of the better languages available to serious
programmers. We think it could potentially have been a great programming language, but it is
probably too late for that. Once a language is out in the field, the ugly reality of compatibility
with existing code sets in. Moreover, even in cases where changes are possible without
breaking existing code, it is hard for the creators of a language as acclaimed as Java to sit
back and say, “Well, maybe we were wrong about X, and Y would be better.” In sum, while

Core Java™ 2: Volume I–Fundamentals

14

we expect there to be some improvements over time, basically, the structure of the Java
language tomorrow will be much the same as it is today.

Having said that, the obvious question is, Where did the dramatic improvements of Java come
from? The answer is that they didn't come from changes to the underlying Java programming
language, they came from major changes in the Java libraries. Over time, Sun Microsystems
changed everything from the names of many of the library functions (to make them more
consistent), to how graphics works (by changing the event handling model and rewriting parts
from scratch), to adding important features like printing that were not part of Java 1.0.
The result is a far more useful programming platform that has become enormously more
capable and useful than early versions of Java.

NOTE

Microsoft has released a product called J++ that shares a family
relationship with Java. Like Java, J++ is interpreted by a virtual machine
that is compatible with the Java Virtual Machine for executing Java
bytecodes, but there are substantial differences when interfacing with
external code. The basic language syntax is almost identical to Java.
However, Microsoft added language constructs that are of doubtful
utility except for interfacing with the Windows API. In addition to Java
and J++ sharing a common syntax, their foundational libraries (strings,
utilities, networking, multithreading, math, and so on) are essentially
identical. However, the libraries for graphics, user interfaces, and remote
object access are completely different. At this point, Microsoft is no
longer supporting J++ but has instead introduced another language called
C# that also has many similarities with Java but uses a different virtual
machine. We do not cover J++ or C# in this book.

Advantages of Java

One obvious advantage is a runtime environment that provides platform independence: you
can use the same code on Windows, Solaris, Linux, Macintosh, and so on. This is certainly
necessary when programs are downloaded over the Internet to run on a variety of platforms.

Another programming advantage is that Java has a syntax similar to that of C++, making it
easy for C and C++ programmers to learn. Then again, Visual Basic programmers will
probably find the syntax annoying.

NOTE

If you are coming from a language other than C++, some of the terms
used in this section will be less familiar—just skip those sections. You
will be comfortable with all of these terms by the end of Chapter 6.

Core Java™ 2: Volume I–Fundamentals

15

Java is also fully object oriented—even more so than C++. Everything in Java, except for a
few basic types like numbers, is an object. (Object-oriented programming has replaced earlier
structured techniques because it has many advantages for dealing with sophisticated projects.
If you are not familiar with Object-oriented programming, Chapters 3 through 6 provide what
you need to know.)

However, having yet another, somewhat improved, dialect of C++ would not be enough. The
key point is this: It is far easier to turn out bug-free code using Java than using C++.

Why? The designers of Java thought hard about what makes C++ code so buggy. They added
features to Java that eliminate the possibility of creating code with the most common kinds of
bugs.

• The Java designers eliminated manual memory allocation and deallocation.

Memory in Java is automatically garbage collected. You never have to worry about
memory corruption.

• They introduced true arrays and eliminated pointer arithmetic.

You never have to worry about overwriting an area of memory because of an off-by-
one error when working with a pointer.

• They eliminated the possibility of confusing an assignment with a test for equality in a
conditional statement.

You cannot even compile if (ntries = 3). . . . (Visual Basic programmers may
not see the problem, but, trust us, this is a common source of confusion in C/C++
code.)

• They eliminated multiple inheritance, replacing it with a new notion of interface that
they derived from Objective C.

Interfaces give you most of what you want from multiple inheritance, without the
complexity that comes with managing multiple inheritance hierarchies. (If inheritance
is a new concept for you, Chapter 5 will explain it.)

NOTE

The Java language specification is public. You can find it on the Web at
http://java.sun.com/docs/books/jls/html/index.html.

The Java “White Paper” Buzzwords

The authors of Java have written an influential White Paper that explains their design goals
and accomplishments. Their paper is organized along the following eleven buzzwords:

Core Java™ 2: Volume I–Fundamentals

16

Simple Portable
Object Oriented Interpreted
Distributed High Performance
Robust Multithreaded
Secure Dynamic
Architecture Neutral

We touched on some of these points in the last section. In this section, we will:

• Summarize via excerpts from the White Paper what the Java designers say about each
buzzword, and

• Tell you what we think of that particular buzzword, based on our experiences with the
current version of Java.

NOTE

As we write this, the White Paper can be found at
http://java.sun.com/doc/language_environment.

Simple

We wanted to build a system that could be programmed easily without a lot of
esoteric training and which leveraged today's standard practice. So even
though we found that C++ was unsuitable, we designed Java as closely to
C++ as possible in order to make the system more comprehensible. Java omits
many rarely used, poorly understood, confusing features of C++ that, in our
experience, bring more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no need
for header files, pointer arithmetic (or even a pointer syntax), structures, unions, operator
overloading, virtual base classes, and so on. (See the C++ notes interspersed throughout the
text for more on the differences between Java and C++.) The designers did not, however,
attempt to fix all of the clumsy features of C++. For example, the syntax of the switch
statement is unchanged in Java. If you know C++, you will find the transition to the Java
syntax easy.

If you are used to a visual programming environment (such as Visual Basic), you will not find
Java simple. There is much strange syntax (though it does not take long to get the hang of it).
More importantly, you must do a lot more programming in Java. The beauty of Visual Basic
is that its visual design environment provides a lot of the infrastructure for an application
almost automatically. The equivalent functionality must be programmed manually, usually
with a fair bit of code, in Java. There are, however, third-party development environments
that provide “drag-and-drop” style program development.

Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone in small

Core Java™ 2: Volume I–Fundamentals

17

machines. The size of the basic interpreter and class support is about 40K
bytes; adding the basic standard libraries and thread support (essentially a
self-contained microkernel) adds an additional 175K.

This is a great achievement. Note, however, that the graphical user interface (GUI) libraries
are significantly larger.

Object Oriented

Simply stated, object-oriented design is a technique for programming that
focuses on the data (= objects) and on the interfaces to that object. To make an
analogy with carpentry, an “object-oriented” carpenter would be mostly
concerned with the chair he was building, and secondarily with the tools used
to make it; a “non-object-oriented” carpenter would think primarily of his
tools. The object-oriented facilities of Java are essentially those of C++.

Object orientation has proven its worth in the last 30 years, and it is inconceivable that a
modern programming language would not use it. Indeed, the object-oriented features of Java
are comparable to C++. The major difference between Java and C++ lies in multiple
inheritance, for which Java has found a better solution, and in the Java metaclass model. The
reflection mechanism (see Chapter 5) and object serialization feature (see Chapter 12) make it
much easier to implement persistent objects and GUI builders that can integrate off-the-shelf
components.

NOTE

If you do not have any experience with object-oriented programming
languages, you will want to carefully read Chapters 4 through 6. These
chapters explain what object-oriented programming is and why it is more
useful for programming sophisticated projects than traditional,
procedure-oriented languages like C or Basic.

Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net
via URLs with the same ease as when accessing a local file system.

We have found the networking capabilities of Java to be both strong and easy to use. Anyone
who has tried to do Internet programming using another language will revel in how simple
Java makes onerous tasks like opening a socket connection. An elegant mechanism, called
servlets, makes server-side processing in Java extremely efficient. Many popular web servers
support servlets. (We will cover networking in Volume 2 of this book.) The remote method
invocation mechanism enables communication between distributed objects (also covered in
Volume 2).

Core Java™ 2: Volume I–Fundamentals

18

Robust

Java is intended for writing programs that must be reliable in a variety of
ways. Java puts a lot of emphasis on early checking for possible problems,
later dynamic (run-time) checking, and eliminating situations that are error-
prone… . The single biggest difference between Java and C/C++ is that Java
has a pointer model that eliminates the possibility of overwriting memory and
corrupting data

This feature is also very useful. The Java compiler detects many problems that, in other
languages, would show up only at run time. As for the second point, anyone who has spent
hours chasing memory corruption caused by a pointer bug will be very happy with this feature
of Java.

If you are coming from a language like Visual Basic or Cobol that doesn't explicitly use
pointers, you are probably wondering why this is so important. C programmers are not so
lucky. They need pointers to access strings, arrays, objects, even files. In Visual Basic, you do
not use pointers for any of these entities, nor do you need to worry about memory allocation
for them. On the other hand, there are many data structures that are difficult to implement in a
pointerless language. Java gives you the best of both worlds. You do not need pointers for
everyday constructs like strings and arrays. You have the power of pointers if you need it, for
example, for linked lists. And you always have complete safety, since you can never access a
bad pointer, make memory allocation errors, or have to protect against memory leaking away.

Secure

Java is intended to be used in networked/distributed environments. Toward
that end, a lot of emphasis has been placed on security. Java enables the
construction of virus-free, tamper-free systems.

In the first edition of Core Java we said: “Well, one should 'never say never again,'” and we
turned out to be right. A group of security experts at Princeton University found the first bugs
in the security features of Java 1.0—not long after the first version of the Java Development
Kit was shipped. Moreover, they and various other people have continued to find other bugs
in the security mechanisms of all subsequent versions of Java. For opinions from outside
experts on the current status of Java's security mechanisms, you may want to check the URL
for the Princeton group (http://www.cs.princeton.edu/sip/) and the comp.risks newsgroup.
The good side is that the Java team has said that they will have a “zero tolerance” for security
bugs and will immediately go to work on fixing any bugs found in the applet security
mechanism. In particular, by making public the internal specifications of how the Java
interpreter works, Sun is making it far easier for people to find any bugs in Java's security
features—essentially enlisting the outside community in the ever-so-subtle security bug
detection. This makes one more confident that security bugs will be found as soon as possible.
In any case, Java makes it extremely difficult to outwit its security mechanisms. The bugs
found so far have been very subtle and (relatively) few in number.

Core Java™ 2: Volume I–Fundamentals

19

NOTE

Sun's URL for security-related issues is currently at
http://java.sun.com/sfaq/

Here is a sample of what Java's security features are supposed to keep a Java program from
doing:

1. Overrunning the runtime stack, like the infamous Internet worm did
2. Corrupting memory outside its own process space
3. Reading or writing local files when invoked through a security-conscious class loader,

like a Web browser that has been programmed to forbid this kind of access

All of these features are in place and for the most part seem to work as intended. Java is
certainly the most secure programming language to date. But, caution is always in order.
Though the bugs found in the security mechanism to date were not trivial to find and full
details are often kept secret, still it may be impossible to prove that Java is secure.

A number of security features have been added to Java over time. Since version 1.1, Java has
the notion of digitally signed classes (see Volume 2). With a signed class, you can be sure of
who wrote it. Any time you trust the author of the class, the class can be allowed more
privileges on your machine.

NOTE

A competing code delivery mechanism from Microsoft based on its
ActiveX technology relies on digital signatures alone for security.
Clearly this is not sufficient—as any user of Microsoft's own products
can confirm, programs from well-known vendors do crash and in so
doing, create damage. Java has a far stronger security model than
ActiveX since it controls the application as it runs and stops it from
wreaking havoc.

Architecture Neutral

The compiler generates an architecture-neutral object file format—the
compiled code is executable on many processors, given the presence of the
Java run time system. The Java compiler does this by generating bytecode
instructions which have nothing to do with a particular computer architecture.
Rather, they are designed to be both easy to interpret on any machine and
easily translated into native machine code on the fly.

This is not a new idea. More than twenty years ago, both Niklaus Wirth's original
implementation of Pascal and the UCSD Pascal system used the same technique. With the use
of bytecodes, performance takes a major hit (but just-in-time compilation mitigates this in

Core Java™ 2: Volume I–Fundamentals

20

many cases). The designers of Java did an excellent job developing a bytecode instruction set
that works well on today's most common computer architectures. And the codes have been
designed to translate easily into actual machine instructions.

Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the
behavior of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a 16-bit
integer, a 32-bit integer, or any other size that the compiler vendor likes. The only restriction
is that the int type must have at least as many bytes as a short int and cannot have more
bytes than a long int. Having a fixed size for number types eliminates a major porting
headache. Binary data is stored and transmitted in a fixed format, eliminating the “big
endian/little endian” confusion. Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For
example, there is an abstract Window class and implementations of it for
UNIX, Windows, and the Macintosh.

As anyone who has ever tried knows, it is an effort of heroic proportions to write a program
that looks good on Windows, the Macintosh, and 10 flavors of UNIX. Java 1.0 made the
heroic effort, delivering a simple toolkit that mapped common user-interface elements to a
number of platforms. Unfortunately, the result was a library that, with a lot of work, could
give barely acceptable results on different systems. (And there were often different bugs on
the different platform graphics implementations.) But it was a start. There are many
applications in which portability is more important than user interface slickness, and these
applications did benefit from early versions of Java. By now, the user interface toolkit has
been completely rewritten so that it no longer relies on the host user interface. The result is far
more consistent and, we think, more attractive than in earlier versions of Java.

Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter has been ported. Since linking is a more incremental and
lightweight process, the development process can be much more rapid and
exploratory.

Perhaps this is an advantage while developing an application, but it is clearly overstated. In
any case, we have found the Java compiler that comes with the Java Software Development
Kit (SDK) to be quite slow. (Some third party compilers, for example those by IBM, are quite
a bit faster.) And recompilation speed is only one of the ingredients of a development
environment with fast turnaround. If you are used to the speed of the development cycle of
Visual Basic, you will likely be disappointed with the performance of Java development
environments.

Core Java™ 2: Volume I–Fundamentals

21

High Performance

While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can
be translated on the fly (at run time) into machine code for the particular CPU
the application is running on.

If you use an interpreter to execute the bytecodes, “high performance” is not the term that we
would use. However, on many platforms, there is also another form of compilation, the just-
in-time (JIT) compilers. These work by compiling the bytecodes into native code once,
caching the results, and then calling them again if needed. This approach speeds up
commonly used code tremendously since one has to do the interpretation only once. Although
still slightly slower than a true native code compiler, a just-in-time compiler can give you a
10- or even 20-fold speedup for some programs and will almost always be significantly faster
than the Java interpreter. This technology is being improved continuously and may eventually
yield results that cannot be matched by traditional compilation systems. For example, a just-
in-time compiler can monitor which code is executed frequently and optimize just that code
for speed.

Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-
time behavior.

If you have ever tried to do multithreading in another language, you will be pleasantly
surprised at how easy it is in Java. Threads in Java also have the capacity to take advantage of
multiprocessor systems if the base operating system does so. On the downside, thread
implementations on the major platforms differ widely, and Java makes no effort to be
platform independent in this regard. Only the code for calling multithreading remains the
same across machines; Java offloads the implementation of multithreading to the underlying
operating system or a thread library. (Threading will be covered in volume 2.) Nonetheless,
the ease of multithreading is one of the main reasons why Java is such an appealing language
for server-side development.

Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new
methods and instance variables without any effect on their clients. In Java,
finding out run time type information is straightforward.

This is an important feature in those situations where code needs to be added to a running
program. A prime example is code that is downloaded from the Internet to run in a browser.
In Java 1.0, finding out runtime type information was anything but straightforward, but
current versions of Java give the programmer full insight into both the structure and behavior
of its objects. This is extremely useful for systems that need to analyze objects at run time
such as Java GUI builders, smart debuggers, pluggable components, and object databases.

Core Java™ 2: Volume I–Fundamentals

22

Java and the Internet

The idea here is simple: users will download Java bytecodes from the Internet and run them
on their own machines. Java programs that work on Web pages are called applets. To use an
applet, you need a Java-enabled Web browser, which will interpret the bytecodes for you.
Because Sun is licensing the Java source code and insisting that there be no changes in the
language and basic library structure, you can be sure that a Java applet will run on any
browser that is advertised as Java enabled. Note that Netscape 2.x and Netscape 3.x are only
Java 1.02 enabled, as is Internet Explorer 3.0. Netscape 4 and Internet Explorer 4 run
different subsets of Java 1.1. This sorry situation made it increasingly difficult to develop
applets that take advantage of the most current Java version. To remedy this problem, Sun has
developed the Java Plug-in, a tool that makes the newest Java runtime environment available
to both Netscape and Internet Explorer (see Chapter 10).

We suspect that most of the initial hype around Java stemmed from the lure of making money
from special-purpose applet software. You have a nifty “Will Writer” program. Convert it to
an applet, and charge people per use—presumably, most people would be using this kind of
program infrequently. Some people predict a time when everyone downloads software from
the Net on a per-use basis. This might be great for software companies, but we think it is
absurd, for example, to expect people to download and pay for a spell-checker applet each
time they send an e-mail message.

Another early suggested use for applets was for so-called content and protocol handlers that
allow a Java-enabled Web browser to deal with new types of information dynamically.
Suppose you invent a new fractal compression algorithm for dealing with humongous
graphics files and want to let someone sample your technology before you charge them big
bucks for it. Write a Java content handler that does the decompression and send it along with
the compressed files. The HotJava browser by Sun Microsystems supports this feature, but
neither Netscape nor Internet Explorer ever did.

Applets can also be used to add buttons and input fields to a Web page. But downloading
those applets over a dialup line is slow, and you can do much of the same with Dynamic
HTML, HTML forms, and a scripting language such as JavaScript. And, of course, early
applets were used for animation: the familiar spinning globes, dancing cartoon characters,
nervous text, and so on. But animated GIFs can do much of this, and Dynamic HTML
combined with scripting can do even more of what Java applets were first used for.

As a result of the browser incompatibilities and the inconvenience of downloading applet
code through slow net connections, applets on Internet Web pages have not become a huge
success. The situation is entirely different on intranets. There are typically no bandwidth
problems, so the download time for applets is no issue. And in an intranet, it is possible to
control which browser is being used or to use the Java Plug-in consistently. Employees can't
misplace or misconfigure programs that are delivered through the Web with each use, and the
system administrator never needs to walk around and upgrade code on client machines. Many
corporations have rolled out programs such as inventory checking, vacation planning, travel
reimbursement, and so on, as applets that use the browser as the delivery platform.

Core Java™ 2: Volume I–Fundamentals

23

Applets at Work

This book includes a few sample applets; ultimately, the best source for applets is the Web
itself. Some applets on the Web can only be seen at work; many others include the source
code. When you become more familiar with Java, these applets can be a great way to learn
more about Java. A good Web site to check for Java applets is Gamelan—it is now hosted as
part of the developer.com site, but you can still reach it through the URL
http://www.gamelan.com/. (By the way, gamelan also stands for a special type of Javanese
musical orchestra. Attend a gamelan performance if you have a chance—it is gorgeous
music.)

When the user downloads an applet, it works much like embedding an image in a Web page.
(For those who know HTML, we mean one set with an IMG tag.) The applet becomes a part
of the page, and the text flows around the space used for the applet. The point is, the image is
alive. It reacts to user commands, changes its appearance, and sends data between the
computer viewing the applet and the computer serving it.

Figure 1-1 shows a good example of a dynamic web page that carries out sophisticated
calculations, an applet to view molecules. By using the mouse, you can rotate and zoom each
molecule to better understand its structure. This kind of direct manipulation is not achievable
with static web pages, but applets make it possible. (You can find the applet at
http://www.openscience.org/jmol/JmolApplet.html.)

Figure 1-1. The Jmol applet

Server-side Java

At the time of this writing, the pendulum has swung back from client-focused programs to
server-side programming. In particular, application servers can use the monitoring
capabilities of the Java virtual machine to perform automatic load balancing, database
connection pooling, object synchronization, safe shutdown and restart, and other services that

Core Java™ 2: Volume I–Fundamentals

24

are needed for scalable server applications but are notoriously difficult to implement
correctly. Thus, application programmers can buy rather than build these sophisticated
mechanisms. This increases programmer productivity—programmers focus on their core
competency, the business logic of their programs, and not on tweaking server performance.

A Short History of Java

This section gives a short history of Java's evolution. It is based on various published sources
(most importantly, on an interview with Java's creators in the July 1995 issue of SunWorld's
on-line magazine).

Java goes back to 1991, when a group of Sun engineers, led by Patrick Naughton and Sun
Fellow (and all-around computer wizard) James Gosling, wanted to design a small computer
language that could be used for consumer devices like cable TV switchboxes. Since these
devices do not have a lot of power or memory, the language had to be small and generate very
tight code. Also, because different manufacturers may choose different central processing
units (CPUs), it was important not to be tied down to any single architecture. The project got
the code name “Green.”

The requirements for small, tight, and platform-neutral code led the team to resurrect the
model that some Pascal implementations tried in the early days of PCs. What Niklaus Wirth,
the inventor of Pascal, had pioneered, and UCSD Pascal did commercially, was to design a
portable language that generated intermediate code for a hypothetical machine. (These are
often called virtual machines—hence, the Java Virtual Machine or JVM.) This intermediate
code could then be used on any machine that had the correct interpreter. The Green project
engineers used a virtual machine as well, so this solved their main problem.

The Sun people, however, come from a UNIX background, so they based their language on
C++ rather than Pascal. In particular, they made the language object oriented rather than
procedure oriented. But, as Gosling says in the interview, “All along, the language was a tool,
not the end.” Gosling decided to call his language “Oak.” (Presumably because he liked the
look of an oak tree that was right outside his window at Sun.) The people at Sun later realized
that Oak was the name of an existing computer language, so they changed the name to Java.

In 1992, the Green project delivered its first product, called “*7.” It was an extremely
intelligent remote control. (It had the power of a SPARCstation in a box that was 6 inches by
4 inches by 4 inches.) Unfortunately, no one was interested in producing this at Sun, and the
Green people had to find other ways to market their technology. However, none of the
standard consumer electronics companies were interested. The group then bid on a project to
design a cable TV box that could deal with new cable services such as video on demand. They
did not get the contract. (Amusingly, the company that did was led by the same Jim Clark
who started Netscape—a company that did much to make Java successful.)

The Green project (with a new name of “First Person, Inc.”) spent all of 1993 and half of
1994 looking for people to buy its technology—no one was found. (Patrick Naughton, one of
the founders of the group and the person who ended up doing most of the marketing, claims to
have accumulated 300,000 air miles in trying to sell the technology.) First Person was
dissolved in 1994.

Core Java™ 2: Volume I–Fundamentals

25

While all of this was going on at Sun, the World Wide Web part of the Internet was growing
bigger and bigger. The key to the Web is the browser that translates the hypertext page to the
screen. In 1994, most people were using Mosaic, a noncommercial Web browser that came
out of the supercomputing center at the University of Illinois in 1993. (Mosaic was partially
written by Marc Andreessen for $6.85 an hour as an undergraduate student on a work-study
project. He moved on to fame and fortune as one of the cofounders and the chief of
technology at Netscape.)

In the SunWorld interview, Gosling says that in mid-1994, the language developers realized
that “We could build a real cool browser. It was one of the few things in the client/server
mainstream that needed some of the weird things we'd done: architecture neutral, real-time,
reliable, secure—issues that weren't terribly important in the workstation world. So we built a
browser.”

The actual browser was built by Patrick Naughton and Jonathan Payne and evolved into the
HotJava browser that we have today. The HotJava browser was written in Java to show off the
power of Java. But the builders also had in mind the power of what are now called applets, so
they made the browser capable of executing code inside web pages. This “proof of
technology” was shown at SunWorld '95 on May 23, 1995, and inspired the Java craze that
continues unabated today.

The big breakthrough for widespread Java use came in the fall of 1995, when Netscape
decided to make the Navigator browser Java enabled in January 1996. Other licensees include
IBM, Symantec, Inprise, and many others. Even Microsoft has licensed Java. Internet
Explorer is Java enabled, and Windows ships with a Java virtual machine. (Note that
Microsoft does not support the most current version of Java, however, and that its
implementation differs from the Java standard.)

Sun released the first version of Java in early 1996. It was followed by Java 1.02 a couple of
months later. People quickly realized that Java 1.02 was not going to cut it for serious
application development. Sure, you could use Java 1.02 to make a nervous text applet that
moves text randomly around in a canvas. But you couldn't even print in Java 1.02. To be
blunt, Java 1.02 was not ready for prime time.

The big announcements about Java's future features trickled out over the first few months of
1996. Only at the JavaOne conference held in San Francisco in May of 1996 did the bigger
picture of where Java was going become clearer. At JavaOne the people at Sun Microsystems
outlined their vision of the future of Java with a seemingly endless stream of improvements
and new libraries.

The big news of the 1998 JavaOne conference was the upcoming release of Java 1.2, which
replaces the early toy-like GUI and graphics toolkits with sophisticated and scalable versions
that come a lot closer to the promise of “Write Once, Run Anywhere”™ than their
predecessors. Three days after (!) its release in December 1998, the name was changed to
Java 2.

Since then, the core Java platform has stabilized. The current release, with the catchy name
Java 2 Software Development Kit, Standard Edition version 1.3, is an incremental
improvement over the initial Java 2 release, with a small number of new features, increased
performance and, of course, quite a few bug fixes. Now that a stable foundation exists,

Core Java™ 2: Volume I–Fundamentals

26

innovation has shifted to advanced Java libraries such as the Java 2 Enterprise Edition and the
Java 2 Micro Edition.

Common Misconceptions About Java

In summary, what follows is a list of some common misconceptions about Java, along with
commentary.

Java is an extension of HTML.

Java is a programming language; HTML is a way to describe the structure of a Web page.
They have nothing in common except that there are HTML extensions for placing Java
applets on a Web page.

Java is an easy programming language to learn.

No programming language as powerful as Java is easy. You always have to distinguish
between how easy it is to write toy programs and how hard it is to do serious work. Also,
consider that only four chapters in this book discuss the Java language. The remaining
chapters of both volumes show how to put the language to work, using the Java libraries. The
Java libraries contain thousands of classes and interfaces, and tens of thousands of functions.
Luckily, you do not need to know every one of them, but you do need to know surprisingly
many to use Java for anything realistic.

Java is an easy environment in which to program.

The Java SDK is not an easy environment to use—except for people who are accustomed to
command-line tools. There are integrated development environments that feature integrated
editors, compilers, drag-and-drop form designers combined with decent debugging facilities,
but they can be somewhat complex and daunting for the newcomer. They also work by
generating what is often hundreds of lines of code. We don't think you are well served when
first learning Java by starting with hundreds of lines of computer-generated UI code filled
with comments that say DO NOT MODIFY or the equivalent. We have found in teach ing
Java that using your favorite text editor is still the best way to learn Java, and that is what we
will do.

Java will become a universal programming language for all platforms.

This is possible, in theory, and it is certainly the case that every vendor but Microsoft seems
to want this to happen. However, there are many applications, already working perfectly well
on desktops, that would not work well on other devices or inside a browser. Also, these
applications have been written to take advantage of the speed of the processor and the native
user-interface library and have been ported to all of the important platforms anyway. Among
these kinds of applications are word processors, photo editors, and web browsers. They are
typically written in C or C++, and we see no benefit to the end user in rewriting them in Java.
And, at least in the short run, there would be significant disadvantages since the Java version
is likely to be slower and less powerful.

Core Java™ 2: Volume I–Fundamentals

27

Java is just another programming language.

Java is a nice programming language; most programmers prefer it over C or C++. But there
have been hundreds of nice programming languages that never gained widespread popularity,
whereas languages with obvious flaws, such as C++ and Visual Basic, have been wildly
successful.

Why? The success of a programming language is determined far more by the utility of the
support system surrounding it than by the elegance of its syntax. Are there useful, convenient,
and standard libraries for the features that you need to implement? Are there tool vendors that
build great programming and debugging environments? Does the language and the tool set
integrate with the rest of the computing infrastructure? Java is successful on the server
because its class libraries let you easily do things that were hard before, such as networking
and multithreading. The fact that Java reduces pointer errors is a bonus and so programmers
seem to be more productive with Java, but these are not the source of its success.

This is an important point that one vendor in particular—who sees portable libraries as a
threat—tries to ignore, by labeling Java “just a programming language” and by supplying a
system that uses a derivative of Java and a proprietary and nonportable library. The result may
well be a very nice language that is a direct competitor to Visual Basic but has little to do with
Java.

Java is interpreted, so it is too slow for serious applications on a specific platform.

Many programs spend most of their time on things like user-interface interactions or waiting
for data from a network connection. All programs, no matter what language they are written
in, will detect a mouse click in adequate time. It is true that we would not do CPU-intensive
tasks with the interpreter supplied with the Java SDK. However, on platforms where a just-in-
time compiler is available, all you need to do is run the bytecodes through it and most
performance issues simply go away. Finally, Java is great for network-bound programs.
Experience has shown that Java can comfortably keep up with the data rate of a network
connection, even when doing computationally intensive work such as encryption. As long as
Java is faster than the data that it processes, it does not matter that C++ might be faster still.
Java is easier to program, and it is portable. This makes Java a great language for
implementing network services.

All Java programs run inside a Web page.

All Java applets run inside a Web browser. That is the definition of an applet—a Java
program running inside a browser. But it is entirely possible, and quite useful, to write stand-
alone Java programs that run independently of a Web browser. These programs (usually
called applications) are completely portable. Just take the code and run it on another machine!
And because Java is more convenient and less error-prone than raw C++, it is a good choice
for writing programs. It is an even more compelling choice when it is combined with database
access tools like Java Database Connectivity (see Volume 2). It is certainly the obvious choice
for a first language in which to learn programming.

Most of the programs in this book are stand-alone programs. Sure, applets are fun. But stand-
alone Java programs are more important and more useful in practice.

Core Java™ 2: Volume I–Fundamentals

28

Java applets are a major security risk.

There have been some well-publicized reports of failures in the Java security system. Most
have been in the implementation of Java in a specific browser. Researchers viewed it as a
challenge to try to find chinks in the Java armor and to defy the strength and sophistication of
the applet security model. The technical failures that they found have all been quickly
corrected, and to our knowledge, no actual systems were ever compromised. To keep this in
perspective, consider the literally millions of virus attacks in Windows executable files and
Word macros that cause real grief but surprisingly little criticism of the weaknesses of the
attacked platform. Also, the ActiveX mechanism in Internet Explorer would be a fertile
ground for abuse, but it is so boringly obvious how to circumvent it that few have bothered to
publicize their findings.

Some system administrators have even deactivated Java in company browsers, while
continuing to permit their users to download executable files, ActiveX controls, and Word
documents. That is pretty ridiculous—currently, the risk of being attacked by hostile Java
applets is perhaps comparable to the risk of dying from a plane crash; the risk of being
infected by opening Word documents is comparable to the risk of dying while crossing a busy
freeway on foot.

JavaScript is a simpler version of Java.

JavaScript, a scripting language that can be used inside Web pages, was invented by Netscape
and originally called LiveScript. JavaScript has a syntax that is reminiscent of Java, but
otherwise there are no relationships (except for the name, of course). A subset of JavaScript is
standardized as ECMA-262, but the extensions that you need for real work have not been
standardized, and as a result, writing JavaScript code that runs both in Netscape and Internet
Explorer is an exercise in frustration.

You should use Java instead of Perl for CGI scripting.

This is half right. Not only should you no longer use Perl, you should also not use CGI scripts
for server-side processing. Java servlets are a superior solution. Servlets execute much more
efficiently than CGI scripts, and you can use Java— a real programming language—to
implement them.

Java will revolutionize client-server computing.

This is possible and it is where much of the best work in Java is being done. There are quite a
few application servers such as BEA Weblogic that are built entirely in Java. The JDBC
discussed in Volume 2 certainly makes using Java for client-server development easier. As
third-party tools continue to be developed, we expect database development with Java to be as
easy as the Net library makes network programming. Accessing remote objects is
significantly easier in Java than in C++ (see Volume 2).

Java will allow the component-based model of computing to take off.

No two people mean the same thing when they talk about components. Regarding visual
controls, like ActiveX components that can be dropped into a GUI program, Java 1.1 includes
the JavaBeans initiative (see Volume 2). Java beans can do the same sorts of things as

Core Java™ 2: Volume I–Fundamentals

29

ActiveX components except they are automatically cross-platform. On the server side,
reusable enterprise beans can potentially be deployed in a wide variety of application servers.
It is possible that a market for these components will materialize, similar to the market of
ActiveX components in the Wintel world.

With Java, I can replace my computer with a $500 “Internet appliance.”

Some people are betting big that this is going to happen. We believe it is pretty absurd to
think that home users are going to give up a powerful and convenient desktop for a limited
machine with no local storage. However, a Java-powered network computer is a viable option
for a “zero administration initiative” to cut the costs of computer ownership in a business.

We also see an Internet appliance as a portable adjunct to a desktop. Provided the price is
right, wouldn't you rather have an Internet-enabled device with a screen on which to read your
e-mail or see the news? Because the Java kernel is so small, Java is the obvious choice for
such a telephone or other Internet “appliance.”

Core Java™ 2: Volume I–Fundamentals

30

Chapter 2. The Java Programming Environment
• Installing the Java Software Development Kit
• Development Environments
• Using the Command Line Tools
• Using an Integrated Development Environment
• Compiling and Running Programs from a Text Editor
• Graphical Applications
• Applets

In this chapter, you will learn how to install the Java Software Development Kit (SDK) and
how to compile and run various types of programs: console programs, graphical applications,
and applets. You run the SDK tools by typing commands in a shell window. However, many
programmers prefer the comfort of an integrated development environment. We show you
how to use the freely available Forte environment to compile and run Java programs. There
are many other environments for developing Java applications with similar user interfaces.
While easier to learn and use, integrated development environments take a long time to load
and require heavy resources. As a middle ground, you may want to use a text editor that can
call the Java compiler and interpreter. We show you a couple of text editors with Java
integration. Once you have mastered the techniques in this chapter and picked your
development tools, you are ready to move on to Chapter 3, where you will begin exploring
the Java programming language.

NOTE

A good, general source of information on Java can be found via the links
on the Java frequently asked questions (FAQ) page:
http://java.sun.com/people/linden/intro.html.

Installing the Java Software Development Kit

The most complete versions of Java are available for Sun's Solaris 2.x, Windows NT/2000, or
Windows 95/98. (We will refer to these platforms collectively as “Windows.” Note that this
does not include Windows 3.1.) Versions of Java in various states of development exist for
Linux, OS/2, Macintosh, Windows 3.1, and many other platforms.

The CD that accompanies this book contains a version of the Java SDK for Windows and
Solaris. You can also download versions of the Java SDK for other platforms. Installation
directions differ on each platform.

NOTE

Only the installation and compilation instructions for Java are system
dependent. Once you get Java up and running, everything else in this
book should apply to you. System independence is a major benefit of
Java.

Core Java™ 2: Volume I–Fundamentals

31

On Windows, simply run the self-installing executable file. On Solaris, look inside the
compressed tar file for a README file. For other platforms, you'll need to consult the
platform-specific installation instructions.

NOTE

The setup procedure offers a default for the installation directory that
contains the Java SDK version number, such as jdk1.2.3. If you prefer,
you can change the installation directory to jdk. However, if you are a
Java enthusiast who enjoys collecting different versions of the Java SDK,
go ahead and accept the default. In this book, we will refer to the
installation directory as jdk. For example, when we refer to the jdk/bin
directory, we mean the directory named bin under the Java SDK
installation directory. Also note that we use UNIX style directory names.
Under Windows, you'll have to use backslashes and drive letters such as
c:\jdk\bin.

Setting the Execution Path

After you are done installing the Java SDK, you need to carry out one additional step: add the
jdk/bin directory to the execution path, the list of directories that the operating system
traverses to locate executable files. Directions for this step also vary among operating
systems.

• In UNIX (including Solaris or Linux), the procedure for editing the execution path
depends on the shell that you are using. If you use the C shell (which is the Solaris
default), then add a line such as the following to the end of your ~/.cshrc file:

 set path=(/usr/local/jdk/bin $path)

If you use the Bourne Again shell (which is the Linux default), then add a line such as
the following to the end of your ~/.bashrc or ~/.bash_profile file:

export PATH=/usr/local/jdk/bin:$PATH

For other UNIX shells, you'll need to find out how to carry out the analogous
procedure.

• Under Windows 95/98, place a line such as the following at the end of your
AUTOEXEC.BAT file:

 SET PATH=c:\jdk\bin;%PATH%

Note that there are no spaces around the =. You must reboot your computer for this
setting to take effect.

Core Java™ 2: Volume I–Fundamentals

32

• Under Windows NT/2000, start the control panel, select System, then Environment.
Scroll through the User Variables window until you find a variable named PATH. Add
the jdk\bin directory to the beginning of the path, using a semicolon to separate the
new entry, like this:

 c:\jdk\bin;other stuff

Save your settings. Any new console windows that you start have the correct path.

Here is how you test whether you did it right:

Start a shell window. How you do this depends on your operating system. Type the line

java -version

and press the enter key. You should get a display such as this one:

java version "1.3.0"
Java(TM) 2 Runtime Environment, Standard Edition
Java HotSpot(TM) Client VM

If instead you get a message such as “java: command not found,” “Bad command or file
name,” or “The name specified is not recognized as an internal or external command,
operable program or batch file,” then you need to go back and double-check your installation.

Installing the Library Source and Documentation

The library source files are delivered in the Java SDK as a compressed file src.jar , and you
must unpack that file to get access to the source code. We highly recommend that you do that.
Simply do the following:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

2. Open a command shell.
3. Change to the jdk directory (e.g. /usr/local/jdk or C:\jdk).
4. Execute the command:

 jar xvf src.jar

TIP

The src.jar file contains the source code for all public libraries. To get
even more source (for the compiler, the virtual machine, the native
methods, and the private helper classes), go to
http://www.sun.com/software/communitysource/java2.

Core Java™ 2: Volume I–Fundamentals

33

The documentation is contained in a compressed file that is separate from the Java SDK.
Several formats (.zip, .gz, and .Z) are available. Uncompress the format that works best for
you. If in doubt, use the zip file because you can uncompress it with the jar program that is a
part of the Java SDK. If you decide to use jar, follow these steps:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

2. Copy the documentation zip file into the directory that contains the jdk directory
(such as /usr/local or C:\). The file is called jdkversion-doc.zip, where
version is something like 1_2_3.

3. Open a command shell.

4. Change to the directory that contains the jdk directory and the compressed
documentation file.

5. Execute the command:

 jar xvf jdkversion-doc.zip

where version is the appropriate version number.

Installing the Core Java Program Examples

You also want to install the Core Java program examples. You can find them on the CD-ROM
or download them from http://www.phptr.com/corejava. The programs are packaged into a
zip file corejava.zip. You should unzip them into a separate directory—we recommend you
call it CoreJavaBook. You can use any zip file utility such as WinZip (on the CD ROM and at
http://www.winzip.com/), or you can simply use the jar utility that is part of the Java SDK. If
you use jar, do the following:

1. Make sure the Java SDK is installed and the jdk/bin directory is on the execution
path.

2. Make a directory CoreJavaBook.
3. Copy the corejava.zip file to that directory.
4. Open a command shell.
5. Change to the CoreJavaBook directory.
6. Execute the command:

 jar xvf corejava.zip

Navigating the Java Directories

In your explorations of Java, you will occasionally want to peek inside the Java source files.
And, of course, you will need to work extensively with the library documentation. Table 2-1
shows the Java directory tree. The layout will be different if you have an integrated
development environment, and the root will be different depending on the Java SDK version
that you installed.

Core Java™ 2: Volume I–Fundamentals

34

Table 2-1. Java directory tree
jdk (the name may be different, for example, jdk1.2)
 docs library documentation in HTML format is here
 bin the compiler and tools are here
 demo look here for demos
 include files for native methods (see volume 2)
 lib library files
 src look in the various subdirectories for the library source (after expanding src.jar)
 jre Java runtime environment files

The two most important subdirectories in this tree are docs and src. The docs directory
contains the Java library documentation in HTML format. You can view it with any web
browser, such as Netscape.

TIP

Set a bookmark in your browser to the local version of
docs\api\index.html. You will be referring to this page a lot as you
explore the Java platform.

The src directory contains the source code for the public part of the Java libraries. As you
become more comfortable with Java, you may find yourself in situations for which this book
and the on-line information do not provide what you need to know. At this point, the source
code for Java is a good place to begin digging. It is occasionally reassuring to know that you
can always dig into the source to find out what a library function really does. For example, if
you are curious about the inner workings of the System class, you can look inside
src/java/lang/System.java.

Development Environments

If your programming experience comes from Visual Basic or Visual C++, you are accustomed
to a development environment with a built-in text editor and menus to compile and launch a
program along with an integrated debugger. The basic Java SDK contains nothing even
remotely similar. Everything is done by typing in commands in a shell window. We tell you
how to install and use the basic Java SDK, because we have found that the full-fledged
development environments don't necessarily make it easy to learn Java—they can be complex
and they hide some of the interesting and important details from the programmer.

Integrated development environments tend to be more cumbersome to use for a simple
program since they are slower, require more powerful computers, and often require a
somewhat tedious project setup for each program you write. These environments have the
edge if you write larger Java programs consisting of many source files. And these
environments also supply debuggers, which are certainly necessary for serious development—
the command-line debugger that comes for free with the Java SDK is extremely awkward to
use. We will show you how to get started with Forte Community Edition, a freely available
development environment that is itself written in Java. Of course, if you already have a

Core Java™ 2: Volume I–Fundamentals

35

development environment such as JBuilder, Kawa, CodeWarrior or Café that supports the
current version of Java, then you can certainly use it with this book.

For simple programs, a good middle ground between command-line tools and an integrated
development environment is an editor that integrates with the Java SDK. On Linux, our
preferred choice is Emacs. On Windows, we also like TextPad, an excellent shareware
programming editor for Windows with good Java integration. Many other editors have similar
features. Using a text editor with Java SDK integration can make developing Java programs
easy and fast. We used that approach for developing and testing most of the programs in this
book. Since you can compile and execute source code from within the editor, it can become
your de facto development environment as you work through this book.

In sum, you have three choices for a development environment:

• Use the Java SDK and your favorite text editor. Compile and launch programs in a
command shell.

• Use the Java SDK and a text editor that is integrated with the Java SDK. Emacs and
TextPad have this capability, and there are many others. Compile and launch programs
inside the editor.

• Use an integrated development environment such as the free Forte Community
Edition, or one of many other freely or commercially available environments.

Using the Command Line Tools

There are two methods for compiling and launching a Java program: from the command line,
or from another program, such as an integrated development environment or a text editor. Let
us do it the hard way first: from the command line.

Open a shell or terminal window. Go to the CoreJavaBook/v1ch2/Welcome directory. Then
enter the following commands:

javac Welcome.java
java Welcome

You should see the message shown in Figure 2-1 on the screen.

Core Java™ 2: Volume I–Fundamentals

36

Figure 2-1. Compiling and running Welcome.java

Congratulations! You have just compiled and run your first Java program.

What happened? The javac program is the Java compiler. It compiles the file Welcome.java
into the file Welcome.class. The java program is the Java interpreter. It interprets the
bytecodes that the compiler placed in the class file.

TIP

If you use the MS-DOS shell in Windows, you should use the DOSKEY
program. The DOSKEY utility keeps a command history. Type the up
and down arrow keys to cycle through the previously typed commands.
Use the left and right arrow keys to edit the current command.

To install DOSKEY automatically, simply add the line

DOSKEY /INSERT

into your AUTOEXEC.BAT file and reboot.

If you use the bash or tcsh shell under UNIX, you have the same
benefits.

The Welcome program is extremely simple. It merely prints a message to the console. You
may enjoy looking inside the program shown in Example 2-1—we will explain how it works
in the next chapter.

Core Java™ 2: Volume I–Fundamentals

37

Example 2-1 Welcome.java

 1. public class Welcome
 2. {
 3. public static void main(String[] args)
 4. {
 5. String[] greeting = new String[3];
 6. greeting[0] = "Welcome to Core Java";
 7. greeting[1] = "by Cay Horstmann";
 8. greeting[2] = "and Gary Cornell";
 9.
10. for (int i = 0; i < greeting.length; i++)
11. System.out.println(greeting[i]);
12. }
13. }

Troubleshooting Hints

In the age of visual development environments, many programmers are unfamiliar with
running programs in a shell window. There are any number of things that can go wrong and
lead to frustrating results.

Pay attention to the following points:

• If you type in the program by hand, make sure you pay attention to uppercase and
lowercase letters. In particular, the class name is Welcome and not welcome or
WELCOME.

• The compiler requires a file name Welcome.java. The interpreter requires a class name
Welcome without a .java or .class extension.

• If you get a message such as “Bad command or file name” or “javac: command not
found,” then you need to go back and double-check your installation, in particular the
execution path setting.

• If javac reports an error “cannot read: Welcome.java,” then you should check
whether that file is present in the directory.

Under UNIX, check that you used the correct capitalization for Welcome.java.

Under Windows, use the dir shell command, not the graphical Explorer tool. Some
text editors (in particular Notepad) insist on adding an extension .txt after every file.
If you use Notepad to edit Welcome.java, then it actually saves it as
Welcome.java.txt. Under the default Windows settings, Explorer conspires with
Notepad and hides the .txt extension because it belongs to a “known file type.” In that
case, you need to rename the file, using the ren shell command.

• If java reports an error message complaining about
a java.lang.NoClassDefFoundError, then carefully check the name of
the offending class.

If the interpreter complains about welcome (with a lowercase w), then you should
reissue the java Welcome command with an uppercase W. As always, case matters in
Java.

Core Java™ 2: Volume I–Fundamentals

38

If the interpreter complains about Welcome/java, then you accidentally typed java
Welcome.java. Reissue the command as java Welcome.

If the interpreter complains about Welcome, then someone has set the class path on
your system. You need to either remove the setting of that environment variable, or
add the current directory (symbolized as a period) to the class path. See Chapter 4 for
more details.

• If you have too many errors in your program, then all the error messages fly by very
quickly. The java interpreter sends the error messages to the standard error stream
which makes it a bit tricky to capture them if they fill more than one screen.

On a UNIX or Windows NT/2000 system, this is not a big problem. You can use the
2> shell operator to redirect the errors to a file:

javac MyProg.java 2> errors.txt

Under Windows 95/98, you cannot redirect the standard error stream from the
command shell. You can download the errout program from
http://www.horstmann.com/corejava/faq.html and run

errout javac MyProg.java > errors.txt

TIP

There is an excellent tutorial at
http://java.sun.com/docs/books/tutorial/getStarted/cupojava/ that goes
into much greater detail about the “gotchas” that beginners can run into.

Using an Integrated Development Environment

In this section, we show you how to compile a program with Forte Community Edition, a free
integrated development environment from Sun Microsystems. You can download your copy
from http://www.sun.com/forte/ffj/ce/. Forte is written in Java and should run under any
platform that has a Java 2 runtime environment. Preconfigured versions exist for Solaris,
Linux, and Windows.

After starting Forte, various toolbars and windows are loaded (see Figure 2-2).

Core Java™ 2: Volume I–Fundamentals

39

Figure 2-2. Starting Forte

Select File -> Open File from the menu, then load CoreJavaBook/v1ch2/
Welcome/Welcome.java. You will be asked if this file should be in the “default package.”
Click Accept. (See Chapter 4 for more information on packages. For now, all our programs
are in the default package.) You should now see a window with the program code (see
Figure 2-3).

Core Java™ 2: Volume I–Fundamentals

40

Figure 2-3. The edit window of Forte

Select Build -> Compile from the menu. Your program is compiled. If it compiles correctly,
select Build -> Execute from the menu. The edit window goes away, and an output window
appears at the bottom of the screen. The program output is displayed in the output window
(see Figure 2-4).

Figure 2-4. The output window of Forte

To return to the edit window after the program is finished, click on the “Editing” tab at the top
of the screen.

Locating Compilation Errors

Presumably, this program did not have typos or bugs. (It was only a few lines of code, after
all.) Let us suppose, for the sake of argument, that you occasionally have a typo (perhaps even
a bug) in your code. Try it out—ruin our file, for example, by changing the capitalization of
String as follows:

string[] greeting = new String[3];

Core Java™ 2: Volume I–Fundamentals

41

Now, run the compiler again. You will get error messages (see Figure 2-5). The first one
complains about an unknown string type. Simply click on the error message. The cursor
moves to the matching line in the edit window, and you can correct your error. This allows
you to fix your errors quickly.

Figure 2-5. Error messages in Forte

To start a new program with Forte, select File -> New from Template from the menu. In the
resulting dialog, open up the “doorlatch” labeled Classes by clicking on the icon. Then select
Empty and click the Next button (see Figure 2-6).

Figure 2-6. Starting a new program in Forte

Core Java™ 2: Volume I–Fundamentals

42

You will be asked if you want to add this file to the current project. Until you use projects in
earnest, there is no harm in answering either Yes or No. Now you are ready to edit your new
file, compile it, and run it.

We will discuss the Forte debugger in Chapter 11.

Compiling and Running Programs from a Text Editor

An integrated development environment such as Forte offers many comforts, but there are
also some drawbacks. In particular, for simple programs that are not distributed over multiple
source files, an environment with its long startup time and many bells and whistles can seem
like overkill. Also, many programmers have become accustomed to their favorite text editor
and can be reluctant to use the generally wimpy editors that are part of the integrated
development environments. Fortunately, many text editors have the ability to launch the Java
compiler and interpreter and to capture error messages and program output. In this section, we
look at two text editors, Emacs and TextPad, as typical examples.

NOTE

GNU Emacs is available from http://www.gnu.org/software/emacs/. For
the Windows port of GNU Emacs, see
http://www.gnu.org/software/emacs/windows/ntemacs.html. XEmacs is
a version of Emacs with a slightly more modern user interface—you can
get it from http://www.xemacs.org/. Be sure to install the JDE package
when using Emacs for Java programming. If JDE doesn't come with your
installation, you can download it from http://sunsite.auc.dk/jde.

For example, Figure 2-7 shows XEmacs, a version of the Emacs editor that is popular among
UNIX programmers, compiling a Java program. (Choose JDE -> Compile from the menu to
run the compiler.)

Core Java™ 2: Volume I–Fundamentals

43

Figure 2-7. Compiling a program with XEmacs

The error messages show up in the lower half of the screen. When you move the cursor on
an error message and press the enter key, then the cursor moves to the corresponding source
line.

Once all errors are fixed, you can run the program by choosing JDE -> Run App from
the menu. The output shows up inside an editor window (see Figure 2-8).

Core Java™ 2: Volume I–Fundamentals

44

Figure 2-8. Running a program from within XEmacs

Emacs is a splendid text editor that is freely available for UNIX and Windows. However,
many Windows programmers find the learning curve rather steep. For those programmers, we
can recommend TextPad. Unlike Emacs, TextPad conforms to standard Windows
conventions. TextPad is available on this book's CD-ROM and at http://www.textpad.com/.
Note that TextPad is shareware. You are expected to pay for it if you use it beyond a trial
period. (We have no relationship with the vendor, except as satisfied users of the program.)

To compile a program in TextPad, choose Tools -> Compile Java from the menu, or use
the ctrl+1 keyboard shortcut.

NOTE

If there is no such menu option, select Configure -> Preferences, then
select Tools from the tree on the left. On the right hand side, click the
button labeled Add until it drops down and reveals a setting JDK
commands. Select that setting, then click Ok. The JDK commands are
now added to the Tools menu.

Core Java™ 2: Volume I–Fundamentals

45

Compilation errors are displayed in a separate window (see Figure 2-9).

Figure 2-9. Locating compilation errors in TextPad

Move the cursor onto the first line of an error message and press enter to move to
the matching location in the file. Use the Search -> Jump Next command (or the f4 key) to
walk through the remaining error messages.

To run a program, select Tools -> Run Java Application from the menu, or use the ctrl+2
keyboard shortcut. The program runs in a separate shell window. Figure 2-10 shows a Java
program launched from TextPad.

Figure 2-10. Running a Java program from TextPad

Core Java™ 2: Volume I–Fundamentals

46

When the program is completed, you need to press a key to continue and then close the shell
window.

Graphical Applications

The Welcome program was not terribly exciting. Next, let us run a graphical application. This
program is a very simple GIF file viewer. It simply loads and displays a GIF file. Again, let us
first compile and run it from the command line.

1. Open a shell window.
2. Change to the directory CoreJavaBook/v1ch2/ImageViewer.
3. Enter:

 javac ImageViewer.java
 java ImageViewer

A new program window pops up with our ImageViewer application. (See Figure 2-11.)

Figure 2-11. Running the ImageViewer application

Now select File -> Open and look for a GIF file to open. (We supplied a couple of sample
files in the same directory.)

To close the program, click on the Close box in the title bar or pull down the system menu
and close the program. (To compile and run this program inside a text editor or an integrated

Core Java™ 2: Volume I–Fundamentals

47

development environment, do the same as before. For example, for Emacs, choose
JDE -> Compile, then choose JDE -> Run App.)

We hope that you find this program interesting and useful. Have a quick look at the source
code. The program is substantially longer than the first program, but it is not terribly complex
if you consider how much code it would take in C or C++ to write a similar application. In
Visual Basic, of course, it is easy to write or, rather, drag and drop, such a program—you
need only add a couple of lines of code to make it functional. The JDK does not have a visual
interface builder, so you need to write code for everything, as shown in Example 2-2. You
will learn how to write graphical programs like this in Chapters 7-9.

CAUTION

If you run this program with a version of the Java SDK prior to 1.3, then
you will get a compile-time error at the line

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In that case, comment out the line and recompile. Then the program
won't exit when you close the frame. Instead, choose the File -> Exit
menu option. See Chapter 7 for more information on this issue.

Example 2-2 ImageViewer.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import java.io.*;
 5. import javax.swing.*;
 6.
 7. public class ImageViewer
 8. {
 9. public static void main(String[] args)
10. {
11. JFrame frame = new ImageViewerFrame();
12. frame.setTitle("ImageViewer");
13. frame.setSize(300, 400);
14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15. frame.show();
16. }
17. }
18.
19. class ImageViewerFrame extends JFrame
20. {
21. public ImageViewerFrame()
22. {
23. // set up menu bar
24. JMenuBar menuBar = new JMenuBar();
25. setJMenuBar(menuBar);
26.
27. JMenu menu = new JMenu("File");
28. menuBar.add(menu);
29.

Core Java™ 2: Volume I–Fundamentals

48

30. JMenuItem openItem = new JMenuItem("Open");
31. menu.add(openItem);
32. openItem.addActionListener(new FileOpenListener());
33.
34. JMenuItem exitItem = new JMenuItem("Exit");
35. menu.add(exitItem);
36. exitItem.addActionListener(new
37. ActionListener()
38. {
39. public void actionPerformed(ActionEvent event)
40. {
41. System.exit(0);
42. }
43. });
44.
45. // use a label to display the images
46. label = new JLabel();
47. Container contentPane = getContentPane();
48. contentPane.add(label, "Center");
49. }
50.
51. private class FileOpenListener implements ActionListener
52. {
53. public void actionPerformed(ActionEvent evt)
54. {
55. // set up file chooser
56. JFileChooser chooser = new JFileChooser();
57. chooser.setCurrentDirectory(new File("."));
58.
59. // accept all files ending with .gif
60. chooser.setFileFilter(new
61. javax.swing.filechooser.FileFilter()
62. {
63. public boolean accept(File f)
64. {
65. return f.getName().toLowerCase()
66. .endsWith(".gif")
67. || f.isDirectory();
68. }
69. public String getDescription()
70. {
71. return "GIF Images";
72. }
73. });
74.
75. // show file chooser dialog
76. int r = chooser.showOpenDialog(ImageViewerFrame.this);
77.
78. // if image file accepted, set it as icon of the label
79. if(r == JFileChooser.APPROVE_OPTION)
80. {
81. String name
82. = chooser.getSelectedFile().getPath();
83. label.setIcon(new ImageIcon(name));
84. }
85. }
86. }
87.
88. private JLabel label;
89. }

Core Java™ 2: Volume I–Fundamentals

49

Applets

The first two programs presented in this book are Java applications, stand-alone programs
like any native programs. On the other hand, as we mentioned in the last chapter, most of the
hype about Java comes from its ability to run applets inside a web browser. We want to show
you how to build and run an applet from the command line. Then we will load the applet into
the applet viewer that comes with the JDK. Finally, we will display it in a web browser.

First, go to the directory CoreJavaBook/v1ch2/WelcomeApplet, then enter the following
commands:

javac WelcomeApplet.java
appletviewer WelcomeApplet.html

Figure 2-12 shows what you see in the applet viewer window.

Figure 2-12. The WelcomeApplet applet as viewed by the applet viewer

The first command is the now-familiar command to invoke the Java compiler. This compiles
the WelcomeApplet.java source into the bytecode file WelcomeApplet.class.

This time, however, we do not run the Java interpreter. We invoke the appletviewer
program instead. This program is a special tool included with the Java SDK that lets you
quickly test an applet. You need to give it an HTML file, rather than the name of a Java class
file. The contents of the WelcomeApplet.html file are shown below in Example 2-3.

Core Java™ 2: Volume I–Fundamentals

50

Example 2-3 WelcomeApplet.html

 1. <HTML>
 2. <TITLE>WelcomeApplet</TITLE>
 3. <BODY>
 4. <HR>
 5. <P>
 6. This applet is from the book
 7.
 8. Core Java by <I>Cay Horstmann</I> and <I>Gary Cornell</I>,
 9. published by Sun Microsystems Press.
10. </P>
11. <APPLET CODE=WelcomeApplet.class WIDTH=400 HEIGHT=200>
12. <PARAM NAME=greeting VALUE="Welcome to Core Java!">
13. </APPLET>
14. <HR>
15. <P>The source.</P>
16. </BODY>
17. </HTML>

If you are familiar with HTML, you will notice some standard HTML instructions and
the APPLET tag, telling the applet viewer to load the applet whose code is stored in
WelcomeApplet.class. The applet viewer ignores all HTML tags except for the APPLET tag.

The other HTML tags show up if you view the HTML file in a browser. However, there is
a problem. The applet uses features of the Java 2 platform, whereas at the time of this writing,
the most commonly used browsers (Netscape 4 and Microsoft Internet Explorer 5) only
support version 1.1. Thus, you cannot simply load the HTML file into these browsers. You
have two options:

1. Install the Java Plug-in into your Netscape 4 or Internet Explorer 5 browser. You can
download the plug-in from http://java.sun.com/plugin. You then need to use
a different HTML page that loads the plug-in and tells the plug-in to load the applet
code. Unfortunately, this requires rather messy HTML tags—see Example 2-4. (This
code has been automatically generated by the Java Plug-in HTML converter—see
Chapter 10 for details.)

2. Use a browser that supports the Java 2 platform, such as Netscape 6 or Opera
(http://www.opera.com/). You can then use the same simple HTML file that works
with the applet viewer.

Provided you have a browser with Java 2 platform support, you can try loading the applet
inside the browser.

1. Start your browser.
2. Select File -> Open File (or the equivalent).
3. Go to the CoreJavaBook/v1ch2/WelcomeApplet directory.

You should see the WelcomeApplet.html and WelcomeAppletPlugin.html files in the file
dialog. Load the file that is appropriate for your setup. Your browser now loads the applet,
including the surrounding text. It will look something like Figure 2-13.

Core Java™ 2: Volume I–Fundamentals

51

Figure 2-13. Running the WelcomeApplet applet in a browser

You can see that this application is actually alive and willing to interact with the Internet.
Click on the Cay Horstmann button. The applet directs the browser to display Cay's web page.
Click on the Gary Cornell button. The applet directs the browser to pop up a mail window,
with Gary's e-mail address already filled in.

Notice that neither of these two buttons works in the applet viewer. The applet viewer has no
capabilities to send mail or display a web page, so it ignores your requests. The applet viewer
is good for testing applets in isolation, but you need to put applets inside a browser to see how
they interact with the browser and the Internet.

TIP

You can also run applets from inside your editor or integrated
development environment. In Emacs, select JDE -> Run Applet from the
menu. In TextPad, choose Tools -> Run Java Applet or use the ctrl+3
keyboard shortcut. You will be presented with a dialog that lists all
HTML files in the current directory. If you press esc, TextPad
automatically creates a minimal HTML file for you. In Forte, you simply
load the HTML page with the applet tags. Forte contains a simple
browser that shows the applet running inside the web page.
Alternatively, you can right-click on the source file and set the value of
the “Executor” property in the Execution tab to “Applet Execution.”

Finally, the code for the Welcome applet is shown in Example 2-5. At this point, do not give
it more than a glance. We will come back to writing applets in Chapter 10.

Core Java™ 2: Volume I–Fundamentals

52

In this chapter, you learned about the mechanics of compiling and running Java programs.
You are now ready to move on to Chapter 3 where you will start learning the Java language.

Example 2-4 WelcomeAppletPlugin.html

 1. <HTML>
 2. <TITLE>WelcomeApplet</TITLE>
 3. <BODY>
 4. <HR>
 5. <P>
 6. This applet is from the book
 7.
 8. Core Java by <I>Cay Horstmann</I> and <I>Gary Cornell</I>,
 9. published by Sun Microsystems Press.
10. </P>
11. <!--"CONVERTED_APPLET"-->
12. <!-- CONVERTER VERSION 1.0 -->
13. <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
14. WIDTH = 400 HEIGHT = 200 codebase="http://java.sun.com/products/
 plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0">
15. <PARAM NAME = CODE VALUE = WelcomeApplet.class >
16.
17. <PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
18.
19. <PARAM NAME = greeting VALUE ="Welcome to Core Java!">
20. <COMMENT>
21. <EMBED type="application/x-java-applet;version=1.2" java_CODE =
 WelcomeApplet.class WIDTH = 400 HEIGHT = 200 greeting = "Welcome to
 Core Java!" pluginspage="http://java.sun.com/products/
 plugin/1.2/plugin-install.html"><NOEMBED></COMMENT>
22.
23. </NOEMBED></EMBED>
24. </OBJECT>
25.
26. <!--
27. <APPLET CODE = WelcomeApplet.class WIDTH = 400 HEIGHT = 200 >
28. <PARAM NAME = greeting VALUE ="Welcome to Core Java!">
29.
30.
31. </APPLET>
32. -->
33. <!--"END_CONVERTED_APPLET"-->
34.
35. <HR>
36. <P>The source.</P>
37. </BODY>
38. </HTML>

Core Java™ 2: Volume I–Fundamentals

53

Example 2-5 WelcomeApplet.java

 1. import javax.swing.*;
 2. import java.awt.*;
 3. import java.awt.event.*;
 4. import java.net.*;
 5.
 6. public class WelcomeApplet extends JApplet
 7. {
 8. public void init()
 9. {
10. Container contentPane = getContentPane();
11. contentPane.setLayout(new BorderLayout());
12.
13. JLabel label = new JLabel(getParameter("greeting"),
14. SwingConstants.CENTER);
15. label.setFont(new Font("TimesRoman", Font.BOLD, 18));
16. contentPane.add(label, "Center");
17.
18. JPanel panel = new JPanel();
19.
20. JButton cayButton = new JButton("Cay Horstmann");
21. cayButton.addActionListener(getURLActionListener
22. ("http://www.horstmann.com"));
23. panel.add(cayButton);
24.
25. JButton garyButton = new JButton("Gary Cornell");
26. garyButton.addActionListener(getURLActionListener
27. ("mailto:gary@thecornells.com"));
28. panel.add(garyButton);
29.
30. contentPane.add(panel, "South");
31. }
32.
33. public ActionListener getURLActionListener(final String
34. urlString)
35. {
36. return new
37. ActionListener()
38. {
39. public void actionPerformed(ActionEvent evt)
40. {
41. try
42. {
43. URL u = new URL(urlString);
44. getAppletContext().showDocument(u);
45. }
46. catch(Exception e) { e.printStackTrace(); }
47. }
48. };
49. }
50. }

Core Java™ 2: Volume I–Fundamentals

54

Chapter 3. Fundamental Programming Structures in
Java

• A Simple Java Program
• Comments
• Data Types
• Variables
• Assignments and Initializations
• Operators
• Strings
• Control Flow
• Big Numbers
• Arrays

At this point, we are assuming that you successfully installed Java and were able to run
the sample programs that we showed you in Chapter 2. It's time to start programming. This
chapter shows you how the basic programming concepts such as data types, branches, and
loops are implemented in Java.

Unfortunately, in Java you can't easily write a program that uses a graphical user interface—
you need to learn a fair amount of machinery to put up windows, add text boxes and buttons
that respond to them, and so on. Since introducing the techniques needed to write GUI-based
Java programs would take us too far away from our goal of introducing the basic
programming concepts, the sample programs in this chapter will be “toy” programs, designed
to illustrate a concept. All these examples will simply send output to the console. (For
example, if you are using Windows, the console is an MS-DOS window.) When it comes to
getting user input, we will stick to reading the information from a pop-up window. In
particular, we will be writing applications rather than applets in this chapter.

Finally, if you are an experienced C++ programmer, you can get away with just skimming
this chapter: concentrate on the C/C++ notes that are interspersed throughout the text.
Programmers coming from another background, such as Visual Basic, will find most of the
concepts familiar and all of the syntax very different—you will want to read this chapter very
carefully.

A Simple Java Program

Let's look more closely at about the simplest Java program you can have—one that simply
prints a message to the console window:

public class FirstSample
{
 public static void main(String[] args)
 {
 System.out.println("We will not use 'Hello, World!'");
 }
}

Core Java™ 2: Volume I–Fundamentals

55

It is worth spending all the time that you need in order to become comfortable with
the framework of this sample; the pieces will recur in all applications. First and foremost,
Java is case sensitive. If you made any mistakes in capitalization (such as typing Main instead
of main), the program will not run.

Now let's look at this source code line by line. The keyword public is called an access
modifier; these modifiers control what other parts of a program can use this code. We will
have more to say about access modifiers in Chapter 5. The keyword class is there to remind
you that everything in a Java program lives inside a class. Although we will spend a lot more
time on classes in the next chapter, for now think of a class as a container for the program
logic that defines the behavior of an application. As mentioned in Chapter 1, classes are the
building blocks with which all Java applications and applets are built. Everything in a Java
program must be inside a class.

Following the keyword class is the name of the class. The rules for class names in Java are
quite generous. Names must begin with a letter, and after that, they can have any combination
of letters and digits. The length is essentially unlimited. You cannot use a Java reserved word
(such as public or if) for a class name. (See Appendix I for a list of reserved words.)

As you can see in the name FirstSample, the convention is that class names are nouns that
start with an uppercase letter.

You need to make the file name for the source code the same as the name of the public class,
with the extension .java appended. Thus, we must store this code in a file called
FirstSample.java. (Again, case is important—don't use firstsample.java.) If you don't
do this, you'll get a pretty obvious error message when you try to run this source code through
a Java compiler (“Public class FirstSample must be defined in a file called
'FirstSample.java'”).

If you have named the file correctly and not made any typos in the source code, then when
you compile this source code, you end up with a file containing the bytecodes for this class.
The Java compiler automatically names the bytecode file FirstSample.class and stores it in
the same directory as the source file. Finally, run the bytecode file through the Java interpreter
by issuing the command:

java FirstSample

(Remember to leave off the .class extension.) When the program executes, it simply
displays the string We will not use 'Hello, World'! on the console.

NOTE

Applets have a different structure—see Chapter 10 for information on
applets.

Core Java™ 2: Volume I–Fundamentals

56

When you use

java NameOfClass

to run a compiled program, the Java interpreter always starts execution with the code in
the main method in the class you indicate. Thus, you must have a main method in the source
file for your class in order for your code to execute. You can, of course, add your own
methods to a class and call them from the main method. (We cover writing your own methods
in the next chapter.)

Next, notice the braces in the source code. In Java, as in C/C++, braces are used to delineate
the parts (usually called blocks) in your program. In Java, the code for any method must be
started by an opening brace { and ended by a closing brace }.

Brace styles have inspired an inordinate amount of useless controversy. We use a style that
lines up matching braces. Since white space is irrelevant to the Java compiler, you can use
whatever brace style you like. We will have more to say about the use of braces when we talk
about the various kinds of loops.

For now, don't worry about the keywords static void—just think of them as part of what
you need to get a Java program to compile. By the end of Chapter 4, you will understand this
incantation completely. The point to remember for now is that every Java application must
have a main method whose header is identical to the one shown here.

public class ClassName
{
 public static void main(String[] args)
 {
 program instructions
 }
}

C++ NOTE

You know what a class is. Java classes are similar to C++ classes, but
there are a few differences that can trap you. For example, in Java all
functions are methods of some class. (The standard terminology refers to
them as methods, not member functions.) Thus, in Java you must have a
shell class for the main method. You may also be familiar with the idea
of static member functions in C++. These are member functions defined
inside a class that do not operate on objects. The main method in Java is
always static. Finally, as in C/C++, the void keyword indicates that this
method does not return a value. Unlike C/C++, the main method does not
return an “exit code” to the operating system. If the main method exits
normally, the Java program has the exit code 0, indicating successful
completion. To terminate the program with a different exit code, use the
System.exit method.

Core Java™ 2: Volume I–Fundamentals

57

Next, turn your attention to this fragment.

{
 System.out.println("We will not use 'Hello world!'");
}

Braces mark the beginning and end of the body of the method. This method has only one
statement in it. As with most programming languages, you can think of Java statements as
being the sentences of the language. In Java, every statement must end with a semicolon. In
particular, carriage returns do not mark the end of a statement, so statements can span
multiple lines if need be.

The body of the main method contains a statement that outputs a single line of text to
the console.

Here, we are using the System.out object and calling its println method. Notice the periods
used to invoke a method. Java uses the general syntax

object.method(parameters)

for its equivalent of function calls.

In this case, we are calling the println method and passing it a string parameter. The method
displays the string parameter on the console. It then terminates the output line so that each call
to println displays its output on a new line. Notice that Java, like C/C++, uses double quotes
to delimit strings. (You will find more information about strings later in this chapter.)

Methods in Java, like functions in any programming languages, can use zero, one, or more
parameters (some languages call them arguments). Even if a method takes zero parameters,
you must still use empty parentheses. For example, there is a variant of the println method
with no parameters that just prints a blank line. You invoke it with the call

System.out.println();

CAUTION

There also is a print method in System.out that doesn't add a new line
character to the output. For example, System.out.print("Hello")
prints "Hello" without a new line. The next output appears immediately
after the "o".

Comments

Comments in Java, like comments in most programming languages, do not show up in the
executable program. Thus, you can add as many comments as needed without fear of bloating
the code. Java has three ways of showing comments. The most common method is a //. You
use this for a comment that will run from the // to the end of the line.

Core Java™ 2: Volume I–Fundamentals

58

System.out.println("We will not use 'Hello world!'");
// is this too cute?

When longer comments are needed, you can mark each line with a //. Or you can use the /*
and */ comment delimiters that let you block off a longer comment. This is shown in
Example 3-1.

Example 3-1 FirstSample.java

 1. /*
 2. This is the first sample program in Core Java Chapter 3
 3. Copyright (C) 1996...2000 Cay Horstmann and Gary Cornell
 4. */
 5.
 6. public class FirstSample
 7. {
 8. public static void main(String[] args)
 9. {
10. System.out.println("We will not use 'Hello, World!'");
11. }
12. }

Finally, there is a third kind of comment that can be used to generate documentation
automatically. This comment uses a /** to start and a */ to end. For more on this type of
comment and on automatic documentation generation, please see Chapter 4.

CAUTION

/* */ comments do not nest in Java. That is, you cannot deactivate code
simply by surrounding it with /* and */ since the code that you want to
deactivate might itself contain a */ delimiter.

Data Types

Java is a strongly typed language. This means that every variable must have a declared type.
There are eight primitive types in Java. Four of them are integer types; two are floating-point
number types; one is the character type char, used for characters in the Unicode encoding
(see the section on the char type), and one is a boolean type for truth values.

NOTE

Java has an arbitrary precision arithmetic package. However, “Big
numbers,” as they are called, are Java objects and not a new Java type.
You will see how to use them later in this chapter.

Core Java™ 2: Volume I–Fundamentals

59

Integers

The integer types are for numbers without fractional parts. Negative values are allowed. Java
provides the four integer types shown in Table 3-1.

Table 3-1. Java integer types
Type Storage Requirement Range (inclusive)
int 4 bytes -2,147,483,648 to 2,147,483, 647 (just over 2 billion)
short 2 bytes -32,768 to 32,767
long 8 bytes -9,223,372,036,854,775,808L to 9,223,372,036,854,775,807L
byte 1 byte -128 to 127

In most situations, the int type is the most practical. If you want to represent the number of
inhabitants of our planet, you'll need to resort to a long. The byte and short types are mainly
intended for specialized applications, such as low-level file handling, or for large arrays when
storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on which you will
be running the Java code. This alleviates a major pain for the programmer who wants to move
software from one platform to another, or even between operating systems on the same
platform. In contrast, C and C++ programs use the most efficient integer type for each
processor. As a result, a C program that runs well on a 32-bit processor may exhibit integer
overflow on a 16-bit system. Since Java programs must run with the same results on all
machines, the ranges for the various types are fixed.

Long integer numbers have a suffix Example (for example, 4000000000L). Hexadecimal
numbers have a prefix 0x (for example, 0xCAFE). Octal numbers have a prefix 0. For example,
010 is 8. Naturally, this can be confusing, and we recommend against the use of octal
constants.

C++ NOTE

In C and C++, int denotes the integer type that depends on the target
machine. On a 16-bit processor, like the 8086, integers are 2 bytes. On a
32-bit processor like the Sun SPARC, they are 4-byte quantities. On an
Intel Pentium, the integer type of C and C++ depends on the operating
system: for DOS and Windows 3.1, integers are 2 bytes. When using 32-
bit mode for Windows programs, integers are 4 bytes. In Java, the sizes
of all numeric types are platform independent.

Note that Java does not have any unsigned types.

Floating-Point Types

The floating-point types denote numbers with fractional parts. There are two floating-point
types, as shown in Table 3-2.

Core Java™ 2: Volume I–Fundamentals

60

Table 3-2. Floating-point types
Type Storage

Requirement
Range

float 4 bytes approximately ±3.40282347E+38F (6–7 significant decimal digits)
double 8 bytes approximately ±1.79769313486231570E+308 (15 significant decimal

digits)

The name double refers to the fact that these numbers have twice the precision of the float
type. (Some people call these double-precision numbers.) Here, the type to choose in most
applications is double. The limited precision of float is simply not sufficient for many
situations. Seven significant (decimal) digits may be enough to precisely express your annual
salary in dollars and cents, but it won't be enough for your company president's salary. The
only reason to use float is in the rare situations in which the slightly faster processing of
single-precision numbers is important, or when you need to store a large number of them.

Numbers of type float have a suffix F, for example, 3.402F. Floating-point numbers without
an F suffix (such as 3.402) are always considered to be of type double. You can optionally
supply the D suffix such as 3.402D.

All floating-point computations follow the IEEE 754 specification. In particular, there are
three special floating-point values:

• positive infinity
• negative infinity
• NaN (not a number)

to denote overflows and errors. For example, the result of dividing a positive number by 0 is
positive infinity. Computing 0/0 or the square root of a negative number yields NaN.

NOTE

There are constants Double.POSITIVE_INFINITY, Double.NEGATIVE_
INFINITY and Double.NaN (as well as corresponding Float constants)
to represent these special values. But they are rarely used in practice. In
particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a
number” values are considered distinct. However, you can use the
Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

Core Java™ 2: Volume I–Fundamentals

61

The Character Type

First, single quotes are used to denote char constants. For example, 'H' is a character. It is
different from "H", a string containing a single character. Second, the char type denotes
characters in the Unicode encoding scheme. You may not be familiar with Unicode, and,
fortunately, you don't need to worry much about it if you don't program international
applications. (Even if you do, you still won't have to worry about it too much because
Unicode was designed to make the use of non-Roman characters easy to handle.) Because
Unicode was designed to handle essentially all characters in all written languages in the
world, it is a 2-byte code. This allows 65,536 characters, of which about 35,000 are currently
in use. This is far richer than the ASCII codeset, which is a 1-byte code with 128 characters,
or the commonly used ISO 8859-1 extension with 256 characters. That character set (which
some programmers call the “Latin-1” character set) is a subset of Unicode. More precisely, it
is the first 256 characters in the Unicode coding scheme. Thus, character codes like 'a', '1',
'[' and 'ä' are valid Unicode characters with character codes < 256. Unicode characters
have codes between 0 and 65535, but they are usually expressed as hexadecimal values that
run from '\u0000' to '\uFFFF' (with '\u0000' to '\u00FF' being the ordinary ISO 8859-1
characters). The \u prefix indicates a Unicode value, and the four hexadecimal digits tell you
what Unicode character. For example, \u2122 is the trademark symbol (™). For more
information on Unicode, you might want to check out the Web site at
http://www.unicode.org/.

Besides the \u escape character that indicates the encoding of a Unicode character, there are
several escape sequences for special characters shown in Table 3-3.

Table 3-3. Special characters
Escape Sequence Name Unicode Value
\b backspace \u0008
\t tab \u0009
\n linefeed \u000a
\r carriage return \u000d
\" double quote \u0022
\' single quote \u0027
\\ backslash \u005c

NOTE

Although you can theoretically use any Unicode character in a Java
application or applet, whether you can actually see it displayed depends
on your browser (for applets) and (ultimately) on your operating system
for both. For example, you cannot use Java to output Kanji on a machine
running the U.S. version of Windows. For more on internationalization
issues, please see Chapter 12 of Volume 2.

The boolean Type

The boolean type has two values, false and true. It is used for evaluating logical
conditions. You cannot convert between integers and boolean values.

Core Java™ 2: Volume I–Fundamentals

62

C++ NOTE

In C++, numbers and even pointers can be used in place of boolean
values. The value 0 is equivalent to the bool value false, and a non-zero
value is equivalent to true. This is not the case in Java. Thus, Java
programmers are shielded from accidents such as

if (x = 0) // oops...meant x == 0

In C++, this test compiles and runs, always evaluating to false. In Java,
the test does not compile because the integer expression x = 0 cannot be
converted to a boolean value.

Variables

In Java, every variable has a type. You declare a variable by placing the type first, followed
by the name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;
char yesChar;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary because a
declaration is a complete Java statement.

The rules for a variable name are as follows:

A variable name must begin with a letter, and must be a sequence of letters or digits. Note that
the terms ”letter” and ”digit“ are much broader in Java than in most languages. A letter is
defined as 'A'–'Z', 'a'–'z', '_', or any Unicode character that denotes a letter in a
language. For example, German users can use umlauts such as ' ä' in variable names; Greek
speakers could use a p. Similarly, digits are '0'–'9' and any Unicode characters that denote a
digit in a language. Symbols like '+' or '©' cannot be used inside variable names, nor can
spaces. All characters in the name of a variable are significant and case is also significant. The
length of a variable name is essentially unlimited.

TIP

If you are really curious as to what Unicode characters are “letters” as far
as Java is concerned, you can use the isJavaIdentifierStart and
isJavaIdentifierPart methods in the Character class to check.

You also cannot use a Java reserved word for a variable name. (See Appendix I for a list of
reserved words.)

Core Java™ 2: Volume I–Fundamentals

63

You can have multiple declarations on a single line

int i, j; // both are integers

However, we don't recommend this style. If you define each variable separately, your
programs are easier to read.

NOTE

As you saw, names are case-sensitive, for example hireday and
hireDay are two separate names. In general, you should not have two
names that only differ in their letter case. However, sometimes it is
difficult to come up with a good name for a variable. Many programmers
then give the variable the same name of the type, such as

Box box; // ok--Box is the type and box is the variable
name

However, a better solution is to use an “a” prefix for the variable:

Box aBox;

Assignments and Initializations

After you declare a variable, you must explicitly initialize it by means of an assignment
statement—you can never use the values of uninitialized variables. You assign to a previously
declared variable using the variable name on the left, an equal sign (=), and then some Java
expression that has an appropriate value on the right.

int vacationDays; // this is a declaration
vacationDays = 12; // this is an assignment

Here's an example of an assignment to a character variable:

char yesChar;
yesChar = 'Y';

One nice feature of Java is the ability to both declare and initialize a variable on the same line.
For example:

int vacationDays = 12; // this is an initialization

Finally, in Java you can put declarations anywhere in your code. For example, the following
is valid code in Java:

double salary = 65000.0;
System.out.println(salary);
int vacationDays = 12; // ok to declare variable here

Core Java™ 2: Volume I–Fundamentals

64

Of course, you cannot declare two variables with the same name in the same scope.

C++ NOTE

C and C++ distinguish between the declaration and definition of
variables. For example,

int i = 10;

is a definition, whereas

extern int i;

is a declaration. In Java, there are no declarations that are separate from
definitions.

Constants

In Java, you use the keyword final to denote a constant. For example,

public class Constants
{
 public static void main(String[] args)
 {
 final double CM_PER_INCH = 2.54;
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeter: "
 + paperWidth * CM_PER_INCH + " by "
 + paperHeight * CM_PER_INCH);
 }
}

The keyword final indicates that you can assign to the variable once, then its value is set
once and for all. It is customary to name constants in all upper case.

It is probably more common in Java to want a constant that is available to multiple methods
inside a single class. These are usually called class constants. You set up a class constant with
the keywords static final. Here is an example of using a class constant:

public class Constants2
{
 public static final double CM_PER_INCH = 2.54;;

 public static void main(String[] args)
 {
 double paperWidth = 8.5;
 double paperHeight = 11;
 System.out.println("Paper size in centimeter: "
 + paperWidth * CM_PER_INCH + " by "
 + paperHeight * CM_PER_INCH);
 }
}

Core Java™ 2: Volume I–Fundamentals

65

Note that the definition of the class constant appears outside the main method. Thus, the
constant can also be used in other methods of the same class. Furthermore, if (as in our
example) the constant is declared public, methods of other classes can also use the
constant—in our example, as Constants2.CM_PER_INCH.

C++ NOTE

const is a reserved Java keyword, but it is not currently used for
anything. You must use final for a constant.

Operators

The usual arithmetic operators + – * / are used in Java for addition, subtraction,
multiplication, and division. The / operator denotes integer division if both arguments are
integers, and floating-point division otherwise. Integer remainder (that is, the mod function) is
denoted by %. For example, 15 / 2 is 7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division by 0 yields
an infinite or NaN result.

You can use the arithmetic operators in your variable initializations:

int n = 5;
int a = 2 * n; // a is 10

There is a convenient shortcut for using binary arithmetic operators in an assignment. For
example,

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

Core Java™ 2: Volume I–Fundamentals

66

NOTE

One of the stated goals of the Java programming language is portability.
A computation should yield the same results no matter on which virtual
machine it executes. For arithmetic computations with floating-point
numbers, it is surprisingly difficult to achieve this portability.
The double type uses 64 bits to store a numeric value, but some
processors use 80 bit floating-point registers. These registers yield added
precision in intermediate steps of a computation. For example, consider
the computation:

double w = x * y / z;

Many Intel processors compute x * y and leave the result in an 80-bit
register, then divide by z and finally truncate the result back to 64 bits.
That can yield a more accurate result, and it can avoid exponent
overflow. But the result may be different from a computation that uses 64
bits throughout. For that reason, the initial specification of the Java
virtual machine mandated that all intermediate computations must be
truncated. The numeric community hated it. Not only can the truncated
computations cause overflow, they are actually slower than the more
precise computations because the truncation operations take time. For
that reason, the Java programming language was updated to recognize
the conflicting demands for optimum performance and perfect
reproducibility. By default, virtual machine designers are now permitted
to use extended precision for intermediate computations. However,
methods tagged with the strictfp keyword must use strict floating-
point operations that yield reproducible results. For example, you can tag
main as

public static strictfp void main(String[] args)

Then all instructions inside the main method use strict floating-point
computations. If you tag a class as strictfp, then all of its methods use
strict floating-point computations.

The gory details are very much tied to the behavior of the Intel
processors. In default mode, intermediate results are allowed to use an
extended exponent, but not an extended mantissa. (The Intel chips
support truncation of the mantissa without loss of performance.)
Therefore, the only difference between default and strict mode is that
strict computations may overflow when default computations don't.

If your eyes glazed over when reading this note, don't worry. For most
programmers, this issue is not important. Floating-point overflow isn't a
problem that one encounters for most common programs. We don't use
the strictfp keyword in this book.

Core Java™ 2: Volume I–Fundamentals

67

Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with a numeric
variable is to add or subtract 1. Java, following in the footsteps of C and C++, has both
increment and decrement operators: x++ adds 1 to the current value of the variable x, and x--
subtracts 1 from it. For example, the code

int n = 12;
n++;

changes n to 13. Because these operators change the value of a variable, they cannot be
applied to numbers themselves. For example, 4++ is not a legal statement.

There are actually two forms of these operators; you have seen the “postfix” form of the
operator that is placed after the operand. There is also a prefix form, ++n. Both change the
value of the variable by 1. The difference between the two only appears when they are used
inside expressions. The prefix form does the addition first; the postfix form evaluates to the
old value of the variable.

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside other expressions as this often leads to confusing code
and annoying bugs.

(Of course, while it is true that the ++ operator gives the C++ language its name, it also led to
the first joke about the language. C++ haters point out that even the name of the language
contains a bug: “After all, it should really be called ++C, since we only want to use a
language after it has been improved.”)

Relational and boolean Operators

Java has the full complement of relational operators. To test for equality you use a double
equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >=
(greater than or equal) operators.

Core Java™ 2: Volume I–Fundamentals

68

Java, following C++, uses && for the logical “and” operator and || for the logical “or”
operator. As you can easily remember from the != operator, the exclamation point ! is the
logical negation operator. The && and || operators are evaluated in “short circuit” fashion.
This means that when you have an expression like:

A && B

once the truth value of the expression A has been determined to be false, the value for the
expression B is not calculated. For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if x is zero,
and no divide-by-zero error can occur.

Similarly, if A evaluates to be true, then the value of A || B is automatically true, without
evaluating B.

Finally, Java supports the ternary ?: operator that is occasionally useful. The expression

condition ? e1 : e2

evaluates to e1 if the condition is true, to e2 otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

Bitwise Operators

When working with any of the integer types, you have operators that can work directly with
the bits that make up the integers. This means that you can use masking techniques to get at
individual bits in a number. The bitwise operators are:

& (“and”) | (“or”) ^ (“xor”) ~ (“not”)

These operators work on bit patterns. For example, if n is an integer variable, then

int fourthBitFromRight = (n & 8) / 8;

gives you a one if the fourth bit from the right in the binary representation of n is one, and a
zero if not. Using & with the appropriate power of two lets you mask out all but a single bit.

NOTE

When applied to boolean values, the & and | operators yield a boolean
value. These operators are similar to the && and || operators, except that
the & and | operators are not evaluated in “short-circuit” fashion. That is,
both arguments are first evaluated before computing the result.

Core Java™ 2: Volume I–Fundamentals

69

There are also >> and << operators, which shift a bit pattern to the right or left. These
operators are often convenient when you need to build up bit patterns to do bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, there is even a >>> operator that fills the top bits with zero, whereas >> extends the
sign bit into the top bits. There is no <<< operator.

CAUTION

The right hand side argument of the shift operators is reduced modulo 32
(unless the left hand side is a long in which case the right hand side is
reduced modulo 64). For example, the value of 1 << 35 is the same as 1
<< 3 or 8.

C++ NOTE

In C/C++, there is no guarantee as to whether >> performs an arithmetic
shift (extending the sign bit) or a logical shift (filling in with zeroes).
Implementors are free to choose whatever is more efficient. That means
the C/C++ >> operator is really only defined for non-negative numbers.
Java removes that ambiguity.

Mathematical Functions and Constants

The Math class contains an assortment of mathematical functions that you may occasionally
need, depending on the kind of programming that you do.

To take the square root of a number, you use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
System.out.println(y); // prints 2.0

NOTE

There is a subtle difference between the println method and the sqrt
method. The println method operates on an object, System.out, and
has a second parameter, namely y, the value to be printed. (Recall that
out is an object defined in the System class that represents the standard
output device.) But the sqrt method in the Math class does not operate
on any object. It has a single parameter, x, the number of which to
extract the square root. Such a method is called a static method. You will
learn more about static methods in Chapter 4.

Core Java™ 2: Volume I–Fundamentals

70

The Java programming language has no operator for raising a quantity to a power: you must
use the pow method in the Math class. The statement

double y = Math.pow(x, a);

sets y to be x raised to the power a (xa). The pow method has parameters that are both of type
double, and it returns a double as well.

The Math class supplies the usual trigonometric functions

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function and its inverse, the natural log:

Math.exp
Math.log

Finally, there are two constants

Math.PI
Math.E

that denote the closest possible approximations to the mathematical constants p and e.

NOTE

The functions in the Math class use the routines in the computer's
floating-point unit for fastest performance. If completely predictable
results are more important than fast performance, use the StrictMath
class instead. It implements the algorithms from the “Freely
Distributable Math Library” fdlibm, guaranteeing identical results on all
platforms. See http://www.netlib.org/fdlibm/index.html for the source of
these algorithms. (Where fdlibm provides more than one definition for a
function, the StrictMath class follows the IEEE 754 version whose
name starts with an “e”.)

Conversions Between Numeric Types

It is often necessary to convert from one numeric type to another. Figure 3-1 shows the legal
conversions:

Core Java™ 2: Volume I–Fundamentals

71

Figure 3-1. Legal conversions between numeric types

The six black arrows in Figure 3-1 denote conversions without information loss. The three
grey arrows denote conversions that may lose precision. For example, a large integer such as
123456789 has more digits than the float type can represent. When converting it to a float,
the resulting value has the correct magnitude, but it loses some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

When combining two values with a binary operator (such as n + f where n is an integer and
f is a floating-point value), both operands are converted to a common type before the
operation is carried out.

• If any of the operands is of type double, the other one will be converted to a double.
• Otherwise, if any of the operands is of type float, the other one will be converted to

a float.
• Otherwise, if any of the operands is of type long, the other one will be converted to

a long.
• Otherwise, both operands will be converted to an int.

Casts

In the preceding section, you saw that int values are automatically converted to double
values when necessary. On the other hand, there are obviously times when you want to
consider a double as an integer. Numeric conversions are possible in Java, but of course
information may be lost. Conversions where loss of information is possible are done by means
of casts. The syntax for casting is to give the target type in parentheses, followed by the
variable name. For example:

double x = 9.997;
int nx = (int)x;

Then, the variable nx has the value 9, as casting a floating-point value to an integer discards
the fractional part.

Core Java™ 2: Volume I–Fundamentals

72

If you want to round a floating-point number to the nearest integer (which is the more useful
operation in most cases), use the Math.round method:

double x = 9.997;
int nx = (int)Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when you call
round. The reason is that the return value of the round method is a long, and a long can only
be assigned to an int with an explicit cast since there is the possibility of information loss.

NOTE

If you try to cast a number of one type to another that is out of the range
for the target type, the result will be a truncated number that has a
different value. For example, (byte)300 is actually 44. It is, therefore, a
good idea to explicitly test that the value is in the correct range before
you perform a cast.

C++ NOTE

You cannot cast between boolean values and any numeric type. This
prevents common errors. In the rare case that you want to convert a
boolean value to a number, you can use a conditional expression such as
b ? 1 : 0.

Parentheses and Operator Hierarchy

As in all programming languages, you are best off using parentheses to indicate the order in
which you want operations to be carried out. However, in Java the hierarchy of operations is
as shown in Table 3-4.

Table 3-4. Operator precedence
Operators Associativity
[] . () (method call) left to right
! ~ ++ -- + (unary) – (unary) () (cast) new right to left
* / % left to right
+ - left to right
<< >> >>> left to right
< <= > >= instanceof left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: left to right

Core Java™ 2: Volume I–Fundamentals

73

= += -= *= /= %= &= |= ^= <<= >>= >>>= right to left

If no parentheses are used, operations are performed in the hierarchical order indicated.
Operators on the same level are processed from left to right, except for those that are right
associative, as indicated in the table.

C++ NOTE

Unlike C or C++, Java does not have a comma operator. However, you
can use a comma-separated list of expressions in the first and third slot of
a for statement.

Strings

Strings are sequences of characters, such as "Hello". Java does not have a built-in string
type. Instead, the standard Java library contains a predefined class called, naturally enough,
String. Each quoted string is an instance of the String class:

String e = ""; // an empty string
String greeting = "Hello";

Concatenation

Java, like most programming languages, allows you to use the + sign to join (concatenate) two
strings together.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The above code makes the value of the string variable message "Expletivedeleted". (Note
the lack of a space between the words: the + sign joins two strings together in the order
received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is converted to a
string. (As you will see in Chapter 5, every Java object can be converted to a string.) For
example:

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements; for example,

System.out.println("The answer is " + answer);

Core Java™ 2: Volume I–Fundamentals

74

is perfectly acceptable and will print what one would want (and with the correct spacing
because of the space after the word is).

Substrings

You extract a substring from a larger string with the substring method of the String class.
For example,

String greeting = "Hello";
String s = greeting.substring(0, 4);

creates a string consisting of the characters "Hell". Java counts the characters in strings in a
peculiar fashion: the first character in a string has position 0, just as in C and C++. (In C, there
was a technical reason for counting positions starting at 0, but that reason has long gone away,
and only the nuisance remains.)

For example, the character 'H' has position 0 in the string "Hello", and the character 'o' has
position 4. The second parameter of substring is the first position that you do not want to
copy. In our case, we want to copy the characters in positions 0, 1, 2, and 3 (from position 0 to
position 3 inclusive). As substring counts it, this means from position 0 inclusive to position
4 exclusive.

There is one advantage to the way substring works: it is easy to compute the length of the
substring. The string s.substring(a, b) always has b - a characters. For example, the
substring "Hell" has length 4 – 0 = 4.

String Editing

To find out the length of a string, use the length method. For example:

String greeting = "Hello";
int n = greeting.length(); // is 5.

Just as char denotes a Unicode character, String denotes a sequence of Unicode characters.
It is possible to get at individual characters of a string. For example, s.charAt(n) returns the
Unicode character at position n, where n is between 0 and s.length() – 1. For example,

char last = greeting.charAt(4); // fourth is 'o'

However, the String class gives no methods that let you change a character in an existing
string. If you want to turn greeting into "Hell!", you cannot directly change the last
position of greeting into a '!'. If you are a C programmer, this will make you feel pretty
helpless. How are you going to modify the string? In Java, it is quite easy: take the substring
that you want to keep, and then concatenate it with the characters that you want to replace.

greeting = greeting.substring(0, 4) + "!";

This changes the current value of the greeting variable to "Hell!".

Since you cannot change the individual characters in a Java string, the documentation refers to
the objects of the String class as being immutable. Just as the number 3 is always 3, the

Core Java™ 2: Volume I–Fundamentals

75

string "Hello" will always contain the character sequence 'H', 'e', 'l', 'l', 'o'. You
cannot change these values. You can, as you just saw however, change the contents of the
string variable greeting and make it refer to a different string, just as you can make a
numeric variable currently holding the value 3 hold the value 4.

Isn't that a lot less efficient? It would seem simpler to change the characters than to build up a
whole new string from scratch. Well, yes and no. Indeed, it isn't efficient to generate a new
string that holds the concatenation of "Hell" and "!". But immutable strings have one great
advantage: The compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a common pool. String
variables then point to locations in the pool. If you copy a string variable, both the original
and the copy share the same characters. Overall, the designers of Java decided that the
efficiency of sharing outweighs the inefficiency of string editing by extracting substrings and
concatenating.

Look at your own programs; we suspect that most of the time, you don't change strings—you
just compare them. Of course, there are some cases in which direct manipulation of strings is
more efficient. (One example is when assembling strings from individual characters that come
from a file or the keyboard.) For these situations, Java provides a separate StringBuffer
class that we describe in Chapter 12. If you are not concerned with the efficiency of string
handling (which is not a bottleneck in many Java applications anyway), you can ignore
StringBuffer and just use String.

C++ NOTE

C programmers generally are bewildered when they see Java strings for
the first time, because they think of strings as arrays of characters:

char greeting[] = "Hello";

That is the wrong analogy: a Java string is roughly analogous to a char*
pointer,

char* greeting = "Hello";

When you replace greeting with another string, the Java code does
roughly the following:

char* temp = malloc(6);
strncpy(temp, greeting, 4);
strncpy(temp + 4, "!", 2);
greeting = temp;

Sure, now greeting points to the string "Hell!". And even the most
hardened C programmer must admit that the Java syntax is more pleasant
than a sequence of strncpy calls. But what if we make another
assignment to greeting?

greeting = "Howdy";

Core Java™ 2: Volume I–Fundamentals

76

Don't we have a memory leak? After all, the original string was allocated
on the heap. Fortunately, Java does automatic garbage collection. If a
block of memory is no longer needed, it will eventually be recycled.

If you are a C++ programmer and use the string class defined by ANSI
C++, you will be much more comfortable with the Java String type.
C++ string objects also perform automatic allocation and deallocation
of memory. The memory management is performed explicitly by
constructors, assignment operators, and destructors. However, C++
strings are mutable—you can modify individual characters in a string.

Testing Strings for Equality

To test whether or not two strings are equal, use the equals method; the expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can be string
variables or string constants. For example,

"Hello".equals(command)

is perfectly legal. To test if two strings are identical except for the upper/lowercase letter
distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test if two strings are equal! It only determines whether or not
the strings are stored in the same location. Sure, if strings are in the same location, they must
be equal. But it is entirely possible to store multiple copies of identical strings in different
places.

String greeting = "Hello"; //initialize greeting to a string
if (greeting == "Hello") . . .
 // probably true
if (greeting.substring(0, 4) == "Hell") . . .
 // probably false

If the virtual machine would always arrange for equal strings to be shared, then you could use
== for testing equality. But only string constants are shared, not strings that are the result of
operations like + or substring. Therefore, never use == to compare strings or you will have a
program with the worst kind of bug—an intermittent one that seems to occur randomly.

Core Java™ 2: Volume I–Fundamentals

77

C++ NOTE

If you are used to the C++ string class, you have to be particularly
careful about equality testing. The C++ string class does overload the
== operator to test for equality of the string contents. It is perhaps
unfortunate that Java goes out of its way to give strings the same “look
and feel” as numeric values but then makes strings behave like pointers
for equality testing. The language designers could have redefined == for
strings, just as they made a special arrangement for +. Oh well, every
language has its share of inconsistencies.

C programmers never use == to compare strings but use strcmp instead.
The Java method compareTo is the exact analog to strcmp. You can use

if (greeting.compareTo("Help") == 0) . . .

but it seems clearer to use equals instead.

The String class in Java contains more than 50 methods. A surprisingly large number of
them are sufficiently useful so that we can imagine using them frequently. The following API
note summarizes the ones we found most useful.

NOTE

You will find these API notes throughout the book to help you
understand the Java Application Programming Interface (API). Each API
note starts with the name of a class such as java.lang.String—the
significance of the so-called package name java.lang will be explained
in Chapter 5. The class name is followed by the names, explanations, and
parameter descriptions of one or more methods.

We typically do not list all methods of a particular class but instead
select those that are most commonly used, and describe them in a concise
form. For a full listing, consult the on-line documentation.

java.lang.String

• char charAt(int index)

returns the character at the specified location.

Core Java™ 2: Volume I–Fundamentals

78

• int compareTo(String other)

returns a negative value if the string comes before other in dictionary order, a positive
value if the string comes after other in dictionary order, or 0 if the strings are equal.

• boolean endsWith(String suffix)

returns true if the string ends with suffix.

• boolean equals(Object other)

returns true if the string equals other.

• boolean equalsIgnoreCase(String other)

returns true if the string equals other, except for upper/lowercase distinction.

• int indexOf(String str)
• int indexOf(String str, int fromIndex)

return the start of the first substring equal to str, starting at index 0 or at fromIndex.

• int lastIndexOf(String str)
• int lastIndexOf(String str, int fromIndex)

return the start of the last substring equal to str, starting at index 0 or at fromIndex.

• int length()

returns the length of the string.

• String replace(char oldChar, char newChar)

returns a new string that is obtained by replacing all characters oldChar in the string
with newChar.

• boolean startsWith(String prefix)

returns true if the string begins with prefix.

• String substring(int beginIndex)
• String substring(int beginIndex, int endIndex)

return a new string consisting of all characters from beginIndex until the end of the
string or until endIndex (exclusive).

• String toLowerCase()

returns a new string containing all characters in the original string, with uppercase
characters converted to lower case.

Core Java™ 2: Volume I–Fundamentals

79

• String toUpperCase()

returns a new string containing all characters in the original string, with lowercase
characters converted to upper case.

• String trim()

returns a new string by eliminating all leading and trailing spaces in the original string.

Reading the On-line API Documentation

As you just saw, the String class has lots of methods. Furthermore, there are hundreds of
classes in the standard libraries, with many more methods. It is plainly impossible to
remember all useful classes and methods. Therefore, it is essential that you become familiar
with the on-line API documentation that lets you look up all classes and methods in the
standard library. The API documentation is part of the Java SDK. It is in HTML format. Point
your web browser to the docs/api/index.html subdirectory of your Java SDK installation.
You will see a screen as in Figure 3-2.

Figure 3-2. The three panes of the API documentation

The screen is organized into three windows. A small window on the top left shows all
available packages. Below it, a larger window lists all classes. Click on any class name, and
the API documentation for the class is displayed in the large window to the right (see
Figure 3-3). For example, to get more information on the methods of the String class, scroll
the second window until you see the String link, then click on it.

Core Java™ 2: Volume I–Fundamentals

80

Figure 3-3. Class description for the String class

Then scroll the window on the right until you reach a summary of all methods, sorted in
alphabetical order (see Figure 3-4). Click on any method name for a detailed description of
the method (see Figure 3-5). For example, if you click on the compareToIgnoreCase link,
you get the description of the compareToIgnoreCase method.

Figure 3-4. Method summary of the String class

Core Java™ 2: Volume I–Fundamentals

81

Figure 3-5. Detailed description of a String method

TIP

Bookmark the docs/api/index.html page in your browser right now.

Reading Input

You saw that it is easy to print output to the “standard output device” (that is, the console
window) just by calling System.out.println. Unfortunately, it is quite a bit more complex
to read keyboard input from the “standard input device.”

However, it is easy to supply a dialog box for keyboard input. The method call

JOptionPane.showInputDialog(promptString)

puts up a dialog box that prompts the user for input (see Figure 3-6). The return value is the
string that the user typed.

Core Java™ 2: Volume I–Fundamentals

82

Figure 3-6. An input dialog

For example, here is how you can query the name of the user of your program:

String name = JOptionPane.showInputDialog("What is your name?");

To read in a number, you have to work a little harder. The JOptionPane. showInputDialog
method returns a string, not a number. You use the Integer.parseInt or
Double.parseDouble method to convert the string to its numeric value. For example,

String input = JOptionPane.showInputDialog("How old are you?");
int age = Integer.parseInt(input);

If the user types 40, then the string variable input is set to the string "40". The
Integer.parseInt method converts the string to its numeric value, the number 40.

NOTE

If the parameter of the parseInt method contains non-digits, then
the method throws an exception. Unless your program “catches”
the exception, the virtual machine terminates the program and prints
an error message to the console. You will see in Chapter 11 how to catch
exceptions.

The program in Example 3-2 asks for the user's name and age and then prints out a message
like

Hello, Cay. Next year, you'll be 41

When you run the program, you will see that a first dialog appears to prompt for the name.
The dialog goes away, and a second dialog asks for the age. Finally, the reply is displayed in
the console window, not in a dialog window. This is not very elegant, of course. You will see
in later chapters how to program much more pleasant user interfaces. For now, we'll stick to
JOptionPane.showInputDialog and System.out.println because they are easy to use.

Note that the program ends with the method call:

System.exit(0);

Whenever your program calls JOptionPane.showInputDialog, you need to end it with a call
to System.exit(0). The reason is a bit technical. Showing a dialog box starts a new thread of
control. When the main method exits, the new thread does not automatically terminate. To

Core Java™ 2: Volume I–Fundamentals

83

end all threads, you need to call the System.exit method. (For more information on threads,
see Chapter 1 of Volume 2.)

The System.exit method receives an integer parameter, the “exit code” of the program. By
convention, a program exits with exit code 0 if it completed successfully, and with a non-zero
exit code otherwise. You can use different exit codes to indicate different error conditions.
The exiting program communicates the exit code to the operating system. Shell scripts and
batch files can then test the exit code.

Finally, note the line

import javax.swing.*;

at the beginning of the program. The JOptionPane class is defined in the javax.swing
package. Whenever you use a class that is not defined in the basic java.lang package, you
need to use an import directive. We will look at packages and import directives in more
detail in Chapter 5.

Example 3-2 InputTest.java

 1. import javax.swing.*;
 2.
 3. public class InputTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. // get first input
 8. String name = JOptionPane.showInputDialog
 9. ("What is your name?");
10.
11. // get second input
12. String input = JOptionPane.showInputDialog
13. ("How old are you?");
14.
15. // convert string to integer value
16. int age = Integer.parseInt(input);
17.
18. // display output on console
19. System.out.println("Hello, " + name +
20. ". Next year, you'll be " + (age + 1));
21.
22. System.exit(0);
23. }
24. }

javax.swing.JOptionPane

• static String showInputDialog(Object message)

Core Java™ 2: Volume I–Fundamentals

84

displays a dialog box with a message prompt, an input field, and “Ok” and “Cancel”
buttons. The method returns the string that the user typed.

java.lang.System

• static void exit(int status)

terminates the virtual machine and passes the status code to the operating system. By
convention, a non-zero status code indicates an error.

Formatting Output

You can print a number x to the console with the statement System.out.print(x). That
command will print x with the maximum number of non-zero digits for that type. For
example,

x = 10000.0 / 3.0;
System.out.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

You can control the display format to arrange your output neatly. The NumberFormat class in
the java.text package has three methods that yield standard formatters for

• numbers
• currency values
• percentage values

Suppose that the United States locale is your default locale. (A locale is a set of specifications
for country-specific properties of strings and numbers, such as collation order, currency
symbol, and so on. Locales are an important concept for writing internationalized
applications—programs that are acceptable to users from countries around the world. We will
discuss internationalization in Volume 2.) Then, the value 10000.0 / 3.0 will print as

3,333.333
$3,333.33
333,333%

in these three formats. As you can see, the formatter adds the commas that separate the
thousands, currency symbols ($), and percent signs.

To obtain a formatter for the default locale, use one of the three methods:

Core Java™ 2: Volume I–Fundamentals

85

NumberFormat.getNumberInstance()
NumberFormat.getCurrencyInstance()
NumberFormat.getPercentInstance()

Each of these methods returns an object of type NumberFormat. You can use that object to
format one or more numbers. You then apply the format method to the NumberFormat object
to get a string that contains the formatted number. Once you have the formatted string, you
will probably simply display the newly formatted number by printing the string:

double x = 10000.0 / 3.0;
NumberFormat formatter = NumberFormat.getNumberInstance();
String s = formatter.format(x); // the string "3,333.33"
System.out.println(s);

You also may want to set the minimum and maximum number of integer digits or fractional
digits to display. You can do this with the setMinimumIntegerDigits,
setMinimumFractionDigits, setMaximumIntegerDigits, and
setMaximumFractionDigits methods in the NumberFormat class. For example,

double x = 10000.0 / 3.0;
NumberFormat formatter = NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(4);
formatter.setMinimumIntegerDigits(6);
String s = formatter.format(x); // the string "003,333.3333"

Setting the maximum number of fractional digits is often useful. The last displayed digit is
rounded up if the first discarded digit is 5 or above. If you want to show trailing zeroes, set the
minimum number of fractional digits to the same value as the maximum. Otherwise, you
should leave the minimum number of fractional digits at the default value, 0.

Setting the number of integer digits is much less common. By specifying a minimum number,
you force leading zeroes for smaller values. Specifying a maximum number is downright
dangerous—the displayed value is silently truncated, yielding a nicely formatted but very
wrong result.

NOTE

If you are familiar with the C printf function and are longing for its
simplicity, check out the Format class at
http://www.horstmann.com/corejava.html. It is a Java class that faithfully
replicates the behavior of printf. For example,
Format.printf("%8.2f", 10000.0 / 3.0) prints the string "
3333.33" (with a leading space to yield a field width of 8 digits, and 2
digits after the decimal point).

You can also obtain number formats that are appropriate for different locales. For example, let
us look up the number formats that are used by the German locale and use them to print our
test output. There is a predefined object named Locale.GERMANY of a type called Locale that
knows about German number formatting rules. When we pass that Locale object to the
getNumberInstance method, we obtain a formatter that follows those German rules.

Core Java™ 2: Volume I–Fundamentals

86

double x = 10000.0 / 3.0;
NumberFormat formatter
 = NumberFormat.getNumberInstance(Locale.GERMANY);
System.out.println(formatter.format(x));
formatter = NumberFormat.getCurrencyInstance(Locale.GERMANY);
System.out.println(formatter.format(x));

This code prints the numbers:

3.333,333
3.333,33 DM

Note that the German convention for periods and commas in numbers is the exact opposite of
the U.S. convention: a comma is used as the decimal separator, and a period is used to
separate thousands. Also, the formatter knows that the currency symbol (DM) is placed after
the number.

java.text.NumberFormat

• static NumberFormat getCurrencyInstance()

returns a NumberFormat object to convert currency values to strings using
the conventions of the current locale.

• static NumberFormat getNumberInstance()

returns a NumberFormat object to format numbers using the conventions of the current
locale.

• static NumberFormat getPercentInstance()

returns a NumberFormat object to convert percentages to strings.

• void setMaximumFractionDigits(int digits)

Parameters: digits the number of digits to display

• sets the maximum number of digits after the decimal point for the format object. The
last displayed digit is rounded.

• void setMaximumIntegerDigits(int digits)

Parameters: digits the number of digits to display

• sets the maximum number of digits before the decimal point for the format object. Use
this method with extreme caution. If you specify too few digits, then the number is
simply truncated, displaying a dramatically wrong result!

• void setMinimumFractionDigits(int digits)

Core Java™ 2: Volume I–Fundamentals

87

Parameters: digits the number of digits to display

• sets the minimum number of digits after the decimal point for the format object. If the
number has fewer fractional digits than the minimum, then trailing zeroes are
supplied.

• void setMinimumIntegerDigits(int digits)

Parameters: digits the number of digits to display

• sets the minimum number of digits before the decimal point for the format object. If
the number has fewer digits than the minimum, then leading zeroes are supplied.

Control Flow

Java, like any programming language, supports both conditional statements and loops to
determine control flow. We start with the conditional statements and then move on to loops.
We end with the somewhat cumbersome switch statement that you can use when you have to
test for many values of a single expression.

C++ NOTE

The Java control flow constructs are identical to those in C and C++,
with two exceptions. There is no goto, but there is a “labeled” version of
break that you can use to break out of a nested loop (where you perhaps
would have used a goto in C).

Block Scope

Before we get into the actual control structures, you need to know more about blocks.

A block or compound statement is any number of simple Java statements that are surrounded
by a pair of braces. Blocks define the scope of your variables. Blocks can be nested inside
another. Here is a block that is nested inside the block of the main method.

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 . . .
 } // k is only defined up to here
}

However, it is not possible to declare identically named variables in two nested blocks. For
example, the following is an error and will not compile:

Core Java™ 2: Volume I–Fundamentals

88

public static void main(String[] args)
{
 int n;
 . . .
 {
 int k;
 int n; // error--can't redefine n in inner block
 . . .
 }
}

C++ NOTE

In C++, it is possible to redefine a variable inside a nested block. The
inner definition then shadows the outer one. This can be a source of
programming errors; hence Java does not allow it.

Conditional Statements

The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute multiple
statements when a single condition is true. In this case, you use a block statement that takes
the form:

{
 statement1
 statement2
 . . .
}

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}

In this code all the statements surrounded by the braces will be executed when yourSales is
greater than or equal to target. (See Figure 3-7.)

Core Java™ 2: Volume I–Fundamentals

89

Figure 3-7. Flowchart for the if statement

NOTE

A block (sometimes called a compound statement) allows you to have
more than one (simple) statement in any Java programming structure that
might otherwise have a single (simple) statement.

The more general conditional in Java looks like this (see Figure 3-8):

Core Java™ 2: Volume I–Fundamentals

90

Figure 3-8. Flowchart for the if/else statement

if (condition) statement1 else statement2;

For example:

if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100 + 0.01 * (yourSales - target);
}
else
{
 performance = "Unsatisfactory";
 bonus = 0;
}

The else part is always optional. An else groups with the closest if. Thus, in the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if.

Core Java™ 2: Volume I–Fundamentals

91

Repeated if . . . else if . . . alternatives are very common (see Figure 3-9). For
example:

if (yourSales >= 2 * target)
{
 performance = "Excellent";
 bonus = 1000;
}
else if {yourSales >= 1.5 * target)
{
 performance = "Fine";
 bonus = 500;
}
else if (yourSales >= target)
{
 performance = "Satisfactory";
 bonus = 100;
}
else
{
 System.out.println("You're fired");
}

Core Java™ 2: Volume I–Fundamentals

92

Figure 3-9. Flowchart for the if/else if (multiple branches)

Indeterminate Loops

In Java, as in all programming languages, there are control structures that let you repeat
statements. There are two forms for repeating loops that are best when you do not know how
many times a loop should be processed (these are “indeterminate loops”).

First, there is the while loop that only executes the body of the loop while a condition is
true. The general form is:

while (condition) statement

The while loop will never execute if the condition is false at the outset (see Figure 3-10).

Core Java™ 2: Volume I–Fundamentals

93

Figure 3-10. Flowchart for the while statement

In Example 3-3, we write a program to determine how long it will take to save a specific
amount of money for your well-earned retirement, assuming that you deposit the same
amount of money per year and the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently
accumulated in the body of the loop until the total exceeds the targeted amount.

while (balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 years++;
}

Core Java™ 2: Volume I–Fundamentals

94

(Don't rely on this program to plan for your retirement. We left out a few niceties such as
inflation and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block may never be executed. If you
want to make sure a block is executed at least once, you will need to move the test to the
bottom. This is done with the do/while loop. Its syntax looks like this:

do statement while (condition);

This statement executes the block and only then tests the condition. It then repeats the block
and retests the condition, and so on. For instance, the code in Example 3-4 computes the new
balance in your retirement account and then asks you if you are ready to retire:

do
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 year++;
 // print current balance
 . . .
 // ask if ready to retire and get input
 . . .
}
while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3-11). This program is a
good example of a loop that needs to be entered at least once, because the user needs to see
the balance before deciding whether it is sufficient for retirement.

Core Java™ 2: Volume I–Fundamentals

95

Figure 3-11. Flowchart for the do/while statement

Example 3-3 Retirement.java

 1. import javax.swing.*;
 2.
 3. public class Retirement
 4. {
 5. public static void main(String[] args)
 6. {
 7. // read inputs
 8. String input = JOptionPane.showInputDialog
 9. ("How much money do you need to retire?");
10. double goal = Double.parseDouble(input);
11.

Core Java™ 2: Volume I–Fundamentals

96

12. input = JOptionPane.showInputDialog
13. ("How much money will you contribute every year?");
14. double payment = Double.parseDouble(input);
15.
16. input = JOptionPane.showInputDialog
17. ("Interest rate in %:");
18. double interestRate = Double.parseDouble(input);
19.
20. double balance = 0;
21. int years = 0;
22.
23. // update account balance while goal isn't reached
24. while (balance < goal)
25. { // add this year's payment and interest
26.
27. balance += payment;
28. double interest = balance * interestRate / 100;
29. balance += interest;
30.
31. years++;
32. }
33.
34. System.out.println
35. ("Your can retire in " + years + " years.");
36. System.exit(0);
37. }
38. }

Example 3-4 Retirement2.java

 1. import java.text.*;
 2. import javax.swing.*;
 3.
 4. public class Retirement2
 5. {
 6. public static void main(String[] args)
 7. {
 8. String input = JOptionPane.showInputDialog
 9. ("How much money will you contribute every year?");
10. double payment = Double.parseDouble(input);
11.
12. input = JOptionPane.showInputDialog
13. ("Interest rate in %:");
14. double interestRate = Double.parseDouble(input);
15.
16. double balance = 0;
17. int year = 0;
18.
19. NumberFormat formatter
20. = NumberFormat.getCurrencyInstance();
21.
22. // update account balance while user isn't ready to retire
23. do
24. {
25. // add this year's payment and interest
26. balance += payment;
27. double interest = balance * interestRate / 100;
28. balance += interest;
29.
30. year++;
31.

Core Java™ 2: Volume I–Fundamentals

97

32. // print current balance
33. System.out.println("After year " + year
34. + ", your balance is "
35. + formatter.format(balance));
36.
37. // ask if ready to retire and get input
38. input = JOptionPane.showInputDialog
39. ("Ready to retire? (Y/N)");
40. input = input.toUpperCase();
41. }
42. while (input.equals("N"));
43.
44. System.exit(0);
45. }
46. }

Determinate Loops

The for loop is a very general construct to support iteration that is controlled by a counter or
similar variable that is updated after every iteration. As Figure 3-12 shows, the following loop
prints the numbers from 1 to 10 on the screen.

for (int i = 1; i <= 10; i++)
 System.out.println(i);

Core Java™ 2: Volume I–Fundamentals

98

Figure 3-12. Flowchart for the for statement

The first slot of the for statement usually holds the counter initialization. The second slot
gives the condition which will be tested before each new pass through the loop, and the third
slot explains how to update the counter.

Although Java, like C++, allows almost any expression in the various slots of a for loop, it is
an unwritten rule of good taste that the three slots of a for statement should only initialize,
test, and update the same counter variable. One can write very obscure loops by disregarding
this rule.

Even within the bounds of good taste, much is possible. For example, you can have loops that
count down:

for (int i = 10; i > 0; i--)
 System.out.println("Counting down . . . " + i);
System.out.println("Blastoff!");

Core Java™ 2: Volume I–Fundamentals

99

NOTE

Be careful about testing for equality of floating-point numbers in loops.
A for loop that looks like this:

for (double x = 0; x != 10; x += 0.1) . . .

may never end. Due to roundoff errors, the final value may not be
reached exactly. For example, in the loop above, x jumps from
9.99999999999998 to 10.09999999999998, because there is no exact
binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that variable
extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++)
{
 . . .
}
// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use the value of that
variable outside the loop. Therefore, if you wish to use the final value of a loop counter
outside the for loop, be sure to declare it outside the header for the loop!

int i;
for (i = 1; i <= 10; i++)
{
 . . .
}
// i still defined here

On the other hand, you can define variables with the same name in separate for loops:

for (int i = 1; i <= 10; i++)
{
 . . .
}
 . . .
for (int i = 11; i <= 20; i++) // ok to redefine i
{
 . . .
}

Of course, a for loop is equivalent to a while loop. More precisely,

for (statement1; expression1; expression2) statement2;

is completely equivalent to:

Core Java™ 2: Volume I–Fundamentals

100

{
 statement1;
 while (expression1)
 {
 statement2;
 expression2;
 }
}

Example 3-5 shows a typical example of a for loop.

The program computes the odds on winning a lottery. For example, if you must pick 6
numbers from the numbers 1 to 50 to win, then there are (50 × 49 × 48 × 47 × 46 × 45)/(1 × 2
× 3 × 4 × 5 × 6) possible outcomes, so your chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;
for (int i = 1; i <= k; i++)
 lotteryOdds = lotteryOdds * (n - i + 1) / i;

Example 3-5 LotteryOdds.java

 1. import javax.swing.*;
 2.
 3. public class LotteryOdds
 4. {
 5. public static void main(String[] args)
 6. {
 7. String input = JOptionPane.showInputDialog
 8. ("How many numbers do you need to draw?");
 9. int k = Integer.parseInt(input);
10.
11. input = JOptionPane.showInputDialog
12. ("What is the highest number you can draw?");
13. int n = Integer.parseInt(input);
14.
15. /*
16. compute binomial coefficient
17. n * (n - 1) * (n - 2) * . . . * (n - k + 1)
18. ---
19. 1 * 2 * 3 * . . . * k
20. */
21.
22. int lotteryOdds = 1;
23. for (int i = 1; i <= k; i++)
24. lotteryOdds = lotteryOdds * (n - i + 1) / i;
25.

Core Java™ 2: Volume I–Fundamentals

101

26. System.out.println
27. ("Your odds are 1 in " + lotteryOdds + ". Good luck!");
28.
29. System.exit(0);
30. }
31. }

Multiple Selections—the switch Statement

The if/else construct can be cumbersome when you have to deal with multiple selections
with many alternatives. Java has a switch statement that is exactly like the switch statement
in C and C++, warts and all.

For example, if you set up a menuing system with four alternatives like that in Figure 3-13,
you could use code that looks like this:

String input = JOptionPane.showInputDialog
 ("Select an option (1, 2, 3, 4)");
int choice = Integer.parseInt(input);
switch (choice)
{
 case 1:
 . . .
 break;
 case 2:
 . . .
 break;
 case 3:
 . . .
 break;
 case 4:
 . . .
 break;
 default:
 // bad input
 . . .
 break;
}

Core Java™ 2: Volume I–Fundamentals

102

Figure 3-13. Flowchart for the switch statement

Core Java™ 2: Volume I–Fundamentals

103

Execution starts at the case label that matches the value on which the selection is performed
and continues until the next break or the end of the switch. If none of the case labels matches,
then the default clause is executed, if it is present.

Note that the case labels must be integers. You cannot test strings. For example, the
following is an error:

String input = . . .;
switch (input) // ERROR
{
 case "A": // ERROR
 . . .
 break;
 . . .
}

CAUTION

It is possible for multiple cases to be triggered. If you forget to add a
break at the end of a case, then execution falls through to the next case!
This behavior is plainly dangerous and a common cause for errors. For
that reason, we never use the switch statement in our programs.

Breaking Control Flow

Although the designers of Java kept the goto as a reserved word, they decided not to include
it in the language. In general, goto statements are considered poor style. Some programmers
feel the anti-goto forces have gone too far (see, for example, the famous article of Donald
Knuth called “Structured Programming with goto's”). They argue that unrestricted use of
goto is error-prone, but that an occasional jump out of a loop is beneficial. The Java designers
agreed and even added a new statement to support this programming style, the labeled break.

Let us first look at the unlabeled break statement. The same break statement that you use to
exit a switch can also be used to break out of a loop. For example,

while (years <= 100)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance >= goal) break;
 years++;
}

Now the loop is exited if either years > 100 occurs on the top of the loop or balance >=
goal occurs in the middle of the loop. Of course, you could have computed the same value for
years without a break, like this:

Core Java™ 2: Volume I–Fundamentals

104

while (years <= 100 && balance < goal)
{
 balance += payment;
 double interest = balance * interestRate / 100;
 balance += interest;
 if (balance < goal)
 years++;
}

But note that the test balance < goal is repeated twice in this version. To avoid this
repeated test, some programmers prefer the break statement.

Unlike C++, Java also offers a labeled break statement that lets you break out of multiple
nested loops. Occasionally something weird happens inside a deeply nested loop. In that case,
you may want to break completely out of all the nested loops. It is inconvenient to program
that simply by adding extra conditions to the various loop tests.

Here's an example that shows this at work. Notice that the label must precede the outermost
loop out of which you want to break. It also must be followed by a colon.

int n;
read_data:
while (. . .) // this loop statement is tagged with the label
{
 . . .
 for (. . .) // this inner loop is not labeled
 {
 String input
 = JOptionPane.showInputDialog("Enter a number >= 0");
 n = Integer.parseInt(input);
 if (n < 0) // should never happen—can't go on
 break read_data;
 // break out of read_data loop
 . . .
 }
}

// this statement is executed immediately after the break
if (n < 0) // check for bad situation
{
 // deal with bad situation
}
else
{
 // carry out normal processing
}

If there was a bad input, the labeled break moves past the end of the labeled block. As with
any use of the break statement, you then need to test if the loop exited normally or as a result
of a break.

Core Java™ 2: Volume I–Fundamentals

105

NOTE

Curiously, you can apply a label to any statement, even an if statement
or a block statement, like this:

label:
{
 . . .
 if (condition) break label; // exits block
 . . .
}
// jumps here when the break statement executes

Thus, if you are lusting after a goto, and if you can place a block that
ends just before the place to which you want to jump, you can use a
break statement! Naturally, we don't recommend this approach. Note,
however, that you can only jump out of a block, never into a block.

Finally, there is a continue statement that, like the break statement, breaks the regular flow
of control. The continue statement transfers control to the header of the innermost enclosing
loop. Here is an example:

while (sum < goal)
{
 String input = JOptionPane.showInputDialog("Enter a number");
 n = Integer.parseInt(input);
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps immediately to the loop header, skipping the
remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the for loop.
For example, consider this loop.

for (count = 0; count < 100; count++)
{
 String input = JOptionPane.showInputDialog("Enter a number");
 n = Integer.parseInt(input);
 if (n < 0) continue;
 sum += n; // not executed if n < 0
}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the header of the loop
with the matching label.

Core Java™ 2: Volume I–Fundamentals

106

TIP

Many programmers find the break and continue statements confusing.
These statements are entirely optional—you can always express the same
logic without them. In this book, we never use break or continue.

Big Numbers

If the precision of the basic integer and floating-point types is not sufficient, you can turn to a
couple of handy classes in the java.math package, called BigInteger and BigDecimal.
These are classes for manipulating numbers with an arbitrarily long sequence of digits. The
BigInteger class implements arbitrary precision integer arithmetic, and BigDecimal does the
same for floating-point numbers.

Use the static valueOf method to turn an ordinary number into a big number:

BigInteger a = BigInteger.valueOf(100);

Unfortunately, you cannot use the familiar mathematical operators such as + and * to combine
big numbers. Instead, you must use methods such as add and multiply in the big number
classes.

BigInteger c = a.add(b); // c = a + b
BigInteger d = c.multiply(b.add(BigInteger.valueOf(2)));
 // d = c * (b + 2)

C++ NOTE

Unlike C++, Java has no programmable operator overloading. There was
no way for the programmer of the BigInteger class to redefine the + and
* operators to give the add and multiply operations of the BigInteger
classes. The language designers did overload the + operator to denote
concatenation of strings. They chose not to overload other operators, and
they did not give Java programmers the opportunity to overload operators
themselves.

Example 3-6 shows a modification of the lottery odds program of Example 3-5, updated to
work with big numbers. For example, if you are invited to participate in a lottery in which you
need to pick 60 numbers out of a possible 490 numbers, then this program will tell you that
your odds are 1 in 716395843461995557415116222540092933411717612789263493493351
013459481104668848. Good luck!

The program in Example 3-5 computed the following statement:

lotteryOdds = lotteryOdds * (n - i + 1) / i;

Core Java™ 2: Volume I–Fundamentals

107

When using big numbers, the equivalent statement becomes:

lotteryOdds = lotteryOdds.multiply(BigInteger.valueOf(n - i + 1))
 .divide(BigInteger.valueOf(i));

Example 3-6 BigIntegerTest.java

 1. import javax.swing.*;
 2. import java.math.*;
 3.
 4. public class BigIntegerTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. String input = JOptionPane.showInputDialog
 9. ("How many numbers do you need to draw?");
10. int k = Integer.parseInt(input);
11.
12. input = JOptionPane.showInputDialog
13. ("What is the highest number you can draw?");
14. int n = Integer.parseInt(input);
15.
16. /*
17. compute binomial coefficient
18. n * (n - 1) * (n - 2) * . . . * (n - k + 1)
19. ---
20. 1 * 2 * 3 * . . . * k
21. */
22.
23. BigInteger lotteryOdds = BigInteger.valueOf(1);
24.
25. for (int i = 1; i <= k; i++)
26. lotteryOdds = lotteryOdds
27. .multiply(BigInteger.valueOf(n - i + 1))
28. .divide(BigInteger.valueOf(i));
29.
30. System.out.println("Your odds are 1 in " + lotteryOdds +
31. ". Good luck!");
32.
33. System.exit(0);
34. }
35. }

java.math.BigInteger

• BigInteger add(BigInteger other)
• BigInteger subtract(BigInteger other)
• BigInteger multiply(BigInteger other)
• BigInteger divide(BigInteger other)
• BigInteger mod(BigInteger other)

Return the sum, difference, product, quotient, and remainder of this big integer and
other.

Core Java™ 2: Volume I–Fundamentals

108

• int compareTo(BigInteger other)

Returns 0 if this big integer equals other, a negative result if this big integer is less
than other, and a positive result otherwise.

• static BigInteger valueOf(long x)

Returns a big integer whose value equals x.

java.math.BigDecimal

• BigDecimal add(BigDecimal other)
• BigDecimal subtract(BigDecimal other)
• BigDecimal multiply(BigDecimal other)
• BigDecimal divide(BigDecimal other, int roundingMode)

Return the sum, difference, product, or quotient of this big decimal and other. To
compute the quotient, you need to supply a rounding mode. The mode
BigDecimal.ROUND_HALF_UP is the rounding mode that you learned in school (i.e.
round down digits 0 … 4, round up digits 5 … 9). It is appropriate for routine
calculations. See the API documentation for other rounding modes.

• int compareTo(BigDecimal other)

Returns 0 if this big Decimal equals other, a negative result if this big decimal is less
than other, and a positive result otherwise.

• static BigDecimal valueOf(long x)
• static BigDecimal valueOf(long x, int scale)

Return a big decimal whose value equals x or x /10scale.

Arrays

An array is a data structure that stores a collection of values of thesame type. You access each
individual value through an integer index. For example, if a is an array of integers, then a[i]
is the ith integer in the array.

You declare an array variable by specifying the array type—which is the element type
followed by []—and the array variable name. For example, here is the declaration of an array
a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a with an actual
array. You use the new operator to create the array.

Core Java™ 2: Volume I–Fundamentals

109

int[] a = new int[100];

This statement sets up an array that can hold 100 integers. The array entries are numbered
from 0 to 99 (and not 1 to 100). Once the array is created, you can fill the entries in an array,
for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)
 a[i] = i; // fills the array with 0 to 99

CAUTION

If you construct an array with 100 element and then try to access the
element a[100] (or any other index outside the range 0 … 99), then your
program will terminate with an “array index out of bounds” exception.

To find the number of elements of an array, use arrayName.length. For example,

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

Once you create an array, you cannot change its size (although you can, of course, change an
individual array element). If you frequently need to expand the size of an array while
a program is running, you should use a different data structure called an array list. (See
Chapter 5 for more on array lists.)

NOTE

You can define an array variable either as

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly
separates the type int[] (integer array) from the variable name.

Array Initializers and Anonymous Arrays

Java has a shorthand to create an array object and supply initial values at the same time.
Here's an example of the syntax at work:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Core Java™ 2: Volume I–Fundamentals

110

Notice that you do not use a call to new when you use this syntax.

You can even initialize an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces. It counts
the number of initial values and sets the array size accordingly. You can use this syntax to
reinitialize an array without creating a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is a shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

NOTE

It is legal to have arrays of length 0. Such an array can be useful if you
write a method that computes an array result, and the result happens to
be empty. You construct an array of length 0 as

new elementType[0]

Note that an array of length 0 is not the same as null. (See Chapter 4 for
more information about null.)

Copying Arrays

You can copy one array variable into another, but then both variables refer to the same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3-14 shows the result. If you actually want to copy all values of one array into another,
you have to use the arraycopy method in the System class. The syntax for this call is

System.arraycopy(from, fromIndex, to, toIndex, count);

Core Java™ 2: Volume I–Fundamentals

111

Figure 3-14. Copying an array variable

The to array must have sufficient space to hold the copied elements.

For example, the following statements, whose result is illustrated in Figure 3-15, set up two
arrays and then copy the last four entries of the first array to the second array. The copy starts
at position 2 in the source array and copies 4 entries, starting at position 3 of the target.

int[] smallPrimes = {2, 3, 5, 7, 11, 13};
int[] luckyNumbers = {1001, 1002, 1003, 1004, 1005, 1006, 1007};
System.arraycopy(smallPrimes, 2, luckyNumbers, 3, 4);
for (int i = 0; i < luckyNumbers.length; i++)
 System.out.println(i + ": " + luckyNumbers[i]);

Figure 3-15. Copying values between arrays

Core Java™ 2: Volume I–Fundamentals

112

The output is:

0: 1001
1: 1002
2: 1003
3: 5
4: 7
5: 11
6: 13

C++ NOTE

A Java array is quite different from a C++ array on the stack. It is,
however, essentially the same as a pointer to an array allocated on the
heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

In Java, the [] operator is predefined to perform bounds checking.
Furthermore, there is no pointer arithmetic—you can't increment a to
point to the next element in the array.

Command Line Parameters

You have already seen one example of Java arrays repeated quite a few times. Every Java
program has a main method with a String[] args parameter. This parameter indicates that
the main method receives an array of strings, namely, the arguments specified on the
command line.

For example, consider this program:

public class Message
{
 public static void main(String[] args)
 {
 if (args[0].equals("-h"))
 System.out.print("Hello,");
 else if (args[0].equals("-g"))
 System.out.print("Goodbye,");
 // print the other command line arguments
 for (int i = 1; i < args.length; i++)
 System.out.print(" " + args[i]);
 System.out.println("!");
 }
}

Core Java™ 2: Volume I–Fundamentals

113

If the program is called as

java Message -g cruel world

then the args array has the following contents:

args[0]: "-g"
args[1]: "cruel"
args[2]: "world"

The program prints the message

Goodbye, cruel world!

C++ NOTE

In the main method of a Java program, the name of the program is not
stored in the args array. For example, when you start up a program as

java Message -h world

from the command line, then args[0] will be "-h" and not "Message"
or "java"

Sorting an Array

If you want to sort an array of numbers, you can use one of the sort methods in the Arrays
class:

int[] a = new int[10000];
 . . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to be very
efficient on most data sets. The Arrays class provides several other convenience methods for
arrays that are included in the API notes at the end of this section.

The program in Example 3-7 puts arrays to work. This program draws a random combination
of numbers for a lottery game. For example, if you play a “choose 6 numbers from 49”
lottery, then the program might print:

Bet the following combination. It'll make you rich!
 4
 7
 8
 19
 30
 44

To select such a random set of numbers, we first fill an array numbers with the values 1, 2,
…, n:

Core Java™ 2: Volume I–Fundamentals

114

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)
 numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now we draw k numbers. The Math.random method returns a random floating point number
that is between 0 (inclusive) and 1 (exclusive). By multiplying the result with n, we obtain
a random number between 0 and n - 1.

int r = (int)(Math.random() * n);

We set the ith result to be the number at that index. Initially, that is just r itself, but as you'll
see presently, the contents of the numbers array is changed after each draw.

result[i] = numbers[r];

Now we must be sure never to draw that number again—all lottery numbers must be distinct.
Therefore, we overwrite numbers[r] with the last number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index points into an
array that contains the values that have not yet been drawn.

After drawing k lottery numbers, we sort the result array for a more pleasing output:

Arrays.sort(result);
for (int i = 0; i < result.length; i++)
 System.out.println(result[i]);

Example 3-7 LotteryDrawing.java

 1. import java.util.*;
 2. import javax.swing.*;
 3.
 4. public class LotteryDrawing
 5. {
 6. public static void main(String[] args)
 7. {
 8. String input = JOptionPane.showInputDialog
 9. ("How many numbers do you need to draw?");
10. int k = Integer.parseInt(input);
11.
12. input = JOptionPane.showInputDialog
13. ("What is the highest number you can draw?");
14. int n = Integer.parseInt(input);
15.
16. // fill an array with numbers 1 2 3 . . . n
17. int[] numbers = new int[n];
18. for (int i = 0; i < numbers.length; i++)
19. numbers[i] = i + 1;
20

Core Java™ 2: Volume I–Fundamentals

115

21. // draw k numbers and put them into a second array
22.
23. int[] result = new int[k];
24. for (int i = 0; i < result.length; i++)
25. {
26. // make a random index between 0 and n - 1
27. int r = (int)(Math.random() * n);
28.
29. // pick the element at the random location
30. result[i] = numbers[r];
31.
32. // move the last element into the random location
33. numbers[r] = numbers[n - 1];
34. n--;
35. }
36.
37. // print the sorted array
38.
39. Arrays.sort(result);
40. System.out.println
41. ("Bet the following combination. It'll make you rich!");
42. for (int i = 0; i < result.length; i++)
43. System.out.println(result[i]);
44.
45. System.exit(0);
46. }
47. }

java.lang.System

• static void arraycopy(Object from, int fromIndex, Object to, int
toIndex, int count)

Parameters: from an array of any type (Chapter 5 explains why this is a parameter of
type Object)

 fromIndex the starting index from which to copy elements
 to an array of the same type as from
 toIndex the starting index to which to copy elements
 count the number of elements to copy

• copies elements from the first array to the second array.

java.util.Arrays

• static void sort(Xxx[] a)

Core Java™ 2: Volume I–Fundamentals

116

Parameters: a an array of type int, long, short, char, byte, boolean, float or double

• sorts the array, using a tuned QuickSort algorithm.
• static int binarySearch(Xxx[] a, Xxx v)

Parameters: a a sorted array of type int, long, short, char, byte, boolean, float or
double

 v a value of the same type as the elements of a

• uses the BinarySearch algorithm to search for the value v. If it is found, its index is
returned. Otherwise, a negative value r is returned; -r - 1 is the spot at which v
should be inserted to keep a sorted.

