A line-by-line look inside
6 professional-grade mobile applications

Wireless Programming
with J2ME™

Wireless
Programming with
J2ME™

Cracking the Code™

Dreamtech Software Team

>

Hungry Minds~

Best-Selling Books * Digital Downloads ¢ e-Books ¢« Answer Networks ©
e-Newsletters » Branded Web Sites ¢ e-Learning

New York, NY @ Cleveland, OH 4 Indianapolis, IN

Wireless Programming with J2ME™: Cracking the Code™

Published by

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www . hungryminds . com

Copyright © 2002 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover design, and
icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise) without
the prior written permission of the publisher.

Library of Congress Control Number: 2001093843

ISBN: 0-7645-4885-9

Printed in the United States of America

10987654321

1B/QR/QS/QS/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG Norge
Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia
and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop
Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by
International Thomson Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing
Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products and services please contact our Customer Care department within the U.S.
at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-language
translations, please contact our Customer Care department at 800-434-3422, fax 317-572-4002 or write to Hungry Minds, Inc.,
Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care department at 212-884-
5000.

For information on using Hungry Minds’ products and services in the classroom or for ordering examination copies, please
contact our Educational Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations department at
317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS
IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY
BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND
COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Hungry Minds, the Hungry Minds logo, and Cracking the Code are trademarks or registered trademarks of
Hungry Minds, Inc. in the United States and other countries and may not be used without written permission. Java, Forte,
NetBeans and all trademarks and logos based on Java, Forte, and NetBeans are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All other trademarks are the property of their respective owners. Hungry
Minds, Inc., is not associated with any product or vendor mentioned in this book.

o

Hungry Minds- is a trademark of Hungry Minds, Inc.

Credits

Acquisitions Editor
Chris Webb

Project Editor
Chandani Thapa

Technical Editor
Dr. K.V.K.K. Prasad

Media Development Specialist
Angela Denny

Permissions Editor
Laura Moss

Media Development Manager
Laura Carpenter VanWinkle

Project Coordinator
Nancee Reeves

Cover Design
Anthony Bunyan

Proofreader
Anne Owen

Indexer
Johnna VanHoose Dinse

Cover

Vault door image used courtesy of
Brown Safe Manufacturing
www . BrownSafe.com

Dreamtech Software India, Inc., Team

dreamtech@mantraonline.com
www.dreamtechsoftware.com

Dreamtech Software India, Inc., is a leading provider of corporate software solutions. Based in New
Delhi, India, the company is a successful pioneer of innovative solutions in e-learning technologies.
Dreamtech’s developers have more than 50 years of combined software-engineering experience in areas
such as Java, wireless applications, XML, voice-based solutions, NET, COM/COM+ technologies,
distributed computing, DirectX, Windows Media technologies, and security solutions.

About the Authors
Lead Author Team

Vikas Gupta, Co-founder and President. Vikas holds a B.E. in electronics, with a postgraduate
diploma in sales and marketing and in publishing and printing studies. Actively engaged in developing
and designing new technologies in wireless applications, e-learning, and other cutting-edge areas, he is
also the Managing Director of IDG Books India (P) Ltd.

Avnish Dass, Co-founder and CEO. Avnish is a talented and seasoned programmer who has 15 years of
experience in systems and application/database programming. Avnish has developed security systems,
antivirus programs, wireless and communication technologies, and ERP systems.

Yashraj Chauhan, Sr. Software Developer. Yashraj has an advanced diploma in software development
from IBM, with more than three years of experience in Java, XML, and C++, and is pursuing his Masters
in computer science.

Other Contributors

Pankaj Kumar, Deepak Sharma, Gaurav Malhotra, Anil Kumar Singh, Bill Ray, a team of
programmers of Dreamtech Software India, Inc. They contributed to the development of software in
this book.

Acknowledgments

We acknowledge the contributions of the following people for their support in making this book possible:
John Kilcullen for sharing his dream and providing the vision for making this project a reality.
Mike Violano and Joe Wikert for believing in us.

V.K. Rajan and Priti for their immense help in coordinating various activities throughout this project.

To our parents and family and beloved country, India,
for providing an excellent environment
for nurturing and creating world-class IT talent.

Preface

Wireless devices are new entrants in the information technology arena. As wireless devices are compact
and easy to handle, the focus of Information technology is rapidly shifting from PCs to PDAs, cellular
phones, and pagers. The market for these devices has undergone a tremendous growth over the past few
years. These devices are becoming increasingly sophisticated in response to the demand for using them to
access the Net as well as computing devices. Moreover, these devices are paving the way for new
business strategies.

Sun Microsystems fulfilled the aspirations of the Java Community by launching J2ME (Java 2 Micro
Edition), which gave Java an edge over other programming tools in its performance on wireless devices.
It was first introduced at the Java One Conference in 1999. The J2ME has two “design centers.” Thus,
this platform has two configurations and these are CLDC (Connected Limited Device Configuration) and
CDC (Connected Device Configuration). This has to be kept in mind while talking about J2ME.

With an approach that is based on configurations and profiles, J2ME offers flexibility to the developer,
which is of great significance for extremely diverse handheld and wireless devices. This approach makes
it possible to provide as much functionality as the device has the potential to support. Added to this are
the usual benefits of Java, such as portability across platforms, security, and the object—oriented
character. This is why Java is predicted to be the most preferred language for the modern computing
devices.

It may well be said that J2ME is still in the early stages of development. Two configurations have
become available, but only a few of the proposed profiles are available as of now. This situation is bound
to change as soon as the Micro Edition platform becomes more mature. Consequently, its use is also
expected to increase considerably. Many leading companies have started releasing Java-enabled devices.
This means that you can download Java applications even on your mobile phones and run them offline.

What this Book Covers

This book is based on the unique concept of cracking the code and mastering the technology. The
technologies covered are J2ME (Java 2 Micro Edition) version 1.0.2 and the applications are also tested
on version 1.0.3 Beta. The book is loaded with code, keeping theory to a minimum. All the applications
for which the source code is given have been fully tested at Dreamtech Software Research Lab. The
source code provided in the book is based on commercial applications developed by the software
development company Dreamtech Software India Inc. Each program of an application is explained in a
very detailed manner to provide the reader clear insight into the implementation of the technology in a
real-world situation. At the end of the book, reference links are given so that the inquisitive reader can
further explore the new developments that are taking place.

As J2ME is a new platform, not many books are available on this topic. There are some books that
introduce you to the theory part of J2ME. This book, being a part of the Cracking the Code series,
focuses more on developing applications. Here, only a brief introduction to J2ME has been given, with
the major part of the book devoted to writing commercial-quality code. This is clear from the fact that,
out of the 12 chapters in this book, six are actually projects. Another two are almost fully devoted to case
studies. The idea here is to familiarize working professionals with the J2ME code. You can also see the
practical differences between the Standard Edition and the Micro Edition by going through these projects
and case studies.

It is assumed that the reader has a reasonable command over the Java language and has some experience
in programming.

X

Preface

How the Book Is Organized

The book, as mentioned in the preceding section, consists of 12 chapters. The first five chapters dwell on
theory, followed by six projects. The book ends with a chapter on the conversion of existing Java
applications to their J2ME versions.

The first chapter provides a short overview of the Micro Edition platform. It introduces the basic building
blocks of the platform, such as the CLDC, CDC, Foundation Profile, and MIDP. The J2ME virtual
machines are also dealt with here. Significant features of J2ME, as compared to the Standard Edition, are
pointed out. Related Java technologies such as Java Card, PersonalJava, and EmbeddedJava are
mentioned in passing.

The second chapter discusses the programming techniques required for writing applications for small
wireless devices. These devices may be severely constrained in terms of resources such as memory and
processing power. This is why a new general approach has to be adopted, in addition to specific methods
to take care of device-specific problems. This may be an important chapter for you if you are new to
programming for small and wireless devices.

The third chapter is about a configuration — namely, CLDC. Configurations are the base on which
profiles may be added. They provide the basic functionality common to devices of a particular category.
You will find the following in this chapter:

¢ Introduction to the important classes that make up CLDC

¢ Procedure for installing CLDC (nothing much to explain there)

¢ Compiling, preverifying and running application written using J2ME CLDC
¢ Several case studies to illustrate the use of CLDC APIs

The fourth chapter explains the Mobile Information Devices Profile, or MIDP. The format of this chapter
is the same as that of the previous chapter. You get an introduction to classes and the procedures of
installing, compiling, preverifying, and running. Case studies are also presented to help you understand
the APIs fully.

The fifth chapter is on J2ME and contains what is relevant to programming with J2ME. It deals with
XML parsing. XML parsing is used in almost all the projects in the book. After the introduction, the
reader is told about one of several available parser packages, namely kXML. Needless to say, this
example of XML parsing is provided in the form of functioning code.

With the sixth chapter begins a series of projects. Chapter 6 is based on a project, or application if you
please, called Online Testing Engine. It allows you to attempt tests online, using devices such as mobile
phones. The application is a simple one, but it serves to illustrate the basic concept behind such
applications. The project chapters follow the following format:

¢ Introducing the application

¢ Explaining the user interface

¢ Explaining the working of the application

¢ Complete source code with heavy commenting and line-by-line explanation
The seventh chapter is on a project called Online Ordering System. This project is an Ordering System
for devices such as cell phones and pagers. You can check the stock available and place an order

accordingly. The price of the order to be placed will also be calculated and displayed to you. This can be
considered an m-commerce application that uses existing J2EE applications hosted on a server.

The eighth chapter is about a remote-control MP3 player application and is based on PersonalJava and
can be used with devices such as Pocket PC. Though this application is written using PersonalJava, it can
easily run on a CDC-based platform. It should be noted that, at the time of writing this application,

Preface Xi

Personal Profile was not available, but it is known that PersonalJava will merge into J2ME as the
Personal Profile. Therefore, this application can be considered a CDC-based application that uses
Personal Profile. It also uses the Java Media Framework.

Chapter 9 is on a project called Peer-to-Peer Search Application. This application is a peer-to-peer
searching tool for Palm devices. It allows you to search for files on particular system and displays the
listing of the available files, somewhat like Napster. You can read a complete peer-to-peer application
developed using J2SE and C# in the book Peer-to-Peer Application Development — Cracking the Code
series, author Dreamtech Software Team.

Chapter 10 contains a project called Mobile Web Services. It is meant to provide services to the user that
can be accessed from mobile devices. The project targets devices such as cell phones and similar
services. The services the user gets are weather details, movie ticket booking, and news. This project uses
XML very extensively.

Chapter 11 is devoted to writing a simple game for Palm devices. The game involves a stationary gun and
a moving target. The user has to fire a limited number of bullets to hit the target. Points are awarded
accordingly.

Chapter 12 deals with converting applications in which a great deal of effort has been put in by
developers all around the world in developing Java applications. It is natural that some of these can be
converted to work with handheld devices. The final chapter of the book explains how and to what extent
this can be done. Some general guidelines to handle this process are provided.

As this is a code-heavy book with an introduction to the theory, we hope that it will help Java developers
in adapting to the Micro Edition platform. Since entry-level material has been left out of the book,
making the book smaller in size, you will find it easier to go through it even if you are short on time.

Who Should Read this Book

This book has been designed with some assumptions about the audience. This is necessary since the topic
it deals with is somewhat advanced, and it is not possible to teach the Java language to the reader in the
same book. Readers are expected to possess a basic knowledge of Java and preferably XML, too. Some
experience in programming will definitely help.

The book will benefit people who want to or need to develop commercial-quality applications for devices
such as PDAs, mobile phones, two-pagers, etc., using Java. The applications will have connectivity to the
Internet and other networks if required. This is understandable because most of theses devices are mobile
and use wireless communication.

Contents

Preface..... . ————— viii
Chapter 1: An Overview of J2MEcoo s 1
TIEEOAUCLION ...ttt ettt b et b ettt s et e e be e ebe e nenas 1
WHhat J2ZME 18 @DOUL.....c.ccuiiiiieiiieiitirtet sttt ettt sttt sttt ettt st b nes 1
WHhat J2IME OFT@IS ...c.niiiieiiitecetee ettt ettt ettt nes 2
J2ME Virtual MACRINESc.coueieiiiieiieiiieieietei ettt ettt ettt st be b naes 3
The K Virtual Machine (KVIM)cooiiiiiiieiieieeieceeteteteieste sttt sttt sse s essesensessennas 3

The C Virtual Machine (CVIM)cccveieierienienieeiieieetetetetesieste e see e essessessessestessesseessessensessessesses 4
CONTIGULALIONS ...ttt ettt ste e et et et e et et et esb e bessessesbesbesbesbeeseeseaseessessensensesaesaeseeseaseesensens 5
CLIDC ..tttk s et b st h st e e b bt e ARttt R ettt s ettt s et et be st e ee 5
CDC ettt h et h et e e st a Rt a etk h Rttt ben ettt e sttt et e st e ee 7
PLOTILES .ttt et b et b et bbbt b et b et benes 8
Mobile Information Device Profile (IMIDP).......c.ccecieriiriririeieiesieeeeeeiesiese et 8
Foundation Profilecccoeieieiiieeee ettt 9
OhET PIOTIIES ..ottt ettt et et et et st e st e s besbesbesbeesaessessensensensensenseseeseesensansens 9
Getting Set to Program With J2ME..........c.ocioieieiieiiiececececeeee ettt saesa s e 10
OUr First J2ME APPIICALION.c.eeieieieieieriesieeteeeeteteteteste st estesteseeeseestessesbesbesbesseeseessensensenseseesaeseans 10
RelatedJava TECRNOIOZIES.c.eeieieieieieierieeteeeetet ettt sttt ettt st sbeeteesaessessesessesessaeseeseas 12
PeISONAITAVA......c.otiiitiieiie ettt ettt 12
JAVA CATA ..ottt ettt b e 13
SUIMIMATY ...ttt ettt ettt et et e e bt e tesa e e s bt eabeeate s bt enbeeatesbeenbeenteeseanseensenseeseensans 15
Chapter 2: Programming Techniques for J2ME............ccooiiiiiiiiiiiiiciccnnes 16
Constraints 0f J2ZME Targeted DEVICES.......cccueriiririieieieierieriesieeteeteiestestestesresssesessestessessaessessessesnens 16
Limited proCeSSOT SPEEAc.eeveieieierierierteeieeteetetet et et e st e stestesteeseessessessessestesbesseeseessensensensesaesens 16
Limited MemOry and SEOTAZE.......cveeeeerieierienieeteeteeeetetetestestes e stestesseestessessessessessesseessessensenseseas 17
Limited networking and bandwWidthcccevieieieiierieniecceeeee e 17
Wide variety of input/output MEthOdScccevieriirieieieieieseeeeee et 18
Size, Shape, ANA WEIZNL........ccveviirieriieieieietet ettt ettt ettt sbesteese e s ensensenseseeseens 20
Rapid changes in the world of small deVICES........ccevirieierieniirieieieeeeeeee e 21
Operating systems fOor MODIIE AEVICESccuerieriiriieieieieiereeeeeet ettt sre et esbe e sreeseessenaens 21
Programming Techniques to Counter the Limitations...........c.everireerierieneeieieneneeeeieseseeveie e 22
D0 NOt OVETI0AA the PIOCESSOTc.vivieeieeieiieieiertesteeteetet et et e et ete et esbesbesbesbeseeessessensensessesseseas 22
Conserve memory to the MaXimum EXLENEecveeerverierereeeeiertesteseeeeresaessessesseessessessesseesens 22
Pass the 10ad t0 the SETVETc.couiriiiiiiiiiieie ettt 24
Av0id USINgG StriNG CONCALENALIONcuveveterreeieeieeeterterteseeseereestetessessessesseeseessensessessessaessessenseneas 24
Give the garbage collector light WOTK..........ccooirieieiierieieeceeeeeeeeeee e 24

USE EXCEPLIONS SPATINZLY c.veuvieieiieiieiieiesiente et et et et et et e ste s e stesteeseessessessessesseeseessensensensensessesaesens 24

USE 10CAL VATTADIESc..eueviieiiiiieicrie ettt sttt ettt b e b e 24
Make YOUT SUILE TIZNLceiieiiiieiiciieieeeeet ettt st et et e sesbesaesaeneas 24
Managing with the limited features 0f J2ZME..........ccoeviiriiiieieieieeceetcee e 25

Plan your application Well.........c.cccecvecieierienenieeeeeieieteteseste ettt st sse e snensesesaeseas 25

xiv Contents

Use GUI classes optimally and Creatively......coceeieieierieniiieieieiesieeeeceteiesie e ee e sie e eenens 25

Use the Server’s fUNCHIONAIILYccvevverieriirieieieieerese ettt esb et sbesbeesaessessenaeseens 25
Use low-level UT APIS in MIDP......cc.ccieiiiiieieieeeceeteteteteie ettt sse s sneennes 25

Use SyncML for data SynChronizationccecvevuerieririeierienienieseeeeiesesieseesseeeessessessessesseesnens 26
SUIMIMATY ...ttt ettt ettt eette bt et e satesb e e et eate s bt e bt enaesseenseensesseenseensesseeseensenseanee 26
Chapter 3: CLDC API and Reference Implementationcccevvvreemnnnnnnnn. 27
COTE PACKAZESveevieiieeieiieieieete ettt ettt ettt et et e et e st e besbesbesbesbeebeebeeseesaessessensensesseseeseasesseaseases 27
JAVALANG PACKAZE ..ovvevveieieeieeieeiteeet ettt ettt et et e be st st s teeseesaesaesae b e e eseeseenaane 27
JAVALIO PACKAZE ...vevvivieieeieiieiteteitetetetestestestesteeteseeeseeseessessessessensessessessesbesseaseaseessessessensaseeseeseaseans 27
JAVAULL PACKAZE ..c.vevvenveteeieeieetieiteitet ettt ettt ettt et et et e b e besbesbesbeeseeseeseessensensenseseeseaseeseans 28
Brief introduction to commonly used PaCKages.........ceveeieierieriiieieriereeeee e 28
Generic Connection FTAmMEWOTKcccocirieieieieiieriesieseeeeeee et ete e ste st ste e e bessestestesteeseessesaeseess 31
KJAVA AP ..ottt ettt ettt ettt ettt h e eb e ehe e beebeebe et e e reese e s e e st e st eseeseeseeseeseereeseens 33
Brief introduction to commonly USEd ClaSSESccvvveierierieeieieieieeeeeet e eees 36
SPOICE ..ttt ettt et ettt et ettt et st e st et et beebeebeete et e e te et e ereeseereeseeseeseeseeseereeseas 36
GIAPNICS ..ttt ettt et ettt et et et e st e s besbesbesbesbeebeebeeseeseeseeseenseseessenseseeseeseesaeseeses 37
BULOM. ...ttt ettt 37
TEXEFIRIA. ...ttt ettt sttt benes 38
RadioButton and RAdiOGIOUD.........c.ecueruerrieieieieieriesieeeeeeiteteietestesteste e essessessessessessaesaessensensens 38
HIPDISPIAY .ottt e et b e et e b e b esbesbesbesbesbeeseeseeseeseeseeseeseeseans 39
SCIOITEXIBOX. ...ttt ettt et ettt st b et bttt et beneeneees 39
DIAtADASE......cneeiieieteet et bbbttt b et b et b et b et st eaene 40
TEXEBOX .ttt bbbttt ettt eas 41
Installation Of CLDICco.coiiiiieiiiie ettt ettt ae e b b e 41
Compiling, preverifying, and running appliCationscceccereerveriereereerieneneeeesieseseesresseseeens 42
CASE SHUAIES ...veueteneeiiteet ettt etttk b et b et bt s et b et ettt b et et e e bt b et netes 43
TEXLFICIA SPOLICLeevieiieieieieeieeteeeeee ettt ettt ettt e besbesbesbeebeeseeseessesesseeseess 43
SCIOITEXtBOX_ SPOIET....ecuieuieiieieietertesteeteeeee ettt ettt ettt et ebesbesbesbesbeesaesneseeseasens 45
HelpDiSPlay SPOLIELccueeuieieieieieriereeeee ettt ettt sttt se et esseste b e besbesbesbessaesaeseesaeseans 47
CheCKkRAAIO SPOLICT......eeieiiieieeieeieeiieeeeetetete ettt ettt et et besbesbeebeesaesaessensenseseeseess 49
HHPCRECK SPOLICL ...ttt ettt et et esbesbesbesbeesaennesassneseans 52
SETVET ..ttt ettt ettt ettt h e bbb bbbt h e bbbt e b e bt bbbt b ettt be bt be bt beene s 55
SOCKEE CRECK ...ttt ettt ettt et st e s be s besbesbesbeesaeseeseessensensenseseeseaseasens 55
SUIMIMATY ...ttt ettt ettt e et e et e e bt e et eute s bt e et eate s bt e bt eatesaeanseenseeneesseensasseenseensenseanne 62
Chapter 4: MIDP-MIDlet Implementation with Case Studies.................... 63
MIDlets and MIDIEt SALES........cveertirieririeieierietete ettt ettt sttt sttt sttt sbe e bt et ee st sbeneebenes 63
IMIDIEE SUIEES ..ottt ettt ettt st b ettt a ettt bt st e st b et e bt e e st b et ebe st ebe e e st eaeneebeneebenee 64
IMIDP AP ...ttt b sttt b et et e b e st s e st s e b e st ettt e s et e s et e ee 64
Application Lifecycle PaCKaEe.......cc.cvveriruiriieieieieieeeseeeettetete ettt st saessesaesaeseens 65
USEr INETACE PACKAZEevevieeieiieiieiecieeteee ettt ettt ettt et et esaesse s esessasaeseeseesaesenns 66
Interface CommANALISIENETc.couetrtirieiitiieiertetet ettt be e 67
ALCTE CLASS ettt ettt ettt b et b e bt b et b e et eb et ebe st e bt e st et eneeaens 68
CROICEGTOUP CIASS.....ueeveretieieeiietieteeiietetetestestestestestesteeseessessessessensensessessessesseasesssessessensenseseeseeses 69
COMMANG ClASS ...ttt ettt ettt ettt b et b e s bt b e st e e eb e e sbe e ebenee 70
DISPIAY ClASS ...vivitieiieiieiieiteieiest ettt sttt sttt et et et esb e s e besbesbessesbesbessesseaseeseessessensensesaeseesaeseans 71
FOTIN Cla8S 1.ttt bbbttt bbbt et eb et et et naene 71

GAUEZE CLASS ...vveurenienieiesiesieeie sttt et ete et e et e st est et esse s e sebebesbesbesbessessesseaseeseesaassessessensensaseesessanseeses 72

Contents XV

GIAPNICS ClASS ...vevieereiieieieiesieteste ettt ettt ete et ese et et et ebessesbestestessesseeseeseessessessensensansesaaseaseaseane 73
CIASS LISt ..euvititieiieieeieeieetieitet ettt et et et et et et e st e s besbesbesbeebesteebeesaeseeseessessensensensansensesasaeseesanseaseane 75
C1aSS SHINEIEEIMevievieiieiieieieietet ettt ettt et et et et e bestestesbesbeeseeseessessensensensensaseesensenseans 76
CIaSS TEXLFIEIA ..ovieeieeieiieieieietet ettt ettt et et s besbe s besresteebeeseeseessenseseeseeseesene 76
CIaSS TEXEBOX ..uveuteureieieiesiesiesieste et ete et et et ese et eseestestessessessesbessessesbesbesseeseeseessessessessensaseaseaseeseane 77
CLaSS TICKET ...ttt ettt b ettt be e b ettt eb et sesteneeaene 78
PerSiStENCe PACKAZE.c.veieieieiieieeieeeeeeee ettt ettt ettt et sbeebeesa e e s b enbeseesaeseesaeseeneas 78
C1aSS RECOTASIOTE.....c.veeuereeiieiieiieiieiteterte e ste ettt ettt et et essesbebesbesbesaesseeseeseeseessensensesenseeseans 79
Exceptions in Persistance Package..........cevveviruieieieieriesecicccecetetee ettt 82
Installation of MIDP and Running ApPpliCationsc.ccevueririeierienieneeeeriesieseeeeeessesseseeessesseseesees 82
TUILDAL ..ttt ettt bbbt b e bt st s s bbbt et ne bbbt eneees 83
SAIMPIE. DAL ...cuevetetesteetecte ettt ettt et et et et et et e st e s bestesbesteebeeseeseeseesee st essensenbenteseeseeseeseeneane 84
11111 o) (ST T Vo PO UU USRSt 85
J2ME WITEIESS TOOIKILveureuienreieieiesieeteeteitetetete e stestesteetesseessessessessesesbessesseesaessessensensanseseeseesensens 85
IMIDP 01 PAIM ...ttt ettt st sttt sbeesaessessessessessensenseseesaeseaseaseasens 86
CASE STUAICS. .. veuveureieieiesieete et ettt et et et et et et et et et e be st estesteeseebeeseeseaseessessessessensensansanseseessesaeseesensaasean 91
TEXEFICIACRECK ... cevieiieieiieiieieieet ettt ettt ettt st sbesreebe et e eseeseessensenseseeseesnns 91
LaDEIUT ...ttt etttk et b et e bt et et b s et et et se e s aeneneas 93
ChOICEGTOUPULL......oeiiieiieiieieieietet ettt ettt ettt ettt et et et e s e b e besbesbesaestesbessessaeseaseesseseaseaseans 95
TACKEIUL ...ttt b et ettt b ettt b et e st sbe st eaene 98
IMENUCKHECK ...ttt ettt ettt b sttt b et b et be e 99
AQAIESSBOOK ...ttt ettt 101
TESEHTTP ...ttt ettt b et et be st e et e st et s et eeeaesene e eee 109
SUIMIMATY ...ttt ettt ettt e e ea b e sae e bt et e sae et e enteeaeesbeenbeeabesseenseenbesseenseensenseanes 111
Chapter 5: Handling and Parsing XML in J2MEcoooiiiiiiiiiiiiicccnnes 112
Brief OVerview 0f XIMLcouooiiiiiiieeie ettt sttt st benee 112
SHIUCTUIE OF XIML..c.eieieiieiieieieeest ettt ettt ettt be st st ebeeseesaessessensensesenseseeseeseas 112
XML SCREIMAeeutiiiiiiticiieie ettt ettt ettt s be e besbeebeesessesseesaessessensensensensensansasaaseans 114
XIML PAISINE ...eovveivenieieiestesieste sttt ettt et et e et et este e se s e sesbessessesbesbesbessesseaseaseeseessessessensaseaseasassensenne 114
XML parsers available for KVIMcccooiiriiniiriinieieieieiesieseee ettt svaeseennes 115
WOrKing With KXIML......cc.ooieuiiieieieieieieeeses ettt ettt ettt st st et esaesae s essessensenaesaesaasenne 115
OF QKX PATSEF PACKAZE ...ttt sttt seesessaesasseeseeseans 116
OTEKXIMLIO PACKAZE. ... evveveteiieteetieteeetettet et et e et et e stestesteeteseeeseesaessensebesbesbesseeseeseeseessenseseeseeses 117
ADPPIICALION ...ttt sttt s teete e st e st estestessessessensensensesessessesseaseeseesaasaassesaeseesaaseasansenseane 117
Structure of the aPPIICALIONc.eeieieieierierieeeeeeeeeet ettt ettt st saessessenseneeseas 117
Functioning of the appliCation..........cceeieieieierierieiecieeeeeeter ettt s seeesa s eaeneens 117
APPLICAION AESCTIPLION.vevitieeieeieeieieiesteriesteeteeteeetestestestessessestesseeseeseessessensessessessessessessseseeseans 117
SUIMIMATY ...ttt ettt ettt e s te e e eatesae e beeatesae e beenteeaeesbeenseenbesseenseensesseenseensesseenne 124
Chapter 6: Project 1: Online Testing Engine..........cccoeiiiiiiiiiiiiccccciicnnee 125
USCE INEETTACE ...ttt sttt b ettt ettt b e b e be s 125
RUNNING the PIOJECE. .. eeutiiiiiiieiieiieitetetetetetestes ettt ettt et e et s te st sbeeseesaesaessensenseseesaesassneseane 126
HOW Tt WOTKS ..ottt sttt st sttt s s e s e s e b e sessesbesseseeseesaesassaaseane 126
TestMaNAZET fIOW CHATt........ccveriiiiiieiieieeeeete ettt ettt st se s ss e b e b e sesseseenas 132
TESTMANAZET.JAVA ...veuveveveeteereeeienteitetetestestessessessessesseeseestessessessensensessessessessessesseessessessensensaseeseesenseeses 134
IMAINSCIEEILJAVAeuveutevieteeteeteetteiteiteetestestetebessestestesseeseeseeseeseessensansensensansessessessessesseaseessaseeseasassansenne 139
QUESHIONPAISET.JAVA....ueeuieiieietisieeieeteeteeeete et et et et et e tesaestesteesesseeseessensensensensessessessesseeseeseeseesensenseeses 155