• static void fill(Xxx[] a, Xxx v)

Parameters: a an array of type int, long, short, char, byte, boolean, float or double
 v a value of the same type as the elements of a

• sets all elements of the array to v.
• static boolean equals(Xxx[] a, Object other)

Parameters: a an array of type int, long, short, char, byte, boolean, float or
double

 other an object

• returns true if other is an array of the same type, if it has the same length, and if the
elements in corresponding indexes match.

Multidimensional Arrays

Multidimensional arrays use more than one index to access array elements. They are used for
tables and other more complex arrangements. You can safely skip this section until you have
a need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an investment of $10,000
will grow under different interest rate scenarios in which interest is paid annually and
reinvested. Table 3-5 illustrates this scenario.

Table 3-5. Growth of an investment at different interest rates
10% 11% 12% 13% 14% 15%
$10,000.00 $10,000.00 $10,000.00 $10,000.00 $10,000.00 $10,000.00
$11,000.00 $11,100.00 $11,200.00 $11,300.00 $11,400.00 $11,500.00
$12,100.00 $12,321.00 $12,544.00 $12,769.00 $12,996.00 $13,225.00
$13,310.00 $13,676.31 $14,049.28 $14,428.97 $14,815.44 $15,208.75
$14,641.00 $15,180.70 $15,735.19 $16,304.74 $16,889.60 $17,490.06
$16,105.10 $16,850.58 $17,623.42 $18,424.35 $19,254.15 $20,113.57
$17,715.61 $18,704.15 $19,738.23 $20,819.52 $21,949.73 $23,130.61
$19,487.17 $20,761.60 $22,106.81 $23,526.05 $25,022.69 $26,600.20
$21,435.89 $23,045.38 $24,759.63 $26,584.44 $28,525.86 $30,590.23
$23,579.48 $25,580.37 $27,730.79 $30,040.42 $32,519.49 $35,178.76

Core Java™ 2: Volume I–Fundamentals

117

The obvious way to store this information is in a two-dimensional array (or matrix), which we
will call balance.

Declaring a matrix in Java is simple enough. For example:

double[][] balance;

As always, you cannot use the array until you initialize it with a call to new. In this case, you
can do the initialization as follows:

balance = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notion for initializing
multidimensional arrays without needing a call to new. For example;

int[][] magicSquare =
 {
 {16, 3, 2, 13},
 {5, 10, 11, 8},
 {9, 6, 7, 12},
 {4, 15, 14, 1}
 };

Once the array is initialized, you can access individual elements, by supplying two brackets,
for example balance[i][j].

The example program stores a one-dimensional array interest of interest rates and a two-
dimensional array balance of account balances, one for each year and interest rate. We
initialize the first row of the array with the initial balance:

for (int j = 0; j < balance[0].length; j++)
 balance[0][j] = 10000;

Then we compute the other rows, as follows:

for (int i = 1; i < balance.length; i++)
{
 for (int j = 0; j < balance[i].length; j++)
 {
 double oldBalance = balance[i - 1][j];
 double interest = . . .;
 balance[i][j] = oldBalance + interest;
 }
}

Example 3-8 shows the full program.

Core Java™ 2: Volume I–Fundamentals

118

Example 3-8 CompoundInterest.java

 1. import java.text.*;
 2. import javax.swing.*;
 3.
 4. public class CompoundInterest
 5. {
 6. public static void main(String[] args)
 7. {
 8. final int STARTRATE = 10;
 9. final int NRATES = 6;
10. final int NYEARS = 10;
11.
12. // set interest rates to 10 . . . 15%
13. double[] interestRate = new double[NRATES];
14. for (int j = 0; j < interestRate.length; j++)
15. interestRate[j] = (STARTRATE + j) / 100.0;
16.
17. double[][] balance = new double[NYEARS][NRATES];
18.
19. // set initial balances to 10000
20. for (int j = 0; j < balance[0].length; j++)
21. balance[0][j] = 10000;
22.
23. // compute interest for future years
24.
25. for (int i = 1; i < balance.length; i++)
26. {
27. for (int j = 0; j < balance[i].length; j++)
28. {
29. // get last year's balance from previous row
30. double oldBalance = balance[i - 1][j];
31.
32. // compute interest
33. double interest = oldBalance * interestRate[j];
34.
35. // compute this year's balance
36. balance[i][j] = oldBalance + interest;
37. }
38. }
39.
40. // print one row of interest rates
41.
42. NumberFormat formatter = NumberFormat.getPercentInstance();
43.
44. for (int j = 0; j < interestRate.length; j++)
45. {
46. System.out.print(" ");
47. System.out.print(formatter.format(interestRate[j]));
48. }
49. System.out.println();
50.
51. // print balance table
52.
53. formatter = NumberFormat.getCurrencyInstance();
54.

Core Java™ 2: Volume I–Fundamentals

119

55. for (int i = 0; i < balance.length; i++)
56. {
57. // print table row
58. for (int j = 0; j < balance[i].length; j++)
59. {
60. System.out.print(" ");
61. System.out.print(formatter.format(balance[i][j]));
62. }
63. System.out.println();
64. }
65. }
66. }

Ragged Arrays

So far, what you have seen is not too different from other programming languages. But there
is actually something subtle going on behind the scenes that you can sometimes turn to your
advantage: Java has no multidimensional arrays at all, only one-dimensional arrays.
Multidimensional arrays are faked as “arrays of arrays.”

For example, the balance array in the preceding example is actually an array that contains ten
elements, each of which is an array of six floating-point numbers (see Figure 3-16).

Figure 3-16. A two-dimensional array

The expression balance[i] refers to the ith subarray, that is, the ith row of the table. It is,
itself, an array, and balance[i][j] refers to the jth entry of that array.

Core Java™ 2: Volume I–Fundamentals

120

Because rows of arrays are individually accessible, you can actually swap them!

double[] temp = balance[i];
balance[i] = balance[i + 1];
balance[i + 1] = temp;

It is also easy to make “ragged” arrays, that is, arrays in which different rows have different
lengths. Here is the standard example. Let us make an array in which the entry at row i and
column j equals the number of possible outcomes of a “choose j numbers from i numbers”
lottery.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Because j can never be larger than i, the matrix is triangular. The ith row has i + 1
elements. (We allow choosing 0 elements; there is one way to make such a choice.) To build
this ragged array, first allocate the array holding the rows.

int[][] odds = new int[NMAX + 1][];

Next, allocate the rows.

for (n = 0; n <= NMAX; n++)
 odds[n] = new int[n + 1];

Now that the array is allocated, we can access the elements in the normal way, provided we
do not overstep the bounds.

for (n = 0; n < odds.length; n++)
 for (k = 0; k < odds[n].length; k++)
 {
 // compute lotteryOdds
 . . .
 odds[n][k] = lotteryOdds;
 }

Example 3-9 gives the complete program.

C++ NOTE

The Java declaration

double[][] balance = new double[10][6]; // Java

is not the same as

Core Java™ 2: Volume I–Fundamentals

121

double balance[10][6]; // C++

or even

double (*balance)[6] = new double[10][6]; // C++

in C++. Instead, an array of five pointers is allocated:

double** balance = new double*[10]; // C++

Then, each element in the pointer array is filled with an array of 6
numbers:

for (i = 0; i < 10; i++)
 balance[i] = new double[6];

Mercifully, this loop is automatic when you ask for a new
double[10][6]. When you want ragged arrays, you allocate the row
arrays separately.

Example 3-9 LotteryArray.java

 1. public class LotteryArray
 2. {
 3. public static void main(String[] args)
 4. {
 5. final int NMAX = 10;
 6.
 7. // allocate triangular array
 8. int[][] odds = new int[NMAX + 1][];
 9. for (int n = 0; n <= NMAX; n++)
10. odds[n] = new int[n + 1];
11.
12. // fill triangular array
13. for (int n = 0; n < odds.length; n++)
14. for (int k = 0; k < odds[n].length; k++)
15. {
16. /*
17. compute binomial coefficient
18. n * (n - 1) * (n - 2) * . . . * (n - k + 1)
19. ---
20. 1 * 2 * 3 * . . . * k
21. */
22. int lotteryOdds = 1;
23. for (int i = 1; i <= k; i++)
24. lotteryOdds = lotteryOdds * (n - i + 1) / i;
25.
26. odds[n][k] = lotteryOdds;
27. }
28.

Core Java™ 2: Volume I–Fundamentals

122

29. // print triangular array
30. for (int n = 0; n < odds.length; n++)
31. {
32. for (int k = 0; k < odds[n].length; k++)
33. {
34. // pad output with spaces
35. String output = " " + odds[n][k];
36. // make output field 4 characters wide
37. output = output.substring(output.length() - 4);
38. System.out.print(output);
39. }
40. System.out.println();
41. }
42. }
43. }
44.

Core Java™ 2: Volume I–Fundamentals

123

Chapter 4. Objects and Classes
• Introduction to Object-Oriented Programming
• Using Existing Classes
• Building Your Own Classes
• Static Fields and Methods
• Method Parameters
• Object Construction
• Packages
• Documentation Comments
• Class Design Hints

This chapter will:

• Introduce you to object-oriented programming
• Show you how you can create objects that belong to classes in the standard Java

library
• Show you how to write your own classes

If you do not have a background in object-oriented programming, you will want to read this
chapter carefully. Object-oriented programming requires a different way of thinking than for
procedure-oriented languages. The transition is not always easy, but you do need some
familiarity with object concepts to go further with Java.

For experienced C++ programmers, this chapter, like the previous chapter, will present
familiar information; however, there are enough differences between the two languages that
you should read the later sections of this chapter carefully. You'll find the C++ notes helpful
for making the transition.

Introduction to Object-Oriented Programming

Object-oriented programming (or OOP for short) is the dominant programming paradigm
these days, having replaced the “structured,” procedure-based programming techniques that
were developed in the early '70s. Java is totally object oriented, and it is impossible to
program it in the procedural style that you may be most comfortable with. We hope this
section—especially when combined with the example code supplied in the text and on the
CD—will give you enough information about OOP to become productive with Java.

Let's begin with a question that, on the surface, seems to have nothing to do with
programming: How did companies like Compaq, Dell, Gateway, and the other major personal
computer manufacturers get so big, so fast? Most people would probably say they made
generally good computers and sold them at rock-bottom prices in an era when computer
demand was skyrocketing. But go further—how were they able to manufacture so many
models so fast and respond to the changes that were happening so quickly?

Well, a big part of the answer is that these companies farmed out a lot of the work. They
bought components from reputable vendors and then assembled them. They often didn't invest
time and money in designing and building power supplies, disk drives, motherboards, and

Core Java™ 2: Volume I–Fundamentals

124

other components. This made it possible for the companies to produce a product and make
changes quickly for less money than if they had done the engineering themselves.

What the personal computer manufacturers were buying was “prepackaged functionality.” For
example, when they bought a power supply, they were buying something with certain
properties (size, shape, and so on) and a certain functionality (smooth power output, amount
of power available, and so on). Compaq provides a good example of how effective this
operating procedure is. When Compaq moved from engineering most of the parts in their
machines to buying many of the parts, they dramatically improved their bottom line.

OOP springs from the same idea. Your program is made of objects, with certain properties
and operations that the objects can perform. Whether you build an object or buy it might
depend on your budget or on time. But, basically, as long as objects satisfy your
specifications, you don't care how the functionality was implemented. In OOP, you only care
about what the objects expose. So, just as computer manufacturers don't care about the
internals of a power supply as long as it does what they want, most Java programmers don't
care how an object is implemented as long as it does what they want.

Traditional structured programming consists of designing a set of functions (or algorithms) to
solve a problem. After the functions were determined, the traditional next step was to find
appropriate ways to store the data. This is why the designer of the Pascal language, Niklaus
Wirth, called his famous book on programming Algorithms + Data Structures = Programs
(Prentice Hall, 1975). Notice that in Wirth's title, algorithms come first, and data structures
come second. This mimics the way programmers worked at that time. First, you decided how
to manipulate the data; then, you decided what structure to impose on the data to make the
manipulations easier. OOP reverses the order and puts data first, then looks at the algorithms
that operate on the data.

The key to being most productive in OOP is to make each object responsible for carrying out
a set of related tasks. If an object relies on a task that isn't its responsibility, it needs to have
access to another object whose responsibilities include that task. The first object then asks the
second object to carry out the task. This is done with a more generalized version of the
function call that you are familiar with in procedural programming. (Recall that in Java these
function calls are usually called method calls.)

In particular, an object should never directly manipulate the internal data of another object,
nor should it expose data for other objects to access directly. All communication should be via
method calls. By encapsulating object data, you maximize reusability, reduce data
dependency and minimize debugging time.

Of course, just as with modules in a procedure-oriented language, you will not want an
individual object to do too much. Both design and debugging are simplified when you build
small objects that perform a few tasks, rather than humongous objects with internal data that
are extremely complex, with hundreds of functions to manipulate the data.

The Vocabulary of OOP

You need to understand some of the terminology of OOP to go further. The most important
term is the class, which you have already seen in the code examples of Chapter 3. A class is
the template or blueprint from which objects are actually made. This leads to the standard way

Core Java™ 2: Volume I–Fundamentals

125

of thinking about classes: as cookie cutters. Objects are the cookies themselves. When you
construct an object from a class, you are said to have created an instance of the class.

As you have seen, all code that you write in Java is inside a class. The standard Java library
supplies several thousand classes for such diverse purposes as user interface design, dates and
calendars, and network programming. Nonetheless, you still have to create your own classes
in Java, to describe the objects of the problem domains of your applications, and to adapt the
classes that are supplied by the standard library to your own purposes.

Encapsulation (sometimes called data hiding) is a key concept in working with objects.
Formally, encapsulation is nothing more than combining data and behavior in one package
and hiding the implementation of the data from the user of the object. The data in an object
are called its instance fields, and the functions and procedures that operate on the data are
called its methods. A specific object that is an instance of a class will have specific values for
its instance fields. The set of those values is the current state of the object. Whenever you
apply a method to an object, its state may change.

It cannot be stressed enough that the key to making encapsulation work is to have methods
never directly access instance fields in a class other than their own. Programs should interact
with object data only through the object's methods. Encapsulation is the way to give the object
its “black box” behavior, which is the key to reuse and reliability. This means a class may
totally change how it stores its data, but as long as it continues to use the same methods to
manipulate the data, no other object will know or care.

When you do start writing your own classes in Java, another tenet of OOP makes this easier:
classes can be built on other classes. We say that a class that builds on another class extends
it. Java, in fact, comes with a “cosmic superclass” called, naturally enough, Object, because
it is the factory for all objects. All other classes extend this class. You will see more about the
Object class in the next chapter.

When you extend an existing class, the new class has all the properties and methods of the
class that you extend. You supply new methods and data fields that apply to your new class
only. The concept of extending a class to obtain another class is called inheritance. See the
next chapter for details on inheritance.

Objects

To work with OOP, you should be able to identify three key characteristics of objects. The
three key characteristics are:

• The object's behavior—what can you do with this object, or what methods can you
apply to it?

• The object's state—how does the object react when you apply those methods?
• The object's identity—how is the object distinguished from others that may have the

same behavior and state?

All objects that are instances of the same class share a family resemblance by supporting the
same behavior. The behavior of an object is defined by the methods that you can call.

Core Java™ 2: Volume I–Fundamentals

126

Next, each object stores information about what it currently looks like. This is the object's
state. An object's state may change over time, but not spontaneously.

A change in the state of an object must be a consequence of method calls. (If the object state
changed without a method call on that object, someone broke encapsulation.)

However, the state of an object does not completely describe it, since each object has a
distinct identity. For example, in an order-processing system, two orders are distinct even if
they request identical items. Notice that the individual objects that are instances of a class
always differ in their identity and usually differ in their state.

These key characteristics can influence each other. For example, the state of an object can
influence its behavior. (If an order is “shipped” or “paid,” it may reject a method call that asks
it to add or remove items. Conversely, if an order is “empty,” that is, no items have yet been
ordered, it should not allow itself to be shipped.)

In a traditional procedure-oriented program, you start the process at the top, with the main
function. When designing an object-oriented system, there is no “top,” and newcomers to
OOP often wonder where to begin. The answer is: You first find classes and then you add
methods to each class.

TIP

A simple rule of thumb in identifying classes is to look for nouns in the
problem analysis. Methods, on the other hand, correspond to verbs.

For example, in an order-processing system, some of these nouns are:

• Item
• Order
• Shipping address
• Payment
• Account

These nouns may lead to the classes Item, Order, and so on.

Next, one looks for verbs. Items are added to orders. Orders are shipped or canceled.
Payments are applied to orders. With each verb, such as “add,” “ship,” “cancel,” and “apply,”
you have to identify the one object that has the major responsibility for carrying it out. For
example, when a new item is added to an order, the order object should be the one in charge
since it knows how it stores and sorts items. That is, add should be a method of the Order
class that takes an Item object as a parameter.

Of course, the “noun and verb” rule is only a rule of thumb, and only experience can help you
decide which nouns and verbs are the important ones when building your classes.

Core Java™ 2: Volume I–Fundamentals

127

Relationships Between Classes

The most common relationships between classes are:

• Dependence (“uses–a”)
• Aggregation (“has–a”)
• Inheritance (“is–a”)

The dependence or “uses–a” relationship is the most obvious and also the most general. For
example, the Order class uses the Account class, since Order objects need to access Account
objects to check for credit status. But the Item class does not depend on the Account class,
since Item objects never need to worry about customer accounts. Thus, a class depends on
another class if its methods manipulate objects of that class.

TIP

Try to minimize the number of classes that depend on each other. The
point is, if a class A is unaware of the existence of a class B, it is also
unconcerned about any changes to B! (And this means that changes to B
do not introduce bugs into A.) In software engineering terminology, you
want to minimize the coupling between classes.

The aggregation or “has-a”relationship is easy to understand because it is concrete; for
example, an Order object contains Item objects. Containment means that objects of class A
contain objects of class B.

NOTE

Some methodologists view the concept of aggregation with disdain and
prefer to use a more general “association” relationship. From the point of
view of modeling, that is understandable. But for programmers, the “has-
a” relationship makes a lot of sense. We like to use aggregation for a
second reason—the standard notation for associations is less clear. See
Table 4-1.

The inheritance or “is-a” relationship expresses a relationship between a more special and a
more general class. For example, a RushOrder class inherits from an Order class. The
specialized RushOrder class has special methods for priority handling and a different method
for computing shipping charges, but its other methods, such as adding items and billing, are
inherited from the Order class. In general, if class A extends class B, class A inherits methods
from class B but has more capabilities. (We will describe inheritance more fully in the next
chapter, in which we discuss this important notion at some length.)

Many programmers use the UML (Unified Modeling Language) notation to draw class
diagrams that describe the relationships between classes. You can see an example of such a
diagram in Figure 4-1. You draw classes as rectangles, and relationships as arrows with
various adornments. Table 4-1 shows the most common UML arrow styles:

Core Java™ 2: Volume I–Fundamentals

128

Figure 4-1. A class diagram

Table 4-1. UML notation for class relationships
Relationship UML Connector
Inheritance

Dependency
Aggregation

Association
Directed Associtation

Figure 4-1 shows an example of a class diagram.

NOTE

The diagram in Figure 4-1 was created using the whiteboard edition of
Together/J, a Java application to keep design diagrams and Java code
synchronized. You can find the program on the book's CD-ROM or
download it from http://www.togethersoft.com/.

Contrasting OOP with Traditional Procedural Programming Techniques

We want to end this short introduction to OOP by contrasting OOP with the procedural model
that you may be more familiar with. In procedure-oriented programming, you identify the
tasks to be performed and then:

Core Java™ 2: Volume I–Fundamentals

129

• By a stepwise refinement process, break the task to be performed into subtasks, and
these into smaller subtasks, until the subtasks are simple enough to be implemented
directly (this is the top-down approach).

• Write procedures to solve simple tasks and combine them into more sophisticated
procedures, until you have the functionality you want (this is the bottom-up approach).

Most programmers, of course, use a mixture of the top-down and bottom-up strategies to
solve a programming problem. The rule of thumb for discovering procedures is the same as
the rule for finding methods in OOP: look for verbs, or actions, in the problem description.
The important difference is that in OOP, you first isolate the classes in the project. Only then
do you look for the methods of the class. And there is another important difference between
traditional procedures and OOP methods: each method is associated with the class that is
responsible for carrying out the operation.

For small problems, the breakdown into procedures works very well. But for larger problems,
classes and methods have two advantages. Classes provide a convenient clustering
mechanism for methods. A simple Web browser may require 2,000 functions for its
implementation, or it may require 100 classes with an average of 20 methods per class.
The latter structure is much easier to grasp by a programmer. It is also much easier to
distribute over a team of programmers. The encapsulation built into classes helps you here as
well: classes hide their data representations from all code except their own methods. As
Figure 4-2 shows, this means that if a programming bug messes up data, it is easier to search
for the culprit among the 20 methods that had access to that data item than among 2,000
procedures.

Core Java™ 2: Volume I–Fundamentals

130

Figure 4-2. Procedural vs. OO programming

You may say that this doesn't sound much different than modularization. You have certainly
written programs by breaking the program up into modules that communicate with each other
through procedure calls only, not by sharing data. This (if well done) goes far in
accomplishing encapsulation. However, in many programming languages, the slightest
sloppiness in programming allows you to get at the data in another module—encapsulation is
easy to defeat.

There is a more serious problem: while classes are factories for multiple objects with the same
behavior, you cannot get multiple copies of a useful module. Suppose you have a module
encapsulating a collection of orders, together with a spiffy balanced binary tree module to
access them quickly. Now it turns out that you actually need two such collections, one for
the pending orders and one for the completed orders. You cannot simply link the order tree

Core Java™ 2: Volume I–Fundamentals

131

module twice. And you don't really want to make a copy and rename all procedures for
the linker to work! Classes do not have this limitation. Once a class has been defined, it is
easy to construct any number of instances of that class type (whereas a module can have only
one instance).

We have only scratched a very large surface. The end of this chapter has a short section on
“Class Design Hints,” but for more information on understanding the OO design process, see
the following note for some book recommendations.

NOTE

There are many books on UML. We like The Unified Modeling
Language User Guide by Grady Booch, Ivar Jacobson, and James
Rumbaugh (Addison-Wesley 1999).

You can also check out Rational's Web site for lots of free information
about UML (http://www.rational.com/uml). You can find a lighter
version of the methodology adapted to both C++ and Java in Practical
Object-Oriented Development in C++ and Java, by Cay S. Horstmann
(John Wiley & Sons, 1997).

Using Existing Classes

Since you can't do anything in Java without classes, you have already seen several classes at
work. Unfortunately, many of these are quite anomalous in the Java scheme of things. A good
example of this is the Math class. You have seen that you can use methods of the Math class,
such as Math.random, without needing to know how they are implemented—all you need to
know is the name and parameters (if any). That is the point of encapsulation and will certainly
be true of all classes. Unfortunately, the Math class only encapsulates functionality; it neither
needs nor hides data. Since there is no data, you do not need to worry about making objects
and initializing their instance fields—there aren't any!

In the next section, we will look at a more typical class, the Date class. You will see how to
construct objects and call methods of this class.

Objects and Object Variables

To work with objects, you first construct them and specify their initial state. Then you apply
methods to the objects.

In the Java programming language, you use constructors to construct new instances. A
constructor is a special method whose purpose is to construct and initialize objects. Let us
look at an example. The standard Java library contains a Date class. Its objects describe points
in time, such as “December 31, 1999, 23:59:59 GMT.”

Core Java™ 2: Volume I–Fundamentals

132

NOTE

You may be wondering: Why use classes to represent dates rather than
(as in some languages) a built-in type? For example, Visual Basic has
a built-in date type and programmers can specify dates in the format
#6/1/1995#. On the surface, this sounds convenient—programmers can
simply use the built-in date type rather than worrying about classes. But
actually, how suitable is the Visual Basic design? In some locales, dates
are specified as month/day/year, in others as day/month/year. Are the
language designers really equipped to foresee these kinds of issues? If
they do a poor job, the language becomes an unpleasant muddle, but
unhappy programmers are powerless to do anything about it. By using
classes, the design task is offloaded to a library designer. If the class is
not perfect, other programmers can easily write their own classes to
enhance or replace the system classes.

Constructors always have the same name as the class name. Thus, the constructor for the Date
class is called Date. To construct a Date object, you combine the constructor with the new
operator, as follows:

new Date()

This expression constructs a new object. The object is initialized to the current date and time.

If you like, you can pass the object to a method:

System.out.println(new Date());

Alternatively, you can apply a method to the object that you just constructed. One of the
methods of the Date class is the toString method. That method yields a string representation
of the date. Here is how you would apply the toString method to a newly constructed Date
object.

String s = new Date().toString();

In these two examples, the constructed object is used only once. Usually, you will want to
hang on to the objects that you construct so you can keep using them. Simply store the object
in a variable:

Date birthday = new Date();

Figure 4-3 shows the object variable birthday which refers to the newly constructed object.

Core Java™ 2: Volume I–Fundamentals

133

Figure 4-3. Creating a new object

There is an important difference between objects and object variables. For example,
the statement

Date deadline; // deadline doesn't refer to any object

defines an object variable, deadline, that can refer to objects of type Date. It is important to
realize that the variable deadline is not an object and, in fact, doesnot yet even refer to an
object. You cannot use any Date methods on this variable at this time. The statement

s = deadline.toString(); // not yet

would cause a compile-time error.

You must first initialize the deadline variable. You have two choices. Of course, you can
initialize the variable with a newly constructed object:

deadline = new Date();

Or you can set the variable to refer to an existing object:

deadline = birthday;

Now both variables refer to the same object. (See Figure 4-4.)

Figure 4-4. Object variables that refer to the same object

It is important to realize that an object variable doesn't actually contain an object. It only
refers to an object.

Core Java™ 2: Volume I–Fundamentals

134

In Java, the value of any object variable is a reference to an object that is stored elsewhere.
The return value of the new operator is also a reference. A statement such as

Date deadline = new Date();

has two parts. The expression new Date() makes an object of type Date, and its value is a
reference to that newly created object. That reference is then stored in the deadline variable.

You can explicitly set an object variable to null to indicate that it currently refers to no
object.

deadline = null;
. . .
if (deadline != null)
 System.out.println(deadline);

If you apply a method to a variable that holds null, then a run-time error occurs.

birthday = null;
String s = birthday.toString(); // runtime error!

Local object variables are not automatically initialized to null. You must initialize them,
either by calling new or by setting them to null.

C++ NOTE

Many people mistakenly believe that Java object variables behave like
C++ references. But in C++ there are no null references, and references
cannot be assigned. You should think of Java object variables as
analogous to object pointers in C++. For example,

Date birthday; // Java

is really the same as

Date* birthday; // C++

Once you make this association, everything falls into place. Of course, a
Date* pointer isn't initialized until you initialize it with a call to new. The
syntax is almost the same in C++ and Java.

Date* birthday = new Date(); // C++

If you copy one variable to another, then both variables refer to the same
date—they are pointers to the same object. The equivalent of the Java
null reference is the C++ NULL pointer.

All Java objects live on the heap. When an object contains another object
variable, that variable still contains just a pointer to yet another heap
object.

Core Java™ 2: Volume I–Fundamentals

135

In C++, pointers make you nervous because they are so error-prone. It is
easy to create bad pointers or to mess up memory management. In Java,
these problems simply go away. If you use an uninitialized pointer, the
run-time system will reliably generate a run-time error, instead of
producing random results. You don't worry about memory management
because the garbage collector takes care of it.

C++ makes quite an effort, with its support for copy constructors and
assignment operators, to allow the implementation of objects that copy
themselves automatically. For example, a copy of a linked list is a new
linked list with the same contents but with an independent set of links.
This makes it possible to design classes with the same copy behavior as
the built-in types. In Java, you must use the clone method to get a
complete copy of an object.

The GregorianCalendar Class of the Java Library

In the preceding examples, we used the Date class that is a part of the standard Java library.
An instance of the Date class has a state, namely a particular point in time.

Although you don't need to know this when you use the Date class, the time is represented by
the number of milliseconds (positive or negative) from a fixed point, the so-called epoch,
which is 00:00:00 UTC, January 1, 1970. UTC is the Coordinated Universal Time, the
scientific time standard that is, for practical purposes, the same as the more familiar GMT or
Greenwich Mean Time.

But as it turns out, the Date class is not very useful for manipulating dates. The designers of
the Java library take the point of view that a date description such as “December 31, 1999,
23:59:59” is an arbitrary convention, governed by a calendar. This particular description
follows the Gregorian calendar, which is the calendar used in most places of the world. The
same point in time would be described quite differently in the Chinese or Hebrew lunar
calendars, not to mention the calendar used by your customers from Mars.

NOTE

Throughout human history, civilizations grappled with the design of
calendars that attached names to dates and brought order to the solar and
lunar cycles. For a fascinating explanation of calendars around the world,
from the French revolutionary calendar to the Mayan long count, see
Calendrical Calculations by Nachum Dershowitz and Edward M.
Reingold (Cambridge University Press, 1997).

The library designers decided to separate the concerns of keeping time and attaching names to
points in time. Therefore, the standard Java library contains two separate classes: the Date
class which represents a point in time, and the GregorianCalendar class which expresses
dates in the familiar calendar notation. In fact, the GregorianCalendar class extends a more
generic Calendar class that describes the properties of calendars in general. In theory, you

Core Java™ 2: Volume I–Fundamentals

136

can extend the Calendar class and implement the Chinese lunar calendar or a Martian
calendar. However, the standard library does not contain any calendar implementations
besides the Gregorian calendar.

Separating time measurement from calendars is good object-oriented design. In general, it is a
good idea to use separate classes to express different concepts.

The Date class has only a small number of methods that allow you to compare two points in
time. For example, the before and after methods tell you if one point in time comes before
or after another.

if (today.before(birthday))
 System.out.println("Still time to shop for a gift.");

NOTE

Actually, the Date class has methods such as getDay, getMonth, and
getYear, but these methods are deprecated. A method is deprecated
when a library designer realizes that the method should have never been
introduced in the first place.

These methods were a part of the Date class before the library designers
realized that it makes more sense to supply separate calendar classes.
When the calendar classes were introduced, the Date methods were
tagged as deprecated. You can still use them in your programs, but you
will get unsightly compiler warnings if you do. It is a good idea to stay
away from using deprecated methods because they may be removed in
a future version of the library.

The GregorianCalendar class has many more methods than the Date class. In particular, it
has several useful constructors. The expression

new GregorianCalendar()

constructs a new object that represents the date and time at which the object was constructed.

You can construct a calendar object for midnight on a specific date by supplying year, month
and day:

new GregorianCalendar(1999, 11, 31)

Somewhat curiously, the months are counted from 0. Therefore, 11 is December. For greater
clarity, there are constants like Calendar.DECEMBER.

new GregorianCalendar(1999, Calendar.DECEMBER, 31)

You can also set the time:

new GregorianCalendar(1999, Calendar.DECEMBER, 31, 23, 59, 59)

Core Java™ 2: Volume I–Fundamentals

137

Of course, you will usually want to store the constructed object in an object variable:

GregorianCalendar deadline = new GregorianCalendar(. . .);

The GregorianCalendar has encapsulated instance fields to maintain the date to which it is
set. Without looking at the source code, it is impossible to know the representation that the
class uses internally. But, of course, the whole point is that this doesn't matter. What matters
are the methods that a class exposes.

Mutator and accessor methods

At this point, you are probably asking yourself: How do I get at the current day or month or
year for the date encapsulated in a specific GregorianCalendar object? And how do I change
the values if I am unhappy with them? You can find out how to carry out these tasks by
looking at the online documentation or the API notes at the end of this section. We will go
over the most important methods in this section.

The job of a calendar is to compute attributes, such as the date, weekday, month, or year, of a
certain point in time. To query one of these settings you use the get method of the
GregorianCalendar class. To select the item that you want to get, you pass a constant
defined in the Calendar class, such as Calendar.MONTH or Calendar.DAY_OF_WEEK:

GregorianCalendar now = new GregorianCalendar();
int month = now.get(Calendar.MONTH);
int day = now.get(Calendar.DAY_OF_WEEK);

The API notes list all the constants that you can use.

You change the state with a call to the set method:

deadline.set(Calendar.YEAR, 2001);
deadline.set(Calendar.MONTH, Calendar.APRIL);
deadline.set(Calendar.DAY, 15);

There is also a convenience method to set the year, month, and day with a single call:

deadline.set(2001, Calendar.APRIL, 15);

Finally, you can add a number of days, weeks, months, etc., to a given date.

deadline.add(Calendar.MONTH, 3); // move deadline by 3 months

If you add a negative number, then the calendar is moved backwards.

There is a conceptual difference between the get method on the one hand and the set and
add methods on the other hand. The get method only looks up the state of the object and
reports on it. The set and add methods modify the state of the object. Methods that change
instance fields are called mutator methods and those that only access instance fields without
modifying them are called accessor methods.

Core Java™ 2: Volume I–Fundamentals

138

C++ NOTE

In C++, the const suffix is used to denote accessor methods. A method
that is not declared as const is assumed to be a mutator. However, in
the Java programming language there is no special syntax to distinguish
between accessors and mutators.

A common convention is to prefix accessor methods with the prefix get and mutator methods
with the prefix set. For example, the GregorianCalendar class has methods getTime and
setTime that get and set the point in time that a calendar object represents.

Date time = calendar.getTime();
calendar.setTime(time);

These methods are particularly useful to convert between the GregorianCalendar and Date
classes. Here is an example. Suppose you know the year, month, and day and you want to
make a Date object with those settings. Since the Date class knows nothing about calendars,
first construct a GregorianCalendar object and then call the getTime method to obtain a
date:

GregorianCalendar calendar
 = new GregorianCalendar(year, month, day);
Date hireDay = calendar.getTime();

Conversely, if you want to find the year, month, or day of a Date object, you construct a
GregorianCalendar object, set the time, and then call the get method:

GregorianCalendar calendar = new GregorianCalendar()
calendar.setTime(hireDay);
int year = calendar.get(Calendar.YEAR);

We will finish this section with a program that puts the GregorianCalendar class to work.
The program displays a calendar for the current month, like this:

Sun Mon Tue Wed Thu Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19* 20 21 22
23 24 25 26 27 28 29
30 31

The current day is marked with an *, and the program knows how to compute the days of the
week.

Let us go through the key steps of the program. First, we construct a calendar object that is
initialized with the current date and time. (We don't actually care about the time for this
application.)

GregorianCalendar d = new GregorianCalendar();

Core Java™ 2: Volume I–Fundamentals

139

We capture the current day and month by calling the get method twice.

int today = d.get(Calendar.DAY_OF_MONTH);
int month = d.get(Calendar.MONTH);

Then we set d to the first of the month and get the weekday of that date.

d.set(Calendar.DAY_OF_MONTH, 1);
int weekday = d.get(Calendar.DAY_OF_WEEK);

The variable weekday is set to 0 if the first day of the month is a Sunday, to 1 if it is
a Monday, and so on.

Next, we print the header and the spaces for indenting the first line of the calendar.

For each day, we print a space if the day is < 10, then the day, and then a * if the day equals
the current day. Each Saturday, we print a new line.

Then we advance d to the next day:

d.add(Calendar.DAY_OF_MONTH, 1);

When do we stop? We don't know whether the month has 31, 30, 29 or 28 days. Instead, we
keep iterating while d is still in the current month.

do
{
 . . .
}
while (d.get(Calendar.MONTH) == month);

Once d has moved into the next month, the program terminates.

Example 4-1 shows the complete program.

As you can see, the GregorianCalendar class makes it is simple to write a calendar program
that takes care of complexities such as weekdays and the varying month lengths. You don't
need to know how the GregorianCalendar class computes months and weekdays. You just
use the interface of the class—the get, set, and add methods.

The point of this example program is to show you how you can use the interface of a class to
carry out fairly sophisticated tasks, without ever having to know the implementation details.

Core Java™ 2: Volume I–Fundamentals

140

Example 4-1 CalendarTest.java

 1. import java.util.*;
 2.
 3. public class CalendarTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. // construct d as current date
 8. GregorianCalendar d = new GregorianCalendar();
 9.
10. int today = d.get(Calendar.DAY_OF_MONTH);
11. int month = d.get(Calendar.MONTH);
12.
13. // set d to start date of the month
14. d.set(Calendar.DAY_OF_MONTH, 1);
15.
16. int weekday = d.get(Calendar.DAY_OF_WEEK);
17.
18. // print heading
19. System.out.println("Sun Mon Tue Wed Thu Fri Sat");
20.
21. // indent first line of calendar
22. for (int i = Calendar.SUNDAY; i < weekday; i++)
23. System.out.print(" ");
24.
25. do
26. {
27. // print day
28. int day = d.get(Calendar.DAY_OF_MONTH);
29. if (day < 10) System.out.print(" ");
30. System.out.print(day);
31.
32. // mark current day with *
33. if (day == today)
34. System.out.print("* ");
35. else
36. System.out.print(" ");
37.
38. // start a new line after every Saturday
39. if (weekday == Calendar.SATURDAY)
40. System.out.println();
41.
42. // advance d to the next day
43. d.add(Calendar.DAY_OF_MONTH, 1);
44. weekday = d.get(Calendar.DAY_OF_WEEK);
45. }
46. while (d.get(Calendar.MONTH) == month);
47. // the loop exits when d is day 1 of the next month
48.
49. // print final end of line if necessary
50. if (weekday != Calendar.SUNDAY)
51. System.out.println();
52. }
53 }

Core Java™ 2: Volume I–Fundamentals

141

java.util.GregorianCalendar

• GregorianCalendar()

constructs a calendar object that represents the current time in the default time zone
with the default locale.

• GregorianCalendar(int year, int month, int date)

constructs a Gregorian calendar with the given date.

Parameters: year the year of the date
 month the month of the date. This value is 0-based; for example, 0 for January
 date the day of the month

• GregorianCalendar(int year, int month, int date, int hour, int
minutes, int seconds)

constructs a Gregorian calendar with the given date and time.

Parameters: year the year of the date
 month the month of the date. This value is 0-based; for example, 0 for January
 date the day of the month
 hour the hour (between 0 and 23)
 minutes the minutes (between 0 and 59)
 seconds the seconds (between 0 and 59)

• boolean equals(Object when)

compares this calendar object with when and returns true if the objects represent the
same point in time.

• boolean before(Object when)

compares this calendar object with when and returns true if it comes before when.

• boolean after(Object when)

compares this calendar object with when and returns true if it comes after when.

• int get(int field)

gets the value of a particular field.

Core Java™ 2: Volume I–Fundamentals

142

Parameters: field one of Calendar.ERA, Calendar.YEAR,
 Calendar.MONTH, Calendar.WEEK_OF_YEAR,
 Calendar.WEEK_OF_MONTH,
 Calendar.DAY_OF_MONTH,
 Calendar.DAY_OF_YEAR,
 Calendar.DAY_OF_WEEK,
 Calendar.DAY_OF_WEEK_IN_MONTH,
 Calendar.AM_PM, Calendar.HOUR,
 Calendar.HOUR_OF_DAY, Calendar.MINUTE,
 Calendar.SECOND, Calendar.MILLISECOND,
 Calendar.ZONE_OFFSET,Calendar.DST_OFFSET

• void set(int field, int value)

sets the value of a particular field.

Parameters: field one of the constants accepted by get
 value the new value

• void set(int year, int month, int day)

sets the date fields to a new date.

Parameters: year the year of the date
 month the month of the date. This value is 0-based; for example, 0 for January
 day the day of the month

• void set(int year, int month, int day, int hour, int minutes, int
seconds)

sets the date and time fields to new values.

Parameters: year the year of the date
 month the month of the date. This value is 0-based; for example, 0 for January
 day the day of the month
 hour the hour (between 0 and 23)
 minutes the minutes (between 0 and 59)
 seconds the seconds (between 0 and 59)

• void add(int field, int amount)

is a date arithmetic method. Adds the specified amount of time to the given time field.
For example, to add 7 days to the current calendar date, call
c.add(Calendar.DAY_OF_MONTH, 7).

Parameters: field the field to modify (using one of the constants documented in the get
method)

 amount the amount by which the field should be changed (can be negative)

Core Java™ 2: Volume I–Fundamentals

143

• void setTime(Date time)

sets this calendar to the given point in time.

Parameters: time a point in time

• Date getTime()

gets the point in time that is represented by the current value of this calendar object.

Building Your Own Classes

In Chapter 3, you started writing simple classes. However, all those classes had just a single
main method. Now the time has come to show you how to write the kind of “workhorse
classes” that are needed for more sophisticated applications. These classes typically do not
have a main method. Instead, they have their own instance fields and methods. To build a
complete program, you combine several classes, one of which has a main method.

An Employee Class

The simplest form for a class definition in Java is:

class NameOfClass
{
 constructor1
 constructor2
 . . .
 method1
 method2
 . . .
 field1
 field2
 . . .
}

NOTE

We adopt the style that the methods for the class come first and the fields
come at the end. Perhaps this, in a small way, encourages the notion of
looking at the interface first and paying less attention to the
implementation.

Consider the following, very simplified version of an Employee class that might be used by
a business in writing a payroll system.

Core Java™ 2: Volume I–Fundamentals

144

class Employee
{
 // constructor
 public Employee(String n, double s,
 int year, int month, int day)
 {
 name = n;
 salary = s;
 hireDay = new GregorianCalendar(year, month - 1, day);
 }

 // method 1
 public String getName()
 {
 return name;
 }

 // more methods
 . . .

 // instance fields

 private String name;
 private double salary;
 private Date hireDay;
}

We will break down the implementation of this class in some detail in the sections that follow.
First, though, Example 4-2 shows a program code that shows the Employee class in action.

In the program, we construct an Employee array and fill it with three employee objects:

Employee[] staff = new Employee[3];

staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

Next, we use the raiseSalary method of the Employee class to raise every employee's salary
by 5%:

for (i = 0; i < staff.length; i++)
 staff[i].raiseSalary(5);

Finally, we print out information about each employee, by calling the getName, getSalary
and getHireDay methods:

for (int i = 0; i < staff.length; i++)
{
 Employee e = staff[i];
 System.out.println("name=" + e.getName()
 + ",salary=" + e.getSalary()
 + ",hireDay=" + e.getHireDay());
}

Core Java™ 2: Volume I–Fundamentals

145

Note that the example program consists of two classes: the Employee class and a class
EmployeeTest with the public access specifier. The main method with the instructions that
we just described is contained in the EmployeeTest class.

The name of the source file is EmployeeTest.java since the name of the file must match
the name of the public class. You can only have one public class in a source file, but you can
have any number of non-public classes.

Next, when you compile this source code, the compiler creates two class files in the directory:
EmployeeTest.class and Employee.class.

You start the program by giving the bytecode interpreter the name of the class that contains
the main method of your program:

java EmployeeTest

The bytecode interpreter starts running the code in the main method in the EmployeeTest
class. This code in turn constructs three new Employee objects and shows you their state.

Example 4-2 EmployeeTest.java

 1. import java.util.*;
 2.
 3. public class EmployeeTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. // fill the staff array with three Employee objects
 8. Employee[] staff = new Employee[3];
 9.
10. staff[0] = new Employee("Carl Cracker", 75000,
11. 1987, 12, 15);
12. staff[1] = new Employee("Harry Hacker", 50000,
13. 1989, 10, 1);
14. staff[2] = new Employee("Tony Tester", 40000,
15. 1990, 3, 15);
16.
17. // raise everyone's salary by 5%
18. for (int i = 0; i < staff.length; i++)
19. staff[i].raiseSalary(5);
20.
21. // print out information about all Employee objects
22. for (int i = 0; i < staff.length; i++)
23. {
24. Employee e = staff[i];
25. System.out.println("name=" + e.getName()
26. + ",salary=" + e.getSalary()
27. + ",hireDay=" + e.getHireDay());
28. }
29. }
30. }
31.

Core Java™ 2: Volume I–Fundamentals

146

32. class Employee
33. {
34. public Employee(String n, double s,
35. int year, int month, int day)
36. {
37. name = n;
38. salary = s;
39. GregorianCalendar calendar
40. = new GregorianCalendar(year, month - 1, day);
41. // GregorianCalendar uses 0 for January
42. hireDay = calendar.getTime();
43. }
44.
45. public String getName()
46. {
47. return name;
48. }
49.
50. public double getSalary()
51. {
52. return salary;
53. }
54.
55. public Date getHireDay()
56. {
57. return hireDay;
58. }
59.
60. public void raiseSalary(double byPercent)
61. {
62. double raise = salary * byPercent / 100;
63. salary += raise;
64. }
65.
66. private String name;
67. private double salary;
68. private Date hireDay;
69. }

Using Multiple Source Files

The program in Example 4-2 has two classes in a single source file. Many programmers
prefer to put each class into its own source file. For example, you can place the class
Employee into a file Employee.java and EmployeeTest into EmployeeTest.java.

If you like this arrangement, then you have two choices for compiling the program/ You can
invoke the Java compiler with a wildcard:

javac Employee*.java

Then, all source files matching the wildcard will be compiled into class files. Or, you can
simply type:

javac EmployeeTest.java

You may find it surprising that the second choice works since the Employee.java file is
never explicitly compiled. However, when the Java compiler sees the Employee class being

Core Java™ 2: Volume I–Fundamentals

147

used inside EmployeeTest.java, it will look for a Employee.class file. If it does not find
that file, it automatically searches for Employee.java and then compiles it. Even more is
true: if the time stamp of the version of Employee.java that it finds is newer than that of the
existing Employee.class file, the Java compiler will automatically recompile the file.

NOTE

If you are familiar with the “make” facility of UNIX (or one of its
Windows cousins such as “nmake”), then you can think of the Java
compiler as having the “make” functionality already built in.

Analyzing the Employee Class

In the sections that follow, we want to dissect the Employee class. Let's start with the methods
in this class. As you can see by examining the source code, this class has one constructor and
four methods:

public Employee(String n, double s, int year, int month, int day)
public String getName()
public double getSalary()
public Date getHireDay()
public void raiseSalary(double byPercent)

All methods of this class are all tagged as public. The keyword public means that any
method in any class can call the method. (There are four possible access levels; they are
covered in this and the next chapter.)

Next, notice that there are three instance fields that will hold the data we will manipulate
inside an instance of the Employee class.

private String name;
private double salary;
private Date hireDay;

The private keyword makes sure that the only methods that can access these instance fields
are the methods of the Employee class itself. No outside method can read or write to these
fields.

NOTE

It is possible to use the public keyword with your instance fields, but it
would be a very bad idea. Having public data fields would allow any
part of the program to read and modify the instance fields. That
completely ruins encapsulation. We strongly recommend that you always
make your instance fields private.

Core Java™ 2: Volume I–Fundamentals

148

Finally, notice that two of the instance fields are themselves objects: The name and hireDay
fields are refererences to String and Date objects. This is quite usual: classes will often
contain instance fields of class type.

First Steps with Constructors

Let's look at the constructor listed in our Employee class.

public Employee(String n, double s, int year, int month, int day)
{
 name = n;
 salary = s;
 GregorianCalendar calendar
 = new GregorianCalendar(year, month - 1, day);
 hireDay = calendar.getTime();
}

As you can see, the name of the constructor is the same as the name of the class. This
constructor runs when you construct objects of the Employee class—giving the instance fields
the initial state you want them to have.

For example, when you create an instance of the Employee class with code like this:

new Employee("James Bond", 100000, 1950, 1, 1);

you have set the instance fields as follows:

name = "James Bond";
salary = 100000;
hireDay = January 1, 1950;

There is an important difference between constructors and other methods: A constructor can
only be called in conjunction with the new operator. You can't apply a constructor to an
existing object to reset the instance fields. For example,

james.Employee("James Bond", 250000, 1950, 1, 1); // ERROR

is a compile-time error.

We will have more to say about constructors later in this chapter. For now, keep the following
in mind:

• A constructor has the same name as the class.
• A class can have more than one constructor.
• A constructor may take zero, one, or more parameters.
• A constructor has no return value.
• A constructor is always called with the new operator.

Core Java™ 2: Volume I–Fundamentals

149

C++ NOTE

Constructors work the same way in Java as they do in C++. But keep in
mind that all Java objects are constructed on the heap an that
a constructor must be combined with new. It is a common C++
programmer error to forget the new operator:

Employee number007("James Bond", 100000, 1950, 1, 1);
 // C++, not Java

That works in C++ but does not work in Java.

CAUTION

Be careful not to introduce local variables with the same names as
the instance fields. For example, the following constructor will not set
the salary.

public Employee(String n, double s, . . .)
{
 String name = n; // ERROR
 double salary = s; // ERROR
 . . .
}

The constructor declares local variables name and salary. These
variables are only accessible inside the constructor. They shadow
the instance fields with the same name. Some programmers—such as
the authors of this book—write this kind of code when they type faster
than they think, because their fingers are used to adding the data type.
This is a nasty error that can be hard to track down. You just have to be
careful in all of your methods that you don't use variable names that
equal the names of instance fields.

The Methods of the Employee Class

The methods in our Employee class are quite simple. Notice that all of these methods can
access the private instance fields by name. This is a key point: instance fields are always
accessible by the methods of their own class.

For example,

public void raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
}

sets a new value for the salary instance field in the object that executes this method. (This
particular method does not return a value.) For example, the call

Core Java™ 2: Volume I–Fundamentals

150

number007.raiseSalary(5);

raises number007's salary by increasing the number007.salary variable by 5%. More
specifically, the call executes the following instructions:

double raise = number007.salary * 5 / 100;
number007.salary += raise;

The raiseSalary method has two parameters. The first parameter, called the implicit
parameter, is the object of type Employee that appears before the method name. The second
parameter, the number inside the parentheses after the method name, is an explicit parameter.

As you can see, the explicit parameters are explicitly listed in the method declaration, for
example, double byPercent. The implicit parameter does not appear in the method
declaration.

In every method, the keyword this refers to the implicit parameter. If you like, you can write
the raiseSalary method as follows:

public void raiseSalary(double byPercent)
{
 double raise = this.salary * byPercent / 100;
 this.salary += raise;
}

Some programmers prefer that style because it clearly distinguishes between instance fields
and local variables.

C++ NOTE

In C++, you generally define methods outside the class:

void Employee::raiseSalary(double byPercent) // C++, not
Java
{
 . . .
}

If you define a method inside a class, then it is automatically an inline
method.

class Employee
{
 . . .
 int getName() { return name; } // inline in C++
}

In the Java programming language, all methods are defined inside
the class itself. This does not make them inline.

Finally, let's look more closely at the rather simple getName, getSalary, and getHireDay
methods.

Core Java™ 2: Volume I–Fundamentals

151

public String getName()
{
 return name;
}

public double getSalary()
{
 return salary;
}

public Date getHireDay()
{
 return hireDay;
}

These are obvious examples of accessor methods. Because they simply return the values of
instance fields, they are sometimes called field accessors.

Wouldn't it be easier to simply make the name, salary, and hireDay fields public, instead of
having separate accessor methods?

The point is that the name field is a “read only” field. Once you set it in the constructor, there
is no method to change it. Thus, we have a guarantee that the name field will never be
corrupted.

The salary field is not read-only, but it can only be changed by the raiseSalary method. In
particular, should the value ever be wrong, only that method needs to be debugged. Had the
salary field been public, the culprit for messing up the value could have been anywhere.

Sometimes, it happens that you want to get and set the value of an instance field. Then you
need to supply three items:

• A private data field
• A public field accessor method
• A public field mutator method

This is a lot more tedious than supplying a single public data field, but there are considerable
benefits:

1. The internal implementation can be changed without affecting any code other than the
methods of the class.

For example, if the storage of the name is changed to

String firstName;
String lastName;

then the getName method can be changed to return

firstName + " " + lastName

This change is completely invisible to the remainder of the program.

Core Java™ 2: Volume I–Fundamentals

152

Of course, the accessor and mutator methods may need to do a lot of work and convert
between the old and the new data representation. But that leads us to our second benefit.

2. Mutator methods can perform error-checking, whereas code that simply assigns to a
field may not go through the trouble.

For example, a setSalary method might check that the salary is never less than 0.

CAUTION

Be careful not to write accessor methods that return references to mutable
objects. Consider the following example where we store the hireDay field as
a GregorianCalendar object instead of a Date object.

class Employee
{
 . . .
 public GregorianCalendar getHireDay()
 {
 return hireDay;
 }
 . . .
 private GregorianCalendar hireDay;
}

This breaks the encapsulation! Consider the following rogue code:

Employee harry = . . .;
GregorianCalendar d = harry.getHireDay();
d.add(Calendar.YEAR, -10);
// let's give Harry ten years added seniority

The reason is subtle. Both d and harry.hireDay refer to the same object (see
Figure 4-5). Applying mutator methods to d automatically changes the private
state of the employee object!

Figure 4-5. Returning a reference to a mutable data field

Why didn't the Date class in our original implementation suffer from

Core Java™ 2: Volume I–Fundamentals

153

the same problem? Couldn't someone get the date and change it? No. The
Date class is immutable. There is no method that can change a Date object.
In contrast, GregorianCalendar objects are mutable.

If you need to return a reference to a mutable object, you should clone it first.
A clone is an exact copy of an object that is stored in a new location. We will
discuss cloning in detail in Chapter 6. Here is the corrected code:

class Employee
{
 . . .
 public GregorianCalendar getHireDay()
 {
 return (GregorianCalendar)hireDay.clone();
 }
 . . .
}

As a rule of thumb, always use clone whenever you need to return a copy of
a mutable data field.

Method Access to Private Data

You know that a method can access the private data of the object on which it is invoked. What
many people find surprising is that a method can access the private data of all objects of its
class. For example, consider a method equals that compares two employees.

class Employee
{
 . . .
 boolean equals(Employee other)
 {
 return name.equals(other.name);
 }
}

A typical call is

if (harry.equals(boss)) . . .

This method accesses the private fields of harry, which is not surprising. It also accesses the
private fields of boss. This is legal because boss is an object of type Employee, and a method
of the Employee class is permitted to access the private fields of any object of type Employee.

C++ NOTE

C++ has the same rule. A method can access the private features of any
object of its class, not just of the implicit parameter.

Core Java™ 2: Volume I–Fundamentals

154

Private Methods

When implementing a class, we make all data fields private, since public data are dangerous.
But what about the methods? While most methods are public, private methods occur quite
frequently. These methods can be called only from other methods of the same class. The
reason is simple: to implement certain methods, you may wish to break up the code into many
separate methods. Some of these internal methods may not be particularly useful to the public.
(For example, they may be too close to the current implementation or require a special
protocol or calling order.) Such methods are best implemented as private.

To implement a private method in Java, simply change the public keyword to private.

By making a method private, you are under no obligation to keep it available if you change to
another implementation. The method may well be harder to implement or unnecessary if the
data representation changes: this is irrelevant. The point is that as long as the method is
private, the designers of the class can be assured that it is never used outside the other class
operations and can simply drop it. If a method is public, you cannot simply drop it because
other code might rely on it.

In sum, choose private methods:

• For those methods that are of no concern to the class user
• For those methods that could not easily be supported if the class implementation were

to change

Final Instance Fields

You can define an instance field as final. Such a field must be initialized when the object is
constructed. That is, it must be guaranteed that the field value is set after the end of every
constructor. Afterwards, the field may not be modified again. For example, the name field of
the Employee class may be declared as final since it never changes after the object is
constructed—there is no setName method.

class Employee
{
 . . .
 private final String name;
}

TIP

It is a good idea to tag fields that don't change during an object's lifetime
as final. If all fields of a class are final, then the class is immutable—its
objects never change after they are constructed. For example, the String
and Date classes are immutable. Immutable classes have one important
advantage—you don't have to worry about sharing references.

Core Java™ 2: Volume I–Fundamentals

155

Static Fields and Methods

In all sample programs that you have seen, the main method is tagged with the static
modifier. We are now ready to discuss the meaning of this modifier.

Static Fields

If you define a field as static, then there is only one such field per class. In contrast, each
object has its own copy of all instance fields. For example, let's suppose we want to assign a
unique identification number to each employee. We add an instance field id and a static field
nextId to the Employee class:

class Employee
{
 . . .
 private int id;
 private static int nextId = 1;
}

Now, every employee object has its own id field, but there is only one nextId field that is
shared among all instances of the class. Let's put it another way. If there are one thousand
objects of the Employee class, then there are one thousand instance fields id, one for each
object. But there is a single static field nextId. Even if there are no employee objects, the
static field nextId is present. It belongs to the class, not to any individual object.

NOTE

In most object-oriented programming languages, static fields are called
class fields. The term “static” is a meaningless holdover from C++.

Let's implement a simple method:

public void setId()
{
 id = nextId;
 nextId++;
}

Suppose you set the employee identification number for harry:

harry.setId();

Then the id field of harry is set, and the value of the static field nextId is incremented:

harry.id = . . .;
Employee.nextId++;

Core Java™ 2: Volume I–Fundamentals

156

Constants

Static variables are quite rare. However, static constants are more common. For example, the
Math class defines a static constant:

public class Math
{
 . . .
 public static final double PI = 3.14159265358979323846;
 . . .
}

You can access this constant in your programs as Math.PI.

If the keyword static had been omitted, then PI would have been an instance field of the
Math class. That is, you would need an object of the Math class to access PI, and every object
would have its own copy of PI.

Another static constant that you have used many times is System.out. It is declared in the
System class as:

public class System
{
 . . .
 public static final PrintStream out = . . .;
 . . .
}

As we mentioned several times, it is never a good idea to have public fields because everyone
can modify them. However, public constants (that is, final fields) are ok. Since out has been
declared as final, you cannot reassign another print stream to it:

out = new PrintStream(. . .); // ERROR--out is final

NOTE

If you look at the System class, you will notice a method setOut that lets
you set System.out to a different stream. You may wonder how that
method can change the value of a final variable. However, the setOut
method is a native method, not implemented in the Java programming
language. Native methods can bypass the access control mechanisms of
the Java language. This is a very unusual workaround that you should not
emulate in your own programs.

Static Methods

Static methods are methods that do not operate on objects. For example, the pow method of
the Math class is a static method. The expression:

Math.pow(x, y)

Core Java™ 2: Volume I–Fundamentals

157

computes the power xy. It does not use any Math object to carry out its task. In other words, it
has no implicit parameter.

In other words, you can think of static methods as methods that don't have a this parameter.

Because static methods don't operate on objects, you cannot access instance fields from a
static method. But static methods can access the static fields in their class. Here is an example
of such a static method:

public static int getNextId()
{
 return nextId; // returns static field
}

To call this method, you supply the name of the class:

int n = Employee.getNextId();

Could you have omitted the keyword static for this method? Yes, but then you would need
to have an object reference of type Employee to invoke the method.

NOTE

It is legal to use an object to call a static method. For example, if harry
is an Employee object, then you can call harry.getNextId() instead of
Employee.getnextId(). However, we find that notation confusing. The
getNextId method doesn't look at harry at all to compute the result. We
recommend that you use class names, not objects, to invoke static
methods.

You use static methods in two situations:

1. When a method doesn't need to access the object state because all needed parameters
are supplied as explicit parameters (example: Math.pow)

2. When a method only needs to access static fields of the class (example:
Employee.getNextId)

C++ NOTE

Static fields and methods have the same functionality in Java and C++.
However, the syntax is slightly different. In C++, you use the :: operator
to access a static field or method outside its scope, such as Math::PI.

The term “static” has a curious history. At first, the keyword static was
introduced in C to denote local variables that don't go away when exiting
a block. In that context, the term “static” makes sense: the variable stays
around and is still there when the block is entered again. Then static
got a second meaning in C, to denote global variables and functions that
cannot be accessed from other files. The keyword static was simply

Core Java™ 2: Volume I–Fundamentals

158

reused, to avoid introducing a new keyword. Finally, C++ reused the
keyword for a third, unrelated interpretation, to denote variables and
functions that belong to a class but not to any particular object of the
class. That is the same meaning that the keyword has in Java.

Factory Methods

Here is another common use for static methods. Consider the methods

NumberFormat.getNumberInstance()
NumberFormat.getCurrencyInstance()

that we discussed in Chapter 3. Each of these methods returns an object of type
NumberFormat. For example,

NumberFormat formatter = NumberFormat.getCurrencyInstance();
System.out.println(formatter.format(salary));
 // prints salary with currency symbol

As you now know, these are static methods—you call them on a class, not an object.
However, their purpose is to generate an object of the same class. Such a method is called a
factory method.

Why don't we use a constructor instead? There are two reasons. You can't give names to
constructors. The constructor name is always the same as the class name. In the
NumberFormat example, it makes sense to have two separate names for getting number and
currency formatter objects. Furthermore, the factory method can return an object of the type
NumberFormat, or an object of a subclass that inherits from NumberFormat. (See Chapter 5
for more on inheritance.) A constructor does not have that flexibility.

The main Method

Note that you can call static methods without having any objects. For example, you never
construct any objects of the Math class to call Math.pow.

For the same reason, the main method is a static method.

public class Application
{
 public static void main(String[] args)
 {
 // construct objects here
 . . .
 }
}

The main method does not operate on any objects. In fact, when a program starts, there aren't
any objects yet. The static main method executes, and constructs the objects that the program
needs.

Core Java™ 2: Volume I–Fundamentals

159

TIP

Every class can have a main method. That is a handy trick for unit
testing of classes. For example, you can add a main method to the
Employee class:

class Employee
{
 public Employee(String n, double s,
 int year, int month, int day)
 {
 name = n;
 salary = s;
 GregorianCalendar calendar
 = new GregorianCalendar(year, month - 1, day);
 hireDay = calendar.getTime();
 }
 . . .
 public static void main(String[] args) // unit test
 {
 Employee e = new Employee("Romeo", 50000);
 e.raiseSalary(10);
 System.out.println(e.getName() + " " +
 e.getSalary());
 }
 . . .
}

If you want to test the Employee class in isolation, you simply execute

java Employee

If the employee class is a part of a larger application, then you start the
application with

java Application

and the main method of the Employee class is never executed.

The program in Example 4-3 contains a simple version of the Employee class with a static
field count and a static method getCount. We fill an array with three Employee objects and
then print the employee information. Finally, we print the number of identification numbers
assigned.

Note that the Employee class also has a static main method for unit testing. Try running both

java Employee

and

java StaticTest

to execute both main methods.

Core Java™ 2: Volume I–Fundamentals

160

Example 4-3 StaticTest.java

 1.public class StaticTest
 2.{
 3. public static void main(String[] args)
 4. {
 5. // fill the staff array with three Employee objects
 6. Employee[] staff = new Employee[3];
 7.
 8. staff[0] = new Employee("Tom", 40000);
 9. staff[1] = new Employee("Dick", 60000);
10. staff[2] = new Employee("Harry", 65000);
11.
12. // print out information about all Employee objects
13. for (int i = 0; i < staff.length; i++)
14. {
15. Employee e = staff[i];
16. e.setId();
17. System.out.println("name=" + e.getName()
18. + ",id=" + e.getId()
19. + ",salary=" + e.getSalary());
20. }
21.
22. int n = Employee.getNextId(); // calls static method
23. System.out.println("Next available id=" + n);
24. }
25.}
26.
27.class Employee
28.{
29. public Employee(String n, double s)
30. {
31. name = n;
32. salary = s;
33. id = 0;
34. }
35.
36. public String getName()
37. {
38. return name;
39. }
40.
41. public double getSalary()
42. {
43. return salary;
44. }
45.
46. public int getId()
47. {
48. return id;
49. }
50.
51. public void setId()
52. {
53. id = nextId; // set id to next available id
54. nextId++;
55. }
56.

Core Java™ 2: Volume I–Fundamentals

161

57. public static int getNextId()
58. {
59. return nextId; // returns static field
60. }
61.
62. public static void main(String[] args) // unit test
63. {
64. Employee e = new Employee("Harry", 50000);
65. System.out.println(e.getName() + " " + e.getSalary());
66. }
67.
68. private String name;
69. private double salary;
70. private int id;
71. private static int nextId = 1;
72.}

Method Parameters

Let us review the computer science terms that describe how parameters can be passed to a
method (or a function) in a programming language. The term call by value means that the
method gets just the value that the caller provides. In contrast, call by reference means that
the method gets the location of the variable that the caller provides. Thus, a method can
modify the value stored in a variable that is passed by reference but not in one that is passed
by value.These “call by … ” terms are standard computer science terminology that describe
the behavior of method parameters in various programming languages, not just Java. (In fact,
there is also a call by name that is mainly of historical interest, being employed in the Algol
programming language, one of the oldest high-level languages.)

The Java programming language always uses call by value. That means, the method gets a
copy of all parameter values. In particular, the method cannot modify the contents of any
parameter variables that are passed to it.

For example, consider the following call:

double percent = 10;
harry.raiseSalary(percent);

No matter how the method is implemented, we know that after the method call, the value of
percent is still 10.

Let us look a little more closely at this situation. Suppose a method tried to triple the value of
a method parameter:

public static void tripleValue(double x) // doesn't work
{
 x = 3 * x;
}

Let's call this method:

double percent = 10;
tripleValue(percent);

Core Java™ 2: Volume I–Fundamentals

162

However, this does not work. After the method call, the value of percent is still 10. Here is
what happens:

1. x is initialized with a copy of the value of percent (that is, 10).
2. x is tripled—it is now 30. But percent is still 10 (see Figure 4-6).

Figure 4-6. Modifying a numeric parameter has no lasting effect

3. The method ends, and the parameter variable x is no longer in use.

There are, however, two kinds of method parameters:

• Primitive types (numbers, Boolean values)
• Object references

You have seen that it is impossible for a method to change a primitive type parameter. The
situation is different for object parameters. You can easily implement a method that triples the
salary of an employee:

Core Java™ 2: Volume I–Fundamentals

163

public static void tripleSalary(Employee x) // works
{
 x.raiseSalary(200);
}

When you call

harry = new Employee(. . .);
tripleSalary(harry);

then the following happens:

1. x is initialized with a copy of the value of harry, that is, an object reference.
2. The raiseSalary method is applied to that object reference. The Employee object to

which both x and harry refer gets its salary raised by 200%.
3. The method ends, and the parameter variable x is no longer in use. Of course,

the object variable harry continues to refer to the object whose salary was tripled (see
Figure 4-7).

Figure 4-7. Modifying an object parameter has a lasting effect

As you have seen, it is easily possible—and in fact very common—to implement methods that
change the state of an object parameter. The reason is simple. The method gets a copy of
the object reference, and both the original and the copy refer to the same object.

Many programming languages (in particular, C++ and Pascal) have two methods for
parameter passing: call by value and call by reference. Some programmers (and unfortunately
even some book authors) claim that the Java programming language uses call by reference for
objects. However, that is false. Because this is such a common misunderstanding, it is worth
examining a counterexample in detail.

Let's try to write a method that swaps two employee objects:

Core Java™ 2: Volume I–Fundamentals

164

public static void swap(Employee x, Employee y) // doesn't work
{
 Employee temp = x;
 x = y;
 y = temp;
}

If the Java programming language used call by reference for objects, this method would work:

Employee a = new Employee("Alice", . . .);
Employee b = new Employee("Bob", . . .);
swap(a, b);
// does a now refer to Bob, b to Alice?

However, the method does not actually change the object references that are stored in the
variables a and b. The x and y parameters of the swap method are initialized with copies of
these references. The method then proceeds to swap these copies.

// x refers to Alice, y to Bob
Employee temp = x;
x = y;
y = temp;
// now x refers to Bob, y to Alice

But ultimately, this is a wasted effort. When the method ends, the parameter variables x and y
are abandoned. The original variables a and b still refer to the same objects as they did before
the method call.

Core Java™ 2: Volume I–Fundamentals

165

Figure 4-8. Swapping object parameters has no lasting effect

This discussion demonstrates that the Java programming language does not use call by
reference for objects. Instead, object references are passed by value.

Here is a summary of what you can and cannot do with method parameters in the Java
programming language:

• A method cannot modify a parameter of primitive type (that is, numbers or Boolean
values).

• A method can change the state of an object parameter.
• A method cannot make an object parameter refer to a new object.

The program in Example 4-4 demonstrates these facts. The program first tries to triple a value
of a number parameter and does not succeed:

Testing tripleValue:
Before: percent=10.0
End of method: x=30.0
After: percent=10.0

It then successfully triples the salary of an employee:

Testing tripleSalary:
Before: salary=50000.0
End of method:salary=150000.0
After: salary=150000.0

Core Java™ 2: Volume I–Fundamentals

166

After the method, the state of the object to which harry refers has changed. This is possible
because the method modified the state through a copy of the object reference.

Finally, the program demonstrates the failure of the swap method:

Testing swap:
Before: a=Alice
Before:b=Bob
End of method: x=Bob
End of method: y=Alice
After: a=Alice
After: b=Bob

As you can see, the parameter variables x and y are swapped, but the variables a and b are not
affected.

C++ NOTE

C++ has both call by value and call by reference. You tag reference
parameters with &. For example, you can easily implement methods void
tripleValue(double& x) or void swap(Employee& x, Employee&
y) that modify their reference parameters.

Example 4-4 ParamTest.java

 1.public class ParamTest
 2.{
 3. public static void main(String[] args)
 4. {
 5. /*
 6. Test 1: Methods can't modify numeric parameters
 7. */
 8. System.out.println("Testing tripleValue:");
 9. double percent = 10;
10. System.out.println("Before: percent=" + percent);
11. tripleValue(percent);
12. System.out.println("After: percent=" + percent);
13.
14. /*
15. Test 2: Methods can change the state of object
16. parameters
17. */
18. System.out.println("\nTesting tripleSalary:");
19. Employee harry = new Employee("Harry", 50000);
20. System.out.println("Before: salary=" + harry.getSalary());
21. tripleSalary(harry);
22. System.out.println("After: salary=" + harry.getSalary());
23.
24. /*
25. Test 3: Methods can't attach new objects to
26. object parameters
27. */
28. System.out.println("\nTesting swap:");
29. Employee a = new Employee("Alice", 70000);
30. Employee b = new Employee("Bob", 60000);

Core Java™ 2: Volume I–Fundamentals

167

31. System.out.println("Before: a=" + a.getName());
32. System.out.println("Before: b=" + b.getName());
33. swap(a, b);
34. System.out.println("After: a=" + a.getName());
35. System.out.println("After: b=" + b.getName());
36. }
37.
38. public static void tripleValue(double x) // doesn't work
39. {
40. x = 3 * x;
41. System.out.println("End of method: x=" + x);
42. }
43.
44. public static void tripleSalary(Employee x) // works
45. {
46. x.raiseSalary(200);
47. System.out.println("End of method: salary="
48. + x.getSalary());
49. }
50.
51. public static void swap(Employee x, Employee y)
52. {
53. Employee temp = x;
54. x = y;
55 y = temp;
56. System.out.println("End of method: x=" + x.getName());
57. System.out.println("End of method: y=" + y.getName());
58. }
59.}
60.
61.class Employee // simplified Employee class
62.{
63. public Employee(String n, double s)
64. {
65. name = n;
66. salary = s;
67. }
68.
69. public String getName()
70. {
71. return name;
72. }
73.
74. public double getSalary()
75. {
76. return salary;
77. }
78.
79. public void raiseSalary(double byPercent)
80. {
81. double raise = salary * byPercent / 100;
82. salary += raise;
83. }
84.
85. private String name;
86. private double salary;
87.}

Core Java™ 2: Volume I–Fundamentals

168

Object Construction

You have seen how to write simple constructors that define the initial state of your objects.
However, because object construction is so important, Java offers quite a variety of
mechanisms for writing constructors. We will go over these mechanisms in the sections that
follow.

Overloading

Recall that the GregorianCalendar class had more than one constructor. We could use:

GregorianCalendar today = new GregorianCalendar();

or:

GregorianCalendar deadline
 = new GregorianCalendar(2099, Calendar.DECEMBER, 31);

This capability is called overloading. Overloading occurs if several methods have the same
name (in this case, the GregorianCalendar constructor method) but different parameters.
The compiler must sort out which method to call. It picks the correct method by matching the
parameter types in the headers of the various methods with the types of the values used in the
specific method call. A compile-time error occurs if the compiler cannot match the parameters
or if more than one match is possible. (This process is called overloading resolution.)

NOTE

Java allows you to overload any method—not just constructor methods.
Thus, to completely describe a method, you need to specify the name of
the method together with its parameter types. This is called the signature
of the method. For example, the String class has four methods called
indexOf. They have signatures

indexOf(int)
indexOf(int, int)
indexOf(String)
indexOf(String, int)

The return type is not part of the method signature. That is, you cannot
have two methods with the same names and parameter types but different
return types.

Default Field Initialization

If you don't set a field explicitly in a constructor, it is automatically set to a default value:
numbers to zero, Booleans to false, and object references to null. But it is considered poor
programming practice to rely on this. Certainly, it makes it harder for someone to understand
your code if fields are being initialized invisibly.

Core Java™ 2: Volume I–Fundamentals

169

NOTE

This is an important difference between fields and local variables. You
must always explicitly initialize local variables in a method. But if you
don't initialize a field in a class, it is automatically initialized to a default
(zero, false or null).

For example, consider the Employee class. Suppose you don't specify how to initialize some
of the fields in a constructor. By default, the salary field would be initialized with 0 and the
name and hireDay fields would be initialized with null.

However, that would not be a good idea. If anyone called the getName or getHireDay
method, then they would get a null reference that they probably don't expect:

Date h = harry.getHireDay();
calendar.setTime(h); // throws exception if h is null

Default Constructors

A default constructor is a constructor with no parameters. (This constructor is sometimes
called a no-arg constructor.) For example, here is a default constructor for the Employee
class:

public Employee()
{
 name = "";
 salary = 0;
 hireDay = new Date();
}

If you write a class with no constructors whatsoever, then a default constructor is provided for
you. This default constructor sets all the instance fields to their default values. So, all numeric
data contained in the instance fields would be zero, all Booleans would be false, and all
object variables would be set to null.

If a class supplies at least one constructor but does not supply a default constructor, it is
illegal to construct objects without construction parameters. For example, our original
Employee class in Example 4-2 provided a single constructor:

Employee(String name, double salary, int y, int m, int d)

With that class, it was not legal to construct default employees. That is, the call

e = new Employee();

would have been an error.

Core Java™ 2: Volume I–Fundamentals

170

CAUTION

Please keep in mind that you get a free default constructor only when
your class has no other constructors. If you write your class with even
a single constructor of your own, and you want the users of your class to
have the ability to create an instance via a call to

new ClassName()

then you must provide a default constructor (with no parameters). Of
course, if you are happy with the default values for all fields, you can
simply supply:

public ClassName()
{
}

Explicit Field Initialization

Since you can overload the constructor methods in a class, you can obviously build in many
ways to set the initial state of the instance fields of your classes. It is always a good idea to
make sure that, regardless of the constructor call, every instance field is set to something
meaningful.

You can simply assign a value to any field in the class definition. For example,

class Employee
{
 . . .
 private String name = "";
}

This assignment is carried out before the constructor executes. This syntax is particularly
useful if all constructors of a class need to set a particular instance field to the same value.

The initialization value doesn't have to be a constant value. Here is an example where a field
is initialized with a method call. Consider an Employee class where each employee has an id
field. You can initialize it as follows:

class Employee
{
 . . .
 static int assignId()
 { int r = nextId;
 nextId++;
 return r;
 }
 . . .
 private int id = assignId();
}

Core Java™ 2: Volume I–Fundamentals

171

C++ NOTE

In C++, you cannot directly initialize instance fields of a class. All fields
must be set in a constructor. However, C++ has a special initializer list
syntax, such as:

Employee::Employee(String n, double s,
 int y, int m, int d) // C++
: name(n),
 salary(s),
 hireDay(y, m, d)
{
}

C++ uses this special syntax to call field constructors. In Java, there is no
need for it because objects have no subobjects, only pointers to other
objects.

Parameter Names

When you write very trivial constructors (and you'll write a lot of them), then it can be
somewhat frustrating to come up with parameter names.

We have generally opted for single-letter parameter names:

public Employee(String n, double s)
{
 name = n;
 salary = s;
}

However, the drawback is that you need to read the code to tell what the n and s parameters
mean.

Some programmers prefix each parameter with an “a”:

public Employee(String aName, double aSalary)
{
 name = aName;
 salary = aSalary;
}

That is quite neat. Any reader can immediately figure out the meaning of the parameters.

There is another commonly used trick. It relies on the fact that parameter variables shadow
instance fields with the same name. For example, if you call a parameter salary, then salary
refers to the parameter, not the instance field. But you can still access the instance field as
this.salary. Recall that this denotes the implicit parameter, that is, the object that is being
constructed. Here is an example:

Core Java™ 2: Volume I–Fundamentals

172

public Employee(String name, double salary)
{
 this.name = name;
 this.salary = salary;
}

C++ NOTE

In C++, it is common to prefix instance fields with an underscore or a
fixed letter. (The letters "m" and "x" are common choices.) For example,
the salary field might be called _salary or mSalary. Programmers don't
usually do that in the Java programming language.

Calling Another Constructor

The keyword this refers to the implicit parameter of a method. However, there is a second
meaning for the keyword.

If the first statement of a constructor has the form this(. . .), then the constructor calls
another constructor of the same class. Here is a typical example:

public Employee(double s)
{
 // calls Employee(String, double)
 this("Employee #" + nextId, s);
 nextId++;
}

When you call new Employee(60000), then the Employee(double) constructor calls the
Employee(String, double) constructor.

Using the this keyword in this manner is useful—you only need to write common
construction code once.

C++ NOTE

The this object in Java is identical to the this pointer in C++. However,
in C++ it is not possible for one constructor to call another. If you want
to factor out common initialization code in C++, you must write a
separate method.

Initialization Blocks

You have already seen two ways to initialize a data field:

• By setting a value in a constructor
• By assigning a value in the declaration

Core Java™ 2: Volume I–Fundamentals

173

There is a actually a third mechanism in Java; it's called an initialization block. Class
declarations can contain arbitrary blocks of code. These blocks are executed whenever an
object of that class is constructed. For example,

class Employee
{
 public Employee(String n, double s)
 {
 name = n;
 salary = s;
 }

 public Employee()
 {
 name = "";
 salary = 0;
 }
 . . .
 // object initialization block
 {
 id = nextId;
 nextId++;
 }
 . . .
 private String name;
 private double salary
 private int id;
 private static int nextId;
}

In this example, the id field is initialized in the object initialization block, no matter which
constructor is used to construct an object. The initialization block runs first, and then the body
of the constructor is executed.

This mechanism is never necessary and is not common. It usually is more straightforward to
place the initialization code inside a constructor.

With so many ways of initializing data fields, it can be quite confusing to give all possible
pathways for the construction process. Here is what happens in detail when a constructor is
called.

1. All data fields are initialized to their default value (0, false, or null)
2. If the first line of the constructor calls another constructor, then that constructor is

executed. Otherwise, all field initializers and initialization blocks are executed, in
the order in which they occur in the class declaration.

3. The body of the constructor is executed.

Naturally, it is always a good idea to organize your initialization code so that it is easy to
understand without having to be a language lawyer. For example, it would be quite strange
and somewhat error-prone to have a class whose constructors depend on the order in which
the data fields are declared.

You initialize a static field either by supplying an initial value or by using a static
initialization block. You have already seen the first mechanism:

Core Java™ 2: Volume I–Fundamentals

174

static int nextId = 1;

If the static fields of your class require complex initialization code, use a static initialization
block.

Place the code inside a block and tag it with the keyword static. Here is an example. We
want the employee ID numbers to start at a random integer less than 10,000:

// static initialization block
static
{
 Random generator = new Random();
 nextId = generator.nextInt(10000);
}

Static initialization occurs when the class is first loaded. Like instance fields, static fields are
0, false or null unless you explicitly set them to another value. All static field initializers
and static initialization blocks are executed in the order in which they occur in the class
declaration.

NOTE

Here is a Java trivia fact to amaze your fellow Java coders: You can
write a “Hello, World” program in Java without ever writing a main
method.

public class Hello
{
 static
 {
 System.out.println("Hello, World");
 }
}

When you invoke the class with java Hello, the class is loaded, the
static initialization block prints "Hello, World", and only then do you get
an ugly error message that main is not defined. You can avoid that
blemish by calling System.exit(0) at the end of the static initialization
block.

The program in Example 4-5 shows many of the features that we discussed in this section:

• Overloaded constructors
• Calling another constructor with this(...)
• A default constructor
• An object initialization block
• A static initialization block
• An instance field initialization

Core Java™ 2: Volume I–Fundamentals

175

Example 4-5 ConstructorTest.java

 1.import java.util.*;
 2.
 3.public class ConstructorTest
 4.{
 5. public static void main(String[] args)
 6. {
 7. // fill the staff array with three Employee objects
 8. Employee[] staff = new Employee[3];
 9.
10. staff[0] = new Employee("Harry", 40000);
11. staff[1] = new Employee(60000);
12. staff[2] = new Employee();
13.
14. // print out information about all Employee objects
15. for (int i = 0; i < staff.length; i++)
16. {
17. Employee e = staff[i];
18. System.out.println("name=" + e.getName()
19. + ",id=" + e.getId()
20. + ",salary=" + e.getSalary());
21. }
22. }
23.}
24.
25.class Employee
26.{
27. // three overloaded constructors
28. public Employee(String n, double s)
29. {
30. name = n;
31. salary = s;
32. }
33.
34. public Employee(double s)
35. {
36. // calls the Employee(String, double) constructor
37. this("Employee #" + nextId, s);
38. }
39.
40. // the default constructor
41. public Employee()
42. {
43. // name initialized to ""--see below
44. // salary not explicitly set--initialized to 0
45. // id initialized in initialization block
46. }
47.
48. public String getName()
49. {
50. return name;
51. }
52.
53. public double getSalary()
54. {
55. return salary;
56. }
57.

Core Java™ 2: Volume I–Fundamentals

176

58. public int getId()
59. {
60. return id;
61. }
62.
63. // object initialization block
64. {
65. id = nextId;
66. nextId++;
67. }
68.
69. // static initialization block
70. static
71. {
72. Random generator = new Random();
73. // set nextId to a random number between 0 and 9999
74. nextId = generator.nextInt(10000);
75. }
76.
77. private String name = ""; // instance variable initialization
78. private double salary;
79. private int id;
80. private static int nextId;
81.}

java.util.Random

• Random()

constructs a new random number generator

• int nextInt(int n)

returns a random number between 0 and n - 1

Object Destruction and the finalize Method

Some object-oriented programming languages, notably C++, have explicit destructor methods
for any cleanup code that may be needed when an object is no longer used. The most common
activity in a destructor is reclaiming the memory set aside for objects. Since Java does
automatic garbage collection, manual memory reclamation is not needed, and Java does not
support destructors.

Of course, some objects utilize a resource other than memory, such as a file or a handle to
another object that uses system resources. In this case, it is important that the resource be
reclaimed and recycled when it is no longer needed.

You can add a finalize method to any class. The finalize method will be called before
the garbage collector sweeps away the object. In practice, do not rely on the finalize method

Core Java™ 2: Volume I–Fundamentals

177

for recycling any resources that are in short supply—you simply cannot know when this
method will be called.

NOTE

There is a method call System.runFinalizersOnExit(true) to
guarantee that finalizer methods are called before Java shuts down.
However, this method is inherently unsafe and has been deprecated.

If a resource needs to be closed as soon as you have finished using it, you need to manage it
manually. Add a dispose method that you call to clean up what needs cleaning. Just as
importantly, if a class you use has a dispose method, you will want to call it when you are
done with the object. In particular, if your class has an instance field that has a dispose
method, provide a dispose method that disposes of the instance fields.

Packages

Java allows you to group classes in a collection called a package. Packages are convenient for
organizing your work and for separating your work from code libraries provided by others.

The standard Java library is distributed over a number of packages, including java.lang,
java.util, java.net, and so on. The standard Java packages are examples of hierarchical
packages. Just as you have nested subdirectories on your hard disk, you can organize
packages by using levels of nesting. All standard Java packages are inside the java and javax
package hierarchies.

The main reason for using packages is to guarantee the uniqueness of class names. Suppose
two programmers come up with the bright idea of supplying an Employee class. As long as
both of them place their class into different packages, then there is no conflict. In fact, to
absolutely guarantee a unique package name, Sun recommends that you use your company's
Internet domain name (which is known to be unique) written in reverse. You then use
subpackages for different projects. For example, horstmann.com is a domain that one of the
authors registered. Written in reverse order, it turns into the package com.horstmann. That
package can then be further subdivided into subpackages such as com.horstmann.corejava.

The sole purpose of package nesting is to manage unique names. From the point of view of
the compiler, there is absolutely no relationship between nested packages. For example, the
packages java.util and java.util.jar have nothing to do with each other. Each is its own
independent collection of classes.

Using Packages

A class can use all classes from its own package and all public classes from other packages.

You can access the public classes in another package in two ways. The first is simply to add
the full package name in front of every classname. For example:

Core Java™ 2: Volume I–Fundamentals

178

java.util.Date today = new java.util.Date();

That is obviously tedious. The simpler, and more common, approach is to use the import
keyword. The point of the import statement is simply to give you a shorthand to refer to the
classes in the package. Once you use import, you no longer have to give the classes their full
names.

You can import a specific class or the whole package. You place import statements at the top
of your source files (but below any package statements). For example, you can import all
classes in the java.util package with the statement:

import java.util.*;

Then you can use

Date today = new Date();

without a package prefix. You can also import a specific class inside a package.

import java.util.Date;

Importing all classes in a package is simpler. It has no negative effect on code size, so there is
generally no reason not to do it.

However, note that you can only use the * notation to import a single package. You cannot
use import java.* or import java.*.* to import all packages with the java prefix.

NOTE

You can only import classes, not objects. For example, you would never
import System.out.

Most of the time, you just import the packages that you need, without worrying too much
about them. The only time that you need to pay attention to packages is when you have a
name conflict. For example, both the java.util and java.sql packages have a Date class.
Suppose you write a program that imports both packages.

import java.util.*;
import java.sql.*;

If you now use the Date class, then you get a compile-time error:

Date today; // ERROR--java.util.Date or java.sql.Date?

The compiler cannot figure out which Date class you want. You can solve this problem by
adding a specific import statement:

Core Java™ 2: Volume I–Fundamentals

179

import java.util.*;
import java.sql.*;
import java.util.Date;

What if you really need both Date classes? Then you need to use the full package name with
every class name.

java.util.Date deadline = new java.util.Date();
java.sql.Date today = new java.sql.Date();

Locating classes in packages is an activity of the compiler. The bytecodes in class files always
use full package names to refer to other classes.

C++ NOTE

C++ programmers usually confuse import with #include. The two have
nothing in common. In C++, you must use #include to include the
declarations of external features because the C++ compiler does not look
inside any files except the one that it is compiling and explicitly included
header files. The Java compiler will happily look inside other files
provided you tell it where to look.

In Java, you can entirely avoid the import mechanism by explicitly
naming all packages, such as java.util.Date. In C++, you cannot
avoid the #include directives.

The only benefit of the import statement is convenience. You can refer
to a class by a name shorter than the full package name. For example,
after an import java.util.* (or import java.util.Date) statement,
you can refer to the java.util.Date class simply as Date.

The analogous construction to the package mechanism in C++ is the
namespace feature. Think of the package and import keywords in Java
as the analogs of the namespace and using directives in C++.

Adding a class into a package

To place classes inside a package, you must put the name of the package at the top of your
source file, before the code that defines the classes in the package. For example, the file
Employee.java in Example 4-7 starts out like this:

package com.horstmann.corejava;

public class Employee
{
 . . .
}

If you don't put a package statement in the source file, then the classes in that source file
belong to the default package. The default package has no package name. Up to now, all our
example classes were located in the default package.

Core Java™ 2: Volume I–Fundamentals

180

You place files in a package into a subdirectory that matches the full package name. For
example, all class files in the package com.horstmann.corejava package must be in
subdirectory com/horstmann/corejava (com\horstmann\corejava on Windows). This is
the simplest setup—you'll see a couple of other options later in this chapter.

The program in Examples 4-6 and 4-7 is distributed over two packages: the PackageTest
class belongs to the default package and the Employee class belongs to the
com.horstmann.corejava package. Therefore, the Employee.class file must be contained
in a subdirectory com/horstmann/ corejava. In other words, the directory structure is as
follows:

. (current directory)
 PackageTest.java
 PackageTest.class
 com/
 horstmann/
 corejava/
 Employee.java
 Employee.class

To compile this program, simply change to the directory containing PackageTest.java and
run the command:

javac PackageTest.java

The compiler automatically finds the file com/horstmann/corejava/Employee.java and
compiles it.

CAUTION

The compiler does not check directories when it compiles source files.
For example, suppose you have a source file that starts with a directive:

package com.mycompany;

You can compile the file even if it is not contained in a subdirectory
com/mycompany. The source file will compile without errors, but the
virtual machine won't find the resulting classes when you try to run the
program. Therefore, you should use the same hierarchy for source files
as for class files.

Core Java™ 2: Volume I–Fundamentals

181

Example 4-6 PackageTest.java

 1. import com.horstmann.corejava.*;
 2. // the Employee class is defined in that package
 3.
 4. public class PackageTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. // because of the import statement, we don't have to
 9. // use com.horstmann.corejava.Employee here
10. Employee harry = new Employee("Harry Hacker", 50000,
11. 1989, 10, 1);
12.
13. // raise salary by 5%
14. harry.raiseSalary(5);
15.
16. // print out information about harry
17. System.out.println("name=" + harry.getName()
18. + ",salary=" + harry.getSalary());
19. }
20. }

Example 4-7 Employee.java

 1. package com.horstmann.corejava;
 2. // the classes in this file are part of this package
 3.
 4. import java.util.*;
 5. // import statements come after the package statement
 6.
 7. public class Employee
 8. {
 9. public Employee(String n, double s,
10. int year, int month, int day)
11. { name = n;
12. salary = s;
13. GregorianCalendar calendar
14. = new GregorianCalendar(year, month - 1, day);
15. // GregorianCalendar uses 0 for January
16. hireDay = calendar.getTime();
17. }
18.
19. public String getName()
20. {
21. return name;
22. }
23.
24. public double getSalary()
25. {
26. return salary;
27. }
28.
29. public Date getHireDay()
30. {
31. return hireDay;
32. }
33.

Core Java™ 2: Volume I–Fundamentals

182

34. public void raiseSalary(double byPercent)
35. {
36. double raise = salary * byPercent / 100;
37. salary += raise;
38. }
39.
40. private String name;
41. private double salary;
42. private Date hireDay;
43. }

How the virtual machine locates classes

As you have seen, classes are stored in subdirectories of the file system. The path to the class
must match the package name. You can also use the JAR utility to add class files to
an archive. An archive contains multiple class files and subdirectories inside a single file,
saving space and reducing access time. (We will discuss JAR files in greater detail in
Chapter 10.)

For example, the thousands of classes of the runtime library are all contained in the runtime
library file rt.jar. You can find that file in the jre/lib subdirectory of the Java SDK.

TIP

JAR files use the ZIP format to organize files and subdirectories. You
can use any ZIP utility to peek inside rt.jar and other JAR files.

In the preceding example program, the package directory com/horstmann/ corejava was a
subdirectory of the program directory. However, that arrangement is not very flexible.
Generally, multiple programs need to access package files. To share your packages among
programs, you need to do the following:

1. Place your classes inside one or more special directories, say /home/user/classdir.
Note that this directory is the base directory for the package tree. If you add the class
com.horstmann.corejava.Employee, then the class file must be located in
the subdirectory /home/user/classdir/ com/horstmann/corejava.

2. Set the class path. The class path is the collection of all base directories whose
subdirectories can contain class files.

How to set the class path depends on your compilation nvironment. If you use the Java SDK,
then you have two choices: Specify the -classpath option for the compiler and bytecode
interpreter, or set the classpath environment variable.

Details depend on your operating system. On UNIX, the elements on the class path are
separated by colons.

/home/user/classes:.:/home/user/archives/archive.jar

Core Java™ 2: Volume I–Fundamentals

183

On Windows, they are separated by semicolons.

c:\classes;.;c:\archives\archive.jar

In both cases, the period denotes the current directory.

This class path contains:

• The base directory /home/user/classes or c:\classes
• The current directory (.)
• The JAR file /home/user/archives/archive.jar or c:\archives\archive.jar

The runtime library files (rt.jar and the other JAR files in the jre/lib and jre/lib/ext
directories) are always searched for classes; you don't include them explicitly in the class
path.

NOTE

This is a change from version 1.0 and 1.1 of the Java Software
Development Kit. In those versions, the system classes were stored in a
file classes.zip which had to be part of the class path.

For example, here is how you set the class path for the compiler:

javac -classpath /home/user/classes:.:/home/user/archives/
archive.jar MyProg.java

(All instructions should be typed onto a single line. In Windows, use semicolons to separate
the items of the class path.)

NOTE

With the java bytecode interpreter (but not with the javac compiler),
you can use -cp instead of -classpath.

The class path lists all directories and archive files that are starting points for locating classes.
Let's consider a sample class path:

/home/user/classes:.:/home/user/archives/archive.jar

Suppose the interpreter searches for the class file of the com.horstmann.
corejava.Employee class. It first looks in the system class files which are stored in archives
in the jre/lib and jre/lib/ext directories. It won't find the class file there, so it turns to
the class path. It then looks for the following files:

Core Java™ 2: Volume I–Fundamentals

184

• /home/user/classes/com/horstmann/corejava/Employee.class
• com/horstmann/corejava/Employee.class starting from the current directory
• com/horstmann/corejava/Employee.class inside

/home/user/archives/archive.jar.

NOTE

The compiler has a harder time locating files than the virtual machine. If
you refer to a class without specifying its package, the compiler first
needs to find out the package that contains the class. It consults all
import directives as possible sources for the class. For example, suppose
the source file contains directives

import java.util.*;
import com.horstmann.corejava.*;

and the source code refers to a class Employee. Then the compiler tries
to find java.lang.Employee (because the java.lang package is always
imported by default), java.util.Employee,
com.horstmann.corejava.Employee, and Employee in the current
package. It searches for each of these classes in all of the locations of the
class path. It is a compile-time error if more than one class is found.
(Because classes must be unique, the order of the import statements
doesn't matter.)

The compiler goes one step further. It looks at the source files to see if
the source is newer than the class file. If so, the source file is recompiled
automatically. Recall that you can only import public classes from other
packages. A source file can only contain one public class, and the names
of the file and the public class must match. Therefore, the compiler can
easily locate source files for public classes. However, you can import
non-public classes from the current packages. These classes may be
defined in source files with different names. If you import a class from
the current package, the compiler searches all source files of the current
package to see which one defines the class.

CAUTION

The javac compiler always looks for files in the current directory, but
the java interpreter only looks into the current directory if the “.”
directory is on the class path. If you have no class path set, this is not a
problem—the default class path consists of the “.” directory. But if you
have set the class path and forgot to include the “.” directory, then your
programs will compile without error, but they won't run.

Core Java™ 2: Volume I–Fundamentals

185

Setting the class path
You can set the class path with the -classpath option for the javac and java
programs. However, that can get tedious. Alternatively, you can set the CLASSPATH
environment variable. Here are some tips for setting the CLASSPATH environment
variable on UNIX/Linux and Windows.

• On UNIX/Linux, edit your shell's startup file.

If you use the C shell, add a line such as the following to the .cshrc file in
your home directory.

setenv CLASSPATH /home/user/classdir:.

If you use the Bourne Again shell or bash, add the following line to the
.bashrc or bash_profile file in your home directory.

export CLASSPATH=/home/user/classdir:.

• On Windows 95/98, edit the autoexec.bat file in the boot drive (usually the
C: drive). Add a line:

 SET CLASSPATH=c:\user\classdir;.

Make sure not to put any spaces around the =.

• On Windows NT/2000, open the control panel. Then open the System icon
and select the Environment tab. In the Variable field, type CLASSPATH. In the
value field, type the desired class path such as c:\user\classdir;.

Package scope

You have already encountered the access modifiers public and private. Features tagged as
public can be used by any class. Private features can only be used by the class that defines
them. If you don't specify either public or private, then the feature (that is, the class,
method, or variable) can be accessed by all methods in the same package.

Consider the program in Example 4-2. The Employee class was not defined as a public class.
Therefore, only other classes in the same package—the default package in this case—such as
EmployeeTest can access it. For classes, this is a reasonable default. However, for variables,
this default was an unfortunate choice. Variables now must explicitly be marked private or
they will default to being package-visible. This, of course, breaks encapsulation. The problem
is that it is awfully easy to forget to type the private keyword. Here is an example from the
Window class in the java.awt package, which is part of the source code supplied with the
SDK:

Core Java™ 2: Volume I–Fundamentals

186

public class Window extends Container
{
 String warningString;
 . . .
}

Note that the warningString variable is not private! That means, the methods of all classes
in the java.awt package can access this variable and set it to whatever they like (such as
"Trust me!"). Actually, the only methods that access this variable are in the Window class, so
it would have been entirely appropriate to make the variable private. We suspect that the
programmer typed the code in a hurry and simply forgot the private modifier. (We won't
mention the programmer's name to protect the guilty—you can look into the source file
yourself.)

NOTE

Amazingly enough, this problem has never been fixed, even though we
have pointed it out in four editions of this book—apparently the library
implementors don't read Core Java. Not only that—new fields have
been added to the class over time, and about half of them aren't private
either.

Is this really a problem? It depends. By default, packages are not closed entities. That is,
anyone can add more classes to a package. Of course, hostile or clueless programmers can
then add code that modifies variables with package visibility. For example, in earlier versions
of the Java programming language, it was an easy matter to smuggle in another class into the
java.awt package—simply start out the class with

package java.awt;

Then place the resulting class file inside a subdirectory java\awt somewhere on the class
path, and you have gained access to the internals of the java.awt package. Through this
subterfuge, it was possible to set the warning border (see Figure 4-9).

Figure 4-9. Changing the warning string in an applet window

Starting with version 1.2, the SDK implementors rigged the class loader to explicitly disallow
loading of user-defined classes whose package name starts with "java."! Of course, your
own classes won't benefit from that protection. Instead, you can use another mechanism,

Core Java™ 2: Volume I–Fundamentals

187

package sealing, to address the issue of promiscuous package access. If you seal a package,
no further classes can be added to it. You will see in Chapter 10 how you can produce a JAR
file that contains sealed packages.

Documentation Comments

The Java SDK contains a very useful tool, called javadoc, that generates HTML
documentation from your source files. In fact, the online API documentation that we
described in Chapter 3 is simply the result of running javadoc on the source code of
the standard Java library.

If you add comments that start with the special delimiter /** to your source code, you too can
produce professional-looking documentation easily. This is a very nice scheme because it lets
you keep your code and documentation in one place. If you put your documentation into
a separate file, then you probably know that the code and comments tend to diverge over time.
But since the documentation comments are in the same file as the source code, it is an easy
matter to update both and run javadoc again.

How to Insert Comments

The javadoc utility extracts information for the following items:

• Packages
• Public classes and interfaces
• Public and protected methods
• Public and protected fields

Protected features are introduced in Chapter 5, interfaces in Chapter 6.

You can (and should) supply a comment for each of these features. Each comment is placed
immediately above the feature it describes. A comment starts with a /** and ends with a */.

Each /** . . . */ documentation comment contains free-form text followed by tags. A tag
starts with an @, such as @author or @param.

The first sentence of the free-form text should be a summary statement. The javadoc utility
automatically generates summary pages that extract these sentences.

In the free-form text, you can use HTML modifiers such as ... for emphasis,
<code>...</code> for a monospaced “typewriter” font, ... for strong
emphasis, and even to include an image. You should, however, stay away from
heading <h1> or rules <hr> since they can interfere with the formatting of the document.

Core Java™ 2: Volume I–Fundamentals

188

NOTE

If your comments contain links to other files such as images (for
example, diagrams or images of user interface components), place those
files into subdirectories named doc-files. The javadoc utility will
copy these directories, and the files in them, from the source directory to
the documentation directory.

Class Comments

The class comment must be placed after any import statements, directly before the class
definition.

Here is an example of a class comment:

/**
 A <code>Card</code> object represents a playing card, such
 as "Queen of Hearts". A card has a suit (Diamond, Heart,
 Spade or Club) and a value (1 = Ace, 2 . . . 10, 11 = Jack,
 12 = Queen, 13 = King).
*/
public class Card
{
 . . .
}

NOTE

Many programmers start each line of a documentation with an asterisk,
like this:

/**
 * A <code>Card</code> object represent a playing card,
 * such as "Queen of Hearts". A card has a suit (Diamond,
 * Heart, Spade or Club) and a value (1 = Ace, 2 . . . 10,
 * 11 = Jack, 12 = Queen, 13 = King)
 */

We don't do this because it discourages programmers from updating
the comments. Nobody likes rearranging the * when the line breaks
change. However, some text editors have a mode that takes care of this
drudgery. If you know that all future maintainers of your code will use
such a text editor, you may want to add the border to make the comment
stand out.

Method Comments

Each method comment must immediately precede the method that it describes. In addition to
the general-purpose tags, you can use the following tags:

Core Java™ 2: Volume I–Fundamentals

189

@param variable description

This tag adds an entry to the “parameters” section of the current method. The description can
span multiple lines and can use HTML tags. All @param tags for one method must be kept
together.

@return description

This tag adds a “returns” section to the current method. The description can span multiple
lines and can use HTML tags.

@throws class description

This tag adds a note that this method may throw an exception. Exceptions are the topic of
Chapter 11.

Here is an example of a method comment:

/**
 Raises the salary of an employee.
 @param byPercent the percentage by which to raise the salary
 (e.g. 10 = 10%)
 @return the amount of the raise
*/
public double raiseSalary(double byPercent)
{
 double raise = salary * byPercent / 100;
 salary += raise;
 return raise;
}

Field Comments

You only need to document public fields—generally that means static constants. For example,

/**
 The "Hearts" card suit
*/
public static final int HEARTS = 1;

General Comments

The following tags can be used in class documentation comments.

@author name

This tag makes an “author” entry. You can have multiple @author tags, one for each author.

@version text

This tag makes a “version” entry. The text can be any description of the current version.

The following tags can be used in all documentation comments.

Core Java™ 2: Volume I–Fundamentals

190

@since text

This tag makes a “since” entry. The text can be any description of the version that introduced
this feature. For example, @since version 1.7.1

@deprecated text

This tag adds a comment that the class, method, or variable should no longer be used. The text
should suggest a replacement. For example,

@deprecated Use <code>setVisible(true)</code> instead

You can use hyperlinks to other relevant parts of the javadoc documentation, or to external
documents, with the @see and @link tags.

@see link

This tag adds a hyperlink in the “see also” section. It can be used with both classes and
methods. Here, link can be one of the following:

• package.class#feature label
• label
• "text"

The first case is the most useful. You supply the name of a class, method, or variable, and
javadoc inserts a hyperlink to the documentation. For example,

@see com.horstmann.corejava.Employee#raiseSalary(double)

makes a link to the raiseSalary(double) method in
the com.horstmann.corejava.Employee class. You can omit the name of the package or
both the package and class name. Then, the feature will be located in the current package or
class.

Note that you must use a #, not a period, to separate the class from the method or variable
name. The Java compiler itself is highly skilled in guessing the various

meanings of the period character, as separator between packages, subpackages, classes, inner
classes, and methods and variables. But, the javadoc utility isn't quite as clever, and you have
to help it along.

If the @see tag is followed by a < character, then you need to specify a hyperlink. You can
link to any URL you like. For example,

@see The Core Java
home page

In each of these cases, you can specify an optional label that will appear as the link anchor.
If you omit the label, then the user will see the target code name or URL as the anchor.

Core Java™ 2: Volume I–Fundamentals

191

If the @see tag is followed by a " character, then the text is displayed in the “see also” section.
For example,

@see "Core Java 2 volume 2"

You can add multiple @see tags for one feature, but you must keep them all together.

If you like, you can place hyperlinks to other classes or methods anywhere in any of your
comments. You insert a special tag of the form {@link package.class#feature label}
anywhere in a comment. The feature description follows the same rules as for the @see tag.

Package and Overview Comments

You place class, method, and variable comments directly into the Java source files, delimited
by /** . . . */ documentation comments. However, to generate package comments, you
need to add a file named package.html in each package directory. All text between the tags
<BODY>...</BODY> is extracted.

You can also supply an overview comment for all source files. Place it in a file called
overview.html, located in the parent directory that contains all the source files. All text
between the tags <BODY>...</BODY> is extracted. This comment is displayed when the user
selects “Overview” from the navigation bar.

How to Extract Comments

Here, docDirectory is the name of the directory where you want the HTML files to go.
Follow these steps:

1. Change to the directory that contains the source files you want to document. If you
have nested packages to document, such as com.horstmann.corejava, you must be
in the directory that contains the subdirectory com. (This is the directory that contains
the overview.html file, if you supplied one.)

2. Run the command

 javadoc -d docDirectory nameOfPackage

for a single package. Or run

javadoc -d docDirectory nameOfPackage1 nameOfPackage2...

to document multiple packages. If your files are in the default package, then run

javadoc -d docDirectory *.java

instead.

If you omit the -d docDirectory option, then the HTML files are extracted to the current
directory. That can get messy, and we don't recommend it.

Core Java™ 2: Volume I–Fundamentals

192

The javadoc program can be fine-tuned by numerous command-line options. For example,
you can use the -author and -version options to include the @author and @version tags in
the documentation. (By default, they are omitted.) We refer you to the online documentation
of the javadoc utility at http://java.sun.com/products/jdk/javadoc/index.html.

NOTE

If you require further customization, for example, to produce
documentation in a format other than HTML, then you can supply your
own doclet to generate the output in any form you desire. Clearly, this is
a specialized need, and we refer you to the online documentation for
details on doclets at
http://java.sun.com/products/jdk/1.3/docs/tooldocs/javadoc/overview.html.

Class Design Hints

Without trying to be comprehensive or tedious, we want to end this chapter with some hints
that may make your classes more acceptable in well-mannered OOP circles.

1. Always keep data private.

This is first and foremost: doing anything else violates encapsulation. You may need
to write an accessor or mutator method occasionally, but you are still better off
keeping the instance fields private. Bitter experience has shown that how the data are
represented may change, but how they are used will change much less frequently.
When data are kept private, changes in their representation do not affect the user of
the class, and bugs are easier to detect.

2. Always initialize data.

Java won't initialize local variables for you, but it will initialize instance fields of
objects. Don't rely on the defaults, but initialize the variables explicitly, either by
supplying a default or by setting defaults in all constructors.

3. Don't use too many basic types in a class.

The idea is to replace multiple related uses of basic types with other classes. This
keeps your classes easier to understand and to change. For example, replace
the following instance fields in a Customer class

private String street;
private String city;
private String state;
private int zip;

with a new class called Address. This way, you can easily cope with changes to
addresses, such as the need to deal with international addresses.

Core Java™ 2: Volume I–Fundamentals

193

4. Not all fields need individual field accessors and mutators.

You may need to get and set an employee's salary. You certainly won't need to change
the hiring date once the object is constructed. And, quite often, objects have instance
fields that you don't want others to get or set, for example, an array of state
abbreviations in an Address class.

5. Use a standard form for class definitions.

We always list the contents of classes in the following order:

public features

package scope features

private features

Within each section, we list:

instance methods

static methods

instance fields

static fields

After all, the users of your class are more interested in the public interface than in the
details of the private implementation. And they are more interested in methods than in
data.

However, there is no universal agreement on what is the best style. The Sun coding
style guide for the Java programming language recommends listing fields first and
then methods.

Whatever style you use, the most important thing is to be consistent.

6. Break up classes with too many responsibilities.

This hint is, of course, vague: ”too many” is obviously in the eye of the beholder.
However, if there is an obvious way to make one complicated class into two classes
that are conceptually simpler, seize the opportunity. (On the other hand, don't go
overboard; 10 classes, each with only one method, is usually overkill.)

Here is an example of a bad design.

Core Java™ 2: Volume I–Fundamentals

194

class CardDeck // bad design
{
 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public int getTopValue() { . . . }
 public int getTopSuit() { . . . }
 public void draw() { . . . }

 private int[] value;
 private int[] suit;
}

This class really implements two separate concepts: a deck of cards, with its shuffle
and draw methods, and a card, with the methods to inspect the value and suit of
a card. It makes sense to introduce a Card class that represents an individual card.
Now you have two classes, each with its own responsibilities:

class CardDeck
{
 public CardDeck() { . . . }
 public void shuffle() { . . . }
 public Card getTop() { . . . }
 public void draw() { . . . }

 private Card[] cards;
}

class Card
{
 public Card(int aValue, int aSuit) { . . . }
 public int getValue() { . . . }
 public int getSuit() { . . . }

 private int value;
 private int suit;
}

7. Make the names of your classes and methods reflect their responsibilities.

Just as variables should have meaningful names that reflect what they represent, so
should classes. (The standard library certainly contains some dubious examples, such
as the Date class that describes time.)

A good convention is that a class name should be a noun (Order) or a noun preceded by an
adjective (RushOrder) or a gerund (an “-ing” word, like BillingAddress). As for methods,
follow the standard convention that accessor methods begin with a lowercase get
(getSalary), and mutator methods use a lowercase set (setSalary).

Core Java™ 2: Volume I–Fundamentals

195

Chapter 5. Inheritance
• Extending Classes
• Object: The Cosmic Superclass
• The Class Class
• Reflection
• Design Hints for Inheritance

Chapter 4 introduced you to classes and objects. In this chapter, you will learn about
inheritance, another fundamental concept of object-oriented programming. The idea behind
inheritance is that you can create new classes that are built upon existing classes. When you
inherit from an existing class, you reuse (or inherit) methods and fields, and you add new
methods and fields to adapt your new class to new situations. This technique is essential in
Java programming.

As with the previous chapter, if you are coming from a procedure-oriented language like C,
Visual Basic, or COBOL, you will want to read this chapter carefully. For experienced C++
programmers or those coming from another object-oriented language like Smalltalk, this
chapter will seem largely familiar, but there are many differences between how inheritance is
implemented in Java and how it is done in C++ or in other object-oriented languages.

The latter part of this chapter covers reflection, the ability to find out more about classes and
their properties in a running program. Reflection is a powerful feature, but it is undeniably
complex. Since reflection is of greater interest to tools builders than to application
programmers, you can probably glance over that part of the chapter upon first reading and
come back to it later.

Extending Classes

Let's return to the Employee class that we discussed in the previous chapter. Suppose (alas)
you work for a company at which managers are treated differently than other employees.
Managers are, of course, just like employees in many respects. Both employees and managers
are paid a salary. However, while employees are expected to complete their assigned tasks in
return for receiving their salary, managers get bonuses if they actually achieve what they are
supposed to do. This is the kind of situation that cries out for inheritance. Why? Well, you
need to define a new class, Manager, and add functionality. But you can retain some of what
you have already programmed in the Employee class, and all the fields of the original class
can be preserved. More abstractly, there is an obvious “is–a” relationship between Manager
and Employee. Every manager is an employee: this “is–a” relationship is the hallmark of
inheritance.

Here is how you define a Manager class that inherits from the Employee class. You use
the Java keyword extends to denote inheritance.

class Manager extends Employee
{
 added methods and fields
}

Core Java™ 2: Volume I–Fundamentals

196

C++ NOTE

Inheritance is similar in Java and C++. Java uses the extends keyword
instead of the : token. All inheritance in Java is public inheritance; there
is no analog to the C++ features of private and protected inheritance.

The keyword extends indicates that you are making a new class that derives from an existing
class. The existing class is called the superclass, base class, or parent class. The new class is
called the subclass, derived class, or child class. The terms superclass and subclass are those
most commonly used by Java programmers, although some programmers prefer the
parent/child analogy, which also ties in nicely with the “inheritance” theme.

The Employee class is a superclass, but not because it is superior to its subclass or contains
more functionality. In fact, the opposite is true: subclasses have more functionality than their
superclasses. For example, as you will see when we go over the rest of the Manager class
code, the Manager class encapsulates more data and has more functionality than its superclass
Employee.

NOTE

The prefixes super and sub come from the language of sets used in
theoretical computer science and mathematics. The set of all employees
contains the set of all managers, and this is described by saying it is
a superset of the set of managers. Or, put it another way, the set of all
managers is a subset of the set of all employees.

Our Manager class has a new field to store the bonus, and a new method to set it:

class Manager extends Employee
{
 . . .

 public void setBonus(double b)
 {
 bonus = b;
 }

 private double bonus;
}

There is nothing special about these methods and fields. If you have a manager object, you
can simply apply the setBonus method.

Manager boss = . . .;
boss.setBonus(5000);

Of course, if you have an Employee object, you cannot apply the setBonus method—it is not
among the methods that are defined in the Employee class.

Core Java™ 2: Volume I–Fundamentals

197

However, you can use methods such as getName and getHireDay with Manager objects.
Even though these methods are not explicitly defined in the Manager class, they are
automatically inherited from the Employee superclass.

Similarly, the fields name, salary, and hireDay are inherited from the superclass. Every
Manager object has four fields: name, salary, hireDay and bonus.

When defining a subclass by extending its superclass, you only need to indicate
the differences between the subclass and the superclass. When designing classes, you place
the most general methods into the superclass, and more specialized methods in the subclass.
Factoring out common functionality by moving it to a superclass is very common in
object-oriented programming.

However, some of the superclass methods are not appropriate for the Manager subclass. In
particular, the getSalary method should return the sum of the base salary and the bonus. You
need to supply a new method to override the superclass method:

class Manager extends Employee
{
 . . .
 public double getSalary()
 {
 . . .
 }
 . . .
}

How can you implement this method? At first glance, it appears to be simple: Just return
the sum of the salary and bonus fields:

public double getSalary()
{
 return salary + bonus; // won't work
}

However, that won't work. The getSalary method of the Manager class has no direct access
to the private fields of the superclass. This means that the getSalary method of the Manager
class cannot directly access the salary field, even though every Manager object has a field
called salary. Only the methods of the Employee class have access to the private fields. If
the Manager methods want to access those private fields, they have to do what every other
method does—use the public interface, in this case, the public getSalary method of the
Employee class.

So, let's try this again. You need to call getSalary instead of simply accessing the salary
field.

public double getSalary()
{
 double baseSalary = getSalary(); // still won't work
 return baseSalary + bonus;
}

Core Java™ 2: Volume I–Fundamentals

198

The problem is that the call to getSalary simply calls itself, because the Manager class has
a getSalary method (namely the method we are trying to implement). The consequence is
an infinite set of calls to the same method, which leads to a program crash.

We need to indicate that we want to call the getSalary method of the Employee superclass,
not the current class. You use the special keyword super for this purpose: The call

super.getSalary()

calls the getSalary method of the Employee class. Here is the correct version of
the getSalary method for the Manager class:

public double getSalary()
{
 double baseSalary = super.getSalary();
 return baseSalary + bonus;
}

NOTE

Some people think of super as being analogous to the this reference.
However, that analogy is not quite accurate—super is not a reference to
an object. For example, you cannot assign the value super to another
object variable. Instead, super is a special keyword that directs
the compiler to invoke the superclass method.

As you saw, a subclass can add fields, and it can add or override methods of the superclass.
However, inheritance can never take away any fields or methods.

C++ NOTE

Java uses the keyword super to call a superclass method. In C++, you
would use the name of the superclass with the :: operator instead. For
example, the getSalary method of the Manager class would call
Employee::getSalary instead of super.getSalary.

Finally, let us supply a constructor.

public Manager(String n, double s, int year, int month, int day)
{
 super(n, s, year, month, day);
 bonus = 0;
}

Here, the keyword super has a different meaning. The instruction

super(n, s, year, month, day);

Core Java™ 2: Volume I–Fundamentals

199

is shorthand for “call the constructor of the Employee superclass with n, s, year, month, and
day as parameters.”

Since the Manager constructor cannot access the private fields of the Employee class, it must
initialize them through a constructor. The constructor is invoked with the special super
syntax. The call using super must be the first statement in the constructor for the subclass.

If the subclass constructor does not call a superclass constructor explicitly, then the superclass
uses its default (no-parameter) constructor. If the superclass has no default constructor and the
subclass constructor does not call another superclass constructor explicitly, then the Java
compiler reports an error.

NOTE

Recall that the this keyword has two meanings: to denote a reference to
the implicit parameter, and to call another constructor of the same class.
Likewise, the super keyword has two meanings: to invoke a superclass
method, and to invoke a superclass constructor. When used to invoke
constructors, the this and super keywords are closely related. The
constructor calls can only occur as the first statement in another
constructor. The construction parameters are either passed to another
constructor of the same class (this) or a constructor of the superclass
(super).

C++ NOTE

In a C++ constructor, you do not call super, but you use the initializer
list syntax to construct the superclass. The Manager constructor looks
like this in C++:

Manager::Manager(String n, double s, int year, int month,
 int day) // C++
: Employee(n, s, year, month, day)
{
 bonus = 0;
}

Having redefined the getSalary method for Manager objects, managers will automatically
have the bonus added to their salaries.

Here's an example of this at work: we make a new manager and set the manager's bonus:

Manager boss = new Manager("Carl Cracker", 80000,
 1987, 12, 15);
boss.setBonus(5000);

We make an array of three employees:

Core Java™ 2: Volume I–Fundamentals

200

Employee[] staff = new Employee[3];

We populate the array with a mix of managers and employees:

staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000,
 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000,
 1990, 3, 15);

We print out everyone's salary:

for (int i = 0; i < staff.length; i++)
{
 Employee e = staff[i];
 System.out.println(e.getName() + " "
 + e.getSalary());;
}

This loop prints the following data:

Carl Cracker 85000.0
Harry Hacker 50000.0
Tommy Tester 40000.0

Now staff[1] and staff[2] each print their base salary because they are Employee objects.
However, staff[0] is a Manager object and its getSalary method adds the bonus to the
base salary.

What is remarkable is that the call

e.getSalary()

picks out the correct getSalary method. Note that the declared type of e is Employee, but
the actual type of the object to which e refers can be either Employee (that is, when i is 1 or
2) or Manager (when i is 0).

When e refers to an Employee object, then the call e.getSalary() calls the getSalary
method of the Employee class. However, when e refers to a Manager object, then the
getSalary method of the Manager class is called instead. The virtual machine knows about
the actual type of the object to which e refers, and therefore can invoke the correct method.

The fact that an object variable (such as the variable e) can refer to multiple actual types is
called polymorphism. Automatically selecting the appropriate method at runtime is called
dynamic binding. We will discuss both topics in more detail in this chapter.

C++ NOTE

In Java, you do not need to declare a method as virtual. Dynamic binding
is the default behavior. If you do not want a method to be virtual, you tag
it as final. (We discuss the final keyword later in this chapter.)

Core Java™ 2: Volume I–Fundamentals

201

Example 5-1 contains a program that shows how the salary computation differs for Employee
and Manager objects.

Example 5-1 ManagerTest.java

 1. import java.util.*;
 2
 3. public class ManagerTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. // construct a Manager object
 8. Manager boss = new Manager("Carl Cracker", 80000,
 9. 1987, 12, 15);
10. boss.setBonus(5000);
11.
12. Employee[] staff = new Employee[3];
13.
14. // fill the staff array with Manager and Employee objects
15.
16. staff[0] = boss;
17. staff[1] = new Employee("Harry Hacker", 50000,
18. 1989, 10, 1);
19. staff[2] = new Employee("Tommy Tester", 40000,
20. 1990, 3, 15);
21.
22. // print out information about all Employee objects
23. for (int i = 0; i < staff.length; i++)
24. {
25. Employee e = staff[i];
26. System.out.println("name=" + e.getName()
27. + ",salary=" + e.getSalary());
28. }
29. }
30. }
31.
32. class Employee
33. {
34. public Employee(String n, double s,
35. int year, int month, int day)
36. {
37. name = n;
38. salary = s;
39. GregorianCalendar calendar
40. = new GregorianCalendar(year, month - 1, day);
41. // GregorianCalendar uses 0 for January
42. hireDay = calendar.getTime();
43. }
44.
45. public String getName()
46. {
47. return name;
48. }
49.
50. public double getSalary()
51. {
52. return salary;
53. }
54.

Core Java™ 2: Volume I–Fundamentals

202

55. public Date getHireDay()
56. {
57. return hireDay;
58. }
59.
60. public void raiseSalary(double byPercent)
61. {
62. double raise = salary * byPercent / 100;
63. salary += raise;
64. }
65.
66. private String name;
67. private double salary;
68. private Date hireDay;
69. }
70.
71. class Manager extends Employee
72. {
73. /**
74. @param n the employee's name
75. @param s the salary
76. @param year the hire year
77. @param month the hire month
78. @param day the hire day
79. */
80. public Manager(String n, double s,
81. int year, int month, int day)
82. {
83. super(n, s, year, month, day);
84. bonus = 0;
85. }
86.
87. public double getSalary()
88. {
89. double baseSalary = super.getSalary();
90. return baseSalary + bonus;
91. }
92.
93. public void setBonus(double b)
94. {
95. bonus = b;
96. }
97.
98. private double bonus;
99. }

Inheritance Hierarchies

Inheritance need not stop at deriving one layer of classes. We could have an Executive class
that derives from Manager, for example. The collection of all classes extending from
a common superclass is called an inheritance hierarchy, as shown in Figure 5-1. The path
from a particular class to its ancestors in the inheritance hierarchy is its inheritance chain.

Core Java™ 2: Volume I–Fundamentals

203

Figure 5-1. Employee inheritance hierarchy

There is usually more than one chain of descent from a distant ancestor class. You could
derive a Programmer class from Employee class or a Secretary class from Employee, and
they would have nothing to do with the Manager class (or with each other). This process can
continue as long as is necessary.

Polymorphism

There is a simple rule to know whether or not inheritance is the right design for your data. The
“is-a” rule states that every object of the subclass is an object of the superclass. For example,
every manager is an employee. Thus, it makes sense for the Manager class to be a subclass of
the Employee class. Naturally, the opposite is not true—not every employee is a manager.

Another way of formulating the “is-a” rule is the substitution principle. That principle states
that you can use a subclass object whenever the program expects a superclass object.

For example, you can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

In the Java programming language, object variables are polymorphic. A variable of type
Employee can refer to an object of type Employee or an object of any subclass of the
Employee class (such as Manager, Executive, Secretary, and so on).

We took advantage of this principle in Example 5-1:

Employee[] staff = new Employee[3];
Manager boss = new Manager(. . .);
staff[0] = boss;

In this case, the variables staff[0] and boss refer to the same object. However, staff[0] is
considered to be only an Employee object by the compiler.

Core Java™ 2: Volume I–Fundamentals

204

That means, you can call

boss.setBonus(5000); // OK

but you can't call

staff[0].setBonus(5000); // ERROR

The declared type of staff[0] is Employee, and the setBonus method is not a method of the
Employee class.

However, you cannot assign a superclass reference to a subclass variable. For example, it is
not legal to make the assignment:

Manager m = staff[i]; // ERROR

The reason is clear: Not all employees are managers. If this assignment were to succeed and m
were to refer to an Employee object that is not a manager, then it would later be possible to
call m.setBonus(...), and a runtime error would occur.

C++ NOTE

Java does not support multiple inheritance. (For ways to recover much of
the functionality of multiple inheritance, see the section on Interfaces in
the next chapter.)

Dynamic Binding

It is important to understand what happens when a method call is applied to an object. Here
are the details:

1. The compiler looks at the declared type of the object and the method name. Let's say
we call x.f(args), and the implicit parameter x is declared to be an object of class C.
Note that there may be multiple methods, all with the same name f, but with different
parameter types. For example, there may be a method f(int) and a method
f(String). The compiler enumerates all methods called f in the class C and all
public methods called f in the superclasses of C.

Now the compiler knows all possible candidates for the method to be called.

2. Next, the compiler determines the types of the parameters that are supplied in the
method call. If among all the methods called f there is a unique method whose
parameter types are a best match for the supplied parameters, then that method is
chosen to be called. This process is called overloading resolution. For example, in
a call x.f("Hello"), the compiler picks f(String) and not f(int). The situation
can get complex because of type conversions (int to double, Manager to Employee,
and so on). If the compiler cannot find any method with matching parameter types, or

Core Java™ 2: Volume I–Fundamentals

205

if there are multiple methods that all match after applying conversions, then
the compiler reports an error.

Now the compiler knows the name and parameter types of the method that needs to be
called.

NOTE

Recall that the name and parameter type list for a method is called
the method's signature. For example, f(int) and f(String) are two
methods with the same name but different signatures. If you define
a method in a subclass that has the same signature as a superclass
method, then you override that method. However, the return type is not
part of the signature. Therefore, you cannot define a method
int f(String) in a superclass and a method void f(String) in
a subclass.

3. If the method is private, static, final, or a constructor, then the compiler knows
exactly which method to call. (The final modifier is explained in the next section.)
This is called static binding. Otherwise, the method to be called depends on the actual
type of the implicit parameter, and dynamic binding must be used at run time. In our
example, the compiler would generate an instruction to call f(String) with dynamic
binding.

4. When the program runs and uses dynamic binding to call a method, then the virtual
machine must call the version of the method that is appropriate for the actual type of
the object to which x refers. Let's say the actual type is D, a subclass of C. If the class D
defines a method f(String), that method is called. If not, D's superclass is searched
for a method f(String), and so on.

It would be time-consuming to carry out this search every time a method is called.
Therefore, the virtual machine precomputes a method table for each class that lists all
method signatures and the actual methods to be called. When a method is actually
called, the virtual machine simply makes a table lookup. In our example, the virtual
machine consults the method table for the class D and looks up the method to call for
f(String). That method may be D.f(String) or X.f(String), where X is some
superclass of D .

There is one twist to this scenario. If the call is super.f(args), then the compiler
consults the method table of the superclass of the implicit parameter.

Let's look at this process in detail in the call e.getSalary() in Example 5-1. The declared
type of e is Employee. The Employee class has a single method called getSalary, and there
are no method parameters. Therefore, in this case, we don't worry about overloading
resolution.

Since the getSalary method is not private, static, or final, it is dynamically bound. The
compiler produces method tables for the Employee and Manager classes. The Employee table
shows that all methods are defined in the Employee class itself:

Core Java™ 2: Volume I–Fundamentals

206

Employee:
 getName() -> Employee.getName()
 getSalary() -> Employee.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)

Actually, that isn't quite true—as you will see later in this chapter, the Employee class has a
superclass Object from which it inherits a number of methods. We ignore the Object
methods for now.

The Manager method table is slightly different. Three methods are inherited, one method is
redefined and one method is added.

Manager:
 getName() -> Employee.getName()
 getSalary() -> Manager.getSalary()
 getHireDay() -> Employee.getHireDay()
 raiseSalary(double) -> Employee.raiseSalary(double)
 setBonus(double) -> Manager.setBonus(double)

At run time, the call e.getSalary() is resolved as follows.

1. First, the virtual machine fetches the method table for the actual type of e. That may
be the table for Employee, Manager, or another subclass of Employee.

2. Then, the virtual machine looks up the defining class for the getSalary() signature.
Now it knows which method to call.

3. Finally, the virtual machine calls the method.

Dynamic binding has a very important property: it makes programs extensible without the
need for recompiling existing code. Suppose a new class Executive is added, and there is the
possibility that the variable e refers to an object of that class. The code containing the call
e.getSalary() need not be recompiled. The Executive.getSalary() method is called
automatically if e happens to refer to an object of type Executive.

CAUTION

When you override a method, the subclass method must be at least as
visible as the superclass method. In particular, if the superclass method is
public, then the subclass method must also be declared as public. It is
a common error to accidentally omit the public specifier for the
subclass method. Then the compiler complains that you try to supply a
weaker access privilege.

Preventing Inheritance: Final Classes and Methods

Occasionally, you want to prevent someone from deriving a class from one of your classes.
Classes that cannot be extended are called final classes, and you use the final modifier in
the definition of the class to indicate this. For example, let us suppose we want to prevent
others from subclassing the Executive class. Then, we simply declare the class using the
final modifier as follows:

Core Java™ 2: Volume I–Fundamentals

207

final class Executive extends Manager
{
 . . .
}

You can also make a specific method in a class final. If you do this, then no subclass can
override that method. (All methods in a final class are automatically final.) For example,

class Employee
{
 . . .
 public final String getName()
 {
 return name;
 }
 . . .
}

NOTE

Recall that fields can also be declared as final. A final field cannot be
changed after the object has been constructed. However, if a class is
declared as final, only the methods, not the fields, are automatically
final.

You will want to make a class or method final for one of two reasons:

1. Efficiency

Dynamic binding has more overhead than static binding—thus, programs with
dynamic calls run slower. More importantly, the compiler cannot replace a trivial
method with inline code because it is possible that a subclass would override that
trivial code. The compiler can put final methods inline. For example, if
e.getName() is final, the compiler can replace it with e.name.

CPUs hate procedure calls because procedure calls interfere with their strategy of
getting and decoding the next instructions while processing the current one. Replacing
calls to trivial procedures with inline code is a big win. Naturally, this is an issue for
a compiler, not for a bytecode interpreter.

2. Safety

The flexibility of the dynamic dispatch mechanism means that you have no control
over what happens when you call a method. When you send a message, such as
e.getName(), it is possible that e is an object of a subclass that redefined the getName
method to return an entirely different string. By making the method final, you avoid
this possible ambiguity.

For example, the String class is a final class. That means, nobody can define a subclass of
String, and the compiler and virtual machine can optimize calls to String methods.

Core Java™ 2: Volume I–Fundamentals

208

C++ NOTE

In C++, a method is not dynamically bound by default, and you can tag it
as inline to have method calls replaced with the method source code.
However, there is no mechanism that would prevent a subclass from
overriding a superclass method. In C++, it is possible to write classes
from which no other class can derive, but it requires an obscure trick, and
there are few reasons to do so. (The obscure trick is left as an exercise to
the reader. Hint: Use a virtual base class.)

Casting

Recall from Chapter 3 that the process of forcing a conversion from one type to another is
called casting. The Java programming language has a special notation for casts. For example:

double x = 3.405;
int nx = (int)x;

converts the value of the expression x into an integer, discarding the fractional part.

Just as you occasionally need to convert a floating-point number to an integer, you also need
to convert an object reference from one class to another. To actually make a cast of an object
reference, you use a syntax similar to what you use for casting a numeric expression.
Surround the target class name with parentheses and place it before the object reference you
want to cast. For example:

Manager boss = (Manager)staff[0];

There is only one reason why you would want to make a cast—to use an object in its full
capacity after its actual type has been temporarily forgotten. For example, in the Manager
class, the staff array had to be an array of Employee objects since some of its entries were
regular employees. We would need to cast the managerial elements of the array back to
Manager to access any of its new variables. (Note that in the sample code for the first section,
we made a special effort to avoid the cast. We initialized the boss variable with a Manager
object before storing it in the array. We needed the correct type to set the bonus of the
manager.)

As you know, in Java, every object variable has a type. The type describes the kind of object
the variable refers to and what it can do. For example, staff[i] refers to an Employee object
(so it can also refer to a Manager object).

You rely on these descriptions in your code, and the compiler checks that you do not promise
too much when you describe a variable. If you assign a subclass object to a superclass
variable, you are promising less, and the compiler will simply let you do it. If you assign a
superclass object to a subclass variable, you are promising more, and you must confirm that
you mean what you say to the compiler with the (Subclass) cast notation.

What happens if you try to cast down an inheritance chain and you are “lying” about what an
object contains?

Core Java™ 2: Volume I–Fundamentals

209

Manager boss = (Manager)staff[1]; // ERROR

When the program runs, the Java runtime system notices the broken promise, and generates
an exception. If you do not catch the exception, your program terminates. Thus, it is good
programming practice to find out whether a cast will succeed before attempting it. Simply use
the instanceof operator. For example:

if (staff[1] instanceof Manager)
{
 boss = (Manager)staff[1];
 . . .
}

Finally, the compiler will not let you make a cast if there is no chance for the cast to succeed.
For example, the cast

Date c = (Date)staff[1];

is a compile-time error because Date is not a subclass of Employee.

To sum up:

• You can cast only within an inheritance hierarchy.
• Use instanceof to check before casting from a superclass to a subclass.

NOTE

The test

x instanceof C

does not generate an exception if x is null. It simply returns false. That
makes sense. Since null refers to no object, it certainly doesn't refer to
an object of type C.

Actually, converting the type of an object by performing a cast is not usually a good idea. In
our example, you do not need to cast an Employee object to a Manager object for most
purposes. The getSalary method will work correctly on both types because the dynamic
binding that makes polymorphism work locates the correct method automatically.

The only reason to make the cast is to use a method that is unique to managers, such as
setBonus. If you for some reason find yourself wanting to call setBonus on Employee
objects, ask yourself whether this is an indication of a design flaw in the superclass. It may
make sense to redesign the superclass and add a setBonus method. Remember, it takes only
one bad cast to terminate your program. In general, it is best to minimize the use of casts and
the instanceof operator.

Casts are commonly used with generic containers such as the ArrayList class, which will be
introduced later in this chapter. When retrieving a value from a container, its type is known

Core Java™ 2: Volume I–Fundamentals

210

only as the generic type Object, and you must use a cast to cast it back to the type of the
object that you inserted into the container.

C++ NOTE

Java uses the cast syntax from the “bad old days” of C, but it works like
the safe dynamic_cast operation of C++. For example,

Manager boss = (Manager)staff[1]; // Java

is the same as

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++

with one important difference. If the cast fails, it does not yield a null
object, but throws an exception. In this sense, it is like a C++ cast of
references. This is a pain in the neck. In C++, you can take care of the
type test and type conversion in one operation.

Manager* boss = dynamic_cast<Manager*>(staff[1]); // C++
if (boss != NULL) . . .

In Java, you use a combination of the instanceof operator and a cast.

if (staff[1] instanceof Manager)
{
 Manager boss = (Manager)staff[1];
 . . .
}

Abstract Classes

As you move up the inheritance hierarchy, classes become more general and probably more
abstract. At some point, the ancestor class becomes so general that you think of it more as
a basis for other classes than as a class with specific instances you want to use. Consider, for
example, an extension of our Employee class hierarchy. An employee is a person, and so is
a student. Let us extend our class hierarchy to include classes Person and Student.
Figure 5-2 shows the inheritance relationships between these classes.

Core Java™ 2: Volume I–Fundamentals

211

Figure 5-2. Inheritance diagram for Person and its subclasses

Why bother with so high a level of abstraction? There are some attributes that make sense for
every person, such as the name. Both students and employees have names, and introducing
a common superclass lets us factor out the getName method to a higher level in the
inheritance hierarchy.

Now let's add another method, getDescription, whose purpose is to return a brief
description of the person, such as:

an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and Student classes. But what
information can you provide in the Person class? The Person class knows nothing about
the person except for the name. Of course, you could implement Person.getDescription()
to return an empty string. But there is a better way. If you use the abstract keyword, you do
not need to implement the method at all.

public abstract String getDescription();
 // no implementation required

For added clarity, a class with one or more abstract methods must itself be declared abstract.

abstract class Person
{ . . .
 public abstract String getDescription();
}

Core Java™ 2: Volume I–Fundamentals

212

In addition to abstract methods, abstract classes can have concrete data and methods. For
example, the Person class stores the name of the person and has a concrete method that
returns it.

abstract class Person
{
 public Person(String n)
 {
 name = n;
 }

 public abstract String getDescription();

 public String getName()
 {
 return name;
 }

 private String name;
}

TIP

Many programmers think that abstract classes should have only abstract
methods. However, this is not true. It always makes sense to move as
much functionality as possible into a superclass, whether or not it is
abstract. In particular, move common fields and nonabstract methods to
the abstract superclass.

Abstract methods act as placeholder methods that are implemented in the subclasses. When
you extend an abstract class, you have two choices. You can leave some or all of the abstract
methods undefined. Then you must tag the subclass as abstract as well. Or you can define all
methods. Then the subclass is no longer abstract.

For example, we will define a Student class that extends the abstract Person class and
implements the getDescription method. Because none of the methods of the Student class
are abstract, it does not need to be declared as an abstract class.

A class can even be declared as abstract even though it has no abstract methods.

Abstract classes cannot be instantiated. That is, if a class is declared as abstract, no objects
of that class can be created. For example, the expression

new Person("Vince Vu")

is an error. However, you can create objects of concrete subclasses.

Note that you can still create object variables of an abstract class, but such a variable must
refer to an object of a nonabstract subclass. For example,

Person p = new Student("Vince Vu", "Economics");

Core Java™ 2: Volume I–Fundamentals

213

Here p is a variable of the abstract type Person that refers to an instance of the nonabstract
subclass Student.

C++ NOTE

In C++, an abstract method is called a pure virtual function and is tagged
with a trailing = 0 , such as in

class Person // C++
{
public:
 virtual string getDescription() = 0;
 . . .
};

A C++ class is abstract if it has at least one pure virtual function. In C++,
there is no special keyword to denote abstract classes.

Let us define a concrete subclass Student that extends the abstract Person class:

class Student extends Person
{
 public Student(String n, String m)
 {
 super(n);
 major = m;
 }

 public String getDescription()
 {
 return "a student majoring in " + major;
 }

 private String major;
}

The Student class defines the getDescription method. Therefore, all methods in the
Student class are concrete, and the class is no longer an abstract class.

The program shown in Example 5-2 defines the abstract superclass Person and two concrete
subclasses Employee and Student. We fill an array of Person references with employee and
student objects.

Person[] people = new Person[2];
people[0] = new Employee(. . .);
people[1] = new Student(. . .);

We then print the names and descriptions of these objects:

for (int i = 0; i < people.length; i++)
{
 Person p = people[i];
 System.out.println(p.getName() + ", " + p.getDescription());
}

Core Java™ 2: Volume I–Fundamentals

214

Some people are baffled by the call:

p.getDescription()

Isn't this a call an undefined method? Keep in mind that the variable p never refers to a
Person object since it is impossible to construct a Person object. The variable p always refers
to an object of a concrete subclass such as Employee or Student. For these objects, the
getDescription method is defined.

Could you have omitted the abstract method altogether from the Person superclass and
simply defined the getDescription methods in the Employee and Student subclasses? Then
you wouldn't have been able to invoke the getDescription method on the variable p. The
compiler ensures that you only invoke methods that are declared in the class.

Abstract methods are an important concept in the Java programming language. You will
encounter them most commonly inside interfaces. For more information about interfaces,
please turn to Chapter 6.

Example 5-2 PersonTest.java

 1. import java.text.*;
 2.
 3. public class PersonTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. Person[] people = new Person[2];
 8.
 9. // fill the people array with Student and Employee objects
10. people[0]
11. = new Employee("Harry Hacker", 50000);
12. people[1]
13. = new Student("Maria Morris", "computer science");
14.
15. // print out names and descriptions of all Person objects
16. for (int i = 0; i < people.length; i++)
17. {
18. Person p = people[i];
19. System.out.println(p.getName() + ", "
20. + p.getDescription());
21. }
22. }
23. }
24.
25. abstract class Person
26. {
27. public Person(String n)
28. {
29. name = n;
30. }
31.
32. public abstract String getDescription();
33.
34. public String getName()
35. {
36. return name;
37. }

Core Java™ 2: Volume I–Fundamentals

215

38.
39. private String name;
40. }
41.
42. class Employee extends Person
43. {
44. public Employee(String n, double s)
45. {
46. // pass name to superclass constructor
47. super(n);
48. salary = s;
49. }
50.
51. public double getSalary()
52. {
53. return salary;
54. }
55.
56. public String getDescription()
57. {
58. NumberFormat formatter
59. = NumberFormat.getCurrencyInstance();
60. return "an employee with a salary of "
61. + formatter.format(salary);
62. }
63.
64. public void raiseSalary(double byPercent)
65. {
66. double raise = salary * byPercent / 100;
67. salary += raise;
68. }
69.
70. private double salary;
71. }
72.
73. class Student extends Person
74. {
75. /**
76. @param n the student's name
77. @param m the student's major
78. */
79. public Student(String n, String m)
80. {
81. // pass n to superclass constructor
82. super(n);
83. major = m;
84. }
85.
86. public String getDescription()
87. {
88. return "a student majoring in " + major;
89. }
90.
91. private String major;
92. }

Protected Access

As you know, fields in a class are best tagged as private, and methods are usually tagged as
public. Any features declared private won't be visible to other classes. As we said at the

Core Java™ 2: Volume I–Fundamentals

216

beginning of this chapter, this is also true for subclasses: a subclass cannot access the private
fields of its superclass.

There are times, however, when you want to restrict a method to subclasses only, or, less
commonly, to allow subclass methods to access a superclass field. In that case, you declare a
class feature as protected. For example, if the superclass Employee declares the hireDay
field as protected instead of private, then the Manager methods can access it directly.

However, the Manager class methods can only peek inside the hireDay field of Manager
objects, not of other Employee objects. This restriction is made so that you can't abuse the
protected mechanism and form subclasses just to gain access to the protected fields.

In practice, use the protected attribute with caution. Suppose your class is used by other
programmers and you designed it with protected fields. Unbeknownst to you, other
programmers may inherit classes from your class and then start accessing your protected
fields. In this case, you can no longer change the implementation of your class without
upsetting the other programmers. That is against the spirit of OOP, which encourages data
encapsulation.

Protected methods make more sense. A class may declare a method as protected if it is
tricky to use. This indicates that the subclasses (which, presumably, know their ancestors
well) can be trusted to use the method correctly, but other classes cannot.

A good example of this kind of method is the clone method of the Object class—see
Chapter 6 for more details.

C++ NOTE

As it happens, protected features in Java are visible to all subclasses as
well as all other classes in the same package. This is slightly different
from the C++ meaning of protected, and it makes the notion of
protected in Java even less safe than in C++.

Here is a summary of the four access modifiers in Java that control visibility:

1. Visible to the class only (private).
2. Visible to the world (public).
3. Visible to the package and all subclasses (protected).
4. Visible to the package—the (unfortunate) default. No modifiers are needed.

Object: The Cosmic Superclass

The Object class is the ultimate ancestor—every class in Java extends Object. However, you
never have to write:

class Employee extends Object

Core Java™ 2: Volume I–Fundamentals

217

The ultimate superclass Object is taken for granted if no superclass is explicitly mentioned.
Because every class in Java extends Object, it is important to be familiar with the services
provided by the Object class. We will go over the basic ones in this chapter and refer you to
later chapters or to the on-line documentation for what is not covered here. (Several methods
of Object come up only when dealing with threads—see Volume 2 for more on threads.)

You can use a variable of type Object to refer to objects of any type:

Object obj = new Employee("Harry Hacker", 35000);

Of course, a variable of type Object is only useful as a generic holder for arbitrary values. To
do anything specific with the value, you need to have some knowledge about the original type
and then apply a cast:

Employee e = (Employee)obj;

C++ NOTE

In C++, there is no cosmic root class. Of course, in C++, every pointer
can be converted to a void* pointer. Java programmers often use Object
references for generic programming, to implement data structures and
algorithms that support a variety of data types. In C++, templates are
commonly used for generic programming. But Java has no templates, so
Java programmers often have to give up compile-time typing and make
do with code that manipulates Object references.

The equals and toString methods

The equals method in the Object class tests whether or not one object is equal to another.
The equals method, as implemented in the Object class, determines whether or not two
objects point to the same area of memory. This is not a useful test. If you want to test objects
for equality, you will need to override equals for a more meaningful comparison. For
example,

class Employee
{ // . . .
 public boolean equals(Object otherObject)
 {
 // a quick test to see if the objects are identical
 if (this == otherObject) return true;

 // must return false if the explicit parameter is null
 if (otherObject == null) return false;

 // if the classes don't match, they can't be equal
 if (getClass() != otherObject.getClass())
 return false;

 // now we know otherObject is a non-null Employee
 Employee other = (Employee)otherObject;

Core Java™ 2: Volume I–Fundamentals

218

 // test whether the fields have identical values
 return name.equals(other.name)
 && salary == other.salary
 && hireDay.equals(other.hireDay);
 }
}

The getClass method returns the class of an object—we will discuss this method in detail
later in this chapter. For two objects to be equal, they must first be objects of the same class.

NOTE

How should the equals method behave if the implicit and explicit
parameters don't belong to the same class? Unfortunately, different
programmers take different actions in this case. We recommend that
equals should return false if the classes don't match exactly. But many
programmers use a test:

if (!(otherObject instanceof Employee)) return false;

This leaves open the possibility that otherObject can belong to a
subclass. Other programmers use no test at all. Then the equals method
throws an exception if otherObject cannot be cast to an Employee
object. Technically speaking, both of these approaches are wrong. Here
is why. The Java Language Specification requires that the equals
method has the following properties:

1. It is reflexive: for any non-null reference x, x.equals(x) should
return true.

2. It is symmetric: for any references x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.

3. It is transitive: for any references x, y, and z, if x.equals(y)
returns true and y.equals(z) returns true, then x.equals(z)
should return true.

4. It is consistent: If the objects to which x and y refer haven't
changed, then repeated calls to x.equals(y) return the same
value.

5. For any non-null reference x, x.equals(null) should return
false.

Rule 5 mandates that you include the test

if (otherObject == null) return false;

in your equals method. What is less obvious is that Rule 2 requires you
to test for class equality. Consider a call

e.equals(m)

where e is an Employee object and m is a Manager object, both of which
happen to have the same name, salary, and hire date. If you don't check

Core Java™ 2: Volume I–Fundamentals

219

that the class of m is the same as the class of e, this call returns true. But
that means that the reverse call

m.equals(e)

also needs to return true—Rule 2 does not allow it to return false, or to
throw an exception.

Unfortunately, the Java Language Specification does a poor job of
explaining this consequence, and the majority of programmers seem to
be unaware of it. The standard Java library contains over 150
implementations of equals methods, with a mishmash of using
instanceof, calling getClass, catching a ClassCastException, or
doing nothing at all. Only a tiny minority of implementations fulfills
Rule 2. You can do better, by following our recipe for the perfect equals
method.

Here is a recipe for writing the perfect equals method:

1. Call the explicit parameter otherObject—later, you need to cast it to another variable
that you should call other.

2. Test whether this happens to be identical to otherObject:

 if (this == otherObject) return true;

This is just an optimization. In practice, this is a common case. It is much cheaper to
check for identity than to compare the fields.

3. Test whether otherObject is null and return false if it is. This test is required.

 if (otherObject == null) return false;

4. Test whether this and otherObject belong to the same class. This test is required by
the “symmetry rule”.

 if (getClass() != otherObject.getClass()) return false;

5. Cast otherObject to a variable of your class type:

 ClassName other = (ClassName)otherObject

6. Now compare all fields. Use == for primitive type fields, equals for object fields.
Return true if all fields match, false otherwise.

 return field1 == other.field1
 && field2.equals(other.field2)
 && . . .;

In a subclass, first call equals on the superclass. If that test doesn't pass, then the objects can't
be equal. If it does, then you are ready to compare the instance fields of the subclass.

Core Java™ 2: Volume I–Fundamentals

220

class Manager extends Employee
{
 . . .
 public boolean equals(Object otherObject)
 {
 if (!super.equals(otherObject)) return false;
 Manager other = (Manager)otherObject;
 // super.equals checked that this and otherObject
 // belong to the same class
 return bonus == other.bonus;
 }
}

Another important method in Object is the toString method that returns a string that
represents the value of this object. Almost any class will override this method to give you a
printed representation of the object's current state. Here is a typical example. The toString
method of the Point class returns a string like this:

java.awt.Point[x=10,y=20]

Most (but not all) toString methods follow this format: the name of the class, followed by
the field values enclosed in square brackets. Here is an implementation of the toString
method for the Employee class:

public String toString()
{
 return "Employee[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

Actually, you can do a little better. Rather than hardwiring the class name into the toString
method, call getClass().getName() to obtain a string with the class name.

public String toString()
{
 return getClass().getName()
 + "[name=" + name
 + ",salary=" + salary
 + ",hireDay=" + hireDay
 + "]";
}

Then the toString method also works for subclasses.

Of course, the subclass programmer should define its own toString method and add
the subclass fields. If the superclass uses getClass().getName(), then the subclass can
simply call super.toString(). For example, here is a toString method for the Manager
class:

Core Java™ 2: Volume I–Fundamentals

221

class Manager extends Employee
{
 . . .
 public String toString()
 {
 return super.toString()
 + "[bonus=" + bonus
 + "]";
 }
}

Now a Manager object is printed as:

Manager[name=...,salary=...,hireDay=...][bonus=...]

The toString method is ubiquitous for an important reason: whenever an object is
concatenated with a string, using the “+” operator, the Java compiler automatically invokes
the toString method to obtain a string representation of the object. For example,

Point p = new Point(10, 20);
String message = "The current position is " + p;
 // automatically invokes p.toString()

TIP

Instead of writing x.toString(), you can write "" + x. This
concatenates the empty string with the string representation of x that is
exactly x.toString().

If x is any object and you call

System.out.println(x);

then the println method simply calls x.toString() and prints the resulting string.

The Object class defines the toString method to print the class name and the memory
location of the object. For example, the call

System.out.println(System.out)

produces an output that looks like this:

java.io.PrintStream@2f6684

The reason is that the implementor of the PrintStream class didn't bother to override the
toString method.

The toString method is a great debugging tool. Many classes in the standard class library
define the toString method so that you can get useful debugging information. Some

Core Java™ 2: Volume I–Fundamentals

222

debuggers let you invoke the toString method to display objects. And you can always insert
trace messages like this:

System.out.println("Current position = " + position);

TIP

We strongly recommend that you add a toString method to each class
that you write. You, as well as other programmers who use your classes,
will be grateful for the debugging support.

The program in Example 5-3 implements the equals and toString methods for the
Employee and Manager classes.

Example 5-3 EqualsTest.java

 1. import java.util.*;
 2.
 3. public class EqualsTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. Employee alice1 = new Employee("Alice Adams", 75000,
 8. 1987, 12, 15);
 9. Employee alice2 = alice1;
 10. Employee alice3 = new Employee("Alice Adams", 75000,
 11. 1987, 12, 15);
 12. Employee bob = new Employee("Bob Brandson", 50000,
 13. 1989, 10, 1);
 14.
 15. System.out.println("alice1 == alice2: "
 16. + (alice1 == alice2));
 17.
 18. System.out.println("alice1 == alice3: "
 19. + (alice1 == alice3));
 20.
 21. System.out.println("alice1.equals(alice3): "
 22. + alice1.equals(alice3));
 23.
 24. System.out.println("alice1.equals(bob): "
 25. + alice1.equals(bob));
 26.
 27. System.out.println("bob.toString(): " + bob);
 28.
 29. Manager carl = new Manager("Carl Cracker", 80000,
 30. 1987, 12, 15);
 31. Manager boss = new Manager("Carl Cracker", 80000,
 32. 1987, 12, 15);
 33. boss.setBonus(5000);
 34. System.out.println("boss.toString(): " + boss);
 35. System.out.println("carl.equals(boss): "
 36. + carl.equals(boss));
 37. }
 38. }
 39.

Core Java™ 2: Volume I–Fundamentals

223

 40. class Employee
 41. {
 42. public Employee(String n, double s,
 43. int year, int month, int day)
 44. {
 45. name = n;
 46. salary = s;
 47. GregorianCalendar calendar
 48. = new GregorianCalendar(year, month - 1, day);
 49. hireDay = calendar.getTime();
 50. }
 51.
 52. public String getName()
 53. {
 54. return name;
 55. }
 56.
 57. public double getSalary()
 58. {
 59. return salary;
 60. }
 61.
 62. public Date getHireDay()
 63. {
 64. return hireDay;
 65. }
 66.
 67. public void raiseSalary(double byPercent)
 68. {
 69. double raise = salary * byPercent / 100;
 70. salary += raise;
 71. }
 72.
 73. public boolean equals(Object otherObject)
 74. {
 75. // a quick test to see if the objects are identical
 76. if (this == otherObject) return true;
 77.
 78. // must return false if the explicit parameter is null
 79. if (otherObject == null) return false;
 80.
 81. // if the classes don't match, they can't be equal
 82. if (getClass() != otherObject.getClass())
 83. return false;
 84.
 85. // now we know otherObject is a non-null Employee
 86. Employee other = (Employee)otherObject;
 87.
 88. // test whether the fields have identical values
 89. return name.equals(other.name)
 90. && salary == other.salary
 91. && hireDay.equals(other.hireDay);
 92. }
 93.

Core Java™ 2: Volume I–Fundamentals

224

 94. public String toString()
 95. {
 96. return getClass().getName()
 97. + "[name=" + name
 98. + ",salary=" + salary
 99. + ",hireDay=" + hireDay
100. + "]";
101. }
102.
103. private String name;
104. private double salary;
105. private Date hireDay;
106. }
107.
108. class Manager extends Employee
109. {
110. public Manager(String n, double s,
111. int year, int month, int day)
112. {
113. super(n, s, year, month, day);
114. bonus = 0;
115. }
116.
117. public double getSalary()
118. {
119. double baseSalary = super.getSalary();
120. return baseSalary + bonus;
121. }
122.
123. public void setBonus(double b)
124. {
125. bonus = b;
126. }
127.
128. public boolean equals(Object otherObject)
129. {
130. if (!super.equals(otherObject)) return false;
131. Manager other = (Manager)otherObject;
132. // super.equals checked that this and other belong to the
133. // same class
134. return bonus == other.bonus;
135. }
136.
137. public String toString()
138. {
139. return super.toString()
140. + "[bonus=" + bonus
141. + "]";
142. }
143.
144. private double bonus;
145. }

Generic Programming

All values of any class type can be held in variables of type Object. In particular, String
values are objects:

Object obj = "Hello"; // OK

Core Java™ 2: Volume I–Fundamentals

225

However, numbers, characters, and boolean values are not objects.

obj = 5; // ERROR
obj = false; // ERROR

You will see later in this chapter how you can turn these types into objects by using wrapper
classes such as Integer and Boolean.

Furthermore, all array types, no matter whether they are arrays of objects or arrays of
primitive types, are class types that derive from Object.

Employee[] staff = new Employee[10];
Object arr = staff; // OK
arr = new int[10]; // OK

An array of objects of class type can be converted to an array of objects. For example, an
Employee[] array can be passed to a method that expects an Object[] array. That conversion
is useful for generic programming.

Here is a simple example that illustrates the concept of generic programming. Suppose you
want to find the index of an element in an array. This is a generic situation, and by writing the
code for objects, you can reuse it for employees, dates, or whatever.

static int find(Object[] a, Object key)
{
 int i;
 for (i = 0; i < a.length; i++)
 if (a[i].equals(key)) return i;
 return -1; // not found
}

For example,

Employee[] staff = new Employee[10];
Employee harry;
. . .
int n = find(staff, harry);

Note that you can only convert an array of objects into an Object[] array. You cannot
convert an int[] array into an Object[] array. (However, as previously pointed out, both
arrays can be converted to Object.)

If you convert an array of objects to an Object[] array, the generic array still remembers its
original type at run time. You cannot store a foreign object into the array.

Employee[] staff = new Employee[10];
. . . // fill with Employee objects
Object[] arr = staff;
arr[0] = new Date();
 // not legal, but suppose it was
for (i = 0; i < n; i++) staff[i].raiseSalary(3);
 // ouch, now the date gets a raise!

Core Java™ 2: Volume I–Fundamentals

226

Of course, this must be checked at run time. The code above compiles without error—it is
legal to store a Date value in arr[0], which has type Object. But when the code executes,
the array remembers its original type and monitors the type of all objects that are stored in it.
If you store an incompatible type into an array, an exception is thrown.

C++ NOTE

C++ programmers may be surprised that the cast from Employee[] to
Object[] is legal. Even if Object was a superclass of Employee in C++,
the equivalent cast from Employee** to Object** would not be legal.
(Of course, the cast from Employee* to Object* is legal in C++.)

There is a security reason behind this restriction. If the cast “Subclass**
? Superclass**” were permitted, you could corrupt the contents of an
array. Consider this code:

Employee** staff; // C++
Object** arr = staff;
 // not legal, but suppose it was
arr[0] = new Date();
 // legal, Date also inherits from Object
for (i = 0; i < n; i++) staff[i]->raiseSalary(3);
 // ouch, now the date gets a raise!

In Java, this problem is averted by remembering the original type of all
arrays and by monitoring all array stores for type compatibility at run
time.

java.lang.Object

• Class getClass()

returns a class object that contains information about the object. As you will see later
in this chapter, Java has a runtime representation for classes that is encapsulated in the
Class class that you can often use to your advantage.

• boolean equals(Object otherObject)

compares two objects for equality; returns true if the objects point to the same area of
memory, and false otherwise. You should override this method in your own classes.

• Object clone()

creates a clone of the object. The Java runtime system allocates memory for the new
instance and copies the memory allocated for the current object.

Core Java™ 2: Volume I–Fundamentals

227

NOTE

Cloning an object is important, but it also turns out to be a fairly subtle
process filled with potential pitfalls for the unwary. We will have a lot
more to say about the clone method in Chapter 6.

• String toString()

returns a string that represents the value of this object. You should override this
method in your own classes.

java.lang.Class

• String getName()

returns the name of this class.

• Class getSuperclass()

returns the superclass of this class as a Class object.

Array Lists

In many programming languages—in particular in C—you have to fix the sizes of all arrays at
compile time. Programmers hate this because it forces them into uncomfortable trade-offs.
How many employees will be in a department? Surely no more than 100. What if there is a
humongous department with 150 employees? Do we want to waste 90 entries for every
department with just 10 employees?

In Java, the situation is much better. You can set the size of an array at run time.

int actualSize = . . .;
Employee[] staff = new Employee[actualSize];

Of course, this code does not completely solve the problem of dynamically modifying arrays
at run time. Once you set the array size, you cannot change it easily. Instead, the easiest way
in Java to deal with this common situation is to use another Java class that works much like an
array that will shrink and grow automatically. This class is called ArrayList. Thus, in Java,
array lists are arraylike objects that can grow and shrink automatically without you needing to
write any code.

Core Java™ 2: Volume I–Fundamentals

228

NOTE

In older versions of the Java programming language, programmers used
the Vector class for automatically resizing arrays. However, the
ArrayList class is more efficient, and you should generally use it
instead of vectors. See Chapter 2 of Volume 2 for more information
about vectors.

There is an important difference between an array and an array list. Arrays are a feature of the
Java language, and there is an array type T[] for each element type T. However, the
ArrayList class is a library class, defined in the java.util package. This is a single “one
size fits all” type which holds elements of type Object. In particular, you will need a cast
whenever you want to take an item out of an array list.

Use the add method to add new elements to an array list. For example, here is how you create
an array list and populate it with employee objects:

ArrayList staff = new ArrayList();
staff.add(new Employee(. . .));
staff.add(new Employee(. . .));

The ArrayList class manages an internal array of Object references. Eventually, that array
will run out of space. This is where array lists work their magic: If you call add and the
internal array is full, the array list automatically creates a bigger array, and automatically
copies all the objects from the smaller to the bigger array.

If you already know, or have a good guess, how many elements you want to store, then call
the ensureCapacity method before filling the array list:

staff.ensureCapacity(100);

That call allocates an internal array of 100 objects. Then you can keep calling add, and no
costly relocation takes place.

You can also pass an initial capacity to the ArrayList constructor:

ArrayList staff = new ArrayList(100);

CAUTION

Allocating an array list as

new ArrayList(100) // capacity is 100

is not the same as allocating a new array as

new Employee[100] // size is 100

There is an important distinction between the capacity of an array list
and the size of an array. If you allocate an array with 100 entries, then

Core Java™ 2: Volume I–Fundamentals

229

the array has 100 slots, ready for use. An array list with a capacity of 100
elements has the potential of holding 100 elements (and, in fact, more
than 100, at the cost of additional relocations), but at the beginning, even
after its initial construction, an array list holds no elements at all.

The size method returns the actual number of elements in the array list. For example,

staff.size()

returns the current number of elements in the staff array list. This is the equivalent of

a.length

for an array a.

Once you are reasonably sure that the array list is at its permanent size, you can call the
trimToSize method. This method adjusts the size of the memory block to use exactly as
much storage space as is required to hold the current number of elements. The garbage
collector will reclaim any excess memory.

NOTE

Once you trim the size of an array list, adding new elements will move
the block again, which takes time. You should only use trimToSize
when you are sure you won't add any more elements to the array list.

C++ NOTE

The ArrayList class differs in a number of important ways from the
C++ vector template. Most noticeably, since vector is a template, only
elements of the correct type can be inserted, and no casting is required to
retrieve elements from the vector. For example, the compiler will simply
refuse to insert a Date object into a vector<Employee>. The C++ vector
template overloads the [] operator for convenient element access. Since
Java does not have operator overloading, it must use explicit method calls
instead. C++ vectors are copied by value. If a and b are two vectors, then
the assignment a = b; makes a into a new vector with the same length as
b, and all elements are copied from b to a. The same assignment in Java
makes both a and b refer to the same array list.

Core Java™ 2: Volume I–Fundamentals

230

java.util.ArrayList

• ArrayList()

constructs an empty array list.

• ArrayList(int initialCapacity)

constructs an empty array list with the specified capacity.

Parameters: initialCapacity the initial storage capacity of the array list

• boolean add(Object obj)

appends an element at the end of the array list. Always returns true.

Parameters obj the element to be added

• int size()

returns the number of elements currently stored in the array list. (This is different
from, and, of course, never larger than, the array list's capacity.)

• void ensureCapacity(int capacity)

ensures that the array list has the capacity to store the given number of elements
without relocating its internal storage array.

Parameters: capacity the desired storage capacity

• void trimToSize()

reduces the storage capacity of the array list to its current size.

Accessing array list elements

Unfortunately, nothing comes for free; the automatic growth convenience that array lists give
requires a more complicated syntax for accessing the elements. The reason is that
the ArrayList class is not a part of the Java language; it is just a utility class programmed by
someone and supplied in the standard library.

Instead of using the pleasant [] syntax to access or change the element of an array, you must
use the get and set methods.

For example, to set the ith element, you use:

Core Java™ 2: Volume I–Fundamentals

231

staff.set(i, harry);

This is equivalent to

a[i] = harry;

for an array a.

Getting an array list element is more complex because the return type of the get method is
Object. You need to cast it to the desired type:

Employee e = (Employee)staff.get(i);

This is equivalent to, but much more cumbersome than,

Employee e = a[i];

NOTE

Array lists, like arrays, are zero-based.

TIP

You can sometimes get the best of both worlds—flexible growth and
convenient element access—with the following trick. First, make an
array list and add all the elements.

ArrayList list = new ArrayList();
while (. . .)
{
 x = . . .;
 list.add(x);
}

When you are done, use the toArray method to copy the elements into
an array.

X[] a = new X[list.size()];
list.toArray(a);

Core Java™ 2: Volume I–Fundamentals

232

CAUTION

Do not call list.set(i, x) until the size of the array list is larger than
i. For example, the following code is wrong:

ArrayList list = new ArrayList(100);//capacity 100, size 0
list.set(0, x); // no element 0 yet

Use the add method instead of set to fill up an array, and use set only
to replace a previously added element.

Array lists are inherently somewhat unsafe. It is possible to accidentally add an element of the
wrong type to an array list.

Date birthday = . . .;
staff.set(i, birthday);

The compiler won't complain. It is perfectly willing to convert a Date to an Object, but when
the accidental date is later retrieved out of the array list, it will probably be cast into an
Employee. This is an invalid cast that will cause the program to abort. That is a problem! The
problem arises because array lists store values of type Object. Had staff been an array of
Employee references, then the compiler would not have allowed a calendar inside it.

Employee[] a = new Employee[100];
a[i] = calendar; // ERROR

On very rare occasions, array lists are useful for heterogeneous collections. Objects of
completely unrelated classes are added on purpose. When an entry is retrieved, the type of
every retrieved object must be tested, as in the following code:

ArrayList list;
list.add(new Employee(. . .));
list.add(new Date(. . .));
. . .
Object obj = list.get(n);
if (obj instanceof Employee)
{
 Employee e = (Employee)obj;
 . . .
}

However, this is generally considered a poor way to write code. It is not a good idea to throw
away type information and laboriously try to retrieve it later.

java.util.ArrayList

• void set(int index, Object obj)

Core Java™ 2: Volume I–Fundamentals

233

puts a value in the array list at the specified index, overwriting the previous contents.

Parameters: index the position (must be between 0 and size() - 1)
 obj the new value

• Object get(int index)

gets the value stored at a specified index.

Parameters: index the index of the element to get (must be between 0 and size() - 1)

Inserting and removing elements in the middle of an array list

Instead of appending elements at the end of an array list, you can also insert them in the
middle.

int n = staff.size() / 2;
staff.add(n, e);

The elements at locations n and above are shifted up to make room for the new entry. If the
new size of the array list after the insertion exceeds the capacity, then the array list reallocates
its storage array.

Similarly, you can remove an element from the middle of an array list.

Employee e = (Employee)staff.remove(n);

The elements located above it are copied down, and the size of the array is reduced by one.

Inserting and removing elements is not terribly efficient. It is probably not worth worrying
about for small array lists. But if you store many elements and frequently insert and remove in
the middle of the sequence, consider using a linked list instead. We will explain how to
program with linked lists in Volume 2.

Example 5-4 is a modification of the EmployeeTest program of Chapter 4. The Employee[]
array is replaced by an ArrayList. Note the following changes:

• You don't have to specify the array size.
• You use add to add as many elements as you like.
• You use size() instead of length to count the number of elements.
• You use (Employee)a.get(i) instead of a[i] to access an element.

Core Java™ 2: Volume I–Fundamentals

234

Example 5-4 ArrayListTest.java

 1. import java.util.*;
 2.
 3. public class ArrayListTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. // fill the staff array list with three Employee objects
 8. ArrayList staff = new ArrayList();
 9.
10. staff.add(new Employee("Carl Cracker", 75000,
11. 1987, 12, 15));
12. staff.add(new Employee("Harry Hacker", 50000,
13. 1989, 10, 1));
14. staff.add(new Employee("Tony Tester", 40000,
15. 1990, 3, 15));
16.
17. // raise everyone's salary by 5%
18. for (int i = 0; i < staff.size(); i++)
19. {
20. Employee e = (Employee)staff.get(i);
21. e.raiseSalary(5);
22. }
23.
24. // print out information about all Employee objects
25. for (int i = 0; i < staff.size(); i++)
26. {
27. Employee e = (Employee)staff.get(i);
28. System.out.println("name=" + e.getName()
29. + ",salary=" + e.getSalary()
30. + ",hireDay=" + e.getHireDay());
31. }
32. }
33. }
34.
35. class Employee
36. {
37. public Employee(String n, double s,
38. int year, int month, int day)
39. {
40. name = n;
41. salary = s;
42. GregorianCalendar calendar
43. = new GregorianCalendar(year, month - 1, day);
44. // GregorianCalendar uses 0 for January
45. hireDay = calendar.getTime();
46. }
47.
48. public String getName()
49. {
50. return name;
51. }
52.
53. public double getSalary()
54. {
55. return salary;
56. }
57.

Core Java™ 2: Volume I–Fundamentals

235

58. public Date getHireDay()
59. {
60. return hireDay;
61. }
62.
63. public void raiseSalary(double byPercent)
64. {
65. double raise = salary * byPercent / 100;
66. salary += raise;
67. }
68.
69. private String name;
70. private double salary;
71. private Date hireDay;
72 }

java.util.ArrayList

• void add(int index, Object obj)

shifts up elements to insert an element.

Parameters: index the insertion position (must be between 0 and size())
 obj the new element

• void remove(int index)

removes an element and shifts down all elements above it.

Parameters: index the position of the element to be removed (must be between 0 and
size() - 1)

Object Wrappers

Occasionally, you need to convert a basic type like int to an object. All basic types have class
counterparts. For example, there is a class Integer corresponding to the basic type int.
These kinds of classes are usually called object wrappers. The wrapper classes have obvious
names: Integer, Long, Float, Double, Short, Byte, Character, Void, and Boolean.
(The first six inherit from the common wrapper Number.) The wrapper classes are final.

(So you can't override the toString method in Integer to display numbers using Roman
numerals, sorry.) You also cannot change the values you store in the object wrapper.

Suppose we want an array list of floating-point numbers. As mentioned previously, simply
adding numbers won't work.

ArrayList list = new ArrayList();
list.add(3.14); // ERROR

Core Java™ 2: Volume I–Fundamentals

236

The floating-point number 3.14 is not an Object. Here, the Double wrapper class comes in.
An instance of Double is an object that wraps the double type.

list.add(new Double(3.14));

Of course, to retrieve a number from an array list of Double objects, we need to extract the
actual value from the wrapper by using the doubleValue() method in Double.

double x = ((Double)list.get(n)).doubleValue();

Ugh. Here it really pays off to define a class we will call DoubleArrayList that hides all this
ugliness once and for all.

class DoubleArrayList
{
 public DoubleArrayList()
 {
 list = new ArrayList();
 }

 public void set(int n, double x)
 {
 list.set(n, new Double(x));
 }

 public void add(double x)
 {
 list.add(new Double(x));
 }

 public double get(int n)
 {
 return ((Double)list.get(n)).doubleValue();
 }

 public int size()
 {
 return list.size();
 }

 private ArrayList list;
}

CAUTION

Some people think that the wrapper classes can be used to implement
methods that can modify numeric parameters. However, that is not
correct. Recall from Chapter 4 that it is impossible to write a Java
method that increments an integer because parameters to Java methods
are always passed by value.

public static void increment(int x) // won't work
{
 x++; // increments local copy
}

Core Java™ 2: Volume I–Fundamentals

237

public static void main(String[] args)
{
 int a = 3;
 increment(a);
 . . .
}

Changing x has no effect on a. Could we overcome this by using an
Integer instead of an int?

public static void increment(Integer x) // won't work
{
 . . .
}

public static void main(String[] args)
{
 Integer a = new Integer(3);
 increment(a);
 . . .
}

After all, now a and x are references to the same object. If we managed
to update x, then a would also be updated. The problem is that Integer
objects are immutable: the information contained inside the wrapper can't
change. In particular, there is no analog to the statement x++ for Integer
objects. Thus, you cannot use these wrapper classes to create a method
that modifies numeric parameters.

NOTE

If you do want to write a method to change numeric parameters, you can
use one of the holder types defined in the org.omg.CORBA package.
There are types IntHolder, BooleanHolder, and so on. Each holder
type has a public (!) field value through which you can access the stored
value.

public static void increment(IntegerHolder x)
{
 x.value++;
}

public static void main(String[] args)
{
 IntegerHolder a = new IntegerHolder(3);
 increment(a);
 int result = a.value;
 . . .
}

You will often see the number wrappers for another reason. The designers of Java found the
wrappers a convenient place to put certain basic methods, like the ones for converting strings
of digits to numbers.

Core Java™ 2: Volume I–Fundamentals

238

To convert a string to an integer, you need to use the following statement:

int x = Integer.parseInt(s);

This has nothing to do with Integer objects—parseInt is a static method. But the Integer
class was a good place to put it.

Similarly, you can use the Double.parseDouble method to parse floating-point numbers.

NOTE

Until Java 2, there was no parseDouble method in the Double class.
Instead, programmers had to use the cumbersome

double x = new Double(s).doubleValue();

or

double x = Double.valueOf(s).doubleValue();

This statement constructs a Double object from the string s and then
extracts its value. The static Double.parseDouble method is more
efficient because no object is created.

NOTE

There is another method for parsing numbers, although it isn't any
simpler. You can use the parse method of the NumberFormat class.
When s is a string and formatter is an object of type NumberFormat,
then the method call formatter.parse(s) returns an object of type
Number.

NumberFormat formatter = NumberFormat.getNumberInstance();
Number n = formatter.parse(s);

Actually, Number is an abstract class, and the returned object is an object
of either type Long or Double, depending on the contents of the string s.
You can use the instanceof operator to find out the return type of the
object:

if (n instanceof Double) Double d = (Double)n;

But in practice, you don't usually care about the return type. The
doubleValue method is defined for the Number class, and it returns the
floating-point equivalent of the number object, whether it is a Long or a
Double. That is, you can use the following code:

x = formatter.parse(s.trim()).doubleValue();

Core Java™ 2: Volume I–Fundamentals

239

Using the NumberFormat has one advantage: the string can contain group
separators for thousands such as "12,301.4".

The API notes show some of the more important methods of the Integer class. The other
number classes implement corresponding methods.

java.lang.Integer

• int intValue()

returns the value of this Integer object as an int (overrides the intValue method in
the Number class).

• static String toString(int i)

returns a new String object representing the specified integer in base 10.

• static String toString(int i, int radix)

lets you return a representation of the number i in the base specified by the radix
parameter.

• static int parseInt(String s)

returns the integer's value, assuming the specified String represents an integer in base
10.

• static int parseInt(String s, int radix)

returns the integer's value, assuming the specified String represents an integer in the
base specified by the radix parameter.

• static Integer valueOf(String s)

returns a new Integer object initialized to the integer's value, assuming the specified
String represents an integer in base 10.

• static Integer valueOf(String s, int radix)

returns a new Integer object initialized to the integer's value, assuming the specified
String represents an integer in the base specified by the radix parameter.

Core Java™ 2: Volume I–Fundamentals

240

java.text.NumberFormat

• Number parse(String s)

returns the numeric value, assuming the specified String represents a number.

The Class Class

While your program is running, the Java runtime system always maintains what is called
runtime type identification on all objects. This information keeps track of the class to which
each object belongs. Runtime type information is used by the virtual machine to select the
correct methods to execute.

However, you can also access this information by working with a special Java class. The class
that holds this information is called, somewhat confusingly, Class. The getClass() method
in the Object class returns an instance of Class type.

Employee e;
. . .
Class cl = e.getClass();

Just like an Employee object describes the properties of a particular employee, a Class object
describes the properties of a particular class. Probably the most commonly used method of
Class is getName. This returns the name of the class. For example, the statement

System.out.println(e.getClass().getName() + " " + e.getName());

prints

Employee Harry Hacker

if e is an employee, or

Manager Harry Hacker

if e is a manager.

You can also obtain a Class object corresponding to a string by using the static forName
method.

String className = "Manager";
Class cl = Class.forName(className);

You would use this method if the class name is stored in a string that varies at run time. This
works if className is the name of a class or interface. Otherwise, the forName method
throws a checked exception. See the sidebar on exceptions to see how you need to supply an
exception handler whenever you use this method.

Core Java™ 2: Volume I–Fundamentals

241

TIP

At startup, the class containing your main method is loaded. It loads all
classes that it needs. Each of those loaded classes loads the classes that
they need, and so on. That can take a long time for a big application,
frustrating the user. You can give users of your program the illusion of
a faster start, with the following trick. Make sure that the class
containing the main method does not explicitly refer to other classes.
First display a splash screen. Then manually force the loading of other
classes by calling Class.forName.

A third method for obtaining an object of type Class is a convenient shorthand. If T is any
Java type, then T.class is the matching class object. For example:

Class cl1 = Manager.class;
Class cl2 = int.class;
Class cl3 = Double[].class;

Note that a Class object really describes a type, which may or may not be a class. For
example, int is not a class, but int.class is nevertheless an object of type Class.

NOTE

For historical reasons, the getName method returns somewhat strange
names for array types:

System.out.println(Double[].class.getName());
 // prints [Ljava.lang.Double;
System.out.println(int[].class.getName());
 // prints [I

Catching Exceptions
We will cover exception handling fully in Chapter 11, but in the meantime you will
occasionally encounter methods that threaten to throw exceptions.

When an error occurs at run time, a program can “throw an exception.” Throwing an
exception is more flexible than terminating the program because you can provide
a handler that “catches” the exception and deals with it.

If you don't provide a handler, the program still terminates and prints a message to
the console, giving the type of the exception. You may already have seen exception
reports when you accidentally used a null reference or overstepped the bounds of
an array.

There are two kinds of exceptions: unchecked exceptions and checked exceptions.
With checked exceptions, the compiler checks that you provide a handler. However,
many common exceptions, such as accessing a null reference, are unchecked.

Core Java™ 2: Volume I–Fundamentals

242

The compiler does not check whether you provide a handler for these errors—after
all, you should spend your mental energy on avoiding these mistakes rather than
coding handlers for them.

But not all errors are avoidable. If an exception can occur despite your best efforts,
then the compiler insists that you provide a handler. The Class.forName method is
an example of a method that throws a checked exception. In Chapter 11, you will
see several exception handling strategies. For now, we'll just show you the simplest
handler implementation.

Place one or more methods that might throw checked exceptions inside a try block.
Then provide the handler code in the catch clause.

try
{
 statements that might throw exceptions
}
 catch(Exception e)
{
 handler action
}

Here is an example:

try
{
 String name = . . .;// get class name
 Class cl = Class.forName(name); // might throw exception
 . . . // do something with cl
}
catch(Exception e)
{
 e.printStackTrace();
}

If the class name doesn't exist, the remainder of the code in the try block is skipped,
and the program enters the catch clause. (Here, we print a stack trace by using
the printStackTrace method of the Throwable class. Throwable is the superclass
of the Exception class.) If none of the methods in the try block throw
an exception, then the handler code in the catch clause is skipped.

You only need to supply an exception handler for checked exceptions. It is easy to
find out which methods throw checked exceptions—the compiler will complain
whenever you call a method that threatens to throw a checked exception and you
don't supply a handler.

The virtual machine manages a unique Class object for each type. Therefore, you can use
the == operator to compare class objects, for example:

if (e.getClass() == Employee.class) . . .

Another example of a useful method is one that lets you create an instance of a class on
the fly. This method is called, naturally enough, newInstance(). For example,

Core Java™ 2: Volume I–Fundamentals

243

e.getClass().newInstance();

creates a new instance of the same class type as e. The newInstance method calls the default
constructor (the one that takes no parameters) to initialize the newly created object.

Using a combination of forName and newInstance lets you create an object from a class
name stored in a string.

String s = "Manager";
Object m = Class.forName(s).newInstance();

NOTE

If you need to provide parameters for the constructor of a class you want
to create by name in this manner, then you can't use statements like
the above. Instead, you must use the newInstance method in
the Constructor class. (This is one of several classes in
the java.lang.reflect package. We will discuss reflection in the next
section.)

C++ NOTE

The newInstance method corresponds to the idiom of a virtual
constructor in C++. However, virtual constructors in C++ are not
a language feature but just an idiom that needs to be supported by
a specialized library. The Class class is similar to the type_info class in
C++, and the getClass method is equivalent to the typeid operator.
The Java Class is quite a bit more versatile than type_info, though.
The C++ type_info can only reveal a string with the name of the type,
not create new objects of that type.

java.lang.Class

• static Class forName(String className)

returns the Class object representing the class with name className.

• Object newInstance()

returns a new instance of this class.

Core Java™ 2: Volume I–Fundamentals

244

java.lang.reflect.Constructor

• Object newInstance(Object[] args)

constructs a new instance of the constructor's declaring class.

Parameters: args the parameters supplied to the constructor. See the section on reflection for
more information on how to supply parameters.

java.lang.Throwable

• void printStackTrace()

prints the Throwable object and the stack trace to the standard error stream.

Reflection

The class Class gives you a very rich and elaborate toolset to write programs that manipulate
Java code dynamically. This feature is heavily used in JavaBeans, the component architecture
for Java (see Volume 2 for more on JavaBeans). Using reflection, Java is able to support tools
like the ones users of Visual Basic have grown accustomed to. In particular, when new classes
are added at design or run time, rapid application development tools that are JavaBeans
enabled need to be able to inquire about the capabilities of the classes that were added. (This
is equivalent to the process that occurs when you add controls in Visual Basic to the toolbox.)

A program that can analyze the capabilities of classes is called reflective. The package that
brings this functionality to Java is therefore called, naturally enough, java.lang.reflect.
The reflection mechanism is extremely powerful. As the next four sections show, you can use
it to:

• Analyze the capabilities of classes at run time
• Inspect objects at run time, for example, to write a single toString method that works

for all classes
• Implement generic array manipulation code
• Take advantage of Method objects that work just like function pointers in languages

such as C++

Reflection is a powerful and complex mechanism; however, it is of interest mainly to tool
builders, not application programmers. If you are interested in programming applications
rather than tools for other Java programmers, you can safely skip the remainder of this chapter
and return to it at a later time.

Core Java™ 2: Volume I–Fundamentals

245

Using Reflection to Analyze the Capabilities of Classes

Here is a brief overview of the most important parts of the reflection mechanism for letting
you examine the structure of a class.

The three classes Field, Method, and Constructor in the java.lang.reflect package
describe the fields, methods, and constructors of a class, respectively. All three classes have a
method called getName that returns the name of the item. The Field class has a method
getType that returns an object, again of type Class, that describes the field type. The Method
and Constructor classes have methods to report the return type and the types of the
parameters used for these methods. All three of these classes also have a method called
getModifiers that returns an integer, with various bits turned on and off, that describe the
modifiers used, such as public and static. You can then use the static methods in the
Modifier class in the java.lang.reflect package to analyze the integer that
getModifiers returns. For example, there are methods like isPublic, isPrivate, or
isFinal in the Modifier class that you could use to tell whether a method or constructor was
public, private, or final. All you have to do is have the appropriate method in the
Modifier class work on the integer that getModifiers returns. You can also use the
Modifier.toString method to print the modifiers.

The getFields, getMethods, and getConstructors methods of the Class class return
arrays of the public fields, operations, and constructors that the class supports. This includes
public members of superclasses. The getDeclaredFields, getDeclaredMethods, and
getDeclaredConstructors methods of the Class class return arrays consisting of all fields,
operations, and constructors that are declared in the class. This includes private and protected
members, but not members of superclasses.

Example 5-5 shows you how to print out all information about a class. The program prompts
you for the name of a class and then writes out the signatures of all methods and constructors
as well as the names of all data fields of a class. For example, if you enter

java.lang.Double

then the program prints:

class java.lang.Double extends java.lang.Number
{
 public java.lang.Double(java.lang.String);
 public java.lang.Double(double);

 public int hashCode();
 public int compareTo(java.lang.Object);
 public int compareTo(java.lang.Double);
 public boolean equals(java.lang.Object);
 public java.lang.String toString();
 public static java.lang.String toString(double);
 public static java.lang.Double valueOf(java.lang.String);
 public static boolean isNaN(double);
 public boolean isNaN();
 public static boolean isInfinite(double);
 public boolean isInfinite();
 public byte byteValue();
 public short shortValue();

Core Java™ 2: Volume I–Fundamentals

246

 public int intValue();
 public long longValue();
 public float floatValue();
 public double doubleValue();
 public static double parseDouble(java.lang.String);
 public static native long doubleToLongBits(double);
 public static native long doubleToRawLongBits(double);
 public static native double longBitsToDouble(long);

 public static final double POSITIVE_INFINITY;
 public static final double NEGATIVE_INFINITY;
 public static final double NaN;
 public static final double MAX_VALUE;
 public static final double MIN_VALUE;
 public static final java.lang.Class TYPE;
 private double value;
 private static final long serialVersionUID;
}

What is remarkable about this program is that it can analyze any class that the Java interpreter
can load, not just the classes that were available when the program was compiled. We will use
this program in the next chapter to peek inside the inner classes that the Java compiler
generates automatically.

Example 5-5 ReflectionTest.java

 1. import java.lang.reflect.*;
 2. import javax.swing.*;
 3.
 4. public class ReflectionTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. // read class name from command line args or user input
 9. String name;
 10. if (args.length > 0)
 11. name = args[0];
 12. else
 13. name = JOptionPane.showInputDialog
 14. ("Class name (e.g. java.util.Date): ");
 15.
 16. try
 17. {
 18. // print class name and superclass name (if != Object)
 19. Class cl = Class.forName(name);
 20. Class supercl = cl.getSuperclass();
 21. System.out.print("class " + name);
 22. if (supercl != null && supercl != Object.class)
 23. System.out.print(" extends " + supercl.getName());
 24.
 25. System.out.print("\n{\n");
 26. printConstructors(cl);
 27. System.out.println();
 28. printMethods(cl);
 29. System.out.println();
 30. printFields(cl);
 31. System.out.println("}");
 32. }
 33. catch(ClassNotFoundException e) { e.printStackTrace(); }

Core Java™ 2: Volume I–Fundamentals

247

 34. System.exit(0);
 35. }
 36.
 37. /**
 38. Prints all constructors of a class
 39. @param cl a class
 40. */
 41. public static void printConstructors(Class cl)
 42. {
 43. Constructor[] constructors = cl.getDeclaredConstructors();
 44.
 45. for (int i = 0; i < constructors.length; i++)
 46. {
 47. Constructor c = constructors[i];
 48. String name = c.getName();
 49. System.out.print(Modifier.toString(c.getModifiers()));
 50. System.out.print(" " + name + "(");
 51.
 52. // print parameter types
 53. Class[] paramTypes = c.getParameterTypes();
 54. for (int j = 0; j < paramTypes.length; j++)
 55. {
 56. if (j > 0) System.out.print(", ");
 57. System.out.print(paramTypes[j].getName());
 58. }
 59. System.out.println(");");
 60. }
 61. }
 62.
 63. /**
 64. Prints all methods of a class
 65. @param cl a class
 66. */
 67. public static void printMethods(Class cl)
 68. {
 69. Method[] methods = cl.getDeclaredMethods();
 70.
 71. for (int i = 0; i < methods.length; i++)
 72. {
 73. Method m = methods[i];
 74. Class retType = m.getReturnType();
 75. String name = m.getName();
 76.
 77. // print modifiers, return type and method name
 78. System.out.print(Modifier.toString(m.getModifiers()));
 79. System.out.print(" " + retType.getName() + " " + name
 80. + "(");
 81.
 82. // print parameter types
 83. Class[] paramTypes = m.getParameterTypes();
 84. for (int j = 0; j < paramTypes.length; j++)
 85. {
 86. if (j > 0) System.out.print(", ");
 87. System.out.print(paramTypes[j].getName());
 88. }
 89. System.out.println(");");
 90. }
 91. }
 92.

Core Java™ 2: Volume I–Fundamentals

248

 93. /**
 94. Prints all fields of a class
 95. @param cl a class
 96. */
 97. public static void printFields(Class cl)
 98. {
 99. Field[] fields = cl.getDeclaredFields();
100.
101. for (int i = 0; i < fields.length; i++)
102. {
103. Field f = fields[i];
104. Class type = f.getType();
105. String name = f.getName();
106. System.out.print(Modifier.toString(f.getModifiers()));
107. System.out.println(" " + type.getName() + " " + name
108. + ";");
109. }
110. }
111. }

java.lang.Class

• Field[] getFields()
• Field[] getDeclaredFields()

The getFields method returns an array containing Field objects for the public fields.
The getDeclaredField method returns an array of Field objects for all fields. The
methods return an array of length 0 if there are no such fields, or if the Class object
represents a primitive or array type.

• Method[] getMethods()
• Method[] getDeclaredMethods()

return an array containing Method objects that give you all the public methods (for
getMethods) or all methods (for getDeclaredMethods) of the class or interface. This
includes those inherited from classes or interfaces above it in the inheritance chain.

• Constructor[] getConstructors()
• Constructor[] getDeclaredConstructors()

return an array containing Constructor objects that give you all the public
constructors (for getConstructors) or all constructors (for
getDeclaredConstructors) of the class represented by this Class object.

Core Java™ 2: Volume I–Fundamentals

249

java.lang.reflect.Field

java.lang.reflect.Method

java.lang.reflect.Constructor

• Class getDeclaringClass()

returns the Class object for the class that defines this constructor, method, or field.

• Class[] getExceptionTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the exceptions thrown by
the method.

• int getModifiers()

returns an integer that describes the modifiers of this constructor, method, or field. Use
the methods in the Modifier class to analyze the return value.

• String getName()

returns a string that is the name of the constructor, method, or field.

• Class[] getParameterTypes() (in Constructor and Method classes)

returns an array of Class objects that represent the types of the parameters.

java.lang.reflect.Modifier

• static String toString(int modifiers)

returns a string with the modifiers that correspond to the bits set in modifiers.

Core Java™ 2: Volume I–Fundamentals

250

Using Reflection to Analyze Objects at Run Time

In the preceding section, we saw how we can find out the names and types of the data fields of
any object:

• Get the corresponding Class object.
• Call getDeclaredFields on the Class object.

In this section, we go one step further and actually look at the contents of the data fields. Of
course, it is easy to look at the contents of a specific field of an object whose name and type
are known when you write a program. But reflection lets you look at fields of objects that
were not known at compile time.

The key method to achieve this is the get method in the Field class. If f is an object of type
Field (for example, one obtained from getDeclaredFields) and obj is an object of the class
of which f is a field, then f.get(obj) returns an object whose value is the current value of
the field of obj. This is all a bit abstract, so let's run through an example.

Employee harry = new Employee("Harry Hacker", 35000,
 10, 1, 1989);
Class cl = harry.getClass();
 // the class object representing Employee
Field f = cl.getField("name");
 // the name field of the Employee class
Object v = f.get(harry);
 // the value of the name field of the harry object
 // i.e. the String object "Harry Hacker"

Actually, there is a problem with this code. Since the name field is a private field, the get
method will throw an IllegalAccessException. You can only use the get method to get the
values of accessible fields. The security mechanism of Java lets you find out what fields any
object has, but it won't let you read the values of those fields unless you have access
permission.

The default behavior of the reflection mechanism is to respect Java access control. However,
if a Java program is not controlled by a security manager that disallows it, it is possible to
override access control. To do this, invoke the setAccessible method on a Field, Method,
or Constructor object, for example:

f.setAccessible(true);
 // now OK to call f.get(harry);

The setAccessible method is a method of the AccessibleObject class, the common
superclass of the Field, Method, and Constructor. This feature is provided for debuggers,
persistent storage, and similar mechanisms. We will use it for a generic toString method
later in this section.

There is another issue with the get method that we need to deal with. The name field is a
String, and so it is not a problem to return the value as an Object. But suppose we want to
look at the salary field. That is a double, and in Java, number types are not objects. To
handle this, you can either use the getDouble method of the Field class, or you can call get,

Core Java™ 2: Volume I–Fundamentals

251

where the reflection mechanism automatically wraps the field value into the appropriate
wrapper class, in this case, Double.

Of course, you can also set the values that you can get. The call f.set(obj, value) sets the
field represented by f of the object obj to the new value.

Example 5-6 shows how to write a generic toString method that works for any class. It uses
getDeclaredFields to obtain all data fields. It then uses the setAccessible convenience
method to make all fields accessible. For each field, it obtains the name and the value. Each
value is turned into a string by invoking its toString method. The toString method
examines all superclass fields until it reaches the Object class.

class ObjectAnalyzer
{
 public static String toString(Object obj)
 {
 Class cl = obj.getClass();
 String r = cl.getName();

 // inspect the fields of this class and all superclasses
 do
 {
 r += "[";
 Field[] fields = cl.getDeclaredFields();
 AccessibleObject.setAccessible(fields, true);

 // get the names and values of all fields
 for (int i = 0; i < fields.length; i++)
 {
 Field f = fields[i];
 r += f.getName() + "=";
 try
 {
 Object val = f.get(obj);
 r += val.toString();
 }
 catch (Exception e) { e.printStackTrace(); }
 if (i < fields.length - 1)
 r += ",";
 }
 r += "]";
 cl = cl.getSuperclass();
 }
 while (cl != Object.class);

 return r;
 }
 . . .
}

You can use this toString method to peek inside any object. For example, here is what you
get when you look inside the System.out object:

java.io.PrintStream[autoFlush=true,trouble=false,
textOut=java.io.BufferedWriter@8786b,
charOut=java.io.OutputStreamWriter@19c082,
closing=false][out=java.io.BufferedOutputStream@2dd2dd][]

Core Java™ 2: Volume I–Fundamentals

252

In Example 5-6, the generic toString method is used to implement the toString of the
Employee class:

public String toString()
{
 return ObjectAnalyzer.toString(this);
}

This is a hassle-free method for supplying a toString method, and it is highly recommended,
especially for debugging. The same recursive approach can also be used to define a generic
equals method. See the code in the example program Example 5-6 for details.

Example 5-6 ObjectAnalyzerTest.java

 1. import java.lang.reflect.*;
 2. import java.util.*;
 3.
 4. public class ObjectAnalyzerTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. // test toString method of Employee
 9. Employee harry = new Employee("Harry Hacker", 35000,
 10. 1996, 12, 1);
 11. System.out.println("harry=" + harry);
 12.
 13. // test equals method of Employee
 14. Employee coder = new Employee("Harry Hacker", 35000,
 15. 1996, 12, 1);
 16. System.out.println(
 17. "Before raise, harry.equals(coder) returns "
 18. + harry.equals(coder));
 19. harry.raiseSalary(5);
 20. System.out.println(
 21. "After raise, harry.equals(coder) returns "
 22. + harry.equals(coder));
 23.
 24. Manager carl = new Manager("Carl Cracker", 80000,
 25. 1987, 12, 15);
 26. Manager boss = new Manager("Carl Cracker", 80000,
 27. 1987, 12, 15);
 28. boss.setBonus(5000);
 29. System.out.println("boss=" + boss);
 30. System.out.println(
 31. "carl.equals(boss) returns " + carl.equals(boss));
 32. }
 33. }
 34.
 35. class ObjectAnalyzer
 36. {
 37. /**
 38. Converts an object to a string representation that lists
 39. all fields.
 40. @param obj an object
 41. @return a string with the object's class name and all
 42. field names and values
 43. */

Core Java™ 2: Volume I–Fundamentals

253

 44. public static String toString(Object obj)
 45. {
 46. Class cl = obj.getClass();
 47. String r = cl.getName();
 48.
 49. // inspect the fields of this class and all superclasses
 50. do
 51. {
 52. r += "[";
 53. Field[] fields = cl.getDeclaredFields();
 54. AccessibleObject.setAccessible(fields, true);
 55.
 56. // get the names and values of all fields
 57. for (int i = 0; i < fields.length; i++)
 58. {
 59. Field f = fields[i];
 60. r += f.getName() + "=";
 61. try
 62. {
 63. Object val = f.get(obj);
 64. r += val.toString();
 65. }
 66. catch (Exception e) { e.printStackTrace(); }
 67. if (i < fields.length - 1)
 68. r += ",";
 69. }
 70. r += "]";
 71. cl = cl.getSuperclass();
 72. }
 73. while (cl != Object.class);
 74.
 75. return r;
 76. }
 77.
 78. /**
 79. Tests whether two objects are equal by checking if all
 80. field values are equal
 81. @param a an object
 82. @param b another object
 83. @return true if a and b are equal
 84. */
 85. public static boolean equals(Object a, Object b)
 86. {
 87. if (a == b) return true;
 88. if (a == null || b == null) return false;
 89. Class cl = a.getClass();
 90. if (cl != b.getClass()) return false;
 91.
 92. // inspect the fields of this class and all superclasses
 93. do
 94. {
 95. Field[] fields = cl.getDeclaredFields();
 96. AccessibleObject.setAccessible(fields, true);
 97. for (int i = 0; i < fields.length; i++)
 98. {
 99. Field f = fields[i];
100. // if field values don't match, objects aren't equal
101. try
102. {
103. if (!f.get(a).equals(f.get(b)))
104. return false;

Core Java™ 2: Volume I–Fundamentals

254

105. }
106. catch (Exception e) { e.printStackTrace(); }
107. }
108. cl = cl.getSuperclass();
109. }
110. while (cl != Object.class);
111.
112. return true;
113. }
114. }
115.
116. class Employee
117. {
118. public Employee(String n, double s,
119. int year, int month, int day)
120. {
121. name = n;
122. salary = s;
123. GregorianCalendar calendar
124. = new GregorianCalendar(year, month - 1, day);
125. // GregorianCalendar uses 0 for January
126. hireDay = calendar.getTime();
127. }
128.
129. public String getName()
130. {
131. return name;
132. }
133.
134. public double getSalary()
135. {
136. return salary;
137. }
138.
139. public Date getHireDay()
140. {
141. return hireDay;
142. }
143.
144. public void raiseSalary(double byPercent)
145. {
146. double raise = salary * byPercent / 100;
147. salary += raise;
148. }
149.
150. public String toString()
151. {
152. return ObjectAnalyzer.toString(this);
153. }
154.
155. public boolean equals(Object b)
156. {
157. return ObjectAnalyzer.equals(this, b);
158. }
159.
160. private String name;
161. private double salary;
162. private Date hireDay;
163. }
164.

Core Java™ 2: Volume I–Fundamentals

255

165. class Manager extends Employee
166. {
167. public Manager(String n, double s,
168. int year, int month, int day)
169. {
170. super(n, s, year, month, day);
171. bonus = 0;
172. }
173.
174. public double getSalary()
175. {
176. double baseSalary = super.getSalary();
177. return baseSalary + bonus;
178. }
179.
180. public void setBonus(double b)
181. {
182. bonus = b;
183. }
184.
185. private double bonus;
186. }

java.lang.reflect.AccessibleObject

• void setAccessible(boolean flag)

sets the accessibility flag for this reflection object. A value of true indicates that Java
language access checking is suppressed, and that the private properties of the object
can be queried and set.

• boolean isAccessible()

gets the value of the accessibility flag for this reflection object.

• static void setAccessible(AccessibleObject[] array, boolean flag)

is a convenience method to set the accessibility flag for an array of objects.

Using Reflection to Write Generic Array Code

The Array class in the java.lang.reflect package allows you to create arrays dynamically.
For example, when you use this feature with the arrayCopy method from Chapter 3, you can
dynamically expand an existing array while preserving the current contents.

The problem we want to solve is pretty typical. Suppose you have an array of some type that
is full and you want to grow it. And suppose you are sick of writing the grow-and-copy code
by hand. You want to write a generic method to grow an array.

Core Java™ 2: Volume I–Fundamentals

256

Employee[] a = new Employee[100];
. . .
// array is full
a = (Employee[])arrayGrow(a);

How can we write such a generic method? It helps that an Employee[] array can be converted
to an Object[] array. That sounds promising. Here is a first attempt to write a generic
method. We simply grow the array by 10% + 10 elements (since the 10% growth is not
substantial enough for small arrays).

static Object[] arrayGrow(Object[] a) // not useful
{
 int newLength = a.length * 11 / 10 + 10;
 Object[] newArray = new Object[newLength];
 System.arraycopy(a, 0, newArray, 0, a.length);
 return newArray;
}

However, there is a problem with actually using the resulting array. The type of array that this
code returns is an array of objects (Object[]) because we created the array using the line of
code:

new Object[newLength]

An array of objects cannot be cast to an array of employees (Employee[]). Java would
generate a ClassCast exception at run time. The point is, as we mentioned earlier, that a Java
array remembers the type of its entries, that is, the element type used in the new expression
that created it. It is legal to cast an Employee[] temporarily to an Object[] array and then
cast it back, but an array that started its life as an Object[] array can never be cast into an
Employee[] array. To write this kind of generic array code, we need to be able to make a new
array of the same type as the original array. For this, we need the methods of the Array class
in the java.lang.reflect package. The key is the static newInstance method of the Array
class that constructs a new array. You must supply the type for the entries and the desired
length as parameters to this method.

Object newArray = Array.newInstance(componentType, newLength);

To actually carry this out, we need to get the length and component type of the new array.

The length is obtained by calling Array.getLength(a). The static getLength method of the
Array class returns the length of any array. To get the component type of the new array:

1. First, get the class object of a.
2. Confirm that it is indeed an array.
3. Use the getComponentType method of the Class class (which is defined only for

class objects that represent arrays) to find the right type for the array.

Why is getLength a method of Array but getComponentType a method of Class? We don't
know—the distribution of the reflection methods seems a bit ad hoc at times.

Here's the code:

Core Java™ 2: Volume I–Fundamentals

257

static Object arrayGrow(Object a) // useful
{
 Class cl = a.getClass();
 if (!cl.isArray()) return null;
 Class componentType = cl.getComponentType();
 int length = Array.getLength(a);
 int newLength = length * 11 / 10 + 10;
 Object newArray = Array.newInstance(componentType,
 newLength);
 System.arraycopy(a, 0, newArray, 0, length);
 return newArray;
}

Note that this arrayGrow method can be used to grow arrays of any type, not just arrays of
objects.

int[] ia = { 1, 2, 3, 4 };
ia = (int[])arrayGrow(ia);

To make this possible, the parameter of arrayGrow is declared to be of type Object, not an
array of objects (Object[]). The integer array type int[] can be converted to an Object, but
not to an array of objects!

Example 5-7 shows both array grow methods in action. Note that the cast of the return value
of badArrayGrow will throw an exception.

Example 5-7 ArrayGrowTest.java

 1. import java.lang.reflect.*;
 2. import java.util.*;
 3.
 4. public class ArrayGrowTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. int[] a = { 1, 2, 3 };
 9. a = (int[])goodArrayGrow(a);
10. arrayPrint(a);
11.
12. String[] b = { "Tom", "Dick", "Harry" };
13. b = (String[])goodArrayGrow(b);
14. arrayPrint(b);
15.
16. System.out.println
17. ("The following call will generate an exception.");
18. b = (String[])badArrayGrow(b);
19. }
20.
21. /**
22. This method attempts to grow an array by allocating a
23. new array and copying all elements.
24. @param a the array to grow
25. @return a larger array that contains all elements of a.
26. However, the returned array has type Object[], not
27. the same type as a
28. */

Core Java™ 2: Volume I–Fundamentals

258

29. static Object[] badArrayGrow(Object[] a)
30. {
31. int newLength = a.length * 11 / 10 + 10;
32. Object[] newArray = new Object[newLength];
33. System.arraycopy(a, 0, newArray, 0, a.length);
34. return newArray;
35. }
36.
37. /**
38. This method grows an array by allocating a
39. new array of the same type and copying all elements.
40. @param a the array to grow. This can be an object array
41. or a fundamental type array
42. @return a larger array that contains all elements of a.
43.
44. */
45. static Object goodArrayGrow(Object a)
46. {
47. Class cl = a.getClass();
48. if (!cl.isArray()) return null;
49. Class componentType = cl.getComponentType();
50. int length = Array.getLength(a);
51. int newLength = length * 11 / 10 + 10;
52.
53. Object newArray = Array.newInstance(componentType,
54. newLength);
55. System.arraycopy(a, 0, newArray, 0, length);
56. return newArray;
57. }
58.
59. /**
60. A convenience method to print all elements in an array
61. @param a the array to print. can be an object array
62. or a fundamental type array
63. */
64. static void arrayPrint(Object a)
65. {
66. Class cl = a.getClass();
67. if (!cl.isArray()) return;
68. Class componentType = cl.getComponentType();
69. int length = Array.getLength(a);
70. System.out.print(componentType.getName()
71. + "[" + length + "] = { ");
72. for (int i = 0; i < Array.getLength(a); i++)
73. System.out.print(Array.get(a, i)+ " ");
74. System.out.println("}");
75. }
76. }

Method Pointers!

On the surface, Java does not have method pointers—ways of giving the location of a method
to another method so that the second method can invoke it later. In fact, the designers of Java
have said that method pointers are dangerous and error-prone and that Java interfaces
(discussed in the next chapter) are a superior solution. However, it turns out that Java now
does have method pointers, as a (perhaps accidental) byproduct of the reflection package.

Core Java™ 2: Volume I–Fundamentals

259

NOTE

Among the nonstandard language extensions that Microsoft added to its
Java derivative J++ (and its successor, C#) is another method pointer
type that is different from the Method class that we discuss in this
section. However, as you will see in chapter 6, inner classes are a more
useful and general mechanism.

To see method pointers at work, recall that you can inspect a field of an object with the get
method of the Field class. Similarly, the Method class has an invoke method that lets you
call the method that is wrapped in the current Method object. The signature for the invoke
method is:

Object invoke(Object obj, Object[] args)

The first parameter is the implicit parameter, and the array of objects provides the explicit
parameters. For a static method, the first parameter is ignored—you can set it to null. If the
method has no explicit parameters, you can pass null or an array of length 0 for the args
parameter. For example, if m1 represents the getName method of the Employee class,
the following code shows how you can call it:

String n = (String)m1.invoke(harry, null);

As with the get and set methods of the Field type, there's a problem if the parameter or
return type is not a class but a basic type. You must wrap any of the basic types into their
corresponding wrappers before inserting them into the args array. Conversely, the invoke
method will return the wrapped type and not the basic type. For example, suppose that m2
represents the raiseSalary method of the Employee class. Then, you need to wrap the
double parameter into a Double object.

Object[] args = { new Double(5.5) };
m2.invoke(harry, args);

How do you obtain a Method object? You can, of course, call getDeclaredMethods and
search through the returned array of Method objects until you find the method that you want.
Or, you can call the getMethod method of the Class class. This is similar to the getField
method that takes a string with the field name and returns a Field object. However, there may
be several methods with the same name, so you need to be careful that you get the right one.
For that reason, you must also supply an array that gives the correct parameter types. For
example, here is how you can get method pointers to the getName and raiseSalary methods
of the Employee class.

Method m1 = Employee.class.getMethod("getName", null);
Methodm2 = Employee.class.getMethod("raiseSalary",
 new Class[] { double.class });

The second parameter of the getMethod method is an array of Class objects. Since the
raiseSalary method has one parameter of type double, we must supply an array with a
single element, double.class. It is usually easiest to make that array on the fly, as we did in
the example above. The expression

Core Java™ 2: Volume I–Fundamentals

260

new Class[] { double.class }

denotes an array of Class objects, filled with one element, namely, the class object
double.class.

Now that you have seen the syntax of Method objects, let's put them to work. Example 5-8 is a
program that prints a table of values for a mathematical function such as Math.sqrt or
Math.sin. The printout looks like this:

public static native double java.lang.Math.sqrt(double)
 1.0000 | 1.0000
 2.0000 | 1.4142
 3.0000 | 1.7321
 4.0000 | 2.0000
 5.0000 | 2.2361
 6.0000 | 2.4495
 7.0000 | 2.6458
 8.0000 | 2.8284
 9.0000 | 3.0000
 10.0000 | 3.1623

The code for printing a table is, of course, independent of the actual function that is being
tabulated.

double dx = (to - from) / (n - 1);
for (double x = from; x <= to; x += dx)
{
 double y = f(x);
 // where f is the function to be tabulated
 // not the actual syntax--see below
 System.out.println(x + " | " + y);
}

We want to write a generic printTable method that can tabulate any function. We will pass
the function as a parameter of type Method.

static void printTable(double from, double to, int n, Method f)

Of course, f is an object and not a function, so we cannot simply write f(x) to evaluate it.
Instead, we must supply x in the parameter array (suitably wrapped as a Double), use the
invoke method, and unwrap the return value.

Object[] args = { new Double(x) };
Double d = (Double)f.invoke(null, args);
double y = d.doubleValue();

The first parameter of invoke is null because we are calling a static method.

Here is a sample call to printTable that tabulates the square root function.

printTable(1, 10, 10,
 java.lang.Math.class.getMethod("sqrt",
 new Class[] { double.class }));

Core Java™ 2: Volume I–Fundamentals

261

The hardest part is to get the method object. Here, we get the method of the java.lang.Math
class that has the name sqrt and whose parameter list contains just one type, double.

Example 5-8 shows the complete code of the printTable method and a couple of test runs.

Example 5-8 MethodPointerTest.java

 1. import java.lang.reflect.*;
 2. import java.text.*;
 3.
 4. public class MethodPointerTest
 5. {
 6. public static void main(String[] args) throws Exception
 7. {
 8. // get method pointers to the square and sqrt methods
 9. Method square = MethodPointerTest.class.getMethod("square",
10. new Class[] { double.class });
11. Method sqrt = java.lang.Math.class.getMethod("sqrt",
12. new Class[] { double.class });
13.
14. // print tables of x- and y-values
15.
16. printTable(1, 10, 10, square);
17. printTable(1, 10, 10, sqrt);
18. }
19.
20. /**
21. Returns the square of a number
22. @param x a number
23. @return x squared
24. */
25. public static double square(double x)
26. {
27. return x * x;
28. }
29.
30. /**
31. Prints a table with x- and y-values for a method
32. @param from the lower bound for the x-values
33. @param to the upper bound for the x-values
34. @param n the number of rows in the table
35. @param f a method with a double parameter and double
36. return value
37. */
38. public static void printTable(double from, double to,
39. int n, Method f)
40. {
41. // print out the method as table header
42. System.out.println(f);
43.
44. // construct formatter to print with 4 digits precision
45.
46. NumberFormat formatter = NumberFormat.getNumberInstance();
47. formatter.setMinimumFractionDigits(4);
48. formatter.setMaximumFractionDigits(4);
49. double dx = (to - from) / (n - 1);
50.

Core Java™ 2: Volume I–Fundamentals

262

51. for (double x = from; x <= to; x += dx)
52. {
53. // print x-value
54. String output = formatter.format(x);
55. // pad with spaces to field width of 10
56. for (int i = 10 - output.length(); i > 0; i--)
57. System.out.print(' ');
58. System.out.print(output + " |");
59.
60. try
61. {
62. // invoke method and print y-value
63. Object[] args = { new Double(x) };
64. Double d = (Double)f.invoke(null, args);
65. double y = d.doubleValue();
66.
67. output = formatter.format(y);
68. // pad with spaces to field width of 10
69. for (int i = 10 - output.length(); i > 0; i--)
70. System.out.print(' ');
71.
72. System.out.println(output);
73. }
74. catch (Exception e) { e.printStackTrace(); }
75. }
76. }
77. }

As this example shows clearly, you can do anything with Method objects that you can do with
function pointers in C. Just as in C, this style of programming is usually quite inconvenient
and always error-prone. What happens if you invoke a method with the wrong parameters?
The invoke method throws an exception.

Also, the parameters and return values of invoke are necessarily of type Object. That means
you must cast back and forth a lot. As a result, the compiler is deprived of the chance to check
your code. Therefore, errors surface only during testing, when they are more tedious to find
and fix. Moreover, code that uses reflection to get at method pointers is significantly slower
than simply calling methods directly.

For that reason, we suggest that you use Method objects in your own programs only when
absolutely necessary. Using interfaces and inner classes (the subject of the next chapter) is
almost always a better idea. In particular, we echo the developers of Java and suggest not
using Method objects for callback functions. Using interfaces for the callbacks (see the next
chapter as well) leads to code that runs faster and is a lot more maintainable.

Design Hints for Inheritance

We want to end this chapter with some hints for using inheritance that we have found useful.

1. Place common operations and fields in the superclass.

This is why we put the name field into the Person class, rather than replicating it in
Employee and Student.

Core Java™ 2: Volume I–Fundamentals

263

2. Don't use protected fields.

Some programmers think it is a good idea to define most instance fields as
protected, “just in case,” so that subclasses can access these fields if they need to.
However, the protected mechanism doesn't give much protection, for two reasons.
First, the set of subclasses is unbounded—anyone can form a subclass of your classes
and then write code that directly accesses protected instance fields, thereby breaking
encapsulation. And in the Java programming language, all classes in the same package
have access to protected fields, whether or not they are subclasses.

However, protected methods can be useful to indicate methods that are not ready for
general use and should be redefined in subclasses. The clone method is a good
example.

3. Use inheritance to model the “is–a” relationship.

Inheritance is a handy code-saver, and sometimes people overuse it. For example,
suppose we need a Contractor class. Contractors have names and hire dates, but they
do not have salaries. Instead, they are paid by the hour, and they do not stay around
long enough to get a raise. There is the temptation to derive Contractor from
Employee and add an hourlyWage field.

class Contractor extends Employee
{ . . .
 private double hourlyWage;
}

This is not a good idea, however, because now each contractor object has both a salary
and hourly wage field. It will cause you no end of grief when you implement methods
for printing paychecks or tax forms. You will end up writing more code than you
would have by not inheriting in the first place.

The contractor/employee relationship fails the “is–a” test. A contractor is not a special
case of an employee.

4. Don't use inheritance unless all inherited methods make sense.

Suppose we want to write a Holiday class. Surely every holiday is a day, and days can
be expressed as instances of the GregorianCalendar class, so we can use inheritance.

class Holiday extends GregorianCalendar { . . . }

Unfortunately, the set of holidays is not closed under the inherited operations. One of
the public methods of GregorianCalendar is add. And add can turn holidays into
nonholidays:

Holiday christmas;
christmas.add(GregorianCalendar.DAY, 12);

Therefore, inheritance is not appropriate in this example.

Core Java™ 2: Volume I–Fundamentals

264

5. Use polymorphism, not type information.

Whenever you find code of the form

if (x is of type 1)
 action1(x);
else if (x is of type 2)
 action2(x);

think polymorphism.

Do action1 and action2 represent a common concept? If so, make the concept a
method of a common superclass or interface of both types. Then, you can simply call

x.action();

and have the dynamic dispatch mechanism inherent in polymorphism launch the
correct action.

Code using polymorphic methods or interface implementations is much easier to
maintain and extend than code that uses multiple type tests.

6. Don't overuse reflection.

The reflection mechanism lets you write programs with amazing generality, by
detecting fields and methods at run time. This capability can be extremely useful for
systems programming, but it is usually not appropriate in applications. Reflection is
fragile—the compiler cannot help you find programming errors. Any errors are found
at run time and result in exceptions.

Core Java™ 2: Volume I–Fundamentals

265

Chapter 6. Interfaces and Inner Classes
• Interfaces
• Object Cloning
• Inner Classes
• Proxies

You have now seen all the basic tools for object-oriented programming in Java. This chapter
shows you two advanced techniques that are very commonly used. Despite their less obvious
nature, you will need to master them to complete your Java tool chest.

The first, called an interface, is a way of describing what classes should do, without
specifying how they should do it. A class can implement one or more interfaces. You can then
use objects of these implementing classes anytime that conformance to the interface is
required. After we cover interfaces, we take up cloning an object (or deep copying as it is
sometimes called). A clone of an object is a new object that has the same state as the original
but a different identity. In particular, you can modify the clone without affecting the original.
Finally, we move on to the mechanism of inner classes. Inner classes are technically
somewhat complex—they are defined inside other classes, and their methods can access the
fields of the surrounding class. Inner classes are useful when you design collections of
cooperating classes.

In particular, inner classes are important to write concise, professional-looking code to handle
graphical user interface events.

This chapter concludes with a discussion of proxies, objects that implement arbitrary
interfaces. A proxy is a very specialized construct that is useful for building system-level
tools. You can safely skip that section on first reading.

Interfaces

In the Java programming language, an interface is not a class but a set of requirements for
classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a particular interface,
then I'll perform the service.” Let's look at a concrete example. The sort method of the
Arrays class promises to sort an array of objects, but under one condition: The objects must
belong to classes that implement the Comparable interface.

Here is what the Comparable interface looks like:

public interface Comparable
{
 int compareTo(Object other);
}

This means that any class that implements the Comparable interface is required to have a
compareTo method, and the method must take an Object parameter and return an integer.

Core Java™ 2: Volume I–Fundamentals

266

All methods of an interface are automatically public. For that reason, it is not necessary to
supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface cannot spell out: when calling
x.compareTo(y), the compareTo method must actually be able to compare two objects and
return an indication whether x or y is larger. The method is supposed to return a negative
number if x is smaller than y, zero if they are equal, and a positive number otherwise.

This particular interface has a single method. Some interfaces have more than one method. As
you will see later, interfaces can also define constants. What is more important, however, is
what interfaces cannot supply. Interfaces never have instance fields, and the methods are
never implemented in the interface. Supplying instance fields and method implementations is
the job of the classes that implement the interface. You can think of an interface as being
similar to an abstract class with no instance fields. However, there are some differences
between these two concepts—we will look at them later in some detail.

Now suppose we want to use the sort method of the Arrays class to sort an array of
Employee objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you have to carry out two steps:

1. You declare that your class intends to implement the given interface.

2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let's suppose that
we want to compare employees by their salary. Here is a compareTo method that returns –1 if
the first employee's salary is less than 0, 0 if they are equal, and 1 otherwise.

public int compareTo(Object otherObject)
{
 Employee other = (Employee)otherObject;
 if (salary < other.salary) return -1;
 if (salary > other.salary) return 1;
 return 0;
}

CAUTION

In the interface declaration, the compareTo method was not declared
public because all methods in an interface are automatically public.
However, when implementing the interface, you must declare the method
as public. Otherwise, the compiler assumes that the method has package
visibility—the default for a class. Then the compiler complains that you
try to supply a weaker access privilege.

Core Java™ 2: Volume I–Fundamentals

267

TIP

The compareTo method of the Comparable interface returns an integer.
If the objects are not equal, it does not matter what negative or positive
value you return. This flexibility can be useful when comparing integer
fields. For example, suppose each employee has a unique integer id, and
you want to sort by employee ID number. Then you can simply return id
- other.id. That value will be some negative value if the first ID
number is less than the other, 0 if they are the same ID, and some
positive value otherwise. However, there is one caveat: The range of the
integers must be small enough that the subtraction does not overflow. If
you know that the IDs are between 0 and (Integer.MAX_VALUE - 1) /
2, you are safe.

Of course, the subtraction trick doesn't work for floating-point numbers.
The difference salary - other.salary can round to 0 if the salaries
are close together but not identical.

Now you saw what a class must do to avail itself of the sorting service—it must implement a
compareTo method. That's eminently reasonable. There needs to be some way for the sort
method to compare objects. But why can't the Employee class simply provide a compareTo
method without implementing the Comparable interface?

The reason for interfaces is that the Java language is strongly typed. When making a method
call, the compiler needs to be able to check that the method actually exists. Somewhere in the
sort method, there will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

The compiler must know that a[i] actually has a compareTo method. If a is an array of
Comparable objects, then the existence of the method is assured, because every class that
implements the Comparable interface must supply the method.

NOTE

You would expect that the sort method in the Arrays class is defined to
accept a Comparable[] array, so that the compiler can complain if
anyone ever calls sort with an array whose element type doesn't
implement the Comparable interface. Sadly, that is not the case. Instead,
the sort method accepts an Object[] array and uses a clumsy cast:

Core Java™ 2: Volume I–Fundamentals

268

// from the standard library--not recommended
if (((Comparable)a[i]).compareTo((Comparable)a[j]) > 0)
{
 // rearrange a[i] and a[j]
 . . .
}

If a[i] does not belong to a class that implements the Comparable interface, then the virtual
machine throws an exception. (Note that the second cast to Comparable is not necessary
because the explicit parameter of the compareTo method has type Object, not Comparable.)

See Example 6-1 for the full code for sorting of an employee array.

Example 6-1 EmployeeSortTest.java

 1. import java.util.*;
 2.
 3. public class EmployeeSortTest
 4. { public static void main(String[] args)
 5. { Employee[] staff = new Employee[3];
 6.
 7. staff[0] = new Employee("Harry Hacker", 35000);
 8. staff[1] = new Employee("Carl Cracker", 75000);
 9. staff[2] = new Employee("Tony Tester", 38000);
10.
11. Arrays.sort(staff);
12.
13. // print out information about all Employee objects
14. for (int i = 0; i < staff.length; i++)
15. { Employee e = staff[i];
16. System.out.println("name=" + e.getName()
17. + ",salary=" + e.getSalary());
18. }
19. }
20. }
21.
22. class Employee implements Comparable
23. { public Employee(String n, double s)
24. { name = n;
25. salary = s;
26. }
27.
28. public String getName()
29. { return name;
30. }
31.
32. public double getSalary()
33. { return salary;
34. }
35.
36. public void raiseSalary(double byPercent)
37. { double raise = salary * byPercent / 100;
38. salary += raise;
39. }
40.

Core Java™ 2: Volume I–Fundamentals

269

41. /**
42. Compares employees by salary
43. @param otherObject another Employee object
44. @return a negative value if this employee has a lower
45. salary than otherObject, 0 if the salaries are the same,
46. a positive value otherwise
47. */
48. public int compareTo(Object otherObject)
49. { Employee other = (Employee)otherObject;
50. if (salary < other.salary) return -1;
51. if (salary > other.salary) return 1;
52. return 0;
53. }
54.
55. private String name;
56. private double salary;
57. }

java.lang.Comparable

• int compareTo(Object otherObject)

compares this object with otherObject and returns a negative integer if this object is less
than otherObject, zero if they are equal, and a positive integer otherwise.

NOTE

According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This
implies that x.compareTo(y) must throw an exception if
y.compareTo(x) throws an exception.)” Here, “sgn” is the sign of
a number: sgn(n) is -1 if n is negative, 0 if n equals 0, and 1 if n is
positive. In plain English, if you flip the parameters of compareTo, the
sign (but not necessarily the actual value) of the result must also flip.
That's not a problem, but the implication about exceptions is tricky.
Suppose Manager has its own comparison method that compares two
managers. It might start like this:

public int compareTo(Object otherObject)
{
 Manager other = (Manager)otherObject;
 . . .
}

That violates the “antisymmetry” rule. If x is an Employee and y is
a Manager, then the call x.compareTo(y) doesn't throw an exception—it
simply compares x and y as employees. But the reverse,
y.compareTo(x)throws a ClassCastException.

Core Java™ 2: Volume I–Fundamentals

270

The same issue comes up when programming an equals method.
However, in that case, you simply test if the two classes are identical,
and if they aren't, you know that you should return false. However, if x
and y aren't of the same class, it is not clear whether x.compareTo(y)
should return a negative or a positive value. Maybe managers think that
they should compare larger than any employee, no matter what the
salary. But then they need to explicitly implement that check.

If you don't trust the implementors of your subclasses to grasp this
subtlety, you can declare compareTo as a final method. Then the
problem never arises because subclasses can't supply their own version.
Conversely, if you implement a compareTo method of a subclass, you
need to provide a thorough test. Here is an example:

if (otherObject instanceof Manager)
{
 Manager other = (Manager)otherObject;
 . . .
}
else if (otherObject instanceof Employee)
{
 return 1; // managers are always better :-(
}
else
 return -((Comparable)otherObject).compareTo(this);

java.util.Arrays

• static void sort(Object[] a)

sorts the elements in the array a, using a tuned mergesort algorithm. All elements in
the array must belong to classes that implement the Comparable interface, and they
must all be comparable to each other.

Properties of Interfaces

Interfaces are not classes. In particular, you can never use the new operator to instantiate an
interface:

x = new Comparable(. . .); // ERROR

However, even though you can't construct interface objects, you can still declare interface
variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the interface:

Core Java™ 2: Volume I–Fundamentals

271

x = new Employee(. . .);
 // OK provided Employee implements Comparable

Next, just as you use instanceof to check if an object is of a specific class, you can use
instanceof to check if an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows for
multiple chains of interfaces that go from a greater degree of generality to a greater degree of
specialization. For example, suppose you had an interface called Moveable.

public interface Moveable
{
 void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable
{
 double milesPerGallon();
}

Although you cannot put instance fields or static methods in an interface, you can supply
constants in them. For example:

public interface Powered extends Moveable
{
 double milesPerGallon();
 double SPEED_LIMIT = 95; // a public static final constant
}

Just as methods in an interface are automatically public, fields are always public static
final.

NOTE

It is legal to tag interface methods as public, and fields as public
static final. Some programmers do that, either out of habit or for
greater clarity. However, the Java Language Specification recommends
not to supply the redundant keywords, and we follow that
recommendation.

Some interfaces define just constants and no methods. For example, the standard library
contains an interface SwingConstants that defines constants NORTH, SOUTH, HORIZONTAL, and
so on. Any class that chooses to implement the SwingConstants interface automatically
inherits these constants. Its methods can simply refer to NORTH rather than the more
cumbersome SwingConstants.NORTH.

Core Java™ 2: Volume I–Fundamentals

272

While each class can only have one superclass, classes can implement multiple interfaces.
This gives you the maximum amount of flexibility in defining a class's behavior. For example,
the Java programming language has an important interface built into it, called Cloneable.
(We will discuss this interface in detail in the next section.) If your class implements
Cloneable, the clone method in the Object class will make an exact copy of your class's
objects. Suppose, therefore, you want cloneability and comparability. Then you simply
implement both interfaces.

class Employee implements Cloneable, Comparable

Use commas to separate the interfaces that describe the characteristics that you want to
supply.

Interfaces and Abstract Classes

If you read the section about abstract classes in Chapter 5, you may wonder why the designers
of the Java programming language bothered with introducing the concept of interfaces. Why
can't Comparable simply be an abstract class:

abstract class Comparable // why not?
{
 public abstract int compareTo(Object other);
}

Then the Employee class would simply extend this abstract class and supply the compareTo
method:

class Employee extends Comparable // why not?
{
 public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to express a generic
property. A class can only extend a single class. Suppose that the Employee class already
extends a different class, say Person. Then it can't extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more than one
superclass. This feature is called multiple inheritance. The designers of Java chose not to
support multiple inheritance because it makes the language either very complex (as in C++) or
less efficient (as in Eiffel).

Instead, interfaces give most of the benefits of multiple inheritance while avoiding the
complexities and inefficiencies.

Core Java™ 2: Volume I–Fundamentals

273

C++ NOTE

C++ has multiple inheritance and all the complications that come with it,
such as virtual base classes, dominance rules, and transverse pointer
casts. Few C++ programmers use multiple inheritance, and some say it
should never be used. Other programmers recommend using multiple
inheritance only for “mix-in” style inheritance. In the mix-in style, a
primary base class describes the parent object, and additional base classes
(the so-called mix-ins) may supply auxiliary characteristics. That style is
similar to a Java class with a single base class and additional interfaces.
However, in C++, mix-ins can add default behavior, whereas Java
interfaces cannot.

NOTE

Microsoft has long been a proponent of using interfaces instead of using
multiple inheritance. In fact, the Java notion of an interface is essentially
equivalent to how Microsoft's COM technology uses interfaces. As a
result of this unlikely convergence of minds, it is easy to supply tools
based on the Java programming language to build COM objects (such as
ActiveX controls). This is done (pretty much transparently to the coder)
in, for example, Microsoft's J++ product and is also the basis for Sun's
JavaBeans-to-ActiveX bridge.

Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern, you want to specify
the action that should occur whenever a particular event happens. For example, you may want
a particular action to occur when a button is clicked or a menu item is selected. However,
since you have not yet seen how to implement user interfaces, we will consider a similar but
simpler situation.

The javax.swing class contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program contains a clock,
then you can ask to be notified every second so that you can update the clock face.

When you construct a timer, you set the time interval, and you tell it what it should do
whenever the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages, you supply the
name of a function that the timer should call periodically. However, the classes in the Java
standard library take an object-oriented approach. You pass an object of some class. The timer
then calls one of the methods on that object. Passing an object is more flexible than passing a
function because the object can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that you specify
an object of a class that implements the ActionListener interface of the java.awt.event
package. Here is that interface:

Core Java™ 2: Volume I–Fundamentals

274

public interface ActionListener
{
 void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

C++ NOTE

As you saw in Chapter 5, Java does have the equivalent of function
pointers, namely, Method objects. However, they are difficult to use,
slower, and cannot be checked for type safety at compile time. Whenever
you would use a function pointer in C++, you should consider using an
interface in Java.

Suppose you want to print a message “At the tone, the time is …,” followed by a beep, once
every ten seconds. You need to define a class that implements the ActionListener interface.
Then place whatever statements you want to have executed inside the actionPerformed
method.

class TimePrinter implements ActionListener
{
 public void actionPerformed(ActionEvent event)
 {
 Date now = new Date();
 System.out.println("At the tone, the time is " + now);
 Toolkit.getDefaultToolkit().beep();
 }
}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives
information about the event, such as the source object that generated it—see Chapter 8 for
more information. However, detail information about the event is not important in this
program, and you can safely ignore the parameter.

Next, you construct an object of this class and pass it to the Timer constructor.

ActionListener listener = new TimePrinter();
Timer t = new Timer(10000, listener);

The first parameter of the Timer constructor is the time interval that must elapse between
notifications, measured in milliseconds. We want to be notified every ten seconds. The second
parameter is the listener object.

Finally, you start the timer.

t.start();

Every ten seconds, a message like

At the tone, the time is Thu Apr 13 23:29:08 PDT 2000

Core Java™ 2: Volume I–Fundamentals

275

is displayed, followed by a beep.

Example 6-2 puts the timer and its action listener to work. After the timer is started, the
program puts up a message dialog and waits for the user to click the Ok button to stop. While
the program waits for the user, the current time is displayed in ten second intervals.

Be patient when running the program. The “Quit program?” dialog box appears right away,
but the first timer message is displayed after ten seconds.

Note that the program imports the javax.swing.Timer class by name, in addition to
importing javax.swing.* and java.util.*. This breaks the ambiguity between
javax.swing.Timer and java.util.Timer, an unrelated class for scheduling background
tasks.

Example 6-2 TimerTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.Timer;
 6. // to resolve conflict with java.util.Timer
 7.
 8. public class TimerTest
 9. {
10. public static void main(String[] args)
11. {
12. ActionListener listener = new TimePrinter();
13.
14. // construct a timer that calls the listener
15. // once every 10 seconds
16. Timer t = new Timer(10000, listener);
17. t.start();
18.
19. JOptionPane.showMessageDialog(null, "Quit program?");
20. System.exit(0);
21. }
22. }
23.
24. class TimePrinter implements ActionListener
25. {
26. public void actionPerformed(ActionEvent event)
27. {
28. Date now = new Date();
29. System.out.println("At the tone, the time is " + now);
30. Toolkit.getDefaultToolkit().beep();
31. }
32. }

javax.swing.JOptionPane

• static void showMessageDialog(Component parent, Object message)

Core Java™ 2: Volume I–Fundamentals

276

displays a dialog box with a message prompt and an Ok button. The dialog is centered over
the parent component. If parent is null, the dialog is centered on the screen.

javax.swing.Timer

• Timer(int interval, ActionListener listener)

constructs a timer that notifies listener whenever interval milliseconds have
elapsed.

• void start()

starts the timer. Once started, the timer calls actionPerformed on its listeners.

• void stop()

stops the timer. Once stopped, the timer no longer calls actionPerformed on its
listeners.

java.awt.Toolkit

• static Toolkit getDefaultToolkit()

gets the default toolkit. A toolkit contains information about the graphical user
interface environment.

• void beep()

Emits a beep sound.

Object Cloning

When you make a copy of a variable, the original and the copy are references to the same
object. (See Figure 6-1.) This means a change to either variable also affects the other.

Core Java™ 2: Volume I–Fundamentals

277

Figure 6-1. Copying and cloning

Employee original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original but
whose state can diverge over time, then you use the clone() method.

Employee copy = (Employee)original.clone();
 // must cast—clone returns an Object
copy.raiseSalary(10); // OK—-original unchanged

Core Java™ 2: Volume I–Fundamentals

278

But it isn't quite so simple. The clone method is a protected method of Object, which
means that your code cannot simply call it. Only the Employee class can clone Employee
objects. There is a reason for this restriction. Think about the way in which the Object class
can implement clone. It knows nothing about the object at all, so it can make only a field-by-
field copy. If all data fields in the object are numbers or other basic types, copying the fields
is just fine. But if the object contains references to subobjects, then copying the field gives
you another reference to the subobject, so the original and the cloned objects still share some
information.

To visualize that phenomenon, let's consider an Employee class that also has a payDay field.
Figure 6-2 shows what happens when you use the clone method of the Object class to clone
such an Employee object. As you can see, the default cloning operation is “shallow”—it
doesn't clone objects that are referenced inside other objects.

Figure 6-2. A shallow copy

Does it matter if the copy is shallow? It depends. If the subobject that is shared between the
original and the shallow clone is immutable, then the sharing is safe. This happens in two
situations. The subobject may belong to an immutable class, such as String and Date.
Alternatively, the subobject may simply remain constant throughout the lifetime of the object,
with no mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the clone method
to make a deep copy that clones the subobjects as well. In our example, the payDay field is a
GregorianCalendar, which is mutable.

For every class, you need to decide whether or not

1. The default clone method is good enough
2. The default clone method can be patched up by calling clone on the mutable

subobjects
3. clone should not be attempted

The third option is actually the default. To choose either the first or the second option, a class
must

Core Java™ 2: Volume I–Fundamentals

279

1. Implement the Cloneable interface, and
2. Redefine the clone method with the public access modifier.

NOTE

The clone method is declared protected in the Object class so that
your code can't simply call anObject.clone(). But aren't protected
methods accessible from any subclass, and isn't every class a subclass of
Object? Fortunately, the rules for protected access are more subtle (see
Chapter 5). A subclass can call a protected clone method only to clone
its own objects. You must redefine clone to be public to allow objects to
be cloned by any method.

NOTE

Users of your clone method still have to cast the result. The clone
method always has return type Object.

In this case, the appearance of the Cloneable interface has nothing to do with the normal use
of interfaces. In particular, it does not specify the clone method—that method is inherited
from the Object class. The interface merely serves as a tag, indicating that the class designer
understands the cloning process. Objects are so paranoid about cloning that they generate a
checked exception if an object requests cloning but does not implement that interface.

NOTE

The Cloneable interface is one of a handful of tagging interfaces that
Java provides. Recall that the usual purpose of an interface such as
Comparable is to ensure that a class implements a particular method or
set of methods. A tagging interface has no methods; its only purpose is to
allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

Even if the default (shallow copy) implementation of clone is adequate, you still need to
implement the Cloneable interface, redefine clone to be public, call super.clone() and
catch the CloneNotSupportedException. Here is an example:

Core Java™ 2: Volume I–Fundamentals

280

class Person implements Cloneable
{
 public Object clone() // raise visibility level to public
 {
 try
 {
 return super.clone();
 }
 catch (CloneNotSupportedException e) { return null; }
 // this won't happen, since we are Cloneable
 }
 . . .
}

The clone method of the Object class threatens to throw
a CloneNotSupportedException—it does that whenever clone is invoked on an object
whose class does not implement the Cloneable interface. Of course, the Person class is
cloneable, so the exception won't be thrown. However, the compiler does not know that.
Therefore, you still need to catch the exception and return a dummy value.

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable
{
 . . .
 public Object clone()
 {
 try
 {
 // call Object.clone()
 Employee cloned = (Employee)super.clone();

 // clone mutable fields
 cloned.payDay = (GregorianCalendar)payDay.clone()

 return cloned;
 }
 catch (CloneNotSupportedException e) { return null; }
 }
}

As you can see, cloning is a subtle business, and it makes sense that it is defined as
protected in the Object class. (See Chapter 12 for an elegant method for cloning objects,
using the object serialization feature of Java.)

CAUTION

When you define a public clone method, you have lost a safety
mechanism. Your clone method is inherited by the subclasses, whether
or not it makes sense for them. For example, once you have defined the
clone method for the Employee class, anyone can also clone Manager
objects. Can the Employee clone method do the job? It depends on the
fields of the Manager class. In our case, there is no problem because the
bonus field has primitive type. But in general, you need to make sure to
check the clone method of any class that you extend.

Core Java™ 2: Volume I–Fundamentals

281

The program in Example 6-3 clones an Employee object, then invokes two mutators.
The raiseSalary method changes the value of the salary field, while the addPayDay
method changes the state of the payDay field. Neither mutation affects the original object
because clone has been defined to make a deep copy.

Example 6-3 CloneTest.java

 1. import java.util.*;
 2.
 3. public class CloneTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. Employee original = new Employee("John Q. Public", 50000);
 8. original.setPayDay(2000, 1, 1);
 9. Employee copy = (Employee)original.clone();
10. copy.raiseSalary(10);
11. copy.addPayDay(14);
12. System.out.println("original=" + original);
13. System.out.println("copy=" + copy);
14. }
15. }
16.
17. /**
18. An employee class with a mutable payDay field
19. */
20. class Employee implements Cloneable
21. {
22. public Employee(String n, double s)
23. {
24. name = n;
25. salary = s;
26. }
27.
28. public Object clone()
29. {
30. try
31. {
32. // call Object.clone()
33. Employee cloned = (Employee)super.clone();
34.
35. // clone mutable fields
36. cloned.payDay = (GregorianCalendar)payDay.clone();
37.
38. return cloned;
39. }
40. catch (CloneNotSupportedException e) { return null; }
41. }
42.
43. /**
44. Set the pay day to a given date
45. @param year the year of the pay day
46. @param month the month of the pay day
47. @param day the day of the pay day
48. */
49. public void setPayDay(int year, int month, int day)
50. {
51. payDay = new GregorianCalendar(year, month - 1, day);
52. }
53.

Core Java™ 2: Volume I–Fundamentals

282

54.
55. /**
56. Add a number of days to the pay day (e.g. add 14 days)
57. @param days the number of days to add
58. */
59. public void addPayDay(int days)
60. {
61. payDay.add(Calendar.DAY_OF_MONTH, days);
62. }
63.
64. public Date getPayDay()
65. {
66. return payDay.getTime();
67. }
68.
69. public void raiseSalary(double byPercent)
70. {
71. double raise = salary * byPercent / 100;
72. salary += raise;
73. }
74.
75. public String toString()
76. {
77. return "Employee[name=" + name
78. + ",salary=" + salary
79. + ",payDay=" + getPayDay()
80. + "]";
81. }
82.
83. private String name;
84. private double salary;
85. private GregorianCalendar payDay;
86. }

Inner Classes

An inner class is a class that is defined inside another class. Why would you want to do that?
There are four reasons:

• An object of an inner class can access the implementation of the object that created
it—including data that would otherwise be private.

• Inner classes can be hidden from other classes in the same package.
• Anonymous inner classes are handy when you want to define callbacks on the fly.
• Inner classes are very convenient when you are writing event-driven programs.

You will soon see examples that demonstrate the first three benefits. (For more information
on the event model, please turn to Chapter 8.)

C++ NOTE

C++ has nested classes. A nested class is contained inside the scope of
the enclosing class. Here is a typical example: a linked list class defines a
class to hold the links, and a class to define an iterator position.

Core Java™ 2: Volume I–Fundamentals

283

class LinkedList
{
public:
 class Iterator // a nested class
 {
 public:
 void insert(int x);
 int erase();
 . . .
 };
 . . .
private:
 class Link // a nested class
 {
 public:
 Link* next;
 int data;
 };
 . . .
};

The nesting is a relationship between classes, not objects. A LinkedList
object does not have subobjects of type Iterator or Link.

There are two benefits: name control and access control. Because the
name Iterator is nested inside the LinkedList class, it is externally
known as LinkedList::Iterator and cannot conflict with another class
called Iterator. In Java, this benefit is not as important since Java
packages give the same kind of name control. Note that the Link class is
in the private part of the LinkedList class. It is completely hidden from
all other code. For that reason, it is safe to make its data fields public.
They can be accessed by the methods of the LinkedList class (which
has a legitimate need to access them), and they are not visible elsewhere.
In Java, this kind of control was not possible until inner classes were
introduced.

However, the Java inner classes have an additional feature that makes
them richer and more useful than nested classes in C++. An object that
comes from an inner class has an implicit reference to the outer class
object that instantiated it. Through this pointer, it gains access to the total
state of the outer object. You will see the details of the Java mechanism
later in this chapter.

Only static inner classes do not have this added pointer. They are the
exact Java analog to nested classes in C++.

Using an Inner Class to Access Object State

The syntax for inner classes is somewhat complex. For that reason, we will use a simple but
somewhat artificial example to demonstrate the use of inner classes. We will write a program
in which a timer controls a bank account. The timer's action listener object adds interest to the
account once per second. However, we don't want to use public methods (such as deposit or

Core Java™ 2: Volume I–Fundamentals

284

withdraw) to manipulate the bank balance because anyone could call those public methods to
modify the balance for other purposes. Instead, we will use an inner class whose methods can
manipulate the bank balance directly.

Here is the outline of the BankAccount class:

class BankAccount
{
 public BankAccount(double initialBalance) { . . . }
 public void start(double rate) { . . . }

 private double balance;

 private class InterestAdder implements ActionListener
 // an inner class
 {
 . . .
 }
}

Note the InterestAdder class that is located inside the BankAccount class. This does not
mean that every BankAccount has an InterestAdder instance field. Of course, we will
construct objects of the inner class, but those objects aren't instance fields of the outer class.
Instead, they will be local to the methods of the outer class.

The InterestAdder class is a private inner class inside BankAccount. This is a safety
mechanism—since only BankAccount methods can generate Interest-Adder objects, we
don't have to worry about breaking encapsulation. Only inner classes can be private. Regular
classes always have either package or public visibility.

The InterestAdder class has a constructor which sets the interest rate that should be applied
at each step. Since this inner class implements the ActionListener interface, it also has an
actionPerformed method. That method actually increments the account balance. Here is the
inner class in more detail:

class BankAccount
{
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }
 . . .
 private double balance;

 private class InterestAdder implements ActionListener
 {
 public InterestAdder(double aRate)
 {
 rate = aRate;
 }

 public void actionPerformed(ActionEvent event) { . . . }

 private double rate;
 }
}

Core Java™ 2: Volume I–Fundamentals

285

The start method of the BankAccount class constructs an InterestAdder object for the
given interest rate, makes it the action listener for a timer, and starts the timer.

public void start(double rate)
{
 ActionListener adder = new InterestAdder(rate);
 Timer t = new Timer(1000, adder);
 t.start();
}

As a result, the actionPerformed method of the InterestAdder class will be called once
per second. Now let's look inside this method more closely:

public void actionPerformed(ActionEvent event)
{
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
}

The name rate refers to the instance field of the InterestAdder class, which is not
surprising. However, there is no balance field in the InterestAdder class. Instead, balance
refers to the field of the BankAccount object that created this InstanceAdder. This is quite
innovative. Traditionally, a method could refer to the data fields of the object invoking
the method. An inner class method gets to access both its own data fields and those of the
outer object creating it.

For this to work, of course, an object of an inner class always gets an implicit reference to
the object that created it. (See Figure 6-3.)

Figure 6-3. An inner class object has a reference to an outer class object

Core Java™ 2: Volume I–Fundamentals

286

This reference is invisible in the definition of the inner class. However, to illuminate
the concept, let us call the reference to the outer object outer. Then, the actionPerformed
method is equivalent to the following:

public void actionPerformed(ActionEvent event)
{
 double interest = outer.balance * this.rate / 100;
 // "outer" isn't the actual name
 outer.balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(outer.balance));
}

The outer class reference is set in the constructor. That is, the compiler adds a parameter to
the constructor, generating code like this:

public InterestAdder(BankAccount account, double aRate)
{
 outer = account;
 // automatically generated code
 rate = aRate;
}

Again, please note, outer is not a Java keyword. We just use it to illustrate the mechanism
involved in an inner class.

When an InterestAdder object is constructed in the start method, the compiler passes
the this reference to the current bank account into the constructor:

ActionListener adder = new InterestAdder(this, rate);
 // automatically generated code

Example 6-4 shows the complete program that tests the inner class. Have another look at
the access control. The Timer object requires an object of some class that implements
the ActionListener interface. Had that class been a regular class, then it would have needed
to access the bank balance through a public method. As a consequence, the BankAccount
class would have to provide those methods to all classes, which it might have been reluctant
to do. Using an inner class is an improvement. The InterestAdder inner class is able to
access the bank balance, but no other class has the same privilege.

Example 6-4 InnerClassTest.java

 1. import java.awt.event.*;
 2. import java.text.*;
 3. import javax.swing.*;
 4.
 5. public class InnerClassTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. // construct a bank account with initial balance of $10,000
10. BankAccount account = new BankAccount(10000);

Core Java™ 2: Volume I–Fundamentals

287

11. // start accumulating interest at 10%
12. account.start(10);
13.
14. // keep program running until user selects "Ok"
15. JOptionPane.showMessageDialog(null, "Quit program?");
16. System.exit(0);
17. }
18. }
19.
20. class BankAccount
21. {
22. /**
23. Constructs a bank account with an initial balance
24. @param initialBalance the initial balance
25. */
26. public BankAccount(double initialBalance)
27. {
28. balance = initialBalance;
29. }
30.
31. /**
32. Starts a simulation in which interest is added once per
33. second
34. @param rate the interest rate in percent
35. */
36. public void start(double rate)
37. {
38. ActionListener adder = new InterestAdder(rate);
39. Timer t = new Timer(1000, adder);
40. t.start();
41. }
42.
43. private double balance;
44.
45. /**
46. This class adds the interest to the bank account.
47. The actionPerformed method is called by the timer.
48. */
49. private class InterestAdder implements ActionListener
50. {
51. public InterestAdder(double aRate)
52. {
53. rate = aRate;
54. }
55.
56. public void actionPerformed(ActionEvent event)
57. {
58. // update interest
59. double interest = balance * rate / 100;
60. balance += interest;
61.
62. // print out current balance
63. NumberFormat formatter
64. = NumberFormat.getCurrencyInstance();
65. System.out.println("balance="
66 + formatter.format(balance));
67. }
68.
69. private double rate;
70. }
71. }

Core Java™ 2: Volume I–Fundamentals

288

Special Syntax Rules for Inner Classes

In the preceding section, we explained the outer class reference of an inner class by calling it
outer. Actually, the proper syntax for the outer reference is a bit more complex. The
expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed method
of the InterestAdder inner class as

public void actionPerformed(ActionEvent event)
{
 double interest = BankAccount.this.balance * this.rate / 100;
 BankAccount.this.balance += interest;
 . . .
}

Conversely, you can write the inner object constructor more explicitly, using the syntax:

outerObject.new InnerClass(construction parameters)

For example,

ActionListener adder = this.new InterestAdder(rate);

Here, the outer class reference of the newly constructed InterestAdder object is set to
the this reference of the method that creates the inner class object. This is the most common
case. As always, the this. qualifier is redundant. However, it is also possible to set the outer
class reference to another object by explicitly naming it. For example, if InterestAdder was
a public inner class, you could construct an InterestAdder for any bank account:

BankAccount mySavings = new BankAccount(10000);
BankAccount.InterestAdder adder
 = mySavings.new InterestAdder(10);

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class. For example, if InterestAdder had been
a public class, you could have referred to it as BankAccount.InterestAdder elsewhere in
your program.

Are Inner Classes Useful? Are They Actually Necessary? Are They Secure?

Inner classes are a major addition to the language. Java started out with the goal of being
simpler than C++. But inner classes are anything but simple. The syntax is complex. (It will
get more complex as we study anonymous inner classes later in this chapter.) It is not obvious
how inner classes interact with other features of the language, such as access control and
security.

Core Java™ 2: Volume I–Fundamentals

289

Has Java started down the road to ruin that has afflicted so many other languages, by adding
a feature that was elegant and interesting rather than needed?

While we won't try to answer this question completely, it is worth noting that inner classes are
a phenomenon of the compiler, not the virtual machine. Inner classes are translated into
regular class files with $ (dollar signs) delimiting outer and inner class names, and the virtual
machine does not have any special knowledge about them.

For example, the InterestAdder class inside the BankAccount class is translated to a class
file BankAccount$InterestAdder.class. To see this at work, try out the following
experiment: run the ReflectionTest program of Chapter 5, and give it the class
BankAccount$InterestAdder to reflect upon. You will get the following printout:

class BankAccount$InterestAdder
{
 public BankAccount$InterestAdder(BankAccount, double);

 public void actionPerformed(java.awt.event.ActionEvent);

 private double rate;
 private final BankAccount this$0;
}

NOTE

If you use Unix, remember to escape the $ character if you supply
the class name on the command line. That is, run the ReflectionTest
program as

java ReflectionTest 'BankAccount$InterestAdder'

You can plainly see that the compiler has generated an additional instance field, this$0, for
the reference to the outer class. (The name this$0 is synthesized by the compiler—you
cannot refer to it in your code.) You can also see the added parameter for the constructor.

If the compiler can do this transformation, couldn't you simply program the same mechanism
by hand? Let's try it. We would make InterestAdder a regular class, outside
the BankAccount class. When constructing an InterestAdder object, we pass it the this
reference of the object that is creating it.

class BankAccount
{ . . .

 public void start(double rate)
 {
 ActionListener adder = new InterestAdder(this, rate);
 Timer t = new Timer(1000, adder);
 t.start();
 }
}

Core Java™ 2: Volume I–Fundamentals

290

class InterestAdder implements ActionListener
{
 public InterestAdder(BankAccount account, double aRate)
 {
 outer = account;
 rate = aRate;
 }
 . . .
 private BankAccount outer;
 private double rate;
}

Now let us look at the actionPerformed method. It needs to access outer.balance.

public void actionPerformed(ActionEvent event)
{
 double interest = outer.balance * rate / 100; // ERROR
 outer.balance += interest; // ERROR
 . . .
}

Here we run into a problem. The inner class can access the private data of the outer class, but
our external InterestAdder class cannot.

Thus, inner classes are genuinely more powerful than regular classes, since they have more
access privileges.

You may well wonder how inner classes manage to acquire those added access privileges,
since inner classes are translated to regular classes with funny names—the virtual machine
knows nothing at all about them. To solve this mystery, let's again use the ReflectionTest
program to spy on the BankAccount class:

class BankAccount
{
 public BankAccount(double);

 static double access$000(BankAccount);
 public void start(double);
 static double access$018(BankAccount, double);

 private double balance;
}

Notice the static access$000 and access$018 methods that the compiler added to the outer
class. The inner class methods call those methods. For example, the statement

balance += interest

in the actionPerformed method of the InterestAdder class effectively makes the following
call:

access$018(outer, access$000(outer) + interest);

Is this a security risk? You bet it is. It is an easy matter for someone else to invoke
the access$000 method to read the private balance field or, even worse, to call the

Core Java™ 2: Volume I–Fundamentals

291

access$018 method to set it. The Java language standard reserves $ characters in variable and
method names for system usage. However, for those hackers who are familiar with the
structure of class files, it is an easy (if tedious) matter to produce a class file with virtual
machine instructions to call that method. Of course, such a class file would need to be
generated manually (for example, with a hex editor). Because the secret access methods have
package visibility, the attack code would need to be placed inside the same package as the
class under attack.

To summarize, if an inner class accesses a private data field, then it is possible to access that
data field through other classes that are added to the package of the outer class, but to do so
requires skill and determination. A programmer cannot accidentally obtain access but must
intentionally build or modify a class file for that purpose.

Local Inner Classes

If you look carefully at the code of the BankAccount example, you will find that you need the
name of the type InterestAdder only once: when you create an object of that type in the
start method.

When you have a situation like this, you can define the class locally in a single method.

public void start(double rate)
{
 class InterestAdder implements ActionListener
 {
 public InterestAdder(double aRate)
 {
 rate = aRate;
 }

 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }

 private double rate;
 }

 ActionListener adder = new InterestAdder(rate);
 Timer t = new Timer(1000, adder);
 t.start();
}

Local classes are never declared with an access specifier (that is, public or private). Their
scope is always restricted to the block in which they are declared.

Local classes have a great advantage—they are completely hidden from the outside world—
not even other code in the BankAccount class can access them. No method except start has
any knowledge of the InterestAdder class.

Core Java™ 2: Volume I–Fundamentals

292

Local classes have another advantage over other inner classes. Not only can they access
the fields of their outer classes, they can even access local variables! However, those local
variables must be declared final. Here is a typical example.

public void start(final double rate)
{
 class InterestAdder implements ActionListener
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }
 }

 ActionListener adder = new InterestAdder();
 Timer t = new Timer(1000, adder);
 t.start();
}

Note that the InterestAdder class no longer needs to store a rate instance variable. It
simply refers to the parameter variable of the method that contains the class definition.

Maybe this should not be so surprising. The line

double interest = balance * rate / 100;

is, after all, ultimately inside the start method, so why shouldn't it have access to the value
of the rate variable?

To see why there is a subtle issue here, let's consider the flow of control more closely.

1. The start method is called.
2. The object variable adder is initialized via a call to the constructor of the inner class

InterestAdder.
3. The adder reference is passed to the Timer constructor, the timer is started, and the

start method exits. At this point, the rate parameter variable of the start method
no longer exists.

4. A second later, the actionPerformed method calls double interest = balance *
rate / 100;.

For the code in the actionPerformed method to work, the InterestAdder class must have
made a copy of the rate field before it went away as a local variable of the start method.
That is indeed exactly what happens. In our example, the compiler synthesizes the name
BankAccount1InterestAdder for the local inner class. If you use the ReflectionTest
program again to spy on the BankAccount1InterestAdder class, you get the following
output:

Core Java™ 2: Volume I–Fundamentals

293

class BankAccount1InterestAdder
{
 BankAccount1InterestAdder(BankAccount, double);

 public void actionPerformed(java.awt.event.ActionEvent);

 private final double val$rate;
 private final BankAccount this$0;
}

Note the extra double parameter to the constructor and the val$rate instance variable. When
an object is created, the value rate is passed into the constructor and stored in the val$rate
field. This sounds like an extraordinary amount of trouble for the implementors of the
compiler. The compiler must detect access of local variables, make matching data fields for
each one of them, and copy the local variables into the constructor so that the data fields can
be initialized as copies of them.

From the programmer's point of view, however, local variable access is quite pleasant. It
makes your inner classes simpler by reducing the instance fields that you need to program
explicitly.

As we already mentioned, the methods of a local class can refer only to local variables that
are declared final. For that reason, the rate parameter was declared final in our example.
A local variable that is declared final cannot be modified. Thus, it is guaranteed that the
local variable and the copy that is made inside the local class always have the same value.

NOTE

You have seen final variables used for constants, such as

public static final double SPEED_LIMIT = 55;

The final keyword can be applied to local variables, instance variables,
and static variables. In all cases it means the same thing: You can assign
to this variable once after it has been created. Afterwards, you cannot
change the value—it is final.

However, you don't have to initialize a final variable when you define
it. For example, the final parameter variable rate is initialized once
after its creation, when the start method is called. (If the method is
called multiple times, each call has its own newly created rate
parameter.) The val$rate instance variable that you can see in the
BankAccount1InterestAdder inner class is set once, in the inner
class constructor. A final variable that isn't initialized when it is defined
is often called a blank final variable.

Core Java™ 2: Volume I–Fundamentals

294

Anonymous inner classes

When using local inner classes, you can often go a step further. If you want to make only
a single object of this class, you don't even need to give the class a name. Such a class is
called anonymous inner class.

public void start(final double rate)
{
 ActionListener adder = new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 double interest = balance * rate / 100;
 balance += interest;

 NumberFormat formatter
 = NumberFormat.getCurrencyInstance();
 System.out.println("balance="
 + formatter.format(balance));
 }
 };
 Timer t = new Timer(1000, adder);
 t.start();
}

This is a very cryptic syntax indeed. What it means is:

Create a new object of a class that implements the ActionListener interface, where
the required method actionPerformed is the one defined inside the braces { }.

Any parameters used to construct the object are given inside the parentheses () following
the supertype name. In general, the syntax is

new SuperType(construction parameters)
{
 inner class methods and data
}

Here, SuperType can be an interface, such as ActionListener; then, the inner class
implements that interface. Or, SuperType can be a class; then, the inner class extends that
class.

An anonymous inner class cannot have constructors because the name of a constructor must
be the same as the name of a class, and the class has no name. Instead, the construction
parameters are given to the superclass constructor. In particular, whenever an inner class
implements an interface, it cannot have any construction parameters. Nevertheless, you must
supply a set of parentheses as in:

new InterfaceType() { methods and data }

You have to look very carefully to see the difference between the construction of a new object
of a class and the construction of an object of an anonymous inner class extending that class.

Core Java™ 2: Volume I–Fundamentals

295

If the closing parenthesis of the construction parameter list is followed by an opening brace,
then an anonymous inner class is being defined.

Person queen = new Person("Mary");
 // a Person object
Person count = new Person("Dracula") { ... };
 // an object of an inner class extending Person

Are anonymous inner classes a great idea or are they a great way of writing obfuscated code?
Probably a bit of both. When the code for an inner class is short, just a few lines of simple
code, then they can save typing time, but it is exactly timesaving features like this that lead
you down the slippery slope to “Obfuscated Java Code Contests.”

It is a shame that the designers of Java did not try to improve the syntax of anonymous inner
classes, since, generally, Java syntax is a great improvement over C++. The designers of
the inner class feature could have helped the human reader with a syntax such as:

Person count = new class extends Person("Dracula") { ... };
 // not the actual Java syntax

But they didn't. Because many programmers find code with too many anonymous inner
classes hard to read, we recommend restraint when using them.

Example 6-5 contains the complete source code for the bank account program with
an anonymous inner class. If you compare this program with Example 6-4, you will find that
in this case the solution with the anonymous inner class is quite a bit shorter, and, hopefully,
with a bit of practice, as easy to comprehend.

Example 6-5 AnonymousInnerClassTest.java

 1. import java.awt.event.*;
 2. import java.text.*;
 3. import javax.swing.*;
 4.
 5. public class AnonymousInnerClassTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. // construct a bank account with initial balance of $10,000
10. BankAccount account = new BankAccount(10000);
11. // start accumulating interest at 10%
12. account.start(10);
13.
14. // keep program running until user selects "Ok"
15. JOptionPane.showMessageDialog(null, "Quit program?");
16. System.exit(0);
17. }
18. }
19.
20. class BankAccount
21. {
22. /**
23. Constructs a bank account with an initial balance
24. @param initialBalance the initial balance
25. */

Core Java™ 2: Volume I–Fundamentals

296

26. public BankAccount(double initialBalance)
27. {
28. balance = initialBalance;
29. }
30.
31. /**
32. Starts a simulation in which interest is added once per
33. second
34. @param rate the interest rate in percent
35. */
36. public void start(final double rate)
37. {
38. ActionListener adder = new
39. ActionListener()
40. {
41. public void actionPerformed(ActionEvent event)
42. {
43. // update interest
44. double interest = balance * rate / 100;
45. balance += interest;
46.
47. // print out current balance
48. NumberFormat formatter
49. = NumberFormat.getCurrencyInstance();
50. System.out.println("balance="
51. + formatter.format(balance));
52. }
53. };
54.
55. Timer t = new Timer(1000, adder);
56. t.start();
57. }
58.
59. private double balance;
60. }

Static Inner Classes

Occasionally, you want to use an inner class simply to hide one class inside another, but you
don't need the inner class to have a reference to the outer class object. You can suppress the
generation of that reference by declaring the inner class static.

Here is a typical example of where you would want to do this. Consider the task of computing
the minimum and maximum value in an array. Of course, you write one function to compute
the minimum and another function to compute the maximum. When you call both functions,
then the array is traversed twice. It would be more efficient to traverse the array only once,
computing both the minimum and the maximum simultaneously.

double min = d[0];
double max = d[0];
for (int i = 1; i < d.length; i++)
{ if (min > d[i]) min = d[i];
 if (max < d[i]) max = d[i];
}

However, the function must return two numbers. We can achieve that by defining a class Pair
that holds two values:

Core Java™ 2: Volume I–Fundamentals

297

class Pair
{ public Pair(double f, double s)
 { first = f;
 second = s;
 }
 public double getFirst()
 { return first;
 }
 public double getSecond()
 { return second;
 }

 private double first;
 private double second;
}

The minmax function can then return an object of type Pair.

class ArrayAlg
{ public static Pair minmax(double[] d)
 { . . .
 return new Pair(min, max);
 }
}

The caller of the function then uses the getFirst and getSecond methods to retrieve
the answers:

Pair p = ArrayAlg.minmax(d);
System.out.println("min = " + p.getFirst());
System.out.println("max = " + p.getSecond());

Of course, the name Pair is an exceedingly common name, and in a large project, it is quite
possible that some other programmer had the same bright idea, except that the other
programmer made a Pair class that contains a pair of strings. We can solve this potential
name clash by making Pair a public inner class inside ArrayAlg. Then the class will be
known to the public as ArrayAlg.Pair:

ArrayAlg.Pair p = ArrayAlg.minmax(d);

However, unlike the inner classes that we used in previous examples, we do not want to have
a reference to any other object inside a Pair object. That reference can be suppressed by
declaring the inner class static:

class ArrayAlg
{ public static class Pair
 { . . .
 }
 . . .
}

Of course, only inner classes can be declared static. A static inner class is exactly like any
other inner class, except that an object of a static inner class does not have a reference to the
outer class object that generated it. In our example, we must use a static inner class because
the inner class object is constructed inside a static method:

Core Java™ 2: Volume I–Fundamentals

298

public static Pair minmax(double[] d)
{ . . .
 return new Pair(min, max);
}

Had the Pair class not been declared as static, the compiler would have complained that
there was no implicit object of type ArrayAlg available to initialize the inner class object.

NOTE

You use a static inner class whenever the inner class does not need to
access an outer class object. Some programmers use the term nested
class to describe static inner classes.

Example 6-6 contains the complete source code of the ArrayAlg class and the nested Pair
class.

Example 6-6 StaticInnerClassTest.java

 1. public class StaticInnerClassTest
 2. {
 3. public static void main(String[] args)
 4. {
 5. double[] d = new double[20];
 6. for (int i = 0; i < d.length; i++)
 7. d[i] = 100 * Math.random();
 8. ArrayAlg.Pair p = ArrayAlg.minmax(d);
 9. System.out.println("min = " + p.getFirst());
10. System.out.println("max = " + p.getSecond());
11. }
12. }
13.
14. class ArrayAlg
15. {
16. /**
17. A pair of floating point numbers
18. */
19. public static class Pair
20. {
21. /**
22. Constructs a pair from two floating point numbers
23. @param f the first number
24. @param s the second number
25. */
26. public Pair(double f, double s)
27. {
28. first = f;
29. second = s;
30. }
31.
32. /**
33. Returns the first number of the pair
34. @return the first number
35. */

Core Java™ 2: Volume I–Fundamentals

299

36. public double getFirst()
37. {
38. return first;
39. }
40.
41. /**
42. Returns the second number of the pair
43. @return the second number
44. */
45. public double getSecond()
46. {
47. return second;
48. }
49.
50. private double first;
51. private double second;
52. }
53.
54. /**
55. Computes both the minimum and the maximum of an array
56. @param a an array of floating point numbers
57. @return a pair whose first element is the minimum and whose
58. second element is the maximum
59. */
60. public static Pair minmax(double[] d)
61. {
62. if (d.length == 0) return new Pair(0, 0);
63. double min = d[0];
64. double max = d[0];
65. for (int i = 1; i < d.length; i++)
66. {
67. if (min > d[i]) min = d[i];
68. if (max < d[i]) max = d[i];
69. }
70. return new Pair(min, max);
71. }
72. }

Proxies

In the final section of this chapter, we will discuss proxies, a new feature that became
available with version 1.3 of the Java SDK. You use a proxy to create new classes at runtime
that implement a given set of interfaces. Proxies are only necessary when you don't yet know
at compile time which interfaces you need to implement. This is not a common situation for
application programmers. However, for certain system programming applications the
flexibility that proxies offer can be very important. By using proxies, you can often avoid the
mechanical generation and compilation of “stub” code.

NOTE

In versions 1.2 and below of the Java SDK, you encounter stub code in
a umber of situations. When you use remote method invocation (RMI),
a pecial utility called rmic produces stub classes that you need to add to
your program. (See Chapter 4 of Volume 2 for more information on
RMI.) And when you use the bean box, stub classes are produced and
compiled on the fly when you connect beans to each other. (See

Core Java™ 2: Volume I–Fundamentals

300

Chapter 7 of Volume 2 for more information on Java beans.) It is
expected that these mechanisms will be updated soon to take advantage
of the proxy capability.

Suppose you have an array of Class objects representing interfaces (maybe only containing a
single interface), whose exact nature you may not know at compile time. Now you want to
construct an object of a class that implements these interfaces. This is a difficult problem. If a
Class object represents an actual class, then you can simply use the newInstance method or
use reflection to find a constructor of that class. But you can't instantiate an interface. And
you can't define new classes in a running program.

To overcome this problem, some programs—such as the BeanBox in early versions of the
Bean Development Kit—generate code, place it into a file, invoke the compiler and then load
the resulting class file. Naturally, this is slow, and it also requires deployment of the compiler
together with the program. The proxy mechanism is a better solution. The proxy class can
create brand-new classes at runtime. Such a proxy class implements the interfaces that you
specify. In particular, the proxy class has the following methods:

• All methods required by the specified interfaces;
• All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must supply
an invocation handler. An invocation handler is an object of any class that implements the
InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invocation
handler gets called, with the Method object and parameters of the original call. The invocation
handler must then figure out how to handle the call.

To create a proxy object, you use the newProxyInstance method of the Proxy class. The
method has three parameters:

1. A class loader. As part of the Java security model, it is possible to use different class
loaders for system classes, classes that are downloaded from the Internet, and so on.
We will discuss class loaders in Volume 2. For now, we will specify null to use the
default class loader.

2. An array of Class objects, one for each interface to be implemented.
3. An invocation handler.

There are two remaining questions. How do we define the handler? And what can we do with
the resulting proxy object? The answers depend, of course, on the problem that we want to
solve with the proxy mechanism. Proxies can be used for many purposes, such as:

• Routing method calls to remote servers;
• Associating user interface events with actions in a running program;
• Tracing method calls for debugging purposes.

Core Java™ 2: Volume I–Fundamentals

301

In our example program, we will use proxies and invocation handlers to trace method calls.
We define a TraceHandler wrapper class that stores a wrapped object. Its invoke method
simply prints out the name and parameters of the method to be called, and then calls the
method with the wrapped object as the implicit parameter.

class TraceHandler implements InvocationHandler
{
 public TraceHandler(Object t)
 {
 target = t;
 }

 public Object invoke(Object proxy, Method m, Object[] args)
 throws Throwable
 {
 // print method name and parameters
 . . .
 // invoke actual method
 return m.invoke(target, args);
 }

 private Object target;
 }

Here is how you construct a proxy object that causes the tracing behavior whenever one of its
methods is called.

Object value = . . .;
// construct wrapper
InvocationHandler handler = new TraceHandler(value);
// construct proxy for all interfaces
Class[] interfaces = value.getClass().getInterfaces();
Object proxy = Proxy.newProxyInstance(null, interfaces, handler);

Now, whenever a method is called on proxy, the method name and parameters are printed
out, and then the method is invoked on value.

In the program shown in Example 6-7, we use proxy objects to trace a binary search. We fill
an array with proxies to the integers 1 … 1000. Then we invoke the binarySearch method of
the Arrays class to search for a random integer in the array. Finally, we print out the
matching element.

Object[] elements = new Object[1000];

// fill elements with proxies for the integers 1 ... 1000
for (int i = 0; i < elements.length; i++)
{
 Integer value = new Integer(i + 1);
 elements[i] = . . .; // proxy for value;
}

// construct a random integer
Random generator = new Random();
int r = generator.nextInt(elements.length);
Integer key = new Integer(r + 1);

Core Java™ 2: Volume I–Fundamentals

302

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0)
 System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a class
that is defined at runtime. (It has a name such as $Proxy0.) That class also implements the
Comparable interface. However, its compareTo method calls the invoke method of the proxy
object's handler.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Because we filled the array with proxy objects, the compareTo calls call the invoke method
of the TraceHandler class. That method prints out the method name and parameters and then
invokes compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call:

System.out.println(elements[result]);

The println method calls toString on the proxy object, and that call is also redirected to the
invocation handler.

Here is the complete trace of a program run:

500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key, by cutting the search
interval in half in every step.

Example 6-7 ProxyTest.java

 1. import java.lang.reflect.*;
 2. import java.util.*;
 3.
 4. public class ProxyTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Object[] elements = new Object[1000];
 9.

Core Java™ 2: Volume I–Fundamentals

303

10. // fill elements with proxies for the integers 1 ... 1000
11. for (int i = 0; i < elements.length; i++)
12. {
13. Integer value = new Integer(i + 1);
14. Class[] interfaces = value.getClass().getInterfaces();
15. InvocationHandler handler = new TraceHandler(value);
16. Object proxy = Proxy.newProxyInstance(null,
17. interfaces, handler);
18. elements[i] = proxy;
19. }
20.
21. // construct a random integer
22. Random generator = new Random();
23. int r = generator.nextInt(elements.length);
24. Integer key = new Integer(r + 1);
25.
26. // search for the key
27. int result = Arrays.binarySearch(elements, key);
28.
29. // print match if found
30. if (result >= 0)
31. System.out.println(elements[result]);
32. }
33. }
34.
35. /**
36. An invocation handler that prints out the method name
37. and parameters, then invokes the original method
38. */
39. class TraceHandler implements InvocationHandler
40. {
41. /**
42. Constructs a TraceHandler
43. @param t the implicit parameter of the method call
44. */
45. public TraceHandler(Object t)
46. {
47. target = t;
48. }
49.
50. public Object invoke(Object proxy, Method m, Object[] args)
51. throws Throwable
52. {
53. // print implicit argument
54. System.out.print(target);
55. // print method name
56. System.out.print("." + m.getName() + "(");
57. // print explicit arguments
58. if (args != null)
59. {
60. for (int i = 0; i < args.length; i++)
61. {
62. System.out.print(args[i]);
63. if (i < args.length - 1)
64. System.out.print(", ");
65. }
66. }
67. System.out.println(")");
68.

Core Java™ 2: Volume I–Fundamentals

304

69. // invoke actual method
70. return m.invoke(target, args);
71. }
72.
73. private Object target;
74. }

Properties of Proxy Classes

Now that you have seen proxy classes in action, we want to go over some of their properties.
Remember that proxy classes are created on the fly, in a running program. However, once
they are created, they are regular classes, just like any other classes in the virtual machine.

All proxy classes extend the class Proxy. A proxy class has only one instance variable—
the nvocation handler which is defined in the Proxy superclass. Any additional data that is
required to carry out the proxy objects' tasks must be stored in the invocation handler. For
example, when we proxied Comparable objects in the program shown in Example 6-7, the
TraceHandler wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class.
Like all proxy methods, these methods simply call invoke on the invocation handler. The ther
methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in the Java 2 SDK generates
class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces. That
is, if you call the newProxyInstance method twice with the same class loader and interface
array, then you get two objects of the same class. You can also obtain that class with
the etProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class implements
are public, then the proxy class does not belong to any particular package. Otherwise, all
non-public interfaces must belong to the same package, and then the proxy class also belongs
to that package.

You can test whether a particular Class object represents a proxy class, by calling
the isProxyClass method of the Proxy class.

This ends our final chapter on the fundamentals of the Java programming language. Interfaces
and inner classes are concepts that you will encounter frequently. However, as we already
mentioned, proxies are an advanced technique that is of interest mainly to tool builders, not
application programmers. You are now ready to go on to learn about graphics and user
interfaces, starting with Chapter 7. API Notes

Core Java™ 2: Volume I–Fundamentals

305

java.lang.reflect.InvocationHandler

• Object invoke(Object proxy, Method method, Object[] args)

Define this method to contain the action that you want carried out whenever a method was
invoked on the proxy object.

java.lang.reflect.Proxy

• static Class getProxyClass(ClassLoader loader, Class[] interfaces)

Returns the proxy class that implements the given interfaces.

• static Object newProxyInstance(ClassLoader loader, Class[]
interfaces, InvocationHandler handler)

Constructs a new instance of the proxy class that implements the given interfaces. All
methods call the invoke method of the given handler object.

• static boolean isProxyClass(Class c)

Returns true if c is a proxy class.