BOOKS.ASP .. euteuteieiesieste ettt ettt ettt ettt ettt et et e benbeebeebeebeebeebeeteebeeseesaeseeseeseesaereereane 159

xvi Contents

TESTFTLC.ASD «evteveeuieiieiieietete ettt ettt ettt et ettt et et et e b et e besbesbesbesbesbeeseeseeseessessensenseseesaeseeseasanseaseas 161
SUIMIMATY ...ttt ettt et et esa e e bt e teeatesbeenbesatesb e e bt eatesseenseenbeeneenseensesneenseensas 163
Chapter 7: Project 2: Online Ordering System..........ccccooiiiimmememennennnnnnns 164
USEE TNEETTACEevieeieiieiieiteieteet ettt ettt ettt et e st e s be s beebeeseeseeseeseessensensensesseseeseaseeseeseass 164
RUNNING the APPIICALION......ccuieiieeieiieieietestese ettt et ste sttt seeseebesessesbesbessesseessensensasseseeseeseeses 164
HOW Tt WOTKS ...ttt sttt st ettt et et e e s e e b et e senbesbesseseeseeseeseesesseess 165
SUIMIMATY ...ttt ettt et et esa e et e e tesatesbeentesatesbee bt eatesaee bt enbeeseenseensesneenseensas 184
Chapter 8: Project 3: MP3 Player for Pocket PC..........cccmmmimirirrininieennnn. 185
Working with the CDC SPeCifiCationc.ecuevueriieieieieieieseeeeteeeste ettt ereessensessessenas 185
Using Emulated ENVIFONMENTS...........ccieieieieieieriesiesieeeetetetesiestesteste e seessensessessessesseessessensenseseeses 186

The PersonalJava Emulation ENVIronmMentc.eceeieieienienieseeieiesieseeeeeeiese e seeenenseseesnes 186

The Pocket PC emulation €NVIFONMENTcevverveeiecierieniesiieieieiesteeseeeesessessesseeseessesessessenses 188
Working Without @MUIALIONccueeuieieieieieieieseeeceeet ettt ss e senas 189
JAVACHECK ..ottt ettt ettt et et et et e sb e beebe bt b e eaeereereeseeseeeeeseeseeseens 189
TNtrOAUCING the PIOJECT....uievieeieiieieieterteseee ettt ettt sttt et et et e besbesbesseeseessensenseseseeseeseeseess 193
HOW Tt WOTKS ...ttt ettt sttt sttt et et et e e a e b e s e senbensenbeseeseeseaseeseaseesas 193
HOW 10 RUIN 1.ttt ettt e bt et e e sae e s bt e beaeentesbeenseennens 200
Working With Wireless NEtWOTKScc.ecueriirieieieieieriestesieeeetetetesie sttt eesaesbesbesteeseensenseneenas 201
SUIMIMATY ...ttt ettt et et s a e e bt et e eatesbeenbesatesb e e bt eatesaee st enbeeseenseensesneenseeneas 218
Chapter 9: Project 4 : Peer-to-Peer Search Application...........ccccee........ 219
USEE TNEETTACEevieeieiieiieiteieteet ettt ettt ettt et e st e s be s beebeeseeseeseeseessensensensesseseeseaseeseeseass 219
HOW Tt WOTKS ...ttt sttt sttt se e e e s e e b et e sebesbesseseeseeseaseeseaseens 220
SOUICE COUE ..ottt ettt ettt et et et et et et e besbestestesbesbeesesseeseeseeseessessessensaseaseeseeseesensenns 226
SUIMIMATY ...ttt ettt et esa e et e et e eatesbeentesateebeenbeeatesaeeseenbeentenseenseeneenseensas 274
Chapter 10: Project 5: Mobile Web Services.........cccooviiiinmmnneeeeeeeennnnns 275
USEE TNEETTACEvevievieiieiieitetetet ettt ettt ettt et sbe s be s be et e eseeseeseestesaenbensenseseeseeseaseeseaseess 275
HOW 10 RUIN ..ttt ettt et a et et e sat e s bt e bebeentesaeenseeneens 278
HOW Tt WOTKS ...ttt sttt ettt e se e e es s e b et e senbenbesseseeseeseaseeseeseens 278
IMAINCIASS.JAVA ..ottt etet et et e steste bt stesteeseesteseessensensessensessessessesseasesseessessensaseesesseases 291
DAtAPAISEI.JAVAc.veieeiisiietieieeieee ettt ettt sttt ettt e bt e st e st esse b e b e besbessesbesbeeteeseeseeneeseeseeseenes 294
WEANET.JAVA ...ttt ettt ettt ettt et et et e be st e s besbesseeseeseeseessensensenseseeseaseases 305

IN WS JAVA. 1.t eeteeureeieieesreeestestetestetestetessessessessesensessesessesseasessessessessessessessessessesseeseeseessassesseseasenses 311
IMOVIESLASEJAVA ...cuveuvenieieeiesiecieete ettt et et et este st e testesteebeeseeseestessessensensessasessessesseaseaseesseseaseaseases 319
SUIMIMATY ...ttt ettt et et sa e bt et e s atesbeenb e satesbeenbeeatesaeenseenbeestenseensesneenseeneas 328
Chapter 11: Project 6: Target Practice Game...........ccccceimnmmnnnnnnnnnnnnnnns 329
USEE TNEETTACEvevitieiieiieiteteteet ettt ettt ettt et e s be s besbeebeeseeseeseestessensensensesaaseeseaseesanseass 329
HOW T WOTKS ...ttt ettt st sttt et et esa e st e b et e senbesbanbeseeseessaseesessenns 330
SOUICE COUE ...nvenventeieieeiieieete ettt ettt ettt et et et et et et e tesbesbestesbesbesseesesseeseeseeseessessensensesaeseeseaseasensenne 334
€A EXPIANALIONc.veuveveeiieiieeeeeiet et et et ettt et et et estesbesebesbesbessesseeseaseessessensensensenseseaseaseas 339
IMAINCIASS.JAVA ...vevveieevietieieeieet et et etet et et e steste s bt etesteeseeseessessessensessensessessessesseaseaseessensensaseasessenses 340
SUIMIMATY ...ttt ettt et esa e bt e atesatesbeentesatesbe e bt eateeseenseenbeeatenseensesntenseeneas 354
Chapter 12: Converting J2SE Applications to J2MEcccccmrrrrrnes 355
Issues INVOIVEd 1N CONVETSIONc..everiiriieiieiieiieieiesieste ettt etetestestestesteeseessessessesteseeeseessensensasseseeseeses 355

Differences in Java language support and virtual machines...........ccoceeeveveneneniineneneincnne 355

Contents XVii

Differences in the hardWare............ccoeoiiiiiiinine e 356
Problems due t0 dEVICE VAIIELYcc.evvieuieieieieiesierieeteettetteteteste e ere et esseaestesbesressaessensensensens 356
Differences in the application MOAEIS.........c.cceriririeieiieriesieeceeee e 357
DIfferences I APIS......coueuiiiiieieete ettt 357

What Conversion ENtailscoeciirieiiiiiiee et 358
Modifying the application design, if NECESSATYcvecverieririerierieeieieiesie et ste e ere e see e 358
RedUuCINg the GUIc.oouiiieieieeeeee ettt ste et sb s et e bessesaessesaesnans 358
Removing unnecessary or impossible functionality..........cccccoeceeeverierieeierienieneeieieneseeeeie e 359
Optimizing the USE Of TESOUICTESevviriierieieieieiesteeteeeetetete e steste st essetessestesresseessensensensessenes 359

USING JAVACKECKiveiieiieiiciieictetet ettt et e et et et e besbesbesbeesaesaessessensesseseasansenseane 359

AN EXAMPIE Of CONVETSION.....ueeuieieieieriesieeteetieitetetestestestestesseeseessessessessessessesseessensessessessessasseseeseane 361
ANALYZING the AESIZN ...eeuveieieiieiieieeieietetetet ettt ettt et e besbesbeeteeseesaensessensessessasaeseans 361
RedUCINg the GUI......ouiieiiieieieeeee ettt st see et e b e b e besbessessesseseaseans 362

Is some functionality unnecessary or imposSibIe?ccccvvievierienieeeerienieneeieiene e nre e 363

Listing the items CONSUMING TESOUICESeervervirrirreereriertesteeeetessessesseeseesessessessesseessessessessesses 364

TeStiNG the APPIICALION.eeieieieietieteeeeee ettt ettt ettt et e besbesbesbeeseessensensenseseeseass 365
SUIMIMATY ...ttt ettt e st e et e eatesae et e eatesa e e beenteeaeesbeenbeeabesseenseensesseenseensesseenes 365
Appendix A: About the CD-ROM..........coo i 366
SYStEM REQUITEIMENLSc..evitievieiieiieiieiieietete e stestesteeteeteere et eseeseessessessessessessessessesseessessessenseseesseseesens 366
WHhat™s 01 the CD ...ttt ettt benes 366
SOUICE COAR ...ttt ettt ettt b et b et b ettt be st sbe e benee 366
ADPIICALIONS ...vveeieereeteiieietestestestestesteetestesteeteeseestesaessessessessesessessessessessessasssassessessessenseseaseesenseans 367

ErBOOK ..t b ettt b et ne s 367
TTOUDIESNOOTING.vevitiiieiietieiieitet ettt ettt ettt ettt s e st et e b e b e s e besbesbesbesbessesseesaeseesaaseeseass 367
INAEX e ————— 369
End User License Agreement..........ccceeeeeiiininiiimnmnmnssssssi s 377
Sun Microsystems, Inc. Binary Code License Agreement..............cc..... 379

License Agreement: Forte for Java, Release 2.0 Community Edition
L0 T~ LI 2 = 18 {0 Y 3 1 382

Chapter 1
An Overview of J2ME

This chapter presents the basics of J2ME and serves to enlighten the reader on the steps involved in
programming with J2ME. It also provides the groundwork necessary for developing applications. J2ME
has been compared with J2SE, and so some background is provided on J2ME virtual machines. We also
mention, albeit not in detail, Java technologies of a similar nature.

Introduction

Java came to the limelight with the release of HotJava browser, which demonstrated the suitability of
Java for the Internet. It established that dynamic and interactive Web pages could be created with Java.
The craze for applets also caught up with its release. Subsequently, Netscape 2 for Windows became the
first commercial browser to support Java 1.0. Java was at its maximum hype at this time, because it
seemed to offer capabilities on the Web that weren’t otherwise possible. The promise of cross-platform
applications also added to Java’s reputation.

Since then, Java has come a long way. Its acceptance is so widespread that you can find APIs for carrying
out most of the things that can be done in other programming languages. From applets to RMI and from
Servlets to speech APIs, you find everything under the Java umbrella. Perhaps this accumulation of tools
providing all kinds of functionalities contributed to Sun Microsystem’s decision to organize the Java
family better.

Another reason for this could be the boom of nonconventional computing devices. These devices had
actually started emerging before the birth of Java. In fact, the Java language itself was initially aimed at
providing programming solutions for such devices. Computing was no longer restricted to servers or PCs.
And the world of small devices spread far beyond organizers possessing 16K memory and toy processors.
Newer devices not only had increased memory and processor power, but also were proliferating in
shapes, sizes, display types and areas, input and output methods, and networking.

Sun Microsystems came up with the idea of dividing the Java universe into three separate platforms for
different purposes. The domain of the three platforms was to be determined by the sizes for which they
were meant. Thus the platform for conventional computing was called the Java 2 Standard Edition
(J2SE) and that for enterprise applications and distributed computing became the Java 2 Enterprise
Edition (J2EE).

The third platform was meant for the nonconventional consumer devices. These devices are characterized
by some typical features, such as mobility, limited memory and processing power, incapability to access
power from the mains (being battery powered), small display areas, and limitations and variety with
respect to input and output methods. Of course, not all these features must be present on one device. One
thing common to most of these devices is that they are all connected to some network, even if not always.
The Java platform meant for these devices was called the Java 2 Micro Edition (J2ME). And this
platform is what we focus on in this book.

What J2ME is about

Java 2 Micro Edition platform is not restricted to small devices. It has two design centers, depending on
memory constraints. That’s why this platform has two configurations: CLDC (Connected Limited Device

2 Chapter 1: An Overview of J2ME

Configuration) and CDC (Connected Device Configuration). You need to keep this fact in mind while
talking about J2ME. Whenever you’re programming for a mobile phone, you are as much within the fold
of the J2ME as you are if you’re programming for a set-top box with almost as much computing power as
a desktop system. But it is true that J2ME is more associated with small devices that have modest
amounts of power and memory. Yet, when you program for devices such as set-top boxes, the difference
between J2ME and J2SE narrows, and people who’ve been writing code for the standard edition feel
quite at ease with J2ME. It is while writing code for devices such as mobile phones that the peculiarities
of J2ME become relevant. We try to cover both design centers in this book, as far as possible.

The micro edition platform was conceived and designed in the form of layers (Figure 1-1). Each layer
adds some functionality. The primary requirement is, of course, a virtual machine for running Java
applications. These, together with the virtual machine, form part of the configuration. On top of this
configuration resides a profile. The exact profile that can be added is dictated by the device and also by
the configuration that is being used. But you’re not restricted to one profile. You can add another profile
on top of the first one. This cannot, however, be done arbitrarily — you cannot add any profile on top of
profile.

Java 2 Enterprise J2ME
Edition(JZEE) Java 2 Standard

Edition(J25E) Profiles
cDC (CLDC
Java Language
JYM{Java Yirtual Machine) KYM and CVM

Figure 1-1: Java family

For the time being, we don’t have many profiles to choose from: the profile released till recently was
Mobile Information Device Profile. The newer Foundation Profile doesn’t really match the concept of a
profile because it has no libraries for providing user interface. Even after that day comes that we do have
more choices, J2ME is not limited to Configurations and profiles, and we can also add optional packages
over and above configurations and profiles.

Thus we may consider a platform as parts joined together to form a whole that suits the devices for which
our applications are meant. Thus we find a great deal of flexibility in regard to implementing the
programming model. Device manufacturers as well as independent vendors can provide their own
versions of virtual machines if they follow the Java Virtual Machine Specification. If so, their virtual
machines would be no less capable than those provided by Sun. Devices can be sold in Java-enabled
condition, or they can be Java enabled later on by the user. Similarly, applications may be loaded onto the
devices before the devices are sold, or the user may download them from the Web.

What J2ME offers

Java 2 Micro Edition complements technologies such as WAP, cHTML (Compact HTML), and i-Mode. It
can do for small and limited devices what J2SE and J2EE did for desktop and server systems. Just as you
can download and run an applet in a browser that supports HTML or XML, you can run a Spotlet or
MIDIet in a browser that supports WML or [-Mode. Or you can run standalone J2ME applications on,
say, a mobile phone, just as you can run standalone applications on a PC. And just as you can run an

Chapter 1: An Overview of 2ZME 3

application that invokes a servlet residing on a server, you can run the same on a mobile phone or a set-
top box. This is because the server side remains the same — you need to regard only the restrictions of
the device. These applications can be games, navigation aids, applications interacting with databases, or
anything permitted by the resources on the device. The idea of ubiquitous computing can be realized with
this platform (Figure 1-2).

Application made available on the web

User selects the application

Application dowhloaded by Java
Application Manageri{JAM)

J2ME runtime environment
executes the application

Figure 1-2: Downloading and running a J2ME application

J2ME Virtual Machines

The Java virtual machine used in the standard edition and the enterprise edition is meant for use only on
desktop systems and servers. Its size renders it unfit for the small devices, which need a virtual machine
with a very small footprint. These are devices such as the mobile phones, two-way pagers, PDAs or
handheld devices, screen phones, smart phones, and so on. But J2ME also targets other devices that can
accommodate a larger footprint but that still cannot use the conventional Java virtual machine in its
original form. This category of devices includes set-top boxes, car navigation systems, handheld PCs, and
SO on.

In view of all these, two virtual machines were developed for the two design centers. The devices in the
first category are supposed to use the smaller footprint K Virtual Machine (KVM), while those in the
second category use the larger footprint C Virtual Machine (CVM).

The K Virtual Machine (KVM)

As you’re probably aware by now, the KVM is a new, highly optimized Java virtual machine for
resource-constrained devices. Appropriately, the K virtual machine is very small in size (about 40-80K),
and every care has been taken to make it suitable for devices such as pagers, cell phones, and PDAs. Like
any other Java virtual machine, it enables you to download and execute applications. Like applets, these
applications provide a method for presenting dynamic content.

The KVM can run on any system that has a 16-bit/32-bit processor and 160-512K of total memory. As of
now, the KVM has no support for certain features such as determinism, long and float data types, and so
on. The design of KVM is based on some important considerations, including the small size to conserve
as much space on the device memory as possible (both in terms of storage and runtime memory) and its

4 Chapter 1: An Overview of J2ME

capabilities to run on low-power processors, to enable partitioning of the VM, and to fulfill the Java
assurance of portability. This last issue could have been a big problem, considering the diversity of small
devices. There is actually no full portability, but porting is not very difficult because the KVM was
implemented in C language.

Just as applets are written using the APIs available in the standard edition, these applications (spotlets,
MIDIets, and more to come) are written using Java APIs available in CLDC, CDC, MIDP, Foundation
Profile, and so on. And just as applets are run using the conventional JVM, these applications are run
using the KVM.

We should note here that, when we talk of KVM, we mean the reference implementation of KVM
provided by Sun. However, J2ME can use any VM that is written according to the Sun's Java Virtual
Machine Specifications (JVMS) and can handle as much work as the K virtual machine.

The K Virtual Machine can theoretically run several profiles, but it cannot run quite perfectly all the
profiles and APIs that aren’t specifically designed for it, just as it cannot be used to run the CDC. It is
basically meant for CLDC and, at present, for only one profile: MIDP. This means that applications
written for the conventional JVM or even for CVM most probably cannot run on the KVM without some
changes. But the converse is not true — applications written for KVM can easily run on the CVM or the
normal JVM.

A more recent version of KVM (version 1.02) has some improved capabilities, such as a better garbage
collector, debugging support with KDWP, a better preverifier, and so on. KDWP is a Debug Proxy
(Debug Agent) tool. Debug proxy is tool that is interposed between a Java IDE (Integrated Development
Environment) such as Forte and the KVM for debugging purposes. This version includes an
implementation for Linux, too. Certain other bugs have been removed and the performance of the
interpreter has been improved.

The C Virtual Machine (CVM)

The C Virtual Machine was required to provide additional functionality that our second-category devices
could support but that KVM could not. Its capabilities come very close to that of the conventional virtual
machine. You may wonder why it was necessary at all if it is almost as powerful as the normal JVM.
Perhaps most important, these devices are meant to do (at least till now) very specific work. They are not
supposed to be computing machines capable of doing all kinds of computing, as PCs do.

Many features that are not supported in KVM are supported in CVM. This is expected, because it is a
full-featured virtual machine. Only a small portion of the functionality has been sacrificed to optimize it.
It has not been used extensively till now, being introduced only recently, but Sun Microsystems claims
that it has the following advantages over the K Virtual Machine:

¢ If CVM is used with a Real Time Operating System, it knows how to work with it using the real-
time capabilities.

¢ The memory use in case of CVM is more efficient. This is achieved by making it more exact,
reducing the garbage collection pause times, totally separating VM from the memory system, and
SO on.

¢ Ifyou use CVM, you can directly map Java threads to native threads and run Java classes from
read-only memory.

¢ It is easier to port CVM to newer platforms because, with CVM, you can use more than one porting
option for processes that normally make porting difficult. Sun Microsystems says that it has tried to
leave as little for porters as possible.

Synchronization can be done with a small number of machine instructions, which increases the
speed of synchronization.

Chapter 1: An Overview of 2ZME 5

Besides dynamically loaded classes, CVM can be used with the so-called ROMable Classes. As a
result, the virtual machine takes less time to start, fragmentation is reduced, and data sharing
increases. This also means that you can execute bytecodes from ROM.

+ Native threads are supported by CVM, and internal synchronization and exact garbage collection
work with these.

¢ The footprint of CVM is only a little more than half that of JDK and about one sixth less than that
of PersonalJava.

+ All the VM specifications and libraries of JDK 1.3 are supported, including weak references,
serialization, RMI, and so on.

¢ It is easier to add functionality to interfaces in the case of CVM.

Configurations

As already mentioned, configurations form the base of the J2ME platform. They provide the basic
minimum functionality for a particular category of devices. This functionality is to be common to all
devices in that category, irrespective of other factors. The very reason for dividing the platform into
configurations and profiles is to serve this purpose. The devices targeted by J2ME, even those in the same
category, are so diverse in terms of their capabilities that it would have been difficult, if not impossible,
to implement the J2SE kind of model for them.

The whole platform had to be conceived in the form of layers, operating one on top of another. The base
is formed by one configuration, over which you add one or more profiles. A configuration includes the
virtual machine and the required basic minimum libraries. Because the devices can be broadly divided
into two categories, two configurations were needed. These are the Connected Limited Device
Configuration (CLDC) and the Connected Device Configuration (CDC). Their domains may overlap in
some cases, because there isn’t any definite border between the two. With some devices, it would be
difficult to decide whether CLDC or CDC is the more suitable configuration. For example, some screen
phones may have more resources which can be best explored by CDC-based applications where as some
may not have enough resources to run the heavier CDC-based applications.

Configurations define the horizontal limits of the platform for a category or family of devices. They
specify what parts of the Java language, what features of the Java virtual machine, and what core libraries
are supported. As mentioned previously, you may sometimes have the option of using either of the two
configurations, but you cannot use both simultaneously. You must choose one before you start running
Java applications on the device. In fact, the manufacturer may have decided this for the user.

CLDC

The Connected Limited Device Configuration, or CLDC, has been designed for severely resource-
constrained devices such as today’s cell phones, PDAs, and so on. Therefore, it has everything optimized
to a great extent. The virtual machine (KVM or any other similar implementation adhering to the
specification) is small, and some of the Java language features are not supported. But the real difference
is that the libraries available are very few in number. What this means is that you don’t need to learn the
basics again — what you learned about the standard edition suffices for the most part — but the libraries
must be used with great care (Figure 1-3).

6

Chapter 1: An Overview of J2ME

JZ2ME
Application

CLDC

Profiles

CLDC Likraries

K ¥irtual Machine

Operating System

Figure 1-3: CLDC

Some of the main features of CLDC are as follows:

L

Data types long and £loat are not supported. All the methods of J2SE inherited classes that use
these data types have been removed.

Several runtime exceptions are present, but the number of runtime errors has been reduced
significantly for the classes inculded in CLDC. In fact, only the following three errors are available:

e java.lang.Error

® java.lang.OutOfMemoryError

® java.lang.VirtualMachineError

Other errors are handled in an implementation-specific manner.

To make garbage collection simple, support for finalization is not provided. There isno finalize
method in the java.lang.Object class.

Java Native Interface (JNI) is not supported in CLDC. The purpose to eliminate-dependence such
that the applications can be ported to any platform containing the virtual machine.

¢ You can use threads, but not thread groups or daemon threads.

¢ In the standard edition, you can mark objects for possible garbage collection. This cannot be done

with CLDC. In other words, there is no support for weak references.

Verification of classes to check whether the code is well-formed is done off-device — that is, on
the desktop system on which the applications are developed. This is done by a tool called
preverifier. You must do preverification explicitly after you compile your code.

A different security model is used in CLDC, which is somewhat similar to the one used in browsers
for downloaded applets. The reason is that the model used in the standard edition is too heavy for
small devices, and the security needs of the connected devices are similar to those of the browsers.

There are only four packages available in CLDC. Most of the J2SE packages such as java.lang.awt,
java.lang.beans, and so on have been dropped. CLDC contains only the following packages:

L4

L2

java.io: Stripped-down version of the J2SE java.io package. It contains the classes required
for data input and output using streams.

java. lang: Stripped-down version of the J2SE java . lang package. It contains the classes that
are basic to the Java language such as the wrapper classes for data types.

Chapter 1: An Overview of 2ZME 7

¢ java.util: Stripped-down version of the J2SE java.util package. It contains classes such as
Calender, Date, Vector, and Random.

¢ javax.microedition.io: A newly introduced CLDC-specific class that defines the Generic
Connection Framework. It contains the classes for handling all types of connections by using the
same framework.

CDC

The Connected Device Configuration is designed for the devices of the second category. These devices,
as we saw, are not as constrained as the CLDC targeted devices. CDC targets devices with 32-bit
processor and 2MB+ memory. Consequently, this configuration can afford to provide many more
features of the standard edition, both with respect to the Java language support and virtual machine
support. In fact, it has full Java language and virtual machine support. And, more important, the number
of APIs included in CDC is significantly higher than in CLDC. This means that you can have much more
functionality in your application if you use CDC. You can do this, of course, only if the device permits
(Figure 1-4).

J2ZME
Application

Profiles

CDC Libraries

cDC

C Virtual Machine

Operating System
Figure 1-4: CDC

CDC gives you better networking support and a more flexible security mechanism. It does not contain the
deprecated APIs of the standard edition. CDC must be used together with a profile called Foundation
Profile, which we briefly introduce later in this chapter. On its own it cannot do much useful work. Some
of the important features of this configuration are as follows:

¢ Full Java language and virtual machine support, according to the Java Language Specification and
the Java Virtual Machine Specification.

¢ The interfaces between parts of the runtime environment, such the garbage collector, interpreter,
and so on, are clearly defined so that it is easy to add new features to the virtual machine.

¢ Cleanup and shutdown of the virtual machine is efficient, freeing up all memory and stopping
threads without any leaks.

Some other features have already been considered while discussing CVM. CDC contains the following
packages, which are almost similar to those of the same names in the standard edition:

¢ java.io
¢ java.lang

¢ java.lang.ref

8 Chapter 1: An Overview of J2ME

java.lang.reflect
java.math

java.net
java.security
java.security.cert
java.text
java.text.resources
java.util
java.util.jar

java.util.zip

* & 6 6 6 O o O o 0o o

javax.microedition.io

Profiles

Configurations provide very little functionality — they just prepare the ground on which to add whatever
you need. It is the profiles that give functionality, such as the graphical user interface. For example, if
you have just CLDC installed on a device such as a PDA, you cannot create any user interface objects.
No GUI is possible in your applications. For that, you need a profile. This is why Sun added a package
called KJava with CLDC to enable testing and development, even if KJava is to be abandoned later. As a
matter of fact, Sun Microsystems has provided tools for Palm development with its new wireless toolkit
version 1.0.2 and the kit is based on CLDC and MIDP; there is no KJava now.