Core Java™ 2: Volume I–Fundamentals

306

Chapter 7. Graphics Programming
• Introduction to Swing
• Creating a Frame
• Frame Positioning
• Displaying Information in a Panel
• 2D Shapes
• Colors
• Text and Fonts
• Images

To this point, you have seen only how to write programs that take input from the keyboard,
fuss with it, and then display the results on a console screen. This is not what most users want
now. Modern programs don't work this way and neither do Web pages. This chapter starts you
on the road to writing Java programs that use a graphical user interface (GUI). In particular,
you will learn how to write programs that size and locate windows on the screen, display text
with multiple fonts in a window, display images, and so on. This gives you a useful, valuable
repertoire of skills that we will put to good use in the following chapters to write interesting
programs.

The next two chapters show you how to process events such as keystrokes and mouse clicks,
and how to add interface elements, such as menus and buttons, to your applications. When
you finish these three chapters, you will know the essentials for writing stand-alone graphical
applications. Chapter 10 shows how to program applets that use these features and are
embedded in Web pages. For more sophisticated graphics programming techniques, we refer
you to Volume 2.

Introduction to Swing

When Java 1.0 was introduced, it contained a class library, which Sun called the Abstract
Window Toolkit (AWT), for basic GUI programming. The way the basic AWT library deals
with user interface elements is to delegate their creation and behavior to the native GUI
toolkit on each target platform (Windows, Solaris, Macintosh, and so on). For example, if you
used the original AWT to put a text box on a Java window, an underlying “peer” text box
actually handled the text input. When writing these kinds of AWT programs, the idea was that
you simply specify the location and behavior of your user interface elements, and Java would
create the peers. The resulting program could then, in theory, run on any of these platforms,
with the “look and feel” of the target platform—hence Sun's trademarked slogan “Write Once,
Run Anywhere.”

The peer-based approach worked well for simple applications, but it soon became apparent
that it was fiendishly difficult to write a high-quality portable graphics library that depended
on native user interface elements. User interface elements such as menus, scrollbars, and text
fields can have subtle differences in behavior on different platforms. It was hard, therefore, to
give users a consistent and predictable experience with this approach. Moreover, some
graphical environments (such as X11/Motif) do not have as rich a collection of user interface
components as does Windows or the Macintosh. This in turn further limits a portable library
based on peers to a “lowest common denominator” approach. As a result, GUI applications
built with the AWT simply did not look as nice as native Windows or Macintosh applications,
nor did they have the kind of functionality that users of those platforms had come to expect.

Core Java™ 2: Volume I–Fundamentals

307

More depressingly, there were different bugs in the AWT user interface library on
the different platforms. Developers complained that they needed to test their applications on
each platform, a practice derisively called “write once, debug everywhere.”

In 1996, Netscape created a GUI library they called the IFC (Internet Foundation Classes) that
used an entirely different approach. User interface elements, such as buttons, menus, and so
on, were painted onto blank windows. The only peer functionality needed was a way to put up
windows and to paint on the window. Thus, Netscape's IFC widgets looked and behaved the
same no matter which platform the program ran on. Sun worked with Netscape to perfect this
approach, creating a user interface library with the code name “Swing” (sometimes called the
“Swing set”).

Since, as Duke Ellington said, “It Don't Mean a Thing If It Ain't Got That Swing,” Swing is
now the official name for the non-peer-based GUI toolkit that is part of the Java Foundation
Classes (JFC). The full JFC is vast and contains far more than the Swing GUI toolkit. JFC
features not only include the Swing components but also an accessibility API, a 2D API, and
a drag-and-drop API.

NOTE

Swing is not a complete replacement for the AWT. Swing simply gives
you more capable user interface components. The basic architecture of
the AWT, in particular, event handling, remains the same as it was in
Java 1.1. (AWT event handling underwent a significant change between
Java 1.0 and Java 1.1.) Swing uses the 1.1 event handling model, and
a version of Swing can even be downloaded from Sun's web site for use
in Java 1.1 programs. And, although the AWT peer-based user interface
components are still available, you will rarely, if ever, want to use them.
From now on, we'll say “Swing” when we mean the “painted” non-peer
user interface classes, and we'll say “AWT” when we mean
the underlying mechanisms of the windowing toolkit, such as event
handling.

Of course, Swing-based user interface elements will be somewhat slower to appear on the
user's screen than the peer-based components used by the AWT. Our experience is that on any
reasonably modern machine, the speed difference shouldn't be a problem. On the other hand,
the reasons to choose Swing are overwhelming:

• Swing has a much richer and more convenient set of user interface elements.
• Swing depends far less on the underlying platform; it is therefore less prone to

platform-specific bugs.
• Swing will give a consistent user experience across platforms.

All this means Swing has the potential of finally fulfilling the promise of Sun's “Write Once,
Run Anywhere” slogan.

Still, the third plus is also a potential drawback: if the user interface elements look the same
on all platforms, then they will look different from the native controls on at least some
platforms, and thus users will be less familiar with them.

Core Java™ 2: Volume I–Fundamentals

308

Swing solves this problem in a very elegant way. Programmers writing Swing programs can
give the program a specific “look and feel.” For example, Figure 7-1 and 7-2 show the same
program running with the Windows1 and the Motif look and feel.

Figure 7-1. The Windows look and feel of Swing

Figure 7-2. The Motif look and feel of Swing

1 For what are apparently copyright reasons, the Windows and Macintosh look and feel are available only with the Java runtime environments for
those platforms.

Core Java™ 2: Volume I–Fundamentals

309

NOTE

While we won't have space in this book to tell you how to do it, it is
possible for Java programmers to extend an existing look and feel or
even design a totally new look and feel. This is a tedious process that
involves specifying how various Swing components need to be painted,
but some developers have done just that, especially when porting Java to
nontraditional platforms such as kiosk terminals or handheld terminals.
See the “Swing Connection” at http://java.sun.com/products/jfc/tsc/ for
more on this process.

Furthermore, Sun developed a platform-independent look and feel that they call “Metal,”
which we think looks very nice (see Figure 7-3). In this book, we will use Swing, with the
Metal look and feel, for all our graphical programs.

Figure 7-3. The Metal look and feel of Swing

In sum, Swing is more robust, has more features, is more portable, and is easier to use than
the peer-based AWT user interface components. We feel strongly that Swing is the future of
user interface programming in Java, and we think that you will want to use it for all your new
Java programming projects.

Finally, we do have to warn you that if you have programmed Microsoft Windows
applications using VB, Delphi, or Visual C++, you know about the ease of use that comes
with the graphical layout tools and resource editors these products provide. These tools let
you design the visual appearance of your application, and then they generate much (often all)
of the GUI code for you. Although some GUI builders are now available for Java
programming, these products are not as mature as the corresponding tools for Windows. In

Core Java™ 2: Volume I–Fundamentals

310

any case, to fully understand graphical user interface programming (or even, we feel, to use
these tools effectively), you need to know how to build a user interface manually. Naturally,
this often requires writing a lot of code.

Creating a Frame

A top-level window (that is, a window that is not contained inside another window) is called a
frame in Java. The AWT library has a peer-based class, called Frame, for this top level. The
Swing version of this class is called JFrame; JFrame extends the Frame class and is one of
the few Swing components that is not painted on a canvas. Thus, the decorations (buttons,
title bar, icons, and so on) are drawn by the user's windowing system, not by Swing.

TIP

For users coming from an earlier version of Java, most of the AWT
components have Swing equivalents whose class names simply add a
“J”; hence, JButton, JPanel, etc.

Frames are examples of containers. This means that a frame can contain other user interface
components such as buttons and text fields. In this section, we want to go over the most
common methods for working with a Swing JFrame.

Example 7-1 lists a simple program that displays an empty frame on the screen, as illustrated
in Figure 7-4.

Figure 7-4. The simplest visible frame

Core Java™ 2: Volume I–Fundamentals

311

Example 7-1 SimpleFrameTest.java

 1. import javax.swing.*;
 2.
 3. public class SimpleFrameTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. SimpleFrame frame = new SimpleFrame();
 8. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 9. frame.show();
10. }
11. }
12.
13. class SimpleFrame extends JFrame
14. {
15. public SimpleFrame()
16. {
17. setSize(WIDTH, HEIGHT);
18. }
19.
20. public static final int WIDTH = 300;
21. public static final int HEIGHT = 200;
22. }

Let's work through this program, line by line.

The Swing classes are placed in the javax.swing package. The package name javax
indicates a Java extension package, not a core package. The Swing classes are indeed an
extension to Java 1.1. Because the Swing classes were not made a part of the core hierarchy, it
is possible to load the Swing classes into a Java 1.1-compatible browser. (The security
manager of the browser does not allow adding any packages that start with “java.”.) On the
Java 2 platform, the Swing package is no longer an extension, but is instead part of the core
hierarchy. Any Java implementation that is compatible with Java 2 must supply the Swing
classes. Nevertheless, the javax name remains, for compatibility with Java 1.1 code.
(Actually, the Swing package started out as com.sun.java.swing, then briefly got moved to
java.awt.swing during early Java 2 beta versions, then went back to com.sun.java.swing
in late Java 2 beta versions, and after howls of protest by Java programmers, found its final
resting place in javax.swing.)

By default, a frame has a rather useless size of 0 × 0 pixels. We define a subclass
SimpleFrame whose constructor sets the size to 300 × 200 pixels. In the main method of the
SimpleFrameTest class, we start out by constructing a SimpleFrame object.

Next, we define what should happen when the user closes this frame. For this particular
program, we want the program to exit. To select this behavior, use the statement

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

In other programs with multiple frames, you would not want the program to exit just because
the user closes one of the frames. By default, a frame is hidden when the user closes it, but the
program does not terminate.

Core Java™ 2: Volume I–Fundamentals

312

NOTE

The EXIT_ON_CLOSE parameter for the setDefaultCloseOperation
method was introduced with version 1.3 of the Java 2 SDK. If you are
using an earlier version, you need to remove this line from the source
code. (You will have to do that with the majority of programs in this
book.)

Of course, after removing the call to setDefaultCloseOperation,
the rogram won't exit when you close the window. To exit the program,
you need to kill it. Under X Windows, there is usually a menu option to
“kill,” “annihilate,” or “destroy” the program. The details depend on
the indow manager. In Windows, you can summon the task list (with the
ctrl+alt+del “three-finger salute”) and end the task.

Of course, these are drastic remedies. Alternatively, you can replace
the all to the setDefaultCloseOperation method with the following
code:

frame.addWindowListener(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });

You will see in Chapter 8 why this code fragment exits the application
when the frame is closed.

TIP

The preceding note told you the “official” way of making a frame close
on exit in a pre-1.3 version of the Java 2 SDK. However, in some of
those versions, the call

frame.setDefaultCloseOperation(3);

magically works as well. Apparently, the functionality for the “exit on
close” behavior had been added to the SDK before the EXIT_ON_CLOSE
constant was added to the JFrame class.

Simply constructing a frame does not automatically display it. Frames start their life invisible.
That gives the programmer the chance to add components into the frame before showing it for
the first time. To show the frame, the main method calls the show method of the frame.

Core Java™ 2: Volume I–Fundamentals

313

Afterwards, the main method exits. Note that exiting main does not terminate the program,
just the main thread. Showing the frame activates a user interface thread that keeps the rogram
alive.

NOTE

The JFrame class inherits the show method from the superclass Window.
The Window class has a superclass Component that also has a show
method. The Component.show method is deprecated, and you are
supposed to call setVisible(true) instead if you want to show a
component. However, the Window.show method is not deprecated. For
windows and frames it makes sense to call show, not setVisible,
because show makes the window visible and brings it to the front.

The running program is shown in Figure 7-4—it is a truly boring top-level window. As you
can see in the figure, the title bar and surrounding decorations, such as resize corners, are
drawn by the operating system and not the Swing library. If you run the same program in X
Windows, the frame decorations are different. The Swing library draws everything inside
the rame. In this program, it just fills the frame with a default background color.

NOTE

In the above example we wrote two classes, one to define a frame class
and one that contains a main method that creates and shows a frame
object. Frequently, you will see programs in which the main method is
opportunistically tossed into a convenient class, like this:

class SimpleFrame extends JFrame
{
 public static void main(String[] args)
 {
 SimpleFrame frame = new SimpleFrame();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.show();
 }

 public SimpleFrame()
 {
 setSize(WIDTH, HEIGHT);
 }

 public static final int WIDTH = 300;
 public static final int HEIGHT = 200;
}

Using the main method of the frame class for the code that launches the
program is simpler in one sense. You do not have to introduce another
auxiliary class. However, quite a few programmers find this code style a
bit confusing. Therefore, we prefer to separate out the class that launches
the program from the classes that define the user interface.

Core Java™ 2: Volume I–Fundamentals

314

Frame Positioning

The JFrame class itself has only a few methods for changing how frames look. Of course,
through the magic of inheritance, most of the methods for working with the size and position
of a frame come from the various superclasses of JFrame. Probably the most important
methods, inherited from the base class Frame, are the following ones:

• The dispose method that closes the window down and reclaims any system resources
used in creating it;

• The setIconImage method, which takes an Image object to use as the icon when the
window is minimized (often called iconized in Java terminology);

• The setTitle method for changing the text in the title bar;
• The setResizable method, which takes a boolean to determine if a frame will be

resizeable by the user.

Figure 7-5 illustrates the inheritance chain for the JFrame class.

Figure 7-5. Inheritance hierarchy for the JFrame and JPanel classes

Core Java™ 2: Volume I–Fundamentals

315

As the API notes indicate, the Component class (which is the ancestor of all GUI objects) and
the Window class (which is the Frame's class parent) are where you need to look to find the
methods to resize and reshape frames. For example, the show method that you use to display
the frame lives in the Window class. As another example, the setLocation method in the
Component class is one way to reposition a component. If you make the call

setLocation(x, y)

the top-left corner is located x pixels across and y pixels down, where (0, 0) is the top-left
corner of the screen. Similarly, the setBounds method in Component lets you resize and
relocate a component (in particular, a JFrame) in one step, as

setBounds(x, y, width, height)

NOTE

For a frame, the coordinates of the setLocation and setBounds are
taken relative to the whole screen. As you will see in Chapter 9, for other
components inside a container, the measurements are taken relative to
the container.

Remember: if you don't explicitly size a frame, all frames will default to being 0 by 0 pixels.
To keep our example programs simple, we resize the frames to a size that we hope works
acceptably on most displays. However, in a professional application, you should check the
resolution of the user's screen and write code that resizes the frames accordingly: a window
that looks nice on a laptop screen will look like a postage stamp on a high-resolution screen.
As you will soon see, you can obtain the screen dimensions in pixels on the user's system.
You can then use this information to compute the optimal window size for your program.

TIP

The API notes for this section give what we think are the most important
methods for giving frames the proper look and feel. Some of these
methods are defined in the JFrame class. Others come from the various
parent classes of JFrame. At some point, you may need to search the API
docs to see if there are methods for some special purpose. Unfortunately,
that is a bit tedious to do with the SDK documentation. For subclasses,
the API docs only explain overridden methods. For example, show is
applicable to objects of type JFrame, but because it is simply inherited
from the Window class, the JFrame documentation doesn't explain it. If
you feel that there should be a method to do something and it isn't
explained in the documentation for the class you are working with, try
looking at the API docs for the methods of the superclasses of that class.
The top of each API page has hyperlinks to the superclasses, and there is
a list of inherited methods below the method summary for the new and
overridden methods.

Core Java™ 2: Volume I–Fundamentals

316

To give you an idea of what you can do with a window, we end this section by showing you a
sample program that positions one of our closable frames so that:

• Its area is one-fourth that of the whole screen;
• It is centered in the middle of the screen.

For example, if the screen was 800 × 600 pixels, we need a frame that is 400 × 300 pixels and
we need to move it so the top left-hand corner is at (200,150).

To do this, we need a method to find out the screen resolution. This method obviously
requires interacting with the underlying operating system since this is the only place where
this information is likely to be stored. In Java, you usually get at system-dependent
information via what is called a toolkit. The Toolkit class has a method called
getScreenSize that returns the screen size as a Dimension object. A Dimension object d
simultaneously stores a width and a height, in public (!) instance variables width and height.

Here's a fragment you use to get the screen size:

Toolkit kit = Toolkit.getDefaultToolkit();
Dimension screenSize = kit.getScreenSize();
int screenWidth = screenSize.width;
int screenHeight = screenSize.height;

We also supply an icon. Because the representation of images is also system dependent, we
again need to use the toolkit to load an image. Then, we set the image as the icon for the
frame.

Image img = kit.getImage("icon.gif");
setIconImage(img);

Depending on your operating system, you can see the icon in various places. For example, in
Windows, the icon is displayed in the top-left corner of the window, and you can see it in the
list of active tasks when you press ALT+TAB.

Example 7-2 is the complete program. When you run the program, pay attention to the “Core
Java” icon.

Example 7-2 CenteredFrameTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class CenteredFrameTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. CenteredFrame frame = new CenteredFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.

Core Java™ 2: Volume I–Fundamentals

317

15. class CenteredFrame extends JFrame
16. {
17. public CenteredFrame()
18. {
19. // get screen dimensions
20.
21. Toolkit kit = Toolkit.getDefaultToolkit();
22. Dimension screenSize = kit.getScreenSize();
23. int screenHeight = screenSize.height;
24. int screenWidth = screenSize.width;
25.
26. // center frame in screen
27.
28. setSize(screenWidth / 2, screenHeight / 2);
29. setLocation(screenWidth / 4, screenHeight / 4);
30.
31. // set frame icon and title
32.
33. Image img = kit.getImage("icon.gif");
34. setIconImage(img);
35. setTitle("CenteredFrame");
36. }
37. }

java.awt.Component

• boolean isVisible()

checks if this component is set to be visible. Components are initially visible, with the
exception of top-level components such as JFrame.

• void setVisible(boolean b)

shows or hides the component depending on whether b is true or false.

• boolean isShowing()

checks if this component is showing on the screen. For this, it must be visible and be
inside a container that is showing.

• boolean isEnabled()

checks if this component is enabled. An enabled component can receive keyboard
input. Components are initially enabled.

• void setEnabled(boolean b)

enables or disables a component.

Core Java™ 2: Volume I–Fundamentals

318

• Point getLocation()

returns the location of the top-left corner of this component, relative to the top-left
corner of the surrounding container. (A Point object p encapsulates an x- and a y-
coordinate which are accessible by p.x and p.y.)

• Point getLocationOnScreen()

returns the location of the top-left corner of this component, using the screen's
coordinates.

• void setBounds(int x, int y, int width, int height)

moves and resizes this component. The location of the top-left corner is given by x
and y, and the new size is given by the width and height parameters.

• void setLocation(int x, int y)
• void setLocation(Point p)

moves the component to a new location. The x- and y-coordinates (or p.x and p.y)
use the coordinates of the container if the component is not a top-level component, or
the coordinates of the screen if the component is top level (for example, a JFrame).

• Dimension getSize()

gets the current size of this component.

• void setSize(int width, int height)
• void setSize(Dimension d)

resizes the component to the specified width and height.

java.awt.Window

• void toFront()

shows this window on top of any other windows.

• void toBack()

moves this window to the back of the stack of windows on the desktop and rearranges
all other visible windows accordingly.

Core Java™ 2: Volume I–Fundamentals

319

java.awt.Frame

• void setResizable(boolean b)

determines whether the user can resize the frame.

• void setTitle(String s)

sets the text in the title bar for the frame to the string s.

• void setIconImage(Image image)

Parameters: image The image you want to appear as the icon for the frame

java.awt.Toolkit

• Dimension getScreenSize()

gets the size of the user's screen.

• Image getImage(String filename)

loads an image from the file with name filename.

Displaying Information in a Panel

In this section, we'll show you how to display information inside a frame. For example, rather
than displaying “Not a Hello, World program” in text mode in a console window as we did in
Chapter 3, we will display the message in a frame, as shown in Figure 7-6.

Core Java™ 2: Volume I–Fundamentals

320

Figure 7-6. A simple graphical program

It would be possible to draw the message string directly onto a frame, but that is not
considered good programming practice. In Java, frames are really designed to be containers
for components such as a menu bar and other user interface elements. You normally draw on
another component, called a panel, which you add to the frame.

The structure of a JFrame is surprisingly complex. Look at Figure 7-7 which shows
the makeup of a JFrame. As you can see, four panes are layered in a JFrame. The root pane,
layered pane, and glass pane are of no interest to us; they are required to organize the menu
bar and content pane and to implement the look and feel. The part that most concerns Swing
programmers is the content pane. When designing a frame, you add components into the
content pane, using code such as the following:

Container contentPane = getContentPane();
Component c = . . .;
contentPane.add(c);

Core Java™ 2: Volume I–Fundamentals

321

Figure 7-7. The internal structure of a JFrame

NOTE

If you are familiar with AWT programming, you know that you used to
call the add method to add components directly into an AWT Frame. In
Swing, that is not possible. You must add all components into
the content pane.

In our case, we want to add a single panel to the content pane onto which we will draw our
message. Panels are implemented by the JPanel class. They are user interface elements with
two useful properties:

• They have a surface onto which you can draw;
• They themselves are containers.

Thus, they can hold other user interface components such as buttons, sliders, and so on.

However, there is no sense in adding a plain JPanel to the content pane—it doesn't do
anything interesting. To make it more interesting, you use inheritance to create a new class
and then override or add methods to get the extra functionality you want.

Core Java™ 2: Volume I–Fundamentals

322

In particular, to draw on a panel, you will need to:

• Define a class that extends JPanel;
• Override the paintComponent method in that class.

The paintComponent method is actually in JComponent—the parent class for all nonwindow
Swing components. It takes one parameter of type Graphics. A Graphics object remembers
a collection of settings for drawing images and text, such as the font you set or the current
color. All drawing in Java must go through a Graphics object. It has methods that draw
patterns, images, and text.

NOTE

The Graphics parameter is similar to a device context in Windows or
a graphics context in X11 programming.

Here's how to make a panel onto which you can draw:

class MyPanel extends JPanel
{
 public void paintComponent(Graphics g)
 {
 . . . // code for drawing will go here
 }
}

Each time a window needs to be redrawn, no matter what the reason, the event handler
notifies the component. This causes the paintComponent methods of all components to be
executed.

Never call the paintComponent method yourself. It is called automatically whenever a part of
your application needs to be redrawn, and you should not interfere with this automatic
process.

What sorts of actions trigger this automatic response? For example, painting occurs because
the user increased the size of the window or minimized and then restored the window. If the
user popped up another window and it covered an existing window and then made the
overlaid window disappear, the application window that was covered is now corrupted and
will need to be repainted. (The graphics system does not save the pixels underneath.) And, of
course, when the window is displayed for the first time, it needs to process the code that
specifies how and where it should draw the initial elements.

Core Java™ 2: Volume I–Fundamentals

323

TIP

If you need to force repainting of the screen, call the repaint method
instead of paintComponent. The repaint method will cause
paintComponent to be called for all components, with properly
configured Graphics arguments.

As you saw in the code fragment above, the paintComponent method takes a single
parameter of type Graphics. Measurement on a Graphics object for screen display is done in
pixels. The (0, 0) coordinate denotes the top-left corner of the component on whose surface
you are drawing.

Displaying text (usually called rendering text) is considered a special kind of drawing. The
Graphics class has a drawString method that has the following syntax:

g.drawString(text, x, y)

In our case, we want to draw the string "Not a Hello, World Program" in our original
window, roughly one-quarter of the way across and halfway down. Although we don't yet
know how to measure the size of the string, we'll start the string at coordinates (75, 100). This
means the first character in the string will start at a position 75 pixels to the right and 100
pixels down. (Actually, it is the baseline for the text that is 100 pixels down—see below for
more on how text is measured.) Thus, our paintComponent method looks like this:

class NotHelloWorldPanel extends JPanel
{
 public void paintComponent(Graphics g)
 {
 . . . // see below

 g.drawString("Not a Hello, World program",
 MESSAGE_X, MESSAGE_Y);
 }

 public static final int MESSAGE_X = 75;
 public static final int MESSAGE_Y = 100;
}

However, this paintComponent method is not complete. The NotHelloWorldPanel class
extends the JPanel class, which has its own idea how to paint the panel, namely, to fill it with
the background color. To make sure that the superclass does its part of the job, we must call
super.paintComponent before doing any painting on our own.

class NotHelloWorldPanel extends JPanel
{
 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 . . . // code for drawing will go here
 }
}

Core Java™ 2: Volume I–Fundamentals

324

NOTE

If you have programmed for the old AWT, you will have noticed quite
a few differences. In the old AWT, you drew onto a Canvas, a subclass
of Component just for drawing. In Swing, there is no special canvas
class. You can draw onto any Swing component, but if you want to
separate a drawing area from the remainder of your user interface, you
should just render the drawing on the surface of a JPanel subclass.

More importantly, you no longer use the paint method for drawing. In
fact, if you override paint, then your program will not work correctly.
You then interfere with the JComponent.paint method which carries
out a number of complex actions, such as setting up the graphics context
and image buffering. In Swing, you should always use
the paintComponent method.

In the old AWT, you may have defined the update method to call paint
without erasing the window to avoid screen flicker. This is no longer
necessary in Swing. The Swing components use buffering for flicker-free
painting.

Example 7-3 shows the complete code.

Example 7-3 NotHelloWorld.java

 1. import javax.swing.*;
 2. import java.awt.*;
 3.
 4. public class NotHelloWorld
 5. {
 6. public static void main(String[] args)
 7. {
 8. NotHelloWorldFrame frame = new NotHelloWorldFrame();
 9. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10. frame.show();
11. }
12. }
13.
14. /**
15. A frame that contains a message panel
16. */
17. class NotHelloWorldFrame extends JFrame
18. {
19. public NotHelloWorldFrame()
20. {
21. setTitle("NotHelloWorld");
22. setSize(WIDTH, HEIGHT);
23.
24. // add panel to frame
25.
26. NotHelloWorldPanel panel = new NotHelloWorldPanel();
27. Container contentPane = getContentPane();
28. contentPane.add(panel);
29. }

Core Java™ 2: Volume I–Fundamentals

325

30.
31. public static final int WIDTH = 300;
32. public static final int HEIGHT = 200;
33. }
34.
35. /**
36. A panel that displays a message.
37. */
38. class NotHelloWorldPanel extends JPanel
39. {
40. public void paintComponent(Graphics g)
41. {
42. super.paintComponent(g);
43.
44. g.drawString("Not a Hello, World program",
45. MESSAGE_X, MESSAGE_Y);
46. }
47.
48. public static final int MESSAGE_X = 75;
49. public static final int MESSAGE_Y = 100;
50. }

javax.swing.JFrame

• Container getContentPane()

returns the content pane object for this JFrame.

java.awt.Component

• void repaint()

causes a repaint of the component “as soon as possible.”

• public void repaint(int x, int y, int width, int height)

causes a repaint of a part of the component “as soon as possible.”

javax.swing.JComponent

• void paintComponent(Graphics g)

Core Java™ 2: Volume I–Fundamentals

326

Override this method to describe how your component needs to be painted.

2D Shapes

Since JDK version 1.0, the Graphics class had methods to draw lines, rectangles, ellipses,
and so on. But those drawing operations are very limited. For example, you cannot vary the
line thickness and you cannot rotate the shapes.

Beginning with SDK version 2.0, J2SE includes the Java 2D library which implements a very
powerful set of graphical operations. In this chapter, we will only look at the basics of the
Java 2D library—see the Advanced AWT chapter in Volume 2 for more information on the
advanced features.

To draw shapes in the Java 2D library, you need to obtain an object of the Graphics2D class.
This class is a subclass of the Graphics class. If you use a version of the SDK that is Java 2D
enabled, methods such as paintComponent automatically receive an object of the
Graphics2D class. Simply use a cast, as follows:

public void paintComponent(Graphics g)
{
 Graphics2D g2 = (Graphics2D)g;
 . . .
}

The Java 2D library organizes geometric shapes in an object-oriented fashion. In particular,
there are classes to represent lines, rectangles and ellipses:

Line2D
Rectangle2D
Ellipse2D

These classes all implement the Shape interface.

NOTE

The Java 2D library supports more complex shapes—in particular, arcs,
quadratic and cubic curves, and general paths. See Volume 2 for more
information.

To draw a shape, you first create an object of a class that implements the Shape interface and
then call the draw method of the Graphics2D class. For example,

Rectangle2D rect = . . .;
g2.draw(rect);

Core Java™ 2: Volume I–Fundamentals

327

NOTE

Before the Java 2D library appeared, programmers used methods of the
Graphics class such as drawRectangle to draw shapes. Superficially,
the old-style method calls look a bit simpler. However, by using the Java
2D library, you keep your options open—you can later enhance your
drawings with some of the many tools that the Java 2D library supplies.

There is a complexity when using the Java 2D shape classes. Unlike the 1.0 draw methods,
which used integer pixel coordinates, the Java 2D shapes use floating-point coordinates. In
many cases, that is a great convenience because it allows you to specify your shapes in
coordinates that are meaningful to you (such as millimeters or inches) and then translate to
pixels. The Java 2D library uses single-precision float quantities for many of its internal
floating-point calculations. Single precision is sufficient—after all, the ultimate purpose of the
geometric computations is to set pixels on the screen or printer. As long as any roundoff
errors stay within one pixel, the visual outcome is not affected. Furthermore, float
computations are faster on some platforms, and float values require half the storage of
double values.

However, manipulating float values is sometimes inconvenient for the programmer because
the Java programming language is adamant about requiring casts when converting double
values into float values. For example, consider the following statement:

float f = 1.2; // Error

This statement does not compile because the constant 1.2 has type double, and the compiler
is nervous about loss of precision. The remedy is to add an F suffix to the floating-point
constant:

float f = 1.2F; // Ok

Now consider this statement:

Rectangle2D r = . . .
float f = r.getWidth(); // Error

This statement does not compile either, for the same reason. The getWidth method returns a
double. This time, the remedy is to provide a cast:

float f = (float)r.getWidth(); // Ok

Because the suffixes and casts are a bit of a pain, the designers of the 2D library decided to
supply two versions of each shape class: one with float coordinates for frugal programmers,
and one with double coordinates for the lazy ones. (In this book, we'll fall into the second
camp and use double coordinates whenever we can.)

The library designers chose a curious, and initially confusing, method for packaging these
choices. Consider the Rectangle2D class. This is an abstract class with two concrete
subclasses, which are also static inner classes:

Core Java™ 2: Volume I–Fundamentals

328

Rectangle2D.Float
Rectangle2D.Double

Figure 7-8 shows the inheritance diagram.

Figure 7-8. 2D rectangle classes

It is best to try to ignore the fact that the two concrete classes are static inner classes—that is
just a gimmick to avoid names such as FloatRectangle2D and DoubleRectangle2D. (For
more information on static inner classes, see Chapter 6.)

When you construct a Rectangle2D.Float object, you supply the coordinates as float
numbers. For a Rectangle2D.Double object, you supply them as double numbers.

Rectangle2D.Float floatRect = new Rectangle2D.Float(10.0F,
 25.0F, 22.5F, 20.0F);
Rectangle2D.Double doubleRect = new Rectangle2D.Double(10.0,
 25.0, 22.5, 20.0);

Actually, since both Rectangle2D.Float and Rectangle2D.Double extend the common
Rectangle2D class, and the methods in the subclasses simply override methods in the
Rectangle2D superclass, there is no benefit in remembering the exact shape type. You can
simply use Rectangle2D variables to hold the rectangle references.

Rectangle2D floatRect = new Rectangle2D.Float(10.0F,
 25.0F, 22.5F, 20.0F);
Rectangle2D doubleRect = new Rectangle2D.Double(10.0,
 25.0, 22.5, 20.0);

That is, you only need to use the pesky inner classes when you construct the shape objects.

Core Java™ 2: Volume I–Fundamentals

329

The construction parameters denote the top-left corner, width, and height of the rectangle.

NOTE

Actually, the Rectangle2D.Float class has one additional method that
is not inherited from Rectangle2D, namely, setRect(float x, float
y, float h, float w). You lose that method if you store
the Rectangle2D.Float reference in a Rectangle2D variable. But it is
not a big loss—the Rectangle2D class has a setRect method with
double parameters.

The Rectangle2D methods use double parameters and return values. For example,
the getWidth method returns a double value, even if the width is stored as a float in
a Rectangle2D.Float object.

TIP

Simply use the Double shape classes to avoid dealing with float values
altogether. However, if you are constructing thousands of shape objects,
then you can consider using the Float classes to conserve memory.

What we just discussed for the Rectangle2D classes holds for the other shape classes as well.
Furthermore, there is a Point2D class with subclasses Point2D.Float and Point2D.Double.
Here is how to make a point object.

Point2D p = new Point2D.Double(10, 20);

TIP

The Point2D class is very useful—it is more object oriented to work
with Point2D objects than with separate x- and y- values. Many
constructors and methods accept Point2D parameters. We suggest that
you use Point2D objects when you can—they usually make geometric
computations easier to understand.

The classes Rectangle2D and Ellipse2D both inherit from a common superclass
RectangularShape. Admittedly, ellipses are not rectangular, but they have a bounding
rectangle (see Figure 7-9).

Core Java™ 2: Volume I–Fundamentals

330

Figure 7-9. The bounding rectangle of an ellipse

The RectangularShape class defines over 20 methods that are common to these shapes,
among them such useful methods as getWidth, getHeight, getCenterX, and getCenterY
(but sadly, at the time of this writing, not a getCenter method that returns the center as a
Point2D object).

Finally, there are a couple of legacy classes from JDK 1.0 that have been fit into the shape
class hierarchy. The Rectangle and Point classes, which store a rectangle and a point with
integer coordinates, extend the Rectangle2D and Point2D classes.

Figure 7-10 shows the relationships between the shape classes. However, the Double and
Float subclasses are omitted. Legacy classes are marked with a gray fill.

Figure 7-10. Relationships between the shape classes

Core Java™ 2: Volume I–Fundamentals

331

Rectangle2D and Ellipse2D objects are simple to construct. You need to specify

• The x- and y-coordinates of the top-left corner;
• The width and height.

For ellipses, these refer to the bounding rectangle.

For example,

Ellipse2D e = new Ellipse2D.Double(150, 200, 100, 50);

constructs an ellipse that is bounded by a rectangle with the top-left corner at (150, 200),
width 100, and height 50.

However, sometimes you don't have the top-left corner readily available. It is quite common
to have two diagonal corner points of a rectangle, but perhaps they aren't the top-left and
bottom-right corners. You can't simply construct a rectangle as

Rectangle2D rect = new Rectangle2D.Double(px, py,
 qx - px, qy - py); // Error

If p isn't the top-left corner, one or both of the coordinate differences will be negative and the
rectangle will come out empty. In that case, first create a blank rectangle and use the
setFrameFromDiagonal method.

Rectangle2D rect = new Rectangle2D.Double();
rect.setFrameFromDiagonal(px, py, qx, qy);

Or, even better, if you know the corner points as Point2D objects p and q,

rect.setFrameFromDiagonal(p, q);

When constructing an ellipse, you usually know the center, width, and height, and not the
corner points of the bounding rectangle (which don't even lie on the ellipse). There is a
setFrameFromCenter method that uses the center point, but it still requires one of the four
corner points. Thus, you will usually end up constructing an ellipse as follows:

Ellipse2D ellipse = new Ellipse2D.Double(centerX - width / 2,
 centerY - height / 2, width, height);

To construct a line, you supply the start and end points, either as Point2D objects or as pairs
of numbers:

Line2D line = new Line2D.Double(start, end);

or

Line2D line = new Line2D.Double(startX, startY, endX, endY);

The program in Example 7-4 draws

• A rectangle;

Core Java™ 2: Volume I–Fundamentals

332

• The ellipse that is enclosed in the rectangle;
• A diagonal of the rectangle;
• A circle that has the same center as the rectangle.

Figure 7-11 shows the result.

Figure 7-11. Rectangles and ellipses

Example 7-4 DrawTest.java

 1. import java.awt.*;
 2. import java.awt.geom.*;
 3. import javax.swing.*;
 4.
 5. public class DrawTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. DrawFrame frame = new DrawFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame that contains a panel with drawings
17. */
18. class DrawFrame extends JFrame
19. {
20. public DrawFrame()

Core Java™ 2: Volume I–Fundamentals

333

21. {
22. setTitle("DrawTest");
23. setSize(WIDTH, HEIGHT);
24.
25. // add panel to frame
26.
27. DrawPanel panel = new DrawPanel();
28. Container contentPane = getContentPane();
29. contentPane.add(panel);
30. }
31.
32. public static final int WIDTH = 400;
33. public static final int HEIGHT = 400;
34. }
35.
36. /**
37. A panel that displays rectangles and ellipses.
38. */
39. class DrawPanel extends JPanel
40. {
41. public void paintComponent(Graphics g)
42. {
43. super.paintComponent(g);
44. Graphics2D g2 = (Graphics2D)g;
45.
46. // draw a rectangle
47.
48. double leftX = 100;
49. double topY = 100;
50. double width = 200;
51. double height = 150;
52.
53. Rectangle2D rect = new Rectangle2D.Double(leftX, topY,
54. width, height);
55. g2.draw(rect);
56.
57. // draw the enclosed ellipse
58.
59. Ellipse2D ellipse = new Ellipse2D.Double();
60. ellipse.setFrame(rect);
61. g2.draw(ellipse);
62.
63. // draw a diagonal line
64.
65. g2.draw(new Line2D.Double(leftX, topY,
66. leftX + width, topY + height));
67.
68. // draw a circle with the same center
69.
70. double centerX = rect.getCenterX();
71. double centerY = rect.getCenterY();
72. double radius = 150;
73.
74. Ellipse2D circle = new Ellipse2D.Double();
75. circle.setFrameFromCenter(centerX, centerY,
76. centerX + radius, centerY + radius);
77. g2.draw(circle);
78. }
79. }

Core Java™ 2: Volume I–Fundamentals

334

java.awt.geom.RectangularShape

• double getCenterX()
• double getCenterY()
• double getMinX()
• double getMinY()
• double getMaxX()
• double getMaxY()

return the center, minimum, or maximum x- or y-value of the enclosing rectangle.

• double getWidth()
• double getHeight()

return the width or height of the enclosing rectangle.

• double getX()
• double getY()

return the x- or y-coordinate of the top-left corner of the enclosing rectangle.

java.awt.geom.Rectangle2D.Double

• Rectangle2D.Double(double x, double y, double w, double h)

constructs a rectangle with the given top-left corner, width, and height.

java.awt.geom.Rectangle2D.Float

• Rectangle2D.Float(float x, float y, float w, float h)

constructs a rectangle with the given top-left corner, width, and height.

Core Java™ 2: Volume I–Fundamentals

335

java.awt.geom.Ellipse2D.Double

• Ellipse2D.Double(double x, double y, double w, double h)

constructs an ellipse whose bounding rectangle has the given top-left corner, width,
and height.

java.awt.geom.Point2D.Double

• Point2D.Double(double x, double y)

constructs a point with the given coordinates.

java.awt.geom.Line2D.Double

• Line2D.Double(Point2D start, Point2D end)
• Line2D.Double(double startX, double startY, double endX, double endY)

construct a line with the given start and end points.

Colors

The setPaint method of the Graphics2D class lets you select a color that is used for all
subsequent drawing operations on the graphics context or component. To draw in multiple
colors, you select a color, draw, then select another color, and draw again.

You define colors with the Color class. The java.awt.Color class offers predefined
constants for the 13 standard colors listed in Table 7-1.

For example,

g2.setPaint(Color.red);
g2.drawString("Warning!", 100, 100);

You can specify a custom color by creating a Color object by its red, green, and blue
components. Using a scale of 0–255 (that is, one byte) for the redness, blueness, and
greenness, call the Color constructor like this:

Core Java™ 2: Volume I–Fundamentals

336

Color(int redness, int greenness, int blueness)

Here is an example of setting a custom color:

g.setPaint(new Color(0, 128, 128)); // a dull blue-green
g.drawString("Welcome!", 75, 125);

NOTE

In addition to solid colors, you can select more complex “paint” settings,
such as varying hues or images. See the Advanced AWT chapter in
Volume 2 for more details. If you use a Graphics object instead of a
Graphics2D object, you need to use the setColor method to set colors.

Table 7-1. Standard colors
black green red
blue lightGray white
cyan magenta yellow
darkGray orange
gray pink

To set the background color, you use the setBackground method of the Component class, an
ancestor of JPanel. In fact, you should set the background before displaying the frame for the
first time.

MyPanel p = new MyPanel();
p.setBackground(Color.white);
contentPane.add(p);

There is also a setForeground method. It specifies the default color that is used for drawing
on the component.

TIP

The brighter() and darker() methods of the Color class produce, as
their names suggest, either brighter or darker versions of the current
color. Using the brighter method is also a good way to highlight an
item. Actually, brighter() is just a little bit brighter. To make a color
really stand out, apply it three times:
c.brighter().brighter().brighter().

Java gives you predefined names for many more colors in its SystemColor class. The
constants in this class encapsulate the colors used for various elements of the user's system.
For example,

frame.setBackground(SystemColor.window)

Core Java™ 2: Volume I–Fundamentals

337

sets the background color of the frame to the default used by all windows on the user's
desktop. (The background is filled in whenever the window is repainted.) Using the colors in
the SystemColor class is particularly useful when you want to draw user interface elements
so that the colors match those already found on the user's desktop. Table 7-2 lists the system
color names and their meanings.

Table 7-2. System colors
desktop Background color of desktop
activeCaption Background color for captions
activeCaptionText Text color for captions
activeCaptionBorder Border color for caption text
inactiveCaption Background color for inactive captions
inactiveCaptionText Text color for inactive captions
inactiveCaptionBorder Border color for inactive captions
window Background for windows
windowBorder Color of window border frame
windowText Text color inside windows
menu Background for menus
menuText Text color for menus
text Background color for text
textText Text color for text
textInactiveText Text color for inactive controls
textHighlight Background color for highlighted text
textHighlightText Text color for highlighted text
control Background color for controls
controlText Text color for controls
controlLtHighlight Light highlight color for controls
controlHighlight Highlight color for controls
controlShadow Shadow color for controls
controlDkShadow Dark shadow color for controls
scrollbar Background color for scrollbars
info Background color for spot-help text
infoText Text color for spot-help text

java.awt.Color

• Color(int r, int g, int b)

creates a color object.

Parameters: r The red value (0–255)
 g The green value (0–255)
 b The blue value (0–255)

Core Java™ 2: Volume I–Fundamentals

338

java.awt.Graphics

• void setColor(Color c)

changes the current color. All subsequent graphics operations will use the new color.

Parameters: c The new color

java.awt.Graphics2D

• void setPaint(Paint p)

Sets the paint attribute of this graphics context. The Color class implements the Paint
interface. Therefore, you can use this method to set the paint attribute to a solid color.

java.awt.Component

• void setBackground(Color c)

sets the background color.

Parameters: c The new background color

• void setForeground(Color c)

sets the foreground color.

Parameters: c The new foreground color

Filling Shapes

You can fill the interiors of closed shapes (such as rectangles or ellipses) with a color (or,
more generally, the current paint setting). Simply call fill instead of draw:

Rectangle2D rect = . . .;
g2.setPaint(Color.red);
g2.fill(rect); // fills rect with red color

Core Java™ 2: Volume I–Fundamentals

339

The program in Example 7-5 fills a rectangle in red, then an ellipse with the same boundary in
a dull green (see Figure 7-12).

Figure 7-12. Filled rectangles and ellipses

Example 7-5 FillTest.java

 1. import java.awt.*;
 2. import java.awt.geom.*;
 3. import javax.swing.*;
 4.
 5. public class FillTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. FillFrame frame = new FillFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame that contains a panel with drawings
17. */
18. class FillFrame extends JFrame
19. {
20. public FillFrame()
21. {
22. setTitle("FillTest");
23. setSize(WIDTH, HEIGHT);

Core Java™ 2: Volume I–Fundamentals

340

24.
25. // add panel to frame
26.
27. FillPanel panel = new FillPanel();
28. Container contentPane = getContentPane();
29. contentPane.add(panel);
30. }
31.
32. public static final int WIDTH = 400;
33. public static final int HEIGHT = 400;
34. }
35.
36. /**
37. A panel that displays filled rectangles and ellipses
38. */
39. class FillPanel extends JPanel
40. {
41. public void paintComponent(Graphics g)
42. {
43. super.paintComponent(g);
44. Graphics2D g2 = (Graphics2D)g;
45.
46. // draw a rectangle
47.
48. double leftX = 100;
49. double topY = 100;
50. double width = 200;
51. double height = 150;
52.
53. Rectangle2D rect = new Rectangle2D.Double(leftX, topY,
54. width, height);
55. g2.setPaint(Color.red);
56. g2.fill(rect);
57.
58. // draw the enclosed ellipse
59.
60. Ellipse2D ellipse = new Ellipse2D.Double();
61. ellipse.setFrame(rect);
62. g2.setPaint(new Color(0, 128, 128)); // a dull blue-green
63. g2.fill(ellipse);
64. }
65. }

Text and Fonts

The “Not a Hello, World” program at the beginning of this chapter displayed a string in
the default font. Often, you want to show text in a different font. You specify a font by its font
face name (or font name for short). A font face name is composed of a font family name, such
as “Helvetica,” and an optional suffix such as “Bold.” For example, the font faces “Helvetica”
and “Helvetica Bold” are both considered to be part of the family named “Helvetica.”

To find out which fonts are available on a particular computer, call
the getAvailableFontFamilyNames method of the GraphicsEnvironment class.
The method returns an array of strings that contains the names of all available fonts. To obtain
an instance of the GraphicsEnvironment class that describes the graphics environment of
the user's system, use the static getLocalGraphicsEnvironment method. Thus, the following
program gives you a printout of the names of all fonts on your system:

Core Java™ 2: Volume I–Fundamentals

341

import java.awt.*;

public class ListFonts
{
 public static void main(String[] args)
 {
 String[] fontNames = GraphicsEnvironment
 .getLocalGraphicsEnvironment()
 .getAvailableFontFamilyNames();
 for (int i = 0; i < fontNames.length; i++)
 System.out.println(fontNames[i]);
 }
}

On one system, the list starts out like this:

Abadi MT Condensed Light
Arial
Arial Black
Arial Narrow
Arioso
Baskerville
Binner Gothic
. . .

and goes on for another 70 fonts or so.

NOTE

The SDK documentation claims that suffixes such as “heavy,”
“medium,” “oblique,” or “gothic” are variations inside within a single
family. In our experience, that is not the case. The “Bold,” “Italic,” and
“Bold Italic” suffixes are recognized as family variations, but other
suffixes aren't.

Unfortunately, there is no absolute way of knowing whether a user has a font with a particular
“look” installed. Font names can be trademarked, and font designs can be copyrighted in
some jurisdictions. Thus, the distribution of fonts often involves royalty payments to a font
foundry. Of course, just as there are inexpensive imitations of famous perfumes, there are
lookalikes for name-brand fonts. For example, the Helvetica and Times Roman imitations that
are shipped with Windows are called Arial and Times New Roman.

To establish a common baseline, the AWT defines five logical font names:

SansSerif
Serif
Monospaced
Dialog
DialogInput

These font names are always mapped to fonts that actually exist on the client machine. For
example, on a Windows system, SansSerif is mapped to Arial.

Core Java™ 2: Volume I–Fundamentals

342

To draw characters in a font, you must first create an object of the class Font. You specify the
font name, the font style, and the point size. Here is an example of how you construct a Font
object:

Font helvb14 = new Font("Helvetica", Font.BOLD, 14);

The third argument is the point size.

You can use a logical font name in the place of a font face name in the Font constructor. You
specify the style (plain, bold, italic, or bold italic) by setting the second Font constructor
argument to one of the following values:

Font.PLAIN
Font.BOLD
Font.ITALIC
Font.BOLD + Font.ITALIC

Here is an example:

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14)

NOTE

Prior versions of Java used the names Helvetica, TimesRoman, Courier,
and ZapfDingbats as logical font names. For backward compatibility,
these font names are still treated as logical font names even though
Helvetica is really a font face name and TimesRoman and ZapfDingbats
are not font names at all—the actual font face names are “Times Roman”
and “Zapf Dingbats.”

TIP

Starting with J2SE version 1.3, you can read TrueType fonts. You need
an input stream for the font—typically from a disk file or URL. (See
Chapter 12 for more information on streams.) Then call the static
Font.createFont method:

URL url = new URL(http://www.fonts.com/Wingbats.ttf");
InputStream in = url.openStream();
Font f = Font.createFont(Font.TRUETYPE_FONT, in);

The font is plain with a font size of 1 point. Use the deriveFont method
to get a font of the desired size:

Font df = f.deriveFont(14);

The Java fonts contain the usual ASCII characters as well as symbols. For example, if you
print the character '\u2297' in the Dialog font, then you get a ? character. Only those

Core Java™ 2: Volume I–Fundamentals

343

symbols that are defined in the Unicode character set are available. (See the sidebar at the end
of this section for more information about available symbols and adding more fonts.)

Here's the code that displays the string “Hello, World!” in the standard sans serif font on your
system, using 14-point bold type:

Font sansbold14 = new Font("SansSerif", Font.BOLD, 14);
g2.setFont(sansbold14);
String message = "Hello, World!";
g2.drawString(message, 75, 100);

Next, let's center the string in its panel rather than drawing it at an arbitrary position. We need
to know the width and height of the string in pixels. These dimensions depend on three
factors:

• The font used (in our case, sans serif, bold, 14-point);
• The string (in our case, "Hello, World!");
• The device on which the font is drawn (in our case, the user's screen).

To obtain an object that represents the font characteristics of the screen device, you call the
getFontRenderContext method of the Graphics2D class. It returns an object of the
FontRenderContext class. You simply pass that object to the getStringBounds method of
the Font class:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

The getStringBounds method returns a rectangle that encloses the string.

To interpret the dimensions of that rectangle, it is helpful to consider some basic typesetting
terms (see Figure 7-13). The baseline is the imaginary line where, for example, the bottom of
a character like “e” rests. The ascent is the distance from the baseline to the top of an
ascender, which is the upper part of a letter like “b” or “k,” or an uppercase character. The
descent is the distance from the baseline to a descender, which is the lower portion of a letter
like “p” or “g.”

Figure 7-13. Typesetting terms illustrated

Leading is the space between the descent of one line and the ascent of the next line. (The term
has its origin from the strips of lead that typesetters used to separate lines.) The height of
a font is the distance between successive baselines, which is the same as descent + leading +
ascent.

Core Java™ 2: Volume I–Fundamentals

344

The width of the rectangle that the getStringBounds method returns is the horizontal extent
of the string. The height of the rectangle is the sum of ascent and descent. The rectangle has
its origin at the baseline of the string. The top y-coordinate of the rectangle is negative. Thus,
you can obtain string width, height, ascent, and descent as follows:

double stringWidth = bounds.getWidth();
double stringHeight = bounds.getHeight();
double ascent = -bounds.getY();
double descent = bounds.getHeight() + bounds.getY();

If you need to know the leading or total height, you need to use the get-LineMetrics method
of the Font class. That method returns an object of the LineMetrics class, which has
methods to obtain the leading and font height:

LineMetrics metrics = f.getLineMetrics(message, context);
float fontHeight = metrics.getHeight();
float leading = metrics.getLeading();

The following code uses all this information to center a string in its surrounding panel:

FontRenderContext context = g2.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, context);

// (x,y) = top left corner of text
double x = (getWidth() - bounds.getWidth()) / 2;
double y = (getHeight() - bounds.getHeight()) / 2;

// add ascent to y to reach the baseline
double ascent = -bounds.getY();
double baseY = y + ascent; g2
drawString(message, (int)x, (int)(baseY));

To understand the centering, consider that getWidth() returns the width of the panel.
A portion of that width, namely bounds.getWidth(), is occupied by the message string.
The remainder should be equally distributed on both sides. Therefore the blank space on each
side is half of the difference. The same reasoning applies to the height.

Finally, the program draws the baseline and the bounding rectangle.

Figure 7-14 shows the screen display; Example 7-6 is the program listing.

Core Java™ 2: Volume I–Fundamentals

345

Figure 7-14. Drawing the baseline and string bounds

Example 7-6 FontTest.java

 1. import java.awt.*;
 2. import java.awt.font.*;
 3. import java.awt.geom.*;
 4. import javax.swing.*;
 5.
 6. public class FontTest
 7. {
 8. public static void main(String[] args)
 9. {
10. FontFrame frame = new FontFrame();
11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12. frame.show();
13. }
14. }
15.
16. /**
17. A frame with a text message panel
18. */
19. class FontFrame extends JFrame
20. {
21. public FontFrame()
22. {
23. setTitle("FontTest");
24. setSize(WIDTH, HEIGHT);
25.
26. // add panel to frame
27.
28. FontPanel panel = new FontPanel();
29. Container contentPane = getContentPane();
30. contentPane.add(panel);
31. }
32.
33. public static final int WIDTH = 300;
34. public static final int HEIGHT = 200;
35. }
36.

Core Java™ 2: Volume I–Fundamentals

346

37. /**
38. A panel that shows a centered message in a box.
39. */
40. class FontPanel extends JPanel
41. {
42. public void paintComponent(Graphics g)
43. {
44. super.paintComponent(g);
45. Graphics2D g2 = (Graphics2D)g;
46.
47. String message = "Hello, World!";
48.
49. Font f = new Font("Serif", Font.BOLD, 36);
50. g2.setFont(f);
51.
52. // measure the size of the message
53.
54. FontRenderContext context = g2.getFontRenderContext();
55. Rectangle2D bounds = f.getStringBounds(message, context);
56.
57. // set (x,y) = top left corner of text
58.
59. double x = (getWidth() - bounds.getWidth()) / 2;
60. double y = (getHeight() - bounds.getHeight()) / 2;
61.
62. // add ascent to y to reach the baseline
63.
64. double ascent = -bounds.getY();
65. double baseY = y + ascent;
66.
67. // draw the message
68.
69. g2.drawString(message, (int)x, (int)(baseY));
70.
71. g2.setPaint(Color.gray);
72.
73. // draw the baseline
74.
75. g2.draw(new Line2D.Double(x, baseY,
76. x + bounds.getWidth(), baseY));
77.
78. // draw the enclosing rectangle
79.
80. Rectangle2D rect = new Rectangle2D.Double(x, y,
81. bounds.getWidth(),
82. bounds.getHeight());
83. g2.draw(rect);
84. }
85. }

java.awt.Font

• Font(String name, int style, int size)

creates a new font object.

Core Java™ 2: Volume I–Fundamentals

347

Parameters: name The font name. This is either a font face name (such as “Helvetica Bold”)
or a logical font name (such as “Serif”, “SansSerif”)

 style The style (Font.PLAIN, Font.BOLD, Font.ITALIC or Font.BOLD +
Font.ITALIC)

 size The point size (for example, 12)

• String getFontName()

gets the font face name (such as “Helvetica Bold”).

• String getFamily()

gets the font family name (such as “Helvetica”).

• String getName()

gets the logical name (such as “SansSerif”) if the font was created with a logical font
name; otherwise gets the font face name.

• Rectangle2D getStringBounds(String s, FontRenderContext context)

returns a rectangle that encloses the string. The origin of the rectangle falls on
the baseline. The top y-coordinate of the rectangle equals the negative of the ascent.
The height of the rectangle equals the sum of ascent and descent. The width equals
the string width.

• LineMetrics getLineMetrics(String s, FontRenderContext context)

returns a line metrics object to determine the extent of the string.

• Font deriveFont(int style)
• Font deriveFont(float size)
• Font deriveFont(int style, float size)

return a new font that equals this font, except that it has the given size and style.

java.awt.font.LineMetrics

• float getAscent()

gets the font ascent—the distance from the baseline to the tops of uppercase
characters.

• float getDescent()

gets the font descent—the distance from the baseline to the bottoms of descenders.

Core Java™ 2: Volume I–Fundamentals

348

• float getLeading()

gets the font leading—the space between the bottom of one line of text and the top of
the next line.

• float getHeight()

gets the total height of the font—the distance between the two baselines of text
(descent + leading + ascent).

java.awt.Graphics

• void setFont(Font font)

selects a font for the graphics context. That font will be used for subsequent text-
drawing operations.

Parameters: font A font

• void drawString(String str, int x, int y)

draws a string in the current font and color.

Parameters: str The string to be drawn
 x The x-coordinate of the start of the string
 y The y-coordinate of the baseline of the string

java.awt.Graphics2D

• FontRenderContext getFontRenderContext()

gets a font render context that specifies font characteristics in this graphics context.

• void drawString(String str, float x, float y)

draws a string in the current font and color.

Parameters: str The string to be drawn
 x The x-coordinate of the start of the string
 y The y-coordinate of the baseline of the string

Core Java™ 2: Volume I–Fundamentals

349

Fonts and the font.properties File
Sun's Java runtime looks at the font.properties file in the jre/lib directory to
find out which logical fonts are available and which symbol sets are contained in
a specific font. To be able to use more logical fonts in Java than the default ones,
you need to modify this file. Let us look at a typical entry in this file:

serif.0=Times New Roman,ANSI_CHARSET
serif.1=WingDings,SYMBOL_CHARSET,NEED_CONVERTED
serif.2=Symbol,SYMBOL_CHARSET,NEED_CONVERTED
exclusion.serif.0=0100-ffff
fontcharset.serif.1=sun.awt.windows.CharToByteWingDingsfontcharse
t.serif.2=sun.awt.CharToByteSymbolfontchar
set.serif.2=sun.awt.CharToByteSymbol

This means: To render a character in the serif font, first check that it is in the “0”
range, that is, it is not in the excluded area 0100-ffff. If it is not excluded, use
the Times New Roman font to render it. Next, check that the class
sun.awt.windows.CharToByteWingDings will accept the character. This
(undocumented) class extends the (equally undocumented) class
sun.io.CharToByteConverter. There are two key methods in these classes that
you work with. The method call:

boolean canConvert(char)

tests whether Java can convert a character. To actually perform the conversion, you
need to supply two arrays: one for source characters, and one for the target bytes.
Then you call:

int convert(char[] input, int inStart, int inPastEnd,
 byte[] output, int outStart, int outPastEnd)

This method converts the inPastEnd - inStart characters in the array input,
starting from inStart, and places them into the byte array output, starting at
outStart. It also fills out at most outPastEnd - outStart bytes. (You may
wonder why the convert method uses arrays instead of simply converting one
character into a byte. The reason is that in some encoding schemes, such as the
Japanese JIS code, some characters are encoded as single bytes, others as multiple
bytes, with control codes switching between character sets.)

If the canConvert method returns true, then Java will render the character in the
WingDings font. Otherwise, Java tries the Symbol font. If this fails as well, Java
renders the character as a ? (question mark).

Note that font descriptions are dependent on the operating system. The lines in these
examples describe fonts for Windows. In other operating systems, the font
descriptions will be different. For example, in Solaris, the description of the Times
font looks like this:

serif.plain.0=
 -linotype-times-medium-r-normal—*-%d-*-*-p-*-iso8859-1

Core Java™ 2: Volume I–Fundamentals

350

You can add your own fonts to the font.properties file. For example, if you run
Java under Windows, add the following lines:

oldstyle.0=Bookman Old Style,ANSI_CHARSET
exclusion.oldstyle.0=0100-ffff

You can then make a font:

new Font("OldStyle", Font.PLAIN, 12)

You can even add your own font maps. Let us consider the most common case, that
is, when characters in your font are described by single bytes. To add your own font
map:

• Extend the (undocumented and poorly named) class
sun.io.CharToByte8859_1. (ISO 8859-1 is the Latin-1 8-bit character set,
one of ten 8-bit character sets in the ISO 8859 standard. This Java class can
be used as the base class for any Unicode to 8-bit code conversion, not just
Latin-1.)

• Override two methods: canConvert, which returns true for those Unicode
characters that are part of your font, and convert, which converts a character
array into the equivalent byte arrays.

Here is a practical example. Suppose that you have a Russian font in ISO 8859-5
format. Omitting a couple of technical exceptions, the mapping from Unicode to
ISO 8859-5 is simple:

'\u0021'...'\u007E': ch -> ch
'\u0401'...'\u045F': ch -> ch - 0x0360

Here is a converter class that does the conversion.

public class CharToByteRussian extends sun.io.CharToByte8859_1
{
 public boolean canConvert(char ch)
 {
 return 0x0021 <= ch && ch <= 0x007E
 || 0x0401 <= ch && ch <= 0x45F;
 }

 public int convert(char[] input, int inStart, int inPastEnd,
 byte[] output, int outStart, int outPastEnd)
 throws ConversionBufferFullException
 {
 int outIndex = outStart;
 for (int i = inStart; i < inPastEnd; i++)
 {
 char ch = input[i];
 byte b = 0;
 if (0x0021 <= ch && ch <= 0x007E)
 b = (byte)ch;
 if (0x0401 <= ch && ch <= 0x45F)
 b = (byte)(ch - 0x0360);

Core Java™ 2: Volume I–Fundamentals

351

 if (b != 0)
 {
 if (outIndex >= outPastEnd)
 throw new ConversionBufferFullException();
 output[outIndex] = b;
 outIndex++;
 }
 }
 return outIndex - outStart;
 }
}

To add the Russian font to the Java runtime, you need to place the class
CharToByteRussian somewhere on your class path. Then, add the following lines
to font.properties:

russian.0=Cyrillic,SYMBOL_CHARSET,NEED_CONVERTED
fontcharset.russian.0=CharToByteRussian

Images

You have already seen how to build up simple images by drawing lines and shapes. Complex
images, such as photographs, are usually generated externally, for example, with a scanner or
special image-manipulation software. (As you will see in Volume 2, it is also possible to
produce an image, pixel by pixel, and store the result in an array. This procedure is common
for fractal images, for example.)

Once images are stored in local files or someplace on the Net, you can read them into a Java
application and display them on Graphics objects. To read a graphics file into an application,
you use a Toolkit object. A Toolkit object can read in GIF and JPEG files.

TIP

Most image-manipulation programs can convert image formats (such as
Windows bitmaps or icon files) to one of the formats that Java can use.
This conversion will be necessary when you want, for example, to use
standard Windows icons in the setIconImage method to set the icon for
your frames.)

To get a Toolkit object, use the static getDefaultToolkit method of the Toolkit class.
Here is the code to get a local image file from the current user's directory (supply a full
pathname if the image file isn't in the current user's directory):

String name = "blue-ball.gif";
Image image = Toolkit.getDefaultToolkit().getImage(name);

To get an image file from the Net, you must supply the URL. For example,

URL u = new URL("http://www.someplace.com/anImage.gif");
Image image = Toolkit.getDefaultToolkit().getImage(u);

Core Java™ 2: Volume I–Fundamentals

352

Now the variable image contains a reference to an object that encapsulates the GIF file
image.You can display it with the drawImage method of the Graphics class.

public void paintComponent(Graphics g)
{
 . . .
 g.drawImage(image, x, y, null);
}

Example 7-7 takes this a little bit further and tiles the window with the graphics image. The
result looks like the screen shown in Figure 7-15. We do the tiling in the paintComponent
method. We first draw one copy of the image in the top-left corner and then use the copyArea
call to copy it into the entire window:

for (int i = 0; i * imageWidth <= getWidth(); i++)
 for (int j = 0; j * imageHeight <= getHeight(); j++)
 if (i + j > 0)
 g.copyArea(0, 0, imageWidth, imageHeight,
 i * imageWidth, j * imageHeight);

Figure 7-15. Window with tiled graphics image

However, there is a catch. The AWT was written with the assumption that an image may
arrive slowly over a network connection. The first call to the drawImage method recognizes
that the GIF file has not yet been loaded. Instead of loading the file and returning to the caller
when the image is actually loaded, Java spawns a new thread of execution to load the image
and then returns to the caller without actually having completed that task. (See the
Multithreading chapter of Volume 2 for more on threads.)

This is—to say the least—surprising to anyone who expects that a method won't return until it
has done its job. But here, the multithreaded aspect of Java works against your assumptions.
What will happen is that the code in your program runs in parallel with the code to load the
image. Eventually, the image will be loaded and available. Of course, in the meantime, our
code has tiled the entire buffer with copies of a blank image.

There is a mechanism for tracking the image acquisition process. Using this mechanism, you
can be notified when the image size is known, each time that a chunk of the image is ready,
and finally, when the entire image is complete. When you use an Internet browser and look at

Core Java™ 2: Volume I–Fundamentals

353

a web page that contains an image, you can see how these notifications are translated into
actions. An Internet browser lays out a web page as soon as it knows the sizes of the images
in the page. Then it gradually fills in the images, as more detailed information becomes
available. The fourth parameter of the drawImage call, which we set to null, can optionally
point to an ImageObserver object that receives these notifications.

However, we are not interested in incremental rendering. We just want to find out when the
GIF image is completely loaded and then tile the buffer. A special class, called
MediaTracker, makes it easy to program this delay. A media tracker can track the acquisition
of one or more images. (The name “media” suggests that the class should also be able to track
audio files or other media. While such an extension may be available in the future, the current
implementation tracks images only.)

You add an image to a tracker object with the following command:

MediaTracker tracker = new MediaTracker();
Image img = Toolkit.getDefaultToolkit().getImage(name);
int id = 1; // the ID used to track the image loading process
tracker.addImage(img, id);

You can add as many images as you like to a single media tracker. Each of the images should
have a different ID number, but you can choose any numbering that is convenient. To wait for
an image to be loaded completely, you use code like this:

try { tracker.waitForID(id); }
catch (InterruptedException e) {}

The try/catch statements are necessary for a technical reason; we will discuss the general
topic of exception handling in Chapter 12 and the InterruptedException in
the Multithreading chapter of Volume 2. In our sample program, we just insert this code into
the constructor as shown here:

public ImagePanel()
{
 image = Toolkit.getDefaultToolkit().getImage
 ("blue-ball.gif");
 MediaTracker tracker = new MediaTracker(this);
 tracker.addImage(image, 0);
 try { tracker.waitForID(0); }
 catch (InterruptedException e) {}
}

This code has the effect of waiting until the image is loaded completely before more code will
be processed.

If you want to acquire multiple images, then you can add them all to the media tracker object
and wait until they are all loaded. You can achieve this with the following code:

try { tracker.waitForAll(); }
catch (InterruptedException e) {}

Core Java™ 2: Volume I–Fundamentals

354

NOTE

When programming with the basic AWT, you need to work harder to
produce flicker-free images: you need to use buffering. With Swing,
buffering is automatically done for you by default. (You can turn it off
but there is rarely a reason to do so.) If you need to acquire an image for
an AWT component, first assemble your drawing in a background
image, then draw the background image.

Image buffered_image = createImage(width, height);
Graphics bg = buffered_image.getGraphics();
// all drawing commands that use bg fill
// the buffered_image
// . . .
// finally, draw the buffer
g.drawImage(buffered_image, 0, 0, null);
bg.dispose();
buffered_image.flush();

Example 7-7 shows the full source code of the image display program. This concludes our
introduction to Java graphics programming. For more advanced techniques, you will want to
turn to the discussion about 2D graphics and image manipulation in Volume 2.

Example 7-7 ImageTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class ImageTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. ImageFrame frame = new ImageFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with an image panel
17. */
18. class ImageFrame extends JFrame
19. {
20. public ImageFrame()
21. {
22. setTitle("ImageTest");
23. setSize(WIDTH, HEIGHT);
24.
25. // add panel to frame
26.
27. ImagePanel panel = new ImagePanel();
28. Container contentPane = getContentPane();
29. contentPane.add(panel);
30. }
31.

Core Java™ 2: Volume I–Fundamentals

355

32. public static final int WIDTH = 300;
33. public static final int HEIGHT = 200;
34. }
35.
36. /**
37. A panel that displays a tiled image
38. */
39. class ImagePanel extends JPanel
40. {
41. public ImagePanel()
42. {
43. // acquire the image
44.
45. image = Toolkit.getDefaultToolkit().getImage
46. ("blue-ball.gif");
47. MediaTracker tracker = new MediaTracker(this);
48. tracker.addImage(image, 0);
49. try { tracker.waitForID(0); }
50. catch (InterruptedException exception) {}
51. }
52.
53. public void paintComponent(Graphics g)
54. {
55. super.paintComponent(g);
56.
57. int imageWidth = image.getWidth(this);
58. int imageHeight = image.getHeight(this);
59.
60. // draw the image in the upper-left corner
61.
62. g.drawImage(image, 0, 0, null);
63.
64. // tile the image across the panel
65.
66. for (int i = 0; i * imageWidth <= getWidth(); i++)
67. for (int j = 0; j * imageHeight <= getHeight(); j++)
68. if (i + j > 0)
69. g.copyArea(0, 0, imageWidth, imageHeight,
70. i * imageWidth, j * imageHeight);
71. }
72.
73. private Image image;
74. }

java.awt.Toolkit

• Toolkit getDefaultToolkit()

returns the default toolkit.

• Image getImage(String filename)

returns an image that will read its pixel data from a file.

Core Java™ 2: Volume I–Fundamentals

356

Parameters: filename The file containing the image (for example, a GIF or JPEG file)

java.awt.Graphics

• boolean drawImage(Image img, int x, int y, ImageObserver observer)

draws a scaled image. Note: This call may return before the image is drawn.

Parameters: img The image to be drawn
 x The x-coordinate of the upper-left corner
 y The y-coordinate of the upper-left corner
 observer The object to notify of the progress of the rendering process (may be

null)

• boolean drawImage(Image img, int x, int y, int width, int height,
ImageObserver observer)

draws a scaled image. The system scales the image to fit into a region with the given
width and height. Note: This call may return before the image is drawn.

Parameters: img The image to be drawn
 x The x-coordinate of the upper-left corner
 y The y-coordinate of the upper-left corner
 width The desired width of image
 height The desired height of image
 observer The object to notify of the progress of the rendering process (may be

null)

• void copyArea(int x, int y, int width, int height, int dx, int dy)

copies an area of the screen.

Parameters: x The x-coordinate of the upper-left corner of the source area
 y The y-coordinate of the upper-left corner of the source area
 width The width of the source area
 height The height of the source area
 dx The horizontal distance from the source area to the target area
 dy The vertical distance from the source area to the target area

• void dispose()

disposes of this graphics context and releases operating system resources. You should
always dispose of the graphics contexts that you receive from calls to methods such as
Image.getGraphics, but not the ones handed to you by paintComponent.

Core Java™ 2: Volume I–Fundamentals

357

java.awt.Component

• Image createImage(int width, int height)

creates an off-screen image buffer to be used for double buffering.

Parameters: width The width of the image
 height The height of the image

java.awt.Image

• Graphics getGraphics()

gets a graphics context to draw into this image buffer.

• void flush()

releases all resources held by this image object.

java.awt.MediaTracker

• void addImage(Image image, int id)

adds an image to the list of images being tracked. When the image is added, the image
loading process is started.

Parameters: image The image to be tracked
 id The identifier used to later refer to this image

• void waitForID(int id)

waits until all images with the specified ID are loaded.

• void waitForAll()

waits until all images that are being tracked are loaded.

Core Java™ 2: Volume I–Fundamentals

358

Chapter 8. Event Handling
• Basics of Event Handling
• The AWT Event Hierarchy
• Semantic and Low-Level Events in the AWT
• Low-Level Event Types
• Actions
• Multicasting
• The Event Queue

Event handling is of fundamental importance to programs with a graphical user interface. To
implement graphical user interfaces, you must master how Java handles events. This chapter
explains how the Java AWT event model works. You will see how to capture events from the
mouse and the keyboard. This chapter also shows you how to use the simplest GUI elements,
such as buttons. In particular, this chapter discusses how to work with the basic events
generated by these components. The next chapter shows you how to put together the most
common of the components that Swing offers, along with a full coverage of the events they
generate.

The current Java event model is different from the one used in Java 1.0. If you are already
familiar with Java 1.0, you will need to learn a new way of coding: one that bears little, if any,
relation to the way you used to do things. Note, however, that while Sun has said that code
written following the older event model should still work in later versions of Java, moving to
the new event model promises both performance improvements and a greater degree of
flexibility. We only briefly discuss the older event model in this chapter. You can tell the
compiler to flag all lines that use one of the older event handling methods by compiling your
source code with the -deprecation switch. (There is some potential for incompatibility down
the road. Sun has not said they will be supporting the older event model indefinitely. And, of
course, if you use Swing components, then you must use the new event model.)

NOTE

If you need to write applets that can run under old browsers that are still
using Java 1.0, such as Netscape Navigator 2 or 3 or Internet Explorer
before version 4, then you must use the Java 1.0 event model.

Basics of Event Handling

Any operating environment that supports GUIs constantly monitors events such as keystrokes
or mouse clicks. The operating environment reports these events to the programs that are
running. Each program then decides what, if anything, to do in response to these events. In
languages like Visual Basic, the correspondence between events and code is obvious. One
writes code for each specific event of interest and places the code in what is usually called an
event procedure. For example, a Visual Basic button named HelpButton would have a
HelpButton_Click event procedure associated with it, and VB would activate the code in this
procedure in response to that button being clicked. Each Visual Basic user interface

Core Java™ 2: Volume I–Fundamentals

359

component responds to a fixed set of events, and it is impossible to change the events to
which a Visual Basic component responds.

On the other hand, if you use a language like raw C to do event-driven programming, you
need to write the code that checks the event queue constantly for what the operating
environment is reporting. (You usually do this by encasing your code in a giant loop with a
massive switch statement!) This technique is obviously rather ugly, and, in any case, it is
much more difficult to code. The advantage is that the events you can respond to are not as
limited as in languages, like Visual Basic, that go to great lengths to hide the event queue
from the programmer.

Java takes an approach somewhat between the Visual Basic approach and the raw C approach
in terms of power and, therefore, in resulting complexity. Within the limits of the events that
the AWT knows about, you completely control how events are transmitted from the event
sources (such as buttons or scrollbars) to event listeners. You can designate any object to be
an event listener—in practice, you pick an object that can conveniently carry out the desired
response to the event. This event delegation model gives you much more flexibility than is
possible with Visual Basic, where the listener is predetermined, but it requires more code and
is more difficult to untangle (at least until you get used to it).

Event sources have methods that allow you to register event listeners with them. When an
event happens to the source, the source sends a notification of that event to all the listener
objects that were registered for that event.

As one would expect in an object-oriented language like Java, the information about the event
is encapsulated in an event object. In Java, all event objects ultimately derive from the class
java.util.EventObject. Of course, there are subclasses for each event type, such as
ActionEvent and WindowEvent.

Different event sources can produce different kinds of events. For example, a button can send
ActionEvent objects, whereas a window can send WindowEvent objects.

To sum up, here's an overview of how event handling in the AWT works.

• A listener object is an instance of a class that implements a special interface called
(naturally enough) a listener interface.

• An event source is an object that can register listener objects and send them event
objects.

• The event source sends out event objects to all registered listeners when that event
occurs.

• The listener objects will then use the information in the event object to determine their
reaction to the event.

You register the listener object with the source object by using lines of code that follow the
model:

eventSourceObject.addEventListener(eventListenerObject);

For example,

Core Java™ 2: Volume I–Fundamentals

360

ActionListener listener = . . .;
JButton button = new JButton("Ok");
button.addActionListener(listener);

Now the listener object is notified whenever an “action event” occurs in the button. For
buttons, as you might expect, an action event is a button click.

Code like the above requires that the class to which the listener object belongs implements the
appropriate interface (which in this case is the ActionListener interface). As with all
interfaces in Java, implementing an interface means supplying methods with the right
signatures. To implement the ActionListener interface, the listener class must have a
method called actionPerformed that receives an ActionEvent object as a parameter.

class MyListener
 implements ActionListener
{
 . . .
 public void actionPerformed(ActionEvent event)
 {
 // reaction to button click goes here
 . . .
 }
}

Whenever the user clicks the button, the JButton object creates an ActionEvent object and
calls listener.actionPerformed(event) passing that event object. It is possible for
multiple objects to be added as listeners to an event source such as a button. In that case,
the button calls the actionPerformed methods of all listeners whenever the user clicks
the button.

Figure 8-1 shows the interaction between the event source, event listener, and event object.

Core Java™ 2: Volume I–Fundamentals

361

Figure 8-1. Event notification

NOTE

In this chapter, we put particular emphasis on event handling for user
interface events such as button clicks and mouse moves. However,
the basic event handling architecture is not specific to user interfaces.
For example, in the JavaBeans chapter of Volume 2 you will see how to
a component can fire events when its properties change.

Example: Handling a button click

As a way of getting comfortable with the event delegation model, let's work through all
details needed for the simple example of responding to a button click. For this example, we
will want:

Core Java™ 2: Volume I–Fundamentals

362

• A panel populated with three buttons;
• Three listener objects that are added as action listeners to the buttons.

With this scenario, each time a user clicks on any of the buttons on the panel, the associated
listener object then receives an ActionEvent that indicates a button click. In our sample
program, the listener object will then change the background color of the panel.

Before we can show you the program that listens to button clicks, we first need to explain
how to create buttons and how to add them to a panel. (For more on GUI elements, please see
Chapter 9.)

You create a button by specifying a label string, an icon, or both in the button constructor.
Here are two examples:

JButton yellowButton = new JButton("Yellow");
JButton blueButton = new JButton(new ImageIcon("blue-ball.gif"));

Adding buttons to a panel occurs through a call to a method named (quite mnemonically) add.
The add method takes as a parameter the specific component to be added to the container. For
example,

class ButtonPanel extends JPanel
{
 public ButtonPanel()
 {
 JButton yellowButton = new JButton("Yellow");
 JButton blueButton = new JButton("Blue");
 JButton redButton = new JButton("Red");

 add(yellowButton);
 add(blueButton);
 add(redButton);
 }
}

Figure 8-2 shows the result.

Figure 8-2. A panel filled with buttons

Now that you know how to add buttons to a panel, you'll need to add code that lets the panel
listen to these buttons. This requires classes that implement the ActionListener interface,

Core Java™ 2: Volume I–Fundamentals

363

which, as we just mentioned, has one method: actionPerformed, whose signature looks like
this:

public void actionPerformed(ActionEvent event)

NOTE

The ActionListener interface we used in the button example is not
restricted to button clicks. It is used in many separate situations such as:

• When an item is selected from a list box with a double click;
• When a menu item is selected;
• When the enter key is clicked in a text field;
• When a certain amount of time has elapsed for a Timer

component.

You will see more details in this chapter and the next.

The way to use the ActionListener interface is the same in all
situations: the actionPerformed method (which is the only method in
ActionListener) takes an object of type ActionEvent as a parameter.
This event object gives you information about the event that happened.

When a button is clicked, then we want to set the background color of the panel to a particular
color. We store the desired color in our listener class.

class ColorAction implements ActionListener
{
 public ColorAction(Color c)
 {
 backgroundColor = c;
 }

 public void actionPerformed(ActionEvent event)
 {
 // set panel background color
 . . .
 }

 private Color backgroundColor;
}

We then construct one object for each color and set the objects as the button listeners.

ColorAction yellowAction = new ColorAction(Color.yellow);
ColorAction blueAction = new ColorAction(Color.blue);
ColorAction redAction = new ColorAction(Color.red);

yellowButton.addActionListener(yellowAction);
blueButton.addActionListener(blueAction);
redButton.addActionListener(redAction);

Core Java™ 2: Volume I–Fundamentals

364

For example, if a user clicks on the button marked “Yellow,” then the actionPerformed
method of the yellowAction object is called. Its backgroundColor instance field is set to
Color.yellow, and it can now proceed to set the panel's background color.

There is just one remaining issue. The ColorAction object doesn't have access to the panel
variable. You can solve this problem in two ways. You can store the panel in the
ColorAction object and set it in the ColorAction constructor. Or, more conveniently, you
can make ColorAction into an inner class of the ButtonPanel class. Then its methods can
access the outer panel automatically. (For more information on inner classes, see Chapter 6.)

We will follow the latter approach. Here is how you place the ColorAction class inside the
ButtonPanel class.

class ButtonPanel extends JPanel
{
 . . .

 private class ColorAction implements ActionListener
 {
 . . .

 public void actionPerformed(ActionEvent event)
 {
 setBackground(backgroundColor);
 // i.e. outer.setBackground(...)
 repaint();
 // i.e. outer.repaint();
 }

 private Color backgroundColor;
 }
}

Look closely at the actionPerformed method. The ColorAction class doesn't have
setBackground or repaint methods. But the outer ButtonPanel class does. The methods
are invoked on the ButtonPanel object that constructed the inner class objects. (Note again
that outer is not a keyword in the Java programming language. We just use it as an intuitive
symbol for the invisible outer class reference in the inner class object.)

This situation is very common. Event listener objects usually need to carry out some action
that affects other objects. You can often strategically place the listener class inside the class
whose state the listener should modify.

Example 8-1 contains the complete program. Whenever you click one of the buttons,
the appropriate action listener changes the background color of the panel.

Core Java™ 2: Volume I–Fundamentals

365

Example 8-1 ButtonTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class ButtonTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. ButtonFrame frame = new ButtonFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a button panel
17. */
18. class ButtonFrame extends JFrame
19. {
20. public ButtonFrame()
21. {
22. setTitle("ButtonTest");
23. setSize(WIDTH, HEIGHT);
24.
25. // add panel to frame
26.
27. ButtonPanel panel = new ButtonPanel();
28. Container contentPane = getContentPane();
29. contentPane.add(panel);
30. }
31.
32. public static final int WIDTH = 300;
33. public static final int HEIGHT = 200;
34. }
35.
36. /**
37. A panel with three buttons.
38. */
39. class ButtonPanel extends JPanel
40. {
41. public ButtonPanel()
42. {
43. // create buttons
44.
45. JButton yellowButton = new JButton("Yellow");
46. JButton blueButton = new JButton("Blue");
47. JButton redButton = new JButton("Red");
48.
49. // add buttons to panel
50.
51. add(yellowButton);
52. add(blueButton);
53. add(redButton);
54.
55. // create button actions
56.
57. ColorAction yellowAction = new ColorAction(Color.yellow);
58. ColorAction blueAction = new ColorAction(Color.blue);
59. ColorAction redAction = new ColorAction(Color.red);

Core Java™ 2: Volume I–Fundamentals

366

60.
61. // associate actions with buttons
62.
63. yellowButton.addActionListener(yellowAction);
64. blueButton.addActionListener(blueAction);
65. redButton.addActionListener(redAction);
66. }
67.
68. /**
69. An action listener that sets the panel's background color.
70. */
71. private class ColorAction implements ActionListener
72. {
73. public ColorAction(Color c)
74. {
75. backgroundColor = c;
76. }
77.
78. public void actionPerformed(ActionEvent event)
79. {
80. setBackground(backgroundColor);
81. repaint();
82. }
83.
84. private Color backgroundColor;
85. }
86. }

NOTE

If you have programmed graphical user interfaces in Java 1.0, then you
may well be horribly confused after reading this section. In Java 1.0, life
was simple: you didn't need to worry about listeners. Instead, you added
code in methods like action and handleEvent to the classes that
contained the user interface elements. For example, testing a button click
would look like this:

class ButtonPanel
{
 . . .
 public boolean action(Event event, Object arg)
 {
 if (arg.equals("Yellow"))
setBackground(Color.yellow);
 else if (arg.equals("Blue"))
setBackground(Color.blue);
 else if (arg.equals("Red"))
setBackground(Color.red);
 repaint();
 return true;
 }
}

There are two important differences between the new event model and
the older one:

1. In Java 1.0, a button click is always received by the object that

Core Java™ 2: Volume I–Fundamentals

367

contains the button (that is, the panel). Now, information about
the button click is sent only to objects that were added as an
actionListener for the button.

2. In Java 1.0, all events are caught in the action and handleEvent
methods. Now, there are many separate methods (such as
actionPerformed and windowClosing) that can react to events.

For simple programs, the old event model is easier to program (although
whether it is conceptually as simple is another question). But for
complex programs, the old event model has severe limitations. The new
model, while initially more involved, is far more flexible and is
potentially faster since events are sent only to the listeners that are
actually interested in them.

javax.swing.JButton

• JButton(String label)

constructs a button. The label string can be plain text, or, starting with J2SE 1.3,
HTML; for example, "<HTML>Ok</HTML>".

Parameters: label The text you want on the face of the button

• JButton(Icon icon)

constructs a button.

Parameters: icon The icon you want on the face of the button

• JButton(String label, Icon icon)

constructs a button.

Parameters: label The text you want on the face of the button
 icon The icon you want on the face of the button

java.awt.Container

• Component add(Component c)

Core Java™ 2: Volume I–Fundamentals

368

adds a component to this container and adds c.

javax.swing.ImageIcon

• ImageIcon(String filename)

constructs an icon whose image is stored in a file. The image is automatically loaded
with a media tracker (see Chapter 7).

Selecting Event Listeners

You are completely free to designate any object of a class that implements the
ActionListener interface as a button listener. In our example, we use objects of a new class
that was expressly created for carrying out the desired button actions. Many programmers
choose a different strategy and add an actionPerformed method to an existing class. Of
course, that class must implement the ActionListener interface. For example, you can turn
the ButtonPanel into an action listener:

class ButtonPanel extends JPanel
 implements ActionListener
{
 . . .
 public void actionPerformed(ActionEvent event)
 {
 // set background color
 . . .
 }
}

Then the panel sets itself as the listener to all three buttons:

yellowButton.addActionListener(this);
blueButton.addActionListener(this);
redButton.addActionListener(this);

Note that now the three buttons no longer have individual listeners. They share a single
listener object, namely the button panel. Therefore, the actionPerformed method must figure
out which button was clicked.

The getSource method of the EventObject class, the superclass of all other event classes,
will tell you the source of every event. The event source is the object that generated the event
and notified the listener:

Object source = event.getSource();

The actionPerformed method can then check which of the buttons was the source:

Core Java™ 2: Volume I–Fundamentals

369

if (source == yellowButton) . . .
else if (source == blueButton) . . .
else if (source == redButton) . . .

Of course, this approach requires that you keep references to the buttons as instance fields in
the surrounding panel.

CAUTION

Some programmers use a different way to find out the event source in
a listener object that is shared among multiple sources.
The ActionEvent class has a getActionCommand method that returns
the command string associated with this action. For buttons, it turns out
that the command string defaults to being the button label. If you take
this approach, an actionPerformed method contains code like this:

String command = event.getActionCommand();
if (command.equals("Yellow")) . . .;
else if (command.equals("Blue")) . . .;
else if (command.equals("Red")) . . .;

Of course, relying on the button strings is dangerous. It is an easy
mistake to label a button "Gray" and then spell the string slightly
differently in the test:

if (command.equals("Grey")) . . .

And button strings give you grief when the time comes to
internationalize your application. To make the German version with
button labels “Gelb,” “Blau,” and “Rot,” you have to change both
the button labels and the strings in the actionPerformed method.

As you can see, turning the button panel into the action listener isn't really any simpler than
defining an inner class. It also becomes really messy when the panel contains multiple user
interface elements. Nevertheless, this programming strategy is quite widespread. We believe
that many programmers (ourselves included) were initially uncomfortable with inner classes,
mainly because of the mysterious syntax.

Some people dislike inner classes because they feel that a proliferation of classes and objects
makes their programs slower. Let's have a look at that claim. First of all, you don't need a new
class for every user interface component. In our example, all three buttons share the same
listener class. Of course, each of them has a separate listener object. But these objects aren't
large. They each contain a color value and a reference to the panel. And the traditional
solution, with if . . . else statements, also references the same color objects that the
action listeners store, just as local variables and not as instance variables.

We believe the time has come to get used to inner classes. We recommend that you use
dedicated inner classes for event handlers rather than turning existing classes into listeners.
We think that even anonymous inner classes have their place.

Core Java™ 2: Volume I–Fundamentals

370

Here is a good example how anonymous inner classes can actually simplify your code. If you
look at the code of Example 8-1, you will note that each button requires the same treatment:

1. Construct the button with a label string.
2. Add the button to the panel.
3. Construct an action listener with the appropriate color.
4. Add that action listener.

Let's implement a helper method to simplify these tasks:

void makeButton(String name, Color backgroundColor)
{
 JButton button = new JButton(name);
 add(button);
 ColorAction action = new ColorAction(backgroundColor);
 button.addActionListener(action);
}

Then the ButtonPanel constructor simply becomes

public ButtonPanel()
{
 makeButton("yellow", Color.yellow);
 makeButton("blue", Color.blue);
 makeButton("red", Color.red);
}

Now you can make a further simplification. Note that the ColorAction class is only needed
once: in the makeButton method. Therefore, you can make it into an anonymous class:

void makeButton(String name, final Color backgroundColor)
{
 JButton button = new JButton(name);
 add(button);
 button.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 setBackground(backgroundColor);
 repaint();
 }
 });
}

The action listener code has become quite a bit simpler. The actionPerformed method
simply refers to the parameter variable backgroundColor. (As with all local variables that are
accessed in the inner class, the parameter needs to be declared as final.)

No explicit constructor is needed. As you saw in Chapter 6, the inner class mechanism
automatically generates a constructor that stores all local final variables that are used in one
of the methods of the inner class.

Core Java™ 2: Volume I–Fundamentals

371

TIP

Anonymous inner classes can look confusing. But you can get used to
deciphering them if you train your eyes to glaze over the routine code,
like this:

button.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 setBackground(backgroundColor);
 repaint();
 }
 });

That is, the button action is to set the background color and repaint. As
long as the event handler consists of just a few statements, we think this
can be quite readable, particularly if you don't worry about the inner
class mechanics.

java.util.EventObject

• Object getSource()

returns a reference to the object where the event initially occurred.

java.awt.event.ActionEvent

• String getActionCommand()

returns the command string associated with this action event. If the action event
originated from a button, the command string equals the button label, unless it has
been changed with the setActionCommand method.

Example: Changing the Look and Feel

By default, Swing programs use the Metal look and feel. There are two ways to change to a
different look and feel. You can supply a file swing.properties in the jdk/jre/lib
directories that sets the property swing.defaultlaf to the class name of the look and feel
that you want. For example,

Core Java™ 2: Volume I–Fundamentals

372

swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel

Note that the Metal look and feel is located in the javax.swing package. The other look and
feel packages are located in the com.sun.java package and need not be present in every Java
implementation. Currently, for copyright reasons, the Windows and Mac look and feel
packages are only shipped with the Windows and Mac versions of the Java Runtime
Environment.

TIP

Here is a useful tip for testing. Since lines starting with a # character are ignored in
property files, you can supply several look and feel selections in the
swing.properties file and move around the # to select one of them:

#swing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel
swing.defaultlaf=com.sun.java.swing.plaf.motif.MotifLookAndFeel
#swing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel

You must restart your program to switch the look and feel in this way. A Swing
program reads the swing.properties file only once, at startup.

To change the look and feel dynamically, call the static UIManager.setLook-AndFeel
method and give it the name of the look and feel that you want. Then call the static method
SwingUtilities.updateComponentTreeUI to refresh the entire set of components. You
need to supply one component to that method; it will find all others. The
UIManager.setLookAndFeel method may throw a number of exceptions when it can't find
the look and feel that you request, or when there is an error loading it. As always, we ask you
to gloss over the exception handling code and wait until Chapter 11 for a full explanation.

Here is an example showing how you can switch to the Motif look and feel in your program:

String plaf = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";
try
{
 UIManager.setLookAndFeel(plaf);
 SwingUtilities.updateComponentTreeUI(panel);
}
catch(Exception e) { e.printStackTrace(); }

Example 8-2 is a complete program that demonstrates how to switch the look and feel (see
Figure 8-3). The program is very similar to Example 8-1. Following the advice of the
preceding section, we use a helper method makeButton and an anonymous inner class to
specify the button action, namely to switch the look and feel.

Core Java™ 2: Volume I–Fundamentals

373

Figure 8-3. Switching the Look and Feel

There is one fine point to this program. The actionPerformed method of the inner action
listener class needs to pass the this reference of the outer PlafPanel class to
the updateCompnentTreeUI method. Recall from Chapter 6 that the outer object's this
pointer must be prefixed by the outer class name:

SwingUtilities.updateComponentTreeUI(PlafPanel.this);

Note that the “Windows” button will only work on Windows since Sun does not supply
the Windows look and feel on other platforms.

Example 8-2 PlafTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class PlafTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. PlafFrame frame = new PlafFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a button panel for changing look and feel
17. */
18. class PlafFrame extends JFrame
19. {
20. public PlafFrame()
21. {
22. setTitle("PlafTest");
23. setSize(WIDTH, HEIGHT);
24.
25. // add panel to frame
26.
27. PlafPanel panel = new PlafPanel();
28. Container contentPane = getContentPane();

Core Java™ 2: Volume I–Fundamentals

374

29. contentPane.add(panel);
30. }
31.
32. public static final int WIDTH = 300;
33. public static final int HEIGHT = 200;
34. }
35.
36. /**
37. A panel with buttons to change the pluggable look and feel
38. */
39. class PlafPanel extends JPanel
40. {
41. public PlafPanel()
42. {
43. makeButton("Metal",
44. "javax.swing.plaf.metal.MetalLookAndFeel");
45. makeButton("Motif",
46. "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
47. makeButton("Windows",
48. "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
49. }
50.
51. /**
52. Makes a button to change the pluggable look and feel.
53. @param name the button name
54. @param plafName the name of the look and feel class
55. */
56. void makeButton(String name, final String plafName)
57. {
58. // add button to panel
59.
60. JButton button = new JButton(name);
61. add(button);
62.
63. // set button action
64.
65. button.addActionListener(new
66. ActionListener()
67. {
68. public void actionPerformed(ActionEvent event)
69. {
70. // button action: switch to the new look and feel
71. try
72. {
73. UIManager.setLookAndFeel(plafName);
74. SwingUtilities.updateComponentTreeUI
75. (PlafPanel.this);
76. }
77. catch(Exception e) { e.printStackTrace(); }
78. }
79. });
80. }
81. }

Example: Capturing Window Events

Not all events are as simple to handle as button clicks. Here is an example of a more complex
case that we already briefly noted in chapter 7. Prior to the appearance of the EXIT_ON_CLOSE
option in the Java SDK 1.3, programmers had to manually exit the program when the main
frame was closed. In a non-toy program, you will want to do that as well, because you only

Core Java™ 2: Volume I–Fundamentals

375

want to close the program after you checked that the user won't lose work. For example, when
the user closes the frame, you may want to put up a dialog to warn the user if unsaved work is
about to be lost, and only exit the program when the user agrees.

When the program user tries to close a frame window, the JFrame object is the source of a
WindowEvent. If you want to catch that event, you must have an appropriate listener object
and add it to the list of window listeners.

WindowListener listener = . . .;
frame.addWindowListener(listener);

The window listener must be an object of a class that implements the WindowListener
interface. There are actually seven methods in the WindowListener interface. The frame calls
them as the responses to seven distinct events that could happen to a window. The names are
self-explanatory, except that “iconified” is usually called “minimized” under Windows. Here
is the complete WindowListener interface:

public interface WindowListener
{
 void windowOpened(WindowEvent e);
 void windowClosing(WindowEvent e);
 void windowClosed(WindowEvent e);
 void windowIconified(WindowEvent e);
 void windowDeiconified(WindowEvent e);
 void windowActivated(WindowEvent e);
 void windowDeactivated(WindowEvent e);
}

As is always the case in Java, any class that implements an interface must implement all its
methods; in this case, this means implementing seven methods. Recall that we are only
interested in one of these seven methods, namely the windowClosing method.

Of course, we can define a class that implements the interface, add a call to System.exit(0)
in the windowClosing method, and write do-nothing functions for the other six methods:

class Terminator implements WindowListener
{
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}
}

Adapter Classes

Typing code for six methods that don't do anything is the kind of tedious busywork that
nobody likes. To simplify this task, each of the AWT listener interfaces that has more than
one method comes with a companion adapter class that implements all the methods in the

Core Java™ 2: Volume I–Fundamentals

376

interface but does nothing with them. For example, the WindowAdapter class has seven do-
nothing methods. This means the adapter class automatically satisfies the technical
requirements that Java imposes for implementing the associated listener interface. You can
extend the adapter class to specify the desired reactions to some, but not all, of the event types
in the interface. (An interface such as ActionListener that has only a single method does not
need an adapter class.)

Let us make use of the window adapter. We can extend the WindowAdapter class, inherit six
of the do-nothing methods, and override the windowClosing method:

class Terminator extends WindowAdapter
{
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
}

NOTE

You may recall that some programmers like to turn components into
event listeners. But that trick won't work here. You cannot make
MyFrame into a subclass of WindowAdapter since MyFrame already
extends JFrame. Therefore, you cannot simply set the window listener to
this, and you must come up with a new class.

Now you can register an object of type Terminator as the event listener:

WindowListener listener = new Terminator();
frame.addWindowListener(listener);

Now, whenever the frame generates a window event, it passes it to the listener object by
calling one of its seven methods (see Figure 8-4). Six of those methods do nothing; the
windowClosing method calls System.exit(0), terminating the application.

Core Java™ 2: Volume I–Fundamentals

377

Figure 8-4. A window listener

Creating a listener class that extends the WindowAdapter is an improvement, but we can go
even further. There is no need to give a name to the listener object. Simply write

frame.addWindowListener(new Terminator());

But why stop there? We can make the listener class into an anonymous inner class of the
frame.

frame.addWindowListener(new
 WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });

This code does the following:

• Defines a class without a name that extends the WindowAdapter class.
• Adds a windowClosing method to that anonymous class. (As before, this method exits

the program.)

Core Java™ 2: Volume I–Fundamentals

378

• Inherits the remaining six do-nothing methods from WindowAdapter.
• Creates an object of this class. That object does not have a name, either.
• Passes that object to the addWindowListener method.

As we already mentioned, the syntax for using anonymous inner classes for event listeners
takes some getting used to. The payoff is that the resulting code is as short as possible.

NOTE

We want to stress that using an anonymous inner adapter class is purely
technical. Instead of using an anonymous inner class, you can always
define a regular class with a name and then create an object of that
named class.

You will see this code in many example programs. Before the EXIT_ON_CLOSE option came
along, all graphical applications needed to supply it.

The AWT Event Hierarchy

Having given you a taste of how event handling works, we want to turn to a more general
discussion of event handling in Java. As we briefly mentioned earlier, event handling in Java
is object oriented, with all events descending from the EventObject class in the java.util
package. (The common superclass is not called Event since that is the name of the event class
in the old event model. Although the old model is now deprecated, its classes are still a part of
the current AWT.)

The EventObject class has a subclass AWTEvent, which is the parent of all AWT event
classes. Figure 8-5 shows the inheritance diagram of the AWT events.

Core Java™ 2: Volume I–Fundamentals

379

Figure 8-5. Inheritance diagram of the AWT event classes

Some of the Swing components generate event objects of yet more event types; these directly
extend EventObject, not AWTEvent.

You can even add your own custom events by subclassing EventObject or one of the other
event classes, as you will see at the end of this chapter.

The event objects encapsulate information about the event that the event source
communicates to its listeners. When necessary, you can then analyze the event objects that
were passed to the listener object, as we did in the button example with the getSource and
getActionCommand methods.

Some of the AWT event classes are of no practical use for the Java programmer. For example,
the AWT inserts PaintEvent objects into the event queue, but these objects are not delivered
to listeners. Java programmers should override the paintComponent method to control
repainting. Here is a list of those AWT event types that are actually passed to listeners.

ActionEvent ItemEvent
AdjustmentEvent KeyEvent
ComponentEvent MouseEvent
ContainerEvent TextEvent
FocusEvent WindowEvent

You will see examples of all of these event types in this chapter and the next.

Core Java™ 2: Volume I–Fundamentals

380

The javax.swing.event package contains additional events that are specific to Swing
components. We will cover some of them in the next chapter.

There are eleven listener interfaces altogether in the java.awt.event package:

ActionListener KeyListener
AdjustmentListener MouseListener
ComponentListener MouseMotionListener
ContainerListener TextListener
FocusListener WindowListener
ItemListener

You have already seen the ActionListener and WindowListener interface.

Although the javax.swing.event package contains many more listener interfaces that are
specific to Swing user interface components, it still uses the basic AWT listener interfaces
extensively for general event processing.

Seven of the AWT listener interfaces, namely, those that have more than one method, come
with a companion adapter class that implements all the methods in the interface to do
nothing. (The remaining four interfaces have only a single method each, so there is no benefit
in having adapter classes for these interfaces.) For example, the WindowAdapter class has
seven do-nothing methods.

Here is a list of the names of these adapter classes:

ComponentAdapter MouseAdapter
ContainerAdapter MouseMotionAdapter
FocusAdapter WindowAdapter
KeyAdapter

Obviously, there are a lot of classes and interfaces to keep track of—it can all be a bit
overwhelming. Fortunately, the principle is simple. A class that is interested in receiving
events must implement a listener interface. It registers itself with the event source. It then gets
the events that it asked for, and processes them through the methods of the listener interface.

C++ NOTE

People coming from a C/C++ background may be wondering: why
the proliferation of objects, methods, and interfaces needed for event
handling? You are used to doing GUI programming by writing callbacks
with generic pointers or handles. This won't work in Java. The Java event
model is strongly typed: the compiler watches out that events are sent
only to objects that are capable of handling them.

Semantic and Low-Level Events in the AWT

The AWT makes a useful distinction between low-level and semantic events. A semantic
event is one that expresses what the user is doing, such as “clicking that button”; hence,
an ActionEvent is a semantic event. Low-level events are those events that make this

Core Java™ 2: Volume I–Fundamentals

381

possible. In the case of a button click, this is a mouse down, a series of mouse moves, and
a mouse up (but only if the mouse up is inside the button area). Or it might be a keystroke,
which happens if the user selects the button with the tab key and then activates it with the
space bar. Similarly, adjusting a scrollbar is a semantic event, but dragging the mouse is a
low-level event.

There are four semantic event classes in the java.awt.event package:

• ActionEvent (for a button click, a menu selection, selecting a list item, or enter typed
in a text field)

• AdjustmentEvent (the user adjusted a scroll bar)
• ItemEvent (the user made a selection from a set of checkbox or list items)
• TextEvent (the contents of a text field or text area were changed)

There are six low-level event classes:

• ComponentEvent (the component was resized, moved, shown, or hidden); also is the
base class for all low-level events

• KeyEvent (a key was pressed or released)
• MouseEvent (the mouse button was pressed, released, moved, or dragged)
• FocusEvent (a component got focus, or lost focus)
• WindowEvent (the window was activated, deactivated, iconified, deiconified, or

closed)
• ContainerEvent (a component has been added or removed)

Event Handling Summary

Table 8-1 shows all AWT listener interfaces, events, and event sources. Notice that this table
gives a number of events that track the focus of components and the activation of windows—
these concepts are explained in the sections that follow.

Table 8-1. Event handling summary

Interface Methods Parameter/Accessors
Events
Generated By

ActionListener actionPerformed ActionEvent
getActionCommand
getModifiers

AbstractButton
JComboBox
JTextField
Timer

AdjustmentListener adjustmentValueChanged AdjustmentEvent
getAdjustable
getAdjustmentType
getValue

JScrollbar

ItemListener itemStateChanged ItemEvent getItem
getItemSelectable
getStateChange

AbstractButton
JComboBox

TextListener textValueChanged TextEvent
ComponentListener componentMoved

componentHidden
componentResized
componentShown

ComponentEvent
getComponent

Component

Core Java™ 2: Volume I–Fundamentals

382

ContainerListener componentAdded
componentRemoved

ContainerEvent
getChild
getContainer

Container

FocusListener focusGained focusLost FocusEvent
isTemporary

Component

KeyListener keyPressed keyReleased
keyTyped

KeyEvent getKeyChar
getKeyCode
getKeyModifiersText
getKeyText
isActionKey

Component

MouseListener mousePressed
mouseReleased
mouseEntered
mouseExited
mouseClicked

MouseEvent
getClickCount getX
getY getPoint
translatePoint
isPopupTrigger

Component

MouseMotionListener mouseDragged
mouseMoved

MouseEvent Component

WindowListener windowClosing
windowOpened
windowIconified
windowDeiconified
windowClosed
windowActivated
windowDeactivated

WindowEvent
getWindow

Window

Let's go over the event delegation mechanism one more time to make sure that you
understand the relationship between event classes, listener interfaces, and adapter classes.

Event sources are user interface components, windows, and menus. The operating system
notifies an event source about interesting activities, such as mouse moves and keystrokes. The
event source describes the nature of the event in an event object. It also keeps a set of
listeners—objects that want to be called when the event happens (see Figure 8-6). The event
source then calls the appropriate method of the listener interface to deliver information about
the event to the various listeners. The source does this by passing the appropriate event object
to the method in the listener class. The listener analyzes the event object to find out more
about the event. For example, you can use the getSource method to find out the source, or
the getX and getY methods of the MouseEvent class to find out the current location of the
mouse.

Figure 8-6. Relationship between event sources and listeners

Core Java™ 2: Volume I–Fundamentals

383

With one exception, each AWT event type corresponds to a listener interface. The one
exception is that both MouseListener and MouseMotionListener receive MouseEvent
objects. This is done for efficiency—there are a lot of mouse events as the user moves the
mouse around, and a listener that just cares about mouse clicks will not be bothered with
unwanted mouse moves.

Furthermore, Java supplies a corresponding adapter class to all AWT listener interfaces with
more than one method. The adapter class defines all the methods of the interface to do
nothing. You use adapter classes as a time-saving tool: use them when you want to override
just a few of the listener interface methods.

NOTE

In the AWT 1.0 event mechanism, events originated in a particular
component and were then propagated to all containers of the compontent.
Starting with the AWT 1.1, events are only sent to listeners who
registered their interest in receiving them.

The high-level semantic events are quite natural for GUI programming—they correspond to
user input. To better understand the low-level events in Table 8-1, we will need to briefly
review some terminology.

• A component is a user interface element such as a button, text field, or scrollbar.
• A container is a screen area or component that can contain components, such as a

window or a panel.

All low-level events inherit from ComponentEvent. This class has a method, called
getComponent, which reports the component that originated the event; you can use
getComponent instead of getSource. The getComponent method returns the same value as
getSource, but already cast as a Component. For example, if a key event was fired because of
an input into a text field, then getComponent returns a reference to that text field.

A ContainerEvent is generated whenever a component is added or removed. This is quite
different from the other events that we saw. Button clicks and keystrokes come from the user
in a random fashion, but adding or removing components is a consequence of your
programming. Therefore, you don't need an event notification mechanism—you could have
programmed the notification yourself. This event was provided to make user interface
generators simpler to program. Unless you have a dynamically changing user interface, you
will not need to worry about it.

java.awt.event.ComponentEvent

• Component getComponent()

Core Java™ 2: Volume I–Fundamentals

384

returns a reference to the component that is the source for the event. This is the same
as (Component)getSource().

Low-Level Event Types

In the sections that follow, we will discuss in more detail the focus and window events that
we have already briefly mentioned. After that, we take up the events that are not linked to
specific user interface components, in particular, events related to keystrokes and mouse
activity. You can find a detailed discussion of semantic events generated by user interface
components in the next chapter.

Focus Events

When you use a mouse, you can point to any object on the screen. But when you type, your
keystrokes must go to a specific screen object. The window manager (such as Windows or X
Windows) directs all keystrokes to the active window. Often, the active window is
distinguished by a highlighted title bar. Only one window can be active at any one time.

Now suppose the active window is controlled by a Java program. The Java window receives
the keystrokes, and it in turn directs them towards a particular component. That component is
said to have focus. Just like the active window is usually distinguished in some way, most
Swing components give a visual cue if they currently have focus. A text field has a blinking
caret, a button has a rectangle around the label, and so on. When a text field has focus, you
can enter text into the text field. When a button has focus, you can “click” it by pressing the
space bar.

There is at most one component in a window that has focus. A component can lose focus if
the user selects another component, which then gains focus. A component gains focus if the
user clicks the mouse inside it. The user can also use the tab key to give focus to each
component in turn. This traverses all components that are able to receive input focus. By
default, Swing components are traversed from left to right, then top to bottom, as they are
shown in the ambient container. You can change the focus traversal order; see the next
chapter for more on this subject.

Finally, you can use the requestFocus method to move the focus to any spe-cific visible
component at run time, or you can use the transferFocus method to move the focus to the
next component in the traversal order. Most components can receive the focus; however, by
default, some components, such as labels and panels, do not.

TIP

You can prevent a Swing component from receiving the focus by
overriding the isFocusTraversable method to return false.

A focus listener must implement two methods, focusGained and focusLost. These methods
are triggered when the event source gains or loses the focus. Each of these methods has a

Core Java™ 2: Volume I–Fundamentals

385

FocusEvent parameter. There are two useful methods for this class. The getComponent
method reports the component that gained or lost the focus, and the isTemporary method
returns true if the focus change was temporary. A temporary focus change occurs when a
component loses control temporarily but will automatically get it back. This happens, for
example, when the user selects a different active window. As soon as the user selects the
current window again, the same component regains the focus.

One use for trapping focus events is error checking or data validation. Suppose you have a
text field that contains a credit card number. When the user is done editing the field and
moves to another field, you trap the lost focus event. If the credit card format was not
formatted properly, you call requestFocus() to give the focus back to the credit card field.

public void focusLost(FocusEvent event)
{
 if (event.getComponent() == ccField && !event.isTemporary())
 {
 if (!checkFormat(ccField.getText()))
 ccField.requestFocus();
 }
}

java.awt.Component

• void requestFocus()

moves the focus to this component. The component must be visible for this to happen.

• void transferFocus()

transfers the focus to the next component in the traversal order.

• boolean isFocusTraversable()

tells whether a component can be reached by using tab or shift-tab. Override this
method to return false if you don't want the component to be reachable with
tab/shift+tab. (You can still set the focus explicitly by using requestFocus.)

Keyboard Events

When the user pushes a key, a key_Pressed KEYEVENT is generated. When the user releases
the key, a key_Release KEYEVENT is triggered. You trap these events in the keyPressed and
keyReleased methods of any class that implements the KeyListener interface. Use these
methods to trap raw keystrokes. A third method, keyTyped, combines the two: it reports on
the characters that were generated by the user's keystrokes.

The best way to see what happens is with an example. But before we can do that, we have to
add a little more terminology. Java makes a distinction between characters and virtual key

Core Java™ 2: Volume I–Fundamentals

386

codes. Virtual key codes are indicated with a prefix of VK_, such as VK_A or VK_SHIFT. Virtual
key codes correspond to keys on the keyboard. For example, VK_A denotes the key marked A.
There is no separate lowercase virtual key code—the keyboard does not have separate
lowercase keys.

NOTE

Virtual key codes are similar (and related to) the scan codes of a PC
keyboard.

So, suppose that the user types an uppercase “A” in the usual way, by pressing the shift key
along with the A key. Java reports five events in response to this user action. Here are the
actions and the associated events:

1. Pressed the shift key (keyPressed called for VK_SHIFT)
2. Pressed the A key (keyPressed called for VK_A)
3. Typed “A” (keyTyped called for an “A”)
4. Released the A key (keyReleased called for VK_A)
5. Released the shift key (keyReleased called for VK_SHIFT)

On the other hand, if the user typed a lowercase “a” by simply pressing the A key, then there
are only three events:

1. Pressed the A key (keyPressed called for VK_A)
2. Typed “a” (keyTyped called for an “a”)
3. Released the A key (keyReleased called for VK_A)

Thus, the keyTyped procedure reports the character that was typed (“A” or “a”), whereas the
keyPressed and keyReleased methods report on the actual keys that the user pressed.

To work with the keyPressed and keyReleased methods, you want to first check the key
code.

public void keyPressed(KeyEvent event)
{
 int keyCode = event.getKeyCode();
 . . .
}

The key code will equal one of the following (reasonably mnemonic) constants. They are
defined in the KeyEvent class.

VK_A . . . VK_Z
VK_0 . . . VK_9
VK_COMMA, VK_PERIOD, VK_SLASH, VK_SEMICOLON, VK_EQUALS
VK_OPEN_BRACKET, VK_BACK_SLASH, VK_CLOSE_BRACKET
VK_BACK_QUOTE, VK_QUOTE
VK_GREATER, VK_LESS, VK_UNDERSCORE, VK_MINUS

Core Java™ 2: Volume I–Fundamentals

387

VK_AMPERSAND, VK_ASTERISK, VK_AT, VK_BRACELEFT, VK_BRACERIGHT
VK_LEFT_PARENTHESIS, VK_RIGHT_PARENTHESIS
VK_CIRCUMFLEX, VK_COLON, VK_NUMBER_SIGN, VK_QUOTEDBL
VK_EXCLAMATION_MARK, VK_INVERTED_EXCLAMATION_MARK
VK_DEAD_ABOVEDOT, VK_DEAD_ABOVERING, VK_DEAD_ACUTE
VK_DEAD_BREVE
VK_DEAD_CARON, VK_DEAD_CEDILLA, VK_DEAD_CIRCUMFLEX
VK_DEAD_DIAERESIS
VK_DEAD_DOUBLEACUTE, VK_DEAD_GRAVE, VK_DEAD_IOTA, VK_DEAD_MACRON
VK_DEAD_OGONEK, VK_DEAD_SEMIVOICED_SOUND, VK_DEAD_TILDE
 VK_DEAD_VOICED_SOUND
VK_DOLLAR, VK_EURO_SIGN
VK_SPACE, VK_ENTER, VK_BACK_SPACE, VK_TAB, VK_ESCAPE
VK_SHIFT, VK_CONTROL, VK_ALT, VK_ALT_GRAPH, VK_META
VK_NUM_LOCK, VK_SCROLL_LOCK, VK_CAPS_LOCK
VK_PAUSE, VK_PRINTSCREEN
VK_PAGE_UP, VK_PAGE_DOWN, VK_END, VK_HOME, VK_LEFT, VK_UP VK_RIGHT
 VK_DOWN
VK_F1 . . .VK_F24
VK_NUMPAD0 . . . VK_NUMPAD9
VK_KP_DOWN, VK_KP_LEFT, VK_KP_RIGHT, VK_KP_UP
VK_MULTIPLY, VK_ADD, VK_SEPARATER [sic], VK_SUBTRACT, VK_DECIMAL
 VK_DIVIDE
VK_DELETE, VK_INSERT
VK_HELP, VK_CANCEL, VK_CLEAR, VK_FINAL
VK_CONVERT, VK_NONCONVERT, VK_ACCEPT, VK_MODECHANGE
VK_AGAIN, VK_ALPHANUMERIC, VK_CODE_INPUT, VK_COMPOSE, VK_PROPS
VK_STOP
VK_ALL_CANDIDATES, VK_PREVIOUS_CANDIDATE
VK_COPY, VK_CUT, VK_PASTE, VK_UNDO
VK_FULL_WIDTH, VK_HALF_WIDTH
VK_HIRAGANA, VK_KATAKANA, VK_ROMAN_CHARACTERS
VK_KANA, VK_KANJI
VK_JAPANESE_HIRAGANA, VK_JAPANESE_KATAKANA, VK_JAPANESE_ROMAN
VK_UNDEFINED

To find the current state of the shift, control, alt, and meta keys, you can, of course, track the
VK_SHIFT, VK_CONTROL, VK_ALT, and VK_META key presses, but that is tedious. Instead, simply
use the isShiftDown, isControlDown, isAltDown, and isMetaDown methods.

For example, the following code tests whether the user presses shift + right arrow:

public void keyPressed(KeyEvent event)
{
 int keyCode = event.getKeyCode();
 if (keyCode == keyEvent.VK_RIGHT && event.isShiftDown())
 {
 . . .
 }
}

In the keyTyped method, you call the getKeyChar method to obtain the actual character that
was typed.

Core Java™ 2: Volume I–Fundamentals

388

NOTE

Not all keystrokes result in a call to keyTyped. Only those keystrokes
that generate a Unicode character can be captured in the keyTyped
method. You need to use the keyPressed method to check for cursor
keys and other command keys.

Example 8-3 shows how to handle keystrokes. The program (shown in Figure 8-7) is a simple
implementation of the Etch-A-Sketch™ toy.

Figure 8-7. A sketch program

You move a pen up, down, left, and right with the cursor keys. If you hold down the shift key,
the pen moves by a larger increment. Or, if you are experienced using the vi editor, you can
bypass the cursor keys and use the lowercase h, j, k, and l keys to move the pen. The
uppercase H, J, K, and L move the pen by a larger increment. We trap the cursor keys in the
keyPressed method and the characters in the keyTyped method.

There is one technicality: Normally, a panel cannot get keyboard focus. That is, it will not
receive any key events. To allow it to gain focus, we override the isFocusTraversable
method of the SketchPanel class to return true.

Example 8-3 Sketch.java

 1. import java.awt.*;
 2. import java.awt.geom.*;
 3. import java.util.*;
 4. import java.awt.event.*;
 5. import javax.swing.*;
 6.
 7. public class Sketch
 8. {
 9. public static void main(String[] args)
 10. {
 11. SketchFrame frame = new SketchFrame();
 12. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13. frame.show();
 14. }
 15. }

Core Java™ 2: Volume I–Fundamentals

389

 16.
 17. /**
 18. A frame with a panel for sketching a figure
 19. */
 20. class SketchFrame extends JFrame
 21. {
 22. public SketchFrame()
 23. {
 24. setTitle("Sketch");
 25. setSize(WIDTH, HEIGHT);
 26.
 27. // add panel to frame
 28.
 29. SketchPanel panel = new SketchPanel();
 30. Container contentPane = getContentPane();
 31. contentPane.add(panel);
 32. }
 33.
 34. public static final int WIDTH = 300;
 35. public static final int HEIGHT = 200;
 36. }
 37.
 38. /**
 39. A panel for sketching with the keyboard.
 40. */
 41. class SketchPanel extends JPanel
 42. {
 43. public SketchPanel()
 44. {
 45. last = new Point2D.Double(100, 100);
 46. lines = new ArrayList();
 47. KeyHandler listener = new KeyHandler();
 48. addKeyListener(listener);
 49. }
 50.
 51. public boolean isFocusTraversable()
 52. {
 53. return true; // allow panel to get input focus
 54. }
 55.
 56. /**
 57. Add a new line segment to the sketch.
 58. @param dx the movement in x direction
 59. @param dy the movement in y direction
 60. */
 61. public void add(int dx, int dy)
 62. {
 63. // compute new end point
 64. Point2D end = new Point2D.Double(last.getX() + dx,
 65. last.getY() + dy);
 66.
 67. // add line segment
 68. Line2D line = new Line2D.Double(last, end);
 69. lines.add(line);
 70. repaint();
 71.
 72. // remember new end point
 73. last = end;
 74. }
 75.

Core Java™ 2: Volume I–Fundamentals

390

 76. public void paintComponent(Graphics g)
 77. {
 78. super.paintComponent(g);
 79. Graphics2D g2 = (Graphics2D)g;
 80.
 81. // draw all lines
 82. for (int i = 0; i < lines.size(); i++)
 83. g2.draw((Line2D)lines.get(i));
 84. }
 85.
 86. private Point2D last;
 87. private ArrayList lines;
 88.
 89. private static final int SMALL_INCREMENT = 1;
 90. private static final int LARGE_INCREMENT = 5;
 91.
 92. private class KeyHandler implements KeyListener
 93. {
 94. public void keyPressed(KeyEvent event)
 95. {
 96. int keyCode = event.getKeyCode();
 97.
 98. // set distance
 99. int d;
100. if (event.isShiftDown())
101. d = LARGE_INCREMENT;
102. else
103. d = SMALL_INCREMENT;
104.
105. // add line segment
106. if (keyCode == KeyEvent.VK_LEFT) add(-d, 0);
107. else if (keyCode == KeyEvent.VK_RIGHT) add(d, 0);
108. else if (keyCode == KeyEvent.VK_UP) add(0, -d);
109. else if (keyCode == KeyEvent.VK_DOWN) add(0, d);
110. }
111.
112. public void keyReleased(KeyEvent event) {}
113.
114. public void keyTyped(KeyEvent event)
115. {
116. char keyChar = event.getKeyChar();
117.
118. // set distance
119. int d;
120. if (Character.isUpperCase(keyChar))
121. {
122. d = LARGE_INCREMENT;
123. keyChar = Character.toLowerCase(keyChar);
124. }
125. else
126. d = SMALL_INCREMENT;
127.
128. // add line segment
129. if (keyChar == 'h') add(-d, 0);
130. else if (keyChar == 'l') add(d, 0);
131. else if (keyChar == 'k') add(0, -d);
132. else if (keyChar == 'j') add(0, d);
133. }
134. }
135.}

Core Java™ 2: Volume I–Fundamentals

391

java.awt.event.KeyEvent

• char getKeyChar()

returns the character that the user typed.

• int getKeyCode()

returns the virtual key code of this key event.

• boolean isActionKey()

returns true if the key in this event is an “action” key. The following keys are action
keys: home, end, page up, page down, up, down, left, right, f1 … f24, print screen,
scroll lock, caps lock, num lock, pause, insert, delete, enter, backspace, delete, and tab.

• static String getKeyText(int keyCode)

returns a string describing the key code. For example,
getKeyText(KeyEvent.VK_END) is the string "End".

• static String getKeyModifiersText(int modifiers)

returns a string describing the modifier keys, such as shift or ctrl + shift.

Parameters: modifiers The modifier state, as reported by getModifiers

java.awt.event.InputEvent

• int getModifiers()

returns an integer whose bits describe the state of the modifiers shift, control, alt, and
meta. This method applies to both keyboard and mouse events. To see if a bit is set,
test the return value against one of the bit masks SHIFT_MASK, CONTROL_MASK,
ALT_MASK, META_MASK, or use one of the following methods.

o boolean isAltDown()
o boolean isControlDown()
o boolean isMetaDown()
o boolean isShiftDown()

Core Java™ 2: Volume I–Fundamentals

392

The methods return true if the modifier key was held down when this event was
generated.

Consuming Events

Occasionally, you will want to capture an event so that it is not passed on to a user interface
component. Suppose you want to write a text input field that accepts only numbers. Start out
with a regular text field. (Text fields are covered in detail in Chapter 9.) Simply listen to all
key events and consume all events that don't correspond to digit keys.

textField.addKeyListener(new
 KeyAdapter()
 {
 public void keyTyped(KeyEvent event)
 {
 char ch = event.getKeyChar();
 if (ch < '0' || ch > '9') // not a digit
 event.consume();
 }
 });

The result is that as far as the text field is concerned, the “key typed” event never happened if
the user typed a wrong key.

Only input events (that is, mouse and keyboard events) can be consumed.

NOTE

Actually, you need to work harder to create a text field that is suitable for
editing numbers. See Chapter 9 for details.

java.awt.event.InputEvent

• void consume()

consumes a low-level event and thereby prevents it from being sent to a user interface
component.

• boolean isConsumed()

returns true if the event was consumed.

Core Java™ 2: Volume I–Fundamentals

393

Mouse Events

You do not need to handle mouse events explicitly if you just want the user to be able to click
on a button or menu. These mouse operations are handled internally by the various
components in the user interface and then translated into the appropriate semantic event.
However, if you want to enable the user to draw with the mouse, you will need to trap mouse
move, click, and drag events.

In this section, we will show you a simple graphics editor application that allows the user to
place, move, and erase squares on a canvas (see Figure 8-8).

Figure 8-8. A mouse test program

When the user clicks a mouse button, three listener methods are called: mousePressed when
the mouse is first pressed, mouseReleased when the mouse is released, and, finally,
mouseClicked. If you are only interested in complete clicks, you can ignore the first two
methods. By using the getX and getY methods on the MouseEvent argument, you can obtain
the x- and y-coordinates of the mouse pointer when the mouse was clicked. If you want to
distinguish between single and double clicks, use the getClickCount method.

You can even get triple clicks, but your users will hate you if you force them to exercise their
fingers too much. Unless they come from a Macintosh background, they will also hate you if
you inflict keystroke + mouse click combinations, such as control + shift + click, on them. If
you do want to check the state of the shift, control, alt, and meta keys, you do it in the same
way as you just saw for key events: use the isShiftDown, isControlDown, isAltDown, and
isMetaDown methods.

For example, here is a handler for the control + shift + triple click command.

Core Java™ 2: Volume I–Fundamentals

394

public void mouseClicked(MouseEvent event)
{
 int x = event.getX();
 int y = event.getY();

 int clickCount = event.getClickCount();
 if (event.isShiftDown() && event.isControlDown()
 && clickCount >= 3)
 {
 Graphics g = getGraphics();
 g.drawString("Yikes", x, y);
 g.dispose();
 }
}

NOTE

In this example, we use the Component.getGraphics method to draw
immediately when the mouse is clicked, rather than waiting for the next
call to paintComponent. We must therefore call g.dispose() to recycle
the resources that a Graphics object holds. You must always call
dispose for the Graphics objects that you obtain yourself, but never for
the ones that you receive as arguments of paint methods.

You can distinguish between the mouse buttons by testing the return value of getModifiers
against the values BUTTON1_MASK, BUTTON2_MASK, and BUTTON3_MASK. Note that
BUTTON3_MASK tests for the right (nonprimary) mouse button under Windows. For example,
you can use code like this to detect if the right mouse button is down:

if ((event.getModifiers() & InputEvent.BUTTON3_MASK) != 0)
 // code for right click

In our sample program, we supply both a mousePressed and a mouseClicked method. When
you click onto a pixel that is not inside any of the squares that have been drawn, a new square
is added. We implemented this in the mousePressed method so that the user receives
immediate feedback and does not have to wait until the mouse button is released. When a user
double-clicks inside an existing square, it is erased. We implemented this in the
mouseClicked method because we need the click count.

public void mousePressed(MouseEvent event)
{
 current = find(event.getPoint());
 if (current == null) // not inside a square
 add(event.getPoint());
}
public void mouseClicked(MouseEvent event)
{
 current = find(event.getPoint());
 if (current != null && event.getClickCount() >= 2)
 remove(current);

}

Core Java™ 2: Volume I–Fundamentals

395

Table 8-2. Sample cursor shapes
Icon Constant

DEFAULT_CURSOR

CROSSHAIR_CURSOR

HAND_CURSOR

MOVE_CURSOR

TEXT_CURSOR

WAIT_CURSOR

N_RESIZE_CURSOR

NE_RESIZE_CURSOR

E_RESIZE_CURSOR

SE_RESIZE_CURSOR

Core Java™ 2: Volume I–Fundamentals

396

S_RESIZE_CURSOR

SW_RESIZE_CURSOR

W_RESIZE_CURSOR

NW_RESIZE_CURSOR

As the mouse moves over a window, the window receives a steady stream of mouse
movement events. These are ignored by most applications. However, our test application traps
the events to change the cursor to a different shape (a cross hair) when it is over a square. This
is done with the getPredefinedCursor method of the Cursor class. Table 8-2 lists the
constants to use with this method along with what the cursors look like under Windows. (Note
that several of these cursors look the same, but you should check how they look on your
platform.)

TIP

You can find cursor images in
the jre/lib/images/cursors/cursors.properties directory. The
file cursors.properties defines the cursor “hot spots.” This is the
point that the user associates with the pointing action of the cursor. For
example, if the cursor has the shape of a pointing hand, the hot spot
would be the tip of the index finger. If the cursor has the shape of a
magnifying glass, the hot spot would be the center of the lens.

Here is the mouseMoved method of the MouseMotionListener in our example program:

public void mouseMoved(MouseEvent event)
{
 if (find(event.getPoint()) == null)
 setCursor(Cursor.getDefaultCursor());
 else
 setCursor(Cursor.getPredefinedCursor
 (Cursor.CROSSHAIR_CURSOR));
}

Core Java™ 2: Volume I–Fundamentals

397

NOTE

You can also define your own cursor types through the use of
the createCustomCursor method in the Toolkit class:

Toolkit tk = Toolkit.getDefaultToolkit();
Image img = tk.getImage("dynamite.gif");
Cursor dynamiteCursor = tk.createCustomCursor(img,
 new Point(10, 10), "dynamite stick");

The first parameter of the createCustomCursor points to the cursor
image. The second parameter gives the offset of the “hot spot” of
the cursor. The third parameter is a string that describes the cursor. This
string can be used for accessibility support, for example, to read
the cursor shape to a user who is visually impaired or who simply is not
facing the screen.

If the user presses a mouse button while the mouse is in motion, mouseDragged calls are
generated instead of mouseClicked calls. Our test application lets you drag the square under
the cursor. We simply update the currently dragged rectangle to be centered under the mouse
position. Then, we repaint the canvas to show the new mouse position.

public void mouseDragged(MouseEvent event)
{
 if (current >= 0)
 {
 int x = event.getX();
 int y = event.getY();

 current.setFrame(
 x - SIDELENGTH / 2,
 y - SIDELENGTH / 2,
 SIDELENGTH,
 SIDELENGTH);
 repaint();
 }
}

NOTE

The mouseMoved method is only called as long as the mouse stays inside
the component. However, the mouseDragged method keeps getting
called even when the mouse is being dragged outside the component.

There are two other mouse event methods: mouseEntered and mouseExited. These methods
are called when the mouse enters or exits a component.

Finally, we need to explain how to listen to mouse events. Mouse clicks are reported through
the mouseClicked procedure, which is part of the MouseListener interface. Because many

Core Java™ 2: Volume I–Fundamentals

398

applications are interested only in mouse clicks and not in mouse moves, and because mouse
move events occur so frequently, the mouse move and drag events are defined in a separate
interface called MouseMotionListener.

In our program we are interested in both types of mouse events. We define two inner classes:
MouseHandler and MouseMotionHandler. The MouseHandler class extends the
MouseAdapter class because it only defines two of the five MouseListener methods. The
MouseMotionHandler implements the MouseMotionListener, and defines both methods of
that interface. Example 8-4 is the program listing.

Example 8-4 MouseTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import java.awt.geom.*;
 5. import javax.swing.*;
 6.
 7. public class MouseTest
 8. {
 9. public static void main(String[] args)
 10. {
 11. MouseFrame frame = new MouseFrame();
 12. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13. frame.show();
 14. }
 15. }
 16.
 17. /**
 18. A frame containing a panel for testing mouse operations
 19. */
 20. class MouseFrame extends JFrame
 21. {
 22. public MouseFrame()
 23. {
 24. setTitle("MouseTest");
 25. setSize(300, 200);
 26.
 27. // add panel to frame
 28.
 29. MousePanel panel = new MousePanel();
 30. Container contentPane = getContentPane();
 31. contentPane.add(panel);
 32. }
 33.
 34. public static final int WIDTH = 300;
 35. public static final int HEIGHT = 200;
 36. }
 37.
 38. /**
 39. A panel with mouse operations for adding and removing squares.
 40. */
 41. class MousePanel extends JPanel
 42. {
 43. public MousePanel()
 44. {
 45. squares = new ArrayList();
 46. current = null;
 47.

Core Java™ 2: Volume I–Fundamentals

399

 48. addMouseListener(new MouseHandler());
 49. addMouseMotionListener(new MouseMotionHandler());
 50. }
 51.
 52. public void paintComponent(Graphics g)
 53. {
 54. super.paintComponent(g);
 55. Graphics2D g2 = (Graphics2D)g;
 56.
 57. // draw all squares
 58. for (int i = 0; i < squares.size(); i++)
 59. g2.draw((Rectangle2D)squares.get(i));
 60. }
 61.
 62. /**
 63. Finds the first square containing a point.
 64. @param p a point
 65. @return the index of the first square that contains p
 66. */
 67. public Rectangle2D find(Point2D p)
 68. {
 69. for (int i = 0; i < squares.size(); i++)
 70. {
 71. Rectangle2D r = (Rectangle2D)squares.get(i);
 72. if (r.contains(p)) return r;
 73. }
 74.
 75. return null;
 76. }
 77.
 78. /**
 79. Adds a square to the collection.
 80. @param p the center of the square
 81. */
 82. public void add(Point2D p)
 83. {
 84. double x = p.getX();
 85. double y = p.getY();
 86.
 87. current = new Rectangle2D.Double(
 88. x - SIDELENGTH / 2,
 89. y - SIDELENGTH / 2,
 90. SIDELENGTH,
 91. SIDELENGTH);
 92. squares.add(current);
 93. repaint();
 94. }
 95.
 96. /**
 97. Removes a square from the collection.
 98. @param s the square to remove
 99. */
100. public void remove(Rectangle2D s)
101. {
102. if (s == null) return;
103. if (s == current) current = null;
104. squares.remove(s);
105. repaint();
106. }
107.
108.

Core Java™ 2: Volume I–Fundamentals

400

109. private static final int SIDELENGTH = 10;
110. private ArrayList squares;
111. private Rectangle2D current;
112. // the square containing the mouse cursor
113.
114. private class MouseHandler extends MouseAdapter
115. {
116. public void mousePressed(MouseEvent event)
117. {
118. // add a new square if the cursor isn't inside a square
119. current = find(event.getPoint());
120. if (current == null)
121. add(event.getPoint());
122. }
123.
124. public void mouseClicked(MouseEvent event)
125. {
126. // remove the current square if double clicked
127. current = find(event.getPoint());
128. if (current != null && event.getClickCount() >= 2)
129. remove(current);
130. }
131. }
132.
133. private class MouseMotionHandler
134. implements MouseMotionListener
135. {
136. public void mouseMoved(MouseEvent event)
137. {
138. // set the mouse cursor to cross hairs if it is inside
139. // a rectangle
140.
141. if (find(event.getPoint()) == null)
142. setCursor(Cursor.getDefaultCursor());
143. else
144. setCursor(Cursor.getPredefinedCursor
145. (Cursor.CROSSHAIR_CURSOR));
146. }
147.
148. public void mouseDragged(MouseEvent event)
149. {
150. if (current != null)
151. {
152. int x = event.getX();
153. int y = event.getY();
154.
155. // drag the current rectangle to center it at (x, y)
156. current.setFrame(
157. x - SIDELENGTH / 2,
158. y - SIDELENGTH / 2,
159. SIDELENGTH,
160. SIDELENGTH);
161. repaint();
162. }
163. }
164. }
165 }
}

Core Java™ 2: Volume I–Fundamentals

401

java.awt.event.MouseEvent

• int getX()
• int getY()
• Point getPoint()

return the x- (horizontal) and y- (vertical) coordinate, or point where the event
happened, using the coordinate system of the source.

• void translatePoint(int x, int y)

translates the coordinates of the event by moving x units horizontally and y units
vertically.

• int getClickCount()

returns the number of consecutive mouse clicks associated with this event. (The time
interval for what constitutes "consecutive" is system dependent.)

java.awt.Toolkit

• public Cursor createCustomCursor(Image image, Point hotSpot, String
name)

• creates a new custom cursor object.

Parameters: image The image to display when the cursor is active
 hotSpot The cursor's hot spot (such as the tip of an arrow or the center of cross

hairs)
 name A description of the cursor, to support special accessibility environments

java.awt.Component

• public void setCursor(Cursor cursor)

sets the cursor image to one of the predefined cursors specified by the cursor
parameter.

Core Java™ 2: Volume I–Fundamentals

402

Actions

It is common to have multiple ways to activate the same command. The user can choose a
certain function through a menu, a keystroke, or a button on a toolbar. This is easy to achieve
in the AWT event model: link all events to the same listener. For example, suppose
blueAction is an object of a class (such as ColorAction) implementing the
ActionListener interface that changes the color to blue. You can attach the same object as a
listener to several event sources:

• A toolbar button labeled “Blue”
• A menu item labeled “Blue”
• A keystroke ctrl+b

Then the color change command is handled in a uniform way, no matter whether it was
caused by a button click, a menu selection, or a key press.

The Swing package provides a very useful mechanism to encapsulate commands and to attach
them to multiple event sources: the Action interface. An action is an object that encapsulates
the following:

• A description of the command (as a text string and an optional icon)
• Parameters that are necessary to carry out the command (such as the requested color in

our example)

The Action interface has the following methods:

void actionPerformed(ActionEvent event)
void setEnabled(boolean b)
boolean isEnabled()
void putValue(String key, Object value)
Object getValue(String key)
void addPropertyChangeListener(PropertyChangeListener listener)
void removePropertyChangeListener(PropertyChangeListener listener)

The first method is the familiar method in the ActionListener interface: in fact, the Action
interface extends the ActionListener interface. Therefore, you can use an Action object
whenever an ActionListener object is expected.

The next two methods let you enable or disable the action and check whether the action is
currently enabled. When an action is attached to a menu or toolbar and the action is disabled,
then the option is grayed out.

The putValue and getValue methods let you store and retrieve arbitrary name/value pairs in
the action object. There are a couple of important predefined strings, namely, Action.NAME
and Action.SMALL_ICON, for storing action names and icons into an action object:

action.putValue(Action.NAME, "Blue");
action.putValue(Action.SMALL_ICON,
 new ImageIcon("blue-ball.gif"));

Table 8-3 shows all predefined action table names.

Core Java™ 2: Volume I–Fundamentals

403

Table 8-3. Predefined action table names
Name Value
NAME The name of the action; displayed on buttons and menu items.
SMALL_ICON A place to store a small icon; for display in a button, menu item or toolbar.
SHORT_DESCRIPTION A short description of the icon; for display in a tooltip.
LONG_DESCRIPTION A long description of the icon; for potential use in online help. No Swing

component uses this value.
MNEMONIC_KEY A mnemonic abbreviation; for display in menu items (see Chapter 9).
ACCELERATOR_KEY A place to store an accelerator keystroke. No Swing component uses this

value.
ACTION_COMMAND_KEY Historically, used in the now obsolete registerKeyboardAction method.
DEFAULT Potentially useful catchall property. No Swing component uses this value.

If the action object is added to a menu or toolbar, then the name and icon are automatically
retrieved and displayed in the menu item or toolbar button. The SHORT_DESCRIPTION value
turns into a tooltip.

The final two methods of the Action interface allow other objects, in particular menus or
toolbars that trigger the action, to be notified when the properties of the action object change.
For example, if a menu is added as a property change listener of an action object and the
action object is subsequently disabled, then the menu is called and can gray out the action
name. Property change listeners are a general construct that is a part of the “Java beans”
component model. You can find out more about Java beans and their properties in Volume 2.

Note that Action is an interface, not a class. Any class implementing this interface must
implement the seven methods that we just discussed. Fortunately, that is easy because
a friendly soul has implemented all but the first method in a class AbstractAction. That
class takes care of storing all name/value pairs and man aging the property change listeners.
All you have to add is an actionPerformed method.

Let's build an action object that can execute color change commands. We store the name of
the command, an icon, and the desired color. We will store the color in the table of
name/value pairs that the AbstractAction class provides. Here is the code for
the ColorAction class. The constructor sets the name/value pairs, and the
actionPerformed method carries out the color change action.

public class ColorAction extends AbstractAction
{
 public ColorAction(String name, Icon icon, Color c)
 {
 putValue(Action.NAME, name);
 putValue(Action.SMALL_ICON, icon);
 putValue("color", c);
 }

 public void actionPerformed(ActionEvent event)
 {
 Color c = (Color)getValue("color");
 setBackground(c);
 repaint();
 }
}

Core Java™ 2: Volume I–Fundamentals

404

Our test program creates three objects of this class, such as:

Action blueAction = new ColorAction("Blue",
 new ImageIcon("blue-ball.gif"), Color.blue);

Next, let's associate this action with a button. That is easy because there is a JButton
constructor that takes an Action object.

JButton blueButton = new JButton(blueAction);

That constructor reads the name and icon from the action, sets the short description as
the tooltip, and sets the action as the listener. You can see the icons and a tool tip in
Figure 8-9.

Figure 8-9. Buttons display the icons from the Action objects

As you will see in the next chapter, it is just as easy to add the same action to a menu.

Finally, we want to add the action objects to keystrokes. Now we run into a technical
complexity. Keystrokes are delivered to the component that has focus. Our sample application
is made up of several components, namely, three buttons inside a panel. Therefore, at any
time, any one of the three buttons may have focus. Each of the buttons would need to handle
key events and listen to the ctrl+y, ctrl+b, and ctrl+r keys.

This is a common problem, and the Swing designers came up with a convenient solution for
solving it.

NOTE

In fact, in J2SE version 1.2, there were two different solutions for
binding keys to actions: the registerKeyboardAction method of
the JComponent class, and the KeyMap concept for JTextComponent
commands. As of Java SDK version 1.3, these two mechanisms are
unified. This section describes the unified approach.

To associate actions with keystrokes, you first need to generate objects of the KeyStroke
class. This is a convenience class that encapsulates the description of a key. To generate
a KeyStroke object, you don't call a constructor, but instead use the static getKeyStroke

Core Java™ 2: Volume I–Fundamentals

405

method of the KeyStroke class. You specify the virtual key code and the flags (such as shift
and control key combinations):

KeyStroke ctrlBKey = KeyStroke.getKeyStroke(KeyEvent.VK_B,
 Event.CTRL_MASK);

There is a convenient method that lets you describe the keystroke as a string:

KeyStroke ctrlBKey = KeyStroke.getKeyStroke("ctrl B");

Every JComponent has three input maps that map KeyStroke objects to actions. The three
input maps correspond to three different conditions (see Table 8-4).

Table 8-4. Input map conditions
Flag Invoke Action
WHEN_FOCUSED When this component has keyboard focus
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT When this component contains the component that has

keyboard focus
WHEN_IN_FOCUSED_WINDOW When this component is contained in the same window

as the component that has keyboard focus

Keystroke processing checks these maps in the following order:

1. Check the WHEN_FOCUSED map of the component with input focus. If the keystroke
exists, execute the corresponding action. If the action is enabled, stop processing.

2. Starting from the component with input focus, check
the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT maps of its parent components. As soon
as a map with the keystroke is found, execute the corresponding action. If the action is
enabled, stop processing.

3. Look at all visible and enabled components in the window with input focus that have
this keystroke registered in a WHEN_IN_FOCUSED_WINDOW map. Give these components
(in the order of their keystroke registration) a chance to execute the corresponding
action. As soon as the first enabled action is executed, stop processing. This part of
the process is somewhat fragile if a keystroke appears in more than one
WHEN_IN_FOCUSED_WINDOW map.

You obtain an input map from the component with the getInputMap method, for example:

InputMap imap = panel.getInputMap(JComponent.WHEN_FOCUSED);

The WHEN_FOCUSED condition means that this map is consulted when the current component
has the keyboard focus. In our situation, that isn't the map we want. One of the buttons, not
the panel, has the input focus. Either of the other two map choices works fine for inserting
the color change key strokes. We use WHEN_ANCESTOR_OF_FOCUSED_COMPONENT in our
example program.

The InputMap doesn't directly map KeyStroke objects to Action objects. Instead, it maps to
arbitrary objects, and a second map, implemented by the ActionMap class, maps objects to
actions. That makes it easier to share the same actions among keystrokes that come from
different input maps.

Core Java™ 2: Volume I–Fundamentals

406

Thus, each component has three input maps and one action map. To tie them together, you
need to come up with names for the actions. Here is how you can tie a key to an action:

imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
ActionMap amap = panel.getActionMap();
amap.put("panel.yellow", yellowAction);

It is customary to use the string "none" for a do-nothing action. That makes it easy to
deactivate a key:

imap.put(KeyStroke.getKeyStroke("ctrl C"), "none");

CAUTION

The SDK documentation suggests to use the action name as the action's
key. We don't think that is a good idea. The action name is displayed on
buttons and menu items; thus, it can change at the whim of the UI
designer and it may be translated into multiple languages. Such unstable
strings are poor choices for lookup keys. Instead, we recommend that
you come up with action names that are independent of the displayed
names.

To summarize, here is what you do to carry out the same action in response to a button,
a menu item, or a keystroke:

1. Make a class that extends the AbstractAction class. You may be able to use
the same class for multiple related actions.

2. Make an object of the action class.
3. Construct a button or menu item from the action object. The constructor will read

the label text and icon from the action object.
4. For actions that can be triggered by keystrokes, you have to carry out additional steps.

First locate the top-level component of the window, such as a panel that contains all
other components.

5. Then get the WHEN_ANCESTOR_OF_FOCUSED_COMPONENT input map of the top-level
component. Make a KeyStroke object for the desired keystroke. Make an action key
object, such as a string that describes your action. Add the pair (keystroke, action key)
into the input map.

6. Finally, get the action map of the top-level component. Add the pair (action key,
action object) into the map.

Example 8-5 shows the complete code of the program that maps both buttons and keystrokes
to action objects. Try it out—clicking either the buttons or pressing ctrl+y, ctrl+b, or ctrl+r
changes the panel color.

Core Java™ 2: Volume I–Fundamentals

407

Example 8-5 ActionTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class ActionTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. ActionFrame frame = new ActionFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.show();
 12. }
 13. }
 14.
 15. /**
 16. A frame with a panel that demonstrates color change actions.
 17. */
 18. class ActionFrame extends JFrame
 19. {
 20. public ActionFrame()
 21. {
 22. setTitle("ActionTest");
 23. setSize(WIDTH, HEIGHT);
 24.
 25. // add panel to frame
 26.
 27. ActionPanel panel = new ActionPanel();
 28. Container contentPane = getContentPane();
 29. contentPane.add(panel);
 30. }
 31.
 32. public static final int WIDTH = 300;
 33. public static final int HEIGHT = 200;
 34. }
 35.
 36. /**
 37. A panel with buttons and keyboard shortcuts to change
 38. the background color.
 39. */
 40. class ActionPanel extends JPanel
 41. {
 42. public ActionPanel()
 43. {
 44. // define actions
 45.
 46. Action yellowAction = new ColorAction("Yellow",
 47. new ImageIcon("yellow-ball.gif"),
 48. Color.yellow);
 49. Action blueAction = new ColorAction("Blue",
 50. new ImageIcon("blue-ball.gif"),
 51. Color.blue);
 52. Action redAction = new ColorAction("Red",
 53. new ImageIcon("red-ball.gif"),
 54. Color.red);
 55.

Core Java™ 2: Volume I–Fundamentals

408

 56. // add buttons for these actions
 57.
 58. add(new JButton(yellowAction)); // since 1.3
 59. add(new JButton(blueAction));
 60. add(new JButton(redAction));
 61.
 62. // associate the Y, B, and R keys with names
 63.
 64. InputMap imap = getInputMap(// since 1.3
 65. JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
 66.
 67. imap.put(KeyStroke.getKeyStroke("ctrl Y"), "panel.yellow");
 68. imap.put(KeyStroke.getKeyStroke("ctrl B"), "panel.blue");
 69. imap.put(KeyStroke.getKeyStroke("ctrl R"), "panel.red");
 70.
 71. // associate the names with actions
 72.
 73. ActionMap amap = getActionMap();
 74. amap.put("panel.yellow", yellowAction);
 75. amap.put("panel.blue", blueAction);
 76. amap.put("panel.red", redAction);
 77. }
 78.
 79. public class ColorAction extends AbstractAction
 80. {
 81. /**
 82. Constructs a color action.
 83. @param name the name to show on the button
 84. @param icon the icon to display on the button
 85. @param c the background color
 86. */
 87. public ColorAction(String name, Icon icon, Color c)
 88. {
 89. putValue(Action.NAME, name);
 90. putValue(Action.SMALL_ICON, icon);
 91. putValue(Action.SHORT_DESCRIPTION,
 92. "Set panel color to " + name.toLowerCase());
 93. putValue("color", c);
 94. }
 95.
 96. public void actionPerformed(ActionEvent event)
 97. {
 98. Color c = (Color)getValue("color");
 99. setBackground(c);
100. repaint();
101. }
102. }
103.}

javax.swing.Action

• void setEnabled(boolean b)

Core Java™ 2: Volume I–Fundamentals

409

enables or disables this action. User interface elements may query this status and
disable themselves if the associated action is disabled.

• boolean isEnabled()

returns true if this action is enabled.

• void putValue(String key, Object value)

places a name/value pair inside the action object.

Parameters: key The name of the feature to store with the action object. This can be any
string, but four names have predefined meanings:

Name Value
Action.NAME The action name, to be displayed in UI components
Action.SMALL_ICON The action icon, to be displayed in UI components
Action.SHORT_DESCRIPTION A short description, for example, for a tool tip hint
Action.LONG_DESCRIPTION A longer description for on-line help
 value The object associated with the name.

• Object getValue(String key)

returns the value of a stored name/value pair.

javax.swing.JMenu

• JMenuItem add(Action a)

adds a menu item to the menu that invokes the action a when selected; returns the
added menu item.

javax.swing.KeyStroke

• static KeyStroke getKeyStroke(char keyChar)

creates a KeyStroke object that encapsulates a key stroke corresponding to
a KEY_TYPED event.

• static KeyStroke getKeyStroke(int keyCode, int modifiers)
• static KeyStroke getKeyStroke(int keyCode, int modifiers, boolean

onRelease)

Core Java™ 2: Volume I–Fundamentals

410

create a KeyStroke object that encapsulates a key stroke corresponding to
a KEY_PRESSED or KEY_RELEASED event.

• static KeyStroke getKeyStroke(String description)

constructs a keystroke from a humanly readable description. The description is
a sequence of white-space-delimited tokens in the following format:

1. Tokens that match shift control ctrl meta alt button1 button2 button3 are
translated to the appropriate mask bits.

2. A token typed must be followed by a one-character string, for example, "typed a".

Parameters: keyCode The virtual key code
 modifiers Any combination of InputEvent.SHIFT_MASK,

InputEvent.CONTROL_MASK, InputEvent.ALT_MASK,
InputEvent.META_MASK

 onRelease true if the keystroke is to be recognized when the key is released

3. A token pressed or released indicates a key press or release. (Key press is
the default.)

4. Otherwise, the token, when prefixed with VK_, should correspond to a KeyEvent
constant, for example, "INSERT" corresponds to KeyEvent.VK_INSERT.

For example, "released ctrl Y" corresponds to:

getKeyStroke(KeyEvent.VK_Y, Event.CTRL_MASK, true)

javax.swing.JComponent

• ActionMap getActionMap()

returns the action map that maps keystrokes to action keys

• InputMap getInputMap(int flag)

gets the input map that maps action keys to action objects.

Parameters: flag A condition on the keyboard focus to trigger the action, one of:
Name Value
WHEN_FOCUSED In this component
WHEN_IN_FOCUSED_WINDOW Anywhere in the window containing this

component
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT Anywhere in a subcomponent contained in this

component

Core Java™ 2: Volume I–Fundamentals

411

Multicasting

In the preceding section, we had several event sources report to the same event listener. In this
section, we will do the opposite. All AWT event sources support a multicast model for
listeners. This means that the same event can be sent to more than one listener object.
Multicasting is useful if an event is potentially of interest to many parties. Simply add
multiple listeners to an event source to give all registered listeners a chance to react to the
events.

CAUTION

According to the SDK documentation, “The API makes no guarantees
about the order in which the events are delivered to a set of registered
listeners for a given event on a given source.” In particular, don't
implement program logic that consumes a multicast event. Consumption
yields unpredictable effects when the delivery order is random. (See the
section entitled “Consuming Events” in this chapter for details on event
consumption.)

Here we will show a simple application of multicasting. We will have a frame that can spawn
multiple windows with the New button. And, it can close all windows with the Close all
button—see Figure 8-10.

Figure 8-10. All frames listen to the Close all command

The listener to the New button of the MulticastPanel is the newListener object constructed
in the MulticastPanel constructor—it makes a new frame whenever the button is clicked.

Core Java™ 2: Volume I–Fundamentals

412

But the Close all button of the MulticastPanel has multiple listeners. Each time
the makeNewFrame method executes, it adds another action listener to the Close all button.
Each of those listeners is responsible for closing a single frame in its actionPerformed
method. When the user clicks the Close all button, each of the listeners is activated, and each
of them closes its frame.

Example 8-6 shows the source code.

Example 8-6 MulticastTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class MulticastTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. MulticastFrame frame = new MulticastFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.show();
 12. }
 13. }
 14.
 15. /**
 16. A frame with buttons to make and close secondary frames
 17. */
 18. class MulticastFrame extends JFrame
 19. {
 20. public MulticastFrame()
 21. {
 22. setTitle("MulticastTest");
 23. setSize(WIDTH, HEIGHT);
 24.
 25. // add panel to frame
 26.
 27. MulticastPanel panel = new MulticastPanel();
 28. Container contentPane = getContentPane();
 29. contentPane.add(panel);
 30. }
 31.
 32. public static final int WIDTH = 300;
 33. public static final int HEIGHT = 200;
 34. }
 35.
 36. /**
 37. A panel with buttons to create and close sample frames.
 38. */
 39. class MulticastPanel extends JPanel
 40. {
 41. public MulticastPanel()
 42. {
 43. // add "New" button
 44.
 45. JButton newButton = new JButton("New");
 46. add(newButton);
 47.

Core Java™ 2: Volume I–Fundamentals

413

 48. ActionListener newListener = new
 49. ActionListener()
 50. {
 51. public void actionPerformed(ActionEvent event)
 52. {
 53. makeNewFrame();
 54. }
 55. };
 56. newButton.addActionListener(newListener);
 57.
 58. // add "Close all" button
 59.
 60. closeAllButton = new JButton("Close all");
 61. add(closeAllButton);
 62. }
 63.
 64. private void makeNewFrame()
 65. {
 66. // make new blank frame
 67. final BlankFrame frame = new BlankFrame();
 68. frame.show();
 69.
 70. // create action listener that disposes of this frame
 71.
 72. ActionListener closeAllListener = new
 73. ActionListener()
 74. {
 75. public void actionPerformed(ActionEvent event)
 76. {
 77. frame.dispose();
 78. }
 79. };
 80.
 81. // add the listener to the "Close all" button of
 82. // the panel--note that this button has multiple
 83. // listeners added, one for each frame
 84. closeAllButton.addActionListener(closeAllListener);
 85. }
 86.
 87. private JButton closeAllButton;
 88. }
 89.
 90. class BlankFrame extends JFrame
 91. {
 92. public BlankFrame()
 93. {
 94. counter++;
 95. setTitle("Frame " + counter);
 96. setSize(WIDTH, HEIGHT);
 97. setLocation(SPACING * counter, SPACING * counter);
 98. }
 99.
100. public static final int WIDTH = 300;
101. public static final int HEIGHT = 200;
102. public static final int SPACING = 30;
103. private static int counter = 0;
104. }

Core Java™ 2: Volume I–Fundamentals

414

The Event Queue

When the operating environment generates an event in response to a user action such as
a mouse click, the part of the AWT that communicates with the operating environment
receives a notification and turns it into an AWT event. The AWT then deposits the event into
an event queue. The part of the AWT that dispatches events to listeners:

• Fetches events from the event queue;
• Locates the listener object for that event;
• Invokes the appropriate listener procedure for that event.

An event queue is important for performance reasons. Events that occur frequently (such as
mouse moves) or that are slow to carry out (such as painting) can be combined in the queue. If
the program has not managed to extract mouse move or paint events and a new event is
inserted, then the AWT can combine it with the existing event to make a single, new event.
For example, we can have the new mouse position update the old one, or a new paint event
can contain a request to repaint the combined areas of the old paint events.

Occasionally, it is useful to manipulate the event queue directly. For example, you can
remove events from the queue, thereby bypassing how events would normally be delivered.
Or, you can add new events into the queue, allowing a richer event handling than is possible
in the basic Java event model.

You obtain an object representing the event queue by using the method call

EventQueue queue
 = Toolkit.getDefaultToolkit().getSystemEventQueue();

You insert a new event into the event queue with the postEvent method:

queue.postEvent(new ActionEvent(this,
 ActionEvent.ACTION_PERFORMED, "Blue"));

You remove an event with the getNextEvent method. The peekEvent method returns the
next event in the queue, but it does not remove it.

NOTE

Inserting or removing events is an advanced technique. If performed
improperly or maliciously, it can wreak havoc with an application. For
that reason, applets—the Java applications that are downloaded from
foreign computers and run inside your browser—are not allowed access
to the system event queue.

Core Java™ 2: Volume I–Fundamentals

415

java.awt.EventQueue

• AWTEvent peekEvent()

returns a reference to the AWTEvent object that describes the next event.

• AWTEvent getNextEvent()

returns a reference to the AWTEvent object that describes the next event and removes it
from the queue.

• void postEvent(AWTEvent anEvent)

places the event on the event queue.

Parameters: anEvent The event you want to post

Adding Custom Events

In the last section of this chapter, we will do some fairly sophisticated programming. We want
to show you how to build a custom event type that you can insert into the AWT event queue
and then have it dispatched to a listener, just like regular AWT events. For the example in this
section, we will implement our own timer. The timer sends an event to its listener whenever
a certain time interval has elapsed. For this event, we make a new event type that we call
TimerEvent. The associated listener will have one method, called timeElapsed.

Using our timer is simple. Construct a timer object and specify the interval (in milliseconds)
in the constructor. Then, add a listener. The listener will be notified whenever the time
interval has elapsed. Here is how you can put the timer to work:

Timer t = new Timer(100);
 // deliver timer clicks every 100 milliseconds
TimerListener listener = . . .;
addTimerListener(listener);
 // notify the timeElapsed method of this class

You need to define a class that implements the TimerListener interface:

class TimerAction implements TimerListener
{
 public void timeElapsed(TimerEvent event)
 {
 // this code is executed every 100 milliseconds
 }
}

Core Java™ 2: Volume I–Fundamentals

416

NOTE

As you know from Chapter 6, the Swing package has its own Timer
class, which is slightly different from ours. The Swing timer does not
introduce a new event type but instead sends action events to the listener.
More importantly, the Swing timer does not smuggle its events inside
the AWT queue but keeps its own separate queue for timer events. We
are implementing our own class to show you how to add new event types
to the AWT, not to build a better timer. If you need a timer in your own
code, you should simply use the Swing timer, not ours.

Now, let us see how to implement a custom event. Whenever you define a custom event, you
need three ingredients:

• an event type. We will define a TimerEvent class.
• an event listener interface. We will use:

 public interface TimerListener extends EventListener
 {
 void timeElapsed(TimerEvent event);
 }

• an event source (that is, our Timer). Listeners are attached to the event source.

The TimerEvent class is pretty simple:

• It extends the AWTEvent superclass since all events in the AWT event queue must have
type AWTEvent.

• The constructor for the timer event receives the object that is the source of the event
(that is, the timer object).

We also need to give an event ID number to the superclass. It does not matter what positive
integer we choose, as long as we stay outside the range that the AWT uses for its own events.

How to find an unused ID? To quote the SDK documentation: “Programs should choose event
ID values which are greater than the integer constant
java.awt.AWTEvent.RESERVED_ID_MAX.”

 class TimerEvent extends AWTEvent
 {
 public TimerEvent(Timer t) { super(t, TIMER_EVENT); }
 public static final int TIMER_EVENT =
 AWTEvent.RESERVED_ID_MAX + 5555;
 }

Finally, we need to implement the Timer class itself. The AWT event mechanism requires
that event sources extend the class Component. Normally, components are user interface
elements that are placed inside a window. We will simply take the attitude that a timer is
an invisible component and have it extend the JComponent class.

Core Java™ 2: Volume I–Fundamentals

417

To write the code that constructs the interval that the timer “ticks,” we need to use threads.
(Threads are discussed in the second volume of this book, so you will need to take the thread
handling code on faith for now.) Whenever the specified time interval has elapsed, we make
a new timer event and insert it into the event queue. Here's the code for this, with the pieces
that are needed to post the event in bold:

class Timer extends JComponent implements Runnable
{
 public Timer(int i)
 {
 interval = i;
 Thread t = new Thread(this);
 t.start();
 }

 public void run()
 {
 while (true)
 {
 try { Thread.sleep(interval); }
 catch(InterruptedException e) {}

 EventQueue queue
 = Toolkit.getDefaultToolkit().getSystemEventQueue()
 TimerEvent event = new TimerEvent(this);
 queue.postEvent(event);
 }
 }
 . . .
 private int interval;

After this code is processed, our custom timer events are inserted into the queue. Event
delivery is not automatic however, so our custom timer event will not be sent to anyone
without additional code.

How do we make sure our custom event is sent to interested parties? The answer is that is the
responsibility of the event source to:

• Manage the listeners for the events that it generates;
• Dispatch the events to the listeners that are registered for them.

Event management is a common task, and the Swing designers provide a convenience class
EventListenerList to make it easy to implement the methods for adding and removing
listeners and for firing events. The class takes care of the tricky details that can arise when
multiple threads attempt to add, remove, or dispatch events at the same time.

Because some event sources accept listeners of multiple types, each listener in the event
listener list is associated with a particular class. The add and remove methods are intended for
the implementation of addXxxListener methods. For example,

public void addTimerListener(TimerListener listener)
{
 listenerList.add(TimerListener.class, listener);
}

Core Java™ 2: Volume I–Fundamentals

418

public void removeTimerListener(TimerListener listener)
{
 listenerList.remove(TimerListener.class, listener);
}

NOTE

You may wonder why the EventListenerList doesn't simply check
which interface the listener object implements. But it is possible for
an object to implement multiple interfaces. For example, it is possible
that listener happens to implement both the TimerListener and
the ActionListener interface, but a programmer may choose only to
add it as a TimerListener by calling the addTimerListener.
The EventListenerList must respect that choice.

Whenever the AWT removes an event from the queue, it calls the processEvent method. For
timers, we define that method to call the timeElapsed method on the single listener. We use
the getListeners method of the EventListenerList class to obtain all timer listeners. Then
we call the timeElapsed method for each of them:

public void processEvent(AWTEvent event)
{
 if (event instanceof TimerEvent)
 {
 EventListener[] listeners = listenerList.getListeners(
 TimerListener.class);
 for (int i = 0; i < listeners.length; i++)
 ((TimerListener)listeners[i]).timeElapsed(
 (TimerEvent)event);
 }
 else super.processEvent(event);
}

NOTE

The getListeners method is a J2SE 1.3 feature. Use getListenerList
if you use J2SE 1.2.

CAUTION

Our timer extends the JComponent class. If you instead use
the Component class as the superclass, you will run into a problem.
The AWT code that removes events from the queue and dispatches them
to the event source will deliver them only if it is convinced that
the component supports the new event model. One way to convince it is
to call the enableEvents method in the Component class. This method
takes a parameter that gives a mask for the AWT events that you want to

Core Java™ 2: Volume I–Fundamentals

419

enable for this component. If you don't care about AWT events at all—as
is the case for a source of custom events—you can pass pass a mask of 0.
Therefore, if your event source extends the Component class, you should
place a call enableEvents(0) into the constructor.

As you can see, it is possible to add custom events to the AWT mechanism using relatively
little code.

Example 8-7 shows the complete source code of a sample program that uses the timer. For
fun, we generate a new random circle and shift the screen display down a pixel with every
timer tick. The effect is an animation that simulates rainfall. (See Figure 8-11.)

Figure 8-11. Using custom timer events to simulate rainfall

This ends our discussion of event handling. In the next chapter, you will learn more about
user interface components. Of course, to program user interfaces, you will put your
knowledge of event handling to work by capturing the events that the user interface
components generate.

Example 8-7 CustomEventTest.java

 1. import java.awt.*;
 2. import java.awt.geom.*;
 3. import java.util.*;
 4. import java.awt.event.*;
 5. import javax.swing.*;
 6. import javax.swing.event.*;
 7.
 8. public class CustomEventTest
 9. {
 10. public static void main(String[] args)
 11. {
 12. CustomEventFrame frame = new CustomEventFrame();
 13. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 14. frame.show();
 15. }
 16. }
 17.

Core Java™ 2: Volume I–Fundamentals

420

 18. /**
 19. A frame with a panel that displays falling raindrops
 20. */
 21. class CustomEventFrame extends JFrame
 22. {
 23. public CustomEventFrame()
 24. {
 25. setTitle("CustomEventTest");
 26. setSize(WIDTH, HEIGHT);
 27.
 28. // add frame to panel
 29.
 30. CustomEventPanel panel = new CustomEventPanel();
 31. Container contentPane = getContentPane();
 32. contentPane.add(panel);
 33. }
 34.
 35. public static final int WIDTH = 300;
 36. public static final int HEIGHT = 200;
 37. }
 38.
 39. /**
 40. A panel that displays falling rain drops
 41. */
 42. class CustomEventPanel extends JPanel
 43. {
 44. public CustomEventPanel()
 45. {
 46. y = 0;
 47. circles = new ArrayList();
 48.
 49. Timer t = new Timer(100);
 50. TimerAction listener = new TimerAction();
 51. t.addTimerListener(listener);
 52. }
 53.
 54. public void paintComponent(Graphics g)
 55. {
 56. super.paintComponent(g);
 57. Graphics2D g2 = (Graphics2D)g;
 58.
 59. // translate the origin to create illusion of falling drops
 60. g2.translate(0, y);
 61.
 62. // draw all circles
 63. for (int i = 0; i < circles.size(); i++)
 64. g2.draw((Ellipse2D)circles.get(i));
 65. }
 66.
 67. private ArrayList circles;
 68. private int y;
 69.
 70. private class TimerAction implements TimerListener
 71. {
 72. public void timeElapsed(TimerEvent event)
 73. {
 74. if (getWidth() == 0) return; // panel not yet shown
 75.

Core Java™ 2: Volume I–Fundamentals

421

 76. // add another circle
 77. int x = generator.nextInt(getWidth());
 78. Ellipse2D circle = new Ellipse2D.Double(x, -y,
 79. SIZE, SIZE);
 80. circles.add(circle);
 81.
 82. // shift up the origin
 83. y++;
 84.
 85. repaint();
 86. }
 87.
 88. private Random generator = new Random();
 89. private static final int SIZE = 9;
 90. }
 91. }
 92.
 93. /**
 94. A custom event class.
 95. */
 96. class TimerEvent extends AWTEvent
 97. {
 98. public TimerEvent(Timer t) { super(t, TIMER_EVENT); }
 99. public static final int TIMER_EVENT
 100. = AWTEvent.RESERVED_ID_MAX + 5555;
 101. }
 102.
 103. /**
 104. A custom event listener interface.
 105. */
 106. interface TimerListener extends EventListener
 107. {
 108. public void timeElapsed(TimerEvent event);
 109. }
 110.
 111. /**
 112. A custom timer class that is the source of timer events.
 113. */
 114. class Timer extends JComponent implements Runnable
 115. {
 116. public Timer(int i)
 117. {
 118. listenerList = new EventListenerList();
 119. interval = i;
 120. Thread t = new Thread(this);
 121. t.start();
 122. }
 123.
 124. /**
 125. Adds a timer listener
 126. @param listener the listener to add
 127. */
 128. public void addTimerListener(TimerListener listener)
 129. {
 130. listenerList.add(TimerListener.class, listener);
 131. }
 132.

Core Java™ 2: Volume I–Fundamentals

422

 133. /**
 134. Removes a timer listener
 135. @param listener the listener to remove
 136. */
 137. public void removeTimerListener(TimerListener listener)
 138. {
 139. listenerList.remove(TimerListener.class, listener);
 140. }
 141.
 142.
 143. /**
 144. Posts a new timer event every <code>interval</code>
 145. milliseconds.
 146. */
 147. public void run()
 148. {
 149. while (true)
 150. {
 151. try { Thread.sleep(interval); }
 152. catch(InterruptedException e) {}
 153.
 154. TimerEvent event = new TimerEvent(this);
 155.
 156. EventQueue queue
 157. = Toolkit.getDefaultToolkit().getSystemEventQueue();
 158. queue.postEvent(event);
 159. }
 160. }
 161.
 162. public void processEvent(AWTEvent event)
 163. {
 164. if (event instanceof TimerEvent)
 165. {
 166. EventListener[] listeners = listenerList.getListeners(
 167. TimerListener.class);
 168. for (int i = 0; i < listeners.length; i++)
 169. ((TimerListener)listeners[i]).timeElapsed(
 170. (TimerEvent)event);
 171. }
 172. else
 173. super.processEvent(event);
 174. }
 175.
 176. private int interval;
 177. private EventListenerList listeners;
 178. }

javax.swing.event.EventListenerList

• void add(Class t, EventListener l)

adds an event listener and its class to the list. The class is stored so that event firing
methods can selectively call events. Typical usage is in an addXxxListener method:

Core Java™ 2: Volume I–Fundamentals

423

public void addXxxListener(XxxListener l)
{
 listenerList.add(XxxListener.class, l);
}

Parameters: t The listener type
 l The listener

• void remove(Class t, EventListener l)

removes an event listener and its class from the list. Typical usage is in a
removeXxxListener method:

public void removeXxxListener(XxxListener l)
{
 listenerList.remove(XxxListener.class, l);
}

Parameters: t The listener type
 l The listener

• EventListener[] getListeners(Class t)

returns an array of all the listeners of the given type. The array is guaranteed to be
non-null.

• Object[] getListenerList()

returns an array whose elements with even-numbered index are listener classes, and
whose elements with odd-numbered index are listener objects. The array is guaranteed
to be non-null.

java.awt.Component

• void enableEvents(long maskForEvents)

enables the component to insert events into the event queue even when there is no
listener for a particular event type.

Parameters: maskForEvents A mask of event types to enable, made up of constants, such as
ACTION_EVENT_MASK, that are defined in the AWTEvent class.

Core Java™ 2: Volume I–Fundamentals

424

Chapter 9. User Interface Components with Swing
• The Model-View-Controller Design Pattern
• An Introduction to Layout Management
• Text Input
• Making Choices
• Menus
• Sophisticated Layout Management
• Dialog Boxes

The last chapter was primarily designed to show you how to use the event model in Java. In
the process you did take the first steps toward learning how to build a graphical user interface.
This chapter shows you the most important tools you'll need to build more full-featured
graphical user interfaces.

We'll start out with a tour of the architectural underpinnings of Swing. Knowing what goes on
“under the hood” is important in understanding how to use some of the more advanced
components effectively. We'll then show you how to use the most common user interface
components in Swing such as text fields, radio buttons, and menus. Next, you will learn how
to use the nifty layout manager features of Java to arrange these components in a window,
regardless of the look and feel of a particular user interface. Finally, you'll see how to
implement dialog boxes in Swing.

This chapter covers basic Swing components such as text components, buttons, and sliders.
These are the essential user interface components that you will need most frequently. We will
cover advanced Swing components in Volume 2. For an even more comprehensive look into
all details of the Swing framework, we recommend the book Core Java Foundation Classes
by Kim Topley (Prentice-Hall 1998).

The Model-View-Controller Design Pattern

As promised, we start this chapter with a section describing the architecture of Swing
components. Before we explain just what the title of this section means, let's step back for a
minute and think about the pieces that make up a user interface component such as a button, a
check box, a text field, or a sophisticated tree control. Every component has three
characteristics:

• Its contents, such as the state of a button (pushed in or not), or the text in a text field;
• Its visual appearance (color, size, and so on);
• Its behavior (reaction to events).

Even a seemingly simple component such as a button exhibits some moderately complex
interaction between these characteristics. Obviously, the visual appearance of a button
depends on the look and feel. A Metal button looks different from a Windows button or a
Motif button. In addition, the appearance depends on the button state: when a button is pushed
in, it needs to be redrawn to look different. The state depends on the events that the button
receives. When the user depresses the mouse inside the button, the button is pushed in.

Core Java™ 2: Volume I–Fundamentals

425

Of course, when you use a button in your programs, you simply consider it as a button, and
you don't think too much about the inner workings and characteristics. That, after all, is the
job of the programmer who implemented the button. However, those programmers that
implement buttons are motivated to think a little harder about them. After all, they have to
implement buttons, and all other user interface components, so that they work well no matter
what look and feel is installed.

To do this, the Swing designers turned to a well-known design pattern: the model-view-
controller pattern. This pattern, like many other design patterns, goes back to one of the
principles of object-oriented design that we mentioned way back in Chapter 5: don't make one
object responsible for too much. Don't have a single button class do everything. Instead, have
the look and feel of the component associated with one object and store the contents in
another object. The model-view-controller (MVC) design pattern teaches how to accomplish
this. Implement three separate classes:

• The model, which stores the contents;
• The view, which displays the contents;
• The controller, which handles user input.

The pattern specifies precisely how these three objects interact. The model stores the contents
and has no user interface. For a button, the content is pretty trivial—it is just a small set of
flags that tells whether the button is currently pushed in or out, whether it is active or inactive,
and so on. For a text field, the content is a bit more interesting. It is a string object that holds
the current text. This is not the same as the view of the content—if the content is larger than
the text field, the user sees only a portion of the text displayed (see Figure 9-1).

Figure 9-1. Model and view of a text field

The model must implement methods to change the contents and to discover what the contents
are. For example, a text model has methods to add or remove characters in the current text and
to return the current text as a string. Again, keep in mind that the model is completely
nonvisual. It is the job of a view to draw the data that is stored in the model.

NOTE

The term “model” is perhaps unfortunate because we often think of a
model as a representation of an abstract concept. Car and airplane
designers build models to simulate real cars and planes. But that analogy
really leads you astray when thinking about the model-view-controller
pattern. In the design pattern, the model stores the complete contents,
and the view gives a (complete or incomplete) visual representation of
the contents. A better analogy might be the model that poses for an artist.

Core Java™ 2: Volume I–Fundamentals

426

It is up to the artist to look at the model and create a view. Depending on
the artist, that view might be a formal portrait, an impressionist painting,
or a cubist drawing that shows the limbs in strange contortions.

One of the advantages of the model-view-controller pattern is that a model can have multiple
views, each showing a different part or aspect of the full contents. For example, an HTML
editor can offer two simultaneous views of the same contents: a WYSIWYG view and a “raw
tag” view (see Figure 9-2). When the model is updated through the controller of one of
the views, it tells both attached views about the change. When the views are notified, they
refresh themselves automatically. Of course, for a simple user interface component such as
a button, you won't have multiple views of the same model.

Figure 9-2. Two separate views of the same model

The controller handles the user input events such as mouse clicks and keystrokes. It then
decides whether to translate these events into changes in the model or the view. For example,
if the user presses a character key in a text box, the controller calls the “insert character”
command of the model. The model then tells the view to update itself. The view never knows
why the text changed. But if the user presses a key, then the controller may tell the view to
scroll. Scrolling the view has no effect on the underlying text, so the model never knows that
this event happened.

Core Java™ 2: Volume I–Fundamentals

427

Design Patterns
When solving a problem, you don't usually figure out a solution from first
principles. Instead, you are likely to be guided by past experience, or you may ask
other experts for advice on what has worked for them. Design patterns are a method
for presenting this expertise in a structured way.

In recent years, software engineers have begun to assemble catalogs of such
patterns. The pioneers in this area were inspired by the architectural design patterns
of the architect Christopher Alexander. In his book The Timeless Way of Building
(Oxford University Press 1979), Alexander gives a catalog of patterns for designing
public and private living spaces. Here is a typical example:

Window Place

Everybody loves window seats, bay windows, and big windows with
low sills and comfortable chairs drawn up to them … A room which
does not have a place like this seldom allows you to feel comfortable
or perfectly at ease …

If the room contains no window which is a “place,” a person in
the room will be torn between two forces:

1. He wants to sit down and be comfortable.
2. He is drawn toward the light.

Obviously, if the comfortable places—those places in the room where
you most want to sit—are away from the windows, there is no way of
overcoming this conflict …

Therefore: In every room where you spend any length of time during
the day, make at least one window into a “window place.”

Figure 9-3. A window place

Each pattern in Alexander's catalog, as well as those in the catalogs of software
patterns, follows a particular format. The pattern first describes a context, a situation
that gives rise to a design problem. Then, the problem is explained, usually as a set
of conflicting forces. Finally, the solution shows a configuration that balances these

Core Java™ 2: Volume I–Fundamentals

428

Figure 9-4 shows the interactions between model, view, and controller objects.

Figure 9-4. Interactions between model, view, and controller objects

As a programmer using Swing components, you generally don't need to think about
the model-view-controller architecture. Each user interface has a wrapper class (such as
JButton or JTextField) that stores the model and the view. When you want to inquire about
the contents (for example, the text in a text field), the wrapper class asks the model and
returns the answer to you. When you want to change the view (for ex-ample, move the caret
position in a text field), the wrapper class forwards that request to the view. However, there
are occasions where the wrapper class doesn't work hard enough on forwarding commands.
Then, you have to ask it to retrieve the model and work directly with the model. (You don't
have to work directly with the view—that is the job of the look-and-feel code.)

Core Java™ 2: Volume I–Fundamentals

429

Besides being “the right thing to do,” the model-view-controller pattern was attractive for the
Swing designers because it allowed them to implement pluggable look and feel. The model of
a button or text field is independent of the look-and-feel. But of course the visual
representation is completely dependent on the user interface design of a particular look and
feel. The controller can vary as well. For example, in a voice-controlled device, the controller
must cope with an entirely different set of events than in a standard computer with a keyboard
and a mouse. By separating out the underlying model from the user interface, the Swing
designers are able to reuse the code for the models and even to switch user interfaces in
a running program.

Of course, patterns are only intended as guidance, not as religion. Not every pattern is
applicable in all situations. For example, you may find it difficult to follow the “window
places” pattern (see the sidebar on design patterns) to rearrange your cubicle. Similarly, the
Swing designers found that the harsh reality of pluggable look-and-feel implementation does
not always allow for a neat realization of the model-view-controller pattern. Models are easy
to separate, and each user interface component has a model class. But, the responsibilities of
the view and controller are not always clearly separated and are distributed over a number of
different classes. Of course, as a user of these classes, you won't be concerned about this. In
fact, as we pointed out before, you often won't have to worry about the models either—you
can just use the component wrapper classes.

A Model-View-Controller Analysis of Swing Buttons

You already learned how to use buttons in the previous chapter, without having to worry
about the controller, model, or view for them. Still, buttons are about the simplest user
interface elements, so they are a good place to become comfortable with
the model-view-controller pattern. You will encounter similar kinds of classes and interfaces
for the more sophisticated Swing components.

For most components, the model class implements an interface whose name ends in Model.
Thus, there is an interface called ButtonModel. Classes implementing that interface can
define the state of the various kinds of buttons. Actually, buttons aren't all that complicated,
and the Swing library contains a single class, called DefaultButtonModel, that implements
this interface.

You can get a sense of what sort of data is maintained by a button model by looking at
the methods of the ButtonModel interface. Table 9-1 shows the accessor methods.

Table 9-1. The accessor methods of the ButtonModel interface
getActionCommand() The action command string associated with this button
getMnemonic() The keyboard mnemonic for this button
isArmed() true if the button was pressed and the mouse is still over the button
isEnabled() true if the button is selectable
isPressed() true if the button was pressed but the mouse button hasn't yet been

released
isRollover() true if the mouse is over the button
isSelected() true if the button has been toggled on (used for check boxes and radio

buttons)

Core Java™ 2: Volume I–Fundamentals

430

Each JButton object stores a button model object, which you can retrieve.

JButton button = new JButton("Blue");
ButtonModel model = button.getModel();

In practice, you won't care—the minutiae of the button state are only of interest to the view
that draws it. And the important information—such as whether a button is enabled—is
available from the JButton class. (The JButton then asks its model, of course, to retrieve that
information.)

Have another look at the ButtonModel interface to see what isn't there. The model does not
store the button label or icon. There is no way to find out what's on the face of a button just by
looking at its model. (Actually, as you will see in the section on radio button groups, that
purity of design is the source of some grief for the programmer.)

It is also worth noting that the same model (namely, DefaultButtonModel) is used for push
buttons, radio buttons, check boxes, and even menu items. Of course, each of these button
types has different views and controllers. When using the Metal look and feel, the JButton
uses a class called BasicButtonUI for the view and a class called ButtonUIListener as
controller. In general, each Swing component has an associated view object that ends in UI.
But not all Swing components have dedicated controller objects.

So, having given you this short introduction to what is going on under the hood in a JButton,
you may be wondering: just what is a JButtton really? It is simply a wrapper class inheriting
from JComponent that holds the DefaultButtonModel object, some view data (such as the
button label and icons), and a DefaultButtonUI object that is responsible for the button
view.

An Introduction to Layout Management

Before we go on to discussing individual Swing components, such as text fields and radio
buttons, we need to briefly cover how to arrange these components inside a frame. Since the
Java SDK has no form designer like those in Visual Basic or Delphi, you need to write code
to position (lay out) the user interface components where you want them to be.

Of course, if you have a Java-enabled development environment, it will probably have a
layout tool that automates some or all of these tasks. Nevertheless, it is important to know
exactly what goes on “under the hood” since even the best of these tools will usually require
hand-tweaking to get a professional look and feel.

Let's start by reviewing the program from the last chapter that used buttons to change the
background color of a frame (see Figure 9-5).

Core Java™ 2: Volume I–Fundamentals

431

Figure 9-5. A panel with three buttons

Let us quickly recall how we built this program:

1. We defined the look of each button by setting the label string in the constructor, for
example:

 JButton yellowButton = new JButton("Yellow")

2. We then added the individual buttons to a panel, for example, with:

 add(yellowButton);

3. Then, we added the needed event handlers, for example:

 yellowButton.addActionListener(listener);

What happens if we add more buttons? Figure 9-6 shows what happens when you add six
buttons to the panel. As you can see, they are centered in a row, and when there isn't any more
room, a new row is started.

Figure 9-6. A panel with six buttons managed by a flow layout

Moreover, the buttons stay centered in the panel, even when the user resizes the frame (see
Figure 9-7).

Core Java™ 2: Volume I–Fundamentals

432

Figure 9-7. Changing the panel size rearranges the buttons automatically

Java has a very elegant concept to enable this dynamic layout: all components in a container
are managed by a layout manager. In our example, the buttons are managed by the flow
layout manager, the default layout manager for a panel.

The flow layout manager lines the components horizontally until there is no more room and
then starts a new row of components.

When the user resizes the container, the layout manager automatically reflows
the components to fill the available space.

You can choose how you want to arrange the components in each row. The default is to center
them in the container. The other choices are to align them to the left or to the right of the
container. To use one of these alignments, specify LEFT or RIGHT in the constructor of the
FlowLayout object.

setLayout(new FlowLayout(FlowLayout.LEFT));

NOTE

Normally, you just let the flow layout manager control the vertical and
horizontal gaps between the components. You can, however, force a
specific horizontal or vertical gap by using another version of the flow
layout constructor. (See the API notes.)

java.awt.Container

• setLayout(LayoutManager m)

sets the layout manager for this container.

Core Java™ 2: Volume I–Fundamentals

433

java.awt.FlowLayout

• FlowLayout(int align)

constructs a new FlowLayout with the specified alignment.

Parameters: align One of LEFT, CENTER, or RIGHT

• FlowLayout(int align, int hgap, int vgap)

constructs a new FlowLayout with the specified alignment and the specified
horizontal and vertical gaps between components.

Parameters: align One of LEFT, CENTER, or RIGHT
 hgap The horizontal gap to use in pixels (negative values force an overlap)
 vgap The vertical gap to use in pixels (negative values force an overlap)

Border Layout

Java comes with several layout managers, and you can also make your own layout managers:
we will cover all of them later on in this chapter. However, to enable us to give you more
interesting examples right away, we need to briefly describe another layout manager called
the border layout manager. This is the default layout manager of the content pane of every
JFrame. Unlike the flow layout manager, which completely controls the position of each
component, the border layout manager lets you choose where you want to place each
component. You can choose to place the component in the center, north, south, east, or west
of the content pane (see Figure 9-8).

Core Java™ 2: Volume I–Fundamentals

434

Figure 9-8. Border layout

For example:

class MyPanel extends JPanel
{
 setLayout(new BorderLayout());
 . . .
 add(yellowButton, BorderLayout.SOUTH);
}

The edge components are laid out first, and the remaining available space is occupied by
the center. When the container is resized, the thickness of the edge components is unchanged,
but the center component changes its size. You add components by specifying a constant
CENTER,NORTH, SOUTH, EAST, or WEST of the BorderLayout class. Not all of the positions
need to be occupied. If you don't supply any value, CENTER is assumed.

Core Java™ 2: Volume I–Fundamentals

435

NOTE

The BorderLayout constants are defined as strings. For example,
BorderLayout.SOUTH is defined as the string "South". Many
programmers prefer to use the strings directly because they are shorter,
for example, contentPane.add(component, "South"). However, if
you accidentally misspell a string, the compiler won't catch that error.

Unlike the flow layout, the border layout grows all components to fill the available space.
(The flow layout leaves each component at its preferred size.)

As with flow layouts, if you want to specify a gap between the regions, you can do so in the
constructor of the BorderLayout.

As previously noted, the content pane of a JFrame uses a border layout. Up to now, we never
took advantage of this—we simply added panels into the default (center) area. But you can
add components into the other areas as well:

Container contentPane = getContentPane();
contentPane.add(yellowButton, BorderLayout.SOUTH);

However, there is a problem with this code fragment that we take up in the next section.

java.awt.Container

• void add(Component c, Object constraints)

adds a component to this container.

Parameters: c The component to add
 constraints An identifier understood by the layout manager

java.awt.BorderLayout

• BorderLayout(int hgap, int vgap)

constructs a new BorderLayout with the specified horizontal and vertical gaps
between components.

Core Java™ 2: Volume I–Fundamentals

436

Parameters: hgap The horizontal gap to use in pixels (negative values force an overlap)
 vgap The vertical gap to use in pixels (negative values force an overlap)

Panels

A BorderLayout is not very useful by itself. Figure 9-9 shows what happens when you use
the code fragment above. The button has grown to fill the entire southern region of the frame.
And, if you were to add another button to the southern region, it would just displace the first
button.

Figure 9-9. A single button managed by a border layout

One common method to overcome this problem is to use additional panels. Panels act as
(smaller) containers for interface elements and can themselves be arranged inside a larger
panel under the control of a layout manager. For example, you can have one panel in the
southern area for the buttons and another in the center for text. By nesting panels and using a
mixture of border layouts and flow layouts, you can achieve fairly precise positioning of
components. This approach to layout is certainly enough for prototyping, and it is the
approach that we will use for the example programs in the first part of this chapter. See the
section on the GridBagLayout later in this chapter for the most precise way to position
components.

For example, look at Figure 9-10. The three buttons at the bottom of the screen are all
contained in a panel. The panel is put into the southern end of the content pane.

Figure 9-10. A panel placed at the south end of the frame

Core Java™ 2: Volume I–Fundamentals

437

So, suppose you want to add a panel with three buttons as in Figure 9-10. As you might
expect, you first create a new instance of a JPanel object before you add the individual
buttons to it. The default layout manager for a panel is a FlowLayout, which is a good choice
for this situation. Finally, you add the individual buttons, using the add method you have seen
before. Since you are adding buttons to a panel and haven't changed the default layout
manager, the position of the buttons is under the control of the FlowLayout manager. This
means the buttons stay centered within the panel and they do not expand to fill the entire
panel area. Here's a code fragment that adds a panel containing three buttons in the south end
of a container.

Container contentPane = getContentPane();
JPanel panel = new JPanel();
panel.add(yellowButton);
panel.add(blueButton);
panel.add(redButton);
contentPane.add(panel, BorderLayout.SOUTH);

NOTE

The panel boundaries are not visible to the user. Panels are just
an organizing mechanism for the user interface designer.

As you just saw, the JPanel class uses a FlowLayout as the default layout manager. For a
JPanel, you can supply a different layout manager object in the constructor. However, most
other containers do not have such a constructor. But all containers have a setLayout method
to set the layout manager to something other than the default for the container.

javax.swing.JPanel

• JPanel(LayoutManager m)

sets the layout manager for the panel.

Text Input

We are finally ready to start introducing the Swing user interface components. We'll start with
components that let a user input and edit text. In Java, two components are used to get text
input: text fields and text areas. The difference between them is that a text field can accept
only one line of text and a text area can accept multiple lines of text. The classes are called
JTextField for single-line input and JTextArea for multiple lines of text.

Both of these classes inherit from a class called JTextComponent. You will not be able to
construct a JTextComponent yourself since it is an abstract class. On the other hand, as is so

Core Java™ 2: Volume I–Fundamentals

438

often the case in Java, when you go searching through the API documentation, you may find
that the methods you are looking for are actually in the parent class JTextComponent rather
than in the derived class. For example, the methods that get or set the text in a text field or
text area are actually methods in JTextComponent.

javax.swing.text.JTextComponent

• void setText(String t)

changes the text of a text component.

Parameters: t The new text

• String getText()

returns the text contained in this text component.

• void setEditable(boolean b)

determines whether the user can edit the contents of the JTextComponent.

Text Fields

The usual way to add a text field to a window is to add it to a panel or other container—just as
you would a button:

JPanel panel = new JPanel();
JTextField textField = new JTextField("Default input", 20);
panel.add(textField);

This code adds a text field and initializes the text field by placing the string "Default
input" inside it. The second parameter of this constructor sets the width. In this case, the
width is 20 “columns.” Unfortunately, a column is a rather imprecise measurement. One
column is the expected width of one character in the font you are using for the text. The idea
is that if you expect the inputs to be n characters or less, you are supposed to specify n as
the column width. In practice, this measurement doesn't work out too well, and you should
add 1 or 2 to the maximum input length to be on the safe side. Also, keep in mind that
the number of columns is only a hint to the AWT that gives the preferred size. If the layout
manager needs to grow or shrink the text field, it can adjust its size. The column width that
you set in the JTextField constructor is not an upper limit on the number of characters
the user can enter. The user can still type in longer strings, but the input scrolls when the text
exceeds the length of the field. Users tend to find scrolling text fields irritating, so you should
size the fields generously. If you need to reset the number of columns at run time, you can do
that with the setColumns method.

Core Java™ 2: Volume I–Fundamentals

439

TIP

After changing the size of a text box with the setColumns method, you
need to call the validate method of the surrounding container.

textField.setColumns(10);
panel.validate();

The validate method recomputes the size and layout of all components
in a container. After you use the validate method, the layout manager
repaints the container, and the changed size of the text field will be
visible.

In general, you want to let the user add text (or edit the existing text) in a text field. Quite
often these text fields start out blank. To make a blank text field, just leave out the string as a
parameter for the JTextField constructor:

JTextField textField = new JTextField(20);

You can change the contents of the text field at any time by using the setText method from
the TextComponent parent class mentioned in the previous section. For example:

textField.setText("Hello!");

And, as was also mentioned in the previous section, you can find out what the user typed by
calling the getText method. This method returns the exact text that the user typed. To trim
any extraneous leading and trailing spaces from the data in a text field, apply the trim method
to the return value of getText:

String text = textField.getText().trim();

To change the font in which the user text appears, use the setFont method.

Let us put a few text fields to work. Figure 9-11 shows the running application. The program
shows a clock, and there are two text fields for entering the hours and minutes. Whenever
the contents of the text fields change, the clock is updated.

Core Java™ 2: Volume I–Fundamentals

440

Figure 9-11. Text field example

To track every change in the text field requires a bit of an effort. First of all, note that it is not
a good idea to monitor keystrokes. Some keystrokes (such as the arrow keys) don't change the
text. And, depending on the look and feel, there may be mouse actions that result in text
changes. As you saw in the beginning of this chapter, the Swing text field is implemented in a
rather general way: the string that you see in the text field is just a visible manifestation (the
view) of an underlying data structure (the model). Of course, for a humble text field, there is
no great difference between the two. The view is a displayed string, and the model is a string
object. But the same architecture is used in more advanced editing components to present
formatted text, with fonts, paragraphs, and other attributes that are internally represented by a
more complex data structure. The model for all text components is described by the Document
interface, which covers both plain text and formatted text (such as HTML). The point is that
you can ask the document (and not the text component) to notify you whenever the data has
changed, by installing a document listener:

textField.getDocument().addDocumentListener(listener);

When the text has changed, one of the following three methods is called:

void insertUpdate(DocumentEvent e)
void removeUpdate(DocumentEvent e)
void changedUpdate(DocumentEvent e)

The first two methods are called when characters have been inserted or removed. The third
method is not called at all for text fields. For more complex document types, it would be
called when some other change, such as a change in formatting, has occurred. Unfortunately,
there is no single callback to tell you that the text has changed—usually you don't care so
much how it has changed. And there is no adapter class either. Thus, your document listener
must implement all three methods. Here is what we do in our sample program:

Core Java™ 2: Volume I–Fundamentals

441

private class ClockFieldListener implements DocumentListener
{
 public void insertUpdate(DocumentEvent e) { setClock(); }
 public void removeUpdate(DocumentEvent e) { setClock(); }
 public void changedUpdate(DocumentEvent e) {}
}

The setClock method uses the getText method to obtain the current user input strings from
the text fields. Unfortunately, that is what we get: strings. We need to convert the strings to
integers, using the familiar, if cumbersome, incantation:

int hours = Integer.parseInt(hourField.getText().trim());
int minutes = Integer.parseInt(minuteField.getText().trim());

But this code won't work right when the user types a noninteger string, such as "two", into the
text field or even leaves the field blank. For now, we catch the NumberFormatException that
the parseInt method throws, and we simply don't update the clock when the text field entry
is not a number. In the next section, you will see how you can prevent the user from entering
invalid input in the first place.

NOTE

Instead of listening to document events, you can also add an action event
listener to a text field. The action listener is notified whenever the user
presses the enter key. We don't recommend this approach since users
don't always remember to press enter when they are done entering data.
If you use an action listener, you should also install a focus listener so
that you can track when the user leaves the text field.

Example 9-1 TextTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6.
 7. public class TextTest
 8. {
 9. public static void main(String[] args)
 10. {
 11. TextTestFrame frame = new TextTestFrame();
 12. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13. frame.show();
 14. }
 15. }
 16.
 17. /**
 18. A frame with two text fields to set a clock.
 19. */
 20. class TextTestFrame extends JFrame
 21. {
 22. public TextTestFrame()
 23. {
 24. setTitle("TextTest");

Core Java™ 2: Volume I–Fundamentals

442

 25. setSize(WIDTH, HEIGHT);
 26.
 27. Container contentPane = getContentPane();
 28.
 29. DocumentListener listener = new ClockFieldListener();
 30.
 31. // add a panel with text fields
 32.
 33. JPanel panel = new JPanel();
 34.
 35. hourField = new JTextField("12", 3);
 36. panel.add(hourField);
 37. hourField.getDocument().addDocumentListener(listener);
 38.
 39. minuteField = new JTextField("00", 3);
 40. panel.add(minuteField);
 41. minuteField.getDocument().addDocumentListener(listener);
 42.
 43. contentPane.add(panel, BorderLayout.SOUTH);
 44.
 45. // add the clock
 46.
 47. clock = new ClockPanel();
 48. contentPane.add(clock, BorderLayout.CENTER);
 49. }
 50.
 51. /**
 52. Set the clock to the values stored in the text fields.
 53. */
 54. public void setClock()
 55. {
 56. try
 57. {
 58. int hours
 59. = Integer.parseInt(hourField.getText().trim());
 60. int minutes
 61. = Integer.parseInt(minuteField.getText().trim());
 62. clock.setTime(hours, minutes);
 63. }
 64. catch (NumberFormatException e) {}
 65. // don't set the clock if the input can't be parsed
 66. }
 67.
 68. public static final int WIDTH = 300;
 69. public static final int HEIGHT = 300;
 70.
 71. private JTextField hourField;
 72. private JTextField minuteField;
 73. private ClockPanel clock;
 74.
 75. private class ClockFieldListener implements DocumentListener
 76. {
 77. public void insertUpdate(DocumentEvent e) { setClock(); }
 78. public void removeUpdate(DocumentEvent e) { setClock(); }
 79. public void changedUpdate(DocumentEvent e) {}
 80. }
 81. }
 82.

Core Java™ 2: Volume I–Fundamentals

443

 83. /**
 84. A panel that draws a clock.
 85. */
 86. class ClockPanel extends JPanel
 87. {
 88. public void paintComponent(Graphics g)
 89. {
 90. // draw the circular boundary
 91.
 92. super.paintComponent(g);
 93. Graphics2D g2 = (Graphics2D)g;
 94. Ellipse2D circle
 95. = new Ellipse2D.Double(0, 0, 2 * RADIUS, 2 * RADIUS);
 96. g2.draw(circle);
 97.
 98. // draw the hour hand
 99.
100. double hourAngle
101. = Math.toRadians(90 - 360 * minutes / (12 * 60));
102. drawHand(g2, hourAngle, HOUR_HAND_LENGTH);
103.
104. // draw the minute hand
105.
106. double minuteAngle
107. = Math.toRadians(90 - 360 * minutes / 60);
108. drawHand(g2, minuteAngle, MINUTE_HAND_LENGTH);
109. }
110.
111. public void drawHand(Graphics2D g2,
112. double angle, double handLength)
113. {
114. Point2D end = new Point2D.Double(
115. RADIUS + handLength * Math.cos(angle),
116. RADIUS - handLength * Math.sin(angle));
117. Point2D center = new Point2D.Double(RADIUS, RADIUS);
118. g2.draw(new Line2D.Double(center, end));
119. }
120.
121. /**
122. Set the time to be displayed on the clock
123. @param h hours
124. @param m minutes
125. */
126. public void setTime(int h, int m)
127. {
128. minutes = h * 60 + m;
129. repaint();
130. }
131.
132. private double minutes = 0;
133. private double RADIUS = 100;
134. private double MINUTE_HAND_LENGTH = 0.8 * RADIUS;
135. private double HOUR_HAND_LENGTH = 0.6 * RADIUS;
136. }

Core Java™ 2: Volume I–Fundamentals

444

java.awt.Component

• void validate()

recomputes the size of a component or the size and layout of the components in a
container.

javax.swing.JTextField

• JTextField(int cols)

constructs an empty JTextField with a specified number of columns.

Parameters: cols The number of columns in the field

• JTextField(String text, int cols)

constructs a new JTextField with an initial string and the specified number of
columns.

Parameters: text The text to display
 cols The number of columns

• void setColumns(int cols)

tells the text field the number of columns it should use.

Parameters: cols The number of columns

javax.swing.text.Document

• int getLength()

returns the number of characters currently in the document.

• String getText(int offset, int length)

Core Java™ 2: Volume I–Fundamentals

445

returns the text contained within the given portion of the document.

Parameters: offset The start of the text
 length The length of the desired string

• void addDocumentListener(DocumentListener listener)

registers the listener to be notified when the document changes.

javax.swing.event.DocumentEvent

• Document getDocument()

gets the document that is the source of the event.

javax.swing.event.DocumentListener

• void changedUpdate(DocumentEvent e)

is called whenever an attribute or set of attributes changes.

• void insertUpdate(DocumentEvent e)

is called whenever there was an insert into the document.

• void removeUpdate(DocumentEvent e)

is called whenever a portion of the document has been removed.

Input Validation

The problems mentioned in the last section are commonplace—if you have a place to enter
information, you will need to check that the input makes sense before you work with it. In our
example, we need to make sure that the user types in a number. That is, the user is allowed to
enter only digits 0 through 9 and a hyphen (–). The hyphen, if present at all, must be the first
symbol of the input string. In this section, we will develop a class, IntTextField, that
extends the JTextField class and enforces these rules. The technique discussed in this
section is somewhat advanced—feel free to skip this section if you have no interest in input
validation. If you use a professional development environment, you will likely find a
validating text component on the toolbar of your layout editor. But if you want to find out
how to implement such a component from scratch, read on.

Core Java™ 2: Volume I–Fundamentals

446

On the surface, input validation sounds simple. We can install a key listener to the text field,
and then consume all key events that aren't digits or a hyphen. (See Chapter 8 for consuming
events.) Unfortunately, this simple approach, although commonly recommended as a method
for input validation, does not work well in practice. First, not every combination of the valid
input characters is a valid number. For example, --3 and 3-3 aren't valid, even though they
are made up from valid input characters. But, more importantly, there are other ways of
changing the text that don't involve typing character keys.

Depending on the look and feel, certain key combinations can be used to cut, copy, and paste
text. For example, in the Metal look and feel, the ctrl+v key combination pastes the contents
of the paste buffer into the text field. That is, we also need to monitor that the user doesn't
paste in an invalid character. Clearly, trying to filter keystrokes to ensure that the content of
the text field is always valid begins to look like a real chore.

Fortunately, there is another way that takes advantage of the model-view-controller
architecture of the Swing text components. Recall that in the model-view-controller
architecture, the controller collects the input events and translates them into commands. For
example, whenever the controller processes a command that causes text to be inserted into the
document, it calls the insertString method of the Document class, telling it to insert a string
at the position of the caret. (The caret is the vertical bar that indicates the current editing
position.) The string to be inserted can be either a single character or the contents of the paste
buffer.

This is the key to solving our validation problem. The TextField stores its text in a
PlainDocument, a class that implements the Document interface and stores a single string. We
will supply a different document type that we call IntTextDocument.Our new class extends
the PlainDocument class and overrides the insertString method. The insertString
method of the subclass will refuse to insert any string that would produce an illegal result.

There is a subtle point that you often run into when performing data validation. It not not
always obvious which insertions are legal. Sometimes, the only way to get to a valid string is
to start with an invalid one. Consider the steps necessary to type the number -3. First, the user
starts out with an empty field, which of course is not a valid number. Then, the user types a
minus sign, resulting in a string "-", again, not a valid number. Finally, when the user adds a
digit, the string becomes valid. The canBecomeValid method of our IntTextDocument class
tests whether a string can become a valid string. The empty string, the string "-", and all
strings representing numbers pass this test.

In the insertString method of the IntTextDocument class, we first compute the string that
would result from inserting the new string at the caret position. Then, we test whether that
string can become valid. If the test passes, we call super.insertString and permit the
PlainDocument.insertString method to insert the string to the document text. Otherwise,
we do not insert the string. Here is the source code for the insertString method of the
IntTextDocument subclass.

Core Java™ 2: Volume I–Fundamentals

447

class IntTextDocument extends PlainDocument
{
 public void insertString(int offs, String str,
 AttributeSet a)
 throws BadLocationException
 {
 if (str == null) return;

 String oldString = getText(0, getLength());
 String newString = oldString.substring(0, offs)
 + str + oldString.substring(offs);

 if (canBecomeValid(newString))
 super.insertString(offs, str, a);
 }
 . . .
}

Next, we define an IntTextField class that extends the JTextField class. Its
createDefaultModel method creates an IntTextDocument instead of a PlainDocument.

class IntTextField extends JTextField
{ public IntTextField(int defval, int size)
 {
 super("" + defval, size);
 }

 protected Document createDefaultModel()
 {
 return new IntTextDocument();
 }
 . . .
}

Our IntTextField class supplies convenience methods, isValid and getValue.
The getValue method returns the contents of the field, already converted into an integer.
Before calling getValue, you should call isValid to check that the value is correct.

Starting with J2SE version 1.3, there is a second mechanism that you can use to force users to
enter valid information into text fields. If you set an input verifier, then the user can't leave the
component until the verify method of the verifier returns true. That is, if the user tries to
leave the component that contains invalid information—by hitting the tab key or clicking the
mouse on a different component—then the original component immediately regains the focus.

CAUTION

We found that the verifier mechanism isn't as reliable as it should be. For
example, in the example program of this section, if you enter an invalid
number into one of the text fields and then click the Set button, the
button first gains focus, gets clicked, and notifies its action listener,
before the text field regains focus. Thus, the action listener cannot rely
on the fact that a text field with an attached verifier always has valid
contents.

Core Java™ 2: Volume I–Fundamentals

448

A verifier must extend the abstract InputVerifier class and define a verify method. For
example, this verifier checks if a component contains a valid integer. If the text content of
the component does not pass the validity test, then the verify method returns false.

class IntTextFieldVerifier extends InputVerifier
{
 public boolean verify(JComponent component)
 {
 String text = ((JTextComponent)component).getText();
 return IntTextDocument.isValid(text);
 }
}

You use the setInputVerifier method to attach a verifier to a component:

InputVerifier verifier = new IntTextFieldVerifier();
textField.setInputVerifier(verifier);

Now the text field won't lose focus until the verifier is satisfied with its contents.

Example 9-2 shows how to put the IntTextField class to use. Try typing letters into one of
the text fields. Those inputs are immediately undone, and you never see the letters. Try
leaving a text field that is blank or contains a single “-”. The text field immediately regains
focus.

NOTE

If the character the user enters is not one of the allowable ones, some
user interface designs insist that the computer beep at the user in
response to an illegal keypress. This is certainly not something that we
would recommend, but you can do this in Java with the beep method of
the Toolkit class:

Toolkit.getDefaultToolkit().beep();

Example 9-2 ValidationTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6. import javax.swing.text.*;
 7. import javax.swing.undo.*;
 8.
 9. public class ValidationTest
 10. {
 11. public static void main(String[] args)
 12. {
 13. ValidationTestFrame frame = new ValidationTestFrame();
 14. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 15. frame.show();
 16. }
 17. }

Core Java™ 2: Volume I–Fundamentals

449

 18.
 19. /**
 20. A frame with a clock and text fields to set the time.
 21. */
 22. class ValidationTestFrame extends JFrame
 23. {
 24. public ValidationTestFrame()
 25. {
 26. setTitle("ValidationTest");
 27. setSize(WIDTH, HEIGHT);
 28.
 29. Container contentPane = getContentPane();
 30.
 31. JPanel panel = new JPanel();
 32.
 33. // add text fields
 34.
 35. hourField = new IntTextField(12, 3);
 36. panel.add(hourField);
 37.
 38. minuteField = new IntTextField(0, 3);
 39. panel.add(minuteField);
 40.
 41. // add Set button
 42.
 43. JButton setButton = new JButton("Set");
 44. panel.add(setButton);
 45. setButton.addActionListener(new
 46. ActionListener()
 47. {
 48. public void actionPerformed(ActionEvent event)
 49. {
 50. if (hourField.isValid() && minuteField.isValid())
 51. clock.setTime(
 52. hourField.getValue(),
 53. minuteField.getValue());
 54. }
 55. });
 56.
 57. contentPane.add(panel, BorderLayout.SOUTH);
 58.
 59. // add clock
 60.
 61. clock = new ClockPanel();
 62. contentPane.add(clock, BorderLayout.CENTER);
 63. }
 64.
 65. public static final int WIDTH = 300;
 66. public static final int HEIGHT = 300;
 67.
 68. private IntTextField hourField;
 69. private IntTextField minuteField;
 70. private ClockPanel clock;
 71. }
 72.

Core Java™ 2: Volume I–Fundamentals

450

 73. /**
 74. A document that can only hold valid integers or their
 75. substrings
 76. */
 77. class IntTextDocument extends PlainDocument
 78. {
 79. public void insertString(int offs, String str,
 80. AttributeSet a)
 81. throws BadLocationException
 82. {
 83. if (str == null) return;
 84.
 85. String oldString = getText(0, getLength());
 86. String newString = oldString.substring(0, offs)
 87. + str + oldString.substring(offs);
 88.
 89. if (canBecomeValid(newString))
 90. super.insertString(offs, str, a);
 91. }
 92.
 93. /**
 94. A helper function that tests whether a string is a valid
 95. integer
 96. @param s a string
 97. @return true if s is a valid integer
 98. */
 99. public static boolean isValid(String s)
100. {
101. try
102. {
103. Integer.parseInt(s);
104. return true;
105. }
106. catch(NumberFormatException e)
107. {
108. return false;
109. }
110. }
111.
112. /**
113. A helper function that tests whether a string is a
114. substring of a valid integer
115. @param s a string
116. @return true if s can be extended to a valid integer
117. */
118. public static boolean canBecomeValid(String s)
119. {
120. return s.equals("") || s.equals("-") || isValid(s);
121. }
122. }
123.
124. /**
125. A text field for editing integer values
126. */
127. class IntTextField extends JTextField
128. {
129. /**
130. Constructs an IntTextField.
131. @param defval the default value
132. @param size the field size
133. */

Core Java™ 2: Volume I–Fundamentals

451

134. public IntTextField(int defval, int size)
135. {
136. super("" + defval, size);
137. setInputVerifier(new IntTextFieldVerifier());
138. // Document doc = getDocument();
139. // doc.addUndoableEditListener(new UndoListener());
140. }
141.
142. protected Document createDefaultModel()
143. {
144. return new IntTextDocument();
145. }
146.
147. /**
148. Checks if the contents of this field is a valid integer.
149. @return true of the field contents is valid
150. */
151. public boolean isValid()
152. {
153. return IntTextDocument.isValid(getText());
154. }
155.
156. /**
157. Gets the numeric value of the field contents.
158. @param the number that the user typed into the field, or
159. 0 if the field contents is not valid.
160. */
161. public int getValue()
162. {
163. try
164. {
165. return Integer.parseInt(getText());
166. }
167. catch(NumberFormatException e)
168. {
169. return 0;
170. }
171. }
172. }
173.
174. /**
175. A verifier that checks if the contents of a text component
176. is a valid integer.
177. */
178. class IntTextFieldVerifier extends InputVerifier
179. {
180. public boolean verify(JComponent component)
181. {
182. String text = ((JTextComponent)component).getText();
183. return IntTextDocument.isValid(text);
184. }
185. }
186.
187. /**
188. A panel that draws a clock. (Unchanged from TextTest.)
189. */
190. class ClockPanel extends JPanel
191. {
192. public void paintComponent(Graphics g)
193. {

Core Java™ 2: Volume I–Fundamentals

452

194. // draw the circular boundary
195.
196. super.paintComponent(g);
197. Graphics2D g2 = (Graphics2D)g;
198. Ellipse2D circle
199. = new Ellipse2D.Double(0, 0, 2 * RADIUS, 2 * RADIUS);
200. g2.draw(circle);
201.
202. // draw the hour hand
203.
204. double hourAngle
205. = Math.toRadians(90 - 360 * minutes / (12 * 60));
206. drawHand(g2, hourAngle, HOUR_HAND_LENGTH);
207.
208. // draw the minute hand
209.
210. double minuteAngle
211. = Math.toRadians(90 - 360 * minutes / 60);
212. drawHand(g2, minuteAngle, MINUTE_HAND_LENGTH);
213. }
214.
215. public void drawHand(Graphics2D g2,
216. double angle, double handLength)
217. {
218. Point2D end = new Point2D.Double(
219. RADIUS + handLength * Math.cos(angle),
220. RADIUS - handLength * Math.sin(angle));
221. Point2D center = new Point2D.Double(RADIUS, RADIUS);
222. g2.draw(new Line2D.Double(center, end));
223. }
224.
225. /**
226. Set the time to be displayed on the clock
227. @param h hours
228. @param m minutes
229. */
230. public void setTime(int h, int m)
231. {
232. minutes = h * 60 + m;
233. repaint();
234. }
235.
236. private double minutes = 0;
237. private double RADIUS = 100;
238. private double MINUTE_HAND_LENGTH = 0.8 * RADIUS;
239. private double HOUR_HAND_LENGTH = 0.6 * RADIUS;
240. }

javax.swing.JComponent

• void setInputVerifier(InputVerifier verifier)
• Verifier getInputVerifier()

set or get the input verifier that is called when the component loses focus.

Core Java™ 2: Volume I–Fundamentals

453

• void setVerifyInputWhenFocusTarget(boolean flag)
• boolean getVerifyInputWhenFocusTarget()

set or get the flag that determines whether the input verifier for the current focus
owner will be called before this component requests focus. The default is true. You
should set this property to false on components such as a Cancel button or a scroll
bar, which should gain focus even if the the current component does not pass
verification.

javax.swing.InputVerifier

• abstract boolean verify(JComponent component)

Override this method to verify the contents of the given component.

javax.swing.text.Document

• void addUndoableEditListener(UndoableEditListener listener)

adds a listener that is notified whenever an undoable edit operation modifies the
document.

javax.swing.undo.UndoableEditListener

• void undoableEditHappened(UndoableEditEvent event)

This method is called whenever an undoable edit operation has modified the event
source document.

javax.swing.undo.UndoableEditEvent

• UndoableEdit getEdit()

Core Java™ 2: Volume I–Fundamentals

454

returns the edit operation that caused this event.

javax.swing.undo.UndoableEdit

• void undo()

undoes this edit operation.

Password Fields

Password fields are a special kind of text field. To avoid nosy bystanders being able to glance
at a password, the characters that the user entered are not actually displayed. Instead, each
typed character is represented by an echo character, typically an asterisk (*). The Swing set
supplies a JPasswordField class that implements such a text field.

The password field is another example of the power of the model-view-controller architecture
pattern. The password field uses the same model to store the data as a regular text field, but its
view has been changed to display all characters as echo characters.

javax.swing.JPasswordField

• JPasswordField(String text, int columns)

constructs a new password field.

Parameters: text The text to be displayed, null if none
 columns The number of columns

• void setEchoChar(char echo)

sets the echo character for this password field. This is advisory; a particular look and
feel may insist on its own choice of echo character. A value of 0 resets the echo
character to the default.

Parameters: echo The echo character to display instead of the text characters

• char[] getPassword()

returns the text contained in this password field. For stronger security, you should
overwrite the contents of the returned array after use. (The password is not returned as

Core Java™ 2: Volume I–Fundamentals

455

a String because a string would stay in the virtual machine until it is garbage-
collected.)

Text Areas

Sometimes, you need to collect user input that is more than one line long. As mentioned
earlier, you use the JTextArea component for this collection. When you place a text area
component in your program, a user can enter any number of lines of text, using the enter key
to separate them. Each line ends with a '\n' as far as Java is concerned. If you need to break
up what the user enters into separate lines, you can use the StringTokenizer class (see
Chapter 12). Figure 9-12 shows a text area at work.

Figure 9-12. A text area

In the constructor for the JTextArea component, you specify the number of rows and
columns for the text area. For example:

textArea = new JTextArea(8, 40); // 8 lines of 40 columns each con-
tentPane.add(textArea);

where the columns parameter works as before—and you still need to add a few more columns
for safety's sake. Also, as before, the user is not restricted to the number of rows and columns;
the text simply scrolls when the user inputs too much. You can also use the setColumns
method to change the number of columns, and the setRows method to change the number of
rows. These numbers only indicate the preferred size—the layout manager can still grow or
shrink the text area.

If there is more text than the text area can display, then the remaining text is simply clipped.
You can avoid clipping long lines by turning on line-wrapping:

textArea.setLineWrap(true); // long lines are wrapped

Core Java™ 2: Volume I–Fundamentals

456

This wrapping is a visual effect only; the text in the document is not changed—no '\n'
characters are inserted into the text.

In Swing, a text area does not have scroll bars. If you want scroll bars, you have to insert
the text area inside a scroll pane. Then, insert the scroll pane inside the content pane.

textArea = new JTextArea(8, 40);
JScrollPane scrollPane = new JScrollPane(textArea);
contentPane.add(scrollPane, BorderLayout.CENTER);

The scroll pane now manages the view of the text area. Scroll bars automatically appear if
there is more text than the text area can display, and they vanish again if text is deleted and
the remaining text fits inside the area. The scrolling is handled internally in the scroll pane—
your program does not need to process scroll events.

TIP

This is a general mechanism that you will encounter many times when
working with Swing—to add scroll bars to a component, put them inside
a scroll pane.

Example 9-3 is the complete code for the text area demo. This program simply lets you edit
text in a text area. Click on “Insert” to insert a sentence at the end of the text. Click the second
button to turn line-wrapping on and off. (Its name toggles between “Wrap” and “No wrap.”)
Of course, you can simply use the keyboard to edit the text in the text area. Note how you can
highlight a section of text, and how you can cut, copy, and paste with the ctrl+x, ctrl+c, and
ctrl+v keys. (Keyboard shortcuts are specific to the look and feel. These particular key
combinations work for the Metal, Windows, and Mac look and feel.)

NOTE

The JTextArea component displays plain text only, without special fonts
or formatting. To display formatted text (such as HTML or RTF), you
can use the JEditorPane and JTextPane classes. These classes are
discussed in Volume 2.

Example 9-3 TextAreaTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class TextAreaTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. TextAreaFrame frame = new TextAreaFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Core Java™ 2: Volume I–Fundamentals

457

11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a text area and buttons for text editing
17. */
18. class TextAreaFrame extends JFrame
19. {
20. public TextAreaFrame()
21. {
22. setTitle("TextAreaTest");
23. setSize(WIDTH, HEIGHT);
24.
25. Container contentPane = getContentPane();
26.
27. buttonPanel = new JPanel();
28.
29. // add button to append text into the text area
30.
31. JButton insertButton = new JButton("Insert");
32. buttonPanel.add(insertButton);
33. insertButton.addActionListener(new
34. ActionListener()
35. {
36. public void actionPerformed(ActionEvent event)
37. {
38. textArea.append("The quick brown fox "
39. + "jumps over the lazy dog. ");
40. }
41. });
42.
43. // add button to turn line wrapping on and off
44.
45. wrapButton = new JButton("Wrap");
46. buttonPanel.add(wrapButton);
47. wrapButton.addActionListener(new
48. ActionListener()
49. {
50. public void actionPerformed(ActionEvent evt)
51. {
52. boolean wrap = !textArea.getLineWrap();
53. textArea.setLineWrap(wrap);
54. scrollPane.validate();
55. wrapButton.setText(wrap ? "No Wrap" : "Wrap");
56. }
57. });
58.
59. contentPane.add(buttonPanel, BorderLayout.SOUTH);
60.
61. // add a text area with scroll bars
62.
63. textArea = new JTextArea(8, 40);
64. scrollPane = new JScrollPane(textArea);
65.
66. contentPane.add(scrollPane, BorderLayout.CENTER);
67. }
68.
69. public static final int WIDTH = 300;
70. public static final int HEIGHT = 300;
71.

Core Java™ 2: Volume I–Fundamentals

458

72. private JTextArea textArea;
73. private JScrollPane scrollPane;
74. private JPanel buttonPanel;
75. private JButton wrapButton;
76. }

javax.swing.JTextArea

• JTextArea(int rows, int cols)

constructs a new text area.

Parameters: rows The number of rows
 cols The number of columns

• JTextArea(String text, int rows, int cols)

constructs a new text area with an initial text.

Parameters: text The initial text
 rows The number of rows
 cols The number of columns

• void setColumns(int cols)

tells the text area the preferred number of columns it should use.

Parameters: cols The number of columns

• void setRows(int rows)

tells the text area the preferred number of rows it should use.

Parameters: rows The number of rows

• void append(String newText)

appends the given text to the end of the text already in the text area.

Parameters: newText The text to append

• void setLineWrap(boolean wrap)

turns line-wrapping on or off.

Parameters: wrap true if lines should be wrapped

Core Java™ 2: Volume I–Fundamentals

459

• void setWrapStyleWord(boolean word)

If word is true, then long lines are wrapped at word boundaries. If it is false, then
long lines are broken without taking word boundaries into account.

• void setTabSize(int c)

sets tab stops every c columns. Note that the tabs aren't converted to spaces, but they
cause alignment with the next tab stop.

Parameters: c The number of columns for a tab stop

javax.swing.JScrollPane

• JScrollPane(Component c)

creates a scroll pane that displays the contents of the specified component. Scroll bars
are supplied when the component is larger than the view.

Parameters: c The component to scroll

Labels and Labeling Components

Labels are components that hold text. They have no decorations (for example, no boundaries).
They also do not react to user input. You can use a label to identify components. For example,
unlike buttons, text components have no label to identify them. To label a component that
does not itself come with an identifier:

1. Construct a JLabel component with the correct text.
2. Place it close enough to the component you want to identify so that the user can see

that the label identifies the correct component.

The constructor for a JLabel lets you specify the initial text or icon, and optionally, the
alignment of the contents. You use constants from the SwingConstants interface to specify
alignment. That interface defines a number of useful constants such as LEFT, RIGHT, CENTER,
NORTH, EAST, and so on. The JLabel class is one of several Swing classes that implements
this interface. Therefore, you can specify a left-aligned label either as:

JLabel label = new JLabel("Text", SwingConstants.LEFT);

or

JLabel label = new JLabel("Text", JLabel.LEFT);

The setText and setIcon methods let you set the text and icon of the label at run time.

Core Java™ 2: Volume I–Fundamentals

460

TIP

Beginning with J2SE 1.3, you can use both plain and HTML text in
buttons, labels, and menu items. We don't recommend HTML in
buttons—it interferes with the look and feel. But HTML in labels can be
very effective. Simply surround the label string with <HTML>. .
.</HTML>, like this:

label = new JLabel("<HTML>Required entry:</HTML>");

Fair warning—the first component with an HTML label takes some time
to be displayed because the rather complex HTML rendering code must
be loaded.

Labels can be positioned inside a container like any other component. This means you can use
the techniques you have seen before to place labels where you need them. For example, if you
look at Figure 9-13, you can see how one of the text fields is preceded by a label with the text
“with.”

Figure 9-13. Testing text editing

javax.swing.JLabel

• JLabel(String text)

constructs a label with left-aligned text.

Parameters: text The text in the label

Core Java™ 2: Volume I–Fundamentals

461

• JLabel(Icon icon)

constructs a label with a left-aligned icon.

Parameters: icon The icon in the label

• JLabel(String text, int align)

Parameters: text The text in the label
 align One of SwingConstants.LEFT, SwingConstants.CENTER, or

SwingConstants.RIGHT

• JLabel(String text, Icon icon, int align)

constructs a label with both text and an icon. The icon is to the left of the text.

Parameters: text The text in the label
 icon The icon in the label
 align One of SwingConstants.LEFT, SwingConstants.CENTER, or

SwingConstants.RIGHT

• void setText(String text)

Parameters: text The text in the label

• void setIcon(Icon icon)

Parameters: icon The icon in the label

Selecting Text

The text field and text area classes inherit methods from the JTextComponent superclass to
select (highlight) the text contained in the component. They can also check for text that is
currently selected.

First, there is the selectAll method, which highlights all the text in the field. You would use
this method when presenting users with an input that they either will want to use exactly as
provided or that they won't want to use at all. In the latter case, they can just type their own
input, and the first keystroke replaces the selection.

The select method selects a part of the text. The arguments of select are the same as for
substring: the first index is the start of the substring; the last is one more than the end. For
example, t.select(10, 15) selects the tenth to fourteenth characters in the text control.
End-of-line markers count as one character.

The getSelectionStart and getSelectionEnd methods return the start and end of the
current selection, and getSelectedText returns the highlighted text. How users highlight text
is system dependent. In the Metal look and feel, you can use the mouse or the standard shift +
arrow keys.

Core Java™ 2: Volume I–Fundamentals

462

javax.swing.text.JTextComponent

• void selectAll()

selects all text in the component.

• void select(int selStart,int selEnd)

selects a range of text in the component.

Parameters: selStart The first position to select
 selEnd One past the last position to select

• int getSelectionStart()

returns the first position of the selected text.

• int getSelectionEnd()

returns one past the last position of the selected text.

• String getSelectedText()

returns the selected text.

Editing Text

The JTextArea class contains a number of methods to modify the contents of a text area. You
can append text at the end, insert text in the middle, and replace text. To delete text, simply
replace the text to be deleted with an empty string. Example 9-4 shows how to implement
a simple find-and-replace feature. In the program illustrated in Figure 9-13, each time you
click on the Replace button, the first match of the text in the first field is replaced by the text
in the second field. This is not a very realistic application, but you could use this feature to
correct spelling or typing errors in URLs.

Core Java™ 2: Volume I–Fundamentals

463

Example 9-4 TextEditTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class TextEditTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. TextEditFrame frame = new TextEditFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a text area and components for search/replace.
17. */
18. class TextEditFrame extends JFrame
19. {
20. public TextEditFrame()
21. {
22. setTitle("TextEditTest");
23. setSize(WIDTH, HEIGHT);
24.
25. Container contentPane = getContentPane();
26.
27. JPanel panel = new JPanel();
28.
29. // add button, text fields and labels
30.
31. JButton replaceButton = new JButton("Replace");
32. panel.add(replaceButton);
33. replaceButton.addActionListener(new ReplaceAction());
34.
35. from = new JTextField("brown", 8);
36. panel.add(from);
37.
38. panel.add(new JLabel("with"));
39.
40. to = new JTextField("purple", 8);
41. panel.add(to);
42. contentPane.add(panel, BorderLayout.SOUTH);
43.
44. // add text area with scroll bars
45.
46. textArea = new JTextArea(8, 40);
47. textArea.setText
48. ("The quick brown fox jumps over the lazy dog.");
49. JScrollPane scrollPane = new JScrollPane(textArea);
50. contentPane.add(scrollPane, BorderLayout.CENTER);
51. }
52.
53. public static final int WIDTH = 400;
54. public static final int HEIGHT = 200;
55.
56. private JTextArea textArea;
57. private JTextField from;
58. private JTextField to;
59.

Core Java™ 2: Volume I–Fundamentals

464

60. /**
61. The action listener for the replace button.
62. */
63. private class ReplaceAction implements ActionListener
64. {
65. public void actionPerformed(ActionEvent event)
66. {
67. String f = from.getText();
68. int n = textArea.getText().indexOf(f);
69. if (n >= 0 && f.length() > 0)
70. textArea.replaceRange(to.getText(), n,
71. n + f.length());
72. }
73. }
74. }

javax.swing.JTextArea

• void insert(String str, int pos)

inserts a string into the text area.

Parameters: str The text to insert
 pos The position at which to insert (0 = first position; newlines count as one

character)

• void replaceRange(String str, int start, int end)

replaces a range of text with another string.

Parameters: str The new text
 start The start position of the text to be replaced
 end One past the end position of the text to be replaced

Making Choices

You now know how to collect text input from users, but there are many occasions where you
would rather give users a finite set of choices than have them enter the data in a text
component. Using a set of buttons or a list of items tells your users what choices they have. (It
also saves you the trouble of error checking.) In this section, you will learn how to program
check boxes, radio buttons, lists of choices, and sliders.

Check Boxes

If you want to collect just a “yes” or “no” input, use a check box component. Check boxes
automatically come with labels that identify them. The user usually checks the box by
clicking inside it, and turns off the check mark by clicking inside the box again. To toggle the
check mark, the user can also press the space bar when the focus is in the check box.

Core Java™ 2: Volume I–Fundamentals

465

Figure 9-14 shows a simple program with two check boxes, one to turn on or off the italic
attribute of a font, and the other for boldface. Note that the first check box has focus, as
indicated by the rectangle around the label. Each time the user clicks one of the check boxes,
we refresh the screen, using the new font attributes.

Figure 9-14. Check boxes

Check boxes need a label next to them to identify their purpose. You give the label text in the
constructor.

bold = new JCheckBox("Bold");

You use the setSelected method to turn a check box on or off. For example,

bold.setSelected(true);

The isSelected method then retrieves the current state of each check box. It is false if
unchecked; true if checked.

When the user clicks on a check box, this triggers an action event. As always, you attach an
action listener. In our program, the two buttons share the same action listener.

ActionListener listener = . . .
bold.addActionListener(listener);
italic.addActionListener(listener);

Its actionPerformed method queries the state of the bold and italic check boxes and sets
the font of the panel to plain, bold, italic, or both.

public void actionPerformed(ActionEvent event)
{
 int mode = 0;
 if (bold.isSelected()) mode += Font.BOLD;
 if (italic.isSelected()) mode += Font.ITALIC;
 label.setFont(new Font("Serif", mode, FONTSIZE));
}

Example 9-5 is the complete program listing for the check box example.

Core Java™ 2: Volume I–Fundamentals

466

NOTE

In AWT, the equivalent component to a JCheckBox is called a Checkbox
(with a lowercase “b”). It generates item events, not action events.

Example 9-5 CheckBoxTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class CheckBoxTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. CheckBoxFrame frame = new CheckBoxFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a sample text label and check boxes for
17. selecting font attributes.
18. */
19. class CheckBoxFrame extends JFrame
20. {
21. public CheckBoxFrame()
22. {
23. setTitle("CheckBoxTest");
24. setSize(WIDTH, HEIGHT);
25.
26. Container contentPane = getContentPane();
27.
28. // add the sample text label
29.
30. label = new JLabel(
31. "The quick brown fox jumps over the lazy dog.");
32. label.setFont(new Font("Serif", Font.PLAIN, FONTSIZE));
33. contentPane.add(label, BorderLayout.CENTER);
34.
35. // this listener sets the font attribute of
36. // the label to the check box state
37.
38. ActionListener listener = new
39. ActionListener()
40. {
41. public void actionPerformed(ActionEvent event)
42. {
43. int mode = 0;
44. if (bold.isSelected()) mode += Font.BOLD;
45. if (italic.isSelected()) mode += Font.ITALIC;
46. label.setFont(new Font("Serif", mode, FONTSIZE));
47. }
48. };

Core Java™ 2: Volume I–Fundamentals

467

49.
50. // add the check boxes
51.
52. JPanel buttonPanel = new JPanel();
53.
54. bold = new JCheckBox("Bold");
55. bold.addActionListener(listener);
56. buttonPanel.add(bold);
57.
58. italic = new JCheckBox("Italic");
59. italic.addActionListener(listener);
60. buttonPanel.add(italic);
61.
62. contentPane.add(buttonPanel, BorderLayout.SOUTH);
63. }
64.
65. public static final int WIDTH = 300;
66. public static final int HEIGHT = 200;
67.
68. private JLabel label;
69. private JCheckBox bold;
70. private JCheckBox italic;
71.
72. private static final int FONTSIZE = 12;
73. }

javax.swing.JCheckBox

• JCheckBox(String label)

Parameters: label The label on the check box

• JCheckBox(String label, boolean state)

Parameters: label The label on the check box
 state The initial state of the check box

• JCheckBox(String label, Icon icon)

constructs a check box that is initially unselected.

Parameters: label The label on the check box
 icon The icon on the check box

• boolean isSelected ()

returns the state of the check box.

Core Java™ 2: Volume I–Fundamentals

468

• void setSelected(boolean state)

sets the check box to a new state.

Radio Buttons

In the previous example, the user could check either, both, or none of the two check boxes. In
many cases, we want to require the user to check only one of several boxes. When another
box is checked, the previous box is automatically unchecked. Such a group of boxes is often
called a radio button group because the buttons work like the station selector buttons on
a radio. When you push in one button, the previously depressed button pops out. Figure 9-15
shows a typical example. We allow the user to select a font size among the choices—Small,
Medium, Large, and Extra large—but, of course, we will allow the user to select only one size
at a time.

Figure 9-15. A radio button group

Implementing radio button groups is easy in Swing. You construct one object of type
ButtonGroup for every group of buttons. Then, you add objects of type JRadioButton to the
button group. The button group object is responsible for turning off the previously set button
when a new button is clicked.

ButtonGroup group = new ButtonGroup();

JRadioButton smallButton
 = new JRadioButton("Small", false);
group.add(smallButton);

JRadioButton mediumButton
 = new JRadioButton("Medium", true);
group.add(mediumButton);
. . .

The second argument of the constructor is true for the button that should be checked initially,
and false for all others. Note that the button group controls only the behavior of the buttons;
if you want to group the buttons together for layout purposes, you also need to add them to a
container such as a JPanel.

Core Java™ 2: Volume I–Fundamentals

469

If you look again at Figures 9-14 and 9-15, you will note that the appearance of the radio
buttons is different from check boxes. Check boxes are square and contain a check mark when
selected. Radio buttons are round and contain a dot when selected.

The event notification mechanism for radio buttons is the same as for any other buttons.
When the user checks a radio button, the radio button generates an action event. In our
example program, we define an action listener that sets the font size to a particular value:

ActionListener listener = new
 ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 // size refers to the final parameter of the
 // addRadioButton method
 label.setFont(new Font("Serif", Font.PLAIN,
 size));
 }
 };

Compare this listener set-up with that of the check box example. Each radio button gets a
different listener object. Each listener object knows exactly what it needs to do—set the font
size to a particular value. In the case of the check boxes, we used a different approach. Both
check boxes have the same action listener. It called a method that looked at the current state
of both check boxes.

Could we follow the same approach here? We could have a single listener that computes the
size as follows:

if (smallButton.isSelected()) size = 8;
else is (mediumButton.isSelected()) size = 12;
. . .

However, we prefer to use separate action listener objects because they tie the size values
more closely to the buttons.

NOTE:

If you have a group of radio buttons, you know that only one of them is
selected. It would be nice to be able to quickly find out which one,
without having to query all the buttons in the group. Since
the ButtonGroup object controls all buttons, it would be convenient if
this object could give us a reference to the selected button. Indeed,
the ButtonGroup class has a getSelection method, but that method
doesn't return the radio button that is selected. Instead, it returns
a ButtonModel reference to the model attached to the button.
Unfortunately, none of the ButtonModel methods are very helpful.
The ButtonModel interface inherits a method getSelectedObjects
from the ItemSelectable interface that, rather uselessly, returns null.
The getActionCommand method looks promising because the “action
command” of a radio button is its text label. But the action command of
its model is null. Only if you explicitly set the action commands of all

Core Java™ 2: Volume I–Fundamentals

470

radio buttons with the setActionCommand method do the models' action
command values also get set. Then you can retrieve the action command
of the currently selected button with
buttonGroup.getSelection().getActionCommand().

Example 9-6 is the complete program for font size selection that puts a set of radio buttons to
work.

Example 9-6 RadioButtonTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class RadioButtonTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. RadioButtonFrame frame = new RadioButtonFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a sample text label and radio buttons for
17. selecting font sizes.
18. */
19. class RadioButtonFrame extends JFrame
20. {
21. public RadioButtonFrame()
22. {
23. setTitle("RadioButtonTest");
24. setSize(WIDTH, HEIGHT);
25.
26. Container contentPane = getContentPane();
27.
28. // add the sample text label
29.
30. label = new JLabel(
31. "The quick brown fox jumps over the lazy dog.");
32. label.setFont(new Font("Serif", Font.PLAIN,
33. DEFAULT_SIZE));
34. contentPane.add(label, BorderLayout.CENTER);
35.
36. // add the radio buttons
37.
38. buttonPanel = new JPanel();
39. group = new ButtonGroup();
40.
41. addRadioButton("Small", 8);
42. addRadioButton("Medium", 12);
43. addRadioButton("Large", 18);
44. addRadioButton("Extra large", 36);
45.
46. contentPane.add(buttonPanel, BorderLayout.SOUTH);
47. }
48.

Core Java™ 2: Volume I–Fundamentals

471

49. /**
50. Adds a radio button that sets the font size of the
51. sample text.
52. @param name the string to appear on the button
53. @param size the font size that this button sets
54. */
55. public void addRadioButton(String name, final int size)
56. {
57. boolean selected = size == DEFAULT_SIZE;
58. JRadioButton button = new JRadioButton(name, selected);
59. group.add(button);
60. buttonPanel.add(button);
61.
62. // this listener sets the label font size
63.
64. ActionListener listener = new
65. ActionListener()
66. {
67. public void actionPerformed(ActionEvent evt)
68. {
69. // size refers to the final parameter of the
70. // addRadioButton method
71. label.setFont(new Font("Serif", Font.PLAIN,
72. size));
73. }
74. };
75.
76. button.addActionListener(listener);
77. }
78.
79. public static final int WIDTH = 400;
80. public static final int HEIGHT = 200;
81.
82. private JPanel buttonPanel;
83. private ButtonGroup group;
84. private JLabel label;
85.
86. private static final int DEFAULT_SIZE = 12;
87. }

javax.swing.JRadioButton

• JRadioButton(String label, boolean state)

Parameters: label The label on the check box
 state The initial state of the check box

• JRadioButton(String label, Icon icon)

constructs a radio button that is initially unselected.

Core Java™ 2: Volume I–Fundamentals

472

Parameters: label The label on the radio button
 icon The icon on the radio button

javax.swing.ButtonGroup

• void add(AbstractButton b)

adds the button to the group.

• ButtonModel getSelection()

returns the button model of the selected button.

javax.swing.ButtonModel

• String getActionCommand()

returns the action command for this button model.

javax.swing.AbstractButton

• void setActionCommand(String s)

sets the action command for this button and its model.

Borders

If you have multiple groups of radio buttons in a window, you will want to visually indicate
which buttons are grouped together. The Swing set provides a set of useful borders for this
purpose. You can apply a border to any component that extends JComponent. The most
common usage is to place a border around a panel and fill that panel with other user interface
elements such as radio buttons.

There are quite a few borders to choose from, but you follow the same steps for all of them.

1. Call a static method of the BorderFactory to create a border. You can choose among
the following styles (see Figure 9-16):

Core Java™ 2: Volume I–Fundamentals

473

o Lowered bevel
o Raised bevel
o Etched
o Line
o Matte
o Empty (just to create some blank space around the component)

2. If you like, add a title to your border by passing your border to
BorderFactory.createTitledBorder.

3. If you really want to go all out, combine several borders with a call to
BorderFactory.createCompoundBorder.

4. Add the resulting border to your component by calling the setBorder method of
the JComponent class.

Figure 9-16. Testing border types

For example, here is how you add an etched border with a title to a panel:

Border etched = BorderFactory.createEtchedBorder()
Border titled = BorderFactory.createTitledBorder(etched,
 "A Title");
panel.setBorder(titled);

Run the program in Example 9-7 to get an idea what the various borders look like.

The various borders have different options for setting border widths and colors. See the API
notes for details. True border enthusiasts will appreciate that there is also a SoftBevelBorder
class for beveled borders with softened corners, and that a LineBorder can have rounded
corners as well. These borders can be constructed only by using one of the class
constructors—there is no BorderFactory method for them.

Core Java™ 2: Volume I–Fundamentals

474

Example 9-7 BorderTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.border.*;
 5.
 6. public class BorderTest
 7. {
 8. public static void main(String[] args)
 9. {
10. BorderFrame frame = new BorderFrame();
11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12. frame.show();
13. }
14. }
15.
16. /**
17. A frame with radio buttons to pick a border style.
18. */
19. class BorderFrame extends JFrame
20. {
21. public BorderFrame()
22. {
23. setTitle("BorderTest");
24. setSize(WIDTH, HEIGHT);
25.
26. demoPanel = new JPanel();
27. buttonPanel = new JPanel();
28. group = new ButtonGroup();
29.
30. addRadioButton("Lowered bevel",
31. BorderFactory.createLoweredBevelBorder());
32. addRadioButton("Raised bevel",
33. BorderFactory.createRaisedBevelBorder());
34. addRadioButton("Etched",
35. BorderFactory.createEtchedBorder());
36. addRadioButton("Line",
37. BorderFactory.createLineBorder(Color.blue));
38. addRadioButton("Matte",
39. BorderFactory.createMatteBorder(
40. 10, 10, 10, 10, Color.blue));
41. addRadioButton("Empty",
42. BorderFactory.createEmptyBorder());
43.
44. Border etched = BorderFactory.createEtchedBorder();
45. Border titled = BorderFactory.createTitledBorder
46. (etched, "Border types");
47. buttonPanel.setBorder(titled);
48.
49. Container contentPane = getContentPane();
50.
51. contentPane.setLayout(new GridLayout(2, 1));
52. contentPane.add(buttonPanel);
53. contentPane.add(demoPanel);
54. }
55.

Core Java™ 2: Volume I–Fundamentals

475

56. public void addRadioButton(String buttonName, final Border b)
57. {
58. JRadioButton button = new JRadioButton(buttonName);
59. button.addActionListener(new
60. ActionListener()
61. {
62. public void actionPerformed(ActionEvent event)
63. {
64. demoPanel.setBorder(b);
65. validate();
66. }
67. });
68. group.add(button);
69. buttonPanel.add(button);
70. }
71.
72. public static final int WIDTH = 600;
73. public static final int HEIGHT = 200;
74.
75. private JPanel demoPanel;
76. private JPanel buttonPanel;
77. private ButtonGroup group;
78. }

javax.swing.BorderFactory

• static Border createLineBorder(Color color)
• static Border createLineBorder(Color color, int thickness)

create a simple line border.

• static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Color color)

• static MatteBorder createMatteBorder(int top, int left, int bottom,
int right, Icon tileIcon)

create a thick border that is filled with a color or a repeating icon.

• static Border createEmptyBorder()
• static Border createEmptyBorder(int top, int left, int bottom, int

right)

create an empty border.

• static Border createEtchedBorder()
• static Border createEtchedBorder(Color highlight, Color shadow)
• static Border createEtchedBorder(int type)
• static Border createEtchedBorder(int type, Color highlight, Color

shadow)

create a line border with a 3D effect.

Core Java™ 2: Volume I–Fundamentals

476

Parameters: highlight,
shadow

Colors for 3D effect

 type One of EtchedBorder.RAISED,
EtchedBorder.LOWERED

• static Border createBevelBorder(int type)
• static Border createBevelBorder(int type, Color highlight, Color

shadow)
• static Border createLoweredBevelBorder()
• static Border createRaisedBevelBorder()

create a border that gives the effect of a lowered or raised surface.

Parameters: type One of BevelBorder.LOWERED,
BevelBorder.RAISED

 highlight,
shadow

Colors for 3D effect

• static TitledBorder createTitledBorder(String title)
• static TitledBorder createTitledBorder(Border border)
• static TitledBorder createTitledBorder(Border border, String title)
• static TitledBorder createTitledBorder(Border border, String title,

int justification, int position)
• static TitledBorder createTitledBorder(Border border, String title,

int justification, int position, Font font)
• static TitledBorder createTitledBorder(Border border, String title,

int justification, int position, Font font, Color color)

Parameters: title The title string
 border The border to decorate with the title
 justification One of TitledBorder.LEFT, TitledBorder.CENTER,

TitledBorder.RIGHT
 position One of the TitledBorder constants ABOVE_TOP, TOP,

BELOW_TOP, ABOVE_BOTTOM, BOTTOM, BELOW_BOTTOM
 font The font for the title
 color The color of the title

• static CompoundBorder createCompoundBorder(Border outsideBorder,
Border insideBorder)

combines two borders to a new border.

javax.swing.border.SoftBevelBorder

• SoftBevelBorder(int type)
• SoftBevelBorder(int type, Color highlight, Color shadow)

Core Java™ 2: Volume I–Fundamentals

477

create a bevel border with softened corners.

Parameters: type One of BevelBorder.LOWERED, BevelBorder.RAISED
 color, shadow Colors for 3D effect

javax.swing.border.LineBorder

• public LineBorder(Color color, int thickness, boolean roundedCorners)

creates a line border with the given color and thickness. If roundedCorners is true,
the border has rounded corners.

javax.swing.JComponent

• void setBorder(Border border)

sets the border of this component.

Combo Boxes

If you have more than a handful of alternatives, radio buttons are not a good choice because
they take up too much screen space. Instead, you can use a combo box. When the user clicks
on the component, a list of choices drops down, and the user can then select one of them (see
Figure 9-17).

Core Java™ 2: Volume I–Fundamentals

478

Figure 9-17. A combo box

If the drop-down list box is set to be editable, then you can edit the current selection as if it
was a text field. For that reason, this component is called a combo box—it combines the
flexibility of an edit box with a set of predefined choices. The JComboBox class provides a
combo box component.

You call the setEditable method to make the combo box editable. Note that editing affects
only the current item. It does not change the contents of the list.

You can obtain the current selection or edited text by calling the getSelectedItem method.

In the example program, the user can choose a font style from a list of styles (Serif, SansSerif,
Monospaced, etc.). The user can also type in another font.

You add the choice items with the addItem method. In our program, addItem is called only
in the constructor, but you can call it any time.

faceCombo = new JComboBox();
faceCombo.setEditable(true);
faceCombo.addItem("Serif");
faceCombo.addItem("SansSerif");
. . .

This method adds the string at the end of the list. You can add new items anywhere in the list
with the insertItemAt method:

faceCombo.insertItemAt("Monospaced", 0); // add at the beginning

You can add items of any type—the combo box invokes each item's toString method to
display it.

Core Java™ 2: Volume I–Fundamentals

479

If you need to remove items at run time, you use the removeItem or removeItemAt method,
depending on whether you supply the item to be removed or its position.

faceCombo.removeItem("Monospaced");
faceCombo.removeItemAt(0); // remove first item

There is also a removeAllItems method to remove all items at once.

When the user selects an item from a combo box, the combo box generates an action event.
To find out which item was selected, call getSource on the event parameter to get a reference
to the combo box that sent the event. Then call the getSelectedItem method to retrieve the
currently selected item. You need to cast the returned value to the appropriate type, usually
String.

public void actionPerformed(ActionEvent event)
{
 label.setFont(new Font(
 (String)faceCombo.getSelectedItem(),
 Font.PLAIN,
 DEFAULT_SIZE));
}

Example 9-8 shows the complete program.

Example 9-8 ComboBoxTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class ComboBoxTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. ComboBoxFrame frame = new ComboBoxFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame with a sample text label and a combo box for
17. selecting font faces.
18. */
19. class ComboBoxFrame extends JFrame
20. {
21. public ComboBoxFrame()
22. {
23. setTitle("ComboBoxTest");
24. setSize(WIDTH, HEIGHT);
25.
26. Container contentPane = getContentPane();
27.

Core Java™ 2: Volume I–Fundamentals

480

28. // add the sample text label
29.
30. label = new JLabel(
31. "The quick brown fox jumps over the lazy dog.");
32. label.setFont(new Font("Serif", Font.PLAIN,
33. DEFAULT_SIZE));
34. contentPane.add(label, BorderLayout.CENTER);
35.
36. // make a combo box and add face names
37.
38. faceCombo = new JComboBox();
39. faceCombo.setEditable(true);
40. faceCombo.addItem("Serif");
41. faceCombo.addItem("SansSerif");
42. faceCombo.addItem("Monospaced");
43. faceCombo.addItem("Dialog");
44. faceCombo.addItem("DialogInput");
45.
46. // the combo box listener changes the label font to the
47. // selected face name
48.
49. faceCombo.addActionListener(new
50. ActionListener()
51. {
52. public void actionPerformed(ActionEvent event)
53. {
54. label.setFont(new Font(
55. (String)faceCombo.getSelectedItem(),
56. Font.PLAIN,
57. DEFAULT_SIZE));
58. }
59. });
60.
61. // add combo box to a panel at the frame's southern border
62.
63. JPanel comboPanel = new JPanel();
64. comboPanel.add(faceCombo);
65. contentPane.add(comboPanel, BorderLayout.SOUTH);
66. }
67.
68. public static final int WIDTH = 300;
69. public static final int HEIGHT = 200;
70.
71. private JComboBox faceCombo;
72. private JLabel label;
73. private static final int DEFAULT_SIZE = 12;
74. }

javax.swing.JComboBox

• void setEditable(boolean b)

Parameters: b true if the combo box field can be edited by the user, false otherwise

Core Java™ 2: Volume I–Fundamentals

481

• void addItem(Object item)

adds an item to the item list.

• void insertItemAt(Object item, int index)

inserts an item into the item list at a given index.

• void removeItem(Object item)

removes an item from the item list.

• void removeItemAt(int index)

removes the item at an index.

• void removeAllItems()

removes all items from the item list.

• Object getSelectedItem()

returns the currently selected item.

Sliders

Combo boxes let users choose from a discrete set of values. Sliders offer a choice from a
continuum of values, for example, any number between 1 and 100.

The most common way of constructing a slider is as follows:

JSlider slider = new JSlider(min, max, initialValue);

If you omit the minimum, maximum, and initial values, they are initialized with 0, 100, and
50, respectively.

Or, if you want the slider to be vertical, then use the following constructor call:

JSlider slider = new JSlider(SwingConstants.VERTICAL,
 min, max, initialValue);

These constructors create a plain slider, such as the top slider in Figure 9-18. You will see
presently how to add decorations to a slider.

Core Java™ 2: Volume I–Fundamentals

482

Figure 9-18. Sliders

As the user slides the slider bar, the value of the slider moves between the minimum and the
maximum values. When the value changes, a ChangeEvent is sent to all change listeners. To
be notified of the change, you need to call the addChangeListener method and install an
object that implements the ChangeListener interface. That interface has a single method,
stateChanged. In that method, you should retrieve the slider value:

public void stateChanged(ChangeEvent event)
{
 JSlider slider = (JSlider)event.getSource();
 int value = slider.getValue();
 . . .
}

You can embellish the slider by showing ticks. For example, in the sample program, the
second slider uses the following settings:

slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(5);

The slider is decorated with large tick marks every 20 units and small tick marks every 5
units. The units refer to slider values, not pixels.

Core Java™ 2: Volume I–Fundamentals

483

These instructions only set the units for the tick marks. To actually have the tick marks
appear, you also need to call

slider.setPaintTicks(true);

The major and minor tick marks are independent. For example, you can set major tick marks
every 20 units and minor tick marks every 7 units, but you'll get a very messy scale.

You can force the slider to snap to ticks. Whenever the user has finished dragging a slider in
snap mode, it is immediately moved to the closest tick. You activate this mode with the call

slider.setSnapToTicks(true);

NOTE

In version 1.2 and 1.3, the “snap to ticks” behavior doesn't work as well
as you might imagine. Until the slider has actually snapped, the change
listener still reports slider values that don't correspond to ticks. And if
you click next to the slider—an action that normally advances the slider
a bit in the direction of the click—a slider with “snap to ticks” does not
move to the next tick.

You can ask for tick mark labels for the major tick marks, by calling

slider.setPaintLabels(true);

For example, with a slider ranging from 0 to 100 and major tick spacing of 20, the ticks are
labeled 0, 20, 40, 60, 80, and 100.

You can also supply other tick marks, such as strings or icons (see Figure 9-18). The process
is a bit convoluted. You need to fill a hash table with keys new Integer(tickValue) and
values of type Component. Then you call the setLabelTable method. The components are
placed under the tick marks. Usually, you use JLabel objects. Here is how you can label ticks
as A, B, C, D, E, and F.

Hashtable labelTable = new Hashtable();
labelTable.put(new Integer(0), new JLabel("A"));
labelTable.put(new Integer(20), new JLabel("B"));
. . .
labelTable.put(new Integer(100), new JLabel("F"));
slider.setLabelTable(labelTable);

See Chapter 2 of Volume 2 for more information about hash tables.

Example 9-9 also shows a slider with icons as tick labels.

Core Java™ 2: Volume I–Fundamentals

484

TIP

If your tick marks or labels don't show, double-check that you called
setPaintTicks(true) and setPaintLabels(true).

Finally, if you use the Metal look and feel, you can add a visual enhancement to your sliders
and have the portion from the minimum value to the current value “filled in.” The fourth and
fifth sliders in Figure 9-18 are filled. You fill a slider by setting a client property as follows:

slider.putClientProperty("JSlider.isFilled", Boolean.TRUE);

The fifth slider has its direction reversed by calling

slider.setInverted(true);

The example program shows all these visual effects with a collection of sliders. Each slider
has a change event listener installed that places the current slider value into the text field at
the bottom of the frame.

Example 9-9 SliderTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.util.*;
 4. import javax.swing.*;
 5. import javax.swing.event.*;
 6.
 7. public class SliderTest
 8. {
 9. public static void main(String[] args)
 10. {
 11. SliderTestFrame frame = new SliderTestFrame();
 12. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13. frame.show();
 14. }
 15. }
 16.
 17. /**
 18. A frame with many sliders and a text field to show slider
 19. values.
 20. */
 21. class SliderTestFrame extends JFrame
 22. {
 23. public SliderTestFrame()
 24. {
 25. setTitle("SliderTest");
 26. setSize(WIDTH, HEIGHT);
 27.
 28. sliderPanel = new JPanel();
 29. sliderPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
 30.

Core Java™ 2: Volume I–Fundamentals

485

 31. // common listener for all sliders
 32. listener = new
 33. ChangeListener()
 34. {
 35. public void stateChanged(ChangeEvent event)
 36. {
 37. // update text field when the slider value changes
 38. JSlider source = (JSlider)event.getSource();
 39. textField.setText("" + source.getValue());
 40. }
 41. };
 42.
 43. // add a plain slider
 44.
 45. JSlider slider = new JSlider();
 46. addSlider(slider, "Plain");
 47.
 48. // add a slider with major and minor ticks
 49.
 50. slider = new JSlider();
 51. slider.setPaintTicks(true);
 52. slider.setMajorTickSpacing(20);
 53. slider.setMinorTickSpacing(5);
 54. addSlider(slider, "Ticks");
 55.
 56. // add a slider that snaps to ticks
 57.
 58. slider = new JSlider();
 59. slider.setPaintTicks(true);
 60. slider.setSnapToTicks(true);
 61. slider.setMajorTickSpacing(20);
 62. slider.setMinorTickSpacing(5);
 63. addSlider(slider, "Snap to ticks");
 64.
 65. // add a filled slider
 66.
 67. slider = new JSlider();
 68. slider.setPaintTicks(true);
 69. slider.setMajorTickSpacing(20);
 70. slider.setMinorTickSpacing(5);
 71. slider.putClientProperty("JSlider.isFilled",
 72. Boolean.TRUE);
 73. addSlider(slider, "Filled");
 74.
 75. // add a filled and inverted slider
 76.
 77. slider = new JSlider();
 78. slider.setPaintTicks(true);
 79. slider.setMajorTickSpacing(20);
 80. slider.setMinorTickSpacing(5);
 81. slider.putClientProperty("JSlider.isFilled",
 82. Boolean.TRUE);
 83. slider.setInverted(true);
 84. addSlider(slider, "Inverted");
 85.
 86. // add a slider with numeric labels
 87.
 88. slider = new JSlider();
 89. slider.setPaintTicks(true);
 90. slider.setPaintLabels(true);
 91. slider.setMajorTickSpacing(20);

Core Java™ 2: Volume I–Fundamentals

486

 92. slider.setMinorTickSpacing(5);
 93. addSlider(slider, "Labels");
 94.
 95. // add a slider with alphabetic labels
 96.
 97. slider = new JSlider();
 98. slider.setPaintLabels(true);
 99. slider.setPaintTicks(true);
100. slider.setMajorTickSpacing(20);
101. slider.setMinorTickSpacing(5);
102.
103. Hashtable labelTable = new Hashtable();
104. labelTable.put(new Integer(0), new JLabel("A"));
105. labelTable.put(new Integer(20), new JLabel("B"));
106. labelTable.put(new Integer(40), new JLabel("C"));
107. labelTable.put(new Integer(60), new JLabel("D"));
108. labelTable.put(new Integer(80), new JLabel("E"));
109. labelTable.put(new Integer(100), new JLabel("F"));
110.
111. slider.setLabelTable(labelTable);
112. addSlider(slider, "Custom labels");
113.
114. // add a slider with icon labels
115.
116. slider = new JSlider();
117. slider.setPaintTicks(true);
118. slider.setPaintLabels(true);
119. slider.setSnapToTicks(true);
120. slider.setMajorTickSpacing(20);
121. slider.setMinorTickSpacing(20);
122.
123. labelTable = new Hashtable();
124.
125. // add card images
126.
127. labelTable.put(new Integer(0),
128. new JLabel(new ImageIcon("nine.gif")));
129. labelTable.put(new Integer(20),
130. new JLabel(new ImageIcon("ten.gif")));
131. labelTable.put(new Integer(40),
132. new JLabel(new ImageIcon("jack.gif")));
133. labelTable.put(new Integer(60),
134. new JLabel(new ImageIcon("queen.gif")));
135. labelTable.put(new Integer(80),
136. new JLabel(new ImageIcon("king.gif")));
137. labelTable.put(new Integer(100),
138. new JLabel(new ImageIcon("ace.gif")));
139.
140. slider.setLabelTable(labelTable);
141. addSlider(slider, "Icon labels");
142.
143. // add the text field that displays the slider value
144.
145. textField = new JTextField();
146. Container contentPane = getContentPane();
147. contentPane.add(sliderPanel, BorderLayout.CENTER);
148. contentPane.add(textField, BorderLayout.SOUTH);
149. }
150.

Core Java™ 2: Volume I–Fundamentals

487

151. /**
152. Adds a slider to the slider panel and hooks up the listener
153. @param s the slider
154. @param description the slider description
155. */
156. public void addSlider(JSlider s, String description)
157. {
158. s.addChangeListener(listener);
159. JPanel panel = new JPanel();
160. panel.add(s);
161. panel.add(new JLabel(description));
162. sliderPanel.add(panel);
163. }
164.
165. public static final int WIDTH = 350;
166. public static final int HEIGHT = 450;
167.
168. private JPanel sliderPanel;
169. private JTextField textField;
170. private ChangeListener listener;
171. }

javax.swing.JSlider

• JSlider()
• JSlider(int direction)
• JSlider(int min, int max)
• JSlider(int min, int max, int initialValue)
• JSlider(int direction, int min, int max, int initialValue)

construct a horizontal slider with the given direction, minimum, maximum, and initial
values.

Parameters: direction One of SwingConstants.HORIZONTAL or
SwingConstants.VERTICAL. The default is horizontal.

 min, max The minimum and maximum for the slider values. Defaults are 0
and 100.

 initialValue The initial value for the slider. The default is 50.

• void setPaintTicks(boolean b)

If b is true, then ticks are displayed.

• void setMajorTickSpacing(int units)
• void setMinorTickSpacing(int units)

set major or minor ticks at multiples of the given slider units.

Core Java™ 2: Volume I–Fundamentals

488

• void setPaintLabels(boolean b)

If b is true, then tick labels are displayed.

• slider.setLabelTable(Dictionary table)

sets the components to use for the tick labels. Each key/value pair in the table has the
form new Integer(value)/component.

• void setSnapToTicks(boolean b)

If b is true, then the slider snaps to the closest tick after each adjustment.

Menus

We started this chapter by introducing the most common components that you might want to
place into a window, such as various kinds of buttons, text fields, and combo boxes. Swing
also supports another type of user interface elements, the pull-down menus that are familiar
from GUI applications.

A menu bar on top of the window contains the names of the pull-down menus. Clicking on a
name opens the menu containing menu items and submenus. When the user clicks on a menu
item, all menus are closed and a message is sent to the program. Figure 9-19 shows a typical
menu with a submenu.

Figure 9-19. A menu with a submenu

Building Menus

Building menus is straightforward. You create a menu bar:

JMenuBar menuBar = new JMenuBar();

Core Java™ 2: Volume I–Fundamentals

489

A menu bar is just a component that you can add anywhere you like. Normally, you want it to
appear at the top of a frame. You can add it there with the setJMenuBar method:

frame.setJMenuBar(menuBar);

For each menu, you create a menu object:

JMenu editMenu = new JMenu("Edit");

You add the top-level menus to the menu bar:

menuBar.addMenu(editMenu);

You add menu items, separators, and submenus to the menu object:

JMenuItem pasteItem = new JMenuItem("Paste");
editMenu.add(pasteItem);
editMenu.addSeparator();
JMenu optionsMenu = . . .; // a submenu
editMenu.add(optionsMenu);

When the user selects a menu, an action event is triggered. You need to install an action
listener for each menu item.

ActionListener listener = . . .;
pasteItem.addActionListener(listener);

There is a convenient method JMenu.add(String s) that adds a menu item to the end of
a menu, for example:

editMenu.add("Paste");

The add method returns the created menu item, so that you can capture it and then add
the listener, as follows:

JMenuItem pasteItem = editMenu.add("Paste");
pasteItem.addActionListener(listener);

It often happens that menu items trigger commands that can also be activated through other
user interface elements such as toolbar buttons. In Chapter 8, you saw how to specify
commands through Action objects. You define a class that implements the Action interface,
usually by extending the AbstractAction convenience class. You specify the menu item
label in the constructor of the AbstractAction object, and you override
the actionPerformed method to hold the menu action handler. For example,

Action exitAction = new
 AbstractAction("Exit") // menu item text goes here
 {
 public void actionPerformed(ActionEvent event)
 {
 // action code goes here
 System.exit(0);
 }
 };

Core Java™ 2: Volume I–Fundamentals

490

You can then add the action to the menu:

JMenuItem exitItem = fileMenu.add(exitAction);

This command adds a menu item to the menu, using the action name. The action object
becomes its listener. This is just a convenient shortcut for

JMenuItem exitItem = new JMenuItem(exitAction);
fileMenu.add(exitItem);

NOTE

In Windows programs, menus are generally defined in an external
resource file and tied to the application with resource identifiers. It is
possible to build menus programmatically, but it is not commonly done.
In Java, menus are still usually built inside the program because
the mechanism for dealing with external resources is far more limited
than it is in Windows.

javax.swing.JMenu

• JMenu(String label)

Parameters: label The label for the menu in the menu bar or parent menu

• JMenuItem add(JMenuItem item)

adds a menu item (or a menu).

Parameters: item The item or menu to add

• JMenuItem add(String label)

adds a menu item to this menu.

Parameters: label The label for the menu items

• JMenuItem add(Action a)

adds a menu item and associates an action with it.

Parameters: a An action encapsulating a name, optional icon, and listener (see Chapter 8)

Core Java™ 2: Volume I–Fundamentals

491

• void addSeparator()

adds a separator line to the menu.

• JMenuItem insert(JMenuItem menu, int index)

adds a new menu item (or submenu) to the menu at a specific index.

Parameters: menu The menu to be added
 index Where to add the item

• JMenuItem insert(Action a, int index)

adds a new menu item at a specific index and associates an action with it.

Parameters: a An action encapsulating a name, optional icon, and listener
 index Where to add the item

• void insertSeparator(int index)

adds a separator to the menu.

Parameters: index Where to add the separator

• void remove(int index)

removes a specific item from the menu.

Parameters: index The position of the item to remove

• void remove(JMenuItem item)

removes a specific item from the menu.

Parameters: item The item to remove

javax.swing.JMenuItem

• JMenuItem(String label)

Parameters: label The label for this menu item

• JMenuItem(Action a)

Parameters: a An action encapsulating a name, optional icon, and listener

Core Java™ 2: Volume I–Fundamentals

492

javax.swing.AbstractButton

• void setAction(Action a)

Parameters: a An action encapsulating a name, optional icon, and listener

javax.swing.JFrame

• void setJMenuBar(JMenuBar menubar)

sets the menu bar for this frame.

Icons in Menu Items

Menu items are very similar to buttons. In fact, the JMenuItem class extends
the AbstractButton class. Just like buttons, menus can have just a text label, just an icon, or
both. You can specify the icon with the JMenuItem(String, Icon) or JMenuItem(Icon)
constructor, or you can set it with the setIcon method that the JMenuItem class inherits from
the AbstractButton class. Here is an example:

JMenuItem cutItem = new JMenuItem("Cut", new ImageIcon("cut.gif"));

Figure 9-20 shows a menu with icons next to several menu items. As you can see, by default,
the menu items are placed to the right of the menu text. If you prefer the icon to be placed on
the right, call the setHorizontalTextPosition method that the JMenuItem class inherits
from the AbstractButton class. For example, the call

cutItem.setHorizontalTextPosition(SwingConstants.RIGHT);

Core Java™ 2: Volume I–Fundamentals

493

Figure 9-20. Icons in menu items

moves the menu item text to the right of the icon.

You can also add an icon to an action:

cutAction.putValue(Action.SMALL_ICON, new ImageIcon("cut.gif"));

Whenever you construct a menu item out of an action, the Action.NAME value becomes
the text of the menu item, and the Action.SMALL_ICON value becomes the icon.

Alternatively, you can set the icon in the AbstractAction constructor:

cutAction = new
 AbstractAction("Cut", new ImageIcon("cut.gif"))
 {
 public void actionPerformed(ActionEvent event)
 {
 // action code goes here
 }
 };

javax.swing.JMenuItem

• JMenuItem(String label, Icon icon)

Parameters: label The label for the menu item
 icon The icon for the menu item

Core Java™ 2: Volume I–Fundamentals

494

javax.swing.AbstractButton

• void setHorizontalTextPosition(int pos)

sets the horizontal position of the text relative to the icon.

Parameters: pos SwingConstants.RIGHT (text is to the right of icon) or
SwingConstants.LEFT

javax.swing.AbstractAction

• AbstractAction(String name, Icon smallIcon)

Parameters: name the label for the action
 smallIcon the small icon for the action

Check Box and Radio Button Menu Items

Check box and radio button menu items display a check box or radio button next to the name
(see Figure 9-21). When the user selects the menu item, the item automatically toggles
between checked and unchecked.

Figure 9-21. A checked menu item and menu items with radio buttons

Core Java™ 2: Volume I–Fundamentals

495

Apart from the button decoration, you treat these menu items just as you would any others.
For example, here is how you create a check box menu item.

JCheckBoxMenuItem readonlyItem
 = new JCheckBoxMenuItem("Read-only");
optionsMenu.add(readonlyItem);

The radio button menu items work just like regular radio buttons. You must add them to a
button group. When one of the buttons in a group is selected, all others are automatically
deselected.

ButtonGroup group = new ButtonGroup();
JRadioButtonMenuItem insertItem
 = new JRadioButtonMenuItem("Insert");
insertItem.setSelected(true);
JRadioButtonMenuItem overtypeItem
 = new JRadioButtonMenuItem("Overtype");
group.add(insertItem);
group.add(overtypeItem);
optionsMenu.add(insertItem);
optionsMenu.add(overtypeItem);

With these menu items, you don't necessarily want to be notified at the exact moment the user
selects the item. Instead, you can simply use the isSelected method to test the current state
of the menu item. (Of course, that means that you should keep a reference to the menu item
stored in an instance variable.) Use the setSelected method to set the state.

javax.swing.JCheckBoxMenuItem

• JCheckBoxMenuItem(String label)

constructs the check box menu item with the given label.

• JCheckBoxMenuItem(String label, boolean state)

constructs the check box menu item with the given label and the given initial state
(true is checked).

javax.swing.JRadioButtonMenuItem

• JRadioButtonMenuItem(String label)

constructs the radio button menu item with the given label.

Core Java™ 2: Volume I–Fundamentals

496

• JRadioButtonMenuItem(String label, boolean state)

constructs the radio button menu item with the given label and the given initial state
(true is checked).

javax.swing.AbstractButton

• boolean isSelected()

returns the check state of this item (true is checked).

• void setSelected(boolean state)

sets the check state of this item.

Pop-up Menus

A pop-up menu is a menu that is not attached to a menu bar but that floats somewhere (see
Figure 9-22).

Figure 9-22. A pop-up menu

You create a pop-up menu similarly to the way you create a regular menu, but a pop-up menu
has no title.

JPopupMenu popup = new JPopupMenu();

You then add menu items in the usual way:

Core Java™ 2: Volume I–Fundamentals

497

JMenuItem item = new JMenuItem("Cut");
item.addActionListener(listener);
popup.add(item);

Unlike the regular menu bar that is always shown at the top of the frame, you must explicitly
display a pop-up menu by using the show method. You specify the parent component and the
location of the pop-up, using the coordinate system of the parent. For example:

popup.show(panel, x, y);

Usually you write code to pop up a menu when the user clicks a particular mouse button, the
so-called pop-up trigger. In Windows, the pop-up trigger is the nonprimary (usually, the
right) mouse button. To pop up a menu when the user clicks the pop-up trigger:

1. Install a mouse listener.
2. Add code like the following to the mouse listener:

 public void mouseReleased(MouseEvent event)
 {
 if (event.isPopupTrigger())
 popup.show(event.getComponent(),
 event.getX(), event.getY());
 }

This code will show the pop-up menu at the mouse location where the user clicked the pop-up
trigger.

CAUTION

With our version of the SDK, the isPopupTrigger method works
correctly only in the mouseReleased method, not in the mousePressed
or mouseClicked method.

javax.swing.JPopupMenu

• void show(Component c, int x, int y)

shows the pop-up menu.

Parameters: c The component over which the pop-up menu is to appear
 x,

y
The coordinates (in the coordinate space of c) of the top-left corner of the
pop-up menu

Core Java™ 2: Volume I–Fundamentals

498

• boolean isPopupTrigger(MouseEvent event)

returns true if the mouse event is the pop-up menu trigger.

java.awt.event.MouseEvent

• boolean isPopupTrigger()

returns true if this mouse event is the pop-up menu trigger.

Keyboard Mnemonics and Accelerators

It is a real convenience for the experienced user to select menu items by keyboard mnemonics.
In Java, you can specify keyboard mnemonics for menu items by specifying a mnemonic
letter in the menu item constructor:

JMenuItem cutItem = new JMenuItem("Cut", 'T');

The keyboard mnemonic is displayed automatically in the menu, by underlining the
mnemonic letter (see Figure 9-23). For example, in the item defined in the last example, the
label will be displayed as “Cut” with an underlined letter “t”. When the menu is displayed, the
user just needs to press the “T” key, and the menu item is selected. (If the mnemonic letter is
not part of the menu string, then typing it still selects the item, but the mnemonic is not
displayed in the menu. Naturally, such invisible mnemonics are of dubious utility.)

Figure 9-23. Keyboard mnemonics

If you have an Action object, you can add the mnemonic as the value of
the Action.MNEMONIC_KEY key, as follows:

Core Java™ 2: Volume I–Fundamentals

499

cutAction.putValue(Action.MNEMONIC_KEY, new Integer('T'));

You can only supply a mnemonic letter in the constructor of a menu item, not in the
constructor for a menu. Instead, to attach a mnemonic to a menu, you need to call the
setMnemonic method:

JMenu helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

To select a top-level menu from the menu bar, you press the alt key together with the
mnemonic letter. For example, you press alt+h to select the Help menu from the menu bar.

Keyboard mnemonics let you select a submenu or menu item from the currently open menu.
In contrast, accelerators are keyboard shortcuts that let you select menu items without ever
opening a menu. For example, many programs attach the accelerators ctrl+o and ctrl+s to
the pen and Save items in the File menu. You use the setAccelerator method to attach
an ccelerator key to a menu item. The setAccelerator method takes an object of type
Keystroke. For example, the following call attaches the accelerator ctrl+o to the openItem
menu item.

openItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_O,
 InputEvent.CTRL_MASK));

When the user presses the accelerator key combination, this automatically selects the menu
option and fires an action event, as if the user had selected the menu option manually.

You can attach accelerators only to menu items, not to menus. Accelerator keys don't actually
open the menu. Instead, they directly fire the action event that is associated with a menu.

Conceptually, adding an accelerator to a menu item is similar to the technique of adding an
accelerator to a Swing component. (We discussed that technique in Chapter 8.) However,
when the accelerator is added to a menu item, the key combination is automatically displayed
in the menu (see Figure 9-24).

Core Java™ 2: Volume I–Fundamentals

500

Figure 9-24. Accelerators

CAUTION

Action objects can have a keystroke value associated with
the Action.ACCELERATOR_KEY key. However, the JMenuItem(Action)
constructor ignores that keystroke.

NOTE

Under Windows, alt+f4 closes a window. But this is not an accelerator
that was programmed in Java. It is a shortcut defined by the operating
system. This key combination will always trigger the WindowClosing
event for the active window regardless of whether there is a Close item
on the menu.

javax.swing.JMenuItem

• JMenuItem(String label, int mnemonic).

Parameters: label The label for this menu item
 mnemonic The mnemonic character for the item; this character will be underlined

in the label

Core Java™ 2: Volume I–Fundamentals

501

• void setAccelerator(KeyStroke k)

sets the keystroke k as accelerator for this menu item. The accelerator key is displayed
next to the label

javax.swing.AbstractButton

• void setMnemonic(char mnemonic)

sets the mnemonic character for the button. This character will be underlined in
the label.

Parameters: mnemonic The mnemonic character for the button

Enabling and Disabling Menu Items

Occasionally, a particular menu item should be selected only in certain contexts. For example,
when a document is opened for reading only, then the Save menu item is not meaningful. Of
course, we could remove the item from the menu with the JMenu.remove method, but users
would react with some surprise to menus whose contents keeps changing. Instead, it is better
to deactivate the menu items that lead to temporarily inappropriate commands. A deactivated
menu item is shown in gray, and it cannot be selected (see Figure 9-25).

Figure 9-25. Disabled menu items

To enable or disable a menu item, use the setEnabled method:

saveItem.setEnabled(false);

Core Java™ 2: Volume I–Fundamentals

502

There are two strategies for enabling and disabling menu items. Each time circumstances
change, you can call setEnabled on the relevant menu items. For example, as soon as
a document has been set to read-only mode, you can locate the Save and Save As menu items
and disable them. However, if you use that strategy, you may find that your code gets
cluttered up with menu management in many places. A smarter strategy is not to worry about
the menu item states in the remainder of the program and to set them just before displaying
the menu. To do this, you must register a listener for the “menu selected” event.
The javax.swing.event package defines a MenuListener interface with three methods:

void menuSelected(MenuEvent evt)
void menuDeselected(MenuEvent evt)
void menuCanceled(MenuEvent evt)

The menuSelected method is called before the menu is displayed. It is therefore the perfect
place to disable or enable menu items. The following code shows how to disable the Save and
Save As menu items whenever the Read Only check box menu item is selected:

public void menuSelected(MenuEvent evt)
{
 saveItem.setEnabled(!readonlyItem.isSelected());
 saveAsItem.setEnabled(!readonlyItem.isSelected());
}

The menuDeselected method is called after the menu is again removed from the display.
The menuCanceled method is called if the menu selection process is canceled, for example,
by clicking with the mouse somewhere outside the menu. We are not interested in either of
these two events, but there is no MenuAdapter class that allows us to override a single
method, so we must define the latter two to do nothing.

javax.swing.JMenuItem

• void setEnabled(boolean b)

enables or disables the menu item.

javax.swing.event.MenuListener

• void menuSelected(MenuEvent e)

is called when the menu has been selected, before it is opened.