A profile may add other kinds of functionality, such as better networking support, database management,
distributed computing, and so on. Like configurations, profiles may also be device-category specific.
Some profiles may be useful for small devices, while others may be suitable for less-constrained devices.
For example, MIDP and PDA Profile are used for mobile phones and PDA-like devices, respectively, on
top of CLDC. On the other hand, Personal Profile is used for devices such as set-top boxes, on top of
CDC.

Mobile Information Device Profile (MIDP)

CLDC can be used for writing applications for small devices. But it gives you very limited functionality.
There is no way to provide a graphical user interface, unless you use KJava, which may become obsolete
soon. For this and other reasons, it is necessary that you use some kind of profile if you want to build an
effective application. The only profile so far available for small devices is the Mobile Information Device
Profile (MIDP). The most common mobile information devices are cell phones, so this profile is
considered the profile for cell phones. Now that the Palm port has become available, it can be used for
Palm devices also.

MIDP sticks to the CLDC approach of minimizing resource usage but provides ways to add reasonably a
good user interface, given the constraints. It introduces a new application model in which every
application is called a MIDlet and behaves somewhat like an applet. It can have three states: active,
paused, and destroyed. The application manager software manages the lifecycle of the application. There
is also a method to make data persistent.

The classes it contains in addition to those provided by the CLDC are as follows:

¢ javax.microedition.midlet: It is this package that defines the application model used in
MIDP. It has a single class called MIDlet, with methods for enabling the application-managing
software to create, pause, and destroy the application and perform some other tasks.

Chapter 1: An Overview of 2ZME 9

¢ javax.microedition.lcdui: This is the package responsible for providing the user interface.
It includes classes such as those for creating user-interface elements (buttons, text fields, choice
groups, gauges, images, and so on) and for handling events (listeners). This is basically a game-
oriented user interface package, but can be used for other UI purposes.

¢ javax.microedition.rms: This package provides the capability to make data persistent. For
this purpose, the main class that’s included is the RecordStore class. In addition, there are
interfaces for comparison, enumeration, filtering, and listening.

Foundation Profile

This profile is, in a way, just an extension of CDC. CDC APIs on the whole don't provide the
functionality available in Java Standard Edition, therefore, to get the same functionality as the Java
Standard Edition one has to use the APIs of Foundation Profile on top of CDC. Foundation profile acts
as an extension to CDC to achieve Java 2 Standard Edition functionality. Profiles are normally supposed
to add GUI functionality to the configurations, but Foundation Profile does not do this. There is no GUI
package in this profile. Another peculiarity about this profile is that it is mandatory. You must use it
along with CDC to prepare the ground for adding another profile. CDC, if combined with the Foundation
Profile, adds up to complete the basic Java API set, as available in the standard edition. Refer to Figure 1-
5 (Foundation Profile) to know in which layer the foundation profile comes. The only exception is the
user interface — that is, there is no java.awt package.

The classes it contains, in addition to those provided by the CDC, are as follows:

¢ java.security.acl
¢ java.security.interfaces

¢ java.security.spec

J2ME Applications

Other Profiles

Foundation Profile

cDcC

Figure 1-5: Foundation Profile

Other profiles

Apart from MIDP and Foundation Profile, no other profiles are formally available at the time of writing
this chapter. But there has been something called PersonalJava, as you may well be aware. Because it
uses a subset of the J2SE, it is comparable to the CDC-based segment of the J2ME platform. In fact, if
you take care of certain things mentioned in the CDC-Foundation Profile porting guide, you can easily
write applications that run on both the PersonalJava runtime environment and the CDC-based runtime
environment. In other words, you can consider PersonalJava to be just another profile for CDC. This is
why some people refer to it as the PersonalJava Profile. They are further justified in considering that it’s
soon to be formally merged with J2ME as the Personal Profile.

10 Chapter 1: An Overview of J2ME

The profiles that are under development at present and may soon be available are as follows:

¢ Personal Profile
¢ PDA Profile
¢ RMI Profile

Getting Set to Program with J2ME

What are the prerequisites for taking up programming with J2ME? Where do we begin? We answer these
questions in this section. The first thing you need is knowledge of the Java language. This book is, in fact,
written for those who are already familiar with programming in Java. The libraries may be different
depending on the configuration and profile that you use, but experience in using the libraries of the
standard edition comes in handy even if you’re using the new libraries. Moreover, if you move to CDC,
you find many of the APIs present in J2SE.

If you know Java, you can start learning J2ME straightaway. To begin programming on this platform,
you still need the Java Development Kit (JDK) installed — preferably, version 1.3. This kit can be
downloaded from www . java.sun.com. You may already have it if you have been working with Java
for a while.

The next thing that you need is a configuration. There are two options — CLDC or CDC. These can also
be downloaded from the same site. To work with CLDC, your operating system must be Windows,
Solaris, or Linux. For CDC, you need either VxWorks or Linux. Otherwise, you must port the
configuration to your platform, which may prove a bit complicated.

If you want to work with profiles as well, you must download them, too. At present, only two profiles are
available. These are the MIDP and the Foundation Profile. There is also PersonalJava, which is poised to
become the Personal Profile. Even now, you can port your PersonalJava applications to J2ME, as
explained in the CDC and Foundation Profile porting guide. Therefore, PersonalJava can be considered a
part of the J2ME platform.

If you are going to work with MIDP, you can make the development process somewhat easier by
downloading and installing the J2ME Wireless Toolkit, available from Sun’s site as a free download. You
can use it as is, or you can integrate it with Forte for Java. If you prefer the latter, you first must install
Forte and then install the Wireless Toolkit, with the option for integrating selected.

The procedures for installing and using the configurations and profiles, as well as the toolkit mentioned in
the preceding paragraph, are explained at the relevant places in this book.

Our First J2ME Application

We have talked about various configurations and profiles, but we haven’t seen any code for the J2ME
platform so far. To give you a feel of the J2ME code, we present here the first application of the book: a
Hello application. We are not going to explain the code in Listing 1-1, because right now we are still
acquainting ourselves with CLDC and MIDP, which are, respectively, the configuration and the profile
used in this application. Just take a look at the following code and familiarize yourself with J2ME:

Listing 1-1: HelloFromJ2ME.java

import javax.microedition.midlet.*; // MIDP
import javax.microedition.lcdui.*; / /MIDP
/**

* Qur first application in J2ME
*/
public class HelloFromJ2ME extends MIDlet implements CommandListener ({

Chapter 1: An Overview of J2ME

// Class String is from java.io, which is in CLDC...
String s = "Hello From J2ME";

private Command quit; // The Quit button

private Display ourDisplay; // Declaring the display
private Form ourForm = null;

public HelloFromJ2ME () {
ourDisplay = Display.getDisplay(this) ;
quit = new Command("Quit", Command.SCREEN, 2);

}

/**

* Creat a TextField and associate with it the quit button and the listener.
*/
public void startApp () {

ourForm = new Form("Our First");

TextField ourField = new TextField("J2ME Application", s, 256, 0);

ourForm.append (ourField) ;
ourForm.addCommand (quit) ;
ourForm.setCommandListener (this) ;
ourDisplay.setCurrent (ourForm) ;

public void pauselpp () {
}

public void destroyApp (boolean unconditional) {
}

public void commandAction (Command c, Displayable s) {
if (¢ == quit) {
destroyApp (false) ;
notifyDestroyed() ;
}
}
}

The output of the preceding code is shown in Figure 1-6.
Cur First

H2WE Application
Hello Fram J2ME

it
Figure 1-6: First J2ME application

11

12 Chapter 1: An Overview of J2ME

RelatedJava Technologies

Java’s association with limited devices is older than its J2ME initiative. For more than the last couple
years, Java has been venturing into the realm of devices, which includes not only mobile phones and
connected organizers, but smart cards as well. Even before J2ME became a platform and its constituents,
such as CLDC and MIDP, made their appearance, technologies have propagated for more or less the
same purpose for which J2ME is meant. These technologies also came forth from the Sun stable and were
Java based. The more prominent ones among them are PersonalJava, EmbeddedJava, and JavaCard.
PicoJava is a microprocessor dedicated to executing Java-based bytecodes without the need of an
interpreter or Just-in-time compiler. PicoJava directly executes the Java virtual machine instruction set.
As aresult, Java software applications are up to three times smaller in code size and up to five times
faster — thus reducing memory requirements — and are 20 times faster than Java interpreters running on
standard CPUs.

Knowledge of these technologies is not mandatory for a J2ME programmer, but it serves to clarify the
role of J2ME in the world of wireless programming. And because some of these technologies may be
absorbed (in a modified form) into the J2ME fold in the future, many programmers working with them
may choose to shift to the micro edition. Besides, there is the fact that many of the concepts used in
J2ME are the same as those used in PersonalJava or EmbeddedJava. We find an analogy in that EJB
existed before J2EE came into being, but now it is a part of the enterprise edition.

One more point to note here is that PersonalJava and EmbeddedJava have many things in common. Many
tools are common to the two. Some tools work for both of them, such as javac, JavaCheck (a tool that
checks whether applications and applets are compatible with a particular specification),
JavaCodeCompact (a tool used to convert Java class files to C language source files so that they can be
compiled into ROM format), and JavaDataCompact (a tool that’s similar to JavaCodeCompact, except
that, with JavaDataCompact, you can include HTML files, images, and sounds in the device ROM). This
is one more reason why Java technologies dealing with connected and/or limited devices (other than PCs
and servers, of course) should be brought under a common platform.

PersonalJava

PersonalJava has been in use for quite some time. It was meant to provide solutions for the same category
of devices to which CDC-based J2ME is targeted — that is, devices such as Web phones, set-top boxes,
and so on. You can use the same JDK for developing PersonalJava applications; the only thing to
remember is that APIs not supported by it are to be avoided. Unlike the CDC-Foundation Profile, it has
user-interface APIs in the form of AWT. This AWT is the java.awt package, which is inherited from
J2SE.

To address the special needs of consumer devices, another method for adding GUI is provided. It comes
as the Truffle Graphical Toolkit. Unlike AWT, which is meant for desktop display, this toolkit can be
used to provide a customizable look and feel to targeted devices. You can test your application on the
PersonalJava emulation environment.

The JDK-based APIs included in PersonalJava are as follows:

java.applet

java.awt
java.awt.datatransfer
java.awt.event
java.awt.image

java.awt .peer

* & & O o o o

java.beans

Chapter 1: An Overview of J2ZME 13

java.io

java.lang
java.lang.reflect
java.math

java.net

java.rmi
java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security
java.security.acl
java.security.interfaces
java.sqgl

java.text
java.text.resources

java.util

® & & 6 6 O O O O O O O O O o 0o o

java.util.zip
Some other APIs specific to PersonalJava are as follows:

¢ Double buffering

Specifying component input behavior in mouseless environments
+ Unsupported optional features

¢ Timer API

Java Card

Java Card technology has fewer chances of becoming part of the J2ME platform than the preceding two
technologies. This technology, too, aims at providing programming tools for small devices with
embedded processors. The devices it is concerned with are mostly smart cards, but other similar
embedded devices can also avail this technology. The applications made using this technology are also
called applets. You can call them Java Card applets or just card applets to differentiate them from
normal applets. Although there are a number of differences between the standard edition and the Java
Card technology, most of the basics remain the same.

Because we are talking about small cards the size of a business card (so that they can be carried in
pockets), it is quite understandable that they are even shorter on resources than the small devices targeted
by J2ME CLDC. Besides, this technology must deal with an even more varied diversity than J2ME does,
because the number and varieties of smart cards used in the world is much more than the number of cell
phones or pagers. This is why it was developed as a separate platform and is difficult to merge with
J2ME.

Perhaps the difference that first strikes a Java programmer who is a newcomer to this technology is that
the file system used is not the same as in the other Java technologies. Java Card does not use the class file
format — it uses a new format called the CAP (Converted 4Pplet) file format. The Java Card system is
made up of the following constituents:

14 Chapter 1: An Overview of J2ME

¢ Java Card virtual machine
¢ Java Card converter
¢ A terminal installation tool

¢ An installation program to run on the card

The process involved in developing a card applet is as follows: First you write the applet on your desktop
system, just as you write a normal applet or a MIDlet. After compiling it, you must test it by using a
smart-card simulator. This step is similar to testing MIDlets on a cell-phone emulator. After you test and
debug the applet, you are ready to install it on the device. For this, you first must create an export file
that contains information about files being used by the applet. This is somewhat similar to creating jad
files for MIDlets or MIDlet suites.

The next step is to convert the class and export files to CAP files. This is done by the converter
mentioned in the preceding list. The converter may also automatically create export files. Then you
copy these files to a card terminal — say, a PC to which a card reader is attached. The CAP files are
loaded by an installation tool on the terminal, which then transfers the files to the device. Another
installation tool on the device reads these files and brings them to a condition from which they can be run
by the virtual machine. In other words, the virtual machine has lesser workload — there is division of
labor between the installer and the VM. This division of labor reduces the size of both and adds
modularity to the system. For clear view of the process, refer to Figure 1-7.

Clas=)
Files CP s Installer
CAP Files > -
¥ L
Export Installation
Files Tool Memory

Figure 1-7: Java
Some other distinguishing features of the Java Card technology are as follows:

Because smart cards almost always need some kind of authentication mechanism, very strong
security is a must for this technology. This is partially achieved in Java by the verifier. Other
methods may be used to further enhance security, but the Java Card specification leaves it to
developers and users to enable flexibilty.

¢ There is also the provision of runtime environment security by techniques such as applet firewall. Tt
basically isolates applets from one another.

¢ There is no support for dynamic class loading. To run applets on the card, you must mask them into
the card during manufacturing or install them later as described previously.

¢ There is no security manager class in the Java Card API.

Garbage collection and finalization are not possible in Java Card, nor are they required. Threads
and cloning are also not supported.

¢ Access control is available, but some of the cases are not supported.

¢ The data types not supported are char, double, £loat, and long. The only numeric types
supported are byte and short. The type int may be available in some implementations.

¢ Most of the Java core classes are not available in Java Card.

Chapter 1: An Overview of J2ME 15

¢ The packages composing this platform are (presently) only four, as follows:
® java.lang
e javacard. framework
® javacard.security

® javacardx.crypto

On the whole, you must work harder to shift from the standard edition to Java Card than to the micro
edition.

Summary

In this chapter, you are acquainted with J2ME and related technologies. We have tried to cover almost all
related J2ME technologies available as of printing. J2ME is targeted for devices which are resource
constrained; therefore, programming for these devices is also different from the programming done for
desktop computers. Chapter 2 discusses the programming techniques involved for J2ME.

Chapter 2
Programming Techniques for J2ME

Small devices, or limited devices as they are called, are designed for very specific purposes. These
devices are typically characterized by limited processing speed and memory. Although their capabilities
are being improved, at present they do not have the power of a server or even a desktop system. These
devices differ from PCs not merely with regard to speed and processing power. It is not mandatory that
they are interactive. Some of them may be wireless while others are wired. Generally the network to
which devices are connected possess low bandwidths hence support low data rates and are constrained by
their small size. These limitations do not apply to all of them as a rule. In fact each of these devices has
its own specific attributes, which demand that each of them has to be programmed in a different way.

Constraints of J2ME Targeted Devices

Thus before attempting to program these devices using a platform such as J2ME, one has to consider the
limitations of these devices and design the application accordingly. Let us consider in detail the
constraints encountered by small devices before thinking of ways to deal with them. The major
constraints that concern us are:

¢ The limited processing power and memory of these devices.
¢ The limitations in input/output mechanisms.

Susceptibility to disconnection, low bandwidth, and the highly variable network conditions for
devices connected to wireless networks.

¢ Most of these devices are mobile, which means that they change locations. This, in turn, implies
dynamically changing network addresses.

¢ These devices depend on batteries for power.

¢ These devices have very limited display capabilities in terms of area, resolution, and so on.

We will discuss some of these in detail in following sections.

Limited processor speed

The performance of a processor is directly related to the power it consumes. Small devices are meant to
be carried around and thus they cannot draw power from the mains. They have to depend on batteries for
power. This applies to every mobile device, though not to those embedded in a static system.

Batteries have only a finite amount of energy stored in them. Hence, a device that depends on batteries
for power should draw power at a low rate or else the batteries would not last long. Therefore, such
devices have to use less powerful processors. Notebooks have processors as fast as desktop systems, and
for this reason, their batteries drain out very soon. On the other hand, Palm handhelds can run for weeks
on a couple of batteries or on internal rechargeable batteries.

Small devices have to employ central processing units that have been designed to consume low power,
and which are consequently slower. The latest desktop systems, as of press time, have processor speeds in
the range of 600 MHz to more than 1 GHz, whereas processors used for small devices may have speeds
of the order of 20 MHz.

Chapter 2: Programming Techniques for J2ME 17

Small devices, as mentioned before, are used only for specific purposes and therefore have to be priced
low. Fast processors cost more, and this is one more reason that small devices cannot afford to have fast
processors. Because of the cost factor, even embedded and static systems may use slower processors.

The preceding considerations mean that small devices are usually slower than desktop systems and
servers. So while developing applications for these devices, you should take care not to burden the
processor. This is an important point to bear in mind while programming with J2ME.

Limited memory and storage

Only a few years back, it was not unusual to find PCs running on 4MB RAM. But things have changed,
and today even 64MB RAM is considered low. Therefore, when compared to a PC, a typical PDA having
4 to 8MB of memory is definitely short on memory to an extent that affects programming capabilities.

This is more significant when you realize that this 4MB memory for a small device includes both the
online memory available to store runtime application data and the offline storage capacity. If the entire
RAM were 4MB, applications could easily be written for these devices using the same tools used in
programming for PCs, compromising only on fancy functionality, which is not essential for small
devices. Online memory is instantly available and might or might not be persistent. On the other hand,
offline memory or storage is secondary and persistent. An example of such memory is the hard disk of
your PC.

When you compare the RAM of a PC with that of a PDA, you will find that the ratio is around 64 to 4,
which is significant but not so much so as to interfere with your programming. But there is no
comparison to the total storage capacity of a desktop system and a small device (say, a PDA). Hard disks
with 20GB capacity are seen as the lower limit for today's PCs. This difference in the total storage
capacity is a key consideration in programming for small devices. One cannot use the usual tools or the
same operating systems. Very few, if any, applications made for desktop systems can be used without
change on small devices.

Nevertheless one fact cannot be overlooked — the difference in memory capacity is not forever. At least
with some devices, the use of external memory sticks is narrowing it down. For instance, you can now
download music from the Internet using your cell phone, store it on a memory stick, and play it whenever
and wherever you like. Storage devices with up to even a few hundred MB of space are available. Such
devices can be plugged into any device that has a compatible extension slot. You can use them with your
PDA, and the total storage capacity of the small device goes up to a few hundred MB — though way
behind 10GB of memory on a desktop computer and, a considerable advance over 4 or 8MB. In future,
perhaps one can afford to ignore the memory aspect while writing an application for a mobile phone or a
PDA. But for the time being, you have to take this into account.

Limited networking and bandwidth

Most small devices, whether they are pagers, mobile phones, PDAs, or set-top boxes, exchange or share
information with some other device, desktop system, or server. In other words, they form a part of one or
more networks. This network may be wired or wireless. A simple PDA may access data from a PC as
well as offload data to it for faster computing. The data, which is shared by a small device and a big
device, has to be kept up to date. The process by which this is done is known as synchroni ation. This is
an automated process, and its objective is to avoid errors likely to occur in manually keeping the data up
to date.

For transmission and reception of data, a device may use one or both of wired and wireless connections.
For example, when a PDA is near the desktop, data synchronization with the desktop may be done by
using a simple cable or a cradle, and when the PDA is not near the desktop, it may use wireless means,
which may be infrared or radio-based. One way to classify devices is on the basis of network connection,
under the categories of occasionally connected or always connected (or, more appropriately, always
available). The former implies no permanent network connection, whereas the latter implies the

18 Chapter 2: Programming Techniques for J2ME

capability to be always on the network, whether through a wire or without it. Generally, the throughput of
an occasionally connected device is more than that of an always-available device. This is because the
speed of basic serial connection is more than that of wireless communication. Speeds of both are, of
course, increasing. Newer cradles that support Universal Serial Bus (USB) standard are faster, and the
wireless communication is also becoming faster with the advent of Bluetooth and 3G.

The bandwidth of the network to which these devices are connected is normally limited. This limits the
communication speed, and applications running consume more resources. The latency rate is also high
which affects the performance of the application running on these devices. Also associated with this is the
issue of cost of communication, especially of the wireless kind. The networking hardware also
contributes to the cost of the device and the load on the power source — that is, the battery.

Wide variety of input/output methods

This variety is most evident when we consider the input/output methods employed by these devices. They
are different for different devices. User interaction, which is the visible part of input/output, not only may
be different but may even be totally absent in the case of some devices such as embedded systems, for
which input/output may come from sensors. Also, the methods of input/output used in desktop systems
are never possible with small devices because of the size factor.

Input methods

Handheld devices may or may not have a full keyboard and may or may not have a pointing/selection
device. As an example, the data-ready mobile phone has only the following (see Figures 2-1 and 2-2):

The usual keys found on a telephone, such as the digits 0-9, #, *, with alphabets marked on 2-9
¢ Arrow keys, may be just for up and down or left and right
+ Some dedicated function keys or system keys

One or more keys with programmable labels

' Palm OS™ Emulator =

Figure 2-1: Palm top.

Chapter 2: Programming Techniques for J2ZME 19

Alphanumeric pagers have even fewer keys. Item selection is accomplished through numbered lists or by
using cursor keys to highlight a choice and then request an action on that item. Full 2-D cursor control
through pointing devices such as touch pads, touch screens, or roller balls are rare. A full QWERTY
keyboard is also not usual.

For personal digital assistants (for example, Palm V or Palm VII), the most common input device is the
touch-sensitive screen, which may be monochrome or color (see Figures 2-1 and 2-2). These screens are
usually used together with a writing or stroking device such as a pen or a stylus along with a handwriting-
recognition software such as Graffiti (see Figure 2-2). A touch-sensitive screen has its own limitations. It
is not very effective for text input. Therefore, if an application requires a lot of text input, it needs to be
supplemented with a keyboard. Character recognition also demands processing power, which is in short
supply in small devices. The keyboards used for these devices are usually scaled-down versions of full
QWERTY keyboards, though full keyboards may sometimes be used as add-ons. Big keyboards increase
the weight and size of the device and reduce some of its usefulness.

' Palm OS”Emulator £’

Figure 2-2: Palm keyboard.

In the future, work will be done to make voice recognition feasible on small devices. Still, voice
recognition needs a lot of processing power and is available on some devices but only for voice dialing.
Voice inputs are very limited in these devices and can’t be a used as input devices. For this option to be
used as a satisfactory input device, it needs a fare level of development and is in the processing stages. In
the future, it may become the preferred input method for devices that cannot afford full keyboards.

Output methods

For most devices, the usual output method is a display screen (see Figure 2-3). It is nowhere near that of a
PC in size. A typical display of a mobile device is capable of displaying 4-10 lines of text 12-20
characters wide and may be graphical (bitmapped) or text-only. At most, a small device (for example, a
PDA) may have a screen that can display 20 lines of text. Apart from the size of the screen, these devices
cannot display many fonts. Even simple bitmapped graphics cannot be taken for granted. Similar is the
case with color support. A typical pager or a mobile rarely has color support. Even some PDAs do not
have this capability (color support is given in Palm VII). This situation is set to change in a few years,
and color capability will perhaps become the rule rather than the exception.

20 Chapter 2: Programming Techniques for J2ME
i DefoultGrayPha [= 1

."'?' PaRS .ET[I\' J ""?wn:
s U Ly

o

Figure 2-3: Mobile phone.

Some other simple output methods may also be used for denoting specific events or purposes. Indicator
lights may alert the user about some hardware events such as network activity and power usage or
software events such as message availability. These indicator lights can be programmed and can be
controlled by an application.

Similarly, audio signals such as beeps and rings can indicate various hardware and software events. If the
device has the capability, messages or music can be played back and voices can be synthesized. The
vibrating battery of a mobile phone is also an output method. Infrared ports are also one way of
communication between these devices where the communication takes place through infrared rays. For
example, as soon as a device comes near another device, it may communicate with the second device by
using infrared rays. The communication involves both input and output.

Size, shape, and weight

Small devices come in various sizes, shapes, and weights. For a comprehensive description of all these
characteristics, a parameter called form factor is used. The purpose for which a particular device is to be
used determines its form factor — that is, its size, shape, and weight. A mobile phone should be so
designed that it can be carried in a pocket and can be operated with one hand. The same applies to a pager
(see Figure 2-4). A Palm organizer should fit into one hand so that its stylus can be used with the other. A
wireless handheld device may need to fit in a belt holster, just like a pager.

Chapter 2: Programming Techniques for J2ME 21

=101

Figure 2-4: Two-way pager.

The importance of form factor is not limited to the characteristics it refers to. It also influences the choice
of input and output methods. Input methods such as keyboards and output methods such as display
screens are dependent on the form factor. The type, size, and location of batteries also depend on the form
factor. A device that needs to be thin and light may have to be designed with rechargeable batteries.
Hardware needed for various purposes such as wireless communication may affect the form factor. So,
before starting to write applications for a small device, it is useful to consider how this factor affects your
application.

Rapid changes in the world of small devices

Apart from diversity, there is another factor that is not a limitation but affects the development of
applications for these devices in general and, hence, needs consideration. It is that such devices are
changing more rapidly than desktop systems. Every day, a new device with a different set of features
comes up. Operating systems, protocols, methods of transferring data, user interfaces, display, and so on
are all changing. This is a period of transition for these devices. They are not luxuries anymore; they have
become necessities. The world of small devices will take a long time to stabilize.

Operating systems for mobile devices

The operating systems for mobile devices in the past were developed in-house by device manufacturers
such as Nokia, Ericsson, and Motorola. However, the product life cycle of devices such as mobile phones
has become short. Due to this, it became necessary that some elements in the product development phase
be outsourced — operating systems being one of them.

Some of the main operating systems for these devices are:

¢ Symbian with its EPOC operating system.
¢ Microsoft with Pocket PC (formerly Windows CE).

¢ Palm with its Palm operating system.

Symbian/EPOC

In mid 1998, Nokia, Ericsson, Motorola and Psion Software teamed up to form Symbian for developing
the software and hardware standards for the next generation of wireless smart phones and terminals. The

22 Chapter 2: Programming Techniques for J2ME

operating system for Symbian is EPOC, which has already been developed and incorporated into palmtop
computers such as the Psion Series 5. Industry leaders such as Sony, Sun, Philips and NTT DoCoMo
have joined the Symbian alliance and licensed EPOC.

Microsoft Pocket PC (Formerly Windows CE)

Pocket PC incorporates a subset of the Win32 Application Programming Interface (API) that is used by
software developers to develop desktop PC applications. This means that there are no new programming
languages to be learnt to develop an application on CE. Microsoft plans to integrate Windows CE into
household items such as refrigerators and toasters. In Chapter 8 we develop a project for PocketPC using
Personal Java.

Palm OS

Palm holds about three quarters of the global handheld computing market. Major Palm partners include
IBM which developed WorkPad PC. Other Palm OS (Operating System) licensees include Handspring,
OmniSky, and Nokia. You can develop J2ME applications for Palm using CLDC and Kjava APIs. Refer
to Chapter 3 wherein we develop some case studies for Palm OS.