Core Java™ 2: Volume I–Fundamentals

503

• void menuDeselected(MenuEvent e)

is called when the menu has been deselected, after it has been closed.

• void menuCanceled(MenuEvent e)

is called when the menu has been canceled, for example, by clicking outside the menu.

Example 9-10 is a sample program that generates a set of menus. It shows all the features that
we saw in this section: nested menus, disabled menu items, check box and radio button menu
items, a pop-up menu, and keyboard mnemonics and accelerators.

Example 9-10 MenuTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.event.*;
 5.
 6. public class MenuTest
 7. {
 8. public static void main(String[] args)
 9. {
 10. MenuFrame frame = new MenuFrame();
 11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 12. frame.show();
 13. }
 14. }
 15.
 16. /**
 17. A frame with a sample menu bar.
 18. */
 19. class MenuFrame extends JFrame
 20. {
 21. public MenuFrame()
 22. {
 23. setTitle("MenuTest");
 24. setSize(WIDTH, HEIGHT);
 25.
 26. JMenu fileMenu = new JMenu("File");
 27. JMenuItem newItem = fileMenu.add(new TestAction("New"));
 28.
 29. // demonstrate accelerators
 30.
 31. JMenuItem openItem = fileMenu.add(new TestAction("Open"));
 32. openItem.setAccelerator(KeyStroke.getKeyStroke(
 33. KeyEvent.VK_O, InputEvent.CTRL_MASK));
 34.
 35. fileMenu.addSeparator();
 36.
 37. saveItem = fileMenu.add(new TestAction("Save"));
 38. saveItem.setAccelerator(KeyStroke.getKeyStroke(
 39. KeyEvent.VK_S, InputEvent.CTRL_MASK));
 40.
 41. saveAsItem = fileMenu.add(new TestAction("Save As"));
 42. fileMenu.addSeparator();
 43.

Core Java™ 2: Volume I–Fundamentals

504

 44. fileMenu.add(new
 45. AbstractAction("Exit")
 46. {
 47. public void actionPerformed(ActionEvent event)
 48. {
 49. System.exit(0);
 50. }
 51. });
 52.
 53. // demonstrate enabled/disabled items
 54.
 55. fileMenu.addMenuListener(new FileMenuListener());
 56.
 57. // demonstrate check box and radio button menus
 58.
 59. readonlyItem = new JCheckBoxMenuItem("Read-only");
 60.
 61. ButtonGroup group = new ButtonGroup();
 62.
 63. JRadioButtonMenuItem insertItem
 64. = new JRadioButtonMenuItem("Insert");
 65. insertItem.setSelected(true);
 66. JRadioButtonMenuItem overtypeItem
 67. = new JRadioButtonMenuItem("Overtype");
 68.
 69. group.add(insertItem);
 70. group.add(overtypeItem);
 71.
 72. // demonstrate icons
 73.
 74. Action cutAction = new TestAction("Cut");
 75. cutAction.putValue(Action.SMALL_ICON,
 76. new ImageIcon("cut.gif"));
 77. Action copyAction = new TestAction("Copy");
 78. copyAction.putValue(Action.SMALL_ICON,
 79. new ImageIcon("copy.gif"));
 80. Action pasteAction = new TestAction("Paste");
 81. pasteAction.putValue(Action.SMALL_ICON,
 82. new ImageIcon("paste.gif"));
 83.
 84. JMenu editMenu = new JMenu("Edit");
 85. editMenu.add(cutAction);
 86. editMenu.add(copyAction);
 87. editMenu.add(pasteAction);
 88.
 89. // demonstrate nested menus
 90.
 91. JMenu optionMenu = new JMenu("Options");
 92.
 93. optionMenu.add(readonlyItem);
 94. optionMenu.addSeparator();
 95. optionMenu.add(insertItem);
 96. optionMenu.add(overtypeItem);
 97.
 98. editMenu.addSeparator();
 99. editMenu.add(optionMenu);
100.
101. // demonstrate mnemonics
102.
103. JMenu helpMenu = new JMenu("Help");
104. helpMenu.setMnemonic('H');

Core Java™ 2: Volume I–Fundamentals

505

105.
106. JMenuItem indexItem = new JMenuItem("Index");
107. indexItem.setMnemonic('I');
108. helpMenu.add(indexItem);
109.
110. // you can also add the mnemonic key to an action
111. Action aboutAction = new TestAction("About");
112. aboutAction.putValue(Action.MNEMONIC_KEY,
113. new Integer('A'));
114. helpMenu.add(aboutAction);
115.
116. // add all top-level menus to menu bar
117.
118. JMenuBar menuBar = new JMenuBar();
119. setJMenuBar(menuBar);
120.
121. menuBar.add(fileMenu);
122. menuBar.add(editMenu);
123. menuBar.add(helpMenu);
124.
125. // demonstrate pop-ups
126.
127. popup = new JPopupMenu();
128. popup.add(cutAction);
129. popup.add(copyAction);
130. popup.add(pasteAction);
131.
132. getContentPane().addMouseListener(new
133. MouseAdapter()
134. {
135. public void mouseReleased(MouseEvent event)
136. {
137. if (event.isPopupTrigger())
138. popup.show(event.getComponent(),
139. event.getX(), event.getY());
140. }
141. });
142. }
143.
144. public static final int WIDTH = 300;
145. public static final int HEIGHT = 200;
146.
147. private JMenuItem saveItem;
148. private JMenuItem saveAsItem;
149. private JCheckBoxMenuItem readonlyItem;
150. private JPopupMenu popup;
151.
152. /**
153. updates the state of the file menu. The Save
154. menu option is disabled if the document is read only
155. */
156. private class FileMenuListener implements MenuListener
157. {
158. public void menuSelected(MenuEvent evt)
159. {
160. saveItem.setEnabled(!readonlyItem.isSelected());
161. saveAsItem.setEnabled(!readonlyItem.isSelected());
162. }
163.
164. public void menuDeselected(MenuEvent evt) {}
165.

Core Java™ 2: Volume I–Fundamentals

506

166. public void menuCanceled(MenuEvent evt) {}
167. }
168. }
169.
170. /**
171. A sample action that prints the action name to System.out
172. */
173. class TestAction extends AbstractAction
174. {
175. public TestAction(String name) { super(name); }
176.
177. public void actionPerformed(ActionEvent event)
178. {
179. System.out.println(getValue(Action.NAME)
180. + " selected.");
181. }
182. }

Tool Bars

A tool bar is a button bar that gives quick access to the most commonly used commands in a
program (see Figure 9-26).

Figure 9-26. A tool bar

What makes tool bars special is that you can move them elsewhere. You can drag the tool bar
to one of the four borders of the frame (see Figure 9-27). When you release the mouse button,
the tool bar is dropped into the new location (see Figure 9-28).

Core Java™ 2: Volume I–Fundamentals

507

Figure 9-27. Dragging the tool bar

Figure 9-28. Dragging the tool bar to another border

NOTE

Tool bar dragging works if the tool bar is inside a container with a border
layout, or any other layout manager that supports the North, East,
South, and West constraints.

Core Java™ 2: Volume I–Fundamentals

508

The tool bar can even be completely detached from the frame. A detached tool bar is
contained in its own frame (see Figure 9-29). When you close the frame containing a detached
tool bar, the tool bar jumps back into the original frame.

Figure 9-29. Detaching the tool bar

Tool bars are straightforward to program. You add components into the tool bar:

JToolBar bar = new JToolBar();
bar.add(blueButton);

The JToolBar class also has a method to add an Action object. Simply populate the tool bar
with Action objects, like this:

bar.add(blueAction);

The small icon of the action is displayed in the tool bar.

CAUTION

In J2SE version 1.2, the name of the action shows up on the tool bar,
which makes the button far too large. Therefore, you cannot share
an Action object between a menu and a toolbar in J2SE version 1.2. This
problem has been fixed in version 1.3.

You can separate groups of buttons with a separator:

bar.addSeparator();

For example, the tool bar in Figure 9-26 has a separator between the third and fourth button.

Core Java™ 2: Volume I–Fundamentals

509

Then, you add the tool bar to the container.

contentPane.add(bar, BorderLayout.NORTH);

You can also specify a title for the toolbar that appears when the toolbar is undocked:

bar = new JToolBar(titleString);

By default, toolbars are initially horizontal. To have a toolbar start out as vertical, use

bar = new JToolBar(SwingConstants.VERTICAL)

or

bar = new JToolBar(titleString, SwingConstants.VERTICAL)

Buttons are the most common components inside toolbars. But there is no restriction on
the components that you can add to a tool bar. For example, you can add a combo box to a
tool bar.

Tool Tips

A disadvantage of tool bars is that users are often mystified by the meanings of the tiny icons
in tool bars. To solve this problem, tool tips were invented. A tool tip is activated when
the cursor rests for a moment over a button. The tool tip text is displayed inside a colored
rectangle. When the user moves the mouse away, the tool tip is removed.

Figure 9-30. A tool tip

In Swing, you can add tool tips to any JComponent simply by calling the setToolTipText
method:

Core Java™ 2: Volume I–Fundamentals

510

exitButton.setToolTipText("Exit");

Alternatively, if you use Action objects, you associate the tool tip with the
SHORT_DESCRIPTION key:

exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");

Example 9-11 is a program that shows how the same Action objects can be added to a menu
and a tool bar. Note that the action names show up as the menu item names in the menu, and
as the tool tips in the tool bar.

Example 9-11 ToolBarTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import javax.swing.*;
 5.
 6. public class ToolBarTest
 7. {
 8. public static void main(String[] args)
 9. {
 10. ToolBarFrame frame = new ToolBarFrame();
 11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 12. frame.show();
 13. }
 14. }
 15.
 16. /**
 17. A frame with a toolbar and menu for color changes.
 18. */
 19. class ToolBarFrame extends JFrame
 20. {
 21. public ToolBarFrame()
 22. {
 23. setTitle("ToolBarTest");
 24. setSize(WIDTH, HEIGHT);
 25.
 26. // add a panel for color change
 27.
 28. Container contentPane = getContentPane();
 29. panel = new JPanel();
 30. contentPane.add(panel, BorderLayout.CENTER);
 31.
 32. // set up actions
 33.
 34. Action blueAction = new ColorAction("Blue",
 35. new ImageIcon("blue-ball.gif"), Color.blue);
 36. Action yellowAction = new ColorAction("Yellow",
 37. new ImageIcon("yellow-ball.gif"), Color.yellow);
 38. Action redAction = new ColorAction("Red",
 39. new ImageIcon("red-ball.gif"), Color.red);
 40.

Core Java™ 2: Volume I–Fundamentals

511

 41. Action exitAction = new
 42. AbstractAction("Exit", new ImageIcon("exit.gif"))
 43. {
 44. public void actionPerformed(ActionEvent event)
 45. {
 46. System.exit(0);
 47. }
 48. };
 49. exitAction.putValue(Action.SHORT_DESCRIPTION, "Exit");
 50.
 51. // populate tool bar
 52.
 53. JToolBar bar = new JToolBar();
 54. bar.add(blueAction);
 55. bar.add(yellowAction);
 56. bar.add(redAction);
 57. bar.addSeparator();
 58. bar.add(exitAction);
 59. contentPane.add(bar, BorderLayout.NORTH);
 60.
 61. // populate menu
 62.
 63. JMenu menu = new JMenu("Color");
 64. menu.add(yellowAction);
 65. menu.add(blueAction);
 66. menu.add(redAction);
 67. menu.add(exitAction);
 68. JMenuBar menuBar = new JMenuBar();
 69. menuBar.add(menu);
 70. setJMenuBar(menuBar);
 71. }
 72.
 73. public static final int WIDTH = 300;
 74. public static final int HEIGHT = 200;
 75.
 76. private JPanel panel;
 77.
 78. /**
 79. The color action sets the background of the frame to a
 80. given color.
 81. */
 82. class ColorAction extends AbstractAction
 83. {
 84. public ColorAction(String name, Icon icon, Color c)
 85. {
 86. putValue(Action.NAME, name);
 87. putValue(Action.SMALL_ICON, icon);
 88. putValue(Action.SHORT_DESCRIPTION,
 89. name + " background");
 90. putValue("Color", c);
 91. }
 92.
 93. public void actionPerformed(ActionEvent evt)
 94. {
 95. Color c = (Color)getValue("Color");
 96. panel.setBackground(c);
 97. panel.repaint();
 98. }
 99. }
 100.}

Core Java™ 2: Volume I–Fundamentals

512

javax.swing.JToolBar

• JToolBar()
• JToolBar(String titleString)
• JToolBar(int orientation)
• JToolBar(String titleString, int orientation)

construct a tool bar with the given title string and orientation. orientation is one of
SwingConstants.HORIZONTAL (the default) and SwingConstants.VERTICAL.

• JButton add(Action a)

constructs a new button inside the tool bar with name, icon, and action callback from
the given action, and adds the button to the end of the tool bar.

• void addSeparator()

adds a separator to the end of the tool bar.

javax.swing.JComponent

• void setToolTipText(String text)

sets the text that should be displayed as a tool tip when the mouse hovers over the
component.

Sophisticated Layout Management

We have managed to lay out the user interface components of our sample applications so far
by using only the border layout and flow layout. For more complex tasks, this is not going to
be enough. In this section, we will give you a detailed discussion of all the layout managers
that the standard Java library provides to organize components.

Windows programmers may well wonder why Java makes so much fuss about layout
managers. After all, in Windows, layout management is not a big deal: First, you use a dialog
editor to drag and drop your components onto the surface of the dialog, and then you use
editor tools to line up components, to space them equally, to center them, and so on. If you are
working on a big project, you probably don't have to worry about component layout at all—a
skilled user interface designer does all this for you.

The problem with this approach is that the resulting layout must be manually updated if the
size of the components changes. Why would the component size change? There are two

Core Java™ 2: Volume I–Fundamentals

513

common cases. First, a user may choose a larger font for button labels and other dialog text. If
you try this out for yourself in Windows, you will find that many applications deal with this
exceedingly poorly. The buttons do not grow, and the larger font is simply crammed into the
same space as before. The same problem can occur when translating the strings in an
application to a foreign language. For example, the German word for “Cancel” is
“Abbrechen.” If a button has been designed with just enough room for the string “Cancel,”
then the German version will look broken, with a clipped command string.

Why don't Windows buttons simply grow to accommodate the labels? Because the designer
of the user interface gave no instructions in which direction they should grow. After the
dragging and dropping and arranging, the dialog editor merely remembers the pixel position
and size of each component. It does not remember why the components were arranged in this
fashion.

The Java layout managers are a much better approach to component layout. With a layout
manager, the layout comes with instructions about the relationships between the components.
This was particularly important in the original AWT, which used native user interface
elements. The size of a button or list box in Motif, Windows, and the Macintosh could vary
widely, and an application or applet would not know a priori on which platform it would
display its user interface. To some extent, that degree of variability has gone away with
Swing. If your application forces a particular look and feel, such as the Metal look and feel,
then it looks identical on all platforms. However, if you let users of your application choose
their favorite look and feel, then you again need to rely on the flexibility of layout managers
to arrange the components.

Of course, to achieve complex layouts, you will need to have more control over the layout
than the border layout and flow layout give you. In this section, we will discuss the layout
managers that the standard Java library has to offer. Using a sophisticated layout manager
combined with the appropriate use of multiple panels will give you complete control over
how your application will look.

TIP

If none of the layout schemes fit your needs, break the surface of your
window into separate panels and lay out each panel separately. Then, use
another layout manager to organize the panels.

First, let's review a few basic principles. As you know, in the AWT, components are laid out
inside containers. Buttons, text fields, and other user interface elements are components and
can be placed inside containers. Therefore, these classes extend the class Component.
Containers such as panels can themselves be put inside other containers. Therefore, the class
Container derives from Component. Figure 9-31 shows the inheritance hierarchy for
Component.

Core Java™ 2: Volume I–Fundamentals

514

Figure 9-31. Inheritance hierarchy for the Component class

NOTE

Note that some objects belong to classes extending Component even
though they are not user interface components and cannot be inserted
into containers. Top-level windows such as JFrame and JApplet cannot
be contained inside another window or panel.

As you have seen, to organize the components in a container, you first specify a layout
manager. For example, the statement

panel.setLayout(new GridLayout(4, 4));

will use the GridLayout class to lay out the panels. After you set the layout manager, you add
components to the container. The add method of the container passes the component and any
placement directions to the layout manager.

With the border layout manager, you give a string to indicate component placement:

panel.add(new JTextField(), BorderLayout.SOUTH);

With the grid layout that you will see shortly, you need to add components sequentially:

panel.add(new JCheckBox("italic"));
panel.add(new JCheckBox("bold"));

The grid layout is useful to arrange components in a grid, somewhat like the rows and
columns of a spreadsheet. However, all rows and columns of the grid have identical size,
which is not all that useful in practice.

Core Java™ 2: Volume I–Fundamentals

515

To overcome the limitations of the grid layout, the AWT supplies the grid bag layout. It, too,
lays out components in rows and columns, but the row and column sizes are flexible, and
components can span multiple rows and columns. This layout manager is very flexible, but it
is also very complex. The mere mention of the words “grid bag layout” has been known to
strike fear in the hearts of Java programmers. Actually, in most common situations, the grid
bag layout is not that hard to use, and we tell you a strategy that should make grid bag layouts
relatively painless.

In an (unsuccessful) attempt to design a layout manager that would free programmers from
the tyranny of the grid bag layout, the Swing designers came up with the box layout. The box
layout simply arranges a sequence of components horizontally or vertically. When arranging
components horizontally, it is similar to the flow layout; however, components do not “wrap”
to a new row when one row is full. By placing a number of horizontal box layouts inside a
vertical box layout (or the other way around), you can give some order to a set of components
in a two-dimensional area. However, since each box is laid out independently, you cannot use
box layouts to arrange neighboring components both horizontally and vertically.

The Swing set also contains an overlay layout that lets you place components on top of each
other. This layout manager is not generally useful, and we won't discuss it.

Finally, there is a card layout that was used in the original AWT to produce tabbed dialogs.
Since Swing has a much better tabbed dialog container (called JTabbedPane—see Volume 2),
we do not cover the card layout here.

We end the discussion of layout managers by showing you how you can bypass layout
management altogether and place components manually, and by showing you how you can
write your own layout manager.

Grid Layout

The grid layout arranges all components in rows and columns like a spreadsheet. However,
for a grid layout, cells are always the same size. The calculator program in Figure 9-32 uses
a grid layout to arrange the calculator buttons. When you resize the window, the buttons grow
and shrink, but all buttons have identical sizes.

Figure 9-32. A calculator

Core Java™ 2: Volume I–Fundamentals

516

In the constructor of the grid layout object, you specify how many rows and columns you
need.

panel.setLayout(new GridLayout(5, 4));

As with the border layout and flow layout managers, you can also specify the vertical and
horizontal gaps you want.

panel.setLayout(new GridLayout(5, 4, 3, 3));

The last two parameters of this constructor specify the size of the horizontal and vertical gaps
(in pixels) between the components.

You add the components, starting with the first entry in the first row, then the second entry in
the first row, and so on.

panel.add(new JButton("1"));
panel.add(new JButton("2"));

Example 9-12 is the source listing for the calculator program. This is a regular calculator, not
the “reverse Polish” variety that is so oddly popular in Java tutorials.

Example 9-12 Calculator.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class Calculator
 6. {
 7. public static void main(String[] args)
 8. {
 9. CalculatorFrame frame = new CalculatorFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.show();
 12. }
 13. }
 14.
 15. /**
 16. A frame with a calculator panel.
 17. */
 18. class CalculatorFrame extends JFrame
 19. {
 20. public CalculatorFrame()
 21. {
 22. setTitle("Calculator");
 23. setSize(WIDTH, HEIGHT);
 24.
 25. Container contentPane = getContentPane();
 26. CalculatorPanel panel = new CalculatorPanel();
 27. contentPane.add(panel);
 28. }
 29.
 30. public static final int WIDTH = 200;
 31. public static final int HEIGHT = 200;
 32. }
 33.

Core Java™ 2: Volume I–Fundamentals

517

 34.
 35. /**
 36. A panel with calculator buttons and a result display.
 37. */
 38. class CalculatorPanel extends JPanel
 39. {
 40. public CalculatorPanel()
 41. {
 42. setLayout(new BorderLayout());
 43.
 44. result = 0;
 45. lastCommand = "=";
 46. start = true;
 47.
 48. // add the display
 49.
 50. display = new JTextField("0");
 51. display.setEditable(false);
 52. add(display, BorderLayout.NORTH);
 53.
 54. ActionListener insert = new InsertAction();
 55. ActionListener command = new CommandAction();
 56.
 57. // add the buttons in a 4 x 4 grid
 58.
 59. panel = new JPanel();
 60. panel.setLayout(new GridLayout(4, 4));
 61.
 62. addButton("7", insert);
 63. addButton("8", insert);
 64. addButton("9", insert);
 65. addButton("/", command);
 66.
 67. addButton("4", insert);
 68. addButton("5", insert);
 69. addButton("6", insert);
 70. addButton("*", command);
 71.
 72. addButton("1", insert);
 73. addButton("2", insert);
 74. addButton("3", insert);
 75. addButton("-", command);
 76.
 77. addButton("0", insert);
 78. addButton(".", insert);
 79. addButton("=", command);
 80. addButton("+", command);
 81.
 82. add(panel, BorderLayout.CENTER);
 83. }
 84.
 85. /**
 86. Adds a button to the center panel.
 87. @param label the button label
 88. @param listener the button listener
 89. */
 90. private void addButton(String label, ActionListener listener)
 91. {
 92. JButton button = new JButton(label);
 93. button.addActionListener(listener);

Core Java™ 2: Volume I–Fundamentals

518

 94. panel.add(button);
 95. }
 96.
 97. /**
 98. This action inserts the button action string to the
 99. end of the display text.
100. */
101. private class InsertAction implements ActionListener
102. {
103. public void actionPerformed(ActionEvent event)
104. {
105. String input = event.getActionCommand();
106. if (start)
107. {
108. display.setText("");
109. start = false;
110. }
111. display.setText(display.getText() + input);
112. }
113. }
114.
115. /**
116. This action executes the command that the button
117. action string denotes.
118. */
119. private class CommandAction implements ActionListener
120. {
121. public void actionPerformed(ActionEvent evt)
122. {
123. String command = evt.getActionCommand();
124.
125. if (start)
126. {
127. if (command.equals("-"))
128. {
129. display.setText(command);
130. start = false;
131. }
132. else
133. lastCommand = command;
134. }
135. else
136. {
137. calculate(Double.parseDouble(display.getText()));
138. lastCommand = command;
139. start = true;
140. }
141. }
142. }
143.
144. /**
145. Carries out the pending calculation.
146. @param x the value to be accumulated with the prior result.
147. */
148. public void calculate(double x)
149. {
150. if (lastCommand.equals("+")) result += x;
151. else if (lastCommand.equals("-")) result -= x;
152. else if (lastCommand.equals("*")) result *= x;
153. else if (lastCommand.equals("/")) result /= x;
154. else if (lastCommand.equals("=")) result = x;

Core Java™ 2: Volume I–Fundamentals

519

155. display.setText("" + result);
156. }
157.
158. private JTextField display;
159. private JPanel panel;
160. private double result;
161. private String lastCommand;
162. private boolean start;
163. }

Of course, few applications have as rigid a layout as the face of a calculator. In practice, small
grids (usually with just one row or one column) can be useful to organize partial areas of a
window. For example, if you want to have a row of buttons with identical size, then you can
put the buttons inside a panel that is governed by a grid layout with a single row. (You will
need to set the gap size so that the buttons have some space between them.) But you will often
find it inconvenient that each component in the grid is stretched to fill the entire cell and that
all components are forced to have identical size. You can avoid these problems with the box
layout that we describe next.

java.awt.GridLayout

• GridLayout(int rows, int cols)

constructs a new GridLayout.

Parameters: rows The number of rows in the grid
 columns The number of columns in the grid

• GridLayout(int rows, int columns, int hgap, int vgap)

constructs a new GridLayout with horizontal and vertical gaps between components.

Parameters: rows The number of rows in the grid
 columns The number of columns in the grid
 hgap The horizontal gap to use in pixels (negative values force an overlap)
 vgap The vertical gap to use in pixels (negative values force an overlap)

Box Layout

The box layout lets you lay out a single row or column of components with more flexibility
than the grid layout. There is even a container—the Box class—whose default layout manager
is the BoxLayout (unlike the JPanel class whose default layout manager is the FlowLayout).
Of course, you can also set the layout manager of a JPanel to the box layout, but it is simpler
to just start with a Box container. The Box class also contains a number of static methods that
are useful for managing box layouts.

To create a new container with a box layout, you can simply call

Core Java™ 2: Volume I–Fundamentals

520

Box b = Box.createHorizontalBox();

or

Box b = Box.createVerticalBox();

Then, you add components in the usual way:

b.add(okButton);
b.add(cancelButton);

In a horizontal box, the components are arranged left to right. In a vertical box,
the components are arranged top to bottom. Let us look at the horizontal layout more closely.

Each component has three sizes:

• The preferred size – the width and height at which the component would like to be
displayed;

• The maximum size – the largest width and height at which the component is willing to
be displayed;

• The minimum size – the smallest width and height at which the component is willing
to be displayed.

Here are details about the box layout manager does:

1. It computes the maximum (!) height of the tallest component.
2. It tries to grow all components vertically to that height.
3. If a component does not actually grow to that height when requested, then its y-

alignment is queried by calling its getAlignmentY method. That method returns a
floating-point number between 0 (align on top) and 1 (align on bottom). The default in
the Component class is 0.5 (center). The value is used to align the component
vertically.

4. The preferred width of each component is obtained. All preferred widths are added up.
5. If the total preferred width is less than the box width, then the components are

expanded, by letting them grow to their maximum width. Components are then placed,
from left to right, with no additional space between them. If the total preferred width is
greater than the box width, the components are shrunk, potentially down to their
minimum width but no further. If the components don't all fit at their minimum width,
some of them will not be shown.

For vertical layouts, the process is analogous.

Core Java™ 2: Volume I–Fundamentals

521

TIP

It is unfortunate that BoxLayout tries to grow components beyond
the preferred size. In particular, text fields have maximum width and
height set to Integer.MAX_VALUE; that is, they are willing to grow as
much as necessary. If you put a text field into a box layout, it will grow
to monstrous proportions. Remedy: set the maximum size to
the preferred size:

textField.setMaximumSize(textField.getPreferredSize());

Fillers

By default, there is no space between the components in a box layout. (Unlike the flow layout,
the box layout does not have a notion of gaps between components.) To space the components
out, you add invisible fillers. There are three kinds of fillers:

• Struts;
• Rigid areas;
• Glue.

A strut simply adds some space between components. For example, here is how you can add
ten pixels of space between two components in a horizontal box:

b.add(label);
b.add(Box.createHorizontalStrut(10));
b.add(textField);

You add a horizontal strut into a horizontal box, or a vertical strut into a vertical box, to add
space between components. You can also add a vertical strut into a horizontal box, but that
does not affect the horizontal layout. Instead, it sets the minimum height of the box.

The rigid area filler is similar to a pair of struts. It separates adjacent components but also
adds a height or width minimum in the other direction. For example,

b.add(Box.createRigidArea(new Dimension(5, 20));

adds an invisible area with minimum, preferred, and maximum width of 5 pixels and height of
20 pixels, and centered alignment. If added into a horizontal box, it acts like a strut of width 5
and also forces the minimum height of the box to be 20 pixels.

By adding struts, you separate adjacent components by a fixed amount. Adding glue separates
components as much as possible. The (invisible) glue expands to consume all available empty
space, pushing the components away from each other. (We don't know why the designers of
the box layout came up with the name “glue”—”spring” would have been a more appropriate
name.)

For example, here is how you space apart two buttons in a box as much as possible:

Core Java™ 2: Volume I–Fundamentals

522

b.add(button1);
b.add(Box.createGlue());
b.add(button2);

If the box contains no other components, then button1 is moved all the way to the left and
button2 is moved all the way to the right.

The program in Example 9-13 arranges a set of labels, text fields, and buttons, using a set of
horizontal and vertical box layouts. Each row is placed in a horizontal box. Struts separate
the labels from the text fields. Glue pushes the two buttons away from each other. The three
horizontal boxes are placed in a vertical box, with glue pushing the button box to the bottom
(see Figure 9-33).

Figure 9-33. Box layouts

Example 9-13 BoxLayoutTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class BoxLayoutTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. BoxLayoutFrame frame = new BoxLayoutFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. /**
16. A frame that uses box layouts to organize various components.
17. */
18. class BoxLayoutFrame extends JFrame
19. {
20. public BoxLayoutFrame()
21. {
22. setTitle("BoxLayoutTest");
23. setSize(WIDTH, HEIGHT);
24.

Core Java™ 2: Volume I–Fundamentals

523

25. // construct the top horizontal box
26.
27. JLabel label1 = new JLabel("Name:");
28. JTextField textField1 = new JTextField(10);
29. textField1.setMaximumSize(textField1.getPreferredSize());
30.
31. Box hbox1 = Box.createHorizontalBox();
32. hbox1.add(label1);
33. // separate with a 10-pixel strut
34. hbox1.add(Box.createHorizontalStrut(10));
35. hbox1.add(textField1);
36.
37. // construct the middle horizontal box
38.
39. JLabel label2 = new JLabel("Password:");
40. JTextField textField2 = new JTextField(10);
41. textField2.setMaximumSize(textField2.getPreferredSize());
42.
43.
44. Box hbox2 = Box.createHorizontalBox();
45. hbox2.add(label2);
46. // separate with a 10-pixel strut
47. hbox2.add(Box.createHorizontalStrut(10));
48. hbox2.add(textField2);
49.
50. // construct the bottom horizontal box
51.
52. JButton button1 = new JButton("Ok");
53. JButton button2 = new JButton("Cancel");
54.
55. Box hbox3 = Box.createHorizontalBox();
56. hbox3.add(button1);
57. // use "glue" to push the two buttons apart
58. hbox3.add(Box.createGlue());
59. hbox3.add(button2);
60.
61. // add the three horizontal boxes inside a vertical box
62.
63. Box vbox = Box.createVerticalBox();
64. vbox.add(hbox1);
65. vbox.add(hbox2);
66. vbox.add(Box.createGlue());
67. vbox.add(hbox3);
68.
69. Container contentPane = getContentPane();
70. contentPane.add(vbox, BorderLayout.CENTER);
71. }
72.
73. public static final int WIDTH = 200;
74. public static final int HEIGHT = 200;
75. }

javax.swing.Box

• static Box createHorizontalBox()

Core Java™ 2: Volume I–Fundamentals

524

• static Box createVerticalBox()

create a container that arranges its contents horizontally or vertically.

• static Component createHorizontalGlue()
• static Component createVerticalGlue()
• static Component createGlue()

create an invisible component that can expand infinitely horizontally, vertically, or in
both directions.

• static Component createHorizontalStrut(int width)
• static Component createVerticalStrut(int height)
• static Component createRigidArea(Dimension d)

create an invisible component with fixed width, fixed height, or fixed width and
height.

java.awt.Component

• float getAlignmentX()
• float getAlignmentY()

return the alignment along the x- or y-axis, a value between 0 and 1. The value 0
denotes alignment on top or left, 0.5 is centered, 1 is aligned on bottom or right.

Grid Bag Layout

The grid bag layout is the mother of all layout managers. You can think of a grid bag layout
as a grid layout without the limitations. In a grid bag layout, the rows and columns can have
variable sizes. You can join adjacent cells to make room for larger components. (Many word
processors, as well as HTML, have the same capability when editing tables: you start out with
a grid and then merge adjacent cells if need be.) The components need not fill the entire cell
area, and you can specify their alignment within cells.

Fair warning: using grid bag layouts can be incredibly complex. The payoff is that they have
the most flexibility and will work in the widest variety of situations. Keep in mind that the
purpose of layout managers is to keep the arrangement of the components reasonable under
different font sizes and operating systems, so it is not surprising that you need to work
somewhat harder than when you design a layout just for one environment.

Core Java™ 2: Volume I–Fundamentals

525

NOTE

According to the SDK documentation of the BoxLayout class: “Nesting
multiple panels with different combinations of horizontal and vertical
[sic] gives an effect similar to GridBagLayout, without the complexity.”
However, as you can see from Figure 9-33, the effect that you can
achieve from multiple box layouts is plainly not useful in practice. No
amount of fussing with boxes, struts, and glue will ensure that the
components line up. When you need to arrange components so that they
line up horizontally and vertically, you need to use the GridBagLayout
class.

Consider the font selection dialog of Figure 9-34. It consists of the following components:

• Two combo boxes to specify the font face and size;
• Labels for these two combo boxes;
• Two check boxes to select bold and italic;
• A text area for the sample string.

Figure 9-34. Font dialog box

Now, chop up the dialog box into a grid of cells, as shown in Figure 9-35. (The rows and
columns do not need to have equal size.) As you can see, each check box spans two columns,
and the text area spans four rows.

Core Java™ 2: Volume I–Fundamentals

526

Figure 9-35. Dialog box grid used in design

To describe the layout to the grid bag manager, you must go through the following convoluted
procedure.

1. Create an object of type GridBagLayout. You don't tell it how many rows and
columns the underlying grid has. Instead, the layout manager will try to guess it from
the information you give it later.

2. Set this GridBagLayout object to be the layout manager for the component.

3. Create an object of type GridBagConstraints. The GridBagConstraints object will
specify how the components are laid out within the grid bag.

4. For each component, fill in the GridBagConstraints object. Then (finally), add
the component with the constraints by using the call:

 add(component, constraints);

Here's an example of the code needed. (We will go over the various constraints in more detail
in the sections that follow—so don't worry if you don't know what some of the constraints
do.)

GridBagLayout layout = new GridBagLayout();
panel.setLayout(layout);
GridBagConstraints constraints = new GridBagConstraints();
constraints.weightx = 100;
constraints.weighty = 100;
constraints.gridx = 0;
constraints.gridy = 2;
constraints.gridwidth = 2;
constraints.gridheight = 1;
contentPane.add(style, bold);

It is obviously best to write a small helper function for this kind of repetitive code—see
the listing in Example 9-13 for an example of one.

Core Java™ 2: Volume I–Fundamentals

527

The trick is knowing how to set the state of the GridBagConstraints object. We will go over
the most important constraints for using this object in the sections that follow.

The gridx, gridy, gridwidth, and gridheight Parameters

These constraints define where the component is located in the grid. The gridx and gridy
values specify the column and row positions of the upper-left corner of the component to be
added. The gridwidth and gridheight values determine how many columns and rows the
component occupies.

The grid coordinates start with 0. In particular, gridx = 0 and gridy = 0 denotes the top left
corner.

For example, the text area in our example has gridx = 2, gridy = 0 because it starts in
column 2 (that is, the third column) of row 0. It has gridwidth = 1 and gridheight = 4
because it spans one column and four rows.

Weight Fields

You always need to set the weight fields (weightx and weighty) for each area in a grid bag
layout. If you set the weight to 0, then the area never grows or shrinks beyond its initial size in
that direction. In the grid bag layout for Figure 9-34, we set the weightx field of the labels to
be 0. This allows the labels to remain a constant width when you resize the window. On the
other hand, if you set the weights for all areas to 0, the container will huddle in the center of
its allotted area rather than stretching to fill it.

Conceptually, the problem with the weight parameters is that weights are properties of rows
and columns, not individual cells. But you need to specify them in terms of cells, because the
grid bag layout does not expose the rows and columns. The row and column weights are
computed as the maxima of the cell weights in each row or column. Thus, if you want a row
or column to stay at a fixed size, you need to set the weights of all components in it to zero.

Note that the weights don't actually give the relative sizes of the columns. They tell what
proportion of the “slack” space should be allocated to each area if the container exceeds its
preferred size. This isn't particularly intuitive. We recommend that you set all weights at 100.
Then, run the program and see how the layout looks. Resize the dialog to see how the rows
and columns adjust. If you find that a particular row or column should not grow, set the
weights of all components in it to zero. You can tinker with other weight values, but it is
usually not worth the effort.

The fill and anchor Parameters

If you don't want a component to stretch out and fill the entire area, you need to set the fill
constraint. You have four possibilities for this parameter: the valid values are used in
the forms GridBagConstraints.NONE, GridBagConstraints.HORIZONTAL,
GridBagConstraints.VERTICAL, and GridBagConstraints.BOTH.

If the component does not fill the entire area, you can specify where in the area you want it by
setting the anchor field. The valid values are GridBagConstraints.CENTER (the default),

Core Java™ 2: Volume I–Fundamentals

528

GridBagConstraints.NORTH, GridBagConstraints.NORTHEAST,
GridBagConstraints.EAST, and so on.

Padding

You can surround a component with additional blank space by setting the insets field of
the GridBagLayout. Set the left, top, right and bottom values of the Insets object to
the amount of space that you want to have around the component. This is called the external
padding.

The ipadx and ipady values set the internal padding. These values are added to the minimum
width and height of the component. This ensures that the component does not shrink down to
its minimum size.

An Alternative Method to Specify the gridx, gridy, gridwidth, and gridheight
Parameters

The AWT documentation recommends that instead of setting the gridx and gridy values to
absolute positions, you set them to the constant GridBagConstraints.RELATIVE. Then, add
the components to the grid bag layout in a standardized order, going from left to right in the
first row, then moving along the next row, and so on.

You still specify the number of rows and columns spanned, by giving the appropriate
gridheight and gridwidth fields. Except, if the component extends to the last row or
column, you aren't supposed to specify the actual number, but the constant
GridBagConstraints.REMAINDER. This tells the layout manager that the component is the
last one in its row.

This scheme does seem to work. But it sounds really goofy to hide the actual placement
information from the layout manager and hope that it will rediscover it.

All this sounds like a lot of trouble and complexity. But in practice, the strategy in the
following recipe makes grid bag layouts relatively trouble-free.

Recipe for Making a Grid Bag Layout
1. Sketch out the component layout on a piece of paper.

2. Find a grid such that the small components are each contained in a cell and
the larger components span multiple cells.

3. Label the rows and columns of your grid with 0, 1, 2, 3, … You can now
read off the gridx, gridy, gridwidth, and griIdheight values.

4. For each component, ask yourself whether it needs to fill its cell horizontally
or vertically. If not, how do you want it aligned? This tells you the fill and
anchor parameters.

5. Set all weights to 100. However, if you want a particular row or column to

Core Java™ 2: Volume I–Fundamentals

529

always stay at its default size, set the weightx or weighty to 0 in all
components that belong to that row or column.

6. Write the code. Carefully double-check your settings for the
GridBagConstraints. One wrong constraint can ruin your whole layout.

7. Compile, run, and enjoy.

Example 9-14 is the complete code to implement the font dialog example.

Example 9-14 FontDialog.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.event.*;
 5.
 6. public class FontDialog
 7. {
 8. public static void main(String[] args)
 9. {
 10. FontDialogFrame frame = new FontDialogFrame();
 11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 12. frame.show();
 13. }
 14. }
 15.
 16. /**
 17. A frame that uses a grid bag layout to arrange font
 18. selection components.
 19. */
 20. class FontDialogFrame extends JFrame
 21. {
 22. public FontDialogFrame()
 23. {
 24. setTitle("FontDialog");
 25. setSize(WIDTH, HEIGHT);
 26.
 27. Container contentPane = getContentPane();
 28. GridBagLayout layout = new GridBagLayout();
 29. contentPane.setLayout(layout);
 30.
 31. ActionListener listener = new FontAction();
 32.
 33. // construct components
 34.
 35. JLabel faceLabel = new JLabel("Face: ");
 36.
 37. face = new JComboBox(new String[]
 38. {
 39. "Serif", "SansSerif", "Monospaced",
 40. "Dialog", "DialogInput"
 41. });
 42.
 43. face.addActionListener(listener);
 44.
 45. JLabel sizeLabel = new JLabel("Size: ");

Core Java™ 2: Volume I–Fundamentals

530

 46.
 47. size = new JComboBox(new String[]
 48. {
 49. "8", "10", "12", "15", "18", "24", "36", "48"
 50. });
 51.
 52. size.addActionListener(listener);
 53.
 54. bold = new JCheckBox("Bold");
 55. bold.addActionListener(listener);
 56.
 57. italic = new JCheckBox("Italic");
 58. italic.addActionListener(listener);
 59.
 60. sample = new JTextArea();
 61. sample.setText(
 62. "The quick brown fox jumps over the lazy dog");
 63. sample.setEditable(false);
 64. sample.setLineWrap(true);
 65. sample.setBorder(BorderFactory.createEtchedBorder());
 66.
 67. // add components to grid
 68.
 69. GridBagConstraints constraints = new GridBagConstraints();
 70.
 71. constraints.fill = GridBagConstraints.NONE;
 72. constraints.anchor = GridBagConstraints.EAST;
 73. constraints.weightx = 0;
 74. constraints.weighty = 0;
 75.
 76. add(faceLabel, constraints, 0, 0, 1, 1);
 77. add(sizeLabel, constraints, 0, 1, 1, 1);
 78.
 79. constraints.fill = GridBagConstraints.HORIZONTAL;
 80. constraints.weightx = 100;
 81.
 82. add(face, constraints, 1, 0, 1, 1);
 83. add(size, constraints, 1, 1, 1, 1);
 84.
 85. constraints.weighty = 100;
 86. constraints.fill = GridBagConstraints.NONE;
 87. constraints.anchor = GridBagConstraints.CENTER;
 88.
 89. add(bold, constraints, 0, 2, 2, 1);
 90. add(italic, constraints, 0, 3, 2, 1);
 91.
 92. constraints.fill = GridBagConstraints.BOTH;
 93. add(sample, constraints, 2, 0, 1, 4);
 94. }
 95.
 96. /**
 97. A convenience method to add a component to given grid bag
 98. layout locations.
 99. @param c the component to add
100. @param constraints the grid bag constraints to use
101. @param x the x grid position
102. @param y the y grid position
103. @param w the grid width
104. @param h the grid height
105. */

Core Java™ 2: Volume I–Fundamentals

531

106. public void add(Component c, GridBagConstraints constraints,
107. int x, int y, int w, int h)
108. {
109. constraints.gridx = x;
110. constraints.gridy = y;
111. constraints.gridwidth = w;
112. constraints.gridheight = h;
113. getContentPane().add(c, constraints);
114. }
115.
116. public static final int WIDTH = 300;
117. public static final int HEIGHT = 200;
118.
119. private JComboBox face;
120. private JComboBox size;
121. private JCheckBox bold;
122. private JCheckBox italic;
123. private JTextArea sample;
124.
125. /**
126. An action listener that changes the font of the
127. sample text.
128. */
129. private class FontAction implements ActionListener
130. {
131. public void actionPerformed(ActionEvent event)
132. {
133. String fontFace = (String)face.getSelectedItem();
134. int fontStyle = (bold.isSelected() ? Font.BOLD : 0)
135. + (italic.isSelected() ? Font.ITALIC : 0);
136. int fontSize = Integer.parseInt(
137. (String)size.getSelectedItem());
138. Font font = new Font(fontFace, fontStyle, fontSize);
139. sample.setFont(font);
140. sample.repaint();
141. }
142. }
143. }

java.awt.GridBagConstraints

• int gridx, gridy

indicates the starting column and row of the cell.

• int gridwidth, gridheight

indicates the column and row extent of the cell.

• double weightx, weighty

indicates the capacity of the cell to grow.

Core Java™ 2: Volume I–Fundamentals

532

• int anchor

indicates the alignment of the component inside the cell, one of CENTER, NORTH,
NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, or NORTHWEST.

• int fill

indicates the fill behavior of the component inside the cell, one of NONE, BOTH,
HORIZONTAL, or VERTICAL.

• int ipadx, ipady

indicates the “internal” padding around the component.

• Insets insets

indicates the “external” padding along the cell boundaries.

• GridBagConstraints(int gridx, int gridy, int gridwidth, int
gridheight, double weightx, double weighty, int anchor, int fill,
Insets insets, int ipadx, int ipady)

constructs a GridBagConstraints with all its fields specified in the arguments. Sun
recommends that this constructor be used only by automatic code generators since it
makes your source code very hard to read.

Using No Layout Manager

There will be times when you don't want to bother with layout managers but just want to drop
a component at a fixed location (sometimes called absolute positioning). This is not a great
idea for platform-independent applications, but there is nothing wrong with using it for a
quick prototype.

Here is what you do to place a component at a fixed location:

1. Set the layout manager to null.
2. Add the component you want to the container.
3. Then specify the position and size that you want.

 contentPane.setLayout(null);
 JButton ok = new JButton("Ok");
 contentPane.add(ok);
 ok.setBounds(10, 10, 30, 15);

java.awt.Component

• void setBounds(int x, int y, int width, int height)

Core Java™ 2: Volume I–Fundamentals

533

moves and resizes a component.

Parameters: x, y The new top-left corner of the component
 width, height The new size of the component

Custom Layout Managers

In principle, it is possible to design your own LayoutManager class that manages components
in a special way. For example, you could arrange all components in a container to form
a circle. This will almost always be a major effort and a real time sink, but as Figure 9-36
shows, the results can be quite dramatic.

Figure 9-36. Circle layout

If you do feel you can't live without your own layout manager, here is what you do. Your own
layout manager must implement the LayoutManager interface. You need to override
the following five methods.

void addLayoutComponent(String s, Component c);
void removeLayoutComponent(Component c);
Dimension preferredLayoutSize(Container parent);
Dimension minimumLayoutSize(Container parent);
void layoutContainer(Container parent);

The first two functions are called when a component is added or removed. If you don't keep
any additional information about the components, you can make them do nothing. The next
two functions compute the space required for the minimum and the preferred layout of the
components. These are usually the same quantity. The fifth function does the actual work and
invokes setBounds on all components.

NOTE

The AWT has a second interface called LayoutManager2 with 10
methods to implement rather than 5. The main point of
the LayoutManager2 interface is to allow the user to use the add method
with constraints. For example, the BorderLayout and GridBagLayout
implement the LayoutManager2 interface.

Core Java™ 2: Volume I–Fundamentals

534

Example 9-15 is a simple implementation of the CircleLayout manager, which, amazingly
and uselessly enough, lays out the components along a circle inside the parent.

Example 9-15 CircleLayoutTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class CircleLayoutTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. CircleLayoutFrame frame = new CircleLayoutFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.pack();
 12. frame.show();
 13. }
 14. }
 15.
 16. /**
 17. A frame that shows buttons arranged along a circle.
 18. */
 19. class CircleLayoutFrame extends JFrame
 20. {
 21. public CircleLayoutFrame()
 22. {
 23. setTitle("CircleLayoutTest");
 24.
 25. Container contentPane = getContentPane();
 26. contentPane.setLayout(new CircleLayout());
 27. contentPane.add(new JButton("Yellow"));
 28. contentPane.add(new JButton("Blue"));
 29. contentPane.add(new JButton("Red"));
 30. contentPane.add(new JButton("Green"));
 31. contentPane.add(new JButton("Orange"));
 32. contentPane.add(new JButton("Fuchsia"));
 33. contentPane.add(new JButton("Indigo"));
 34. }
 35. }
 36.
 37. /**
 38. A layout manager that lays out components along a circle.
 39. */
 40. class CircleLayout implements LayoutManager
 41. {
 42. public void addLayoutComponent(String name,
 43. Component comp)
 44. {}
 45.
 46. public void removeLayoutComponent(Component comp)
 47. {}
 48.
 49. public void setSizes(Container parent)
 50. {
 51. if (sizesSet) return;
 52. int n = parent.getComponentCount();
 53.
 54. preferredWidth = 0;
 55. preferredHeight = 0;

Core Java™ 2: Volume I–Fundamentals

535

 56. minWidth = 0;
 57. minHeight = 0;
 58. maxComponentWidth = 0;
 59. maxComponentHeight = 0;
 60.
 61. // compute the maximum component widths and heights
 62. // and set the preferred size to the sum of
 63. // the component sizes.
 64. for (int i = 0; i < n; i++)
 65. {
 66. Component c = parent.getComponent(i);
 67. if (c.isVisible())
 68. {
 69. Dimension d = c.getPreferredSize();
 70. maxComponentWidth = Math.max(maxComponentWidth,
 71. d.width);
 72. maxComponentHeight = Math.max(maxComponentHeight,
 73. d.height);
 74. preferredWidth += d.width;
 75. preferredHeight += d.height;
 76. }
 77. }
 78. minWidth = preferredWidth / 2;
 79. minHeight = preferredHeight / 2;
 80. sizesSet = true;
 81. }
 82.
 83. public Dimension preferredLayoutSize(Container parent)
 84. {
 85. setSizes(parent);
 86. Insets insets = parent.getInsets();
 87. int width = preferredWidth + insets.left
 88. + insets.right;
 89. int height = preferredHeight + insets.top
 90. + insets.bottom;
 91. return new Dimension(width, height);
 92. }
 93.
 94. public Dimension minimumLayoutSize(Container parent)
 95. {
 96. setSizes(parent);
 97. Insets insets = parent.getInsets();
 98. int width = minWidth + insets.left + insets.right;
 99. int height = minHeight + insets.top + insets.bottom;
100. return new Dimension(width, height);
101. }
102.
103. public void layoutContainer(Container parent)
104. {
105. setSizes(parent);
106.
107. // compute center of the circle
108.
109. Insets insets = parent.getInsets();
110. int containerWidth = parent.getSize().width
111. - insets.left - insets.right;
112. int containerHeight = parent.getSize().height
113. - insets.top - insets.bottom;
114.
115. int xcenter = insets.left + containerWidth / 2;
116. int ycenter = insets.top + containerHeight / 2;

Core Java™ 2: Volume I–Fundamentals

536

117.
118. // compute radius of the circle
119.
120. int xradius = (containerWidth - maxComponentWidth) / 2;
121. int yradius = (containerHeight - maxComponentHeight) / 2;
122. int radius = Math.min(xradius, yradius);
123.
124. // lay out components along the circle
125.
126. int n = parent.getComponentCount();
127. for (int i = 0; i < n; i++)
128. {
129. Component c = parent.getComponent(i);
130. if (c.isVisible())
131. {
132. double angle = 2 * Math.PI * i / n;
133.
134. // center point of component
135. int x = xcenter + (int)(Math.cos(angle) * radius);
136. int y = ycenter + (int)(Math.sin(angle) * radius);
137.
138. // move component so that its center is (x, y)
139. // and its size is its preferred size
140. Dimension d = c.getPreferredSize();
141. c.setBounds(x - d.width / 2, y - d.height / 2,
142. d.width, d.height);
143. }
144. }
145. }
146.
147. private int minWidth = 0;
148. private int minHeight = 0;
149. private int preferredWidth = 0;
150. private int preferredHeight = 0;
151. private boolean sizesSet = false;
152. private int maxComponentWidth = 0;
153. private int maxComponentHeight = 0;
154. }

java.awt.LayoutManager

• void addLayoutComponent(String name, Component comp)

adds a component to the layout.

Parameters: name An identifier for the component placement
 comp The component to be added

• void removeLayoutComponent(Component comp)

removes a component from the layout.

Core Java™ 2: Volume I–Fundamentals

537

Parameters: comp The component to be removed

• Dimension preferredLayoutSize(Container parent)

returns the preferred size dimensions for the container under this layout.

Parameters: parent The container whose components are being laid out

• Dimension minimumLayoutSize(Container parent)

returns the minimum size dimensions for the container under this layout.

Parameters: parent The container whose components are being laid out

• void layoutContainer(Container parent)

lays out the components in a container.

Parameters: parent The container whose components are being laid out

Traversal Order

When you add many components into a window, you need to give some thought to the
traversal order. When a window is first displayed, the first component in the traversal order
has the keyboard focus. Each time the user presses the tab key, the next component gains
focus. (Recall that a component that has the keyboard focus can be manipulated with the
keyboard. For example, a button can be “clicked” with the space bar when it has focus.) You
may not personally care about using the tab key to navigate through a set of controls, but there
are plenty of users who do. Among them are the mouse haters and those who cannot use a
mouse, perhaps because of a handicap or because they are navigating the user interface by
voice. For that reason, you need to know how the Swing set handles traversal order.

The Swing set attempts to traverse your components in a reasonable way, first left-to-right
and then top-to-bottom. For example, in the font dialog example, the components are
traversed in the following order:

1. Face combo box
2. Sample text area
3. Size combo box
4. Bold check box
5. Italic combo box

Core Java™ 2: Volume I–Fundamentals

538

Figure 9-37. Geometric traversal order

NOTE

In the old AWT, the traversal order was determined by the order in
which you inserted components into a container. In Swing, the insertion
order does not matter—only the layout of the components is considered.

The situation is more complex if your container contains other containers. When the focus is
given to another container, it automatically ends up within the top-left component in that
container and then it traverses all other components in that container. Finally, the focus is
given to the component following the container.

You can use this to your advantage by grouping related elements in another container such as
a panel.

Note that some components do not get focus, such as the labels in the FontDialog example.

Actually, the default focus order is not always appropriate. For example, run the FontDialog
program. You'll notice that the program starts out with focus in the face combo box in the top
left corner. (You may need to look carefully to see the thin rectangle indicating the focus.)
When you press the tab key, focus moves to the text area (without any visible indication).
Unfortunately, pressing the tab key again has no effect. Rather than moving the focus, the text
area consumes the key, only to reject it because it is not editable. If the text area had been
editable, the tab key would simply have been inserted into the text.

If you are not happy with the default traversal order, you have a number of remedies.

You can transfer the focus explicitly to a particular component, with the requestFocus
method:

size.requestFocus();

Core Java™ 2: Volume I–Fundamentals

539

This works only in reaction to a particular event. It has no permanent effect on the traversal
order.

You can change the traversal order with the setNextFocusableComponent method of
the JComponent class. For example, suppose you want to skip from the face combo box
directly to the size combo box. Use the command

face.setNextFocusableComponent(size);

The geometric order is preserved except for the transition that you set with
the setNextFocusableComponent method.

You can also block a component from receiving the focus by having its isFocusTraversable
method return false. In particular, the isFocusTraversable method of the JComponent
class returns false if the text component is not enabled. To solve the focus problem of
the FontDialog application, you can call

sample.setEnabled(false);

However, then the text in the text area is displayed in gray. You can do better by overriding
the isFocusTraversable to do what it really should do anyway, namely return true only if
the component is editable:

sample = new
 JTextArea()
 {
 public boolean isFocusTraversable()
 {
 return isEditable();
 }
 };

java.awt.Component

• void requestFocus()

requests that this component have the input focus.

• boolean isFocusTraversable()

returns true if this component can receive input focus.

Core Java™ 2: Volume I–Fundamentals

540

javax.swing.JComponent

• void setNextFocusableComponent(Component c)

makes c the next component to get the focus after this one in the traversal order,
overriding the default traversal order.

Dialog Boxes

So far, all of our user interface components have appeared inside a frame window that was
created in the application. This is the most common situation if you write applets that run
inside a web browser. But if you write applications, you usually want separate dialog boxes to
pop up to give information to or get information from the user.

Just as with most windowing systems, AWT distinguishes between modal and modeless
dialog boxes. A modal dialog box won't let the user interact with the remaining windows of
the application until he or she deals with it. You use a modal dialog box when you need
information from the user before you can proceed with execution. For example, when the user
wants to read a file, a modal file dialog box is the one to pop up. The user must specify a file
name before the program can begin the read operation. Only when the user closes the (modal)
dialog box can the application proceed.

A modeless dialog box lets the user enter information in both the dialog box and the
remainder of the application. One example of a modeless dialog is a toolbar. The toolbar can
stay in place as long as needed, and the user can interact with both the application window
and the toolbar as needed.

We start this section with the simplest dialogs—modal dialogs with just a single message.
Swing has a convenient JOptionPane class that lets you put up a simple dialog without
writing any special dialog box code. Next, you will see how to write more complex dialogs by
implementing your own dialog windows. Finally, you will see how to transfer data from your
application into a dialog and back.

We conclude this section by looking at two standard dialogs: file dialogs and color dialogs.
File dialogs are complex, and you definitely want to be familiar with the Swing
JFileChooser for this purpose—it would be a real challengeto write your own. The
JColorChooser dialog is useful when you want users to pick colors.

Option Dialogs

The Swing set has a set of ready-made simple dialogs that suffice when you need to ask the
user for a single piece of information. The JOptionPane has four static methods to show
these simple dialogs:

Core Java™ 2: Volume I–Fundamentals

541

showMessageDialog Show a message and wait for the user to click OK.
showConfirmDialog Show a message and get a confirmation (like OK/Cancel).
showOptionDialog Show a message and get a user option from a set of options.
showInputDialog Show a message and get one line of user input.

Figure 9-38 shows a typical dialog. As you can see, the dialog has the following components:

• An icon;
• A message;
• One or more option buttons.

Figure 9-38. An option dialog

The input dialog has an additional component for user input. This can be a text field into
which the user can type an arbitrary string, or a combo box from which the user can select one
item.

The exact layout of these dialogs, and the choice of icons for standard message types, depend
on the pluggable look and feel.

The icon on the left side depends on the message type. There are five message types:

ERROR_MESSAGE
INFORMATION_MESSAGE
WARNING_MESSAGE
QUESTION_MESSAGE
PLAIN_MESSAGE

The PLAIN_MESSAGE type has no icon. For each of the dialog types, there is also a method that
lets you supply your own icon instead.

For each dialog type, you can specify a message. This message can be a string, an icon, a user
interface component, or any other object. Here is how the message object is displayed:

String: Draw the string
Icon: Show the icon
Component: Show the component
Object[]: Show all objects in the array, stacked on top of each other
any other object: Apply toString and show the resulting string

You can see these options by running the program in Example 9-16.

Core Java™ 2: Volume I–Fundamentals

542

Of course, supplying a message string is by far the most common case. Supplying a
Component gives you ultimate flexibility since you can make the paintComponent method
draw anything you want. Supplying an array of objects isn't all that useful since there isn't
enough room in the dialog to show more than a couple of them—the dialog does not grow to
accommodate all message objects.

The buttons on the bottom depend on the dialog type and the option type. When calling
showMessageDialog and showInputDialog, you get only a standard set of buttons (OK and
OK/Cancel, respectively). When calling showConfirmDialog, you can choose among four
option types:

DEFAULT_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTION
OK_CANCEL_OPTION

With the showOptionDialog you can specify an arbitrary set of options. You supply an array
of objects for the options. Each array element is rendered as follows:

String: Make a button with the string as label
Icon: Make a button with the icon as label
Component: Show the component
any other object: Apply toString and make a button with the resulting string as label

The return values of these functions are as follows:

showMessageDialog None
showConfirmDialog An integer representing the chosen option
showOptionDialog An integer representing the chosen option
showInputDialog The string that the user supplied or selected

The showConfirmDialog and showOptionDialog return integers to indicate which button the
user chose. For the option dialog, this is simply the index of the chosen option, or the value
CLOSED_OPTION if the user closed the dialog instead of choosing an option. For the
confirmation dialog, the return value can be one of the following:

OK_OPTION
CANCEL_OPTION
YES_OPTION
NO_OPTION
CLOSED_OPTION

This all sounds like a bewildering set of choices, but in practice it is simple:

1. Choose the dialog type (message, confirmation, option or input).
2. Choose the icon (error, information, warning, question, none, or custom).
3. Choose the message (string, icon, custom component, or a stack of them).
4. For a confirmation dialog, choose the option type (default, Yes/No, Yes/No/Cancel, or

OK/Cancel).
5. For an option dialog, choose the options (strings, icons, or custom components) and

the default option.

Core Java™ 2: Volume I–Fundamentals

543

6. For an input dialog, choose between a text field and a combo box.
7. Locate the appropriate method to call in the JOptionPane API.

For example, suppose you want to show the dialog in Figure 9-38. The dialog shows a
message and asks the user to confirm or cancel. Thus, it is a confirmation dialog. The icon is a
warning icon. The message is a string. The option type is OK_CANCEL_OPTION. Here is the call
you need to make:

int selection = JOptionPane.showConfirmDialog(parent,
 "Message", "Title",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.WARNING_MESSAGE);
if (selection == JOptionPane.OK_OPTION) . . .

TIP

The message string can contain newline ('\n') characters. Such a string
is displayed in multiple lines.

The program in Example 9-16 lets you make these selections (see Figure 9-39). It then shows
you the resulting dialog.

Figure 9-39. The OptionDialogTest program

Core Java™ 2: Volume I–Fundamentals

544

Example 9-16 OptionDialogTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.geom.*;
 4. import java.util.*;
 5. import javax.swing.*;
 6. import javax.swing.border.*;
 7.
 8. public class OptionDialogTest
 9. {
 10. public static void main(String[] args)
 11. {
 12. OptionDialogFrame frame = new OptionDialogFrame();
 13. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 14. frame.show();
 15. }
 16. }
 17.
 18. /**
 19. A panel with radio buttons inside a titled border.
 20. */
 21. class ButtonPanel extends JPanel
 22. {
 23. /**
 24. Constructs a button panel.
 25. @param title the title shown in the border
 26. @param options an array of radio button labels
 27. */
 28. public ButtonPanel(String title, String[] options)
 29. {
 30. setBorder(BorderFactory.createTitledBorder
 31. (BorderFactory.createEtchedBorder(), title));
 32. setLayout(new BoxLayout(this,
 33. BoxLayout.Y_AXIS));
 34. group = new ButtonGroup();
 35.
 36. // make one radio button for each option
 37. for (int i = 0; i < options.length; i++)
 38. {
 39. JRadioButton b = new JRadioButton(options[i]);
 40. b.setActionCommand(options[i]);
 41. add(b);
 42. group.add(b);
 43. b.setSelected(i == 0);
 44. }
 45. }
 46.
 47. /**
 48. Gets the currently selected option.
 49. @return the label of the currently selected radio button.
 50. */
 51. public String getSelection()
 52. {
 53. return group.getSelection().getActionCommand();
 54. }
 55.
 56. private ButtonGroup group;
 57. }
 58.

Core Java™ 2: Volume I–Fundamentals

545

 59. /**
 60. A frame that contains settings for selecting various option
 61. dialogs.
 62. */
 63. class OptionDialogFrame extends JFrame
 64. {
 65. public OptionDialogFrame()
 66. {
 67. setTitle("OptionDialogTest");
 68. setSize(WIDTH, HEIGHT);
 69.
 70. JPanel gridPanel = new JPanel();
 71. gridPanel.setLayout(new GridLayout(2, 3));
 72.
 73. typePanel = new ButtonPanel("Type",
 74. new String[]
 75. {
 76. "Message",
 77. "Confirm",
 78. "Option",
 79. "Input"
 80. });
 81.
 82. messageTypePanel = new ButtonPanel("Message Type",
 83. new String[]
 84. {
 85. "ERROR_MESSAGE",
 86. "INFORMATION_MESSAGE",
 87. "WARNING_MESSAGE",
 88. "QUESTION_MESSAGE",
 89. "PLAIN_MESSAGE"
 90. });
 91.
 92. messagePanel = new ButtonPanel("Message",
 93. new String[]
 94. {
 95. "String",
 96. "Icon",
 97. "Component",
 98. "Other",
 99. "Object[]"
100. });
101.
102. optionTypePanel = new ButtonPanel("Confirm",
103. new String[]
104. {
105. "DEFAULT_OPTION",
106. "YES_NO_OPTION",
107. "YES_NO_CANCEL_OPTION",
108. "OK_CANCEL_OPTION"
109. });
110.
111. optionsPanel = new ButtonPanel("Option",
112. new String[]
113. {
114. "String[]",
115. "Icon[]",
116. "Object[]"
117. });
118.

Core Java™ 2: Volume I–Fundamentals

546

119. inputPanel = new ButtonPanel("Input",
120. new String[]
121. {
122. "Text field",
123. "Combo box"
124. });
125.
126. gridPanel.add(typePanel);
127. gridPanel.add(messageTypePanel);
128. gridPanel.add(messagePanel);
129. gridPanel.add(optionTypePanel);
130. gridPanel.add(optionsPanel);
131. gridPanel.add(inputPanel);
132.
133. // add a panel with a Show button
134.
135. JPanel showPanel = new JPanel();
136. JButton showButton = new JButton("Show");
137. showButton.addActionListener(new ShowAction());
138. showPanel.add(showButton);
139.
140. Container contentPane = getContentPane();
141. contentPane.add(gridPanel, BorderLayout.CENTER);
142. contentPane.add(showPanel, BorderLayout.SOUTH);
143. }
144.
145. /**
146. Gets the currently selected message.
147. @return a string, icon, component or object array,
148. depending on the Message panel selection
149. */
150. public Object getMessage()
151. {
152. String s = messagePanel.getSelection();
153. if (s.equals("String"))
154. return messageString;
155. else if (s.equals("Icon"))
156. return messageIcon;
157. else if (s.equals("Component"))
158. return messageComponent;
159. else if (s.equals("Object[]"))
160. return new Object[]
161. {
162. messageString,
163. messageIcon,
164. messageComponent,
165. messageObject
166. };
167. else if (s.equals("Other"))
168. return messageObject;
169. else return null;
170. }
171.
172. /**
173. Gets the currently selected options.
174. @return an array of strings, icons or objects, depending
175. on the Option panel selection
176. */
177. public Object[] getOptions()
178. {
179. String s = optionsPanel.getSelection();

Core Java™ 2: Volume I–Fundamentals

547

180. if (s.equals("String[]"))
181. return new String[] { "Yellow", "Blue", "Red" };
182. else if (s.equals("Icon[]"))
183. return new Icon[]
184. {
185. new ImageIcon("yellow-ball.gif"),
186. new ImageIcon("blue-ball.gif"),
187. new ImageIcon("red-ball.gif")
188. };
189. else if (s.equals("Object[]"))
190. return new Object[]
191. {
192. messageString,
193. messageIcon,
194. messageComponent,
195. messageObject
196. };
197. else
198. return null;
199. }
200.
201. /**
202. Gets the selected message or option type
203. @param panel the Message Type or Confirm panel
204. @return the selected XXX_MESSAGE or XXX_OPTION constant
205. from the JOptionPane class
206. */
207. public int getType(ButtonPanel panel)
208. {
209. String s = panel.getSelection();
210. try
211. {
212. return JOptionPane.class.getField(s).getInt(null);
213. }
214. catch(Exception e)
215. {
216. return -1;
217. }
218. }
219.
220. /**
221. The action listener for the Show button shows a
222. Confirm, Input, Message or Option dialog depending
223. on the Type panel selection.
224. */
225. private class ShowAction implements ActionListener
226. {
227. public void actionPerformed(ActionEvent evt)
228. {
229. if (typePanel.getSelection().equals("Confirm"))
230. JOptionPane.showConfirmDialog(
231. OptionDialogFrame.this,
232. getMessage(),
233. "Title",
234. getType(optionTypePanel),
235. getType(messageTypePanel));

Core Java™ 2: Volume I–Fundamentals

548

236. else if (typePanel.getSelection().equals("Input"))
237. {
238. if (inputPanel.getSelection().equals("Text field"))
239. JOptionPane.showInputDialog(
240. OptionDialogFrame.this,
241. getMessage(),
242. "Title",
243. getType(messageTypePanel));
244. else
245. JOptionPane.showInputDialog(
246. OptionDialogFrame.this,
247. getMessage(),
248. "Title",
249. getType(messageTypePanel),
250. null,
251. new String[] { "Yellow", "Blue", "Red" },
252. "Blue");
253. }
254. else if (typePanel.getSelection().equals("Message"))
255. JOptionPane.showMessageDialog(
256. OptionDialogFrame.this,
257. getMessage(),
258. "Title",
259. getType(messageTypePanel));
260. else if (typePanel.getSelection().equals("Option"))
261. JOptionPane.showOptionDialog(
262. OptionDialogFrame.this,
263. getMessage(),
264. "Title",
265. getType(optionTypePanel),
266. getType(messageTypePanel),
267. null,
268. getOptions(),
269. getOptions()[0]);
270. }
271. }
272.
273. public static final int WIDTH = 600;
274. public static final int HEIGHT = 400;
275.
276. private ButtonPanel typePanel;
277. private ButtonPanel messagePanel;
278. private ButtonPanel messageTypePanel;
279. private ButtonPanel optionTypePanel;
280. private ButtonPanel optionsPanel;
281. private ButtonPanel inputPanel;
282.
283. private String messageString = "Message";
284. private Icon messageIcon = new ImageIcon("blue-ball.gif");
285. private Object messageObject = new Date();
286. private Component messageComponent = new SamplePanel();
287. }
288.

Core Java™ 2: Volume I–Fundamentals

549

289. /**
290. A panel with a painted surface
291. */
292.
293. class SamplePanel extends JPanel
294. {
295. public void paintComponent(Graphics g)
296. {
297. super.paintComponent(g);
298. Graphics2D g2 = (Graphics2D)g;
299. Rectangle2D rect = new Rectangle2D.Double(0, 0,
300. getWidth() - 1, getHeight() - 1);
301. g2.setPaint(Color.yellow);
302. g2.fill(rect);
303. g2.setPaint(Color.blue);
304. g2.draw(rect);
305. }
306.
307. public Dimension getMinimumSize()
308. {
309. return new Dimension(10, 10);
310. }
311. }

javax.swing.JOptionPane

• static void showMessageDialog(Component parent, Object message,
String title, int messageType, Icon icon)

• static void showMessageDialog(Component parent, Object message,
String title, int messageType)

• static void showMessageDialog(Component parent, Object message)
• static void showInternalMessageDialog(Component parent, Object

message, String title, int messageType, Icon icon)
• static void showInternalMessageDialog(Component parent, Object

message, String title, int messageType)
• static void showInternalMessageDialog(Component parent, Object

message)

show a message dialog or an internal message dialog. (An internal dialog is rendered
entirely within its owner frame.)

Parameters: parent The parent component (can be null)
 message The message to show on the dialog (can be a string, icon,

component, or an array of them)
 title The string in the title bar of the dialog
 messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,

WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE
 icon An icon to show instead of one of the standard icons

• static int showConfirmDialog(Component parent, Object message, String
title, int optionType, int messageType, Icon icon)

Core Java™ 2: Volume I–Fundamentals

550

• static int showConfirmDialog(Component parent, Object message, String
title, int optionType, int messageType)

• static int showConfirmDialog(Component parent, Object message, String
title, int optionType)

• static int showConfirmDialog(Component parent, Object message)
• static int showInternalConfirmDialog(Component parent, Object

message, String title, int optionType, int messageType, Icon icon)
• static int showInternalConfirmDialog(Component parent, Object

message, String title, int optionType, int messageType)
• static int showInternalConfirmDialog(Component parent, Object

message, String title, int optionType)
• static int showInternalConfirmDialog(Component parent, Object

message)

show a confirmation dialog or an internal confirmation dialog. (An internal dialog is
rendered entirely within its owner frame.) Returns the option selected by the user (one
of OK_OPTION, CANCEL_OPTION, YES_OPTION, NO_OPTION), or CLOSED_OPTION if
the user closed the dialog.

Parameters: parent The parent component (can be null)
 message The message to show on the dialog (can be a string, icon,

component, or an array of them)
 title The string in the title bar of the dialog
 messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,

WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE
 optionType One of DEFAULT_OPTION, YES_NO_OPTION,

YES_NO_CANCEL_OPTION, OK_CANCEL_OPTION
 icon An icon to show instead of one of the standard icons

• static int showOptionDialog(Component parent, Object message, String
title, int optionType, int messageType, Icon icon, Object[] options,
Object default)

• static int showInternalOptionDialog(Component parent, Object message,
String title, int optionType, int messageType, Icon icon, Object[]
options, Object default)

show an option dialog or an internal option dialog. (An internal dialog is rendered
entirely within its owner frame.) Returns the index of the option selected by the user,
or CLOSED_OPTION if the user canceled the dialog.

Parameters: parent The parent component (can be null)
 message The message to show on the dialog (can be a string, icon,

component, or an array of them)
 title The string in the title bar of the dialog
 messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,

WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE
 optionType One of DEFAULT_OPTION, YES_NO_OPTION,

YES_NO_CANCEL_OPTION, OK_CANCEL_OPTION
 icon An icon to show instead of one of the standard icons
 options An array of options (can be strings, icons, or components)
 default The default option to present to the user

Core Java™ 2: Volume I–Fundamentals

551

• static Object showInputDialog(Component parent, Object message,
String title, int messageType, Icon icon, Object[] values, Object
default)

• static String showInputDialog(Component parent, Object message,
String title, int messageType)

• static String showInputDialog(Component parent, Object message)
• static String showInputDialog(Object message)
• static Object showInternalInputDialog(Component parent, Object

message, String title, int messageType, Icon icon, Object[] values,
Object default)

• static String showInternalInputDialog(Component parent, Object
message, String title, int messageType)

• static String showInternalInputDialog(Component parent, Object
message)

show an input dialog or an internal input dialog. (An internal dialog is rendered
entirely within its owner frame.) Returns the input string typed by the user, or null if
the user canceled the dialog.

Parameters: parent The parent component (can be null)
 message The message to show on the dialog (can be a string, icon,

component, or an array of them)
 title The string in the title bar of the dialog
 messageType One of ERROR_MESSAGE, INFORMATION_MESSAGE,

WARNING_MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE
 icon An icon to show instead of one of the standard icons
 values An array of values to show in a combo box
 default The default value to present to the user

Creating Dialogs

In the last section, you saw how to use the JOptionPane class to show a simple dialog. In this
section, you will see how to create such a dialog by hand.

Figure 9-40 shows a typical modal dialog box, a program information box that is displayed
when the user clicks the About button.

Figure 9-40. An About dialog box

To implement a dialog box, you derive a class from JDialog. This is essentially the same
process as deriving the main window for an application from JFrame. More precisely:

Core Java™ 2: Volume I–Fundamentals

552

1. In the constructor of your dialog box, call the constructor of the base class JDialog.
You will need to tell it the owner frame (the frame window over which the dialog pops
up), the title of the dialog frame, and a Boolean flag to indicate if the dialog box is
modal or modeless.

You should supply the owner frame so that the dialog can be displayed on top of its
owner, but you can also supply a null pointer if you don't care where the dialog is
displayed. Windowing systems typically require that every pop-up window is owned
by another frame. Therefore, Swing constructs a shared hidden frame that becomes the
owner of all dialogs with a null owner.

2. Add the user interface components of the dialog box.
3. Add the event handlers.
4. Set the size for the dialog box.

Here's an example dialog box:

public AboutDialog(JFrame owner) extends JDialog
{
 super(owner, "About DialogTest", true);
 Container contentPane = getContentPane();

 contentPane.add(new JLabel(
 "<HTML><H1><I>Core Java</I></H1><HR>"
 + "By Cay Horstmann and Gary Cornell</HTML>"),
 BorderLayout.CENTER);

 JPanel panel = new JPanel();
 JButton ok = new JButton("Ok");

 ok.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 setVisible(false);
 }
 });

 panel.add(ok);
 contentPane.add(panel, BorderLayout.SOUTH);

 setSize(250, 150);
}

As you can see, the constructor adds user interface elements: in this case, labels and a button.
It adds a handler to the button and sets the size of the dialog.

To display the dialog box, you create a new dialog object and invoke the show method.

JDialog dialog = new AboutDialog(this);
dialog.show();

Actually, in the sample code below, we create the dialog box only once, and so we can reuse
it whenever the user clicks the About button.

Core Java™ 2: Volume I–Fundamentals

553

if (dialog == null) // first time
 dialog = new AboutDialog(this);
dialog.show();

When the user clicks on the OK button, the dialog box should close. This is handled in
the event handler of the OK button:

ok.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 setVisible(false);
 }
 });

When the user closes the dialog by clicking on the Close box, then the dialog is also hidden.
Just as with a JFrame, you can override this behavior with the setDefaultCloseOperation
method.

Example 9-17 is the code for the About dialog box test program.

Example 9-17 DialogTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class DialogTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. DialogFrame frame = new DialogFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.show();
 12. }
 13. }
 14.
 15. /**
 16. A frame with a menu whose File->About action shows a dialog.
 17. */
 18. class DialogFrame extends JFrame
 19. {
 20. public DialogFrame()
 21. {
 22. setTitle("DialogTest");
 23. setSize(WIDTH, HEIGHT);
 24.
 25. // construct a File menu
 26.
 27. JMenuBar menuBar = new JMenuBar();
 28. setJMenuBar(menuBar);
 29. JMenu fileMenu = new JMenu("File");
 30. menuBar.add(fileMenu);
 31.

Core Java™ 2: Volume I–Fundamentals

554

 32. // add About and Exit menu items
 33.
 34. // The About item shows the About dialog
 35.
 36. JMenuItem aboutItem = new JMenuItem("About");
 37. aboutItem.addActionListener(new
 38. ActionListener()
 39. {
 40. public void actionPerformed(ActionEvent event)
 41. {
 42. if (dialog == null) // first time
 43. dialog = new AboutDialog(DialogFrame.this);
 44. dialog.show(); // pop up dialog
 45. }
 46. });
 47. fileMenu.add(aboutItem);
 48.
 49. // The Exit item exits the program
 50.
 51. JMenuItem exitItem = new JMenuItem("Exit");
 52. exitItem.addActionListener(new
 53. ActionListener()
 54. {
 55. public void actionPerformed(ActionEvent event)
 56. {
 57. System.exit(0);
 58. }
 59. });
 60. fileMenu.add(exitItem);
 61. }
 62.
 63. public static final int WIDTH = 300;
 64. public static final int HEIGHT = 200;
 65.
 66. private AboutDialog dialog;
 67. }
 68.
 69. /**
 70. A sample modal dialog that displays a message and
 71. waits for the user to click the Ok button.
 72. */
 73. class AboutDialog extends JDialog
 74. {
 75. public AboutDialog(JFrame owner)
 76. {
 77. super(owner, "About DialogTest", true);
 78. Container contentPane = getContentPane();
 79.
 80. // add HTML label to center
 81.
 82. contentPane.add(new JLabel(
 83. "<HTML><H1><I>Core Java</I></H1><HR>"
 84. + "By Cay Horstmann and Gary Cornell</HTML>"),
 85. BorderLayout.CENTER);
 86.
 87. // Ok button closes the dialog
 88.
 89. JButton ok = new JButton("Ok");

Core Java™ 2: Volume I–Fundamentals

555

 90. ok.addActionListener(new
 91. ActionListener()
 92. {
 93. public void actionPerformed(ActionEvent evt)
 94. {
 95. setVisible(false);
 96. }
 97. });
 98.
 99. // add Ok button to southern border
100.
101. JPanel panel = new JPanel();
102. panel.add(ok);
103. contentPane.add(panel, BorderLayout.SOUTH);
104.
105. setSize(250, 150);
106. }
107. }

javax.swing.JDialog

• public JDialog(JFrame parent, String title, boolean modal)

constructs a dialog. The dialog is not visible until it is explicitly shown.

Parameters: parent The frame that is the owner of the dialog
 title The title of the dialog
 modal True for modal dialogs (a modal dialog blocks input to other windows)

Data Exchange

The most common reason to put up a dialog box is to get information from the user. You have
already seen how easy it is to make a dialog box object: give it initial data and then call
show() to display the dialog box on the screen. Now let us see how to transfer data in and out
of a dialog box.

Consider the dialog box in Figure 9-41 that could be used to obtain a user name and
a password to connect to some on-line service.

Core Java™ 2: Volume I–Fundamentals

556

Figure 9-41. Password dialog box

Your dialog box should provide methods to set default data. For example,
the PasswordChooser class of the example program has a method setUser to place default
values into the next fields:

public void setUser(User u)
{
 username.setText(u.getName());
}

Once you set the defaults (if desired), you show the dialog by calling a method such as
the following:

boolean showDialog()
{
 ok = false;
 show();
 return ok;
}

The user then fills in the information and clicks the OK or Cancel button. Only the event
handler for the OK button sets the ok flag to true. The event handlers for both buttons call
setVisible(false), which terminates the show method. Alternatively, the user may close
the dialog. If you did not install a window listener for the dialog, then the default window
closing operation applies: the dialog becomes invisible, which also terminates the show
method.

Note that the call to show() does not return until the dialog becomes invisible. This is
a welcome change in how the AWT works. In the first version of the AWT, the call to show
returned immediately, even for modal dialog boxes. That made it extremely challenging to get
the data out of the dialog box.

You should test the return value of the showDialog method. If it is true, then the user
accepted the dialog. In that case, call the appropriate methods to retrieve the user input. Here
is a sample method:

Core Java™ 2: Volume I–Fundamentals

557

public User getUser()
{
 return new User(username.getText(), password.getPassword());
}

In this example, we use a single class for the data that the dialog box manipulates. Some
programmers simply provide methods for each user interface component (getUsername,
getPassword). However, as you edit more complex objects, you want to leave it up to the
dialog to find appropriate ways for displaying and editing your objects.

NOTE

Transferring data out of a modeless dialog is not as simple. When
displaying a modeless dialog, the call to show does not block and
the program continues running while the dialog is displayed. If the user
selects items on a modeless dialog and then clicks OK, the dialog needs
to send an event to some listener in the program. That is, another class
must implement an appropriate listener interface, and an object of that
class should be registered as a listener. You can implement this by
sending a custom event (see Chapter 8) or by sending a property change
event (see the chapter on JavaBeans in Volume 2).

The example program contains another useful improvement. When you construct a JDialog
object, you need to specify the owner frame. However, quite often you want to show the same
dialog with different owner frames. It is better if you can pick the owner frame when you are
ready to show the dialog, not when you construct the PasswordChooser object.

The trick is to have the PasswordChooser extend JPanel instead of JDialog. Build
a JDialog object on the fly in the showDialog method:

public boolean showDialog(Frame owner, String title)
{
 ok = false;

 if (dialog == null || dialog.getOwner() != owner)
 {
 dialog = new JDialog(owner, true);
 dialog.getContentPane().add(this);
 dialog.pack();
 }

 dialog.setTitle(title);
 dialog.show();
 return ok;
}

Note that it is safe to have owner equal to null.

You can do even better. Sometimes, the owner frame isn't readily available. It is easy enough
to compute it from any parent component, like this:

Core Java™ 2: Volume I–Fundamentals

558

Frame owner;
if (parent instanceof Frame)
 owner = (Frame) parent;
else
 owner = (Frame)SwingUtilities.getAncestorOfClass(
 Frame.class, parent);

We use this enhancement in our sample program. The JOptionPane class also uses this
mechanism.

Example 9-18 is the complete code that illustrates the data flow into and out of a dialog box.

Example 9-18 DataExchangeTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class DataExchangeTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. DataExchangeFrame frame = new DataExchangeFrame();
 10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 11. frame.show();
 12. }
 13. }
 14.
 15. /**
 16. A frame with a menu whose File->Connect action shows a
 17. password dialog.
 18. */
 19. class DataExchangeFrame extends JFrame
 20. {
 21. public DataExchangeFrame()
 22. {
 23. setTitle("DataExchangeTest");
 24. setSize(WIDTH, HEIGHT);
 25.
 26. // construct a File menu
 27.
 28. JMenuBar mbar = new JMenuBar();
 29. setJMenuBar(mbar);
 30. JMenu fileMenu = new JMenu("File");
 31. mbar.add(fileMenu);
 32.
 33. // add Connect and Exit menu items
 34.
 35. JMenuItem connectItem = new JMenuItem("Connect");
 36. connectItem.addActionListener(new ConnectAction());
 37. fileMenu.add(connectItem);
 38.
 39. // The Exit item exits the program
 40.
 41. JMenuItem exitItem = new JMenuItem("Exit");
 42. exitItem.addActionListener(new
 43. ActionListener()
 44. {
 45. public void actionPerformed(ActionEvent event)
 46. {

Core Java™ 2: Volume I–Fundamentals

559

 47. System.exit(0);
 48. }
 49. });
 50. fileMenu.add(exitItem);
 51.
 52. textArea = new JTextArea();
 53. getContentPane().add(new JScrollPane(textArea),
 54. BorderLayout.CENTER);
 55. }
 56.
 57. public static final int WIDTH = 300;
 58. public static final int HEIGHT = 200;
 59.
 60. private PasswordChooser dialog = null;
 61. private JTextArea textArea;
 62.
 63. /**
 64. The Connect action pops up the password dialog.
 65. */
 66.
 67. private class ConnectAction implements ActionListener
 68. {
 69. public void actionPerformed(ActionEvent event)
 70. {
 71. // if first time, construct dialog
 72.
 73. if (dialog == null)
 74. dialog = new PasswordChooser();
 75.
 76. // set default values
 77. dialog.setUser(new User("yourname", null));
 78.
 79. // pop up dialog
 80. if (dialog.showDialog(DataExchangeFrame.this,
 81. "Connect"))
 82. {
 83. // if accepted, retrieve user input
 84. User u = dialog.getUser();
 85. textArea.append(
 86. "user name = " + u.getName()
 87. + ", password = " + (new String(u.getPassword()))
 88. + "\n");
 89. }
 90. }
 91. }
 92. }
 93.
 94. /**
 95. A password chooser that is shown inside a dialog
 96. */
 97. class PasswordChooser extends JPanel
 98. {
 99. public PasswordChooser()
100. {
101. setLayout(new BorderLayout());
102.
103. // construct a panel with user name and password fields
104.
105. JPanel panel = new JPanel();
106. panel.setLayout(new GridLayout(2, 2));
107. panel.add(new JLabel("User name:"));

Core Java™ 2: Volume I–Fundamentals

560

108. panel.add(username = new JTextField(""));
109. panel.add(new JLabel("Password:"));
110. panel.add(password = new JPasswordField(""));
111. add(panel, BorderLayout.CENTER);
112.
113. // create Ok and Cancel buttons that terminate the dialog
114.
115. JButton okButton = new JButton("Ok");
116. okButton.addActionListener(new
117. ActionListener()
118. {
119. public void actionPerformed(ActionEvent event)
120. {
121. ok = true;
122. dialog.setVisible(false);
123. }
124. });
125.
126. JButton cancelButton = new JButton("Cancel");
127. okButton.addActionListener(new
128. ActionListener()
129. {
130. public void actionPerformed(ActionEvent event)
131. {
132. dialog.setVisible(false);
133. }
134. });
135.
136. // add buttons to southern border
137.
138. JPanel buttonPanel = new JPanel();
139. buttonPanel.add(okButton);
140. buttonPanel.add(cancelButton);
141. add(buttonPanel, BorderLayout.SOUTH);
142. }
143.
144. /**
145. Sets the dialog defaults.
146. @param u the default user information
147. */
148. public void setUser(User u)
149. {
150. username.setText(u.getName());
151. }
152.
153. /**
154. Gets the dialog entries.
155. @return a User object whose state represents
156. the dialog entries
157. */
158. public User getUser()
159. {
160. return new User(username.getText(),
161. password.getPassword());
162. }
163.
164. /**
165. Show the chooser panel in a dialog
166. @param parent a component in the owner frame or null
167. @param title the dialog window title
168. */

Core Java™ 2: Volume I–Fundamentals

561

169. public boolean showDialog(Component parent, String title)
170. {
171. ok = false;
172.
173. // locate the owner frame
174.
175. Frame owner = null;
176. if (parent instanceof Frame)
177. owner = (Frame) parent;
178. else
179. owner = (Frame)SwingUtilities.getAncestorOfClass(
180. Frame.class, parent);
181.
182. // if first time, or if owner has changed, make new dialog
183.
184. if (dialog == null || dialog.getOwner() != owner)
185. {
186. owner = null;
187. dialog = new JDialog(owner, true);
188. dialog.getContentPane().add(this);
189. dialog.pack();
190. }
191.
192. // set title and show dialog
193.
194. dialog.setTitle(title);
195. dialog.show();
196. return ok;
197. }
198.
199. private JTextField username;
200. private JPasswordField password;
201. private boolean ok;
202. private JDialog dialog;
203. }
204.
205. /**
206. A user has a name and password. For security reasons, the
207. password is stored as a char[], not a String.
208. */
209. class User
210. {
211. public User(String aName, char[] aPassword)
212. {
213. name = aName;
214. password = aPassword;
215. }
216.
217. public String getName() { return name; }
218. public char[] getPassword() { return password; }
219.
220. public void setName(String aName) { name = aName; }
221. public void setPassword(char[] aPassword)
222. { password = aPassword; }
223.
224. private String name;
225. private char[] password;
226. }

Core Java™ 2: Volume I–Fundamentals

562

File Dialogs

When you write an application, you often want to be able to open and save files. A good file
dialog box that shows files and directories and lets the user navigate the file system is hard to
write, and you definitely don't want to reinvent that wheel. Fortunately, Swing provides
a JFileChooser class that allows you to display a file dialog box similar to the one that most
native applications use. JFileChooser dialogs are always modal. Note that
the JFileChooser class is not a subclass of JDialog. Instead of calling show, you call
showOpenDialog to display a dialog for opening a file or showSaveDialog to display a dialog
for saving a file. The button for accepting a file is then automatically labeled Open or Save.
You can also supply your own button label with the showDialog method. Figure 9-42 shows
an example of the file chooser dialog box.

Figure 9-42. File chooser dialog box

Here are the steps needed to put up a file dialog box and recover what the user chooses from
the box.

1. Make a JFileChooser object. Unlike the constructor for the JDialog class, you do
not supply the parent component. This allows you to reuse a file chooser dialog with
multiple frames.

For example:

JFileChooser chooser = new JFileChooser();

Core Java™ 2: Volume I–Fundamentals

563

TIP

Reusing a file chooser object is a good idea because the JFileChooser
constructor can be quite slow, especially on Windows if the user has
many mapped network drives.

2. Set the directory by calling the setCurrentDirectory method.

For example, use

chooser.setCurrentDirectory(new File("."));

to use the current working directory. You need to supply a File object. File objects
are explained in detail in Chapter 12. All you need to know for now is that there is
a constructor File(String filename) that turns a file or directory name into a File
object.

3. If you have a default file name that you expect the user to choose, supply it with
the setSelectedFile method:

 chooser.setSelectedFile(new File(filename));

4. To enable the user to select multiple files in the dialog, call
the setMultiSelectionEnabled method. This is, of course, entirely optional and not
all that common.

 chooser.setMultiSelectionEnabled(true);

5. If you want to restrict the display of files in the dialog to those of a particular type (for
example, all files with extension .gif), then you need to set a file filter. We discuss
file filters later in this section.

6. By default, a user can select only files with a file chooser. If you want the user to
select directories, use the setFileSelectionMode method. Call it with
JFileChooser.FILES_ONLY (the default), JFileChooser.DIRECTORIES_ONLY, or
JFileChooser.FILES_AND_DIRECTORIES.

7. Show the dialog box by calling the showOpenDialog or showSaveDialog method.
You must supply the parent component in these calls:

 int result = chooser.showOpenDialog(parent);

or

int result = chooser.showSaveDialog(parent);

Core Java™ 2: Volume I–Fundamentals

564

The only difference between these calls is the label of the “approve button,” the button
that the user clicks to finish the file selection. You can also call the showDialog
method and pass an explicit text for the approve button:

int result = chooser.showDialog(parent, "Select");

These calls return only when the user has approved or canceled the file dialog. The
return value is JFileChooser.APPROVE_OPTION or JFile-Chooser.CANCEL_OPTION.

8. You get the selected file or files with the getSelectedFile()or
getSelectedFiles() method. These methods return either a single File object or
an array of File objects. If you just need the name of the file object, call its getPath
method. For example,

 String filename = chooser.getSelectedFile().getPath();

For the most part, these steps are simple. The major difficulty with using a file dialog is to
specify a subset of files from which the user should choose. For example, suppose the user
should choose a GIF image file. Then, the file chooser should only display files with
extension .gif. It should also give the user some kind of feedback that the displayed files are
of a particular category, such as “GIF Images.” But the situation can be more complex. If the
user should choose a JPEG image file, then the extension can be either .jpg or .jpeg. Rather
than coming up with a mechanism to codify these complexities, the designers of the file
chooser supply a more elegant mechanism: to restrict the displayed files, you supply an object
that implements the javax.swing.filechooser.FileFilter interface. The file chooser
passes each file to the file filter and displays only the files that the file filter accepts.

To restrict the files shown in a dialog, you need to create an object of a class that extends the
FileFilter class. At the time of this writing, only one such subclass is supplied: the default
filter that accepts all files.

It is easy to write ad hoc file filters. You simply implement the two methods of
the FileFilter interface:

public boolean accept(File f);
public String getDescription();

NOTE

There is an unrelated FileFilter interface in the java.io package that
has a single method, boolean accept(File f). It is used in
the listFiles method of the File class to list files in a directory. We do
not know why the designers of Swing didn't extend this interface—
perhaps the Java class library has now become so complex that even the
programmers at Sun are no longer aware of all the standard classes and
interfaces.

You will need to resolve the name conflict between these two identically
named types if you import both the java.io and the
javax.swing.filechooser package. The simplest remedy is to import

Core Java™ 2: Volume I–Fundamentals

565

javax.swing.filechooser.FileFilter, not
javax.swing.filechooser.*.

The first method tests whether a file should be accepted. The second method returns
a description of the file type that can be displayed in the file chooser dialog. For example, to
filter for GIF files, you might use

public class GifFilter extends FileFilter
{
 public boolean accept(File f)
 {
 return f.getName().toLowerCase().endsWith(".gif")
 || f.isDirectory();
 }
 public String getDescription()
 {
 return "GIF Image";
 }
}

Once you have a file filter object, you use the setFileFilter method of the JFileChooser
class to install it into the file chooser object:

chooser.setFileFilter(new GifFilter());

In our sample program, we supply a class ExtensionFileFilter, to be used as follows:

ExtensionFileFilter filter = new ExtensionFileFilter();
filter.addExtension("jpg");
filter.addExtension("gif");
filter.setDescription("Image files");

The implementation of the ExtensionFileFilter is a straightforward generalization of
the GifFilter class. You may want to use that class in your own programs.

NOTE

The Java SDK contains a similar class ExampleFileFilter in
the demo/jfc/FileChooserDemo directory.

You can install multiple filters to the file chooser. The user selects a filter from the combo
box at the bottom of the file dialog. By default, the “All files” filter is always present in the
combo box. This is a good idea, just in case a user of your program needs to select a file with
a non-standard extension. However, if you want to suppress the “All files” filter, call

chooser.setAcceptAllFileFilterUsed(false)

Core Java™ 2: Volume I–Fundamentals

566

Finally, you can customize the file chooser by providing special icons and file descriptions for
each file that the file chooser displays. You do this by supplying an object of a class extending
the FileView class in the javax.swing.filechooser package. This is definitely an
advanced technique. Normally, you don't need to supply a file view—the pluggable look and
feel supplies one for you. But if you want to show different icons for special file types, you
can install your own file view. You need to extend the FileView class and implement five
methods:

Icon getIcon(File f);
String getName(File f);
String getDescription(File f);
String getTypeDescription(File f);
Boolean isTraversable(File f);

Then you use the setFileView method to install your file view into the file chooser.

The file chooser calls your methods for each file or directory that it wants to display. If your
method returns null for the icon, name, or description, the file chooser then consults
the default file view of the look and feel. That is good, because it means you need to deal only
with the file types for which you want to do something different.

The file chooser calls the isTraversable method to decide whether to open a directory when
a user clicks on it. Note that this method returns a Boolean object, not a boolean value! This
seems weird, but it is actually convenient— if you aren't interested in deviating from
the default file view, just return null. The file chooser will then consult the default file view.
In other words, the method returns a Boolean to give you the choice between three options:
true (Boolean.TRUE), false (Boolean.FALSE), and don't care (null).

The example program contains a simple file view class. That class shows a particular icon
whenever a file matches a file filter. We use it to display a palette icon for all image files.

class FileIconView extends FileView
{
 public FileIconView(FileFilter aFilter, Icon anIcon)
 {
 filter = aFilter;
 icon = anIcon;
 }

 public Icon getIcon(File f)
 {
 if (!f.isDirectory() && filter.accept(f))
 return icon;
 else return null;
 }

 private FileFilter filter;
 private Icon icon;
}

Core Java™ 2: Volume I–Fundamentals

567

CAUTION

In J2SE version 1.2, you must define all five methods of your FileView
subclass. Simply return null in the methods that you don't need. In J2SE
version 1.3, the FileView methods are no longer abstract.

You install this file view into your file chooser with the setFileView method:

chooser.setFileView(new FileIconView(filter,
 new ImageIcon("palette.gif")));

The file chooser will then show the palette icon next to all files that pass the filter, and use
the default file view to show all other files. Naturally, we use the same filter that we set in the
file chooser.

TIP

You can find a more useful ExampleFileView class in the
demo/jfc/FileChooserDemo directory of the SDK. That class lets you
associate icons and descriptions with arbitrary extensions.

Finally, you can customize a file dialog by adding an accessory component. For example,
Figure 9-43 shows a preview accessory next to the file list. This accessory displays
a thumbnail view of the currently selected file.

Figure 9-43. A file dialog with a preview accessory

Core Java™ 2: Volume I–Fundamentals

568

An accessory can be any Swing component. In our case, we extend the JLabel class and set
its icon to a scaled copy of the graphics image:

class ImagePreviewer extends JLabel
{
 public ImagePreviewer(JFileChooser chooser)
 {
 setPreferredSize(new Dimension(100, 100));
 setBorder(BorderFactory.createEtchedBorder());
 }

 public void loadImage(File f)
 {
 ImageIcon icon = new ImageIcon(f.getPath());
 if(icon.getIconWidth() > getWidth())
 icon = new ImageIcon(icon.getImage().getScaledInstance(
 getWidth(), -1, Image.SCALE_DEFAULT));
 setIcon(icon);
 repaint();
 }
}

There is just one challenge. We want to update the preview image whenever the user selects a
different file. The file chooser uses the “Java Beans” mechanism of notifying interested
listeners whenever one of its properties changes. The selected file is a property that you can
monitor by installing a PropertyChangeListener. We will discuss this mechanism in greater
detail in Volume 2. Here is the code that you need to trap the notifications:

chooser.addPropertyChangeListener(new
 PropertyChangeListener()
 {
 public void propertyChange(PropertyChangeEvent event)
 {
 if (event.getPropertyName() ==
 JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
 {
 File newFile = (File)event.getNewValue()
 // update the accessory
 }
 }
});

In our example program, we add this code to the ImagePreviewer constructor.

Example 9-19 contains a modification of the ImageViewer program from Chapter 2, in which
the file chooser has been enhanced by a custom file view and a preview accessory.

Example 9-19 FileChooserTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import java.beans.*;
 5. import java.util.*;
 6. import java.io.*;
 7. import javax.swing.*;
 8. import javax.swing.filechooser.FileFilter;

Core Java™ 2: Volume I–Fundamentals

569

 9. import javax.swing.filechooser.FileView;
 10.
 11. public class FileChooserTest
 12. {
 13. public static void main(String[] args)
 14. {
 15. ImageViewerFrame frame = new ImageViewerFrame();
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. A frame that has a menu for loading an image and a display
 23. area for the loaded image.
 24. */
 25. class ImageViewerFrame extends JFrame
 26. {
 27. public ImageViewerFrame()
 28. {
 29. setTitle("FileChooserTest");
 30. setSize(WIDTH, HEIGHT);
 31.
 32. // set up menu bar
 33. JMenuBar menuBar = new JMenuBar();
 34. setJMenuBar(menuBar);
 35.
 36. JMenu menu = new JMenu("File");
 37. menuBar.add(menu);
 38.
 39. JMenuItem openItem = new JMenuItem("Open");
 40. menu.add(openItem);
 41. openItem.addActionListener(new FileOpenListener());
 42.
 43. JMenuItem exitItem = new JMenuItem("Exit");
 44. menu.add(exitItem);
 45. exitItem.addActionListener(new
 46. ActionListener()
 47. {
 48. public void actionPerformed(ActionEvent event)
 49. {
 50. System.exit(0);
 51. }
 52. });
 53.
 54. // use a label to display the images
 55. label = new JLabel();
 56. Container contentPane = getContentPane();
 57. contentPane.add(label);
 58.
 59. chooser = new JFileChooser();
 60. }
 61.

Core Java™ 2: Volume I–Fundamentals

570

 62. /**
 63. This is the listener for the File->Open menu item.
 64. */
 65. private class FileOpenListener implements ActionListener
 66. {
 67. public void actionPerformed(ActionEvent evt)
 68. {
 69. // set up file chooser
 70. chooser.setCurrentDirectory(new File("."));
 71.
 72. // accept all image files ending with .jpg, .jpeg, .gif
 73. final ExtensionFileFilter filter
 74. = new ExtensionFileFilter();
 75. filter.addExtension("jpg");
 76. filter.addExtension("jpeg");
 77. filter.addExtension("gif");
 78. filter.setDescription("Image files");
 79. chooser.setFileFilter(filter);
 80.
 81. chooser.setAccessory(new ImagePreviewer(chooser));
 82.
 83. chooser.setFileView(new FileIconView(filter,
 84. new ImageIcon("palette.gif")));
 85.
 86. // show file chooser dialog
 87. int result
 88. = chooser.showOpenDialog(ImageViewerFrame.this);
 89.
 90. // if image file accepted, set it as icon of the label
 91. if(result == JFileChooser.APPROVE_OPTION)
 92. {
 93. String name
 94. = chooser.getSelectedFile().getPath();
 95. label.setIcon(new ImageIcon(name));
 96. }
 97. }
 98. }
 99.
100. public static final int WIDTH = 300;
101. public static final int HEIGHT = 400;
102.
103. private JLabel label;
104. private JFileChooser chooser;
105. }
106.
107. /**
108. This file filter matches all files with a given set of
109. extensions.
110. */
111. class ExtensionFileFilter extends FileFilter
112. {
113. /**
114. Adds an extension that this file filter recognizes.
115. @param extension a file extension (such as ".txt" or "txt")
116. */
117. public void addExtension(String extension)
118. {
119. if (!extension.startsWith("."))
120. extension = "." + extension;
121. extensions.add(extension.toLowerCase());
122. }

Core Java™ 2: Volume I–Fundamentals

571

123.
124. /**
125. Sets a description for the file set that this file filter
126. recognizes.
127. @param aDescription a description for the file set
128. */
129. public void setDescription(String aDescription)
130. {
131. description = aDescription;
132. }
133.
134. /**
135. Returns a description for the file set that this file
136. filter recognizes.
137. @return a description for the file set
138. */
139. public String getDescription()
140. {
141. return description;
142. }
143.
144. public boolean accept(File f)
145. {
146. if (f.isDirectory()) return true;
147. String name = f.getName().toLowerCase();
148.
149. // check if the file name ends with any of the extensions
150. for (int i = 0; i < extensions.size(); i++)
151. if (name.endsWith((String)extensions.get(i)))
152. return true;
153. return false;
154. }
155.
156. private String description = "";
157. private ArrayList extensions = new ArrayList();
158. }
159.
160. /**
161. A file view that displays an icon for all files that match
162. a file filter.
163. */
164. class FileIconView extends FileView
165. {
166. /**
167. Constructs a FileIconView.
168. @param aFilter a file filter--all files that this filter
169. accepts will be shown with the icon.
170. @param anIcon--the icon shown with all accepted files.
171. */
172. public FileIconView(FileFilter aFilter, Icon anIcon)
173. {
174. filter = aFilter;
175. icon = anIcon;
176. }
177.
178. public Icon getIcon(File f)
179. {
180. if (!f.isDirectory() && filter.accept(f))
181. return icon;
182. else return null;
183. }

Core Java™ 2: Volume I–Fundamentals

572

184.
185. private FileFilter filter;
186. private Icon icon;
187. }
188.
189. /**
190. A file chooser accessory that previews images.
191. */
192. class ImagePreviewer extends JLabel
193. {
194. /**
195. Constructs an ImagePreviewer.
196. @param chooser the file chooser whose property changes
197. trigger an image change in this previewer
198. */
199. public ImagePreviewer(JFileChooser chooser)
200. {
201. setPreferredSize(new Dimension(100, 100));
202. setBorder(BorderFactory.createEtchedBorder());
203.
204. chooser.addPropertyChangeListener(new
205. PropertyChangeListener()
206. {
207. public void propertyChange(PropertyChangeEvent
208. event)
209. {
210. if (event.getPropertyName() ==
211. JFileChooser.SELECTED_FILE_CHANGED_PROPERTY)
212. {
213. // the user has selected a new file
214. File f = (File)event.getNewValue();
215.
216. // read the image into an icon
217. ImageIcon icon = new ImageIcon(f.getPath());
218.
219. // if the icon is too large to fit, scale it
220. if(icon.getIconWidth() > getWidth())
221. icon = new ImageIcon(
222. icon.getImage().getScaledInstance(
223. getWidth(), -1, Image.SCALE_DEFAULT));
224.
225. setIcon(icon);
226. }
227. }
228. });
229. }
230. }

javax.swing.JFileChooser

• JFileChooser()

creates a file chooser dialog box that can be used for multiple frames.

Core Java™ 2: Volume I–Fundamentals

573

• void setCurrentDirectory(File dir)

sets the initial directory for the file dialog box.

• void setSelectedFile(File file)
• void setSelectedFiles(File[] file)

set the default file choice for the file dialog box.

• void setMultiSelectionEnabled(boolean b)

sets or clears multiple selection mode.

• void setAcceptAllFileFilterUsed(boolean b)

includes or suppresses an “All files” filter in the filter combo box.

• void setFileSelectionMode(int mode)

lets the user select files only (the default), directories only, or both files and
directories. The mode parameter is one of JFileChooser.FILES_ONLY,
JFileChooser.DIRECTORIES_ONLY, and JFileChooser.FILES_AND_DIRECTORIES

• int showOpenDialog(Component parent)
• int showSaveDialog(Component parent)
• int showDialog(Component parent, String approveButtonText)

show a dialog in which the approve button is labeled "Open," "Save," or with
the approveButtonText string. Returns APPROVE_OPTION or CANCEL_OPTION.

• File getSelectedFile()
• File[] getSelectedFiles()

get the file or files that the user selected (or returns null if the user didn't select
any file).

• void setFileFilter(javax.swing.filechooser.FileFilter filter)

sets the file mask for the file dialog box. All files for which filter.accept returns
true will be displayed.

• void setFileView(FileView view)

sets a file view to provide information about the files that the file chooser displays.

• void setAccessory(JComponent component)

sets an accessory component.

Core Java™ 2: Volume I–Fundamentals

574

javax.swing.filechooser.FileFilter

• boolean accept(File f)

returns true if the file chooser should display this file.

• String getDescription()

returns a description of this file filter, for example "Image files (*.gif,*.jpeg)".

javax.swing.filechooser.FileView

• String getName(File f)

returns the name of the file f, or null.Normally, this method simply returns
f.getName().

• String getDescription(File f)

returns a humanly readable description of the file f, or null. For example, if f is
an HTML document, this method might return its title.

• String getTypeDescription(File f)

returns a humanly readable description of the type of the file f, or null. For example,
if f is an HTML document, this method might return a string "Hypertext
document".

• Icon getIcon(File f)

returns an icon for the file f, or null. For example, if f is a JPEG file, this method
might return a thumbnail icon.

• Boolean isTraversable(File f)

returns Boolean.TRUE if f is a directory that the user can open. This method might
return false if a directory is conceptually a compound document. Like all FileView
methods, this method can return null to indicate that the file chooser should consult
the default view instead.

Core Java™ 2: Volume I–Fundamentals

575

Color Choosers

As you saw in the preceding section, a high quality file chooser is an intricate user interface
component that you definitely do not want to implement yourself. There are other common
dialogs to choose a date/time, currency value, font, color, and so on that many user interface
toolkits provide. The benefit is twofold. Programmers can simply use a high-quality
implementation rather than rolling their own. And users have a common experience for these
selections.

At this point, Swing only provides one additional chooser, the JColorChooser (see
Figures 9-44 through 9-46). You use it to let users pick a color value. Like the JFileChooser
class, the color chooser is a component, not a dialog, but it contains convenience methods to
create dialogs that contain a color chooser component.

Figure 9-44. The “swatches” pane of color chooser

Core Java™ 2: Volume I–Fundamentals

576

Figure 9-45. The HSB pane of a color chooser

Figure 9-46. The RGB pane of a color chooser

Core Java™ 2: Volume I–Fundamentals

577

Here is how you show a modal dialog with a color chooser

Color selectedColor = JColorChooser.showDialog(parent,
 title, initialColor);

Alternatively, you can display a modeless color chooser dialog. You supply:

• A parent component;
• The title of the dialog;
• A flag to select either a modal or a modeless dialog;
• A color chooser;
• Listeners for the OK and Cancel buttons (or null if you don't want a listener).

Here is how you make a modeless dialog that sets the background color when the user presses
the OK button:

chooser = new JColorChooser();
dialog = JColorChooser.createDialog(
 parent,
 "Background Color",
 false /* not modal */,
 chooser,
 new ActionListener() // OK button listener
 {
 public void actionPerformed(ActionEvent event)
 {
 setBackground(chooser.getColor());
 }
 },
 null /* no Cancel button listener */);

You can do even better than that, and give the user immediate feedback of the color selection.
To monitor the color selections, you need to obtain the selection model of the chooser and add
a change listener:

chooser.getSelectionModel().addChangeListener(new
 ChangeListener()
 {
 public void stateChanged(ChangeEvent event)
 {
 do something with chooser.getColor();
 }
 });

In this case, there is no benefit to the OK and Cancel buttons that the color chooser dialog
provides. You can just add the color chooser component directly into a modeless dialog:

dialog = new JDialog(parent, false /* not modal */);
dialog.getContentPane().add(chooser);
dialog.pack();

The program in Example 9-20 shows the three types of dialog. If you click on the Modal
button, you must select a color before you can do anything else. If you click on the Modeless
button, you get a modeless dialog, but the color change only happens when you click the OK
button on the dialog. If you click the Immediate button, you get a modeless dialog without

Core Java™ 2: Volume I–Fundamentals

578

buttons. As soon as you pick a different color in the dialog, the background color of the panel
is updated.

This ends our discussion of user interface components. The material in Chapters 7 through 9
showed you how to implement simple graphical user interfaces in Swing. Please turn to
Volume 2 for more advanced Swing components and sophisticated graphics techniques.

Example 9-20 ColorChooserTest.java

 1. import java.aw1t.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import javax.swing.event.*;
 5.
 6. public class ColorChooserTest
 7. {
 8. public static void main(String[] args)
 9. {
 10. ColorChooserFrame frame = new ColorChooserFrame();
 11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 12. frame.show();
 13. }
 14. }
 15.
 16. /**
 17. A frame with a color chooser panel
 18. */
 19. class ColorChooserFrame extends JFrame
 20. {
 21. public ColorChooserFrame()
 22. {
 23. setTitle("ColorChooserTest");
 24. setSize(WIDTH, HEIGHT);
 25.
 26. // add color chooser panel to frame
 27.
 28. ColorChooserPanel panel = new ColorChooserPanel();
 29. Container contentPane = getContentPane();
 30. contentPane.add(panel);
 31. }
 32.
 33. public static final int WIDTH = 300;
 34. public static final int HEIGHT = 200;
 35. }
 36.
 37. /**
 38. A panel with buttons to pop up three types of color choosers
 39. */
 40. class ColorChooserPanel extends JPanel
 41. {
 42. public ColorChooserPanel()
 43. {
 44. JButton modalButton = new JButton("Modal");
 45. modalButton.addActionListener(new ModalListener());
 46. add(modalButton);
 47.
 48. JButton modelessButton = new JButton("Modeless");
 49. modelessButton.addActionListener(new ModelessListener());
 50. add(modelessButton);

Core Java™ 2: Volume I–Fundamentals

579

 51.
 52. JButton immediateButton = new JButton("Immediate");
 53. immediateButton.addActionListener(new ImmediateListener());
 54. add(immediateButton);
 55. }
 56.
 57. /**
 58. This listener pops up a modal color chooser
 59. */
 60. private class ModalListener implements ActionListener
 61. {
 62. public void actionPerformed(ActionEvent event)
 63. {
 64. Color defaultColor = getBackground();
 65. Color selected = JColorChooser.showDialog(
 66. ColorChooserPanel.this,
 67. "Set background",
 68. defaultColor);
 69. setBackground(selected);
 70. }
 71. }
 72.
 73. /**
 74. This listener pops up a modeless color chooser.
 75. The panel color is changed when the user clicks the Ok
 76. button.
 77. */
 78. private class ModelessListener implements ActionListener
 79. {
 80. public ModelessListener()
 81. {
 82. chooser = new JColorChooser();
 83. dialog = JColorChooser.createDialog(
 84. ColorChooserPanel.this,
 85. "Background Color",
 86. false /* not modal */,
 87. chooser,
 88. new ActionListener() // OK button listener
 89. {
 90. public void actionPerformed(ActionEvent event)
 91. {
 92. setBackground(chooser.getColor());
 93. }
 94. },
 95. null /* no Cancel button listener */);
 96. }
 97.
 98. public void actionPerformed(ActionEvent event)
 99. {
100. chooser.setColor(getBackground());
101. dialog.show();
102. }
103.
104. private JDialog dialog;
105. private JColorChooser chooser;
106. }
107.

Core Java™ 2: Volume I–Fundamentals

580

108. /**
109. This listener pops up a modeless color chooser.
110. The panel color is changed immediately when the
111. user picks a new color.
112. */
113. private class ImmediateListener implements ActionListener
114. {
115. public ImmediateListener()
116. {
117. chooser = new JColorChooser();
118. chooser.getSelectionModel().addChangeListener(new
119. ChangeListener()
120. {
121. public void stateChanged(ChangeEvent event)
122. {
123. setBackground(chooser.getColor());
124. }
125. });
126.
127. dialog = new JDialog(
128. (Frame)null,
129. false /* not modal */);
130. dialog.getContentPane().add(chooser);
131. dialog.pack();
132. }
133.
134. public void actionPerformed(ActionEvent event)
135. {
136. chooser.setColor(getBackground());
137. dialog.show();
138. }
139.
140. private JDialog dialog;
141. private JColorChooser chooser;
142. }
143. }

java.swing.JColorChooser

• JColorChooser()

constructs a color chooser with an initial color of white.

• Color getColor()
• void setColor(Color c)

get and set the current color of this color chooser.

• static Color showDialog(Component parent, String title, Color
initialColor)

shows a modal dialog that contains a color chooser.

Core Java™ 2: Volume I–Fundamentals

581

Parameters: parent The component over which to pop up the dialog
 title The title for the dialog box frame
 initialColor The initial color to show in the color chooser

• static JDialog createDialog(Component parent, String title, boolean
modal, JColorChooser chooser, ActionListener okListener,
ActionListener cancelListener)

creates a dialog box that contains a color chooser.

Parameters: parent The component over which to pop up the dialog
 title The title for the dialog box frame
 modal true if this call should block until the dialog is

closed
 chooser The color chooser to add to the dialog
 okListener,

cancelListener
The listeners of the OK and Cancel buttons

Core Java™ 2: Volume I–Fundamentals

582

Chapter 10. Applets
• Applet Basics
• The Applet HTML Tags and Attributes
• Multimedia
• The Applet Context
• JAR Files

At this point, you should be comfortable with using most of the features of the Java
programming language, and you had a pretty thorough introduction to basic graphics
programming in Java. We hope that you agree with us that Java is a nice (if not perfect),
general-purpose OOP language, and the Swing user interface libraries are flexible and useful.
That's nice, but it isn't what created the hype around Java. The unbelievable hype during the
first few years of Java's life (as was mentioned in Chapter 1) stems from Java's ability to
“activate the Internet.” The point is that you can create a special kind of Java program (called
an applet) that a Java-enabled browser can download from the Net and then run. This chapter
shows you how to write basic applets. Full-featured applets depend on the programmer's
mastery of Java's networking and multithreading capabilities. These advanced topics will be
covered in Volume 2.

Nowadays, of course, since modern browsers support Dynamic HTML and scripting,
browsers can do far more than they could when the Java platform was first released. Still,
since applets are written in a full-fledged programming language, they potentially have more
power than any foreseeable combination of HTML, XML, and scripting will ever have.

Applet Basics

Before Java, you used HTML (the hypertext markup language) to describe the layout of a web
page. HTML is simply a vehicle to indicate elements of a hypertext page. For example,
<TITLE> indicates the title of the page, and any text that follows this tag becomes the title of
the page. You indicate the end of the title with the </TITLE> tag. (This is one of the general
rules for tags: a slash followed by the name of the element indicates the end of the element.)

The basic idea of how to use applets in a web page is simple: the HTML page must tell the
browser which applets to load and then where to put each applet on the web page. As you
might expect, the tag needed to use an applet must tell the browser the following:

• From where to get the class files;
• How the applet sits on the web page (size, location, and so on).

NOTE

The original way to embed a Java applet was via an APPLET tag with
parameters that gave the information listed above. The W3 Consortium
has suggested switching to the more versatile OBJECT tag, and the older
APPLET tag is deprecated in the HTML 4.0 specification. The latest
browsers will recognize both tags, but you should keep in mind that older
browsers do not. We will cover the basics of using these tags a little later
in this chapter.

Core Java™ 2: Volume I–Fundamentals

583

The browser then retrieves the class files from the Net (or from a directory on the user's
machine) and automatically runs the applet, using its Java Virtual Machine.

In addition to the applet itself, the web page can contain all the other HTML elements you
have seen in use on web pages: multiple fonts, bulleted lists, graphics, links, and so on.
Applets are just one part of the hypertext page. It is always worth keeping in mind that the
Java programming language is not a tool for designing HTML pages; it is a tool for bringing
them to life. This is not to say that the GUI design elements in a Java applet are not important,
but that they must work with (and, in fact, are subservient to) the underlying HTML design of
the web page.

NOTE

We do not cover general HTML tags at all; we assume that you know—
or are working with someone who knows—the basics of HTML. Only
a few special HTML tags are needed for Java applets. We do, of course,
cover those later in this chapter. As for learning HTML, there are dozens
of HTML books at your local bookstore. One that covers what you need
and will not insult your intelligence is HTML: The Definitive Guide by
Chuck Musciano and Bill Kennedy from O'Reilly & Associates.

When applets were first developed, you had to use Sun's HotJava browser to view web pages
that contain applets. Naturally, few users were willing to use a separate browser just to enjoy
a new web feature. Java applets became really popular when Netscape included a Java Virtual
Machine in its browser. Internet Explorer soon followed suit. Unfortunately, the browser
manufacturers have not kept up with Java. Both Netscape and Internet Explorer do a good job
with Java 1.0 features, and their newest versions can handle most of the Java 1.1 features.

But, we can't stress enough that there have always been and will probably continue to be
annoying limitations and incompatibilities. For example, Microsoft will likely never
implement certain parts of Java that it feels are particularly competitive with its own
technology. Netscape has basically gone out of the virtual machine business. Netscape 6 lets
users plug in their own virtual machine, but Netscape 4 does not have this feature. All this
makes it difficult to deploy an applet that uses modern Java features and that can still be
viewed by different browsers.

To overcome this problem, Sun released a tool called the “Java Plug-In” (originally known as
the “Activator”). Using the various extension mechanisms of Internet Explorer or Navigator,
it seamlessly plugs into both Netscape and Internet Explorer and allows both browsers to
execute Java applets by using an external Java Runtime Environment that Sun supplies. Their
version of the virtual machine will presumably always be up-to-date, thus ensuring that you
can always take advantage of the latest and greatest features of Java.

Once you install the Java Plug-In software, you can switch to different versions of the Java
Virtual Machine. To run the applets in this book, you need to install the Java Plug-In and
select the Java 1.3 virtual machine (see Figure 10-1).

Core Java™ 2: Volume I–Fundamentals

584

Figure 10-1. Selecting the Java Virtual Machine in the Java Plug-In

Admittedly, if you are designing web pages for a wide audience, it is probably unreasonable
to ask the visitors to your web page to install the Java Plug-In, which is a fairly hefty (if one-
time) download. In that case, you need to design applets that can work with the Java Virtual
Machines that are built into Netscape and Internet Explorer. It is then best to stick to Java 1.0
features and keep the applet as simple as possible. But frankly, if your applet is that simple,
you can probably do entirely without it—use JavaScript for program logic, forms for data
entry, and animated GIF files for animations. Then place the intelligence on the server,
preferably with Java-based servlets and server pages.

On the other hand, if you roll out a very sophisticated Java program, you should ask yourself
whether there is any benefit from using the web browser as a delivery vehicle. If not, then you
can simply deliver Java applications that your users run on their local machines. You still
have all benefits of Java, such as platform independence, security management, and easy
database and network access. Of course, there are advantages to web deployment. For a user,
it is often easier to locate an application on the Web than on the local file system. (This is
particularly true for applications that aren't used every day.) For an administrator, it is easier
to maintain and update an application on the Web than to push out bug fixes and
improvements to lots of client desktops.

Thus, among the most successful Java programs are corporate intranet applications that
interface with corporate information systems. For example, many companies have put
expense reimbursement calculators, benefit tracking tools, schedule and vacation planners,
purchase order requests, and so on, on their corporate intranet. These programs are relatively
small, need to interface with databases, need more flexibility than web forms can easily
handle, and need to be customized to the operations of a particular company. Applets are a
perfect delivery technology for these programs. Since the user population is constrained, there
is no problem with distributing the Java Plug-In.

Core Java™ 2: Volume I–Fundamentals

585

We recommend that you choose one of the following two options for your web applications:

1. Use the Java Plug-In to deliver Java applets if you are on an intranet. This gives you
maximum control over the Java platform, fewer portability headaches, and the ability
to use the most advanced Java features. Of course, you must then manage the
deployment of the Java Plug-In.

2. If you are not on an intranet, don't use applets. Use scripting for validation; use
animated GIFs for animation; use forms and server-side processing for data entry.

A Simple Applet

For tradition's sake, let's write a NotHelloWorld program as an applet. Before we do that, we
want to point out that, from a programming point of view, an applet isn't very strange.
An applet is simply a Java class that (ultimately) extends the java.applet.Applet class.
Note that although the java.applet package is not part of the AWT package, an applet is
an AWT component, as the inheritance chain shown in Figure 10-2 illustrates. In this book,
we will use the Swing set to implement applets. All of our applets will extend the JApplet
class, the superclass for Swing applets. As you can see in Figure 10-2, JApplet is
an immediate subclass of the ordinary Applet class

Figure 10-2. Applet inheritance hierarchy

Core Java™ 2: Volume I–Fundamentals

586

NOTE

If your applet contains Swing components, you must extend the JApplet
class. Swing components inside a plain Applet don't paint correctly.

This inheritance hierarchy has some obvious but still useful consequences. For example, since
applets are AWT components, event handling in applets is done exactly as you saw in
Chapter 8.

Example 10-1 shows the code for an applet version of “Not Hello World.”

Notice how similar this is to the corresponding program from Chapter 7. However, because
the applet lives inside a web page, there is no need to specify a method for exiting the applet.

Example 10-1 NotHelloWorldApplet.java

 1. import java.awt.*;
 2. import javax.swing.*;
 3.
 4. public class NotHelloWorldApplet extends JApplet
 5. {
 6. public void init()
 7. {
 8. Container contentPane = getContentPane();
 9. JLabel label = new JLabel("Not a Hello, World applet",
10. SwingConstants.CENTER);
11. contentPane.add(label);
12. }
13. }

Running the Applet Viewer

To execute the applet, you need to carry out two steps:

1. Compile your source files into class files.

2. Create an HTML file that tells the browser which class file to load first and how to
size the applet.

It is customary (but not necessary) to give the HTML file the same name as that of the applet
class inside. So, following this tradition, we will call the file NotHelloWorldApplet.html.
Here are the contents of the file:

<APPLET CODE="NotHelloWorldApplet.class" WIDTH=300 HEIGHT=300>
</APPLET>

Before viewing the applet in a browser, it is a good idea to test it in the applet viewer program
that is a part of the Java SDK. To use the applet viewer in our example, enter

Core Java™ 2: Volume I–Fundamentals

587

appletviewer NotHelloWorldApplet.html

at the command line. The command line for the applet viewer program is the name of the
HTML file, not the class file. Figure 10-3 shows the applet viewer, displaying this applet.

Figure 10-3. Viewing an applet in the applet viewer

TIP

You can also run applets from inside your editor or integrated
environment. In Emacs, select JDE -> Run Applet from the menu. In
TextPad, choose Tools -> Run Java Applet or use the CTRL+3 keyboard
shortcut. You will be presented with a dialog that lists all HTML files in
the current directory. If you press ESC, TextPad automatically creates
a minimal HTML file for you. In Forte, you simply load the HTML page
with the applet tags. Forte contains a simple browser that shows
the applet running inside the web page. Alternatively, you can right-click
on the source file and set the value of the “Executor” property in
the Execution tab to “Applet Execution.”

TIP

Here is a weird trick to avoid the additional HTML file. Add an applet
tag as a comment inside the source file:

/*
 <APPLET CODE="MyApplet.class" WIDTH=300 HEIGHT=300>
 </APPLET>
*/
public class MyApplet extends JApplet
. . .

Then run the applet viewer with the source file as its command line
argument:

appletviewer NotHelloWorldApplet.java

We aren't necessarily recommending this as standard practice, but it can
come in handy if you want to minimize the number of files that you need
to worry about during testing.

Core Java™ 2: Volume I–Fundamentals

588

The applet viewer is good for the first stage of testing, but at some point you need to run your
applets in a browser to see them in the same way a user might use them. In particular,
the applet viewer program shows you only the applet, not the surrounding HTML text. If
an HTML file contains multiple applets, the applet viewer pops up multiple windows.

Viewing an Applet in a Browser

If you have a Java 2 enabled browser such as Netscape 6 or Opera, then you can simply load
the HTML file into the browser. However, to run the applet in Internet Explorer or Netscape
4, you need to install the Java Plug-In into the browser and convert the HTML file so that the
browser will invoke the Plug-In.

If you installed the Java 2 SDK, the Java Plug-In is automatically installed as well. However,
if you want to install the Java Plug-In separately from the SDK, you can download it from
http://java.sun.com/products/plugin.

TIP

After you install the SDK or the Java Plug-In, activate the Java Plug-In
Control Panel (see Figure 10-4). In Windows, go to the Windows control
panel (Start -> Settings -> Control panel) and double-click on the Java
Plug-In icon. In Solaris, run the command

~/.netscape/java/ControlPanel

Figure 10-4. The Java Plug-In Control Panel

or visit the page

Core Java™ 2: Volume I–Fundamentals

589

~/.netscape/java/ControlPanel.html

Then check the “Show Java Console” box. This causes a console
window to appear whenever the Java Plug-In is activated (see
Figure 10-5). That console window is very useful for displaying applet
error messages.

Figure 10-5. The Java Console

Unfortunately, the HTML tags you need to use your applet with the Java Plug-In are rather
cumbersome. Rather than creating the tags by hand, it is best to run the HTML converter tool
that Sun supplies for this purpose (see Figure 10-6). You can download the converter from
http://java.sun.com/products/plugin/1.3/converter.html. Unzip the file, for example into
/usr/local/jdk/converter or c:\jdk\converter.

Core Java™ 2: Volume I–Fundamentals

590

Figure 10-6. The Java Plug-In HTML converter

That converter tool translates a simple HTML file containing the traditional APPLET tag into
the complex HTML file that is required to invoke the Java Plug-In from various browsers.

Before starting, make a directory plugin and copy your HTML file or files into that directory.

You can start the HTML converter as follows: Change to the plugin directory and issue the
following command:

java -classpath /usr/local/jdk/converter/classes HTMLConverter

or

java -classpath c:\jdk\converter\classes HTMLConverter

By default, the converter shows a graphical user interface (see Figure 10-3). You can use the
program to convert all files in a particular directory. If you start the program from the plugin
directory, then all entries are set with reasonable defaults and you can just click the Convert
button.

Alternatively, you can use the HTMLConverter shell script or batch file in the
jdk/converter/classes directory. But then you must manually select the directory for your
HTML files.

For example, for NotHelloWorldApplet.html, we started with the following simple HTML
file:

Core Java™ 2: Volume I–Fundamentals

591

<APPLET CODE="NotHelloWorldApplet.class" WIDTH=300 HEIGHT=300>
</APPLET>

The result of the conversion is shown in Example 10-2. We will explain these HTML tags
later in this chapter.

If you prefer to use the command line, simply give a path name to the file or files that should
be converted, for example

java -classpath /usr/local/jdk/converter/classes HTMLConverter
 *.html

or

java -classpath c:\jdk\converter\classes HTMLConverter
 MyApplet.html

The command-line converter converts and backs up the file in the same way as the GUI
version, but it doesn't show you the GUI dialog.

By default, the converter produces HTML files that work for both Internet Explorer and
Netscape Navigator. There are other conversion options—see the converter documentation for
details.

The converter replaces the contents of all files in the directory and backs them up in a
directory sourcedir_BAK. For example, if you placed your original files into a directory
plugin, they are now replaced with the converted files, and the originals are in the directory
plugin_BAK.

We don't like the in-place conversion, even though the converter keeps backup copies. It is
often helpful to have both the original and the converted file around. We recommend the
following procedure:

1. Copy the files to a temporary directory.

2. Run the converter.

3. Rename the converted files to something like MyAppletPlugin.html

4. Copy the renamed files back to their original location

Once you have converted the HTML files, you are ready to launch them in your browser.
Simply load the converted HTML file into the browser. Provided that the Java Plug-In was
installed correctly, the applet will be displayed (see Figure 10-7). If the Java Plug-In was not
installed, your browser should walk you through the steps of fetching and installing it.

Core Java™ 2: Volume I–Fundamentals

592

Figure 10-7. Viewing an applet in a browser

TIP

Testing applets with the Java Plug-In is a bit of a pain because you need
to run your HTML files through the converter. If you use Netscape 4,
you can save yourself a bit of trouble, provided that your applets don't
require any Java 2 features beyond Swing. (None of the applets in this
chapter do.) Grab the Swing add-on to Java 1.1 from
http://java.sun.com/products/jfc/#download-swing. Place the file
swing.jar into the Netscape\Communicator\Program\Java\Classes
directory. Then, Netscape 4 is able to load applets that use the Swing set.
You just need to supply a simple HTML file with an APPLET tag. No
conversion to EMBED tags is necessary.

There is a similar but more complex procedure for Internet Explorer. See
http://%20-java.sun.com/products/jfc/tsc/articles/applets/index.html for
details.

Example 10-2 NotHelloWorldAppletPlugin.html

 1. <!--"CONVERTED_APPLET"-->
 2. <!-- CONVERTER VERSION 1.3 -->
 3. <OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 4. WIDTH = 300 HEIGHT = 300 codebase="http://java.sun.com/products/
 plugin/1.3/jinstall-13-win32.cab#Version=1,3,0,0">
 5. <PARAM NAME = CODE VALUE = "NotHelloWorldApplet.class" >
 6. PARAM NAME="type" VALUE="application/x-java-applet;version=1.3">
 7. <PARAM NAME="scriptable" VALUE="false">
 8. <COMMENT>
 9. <EMBED type="application/x-java-applet;version=1.3" CODE =
 "NotHelloWorldApplet.class" WIDTH = 300 HEIGHT = 300 script-
 able=false pluginspage="http://java.sun.com/products/plugin/1.3/
 plugin-install.html"><NOEMBED></COMMENT>
10. </NOEMBED></EMBED>
11. </OBJECT>
12. <!--
13. <APPLET CODE = "NotHelloWorldApplet.class" WIDTH = 300 HEIGHT = 300>
14. </APPLET>
15. -->
16. <!--"END_CONVERTED_APPLET"-->

Core Java™ 2: Volume I–Fundamentals

593

Converting Applications to Applets

It is easy to convert a graphical Java application (that is, an application that uses the AWT and
that you can start with the java command-line interpreter) into an applet that you can embed
in a web page. Essentially, all of the user interface code can stay the same.

Here are the specific steps for converting an application to an applet.

1. Make an HTML page with the appropriate tag to load the applet code.

2. Supply a subclass of the JApplet class. Make this class public. Otherwise, the applet
cannot be loaded.

3. Eliminate the main method in the application. Do not construct a frame window for
the application. Your application will be displayed inside the browser.

4. Move any initialization code from the frame window constructor to the init method
of the applet. You don't need to explicitly construct the applet object—the browser
instantiates it for you and calls the init method.

5. Remove the call to setSize; for applets, sizing is done with the WIDTH and HEIGHT
parameters in the actual HTML file.

6. Remove the call to setDefaultCloseOperation. An applet cannot be closed; it
terminates when the browser exits.

7. If the application calls setTitle, eliminate the call to the method. Applets cannot
have title bars. (You can, of course, title the web page itself, using the HTML TITLE
tag.)

8. Don't call show. The applet is displayed automatically.

As an example of this transformation, we will change the calculator application from
Chapter 7 into an applet. In Figure 10-8, you can see how it looks, sitting inside a web page.

Core Java™ 2: Volume I–Fundamentals

594

Figure 10-8. A calculator applet

Example 10-3 shows the HTML page. Note that there is some text in addition to the applet
tags.

Example 10-3 Calculator.html (before processing with the HTML converter)

1. <HTML>
2. <TITLE>A Calculator</TITLE>
3. <BODY>
4. Here is a calculator, just in case you can't find yours.
5. <APPLET CODE="CalculatorApplet.class" WIDTH=180 HEIGHT=180>
6. </APPLET>
7. </BODY>
8. </HTML>

Example 10-4 is the code for the applet. We introduced a subclass of JApplet, placed the
initialization code into the init method, and removed the calls to setTitle, setSize,
setDefaultCloseOperation and show . The CalculatorPanel class did not change at all,
and its code is omitted.

Core Java™ 2: Volume I–Fundamentals

595

Example 10-4 CalculatorApplet.java

 1. import java.awt.*;
 2. import javax.swing.*;
 3.
 4. public class CalculatorApplet extends JApplet
 5. {
 6. public void init()
 7. {
 8. Container contentPane = getContentPane();
 9. CalculatorPanel panel = new CalculatorPanel();
10. contentPane.add(panel);
11. }
12. }

java.applet.Applet

• void init()

is called when the applet is first loaded. Override this method and place all
initialization code here.

• void setSize(int width, int height)

requests that the applet be resized. This would be a great method if it worked on web
pages; unfortunately, it does not work in current browsers because it interferes with
their page-layout mechanisms. But it does work in the applet viewer, and perhaps
future browsers will support it and reflow the page when the applet size changes.

Life Cycle of an Applet

Four methods in the Applet class give you the framework on which you build any serious
applet: init, start, stop, destroy. What follows is a short description of these methods,
when these methods are called, and what code you should place into them.

• init

This method is used for whatever initialization is needed for your applet. This works
much like a constructor—it is automatically called by the system when Java launches
the applet for the first time. Common actions in an applet include processing PARAM
values and adding user interface components.

Applets can have a default constructor, but it is customary to perform all initialization
in the init method instead of the default constructor.

Core Java™ 2: Volume I–Fundamentals

596

• start

This method is automatically called after Java calls the init method. It is also called
whenever the user returns to the page containing the applet after having gone off to
other pages. This means that the start method can be called repeatedly, unlike the
init method. For this reason, put the code that you want executed only once in the
init method, rather than in the start method. The start method is where you
usually restart a thread for your applet, for example, to resume an animation. If your
applet does nothing that needs to be suspended when the user leaves the current web
page, you do not need to implement this method (or the stop method).

• stop

This method is automatically called when the user moves off the page on which the
applet sits. It can, therefore, be called repeatedly in the same applet. Its purpose is to
give you a chance to stop a time-consuming activity from slowing down the system
when the user is not paying attention to the applet. You should not call this method
directly. If your applet does not perform animation, play audio files, or perform
calculations in a thread, you do not usually need this method.