Programming Techniques to Counter the Limitations

Now that we are aware of the constraints associated with the devices targeted by J2ME, we can try to find
ways to overcome them. The answers to our problem originate from the consideration of two facets: the
limitations of the devices and the features of the J2ME platform. Note that, with regard to the constraints
as well as the solutions, we refer mainly to the first category of devices mentioned in the first chapter —
that is, those that are targeted by CLDC and associated profiles such as MIDP. CDC targeted devices are
likely to have more resources, and programming for them will not be drastically different from that for
desktop systems. Anyway, let us first consider ways around the limitations of devices.

Do not overload the processor

We have seen that the processor speeds for small devices are significantly less than those for PCs. This
means that our applications will have to be light on the processors. This in turn means that, while writing
an application, we have to avoid unnecessary load on the processor. If you are used to developing
applications for desktop systems or servers, you may not be aware of unnecessary processing. With a
high power processor, this is not a serious issue, but while working with a constrained device, this has to
be handled carefully.

One example of such optimizations can be the use of arrays where normally you would use objects such
as Strings, StringBuffers, Vectors, and HashTables. Arrays are usually faster than these
objects. This would, of course, apply in certain conditions, not all. For example, if you just want to map
keys to values, it would be preferable to go for arrays rather than HashTables. Another way to optimize
is to specify the initial size of HashTables or Vectors as near to their expected size as possible. This
will save the processing needed to grow these objects when new elements are added to them. The moral
of the story is to use arrays directly whenever possible.

Conserve memory to the maximum extent

Since the memory budget available on CLDC targeted devices is small, you have to restrict the size of the
application to within this budget so that the application runs comfortably without affecting performance.
The following points will help in this regard:

¢ Use proper data types: Do not use larger data types than needed. If the size of your variable is
almost certain to keep within the size of short, do not use long.

¢ Keep the runtime memory limit in mind: As pointed out earlier, the memory on a small device
such as PDA includes both the dynamic runtime memory and the static storage (see Figure 2-5). So,

Chapter 2: Programming Techniques for J2ME 23

even if the total memory is 8MB, the runtime memory may just be 256K. It is this 256K in which
the application and the operating system and so on will have to run. In other words, your runtime
memory budget is even more limited.

System Glohal
Warsshles

Errsteen Crymammec

Aliscatica (TCPITP 1 . [
EEANC |~
Agniicatit
Diymeeroe Allncabsn ;
. Applicatuns,
Application Stack Enmer s Stared D,
Preferencas,
Agglcaton Global
Warsahles.

Figure 2-5: Data storage structure.

¢ Make your applications small: Besides conserving runtime memory, you have to keep the size of
your application in accordance with the storage available. To achieve this, you can package your
application in the form of a JAR archive. Other tools that remove unnecessary information from a
file may also be used to cut down the size of the application.

¢ Use of scalar types: Whenever you declare an object, it is allocated space on the runtime heap. To
reduce consumption of runtime memory, try to declare as few objects as possible. This can be
achieved by using scalar types such as int, short, and so on in place of object declaration.

¢ Do not hold on to resources when not needed: Resources such as files, network connections, and
so on should not be kept up when they are not in use. Perform necessary cleanup operations
yourself (such as assigning null value to objects when they are no longer needed) rather than
depending on the garbage collector or the host environment.

<>

Recycle objects: Once an object has been declared, it occupies some space on the runtime memory.
Thus, if you can recycle some of your objects, you save on this space.

¢ Allocate objects as and when needed: This can reduce the load on memory. To use this technique,
you have to check whether the object reference is null or not.

¢ Avoid creating objects inside loops: If you create objects inside a loop, a new object will be
created for every iteration of the loop, and it will have memory reserved for it. This will thus cause
wastage of memory space for limited memory devices, since most of these objects are not going to
be used later and will be out of scope. Moreover, the garbage collector will spend time and
resources in dealing with these objects. To avoid these, you can first create an array and then loop
through the indices of this array. In fact, this technique can be used for other kinds of optimizations,
too. For example, you can try to avoid calling a method inside a loop.

¢ Check the memory usage: Before concluding that everything possible has been done to conserve
memory, it would definitely help if there were a way to find out how much total memory is being
actually used and how much of it is being used by a particular object. There is a procedure for this.
The class java.lang.Runtime has methods freeMemory and totalMemory. The method
freeMemory can be used to find out how much memory is presently free. The memory is
measured in bytes. The method totalMemory, asyou can guess, returns the amount of total
memory available. To find the memory used by an object, you can use the freeMemory method
before and after the object is instantiated. Then you just have to find the difference between the two
values returned. One more method of use in this regard is the currentTimeMillis in
java.lang.System class that gives you the time taken to execute a method. Like the

24 Chapter 2: Programming Techniques for J2ME

freeMemory method just discussed, here, too, you have to use it before and after the method is
called.

¢ Catch the outMemoryError: If after all of the previous, the system runs out of memory, you
should ensure that your application has an exit route available if the problem cannot be solved. You
might be able to resolve such a crisis by releasing resources, but if you can’t, at least show the user
a message and allow the application to be closed. Manage this yourself instead of leaving it to the
operating system.

Pass the load to the server

Since the processor power and the memory are both in short supply on these devices, one way to ease the
load on the device is to make the server do as much work as possible. Use the device only to perform the
functions that the server cannot do. For example, if you want to make available an address book to the
user, it will have to be available offline as you cannot expect the user to connect to the server every time
he wants to use or see his address book. But if there is some task that can be done only when the user is
connected, you can safely make the server do it. One task that has to be done on the device itself is the
user interface part. The server can do most other computing.

Avoid using string concatenation

Strings can be built in Java by using string concatenation. But this is not an efficient approach. Every
time a string concatenation is used, a StringBuf fer object is created. Its append method is called to
add one part to the other. Then you get the final string when its toString method is called. All these are
done automatically. Doing this inside a loop will imply creating a large number of objects. If you write
the code yourself for doing this instead of directly using string concatenation, you can significantly
improve the performance of this operation.

Give the garbage collector light work

You cannot depend as safely and surely on the CLDC garbage collector as in J2SE. Make sure that you
do not leave so much work for it so as to overload it. You should not allocate objects at a speed with
which the garbage collector cannot catch up. If you do so, your application might slow down. The
memory that is once taken up by the execution engine may not be returned to the system, even when the
garbage collector has caught up with it.

Another very simple technique is to set the object references to null when you no longer need them.

Use exceptions sparingly

Java has extensive support for exceptions. You can use resources better if you restrict the use of
exceptions. Another point is that specific exceptions should be used as far as possible. If you use general
exceptions, all specific exceptions would have to be checked to find out which type a particular exception
is. Using specific exceptions will save this work.

Use local variables

When loops are used, class members are called repeatedly. The execution of the program can be made
faster by using local variables instead of class members. The value of the class member can be assigned
to a temporary variable on the stack. This value can then be used in place of the class member. The same
applies to arrays also.

Make your suite light

It may often be necessary to use third-party libraries. For example, you may need an XML parser to parse
the XML thrown by the server, as was the case with most of the projects included in this book. When you
have to do this, it is better to include only those classes in your JAR package that are actually being used

Chapter 2: Programming Techniques for J2ME 25

instead of shipping the whole library or set of libraries. This will mean some more work for you, but it
will reduce the size of your application. We have used Kxml parser and included only some of the classes
provided in the org.kxml . * package instead of the whole as the device is memory constrained and has
less processing power. We didn’t do it because our applications are not so heavy as to require the use of
such strategy, and also because the version of this parser that we have used is the lightest one.

Managing with the limited features of J2ME

J2ME, especially the part based on CLDC, does not have the functionality anywhere near that of J2SE.
So to provide the user with an effective application, you have to make very efficient use not only of the
resources available on the device, but also of the features provided by J2ME. You can do so by virtue of
the following techniques.

Plan your application well

Before you start coding, it will be worthwhile if you spend some time planning your application to ensure
that it makes optimal use of both the resources and the features available. This is true for all
programming, but perhaps more so for 2ME. Planning will allow you to weed out those parts that cause
nonoptimal computing. Moreover, it will also help you in achieving better results from the same classes.

Use GUI classes optimally and creatively

Since one of the computing tasks that cannot be transferred to the server is the graphical user interface,
you have to design it in such a way that the basic functionality is achieved without putting much load on
the resources of the device. For example, you will have to do away with most of the images, which are
supported to a very limited extent. In making optimal use of images, you may have to seek the help of an
artist so that images can be made attractive without affecting performance.

Optimizing the GUI part will have the advantage that your application will seem to be faster than it may
actually be, because GUI is what the user sees. Be sure that the application responds to the user’s actions
fast enough and that processing doesn’t freeze the GUI as far as possible. The user’s patience is likely to
be less for applications being run on small and mobile devices as compared to applications meant for
PCs.

Use the server’s functionality

Transferring work to the server is important not only from the point of view of reducing the consumption
of resources on the device, but also for utilizing the functionality on the server. After all, the server has
the full JDK installed on it. You can use the classes in the Standard Edition to do the work in a Micro
Edition application. This synergy between the client device and the server will enhance the potential of
your application.

Use low-level Ul APIs in MIDP

The APIs relating to GUI in MIDP are of two categories. One is aimed to achieve portability, while the
other is capable of providing device specific functionality. The first can be considered high-level APIs,
while the second can be considered low-level APIs. If your application doesn’t need a fancy GUI, there is
no point in using the high-level APIs, which are somewhat heavier. But if you are aiming to achieve extra
functionality, and the device you are targeting is not too short on memory or other resources, you can go
for the high-level APIs. You may want to do this if you are aiming for a look that is comparable to that of
a desktop application.

Some of the high-level APIs are briefly introduced in Chapter 4. You can refer to that chapter for more
details, but here we’ll consider some points about these classes. To show 2-D graphics in your
application, you can use the Graphics class. With this class, you can draw lines, arcs, rectangles,
images, and such on the display. The shapes drawn can be filled with any color of your choice if that

26 Chapter 2: Programming Techniques for J2ME

color is supported by the device. The color model used in these classes is a 24-bit model. There are 8 bits
each for colors red, green, and blue. Of course, not every device can render such variety of colors on the
display. This means that mapping of requested colors to available colors will occur, that is, if an
application uses colors that a device doesn’t support, the device will map to those colors that are
supported by the device.

You can display fairly good-looking images on small devices by using the low-level APIs. This can be
done by using the drawImage method of the Graphics class. It has the following signature:

public void drawlImage (Image img, int x, int y, int anchor);

The last parameter refers to anchor points used in several of the GUI classes. These are used to ensure
that the processing needed to position an object properly on the display is reduced.

Another feature in these APIs that can be of much help in improving the look of your application is the
Font class. The letters used on small devices are usually displayed with the same font. You certainly
don’t get the variety you can have on a desktop, but at least you can select one out of a few choices. The
number may increase in the future. You can also specify the style and size of the font, in addition to its
face name. A Font object is created in the following way:

Font myFont = Font.getFont (Font.FACE SYSTEM, Font.STYLE ITALIC,
FONT.SIZESMALL) ;

The three parameters are the face, style, and size, respectively.

Use SyncML for data synchronization

Small and mobile devices are meant to make data and services available anywhere, even while you are
moving from one place to another. This requires that the data that the device is accessing should be the
latest. For this, you may need to synchronize the data between all the places where it is located.
Normally, if you want to make data synchronization possible with every platform, you will have to add
many things to your MIDlet suite, because not all servers will support the synchronization technology
used. You can avoid this by using the SyncML protocol for data synchronization. SyncML has the
advantage that it is an industry standard for data synchronization . What is even more important is that it
can be used with MIDP and support for it will increase in the future. For more details on SyncML, refer
to http://www.syncml.org.

Summary

After completing this chapter, the reader should be acquainted with the techniques involved in
programming for J2ME. These considerations in this chapter are important and should be taken into
account while programming for J2ME to develop a quality software for resource constrained devices. In
Chapter 3, we will start programming in CLDC and Kjava used for Palm application development. We
will discuss the APIs and implement them with some case studies.

Chapter 3

CLDC API and Reference
Implementation

Although this chapter is on CLDC, we also take up the Kjava API, which is used to enable CLDC on a
Palm device. The Kjava API has some extra functionality for adding user interface components to J2ME
applications. This API may be absent in future releases of CLDC. It is a temporary arrangement by Sun
Microsystems to allow development and testing of CLDC applications.

CLDC specification 1.0 lays down the guidelines to which any implementation of CLDC has to adhere.
Sun has developed its own reference implementation of this configuration, but vendors are free to provide
their own. In this chapter, we take up only Sun’s implementation. It can be downloaded for free from
www . sun.com/software/communitysource/j2me/.

Version 1.0 of the reference implementation provided by Sun can be run as is here on Windows and
Solaris platforms. You can also run it on Palm devices, but for that you will have to download a “Palm
overlay” and unzip it into the directory in which CLDC is installed. A newer version of CLDC, numbered
1.0.2, is available for Linux as well, in addition to Windows and Solaris.

The CLDC API consists of only four packages: java.io, java.lang, java.util,and
javax.microedition.io. The first three are subsets of similar packages in J2SE and are covered
very briefly. The fourth package is new and is unique to the micro edition.

Core Packages

The three core packages in the CLDC implementation are discussed in this section.

java.lang package

This package has the classes that are fundamental to the Java language. These classes define the data
types, basic exceptions, and so on. Many classes that are not required in J2ME are absent. Two interfaces
— Cloneable and Comparable — are not included. Some classes, such as those for Float and
Double data types, are absent. There is no ClassLoader. Several exceptions present in J2SE, such as
NoSuchFieldException, are not there in CLDC. The interfaces, classes, and exceptions that are part
of the CLDC and thus define the Java language in Java 2 Micro Edition platform are listed in the section,
“Brief introduction to commonly used packages.”

java.io package

This package for providing data input and output through data streams has two interfaces (DataInput
and DataOutput) and several input and output stream as well as reader and writer classes, similar to the
Java 2 Standard Edition. In addition, there are several I/O exceptions. Because of the limited input/output
capabilities of the mobile devices, this package provides limited functionality as compared to the java.io
package in Java Standard Edition. Most of the classes are absent in this package. For data input and
output, you don’t have the option of using serialization or file systems. Whatever is present is used in
almost the same way as in the standard edition.

28 Chapter 3: CLDC API and Reference Implementation

java.util package

This package contains the utility classes for such things as generating random numbers, creating time
zone objects, implementing growable array of objects, enumeration, and so on. As compared to the Java 2
Standard Edition, J2ME has only seven classes and one interface left.

Brief introduction to commonly used packages

As mentioned previously, these packages are the same as in J2SE. The difference is that the classes
included in these packages are fewer, keeping only those methods that are suitable to small devices. In
the following paragraphs, we will discuss the most commonly used classes of these packages, with code
snippets to illustrate their use. For more details, you can refer to the documentation. Like in J2SE, all the
classes are inherited from the class object. You can refer to Figures 3-1 and 3-2 to get a view of the
hierarchy of the important classes in the CLDC APIs.

java.lang.ohject

java.lang.Boolean

—| java.lang.Byte |
java.lang.Integer

—| java.lang.Long |
javalang.Short

java.lang.String

java.lang.String Buffer

java.lang. Runtime

java.lang.System
javalang.Thread
—| java.lang.Math
javalang.Calender
javalang.Character
Continued -1

Figure 3-1: CLDC Class Hierarchy — .

Chapter 3: CLDC API and Reference Implementation 29

Continued -1
_| java.lang.Class

—| java.util.Date

|
|
—| java.util. Random |
|
|
|

_| java.util. Hashtahle
_| java.util. TimeZone

—| java.util. Vector

java.util. Stack |

—| java.io.InputStream |

java.io.Byte ArrayInputStream |

_| java.io.DatalnputStream |

_| java.iu.DutputStream|
—| java.iu.EyteArrayDutputSn'eam|

—| java.io.DataOutputStream |

|—| java.io.PrintStream |

—| java.io.Reader
—| java.io. Writer I|_|
—

Figure 3-2: CLDC Class Hierarchy — I.

java.io.InputStreamREeader |

java.io. OutputStreamWriter |

Basic data types

All the basic data types available in the J2SE platform are present in CLDC, with the exception of f1oat
and double. These two have been left out due to the limitations of small devices, as discussed in
Chapter 2. The syntax for using these data types is the same as in J2SE — for example:

int i; // declares a variable of the type int
char a; // declares a variable of the type char
boolean b; // declares a variable of the type boolean
byte t; // declares a variable of the type byte

// etc.

Comparison with J2SE java.lang package

This package is just a stripped-down version of the java.lang package in J2SE. Since they are used in
the same way, we simply give the comparison of the two editions in terms of constructors and methods
present:

¢ Boolean: Only one constructor is available — that which takes a Boolean value. Methods
getBoolean and valueOf are not available.

¢ Byte: Only one constructor is left in CLDC — one that takes a string value is not present. Methods
compareTo, decode, doubleValue, floatValue, intValue, longValue, shortValue,
and valueOf are not present.

¢ Character: Less than one third of the methods are not present compared to J2SE.

30 Chapter 3: CLDC API and Reference Implementation

L4

Integer: Methods compareTo, decode, doubleValue, floatValue, and getInteger are
not present.

Long: Constructor with string value as an argument is not present. Methods bytevalue,
compareTo, decode, doubleValue, floatValue, getLong, intVlaue, shortvValue,
toBinaryString, toHexString, toOctalString, and valueOf are absent.

Object: As in J2SE, this is the root of the class hierarchy. But it doesn’t have methods clone and
finalize.

Runtime: This class instance allows the application to interact with the java runtime environment
(virtual machine) which is responsible for running the application. Only these methods are
available in CLDC: exit, freeMemory, gc, getRuntime, and totalMemory.

Short: Only constructor is the one that takes a short value. The methods available are:
equals,hashCode, parseShort, shortValue, and toString.

String: These methods are not available: compareTo (Object o), compareToIgnoreCase,
copyValueOf, equalsIgnoreCase, intern, lastIndexOf (String sr), lastIndexOf
(String sr, int fromIndex), regionMatches (int toffset, String other,

int ooffset,int len), toLowerCase (Locale locale),

toUpperCase (Locale locale),valueOf (double d), andvalueOf (float £f).

StringBuffer: There is no constructor that takes an int value. Methods replace and
substring are also not present.

System: Only these methods are available in the CLDC version: arrayCopy,
currentTimeMillis, exit, gc, getProperty, and identityHashCode.

Thread: Methods included in CLDC are activeCount, currentThread, getPriority,
isAlive, join, run, setProperty, sleep, start, toString, and yield.

The syntax for using these classes is the same as in J2SE, but since some of the constructors are absent,
they can’t be used. For example, you will still use the StringBuffer class as:

StringBuffer sb = new StringBuffer(5); // Declares a StringBuffer with
// no characters and an initial capacitiy of 5 characters.

Similarly, Thread and String will be used as:

Thread t= new Thread()

// Declares an object of the type Thread

String s = new String(); // Declares an object of the type String

Comparison with J2SE java.io package

In the stripped-down version of the java . io package, the number of classes is reduced, but otherwise
there is no difference. The methods and the syntax are the same. The classes present in the CLDC version
are:

InputStream
ByteArrayInputStream
DataInputStream
Reader
InputStreamReader
OutputStream
ByteArrayOutputStream
DataOutputStream

Writer

*
*

Chapter 3: CLDC API and Reference Implementation 31

OutputStreamWriter

PrintStream

Comparison with J2SE java.util package
The same thing about the package being a stripped-down version of the J2SE goes for this package, too.
The comparison of the two editions is as follows:

L4

Enumeration: It has the same two methods as in the J2SE — hasMoreElements and
nextElement.

Calendar: Only the constructor without parameters is available. The other one, which takes time
zone and locale as the parameters, is absent. A lot of methods are also absent. The available
methods are after, before, equals, get, getInstance, getTime, getTimeInMillis,
getTimeZone, set, setTime, setTimeInMillis, and setTimeZone.

Date: Two constructors are present — one without any parameters and another that takes the
parameter date as a 1ong value. Methods available are: equals, getTime, hashCode, and
setTime.

Hashtable: One constructor is empty and the other takes initial capacity as integer value as the
parameter. These methods are absent: clone, containsValue, entrySet, equals,
hashCode, keySet, putAll, and values.

Random: The same two constructors as in J2SE are present, but only four methods remain: next,
nextInt, nextLong, and setSeed.

¢ Stack: Both the constructor and the methods are the same as in the standard edition.

¢ TimeZone: Methods available are getAvailableIDs, getDefault, getID, getOffset,

getRawOffset, getTImeZone, and useDaylightTime.

Vector: Since there is no Collections class in CLDC, the constructor that takes a collection as
an argument is not available. Methods absent are add, addall, clear, clone,
containsAll, equals, get, hashCode, remove, removeAll, removeRange,
retainAll, set, subList, toArray, and trimToSize.

Generic Connection Framework

This is the only new package in CLDC. It includes the classes that facilitate establishing connections.
CLDC couldn’t afford to use the J2SE kind of connections as the devices for which CLDC is used are
very resource constrained and J2SE connections need a lot of resources. For this reason, a new
framework was designed, called the Generic Connection Framework. These classes are related to I/O and
network connectivity. The functionality they provide is the same as the java.io and java.net
packages of J2SE. The difference is that it doesn’t depend on the specific capabilities of the device.
Generic Connection Framework is based on the concept that all network and input/output communication
can be abstracted. This is why there is only one class Connector but there are eight interfaces in this
package. To view the hierarchy of interfaces which are part of javax.microedition. io package,
refer to Figure 3-3. All these are listed below:

* & & O o o o

Interface Connection
Interface ContentConnection
Interface Datagram

Interface DatagramConnection
Interface InputConnection
Interface OutputConnection

Interface StreamConnection

32 Chapter 3: CLDC API and Reference Implementation

¢ Interface StreamConnectionNotifier

4 Class Connector

Figure 3-3: CLDC Interface Hierarchy.

Class connector is the only class in the package and is used to open a connection with the open method.
The parameter string describing the target conforms to the URL format as described in RFC 2396. This
takes the general form:

{scheme}: [{target}] [{params}]

Where {scheme} is the name of a protocol such as http, {target} is the name of the target device to
which the connection is to be made. Similarly, {param} are the parameters required to establish the
connection. The methods available are listed below:

open

openDataInputStream

.
*
¢ openDataOutputStream
¢ openInputStream

*

openOutputStream
The following code block shows how this class and its methods can be used:

InputStream input;
Input = Connector.openInputStream(“testhttp://www.s-cop.com/userlist.asp”);

Chapter 3: CLDC API and Reference Implementation 33

The preceding code opens a connection to a URL named www . s-cop.com/userlist.asp and
requests the server to execute an ASP named userlist.asp. Notice the use of testhttp instead of
http. This becomes necessary because CLDC 1.0 does not have implementation for any of the standard
protocols. Sun has implemented a protocol called testhttp for testing and development purposes.

try
{
// A Socket connection is made on a port with the Listener
socket =
(StreamConnection)Connector.open ("socket://127.0.0.1:7070",
Connector.READ WRITE, true) ;

// If the socket is null then the connection is not established.
if (socket != null)
{

System.out.println("Connection is established to localhost on port
7070...");
}

// Opening the Input and Output Streams to the Socket.

socket inputstream = socket.openInputStream() ;
socket outputstream = socket.openOutputStream() ;
}
catch (IOException ae)

{
System.out.println("Couldn't open socket:");

}

This code block opens a socket connection to a URL named 127.0.0.1 at a port 7070. Read/write access is
provided to the client. Input/output streams are also obtained from the connection using the methods of
the interface StreamConnection (openInputStream and openOutputStream). These methods
return streams which are used for communication.

Kjava API

This API, which is composed of the com. sun . kjava package, is officially not part of the CLDC but
has been included with the reference implementation release of CLDC to allow development and testing
of CLDC applications. CLDC doesn’t have any user interface classes. This is where Kjava comes in. It
has the GUI classes such as Bitmap, TextField, and so on, which make development of interactive
applications possible (to view all the classes with the hierarchy structure refer to Figure 3-6 and Figure 3-
7). But it should be noted that this is only a stopgap arrangement. It may change in future releases or may
be absent altogether. Remember that adding GUI components is something that is supposed to be done
with a profile, at least in case of CLDC. When you want to actually deploy your applications, you may
have to substitute the Kjava GUI components with those of a profile, such as the PDA profile when it is
available (it is under development at present).

34 Chapter 3: CLDC API and Reference Implementation

java.lang.ohject
java.lang. Throwahle |

java.lang.Error |
java.lang,VirtualMachine Exrror |
javalang.Exception | l—{ javalang. OutOfMemoryError
—1 javalang.ClassNotFoundException |
_< java.lang.lllegalAccessException |
—{ java.lang.InstantiationException |
_< java.lang.InterruptedException |
_(javalang.IOException |

javaio. EOFException

java.io.Interrupted|OException

javaio.UTFDataFormatException

|
|
java.io.UnsupportedEncodingException |
|
|

javax.microedition.io.ConnectionNotFoundException
Continued - I

Figure 3-4: CLDC Error and Exception Hierarchy — .

Continued - | |
java.lang.RuntimeException |

java.lang.ArithmeticException |

javalang.ArraystoreException |

java.lang.ClassCastException |

java.lang.lllegalArgumentException |
4|jaua.lang.IIIegaIThreadS’ta‘teExcep‘tiun |

4| java.lang.HumberFormatException |

java.lang.lllegalMonitorStateException |

Jjava.lang.IndexOutOfBoundsException |
4| java.lang.ArrayindexOutOfBoundsException |

4|jaua.lang.StringlndexOutOfBuundsExceptiun |
java.lang.Hegative ArraySizeException |

java.lang.HullPointerException |

java.lang.SecurityException |

java.util.HoSuchElementException |

L]

java.utilEmptyStackException |

Figure 3-5: CLDC Error and Exception Hierarchy — II.

Chapter 3: CLDC API and Reference Implementation 35

| java.lang.ohject ‘

—{ com.sun. Kjava. Bitmap ‘

—(com.sun. Kjava.Button ‘

—| com.sun.Kjava.CheckBox ‘

_| com.sun.Kjava Database ‘

_| com.sun. Kjava.Graphics ‘
l
|

_| com.sun.Kjava.IntVector

_| com.sun.Ijava.List

_| com.sun.Kjava. Radio Button
_| com.sun. Kjava. RadioGroup |
—| com.sun.Kjava.Slider |
_| com.sun.Kjava.Spotlet |

com.sun.Kjava.Dialog ‘

_‘| com.sun.Kjava.HelpDisplay ‘

—| Continued - 1

Figure 3-6: Kjava API's Hierarchy — I.

_| Continued - [|

—{ com.sun.Kjava. TextBox |

com.sun.Kjava.ScrollTextBox

_| com.sun.Kjava. TextField | _| com.sun.Kjava.ScrollTextArea ‘
—| com.sun. Kjava.SelectScrollTextB ux‘

—{ com.sun.Kjava.VerticalScrollBar ‘

—{ com.sun. Kjava.Caret ‘

Figure 3-7: Kjava API's Hierarchy - II.

Very recently, Sun Microsystems has come up with MIDP for Palm. This means that if you want to use
CLDC on Palm, you can do so by using MIDP for Palm. In that case, Kjava will no longer be needed. If
we are still including Kjava in this chapter, it is because it is included in the CLDC release. Moreover,
MIDP has some extra functionality in addition to having the GUI classes. The GUI classes, too, are more
advanced than in Kjava. Therefore, in our opinion, if you want to get an idea of how CLDC works, first
try your hand on CLDC with Kjava. When you have explored it enough, you can move on to MIDP.

In this section, we briefly explain the GUI classes provided in the Kjava package. Kjava includes the
following classes:

Spotlet

Graphics

HelpDisplay

TextBox

TextField

* & & o oo o

Button

36 Chapter 3: CLDC API and Reference Implementation

CheckBox
RadioButton
RadioGroup
ScrollTextBox
Database

List

Slider

Bitmap

Caret

Dialog
IntVector
SelectScrollTextBox

ValueSelector

® & & 6 6 O O O O o o o oo o

VerticalScrollBar

Brief introduction to commonly used classes

In this section, we will be explaining some of the most commonly used classes. Their use is illustrated
with code examples.

Spotlet

All applications made using CLDC and Kjava have to extend this class. This is the only way you can
make an executable application unless you decide to use MIDP. The application you write can consist of
more than one spotlet, but only one spotlet can be activated at one time. This class is used for event
handling callbacks, registering the application, and so on. Registering means giving focus to the spotlet.
And only the spotlet with focus will have callbacks.

public class First extends Spotlet

{
First ()
{
register (NO_EVENT OPTIONS) ;
}
public void penDown (int x, int vy)
{
// Handling the pen strokes
}
public void keyDown (int x, int vy)
{
// Handling the key pressed
}
}

In the preceding code block, the application named First is declared. It is inherited from the class
Spotlet, so, therefore, it has to extend this class. It is registered with NO_EVENT OPTION, which
means the spotlet is made current and will not be unregistered on pressing normal keys. However, if the
system keys (five keys for Palm devices) are pressed, then the spotlet is unregistered.

The system keys are the five keys through which the Palm device is being operated. The five keys are
used to invoke different applications in the Palm device and there are two additional keys for up and

Chapter 3: CLDC API and Reference Implementation 37

down scrolling. The first key from the left is to set the date and time. The second key is for the phone
book, the third key is for up and down scrolling, the fourth key is for Address book and the last key is for
Memo Pad.

Graphics

This is the basic class used to draw objects on the display, almost in the same way as in the standard
edition. For drawing the object, it uses the following methods:
getGraphics

drawLine

drawRectangle

drawBorder

borderType

drawString

setDrawRegion

resetDrawRegion

copyRegion

copyOffScreenRegion

clearScreen

drawBitmap

® & & 6 6 O O O O O o 0o o

playSound

Use of some of these methods is shown below with code examples. First, we look at initialization of a
variable of the Graphics class and at clearing the drawing region by calling the appropriate functions
of the Graphics class, namely resetDrawRegion() and clearScreen():

graphics = Graphics.getGraphics() ;
graphics.resetDrawRegion () ;
graphics.clearScreen() ;

If you want to display a String (the title of the graphic) at a specified position, you can use the
drawString method of the Graphics class:

graphics.drawString ("Target Practice",35,10);
To draw a rectangle without rounded corners, you will write:
graphics.drawRectangle(initial position bullet,72,15,5,Graphics.GRAY,0) ;

And to draw a circle, you can use the same method with the corner radius parameter equal to half the
square’s width:

graphics.drawRectangle(initial position bullet,72,4,4,Graphics.GRAY,2) ;

Seems familiar, doesn’t it?

Button

No need to explain this class. Just have a look at the following code:

// Declaring button variables.
private Button play;

38 Chapter 3: CLDC API and Reference Implementation

/*
* Initializing the button object ‘play’, placing it on the screen
*at the appropriate position and then painting (drawing it).
*/
play = new Button("Play Now",10,140);
play.paint () ;

For event handling of this button, the code will look like this:

public void penDown (int x, int vy)
{

if (play.pressed(x,vy))

{

// Write your code here.

}

TextField

Now we consider how the class TextField can be used. It, too, is similar in use to the TextField
class in J2SE:

// Declaration of a TextField named choicefield
private TextField choicefield;

After declaring the TextField, we initialize it with proper parameters. These parameters specify the
String label for the TextField, its position in terms of coordinates, and its width and height. To
allow the text to be entered in only the uppercase, we have to call the setUpperCase method with the
parameter true. Next we give it the focus by calling the setFocus method:

choicefield = new TextField("Option:",10,145,50,10);
choicefield.setUpperCase (true) ;
choicefield.setFocus () ;

To make the TextField visible on the screen, we use the paint method, as in J2SE:
choicefield.paint () ;

Now we determine whether the TextField has the focus or not. If it has, we call the handleKeyDown
method, which in turn calls spotlet’s keyDown method:

if (choicefield.hasFocus()) {
choicefield.handleKeyDown (X) ;
}

Finally, after the user has completed entering text, we remove the focus from the TextField by calling
the loseFocus method. We also remove the caret by using the killCaret method:

choicefield.loseFocus() ;
choicefield.killCaret () ;

RadioButton and RadioGroup

Let us now look at the use of classes RadioButton and RadioGroup. First, we initialize a
RadioGroup of the name level. All the radio buttons belonging to 1evel will be placed in this
RadioGroup. As usual with radio buttons, only one of the buttons can be selected at a time:

private RadioGroup level = new RadioGroup(2) ;

Chapter 3: CLDC API and Reference Implementation 39

private RadioButton simple = null;
private RadioButton difficult = null;

Now we initialize the RadioButton objects “simple” and “difficult”, placing them on the screen
at the appropriate positions and then drawing them:

simple = new RadioButton (85,45, "Simple") ;
// Initially this button is to be kept selected. Therefore, a method
// setState is called, which is passed a parameter ‘true’, which will take
//care of this.
simple.setState(true) ;
simple.paint () ;

/**

* TInitializing the RadioButton object '‘Difficult’, placing it
*on the screen at the appropriate position and then drawing it.
*/

difficult = new RadioButton (85,60, "Difficult");
difficult.paint() ;

The radio buttons have to be added to the RadioButton group, so that only one of the buttons will be
selected at a particular instant of time:

level.add(simple) ;
level.add(difficult) ;

If a radio button is selected, the appropriate variable associated with that radio button is assigned that
value. For example, if the radio button of the label Simple is selected, then the variable

label information is given the value “simple”. This is done by calling the method
handlePenDown:

else if (simple.pressed(x,vy))
{
level information = "simple";
simple.handlePenDown (x,V) ;
}
else if (difficult.pressed(x,vy))
{

level information = "difficult";
difficult.handlePenDown (x,V) ;

HelpDisplay

The class HelpDisplay is provided in Kjava to give the user some information about how to use the
application or to display simple text for whatever purpose the developer thinks this class can be used. The
following code initializes a HelpDisplay object with parameters being the text to be shown, the class
to be called, and event options:

// Call to the class HelpDisplay to display the help text.
(new HelpDisplay (helpText, "TargetPractice",
NO_EVENT OPTIONS)) .register (NO_EVENT OPTIONS) ;

ScrollTextBox

If the text that the user enters does not fit in the display area, you will have to use the ScrollTextBox.
We show here an example of declaring and then initializing a Scrol1TextBox named first. The

40 Chapter 3: CLDC API and Reference Implementation

parameters supplied are the initial text, the position in terms of coordinates, and the size (width and
height):

private ScrollTextBox first;
// initializing the ScrollText Box..
first = new ScrollTextBox (textx,0,0,150,140);
first.paint() ;

Now we define handling for the event that occurs when the user places the pen on the display. It is similar
to clicking the mouse on a PC. The difference is that we are using the penDown method:

public void penDown (int x, int y) {
if (first.contains(x,vy))
first.handlePenMove (x,V) ;

}

Similarly, we define event handling for movement of the stylus, just as we do for movement of mouse.
We will be using the penMove method here:

public void penMove (int x, int y) {
if (first.contains(x,vy))
first.handlePenMove (x,V) ;

}

Database

If you want to develop any nontrivial application, you can’t avoid using some form of database. The
problem is that CLDC had to have a very small footprint and the devices also don’t have much space for
databases. So, some optimal method of using very limited functionality databases has to be used. This is
why Kjava has a class called Database that just acts as an interface with the database manager on the
Palm OS. We show here the way to use this class:

// Declaration
Database dbg;

// Initializing the Database by creating the name of the
// Database, the creator id(cid) and the table id(tid)..
String nameing = "data base";

int cid = 0x4B415754;

int tid = 0x44425370;

dbg = new Database (tid,cid,Database.READWRITE) ;

// Creating the Database...
Database.create(0,nameing, cid, tid, false) ;

} // end Constructor..

As you can see, a Database object is first declared and then initialized with table id (tid), creator id (cid)
and the mode as the parameters. The mode is set to READWRITE so as to allow both reading from and
writing to the database. The database is actually created by calling the create method. This method
takes the following parameters:

¢ int cardNo: the card number

¢ java.lang.String name: name of the database
¢ int cID: creator ID

¢ int tID: table ID

¢ boolean resDB

To set the content of the database, we use the method setRecord:

Chapter 3: CLDC API and Reference Implementation 41

dbg.setRecord(ij,data) ;
And to read a database record into a byte array, we use the getRecord method:
byte[] data = dbg.getRecord(1l);

The method for adding a record to the database is, predictably, addRecord.

TextBox

This class serves a similar purpose as the TextField class, but you will prefer it when you want the text
in it to look graceful even when the width of the text is more than the display area. This is because a
TextBox will not break words. The text will not be wrapped to the following lines. Following is a code
block showing the use of this class:

TextBox Text;
Text = new TextBox (“Text To be Displayed”,10,10,120,120);
Text.paint () ;

Installation of CLDC

When you download the CLDC reference implementation from Sun’s site, you get a ZIP archive that can
run on Windows, Solaris, and Linux. To install it, you just have to unzip the archive into any directory of
your choice. There is no setup program. But you should have JDK installed on your computer before you
try to run CLDC applications.

Version 1.0 of CLDC was available in one archive, which also has non-CLDC classes in the

com. sun. kjava package. With this, you could develop and test applications on your desktop system.
But if you needed to run these applications on a Palm device, you had to install a Palm overlay that was
available in a separate archive. In the new 1.02 version, the Kjava API has been taken out of the CLDC
archive and is added to the Palm overlay. In other words, now you have to download both CLDC and the
Palm overlay, even if you have to run applications only on the desktop system.

For installing version 1.02, you first unzip the CLDC in any directory and then unzip the Kjava overlay in
the j2me_cldc directory that was created while you were unzipping the CLDC archive. Note that you
have to unzip with the overwrite option selected.

The CLDC archive and the Kjava overlay include the following:
¢ Compiled CLDC and non-CLDC (Kjava) classes in the bin\api directory.

¢ KVM interpreter and preverification tool (in the bin directory) and their complete source code (in
the tools\preverifier directories).

¢ Complete documentation for all the classes (both CLDC and non-CLDC) in HTML format as well
as PDF format. The release notes and the CLDC 1.02 specification are also included.

Source code for Java Application Manager (JAM) and JavaCodeCompact (JCC) tool. A sample
implementation of the application management software is included.

¢ The source code of the KDWP Debug Proxy (also known as Debug Agent) implementation in the
tools\kdp directory. It is a tool that can be interposed between a Java development environment
(such as Forte) and the KVM.

+ Sample applications in the samples and bin\samples directories.
This reference implementation of the CLDC is meant for device manufacturers, developers, or those who

want to port the KVM to a platform other than Windows, Solaris, Palm, or Linux. It includes all that is
needed to build the complete reference implementation on Windows, Solaris, Palm, or Linux. Some parts

42 Chapter 3: CLDC API and Reference Implementation

of the KVM are optional, and if you are ambitious enough, you can compile your own KVM to
experiment with various optional features.

Compiling, preverifying, and running applications

After you write an application, you will have to compile it — just as in J2SE. But there is an additional
stage of preverifying the compiled files before actually running them. For this, a preverify tool is
provided, as mentioned previously. The CLDC reference implementation also has many sample
applications which you can try preverifying and running. The procedure for compiling, preverifying, and
running is explained in the following sections.

Compiling

On Windows platform, the command used to compile an application is:

javac -g:none -bootclasspath
%cldc_root%\bin\common\apil\classes
-classpath %cldc _classpath% -d %classfile dir% %1%.java

The options used in the preceding command are:

¢ -g:none: For no debugging information. If you want debugging information, you can use just —-g
or -g:{lines,vars, source}.

¢ -bootclasspath: For overriding the location of bootstrap class files.

¢ %cldc_root%\bin\api\classes: The directory where CLDC class libraries are located. If
you use ¥cldc_root%, you will have to give a command line argument for this directory. You
may avoid this by giving the full path where you unzipped the CLDC libraries.

¢ -classpath: For giving the path to the user class files.

¢ %cldc_classpath%: The location of the user class files. Again, you may avoid giving the
command line argument by giving the full path. If you want to use files from more than one
directory, they can be specified by separating them with semicolons.

¢ -d: For specifying the directory where you want to store your compiled class files.

¢ %classfile dir%: The location of the compiled class files. You may give the full path or use
command line argument.

¢ %1%.java: The file(s) you want to compile.

Preverifying
After compiling, you can preverify the compiled class files by using the following command:
%cldc _root%\bin\win32\preverify -d %preverified dir%

-classpath %cldc classpath%;%cldc _root%\bin\common\api\classes
%classfile dir%

Needless to say, this and the other commands that follow have to each be entered as a single line on the
console. The options used in this command are explained here:

¢ %cldc_root%\bin\win32\preverify: This is the command for the preverify tool, along with
the directory in which it is located. Instead of using command line argument, as here, you can give
the absolute path.

¢ -d: The option to use if you want the preverified files to be stored in a particular directory.

¢ 3preverified dir%: The directory in which preverified class files are to stored. It is
recommended that you make it the same as that for compiled files.

¢ %3classfile dir%: The directory where the compiled class files are located.

Chapter 3: CLDC API and Reference Implementation 43

Running
Once preverification has been done, you are ready to run the application. For this, the command will be
something like this:

%cldc_root%\bin\win32\kvm -classpath
$preverified dir%;%cldc_classpath%;%cldc_root%\bin\common\apil\classes %1%

Explanations of the options are given here:

¢ %cldc_root%\bin\win32\kvm: The command to run the KVM along with the path where
KVM is located.

¢ -classpath: The option for specifying the location of preverified files.

¢ %1%: The main class file that you want to run.

Making a Batch file
To simplify compiling, preverifying, and running applications, you can combine all three commands into
a batch file. An example of such a batch file called RUN.BAT is given here:

javac -g:none -bootclasspath C:\j2me cldc\bin\apilclasses;
-classpath C:\j2me cldc\bin\apilclasses;
C:\cldccasestudies\CaseStudy;
-d C:\cldccasestudies\CaseStudy
C:\cldccasestudies\CaseStudy\%$1%.java
c:\j2me_cldc\bin\preverify -d C:\cldccasestudies\CaseStudy
-classpath C:\j2me cldc\bin\api\classes;
C:\cldccasestudies\CaseStudy
c:\j2me cldc\bin\kvm -classpath
C:\j2me cldc\bin\api\classes;
C:\cldccasestudies\CaseStudy %1%

Note that all these commands are for CLDC version 1.0. For version 1.02, you will have to add to the
classpath the directory where Kjava libraries are stored.

Case Studies

Now that we have become familiar with the CLDC API and the new classes, and so on, in it, we can try
our hands at programming with this basic constituent of the J2ME platform. In this section, we are going
to practically use some of the important CLDC classes to do some routine tasks such as building parts of
the user interface. Since CLDC by itself doesn’t have much functionality, we will use it along with the
Palm overlay — that is, the Kjava AP — to demonstrate how CLDC can be used. This will be done with
the help of some case studies. Each of these case studies is aimed at performing some common
programming task. These case studies are in the form of spotlets, which can be compiled and run to see
the results. The concept of spotlet is introduced in the com. sun.kjava package, of which the
former is a class.

TextField_Spotlet

In any interactive application, one of the most basic requirements is that the user should be able to enter
text. This can be met by providing a text box in which the user clicks and starts typing. We provide such
a text box in this case study. After entering the text, the user clicks the button labeled OK and is shown
the text entered. Of course, typing and clicking may not really be the actions an actual user will perform,
because PDAs don’t usually have a mouse and a keyboard. But whatever the pointing and text entering
mechanism, the logic remains the same.

44 Chapter 3: CLDC API and Reference Implementation

Since we are using the Palm overlay, we have to import the com. sun.kjava package. A text field is
declared using the TextField class of Kjava. As you can see, the drawing part is similar to an applet —
everything is finally put on the screen using the paint method. Note the use of register method of
the spotlet class, which makes the spotlet the focus of event handling. Other methods from the Kjava
API are penDown and keyDown, which are for clicking and typing, respectively. They belong to the
spotlet class. Methods like setFocus, setUpperCase, pressed, and so on, belong to the
TextField class. To see the output, refer to Figure 3-8.

" Palm OS" Emulator

Marme: CHECK|

User Entered.. CHECK

Figure 3-8: Output TextField_Spotlet.
Listing 3-1: TextField_Spotlet.java

© 2001 Dreamtech Software India Inc.
All rights reserved

import com.sun.kjava.*;

/**

* A program that gives the user a feel of GUI
pecially

* text fields and buttons) .

*/

public class TextField Spotlet extends Spotlet {
// Declaring the variables...

private Button ok button = null;

public TextField tf textfield = null;

Graphics gr = Graphics.getGraphics();

P PP W0 Jo U ~ B W
w.bww'_\ovvvvvmvvvv

public TextField Spotlet () {

register (NO_EVENT OPTIONS) ;

// Clearing the drawing area.
gr.clearScreen() ;

// Initializing text fields and buttons...

= e

17

Chapter 3: CLDC API and Reference Implementation

19) ok button = new Button("Ok",5,130);

20) tf textfield = new 21)TextField("Name",10,10,110,110);

22) ok _button.paint() ;

23) tf textfield.setUpperCase (true) ; // Accepts
only upper case

24) tf_textfield.setFocus();

25) // Sets the focus so that the cursor blinks

26) tf textfield.paint();

27) }

28)

29) public void penDown (int x, int y) { // Handling

events. ..

30) if(ok button.pressed(x,y)) {

31) gr.drawString ("User Entered..",30,130);

32) gr.drawString (tf textfield.getText () + "
", 95,130);

33) }

34) }

35)

36) public void keyDown (int x) {

37) 1f(tf_textfield.hasFocus()) {

38) tf textfield.handleKeyDown (x) ;

39) }

40) }

41)

42) public static void main(String args[]) {

43)// Call to the main function...

44) new TextField Spotlet() ;

45) }

46) }

ScrollTextBox_Spotlet

The next spotlet shows a list of items, which are too numerous to fit within the display screen. We
provide a scroll bar to allow the user to see all the items. When the user presses the OK button, the

45

application is closed. This is done by using the Scrol1TextBox class of the Kjava API. Note that the
penDown method is still there, but instead of keyDown, we have to use the penMove method. We have

used here the pressed, handlePenDown, and handlePenMove methods of the ScrollTextBox

class. To see the output, refer to Figure 3-9.

46 Chapter 3: CLDC API and Reference Implementation

| Palm OS” Emulator

ScrollTextBox Example...

Figure 3-9: Output ScrollTextBox_Spotlet.
Listing 3-2: ScrollTextBox_Spotlet.java

© 2001 Dreamtech Software India Inc.
All rights reserved

import com.sun.kjava.*;

public class ScrollTextBox Spotlet extends Spotlet {
private Button bt = new Button("Ok",5,145);

public ScrollTextBox stb;

Graphics gr = Graphics.getGraphics();

public ScrollTextBox Spotlet () {

register (NO_EVENT OPTIONS) ;

gr.clearScreen() ;

bt.paint () ;

gr.drawRectangle(0,0,160,80,0,1);

gr.drawString ("ScrollTextBox 15)Example...",10,10);

String temp = "1. articlel\n2. article2\n3.

article3\n4.

17) articled4\n5. article5\n6. article6\n7.
article7\n8.

18) article8\n9. article9\nlO0. articlelO\nll.
articlell\nl2. articlel2\nl3.

19) articlel3\nl4d.

articleld4\nl5. articlel5\nlé6.

1
2
3
4
5
6
7
8
9
1

el

)
)
)
)
)
)
)
)
)
0
1
2
3
14
16

)
)
)
)
)
)

20) articlel6\nl7.
21) articlel7\n";
22)
3)// initailizing the scrolltextbox with string temp.
24) stb = new ScrollTextBox(temp,1,30,130,100);

Chapter 3: CLDC API and Reference Implementation 47

25) stb.paint();

26) }

27)

28) public void penDown (int x, int vy) {
29)// Handling the Events.....

30) if (bt.pressed(x,y)) {

31) System.exit (0) ;

32) }

33) if (stb.contains(x,y)) {

34) stb.handlePenDown (x,V) ;

35) }

36) }

37)

38) public void penMove (int x, int y) {
39) if (stb.contains(x,y)) {

40) stb.handlePenMove (x,V) ;

41) 1}

42) }

43)

44) public static void main(String argsl[]) {
45) new ScrollTextBox Spotlet() ;

46) }

47) }

HelpDisplay_Spotlet

Users who get your applications may not be sure how to use them. Even simple applications have to
provide some sort of help for new users. In the case of fast-evolving small devices, which run faster-
evolving applications, providing a Help feature is even more relevant. This spotlet illustrates how you can
add instructions for using your application. For this, you simply use the HelpDisplay class. The user is
shown some Help text, and when he presses the Done button, he is returned to the screen from which he
asked for help. To see the output, refer to Figure 3-10 and Figure 3-11.

| Palm OS" Emulator

Prograrmmers can write all the
instructions for uging the program
here the user can scrall down the
inztructions and when the uzer
prezses the Done button the
prograrm is dizplayed

Figure 3-10: Output HelpDisplay_Spotlet -I.

48 Chapter 3: CLDC API and Reference Implementation

| Palm OS" Emulator

Mlain Class after the Help display..

Figure 3-11: Output HelpDisplay_Spotlet - II.
Listing 3-3: HelpDisplay_Spotlet.java

© 2001 Dreamtech Software India Inc.
All rights reserved

1) import com.sun.kjava.*;

2)/**

3) * A program that gives the reader a feel of how help
displays are to be

4) * used in a program. Help displays are helpful in
giving the

5) * user instructions as to how the program is to be
used. ..

6)*/

7)public class HelpDisplay Spotlet extends Spotlet {

8) public static void main(String args[]) {

9)

String helpText = "Programmers can write all
the instructions
10) for using the program here the user can
scroll down
11) the instructions and when the user presses
the Done button the program is displayed";
12)
13)/**

14) * Help display is being initialized here the first
argument tells the
15) * text to be displayed, the second argument mentions
the class which
16) * is to be run after the user presses the DONE
button, the third
17) * argument tells about the events in which we are
interested. After
18) * the help display is shown and the DONE button is

Chapter 3: CLDC API and Reference Implementation 49

pressed,
19) * the class name (2nd argument) is registered and its
events are taken

20) * into consideration...

21)*/

22)

23) (new 25)HelpDisplay (helpText, "HelpDisplay Spotlet",

24) NO_EVENT OPTIONS)) .register (NO EVENT OPTIONS) ;

25) }

26)

27) public HelpDisplay Spotlet () {

28) Graphics gr = Graphics.getGraphics() ;

29) gr.clearScreen();

30) gr.drawString("Main Class after the Help
display..", 15,35);

31) }

32)}

CheckRadio_Spotlet

The capability of the user to make choices from a given list is another part of an interactive application.
Two ways of doing this are through radio buttons (for selecting only one element) and check boxes (for
making more than one choice). This spotlet shows how this can be done with CLDC and Kjava. The user
is shown four radio buttons, out of which he has to choose one. Two check boxes are also shown, out of
which one or both can be selected. On pressing the OK button, the choices made by the user are
displayed. Note the use of the i f statement for controlling event handling. To see the output, refer to
Figure 3-12.

" Palm OS" Emulator

[First
O Second

Check box 1 iz Checked
Check box 2 is UnChecked

Preszed Radio Button 2

Figure 3-12: Output CheckRadio_Spotlet.

50 Chapter 3: CLDC API and Reference Implementation

Listing 3-4: CheckRadio_Spotlet.java

© 2001 Dreamtech Software India Inc.
All rights reserved

1)import com.sun.kjava.*;

2)

3)/**

4) * A program that gives the user a feel of GUI
(specially check boxes and

5) * radio buttons.

6)*/

7)

8)public class CheckRadio Spotlet extends Spotlet ({

9) private Button ok button = null;
10) private CheckBox cbl checkbox = null;

11) private CheckBox cb2 checkbox = null;

12) private RadioGroup radiogroup = new RadioGroup (4) ;

13) private RadioButton rbl radiobutton = null;

14) private RadioButton rb2 radiobutton = null;

15) private RadioButton rb3 radiobutton = null;

16) private RadioButton rb4 radiobutton = null;

17) private String strl = "";

18) private String str2 = "";

19) boolean checked 1 = false;

20) boolean checked 2 = false;

21)

22) Graphics gr = Graphics.getGraphics(); // Initialzing
the graphic

23

24) public CheckRadio Spotlet () {

)
)
25) register (NO_EVENT OPTIONS) ;
)
)

// Initializing the buttons, the check boxes and the
radio buttons

28) ok button = new Button("Ok",80,70) ;
29) cbl checkbox = new CheckBox (80,30, "First");
30) cb2 checkbox = new CheckBox (80,50, "Second") ;
31) rbl radiobutton = new RadioButton(4,14,"A");
32) rb2 radiobutton = new RadioButton(4,26,"B");
33) rb3 radiobutton = new RadioButton(4,38,"C");
34) rb4 radiobutton = new RadioButton(4,50,"D");
35) gr.clearScreen(); // Clear the drawing area
36)

)

// Adding the radio buttons in a group so that only
one can be clicked
)// at a time
) radiogroup.add(rbl radiobutton) ;
) radiogroup.add(rb2 radiobutton
41) radiogroup.add(rb3 radiobutton
)
)
)

7

7

7

()
()
()
()

radiogroup.add(rb4 radiobutton

44)// Putting (painting the various GUI components on the
drawing area

45) cbl checkbox.paint () ;

46) cb2 checkbox.paint () ;

47) ok _button.paint();

Chapter 3: CLDC API and Reference Implementation 51

48)

49) rbl radiobutton.paint() ;

50) rb2 radiobutton.paint/() ;

51) rb3 radiobutton.paint/() ;

52) rb4 radiobutton.paint() ;

53) }

54)

55) public void penDown (int x, int vy) {
56)

57)// Event handling routines...