• destroy

Java guarantees to call this method when the browser shuts down normally. Since
applets are meant to live on an HTML page, you do not need to worry about
destroying the panel. This will happen automatically when the browser shuts down.
What you do need to put in the destroy method is the code for reclaiming any non-
memory-dependent resources such as graphics contexts that you may have consumed.
Of course, Java calls the stop method before calling the destroy method if the applet
is still active.

java.applet.Applet

• void start()

Override this method for code that needs to be executed every time the user visits the
browser page containing this applet. A typical action is to reactivate a thread.

• void stop()

Override this method for code that needs to be executed every time the user leaves the
browser page containing this applet. A typical action is to suspend a thread.

• void destroy()

Override this method for code that needs to be executed when the user exits the
browser. A typical action is to call destroy on system objects.

Core Java™ 2: Volume I–Fundamentals

597

Security Basics

Because applets are designed to be loaded from a remote site and then executed locally,
security becomes vital. If a user enables Java in the browser, the browser will download all
the applet code on the web page and execute it immediately. The user never gets a chance to
confirm or to stop individual applets from running. For this reason, applets (unlike
applications) are restricted in what they can do. The applet security manager throws a
SecurityException whenever an applet attempts to violate one of the access rules. (See
Volume 2 for more on security managers.)

What can applets do on all platforms? They can show images and play sounds, get keystrokes
and mouse clicks from the user, and send user input back to the host from which they were
loaded. That is enough functionality to show facts and figures or to get user input for placing
an order. The restricted execution environment for applets is often called the “sandbox."
Applets playing in the “sandbox” cannot alter the user's system or spy on it. In this chapter,
we will look only at applets that run inside the sandbox.

In particular, when running in the sandbox:

• Applets can never run any local executable program.
• Applets cannot communicate with any host other than the server from which they were

downloaded; that server is called the originating host. This rule is often called “applets
can only phone home.” This protects applet users from applets that might try to spy on
intranet resources.

• Applets cannot read from or write to the local computer's file system.
• Applets cannot find out any information about the local computer, except for the Java

version used, the name and version of the operating system, and the characters used to
separate files (for instance, / or \), paths (such as : or ;), and lines (such as \n or
\r\n). In particular, applets cannot find out the user's name, e-mail address, and so on.

• All windows that an applet pops up carry a warning message.

All this is possible only because applets are interpreted by the Java Virtual Machine and not
directly executed by the CPU on the user's computer. Because the interpreter checks all
critical instructions and program areas, a hostile (or poorly written) applet will almost
certainly not be able to crash the computer, overwrite system memory, or change the
privileges granted by the operating system.

These restrictions are too strong for some situations. For example, on a corporate intranet, you
can certainly imagine an applet wanting to access local files. To allow for different levels of
security under different situations, you can use signed applets. A signed applet carries with it
a certificate that indicates the identity of the signer. Cryptographic techniques ensure that such
a certificate cannot be forged. If you trust the signer, you can choose to give the applet
additional rights. (We cover code signing in Volume 2.)

The point is that if you trust the signer of the applet, you can tell the browser to give the
applet more privileges. You can, for example, give applets in your corporate intranet a higher
level of trust than those from http://www.hacker.com/. The configurable Java security model
allows the continuum of privilege levels you need. You can give completely trusted applets
the same privilege levels as local applications. Programs from vendors that are known to be

Core Java™ 2: Volume I–Fundamentals

598

somewhat flaky can be given access to some, but not all, privileges. Unknown applets can be
restricted to the sandbox.

To sum up, Java has three separate mechanisms for enforcing security:

1. Program code is interpreted by the Java Virtual Machine, not executed directly.
2. A security manager checks all sensitive operations in the Java runtime library.
3. Applets can be signed to identify their origin.

NOTE

In contrast, the security model of the ActiveX technology by Microsoft
relies solely on the third option. If you want to run an ActiveX control at
all, you must trust it completely. That model works fine when you deal
with a small number of trusted suppliers, but it simply does not scale up
to the World Wide Web. If you use Internet Explorer, you will see the
ActiveX mechanism at work. You'll need to accept Sun's certificate to
install the Java Plug-In on Internet Explorer. The certificate tells you that
the code came from Sun. It doesn't tell you anything about the quality of
the code. Once you accept the installation, the program runs without any
further security checks.

Pop-Up Windows in Applets

An applet sits embedded in a web page, in a frame of a size that is fixed by the WIDTH and
HEIGHT values in the applet tags of the HTML page. This can be quite limiting. Many
programmers wonder whether they can have a pop-up window to make better use of the
available space. It is indeed possible to create a pop-up frame. Here is a simple applet with a
single button labeled Calculator. When you click on the button, a calculator pops up in a
separate window.

The pop-up is easy to do. Simply use a JFrame, but don't call setDefaultCloseOperation.

frame = new CalculatorFrame();
frame.setTitle("Calculator");
frame.setSize(200, 200);

When the user clicks the button, toggle the frame so that it is shown if it isn't visible and
hidden if it is. When you click on the calculator button, the dialog box pops up and floats over
the web page. When you click on the button again, the calculator goes away.

JButton calcButton = new JButton("Calculator");
calcButton.addActionListener(new
 ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 if (frame.isVisible()) frame.setVisible(false);
 else frame.show();
 }
 });

Core Java™ 2: Volume I–Fundamentals

599

There is, however, a catch that you need to know about before you put this applet on your
web page. To see how the calculator looks to a potential user, load the web page from a
browser, not the applet viewer. The calculator will be surrounded by a border with a warning
message (see Figure 10-9).

Figure 10-9. A pop-up window inside a browser

In early browser versions, that message was very ominous: “Untrusted Java Applet Window.”
Every successive version of the SDK watered down the warning a bit—“Unauthenticated Java
Applet Window,” or “Warning: Java Applet Window.” Now it is simply “Java Applet
Window.”

This message is a security feature of all web browsers. The browser wants to make sure that
your applet does not launch a window that the user might mistake for a local application. The
fear is that an unsuspecting user could visit a web page, which automatically launches
the applets on it, and mistakenly type in a password or credit card number, which the applet
would send back to its host.

To avoid any possibility of shenanigans like this, all pop-up windows launched by an applet
bear a warning label. If your browser supports signed applets, you can configure it to omit
the warning message for pop-up windows that are spawned by signed applets.

Example 10-5 shows the code for the PopupCalculatorApplet class. The code for
the CalculatorPanel is unchanged from Chapter 9 and is not shown.

Core Java™ 2: Volume I–Fundamentals

600

Example 10-5 PopupCalculatorApplet.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class PopupCalculatorApplet extends JApplet
 6. {
 7. public void init()
 8. {
 9. // create a frame with a calculator panel
10.
11. frame = new JFrame();
12. frame.setTitle("Calculator");
13. frame.setSize(200, 200);
14. frame.getContentPane().add(new CalculatorPanel());
15.
16. // add a button that pops up or hides the calculator
17.
18. JButton calcButton = new JButton("Calculator");
19. getContentPane().add(calcButton);
20.
21. calcButton.addActionListener(new
22. ActionListener()
23. {
24. public void actionPerformed(ActionEvent evt)
25. {
26. if (frame.isVisible()) frame.setVisible(false);
27. else frame.show();
28. }
29. });
30. }
31.
32. private JFrame frame;
33. }

The Applet HTML Tags and Attributes

We'll first focus on the APPLET tag, although it is deprecated in the latest versions of the W3
HTML specification. This is because Sun's applet viewer and the Java Plug-In HTML
translator don't yet understand the newer OBJECT tag.

In its most basic form, an example for using the APPLET tag looks like this:

<APPLET CODE="NotHelloWorldApplet.class" WIDTH=100 HEIGHT=100>

As you have seen, the CODE attribute gives the name of the class file and must include the
.class extension; the WIDTH and HEIGHT attributes size the window that will hold the applet.
Both are measured in pixels. You also need a matching <APPLET> tag that marks the end of
the HTML tagging needed for an applet. The text between the <APPLET> and </APPLET> tags
is displayed only if the browser cannot show applets. These tags are required. If any are
missing, the browser cannot load your applet.

All of this information would usually be embedded in an HTML page that, at the very least,
might look like this:

Core Java™ 2: Volume I–Fundamentals

601

<HTML>
<HEAD>
<TITLE>NotHelloWorldApplet</TITLE>
</HEAD>
<BODY>
The next line of text is displayed under
the auspices of Java:
<APPLET CODE="NotHelloWorldApplet.class" WIDTH=100 HEIGHT=100>
If your browser could show Java, you would see
an applet here
</APPLET>
</BODY>
</HTML>

NOTE

According to the HTML specification, the HTML tags and attributes
such as APPLET can be in upper- or lowercase. Case is relevant in
identifying the name of the applet class. The letter case may be
significant in other items enclosed in quotes, such as names of JAR files,
if the web server file system is case sensitive.

Applet Attributes for Positioning

What follows are short discussions of the various attributes that you can (or must) use within
the APPLET tag to position your applet. For those familiar with HTML, many of these
attributes are similar to those used with the IMG tag for image placement on a web page.

• WIDTH, HEIGHT

These attributes are required and give the width and height of the applet, measured in
pixels. In the applet viewer, this is the initial size of the applet. You can resize any
window that the applet viewer creates. In a browser, you cannot resize the applet. You
will need to make a good guess about how much space your applet requires to show
up well for all users.

• ALIGN

This attribute specifies the alignment of the applet. There are two basic choices. The
applet can be a block with text flowing around it, or the applet can be inline, floating
inside a line of text as if it were an oversized text character. The first two values (LEFT
and RIGHT) make the text flow around the applet. The others make the applet flow
with the text.

The choices are described in Table 10-1.

Core Java™ 2: Volume I–Fundamentals

602

Table 10-1. Applet positioning attributes
Attribute What It Does
LEFT Places the applet at the left margin of the page. Text that follows on the page goes in

the space to the right of the applet.
RIGHT Places the applet at the right margin of the page. Text that follows on the page goes

in the space to the left of the applet.
BOTTOM Places the bottom of the applet at the bottom of the text in the current line.
TOP Places the top of the applet with the top of the current line.
TEXTTOP Places the top of the applet with the top of the text in the current line.
MIDDLE Places the middle of the applet with the baseline of the current line.
ABSMIDDLE Places the middle of the applet with the middle of the current line.
BASELINE Places the bottom of the applet with the baseline of the current line.
ABSBOTTOM Places the bottom of the applet with the bottom of the current line.
VSPACE,
HSPACE

These optional attributes specify the number of pixels above and below the applet
(VSPACE) and on each side of the applet (HSPACE).

Figure 10-10 shows all alignment options for an applet that floats with the surrounding text.
The vertical bar at the beginning of each line is an image. Since the image is taller than
the text, you can see the difference between alignment with the top or bottom of the line and
the top or bottom of the text.

Core Java™ 2: Volume I–Fundamentals

603

Figure 10-10. Applet alignment

Applet Attributes for Code

The following applet attributes tell the browser how to locate the applet code; here are short
descriptions.

• CODE

This attribute gives the name of the applet's class file. This name is taken relative to
the codebase (see below) or relative to the current page.

If you use a relative path name, then the path name must match the package of the
applet class. For example, if the applet class is in the package com.mycompany, then
the attribute is CODE="com/mycompany/MyApplet.class". The alternative
CODE="com.mycompany.MyApplet.class" is also permitted. But you cannot use

Core Java™ 2: Volume I–Fundamentals

604

absolute path names here. Use the CODEBASE attribute if your class file is located
elsewhere.

The CODE attribute specifies only the name of the class that contains the applet class.
Of course, your applet may contain other class files. Once the browser's class loader
loads the class containing the applet, it will realize that it needs more class files, and
will load them.

Either the CODE or the OBJECT attribute (see below) is required.

• CODEBASE

This optional attribute tells the browser that your class files are found below the
directory indicated in the CODEBASE attribute. For example, if an applet called
CalculatorApplet is in the directory MyApplets, and the MyApplets directory is
below the location of the web page, you would use:

<APPLET CODE="CalculatorApplet.class" CODEBASE="MyApplets"
 WIDTH=100 HEIGHT=150>

In other words, the file layout looks like this:

aDirectory/
 CalculatorApplet.html
 MyApplets/
 CalculatorApplet.class

• ARCHIVE

This optional attribute lists the Java archive file or files containing classes and other
resources for the applet. (See the section on JAR files later in this chapter for more on
Java archive files.) These files are fetched from the web server before the applet is
loaded. This technique speeds up the loading process significantly since only one
HTTP request is necessary to load a JAR file that contains many smaller files. The
JAR files are separated by commas. For example:

<APPLET CODE="CalculatorApplet.class" ARCHIVE=
 "CalculatorClasses.jar,corejava/CoreJavaClasses.jar"
 WIDTH=100 HEIGHT=150>

TIP

This attribute has one very important application. If you have an applet
that uses the Swing set but does not otherwise require any Java 2
features, you can deploy it in browsers compatible with Java 1.1
browsers (such as Netscape 4 and Internet Explorer) by supplying a JAR
file that contains all Swing classes. You can obtain the appropriate JAR
file by downloading the Swing supplement to Java 1.1 from
http://java.sun.com/products/jfc/#download-swing. You must then
package your applet inside a JAR file and load it together with the Swing
JAR file. Then, supply an ARCHIVE parameter that looks like this:

Core Java™ 2: Volume I–Fundamentals

605

<APPLET CODE="CalculatorApplet.class"
 ARCHIVE="CalculatorAppletClasses.jar,swing.jar"
 WIDTH=100 HEIGHT=150>

The file swing.jar is about one Mbyte, which is a pretty hefty
download. So, you may not want to do this in a situation where some
users might use a dial-up line to access your web page. Of course, the
Java Plug-In download is even larger, but it only needs to be done once.
The JAR file is downloaded every time.

• OBJECT

As another way to specify the applet class file, you can specify the name of a file that
contains the serialized applet object, but browsers vary in support of this attribute. You
will definitely need to use the Java Plug-In if you want to use this feature. (An object
is serialized when you write all its data fields to a file. We will discuss serialization in
Chapter 12.) The object is deserialized from the file to return it to its previous state.
When you use this attribute, the init method is not called, but the applet's start
method is called. Before serializing an applet object, you should call its stop method.
This feature is useful for implementing a persistent browser that automatically reloads
its applets and has them return to the same state that they were in when the browser
was closed. This is a specialized feature, not normally encountered by web page
designers.

Either CODE or OBJECT must be present in every APPLET tag. For example,

<APPLET OBJECT="CalculatorApplet.ser" WIDTH=100 HEIGHT=150>

• NAME

Scripters will want to give the applet a NAME attribute that they can use to refer to the
applet when scripting. Both Netscape and Internet Explorer let you call methods of an
applet on a page through JavaScript. This is not a book on JavaScript, so we only give
you a brief idea of the code that is required to call Java code from JavaScript.

NOTE

JavaScript is a scripting language that can be used inside web pages,
invented by Netscape and originally called LiveScript. It has little to do
with Java, except for some similarity in syntax. It was a marketing move
to call it JavaScript. A subset (with the catchy name of ECMAScript) is
standardized as ECMA-262. But, to nobody's surprise, Netscape and
Microsoft support incompatible extensions of that standard in their
browsers. For more information on JavaScript, we recommend the book
JavaScript: The Definitive Guide by David Flanagan, published by
O'Reilly & Associates.

To access an applet from JavaScript, you first have to give it a name.

Core Java™ 2: Volume I–Fundamentals

606

<APPLET CODE="CalculatorApplet.class"
 WIDTH=100 HEIGHT=150
 NAME="calc">
</APPLET>

You can then refer to the object as document.applets.appletname. For example,

var calcApplet = document.applets.calc;

Through the magic of the integration between Java and JavaScript that both Netscape and
Internet Explorer provide, you can call applet methods:

calcApplet.clear();

(Our calculator applet doesn't have a clear method; we just want to show you the syntax.)

TIP

In http://www.javaworld.com/javatips/jw-javatip80.html, Francis Lu
uses JavaScript-to-Java communication to solve an age-old problem: to
resize an applet so that it isn't bound by hardcoded WIDTH and HEIGHT
attributes. This is a good example of the integration between Java and
JavaScript. It also shows how messy it is to write JavaScript that works
on multiple browsers.

The NAME attribute is also essential when you want two applets on the same page to
communicate with each other directly. You specify a name for each current applet instance.
You pass this string to the getApplet method of the AppletContext class. We will discuss
this mechanism, called inter-applet communication, later in this chapter.

Applet Attributes for Java-Challenged Viewers

If a web page containing an APPLET tag is viewed by a browser that is not aware of Java
applets, then the browser ignores the unknown APPLET and PARAM tags. All text between
the <APPLET> and </APPLET> tags is displayed by the browser. Conversely, Java-aware
browsers do not display any text between the <APPLET> and </APPLET> tags. You can display
messages inside these tags for those poor folks that use a prehistoric browser. For example,

<APPLET CODE="CalculatorApplet.class" WIDTH=100 HEIGHT=150>
If your browser could show Java, you would see
a calculator here
</APPLET>

Of course, nowadays most browsers know about Java, but Java may be deactivated, perhaps
by the user or by a paranoid system administrator. You can then use the ALT attribute to
display a message to these unfortunate souls.

<APPLET CODE="CalculatorApplet.class" WIDTH=100 HEIGHT=150
ALT="If your browser could show Java, you would see
a calculator here">

Core Java™ 2: Volume I–Fundamentals

607

The OBJECT Tag

The OBJECT tag is part of the HTML 4.0 standard, and the W3 consortium suggests that
people use it instead of the APPLET tag. There are 35 different attributes to the OBJECT tag,
most of which (such as ONKEYDOWN) are relevant only to people writing Dynamic HTML. The
various positioning attributes such as ALIGN and HEIGHT work exactly as they did for the
APPLET tag. The key attribute in the OBJECT tag for your Java applets is the CLASSID attribute.
This attribute specifies the location of the object. Of course, OBJECT tags can load different
kinds of objects, such as Java applets or ActiveX components like the Java Plug-In itself. In
the CODETYPE attribute, you specify the nature of the object. For example, Java applets have a
code type of application/java. Here is an OBJECT tag to load a Java applet:

<OBJECT
 CODETYPE="application/java"
 CLASSID="java:CalculatorApplet.class"
 WIDTH=100 HEIGHT=150>

Note that the CLASSID attribute can be followed by a CODEBASE attribute that works exactly as
it did with the APPLET tag.

You can use the OBJECT tag to load applets into the current versions of Netscape and Internet
Explorer, but the applet viewer and the Java Plug-In HTML converter do not understand
the OBJECT tag for applets.

Java Plug-In Tags

The Java Plug-In is loaded as a Netscape plug-in or an ActiveX control, via the EMBED or
OBJECT tag. For example, the equivalent of the tag

<APPLET
 CODE="CalculatorApplet.class"
 CODEBASE="MyApplets"
 WIDTH=100
 HEIGHT=150>
<PARAM NAME="Font" VALUE="Helvetica">
</APPLET>

in Netscape Navigator is

<EMBED TYPE="application/x-java-applet;version=1.3"
 PLUGINSPAGE="http://java.sun.com/products/plugin/1.3
 /plugin-install.html"
 CODE="CalculatorApplet.class"
 CODEBASE="MyApplets"
 WIDTH=100
 HEIGHT=150>
<PARAM NAME="Font" VALUE="Helvetica">
</EMBED>

The equivalent tag in Internet Explorer is

Core Java™ 2: Volume I–Fundamentals

608

<OBJECT CLASSID="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 CODEBASE="http://java.sun.com/products/plugin/1.1
 /jinstall-11-win32.cab#Version=1,3,0,0"
 WIDTH=100
 HEIGHT=150>
<PARAM NAME="TYPE" VALUE="application/x-java-applet;
 version=1.3">
<PARAM NAME="CODE" VALUE="CalculatorApplet.class">
<PARAM NAME="CODEBASE" VALUE="MyApplets">
<PARAM NAME="Font" VALUE="Helvetica">
</OBJECT>

Here are the details of the tag conversions if you insist on doing them by hand.

It is easy to convert from the APPLET tag to the EMBED tag: just change APPLET to EMBED and
add the TYPE and PLUGINSPAGE attributes.

Converting from the APPLET tag to the OBJECT tag is more complex. You need to add the
CLASSID and CODEBASE attributes, and add a PARAM tag with name TYPE. (The CLASSID is
always the same number; it is the globally unique ActiveX ID of the Java Plug-In.) Keep all
attributes, except the ones listed in Table 10-2 that need to be converted to PARAM tags. If they
conflict with existing PARAM tags, you can optionally use the prefix JAVA_ for the parameter
names; for example,

<PARAM NAME="JAVA_CODE" VALUE="CalculatorApplet.class">

As you can see, the differences between these tags are purely cosmetic. In practice, it is best
to use the Java Plug-In HTML converter or some other script to produce the HTML code
automatically.

The Java Plug-In HTML converter also adds glue code that automatically selects the tags that
match the browser. It either uses JavaScript or an incredibly convoluted sequence of tags that
are selectively ignored by different browsers. For more information on this sordid topic, have
a look at the HTML converter documentation or the article at
http://java.sun.com/products/jfc/tsc/articles/plugin/index.html.

Table 10-2. Translating between APPLET and OBJECT attributes
APPLET OBJECT
ALT=... N/A
ARCHIVE=... <PARAM NAME="ARCHIVE" VALUE=...>
CODE=... <PARAM NAME="CODE" VALUE=...>
CODEBASE=... <PARAM NAME="CODEBASE" VALUE=...>
OBJECT=... <PARAM NAME="OBJECT" VALUE=...>

Passing Information to Applets

Just as applications can use command-line information, applets can use parameters that are
embedded in the HTML file. This is done via the HTML tag called PARAM along with
attributes that you define. For example, suppose you want to let the web page determine the
style of the font to use in your applet. You could use the following HTML tags:

Core Java™ 2: Volume I–Fundamentals

609

<APPLET CODE="FontParamApplet.class" WIDTH=200, HEIGHT=200>
<PARAM NAME="font" VALUE="Helvetica">
</APPLET>

You then pick up the value of the parameter, using the getParameter method of the Applet
class, as in the following example:

public class FontParamApplet extends JApplet
{
 public void init()
 {
 String fontName = getParameter("font");
 . . .
 }
 . . .
}

NOTE

You can call the getParameter method only in the init method of the
applet, not in the constructor. When the applet constructor is executed,
the parameters are not yet prepared. Since the layout of most nontrivial
applets is determined by parameters, we recommend that you don't
supply constructors to applets. Simply place all initialization code into
the init method.

Parameters are always returned as strings. You need to convert the string to a numeric type if
that is what is called for. You do this in the standard way by using the appropriate method,
such as parseInt of the Integer class.

For example, if we wanted to add a size parameter for the font, then the HTML code might
look like this:

<APPLET CODE="FontParamApplet.class" WIDTH=200 HEIGHT=200>
<PARAM NAME="font" VALUE="Helvetica">
<PARAM NAME="size" VALUE="24">
</APPLET>

The following source code shows how to read the integer parameter.

public class FontParamApplet extends JApplet
{
 public void init()
 {
 String fontName = getParameter("font");
 int fontSize = Integer.parseInt(getParameter("size"));
 . . .
 }
}

Core Java™ 2: Volume I–Fundamentals

610

NOTE

The strings used when you define the parameters via the PARAM tag and
those used in the getParameter method must match exactly. In
particular, both are case sensitive.

In addition to ensuring that the parameters match in your code, you should find out whether or
not the size parameter was left out. You do this with a simple test for null. For example:

int fontsize;
String sizeString = getParameter("size");
if (sizeString == null) fontSize = 12;
else fontSize = Integer.parseInt(sizeString);

Here is a useful applet that uses parameters extensively. The applet draws a bar chart, shown
in Figure 10-11.

Figure 10-11. A chart applet

The applet takes the labels and the heights of the bars from the PARAM values in the HTML
file. Here is what the HTML file for Figure 10-11 looks like:

<APPLET CODE="Chart.class" WIDTH=400 HEIGHT=300>
<PARAM NAME="title" VALUE="Diameters of the Planets">
<PARAM NAME="values" VALUE="9">
<PARAM NAME="name_1" VALUE="Mercury">
<PARAM NAME="name_2" VALUE="Venus">
<PARAM NAME="name_3" VALUE="Earth">

Core Java™ 2: Volume I–Fundamentals

611

<PARAM NAME="name_4" VALUE="Mars">
<PARAM NAME="name_5" VALUE="Jupiter">
<PARAM NAME="name_6" VALUE="Saturn">
<PARAM NAME="name_7" VALUE="Uranus">
<PARAM NAME="name_8" VALUE="Neptune">
<PARAM NAME="name_9" VALUE="Pluto">
<PARAM NAME="value_1" VALUE="3100">
<PARAM NAME="value_2" VALUE="7500">
<PARAM NAME="value_3" VALUE="8000">
<PARAM NAME="value_4" VALUE="4200">
<PARAM NAME="value_5" VALUE="88000">
<PARAM NAME="value_6" VALUE="71000">
<PARAM NAME="value_7" VALUE="32000">
<PARAM NAME="value_8" VALUE="30600">
<PARAM NAME="value_9" VALUE="1430">
</APPLET>

You could have set up an array of strings and an array of numbers in the applet, but there are
two advantages to using the PARAM mechanism instead. You can have multiple copies of the
same applet on your web page, showing different graphs: just put two APPLET tags with
different sets of parameters on the page. And you can change the data that you want to chart.
Admittedly, the diameters of the planets will stay the same for quite some time, but suppose
your web page contains a chart of weekly sales data. It is easy to update the web page because
it is plain text. Editing and recompiling a Java file on a weekly basis is more tedious.

In fact, there are commercial Java beans that make much fancier graphs than the one in our
chart applet. If you buy one, you can drop it into your web page and feed it parameters
without ever needing to know how the applet renders the graphs.

Example 10-6 is the source code of our chart applet. Note that the init method reads
the parameters, and the paintComponent method draws the chart.

Example 10-6 Chart.java

 1. import java.awt.*;
 2. import java.awt.font.*;
 3. import java.awt.geom.*;
 4. import javax.swing.*;
 5.
 6. public class Chart extends JApplet
 7. {
 8. public void init()
 9. {
 10. String v = getParameter("values");
 11. if (v == null) return;
 12. int n = Integer.parseInt(v);
 13. double[] values = new double[n];
 14. String[] names = new String[n];
 15. int i;
 16. for (i = 0; i < n; i++)
 17. {
 18. values[i] = Double.parseDouble
 19. (getParameter("value_" + (i + 1)));
 20. names[i] = getParameter("name_" + (i + 1));
 21. }
 22.

Core Java™ 2: Volume I–Fundamentals

612

 23. Container contentPane = getContentPane();
 24. contentPane.add(new ChartPanel(values, names,
 25. getParameter("title")));
 26. }
 27. }
 28.
 29. /**
 30. A panel that draws a bar chart.
 31. */
 32. class ChartPanel extends JPanel
 33. {
 34. /**
 35. Constructs a ChartPanel.
 36. @param v the array of values for the chart
 37. @param n the array of names for the values
 38. @param t the title of the chart
 39. */
 40. public ChartPanel(double[] v, String[] n, String t)
 41. {
 42. names = n;
 43. values = v;
 44. title = t;
 45. }
 46.
 47. public void paintComponent(Graphics g)
 48. {
 49. super.paintComponent(g);
 50. Graphics2D g2 = (Graphics2D)g;
 51.
 52. // compute the minimum and maximum values
 53. if (values == null) return;
 54. double minValue = 0;
 55. double maxValue = 0;
 56. for (int i = 0; i < values.length; i++)
 57. {
 58. if (minValue > values[i]) minValue = values[i];
 59. if (maxValue < values[i]) maxValue = values[i];
 60. }
 61. if (maxValue == minValue) return;
 62.
 63. int panelWidth = getWidth();
 64. int panelHeight = getHeight();
 65.
 66. Font titleFont = new Font("SansSerif", Font.BOLD, 20);
 67. Font labelFont = new Font("SansSerif", Font.PLAIN, 10);
 68.
 69. // compute the extent of the title
 70. FontRenderContext context = g2.getFontRenderContext();
 71. Rectangle2D titleBounds
 72. = titleFont.getStringBounds(title, context);
 73. double titleWidth = titleBounds.getWidth();
 74. double top = titleBounds.getHeight();
 75.
 76. // draw the title
 77. double y = -titleBounds.getY(); // ascent
 78. double x = (panelWidth - titleWidth) / 2;
 79. g2.setFont(titleFont);
 80. g2.drawString(title, (float)x, (float)y);
 81.

Core Java™ 2: Volume I–Fundamentals

613

 82. // compute the extent of the bar labels
 83. LineMetrics labelMetrics
 84. = labelFont.getLineMetrics("", context);
 85. double bottom = labelMetrics.getHeight();
 86.
 87. y = panelHeight - labelMetrics.getDescent();
 88. g2.setFont(labelFont);
 89.
 90. // get the scale factor and width for the bars
 91. double scale = (panelHeight - top - bottom)
 92. / (maxValue - minValue);
 93. int barWidth = panelWidth / values.length;
 94.
 95. // draw the bars
 96. for (int i = 0; i < values.length; i++)
 97. {
 98. // get the coordinates of the bar rectangle
 99. double x1 = i * barWidth + 1;
100. double y1 = top;
101. double height = values[i] * scale;
102. if (values[i] >= 0)
103. y1 += (maxValue - values[i]) * scale;
104. else
105. {
106. y1 += maxValue * scale;
107. height = -height;
108. }
109.
110. // fill the bar and draw the bar outline
111. Rectangle2D rect = new Rectangle2D.Double(x1, y1,
112. barWidth - 2, height);
113. g2.setPaint(Color.red);
114. g2.fill(rect);
115. g2.setPaint(Color.black);
116. g2.draw(rect);
117.
118. // draw the centered label below the bar
119. Rectangle2D labelBounds
120. = labelFont.getStringBounds(names[i], context);
121.
122. double labelWidth = labelBounds.getWidth();
123. x = i * barWidth + (barWidth - labelWidth) / 2;
124. g2.drawString(names[i], (float)x, (float)y);
125. }
126. }
127.
128. private double[] values;
129. private String[] names;
130. private String title;
131. }

java.applet.Applet

• public String getParameter(String name)

Core Java™ 2: Volume I–Fundamentals

614

gets a parameter defined with a PARAM directive in the web page loading the applet.
The string is case sensitive.

• public String getAppletInfo()

is a method that many applet authors override to return a string that contains
information about the author, version, and copyright of the current applet. You need to
create this information by overriding this method in your applet class.

• public String[][] getParameterInfo()

is a method that many applet authors override to return an array of PARAM tag options
that this applet supports. Each row contains three entries: the name, the type, and a
description of the parameter. Here is an example:

"fps", "1-10", "frames per second"
"repeat", "boolean", "repeat image loop?"
"images", "url", "directory containing images"

Multimedia

Applets can handle both images and audio. As we write this, images must be in GIF or JPEG
form, audio files in AU, AIFF, WAV, or MIDI. Animated GIFs are ok, and the animation is
displayed. Usually the files containing this information are specified as a URL, so we take
URLs up first.

URLs

A URL is really nothing more than a description of a resource on the Internet. For example,
"http://java.sun.com/index.html" tells the browser to use the hypertext transfer
protocol on the file index.html located at java.sun.com. Java has the class URL that
encapsulates URLs. The simplest way to make a URL is to give a string to the URL
constructor:

URL u = new URL("http://java.sun.com/index.html");

This is called an absolute URL because we specify the entire resource name. Another useful
URL constructor is a relative URL.

URL data = new URL(u, "data/planets.dat");

This specifies the file planets.dat, located in the data subdirectory of the URL u.

Both constructors make sure that you have used the correct syntax for a URL. If you haven't,
they cause a MalformedURLException. This is one of the exceptions that the compiler will
not let you ignore. The relevant code is as follows:

Core Java™ 2: Volume I–Fundamentals

615

try
{
 String s = "http://java.sun.com/index.html";
 URL u = new URL(s);
 . . .
}
catch(MalformedURLException exception)
{
 // deal with error
 exception.printStackTrace();
}

We will discuss this syntax for dealing with exceptions in detail in Chapter 12. Until then, if
you see code like this in one of our code samples, just gloss over the try and catch
keywords.

A common way of obtaining a URL is to ask an applet where it came from, in particular:

• What is the URL of the page that is calling it?
• What is the URL of the applet itself?

To find the former, use the getDocumentBase method; to find the latter, use getCodeBase.
You do not need to place these calls in a try block.

NOTE

You can access secure web pages (https URLs) from applets and
through the Java Plug-In—see
http://java.sun.com/products/plugin/1.3/docs/https.html. This uses
the SSL capabilities of the underlying browser.

Obtaining Multimedia Files

You can retrieve images and audio files with the getImage and getAudioClip methods. For
example:

Image cat = getImage(getDocumentBase(), "images/cat.gif");
AudioClip meow = getAudioClip(getDocumentBase(),
 "audio/meow.au");

Here, we use the getDocumentBase method that returns the URL from which your applet is
loaded. The second argument to the URL constructor specifies where the image or audio clip is
located, relative to the base document. (Applets do not need to go through a Toolkit object to
get an image.)

Core Java™ 2: Volume I–Fundamentals

616

NOTE

The images and audio clips must be located on the same server that hosts
the applet code. For security reasons, applets cannot access files on
another server (“applets can only phone home”).

Once you have the images and audio clips, what can you do with them? You saw in Chapter 7
how to display a single image. In the multithreading chapter of Volume 2, you will see how to
play an animation sequence composed of multiple images. To play an audio clip, simply
invoke its play method.

You can also call play without first loading the audio clip.

play(getDocumentBase(), "audio/meow.au");

However, to show an image, you must first load it.

For faster downloading, multimedia objects can be stored in JAR files (see the section below).
The getImage and getAudioClip/play methods automatically search the JAR files of the
applet. If the image or audio file is contained in a JAR file, it is loaded immediately.
Otherwise, the browser requests it from the web server.

java.net.URL

• URL(String name)

creates a URL object from a string describing an absolute URL.

• URL(URL base, String name)

creates a relative URL object. If the string name describes an absolute URL, then the
base URL is ignored. Otherwise, it is interpreted as a relative directory from the base
URL.

java.applet.Applet

• URL getDocumentBase()

gets the URL for the page that contains the applet.

Core Java™ 2: Volume I–Fundamentals

617

• URL getCodeBase()

gets the URL of the applet code itself.

• void play(URL url)
• void play(URL url, String name)

The first form plays an audio file specified by the URL. The second form uses the
string to provide a path relative to the URL in the first argument. Nothing happens if
the audio clip cannot be found.

• AudioClip getAudioClip(URL url)
• AudioClip getAudioClip(URL url, String name)

The first form gets an audio clip, given a URL. The second form uses the string to
provide a path relative to the URL in the first argument. The methods return null if
the audio clip cannot be found.

• Image getImage(URL url)
• Image getImage(URL url, String name)

return an image object that encapsulates the image specified by the URL. If the image
does not exist, this method immediately returns null. Otherwise, a separate thread is
launched to load the image. See Chapter 7 for details on image acquisition.

The Applet Context

An applet runs inside a browser or the applet viewer. An applet can ask the browser to do
things for it, for example, fetch an audio clip, show a short message in the status line, or show
a different web page. The ambient browser can carry out these requests, or it can ignore them.
For example, if an applet running inside the applet viewer asks the applet viewer program to
show a web page, nothing happens.

To communicate with the browser, an applet calls the getAppletContext method. That
method returns an object that implements an interface of type AppletContext. You can think
of the concrete implementation of the AppletContext interface as a communication path
between the applet and the ambient browser. In addition to getAudioClip and getImage, the
AppletContext interface contains several useful methods, which we discuss in the next few
sections.

Inter-Applet Communication

A web page can contain more than one applet. If a web page contains multiple applets from
the same CODEBASE, they can communicate with each other. Naturally, this is an advanced
technique that you probably will not need very often.

If you give NAME attributes to each applet in the HTML file, you can use the
getApplet(String) method of the AppletContext interface to get a reference to the applet.
For example, if your HTML file contains the tag

Core Java™ 2: Volume I–Fundamentals

618

<APPLET CODE="Chart.class" WIDTH=100 HEIGHT=100 NAME="Chart1">

then the call

Applet chart1 = getAppletContext().getApplet("Chart1");

gives you a reference to the applet. What can you do with the reference? Provided you give
the Chart class a method to accept new data and redraw the chart, you can call this method by
making the appropriate cast.

((Chart)chart1).setData(3, "Earth", 9000);

You can also list all applets on a web page, whether or not they have a NAME attribute. The
getApplets method returns a so-called enumeration object. (You will learn more about
enumeration objects in Volume 2.) Here is a loop that prints the class names of all applets on
the current page.

Enumeration e = getAppletContext().getApplets();
while (e.hasMoreElements())
{
 Object a = e.nextElement();
 System.out.println(a.getClass().getName());
}

An applet cannot communicate with an applet on a different web page.

Displaying Items in the Browser

You have access to two areas of the ambient browsers: the status line and the web page
display area. Both use methods of the AppletContext class.

You can display a string in the status line at the bottom of the browser with the showStatus
message, for example,

showStatus("Loading data . . . please wait");

TIP

In our experience, showStatus is of limited use. The browser is also
using the status line, and, more often than not, it will overwrite your
precious message with chatter like "Applet running". Use the status
line for fluff messages like "Loading data . . . please wait," but
not for something that the user cannot afford to miss.

You can tell the browser to show a different web page with the showDocument method. There
are several ways to do this. The simplest is with a call to showDocument with one argument,
the URL you want to show.

URL u = new URL("http://java.sun.com/index.html");
getAppletContext().showDocument(u);

Core Java™ 2: Volume I–Fundamentals

619

The problem with this call is that it opens the new web page in the same window as your
current page, thereby displacing your applet. To return to your applet, the user must click the
Back button of the browser.

You can tell the browser to show the applet in another window by giving a second parameter
in the call to showDocument. The second argument is a string. If it is the special string
"_blank", the browser opens a new window with the document, instead of displacing the
current document. More importantly, if you take advantage of the frame feature in HTML,
you can split a browser window into multiple frames, each of which has a name. You can put
your applet into one frame and have it show documents in other frames. We will show you an
example of how to do this in the next section.

Table 10-3 shows all possible arguments to showDocument.

Table 10-3. showDocument arguments
Second Argument to
showDocument

Location

"_self" or none Show the document in the current frame.
"_parent" Show the document in the parent frame.
"_top" Show the document in the topmost frame.
"_blank" Show in new, unnamed, top-level window.
Any other string Show in the frame with that name. If no frame with that name exists,

open a new window and give it that name.

java.applet.Applet

• public AppletContext getAppletContext()

gives you a handle to the applet's browser environment. On most browsers, you can
use this information to control the browser in which the applet is running.

• void showStatus(String msg)

shows the string specified in the status line of the browser.

• AudioClip getAudioClip(URL url)

returns an AudioClip object, which stores the sound file specified by the URL. Use
the play method to actually play the file.

Core Java™ 2: Volume I–Fundamentals

620

java.applet.AppletContext

• Enumeration getApplets()

returns an enumeration (see Volume 2) of all the applets in the same context, that is,
the same web page.

• Applet getApplet(String name)

returns the applet in the current context with the given name; returns null if none
exists. Only the current web page is searched.

• void showDocument(URL url)
• void showDocument(URL url, String target)

show a new web page in a frame in the browser. In the first form, the new page
displaces the current page. The second form uses the string to identify the target
frame. The target string can be one of the following: "_self" (show in current frame,
equivalent to the first form of the method), "_parent" (show in parent frame), "_top"
(show in topmost frame), and "_blank" (show in new, unnamed, top-level window).
Or, the target string can be the name of a frame.

NOTE

Sun's applet viewer does not show web pages. The showDocument
command is ignored in the applet viewer.

A Bookmark Applet

This applet takes advantage of the frame feature in HTML 3.2 or later. We divide the screen
vertically into two frames. The left frame contains a Java applet that shows a list of
bookmarks. When you select any of the bookmarks, the applet then goes to the corresponding
web page and displays it on the right (see Figure 10-12).

Core Java™ 2: Volume I–Fundamentals

621

Figure 10-12. A bookmark applet

Example 10-7 shows the HTML file that defines the frames.

Example 10-7 Bookmark.html

 1. <HTML>
 2. <HEAD>
 3. <TITLE>Bookmark Applet</TITLE>
 4. </HEAD>
 5. <FRAMESET COLS="320,*">
 6. <FRAME NAME="left" SRC="Left.html"
 7. MARGINHEIGHT=2 MARGINWIDTH=2
 8. SCROLLING = "no" NORESIZE>
 9. <FRAME NAME="right" SRC="Right.html"
10. MARGINHEIGHT=2 MARGINWIDTH=2
11. SCROLLING = "yes" NORESIZE>
12. </FRAMESET>
13. </HTML>

We will not go over the exact syntax elements. What is important is that each frame has two
essential features: a name (given by the NAME attribute) and a URL (given by the SRC
attribute). We could not think of any good names for the frames, so we simply named them
"left" and "right".

The left frame (Example 10-8) loads a file that we called Left.html, which loads the applet
into the left frame. It simply specifies the applet and the bookmarks. You can customize this
file for your own web page by changing the bookmarks.

Core Java™ 2: Volume I–Fundamentals

622

Example 10-8 Left.html (before processing with the HTML converter)

 1. <HTML>
 2. <TITLE>A Bookmark Applet</TITLE>
 3. <BODY>
 4. Click on one of the radio buttons.
 5. The corresponding web page
 6. will be displayed in the frame on the right.
 7. <P>
 8. <APPLET CODE="Bookmark.class" WIDTH=290 HEIGHT=300>
 9. <PARAM NAME=link_1 VALUE="http://java.sun.com">
10. <PARAM NAME=link_2 VALUE="http://www.gamelan.com">
11. <PARAM NAME=link_3 VALUE="http://www.zhongwen.com">
12. <PARAM NAME=link_4 VALUE="http://www.horstmann.com">
13. <PARAM NAME=link_5 VALUE="http://www.prenhall.com">
14. <PARAM NAME=link_6 VALUE="http://usps.com">
15. <PARAM NAME=link_7 VALUE="http://www.netscape.com">
16. </APPLET>
17. </BODY>
18. </HTML>

The right frame (Example 10-9) loads a dummy file that we called Right.html. (Netscape
did not approve when we left the right frame blank, so we gave it a dummy file for starters.)

Example 10-9 Right.html

1. <HTML>
2. <TITLE>
3. Web pages will be displayed here.
4. </TITLE>
5. <BODY>
6. Click on one of the radio buttons to the left.
7. The corresponding web page will be displayed here.
8. </BODY>
9. </HTML>

The code for the bookmark applet that is given in Example 10-10 is simple. It reads the values
of the parameters link_1, link_2, and so on, and turns each of them into a radio button.
When you select one of the radio buttons, the showDocument method displays the
corresponding page in the right frame.

Example 10-10 Bookmark.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.applet.*;
 4. import java.util.*;
 5. import java.net.*;
 6. import javax.swing.*;
 7.
 8. public class Bookmark extends JApplet
 9. {
10. public void init()
11. {
12. Box box = Box.createVerticalBox();
13. ButtonGroup group = new ButtonGroup();
14.
15. int i = 1;

Core Java™ 2: Volume I–Fundamentals

623

16. String urlString;
17.
18. // read all link_n parameters
19. while ((urlString = getParameter("link_" + i)) != null)
20. {
21.
22. try
23. {
24. final URL url = new URL(urlString);
25.
26. // make a radio button for each link
27. JRadioButton button = new JRadioButton(urlString);
28. box.add(button);
29. group.add(button);
30.
31. // selecting the radio button shows the URL in
32. // the "right" frame
33. button.addActionListener(new
34. ActionListener()
35. {
36. public void actionPerformed(ActionEvent event)
37. {
38. AppletContext context = getAppletContext();
39. context.showDocument(url, "right");
40. }
41. });
42. }
43. catch(MalformedURLException exception)
44. {
45. exception.printStackTrace();
46. }
47.
48. i++;
49. }
50.
51. Container contentPane = getContentPane();
52. contentPane.add(box);
53. }
54. }

It's an Applet. It's an Application. It's Both!

Quite a few years ago, a “Saturday Night Live” skit poking fun at a television commercial
showed a couple arguing about a white, gelatinous substance. The husband said, “It's a dessert
topping.” The wife said, “It's a floor wax.” And the announcer concluded triumphantly, “It's
both!”

Well, in this section, we will show you how to write a Java program that is both an applet and
an application. That is, you can load the program with the applet viewer or a browser, or you
can start it from the command line with the java interpreter. We are not sure how often this
comes up—we found it interesting that this could be done at all and thought you would, too.

The screen shots in Figures 10-13 and 10-14 show the same program, launched from
the command line as an application and viewed inside the applet viewer as an applet.

Core Java™ 2: Volume I–Fundamentals

624

Figure 10-13. The calculator as an application

Figure 10-14. The calculator as an applet

Let us see how this can be done. Every class file has exactly one public class. In order for
the applet viewer to launch it, that class must derive from Applet. In order for Java to
start the application, it must have a static main method. So far, we have

class MyAppletApplication extends JApplet
{
 public void init() { . . . }
 . . .
 static public void main(String[] args) { . . . }
}

What can we put into main? Normally, we make an object of the class and invoke show on it.
But this case is not so simple. You cannot show a naked applet. The applet must be placed
inside a frame. And once it is inside the frame, its init method needs to be called.

To provide a frame, we create the class AppletFrame, like this:

Core Java™ 2: Volume I–Fundamentals

625

public class AppletFrame extends JFrame
{
 public AppletFrame(Applet anApplet)
 {
 applet = anApplet;
 Container contentPane = getContentPane();
 contentPane.add(applet);
 . . .
 }
 . . .
}

The constructor of the frame puts the applet (which derives from Component) inside
the frame.

In the main method of the applet/application, we make a new frame of this kind.

class MyAppletApplication extends JApplet
{
 public void init() { . . . }
 . . .
 public static void main(String args[])
 {
 AppletFrame frame
 = new AppletFrame(new MyAppletApplication());
 frame.setTitle("MyAppletApplication");
 frame.setSize(WIDTH, HEIGHT);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.show();
 }
}

There is one catch. If the program is started with the Java interpreter and not the applet
viewer, and it calls getAppletContext, it gets a null pointer because it has not been
launched inside a browser. This causes a runtime crash whenever we have code like

getAppletContext().showStatus(message);

While we do not want to write a full-fledged browser, we do need to supply the bare
minimum to make calls like this work. The call displays no message, but at least it will not
crash the program. It turns out that all we need to do is implement two interfaces: AppletStub
and AppletContext.

You have already seen applet contexts in action. They are responsible for fetching images and
audio files and for displaying web pages. They can, however, politely refuse, and this is what
our applet context will do. The major purpose of the AppletStub interface is to locate
the applet context. Every applet has an applet stub (set with the setStub method of
the Applet class).

In our case, AppletFrame implements both AppletStub and AppletContext. We supply
the bare minimum functionality that is necessary to implement these two interfaces.

Core Java™ 2: Volume I–Fundamentals

626

public class AppletFrame extends JFrame
 implements AppletStub, AppletContext
{
 . . .
 // AppletStub methods
 public boolean isActive() { return true; }
 public URL getDocumentBase() { return null; }
 public URL getCodeBase() { return null; }
 public String getParameter(String name) { return ""; }
 public AppletContext getAppletContext() { return this; }
 public void appletResize(int width, int height) {}

 // AppletContext methods
 public AudioClip getAudioClip(URL url) { return null; }
 public Image getImage(URL url) { return null; }
 public Applet getApplet(String name) { return null; }
 public Enumeration getApplets() { return null; }
 public void showDocument(URL url) {}
 public void showDocument(URL url, String target) {}
 public void showStatus(String status) {}
}

NOTE

When you compile this file, you will get a warning that
java.awt.Window also has a method called isActive that has package
visibility. Since this class is not in the same package as the Window class,
it cannot override the Window.isActive method. That is fine with us—
we want to supply a new isActive method for the AppletStub
interface. And, interestingly enough, it is entirely legal to add a new
method with the same signature to the subclass. Whenever the object is
accessed through a Window reference inside the java.awt package, the
package-visible Window.isActive method is called. But whenever the
object is accessed through an AppletFrame or AppletStub reference,
the AppletFrame.isActive method is called.

Next, the constructor of the frame class calls setStub on the applet to make itself its stub.

public AppletFrame(Applet anApplet)
{
 applet = anApplet
 Container contentPane = getContentPane();
 contentPane.add(applet);
 applet.setStub(this);
}

One final twist is possible. Suppose we want to use the calculator as an applet and application
simultaneously. Rather than moving the methods of the CalculatorApplet class into the
CalculatorAppletApplication class, we will just use inheritance. Here is the code for the
class that does this.

Core Java™ 2: Volume I–Fundamentals

627

public class CalculatorAppletApplication extends CalculatorApplet
{
 public static void main(String args[])
 {
 AppletFrame frame
 = new AppletFrame(new CalculatorApplet());
 . . .
 }
}

You can do this with any applet, not just with the calculator applet. All you need to do is
derive a class MyAppletApplication from your applet class and pass a new MyApplet()
object to the AppletFrame in the main method. The result is a class that is both an applet and
an application.

Just for fun, we use the previously mentioned trick of adding the APPLET tag as a comment to
the source file. Then you can invoke the applet viewer with the source (!) file without
requiring an additional HTML file.

Examples 10-11 and 10-12 list the code. You need to copy the CalculatorApplet.java file
into the same directory to compile the program. Try running both the applet and the
application:

appletviewer CalculatorAppletApplication.java
java CalculatorAppletApplication

Example 10-11 AppletFrame.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.applet.*;
 4. import java.net.*;
 5. import java.util.*;
 6. import javax.swing.*;
 7.
 8. public class AppletFrame extends JFrame
 9. implements AppletStub, AppletContext
10. {
11. public AppletFrame(Applet anApplet)
12. {
13. applet = anApplet;
14. Container contentPane = getContentPane();
15. contentPane.add(applet);
16. applet.setStub(this);
17. }
18.
19. public void show()
20. {
21. applet.init();
22. super.show();
23. applet.start();
24. }
25.
26. // AppletStub methods
27. public boolean isActive() { return true; }
28. public URL getDocumentBase() { return null; }
29. public URL getCodeBase() { return null; }
30. public String getParameter(String name) { return ""; }

Core Java™ 2: Volume I–Fundamentals

628

31. public AppletContext getAppletContext() { return this; }
32. public void appletResize(int width, int height) {}
33.
34. // AppletContext methods
35. public AudioClip getAudioClip(URL url) { return null; }
36. public Image getImage(URL url) { return null; }
37. public Applet getApplet(String name) { return null; }
38. public Enumeration getApplets() { return null; }
39. public void showDocument(URL url) {}
40. public void showDocument(URL url, String target) {}
41. public void showStatus(String status) {}
42.
43. private Applet applet;
44. }

Example 10-12 CalculatorAppletApplication.java

 1. /*
 2. The applet viewer reads the tags below if you call it with
 3. appletviewer CalculatorAppletApplication.java (!)
 4. No separate HTML file is required.
 5. <APPLET CODE="CalculatorAppletApplication.class"
 6. WIDTH=200 HEIGHT=200>
 7. </APPLET>
 8. */
 9.
10. import javax.swing.*;
11.
12. public class CalculatorAppletApplication
13. extends CalculatorApplet
14. // It's an applet. It's an application. It's BOTH!
15. {
16. public static void main(String[] args)
17. {
18. AppletFrame frame
19. = new AppletFrame(new CalculatorApplet());
20. frame.setTitle("CalculatorAppletApplication");
21. frame.setSize(WIDTH, HEIGHT);
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. frame.show();
24. }
25.
26. public static final int WIDTH = 200;
27. public static final int HEIGHT = 200;
28. }

JAR Files

The calculator applet from this chapter uses four classes: CalculatorApplet,
CalculatorPanel and two inner classes. You know that the applet tag references the class
file that contains the class derived from JApplet:

<APPLET CODE="CalculatorApplet.class" WIDTH=100 HEIGHT=150>

When the browser reads this line, it makes a connection to the web server and fetches the file
CalculatorApplet.class. The class loader of the Java interpreter that is built into the
browser then loads the CalculatorApplet class from that file. During the loading process,
the class loader must resolve the other classes used in this class. After doing so, it then knows

Core Java™ 2: Volume I–Fundamentals

629

it needs more classes to run the applet. The browser, therefore, makes additional connections
to the web server. Most applets consist of multiple classes, and the web browser must make
many connections, one for each class file. Loading such an applet over a slow network
connection can take many minutes.

NOTE

It is important to remember that the reason for this long loading time is
not the size of the class files—they are quite small. Rather it is because
of the considerable overhead involved in establishing a connection to the
web server.

Java supports an improved method for loading class files, which allows you to package all the
needed class files into a single file. This file can then be downloaded with a single HTTP
request to the server. Files that archive Java class files are called Java Archive (JAR) files.
JAR files can contain both class files and other file types such as image and sound files. JAR
files are compressed, using the familiar ZIP compression format, which further reduces the
download time.

You use the jar tool to make JAR files. (In the default installation, it's in the jdk/bin
directory.) The most common command to make a new JAR file uses the following syntax:

jar cvf JARFileName File1 File2 . . .

For example,

jar cvf CalculatorClasses.jar *.java icon.gif

In general, the jar command has the format

jar options File1 File2 . . .

Table 10-4 lists all the options for the jar program. They are similar to the options of the
UNIX tar command.

Table 10-4. jar program options
Option Description
c Creates a new or empty archive and adds files to it. If any of the specified file names are

directories, then the jar program processes them recursively.
t Displays the table of contents.
u Updates an existing JAR file.
x Extracts files. If you supply one or more file names, only those files are extracted. Otherwise,

all files are extracted.
f Specifies the JAR file name as the second command-line argument. If this parameter is

missing, then jar will write the result to standard output (when creating a JAR file) or read it
from standard input (when extracting or tabulating a JAR file).

v Generates verbose output.

Core Java™ 2: Volume I–Fundamentals

630

m Adds a manifest to the JAR file. A manifest is a description of the archive contents and origin.
Every archive has a default manifest, but you can supply your own if you want to authenticate
the contents of the archive. We will discuss this in the security chapter of Volume 2.

0 Stores without ZIP compression.
M Does not create a manifest file for the entries.
i Creates an index file (see below for more information).
C Temporarily change the directory. For example, jar cvf JARFileName.jar -C classes

*.class changes to the classes subdirectory to add class files.

Once you have a JAR file, you need to reference it in the APPLET tag, as in the following
example.

<APPLET CODE="CalculatorApplet.class"
 ARCHIVE="CalculatorClasses.jar"
 WIDTH=100 HEIGHT=150>

Note that the CODE attribute must still be present. The CODE attribute tells the browser the
name of the applet. The ARCHIVE is merely a source where the applet class and other files may
be located. Whenever a class, image, or sound file is needed, the browser searches the JAR
files in the ARCHIVE list first. Only if the file is not contained in the archive will it be fetched
from the web server.

The Manifest

JAR files are not just used for applets. You can package application programs, program
components (sometimes called “Java beans”—see Chapter 8 of Volume 2) and code libraries
into JAR files. For example, the runtime library of the SDK is contained in a very large file
rt.jar.

A JAR file is simply a ZIP file that contains classes, other files that a program may need (such
as icon images), and a manifest file that describes special features of the archive.

The manifest file is called MANIFEST.MF and is located in a special META-INF subdirectory of
the JAR file. The minimum legal manifest is quite boring: just

Manifest-Version: 1.0

Complex manifests can have many more entries. The manifest entries are grouped into
sections. The first section in the manifest is called the main section. It applies to the whole
JAR file. Subsequent entries can specify properties of named entities such as individual files,
packages, or URLs. Those entries must begin with a Name entry. Sections are separated by
blank lines. For example,

Manifest-Version: 1.0
lines describing this archive

Name: Woozle.class
lines describing this file

Name: foo/bar/
lines describing this package

Core Java™ 2: Volume I–Fundamentals

631

To edit the manifest, place the lines that you want to add to the manifest into a text file. Then
run

jar cfm JARFileName ManifestFileName . . .

For example, to make a new JAR file with a manifest, run:

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

To add items to the manifest of an existing JAR file, place the additions into a text file and
use a command such as

jar cfm MyArchive.jar manifest-additions.mf

For more information on the JAR and manifest file formats, see
http://%20java.sun.com/j2se/1.3/docs/guide/jar/jar.html.

TIP

If you have a large applet, chances are that not all users require all of its
functionality. To reduce the download time, you can break up the applet
code into multiple JAR files and add an index to the main JAR file. Then
the class loader knows which JAR files contain a particular package or
resource. To generate an index, you need to set the Class-Path attribute
to the manifest of the main JAR file. Then run

jar -i MyAppletMain.jar

This command adds a file INDEX.LIST to the META-INF directory of the
JAR file.

JAR Caching

By default, browsers use the browser cache to cache applet code. That is, if you revisit a site
that uses an applet, and if the browser cache still contains the JAR file, and the file hasn't
changed, then it is not downloaded again. That is a good scheme, but the browser cache isn't
as long-lived as one would like for applets. For example, if you visit an expense reporting
applet once a month, then it is likely that it is flushed from the cache every time you visit it.

The Java Plug-In supports a mechanism for making applets “stickier.” If you want an applet
to stay at the end-user site for a longer period of time, use the CACHE_OPTION,
CACHE_ARCHIVE, and CACHE_VERSION keys.

You need to specify these keys as parameters or attributes, depending on the OBJECT or EMBED
tag, in the following way:

Core Java™ 2: Volume I–Fundamentals

632

<OBJECT>
 <PARAM NAME="ARCHIVE" VALUE="...">
 ...
 <PARAM NAME="CACHE_OPTION" VALUE="...">
 <PARAM NAME="CACHE_ARCHIVE" VALUE="...">
 <PARAM NAME="CACHE_VERSION" VALUE="...">
</OBJECT>

or

<EMBED ...
 ARCHIVE="..."
 CACHE_OPTION="..."
 CACHE_ARCHIVE="..."
 CACHE_VERSION="..."
 ...
 >

The CACHE_OPTION key has one of three values:

• No: Do not cache the applet at all.
• Browser: Let the browser cache the applet (the default).
• Plugin: Let the Plug-In cache the applet.

The CACHE_ARCHIVE value specifies the files to be cached, for example
"MyApplet.jar,MyLibrary.jar".

NOTE

A JAR file should be listed in either the ARCHIVE or the CACHE_ARCHIVE
but not in both.

The CACHE_VERSION key/value pair is optional. The value is a list of version numbers,
matching the JAR files in the CACHE_ARCHIVE list, that represent the required versions of the
JAR files. If these versions already exist on the client, then they don't have to be downloaded.
If no versions are specified, then the dates of the JAR files are used for comparison. You need
to use version numbers for caching when you retrieve JAR files with SSL because the last-
modified date is not available to the Java Plug-In in that situation.

For more information on applet caching, see
http://java.sun.com/products/plugin/1.3/docs/appletcaching.html.

Self-Running JAR files

So far you have seen how to package applets in a JAR file. For applets, the appeal of the JAR
format is to reduce the number of files that the browser has to download in separate HTTP
requests. But JAR files are also useful to distribute application programs, to reduce file clutter
on your users' computers. Simply place all files that your application needs into a JAR file

Core Java™ 2: Volume I–Fundamentals

633

and then add a manifest entry that specifies the main class of your program—the class that
you would normally specify when invoking the java interpreter.

Make a file, say, mainclass.mf, containing a line such as

Main-Class: com/mypackage/MainFrame

Do not add a .class extension to the main class name. Then run the jar command:

jar cvfm MyProgram.jar mainclass.mf files to add

Users can now simply start the program as

java -jar MyProgram.jar

Resources

Classes that are used in both applets and applications often use associated data files, such as:

• Image and sound files
• Text files with message strings and button labels
• Files with binary data, for example, to describe the layout of a map

In Java, such an associated file is called a resource.

NOTE

In Windows, the term “resource” has a more specialized meaning.
Windows resources also consist of images, button labels, and so on, but
they are attached to the executable file and accessed by a standard
programming interface. In contrast, Java resources are stored as separate
files, not as part of class files. And it is up to each class to access and
interpret the resource data.

For example, consider a class AboutPanel that displays a message such as the one in
Figure 10-15.

Core Java™ 2: Volume I–Fundamentals

634

Figure 10-15. Displaying a resource from a JAR file

Of course, the book title and copyright year in the panel will change for the next edition of
the book. To make it easy to track this change, we want to put the text inside a file and not
hardcode it as a string.

But where should you put a file such as about.txt? Of course, it would be convenient if you
simply placed it with the rest of the program files, for example in a JAR file.

The class loader knows how to search for class files until it has located them somewhere on
the class path, or in an archive, or on a web server. The resource mechanism gives you the
same convenience for files that aren't class files. Here are the necessary steps:

1. Get the Class object of the class that has a resource, for example,
AboutPanel.class.

2. Call getResource(filename) to get the resource location as a URL.

3. If the resource is an image or audio file, read it directly with the getImage or
getAudioClip method.

4. Otherwise, use the openStream method on the URL to read in the data in the file. (See
Chapter 12 for more on streams.)

The point is that the class loader remembers how to locate the class, and then it can search for
the associated resource in the same location.

For example, to make an icon with the image file about.gif, do the following:

URL url = AboutPanel.class.getResource("about.gif");
ImageIcon icon = new ImageIcon(url);

That means “locate the about.gif file at the same place where you find
AboutPanel.class”.

Core Java™ 2: Volume I–Fundamentals

635

To read in the file about.txt, you can use similar commands:

URL url = AboutPanel.class.getResource("about.txt");
InputStream in = url.openStream();

Because this combination is so common, there is a convenient shortcut method:
getResourceAsStream returns an InputStream, not a URL.

InputStream in
 = AboutPanel.class.getResourceAsStream("about.txt");

To read from this stream, you will need to know how to process input (see Chapter 12 for
details). In the sample program, we read the stream a line at a time with the following
instructions:

InputStream in = AboutPanel.class.
 getResourceAsStream("about.txt");
BufferedReader reader = new BufferedReader(new
 InputStreamReader(in));
String line;
while ((line = reader.readLine()) != null)
 textArea.append(line + "\n");

On the CD-ROM, you will find a JAR file that contains all class files for this example and the
resource files about.gif and about.txt. This demonstrates that the applet locates the
resource file in the same location as the class file, namely, inside the JAR file.

TIP

As you saw in the preceding section, you can place image and audio files
inside a JAR file and simply access them with the getImage and
getAudioClip methods—these methods automatically search JAR files.
But, to load other files from a JAR file, you need
the getResourceAsStream method.

Instead of placing a resource file inside the same directory as the class file, you can place it in
a subdirectory. You can use a hierarchical resource name such as

data/text/about.txt

This is a relative resource name, and it is interpreted relative to the package of the class that is
loading the resource. Note that you must always use the / separator, regardless of the directory
separator on the system that actually stores the resource files. For example, on the Windows
file system, the resource loader automatically translates / to \ separators.

A resource name starting with a / is called an absolute resource name. It is located in the same
way that a class inside a package would be located. For example, a resource

/corejava/title.txt

Core Java™ 2: Volume I–Fundamentals

636

is located in the corejava directory (which may be a subdirectory of the class path, inside
a JAR file, or on a web server).

Automating the loading of files is all that the resource loading feature does. There are no
standard methods for interpreting the contents of a resource file. Each applet must have its
own way of interpreting the contents of its resource files.

Another common application of resources is the internationalization of applets and
applications. Language-dependent strings, such as messages and user interface labels, are
stored in resource files, with one file for each language. The internationalization API, which
is discussed in Chapter 10 of Volume 2, supports a standard method for organizing and
accessing these localization files.

Example 10-13 is the HTML source for testing a resource; Example 10-14 is the Java code.

Example 10-13 ResourceTest.html

1. <APPLET CODE="ResourceTest.class"
2. WIDTH=300 HEIGHT=200
3. ARCHIVE="ResourceTest.jar">
4. </APPLET>
5.

Example 10-14 ResourceTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.net.*;
 5. import javax.swing.*;
 6.
 7. public class ResourceTest extends JApplet
 8. {
 9. public void init()
10. {
11. Container contentPane = getContentPane();
12. contentPane.add(new AboutPanel());
13. }
14. }
15.
16. /**
17. A panel with a text area and an "About" button. Pressing
18. the button fills the text area with text from a resource.
19. */
20. class AboutPanel extends JTextArea
21. {
22. public AboutPanel()
23. {
24. setLayout(new BorderLayout());
25.
26. // add text area
27. textArea = new JTextArea();
28. add(new JScrollPane(textArea), BorderLayout.CENTER);
29.

Core Java™ 2: Volume I–Fundamentals

637

30. // add About button
31. URL aboutURL = AboutPanel.class.getResource("about.gif");
32. JButton aboutButton = new JButton("About",
33. new ImageIcon(aboutURL));
34. aboutButton.addActionListener(new AboutAction());
35. add(aboutButton, BorderLayout.SOUTH);
36. }
37.
38. private JTextArea textArea;
39.
40. private class AboutAction implements ActionListener
41. {
42. public void actionPerformed(ActionEvent event)
43. {
44. try
45. {
46. // read text from resource into text area
47. InputStream in = AboutPanel.class.
48. getResourceAsStream("about.txt");
49. BufferedReader reader = new BufferedReader(new
50. InputStreamReader(in));
51. String line;
52. while ((line = reader.readLine()) != null)
53. textArea.append(line + "\n");
54. }
55. catch(IOException exception)
56. {
57. exception.printStackTrace();
58. }
59. }
60. }
61. }

java.lang.Class

• URL getResource(String name)
• InputStream getResourceAsStream(String name)

find the resource in the same place as the class and then return a URL or input stream
you can use for loading the resource. The methods return null if the resource isn't
found, and so do not throw an exception for an I/O error.

Parameters: name The resource name

Optional Packages

As you saw, JAR files are useful to package both applets and applications. They are also
commonly used to package code libraries. You can add any set of classes into a JAR file and
make the classes available by adding the JAR file to the class path. For commonly used code
libraries, you can bypass that step by turning a JAR file into an optional package.

Core Java™ 2: Volume I–Fundamentals

638

NOTE

In prior versions of J2SE, optional packages were called extensions.
The “package” term is a bit misleading—an optional package can contain
classes from multiple Java programming language packages.

The main section of the manifest of an optional package describes the contents. Here is an
example.

Extension-Name: com.mycompany.myextension
Specification-Vendor: My Company, Inc
Specification-Version: 1.0
Implementation-Vendor-Id: com.mycompany
Implementation-Vendor: My Company, Inc
Implementation-Version: 1.0.3

The extension name can be completely arbitrary. Just like with Java language packages, you
can ensure uniqueness by using reversed domain names.

A program that requires extensions specifies them in the main section of its manifest:

Extension-List: myext otherext
myext-Extension-Name: com.mycompany.myextension
myext-Specification-Version: 1.0
myext-Implementation-Version: 1.0.1
myext-Implementation-Vendor-Id: com.mycompany
otherext-Extension-Name: com.hal.util
otherext-Specification-Version: 2.0

This particular application needs two optional packages, with aliases myext and anotherext.
The alias-Extension-Name line yields the actual extension name. The application states that
it requires a myext package that conforms to specification 1.0 or higher and implementation
1.0.1 or higher, and it insists that the package be implemented by a specific vendor. For the
other extension, the program only requires that it conforms to specification 2.0 or higher. Any
implementation and vendor are acceptable.

When the program starts, it needs to locate the optional packages. An optional package JAR
can simply be dropped into the jre/lib/ext directory. Alternatively, the program can
specify a URL where the optional package can be downloaded, such as

alias-Implementation-URL: http://www.mycompany.com/packages/
myextension.jar

For more information on optional packages, see
http://java.sun.com/j2se/1.3/docs/guide/extensions/index.html.

Core Java™ 2: Volume I–Fundamentals

639

Sealing

We mentioned in Chapter 4 that you can seal a Java language package to ensure that no
further classes can add themselves to it. Sealing protects the features with package visibility.
To achieve this, you put all classes of the package into a JAR file. By default, packages in a
JAR file are not sealed. You can change that global default by placing the line

Sealed: true

into the main section of the manifest. For each individual package, you can specify whether
you want the package sealed or not, by adding another section to the JAR file, like this:

Name: com/mycompany/mypackage/
Sealed: true

Name: com/hal/util/
Sealed: false

To seal a package, make a text file with the manifest instructions. Then run the jar command:

jar cvfm MyPackage.jar sealed.mf files to add

This concludes our discussion of applets. In the next chapter, you will learn how to use
exceptions to tell your programs what to do when problems arise at runtime. We'll also give
you tips and techniques for testing and debugging, so that hopefully not too many things will
go wrong when your programs run.

Core Java™ 2: Volume I–Fundamentals

640

Chapter 11. Exceptions and Debugging
• Dealing with Errors
• Catching Exceptions
• Some Tips on Using Exceptions
• Debugging Techniques
• Using a Debugger

In a perfect world, users would never enter data in the wrong form, files they choose to open
would always exist, and code would never have bugs. So far, we have mostly presented code
as though we lived in this kind of perfect world. It is now time to turn to the mechanisms Java
has for dealing with the real world of bad data and buggy code.

Encountering errors is unpleasant. If a user loses all the work he or she did during a program
session because of a programming mistake or some external circumstance, that user may
forever turn away from your program. At the very least, you must:

• Notify the user of an error;
• Save all work;
• Allow users to gracefully exit the program.

For exceptional situations, such as bad input data with the potential to bomb the program,
Java uses a form of error-trapping called, naturally enough, exception handling. Exception
handling in Java is similar to that in C++ or Delphi. The first part of this chapter covers Java's
exceptions.

The second part of this chapter concerns finding bugs in your code before they cause
exceptions at run time. Unfortunately, if you use just the SDK, then bug detection is the same
as it was back in the Dark Ages. We give you some tips and a few tools to ease the pain.
Then, we explain how to use the command-line debugger as a tool of last resort. For the
serious Java developer, products such as Sun's Forte, Symantec's Café, and Inprise's JBuilder
have quite useful debuggers. We give you an introduction to the Forte debugger.

Dealing with Errors

Suppose an error occurs while a Java program is running. The error might be caused by a file
containing wrong information, a flaky network connection, or (we hate to mention it) use of
an invalid array index or an attempt to use an object reference that hasn't yet been assigned to
an object. Users expect that programs will act sensibly when errors happen. If an operation
cannot be completed because of an error, the program ought to either:

• Return to a safe state and enable the user to execute other commands;

or

• Allow the user to save all his or her work and terminate the program gracefully.

This may not be easy to do: the code that detects (or even causes) the error condition is
usually far removed from the code that can roll back the data to a safe state, or the code that

Core Java™ 2: Volume I–Fundamentals

641

can save the user's work and exit cheerfully. The mission of exception handling is to transfer
control from where the error occurred to an error-handler that can deal with the situation. To
handle exceptional situations in your program, you must take into account the errors and
problems that may occur. What sorts of problems do you need to consider?

User input errors. In addition to the inevitable typos, some users like to blaze their own
trail instead of following directions. Suppose, for example, that a user asks to connect to a
URL that is syntactically wrong. Your code should check the syntax, but suppose it does not.
Then the network package will complain.

Device errors. Hardware does not always do what you want it to. The printer may be turned
off. A web page may be temporarily unavailable. Devices will often fail in the middle of a
task. For example, a printer may run out of paper in the middle of a printout.

Physical limitations. Disks can fill up; you can run out of available memory.

Code errors. A method may not perform correctly. For example, it could deliver wrong
answers or use other methods incorrectly. Computing an invalid array index, trying to find a
nonexistent entry in a hash table, and trying to pop an empty stack are all examples of a code
error.

The traditional reaction to an error in a method is to return a special error code that the calling
method analyzes. For example, methods that read information back from files often return a –
1 end-of-file value marker rather than a standard character. This can be an efficient method
for dealing with many exceptional conditions. Another common return value to denote an
error condition is the null reference. In Chapter 10, you saw an example of this with the
getParameter method of the Applet class that returns null if the queried parameter is not
present.

Unfortunately, it is not always possible to return an error code. There may be no obvious way
of distinguishing valid and invalid data. A method returning an integer cannot simply return –
1 to denote the error—the value –1 might be a perfectly valid result.

Instead, as we mentioned back in Chapter 5, Java allows every method an alternate exit path if
it is unable to complete its task in the normal way. In this situation, the method does not
return a value. Instead, it throws an object that encapsulates the error information. Note that
the method exits immediately; it does not return its normal (or any) value. Moreover,
execution does not resume at the code that called the method; instead, the exception-handling
mechanism begins its search for an exception handler that can deal with this particular error
condition.

Exceptions have their own syntax and are part of a special inheritance hierarchy. We take up
the syntax first and then give a few hints on how to use this language feature effectively.

The Classification of Exceptions

In Java, an exception object is always an instance of a class derived from Throwable. As you
will soon see, you can create your own exception classes, if the ones built into Java do not suit
your needs.

Core Java™ 2: Volume I–Fundamentals

642

Figure 11-1 is a simplified diagram of the exception hierarchy in Java.

Figure 11-1. Exception hierarchy in Java

Notice that all exceptions descend from Throwable, but the hierarchy immediately splits into
two branches: Error and Exception.

The Error hierarchy describes internal errors and resource exhaustion inside the Java runtime
system. You should not throw an object of this type. There is little you can do if such an
internal error occurs, beyond notifying the user and trying to terminate the program
gracefully. These situations are quite rare.

When doing Java programming, you focus on the Exception hierarchy. The Exception
hierarchy also splits into two branches: exceptions that derive from RuntimeException and
those that do not. The general rule is this:

• A RuntimeException happens because you made a programming error. Any other
exception occurs because a bad thing, such as an I/O error, happened to your
otherwise good program.

Exceptions that inherit from RuntimeException include such problems as:

• A bad cast;
• An out-of-bounds array access;
• A null pointer access.

Exceptions that do not inherit from RuntimeException include:

• Trying to read past the end of a file;
• Trying to open a malformed URL;
• Trying to find a Class object for a string that does not denote an existing class.

The rule “If it is a RuntimeException, it was your fault” works pretty well. You could have
avoided that ArrayIndexOutOfBoundsException by testing the array index against the array
bounds. The NullPointerException would not have happened had you checked whether or
not the variable was null before using it.

Core Java™ 2: Volume I–Fundamentals

643

How about a malformed URL? Isn't it also possible to find out whether it is “malformed”
before using it? Well, different browsers can handle different kinds of URLs. For example,
Netscape can deal with a mailto: URL, whereas the applet viewer cannot. Thus, the notion
of “malformed” depends on the environment, not just on your code.

The Java Language Specification calls any exception that derives from the class Error or the
class RuntimeException an unchecked exception. All other exceptions are called checked
exceptions. This is useful terminology that we will also adopt.

NOTE

The name RuntimeException is somewhat confusing. Of course, all of
the errors we are discussing occur at run time.

C++ NOTE

If you are familiar with the (much more limited) exception hierarchy of
the standard C++ library, you will be really confused at this point. C++
has two fundamental exception classes, runtime_error and
logic_error. The logic_error class is the equivalent of Java's
RuntimeException and also denotes logical errors in the program. The
runtime_error class is the base class for exceptions caused by
unpredictable problems. It is equivalent to exceptions in Java that are not
of type RuntimeException.

Advertising the Exceptions That a Method Throws

A Java method can throw an exception if it encounters a situation it cannot handle. The idea is
simple: a method will not only tell the Java compiler what values it can return, it is also going
to tell the compiler what can go wrong. For example, code that attempts to read from a file
knows that the file might not exist or that it might be empty. The code that tries to process the
information in a file therefore will need to notify the compiler that it can throw some sort of
IOException.

The place where you advertise that your method can throw an exception is in the header of the
method; the header changes to reflect the checked exceptions the method can throw. For
example, here is the header for a method in the BufferedReader class from the standard
library. The method reads a line of text from a stream, such as a file or network connection.
(See Chapter 12 for more on streams.)

public String readLine() throws IOException

The header indicates this method returns a string, but it also has the capacity to go wrong in a
special way—by throwing an IOException. If this sad state should come to pass, the method
will not return a string but instead will throw an object of the IOException class. If it does,

Core Java™ 2: Volume I–Fundamentals

644

then the runtime system will begin to search for an exception handler that knows how to deal
with IOException objects.

When you write your own methods, you don't have to advertise every possible throwable
object that your method might actually throw. To understand when (and what) you have to
advertise in the throws clause of the methods you write, keep in mind that an exception is
thrown in any of the following four situations:

1. You call a method that throws a checked exception, for example, the readLine
method of the BufferedReader class.

2. You detect an error and throw a checked exception with the throw statement (we
cover the throw statement in the next section).

3. You make a programming error, such as a[-1] = 0 that gives rise to an unchecked
exception such as an ArrayIndexOutOfBoundsException.

4. An internal error occurs in the virtual machine or runtime library.

If either of the first two scenarios occurs, you must tell the programmers who will use your
method that there is the possibility of an exception. Why? Any method that throws an
exception is a potential death trap. If no handler catches the exception, the current thread of
execution terminates.

As with Java methods that are part of the supplied classes, you declare that your method may
throw an exception with an exception specification in the method header.

class MyAnimation
{
 . . .

 public Image loadImage(String s) throws IOException
 {
 . . .
 }
}

If a method might throw more than one checked exception, you must indicate all exceptions
in the header. Separate them by a comma as in the following example:

class MyAnimation
{
 . . .
 public Image loadImage(String s)
 throws EOFException, MalformedURLException
 {
 . . .
 }
}

However, you do not need to advertise internal Java errors, that is, exceptions inheriting from
Error. Any code could potentially throw those exceptions, and they are entirely beyond your
control.

Similarly, you should not advertise unchecked exceptions inheriting from
RuntimeException.

Core Java™ 2: Volume I–Fundamentals

645

class MyAnimation
{
 . . .
 void drawImage(int i)
 throws ArrayIndexOutOfBoundsException // NO!!!
 {
 . . .
 }
}

These runtime errors are completely under your control. If you are so concerned about array
index errors, you should spend the time needed to fix them instead of advertising the
possibility that they can happen.

In summary, a method must declare all the checked exceptions that it might throw. Unchecked
exceptions are either beyond your control (Error) or result from conditions that you should
not have allowed in the first place (RuntimeException). If your method fails to faithfully
declare all checked exceptions, the compiler will issue an error message.

Of course, as you have already seen in quite a few examples, instead of declaring the
exception, you can also catch it. Then the exception won't be thrown out of the method, and
no throws specification is necessary. You will see later in this chapter how to decide whether
to catch an exception or to enable someone else to catch it.

CAUTION

If you override a method from a superclass in your subclass, the subclass
method cannot throw more checked exceptions than the superclass
method that you replace. (It can throw fewer, if it likes.) In particular, if
the superclass method throws no checked exception at all, neither can the
subclass. For example, if you override JComponent.paintComponent,
your paintComponent method must not throw any checked exceptions,
since the superclass method doesn't throw any.

When a method in a class declares that it throws an exception that is an instance of a
particular class, then it may throw an exception of that class or of any of its subclasses. For
example, the readLine method of the BufferedReader class says that it throws an
IOException. We do not know what kind of IOException. It could be a plain IOException
or an object of one of the various child classes, such as EOFException.

C++ NOTE

The throws specifier is the same as the throw specifier in C++, with one
important difference. In C++, throw specifiers are enforced at run time,
not at compile time. That is, the C++ compiler pays no attention to
exception specifications. But if an exception is thrown in a function that
is not part of the throw list, then the unexpected function is called, and,
by default, the program terminates.

Also, in C++, a function may throw any exception if no throw

Core Java™ 2: Volume I–Fundamentals

646

specification is given. In Java, a method without a throws specifier may
not throw any checked exception at all.

How to Throw an Exception

Let us suppose something terrible has happened in your code. You have a method, readData,
that is reading in a file whose header promised

Content-length: 1024

But, you get an end of file after 733 characters. You decide this situation is so abnormal that
you want to throw an exception.

You need to decide what exception type to throw. Some kind of IOException would be a
good choice. Perusing the Java API documentation, you find an EOFException with the
description “Signals that an EOF has been reached unexpectedly during input.” Perfect. Here
is how you throw it:

throw new EOFException();

or, if you prefer,

EOFException e = new EOFException();
throw e;

Here is how it all fits together:

String readData(BufferedReader in) throws EOFException
{
 . . .
 while (. . .)
 {
 if (ch == -1) // EOF encountered
 {
 if (n < len)
 throw new EOFException();
 }
 . . .
 }
 return s;
}

The EOFException has a second constructor that takes a string argument. You can put this to
good use by describing the exceptional condition more carefully.

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);

As you can see, throwing an exception is easy if one of the existing exception classes works
for you. In this case:

Core Java™ 2: Volume I–Fundamentals

647

1. Find an appropriate exception class;
2. Make an object of that class;
3. Throw it.

Once a method throws an exception, the method does not return to its caller. This means that
you do not have to worry about cooking up a default return value or an error code.

C++ NOTE

Throwing an exception is the same in C++ and in Java, with one small
exception. In Java, you can throw only objects of child classes of
Throwable. In C++, you can throw values of any type.

Creating Exception Classes

Your code may run into a problem that is not adequately described by any of the standard
exception classes. In this case, it is easy enough to create your own exception class. Just
derive it from Exception or from a child class of Exception such as IOException. It is
customary to give both a default constructor and a constructor that contains a detailed
message. (The toString method of the Throwable base class prints out that detailed
message, which is handy for debugging.)

class FileFormatException extends IOException
{
 public FileFormatException() {}
 public FileFormatException(String gripe)
 {
 super(gripe);
 }
}

Now you are ready to throw your very own exception type.

String readData(BufferedReader in) throws FileFormatException
{
 . . .
 while (. . .)
 {
 if (ch == -1) // EOF encountered
 {
 if (n < len)
 throw new FileFormatException();
 }
 . . .
 }
 return s;
}

Core Java™ 2: Volume I–Fundamentals

648

java.lang.Throwable

• Throwable()

constructs a new Throwable object with no detailed message.

• Throwable(String message)

constructs a new Throwable object with the specified detailed message. By
convention, all derived exception classes support both a default constructor and a
constructor with a detailed message.

• String getMessage()

gets the detailed message of the Throwable object.

Catching Exceptions

You now know how to throw an exception. It is pretty easy. You throw it and you forget it. Of
course, some code has to catch the exception. Catching exceptions requires more planning.

If an exception occurs that is not caught anywhere in a nongraphical application, the program
will terminate and print a message to the console giving the type of the exception and a stack
trace. A graphics program (both an applet and an application) prints the same error message,
but the program goes back to its user interface processing loop. (When you are debugging a
graphically based program, it is a good idea to keep the console available on the screen and
not minimized.)

To catch an exception, you set up a try/catch block. The simplest form of the try block is
as follows:

try
{
 code
 more code
 more code
}
catch (ExceptionType e)
{
 handler for this type
}

If any of the code inside the try block throws an exception of the class specified in the catch
clause, then,

1. The program skips the remainder of the code in the try block;
2. The program executes the handler code inside the catch clause.

Core Java™ 2: Volume I–Fundamentals

649

If none of the code inside the try block throws an exception, then the program skips the
catch clause.

If any of the code in a method throws an exception of a type other than the one named in the
catch clause, this method exits immediately. (Hopefully, one of its callers has already coded
a catch clause for that type.)

To show this at work, here is some fairly typical code for reading in text:

public void read(BufferedReader reader)
{
 try
 {
 boolean done = false;
 while (!done)
 {
 String line = reader.readLine();
 if (line == null) // end of file
 done = true;
 else
 {
 process line;
 }
 }
 }
 catch (IOException exception)
 {
 exception.printStackTrace();
 }
}

Notice that most of the code in the try clause is straightforward: it reads and processes lines
until we encounter the end of the file. As you can see by looking at the Java API, there is the
possibility that the readLine method will throw an IOException. In that case, we skip out of
the entire while loop, enter the catch clause and generate a stack trace. For a toy program,
that seems like a reasonable way to deal with this exception. What other choice do you have?

Often, the best choice is to do nothing at all. If an error occurs in the readLine method, let
the caller of the read method worry about it! If we take that approach, then we have to
advertise the fact that the method may throw an IOException.

public void read(BufferedReader reader) throws IOException
{
 boolean done = false;
 while (!done)
 {
 String line = reader.readLine();
 if (line == null) // end of file
 done = true;
 else
 {
 process line;
 }
 }
}

Core Java™ 2: Volume I–Fundamentals

650

Remember, the compiler strictly enforces the throws specifiers. If you call a method that
throws a checked exception, you must either handle it or pass it on.

Which of the two is better? As a general rule, you should catch those exceptions that you
know how to handle, and propagate those that you do not know how to handle. When you
propagate an exception, you must add a throws specifier to alert the caller that an exception
may be thrown.

Look at the Java API documentation to see what methods throw which exceptions. Then,
decide whether you should handle them or add them to the throws list. There is nothing
embarrassing about the latter choice. It is better to direct an exception to a competent handler
than to squelch it.

Please keep in mind that there is one exception to this rule, as we mentioned earlier. If you are
writing a method that overrides a superclass method that throws no exceptions (such as
paintComponent in JComponent), then you must catch each checked exception in the
method's code. You are not allowed to add more throws specifiers to a subclass method than
are present in the superclass method.

TIP

Don't be shy about throwing or propagating exceptions to signal
problems that you can't handle properly. On the other hand, your fellow
programmers will hate you if you write methods that throw exceptions
unnecessarily and that they must handle or pass on. If you can do
something intelligent about an exceptional condition, then you should
not use the sledgehammer of an exception.

C++ NOTE

Catching exceptions is almost the same in Java and in C++. Strictly
speaking, the analog of

catch (Exception e) // Java

is

catch (Exception& e) // C++

There is no analog to the C++ catch (...). This is not needed in Java
because all exceptions derive from a common superclass.

Catching Multiple Exceptions

You can catch multiple exception types in a try block and handle each type differently. You
use a separate catch clause for each type as in the following example:

Core Java™ 2: Volume I–Fundamentals

651

try
{
 code that might
 throw exceptions
}
catch (MalformedURLException e1)
{
 // emergency action for malformed URLs
}
catch (UnknownHostException e2)
{
 // emergency action for unknown hosts
}
catch (IOException e3)
{
 // emergency action for all other I/O problems
}

The exception object (e1, e2, e3) may contain information about the nature of the exception.
To find out more about the object, try

e3.getMessage()

to get the detailed error message (if there is one), or

e3.getClass().getName()

to get the actual type of the exception object.

Rethrowing Exceptions

Occasionally, you need to catch an exception without addressing the root cause of it. This
need typically occurs when you have to do some local cleanup but can't fully resolve the
problem. You then want to take your emergency action and again call throw to send the
exception back up the calling chain. You can see a typical example of this in the following
code.

Graphics g = image.getGraphics();
try
{
 code that might
 throw exceptions
}
catch (MalformedURLException e)
{
 g.dispose();
 throw e;
}

The above code shows one of the most common reasons for having to rethrow an exception
that you have caught. If you do not dispose of the graphics context object in the catch clause,
it will never be disposed of. (Of course, its finalize method might dispose of it, but that can
take a long time.)

Core Java™ 2: Volume I–Fundamentals

652

On the other hand, the underlying cause, the malformed URL exception, has not disappeared.
You still want to report it to the authorities, who presumably know how to deal with such an
exception. (See the next section for a more elegant way to achieve the same result.)

You can also throw a different exception than the one you catch.

try
{
 acme.util.Widget a = new acme.util.Widget();
 a.load(s);
 a.paint(g);
}
catch (RuntimeException e)
{
 // sheesh—another ACME error
 throw new Exception("ACME error");
}

The finally Clause

When your code throws an exception, it stops processing the remaining code in your method
and exits the method. This is a problem if the method has acquired some local resource that
only it knows about and if that resource must be cleaned up. One solution is to catch and
rethrow all exceptions. But this solution is tedious because you need to clean up the resource
allocation in two places, in the normal code and in the exception code.

Java has a better solution, the finally clause:

Graphics g = image.getGraphics();
try
{
 code that might
 throw exceptions
}
catch (IOException e)
{
 show error dialog
}
finally
{
 g.dispose();
}

This program executes the code in the finally clause whether or not an exception was
caught. This means, in the example code above, the program will dispose of the graphics
context under all circumstances.

Let us look at the three possible situations where the program will execute the finally
clause.

1. The code throws no exceptions. In this event, the program first executes all the code in
the try block. Then, it executes the code in the finally clause. Afterwards, execution
continues with the first line after the try block.

Core Java™ 2: Volume I–Fundamentals

653

2. The code throws an exception that is caught in a catch clause, in our case, an
IOException. For this, the program executes all code in the try block, up to the point
at which the exception was thrown. The remaining code in the try block is skipped.
Then, the program executes the code in the matching catch clause, then the code in
the finally clause.

If the catch clause does not throw an exception, then the program executes the first
line after the try block. If it does, then the exception is thrown back to the caller of
this method.

3. The code throws an exception that is not caught in any catch clause. For this, the
program executes all code in the try block until the exception is thrown. The
remaining code in the try block is skipped. Then, the code in the finally clause is
executed, and the exception is thrown back to the caller of this method.

You can use the finally clause without a catch clause. For example, consider the following
try statement:

Graphics g = image.getGraphics();
try
{
 code that might
 throw exceptions
}
finally
{
 g.dispose();
}

The g.dispose() command in the finally clause is executed whether or not an exception is
encountered in the try block. Of course, if an exception is encountered, it is rethrown and
must be caught in another catch clause.

CAUTION

The finally clause leads to unexpected control flow when you exit the
middle of a try block with a return statement. Before the method
returns, the contents of the finally block is executed. If it also contains
a return statement, then it masks the original return value. Consider this
contrived example:

public static int f(int n)
{
 try
 {
 int r = n * n;
 return r;
 }
 finally
 {
 if (n == 2) return 0;
 }
}

Core Java™ 2: Volume I–Fundamentals

654

If you call f(2), then the try block computes r = 4 and executes
the return statement. However, the finally clause is executed before
the method actually returns. The finally clause causes the method to
return 0, ignoring the original return value of 4.

Sometimes the finally clause gives you grief, namely if the cleanup method can also throw
an exception. A typical case is closing a stream. (See Chapter 12 for more information on
streams.) Suppose you want to make sure that you close a stream when an exception hits in
the stream processing code.

InputStream in;
try
{
 code that might
 throw exceptions
}
catch (IOException e)
{
 show error dialog
}
finally
{
 in.close();
}

Now suppose that the code in the try block throws some exception other than an
IOException that is of interest to the caller of the code. The finally block executes, and the
close method is called. That method can itself throw an IOException! When it does, then
the original exception is lost and the IOException is thrown instead. That is very much
against the spirit of exception handling.

It is always a good idea—unfortunately not one that the designers of the InputStream class
chose to follow—to throw no exceptions in cleanup operations such as dispose, close, and
so on, that you expect users to call in finally blocks.

C++ NOTE

There is one fundamental difference between C++ and Java with regard
to exception handling. Java has no destructors; thus, there is no stack
unwinding as in C++. This means that the Java programmer must
manually place code to reclaim resources in finally blocks. Of course,
since Java does garbage collection, there are far fewer resources that
require manual deallocation.

A Final Look at Java Error- and Exception-Handling

Example 11-1 deliberately generates a number of different errors and catches various
exceptions (see Figure 11-2).

Core Java™ 2: Volume I–Fundamentals

655

Figure 11-2. A program that generates exceptions

Try it out. Click on the buttons and see what exceptions are thrown.

As you know, a programmer error such as a bad array index throws a RuntimeException. An
attempt to open a nonexistent file triggers an IOException. Perhaps surprisingly, floating-
point errors such as dividing by 0.0 or taking the square root of -1 do not generate exceptions.
(Integer division by 0 throws an ArithmeticException.)

We trap the exceptions that the actionPerformed methods throw in the
fireActionPerformed method of the radio buttons and display them in the text field.
However, the actionPerformed method is declared to throw no checked exceptions. Thus,
the handler for the “No such file” button must catch the IOException.

If you click on the “Throw unknown” button, an UnknownError object is thrown. This is not a
subclass of Exception, so our program does not catch it. Instead, the user interface code
prints an error message and a stack trace to the console.

Example 11-1 ExceptTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import java.io.*;
 5.
 6. public class ExceptTest
 7. {
 8. public static void main(String[] args)
 9. {
 10. ExceptTestFrame frame = new ExceptTestFrame();
 11. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 12. frame.show();
 13. }
 14. }
 15.

Core Java™ 2: Volume I–Fundamentals

656

 16. /**
 17. A frame with a panel for testing various exceptions
 18. */
 19. class ExceptTestFrame extends JFrame
 20. {
 21. public ExceptTestFrame()
 22. {
 23. setTitle("ExceptTest");
 24. Container contentPane = getContentPane();
 25. ExceptTestPanel panel = new ExceptTestPanel();
 26. contentPane.add(panel);
 27. pack();
 28. }
 29. }
 30.
 31. /**
 32. A panel with radio buttons for running code snippets
 33. and studying their exception behavior
 34. */
 35. class ExceptTestPanel extends Box
 36. {
 37. public ExceptTestPanel()
 38. {
 39. super(BoxLayout.Y_AXIS);
 40. group = new ButtonGroup();
 41.
 42. // add radio buttons for code snippets
 43.
 44. addRadioButton("Integer divide by zero", new
 45. ActionListener()
 46. {
 47. public void actionPerformed(ActionEvent event)
 48. {
 49. a[1] = 1 / (a.length - a.length);
 50. }
 51. });
 52.
 53. addRadioButton("Floating point divide by zero", new
 54. ActionListener()
 55. {
 56. public void actionPerformed(ActionEvent event)
 57. {
 58. a[1] = a[2] / (a[3] - a[3]);
 59. }
 60. });
 61.
 62. addRadioButton("Array bounds", new
 63. ActionListener()
 64. {
 65. public void actionPerformed(ActionEvent event)
 66. {
 67. a[1] = a[10];
 68. }
 69. });
 70.

Core Java™ 2: Volume I–Fundamentals

657

 71. addRadioButton("Bad cast", new
 72. ActionListener()
 73. {
 74. public void actionPerformed(ActionEvent event)
 75. {
 76. a = (double[])event.getSource();
 77. }
 78. });
 79.
 80. addRadioButton("Null pointer", new
 81. ActionListener()
 82. {
 83. public void actionPerformed(ActionEvent event)
 84. {
 85. event = null;
 86. System.out.println(event.getSource());
 87. }
 88. });
 89.
 90. addRadioButton("sqrt(-1)", new
 91. ActionListener()
 92. {
 93. public void actionPerformed(ActionEvent event)
 94. {
 95. a[1] = Math.sqrt(-1);
 96. }
 97. });
 98.
 99. addRadioButton("Overflow", new
100. ActionListener()
101. {
102. public void actionPerformed(ActionEvent event)
103. {
104. a[1] = 1000 * 1000 * 1000 * 1000;
105. int n = (int)a[1];
106. }
107. });
108.
109. addRadioButton("No such file", new
110. ActionListener()
111. {
112. public void actionPerformed(ActionEvent event)
113. {
114. try
115. {
116. FileInputStream is
117. = new FileInputStream("No such file");
118. }
119. catch (IOException exception)
120. {
121. textField.setText(exception.toString());
122. }
123. }
124. });
125.

Core Java™ 2: Volume I–Fundamentals

658

126. addRadioButton("Throw unknown", new
127. ActionListener()
128. {
129. public void actionPerformed(ActionEvent event)
130. {
131. throw new UnknownError();
132. }
133. });
134.
135. // add the text field for exception display
136. textField = new JTextField(30);
137. add(textField);
138. }
139.
140. /**
141. Adds a radio button with a given listener to the
142. panel. Traps any exceptions in the actionPerformed
143. method of the listener.
144. @param s the label of the radio button
145. @param listener the action listener for the radio button
146. */
147. private void addRadioButton(String s, ActionListener listener)
148. {
149. JRadioButton button = new JRadioButton(s, false)
150. {
151. // the button calls this method to fire an
152. // action event. We override it to trap exceptions
153. protected void fireActionPerformed(ActionEvent event)
154. {
155. try
156. {
157. super.fireActionPerformed(event);
158. textField.setText("No exception");
159. }
160. catch (Exception exception)
161. {
162. textField.setText(exception.toString());
163. }
164. }
165. };
166.
167. button.addActionListener(listener);
168. add(button);
169. group.add(button);
170. }
171.
172. private ButtonGroup group;
173. private JTextField textField;
174. private double[] a = new double[10];
175. }

Some Tips on Using Exceptions

There is a tendency to overuse exceptions. After all, who wants to go to the trouble to write
methods that parse input when exception-handling makes it so easy? Instead of parsing a URL
when the user enters it, just send it off to a method that catches a MalformedURLException.
Saves time, saves trouble. Wrong! While having an exception handler costs nothing, the
actual handling of an exception will almost always cost a lot of time. Misusing exceptions can
therefore slow your code down dramatically. Here are four tips on using exceptions.

Core Java™ 2: Volume I–Fundamentals

659

1. Exception-handling is not supposed to replace a simple test.

As an example of this, we wrote some code that uses the built-in Stack class.
The code in Example 11-2 tries 1,000,000 times to pop an empty stack. It first does
this by finding out whether or not the stack is empty.

if (!s.empty()) s.pop();

Next, we tell it to pop the stack no matter what. Then, we catch
the EmptyStackException that tells us that we should not have done that.

try()
{
 s.pop();
}
catch (EmptyStackException e)
{
}

On our test machine, we got the timing data in Table 11-1.

Table 11-1. Timing data
Test Throw/Catch
110 milliseconds 24550 milliseconds

As you can see, it took far longer to catch an exception than it does to perform
a simple test. The moral is: Use exceptions for exceptional circumstances only.

2. Do not micromanage exceptions.

Many programmers wrap every statement in a separate try block.

InputStream is;
Stack s;

for (i = 0; i < 100; i++)
{
 try
 {
 n = s.pop();
 }
 catch (EmptyStackException s)
 {
 // stack was empty
 }
 try
 {
 out.writeInt(n);
 }
 catch (IOException e)
 {
 // problem writing to file
 }
}

Core Java™ 2: Volume I–Fundamentals

660

This approach blows up your code dramatically. Think about the task that you want
the code to accomplish. Here we want to pop 100 numbers off a stack and save them
to a file. (Never mind why—it is just a toy example.) There is nothing we can do if
a problem rears its ugly head. If the stack is empty, it will not become occupied. If
there is an error in the file, the error will not magically go away. It therefore makes
sense to wrap the entire task in a try block. If any one operation fails, you can then
abandon the task.

try
{
 for (i = 0; i < 100; i++)
 {
 n = s.pop();
 out.writeInt(n);
 }
}
catch (IOException e)
{
 // problem writing to file
}
catch (EmptyStackException s)
{
 // stack was empty
}

This code looks much cleaner. It fulfills one of the promises of exception-handling, to
separate normal processing from error-handling.

3. Do not squelch exceptions.

In Java, there is the tremendous temptation to shut up exceptions. You write a method
that calls a method that might throw an exception once a century. The compiler whines
because you have not declared the exception in the throws list of your method. You
do not want to put it in the throws list because then the compiler will whine about all
the methods that call your method. So you just shut it up:

public Image loadImage(String s)
{
 try
 {
 lots of code
 }
 catch (Exception e)
 {} // so there
}

Now your code will compile without a hitch. It will run fine, except when
an exception occurs. Then, the exception will be silently ignored. If you believe that
exceptions are at all important, you need to make some effort to handle them right.

4. Propagating exceptions is not a sign of shame.

Many programmers feel compelled to catch all exceptions that are thrown. If they call
a method that throws an exception, such as the FileInputStream constructor or

Core Java™ 2: Volume I–Fundamentals

661

the readLine method, they instinctively catch the exception that may be generated.
Often, it is actually better to propagate the exception instead of catching it:

public void readStuff(String name) throws IOException
{
 FileInputStream in = new FileInputStream(name);
 . . .
}

Higher-level methods are often better equipped to inform the user of errors or to
abandon unsuccessful commands.

Example 11-2 ExceptionalTest.java

 1. import java.util.*;
 2.
 3. public class ExceptionalTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. int i = 0;
 8. int ntry = 1000000;
 9. Stack s = new Stack();
10. long s1;
11. long s2;
12.
13. // test a stack for emptiness ntry times
14. System.out.println("Testing for empty stack");
15. s1 = new Date().getTime();
16. for (i = 0; i <= ntry; i++)
17. if (!s.empty()) s.pop();
18. s2 = new Date().getTime();
19. System.out.println((s2 - s1) + " milliseconds");
20.
21. // pop an empty stack ntry times and catch the
22. // resulting exception
23. System.out.println("Catching EmptyStackException");
24. s1 = new Date().getTime();
25. for (i = 0; i <= ntry; i++)
26. {
27. try
28. {
29. s.pop();
30. }
31. catch(EmptyStackException e)
32. {
33. }
34. }
35. s2 = new Date().getTime();
36. System.out.println((s2 - s1) + " milliseconds");
37. }
38. }

Debugging Techniques

Suppose you wrote your program and made it bulletproof by catching and properly handling
all exceptions. Then you run it, and it does not work right. Now what? (If you never have this
problem, you can skip the remainder of this chapter.)

Core Java™ 2: Volume I–Fundamentals

662

Of course, it is best if you have a convenient and powerful debugger. Debuggers are available
as a part of professional development environments such as Inprise JBuilder, Symantec Café,
or Sun's Forte. However, if you use a new version of Java that is not yet supported by
development environments, or if you are on a budget or work on an unusual platform, you
will need to do a great deal of debugging by the time-honored method of inserting print
statements into your code.

Useful Tricks for Debugging

Here are some tips for efficient debugging if you have to do it all yourself.

1. You can print the value of any variable with code like this:

 System.out.println("x = " + x);

If x is a number, it is converted to its string equivalent. If x is an object, then Java calls
its toString method. Most of the classes in the Java library are very conscientious
about overriding the toString method to give you useful information about the class.
This is a real boon for debugging. You should make the same effort in your classes.

2. To get the state of the current object, print the state of the this object.

 System.out.println("Entering loadImage. this = " + this);

This code calls the toString method of the current class, and you get a printout of all
instance fields. Of course, this approach works best when the toString method does
a conscientious job and reports the values of all data fields.

3. Recall that we gave you the code for a generic toString method in Chapter 5—we
used the reflection feature to enumerate and print all data fields. Here is an even
shorter version of that code.

 public String toString()
 {
 java.util.HashMap h = new java.util.HashMap();
 Class cls = getClass();
 java.lang.reflect.Field[] f = cls.getDeclaredFields();
 try
 {
 java.lang.reflect.AccessibleObject.setAccessible(f,
 true);
 for (int i = 0; i < f.length; i++)
 h.put(f[i].getName(), f[i].get(this));
 }
 catch (Exception e) {}

 if (cls.getSuperclass() != Object.class)
 h.put("super", super.toString());
 return cls.getName() + h;
 }

The code uses the reflection mechanism to enumerate all fields. It puts the pairs (field
name, field value) into a hash table. It then uses the toString method of

Core Java™ 2: Volume I–Fundamentals

663

the Hashtable class to print out the names and values. The only drawback is that
the (name, value) pairs are listed in random order.

Here is a typical printout:

 Employee{hireDay=Sun Oct 01 00:00:00 PDT 1989, name=Harry
Hacker, salary=52500.0}

4. One seemingly little-known but very useful trick is that you can put a separate main
method in each class. Inside it, you can put a unit test stub that lets you test the class in
isolation.

 public class MyClass
 {
 methods and fields
 . . .
 public static void main(String[] args)
 {
 test code
 }
 }

Make a few objects, call all methods, and check that each of them does the right thing.
You can leave all these main methods in place and call the Java interpreter separately
on each of the files to run the tests. When you run an applet, none of these main
methods are ever called. When you run an application, the Java interpreter calls only
the main method of the startup class.

5. You can get a stack trace from any exception object with the printStackTrace
method in the Throwable class. The following code catches any exception, prints the
exception object and the stack trace, and rethrows the exception so it can find its
intended handler.

 try
 {
 . . .
 }
 catch (Throwable t)
 {
 t.printStackTrace();
 throw t;
 }

You don't even need to catch an exception to generate a stack trace. Simply insert
the statement

Thread.dumpStack();

anywhere into your code to get a stack trace.

6. Normally, the stack trace is displayed on System.out. You can send it to a file with
the void printStackTrace(PrintWriter s) method. Or, if you want to display the
stack trace in a window, here is how you can capture it into a string:

Core Java™ 2: Volume I–Fundamentals

664

 StringWriter out = new StringWriter();
 new Throwable().printStackTrace(new PrintWriter(out));
 String trace = out.toString();

(See Chapter 12 for the PrintWriter and StringWriter classes.)

7. It is often handy to trap program errors in a file. However, errors are sent to
System.err, not System.out. Therefore, you cannot simply trap them by running

 java MyProgram > errors.txt

In UNIX, this is not a problem. For example, if you use bash as your shell, simply
capture the error stream as

java MyProgram 2> errors.txt

To capture both System.err and System.out in the same file, use

java MyProgram 2>&1 errors.txt

Some operating systems (such as Windows 95 or 98) do not have such a convenient
method. Here is a remedy. Use the following Java program:

import java.io.*;
public class Errout
{
 public static void main(String[] args) throws IOException
 {
 Process p = Runtime.getRuntime().exec(args);
 BufferedReader err = new BufferedReader(new
 InputStreamReader(p.getErrorStream()));
 String line;
 while ((line = err.readLine()) != null)
 System.out.println(line);
 }
}

Then run your program as

java Errout java MyProgram.java > errors.txt

C++ NOTE

A more efficient way of getting the same result in Windows is to compile
this C program into a file errout.exe:

#include <io.h>
#include <stdio.h>
#include <process.h>
int main(int argc, char* argv[])
{
 dup2(1, 2); /* make stderr go to stdout */
 execvp(argv[1], argv + 1);
 return 0;
}

Core Java™ 2: Volume I–Fundamentals

665

Then you can run:

errout java MyProgram.java > errors.txt

8. To watch class loading, run the java interpreter with the -verbose flag. You get
a printout such as:

 [Opened C:\PROGRAM FILES\JAVASOFT\JRE\1.3\lib\rt.jar]
 [Opened C:\PROGRAM FILES\JAVASOFT\JRE\1.3\lib\i18n.jar]
 [Opened C:\PROGRAM FILES\JAVASOFT\JRE\1.3\lib\sunrsasign.jar]
 [Loaded java.lang.Object from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.io.Serializable from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.lang.Comparable from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.lang.String from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.lang.Class from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.lang.Cloneable from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 [Loaded java.lang.ClassLoader from C:\PROGRAM FILES\
 JAVASOFT\JRE\1.3\lib\rt.jar]
 ...

This can occasionally be helpful to diagnose class path problems.

9. If you ever looked at a Swing window and wondered how its designer managed to get
all the components to line up so nicely, you can spy on the contents. Press
ctrl+shift+f1, and you get a printout of all components in the hierarchy:

FontDialog[frame0,0,0,300x200,layout=java.awt.BorderLayout,...
javax.swing.JRootPane[,4,23,292x173,layout=javax.swing.JRootPane$RootLay
out,...
javax.swing.JPanel[null.glassPane,0,0,292x173,hidden,layout=java.awt.Flo
wLayout,...
javax.swing.JLayeredPane[null.layeredPane,0,0,292x173,...
javax.swing.JPanel[null.contentPane,0,0,292x173,layout=java.awt.GridBagL
ayout,...
javax.swing.JList[,0,0,73x152,alignmentX=null,alignmentY=null,...
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.DefaultListCellRenderer$UIResource[,-73,-
19,0x0,...
javax.swing.JCheckBox[,157,13,50x25,layout=javax.swing.OverlayLayout,...
javax.swing.JCheckBox[,156,65,52x25,layout=javax.swing.OverlayLayout,...
javax.swing.JLabel[,114,119,30x17,alignmentX=0.0,alignmentY=null,...
javax.swing.JTextField[,186,117,105x21,alignmentX=null,alignmentY=null,.
..
javax.swing.JTextField[,0,152,291x21,alignmentX=null,alignmentY=null,...

10. If you design your own custom Swing component, and it doesn't seem to be displayed
correctly, you'll really love the Swing graphics debugger. And even if you don't write
your own component classes, it is instructive and fun to see exactly how the contents

Core Java™ 2: Volume I–Fundamentals

666

of a component are drawn. To turn on debugging for a Swing component, use the
setDebugGraphicsOptions method of the JComponent class. The following options
are available:

DebugGraphics.FLASH_OPTION Flashes each line, rectangle, and text in red before
drawing it

DebugGraphics.LOG_OPTION Prints a message for each drawing operation
DebugGraphics.BUFFERED_OPTION Displays the operations that are performed on the

offscreen buffer
DebugGraphics.NONE_OPTION Turns graphics debugging off

11. We have found that for the flash option to work, you must disable “double buffering,”
the strategy used by Swing to reduce flicker when updating a window. The magic
incantation for turning on the flash option is:

 RepaintManager.currentManager(getRootPane())
 .setDoubleBufferingEnabled(false);

 ((JComponent)getContentPane())
 .setDebugGraphicsOptions(DebugGraphics.FLASH_OPTION);

12. Simply place these lines at the end of your frame constructor. When the program runs,
you will see the content pane filled in slow motion. Or, for more localized debugging,
just call setDebugGraphicsOptions for a single component. Control freaks can set
the duration, count, and color of the flashes—see the online documentation of the
DebugGraphics class for details.

Assertions

It often happens that your code relies on the fact that some of your variables have certain
values. For example, object references are supposed to be initialized, and integer indexes are
supposed to be within certain limits. It is a good idea to occasionally check these assumptions.
If the assumptions turn out to be incorrect, you can throw an exception. Here is a typical
example:

public void f(int[] a, int i)
{
 if (!(a != null && i >= 0 && i < a.length))
 throw new IllegalArgumentError("Assertion failed");
 . . .
}

Such checks are usually called assertions. We want to assert that some condition is true
before continuing.

The C programming language has a useful assert macro that we will imitate with an
Assertion class.

To check an assertion, call the static method check:

Core Java™ 2: Volume I–Fundamentals

667

public void f(int[] a, int i)
{
 Assertion.check(a != null && i >= 0 && i < a.length,
 "X.f: invalid parameter a");
 . . .
}

If the condition is violated, you get a stack trace:

Assertion failed. X.f: invalid parameter a
java.lang.Exception: Stack trace
 at java.lang.Thread.dumpStack(Unknown Source)
 at Assertion.check(Assertion.java:23)
 at X.f(X.java:49)
 at X.main(X.java:121)

If you are finished debugging, call the static method:

Assertion.setNdebug(true);

Then the check method no longer checks assertions.

Here is the implementation of the check method:

public class Assertion
{
 public static void check(boolean b, String s)
 {
 if (!ndebug && !b)
 {
 System.err.print("Assertion failed. ");
 if (s != null) System.err.print(s);
 System.err.println();
 Thread.dumpStack();
 System.exit(1);
 }
 }
 . . .
}

This imitates the C behavior as closely as possible. If you would prefer another behavior, you
can easily modify the assertion class.

Assertions are strictly a debugging tool. We don't ever expect the condition to be false, and if
it is, we are happy to be notified and to have the program terminate. Once the program has
been debugged and is deployed, all assertions should go away, since checking the conditions
increases the running time and code size.

The question is how to remove the assertion code. Of course, you can manually remove all
assertions, but that is tedious. Furthermore, if the release version did not turn out to be quite
as perfect as you thought, you might have to stick them all back in to help in the next round of
debugging. The “official” solution to this problem is to use a static final variable that is set to
true during debugging and to false when the program is deployed:

Core Java™ 2: Volume I–Fundamentals

668

public void f(int[] a, int i)
{
 if (debug) // a static final variable
 Assertion.check(a != null && i >= 0 && i < a.length,
 "X.f: invalid parameter a");
 . . .
}

If debug is false, then the compiler realizes that the call to Assertion.check can never
happen and no code is generated. Of course, you have to recompile whenever you switch
between the debug and release versions. This is still somewhat tedious, and there is an even
better way.

We simply put the test into a separate class and then fail to ship the code for that class with
the release version! Of course, the easiest way to generate a simple new class is as
an anonymous inner class:

public void f(final int[] a, final int i)
{
 if (debug) // a boolean variable, not necessarily static final
 new Assertion()
 {
 {
 check(a != null && i >= 0 && i < a.length
 "X.f: invalid parameter a");
 }
 };
 . . .
}

As so often is the case with inner class code, this code snippet looks exceedingly mysterious.
The statement

new Assertion() { . . . };

creates an object of an anonymous class that inherits from Assertion. That anonymous class
has no methods, just a single constructor. The constructor is written as an initialization block
(see Chapter 4) since we cannot give names to constructors of anonymous classes.

When the debug variable is true, then the compiler loads the inner class and constructs
an assertion object. The constructor calls the static check method of the Assertion class and
tests the condition. (Because local class code can only refer to final variables of the ambient
block, the parameters of f had to be declared final.) However, if debug is false, then
the inner class is not even loaded. That means the inner class code need not be shipped with
the release version of the program!

Core Java™ 2: Volume I–Fundamentals

669

C++ NOTE

This assertion facility is not as convenient as the one offered by C and
C++. The C assert macro causes the tested expression to be printed out
when the assertion fails. And by defining the NDEBUG macro and
recompiling, you not only turn off assertions, they do not generate any
code. Both of these capabilities are possible because assert is a feature
of the preprocessor. Java has no preprocessor, and hence it is not possible
to play tricks with macros. However, in Java you can use dynamic
linking to conditionally activate code, which is ultimately a more elegant
mechanism.

Using a Console Window

If you run an applet inside a browser, you may not be able to see any messages that are sent to
System.out. Most browsers will have some sort of Java Console window. (Check the help
system for your browser.) For example, Netscape Navigator has one, as does Internet
Explorer 4 and above. If you use the Java Plug-In, check the Show Java Console box in the
configuration panel (see Chapter 10).

Moreover, the Java Console window has a set of scroll bars, so you can retrieve messages that
have scrolled off the window. Windows users will find this a definite advantage over the DOS
shell window in which the System.out output normally appears.

We give you a similar window class so you can enjoy the same benefit of seeing your
debugging messages in a window when debugging a program. Figure 11-3 shows our
ConsoleWindow class in action.

Core Java™ 2: Volume I–Fundamentals

670

Figure 11-3. The console window

The class is easy to use. Simply call:

ConsoleWindow.init()

Then print to System.out or System.err in the normal way.

Example 11-3 lists the code for the ConsoleWindow class. As you can see, the class is very
simple. Messages are displayed in a JTextArea inside a JScrollPane. We call the
System.setOut and System.setErr methods to set the output and error streams to a special
stream that adds all messages to the text area. (See Chapter 12 for more information on
streams.)

Example 11-3 ConsoleWindow.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4. import java.io.*;
 5.
 6. /**
 7. A window that displays the bytes sent to System.out
 8. and System.err
 9. */
10. public class ConsoleWindow
11. {
12. public static void init()
13. {
14. JFrame frame = new JFrame();
15. frame.setTitle("ConsoleWindow");
16. final JTextArea output = new JTextArea();

Core Java™ 2: Volume I–Fundamentals

671

17. output.setEditable(false);
18. frame.getContentPane().add(new JScrollPane(output));
19. frame.setSize(300, 200);
20. frame.setLocation(200, 200);
21. frame.show();
22.
23. // define a PrintStream that sends its bytes to the
24. // output text area
25. PrintStream consoleStream = new PrintStream(new
26. OutputStream()
27. {
28. public void write(int b) {} // never called
29. public void write(byte[] b, int off, int len)
30. {
31. output.append(new String(b, off, len));
32. }
33. });
34.
35. // set both System.out and System.err to that stream
36. System.setOut(consoleStream);
37. System.setErr(consoleStream);
38. }
39. }

Tracing AWT Events

When you write a fancy user interface in Java, you need to know what events AWT sends to
what components. Unfortunately, the AWT documentation is somewhat sketchy in this
regard. For example, suppose you want to show hints in the status line when the user moves
the mouse over different parts of the screen. The AWT generates mouse and focus events that
you may be able to trap.

We give you a useful EventTrace class to spy on these events. It prints out all event handling
methods and their parameters. See Figure 11-4 for a display of the traced events.

Core Java™ 2: Volume I–Fundamentals

672

Figure 11-4. The EventTracer class at work

To spy on messages, add the component whose events you want to trace to an event tracer:

EventTracer tracer = new EventTracer();
tracer.add(frame);

This prints out a textual description of all events, like this:

. . .
public abstract void java.awt.event.ComponentListener
.componentShown(java.awt.event.ComponentEvent):java.awt.event
.ComponentEvent[COMPONENT_SHOWN] on frame0
public abstract void java.awt.event.WindowListener
.windowOpened(java.awt.event.WindowEvent):java.awt.event
.WindowEvent[WINDOW_OPENED] on frame0
. . .

Core Java™ 2: Volume I–Fundamentals

673

You may want to capture this output in a file or a console window, as explained in
the preceding sections.

Example 11-4 is the EventTracer class. The idea behind the class is easy even if
the implementation is a bit mysterious.

1. When you add a component to the event tracer in the add method, the JavaBeans
introspection class analyzes the component for methods of the form void
addXxxListener(XxxEvent). (See Chapter 7 of Volume 2 for more information on
JavaBeans.) For each matching method, an EventSetDescriptor is generated. We
pass each descriptor to the addListener method.

2. If the component is a container, we enumerate its components and recursively call add
for each of them.

3. The addListener method is called with two parameters: the component on whose
events we want to spy, and the event set descriptor. The getListenerType method of
the EventSetDescriptor class returns a Class object that describes the event listener
interface such as ActionListener or ChangeListener. We create a proxy object for
that interface. The proxy handler simply prints the name and event parameter of
the invoked event method. The getAddListenerMethod method of
the EventSetDescriptor class returns a Method object that we use to add the proxy
object as the event listener to the component.

This program is a good example of the power of the reflection mechanism. We don't
have to hardwire the fact that the JButton class has a method addActionListener
whereas a JSlider has a method addChangeListener. The reflection mechanism
discovers these facts for us.

NOTE

The proxy mechanism makes this program dramatically easier. In prior
editions of this book, we needed to define a listener that simultaneously
implements the MouseListener, ComponentListener,
FocusListener, KeyListener, ContainerListener,
WindowListener, TextListener, AdjustmentListener,
ActionListener and ItemListener interfaces, and a couple of dozen
methods that print the event parameter. The proxy mechanism is
explained at the end of Chapter 5.

Example 11-5 tests the event tracer. The program displays a frame with a button and a slider
and traces the events that these components generate.

Core Java™ 2: Volume I–Fundamentals

674

Example 11-4 EventTracer.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.beans.*;
 4. import java.lang.reflect.*;
 5.
 6. public class EventTracer
 7. {
 8. public EventTracer()
 9. {
10. // the handler for all event proxies
11. handler = new
12. InvocationHandler()
13. {
14. public Object invoke(Object proxy,
15. Method method, Object[] args)
16. {
17. System.out.println(method + ":" + args[0]);
18. return null;
19. }
20. };
21. }
22.
23. /**
24. Adds event tracers for all events to which this component
25. and its children can listen
26. @param c a component
27. */
28. public void add(Component c)
29. {
30. try
31. {
32. // get all events to which this component can listen
33. BeanInfo info = Introspector.getBeanInfo(c.getClass());
34.
35. EventSetDescriptor[] eventSets
36. = info.getEventSetDescriptors();
37. for (int i = 0; i < eventSets.length; i++)
38. addListener(c, eventSets[i]);
39. }
40. catch (IntrospectionException exception) {}
41. // ok not to add listeners if exception is thrown
42.
43. if (c instanceof Container)
44. {
45. // get all children and call add recursively
46. Component[] a = ((Container)c).getComponents();
47. for (int i = 0; i < a.length; i++)
48. add(a[i]);
49. }
50. }
51.
52. /**
53. Add a listener to the given event set
54. @param c a component
55. @param eventSet a descriptor of a listener interface
56. */
57. public void addListener(Component c,
58. EventSetDescriptor eventSet)
59. {

Core Java™ 2: Volume I–Fundamentals

675

60. // make proxy object for this listener type and route
61. // all calls to the handler
62. Object proxy = Proxy.newProxyInstance(null,
63. new Class[] { eventSet.getListenerType() }, handler);
64.
65. // add the proxy as a listener to the component
66. Method addListenerMethod
67. = eventSet.getAddListenerMethod();
68. try
69. {
70. addListenerMethod.invoke(c, new Object[] { proxy });
71. }
72. catch(InvocationTargetException e) {}
73. catch(IllegalAccessException e) {}
74. // ok not to add listener if exception is thrown
75. }
76.
77. private InvocationHandler handler;
78. }

Example 11-5 EventTracerTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. public class EventTracerTest
 6. {
 7. public static void main(String[] args)
 8. {
 9. JFrame frame = new JFrame();
10. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11. frame.show();
12. }
13. }
14.
15. class EventTracerFrame extends JFrame
16. {
17. public EventTracerFrame()
18. {
19. setTitle("EventTracerTest");
20. setSize(WIDTH, HEIGHT);
21.
22. // add a slider and a button
23. Container contentPane = getContentPane();
24.
25. contentPane.add(new JSlider(), BorderLayout.NORTH);
26. contentPane.add(new JButton("Test"), BorderLayout.SOUTH);
27.
28. // trap all events of components inside the frame
29. EventTracer tracer = new EventTracer();
30. tracer.add(this);
31. }
32.
33. public static final int WIDTH = 400;
34. public static final int HEIGHT = 400;
35. }

Core Java™ 2: Volume I–Fundamentals

676

The AWT Robot

Version 1.3 of Java 2 adds a Robot class that you can use to send keystrokes and mouse clicks
to any AWT program. This class is intended for automatic testing of user interfaces.

To get a robot, you need to first get a GraphicsDevice object. You get the default screen
device through the sequence of calls:

GraphicsEnvironment environment
 = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice screen
 = environment.getDefaultScreenDevice();

Then you construct a robot as:

Robot robot = new Robot(screen);

To send a keystroke, tell the robot to simulate a key press and a key release:

robot.keyPress(KeyEvent.VK_TAB);
robot.keyRelease(KeyEvent.VK_TAB);

For a mouse click, you first need to move the mouse and then press and release a button:

robot.mouseMove(x, y);
robot.mousePress(InputEvent.BUTTON1_MASK);
robot.mouseRelease(InputEvent.BUTTON1_MASK);

Here x and y are absolute screen pixel coordinates.

The idea is that you simulate key and mouse input, and afterwards take a screen snapshot to
see whether the application did what it was supposed to. You capture the screen with the
createScreenCapture method:

Rectangle rect = new Rectangle(x, y, width, height);
BufferedImage image = robot.createScreenCapture(rect);

The rectangle coordinates also refer to absolute screen pixels.

Finally, you usually want to add a small delay between robot instructions so that the
application can catch up. Use the delay method and give it the number of milliseconds to
delay. For example:

robot.delay(1000); // delay by 1000 milliseconds

The program in Example 11-6 shows how you can use the robot. A robot tests the button test
program that you saw in Chapter 8. First, pressing the space bar activates the left most button.
Then the robot waits for two seconds so that you can see what it has done. After the delay, the
robot simulates the tab key and another space bar press to click on the next button. Finally, we
simulate a mouse click on the third button. (You may need to adjust the x and y coordinates of
the program to actually press the button.) The program ends by taking a screen capture and
displaying it in another frame.

Core Java™ 2: Volume I–Fundamentals

677

As you can see from this example, the Robot class is not by itself suitable for convenient user
interface testing. Instead, it is a basic building block that can be a foundational part of a
testing tool. A professional testing tool can capture, store, and replay user interaction
scenarios and find out the screen locations of the components so that mouse clicks aren't
guesswork. At the time of this writing, the robot is brand new and we are not aware of any
sophisticated testing tools for Java user interfaces. We expect these tools to materialize in the
future.

Example 11-6 RobotTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.awt.image.*;
 4. import javax.swing.*;
 5.
 6. public class RobotTest
 7. {
 8. public static void main(String[] args)
 9. {
10. // make frame with a button panel
11.
12. ButtonFrame frame = new ButtonFrame();
13. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14. frame.show();
15.
16. // attach a robot to the screen device
17.
18. GraphicsEnvironment environment
19. = GraphicsEnvironment.getLocalGraphicsEnvironment();
20. GraphicsDevice screen
21. = environment.getDefaultScreenDevice();
22.
23. try
24. {
25. Robot robot = new Robot(screen);
26. run(robot);
27. }
28. catch (AWTException exception)
29. {
30. System.err.println("Can't construct robot.");
31. }
32. }
33.
34. /**
35. Runs a sample test procedure
36. @param robot the robot attached to the screen device
37. */
38. public static void run(Robot robot)
39. {
40. // simulate a space bar press
41. robot.keyPress(' ');
42. robot.keyRelease(' ');
43.
44. // simulate a tab key followed by a space
45. robot.delay(2000);
46. robot.keyPress(KeyEvent.VK_TAB);
47. robot.keyRelease(KeyEvent.VK_TAB);
48. robot.keyPress(' ');
49. robot.keyRelease(' ');

Core Java™ 2: Volume I–Fundamentals

678

50.
51. // simulate a mouse click over the rightmost button
52. robot.delay(2000);
53. robot.mouseMove(200, 50);
54. robot.mousePress(InputEvent.BUTTON1_MASK);
55. robot.mouseRelease(InputEvent.BUTTON1_MASK);
56.
57. // capture the screen and show the resulting image
58. robot.delay(2000);
59. BufferedImage image = robot.createScreenCapture(
60. new Rectangle(0, 0, 400, 300));
61.
62. ImageFrame frame = new ImageFrame(image);
63. frame.show();
64. }
65. }
66.
67. /**
68. A frame to display a captured image
69. */
70. class ImageFrame extends JFrame
71. {
72. /**
73. @param image the image to display
74. */
75. public ImageFrame(Image image)
76. {
77. setTitle("Capture");
78. setSize(WIDTH, HEIGHT);
79.
80. Container contentPane = getContentPane();
81. JLabel label = new JLabel(new ImageIcon(image));
82. contentPane.add(label);
83. }
84.
85. public static final int WIDTH = 450;
86. public static final int HEIGHT = 350;
87. }

java.awt.GraphicsEnvironment

• static GraphicsEnvironment getLocalGraphicsEnvironment()

returns the local graphics environment.

• GraphicsDevice getDefaultScreenDevice()

returns the default screen device. Note that computers with multiple monitors have one
graphics device per screen—use the getScreenDevices method to obtain an array of
all screen devices.

Core Java™ 2: Volume I–Fundamentals

679

java.awt.Robot

• Robot(GraphicsDevice device)

constructs a robot that can interact with the given device.

• void keyPress(int key)
• void keyRelease(int key)

simulate a key press or release.

Parameters: key The key code. See the KeyStroke class for more information on key codes.

• void mouseMove(int x, int y)

simulates a mouse move.

Parameters: x, y The mouse position in absolute pixel coordinates

• void mousePress(int eventMask)
• void mouseRelease(int eventMask)

simulate a mouse button press or release.

Parameters: eventMask The event mask describing the mouse buttons. See the
InputEvent class for more information on event masks.

• void delay(int milliseconds)

delays the robot for the given number of milliseconds.

• BufferedImage createScreenCapture(Rectangle rect)

captures a portion of the screen.

Parameters: rect The rectangle to be captured, in absolute pixel coordinates

Profiling

You may have a program that works correctly but is too slow to be useful. Of course, before
you rewrite the program, you want to know why it is too slow. This is not something that you
should leave to guesswork. It is not uncommon for even experienced programmers to guess
wrong, spend time optimizing a part of the code that doesn't get executed all that often, and
still have a poorly performing program. Instead, you should turn to a profiler.

Core Java™ 2: Volume I–Fundamentals

680

The Java 2 SDK includes a very rudimentary profiling tool called HPROF that is really just a
proof of concept, not a serious tool. More importantly, the JVM includes a profiler interface
that tool vendors can use to build sophisticated profiling tools. For more information on the
JVM profiler interface, see http://java.sun.com/products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.
HPROF is an example of a program that utilizes the JVM profiler interface. Other, more
powerful profiling tools are available commercially.

To run the profiler on a program, use the following command line:

java -Xrunhprof:option1=value1, option2=value2,... MyProg

Table 11-2 shows the profiler options.

Table 11-2. HPROF options
Option Name and Value Description Default
cpu=samples|times CPU usage None
heap=dump|sites|all Heap profiling all
monitor=y|n Monitor contention n
format=a|b Text (ASCII) or binary a
file=name Write data to file java.hprof.txt for text, java.hprof for binary
net=host:port Send data to socket Write to file
depth=size Stack trace depth 4
cutoff=value Output cutoff point 0.0001
lineno=y|n Line number in traces? y
thread=y|n Thread in traces? n
doe=y|n Dump on exit? y

The cpu and heap options are the most useful ones. The cpu=samples option periodically
samples the runtime stacks of all threads, and tracks how often a particular stack frame was
captured. You'll see an example later in this section. The cpu=times option tracks when each
method was entered and exited. The heap=sites option tracks object allocations and
deallocations.

Let us look at an example. The program in Example 11-7 is a simple word count program, just
like the UNIX wc utility. It counts the number of lines, words, and characters in System.in.
For example, to count words in jdk1.3/README.txt, you would execute

java WordCount < jdk1.3/README.txt

The WordCount program is very simple. It reads input a line at a time, using the
BufferedReader.readLine method. To count the characters, we simply print the length of
the input string. To count the words, we use the countTokens method of
the StringTokenizer class. (See Chapter 12 for more information on the BufferedReader
and StringTokenizer classes.)

The program works correctly, but it is extremely slow on larger files. Counting the words in
the full text of “Alice in Wonderland” (28195 words in about 150K bytes) takes 80 seconds
on our test machine, whereas the wc program does the same job in less than a second.

Core Java™ 2: Volume I–Fundamentals

681

Of course, with a simple program like this, it is not difficult to spot the reason for the poor
performance. But let us nevertheless run the profiler to see our suspicions verified. You may
want to have a guess before looking at the numbers. Clearly, concatenating the input to a long
string is wasteful and unnecessary. How about the string tokenizer? Is it inefficient to count
tokens?

Run the profiler as

java -Xrunhprof:cpu=samples WordCount < gutenberg/alice30.txt

By default, the profiler sends its output to the file java.hprof.txt. You can change
the output file with the file option.

Open the file and look at the very end, in the CPU SAMPLES section. The section starts out like
this:

rank self accum count trace method
 1 37.23% 37.23% 1246 3 java.lang.StringBuffer.expandCapacity
 2 32.24% 69.47% 1079 10 java.lang.StringBuffer.expandCapacity
 3 28.56% 98.03% 956 6 java.lang.String.getChars
 4 0.30% 98.33% 10 17 WordCount.main
 5 0.21% 98.54% 7 7 java.lang.StringBuffer.toString
 6 0.18% 98.72% 6 20 WordCount.main
 7 0.15% 98.86% 5 4 java.io.BufferedReader.readLine
 8 0.15% 99.01% 5 16 java.lang.String.<init>
 9 0.12% 99.13% 4 11 java.lang.StringBuffer.append
 10 0.12% 99.25% 4 13 WordCount.main
 . . .

To interpret this table, you need to match up the entries in the trace column with the TRACE
listings earlier in the output. The listings appear in seemingly random order. Here are the ones
that match up the three top-ranked entries in the CPU samples:

TRACE 3:
java.lang.StringBuffer.expandCapacity(StringBuffer.java:202)
java.lang.StringBuffer.append(StringBuffer.java:401)
WordCount.main(WordCount.java:18)

TRACE 10:
java.lang.StringBuffer.expandCapacity(StringBuffer.java:Unknown line)
java.lang.StringBuffer.append(StringBuffer.java:401)
WordCount.main(WordCount.java:18)

TRACE 6:
java.lang.String.getChars(String.java:Unknown line)
java.lang.StringBuffer.append(StringBuffer.java:402)
WordCount.main(WordCount.java:18)

As you can see, they all happen to point to the same line of source code, namely line 18:

input += line;

You may wonder why there are two identical-looking stack traces. To solve this mystery, run
the javap decompiler:

Core Java™ 2: Volume I–Fundamentals

682

javap -c -l WordCount

The code for line 18 is:

48 new #8 <Class java.lang.StringBuffer>
51 dup
52 invokespecial #9 <Method java.lang.StringBuffer()>
55 aload_1
56 invokevirtual #10 <Method java.lang.StringBufferappend-
 (java.lang.String)>
59 aload 4
61 invokevirtual #10 <Method java.lang.StringBufferappend-
 (java.lang.String)>
64 invokevirtual #12 <Method java.lang.String toString()>
67 astore_1

In other words, the compiler translates

input += line;

into

StringBuffer temp = new StringBuffer();
temp.append(input);
temp.append(line);
input = temp.toString();

As you can see, there are two calls to the append method, and apparently each of them is
time-consuming. Of course, this problem is easy to fix. There is no need to concatenate all
input. Simply count the number of characters and words separately for each input line, and the
program will run about as fast as the native UNIX program.

In addition to timing data, the HPROF program can also show you heap allocations. For
example, run the command

java -Xrunhprof:heap=sites WordCount < alice30.txt

The output starts with

rank self accum bytes objs bytes objs trace name
 1 65.49% 65.49% 398250 3 477753252 7703 468 [C
 2 24.59% 90.08% 149524 157 149524 157 1 [I
 3 3.17% 93.25% 19282 739 19478 755 1 [C
. . .

This means that stack trace 468 allocated a huge number of character arrays ([C).

The stack trace is

TRACE 468:
java.lang.StringBuffer.expandCapacity(StringBuffer.java:202)
java.lang.StringBuffer.append(StringBuffer.java:401)
WordCount.main(WordCount.java:18)

It again points to the infamous line 18.

Core Java™ 2: Volume I–Fundamentals

683

This section showed you how you can use the information that the HPROF program generates
to find trouble spots in your program. However, in a larger program, the HPROF output is
going to be unwieldy, and you should use a professional profiling tool.

Example 11-7 WordCount.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. /**
 5. A program for counting the count of lines, words,
 6. and sentences in System.in
 7. */
 8. public class WordCount
 9. {
10. public static void main(String[] args)
11. {
12. String input = "";
13. int lines = 0;
14. try
15. {
16. BufferedReader reader = new BufferedReader(new
17. InputStreamReader(System.in));
18. String line;
19. // read input lines until the end of file is reached
20. while ((line = reader.readLine()) != null)
21. {
22. line += "\n";
23. input += line; // add line to input string
24. lines++; // increment line count
25. }
26. }
27. catch (IOException exception)
28. {
29. exception.printStackTrace();
30. }
31.
32. // split the input into tokens to count all words
33. StringTokenizer tokenizer = new StringTokenizer(input);
34. int words = tokenizer.countTokens();
35.
36. // print count of lines, words, and characters in input
37. System.out.println(lines + " " + words
38. + " " + input.length());
39. }
40. }

Coverage Testing

The J2SE SDK contains a coverage testing tool called JCOV. During coverage testing, you
measure which code in your program has been executed during test runs. After all, if your test
cases never execute a particular code branch, it is entirely possible that undetected errors are
lurking there.

JCOV is even more primitive than HPROF, and we will describe it only briefly. For example,
to track which methods are used in a particular run of the OptionPaneTest program of
Chapter 9, run

Core Java™ 2: Volume I–Fundamentals

684

java -Xrunjcov:type=M OptionDialogTest

The JCOV tool stores the coverage analysis in a file named java.jcov. Here is a typical
output:

JCOV-DATA-FILE-VERSION: 2.0
CLASS: ButtonPanel []
SRCFILE: OptionDialogTest.java
TIMESTAMP: 0
DATA: M
#kind line position count
METHOD: getSelection()Ljava/lang/String; []
1 60 0 8
METHOD: <init>(Ljava/lang/String;[Ljava/lang/String;)V [public]
1 36 0 6
CLASS: OptionDialogFrame$ShowAction []
SRCFILE: OptionDialogTest.java
TIMESTAMP: 0
DATA: M
#kind line position count
METHOD: actionPerformed(Ljava/awt/event/ActionEvent;)V [public]
1 233 0 2
METHOD: <init>(LOptionDialogFrame;)V [private]
1 229 0 1
METHOD: <init>(LOptionDialogFrame;LOptionDialogFrame$1;)V []
1 229 0 1
CLASS: OptionDialogTest [public]
SRCFILE: OptionDialogTest.java
TIMESTAMP: 0
DATA: M
#kind line position count
METHOD: main([Ljava/lang/String;)V [public static]
1 17 0 1
METHOD: <init>()V [public]
1 13 0 0

For example, the <init> method of the ButtonPanel was executed six times, to construct six
panels. The default constructor of the OptionDialogTest class was not executed at all—that
makes sense since we never instantiated the class and called only the static main method.