58) if (ok button.pressed(x,y)) {

59) if (checked 1)

60) strl = "Check box 1 is Checked W
61) else

62) strl = "Check box 1 is UnChecked";
63) gr .drawString (strl, 5, 85) ;

64) if (checked 2)

65) str2 = "Check box 2 is Checked e
66) else

67) str2 = "Check box 2 is UnChecked";
68) gr.drawString(str2,5,95) ;

69) }

70)

71) 1if(cbl checkbox.pressed(x,y)) {

72) checked 1 = !checked 1;

73) cbl checkbox.handlePenDown (x,y) ;

74) }

75)

76) 1if (cb2 checkbox.pressed(x,y)) {

77) checked 2 = !checked 2;

78) cb2 checkbox.handlePenDown (x,y) ;

79) '}

80) if(rbl radiobutton.pressed(x,y)) {

81) gr.drawString ("Pressed Radio Button 1",
5,110) ;

82) rbl radiobutton.handlePenDown (x,V) ;

83) }

84)

85) if(rb2 radiobutton.pressed(x,y)) {

86) gr.drawString ("Pressed Radio Button 2",
5,110) ;

87) rb2 radiobutton.handlePenDown (x,Y) ;

88) }

89)

90) if(rb3 radiobutton.pressed(x,y)) {

91) gr.drawString ("Pressed Radio Button 3",
5,110) ;

92) rb3 radiobutton.handlePenDown (x,Y) ;

93) 1}

94)

95) 1if(rb4 radiobutton.pressed(x,y)) {

96) gr.drawString ("Pressed Radio Button 4",
5,110) ;

97) rb4 radiobutton.handlePenDown (x,Y) ;

98) 1}

52 Chapter 3: CLDC API and Reference Implementation

99) }

100)

101 public static void main(String argsl[]) {
102) mnew CheckRadio Spotlet() ;

103) 1}

104)}

HttpCheck_Spotlet

Any device that is to be connected to a network should be able to access files from another system on that
network. The most common way of doing this is presently through an HTTP connection. Any J2ME
application you make for a PDA may have to use files placed on a Web server. In CLDC, this is done by
using the Connector class. This is the class that holds the methods used to create all connection objects.

Here we first create a text file called checkl . txt and place it on a server. The user is shown a scroll
text box and a button labeled Fetch. When the user presses this button, the contents of the file are
displayed in the scroll text box. The file on the server is fetched with the help of
OpenDataInputStream method of the Connector class. It takes the URL of the file to be fetched as
the argument. Since the connection framework of CLDC is still in the development stage, you have to use
test as the prefix before the actual URL of the file. To see the output, refer to Figures 3-13 and 3-14.

| Palm OS” Emulator

Http Check

Here the rezult of Http
Connection will be Displayed...

Figure 3-13: Output HttpCheck_Spotlet - I.

Chapter 3: CLDC API and Reference Implementation 53

| Palm OS" Emulator

Http Check

This iz a test.0

This iz a test.0

Figure 3-14: Output HttpCheck_Spotle - I.
Listing 3-5: HttpCheck_Spotlet.java

© 2001 Dreamtech Software India Inc.
All rights reserved

import java.io.*;
import javax.microedition.io.*;
import com.sun.kjava.*;

/**

1)

2)

3)

4)

5)

6) * A program to show how http connections work on CLDC.

The user is

7) * given the feel of http connections by a simple GUI
program. In this

8) * program the users have one scroll text box where the
result of file read

9) * will be displayed, the user when presses "Fetch" the
contents of the

10) * field "checkl.txt" are sent via network.. (The
user is required to

* create checkl.txt on the server directory...).
*

1)

2)

3)

4)public class httpcheck spotlet extends Spotlet ({
5) private Button bt = new Button("Ok",5,145);
6) private Button fetch = new Button ("Fetch", 45,145);
7) public ScrollTextBox stb;
8) DataInputStream dos;

9) byte [] b= new bytel[32];

0) byte [] ¢ = new byte[15000];
1)
2)
3)

Graphics gr = Graphics.getGraphics();

54 Chapter 3: CLDC API and Reference Implementation

24) public httpcheck spotlet () {

25) register (NO_EVENT OPTIONS) ;

26) gr.clearScreen();

27) gr.drawString("Http Check..... ",30,10);
28) bt.paint();

29) fetch.paint();

30) gr.drawRectangle(0,30,160,80,0,1);

31)

String temp = "Here the result of Http
Connection will

32) be Displayed...";

33)

34)// Initailizing the scroll text box with string
temp. ..

35) stb = new ScrollTextBox(temp,1,30,130,100);

36) stb.paint();

37) try {

38) dos = 39)Connector.openDatalInputStream("testhttp://

40) 127.0.0.1/checkl.txt");

41) }

42) catch (IOException e) {

43) '}

44) }

45)

46) public void penDown (int x, int y) { // Handling the
events. ..

47) if (bt.pressed(x,y)) {

48) try {

49) dos.close() ;

50) }

51) catch (IOException e) {

52) System.out.println(e);

53) }

54) System.exit (0) ;

55) }

56)

57) if (fetch.pressed(x,y)) {

58) int count;

59) int total = 0;

60) try {

61) while ((count = dos.read(b,0,32)) > 0) {

62) for (int i = 0;i<count;i++) {

63) cl[total]l] = b[i];

64) total++;

65) }

66) }

67) }

68) catch (IOException e) {

69) }

70)

71) String str = new String(c, 0 ,total);

72) stb = new ScrollTextBox(str,1,30,130,100);

73) stb.paint () ;

74) }

75)

76) if (stb.contains(x,vy))

77) stb.handlePenDown (x,V) ;

Chapter 3: CLDC API and Reference Implementation 55

78) }

79)

80) public void penMove (int x, int y) {
81) if (stb.contains(x,Vy))

82) stb.handlePenMove (x,V) ;

83) 1}

84)

85) public static void main(String args[]) {
86) mnew httpcheck spotlet();

87) }

88)}

Server

The data on a device such as a PDA needs to be frequently synchronized with the data on a desktop or
server system. For this, you need a listener on the desktop or server system, which will respond to the
request from the client — that is, the PDA. This is not a J2ME application, but we have used it because,
without it, the next spotlet can’t be run. You can see that the java.net package has been imported,
which is a part of the standard edition.

Listing 3-6: Server.java

© 2001 Dreamtech Software India Inc.
All rights reserved

1)import java.io.*;

2) import java.net.*;

3)

4)public class server {

5) public static void main(String args([]) {

6) try {

7) ServerSocket server soc = new ServerSocket (5555) ;
8) Socket sc;

9) sc = server soc.accept();

10) BufferedReader br = new BufferedReader (new
InputStreamReader (sc.getInputStream())) ;

12) PrintWriter pw = new PrintWriter (new BufferedWriter (
14) new OutputStreamWriter (

15) sc.getOutputStream())), true) ;

16) while (true) {

17) String str = br.readLine() ;

18) pw.println (“*Response from the Server-“ +str);
19) }

20) }

21)

22) catch(Exception ae) {

23) }

24) }

25)}

Socket_Check

Another way of transferring data from one device to another is through socket connections. In this case
study, we give an example of how this can be done. The user is given a text field in which he enters some
text. On pressing the OK button, the contents of the text field are transferred via the socket connection to
a server socket. The server reads the text and responds to the client socket. A message is shown

56 Chapter 3: CLDC API and Reference Implementation

indicating that the connection has been established. Whatever the user types in the text field is redirected
to the client and is shown on the screen.

We open the socket connection by using the StreamConnection interface of the
javax.microedition.io package. You can also see the use of many other CLDC classes and
methods in this spotlet.

To run this spotlet, first make sure that your Server.class class file is not in the folder in which you have
the Socket Check.class file (because when you preverify the application you will get an error as the
Server.class is a Java Standard Edition program). You then have to start the server by typing java
server at the command prompt. On pressing the Exit button, both the spotlet and the server are closed.
To see the output, refer to Figures 3-15 and 3-16.

Palm OS" Emulator

Socket Check...
Marne: CHECK]

Figure 3-15: Output Socket_Check - I.

Chapter 3: CLDC API and Reference Implementation 57

" Palm OS" Emulator

Socket Check...
Marne: tH

Response from the server..
CHECK

Figure 3-16: Output Socket_Check — Il
Listing 3-7: Socket_Check.java

© 2001 Dreamtech Software India Inc.
All rights reserved

1) import com.sun.kjava.*;

2) import java.lang.*

3)import java.io.*;

4) import javax.microedition.io.*;

5)

6)/*

7) * A program to show how Sockets work on CLDC. The user is given the

8) * feel of socket connections by a simple GUI program in this program. The

9) * users have one text field, the user enters the text on the text field and

10) * press OK the contents of the text field are sent via network over to some

11) * server socket which is running (use "server.java" in this case present

12) * in "..\serverforsocket\server.java" run it using the command "java

13) * server"). The server then reads the message and responds back to the same

4 * message to the client socket which will show the message on the spotlet..
*/

)

)

)

)

)

5)

6)

7)public class socket check extends Spotlet {
8) InputStream is;

9) OutputStream os;

0) StreamConnection socket = null;

1)
2)
3)
4)
5)
7)

// Initialzing the various GUI components

private Button bt = new Button("OK",5,145);

private Button btl = new Button ("Exit",35,145);

public TextField tf = new 26)TextField("Name",10,30,110,110);

58 Chapter 3: CLDC API and Reference Implementation

Graphics gr = Graphics.getGraphics();

28)

29)

30) public socket check() {

31) register (NO_EVENT OPTIONS) ;

32) gr.clearScreen();

33) gr.drawString("Socket Check...",30,10);
34) bt.paint();

35) btl.paint();

36) gr.drawRectangle(0,20,160,80,0,1);
37) tf.setUpperCase(true);

38) tf.setFocus();

39) tf.paint () ;

40)

41)

42)

43)

// Initializing the socket connections

try {
socket = (StreamConnection)Connector.open (

44) "socket://127.0.0.1:5555", 45) Connector.READ WRITE,
true) ;
46) if (socket != null) {
47) System.out.println("Connection is established to
49) localhost on port 5555...");
50) }
51)
52)// Opening the input and output streams...
53) is = socket.openInputStream() ;
54) os = socket.openOutputStream() ;
55) }
56) catch(IOException ae) {
57) System.out.println("Couldn't open socket 58) to
59) 127.0.0.1 :5555... Either server is not 60) started
61) (start it from ../serverforsocket/
62) using the
63) command java server) or port is 64) already in
65) use.... ");
66) System.exit (0) ;
67) 1}
68) }
69)
70) public void penDown (int x, int y) {
71) if (bt.pressed(x,y)) {
72) try {
73) os.write((tf.getText()+"\n") .getBytes()) ;
74) StringBuffer sb = new StringBuffer();
75)
76) int b;
77) while ((b=is.read()) != 13) {
78) sb.append((char)b) ;
79) }
80) gr.drawString (sb.toString(), 55,50);
81) sb.delete (0, sb.capacity()) ;
82) 1}
83) catch (IOException aer) {
84) System.out.println (aer) ;
85) }
86) 1}

Chapter 3: CLDC API and Reference Implementation 59

87)

88) if (btl.pressed(x,y)) {
89) try {

90) socket.close() ;

91) 1}

92) catch (IOException e) {
93) System.out.println(e);
94) }

95) System.exit (0) ;

96) }

97) }

98) public void keyDown (int x) {
99) if(tf.hasFocus()) {

100) tf.handleKeyDown (x) ;
101) }

102) }

103)

104) public static void main(String argsl([]) {
105) new socket check() ;

106) }

107)}

No practical interactive application can avoid using databases. This final spotlet of the chapter shows
how databases can be created and accessed by using CLDC. Strictly speaking, we are adding database
functionality by using not just CLDC, but the Kjava API. This is because CLDC in itself doesn’t have
database functionality.

This spotlet faces a problem. Although a database is being created and accessed successfully, when you
try to add a new record to the database, it overwrites the existing record, even when you use the
addRecord method of the Database class. We find a way around this problem in the project on CLDC
later in the book in Chapter 6.To see the output, refer to Figures 3-17 and 3-18.

" Palm OS" Emulator

Cratabaze Example....

Marne: CHECK]

Result:

Figure 3-17: Output Database_Check - I.

60 Chapter 3: CLDC API and Reference Implementation

" Palm OS" Emulator

Cratabaze Example....

Marne: CHECK]

Figure 3-18: Output Database_Check - I.
Listing 3-8: Database_Check.java

© 2001 Dreamtech Software India Inc.
All rights reserved

1) import com.sun.kjava.*;

2)

3)public class database check extends Spotlet {
4)

5)// Declaring the variables...

6) private Button ok button = null;

7) private Button get button = null;

8) public TextField tf textfield = null;
9) public TextField tfl textfield = null;
10)

11) Database dbg;

12)

13) Graphics gr = Graphics.getGraphics() ;

14
public database check() {
register (NO_EVENT OPTIONS) ;

// Clearing the drawing area....
gr.clearScreen() ;
gr .drawString ("Database Example....",30,10);

// Initializing textfields and Buttons..........

ok button = new Button("Store",5,145);

15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25) get button = new Button("Retrieve",55,145);
26)

Chapter 3: CLDC API and Reference Implementation

27) tf textfield = new 28) TextField ("Name",10,50,110,20) ;

29) tfl textfield = new 30) TextField("Result",10,70,110,20) ;

31)

32) ok button.paint() ;

33) get button.paint();

34)

35) gr.drawRectangle(0,30,160,80,0,1);

36) // Draw a rectangular area so that

37) // textfield can be drawn.

38)

39) tf textfield.setUpperCase(true); // Accepts
only upper case

40) tf textfield.setFocus();

41) // Sets the Focus so that the cursor blinks

42)

43) tf textfield.paint();

44) tfl textfield.paint();

45)

46)// Database initialization.....

47) String name = "check";

48) int cid = 0x4B415754;

49) int tid = 0x44425370;

50)

51) dbg = new Database

52) 52) (tid, cid, Database.READWRITE) ;

53)

54) if (dbg.isOpen()) {

55)) Database.create (0,name, cid, tid, false) ;

56) }

57) else {

58) Database.create (0,name, cid, tid, false) ;

59) }

60) }

61)

62) public void penDown (int x, int vy) {

63)

64)// Handling events...

65) if(ok button.pressed(x,y)) {

66) byte[] data = 67) (tf textfield.getText ()+"?") .getBytes();

68) dbg.addRecord (data) ;

69) }

70) if(get button.pressed(x,y)) {

71) byte[] data = dbg.getRecord(65535);

72) String temp = new String(data) ;

73) temp = 74) temp.substring (0, temp.indexOf ("?2")) ;

75) tfl textfield.setText (temp) ;

76) }

77) }

78)

79) public void keyDown (int x) {

80) if(tf_textfield.hasFocus()) {

81) tf textfield.handleKeyDown (x) ;

82) 1}

83) }

84)

85) public static void main(String args[]) {

61

62 Chapter 3: CLDC API and Reference Implementation

86) new database check() ;
87) 1}
88)}

Summary

This chapter gives you a feel for programming mobile devices and the restrictions in terms of resources
for mobile devices. This chapter is groundwork for the next chapter in the book as we have six unique
projects in this book. One should be well conversant with the APIs before going on to these chapters.
Chapter 4 concentrates on MIDP. It’s an important chapter as we have two MIDP-based projects in this
chapter.

Chapter 4

MIDP-MIDlet Implementation with
Case Studies

This chapter takes up the reference implementation provided by Sun for the profile that it designed for
devices such as mobile phones. To make the reader familiar with what the reference implementation
covers, the APIs are briefly dealt with. Examples of developing applications with this implementation are
given in the form of case studies.

Sun’s reference implementation of Mobile Information Device Profile for Windows comes in the form of
a zip file named j2me midp-1 0-eal-win.zip, which is available for free download from Sun’s
site. Once you possess it, you are ready to program using MIDP, although for testing purposes, it is better
if you also have the J2ME Wireless Toolkit. We will be learning how to use the toolkit later in this
chapter.

The release of MIDP provided by Sun includes the following:
¢ The MIDP API in the form of a jar file called midp. jar in the directory midp-eal\lib.

¢ A device emulator, which can be run by executing the file midp . exe (in the directory midp-
eal\bin). With this emulator you can test your applications for cell phone and pager.

¢ A preverifying tool, which is also in the directory midp-eal\bin.
¢ Complete documentation in the midp-eal\docs directory.

+ Several sample MIDlets (games: Sokoban, Puzzle tiles, ManyBalls; utilities: Color chooser,
Property inspector, Graphics sampler, HttpTest; applications: Auction demo, Stock tracker) in the
form of a jar archive named examples. jar, in the directory midp-eal\1lib, and their source
code in the directory midp-eall\src\example.

¢ A makefile that includes targets that will launch demonstration programs or can be used to
actually build and run your own applications.

You can find additional information about the runtime environment and basic instructions for building
your own MIDlet applications in the docs directory. The HTML documentation includes both the MIDP
and the CLDC. To unpack the javadoc files, you have to unzip the documentation bundle.

J2ME_MIDP+CLDC-1 0-EA1-DOCS-*.zip.

MiDlets and MIDlet States

The application model used in MIDP is different from that used in CLDC. In CLDC, you could make the
application by using the main () method, as in J2SE standalone applications, or you had to use the
KJava model. The problem with the first approach is that there was no way to provide user interface
capabilities. And the second approach relies on something that is itself transitory and may not be
available in future.

64 Chapter 4: MIDP-MIDlet Implementation with Case Studies

To solve these problems, MIDP uses an application model based on MIDlets. These MIDlets are
somewhat similar to applets. Every MIDP application is a MIDlet, and every MIDlet extends the class
javax.microedition.midlet.MIDlet. Also, like an applet, it has to necessarily implement some
methods. These methods are startApp, pauseApp, and destroyApp. As you can guess from their
names, they are meant to allow the application management software to manage the lifecycle of the
MIDIlet. A MIDlet, during its lifecycle, can be in any of the following states (usually in the same order):

¢ Loaded: Occurs when the MIDlet has been created using the new keyword. This state can occur
only once per instance of a MIDlet. In case of an exception, the MIDlet is destroyed.

¢ Paused: Occurs when the MIDIet has been initialized but is not holding any shared resources.

¢ Active: Occurs after it has been initialized and is functioning normally. This state is entered into
after the paused state.

¢ Destroyed: Occurs when the MIDlet is destroyed and all the resources are released.

MiDlet Suites

Just as J2SE classes can be packaged together into a single JAR file, so, too, can MIDlets. When this is
done, the JAR file is called a MIDlet suite. A MIDlet suite is created if the MIDIets need to share code or
data. The MIDlets in the suite can share the resources in the JAR file, i.c., it can call another MIDlet in
the JAR file. Moreover, MIDlets in different suites cannot interact directly. This provides security around
the MIDlet suite instead of around each MIDlet.

The name, version, and creator of the MIDIet suite are all identified by entries in the manifest. These
entries also describe the minimum configuration and profile versions required. The following are the
MIDIlet manifest attributes:

¢ MicroEdition-Configuration: The name and version of the J2ME configuration required to run
the MIDlet suite. (Optional)

¢ MicroEdition-Profile: The name and version of the J2ME profile required to run the MIDIet suite.
(Compulsory)

¢ MIDlets: The name, icon, and main class of each MIDlet in the suite. (Compulsory)

¢ MIDlet-Data-Size: The minimum number of bytes of persistent storage that the MIDlet requires to
run. The default is zero. (Optional)

¢ MIDlet-Description: A description of the MIDlet suite. (Optional)

MIDIlet-Icon: The path of PNG file within the JAR file, used by the application management
software to identify the MIDlet suite. (Optional)

MIDIlet-Info-URL: A URL describing the MIDIet suite in detail. (Optional)

MIDIlet-Name: The name of the MIDlet suite. (Compulsory)

MIDIlet-Vendor: The vendor of the suite. (Compulsory)

MIDIlet-Version: The version number of the suite in the format XX.YY or XX. YY.ZZ. (Compulsory)

MIDP API

The MIDP API consists of the following packages:

*

* & o o

¢ Core packages (java.io, java.lang, java.util): These form the base on which CLDC
and MIDP stand.

¢ javax.microedition.lcdui: A User Interface API for Mobile Information Devices such as
cell phones.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 65

¢ javax.microedition.rms: To provide a mechanism for MIDlets to persistently store data and
later retrieve it.

¢ javax.microedition.midlet: This package defines Mobile Information Device Profile
applications and the interactions between the application, as well as the environment in which the
applications run.

¢ javax.microedition.io: A package that provides networking support based on the Generic
Connection Framework from the Connected Limited Device Configuration.

The core packages are the same as in CLDC. Their purpose is to define the Java language as used in
CLDC and MIDP and provide means of input/output and some utilities for writing applications. We have
briefly discussed these in Chapter 3. Here we will focus on packages specific to MIDP. But before that,
we should take note of the difference in one of the common packages. The java.util package in
MIDP has two classes that are not present in CLDC. These are Timer and TimerTask classes. The
first represents a task that can be scheduled for one-time or for repeated execution, and the second
provides a facility for threads to schedule tasks for future execution in a background thread.

Application Lifecycle Package

The package named javax.microedition.midlet is to MIDP what the Applet package is to the
Standard Edition. It is included primarily for defining how MIDP applications should be organized and
how they should interact with their environment. This is why it has only one class, called MIDlet.

Like an applet, a MIDlet is an application. Every MIDP application has to extend this class so that the
application management software can control the application. It is also necessary because the properties
from the application descriptor have to be obtained and state changes have to be notified and requested.
As we saw earlier in MIDlets and MIDlet States section in this chapter, there are methods to create, start,
pause, and destroy a MIDlet. The possibility for a MIDlet to have several states is important because it
allows several applications to be run at the same time. Apart from the inherited methods, this class has
the following methods:

startApp
pauseApp
destroyApp

¢

¢

.

¢ notifyDestroyed
¢ notifyPaused

¢ getAppProperty
¢

resumeRequest

To get a better idea of the use of this class and its methods, look at the following code that represents a
skeleton MIDP application:

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

/**
* Skeleton Application illustrating the use of MIDlet Class..
*/

public class first extends MIDlet implements CommandListener {

private Command quit; // The Quit button
private Display ourDisplay; // Declaring the display

// Initialize the Display and place system controls in the Constructor..

66 Chapter 4: MIDP-MIDlet Implementation with Case Studies

public first()

{

ourDisplay = Display.getDisplay(this) ;

quit = new Command("Quit", Command.SCREEN, 2);
}

/**
* Initialize all the classes to be used in the program here (startApp())..
*/
public void startApp ()
{

// If the Application needs to be paused temporarily.
public void pauseApp ()
{

}
// Clean up when the application is destroyed..

public void destroyApp (boolean unconditional)
{

}
// Event handling routine..

public void commandAction (Command c, Displayable s)
{
if (¢ == quit) // If Quit button is pressed..
{
notifyDestroyed(); // Call the destroyApp method. .

}

User Interface Package

Unlike the CLDC API, MIDP has its own GUI package, as it is a profile. This package is the
javax.microedition.lcdui, which is optimized for devices such as cell phones, two-way pagers,
etc. It wasn’t possible to use the AWT package for MID devices since it is too heavy for these devices.
Besides, there is no mouse on such devices to exploit the potential of AWT. A new package was
therefore required. This package is basically a game-oriented one, although it can be used for other
purposes. It has been designed in such a way that both portability and device-specific functionality can be

Chapter 4: MIDP-MIDlet Implementation with Case Studies 67

achieved to a great extent. The former is ensured by using abstraction and the latter by including features
that may not be available on all devices.

The user interface model used in MIDP is built around screens. A MIDlet has a Display, on which an
object of Displayable class can be shown. There can be two kinds of such class objects —
Canvas and Screen. While the Canvas class is meant for low-level UI objects for displaying graphics
(using the Graphics class) and taking care of inputs, the Screen class provides a set of the most
commonly used Ul objects such as TextField, List, TextBox, ChoiceGroup, StringItem, etc
The Screen class also has a subclass called Form, to which Ttems (StringItem, ImageItem,
TextField, DateField, Gauge, and ChoiceGroup) can be added.

The classes available in the MIDP user interface package are:

Alert
Canvas
ChoiceGroup
Command
DateField
Display
Displayable
Font

Form

Gauge
Graphics
Image
ImageItem
Item

List

Screen
StringItem

TextBox

® & & 6 O O 6 O O O O O O O O O o o o

TextField

Ticker

*

And the interfaces present in this package are:

¢ Choice
¢ CommandListener

¢ ITtemStatelistener

We will be explaining the more commonly used among these in this section.

Interface CommandListener

In MIDP, event handling is based on the listener model. Every Displayable object needs one (and
only one) listener. CommandListener is a listener for high-level events. Like other listeners, it is
registered using the method Displayable.setCommandListener. It has only one method called
commandAction, which we have used in the following code block:

68 Chapter 4: MIDP-MIDlet Implementation with Case Studies

// Implementing the interface...
public class TextFieldCheck extends MIDlet implements CommandListener {

// Declaring Buttons and initializing them to null...
Command ok = null;
Command quit = null;

// Handling the event.

public void commandAction (Command c, Displayable d) {
// Event handling for the Button
if (¢ == ok)
{
// Code for tasks to be done on OK button press...
}
if (¢ == quit)
{
// Code for tasks to be done on Quit button press...
}
}

Alert Class

This class is used to show a message, warning, or other information to the user for a specified period of
time or until the user cancels it. It can contain strings, images, etc., and can also handle events, like any
other screen. The methods available for this class are:

getDefaultTimeout

getTimeout

setTimeout

appendString

appendImage

appendItem

*® & & & o o o

insertItem

¢ deleteltem
Following is a code block showing the use of Alert class and some of its methods:

// Popping an Alert...

// Parameters. .

// 1. Title of the Alert..

// 2. Text of Alert.

// 3. Image if required.

// 4 Type of Alert (INFO, WARNING,ERROR, CONFIRMATION, ALARM).

Alert alert = new Alert (“Warning”, “You have entered Wrong serial number”,
null, AlertType.WARNING) ;
// Making this alert a Modal alert..
alert.setTimeout (Alert.FOREVER) ;
// or else...
// Making this alert disappear after certain milliseconds. .
alert.setTimeout (10) ;

Chapter 4: MIDP-MIDlet Implementation with Case Studies 69

ChoiceGroup Class

This class provides us a way of adding Ul components that may be selected by the user. It is possible to
create components that can be selected, either one or more at a time. In other words, both radio buttons
and check boxes can be created using this class. Which one will be created depends on the value of the
choiceType parameter. If it is EXCLUSIVE, we will get check boxes, and if it is MULTIPLE, we will
have radio buttons. The methods provided for this class are implementations of methods in the interface
Choice:

appendElement (String stringElement, Image imageElement)
deleteElement (int index)

getImage (int i)

getSelectedFlags (boolean[] selectedArray return)
getSelectedIndex ()

getSize()

getString (int 1)

insertElement (int index, String stringElement, Image imageElement)
isSelected(int index)

setElement (int index, String stringElement, Image imageElement)

setSelectedFlags (boolean[] selectedArray)

® & & 6 6 6 6 o o o o o

setSelectedIndex(int index, boolean selected)
Let us look at the use of this class for creating radio buttons:

// Declaring Form and ChoiceGroup objects and initializing them to null...
Form ui _holder = null;

ChoiceGroup radiobutton type = null;

String[] name = {nan’nbn’ncn};
Image[] img = null;

// Initialize the ChoiceGroup. .

// Parameter 1 --- Title

// Parameter 2 --- Type of ChoiceGroup (Exclusive for RadioButtons)
// Parameter 3 --- Label of the radio buttons displayed

// Parameter 4 --- Images for the radio button label if required

radiobutton type = new ChoiceGroup ("Choices..",ChoiceGroup.EXCLUSIVE, name, img) ;

// Adding the ChoiceGroup to the Form...
ul holder.append (radiobutton type) ;

// Event Handling. .
// To get the String of the selected radio button...
radiobutton type.getString(radiobutton type.getSelectedIndex()) ;

Now we create a group of check boxes with the same class, just changing the choiceType parameter:

// Declaring Form and ChoiceGroup objects and initializing them to null...
Form ui _holder = null;
ChoiceGroup checkbox type = null;

70 Chapter 4: MIDP-MIDlet Implementation with Case Studies

String[] namel = {"d","e","f"};
Image[] img = null;

checkbox type = new ChoiceGroup ("Choices..",ChoiceGroup.MULTIPLE, namel, img) ;
ul _holder.append (checkbox type) ;

checkbox_type.isSelected (i)

Command Class

MIDP has no Button class. Instead, a class called Command is used to create Ul objects that behave
almost like buttons. Only the label, that is, the name of the command, priority of the command, and so on,
are contained in a Command. What the Command object will actually do is specified in the
CommandListener attached to the screen on which the object is placed.

The parameters required to be passed while instantiating a Command object are:

¢ Label for the Command button.
¢ Position of Command button.

¢ Priority of the command over other commands.

The third parameter (if it is used as the number of the accelerator key) works as follows: If the user
presses the central button (hot key) of the cell phone, all the commands listed will be shown; the user can
then scroll to the label of the button he or she wishes to use, or the user can press the serial number of the
button to choose that particular button.

There is only one method available for this class. This method is toString, which returns a string
representation of the object. See the following code to see how button-like objects can be created using
this class:

Form ui _holder = null;

// Declaring Command objects and initializing them to null...
Command ok = null;

Command quit = null;
// Instantiating the Form...

ui_holder = new Form("User Interface - TextField");

ok = new Command("Ok",Command.SCREEN, 3) ;
quit = new Command ("Quit", Command.SCREEN, 2) ;

// Adding Command Button to the Form
ui_holder.addCommand (ok) ;
ui_holder.addCommand (quit) ;

// Invoking Action Listener
ui_holder.setCommandListener (this) ;

public void commandAction (Command c, Displayable d) {
// Event handling for the Button
if (¢ == ok)

Chapter 4: MIDP-MIDlet Implementation with Case Studies 71

Display Class

This class represents the display of the device. To show a user interface object on the device, you first
have to declare the display, get it, and then make it current with the object supplied as the parameter to
the setCurrent method. The methods specific to this class are enlisted:

getDisplay

isColor

¢

*

¢ numColors
¢ getCurrent
*

setCurrent
Let us see the use of this class in the following code block:

// Declaring Form object and initialzing it to null...
Form ui _holder = null;

// Declaring variable for Display class and initializing as null...
private Display display = null;

// Getting the Display unique to this MIDlet...
display = Display.getDisplay(this) ;

/*

* Making the Display Current so that it can show
* the Form.

*/

display.setCurrent (ui_holder) ;

Form Class

LCDUI package contains a Form class. A Form is a kind of Screen on which other UI objects can be
added. You can instantiate a Form object with either just a string title or a string title and an array
containing the Items to be added to Form. The methods available are:

¢ appendItem

¢ appendString

¢ appendImage

¢ insertItem

¢ deleteltem

¢ setltem

¢ getItemAt

¢ getSize

¢ setItemStateListener

In the following code snippet, we create a Form and initialize it to null. This Form is given a string
title. Then we add a TextField to this Form by calling the append method:

72 Chapter 4: MIDP-MIDlet Implementation with Case Studies

// Declaring the form...
Form myform = null;

// Declaring the Display and initializing it as null...
private Display show = null;

// Getting the Display unique to this MIDlet...
show = Display.getDisplay(this) ;
// Initializing the form with a string title...

myform = new Form("User Interface - TextField");
// Declaring and initializing a TextField...
tx = new TextField("MyField", "Type here...",70,0);

// Adding the TextField to the form...

myform.append (tx) ;

// Showing the form, which is a Displayable object, on the screen...
show.setCurrent (myform) ;

Gauge Class
Sometimes you want to use a bar graph indicating progress of some process or for use in a game. The
class Gauge serves this purpose. It can be both interactive and noninteractive, depending on the need of
the application. What determines this fact is the Boolean value of the second parameter taken by the
constructor of this class. The methods for this class are:

¢ setValue

¢ getValue

¢ setMaxValue

¢ getMaxValue

In the following code block, we create a Form and add to it a Gauge with the interactive parameter
specified as true. In other words, the bar graph created will be of interactive type:

private Display display = null;
Form ui _holder = null;

// Declaring variable for the Gauge class...
Gauge gaugeUI;

display = Display.getDisplay(this) ;

ui_holder = new Form("User Interface - Gauge ");
gaugeUI = new Gauge("Values..",true,10,0);

ul holder.append (gaugeUI) ;

display.setCurrent (ui_holder) ;

// Event handling for the OK button..

if (¢ == ok) {

int i = gaugeUI.getValue() ;

display.setCurrent (ui_holder) ;
}

Chapter 4: MIDP-MIDlet Implementation with Case Studies 73

Graphics Class

The Graphics class in MIDP is somewhat like the class of the same name in the standard edition. It
provides fairly good functionality for displaying 2-D graphics on constrained devices. Many of the
methods of this class are similar to those of the Graphics class in J2SE. (However, as expected, some
methods have been dropped since they are not relevant here. Some new methods have also been
introduced, keeping in mind the characteristics of mobile devices. We briefly describe those methods that
are present and point out the differences from their J2SE versions:

L4

translate: To translate the origin of the graphics context to the point (X, y) relative to the current
coordinate system.

getTranslateX: A new method to get the X coordinate of the translated origin of this graphics
context.

getTranslateY: Also a new method to get the Y coordinate of the translated origin of this graphics
context.

¢ getColor: To determine the current color. It returns an integer in the form 0x0OORRGGBB.

¢+ getRedComponent: Another new method to determine the red component of the current color. It

returns an integer value in the range 0-255.

¢ getGreenComponent: A similar method to find out the green component of the current color.

+ getBlueComponent: To find out the blue component of the current color.

¢ getGrayScale: This one is also a new method, like the preceding three. It can be used to determine

the current grayscale being used for all subsequent rendering operations. For color values, this
returns the brightness of the color.

setColor: A variation of the J2SE method, with two constructors instead of just one. It can be used
to specify the current color in RGB values. All subsequent rendering operations will use this
specified color. In one constructor, the red, green, and blue values are passed as three parameters
(with values in the range 0-255). In the second constructor, only one parameter is used to specify
RGB values in the format 0xXOORRGGBB.

setGrayScale: Like getGrayScale, it is a new method. It specifies the current grayscale to be
used for all subsequent rendering operations. For color displays, this method sets the color for all
subsequent drawing operations to be of gray color equivalent to the value passed in this method.
This value is in the range 0-255.

¢ getFont: To get the current system font.

¢ setFont: To specify the font for all subsequent text-rendering operations.
¢ getClipX: A variation of the getC1ip method of J2SE. It returns the X offset of the current

clipping area, relative to the point from which the coordinate system starts for this graphics context.
Separating the getClip operation into two methods returning integers is more performance- and
memory-efficient than one getClip () call returning an object.

¢ getClipY: Same as the preceding, but for returning the Y offset of the current clipping area.

getClipWidth: This method is a variation of getClipBounds method. It returns the width of
the current clipping area.

¢ getClipHeight: This returns the height of the current clipping area.

¢ clipRect: This method is the same as in J2SE, being used with the following constructor:

clipRect (int x, int y, int width, int height)

setClip: To set the current clip to the rectangle specified by the given coordinates. Rendering
operations have no effect outside the clipping area. Only one constructor is available, with the
following signature:

74

Chapter 4: MIDP-MIDlet Implementation with Case Studies

setClip(int x, int y, int width, int height)
drawLine: Same as in J2SE. Draws a line between the coordinates (x1,y1) and (x2,y2) using the
current color. Its signature is:

drawLine (int x1, int yl, int x2, int y2)

fillRect: Same as in J2SE. It fills the specified rectangle with the current color. The signature is:
fillRect (int x, int y, int width, int height)
drawRect: Same as in J2SE. It draws the outline of the specified rectangle using the current color.

The resulting rectangle will cover an area of width + 1 pixels by height + 1 pixels. The width and
height have to be nonnegative. The signature is:

drawRect (int x, int y, int width, int height)
drawRoundRect: Same as in J2SE. It draws the outline of the specified rounded corner rectangle
using the current color. The signature is:

drawRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

fillRoundRect: Same as in J2SE. Fills the specified rounded corner rectangle with the current
color. The signature is of the form:

fillRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

fillArc: Same as in J2SE. Fills a circular or elliptical arc covering the specified rectangle. The
signature is:

fillArc(int x, int y, int width, int height,

int startAngle, int arcAngle)

drawArec: Same as in J2SE. Draws the outline of a circular or elliptical arc covering the specified
rectangle.

drawArc (int x, int y, int width, int height,

int startAngle, int arcAngle)

drawString: Slightly different from the J2SE version. It draws the specified String using the
current font and color. There is an additional parameter for the anchor point for positioning the text.
The String to be drawn should be at least one character long. The (x,y) position is the position of
the anchor point. The signature is:

drawString (String str, int x, int y, int anchor)

drawSubstring: A new method that draws a part of the specified String using the current font
and color. The (x,y) position is the position of the anchor point. The parameters to be passed are:

e the String to be drawn

e zero-based index of first character in the substring

length of the substring

the x coordinate of the anchor point

the y coordinate of the anchor point

the anchor point for positioning the text

The method can throw java.lang.ArrayIndexOutOfBoundException.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 75

¢ drawChar: A new method in addition to the drawChars method. It draws only the specified
character using the current font and color. You have to specify the character, the x and y positions
of the anchor point, and the anchor point itself.

¢ drawChars: A method similar to that in J2SE, but with an additional parameter for the anchor
point. It draws the specified characters using the current font and color. The signature is:

drawChars (char[] data, int offset, int length, int x,
int y, int anchor)

¢ drawlmage: A simplified version of drawImage methods in J2SE. Only one constructor is
available. It draws the specified image by using the anchor point. The image can be drawn in
different positions relative to the anchor point by passing the appropriate position constants. The
signature of this method is:

drawImage (Image img, int x, int y, int anchor)

Class List

This class is used to add selectable objects to the Ul of your application. It is quite similar in nature and
behavior to the ChoiceGroup class in J2SE. One of the differences is that the choiceType parameter
can have an additional value IMPLICIT, which allows handling of events generated by the user selecting
a choice. The methods used with this class are also just the implementations of the methods in the
interface Choice:

getSize
getString
getImage
appendElement
insertElement
deleteElement
setElement
isSelected
getSelectedIndex
getSelectedFlags
setSelectedIndex

® & & 6 6 6 O O o o o o

setSelectedFlags

We use the List class here to create menu of choices. Just as action is taken when you select an item in
the menu, selecting a choice item in the List will notify the application:

// Declaring a variable of the type List..
List menu = null;
// Initializing the variable

// Parameter 1 --- Label of the List.
// Parameter 2 --- List Type IMPLICIT. (Selection by scrolling)
menu = new List ("Various Options..",List.IMPLICIT) ;

// Adding the List Items..
// Parameter 1 --- Label.
// Parameter 2 --- Image if required.

menu.append ("TextField",null) ;

76 Chapter 4: MIDP-MIDlet Implementation with Case Studies

menu.append ("Ticker",null) ;
menu.append ("Alert",null) ;

// Adding action Listener to the List..
menu.setCommandListener (this) ;

// Making it the current Display.
display.setCurrent (menu) ;

// Handling the events on the List.

public void commandAction (Command c, Displayable d)

{

List down = (List)display.getCurrent();

switch (down.getSelectedIndex()) {

case 0: System.out.println ("Text Field...");
break;

case 1: System.out.println ("Ticker...");
break;

case 2: System.out.println("Alert...");
break;

Class Stringltem

This class can be used to add Strings toa Form, just as ImageItem could be used to add Images.
You have to specify the label of the item and the text to be added:

¢ getText
¢ setText

A simple use of the StringItem class is shown here:

// Declaring variable for StringItem class.
StringItem string item = null;
// Initializing the variable

// parameter 1 .. Label to be displayed
// parameter 1 .. Text along with the Label.

string item = new StringItem("User Entered ..", "");
// Adding String item to the form (place holder)
ul holder.append(string item) ;

// Changing the Textual context of the StringItem

string item.setText (textcheck.getString());

Class TextField

This is a class to represent a standard text field so that the user can enter text into it. The parameters
required are the label, the initial text, the maximum size, and the input constraints. The concept of input

Chapter 4: MIDP-MIDlet Implementation with Case Studies 77

constraints is common to TextField and TextBox. These constraints are meant to restrict the user's
input so that only that input that is relevant to the purpose of the TextField is allowed. For example, if
the NUMERIC constraint is used on a TextField, the implementation has to ensure that only numerals
can be entered.

The constraints can be any of the following:

¢ TextField.ANY: User is allowed to enter any text.

¢ TextField.EMAILADDR: User is allowed to enter e-mail address.

¢ TextField.PASSWORD: Text entered is invisible.

¢ TextField.PHONENUMBER: For entering telephone numbers in the proper format.

The methods you can use with this class are:

getString
setString
getChars

¢

.

.

¢ setChars
¢ getSize

¢ setSize

¢ getConstraints

¢ setConstraints
In the following code, we add a TextField to a Form:

// Declaring a variable of the type TextField
TextField textcheck = null;

textcheck = new TextField("Enter the Text Here..","",50,0);

// Adding TextField to the form (place holder)
ul _holder.append (textcheck) ;

// Event Handling. .

public void commandAction (Command c, Displayable d) {
// Event handling for the Button
if (¢ == ok)
{
System.out.println (textcheck.getString()) ;
}
}

Class TextBox

This class creates an object that is similar to a TextField object, but one difference is that a TextBox
isnotan Item that hasto be added to a Form. Rather, it is a component that can be directly added to a
Screen. The methods available are:

¢ getString
¢ setString
¢ getChars

78 Chapter 4: MIDP-MIDlet Implementation with Case Studies

setChars
getSize

setSize

* & o o

getConstraints

¢ setConstraints
Following is some code that creates a TextBox object named ourBox, with some initial text:

String s = "Hello From J2ME";

private Display ourDisplay; // Declaring the display
private Form ourForm = null;

ourDisplay = Display.getDisplay (this) ;

ourForm = new Form("Our First");
TextBox ourBox = new TextBox ("J2ME Application", s, 256, 0);
ourForm. append (ourBox) ;

ourForm.setListener (this) ;

ourDisplay.setCurrent (ourForm) ;

Class Ticker

The class Ticker provides a way to show some horizontally scrolling text on the display, somewhat
like a marquee in HTML. The text String is passed as parameter. Its methods are:

¢ setString

¢ getString
It is not very difficult to use this class, as you can see from the following code:
// Initializing the Ticker.
// Parameter 1 .. Text For the Ticker.

ui_ticker = new Ticker("..This is an Example of a Ticker User Interface..");

// Adding Ticker to the Form.
ul _holder.setTicker (ui_ticker) ;

Persistence Package

The Mobile Information Device Profile gives you a mechanism to persistently store data and later retrieve
it. This persistent storage mechanism is modeled after a simple record-oriented database and is called the
Record Management System. The package it is contained in is named javax.microedition.rms.
The only class in this package is the RecordStore class. In addition, there are four interfaces. These
interfaces and their methods are listed as follows:

¢ RecordComparator: To compare and sort record in the RecordStore. It has only one method:
Compare.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 79

¢ RecordEnumeration: To maintain the sequence of records and to iterate over them during
sorting or searching operations. Its methods are:

e numRecords

e nextRecord

e nextRecordId

e previousRecord

e previousRecordId
e hasNextElement

e hasPreviousElement
® reset

e rebuild

e keepUpdated

e isKeptUpdated

e destroy

¢ RecordFilter: To check whether a given record meets some condition. It can be used for
searching or for creating subsets of RecordSets. The only method available is matches.

¢ RecordListener: This is the interface that can be used for listening to events generated when
records are changed, added, or deleted. The methods it has are:

e recordAdded
e recordChanged

e recordDeleted

Class RecordStore

The only class of this package — it is used to represent a collection of records in a device database. These
records remain persistent even when another MIDlet is started or even when the device is rebooted or the
battery is changed. Following are some points to note when dealing with record stores using MIDP:

¢ You can manipulate only the MIDlet suite's own record stores. There is no way to share records
between MIDlets in different suites.

¢ In accordance with the Java convention, record store names are case sensitive and may consist of
any combination of up to 32 unicode characters. They have to be unique in a given MIDlet suite.

¢ If you use more than one thread in a MIDlet, you have to coordinate this access yourself.

¢ Records are uniquely identified within a given record store by their recordId, which is an integer
value and is used as the primary key. The recordId of the first record created in a record store
will be 1.

¢ The record store keeps track of an integer representing a version. This version number is
incremented for each operation that changes the contents of the record store.

The methods available with this class are:

openRecordStore
closeRecordStore
listRecordStores

deleteRecordStore

* & & o o

getName

80 Chapter 4: MIDP-MIDlet Implementation with Case Studies

getVersion
getNumRecords
getSize
getSizeAvailable
getLastModified
addRecordListener
removeRecordListener
getNextRecordID
addRecord
deleteRecord
getRecordSize

getRecord

® & 6 6 & 6 O O O o o o o

setRecord

*>

enumerateRecords

In the following code block, we define a method called read record, which reads the contents of an
XML file and then adds the parsed values to a RecordStore. For this, it calls another method
record_add defined after the read record. This method is used in our Mobile Web Services project
in Chapter 10. Most of the code here is to handle the reading and parsing of the XML file contents, but it
may help you in getting an idea about the practical use of RecordStore class. You will be able to
understand the following code if you also refer to Chapter 10 briefly. The RecordStore class gives you
many methods for managing the device database. We have used only a few of these, but once you are
able to use these, it may be easier to use others. For an even better illustration of the use of this class, see
the case study named AddressBook later in this chapter.

void read record()

{

int k, id;

String state = "", data = "";

boolean founditem = false, foundstate = false;
try

{
/* Opens RecordStore for insertion of records */
recordStore = RecordStore.openRecordStore ("addresses", true);
}
catch (RecordStoreException rse)
{
rse.printStackTrace () ;

}

// Start of XML handling part...
do
{
try
{
/* Events generated by the parser while parsing XML file */

event = parser.read ();

/* Type of event generated while parsing XML File */
if (event.getType () ==Xml.START TAG)

Chapter 4: MIDP-MIDIlet Implementation with Case Studies 81

StartTag stag = (StartTag)event;
if (stag.getName () .equals ("weather"))
{

founditem = true;

if (stag.getName () .equals ("state"))
{

foundstate = true;
}
}
if (event.getType ()== Xml.TEXT)
{
TextEvent tevent = (TextEvent)event;

if (foundstate)
{

state = tevent.getText();
data = data+"?"+state;
foundstate = false;

}

else

{
data = data+"?"+ tevent.getText();
}
}

if (event.getType () ==Xml.END TAG)
{
EndTag etag = (EndTag)event;
if (etag.getName () .equals ("weather"))
{
data = data+"?";
founditem = false;
// End of XML handling part

/* Calling the method for insertion of record into the database */
id = record add(data) ;

/* insertion of record into the hashtable */
htable.put ((Object)state, Integer.toString(id)) ;

data = "";

}

while (! (event instanceof EndDocument)) ;

try

{

/* Closes RecordStore after insertion of records */

recordStore.closeRecordStore () ;

}

catch (RecordStoreException rse)

{

82 Chapter 4: MIDP-MIDlet Implementation with Case Studies

rse.printStackTrace() ;

}

}
The method record_add defined next is meant to add records to a store, as the name suggests:

/* Function for record addition...*/
int record add(String data)
{
int i = 0;
try
{
byte b[] = data.getBytes();
i = recordStore.addRecord(b,0, b.length);
}
catch (RecordStoreException rse)

{

rse.printStackTrace() ;

}

return 1 ;

}
The method given next deletes the whole RecordStore:

/* Method for deletion of records from the Recordstore */
void deleterecords ()
{
try
{
System.out.println(" Test Before Delete ");
recordStore.deleteRecordStore ("addresses") ;
System.out.println(" Test After Delete ");
}

catch (RecordStoreException rse)

{

rse.printStackTrace () ;

Exceptions in Persistance Package

The exceptions in this package are listed as follows:

InvalidRecordIDException
RecordStoreException
RecordStoreFullException

RecordStoreNotFoundException

* & & o o

RecordStoreNotOpenException

Installation of MIDP and Running Applications

Installation of MIDP is as simple as that of CLDC. You just have to download the zip archive and unzip
it in any directory of your choice. After that, you are ready to run the sample applications shipped along
with the MIDP Early Access Release. These are mainly games and simple MIDlets to make you familiar

Chapter 4: MIDP-MIDlet Implementation with Case Studies 83

with the use of basic features of MIDP. Of course, you should have JDK1.3 installed on your system if
you want to compile the source code. The tool to be used for running applications is the simulator
provided in the form an executable named midp . exe. If you just go to the directory containing this tool
and type midp at the command prompt, the simulator will start, although it will not run any application.
For that, you have to give it the location of the libraries you click the Open Project button and select the
application you want to run.

The sample applications are in the form a JAR archive. If you are using Windows 95/98/2000, you can
make a run.bat file, as given in the following code, to run these applications. Doing this will open a
menu showing the list of applications. Note that sokoban . zip is the archive in which boards for
various levels of the Sokoban game have been stored.

run.bat
@echo off

rem This file runs the example.jad/jar file in the emulator.

set CLASSPATH=1lib\midp.jar;lib\examples.jar;
src\example\sokoban\sokoban.zip

bin\midp -descriptor run.jad

When you write your own applications, you can change the classpath according to the directory where
you store your source files.

For compiling and preverifying, you can add commands to the batch file listed in the preceding code. The
commands will be similar to those used in CLDC; you just have to use relevant classpaths. Note that the
MIDP APIs are available in the JAR archive midp. jar. You can extract these if you like. In order to
give you a better idea about the whole process of compiling, preverifying, jarring, jadding (jadding is
creating an application descriptor which is required by the midp.exe to execute the application), and
running MIDlets and MIDlet suites, we are giving in the following section the code for a longer sample
batch file.

This file takes a command line argument called $name% that signifies the name of your application, in
this case, the sample MIDlets. We have used the same name for the directory in which the source files,
the manifest (example .mf), the application descriptor (example. jad), and the JAR archive
(example. jar) are placed. If you want different names for these files and directories, you can use more
command line arguments, but a single name is more convenient if you are careful about the directories
and the classpath. The benefit of using such a batch file is that it gives you the option of executing or
skipping each command. This way, you can try to fix things in one of the commands by just skipping the
rest.

Obviously, the name of the batch file and also its content — except the Java files — are not case
sensitive. Also, the indented lines are a continuation of the preceding lines — that is, if you type them on
the console, you have to type them without pressing the Enter key. Before being able to run applications,
you have to prepare the manifest and the application descriptor, describing the MIDlet. The contents of
these will include attributes mentioned MIDlet Suites section earlier in this chapter.

Some other things should be noted with respect to the commands used in the batch file. Unlike previous
files, we are compiling, verifying, jarring, and jadding the source files given in the src directory. Earlier,
we had just used the JAR archive provided with the release. This seems to create a problem in the
preverifying tool (preverify.exe) in Windows 98 (which was tried) in that it is unable to do its job on
specifying midp . jar in the classpath. One workaround tried was to unjar the MIDP API and specify the
name of the directory in the classpath — only for preverification, because there is no problem in
compiling or running with the JAR file. Also, the preverifying tool in the MIDP release was replaced
with the one that came with the J2ME Wireless Toolkit. It worked as far as preverifying goes, but the
emulator crashed sometimes while running the sample MIDlets.

84 Chapter 4: MIDP-MIDlet Implementation with Case Studies

sample.bat

Code for sample.bat is described here:

@echo off
rem This file compiles, preverifies, and runs the sample
applications in the emulator.

set name=%1
shift
if "%name%$"=="" goto :abort

echo Creating directories...

mkdir tmpclasses
mkdir classes
mkdir res

choice /c:ync /t:n,10 Do you want to compile?
if errorlevel 2 goto skipcompile

echo Compiling source files...
rem Replace or change classpaths according to the locations on your disk...

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%name%*.java

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%name%\lcdui*.java

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%$name%\manyballs*.java

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%name%\sokoban*.java

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%name%$\stock*.java

javac -bootclasspath lib\midp.jar -d tmpclasses
-classpath tmpclasses src\%$name%$\tiles*.java

:skipcompile
choice /c:ync /t:n,10 Do you want to preverify?
if errorlevel 2 goto skippreverify

echo Verifying class files...
bin\preverify -classpath lib;tmpclasses -d classes tmpclasses

:skippreverify
choice /c:ync /t:n,10 Do you want to do jarring?
if errorlevel 2 goto skipjarring

echo Jarring verified class files...
jar cmf %name%.mf %name%.jar -C classes

echo Jarring resource files...
jar umf %name%.mf %name%.jar -C res

:skipjarring
choice /c:ync /t:n,10 Do you want to run the applications?

Chapter 4: MIDP-MIDlet Implementation with Case Studies 85

if errorlevel 2 goto skiprun

set CLASSPATH=1lib\midp.jar;%name%.jar

bin\midp -classpath lib\midp.jar;%name%.jar;
src\example\sokoban\sokoban.zip -descriptor %name%.jad

goto rundone

:skiprun
echo Skipping run.
goto rundone

:abort
echo Aborting now. Give application name to be run.

:rundone

example.jad

Code for example.bat is described here:

MIDlet-Name: SunSamples

MIDlet-Version: 1.0

MIDlet-Vendor: Sun Microsystems, Inc.

MIDlet-Description: Sample suite from MIDP early access workspace.
MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC-1.0

MIDlet-1: Sokoban, /icons/Sokoban.gif, example.sokoban.Sokoban
MIDlet-2: Tickets, /icons/Auction.gif, TicketAuction

MIDlet-3: Colors, /icons/ColorChooser.gif, example.Color
MIDlet-4: Stock, /icons/Stock.gif, example.stock.StockMIDlet
MIDlet-5: Tiles, /icons/Tiles.gif, example.tiles.Tiles
MIDlet-6: ManyBalls, /icons/ManyBalls.gif, example.ManyBalls
MIDlet-7: Sampler, /icons/App.gif, Sampler

MIDlet-8: Properties, /icons/App.gif, example.PropExample
MIDlet-9: HttpTest, /icons/App.gif, example.HttpTest

You can also run MIDlet suites from a browser by configuring them to recognize the MIME type. For
example, you can add the following types to Netscape Communicator. Then, if you open the application
descriptor — say, example.jad — the browser will run it for you. At least this is what Sun’s
documentation says. When this was tried on Windows 98 with Netscape, either there was no response or
the system halted. With IE, the system did not halt but the browser did nothing.

Description: MIDP app descriptor

MIME Type: text/vnd.sun.j2me.app-descriptor

Extension: jad

Application: D:\DTP\J2ME\Download\j2me midp-1 0-eal-win\midp-
eal\bin\midp.exe -transient file://%1

J2ME Wireless Toolkit

You may be wondering at this stage whether it is not possible to do compilation, etc., without having to
bother with giving classpaths and writing a batch file. There is indeed a much easier way to do all this
with J2ME Wireless Toolkit. It provides you three ways of developing your applications:

¢ With KToolbar, you can perform, build, and run operations using a simple graphical user interface.

86 Chapter 4: MIDP-MIDlet Implementation with Case Studies

¢ With J2ME Wireless Module — a plug-in for Forte for Java —you can use the development
environment of Forte while developing J2ME applications.

¢ You also have the option to operate from command line if you don’t like to work with graphical
user interfaces or if you want to do something so advanced that it needs special options to be
specified at the command line.

Note that this toolkit is meant for MIDP only and not for other profiles — not so far, at least.

You download the J2ME Wireless Toolkit from Sun’s product page just as you can download CLDC and
MIDP implementations. You will, of course, need JDK before you can use it. If you want to use it with
Forte, you will also need to download Forte for Java from Sun’s site from the URL
http://www.sun.com/forte/ffj/ce. A newer version of this toolkit, numbered 1.0.1, is now
available. As far as an ordinary user will be able to make out, it just has the design of its emulated devices
changed.