For more help on JCOV, run

java -Xrunjcov:help

and look at the file jvm.jcov.txt in the jre/lib directory.

The JCOV tool, just like HPROF, is more a proof of concept than a usable tool. Professional
profiling tools give you coverage analysis in a format that is easier to interpret.

Using a Debugger

Debugging with print statements is not one of life's more joyful experiences. You constantly
find yourself adding and removing the statements, then recompiling the program. Using a
debugger is better because a debugger runs your program in full motion until it reaches a
breakpoint, and then you can look at everything that interests you.

Core Java™ 2: Volume I–Fundamentals

685

The JDB Debugger

The SDK includes JDB, an extremely rudimentary command-line debugger. Its user interface
is so minimal that you will not want to use it except as a last resort. It really is more a proof of
concept than a usable tool. We nevertheless give a brief introduction because there are
situations in which it is better than no debugger at all. Of course, many Java programming
environments have far more convenient debuggers. The main principles of all debuggers are
the same, and you may want to use the example in this section to learn to use the debugger in
your environment instead of JDB.

Examples 11-8 through 11-10 show a deliberately corrupted version of the ButtonTest
program from Chapter 8. (We had to break up the program and place each class into a
separate file to overcome a limitation of the Forte debugger.)

When you click on any of the buttons, nothing happened. Look at the source code—button
clicks are supposed to set the background color to the color specified by the button name.

Example 11-8 BuggyButtonTest.java

 1. import javax.swing.*;
 2.
 3. public class BuggyButtonTest
 4. {
 5. public static void main(String[] args)
 6. {
 7. BuggyButtonFrame frame = new BuggyButtonFrame();
 8. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 9. frame.show();
10. }
11. }

Example 11-9 BuggyButtonFrame.java

 1. import java.awt.*;
 2. import javax.swing.*;
 3.
 4. public class BuggyButtonFrame extends JFrame
 5. {
 6. public BuggyButtonFrame()
 7. {
 8. setTitle("BuggyButtonTest");
 9. setSize(WIDTH, HEIGHT);
10.
11. // add panel to frame
12.
13. BuggyButtonPanel panel = new BuggyButtonPanel();
14. Container contentPane = getContentPane();
15. contentPane.add(panel);
16. }
17.
18. public static final int WIDTH = 300;
19. public static final int HEIGHT = 200;
20. }

Core Java™ 2: Volume I–Fundamentals

686

Example 11-10 BuggyButtonPanel.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import javax.swing.*;
 4.
 5. class BuggyButtonPanel extends JPanel
 6. {
 7. public BuggyButtonPanel()
 8. {
 9. ActionListener listener = new ButtonListener();
10.
11. JButton yellowButton = new JButton("Yellow");
12. add(yellowButton);
13. yellowButton.addActionListener(listener);
14.
15. JButton blueButton = new JButton("Blue");
16. add(blueButton);
17. blueButton.addActionListener(listener);
18.
19. JButton redButton = new JButton("Red");
20. add(redButton);
21. redButton.addActionListener(listener);
22. }
23.
24. private class ButtonListener implements ActionListener
25. {
26. public void actionPerformed(ActionEvent event)
27. {
28. String arg = event.getActionCommand();
29. if (arg.equals("yellow"))
30. setBackground(Color.yellow);
31. else if (arg.equals("blue"))
32. setBackground(Color.blue);
33. else if (arg.equals("red"))
34. setBackground(Color.red);
35. repaint();
36. }
37. }
38. }

In a program this short, you may be able to find the bug just by reading the source code. Let
us pretend that this was so complicated a program that reading the source code is not
practical. Here is how you can run the debugger to locate the error.

To use JDB, you must first compile your program with the -g option, for example:

javac -g BuggyButtonTest.java BuggyButtonFrame.java
 BuggyButtonPanel.java

When you compile with this option, the compiler adds the names of local variables and other
debugging information into the class files. Then you launch the debugger:

jdb BuggyButtonTest

Once you launch the debugger, you will see a display that looks something like this:

Core Java™ 2: Volume I–Fundamentals

687

Initializing jdb...
>

The > prompt indicates the debugger is waiting for a command. Table 11-3 shows all the
debugger commands. Items enclosed in […] are optional, and the suffix (s) means that you
can supply one or more arguments separated by spaces.

Table 11-3. Debugging commands
threads [threadgroup] Lists threads
thread thread_id Sets default thread
suspend [thread_id(s)] Suspends threads (default: all)
resume [thread_id(s)] Resumes threads (default: all)
where [thread_id] or all Dumps a thread's stack
wherei [thread_id] or all Dumps a thread's stack and program counter info
threadgroups Lists threadgroups
threadgroup name Sets current threadgroup
print name(s) Prints object or field
dump name(s) Prints all object information
locals Prints all current local variables
classes Lists currently known classes
methods class Lists a class's methods
stop in class.method Sets a breakpoint in a method
stop at class:line Sets a breakpoint at a line
up [n] Moves up a thread's stack
down [n] Moves down a thread's stack
clear class:line Clears a breakpoint
step Executes the current line, stepping inside calls
stepi Executes the current instruction
step up Executes until the end of the current method
next Executes the current line, stepping over calls
cont Continues execution from breakpoint
catch class Breaks for the specified exception
ignore class Ignores the specified exception
list [line] Prints source code
use [path] Displays or changes the source path
memory Reports memory usage
gc Frees unused objects
load class Loads Java class to be debugged
run [class [args]] Starts execution of a loaded Java class
!! Repeats last command
help (or ?) Lists commands
exit (or quit) Exits debugger

We will cover only the most useful JDB commands in this section. The basic idea, though, is
simple: you set one or more breakpoints, then run the program. When the program reaches
one of the breakpoints you set, it stops. Then, you can inspect the values of the local variables
to see if they are what they are supposed to be.

Core Java™ 2: Volume I–Fundamentals

688

To set a breakpoint, use the

stop in class.method

or

stop at class:line

command.

For example, let us set a breakpoint in the actionPerformed method of BuggyButtonTest.
To do this, enter:

stop in BuggyButtonPanel$ButtonListener.actionPerformed

Now we want to run the program up to the breakpoint, so enter:

run

The program will run, but the breakpoint won't be hit until Java starts processing code in
the actionPerformed method. For this, click on the Yellow button. The debugger breaks at
the start of the actionPerformed method. You'll see:

Breakpoint hit: thread="AWT-EventQueue-0", BuggyButtonPanel$But-
tonListener.actionPerformed(), line=28, bci=0
 28 String arg = event.getActionCommand();

Because the debugger does not give you a window with the current source line showing, it is
easy to lose track of where you are; the list command lets you find out where you are. While
the program is stopped after you enter list, the debugger will show you the current line and
a couple of the lines above and below. You also see the line numbers. For example:

24 private class ButtonListener implements ActionListener
25 {
26 public void actionPerformed(ActionEvent event)
27 {
28=> String arg = event.getActionCommand();
29 if (arg.equals("yellow"))
30 setBackground(Color.yellow);
31 else if (arg.equals("blue"))
32 setBackground(Color.blue);
33 else if (arg.equals("red"))

Type locals to see all local variables. For example:

Method arguments:
 event = instance of java.awt.event.ActionEvent(id=698)
Local variables:

For more detail, use:

dump variable

For example,

Core Java™ 2: Volume I–Fundamentals

689

dump event

displays all instance fields of the evt variable.

event = instance of java.awt.event.ActionEvent(id=698) {
 SHIFT_MASK: 1
 CTRL_MASK: 2
 META_MASK: 4
 ALT_MASK: 8
 ACTION_FIRST: 1001
 ACTION_LAST: 1001
 ACTION_PERFORMED: 1001
 actionCommand: "Yellow"
 modifiers: 0
 serialVersionUID: -7671078796273832149
 . . .

There are two basic commands to single-step through a program. The step command steps
into every method call. The next command goes to the next line without stepping inside any
further method calls. Type next twice and then type list to see where you are.

The program stops in line 31.

27 {
28 String arg = event.getActionCommand();
29 if (arg.equals("yellow"))
30 setBackground(Color.yellow);
31=> else if (arg.equals("blue"))
32 setBackground(Color.blue);
33 else if (arg.equals("red"))
34 setBackground(Color.red);
35 repaint();
36 }

That is not what should have happened. It was supposed to call setColor(Color.yellow)
and then go to the repaint command.

Dump the arg variable.

arg = "Yellow"

Now you can see what happened. The value of arg was "Yellow", with an uppercase Y, but
the comparison tested

if (arg.equals("yellow"))

with a lowercase y. Mystery solved.

To quit the debugger, type:

quit

As you can see from this example, the debugger can be used to find an error, but the
command-line interface is very inconvenient. Remember to use list and locals whenever

Core Java™ 2: Volume I–Fundamentals

690

you are confused about where you are. But if you have any choice at all, use a better debugger
for serious debugging work.

The Forte Debugger

Forte has a modern and convenient debugger that has many of the amenities that you would
expect. In particular, you can set breakpoints, inspect variables, and single-step through
a program.

To set a breakpoint, move the cursor to the desired line and select Debug -> Add/Remove
Breakpoint from the menu, or press the ctrl+f8 keyboard shortcut. The breakpoint line is
highlighted (see Figure 11-5).

Figure 11-5. A breakpoint in the Forte debugger

You can see all currently set breakpoints in the breakpoints tab of the debugger window (see
Figure 11-6).

Core Java™ 2: Volume I–Fundamentals

691

Figure 11-6. The breakpoint list

To start debugging, select Debug -> Start debugging or press the f5 key. The program starts
running. Set a breakpoint in the first line of the actionPerformed method.

CAUTION

In Forte 1.0, you must break the program into multiple source files, one
for each outer class. Otherwise the debugger gets confused when you try
to set breakpoints.

To see the value of a variable, select Debug -> Add watch or press the shift+f8 keyboard
shortcut. Then type the name of the variable you want to see. The variable shows up in
the watch window. You can expand the items in the window by clicking on the tree handles
(see Figure 11-7).

Core Java™ 2: Volume I–Fundamentals

692

Figure 11-7. The Forte watch window

To single-step through the application, use the Debug -> Trace over (f8) or Debug -> Trace
into (f7) commands. In our example, press the f8 key twice to see how the program skips over
the setBackground(Color.yellow) command. Then watch the value of args to see
the reason.

CAUTION

In Forte 1.0, single-stepping is quite slow. Be patient after pressing the f8
or f7 key and wait until the cursor has moved to the next line before
pressing another key.

As you can see, the Forte debugger is much easier to use than JDB because you have visual
feedback to indicate where you are in the program. Setting breakpoints and inspecting
variables is also much easier. This is typical of debuggers that are a part of an integrated
development environment.

This chapter introduced you to exception handling and gave you some useful hints for testing
and debugging. The final chapter of this book covers the stream, reader, writer, and file
classes that you need to program input and output.

Core Java™ 2: Volume I–Fundamentals

693

Chapter 12. Streams and Files
• Streams
• The Complete Stream Zoo
• ZIP File Streams
• Putting Streams to Use
• Object Streams
• File Management

Applets are not normally allowed to work with files on the user's system. Applications, of
course, need to do this a lot. In this chapter, we cover the methods for handling files and
directories as well as the methods for actually writing and reading back information to and
from files. This chapter also shows you the object serialization mechanism that lets you store
objects as easily as you can store text or numeric data.

Streams

Input/output techniques are not particularly exciting, but without the ability to read and write
data, your programs are severely limited. This chapter is about how to get input from any
source of data that can send out a sequence of bytes and how to send output to any destination
that can receive a sequence of bytes. These sources and destinations of byte sequences can
be—and often are—files, but they can also be network connections and even blocks of
memory. There is a nice payback to keeping this generality in mind: for example, information
stored in files and information retrieved from a network connection is handled in essentially
the same way. (See Volume 2 for more information about programming with networks.) Of
course, while data is always ultimately stored as a sequence of bytes, it is often more
convenient to think of it as having some higher-level structure such as being a sequence of
characters or objects. For that reason, we dispense with low-level input/output quickly and
focus on higher level facilities for the majority of the chapter.

In Java, an object from which we can read a sequence of bytes is called an input stream. An
object to which we can write a sequence of bytes is called an output stream. These are
specified in the abstract classes InputStream and OutputStream. Since byte-oriented streams
are inconvenient for processing information stored in Unicode (recall that Unicode uses two
bytes per character), there is a separate hierarchy of classes for processing Unicode characters
that inherit from the abstract Reader and Writer classes. These classes have read and write
operations that are based on 2-byte Unicode characters rather than on single-byte characters.

You saw abstract classes in Chapter 5. Recall that the point of an abstract class is to provide a
mechanism for factoring out the common behavior of classes to a higher level. This leads to
cleaner code and makes the inheritance tree easier to understand. The same game is at work
with input and output in the Java programming language.

As you will soon see, Java derives from these four abstract classes a zoo of concrete classes:
you can visit almost any conceivable input/output creature in this zoo.

Reading and Writing Bytes

The InputStream class has an abstract method:

Core Java™ 2: Volume I–Fundamentals

694

abstract int read()

This method reads one byte and returns the byte that was read, or –1 if it encounters the end
of the input source. The designer of a concrete input stream class overrides this method to
provide useful functionality. For example, in the FileInputStream class, this method reads
one byte from a file. System.in is a predefined object of a subclass of InputStream that
allows you to read information from the keyboard.

The InputStream class also has nonabstract methods to read an array of bytes or to skip a
number of bytes. These methods call the abstract read method, so that subclasses need to
override only one method.

Similarly, the OutputStream class defines the abstract method

abstract void write(int b)

which writes one byte to an output location.

Both the read and write methods can block a thread until the byte is actually read or written.
This means that if the stream cannot immediately be read from or written to (usually because
of a busy network connection), Java suspends the thread containing this call. This gives other
threads the chance to do useful work while the method is waiting for the stream to again
become available. (We discuss threads in depth in Volume 2.)

The available method lets you check the number of bytes that are currently available for
reading. This means a fragment like the following is unlikely to ever block:

int bytesAvailable = System.in.available();
if (bytesAvailable > 0)
{
 byte[] data = new byte[bytesAvailable];
 System.in.read(data);
}

When you have finished reading or writing to a stream, close it by calling the close method.
This call frees up operating system resources that are in limited supply. If an application
opens too many streams without closing them, system resources may become depleted.
Closing an output stream also flushes the buffer used for the output stream: any characters that
were temporarily placed in a buffer so that they could be delivered as a larger packet are sent
off. In particular, if you do not close a file, the last packet of bytes may never be delivered.
You can also manually flush the output with the flush method.

Even if a stream class provides concrete methods to work with the raw read and write
functions, Java programmers rarely use them because programs rarely need to read and write
streams of bytes. The data that you are interested in probably contain numbers, strings, and
objects.

Java gives you many stream classes derived from the basic InputStream and OutputStream
classes that let you work with data in the forms that you usually use rather than at the low,
byte level.

Core Java™ 2: Volume I–Fundamentals

695

java.io.InputStream

• abstract int read()

reads a byte of data and returns the byte read. The read method returns a –1 at the end
of the stream.

• int read(byte[] b)

reads into an array of bytes and returns the actual number of bytes read, or –1 at the
end of the stream. The read method reads at most b.length bytes.

• int read(byte[] b, int off, int len)

reads into an array of bytes. The read method returns the actual number of bytes read,
or –1 at the end of the stream.

Parameters: b The array into which the data is read
 off The offset into b where the first bytes should be placed
 len The maximum number of bytes to read

• long skip(long n)

skips n bytes in the input stream. It returns the actual number of bytes skipped (which
may be less than n if the end of the stream was encountered).

• int available()

returns the number of bytes available without blocking. (Recall that blocking means
that the current thread loses its turn.)

• void close()

closes the input stream.

• void mark(int readlimit)

puts a marker at the current position in the input stream. (Not all streams support this
feature.) If more than readlimit bytes have been read from the input stream, then the
stream is allowed to forget the marker.

• void reset()

returns to the last marker. Subsequent calls to read reread the bytes. If there is no
current marker, then the stream is not reset.

Core Java™ 2: Volume I–Fundamentals

696

• boolean markSupported()

returns true if the stream supports marking.

java.io.OutputStream

• abstract void write(int n)

writes a byte of data.

• void write(byte[] b)

writes all bytes in the array b.

• void write(byte[] b, int off, int len)

Parameters: b The array from which to write the data
 off The offset into b to the first byte that will be written
 len The number of bytes to write

• void close()

flushes and closes the output stream.

• void flush()

flushes the output stream, that is, sends any buffered data to its destination.

The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole zoo of more than
60 (!) different stream types (see Figures 12-1 and 12-2). Library designers claim that there is
a good reason to give users a wide choice of stream types: it is supposed to reduce
programming errors. For example, in C, some people think it is a common mistake to send
output to a file that was open only for reading. (Well, it is not that common, actually.)
Naturally, if you do this, the output is ignored at run time. In Java and C++, the compiler
catches that kind of mistake because an InputStream (Java) or istream (C++) has no
methods for output.

Core Java™ 2: Volume I–Fundamentals

697

Figure 12-1. Input and Output stream hierarchy

Core Java™ 2: Volume I–Fundamentals

698

Figure 12-2. Reader and Writer hierarchy

(We would argue that, in C++ and even more so in Java, the main tool that the stream
interface designers have against programming errors is intimidation. The sheer complexity of
the stream libraries keeps programmers on their toes.)

C++ NOTE

ANSI C++ gives you more stream types than you want, such as istream,
ostream, iostream, ifstream, ofstream, fstream, wistream,
wifstream, istrstream, and so on (18 classes in all). But Java really
goes overboard with streams and gives you the separate classes for
selecting buffering, lookahead, random access, text formatting, or binary
data.

Let us divide the animals in the stream class zoo by how they are used. Four abstract classes
are at the base of the zoo: InputStream, OutputStream, Reader, and Writer. You do not
make objects of these types, but other methods can return them. For example, as you saw in
Chapter 10, the URL class has the method openStream that returns an InputStream. You then
use this InputStream object to read from the URL. As we mentioned before, the
InputStream and OutputStream classes let you read and write only individual bytes and
arrays of bytes; they have no methods to read and write strings and numbers. You need more-

Core Java™ 2: Volume I–Fundamentals

699

capable child classes for this. For example, DataInputStream and DataOutputStream let
you read and write all the basic Java types.

For Unicode text, on the other hand, as we mentioned before, you use classes that descend
from Reader and Writer. The basic methods of the Reader and Writer classes are similar to
the ones for InputStream and OutputStream.

abstract int read()
abstract void write(int b)

They work just as the comparable methods do in the InputStream and OutputStream classes
except, of course, the read method returns either a Unicode character (as an integer between 0
and 65535) or –1 when you have reached the end of the file.

Finally, there are streams that do useful stuff, for example, the ZipInputStream and
ZipOutputStream that let you read and write files in the familiar ZIP compression format.

Layering Stream Filters

FileInputStream and FileOutputStream give you input and output streams attached to a
disk file. You give the file name or full path name of the file in the constructor. For example,

FileInputStream fin = new FileInputStream("employee.dat");

looks in the current directory for a file named "employee.dat".

CAUTION

Since the backslash character is the escape character in Java strings, be
sure to use \\ for Windows-style path names
("C:\\Windows\\win.ini"). In Windows, you can also use a single
forward slash ("C:/Windows/win.ini") since most Windows file
handling system calls will interpret forward slashes as file separators.
However, this is not recommended—the behavior of the Windows
system functions is subject to change, and on other operating systems,
the file separator may yet be different. Instead, for portable programs,
you should use the correct file separator character. It is stored in the
constant string File.separator.

You can also use a File object (see the end of the chapter for more on file objects):

File f = new File("employee.dat");
FileInputStream fin = new FileInputStream(f);

Like the abstract InputStream and OutputStream classes, these classes only support reading
and writing on the byte level. That is, we can only read bytes and byte arrays from the object
fin.

byte b = (byte)fin.read();

Core Java™ 2: Volume I–Fundamentals

700

TIP

Since all the classes in java.io interpret relative path names as starting
with the user's current working directory, you may want to know this
directory. You can get at this information via a call to
System.getProperty("user.dir").

As you will see in the next section, if we just had a DataInputStream, then we could read
numeric types:

DataInputStream din = . . .;
double s = din.readDouble();

But just as the FileInputStream has no methods to read numeric types,
the DataInputStream has no method to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some streams (such as
the FileInputStream and the input stream returned by the openStream method of the URL
class) can retrieve bytes from files and other more exotic locations. Other streams (such as the
DataInputStream and the PrintWriter) can assemble bytes into more useful data types. The
Java programmer has to combine the two into what are often called filtered streams by
feeding an existing stream to the constructor of another stream. For example, to be able to
read numbers from a file, first create a FileInputStream and then pass it to the constructor
of a DataInputStream.

FileInputStream fin = new FileInputStream("employee.dat");
DataInputStream din = new DataInputStream(fin);
double s = din.readDouble();

It is important to keep in mind that the data input stream that we created with the above code
does not correspond to a new disk file. The newly created stream still accesses the data from
the file attached to the file input stream, but the point is that it now has a more capable
interface.

If you look at Figure 12-1 again, you can see the classes FilterInputStream and
FilterOutputStream. You combine their child classes into a new filtered stream to construct
the streams you want. For example, by default, streams are not buffered. That is, every call to
read contacts the operating system to ask it to dole out yet another byte. If you want buffering
and data input for a file named employee.dat in the current directory, you need to use the
following rather monstrous sequence of constructors:

DataInputStream din = new DataInputStream
 (new BufferedInputStream
 (new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because we want to
use the DataInputStream methods, and we want them to use the buffered read method.
Regardless of the ugliness of the above code, it is necessary: you must be prepared to continue
layering stream constructors until you have access to the functionality you want.

Core Java™ 2: Volume I–Fundamentals

701

Sometimes you'll need to keep track of the intermediate streams when chaining them together.
For example, when reading input, you often need to peek at the next byte to see if it is the
value that you expect. Java provides the PushbackInputStream for this purpose.

PushbackInputStream pbin = new PushbackInputStream
 (new BufferedInputStream
 (new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

int b = pbin.read();

and throw it back if it isn't what you wanted.

if (b != '<') pbin.unread(b);

But reading and unreading are the only methods that apply to the pushback input stream. If
you want to look ahead and also read numbers, then you need both a pushback input stream
and a data input stream reference.

DataInputStream din = new DataInputStream
 (pbin = new PushbackInputStream
 (new BufferedInputStream
 (new FileInputStream("employee.dat"))));

Of course, in the stream libraries of other programming languages, niceties such as buffering
and lookahead are automatically taken care of, so it is a bit of a hassle in Java that one has to
resort to layering stream filters in these cases. But the ability to mix and match filter classes to
construct truly useful sequences of streams does give you an immense amount of flexibility.
For example, you can read numbers from a compressed ZIP file by using the following
sequence of streams (see Figure 12-3).

ZipInputStream zin
 = new ZipInputStream(new FileInputStream("employee.zip"));
DataInputStream din = new DataInputStream(zin);

Figure 12-3. A sequence of filtered stream

Core Java™ 2: Volume I–Fundamentals

702

(See the section on ZIP file streams later in this chapter for more on Java's ability to handle
ZIP files.)

All in all, apart from the rather monstrous constructors that are needed to layer streams,
the ability to mix and match streams is a very useful feature of Java!

java.io.FileInputStream

• FileInputStream(String name)

creates a new file input stream, using the file whose path name is specified by the
name string.

• FileInputStream(File f)

creates a new file input stream, using the information encapsulated in the File object.
(The File class is described at the end of this chapter.)

java.io.FileOutputStream

• FileOutputStream(String name)

creates a new file output stream specified by the name string. Path names that are not
absolute are resolved relative to the current working directory. Caution: This method
automatically deletes any existing file with the same name.

• FileOutputStream(String name, boolean append)

creates a new file output stream specified by the name string. Path names that are not
absolute are resolved relative to the current working directory. If the append
parameter is true, then data is added at the end of the file. An existing file with the
same name will not be deleted.

• FileOutputStream(File f)

creates a new file output stream using the information encapsulated in the File object.
(The File class is described at the end of this chapter.) Caution: This method
automatically deletes any existing file with the same name as the name of f.

Core Java™ 2: Volume I–Fundamentals

703

java.io.BufferedInputStream

• BufferedInputStream(InputStream in)

creates a new buffered stream with a default buffer size. A buffered input stream reads
characters from a stream without causing a device access every time. When the buffer
is empty, a new block of data is read into the buffer.

• BufferedInputStream(InputStream in, int n)

creates a new buffered stream with a user-defined buffer size.

java.io.BufferedOutputStream

• BufferedOutputStream(OutputStream out)

creates a new buffered stream with a default buffer size. A buffered output stream
collects characters to be written without causing a device access every time. When the
buffer fills up, or when the stream is flushed, the data is written.

• BufferedOutputStream(OutputStream out, int n)

creates a new buffered stream with a user-defined buffer size.

java.io.PushbackInputStream

• PushbackInputStream(InputStream in)

constructs a stream with one-byte lookahead.

• PushbackInputStream(InputStream in, int size)

constructs a stream with a pushback buffer of specified size.

Core Java™ 2: Volume I–Fundamentals

704

• void unread(int b)

pushes back a byte, which is retrieved again by the next call to read. You can push
back only one character at a time.

Parameters: b The byte to be read again

Data Streams

You often need to write the result of a computation or read one back. The data streams
support methods for reading back all of the basic Java types. To write a number, character,
Boolean value, or string, use one of the following methods of the DataOutput interface:

writeChars
writeByte
writeInt
writeShort
writeLong
writeFloat
writeDouble
writeChar
writeBoolean
writeUTF

For example, writeInt always writes an integer as a 4-byte binary quantity regardless of the
number of digits, and writeDouble always writes a double as an 8-byte binary quantity. The
resulting output is not humanly readable but the space needed will be the same for each data
type, and reading it back in will be faster. (See the section on the PrintWriter class later in
this chapter for how to output numbers as human readable text.)

NOTE

There are two different methods of storing integers and floating-point
numbers in memory, depending on the platform you are using. Suppose,
for example, you are working with a 4-byte quantity, like an int or a
float. This can be stored in such a way that the first of the 4 bytes in
memory holds the most significant byte (MSB) of the value, the so-
called big-endian method, or it can hold the least significant byte (LSB)
first, which is called, naturally enough, the little-endian method. For
example, the SPARC uses big-endian; the Pentium, little-endian. This
can lead to problems. For example, when saving a file using C or C++,
the data is saved exactly as the processor stores it. That makes it
challenging to move even the simplest data files from one platform to
another. In Java, all values are written in the big-endian fashion,
regardless of the processor. That makes Java data files platform
independent.

The writeUTF method writes string data using Unicode Text Format (UTF). UTF format is as
follows. A 7-bit ASCII value (that is, a 16-bit Unicode character with the top 9 bits zero) is
written as one byte:

Core Java™ 2: Volume I–Fundamentals

705

0a6a5a4a3a2a1a0

A 16-bit Unicode character with the top 5 bits zero is written as a 2-byte sequence:

110a10a9a8a7a6 10a5a4a3a2a1a0

(The top zero bits are not stored.)

All other Unicode characters are written as 3-byte sequences:

1110a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a0

This is a useful format for text consisting mostly of ASCII characters because ASCII
characters still take only a single byte. On the other hand, it is not a good format for Asiatic
languages, for which you are better off directly writing sequences of double-byte Unicode
characters. Use the writeChars method for that purpose.

Note that the top bits of a UTF byte determine the nature of the byte in the encoding scheme.

0xxxxxxx : ASCII
10xxxxxx : Second or third byte
110xxxxx : First byte of 2-byte sequence
1110xxxx : First byte of 3-byte sequence

To read the data back in, use the following methods:

readInt readDouble
readShort readChar
readLong readBoolean
readFloat readUTF

NOTE

The binary data format is compact and platform independent. Except for
the UTF strings, it is also suited to random access. The major drawback
is that binary files are not readable by humans.

java.io.DataInput

• boolean readBoolean()

reads in a Boolean value.

Core Java™ 2: Volume I–Fundamentals

706

• byte readByte()

reads an 8-bit byte.

• char readChar()

reads a 16-bit Unicode character.

• double readDouble()

reads a 64-bit double.

• float readFloat()

reads a 32-bit float.

• void readFully(byte[] b)

reads bytes into the array b, blocking until all bytes are read.

Parameters: b The buffer into which the data is read

• void readFully(byte[] b, int off, int len)

reads bytes into the array b, blocking until all bytes are read.

Parameters: b The buffer into which the data is read
 off The start offset of the data
 len The maximum number of bytes read

• int readInt()

reads a 32-bit integer.

• String readLine()

reads in a line that has been terminated by a \n, \r, \r\n, or EOF.

Returns a string containing all bytes in the line converted to Unicode characters.

• long readLong()

reads a 64-bit long integer.

• short readShort()

reads a 16-bit short integer.

Core Java™ 2: Volume I–Fundamentals

707

• String readUTF()

reads a string of characters in UTF format.

• int skipBytes(int n)

skips n bytes, blocking until all bytes are skipped.

Parameters: n The number of bytes to be skipped

java.io.DataOutput

• void writeBoolean(boolean b)

writes a Boolean value.

• void writeByte(byte b)

writes an 8-bit byte.

• void writeChar(char c)

writes a 16-bit Unicode character.

• void writeChars(String s)

writes all characters in the string.

• void writeDouble(double d)

writes a 64-bit double.

• void writeFloat(float f)

writes a 32-bit float.

• void writeInt(int i)

writes a 32-bit integer.

• void writeLong(long l)

writes a 64-bit long integer.

Core Java™ 2: Volume I–Fundamentals

708

• void writeShort(short s)

writes a 16-bit short integer.

• void writeUTF(String s)

writes a string of characters in UTF format.

Random-Access File Streams

The RandomAccessFile stream class lets you find or write data anywhere in a file. It
implements both the DataInput and DataOutput interfaces. Disk files are random access, but
streams of data from a network are not. You open a random-access file either for reading only
or for both reading and writing. You specify the option by using the string "r" (for read
access) or "rw" (for read/write access) as the second argument in the constructor.

RandomAccessFile in = new RandomAccessFile("employee.dat", "r");
RandomAccessFile inOut
 = new RandomAccessFile("employee.dat", "rw");

When you open an existing file as a RandomAccessFile, it does not get deleted.

A random-access file also has a file pointer setting that comes with it. The file pointer always
indicates the position of the next record that will be read or written. The seek method sets the
file pointer to an arbitrary byte position within the file. The argument to seek is a long
integer between zero and the length of the file in bytes.

The getFilePointer method returns the current position of the file pointer.

To read from a random-access file, you use the same methods—such as readInt and
readUTF—as for DataInputStream objects. That is no accident. These methods are actually
defined in the DataInput interface that both DataInputStream and RandomAccessFile
implement.

Similarly, to write a random-access file, you use the same writeInt and writeUTF methods
as in the DataOutputStream class. These methods are defined in the DataOutput interface
that is common to both classes.

The advantage of having the RandomAccessFile class implement both DataInput and
DataOutput is that this lets you use or write methods whose argument types are
the DataInput and DataOutput interfaces.

class Employee
{ . . .
 read(DataInput in) { . . . }
 write(DataOutput out) { . . . }
}

Note that the read method can handle either a DataInputStream or a RandomAccessFile
object because both of these classes implement the DataInput interface. The same is true for
the write method.

Core Java™ 2: Volume I–Fundamentals

709

java.io.RandomAccessFile

• RandomAccessFile(String name, String mode)

Parameters: name System-dependent file name
 mode "r" for reading only, or "rw" for reading and writing

• RandomAccessFile(File file, String mode)

Parameters: file A File object encapsulating a system-dependent file name. (The File
class is described at the end of this chapter.)

 mode "r" for reading only, or "rw" for reading and writing

• long getFilePointer()

returns the current location of the file pointer.

• void seek(long pos)

sets the file pointer to pos bytes from the beginning of the file.

• long length()

returns the length of the file in bytes.

Text Streams

In the last section, we discussed binary input and output. While binary I/O is fast and
efficient, it is not easily readable by humans. In this section, we will focus on text I/O. For
example, if the integer 1234 is saved in binary, it is written as the sequence of bytes 00 00 04
D2 (in hexadecimal notation). In text format, it is saved as the string "1234".

Unfortunately, doing this in Java requires a bit of work, because, as you know, Java uses
Unicode characters. That is, the character encoding for the string "1234" really is 00 31 00 32
00 33 00 34 (in hex). However, at the present time most environments where your Java
programs will run use their own character encoding. This may be a single-byte, double-byte,
or variable-byte scheme. For example, under Windows, the string would need to be written in
ASCII, as 31 32 33 34, without the extra zero bytes. If the Unicode encoding were written
into a text file, then it would be quite unlikely that the resulting file will be humanly readable
with the tools of the host environment. To overcome this problem, as we mentioned before,
Java now has a set of stream filters that bridges the gap between Unicode-encoded text and
the character encoding used by the local operating system. All of these classes descend from
the abstract Reader and Writer classes, and the names are reminiscent of the ones used for
binary data. For example, the InputStreamReader class turns an input stream that contains
bytes in a particular character encoding into a reader that emits Unicode characters. Similarly,

Core Java™ 2: Volume I–Fundamentals

710

the OutputStreamWriter class turns a stream of Unicode characters into a stream of bytes in
a particular character encoding.

For example, here is how you make an input reader that reads keystrokes from the console
and automatically converts them to Unicode.

InputStreamReader in = new InputStreamReader(System.in);

This input stream reader assumes the normal character encoding used by the host system. For
example, under Windows, it uses the ISO 8859-1 encoding (also known as ISO Latin-1 or,
among Windows programmers, as “ANSI code”). You can choose a different encoding by
specifying it in the constructor for the InputStreamReader. This takes the form

InputStreamReader(InputStream, String)

where the string describes the encoding scheme that you want to use. For example,

InputStreamReader in = new InputStreamReader(new
 FileInputStream("kremlin.dat"), "8859_5");

Tables 12-1 and 12-2 list the currently supported encoding schemes.

Local encoding schemes cannot represent all Unicode characters. If a character cannot be
represented, it is transformed to a ?

Table 12-1. Basic character encodings (in rt.jar)
Name Description
ASCII American Standard Code for Information Exchange
Cp1252 Windows Latin-1
ISO8859_1 ISO 8859-1, Latin alphabet No. 1
UnicodeBig Sixteen-bit Unicode Transformation Format, big-endian byte order, with

byte-order mark
UnicodeBigUnmarked Sixteen-bit Unicode Transformation Format, big-endian byte order
UnicodeLittle Sixteen-bit Unicode Transformation Format, little-endian byte order, with

byte-order mark
UnicodeLittle
Unmarked

Sixteen-bit Unicode Transformation Format, little-endian byte order

UTF8 Eight-bit Unicode Transformation Format
UTF-16 Sixteen-bit Unicode Transformation Format, byte order specified by

a mandatory initial byte-order mark

Table 12-2. Extended Character Encodings (in i18n.jar)
Name Description
Big5 Big5, Traditional Chinese
Cp037 USA, Canada (Bilingual, French), Netherlands, Portugal, Brazil, Australia
Cp273 IBM Austria, Germany
Cp277 IBM Denmark, Norway
Cp278 IBM Finland, Sweden
Cp280 IBM Italy
Cp284 IBM Catalan/Spain, Spanish Latin America

Core Java™ 2: Volume I–Fundamentals

711

Cp285 IBM United Kingdom, Ireland
Cp297 IBM France
Cp420 IBM Arabic
Cp424 IBM Hebrew
Cp437 MS-DOS United States, Australia, New Zealand, South Africa
Cp500 EBCDIC 500V1
Cp737 PC Greek
Cp775 PC Baltic
Cp838 IBM Thailand extended SBCS
Cp850 MS-DOS Latin-1
Cp852 MS-DOS Latin-2
Cp855 IBM Cyrillic
Cp856 IBM Hebrew
Cp857 IBM Turkish
Cp858 Variant of Cp850 with Euro character
Cp860 MS-DOS Portuguese
Cp861 MS-DOS Icelandic
Cp862 PC Hebrew
Cp863 MS-DOS Canadian French
Cp864 PC Arabic
Cp865 MS-DOS Nordic
Cp866 MS-DOS Russian
Cp868 MS-DOS Pakistan
Cp869 IBM Modern Greek
Cp870 IBM Multilingual Latin-2
Cp871 IBM Iceland
Cp874 IBM Thai
Cp875 IBM Greek
Cp918 IBM Pakistan (Urdu)
Cp921 IBM Latvia, Lithuania (AIX, DOS)
Cp922 IBM Estonia (AIX, DOS)
Cp930 Japanese Katakana-Kanji mixed with 4370 UDC, superset of 5026
Cp933 Korean Mixed with 1880 UDC, superset of 5029
Cp935 Simplified Chinese Host mixed with 1880 UDC, superset of 5031
Cp937 Traditional Chinese Host mixed with 6204 UDC, superset of 5033
Cp939 Japanese Latin Kanji mixed with 4370 UDC, superset of 5035
Cp942 IBM OS/2 Japanese, superset of Cp932
Cp942C Variant of Cp942
Cp943 IBM OS/2 Japanese, superset of Cp932 and Shift-JIS
Cp943C Variant of Cp943
Cp948 OS/2 Chinese (Taiwan) superset of 938
Cp949 PC Korean
Cp949C Variant of Cp949
Cp950 PC Chinese (Hong Kong, Taiwan)
Cp964 AIX Chinese (Taiwan)
Cp970 AIX Korean
Cp1006 IBM AIX Pakistan (Urdu)
Cp1025 IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia, Macedonia (FYR)

Core Java™ 2: Volume I–Fundamentals

712

Cp1026 IBM Latin-5, Turkey
Cp1046 IBM Arabic - Windows
Cp1097 IBM Iran (Farsi)/Persian
Cp1098 IBM Iran (Farsi)/Persian (PC)
Cp1112 IBM Latvia, Lithuania
Cp1122 IBM Estonia
Cp1123 IBM Ukraine
Cp1124 IBM AIX Ukraine
Cp1140 Variant of Cp037 with Euro character
Cp1141 Variant of Cp273 with Euro character
Cp1142 Variant of Cp277 with Euro character
Cp1143 Variant of Cp278 with Euro character
Cp1144 Variant of Cp280 with Euro character
Cp1145 Variant of Cp284 with Euro character
Cp1146 Variant of Cp285 with Euro character
Cp1147 Variant of Cp297 with Euro character
Cp1148 Variant of Cp500 with Euro character
Cp1149 Variant of Cp871 with Euro character
Cp1250 Windows Eastern European
Cp1251 Windows Cyrillic
Cp1253 Windows Greek
Cp1254 Windows Turkish
Cp1255 Windows Hebrew
Cp1256 Windows Arabic
Cp1257 Windows Baltic
Cp1258 Windows Vietnamese
Cp1381 IBM OS/2, DOS People's Republic of China (PRC)
Cp1383 IBM AIX People's Republic of China (PRC)
Cp33722 IBM-eucJP - Japanese (superset of 5050)
EUC_CN GB2312, EUC encoding, Simplified Chinese
EUC_JP JIS X 0201, 0208, 0212, EUC encoding, Japanese
EUC_KR KS C 5601, EUC encoding, Korean
EUC_TW CNS11643 (Plane 1-3), EUC encoding, Traditional Chinese
GBK GBK, Simplified Chinese
ISO2022CN ISO 2022 CN, Chinese (conversion to Unicode only)
ISO2022CN_CNS CNS 11643 in ISO 2022 CN form, Traditional Chinese (conversion from

Unicode only)
ISO2022CN_GB GB 2312 in ISO 2022 CN form, Simplified Chinese (conversion from Unicode

only)
ISO2022JP JIS X 0201, 0208 in ISO 2022 form, Japanese
ISO2022KR ISO 2022 KR, Korean
ISO8859_2 ISO 8859-2, Latin alphabet No. 2
ISO8859_3 ISO 8859-3, Latin alphabet No. 3
ISO8859_4 ISO 8859-4, Latin alphabet No. 4
ISO8859_5 ISO 8859-5, Latin/Cyrillic alphabet
ISO8859_6 ISO 8859-6, Latin/Arabic alphabet
ISO8859_7 ISO 8859-7, Latin/Greek alphabet
ISO8859_8 ISO 8859-8, Latin/Hebrew alphabet

Core Java™ 2: Volume I–Fundamentals

713

ISO8859_9 ISO 8859-9, Latin alphabet No. 5
ISO8859_13 ISO 8859-13, Latin alphabet No. 7
ISO8859_15_FDIS ISO 8859-15, Latin alphabet No. 9
JIS0201 JIS X 0201, Japanese
JIS0208 JIS X 0208, Japanese
JIS0212 JIS X 0212, Japanese
JISAutoDetect Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP (conversion to

Unicode only)
Johab Johab, Korean
KOI8_R KOI8-R, Russian
MS874 Windows Thai
MS932 Windows Japanese
MS936 Windows Simplified Chinese
MS949 Windows Korean
MS950 Windows Traditional Chinese
MacArabic Macintosh Arabic
MacCentralEurope Macintosh Latin-2
MacCroatian Macintosh Croatian
MacCyrillic Macintosh Cyrillic
MacDingbat Macintosh Dingbat
MacGreek Macintosh Greek
MacHebrew Macintosh Hebrew
MacIceland Macintosh Iceland
MacRoman Macintosh Roman
MacRomania Macintosh Romania
MacSymbol Macintosh Symbol
MacThai Macintosh Thai
MacTurkish Macintosh Turkish
MacUkraine Macintosh Ukraine
SJIS Shift-JIS, Japanese
TIS620 TIS620, Thai

Because it is so common to want to attach a reader or writer to a file, there is a pair of
convenience classes, FileReader and FileWriter, for this purpose. For example, the writer
definition

FileWriter out = new FileWriter("output.txt");

is equivalent to

OutputStreamWriter out = new OutputStreamWriter(new
 FileOutputStream("output.txt"));

Writing Text Output

For text output, you want to use a PrintWriter. A print writer can print strings and numbers
in text format. Just as a DataOutputStream has useful output methods but no destination, a
PrintWriter must be combined with a destination writer.

Core Java™ 2: Volume I–Fundamentals

714

PrintWriter out = new PrintWriter(new
 FileWriter("employee.txt"));

You can also combine a print writer with a destination (output) stream.

PrintWriter out = new PrintWriter(new
 FileOutputStream("employee.txt"));

The PrintWriter(OutputStream) constructor automatically adds an OutputStreamWriter
to convert Unicode characters to bytes in the stream.

To write to a print writer, you use the same print and println methods that you used with
System.out. You can use these methods to print numbers (int, short, long, float,
double), characters, Boolean values, strings, and objects.

NOTE

Java veterans probably wonder whatever happened to the PrintStream
class and to System.out. In Java 1.0, the PrintStream class simply
truncated all Unicode characters to ASCII characters by dropping the top
byte. Conversely, the readLine method of the DataInputStream turned
ASCII to Unicode by setting the top byte to 0. Clearly, that was not
a clean or portable approach, and it was fixed with the introduction of
readers and writers in Java 1.1. For compatibility with existing code,
System.in, System.out, and System.err are still streams, not readers
and writers. But now the PrintStream class internally converts Unicode
characters to the default host encoding in the same way as
the PrintWriter. Objects of type PrintStream act exactly like print
writers when you use the print and println methods, but unlike print
writers, they allow you to send raw bytes to them with the write(int)
and write(byte[]) methods.

For example, consider this code:

String name = "Harry Hacker";
double salary = 75000;
out.print(name);
out.print(' ');
out.println(salary);

This writes the characters

Harry Hacker 75000

to the stream out. The characters are then converted to bytes and end up in the file
employee.txt.

The println method automatically adds the correct end-of-line character for the target
system ("\r\n" on Windows, "\n" on UNIX, "\r" on Macs) to the line. This is the string
obtained by the call System.getProperty("line.separator").

Core Java™ 2: Volume I–Fundamentals

715

If the writer is set to autoflush mode, then all characters in the buffer are sent to their
destination whenever println is called. (Print writers are always buffered.) By default,
autoflushing is not enabled. You can enable or disable autoflushing by using the Print
Writer(Writer, boolean) constructor and passing the appropriate Boolean as the second
argument.

PrintWriter out = new PrintWriter(new
 FileWriter("employee.txt"), true); // autoflush

The print methods don't throw exceptions. You can call the checkError method to see if
something went wrong with the stream.

NOTE

You cannot write raw bytes to a PrintWriter. Print writers are designed for text output
only.

java.io.PrintWriter

• PrintWriter(Writer out)

creates a new PrintWriter, without automatic line flushing.

Parameters: out A character-output writer

• PrintWriter(Writer out, boolean autoFlush)

creates a new PrintWriter.

Parameters: out A character-output writer
 autoFlush If true, the println methods will flush the output buffer

• PrintWriter(OutputStream out)

creates a new PrintWriter, without automatic line flushing, from an existing
OutputStream by automatically creating the necessary intermediate
OutputStreamWriter.

Parameters: out An output stream

Core Java™ 2: Volume I–Fundamentals

716

• PrintWriter(OutputStream out, boolean autoFlush)

creates a new PrintWriter from an existing OutputStream but allows you to
determine whether the writer autoflushes or not.

Parameters: out An output stream
 autoFlush If true, the println methods will flush the output buffer

• void print(Object obj)

prints an object by printing the string resulting from toString.

Parameters: obj The object to be printed

• void print(String s)

prints a Unicode string.

• void println(String s)

prints a string followed by a line terminator. Flushes the stream if the stream is in
autoflush mode.

• void print(char[] s)

prints an array of Unicode characters.

• void print(char c)

prints a Unicode character.

• void print(int i)

prints an integer in text format.

• void print(long l)

prints a long integer in text format.

• void print(float f)

prints a floating-point number in text format.

• void print(double d)

prints a double-precision floating-point number in text format.

• void print(boolean b)

prints a Boolean value in text format.

Core Java™ 2: Volume I–Fundamentals

717

• boolean checkError()

returns true if a formatting or output error occurred. Once the stream has encountered
an error, it is tainted and all calls to checkError return true.

Reading Text Input

As you know:

• To write data in binary format, you use a DataOutputStream.
• To write in text format, you use a PrintWriter.

Therefore, you might expect that there is an analog to the DataInputStream that lets you read
data in text format. Unfortunately, Java does not provide such a class. (That is why we wrote
our own Console class for use in the beginning chapters.) The only game in town for
processing text input is the BufferedReader method—it has a method, readLine, that lets
you read a line of text. You need to combine a buffered reader with an input source.

BufferedReader in = new BufferedReader(new
 FileReader("employee.txt"));

The readLine method returns null when no more input is available. A typical input loop,
therefore, looks like this:

String line;
while ((line = in.readLine()) != null)
{
 do something with line
}

The FileReader class already converts bytes to Unicode characters. For other input sources,
you need to use the InputStreamReader—unlike the PrintWriter, the InputStreamReader
has no automatic convenience method to bridge the gap between bytes and Unicode
characters.

BufferedReader in2 = new BufferedReader(new
 InputStreamReader(System.in));
BufferedReader in3 = new BufferedReader(new
 InputStreamReader(url.openStream()));

To read numbers from text input, you need to read a string first and then convert it.

String s = in.readLine();
double x = Double.parseDouble(s);

That works if there is a single number on each line. Otherwise, you must work harder and
break up the input string, for example, by using the StringTokenizer utility class. We will
see an example of this later in this chapter.

Core Java™ 2: Volume I–Fundamentals

718

TIP

Java has StringReader and StringWriter classes that allow you to
treat a string as if it were a data stream. This can be quite convenient if
you want to use the same code to parse both strings and data from
a stream.

ZIP File Streams

ZIP files are archives that store one or more files in (usually) compressed format. Java 1.1 can
handle both GZIP and ZIP format. (See RFC 1950, RFC 1951, and RFC 1952, for example, at
http://www.faqs.org/rfcs.) In this section we concentrate on the more familiar (but somewhat
more complicated) ZIP format and leave the GZIP classes to you if you need them. (They
work in much the same way.)

NOTE

The classes for handling ZIP files are in java.util.zip and not in
java.io, so remember to add the necessary import statement. Although
not part of java.io, the GZIP and ZIP classes subclass
java.io.FilterInputStream and java.io.FilterOutputStream.
The java.util.zip packages also contain classes for computing cyclic
redundancy check (CRC) checksums. (CRC is a method to generate
a hashlike code that the receiver of a file can use to check the integrity of
the data.)

Each ZIP file has a header with information such as the name of the file and the compression
method that was used. In Java, you use a ZipInputStream to read a ZIP file by layering
the ZipInputStream constructor onto a FileInputStream. You then need to look at
the individual entries in the archive. The getNextEntry method returns an object of type
ZipEntry that describes the entry. The read method of the ZipInputStream is modified to
return –1 at the end of the current entry (instead of just at the end of the ZIP file). You must
then call closeEntry to read the next entry. Here is a typical code sequence to read through
a ZIP file:

ZipInputStream zin = new ZipInputStream
 (new FileInputStream(zipname));
ZipEntry entry;
while ((entry = zin.getNextEntry()) != null)
{
 analyze entry;
 read the contents of zin;
 zin.closeEntry();
}
zin.close();

Core Java™ 2: Volume I–Fundamentals

719

To read the contents of a ZIP entry, you will probably not want to use the raw read method;
usually, you will use the methods of a more competent stream filter. For example, to read
a text file inside a ZIP file, you can use the following loop:

BufferedReader in = new BufferedReader
 (new InputStreamReader(zin));
String s;
while ((s = in.readLine()) != null)
 do something with s;

The program in Example 12-1 lets you open a ZIP file. It then displays the files stored in
the ZIP archive in the list box at the top of the screen. If you double-click on one of the files,
the contents of the file are displayed in the text area, as shown in Figure 12-4.

Figure 12-4. The ZipTest program

Core Java™ 2: Volume I–Fundamentals

720

Example 12-1 ZipTest.java

 1. import java.awt.*;
 2. import java.awt.event.*;
 3. import java.io.*;
 4. import java.util.*;
 5. import java.util.zip.*;
 6. import javax.swing.*;
 7. import javax.swing.filechooser.FileFilter;
 8.
 9. public class ZipTest
 10. {
 11. public static void main(String[] args)
 12. {
 13. ZipTestFrame frame = new ZipTestFrame();
 14. frame.setTitle("ZipTest");
 15. frame.setSize(300, 400);
 16. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 17. frame.show();
 18. }
 19. }
 20.
 21. /**
 22. A frame with a text area to show the contents of a file inside
 23. a zip archive, a combo box to select different files in the
 24. archive, and a menu to load a new archive.
 25. */
 26. class ZipTestFrame extends JFrame
 27. {
 28. public ZipTestFrame()
 29. {
 30. // add the menu and the Open and Exit menu items
 31. JMenuBar menuBar = new JMenuBar();
 32. JMenu menu = new JMenu("File");
 33.
 34. JMenuItem openItem = new JMenuItem("Open");
 35. menu.add(openItem);
 36. openItem.addActionListener(new OpenAction());
 37.
 38. JMenuItem exitItem = new JMenuItem("Exit");
 39. menu.add(exitItem);
 40. exitItem.addActionListener(new
 41. ActionListener()
 42. {
 43. public void actionPerformed(ActionEvent event)
 44. {
 45. System.exit(0);
 46. }
 47. });
 48.
 49. menuBar.add(menu);
 50. setJMenuBar(menuBar);
 51.
 52. // add the text area and combo box
 53. fileText = new JTextArea();
 54. fileCombo = new JComboBox();
 55. fileCombo.addActionListener(new
 56. ActionListener()
 57. {
 58. public void actionPerformed(ActionEvent event)
 59. {

Core Java™ 2: Volume I–Fundamentals

721

 60. loadZipFile((String)fileCombo.getSelectedItem());
 61. }
 62. });
 63.
 64. Container contentPane = getContentPane();
 65. contentPane.add(fileCombo, BorderLayout.SOUTH);
 66. contentPane.add(fileText, BorderLayout.CENTER);
 67. }
 68.
 69. /**
 70. This is the listener for the File->Open menu item.
 71. */
 72. private class OpenAction implements ActionListener
 73. {
 74. public void actionPerformed(ActionEvent evt)
 75. {
 76. // prompt the user for a zip file
 77. JFileChooser chooser = new JFileChooser();
 78. chooser.setCurrentDirectory(new File("."));
 79. ExtensionFileFilter filter = new ExtensionFileFilter();
 80. filter.addExtension(".zip");
 81. filter.addExtension(".jar");
 82. filter.setDescription("ZIP archives");
 83. chooser.setFileFilter(filter);
 84. int r = chooser.showOpenDialog(ZipTestFrame.this);
 85. if (r == JFileChooser.APPROVE_OPTION)
 86. {
 87. zipname = chooser.getSelectedFile().getPath();
 88. scanZipFile();
 89. }
 90. }
 91. }
 92.
 93. /**
 94. Scans the contents of the zip archive and populates
 95. the combo box.
 96. */
 97. public void scanZipFile()
 98. {
 99. fileCombo.removeAllItems();
100. try
101. {
102. ZipInputStream zin = new ZipInputStream(new
103. FileInputStream(zipname));
104. ZipEntry entry;
105. while ((entry = zin.getNextEntry()) != null)
106. {
107. fileCombo.addItem(entry.getName());
108. zin.closeEntry();
109. }
110. zin.close();
111. }
112. catch (IOException e)
113. {
114. e.printStackTrace();
115. }
116. }
117.

Core Java™ 2: Volume I–Fundamentals

722

118. /**
119. Loads a file from the zip archive into the text area
120. @param name the name of the file in the archive
121. */
122. public void loadZipFile(String name)
123. {
124. try
125. {
126. ZipInputStream zin = new ZipInputStream(new
127. FileInputStream(zipname));
128. ZipEntry entry;
129. fileText.setText("");
130.
131. // find entry with matching name in archive
132. while ((entry = zin.getNextEntry()) != null)
133. {
134. if (entry.getName().equals(name))
135. {
136. // read entry into text area
137. BufferedReader in = new BufferedReader(new
138. InputStreamReader(zin));
139. String line;
140. while ((line = in.readLine()) != null)
141. {
142. fileText.append(line);
143. fileText.append("\n");
144. }
145. }
146. zin.closeEntry();
147. }
148. zin.close();
149. }
150. catch (IOException e)
151. {
152. e.printStackTrace();
153. }
154. }
155.
156. private JComboBox fileCombo;
157. private JTextArea fileText;
158. private String zipname;
159. }
160.
161. /**
162. This file filter matches all files with a given set of
163. extensions. From FileChooserTest in chapter 9
164. */
165. class ExtensionFileFilter extends FileFilter
166. {
167. /**
168. Adds an extension that this file filter recognizes.
169. @param extension a file extension (such as ".txt" or "txt")
170. */
171. public void addExtension(String extension)
172. {
173. if (!extension.startsWith("."))
174. extension = "." + extension;
175. extensions.add(extension.toLowerCase());
176. }
177.

Core Java™ 2: Volume I–Fundamentals

723

178. /**
179. Sets a description for the file set that this file filter
180. recognizes.
181. @param aDescription a description for the file set
182. */
183. public void setDescription(String aDescription)
184. {
185. description = aDescription;
186. }
187.
188. /**
189. Returns a description for the file set that this file
190. filter recognizes.
191. @return a description for the file set
192. */
193. public String getDescription()
194. {
195. return description;
196. }
197.
198. public boolean accept(File f)
199. {
200. if (f.isDirectory()) return true;
201. String name = f.getName().toLowerCase();
202.
203. // check if the file name ends with any of the extensions
204. for (int i = 0; i < extensions.size(); i++)
205. if (name.endsWith((String)extensions.get(i)))
206. return true;
207. return false;
208. }
209.
210. private String description = "";
211. private ArrayList extensions = new ArrayList();
212. }

NOTE

The ZIP input stream throws a ZipException when there is an error in
reading a ZIP file. Normally this error occurs when the ZIP file is
corrupted.

To write a ZIP file, you open a ZipOutputStream by layering it onto a FileOutputStream.
For each entry that you want to place into the ZIP file, you create a ZipEntry object. You
pass the file name to the ZipEntry constructor; it sets the other parameters such as file date
and decompression method automatically. You can override these settings if you like. Then,
you call the putNextEntry method of the ZipOutputStream to begin writing a new file.
Send the file data to the ZIP stream. When you are done, call closeEntry. Repeat for all the
files you want to store. Here is a code skeleton:

Core Java™ 2: Volume I–Fundamentals

724

FileOutputStream fout = new FileOutputStream("test.zip");
ZipOutputStream zout = new ZipOutputStream(fout);
for all files
{
 ZipEntry ze = new ZipEntry(file name);
 zout.putNextEntry(ze);
 send data to zout;
 zout.closeEntry();
}
zout.close();

NOTE

JAR files (which were discussed in Chapter 10) are simply ZIP files with
another entry, the so-called manifest. You use the JarInputStream and
JarOutputStream classes to read and write the manifest entry.

ZIP streams are a good example of the power of the stream abstraction. Both the source and
the destination of the ZIP data are completely flexible. You layer the most convenient reader
stream onto the ZIP file stream to read the data that is stored in compressed form, and that
reader doesn't even realize that the data is being decompressed as it is being requested. And
the source of the bytes in ZIP formats need not be a file—the ZIP data can come from
a network connection. In fact, the JAR files that we discussed in Chapter 10 are ZIP-formatted
files. Whenever the class loader of an applet reads a JAR file, it reads and decompresses data
from the network.

java.util.zip.ZipInputStream

• ZipInputStream(InputStream in)

This constructor creates a ZipInputStream that allows you to inflate data from
the given InputStream.

Parameters: in The underlying input stream

• ZipEntry getNextEntry()

returns a ZipEntry object for the next entry or null if there are no more entries.

• void closeEntry()

closes the current open entry in the ZIP file. You can then read the next entry by using
getNextEntry().

Core Java™ 2: Volume I–Fundamentals

725

java.util.zip.ZipOutputStream

• ZipOutputStream(OutputStream out)

This constructor creates a ZipOutputStream that you use to write compressed data to
the specified OutputStream.

Parameters: out The underlying output stream

• void putNextEntry(ZipEntry ze)

writes the information in the given ZipEntry to the stream and positions the stream
for the data. The data can then be written to the stream by write().

Parameters: ze The new entry

• void closeEntry()

closes the currently open entry in the ZIP file. Use the putNextEntry method to start
the next entry.

• void setLevel(int level)

sets the default compression level of subsequent DEFLATED entries. The default value
is Deflater.DEFAULT_COMPRESSION. Throws an IllegalArgumentException if the
level is not valid.

Parameters: level A compression level, from 0 (NO_COMPRESSION) to 9
(BEST_COMPRESSION)

• void setMethod(int method)

sets the default compression method for this ZipOutputStream for any entries that do
not specify a method.

Parameters: method The compression method, either DEFLATED or STORED

java.util.zip.ZipEntry

• ZipEntry(String name)

Core Java™ 2: Volume I–Fundamentals

726

Parameters: name The name of the entry

• long getCrc()

returns the CRC32 checksum value for this ZipEntry.

• String getName()

returns the name of this entry.

• long getSize()

returns the uncompressed size of this entry, or –1 if the uncompressed size is not
known.

• boolean isDirectory()

returns a Boolean that indicates whether or not this entry is a directory.

• void setMethod(int method)

Parameters: method The compression method for the entry; must be either DEFLATED or
STORED

• void setSize(long size)

sets the size of this entry. Only required if the compression method is STORED.

Parameters: size The uncompressed size of this entry

• void setCrc(long crc)

sets the CRC32 checksum of this entry. Use the CRC32 class to compute this
checksum. Only required if the compression method is STORED.

Parameters: crc The checksum of this entry

java.util.zip.ZipFile

• ZipFile(String name)

this constructor creates a ZipFile for reading from the given string.

Parameters: name A string that contains the path name of the file

Core Java™ 2: Volume I–Fundamentals

727

• ZipFile(File file)

this constructor creates a ZipFile for reading from the given File object.

Parameters: file The file to read; the File class is described at the end of this chapter

• Enumeration entries()

returns an Enumeration object that enumerates the ZipEntry objects that describe the
entries of the ZipFile.

• ZipEntry getEntry(String name)

returns the entry corresponding to the given name, or null if there is no such entry.

Parameters: name The entry name

• InputStream getInputStream(ZipEntry ze)

returns an InputStream for the given entry.

Parameters: ze A ZipEntry in the ZIP file

• String getName()

returns the path of this ZIP file.

Putting Streams to Use

In the next four sections, we will show you how to put some of the creatures in the stream zoo
to good use. For these examples, we will assume you are working with the Employee class
and some of its derived classes, such as Manager. (See Chapters 4 and 5 for more on these
example classes.) We will consider four separate scenarios for saving an array of employee
records to a file and then reading them back into memory.

1. Saving data of the same type (Employee) in text format;
2. Saving data of the same type in binary format;
3. Saving and restoring polymorphic data (a mixture of Employee and Manager objects);
4. Saving and restoring data containing embedded references (managers with pointers to

other employees).

Writing Delimited Output

In this section, you will learn how to store an array of Employee records in the time-honored
delimited format. This means that each record is stored in a separate line. Instance fields are
separated from each other by delimiters. We use a vertical bar (|) as our delimiter. (A colon
(:) is another popular choice. Part of the fun is that everyone uses a different delimiter.)
Naturally, we punt on the issue of what might happen if a | actually occurred in one of the
strings we save.

Core Java™ 2: Volume I–Fundamentals

728

NOTE

Especially on UNIX systems, an amazing number of files are stored in
exactly this format. We have seen entire employee databases with
thousands of records in this format, queried with nothing more than
the UNIX awk, sort, and join utilities. (In the PC world, where desktop
database programs are available at low cost, this kind of ad hoc storage is
much less common.)

Here is a sample set of records:

Harry Hacker|35500|1989|10|1
Carl Cracker|75000|1987|12|15
Tony Tester|38000|1990|3|15

Writing records is simple. Since we write to a text file, we use the PrintWriter class. We
simply write all fields, followed by either a | or, for the last field, a \n. Finally, in keeping
with the idea that we want the class to be responsible for responding to messages, we add
a method, writeData, to our Employee class.

public void writeData(PrintWriter out) throws IOException
{
 GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(hireDay);
 out.println(name + "|"
 + salary + "|"
 + calendar.get(Calendar.YEAR) + "|"
 + (calendar.get(Calendar.MONTH) + 1) + "|"
 + calendar.get(Calendar.DAY_OF_MONTH));
}

To read records, we read in a line at a time and separate the fields. This is the topic of the next
section, in which we use a utility class supplied with Java to make our job easier.

String Tokenizers and Delimited Text

When reading a line of input, we get a single long string. We want to split it into individual
strings. This means finding the | delimiters and then separating out the individual pieces, that
is, the sequence of characters up to the next delimiter.

(These are usually called tokens.) The StringTokenizer class in java.util is designed for
exactly this purpose. It gives you an easy way to break up a large string that contains
delimited text. The idea is that a string tokenizer object attaches to a string. When you
construct the tokenizer object, you specify which characters are the delimiters. For example,
we need to use

StringTokenizer t = new StringTokenizer(line, "|");

You can specify multiple delimiters in the string. For example, to set up a string tokenizer that
would let you search for any delimiter in the set

Core Java™ 2: Volume I–Fundamentals

729

" \t\n\r"

use the following:

StringTokenizer t = new StringTokenizer(line, " \t\n\r");

(Notice that this means that any white space marks off the tokens.)

NOTE

These four delimiters are used as the defaults if you construct a string
tokenizer like this:

StringTokenizer t = new StringTokenizer(line);

Once you have constructed a string tokenizer, you can use its methods to quickly extract
the tokens from the string. The nextToken method returns the next unread token.
The hasMoreTokens method returns true if more tokens are available.

NOTE

In our case, we know how many tokens we have in every line of input. In
general, you have to be a bit more careful: call hasMoreTokens before
calling nextToken because the nextToken method throws an exception
when no more tokens are available.

java.util.StringTokenizer

• StringTokenizer(String str, String delim)

Parameters: str The input string from which tokens are read
 delim A string containing delimiter characters (every character in this string is a

delimiter)

• StringTokenizer(String str)

constructs a string tokenizer with the default delimiter set " \t\n\r".

• boolean hasMoreTokens()

returns true if more tokens exist.

• String nextToken()

Core Java™ 2: Volume I–Fundamentals

730

returns the next token; throws a NoSuchElementException if there are no more
tokens.

• String nextToken(String delim)

returns the next token after switching to the new delimiter set. The new delimiter set is
subsequently used.

• int countTokens()

returns the number of tokens still in the string.

Reading Delimited Input

Reading in an Employee record is simple. We simply read in a line of input with the
readLine method of the BufferedReader class. Here is the code needed to read one record
into a string.

BufferedReader in
 = new BufferedReader(new FileReader("employee.dat"));
. . .
String line = in.readLine();

Next, we need to extract the individual tokens. When we do this, we end up with strings, so
we need to convert them to numbers.

Just as with the writeData method, we add a readData method of the Employee class. When
you call

e.readData(in);

this method overwrites the previous contents of e. Note that the method may throw an
IOException if the readLine method throws that exception. There is nothing this method
can do if an IOException occurs, so we just let it propagate up the call chain.

Here is the code for this method:

public void readData(BufferedReader in) throws IOException
{
 String s = in.readLine();
 StringTokenizer t = new StringTokenizer(s, "|");
 name = t.nextToken();
 salary = Double.parseDouble(t.nextToken());
 int y = Integer.parseInt(t.nextToken());
 int m = Integer.parseInt(t.nextToken());
 int d = Integer.parseInt(t.nextToken());
 GregorianCalendar calendar
 = new GregorianCalendar(y, m - 1, d);
 // GregorianCalendar uses 0 = January
 hireDay = calendar.getTime();
}

Finally, in the code for a program that tests these methods, the static method

Core Java™ 2: Volume I–Fundamentals

731

void writeData(Employee[] e, PrintWriter out)

first writes the length of the array, then writes each record. The static method

Employee[] readData(BufferedReader in)

first reads in the length of the array, then reads in each record, as illustrated in Example 12-2.

Example 12-2 DataFileTest.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. public class DataFileTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Employee[] staff = new Employee[3];
 9.
 10. staff[0] = new Employee("Carl Cracker", 75000,
 11. 1987, 12, 15);
 12. staff[1] = new Employee("Harry Hacker", 50000,
 13. 1989, 10, 1);
 14. staff[2] = new Employee("Tony Tester", 40000,
 15. 1990, 3, 15);
 16.
 17. try
 18. {
 19. // save all employee records to the file employee.dat
 20. PrintWriter out = new PrintWriter(new
 21. FileWriter("employee.dat"));
 22. writeData(staff, out);
 23. out.close();
 24.
 25. // retrieve all records into a new array
 26. BufferedReader in = new BufferedReader(new
 27. FileReader("employee.dat"));
 28. Employee[] newStaff = readData(in);
 29. in.close();
 30.
 31. // print the newly read employee records
 32. for (int i = 0; i < newStaff.length; i++)
 33. System.out.println(newStaff[i]);
 34. }
 35. catch(IOException exception)
 36. {
 37. exception.printStackTrace();
 38. }
 39. }
 40.
 41. /**
 42. Writes all employees in an array to a print writer
 43. @param e an array of employees
 44. @param out a print writer
 45. */
 46. static void writeData(Employee[] e, PrintWriter out)
 47. throws IOException
 48. {
 49. // write number of employees
 50. out.println(e.length);

Core Java™ 2: Volume I–Fundamentals

732

 51.
 52. for (int i = 0; i < e.length; i++)
 53. e[i].writeData(out);
 54. }
 55.
 56. /**
 57. Reads an array of employees from a buffered reader
 58. @param in the buffered reader
 59. @return the array of employees
 60. */
 61. static Employee[] readData(BufferedReader in)
 62. throws IOException
 63. {
 64. // retrieve the array size
 65. int n = Integer.parseInt(in.readLine());
 66.
 67. Employee[] e = new Employee[n];
 68. for (int i = 0; i < n; i++)
 69. {
 70. e[i] = new Employee();
 71. e[i].readData(in);
 72. }
 73. return e;
 74. }
 75. }
 76.
 77. class Employee
 78. {
 79. public Employee() {}
 80.
 81. public Employee(String n, double s,
 82. int year, int month, int day)
 83. {
 84. name = n;
 85. salary = s;
 86. GregorianCalendar calendar
 87. = new GregorianCalendar(year, month - 1, day);
 88. // GregorianCalendar uses 0 = January
 89. hireDay = calendar.getTime();
 90. }
 91.
 92. public String getName()
 93. {
 94. return name;
 95. }
 96.
 97. public double getSalary()
 98. {
 99. return salary;
100. }
101.
102. public Date getHireDay()
103. {
104. return hireDay;
105. }
106.
107. public void raiseSalary(double byPercent)
108. {
109. double raise = salary * byPercent / 100;
110. salary += raise;
111. }

Core Java™ 2: Volume I–Fundamentals

733

112.
113. public String toString()
114. {
115. return getClass().getName()
116. + "[name=" + name
117. + ",salary=" + salary
118. + ",hireDay=" + hireDay
119. + "]";
120. }
121.
122. /**
123. Writes employee data to a print writer
124. @param out the print writer
125. */
126. public void writeData(PrintWriter out) throws IOException
127. {
128. GregorianCalendar calendar = new GregorianCalendar();
129. calendar.setTime(hireDay);
130. out.println(name + "|"
131. + salary + "|"
132. + calendar.get(Calendar.YEAR) + "|"
133. + (calendar.get(Calendar.MONTH) + 1) + "|"
134. + calendar.get(Calendar.DAY_OF_MONTH));
135. }
136.
137. /**
138. Reads employee data from a buffered reader
139. @param in the buffered reader
140. */
141. public void readData(BufferedReader in) throws IOException
142. {
143. String s = in.readLine();
144. StringTokenizer t = new StringTokenizer(s, "|");
145. name = t.nextToken();
146. salary = Double.parseDouble(t.nextToken());
147. int y = Integer.parseInt(t.nextToken());
148. int m = Integer.parseInt(t.nextToken());
149. int d = Integer.parseInt(t.nextToken());
150. GregorianCalendar calendar
151. = new GregorianCalendar(y, m - 1, d);
152. // GregorianCalendar uses 0 = January
153. hireDay = calendar.getTime();
154. }
155.
156. private String name;
157. private double salary;
158. private Date hireDay;
159. }

Random-Access Streams

If you have a large number of employee records of variable length, the storage technique used
in the preceding section suffers from one limitation: it is not possible to read a record in the
middle of the file without first reading all records that come before it. In this section, we will
make all records the same length. This lets us implement a random-access method for reading
back the information using the RandomAccessFile class that you saw earlier—we can use
this to get at any record in the same amount of time.

Core Java™ 2: Volume I–Fundamentals

734

We will store the numbers in the instance fields in our classes in a binary format. This is done
with the writeInt and writeDouble methods of the DataOutput interface. (As we
mentioned earlier, this is the common interface of the DataOutputStream and the
RandomAccessFile classes.)

However, since the size of each record must remain constant, we need to make all the strings
the same size when we save them. The variable-size UTF format does not do this, and the rest
of the Java library provides no convenient means of accomplishing this. We need to write a
bit of code to implement two helper methods to make the strings the same size. We will call
the methods writeFixedString and readFixedString. These methods read and write
Unicode strings that always have the same length.

The writeFixedString method takes the parameter size. Then, it writes the specified
number of characters, starting at the beginning of the string. (If there are too few characters
the method pads the string, using characters whose Unicode values are zero.) Here is the code
for the writeFixedString method:

static void writeFixedString(String s, int size, DataOutput out)
 throws IOException
{
 int i;
 for (i = 0; i < size; i++)
 {
 char ch = 0;
 if (i < s.length()) ch = s.charAt(i);
 out.writeChar(ch);
 }
}

The readFixedString method reads characters from the input stream until it has consumed
size characters or until it encounters a character with Unicode 0. Then, it should skip past the
remaining zero characters in the input field.

For added efficiency, this method uses the StringBuffer class to read in a string. A
StringBuffer is an auxiliary class that lets you preallocate a memory block of a given
length. In our case, we know that the string is, at most, size bytes long. We make a string
buffer in which we reserve size characters. Then we append the characters as we read them
in.

NOTE

Using the StringBuffer class in this way is more efficient than reading
in characters and appending them to an existing string. Every time you
append characters to a string, the string object needs to find new memory
to hold the larger string: this is time-consuming. Appending even more
characters means the string needs to be relocated again and again. Using
the StringBuffer class avoids this problem.

Once the string buffer holds the desired string, we need to convert it to an actual String
object. This is done with the String(StringBuffer b) constructor or

Core Java™ 2: Volume I–Fundamentals

735

the StringBuffer.toString() method. These methods do not copy the characters from
the string buffer to the string. Instead, they freeze the buffer contents. If you later call a
method that makes a modification to the StringBuffer object, the buffer object first gets a
new copy of the characters and then modifies that copy. The string object keeps the frozen
contents.

static String readFixedString(int size, DataInput in)
 throws IOException
{
 StringBuffer b = new StringBuffer(size);
 int i = 0;
 boolean more = true;
 while (more && i < size)
 {
 char ch = in.readChar();
 i++;
 if (ch == 0) more = false;
 else b.append(ch);
 }
 in.skipBytes(2 * (size - i));
 return b.toString();
}

NOTE

These two functions are packaged inside the DataIO helper class.

To write a fixed-size record, we simply write all fields in binary.

public void writeData(DataOutput out) throws IOException
{
 DataIO.writeFixedString(name, NAME_SIZE, out);
 out.writeDouble(salary);

 GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(hireDay);
 out.writeInt(calendar.get(Calendar.YEAR));
 out.writeInt(calendar.get(Calendar.MONTH) + 1);
 out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));
}

Reading the data back is just as simple.

public void readData(DataInput in) throws IOException
{
 name = DataIO.readFixedString(NAME_SIZE, in);
 salary = in.readDouble();
 int y = in.readInt();
 int m = in.readInt();
 int d = in.readInt();
 GregorianCalendar calendar
 = new GregorianCalendar(y, m - 1, d);

Core Java™ 2: Volume I–Fundamentals

736

 // GregorianCalendar uses 0 = January
 hireDay = calendar.getTime();
}

In our example, each employee record is 100 bytes long because we specified that the name
field would always be written using 40 characters. This gives us a breakdown as indicated in
the following:

40 characters = 80 bytes for the name

1 double = 8 bytes

3 int = 12 bytes

As an example, suppose you want to position the file pointer to the third record. You can use
the following version of the seek method:

long n = 3;
int RECORD_SIZE = 100;
in.seek((n - 1) * RECORD_SIZE);

Then you can read a record:

Employee e = new Employee();
e.readData(in);

If you want to modify the record and then save it back into the same location, remember to set
the file pointer back to the beginning of the record:

in.seek((n - 1) * RECORD.SIZE);
e.writeData(in);

To determine the total number of bytes in a file, use the length method. The total number of
records is the length divided by the size of each record.

long int nbytes = in.length(); // length in bytes
int nrecords = (int)(nbytes / RECORD_SIZE);

The test program shown in Example 12-3 writes three records into a data file and then reads
them from the file in reverse order. To do this efficiently requires random access—we need to
get at the third record first.

Example 12-3 RandomFileTest.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. public class RandomFileTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Employee[] staff = new Employee[3];
 9.

Core Java™ 2: Volume I–Fundamentals

737

 10. staff[0] = new Employee("Carl Cracker", 75000,
 11. 1987, 12, 15);
 12. staff[1] = new Employee("Harry Hacker", 50000,
 13. 1989, 10, 1);
 14. staff[2] = new Employee("Tony Tester", 40000,
 15. 1990, 3, 15);
 16.
 17. try
 18. {
 19. // save all employee records to the file employee.dat
 20. DataOutputStream out = new DataOutputStream(new
 21. FileOutputStream("employee.dat"));
 22. for (int i = 0; i < staff.length; i++)
 23. staff[i].writeData(out);
 24. out.close();
 25.
 26. // retrieve all records into a new array
 27. RandomAccessFile in
 28. = new RandomAccessFile("employee.dat", "r");
 29. // compute the array size
 30. int n = (int)(in.length() / Employee.RECORD_SIZE);
 31. Employee[] newStaff = new Employee[n];
 32.
 33. // read employees in reverse order
 34. for (int i = n - 1; i >= 0; i--)
 35. {
 36. newStaff[i] = new Employee();
 37. in.seek(i * Employee.RECORD_SIZE);
 38. newStaff[i].readData(in);
 39. }
 40. in.close();
 41.
 42. // print the newly read employee records
 43. for (int i = 0; i < newStaff.length; i++)
 44. System.out.println(newStaff[i]);
 45. }
 46. catch(IOException e)
 47. {
 48. e.printStackTrace();
 49. }
 50.
 51. }
 52. }
 53.
 54. class Employee
 55. {
 56. public Employee() {}
 57.
 58. public Employee(String n, double s,
 59. int year, int month, int day)
 60. {
 61. name = n;
 62. salary = s;
 63. GregorianCalendar calendar
 64. = new GregorianCalendar(year, month - 1, day);
 65. // GregorianCalendar uses 0 = January
 66. hireDay = calendar.getTime();
 67. }
 68.

Core Java™ 2: Volume I–Fundamentals

738

 69. public String getName()
 70. {
 71. return name;
 72. }
 73.
 74. public double getSalary()
 75. {
 76. return salary;
 77. }
 78.
 79. public Date getHireDay()
 80. {
 81. return hireDay;
 82. }
 83.
 84. public void raiseSalary(double byPercent)
 85. {
 86. double raise = salary * byPercent / 100;
 87. salary += raise;
 88. }
 89.
 90. public String toString()
 91. {
 92. return getClass().getName()
 93. + "[name=" + name
 94. + ",salary=" + salary
 95. + ",hireDay=" + hireDay
 96. + "]";
 97. }
 98.
 99. /**
100. Writes employee data to a data output
101. @param out the data output
102. */
103. public void writeData(DataOutput out) throws IOException
104. {
105. DataIO.writeFixedString(name, NAME_SIZE, out);
106. out.writeDouble(salary);
107.
108. GregorianCalendar calendar = new GregorianCalendar();
109. calendar.setTime(hireDay);
110. out.writeInt(calendar.get(Calendar.YEAR));
111. out.writeInt(calendar.get(Calendar.MONTH) + 1);
112. out.writeInt(calendar.get(Calendar.DAY_OF_MONTH));
113. }
114.
115. /**
116. Reads employee data from a data input
117. @param in the data input
118. */
119. public void readData(DataInput in) throws IOException
120. {
121. name = DataIO.readFixedString(NAME_SIZE, in);
122. salary = in.readDouble();
123. int y = in.readInt();
124. int m = in.readInt();
125. int d = in.readInt();
126. GregorianCalendar calendar
127. = new GregorianCalendar(y, m - 1, d);
128. // GregorianCalendar uses 0 = January

Core Java™ 2: Volume I–Fundamentals

739

129. hireDay = calendar.getTime();
130. }
131.
132. public static final int NAME_SIZE = 40;
133. public static final int RECORD_SIZE
134. = 2 * NAME_SIZE + 8 + 4 + 4 + 4;
135.
136. private String name;
137. private double salary;
138. private Date hireDay;
139. }
140.
141. class DataIO
142. { public static String readFixedString(int size,
143. DataInput in) throws IOException
144. {
145. StringBuffer b = new StringBuffer(size);
146. int i = 0;
147. boolean more = true;
148. while (more && i < size)
149. {
150. char ch = in.readChar();
151. i++;
152. if (ch == 0) more = false;
153. else b.append(ch);
154. }
155. in.skipBytes(2 * (size - i));
156. return b.toString();
157. }
158.
159. public static void writeFixedString(String s, int size,
160. DataOutput out) throws IOException
161. {
162. int i;
163. for (i = 0; i < size; i++)
164. {
165. char ch = 0;
166. if (i < s.length()) ch = s.charAt(i);
167. out.writeChar(ch);
168. }
169. }
170. }

java.lang.StringBuffer

• StringBuffer()

constructs an empty string buffer.

• StringBuffer(int length)

constructs an empty string buffer with the initial capacity length.

Core Java™ 2: Volume I–Fundamentals

740

• StringBuffer(String str)

constructs a string buffer with the initial contents str.

• int length()

returns the number of characters of the buffer.

• int capacity()

returns the current capacity, that is, the number of characters that can be contained in
the buffer before it must be relocated.

• void ensureCapacity(int m)

enlarges the buffer if the capacity is fewer than m characters.

• void setLength(int n)

If n is less than the current length, characters at the end of the string are discarded. If n
is larger than the current length, the buffer is padded with '\0' characters.

• char charAt(int i)

returns the ith character (i is between 0 and length()-1); throws a
StringIndexOutOfBoundsException if the index is invalid.

• void getChars(int from, int to, char[] a, int offset)

copies characters from the string buffer into an array.

Parameters: from The first character to copy
 to The first character not to copy
 a The array to copy into
 offset The first position in a to copy into

• void setCharAt(int i, char ch)

sets the ith character to ch.

• StringBuffer append(String str)

appends a string to the end of this buffer (the buffer may be relocated as a result);
returns this.

• StringBuffer append(char c)

appends a character to the end of this buffer (the buffer may be relocated as a result);
returns this.

Core Java™ 2: Volume I–Fundamentals

741

• StringBuffer insert(int offset, String str)

inserts a string at position offset into this buffer (the buffer may be relocated as a
result); returns this.

• StringBuffer insert(int offset, char c)

inserts a character at position offset into this buffer (the buffer may be relocated as a
result); returns this.

• String toString()

returns a string pointing to the same data as the buffer contents. (No copy is made.)

java.lang.String

• String(StringBuffer buffer)

makes a string pointing to the same data as the buffer contents. (No copy is made.)

Object Streams

Using a fixed-length record format is a good choice if you need to store data of the same type.
However, objects that you create in an object-oriented program are rarely all of the same type.
For example, you may have an array called staff that is nominally an array of Employee
records but contains objects that are actually instances of a child class such as Manager.

If we want to save files that contain this kind of information, we must first save the type of
each object and then the data that defines the current state of the object. When we read this
information back from a file, we must:

• Read the object type;
• Create a blank object of that type;
• Fill it with the data that we stored in the file.

It is entirely possible (if very tedious) to do this by hand, and in the first edition of this book
we did exactly this. However, Sun Microsystems developed a powerful mechanism that
allows this to be done with much less effort. As you will soon see, this mechanism, called
object serialization, almost completely automates what was previously a very tedious process.
(You will see later in this chapter where the term “serialization” comes from.)

Storing Objects of Variable Type

To save object data, you first need to open an ObjectOutputStream object:

Core Java™ 2: Volume I–Fundamentals

742

ObjectOutputStream out = new ObjectOutputStream(new
 FileOutputStream("employee.dat"));

Now, to save an object, you simply use the writeObject method of
the ObjectOutputStream class as in the following fragment:

Employee harry = new Employee("Harry Hacker", 50000,
 1989, 10, 1);
Manager boss = new Manager("Carl Cracker", 80000,
 1987, 12, 15);
out.writeObject(harry);
out.writeObject(boss);

To read the objects back in, first get an ObjectInputStream object:

ObjectInputStream in = new ObjectInputStream(new
 FileInputStream("employee.dat"));

Then, retrieve the objects in the same order in which they were written, using the readObject
method.

Employee e1 = (Employee)in.readObject();
Employee e2 = (Employee)in.readObject();

When reading back objects, you must carefully keep track of the number of objects that were
saved, their order, and their types. Each call to readObject reads in another object of the type
Object. You, therefore, will need to cast it to its correct type.

If you don't need the exact type or you don't remember it, then you can cast it to any
superclass or even leave it as type Object. For example, e2 is an Employee object variable
even though it actually refers to a Manager object. If you need to dynamically query the type
of the object, you can use the getClass method that we described in Chapter 5.

You can write and read only objects with the writeObject/readObject methods, not
numbers. To write and read numbers, you use methods such as writeInt/readInt or
writeDouble/readDouble. (The object stream classes implement the
DataInput/DataOutput interfaces.) Of course, numbers inside objects (such as the salary
field of an Employee object) are saved and restored automatically. Recall that, in Java, strings
and arrays are objects and can, therefore, be restored with the writeObject/readObject
methods.

There is, however, one change you need to make to any class that you want to save and
restore in an object stream. The class must implement the Serializable interface:

class Employee implements Serializable { . . . }

The Serializable interface has no methods, so you don't need to change your classes in any
way. In this regard, it is similar to the Cloneable interface that we also discussed in
Chapter 5. However, to make a class cloneable, you still had to override the clone method of
the Object class. To make a class serializable, you do not need to do anything else. Why
aren't all classes serializable by default? We will discuss this in the section “Security.”

Core Java™ 2: Volume I–Fundamentals

743

Example 12-4 is a test program that writes an array containing two employees and one
manager to disk and then restores it. Writing an array is done with a single operation:

Employee[] staff = new Employee[3];
. . .
out.writeObject(staff);

Similarly, reading in the result is done with a single operation. However, we must apply a cast
to the return value of the readObject method:

Employee[] newStaff = (Employee[])in.readObject();

Once the information is restored, we give each employee a 100% raise, not because we are
feeling generous, but because you can then easily distinguish employee and manager objects
by their different raiseSalary actions. This should convince you that we did restore the
correct types.

Example 12-4 ObjectFileTest.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. class ObjectFileTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Manager boss = new Manager("Carl Cracker", 80000,
 9. 1987, 12, 15);
 10. boss.setBonus(5000);
 11.
 12. Employee[] staff = new Employee[3];
 13.
 14. staff[0] = boss;
 15. staff[1] = new Employee("Harry Hacker", 50000,
 16. 1989, 10, 1);
 17. staff[2] = new Employee("Tony Tester", 40000,
 18. 1990, 3, 15);
 19.
 20. try
 21. {
 22. // save all employee records to the file employee.dat
 23. ObjectOutputStream out = new ObjectOutputStream(new
 24. FileOutputStream("employee.dat"));
 25. out.writeObject(staff);
 26. out.close();
 27.
 28. // retrieve all records into a new array
 29. ObjectInputStream in = new ObjectInputStream(new
 30. FileInputStream("employee.dat"));
 31. Employee[] newStaff = (Employee[])in.readObject();
 32. in.close();
 33.
 34. // print the newly read employee records
 35. for (int i = 0; i < newStaff.length; i++)
 36. System.out.println(newStaff[i]);
 37. }

Core Java™ 2: Volume I–Fundamentals

744

 38. catch (Exception e)
 39. {
 40. e.printStackTrace();
 41. }
 42. }
 43. }
 44.
 45. class Employee implements Serializable
 46. {
 47. public Employee() {}
 48.
 49. public Employee(String n, double s,
 50. int year, int month, int day)
 51. {
 52. name = n;
 53. salary = s;
 54. GregorianCalendar calendar
 55. = new GregorianCalendar(year, month - 1, day);
 56. // GregorianCalendar uses 0 = January
 57. hireDay = calendar.getTime();
 58. }
 59.
 60. public String getName()
 61. {
 62. return name;
 63. }
 64.
 65. public double getSalary()
 66. {
 67. return salary;
 68. }
 69.
 70. public Date getHireDay()
 71. {
 72. return hireDay;
 73. }
 74.
 75. public void raiseSalary(double byPercent)
 76. {
 77. double raise = salary * byPercent / 100;
 78. salary += raise;
 79. }
 80.
 81. public String toString()
 82. {
 83. return getClass().getName()
 84. + "[name=" + name
 85. + ",salary=" + salary
 86. + ",hireDay=" + hireDay
 87. + "]";
 88. }
 89.
 90. private String name;
 91. private double salary;
 92. private Date hireDay;
 93. }
 94.

Core Java™ 2: Volume I–Fundamentals

745

 95. class Manager extends Employee
 96. {
 97. /**
 98. @param n the employee's name
 99. @param s the salary
100. @param year the hire year
101. @param year the hire month
102. @param year the hire day
103. */
104. public Manager(String n, double s,
105. int year, int month, int day)
106. {
107. super(n, s, year, month, day);
108. bonus = 0;
109. }
110.
111. public double getSalary()
112. {
113. double baseSalary = super.getSalary();
114. return baseSalary + bonus;
115. }
116.
117. public void setBonus(double b)
118. {
119. bonus = b;
120. }
121.
122. public String toString()
123. {
124. return super.toString()
125. + "[bonus=" + bonus
126. + "]";
127. }
128.
129. private double bonus;
130. }

java.io.ObjectOutputStream

• ObjectOutputStream(OutputStream out)

creates an ObjectOutputStream so that you can write objects to the specified
OutputStream.

• void writeObject(Object obj)

writes the specified object to the ObjectOutputStream. This method saves the class
of the object, the signature of the class, and the values of any non-static, non-transient
field of the class and its superclasses.

Core Java™ 2: Volume I–Fundamentals

746

java.io.ObjectInputStream

• ObjectInputStream(InputStream is)

creates an ObjectInputStream to read back object information from the specified
InputStream.

• Object readObject()

reads an object from the ObjectInputStream. In particular, this reads back the class
of the object, the signature of the class, and the values of the nontransient and
nonstatic fields of the class and all of its superclasses. It does deserializing to allow
multiple object references to be recovered.

Object Serialization File Format

Object serialization saves object data in a particular file format. Of course, you can use the
writeObject/readObject methods without having to know the exact sequence of bytes that
represents objects in a file. Nonetheless, we found studying the data format to be extremely
helpful for gaining insight into the object streaming process. We did this by looking at hex
dumps of various saved object files. However, the details are somewhat technical, so feel free
to skip this section if you are not interested in the implementation.

Every file begins with the 2-byte “magic number”

AC ED

followed by the version number of the object serialization format, which is currently

00 05

(We will be using hexadecimal numbers throughout this section to denote bytes.) Then, it
contains a sequence of objects, in the order that they were saved.

String objects are saved as

74 2-byte length characters

For example, the string “Harry” is saved as

74 00 05 Harry

The Unicode characters of the string are saved in UTF format.

When an object is saved, the class of that object must be saved as well. The class description
contains

Core Java™ 2: Volume I–Fundamentals

747

1. The name of the class;
2. The serial version unique ID, which is a fingerprint of the data field types and method

signatures;
3. A set of flags describing the serialization method;
4. A description of the data fields.

Java gets the fingerprint by:

1. Ordering descriptions of the class, superclass, interfaces, field types, and method
signatures in a canonical way;

2. Then applying the so-called Secure Hash Algorithm (SHA) to that data.

SHA is a very fast algorithm that gives a “fingerprint” to a larger block of information. This
fingerprint is always a 20-byte data packet, regardless of the size of the original data. It is
created by a clever sequence of bit operations on the data that makes it essentially 100 percent
certain that the fingerprint will change if the information is altered in any way. SHA is a U.S.
standard, recommended by the National Institute for Science and Technology (NIST). (For
more details on SHA, see, for example, Cryptography and Network Security: Principles and
Practice, by William Stallings [Prentice Hall].) However, Java uses only the first 8 bytes of
the SHA code as a class fingerprint. It is still very likely that the class fingerprint will change
if the data fields or methods change in any way.

Java can then check the class fingerprint to protect us from the following scenario: An object
is saved to a disk file. Later, the designer of the class makes a change, for example, by
removing a data field. Then, the old disk file is read in again. Now the data layout on the disk
no longer matches the data layout in memory. If the data were read back in its old form, it
could corrupt memory. Java takes great care to make such memory corruption close to
impossible. Hence, it checks, using the fingerprint, that the class definition has not changed
when restoring an object. It does this by comparing the fingerprint on disk with the fingerprint
of the current class.

NOTE

Technically, as long as the data layout of a class has not changed, it
ought to be safe to read objects back in. But Java is conservative and
checks that the methods have not changed either. (After all, the methods
describe the meaning of the stored data.) Of course, in practice, classes
do evolve, and it may be necessary for a program to read in older
versions of objects. We will discuss this in the section entitled
“Versioning.”

Here is how a class identifier is stored:

72

2-byte length of class name

class name

Core Java™ 2: Volume I–Fundamentals

748

8-byte fingerprint

1-byte flag

2-byte count of data field descriptors

data field descriptors

78 (end marker)

superclass type (70 if none)

The flag byte is composed of 3 bit masks, defined in

java.io.ObjectStreamConstants:
static final byte SC_WRITE_METHOD = 1;
 // class has writeObject method that writes additional data
static final byte SC_SERIALIZABLE = 2;
 // class implements Serializable interface
static final byte SC_EXTERNALIZABLE = 4;
 // class implements Externalizable interface

We will discuss the Externalizable interface later in this chapter. Externalizable classes
supply custom read and write methods that take over the output of their instance fields. The
classes that we write implement the Serializable interface and will have a flag value of 02.
However, the java.util.Date class is externalizable and has a flag of 03.

Each data field descriptor has the format:

1-byte type code

2-byte length of field name

field name

class name (if field is an object)

The type code is one of the following:

B byte
C char
D double
F float
I int
J long
L object
S short
Z boolean
[array

Core Java™ 2: Volume I–Fundamentals

749

When the type code is L, the field name is followed by the field type. Class and field name
strings do not start with the string code 74, but field types do. Field types use a slightly
different encoding of their names, namely, the format used by native methods. (See Volume 2
for native methods.)

For example, the salary field of the Employee class is encoded as:

D 00 06 salary

Here is the complete class descriptor of the Employee class:

72 00 08 Employee

E6 D2 86 7D AE AC 18 1B 02 Fingerprint and flags
00 03 Number of instance fields
D 00 06 salary Instance field type and name
L 00 07 hireDay Instance field type and name
74 00 10 Ljava/util/Date; Instance field class name—String
L 00 04 name Instance field type and name
74 00 12 Ljava/lang/String; Instance field class name—String
78 End marker
70 No superclass

These descriptors are fairly long. If the same class descriptor is needed again in the file, then
an abbreviated form is used:

71 4-byte serial number

The serial number refers to the previous explicit class descriptor. We will discuss
the numbering scheme later.

An object is stored as

73 class descriptor object data

For example, here is how an Employee object is stored:

40 E8 6A 00 00 00 00 00 salary field value—double
73 hireDay field value—new object
 71 00 7E 00 08 Existing class java.util.Date
 77 08 00 00 00 91 1B 4E B1 80 78 External storage—details later
74 00 0C Harry Hacker name field value—String

As you can see, the data file contains enough information to restore the Employee object.

Arrays are saved in the following format:

75 class descriptor 4-byte number of entries entries

Core Java™ 2: Volume I–Fundamentals

750

The array class name in the class descriptor is in the same format as that used by native
methods (which is slightly different from the class name used by class names in other class
descriptors). In this format, class names start with an L and end with a semicolon.

For example, an array of three Employee objects starts out like this:

75 Array
 72 00 0B [LEmployee; New class, string length, class name Employee[]
 FC BF 36 11 C5 91 11 C7 02 Fingerprint and flags
 00 00 Number of instance fields
 78 End marker
 70 No superclass
 00 00 00 03 Number of array entries

Note that the fingerprint for an array of Employee objects is different from a fingerprint of the
Employee class itself.

Of course, studying these codes can be about as exciting as reading the average phone book.
But it is still instructive to know that the object stream contains a detailed description of all
the objects that it contains, with sufficient detail to allow reconstruction of both objects and
arrays of objects.

The Problem of Saving Object References

We now know how to save objects that contain numbers, strings, or other simple objects.
However, there is one important situation that we still need to consider. What happens when
one object is shared by several objects as part of its state?

To illustrate the problem, let us make a slight modification to the Manager class. Let's assume
that each manager has a secretary, implemented as an instance variable secretary of type
Employee. (It would make sense to derive a class Secretary from Employee for this purpose,
but we will not do that here.)

class Manager extends Employee
{
 . . .
 private Employee secretary;
}

Having done this, you must keep in mind that the Manager object now contains a reference to
the Employee object that describes the secretary, not a separate copy of the object.

In particular, two managers can share the same secretary, as is the case in Figure 12-5 and the
following code:

harry = new Employee("Harry Hacker", . . .);
Manager carl = new Manager("Carl Cracker", . . .);
carl.setSecretary(harry);
Manager tony = new Manager("Tony Tester", . . .);
tony.setSecretary(harry);

Core Java™ 2: Volume I–Fundamentals

751

Figure 12-5. Two managers can share a mutual employee

Now, suppose we write the employee data to disk. What we don't want is for the Manager to
save its information according to the following logic:

• Save employee data;
• Save secretary data.

Then, the data for harry would be saved three times. When reloaded, the objects would have
the configuration shown in Figure 12-6.

Core Java™ 2: Volume I–Fundamentals

752

Figure 12-6. Here, Harry is saved three times

This is not what we want. Suppose the secretary gets a raise. We would not want to hunt for
all other copies of that object and apply the raise as well. We want to save and restore only
one copy of the secretary. To do this, we must copy and restore the original references to the
objects. In other words, we want the object layout on disk to be exactly like the object layout
in memory. This is called persistence in object-oriented circles.

Of course, we cannot save and restore the memory addresses for the secretary objects. When
an object is reloaded, it will likely occupy a completely different memory address than it
originally did.

Instead, Java uses a serialization approach. Hence, the name object serialization for this
mechanism. Here is the algorithm:

Core Java™ 2: Volume I–Fundamentals

753

• All objects that are saved to disk are given a serial number (1, 2, 3, and so on, as
shown in Figure 12-7).

• When saving an object to disk, find out if the same object has already been stored.
• If it has been stored previously, just write “same as previously saved object with serial

number x”. If not, store all its data.

Figure 12-7. An example of object serialization

When reading back the objects, simply reverse the procedure. For each object that you load,
note its sequence number and remember where you put it in memory. When you encounter
the tag “same as previously saved object with serial number x”, you look up where you put
the object with serial number x and set the object reference to that memory address.

Note that the objects need not be saved in any particular order. Figure 12-8 shows what
happens when a manager occurs first in the staff array.

Core Java™ 2: Volume I–Fundamentals

754

Figure 12-8. Objects saved in random order

All of this sounds confusing, and it is. Fortunately, when object streams are used, the process
is also completely automatic. Object streams assign the serial numbers and keep track of
duplicate objects. The exact numbering scheme is slightly different from that used in the
figures—see the next section.

NOTE

In this chapter, we use serialization to save a collection of objects to a
disk file and retrieve it exactly as we stored it. Another very important
application is the transmittal of a collection of objects across a network
connection to another computer. Just as raw memory addresses are
meaningless in a file, they are also meaningless when communicating
with a different processor. Since serialization replaces memory addresses
with serial numbers, it permits the transport of object collections from
one machine to another. We will study that use of serialization when
discussing remote method invocation in Volume 2.

Example 12-5 is a program that saves and reloads a network of employee and manager objects
(some of which share the same employee as a secretary). Note that the secretary object is
unique after reloading—when newStaff[1] gets a raise, that is reflected in the secretary
fields of the managers.

Core Java™ 2: Volume I–Fundamentals

755

Example 12-5 ObjectRefTest.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. class ObjectRefTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Employee harry = new Employee("Harry Hacker", 50000,
 9. 1989, 10, 1);
 10. Manager boss = new Manager("Carl Cracker", 80000,
 11. 1987, 12, 15);
 12. boss.setSecretary(harry);
 13.
 14. Employee[] staff = new Employee[3];
 15.
 16. staff[0] = boss;
 17. staff[1] = harry;
 18. staff[2] = new Employee("Tony Tester", 40000,
 19. 1990, 3, 15);
 20.
 21. try
 22. {
 23. // save all employee records to the file employee.dat
 24. ObjectOutputStream out = new ObjectOutputStream(new
 25. FileOutputStream("employee.dat"));
 26. out.writeObject(staff);
 27. out.close();
 28.
 29. // retrieve all records into a new array
 30. ObjectInputStream in = new ObjectInputStream(new
 31. FileInputStream("employee.dat"));
 32. Employee[] newStaff = (Employee[])in.readObject();
 33. in.close();
 34.
 35. // raise secretary's salary
 36. newStaff[1].raiseSalary(10);
 37.
 38. // print the newly read employee records
 39. for (int i = 0; i < newStaff.length; i++)
 40. System.out.println(newStaff[i]);
 41. }
 42. catch (Exception e)
 43. {
 44. e.printStackTrace();
 45. }
 46. }
 47. }
 48.
 49. class Employee implements Serializable
 50. {
 51. public Employee() {}
 52.
 53. public Employee(String n, double s,
 54. int year, int month, int day)
 55. {
 56. name = n;
 57. salary = s;
 58. GregorianCalendar calendar
 59. = new GregorianCalendar(year, month - 1, day);

Core Java™ 2: Volume I–Fundamentals

756

 60. // GregorianCalendar uses 0 = January
 61. hireDay = calendar.getTime();
 62. }
 63.
 64. public String getName()
 65. {
 66. return name;
 67. }
 68.
 69. public double getSalary()
 70. {
 71. return salary;
 72. }
 73.
 74. public Date getHireDay()
 75. {
 76. return hireDay;
 77. }
 78.
 79. public void raiseSalary(double byPercent)
 80. {
 81. double raise = salary * byPercent / 100;
 82. salary += raise;
 83. }
 84.
 85. public String toString()
 86. {
 87. return getClass().getName()
 88. + "[name=" + name
 89. + ",salary=" + salary
 90. + ",hireDay=" + hireDay
 91. + "]";
 92. }
 93.
 94. private String name;
 95. private double salary;
 96. private Date hireDay;
 97. }
 98.
 99. class Manager extends Employee
100. {
101. /**
102. Constructs a Manager without a secretary
103. @param n the employee's name
104. @param s the salary
105. @param year the hire year
106. @param year the hire month
107. @param year the hire day
108. */
109. public Manager(String n, double s,
110. int year, int month, int day)
111. {
112. super(n, s, year, month, day);
113. secretary = null;
114. }
115.

Core Java™ 2: Volume I–Fundamentals

757

116. /**
117. Assigns a secretary to the manager.
118. @param s the secretary
119. */
120. public void setSecretary(Employee s)
121. {
122. secretary = s;
123. }
124.
125. public String toString()
126. {
127. return super.toString()
128. + "[secretary=" + secretary
129. + "]";
130. }
131.
132. private Employee secretary;
133. }

Output Format for Object References

This section continues the discussion of the output format of object streams. If you skipped
the previous discussion, you should skip this section as well.

All objects (including arrays and strings) and all class descriptors are given serial numbers as
they are saved in the output file. This process is referred to as serialization because every
saved object is assigned a serial number. (The count starts at 00 7E 00 00.)

We already saw that a full class descriptor for any given class occurs only once. Subsequent
descriptors refer to it. For example, in our previous example, the second reference to the Day
class in the array of days was coded as

71 00 7E 00 02

The same mechanism is used for objects. If a reference to a previously saved object is written,
it is saved in exactly the same way, that is, 71 followed by the serial number. It is always clear
from the context whether the particular serial reference denotes a class descriptor or an object.

Finally, a null reference is stored as

70

Here is the commented output of the ObjectRefTest program of the preceding section. If you
like, run the program, look at a hex dump of its data file employee.dat, and compare it with
the commented listing. The important lines toward the end of the output show the reference to
a previously saved object.

AC ED 00 05 File header
75 Array staff (serial #1)
 72 00 0B [LEmployee; New class, string length, class name

Employee[] (serial #0)
 FC BF 36 11 C5 91 11 C7 02 Fingerprint and flags
 00 00 Number of instance fields

Core Java™ 2: Volume I–Fundamentals

758

 78 End marker
 70 No superclass
 00 00 00 03 Number of array entries
 73 staff[0]—new object (serial #7)
 72 00 07 Manager New class, string length, class name (serial #2)
 36 06 AE 13 63 8F 59
B7 02

Fingerprint and flags

 00 01 Number of data fields
 L 00 09 secretary Instance field type and name
 74 00 0A LEmployee; Instance field class name—String (serial #3)
 78 End marker
 72 00 08 Employee Superclass—new class, string length, class

name (serial #4)
 E6 D2 86 7D AE AC
18 1B 02

Fingerprint and flags

 00 03 Number of instance fields
 D 00 06 salary Instance field type and name
 L 00 07 hireDay Instance field type and name
 74 00 10
Ljava/util/Date;

Instance field class name—String (serial #5)

 L 00 04 name Instance field type and name
 74 00 12
Ljava/lang/String;

Instance field class name—String (serial #6)

 78 End marker
 70 No superclass
 40 F3 88 00 00 00 00 00 salary field value—double
 73 hireDay field value—new object (serial #9)
 72 00 0E
java.util.Date

New class, string length, class name (serial #8)

 68 6A 81 01 4B 59
74 19 03

Fingerprint and flags

 00 00 No instance variables
 78 End marker
 70 No superclass
 77 08 External storage, number of bytes
 00 00 00 83 E9 39 E0
00

Date

 78 End marker
 74 00 0C Carl Cracker name field value—String (serial #10)
 73 secretary field value—new object (serial #11)
 71 00 7E 00 04 existing class (use serial #4)
 40 E8 6A 00 00 00 00
00

salary field value—double

 73 hireDay field value—new object (serial #12)
 71 00 7E 00 08 Existing class (use serial #8)
 77 08 External storage, number of bytes
 00 00 00 91 1B 4E
B1 80

Date

 78 End marker

Core Java™ 2: Volume I–Fundamentals

759

 74 00 0C Harry Hacker name field value—String (serial #13)
 71 00 7E 00 0B staff[1]—existing object (use serial #11)
 73 staff[2]—new object (serial #14)
 71 00 7E 00 04 Existing class (use serial #4)
 40 E3 88 00 00 00 00 00 salary field value—double
 73 hireDay field value—new object (serial #15)
 71 00 7E 00 08 Existing class (use serial #8)
 77 08 External storage, number of bytes
 00 00 00 94 6D 3E EC
00 00

Date

 78 End marker
 74 00 0B Tony Tester name field value—String (serial # 16)

It is usually not important to know the exact file format (unless you are trying to create an evil
effect by modifying the data—see the next section). What you should remember is this:

• The object stream output contains the types and data fields of all objects.
• Each object is assigned a serial number.
• Repeated occurrences of the same object are stored as references to that serial number.

Security

Even if you only glanced at the file format description of the preceding section, it should
become obvious that a knowledgeable hacker can exploit this information and modify an
object file so that invalid objects will be read in when you reload the file.

Suppose, for example, that the Employee constructor checks that the salary is within
a reasonable range, say between $1 and $199,999. For example, if you try to build a new
Employee("Eddy Embezzler", 500000.0, . . .), no object is created and
an IllegalArgumentException is thrown instead.

However, this safety guarantee can be subverted through serialization. When an Employee
object is read in from an object stream, it is possible—either through a device error or through
malice—that the stream contains an invalid salary. There is nothing that the serialization
mechanism can do in this case—it has no understanding of the constraints that define a legal
salary.

For that reason, Java's serialization mechanism provides a way for individual classes to add
validation or any other desired action instead of the default behavior. A serializable class can
define methods with the signature

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException;
private void writeObject(ObjectOutputStream out)
 throws IOException;

Then, the data fields are no longer automatically serialized, and these methods are called
instead.

Core Java™ 2: Volume I–Fundamentals

760

For example, let us add validation to the Employee class. We don't need to change the writing
of Employee objects, so we won't implement the writeObject method.

In the readObject method, we first need to read the object state that was written by the
default write method, by calling the defaultReadObject method. This is a special method
of the ObjectInputStream class that can only be called from within a readObject method of
a serializable class.

class Employee
{ . . .
 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 in.defaultReadObject();
 if (!isValid()) throw new IOException("Invalid object");
 }
}

The isValid method checks whether the object is in a valid state. That is the same method
that you should use in every constructor to check the constructor arguments. If the object state
is not valid (for example, because someone modified the data file), then throw an exception.

NOTE

Another way of protecting serialized data from tampering is
authentication. As you will see in Volume 2, a stream can save
a message digest (such as the SHA fingerprint) to detect any corruption
of the stream data.

Classes can also write additional information to the output stream by defining a writeObject
method that first calls defaultWriteObject and then writes other data. Of course, the
readObject method must then read the saved data—otherwise, the stream state will be out of
sync with the object. Also, the writeObject and readObject can completely bypass the
default storage of the object data by simply not calling the defaultWriteObject and
defaultReadObject methods.

For example, the java.util.Date class supplies its own readObject and writeObject
methods that write the date as a number of milliseconds from the epoch (January 1, 1970,
midnight UTC). The Date class has a complex internal representation that stores both a
Calendar object and a millisecond count, to optimize lookups. The state of the Calendar is
redundant and does not have to be saved.

The readObject and writeObject methods only need to save and load their data fields. They
should not concern themselves with superclass data or any other class information.

Rather than letting the serialization mechanism save and restore object data, a class can define
its own mechanism. To do this, a class must implement the Externalizable interface. This
in turn requires it to define two methods:

Core Java™ 2: Volume I–Fundamentals

761

public void readExternal(ObjectInputStream in)
 throws IOException, ClassNotFoundException;
public void writeExternal(ObjectOutputStream out)
 throws IOException;

Unlike the readObject and writeObject methods that were described in the preceding
section, these methods are fully responsible for saving and restoring the entire object,
including the superclass data. The serialization mechanism merely records the class of the
object in the stream. When reading an externalizable object, the object stream creates an
object with the default constructor and then calls the readExternal method. Here is how you
can implement these methods for the Employee class:

public void readExternal(java.io.ObjectInput s)
 throws ClassNotFoundException, IOException
{
 name = s.readUTF();
 salary = s.readUTF();
 hireDay = new Date(s.readLong());
}

public void writeExternal(java.io.ObjectOutput s)
 throws IOException
{
 s.writeUTF(name);
 s.writeDouble(salary);
 s.writeLong(hireDay.getTime());
}

TIP

Serialization is somewhat slow because the virtual machine must discover
the structure of each object. If you are very concerned about performance
and if you read and write a large number of objects of a particular class,
you should investigate the use of the Externalizable interface. The tech
tip
http://developer.java.sun.com/developer/TechTips/txtarchive/Apr00_Stu.txt
demonstrates that in the case of an employee class, using external reading
and writing was about 35-40% faster than the default serialization.

CAUTION

Unlike the readObject and writeObject methods, which are private
and can only be called by the serialization mechanism,
the readExternal and writeExternal methods are public. In
particular, readExternal potentially permits modification of the state of
an existing object.

Finally, certain data members should never be serialized, for example, integer values that
store file handles or handles of windows that are only meaningful to native methods. Such
information is guaranteed to be useless when you reload an object at a later time or transport it
to a different machine. In fact, improper values for such fields can actually cause native

Core Java™ 2: Volume I–Fundamentals

762

methods to crash. Java has an easy mechanism to prevent such fields from ever being
serialized. Mark them with the keyword transient. Transient fields are always skipped when
objects are serialized.

As you saw, by default all non-static, non-transient fields of an object are serialized. If
for whatever reason you aren't happy about this mechanism, you can turn off this default
selection of serialized fields and instead nominate any other values for serialization. You do
this by specifying an array of ObjectStreamField objects, each of which gives the name and
type of a value. You must define a private static final array and call it
serialPersistentFields. This is not a common thing to do, and we don't want to dwell on
the details. We'll walk through a simple example, but you need to refer to the API
documentation for more information.

Suppose you want to save the state of the hireDay object not by streaming out the Date
value, but instead by saving the single number

10000 * year + 100 * month + day

For example, February 28, 1996 would be saved as the number 19960228. We'll call this
value date. You tell the Employee class that its serialized form consists of three fields, like
this:

class Employee
{ . . .
 private static final ObjectStreamField[]
 serialPersistentFields =
 {
 new ObjectStreamField("name", String.class),
 new ObjectStreamField("salary", double.class),
 new ObjectStreamField("date", long.class)
 };
}

Now you need to take over the streaming of this class. In the writeObject method, you
retrieve the set of fields for the object with the putFields method. (This method returns
an object that encapsulates the field set—it's type is the inner class
ObjectOutputStream.PutField). You then set the value of the fields, and finally you write
the field set to the stream:

private void writeObject(ObjectOutputStream out)
 throws IOException
{
 ObjectOutputStream.PutField fields = out.putFields();
 fields.put("name", name);
 fields.put("salary", salary);
 GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(hireDay);
 fields.put("date", calendar.get(Calendar.YEAR) * 10000L
 + (calendar.get(Calendar.MONTH) + 1) * 100
 + calendar.get(Calendar.DAY_OF_MONTH));
 out.writeFields();
}

Core Java™ 2: Volume I–Fundamentals

763

To read the object back, you override the readObject method. First, read in all the fields with
the readFields method. Then, retrieve the value of each field with one of the overloaded get
methods of the inner class ObjectInputStream.GetField. The first argument of the get
method is the name of the field. The second value is the default, to be used when the field is
not present. (This could happen if the version of the object on the stream is different than
the current version of the class.) You have to be careful about the type of the default value—
the type is used to pick between overloaded methods:

int get(String name, int defval);
long get(String name, long defval);
float get(String name, float defval);
double get(String name, double defval);
char get(String name, char defval);
short get(String name, short defval);
. . .

If the default value is zero, you must supply a zero of the appropriate type:

0
0L
0.0F
0.0
'\0'
(short)0
. . .

Here is the readObject method for our modified Day class. It reads the date value and splits it
up into day, month, and year.

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
{
 ObjectInputStream.GetField fields = in.readFields();
 name = fields.get("name", "");
 salary = fields.get("salary", 0.0);
 long date = fields.get("date", 0L);
 d = (int)(date % 100);
 m = (int)((date / 100) % 100);
 y = (int)(date / 10000);
 GregorianCalendar calendar
 = new GregorianCalendar(y, m - 1, d);
 hireDay = calendar.getTime();
}

Couldn't we just have used the writeExternal/readExternal mechanism instead? There is
a slight difference—by using serial fields, the stream contains the name and type of the date
value, not just raw bytes. Thus, the stream can still do type checking and versioning when
reading the object back in.

Beyond the possibility of data corruption, there is another potentially worrisome security
aspect to serialization. Any code that can access a reference to a serializable object can

• Write that object to a stream;
• Then study the stream contents.

Core Java™ 2: Volume I–Fundamentals

764

Thereby it is possible to know the values of all the data fields in the objects, even the private
ones. After all, the serialization mechanism automatically saves all private data. Fortunately,
this knowledge cannot be used to modify data. The readObject method does not overwrite an
existing object but always creates a new object. Nevertheless, if you need to keep certain
information safe from inspection via the serialization mechanism, you should take one of the
following three steps:

1. Don't make the class serializable.

2. Mark the sensitive data fields as transient.

3. Do not use the default mechanism for saving and restoring objects. Instead, define
readObject/writeObject or readExternal/writeExternal to encrypt the data.

Versioning

In the past sections, we showed you how to save relatively small collections of objects via an
object stream. But those were just demonstration programs. With object streams, it helps to
think big. Suppose you write a program that lets the user produce a document. This document
contains paragraphs of text, tables, graphs, and so on. You can stream out the entire document
object with a single call to writeObject:

out.writeObject(doc);

The paragraph, table, and graph objects are automatically streamed out as well. One user of
your program can then give the output file to another user who also has a copy of your
program, and that program loads the entire document with a single call to readObject:

doc = (Document)in.readObject();

This is very useful, but your program will inevitably change, and you will release a version
1.1. Can version 1.1 read the old files? Can the users who still use 1.0 read the files that the
new version is now producing? Clearly, it would be desirable if object files could cope with
the evolution of classes.

At first glance it seems that this would not be possible. When a class definition changes in any
way, then its SHA fingerprint also changes, and you know that object streams will refuse to
read in objects with different fingerprints. However, a class can indicate that it is compatible
with an earlier version of itself. To do this, you must first obtain the fingerprint of the earlier
version of the class. You use the stand-alone serialver program that is part of the SDK to
obtain this number. For example, running

serialver Employee

prints out

Employee: static final long serialVersionUID =
-1814239825517340645L;

If you start the serialver program with the -show option, then the program brings up
a graphical dialog box (see Figure 12-9).

Core Java™ 2: Volume I–Fundamentals

765

Figure 12-9. The graphical version of the serialver program

All later versions of the class must define the serialVersionUID constant to the same
fingerprint as the original.

class Employee // version 1.1
{ . . .
 public static final long serialVersionUID
 = -1814239825517340645L;
}

When a class has a static data member named serialVersionUID, it will not compute the
fingerprint manually but instead will use that value.

Once that static data member has been placed inside a class, the serialization system is now
willing to read in different versions of objects of that class.

If only the methods of the class change, then there is no problem with reading the new object
data. However, if data fields change, then you may have problems. For example, the old file
object may have more or fewer data fields than the one in the program, or the types of the data
fields may be different. In that case, the object stream makes an effort to convert the stream
object to the current version of the class.

The object stream compares the data fields of the current version of the class with the data
fields of the version in the stream. Of course, the object stream considers only the
nontransient and nonstatic data fields. If two fields have matching names but different types,
then the object stream makes no effort to convert one type to the other—the objects are
incompatible. If the object in the stream has data fields that are not present in the current
version, then the object stream ignores the additional data. If the current version has data
fields that are not present in the streamed object, the added fields are set to their default (null
for objects, zero for numbers and false for Boolean values).

Here is an example. Suppose we have saved a number of employee records on disk, using the
original version (1.0) of the class. Now we change the Employee class to version 2.0 by
adding a data field called department. Figure 12-10 shows what happens when a 1.0 object is
read into a program that uses 2.0 objects. The department field is set to null. Figure 12-11
shows the opposite scenario: a program using 1.0 objects reads a 2.0 object. The additional
department field is ignored.

Core Java™ 2: Volume I–Fundamentals

766

Figure 12-10. Reading an object with fewer data fields

Figure 12-11. Reading an object with more data fields

Is this process safe? It depends. Dropping a data field seems harmless—the recipient still has
all the data that it knew how to manipulate. Setting a data field to null may not be so safe.
Many classes work hard to initialize all data fields in all constructors to non-null values, so
that the methods don't have to be prepared to handle null data. It is up to the class designer to
implement additional code in the readObject method to fix version incompatibilities or to
make sure the methods are robust enough to handle null data.

Using Serialization for Cloning

There is an amusing (and, occasionally, very useful) use for the serialization mechanism: it
gives you an easy way to clone an object provided the class is serializable. (Recall from
Chapter 6 that you need to do a bit of work to allow an object to be cloned.)

To clone a serializable object, simply serialize it to an output stream, and then read it back in.
The result is a new object that is a deep copy of the existing object. You don't have to write
the object to a file—you can use a ByteArrayOutputStream to save the data into a byte
array.

As Example 12-6 shows, to get clone for free, simply derive from the SerialCloneable
class, and you are done.

You should be aware that this method, although clever, will usually be much slower than
a clone method that explicitly constructs a new object and copies or clones the data fields (as
you saw in Chapter 6).

Core Java™ 2: Volume I–Fundamentals

767

Example 12-6 SerialCloneTest.java

 1. import java.io.*;
 2. import java.util.*;
 3.
 4. public class SerialCloneTest
 5. {
 6. public static void main(String[] args)
 7. {
 8. Employee harry = new Employee("Harry Hacker", 35000,
 9. 1989, 10, 1);
 10. // clone harry
 11. Employee harry2 = (Employee)harry.clone();
 12.
 13. // mutate harry
 14. harry.raiseSalary(10);
 15.
 16. // now harry and the clone are different
 17. System.out.println(harry);
 18. System.out.println(harry2);
 19. }
 20. }
 21.
 22. /**
 23. A class whose clone method uses serialization.
 24. */
 25. class SerialCloneable implements Cloneable, Serializable
 26. {
 27. public Object clone()
 28. {
 29. try
 30. {
 31. // save the object to a byte array
 32. ByteArrayOutputStream bout = new
 33. ByteArrayOutputStream();
 34. ObjectOutputStream out
 35. = new ObjectOutputStream(bout);
 36. out.writeObject(this);
 37. out.close();
 38.
 39. // read a clone of the object from the byte array
 40. ByteArrayInputStream bin = new
 41. ByteArrayInputStream(bout.toByteArray());
 42. ObjectInputStream in = new ObjectInputStream(bin);
 43. Object ret = in.readObject();
 44. in.close();
 45.
 46. return ret;
 47. }
 48. catch (Exception e)
 49. {
 50. return null;
 51. }
 52. }
 53. }
 54.

Core Java™ 2: Volume I–Fundamentals

768

 55. /**
 56. The familiar Employee class, redefined to extend the
 57. SerialCloneable class.
 58. */
 59. class Employee extends SerialCloneable
 60. {
 61. public Employee(String n, double s,
 62. int year, int month, int day)
 63. {
 64. name = n;
 65. salary = s;
 66. GregorianCalendar calendar
 67. = new GregorianCalendar(year, month - 1, day);
 68. // GregorianCalendar uses 0 = January
 69. hireDay = calendar.getTime();
 70. }
 71.
 72. public String getName()
 73. {
 74. return name;
 75. }
 76.
 77. public double getSalary()
 78. {
 79. return salary;
 80. }
 81.
 82. public Date getHireDay()
 83. {
 84. return hireDay;
 85. }
 86.
 87. public void raiseSalary(double byPercent)
 88. {
 89. double raise = salary * byPercent / 100;
 90. salary += raise;
 91. }
 92.
 93. public String toString()
 94. {
 95. return getClass().getName()
 96. + "[name=" + name
 97. + ",salary=" + salary
 98. + ",hireDay=" + hireDay
 99. + "]";
100. }
101.
102. private String name;
103. private double salary;
104. private Date hireDay;
105. }

File Management

You have learned how to read and write data from a file. However, there is more to file
management than reading and writing. The File class encapsulates the functionality that you
will need to work with the file system on the user's machine. For example, you use the File
class to find out when a file was last modified or to remove or rename the file. In other words,

Core Java™ 2: Volume I–Fundamentals

769

the stream classes are concerned with the contents of the file, whereas the File class is
concerned with the storage of the file on a disk.

NOTE

As is so often the case in Java, the File class takes the least common
denominator approach. For example, under Windows, you can find out
(or set) the read-only flag for a file, but while you can find out if it is
a hidden file, you can't hide it without using a native method (see
Volume 2).

The simplest constructor for a File object takes a (full) file name. If you don't supply a path
name, then Java uses the current directory. For example:

File f = new File("test.txt");

gives you a file object with this name in the current directory. (The current directory is the
directory in which the program is running.) A call to this constructor does not create a file
with this name if it doesn't exist. Actually, creating a file from a File object is done with one
of the stream class constructors or the createNewFile method in the File class. The
createNewFile method only creates a file if no file with that name exists, and it returns a
boolean to tell you whether it was successful.

On the other hand, once you have a File object, the exists method in the File class tells
you whether a file exists with that name. For example, the following trial program would
almost certainly print “false” on anyone's machine, and yet it can print out a path name to this
nonexistent file.

import java.io.*;

public class Test
{
 public static void main(String args[])
 {
 File f = new File("afilethatprobablydoesntexist");
 System.out.println(f.getAbsolutePath());
 System.out.println(f.exists());
 }
}

There are two other constructors for File objects:

File(String path, String name)

which creates a File object with the given name in the directory specified by the path
parameter. (If the path parameter is null, this constructor creates a File object using the
current directory.)

Finally, you can use an existing File object in the constructor:

Core Java™ 2: Volume I–Fundamentals

770

File(File dir, String name)

where the File object represents a directory and, as before, if dir is null, the constructor
creates a File object in the current directory.

Somewhat confusingly, a File object can represent either a file or a directory (perhaps
because the operating system that the Java designers were most familiar with happens to
implement directories as files). You use the isDirectory and isFile methods to tell whether
the file object represents a file or a directory. This is surprising—in an object-oriented system,
one might have expected a separate Directory class, perhaps extending the File class.

To make an object representing a directory, you simply supply the directory name in the File
constructor:

File tempDir = new File(File.separator + "temp");

If this directory does not yet exist, you can create it with the mkdir method:

tempDir.mkdir();

If a file object represents a directory, use list() to get an array of the file names in that
directory. The program in Example 12-7 uses all these methods to print out the directory
substructure of whatever path is entered on the command line. (It would be easy enough to
change this program into a utility class that returns a vector of the subdirectories for further
processing.)

Example 12-7 FindDirectories.java

 1. import java.io.*;
 2.
 3. public class FindDirectories
 4. {
 5. public static void main(String[] args)
 6. {
 7. // if no arguments provided, start at the parent directory
 8. if (args.length == 0) args = new String[] { ".." };
 9.
10. try
11. {
12. File pathName = new File(args[0]);
13. String[] fileNames = pathName.list();
14.
15. // enumerate all files in the directory
16. for (int i = 0; i < fileNames.length; i++)
17. {
18. File f = new File(pathName.getPath(),
19. fileNames[i]);
20.
21. // if the file is again a directory, call
22. // the main method recursively
23. if (f.isDirectory())
24. {
25. System.out.println(f.getCanonicalPath());
26. main(new String [] { f.getPath() });
27. }
28. }

Core Java™ 2: Volume I–Fundamentals

771

29. }
30. catch(IOException e)
31. {
32. e.printStackTrace();
33. }
34. }
35. }

Rather than listing all files in a directory, you can use a FileNameFilter object as
a parameter to the list method to narrow down the list. These objects are simply instances of
a class that satisfies the FilenameFilter interface.

All a class needs to do to implement the FilenameFilter interface is define a method called
accept. Here is an example of a simple FilenameFilter class that allows only files with
a specified extension:

public class ExtensionFilter implements FilenameFilter
{
 public ExtensionFilter(String ext)
 {
 extension = "." + ext;
 }

 public boolean accept(File dir, String name)
 {
 return name.endsWith(extension);
 }

 private String extension;
}

When writing portable programs, it is a challenge to specify file names with subdirectories.
As we mentioned earlier, it turns out that you can use a forward slash (the UNIX separator) as
the directory separator in Windows as well, but other operating systems might not permit this,
so we don't recommend using a forward slash.

CAUTION

If you do use forward slashes as directory separators in Windows when
constructing a File object, the getAbsolutePath method returns a file
name that contains forward slashes, which will look strange to Windows
users. Instead, use the getCanonicalPath method—it replaces
the forward slashes with backslashes.

It is much better to use the information about the current directory separator that the File
class stores in a static instance field called separator. (In a Windows environment, this is
a backslash (\); in a UNIX environment, it is a forward slash (/). For example:

File foo = new File("Documents" + File.separator + "data.txt")

Of course, if you use the second alternate version of the File constructor,

Core Java™ 2: Volume I–Fundamentals

772

File foo = new File("Documents", "data.txt")

then Java will supply the correct separator.

The API notes that follow give you what we think are the most important remaining methods
of the File class; their use should be straightforward.

You have now reached the end of the first volume of Core Java. This volume covered
the fundamentals of the Java programming language and the parts of the standard library that
you need for most programming projects. We hope that you enjoyed your tour through the
Java fundamentals and that you found useful information along the way. For advanced topics,
such as networking, multithreading, security, and internationalization, please turn to the
second volume.

java.io.File

• boolean canRead()

indicates whether the file can be read by the current application.

• boolean canWrite()

indicates whether the file is writable or read-only.

• static boolean createTempFile(String prefix, String suffix) static
boolean createTempFile(String prefix, String suffix, File directory)

creates a temporary file in the system's default temp directory or the given directory,
using the given prefix and suffix to generate the temporary name.

Parameters: prefix A prefix string that is at least three characters long
 suffix An optional suffix. If null, .tmp is used
 directory The directory in which the file is created. If it is null, the file is

created in the current working directory

• boolean delete()

tries to delete the file; returns true if the file was deleted; false otherwise.

• void deleteOnExit()

requests that the file be deleted when the VM shuts down.

• boolean exists()

true if the file or directory exists; false otherwise.

Core Java™ 2: Volume I–Fundamentals

773

• String getAbsolutePath()

returns a string that contains the absolute path name. Tip: Use getCanonicalPath
instead.

• File getCanonicalFile()

returns a File object that contains the canonical path name for the file. In particular,
redundant "." directories are removed, the correct directory separator is used, and the
capitalization preferred by the underlying file system is obtained.

• String getCanonicalPath()

returns a string that contains the canonical path name. In particular, redundant "."
directories are removed, the correct directory separator is used, and the capitalization
preferred by the underlying file system is obtained.

• String getName()

returns a string that contains the file name of the File object (does not include path
information).

• String getParent()

returns a string that contains the name of the parent of this File object. If this File
object is a file, then the parent is the directory containing it. If it is a directory, then the
parent is the parent directory or null if there is no parent directory.

• File getParentFile()

returns a File object for the parent of this File directory. See getParent for a
definition of “parent”.

• String getPath()

returns a string that contains the path name of the file.

• boolean isDirectory()

returns true if the File represents a directory; false otherwise.

• boolean isFile()

returns true if the File object represents a file as opposed to a directory or a device.

• boolean isHidden()

returns true if the File object represents a hidden file or directory.

Core Java™ 2: Volume I–Fundamentals

774

• long lastModified()

returns the time the file was last modified (counted in milliseconds since Midnight
January 1, 1970 GMT), or 0 if the file does not exist. Use the Date(long) constructor
to convert this value to a date.

• long length()

returns the length of the file in bytes, or 0 if the file does not exist.

• String[] list()

returns an array of strings that contain the names of the files and directories contained
by this File object, or null if this File was not representing a directory.

• String[] list(FilenameFilter filter)

returns an array of the names of the files and directories contained by this File that
satisfy the filter, or null if none exist.

Parameters: filter The FilenameFilter object to use

• File[] listFiles()

returns an array of File objects corresponding to the files and directories contained by
this File object, or null if this File was not representing a directory.

• File[] listFiles(FilenameFilter filter)

returns an array of File objects for the files and directories contained by this File that
satisfy the filter, or null if none exist.

Parameters: filter The FilenameFilter object to use

• static File[] listRoots()

returns an array of File objects corresponding to all the available file roots. (For
example, on a Windows system, you get the File objects representing the installed
drives (both local drives and mapped network drives). On a UNIX system, you simply
get "/".)

• boolean createNewFile()

automatically makes a new file whose name is given by the File object, if no file with
that name exists. That is, the checking for the file name and the creation are not
interrupted by other file system activity. Returns true if the method created the file.

Core Java™ 2: Volume I–Fundamentals

775

• boolean mkdir()

makes a subdirectory whose name is given by the File object. Returns true if the
directory was successfully created; false otherwise.

• boolean mkdirs()

unlike mkdir, creates the parent directories if necessary. Returns false if any of the
necessary directories could not be created.

• boolean renameTo(File dest)

returns true if the name was changed; false otherwise.

Parameters: dest A File object that specifies the new name

• boolean setLastModified(long time)

sets the last modified time of the file. Returns true if successful, false otherwise.

Parameters: time A long integer representing the number of milliseconds since Midnight
January 1, 1970, GMT. Use the getTime method of the Date class to
calculate this value.

• boolean setReadOnly()

sets the file to be read-only. Returns true if successful, false otherwise.

• URL toURL()

converts the File object to a file URL.

java.io.FilenameFilter

• boolean accept(File dir, String name)

should be defined to return true if the file matches the filter criterion.

Parameters: dir A File object representing the directory that contains the file
 name The name of the file

Core Java™ 2: Volume I–Fundamentals

776

Appendix Java Keywords
Keyword Meaning SeeChapter
abstract an abstract class or method 5
boolean the Boolean type 3
break breaks out of a switch or loop 3
byte the 8-bit integer type 3
case a case of a switch 3
catch the clause of a try block catching an exception 11
char the Unicode character type 3
class defines a class type 4
const not used
continue continues at the end of a loop 3
default the default clause of a switch 3
do the top of a do/while loop 3
double the double-precision floating-number type 3
else the else clause of an if statement 3
extends defines the parent class of a class 4
final a constant, or a class or method that cannot be overridden 5
finally the part of a try block that is always executed 11
float the single-precision floating-point type 3
for a loop type 3
goto not used
if a conditional statement 3
implements defines the interface(s) that a class implements 6
import imports a package 4
instanceof tests if an object is an instance of a class 5
int the 32-bit integer type 3
interface an abstract type with methods that a class can implement 6
long the 64-bit long integer type 3
native a method implemented by the host system (see Volume 2)
new allocates a new object or array 3
null a null reference 3
package a package of classes 4
private a feature that is accessible only by methods of this class 4
protected a feature that is accessible only by methods of this class, its children,

and other classes in the same package
5

public a feature that is accessible by methods of all classes 4
return returns from a method 3
short the 16-bit integer type 3
static a feature that is unique to its class, not to objects of its class 3
super the superclass object or constructor 5
switch a selection statement 3
synchronized a method that is atomic to a thread (see Volume 2)
this the implicit argument of a method, or a constructor of this class 4
throw throws an exception 11
throws the exceptions that a method can throw 11

Core Java™ 2: Volume I–Fundamentals

777

transient marks data that should not be persistent 12
try a block of code that traps exceptions 11
void denotes a method that returns no value 3
volatile not used
while a loop 3

	Cover
	Table of Contents
	List of Tables, Code Examples and Figures
	Tables
	Code Examples
	Figures

	Preface
	To the Reader
	About This Book
	Conventions
	CD-ROM

	Acknowledgments
	1. An Introduction to Java
	Java as a Programming Tool
	Advantages of Java
	The Java “White Paper” Buzzwords
	Java and the Internet
	A Short History of Java
	Common Misconceptions About Java

	2. The Java Programming Environment
	Installing the Java Software Development Kit
	Development Environments
	Using the Command Line Tools
	Using an Integrated Development Environment
	Compiling and Running Programs from a Text Editor
	Graphical Applications
	Applets

	3. Fundamental Programming Structures in Java
	A Simple Java Program
	Comments
	Data Types
	Variables
	Assignments and Initializations
	Operators
	Strings
	Control Flow
	Big Numbers
	Arrays

	4. Objects and Classes
	Introduction to Object-Oriented Programming
	Using Existing Classes
	Building Your Own Classes
	Static Fields and Methods
	Method Parameters
	Object Construction
	Packages
	Documentation Comments
	Class Design Hints

	5. Inheritance
	Extending Classes
	Object: The Cosmic Superclass
	The Class Class
	Reflection
	Design Hints for Inheritance

	6. Interfaces and Inner Classes
	Interfaces
	Object Cloning
	Inner Classes
	Proxies

	7. Graphics Programming
	Introduction to Swing
	Creating a Frame
	Frame Positioning
	Displaying Information in a Panel
	2D Shapes
	Colors
	Text and Fonts
	Images

	8. Event Handling
	Basics of Event Handling
	The AWT Event Hierarchy
	Semantic and Low-Level Events in the AWT
	Low-Level Event Types
	Actions
	Multicasting
	The Event Queue

	9. User Interface Components with Swing
	The Model-View-Controller Design Pattern
	An Introduction to Layout Management
	Text Input
	Making Choices
	Menus
	Sophisticated Layout Management
	Dialog Boxes

	10. Applets
	Applet Basics
	The Applet HTML Tags and Attributes
	Multimedia
	The Applet Context
	JAR Files

	11. Exceptions and Debugging
	Dealing with Errors
	Catching Exceptions
	Some Tips on Using Exceptions
	Debugging Techniques
	Using a Debugger

	12. Streams and Files
	Streams
	The Complete Stream Zoo
	ZIP File Streams
	Putting Streams to Use
	Object Streams
	File Management

	Java Keywords
	Backcover
	Exit