J2ME Wireless Toolkit includes everything you need to develop applications. It includes the preverifier,
the MIDP libraries, MIDP documentation, an emulator to run MIDlets, and even the sample applications
that are available with MIDP release. Moreover, to perform build and run operations from command line,
batch files are provided.

There are in fact several emulators included with the toolkit. The emulator gives you the choice to test
your applications on a default gray phone, default color phone, minimum phone, and even a pager. The
emulator also supplies runtime logging of various events, including method tracing, garbage collection,
class loading and exceptions thrown. Thus you can trace the execution of an application. The limitations
of the emulator are that it does not emulate the application management and speed of execution. The
latter means that the application may execute at a different speed on the actual device for which it is
meant.

Operation of the KToolbar is quite simple. It can be started from the Start button on Windows. You have
to first create a new project and give it a name, as well as specify the MIDlet class name. After this, a
directory will be created with the same name as the one you give for the project. It will contain three
subdirectories (bin, res, and src). You then have to put the source code you wrote in the src
directory. When you hit the Build button, the application will be compiled and preverified. To run it, you
have to just hit the Run button. Before running the application, you can choose the device on which you
want to see it run. There are four choices, as mentioned previously.

For more information about this toolkit, you can read the user guide included in the download.

MIDP for Palm

MIDP is now not restricted to mobile phones and pagers. You can even use it on Palm devices. This
means that Palm devices can now take advantage of this profile instead being restricted to a configuration
(CLDC) and a temporary arrangement such as KJava for providing a user interface. Sun has released its
implementation of MIDP for Palm OS, which allows you to convert MIDlets into prc files so that they
can run on Palm devices.

This release, too, is available for download from Sun’s site in the form of a zip archive. This can be
unzipped into any directory — say, the same one in which you unzipped MIDP. On unzipping, a
subdirectory (midp4palm) will be formed, which contains the following:

+ Java Manager executable file

Test applications

.

¢ Demo applications and games

¢ A sample multi-application bundle
.

Utilities

Chapter 4: MIDP-MIDlet Implementation with Case Studies 87

Files converted by this implementation can be run on any device running Palm OS 3.5 or later and with at
least 4 MB of total memory. The release has some limitations:

¢ There is a limit of around 20K pixels on the maximum size of image. A typical maximum image
size is 200 by 98 pixels.

¢ There is a known problem in Palm OS 3.5 with the HTTP Post command. If you are not connected
to the palm.net site, the command will send only the HTTP headers, not the Post data. As a
workaround, use HTTP's Get command instead of Post whenever possible.

We will be looking at how to use this release when we discuss J2ME implementations for Palm devices
later in the book. Figures 4-1 through 4-8 detail class hierarchy.

| java.lang.Ohject

java.lang.Boolean |

java.lang.Byte |

java.lang.Character

java.lang.Class

java.lang.Integer

java.lang.Long

java.lang.Math

java.lang.Runtime

java.lang.Short

java.lang.String

java.lang.StringBuffer
java.lang.System
java.lang.Thread

java.atil. TimerfZone

java.ail. TimerTask

java.til. Timer
Continued - | |

NN

Figure 4-1: MIDPClass Hierarchy - I.

88 Chapter 4: MIDP-MIDIet Implementation with Case Studies

Continued -1

Java.util.Date

|
javaatil.Calendar |
|
|

java.util.Hashtable

java.util.Vector |

java.util.Stack |

java.util.Random |

java.io.Reader |

|—| java.io.InputStreamReader |

java.io.InputStream |

4' Java.io.ByteArrayinputStream |

4' java.io.DatalnputStream |

I NN

java.io.OutputStream |

4| java.io.ByteArrayQutputStream |

4| Java.io.DataQutputStream |

4| java.io PrintStream |

Java.io.Writer |

I—| java.io.OutStreamWriter |

1

Continued - I |

Figure 4-2: MIDPClass Hierarchy - II.

Continued - I |

javax.microedition.lcdul.Ticker |

111

javax.microeditionlcdui.Display |

—{iauax.micrneditiun.lcdui.DispIayahle |

4{ javax.microedition.lcdui.Canvas |

4{ javax.microedition.lcdul.Screen |

—{ javax.microeditionlcdui.Font |
—{ javax.microedition.lcdui.Graphics |

—(javax.microedition.lcduilmage |

—{ javax.microedition.lcdui kem |

4| javax.microedition.lcdul. Alert

4| javax.microedition.lcdui.List

4| javax.microeditionlcdui Form |
4| javax.microedition.lcdui.TextBox |

4|ja\rax.micrueditiun.lcdui.ChuiceGruup|

4| javax.microedition.lcdui.DataField |
4| javax.microedition.lcdul.Gauge |

4| Jjavax.microedition.lcduilmageltem |
4| javax.microeditioncdul.Stringltem |
4| javax.microedition.lcdul. TextField |

— javax.microedition.midlet.MiDlet |

—{ javax.microedition.rm=.RecordStore |

Figure 4-3: Output MIDPClass Hierarchy - II.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 89

| java.lang.object |
jawva.lang. Throwahle |
java.lang.Error |
java.lang.VirtualMachine Error |
java.lang.Exception | |—| java.lang. CutCOfMemoryError
—| java.lang.ClassNotFoundException |

_| java.lang.lllegalAccessException |
java.lang.InstantiationException

java.lang.Interrupted Exception

_| java.lang. IOException |
java.io.EQOFException |

java.io.Interrupted| OException |

java.io.UnsupportedEncodingException

java.io.UTFDataFormatException

javax.microedition.io.ConnectionNotFoundException |
Continued - I

Figure 4-4: MIDP Error and Exception Hierarchy - I.

— Continued - | |

—| java.lang.RuntimeException |

java.lang.ArithmeticException |

java.lang.ArrayStoreException |

java.lang.ClassCastException |

java.lang.lllegalArgumentException |
4|jaua.Iang.lllegalThreadStateExcepﬁun |

4| java.lang.HumberFormatException |

java.lang.lllegalMonitorStateException |

java.lang.lllegalStateException |

java.lang.IndexOutOfBoundsException |
4| java.lang.ArrayindexOutfBoundsException |

4|jaua.Iang.StringlndexOutOfBuundsExceptiun |
java.lang.HegativeArraySizeException |

Java.lang.HullPointerException |

java.lang.SecurityException |

java.util.HoSuchElementException |

AR RN ARN

java.utiLEmptyStackException |

— Continued - I |

Figure 4-5: MIDP Error and Exception Hierarchy - II.

90 Chapter 4: MIDP-MIDIet Implementation with Case Studies

— Continued - I |

—| javax.microedition.midlet.MIDletStateChangeException |

—| javax.microedition.rms.RecordStoreException |

javax.microedition.rms.InvalidRecordiDException |

javax.microedition.rms.RecordStoreFullException |

javax.microedition.rms.RecordStorelotFoundException |

|1

javax.microedition.rms.RecordstoreNotOpenException |

Figure 4-6: MIDP Error and Exception Hierarchy - Il.

| java.lang.0bject |

—| Javax.microedition.lcdui.Choice |

—|iauax.micrued'rtiun.lcdui.CnmmandListener |

—| Javax.microedition.lcdui.temStateListener |
—| Java.lang.Runnable |
—| Javax.microedition.io.Connection |

Jjava.microedition.io.DatagramConnection |

java.microedition.io.lnputConnection |7

Java.microedition.io.OutputConnection |

]

Java.microedition.io.StreamConnection

\—{ Java.microedition.io.ContentConnection

\—| java.microedition.io.HttpConnection

|

Java.microedition.io.StreamConnectionHotifier |

Java.io.Datalnput |7

java.io.DataOutput |

|

Java.microedition.io.Datagram |

javx.microedition.rms.RecordComparator |

Continued - | |

1L

Figure 4-7: Output MIDP Interface Hierarchy - I.

1

Continued - | |

—| javx.microedition.rms.RecordEnumeration |

—| javx.microedition.rm=.RecordFilter |

—| javi.microedition.rms.RecordListener |

Figure 4-8: MIDP Interface Hierarchy - II.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 91

Case Studies

This section is on case studies developed using MIDP APIs. The case studies covers important GUI
classes and also makes use of HTTP connection.

TextFieldCheck

Our first example of an MIDP application is a simple MIDlet to demonstrate the use of a TextField.
You can use it in several classes and methods that are required in most MIDlets. These include,
especially, the class MIDlet (which has to be used in every MIDIet) and the methods of this class for
managing the life cycle of a MIDlet (such as startApp, pauseApp, and destroyApp). You can run
this application in J2ME Wireless Toolkit as explained previously. On starting the MIDlet, the user sees a
screen displaying the name of the MIDlet. On selecting it, the user is shown a TextField in which he
can enter any text. After he has done this, he can press the OK button. Upon this, a message is displayed
that the user has successfully entered whatever was required refer to Figure 4-9 to view the Output. Of
course, the “button” is just a label above the actual button of the mobile phone. The top-right button is
used as an OK button, and the top-left button is used as an Exit button.

User Interface -
TextField

Here..
LB

Uzer Ertered . ABC
ok L=V

Figure 4-9: Output TextFieldCheck.

To add the UI component TextField, we first create a Form in this MIDlet and then add the
component to it. In addition to the TextField, there are buttons on this form to allow the user to
indicate that he has finished typing in the TextField and to allow him to quit. These buttons are
created by implementing the class Command. For event handling, CommandListener is used. We have
to implement this interface to define what will be the behavior of the application when the user presses
the button. This is done by using a simple i £ block.

Note that in using the pauseApp and destroyApp methods, all items have to be assigned null
values.

Listing 4-1: TextFieldCheck.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

/** A program to demonstrate how a TextField works on a handheld
* device. The program gives a feel of how a TextField works by
* putting the text taken from a TextField on to the StringItem.

*/

public class TextFieldCheck extends MIDlet implements
CommandListener {

// Declaring variable for Display class.
private Display display = null;

92 Chapter 4: MIDP-MIDlet Implementation with Case Studies

// Declaring variable for StringItem class.
StringItem string item = null;

// Declaring variable for Form class.
Form ui _holder = null;

// Declaring variables for Buttons in the UI.
Command ok = null;
Command quit = null;

// Declaring variable for the TextField.
TextField textcheck = null;

public TextFieldCheck() {

// Initializing the Display

display = Display.getDisplay(this) ;

// Initializing the Buttons

ok = new Command("Ok", Command.SCREEN, 3) ;
quit = new Command("Quit", Command.SCREEN, 2) ;
}

public void startApp () {
ui_holder = new Form("User Interface - TextField");

// Initializing the Form
textcheck = new TextField("Enter the Text Here..","",50,0);

string item = new StringItem("User Entered ..", "");

// Adding TextField to the form (place holder)
ul _holder.append (textcheck) ;

// Adding Stringitem to the form (place holder)
ul holder.append(string item) ;

// Adding Command Button to the Form
uil holder.addCommand (ok) ;

// Adding Command Button to the Form
ul holder.addCommand (quit) ;

// Invoking Action Listener
ui_holder.setCommandListener (this) ;

/*

* Making the Display Current so that it can show
* the Form.
*/
display.setCurrent (ui_holder) ;

}

public void pauselpp () {
string item = null;
ui holder = null;
textcheck = null;

Chapter 4: MIDP-MIDlet Implementation with Case Studies 93

public void destroyApp (boolean condition) {
string item = null;
ui holder = null;
textcheck = null;

// Destroy the form...
notifyDestroyed() ;
}

public void commandAction (Command c, Displayable d) {
// Event handling for the Button
if (¢ == ok) {
string item.setText (textcheck.getString()) ;
}
if (¢ == quit) {
destroyApp (true) ;
}
}
} // End of TextFieldCheck class.

LabelUl

The next MIDIet is about putting some text on the screen to serve as a label. This is done here in two
ways. First, a string User Interface - Label is passed as parameter to a Form named
ui_holder. Then another string A simple Label..is added to the Form by calling the append
method. The first string can be considered the title and the second can be the description as shown in
Figure 4-10.

User Interface -
Label

A simple Lakel..
Example of & String
ftem... Hello Warld
Label

- Ok

Figure 4-10: Output LabelUl.

In the second way of doing a similar thing, two strings are passed as parameters to a StringItem, the
first of which serves as a label for the second. Then this StringItem is added to the Form, again by
calling the append method. There is an OK command so that the user can indicate that he has completed
viewing the text.

Again note that all items have to be assigned null values in pauseApp and destroyApp methods.
Listing 4-2: LabelUl.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

/** A program to demonstrate how Labels work on a handheld
* device. The program gives a feel of both types of

* Labels, i.e. a standard Label and a StringItem.

*/

94 Chapter 4: MIDP-MIDlet Implementation with Case Studies

public class LabelUI extends MIDlet implements
CommandListener {

// Declaring variables for Display class.
private Display display = null;

// Declaring variables for StringItem class.
StringItem string item = null;

// Declaring variables for Form class.
Form ui _holder = null;

// Declaring variables for Buttons.
Command ok = null;

public LabelUI () {
// Initializing the Display
display = Display.getDisplay(this) ;
ok = new Command("Ok", Command.SCREEN, 3) ;
}

public void startApp() {
// Initializing the Form.
ul holder = new Form("User Interface - Label");

// Adding a simple label to the Form.

ul holder.append("A simple Label...");
string item = new StringItem("Example of a String
Item....", "Hello World Label");

// Adding StringItem to the form (place holder).
ul holder.append(string item) ;

// Adding Command Button to the Form.
uil holder.addCommand (ok) ;

// Invoking Action Listener..
ui_holder.setCommandListener (this) ;

/* Making the Display Current so that it can show
* the Form.
*/

display.setCurrent (ui_holder) ;

}

public void pauselpp () {
string item = null;
uil holder = null;

}
public void destroyApp (boolean condition) {
string item = null;

ui holder = null;

// Destroy the form.

Chapter 4: MIDP-MIDlet Implementation with Case Studies 95

notifyDestroyed() ;
}

public void commandAction (Command c, Displayable d) {

// Event handling for the Button.
if (¢ == ok) {
destroyApp (true) ;
}
}
} // End of LabelUI class.

ChoiceGroupUl

This MIDP application shows how you can put the equivalent of radio buttons and check boxes on the Ul
of a MIDlet. The class responsible for both these in MIDP is ChoiceGroup. It is only the value of the
parameter choiceType that determines whether the ChoiceGroup elements will act as radio
buttons or check boxes. The three types of ChoiceGroups are EXCLUSIVE, MULTIPLE, or
IMPLICIT

The label for the whole ChoiceGroup is set by passing the value of the 1abel parameter as Choices.

Text labels for the elements of a ChoiceGroup are added by passing the stringElements parameter
with a value equal to a string array containing the labels. Since in this case we wanted no images, we

have set the value of the imageElements asnull. All the elements are added to the Form by calling
the append method as before.

User Interface -
ChoiceGroup=

Choices..

&

o

c

Ok +* it

Figure 4-11: Output ChoiceGroupUI - I.

User Interface -

ChoiceGroup=s
o

e

Uzer Clicked &
ok o Qi

Figure 4-12: Output ChoiceGroupUI - II.

When the user makes his choices and presses the OK button, the commandAction is used for event
handling. For this event handler, 1f blocks and a for loop are used. As a result of this, the user is
shown a message reporting the choices made by him as shown in Figure 4-11 and Figure 4-12. He can get
out of the application by pressing the Quit button.

Listing 4-3: ChoiceGroupUl.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

96 Chapter 4: MIDP-MIDlet Implementation with Case Studies

/** A program to demostrate how a ChoiceGroup works on a
* handheld device.
*/

public class ChoiceGroupUI extends MIDlet
implements CommandListener {

// Declaring variable for the Display class.
private Display display = null;

// Declaring variables for the ChoiceGroup.
ChoiceGroup radiobutton type = null;
ChoiceGroup checkbox type = null;

// Declaring variables for the StringItem class.
StringItem string iteml = null;
StringItem string item2 = null;

// Declaring variables for the Form class.
Form ui _holder = null;

// Declaring variables for Buttons.
Command ok = null;
Command quit = null;

String[] name = {"a","b","c"};
String[] namel = {"d","e","f"};

Image[] img = null;
boolean[] values = null;

public ChoiceGroupUI () {
// Initializing the Display.
display = Display.getDisplay(this) ;

// Initializing the Button.

ok = new Command("Ok", Command.SCREEN, 3) ;
quit = new Command("Quit", Command.SCREEN, 2) ;
}

public void startApp() {
// Initializing the Form.

ui_holder = new Form("User Interface - ChoiceGroups") ;

// Initializing the Choice groups.

radiobutton type = new ChoiceGroup ("Choices..",
ChoiceGroup.EXCLUSIVE, name, img) ;
string iteml = new StringItem("User Clicked ","");

checkbox type = new ChoiceGroup ("Choices..",
ChoiceGroup.MULTIPLE, namel, img) ;

// Getting the values the user clicked.
string item2 = new StringItem("User Clicked ","");

// Adding StringItem to the form (place holder).

Chapter 4: MIDP-MIDlet Implementation with Case Studies

ul holder.append
uil holder.append
uil holder.append
ul holder.append

radiobutton type) ;
string iteml) ;
checkbox_type) ;
string item2) ;

// Adding Command Button to the Form.
ui_holder.addCommand (ok) ;
ui_holder.addCommand (quit) ;

// Invoking Action Listener.
ui_holder.setCommandListener (this) ;

/* Making the Display Current so that it can show
* the Form.
*/
display.setCurrent (ui_holder) ;
}

public void pauselpp () {
string iteml= null;
string item2= null;

ui holder = null;
radiobutton type = null;
checkbox type = null;

public void destroyApp (boolean condition) {
string iteml= null;
string item2= null;

ui holder = null;
radiobutton type = null;
checkbox type = null;

// Destroy the form.
notifyDestroyed() ;
}

public void commandAction (Command c, Displayable d)
// Event handling for the Button.
if (¢ == ok) {
String temp = "";
string iteml.setText (
radiobutton type.getString
radiobutton type.getSelectedIndex())) ;
for (int i=0;i<3 ;i++) {
boolean vall = checkbox type.isSelected(1) ;
if (vall) {
temp = temp+namel[i];
}
}
string item2.setText (temp) ;
}
if (¢ == quit) {
destroyApp (true) ;

97

98 Chapter 4: MIDP-MIDlet Implementation with Case Studies

}
}
} // End of TextFieldCheck class.

TickerUI

This is a simple MIDlet, showing the use of the Ticker class. It basically shows the user some scrolling
text — somewhat like a marquee in HTML. The Ticker has to be passed some string as the parameter.
This string will be shown scrolling horizontally on the screen as in Figure 4-13. But before it happens,
you have to call the setTicker method and pass the name of the Ticker object as an argument to this
method. Note that we are not using the append method as we did in previous examples. There is an OK
button for the user to indicate that the user has had enough of the Ticker.

User Interface -
Ticker

Ok
Figure 4-13: Output TickerUI.

Listing 4-4: TickerUl.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

/** A program to demostrate how a "Ticker" works on a
* handheld device.
*/

public class TickerUI extends MIDlet
implements CommandListener {

// Declaring variables for Display class.
private Display display = null;

// Declaring variables for Form class.
Form ui _holder = null;

// Declaring variables for Buttons.
Command ok = null;

// Declaring variables for Ticker in the UI.
Ticker ui ticker = null;
public TickerUI() {
// Initializing the Display.
display = Display.getDisplay(this) ;

// Initializing the Command Button.
ok = new Command("Ok", Command.SCREEN, 3) ;
}

public void startApp() {

Chapter 4: MIDP-MIDlet Implementation with Case Studies 99

// Initializing the Form.
ul holder = new Form("User Interface - Ticker");

// Initializing the Ticker.
ui_ticker = new Ticker("..This is an Example of a
Ticker User Interface..");

// Adding Ticker to the Form.
ui_holder.setTicker (ui_ticker) ;

// Adding Command Button to the Form.
uil holder.addCommand (ok) ;

// Invoking Action Listener.
ui_holder.setCommandListener (this) ;

/* Making the Display Current so that it can show
* the Form.
*/

display.setCurrent (ui_holder) ;

public void pauselpp () {
ui holder = null;
ul ticker = null;

}

public void destroyApp (boolean condition) {
ui holder = null;
ul ticker = null;

// Destroy the form.
notifyDestroyed() ;
}

public void commandAction (Command c, Displayable d)
// Event handling for the Button.
if (¢ == ok) {
destroyApp (true) ;
}
}
} // End of TickerUI.

MenuCheck

{

Now we present a more advanced application. This is a very useful MIDlet, since it shows how a menu
can be created with MIDP. The class used for this is List. Just as in the case of ChoiceGroup, there
can be three types of Lists: IMPLICIT, EXCLUSIVE, and MULTIPLE. We use the first variety here, as
this will perhaps be the most used in applications. For this variety, we don’t have to attach application-
defined commands — it is enough to register CommandListener that is called when the user makes a

selection.

100 Chapter 4: MIDP-MIDlet Implementation with Case Studies

Various 0ptiuns..|

Ticker
Alert

Figure 4-14: Output MenuCheck - .
User's Choice...

Uzer Ertered . Text
Field...

it

Figure 4-15: Output MenuCheck - II.

We begin building a menu by adding elements to a List by calling the append method. The other
important thing to do is to implement the commandAction method of the CommandListener class.
We do this by using the switch block to determine what the user will get when he selects an entry on
the menu. In our case, the user sees a message (as in Figure 4-15) describing the selection he made.
Needless to say, there is a Quit button here as well, since we don’t want to lock in the user.

Listing 4- 5: MenuCheck.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;

/** A program to check how a Menu works on a handheld.

* The program gives a taste of how a Menu works by adding
* various Alerts and TextFields on to it.

*/

public class MenuCheck extends MIDlet
implements CommandListener {

private Display display = null;
Command ok = null;
Command quit = null;
List menu = null;
Form ui_ form = null;
StringItem si = null;

public MenuCheck() {
// Initializing the Display..
display = Display.getDisplay(this) ;
quit = new Command("Quit", Command.SCREEN, 2) ;
}

public void startApp() {
menu = new List("Various Options..",List.IMPLICIT) ;

Chapter 4: MIDP-MIDIlet Implementation with Case Studies 101

menu.append ("TextField",null) ;
menu.append ("Ticker",null) ;
menu.append ("Alert",null) ;

menu.setCommandListener (this) ;
display.setCurrent (menu) ;

ui_form = new Form("User's Choice...");
si = new StringItem("User Entered ..", "");
ul form.append(si) ;

// Adding Command Button to the ui form.
ul form.addCommand (quit) ;

// Invoking Action Listener
ui_form.setCommandListener (this) ;

}

public void pauselpp () {
menu = null;

}

public void destroyApp (boolean unconditional) {
menu = null;
notifyDestroyed() ;

}

public void commandAction (Command c, Displayable d) {
// Event handling for the Button
if (¢ == quit) {
destroyApp (true) ;
}

else {
List down = (List)display.getCurrent() ;

switch (down.getSelectedIndex()) {
case 0: si.setText("Text Field...");
break;
case 1: si.setText("Ticker...");
break;
case 2: si.setText("Alert...");
break;

}
display.setCurrent (ui_form) ;
}

}
} // End of MenuCheck.

AddressBook

This is perhaps the most advanced application in this chapter. In a way, this MIDlet is an extension of the
MenuCheck MIDIet. It doesn’t just show some message when the user makes a selection. Rather, it
goes on to add some real functionality by allowing the user to add records to an address book, search
them, delete them, and moreover, to quit the application.

102 Chapter 4: MIDP-MIDlet Implementation with Case Studies

Address Book...

1. Search Address
2oAdd Address

3. Delete Address
4 it

Figure 4-16: Output AddressBook - .

Add an Entry..
Matme: ..

AL
Phone Ma..
236

out T A
Figure 4-17: Output AddressBook - II.

The menu is created in the same way as previously by using the List class and adding elements to it by
calling the append method see Figure 4-16. This List is again of IMPLICIT type.

For adding entries to an address book (or for searching for and deleting them), you need to use database
capability. This is where MIPD’s persistence package and its RecordStore class are relevant. A
RecordStore is opened by calling its openRecordStore method. Records are added to it by calling
the addRecord method. When the user selects Add Address on the menu, he gets two TextFields in
which he can type his name and telephone number, respectively as shown in Figure 4-17. The
getString method is used on these TextFields to get the text user types. You can also see the use
of ByteArrayOuputStream, DataOutputStream, and the writeUTF method.

SUCCESS.....

One Record
Entered
Successtully...

it flzin

Figure 4-18: Output AddressBook - IIl.

Search An
Address

Mame to Search..

it Search

Figure 4-19: Output AddressBook - IV.

For searching records, enumerateRecords method is used (Figure 4-19 shows how to search the
record and Figure 4-20 displays the search results), along with while and if blocks. For deleting
records(refer to Figures 4-21 and 4-22), deleteRecord method is used, in addition to the

Chapter 4: MIDP-MIDlet Implementation with Case Studies 103

enumerateRecords method. Don’t forget that nextRecord method makes you capable of going to
the next record while enumerating.

Search Result.
Mame. A0
Phone. 236

it hdain

Figure 4-20: Output AddressBook - V.

Delete An
Address

Mame to Delete..

it Delete

Figure 4-21: Insert caption here Output AddressBook - VI.

Finally, calling the closeRecordStore method of the RecordStore class closes the database. But
before proceeding to the next MIDlet, take note of the exceptions and try..catch blocks, as well as the
switch block that is used for event handling in case of the main menu.

Delete Result..

The Record iz not
Lizted...

it hilzin
Figure 4-22: Insert caption here Output AddressBook - VII.
Listing 4- 6: AddressBook.java

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.lcdui.*;
import javax.microedition.rms.*;
import java.util.Enumeration;
import java.util.Vector;

import java.io.*;

/** A program to demonstrate how databases work on a handheld device
* by creating an address book where you can add, search and

* delete number/addresses.

*/

public class AddressBook extends MIDlet
implements CommandListener {

104 Chapter 4: MIDP-MIDIet Implementation with Case Studies

private Display display = null;
Command search = null;

Command quit = null;

Command delete = null;

Command addnow = null;

Command mainmenu = null;

// Declaring a Menu(List)
List menu = null;
Form ui_ form = null;

StringItem si = null;

// TextField for storing the name...
TextField name = null;
TextField phone = null;

// Declaring a RecordStore (Database)...
RecordStore recordStore = null;

public AddressBook () {
display = Display.getDisplay(this) ;
quit = new Command ("Quit", Command.SCREEN, 3) ;
search = new Command ("Search", Command.SCREEN, 2) ;
delete = new Command("Delete", Command.SCREEN, 2) ;
addnow = new Command ("Add",Command.SCREEN, 2) ;
mainmenu = new Command ("Main", Command.SCREEN, 2) ;

// Initializing the Record Store

try {
recordStore = RecordStore.openRecordStore (
"addresses", true);

}

catch (RecordStoreException rse) {
rse.printStackTrace () ;

}

}

public void startApp () {
menu = new List ("Address Book...",List.IMPLICIT) ;
menu.append("1l. Search Address",null);
menu.append("2. Add Address",null);
menu.append("3. Delete Address",null);
menu.append ("4. Quit",null);

menu.setCommandListener (this) ;

display.setCurrent (menu) ;

// GUI for the Search Screen...
void searchScreen() {
ul form = new Form("Search An Address");

name = new TextField("Name to Search..","",50,0);
ul_ form.append (name) ;

ul_ form.addCommand (search) ;

Chapter 4: MIDP-MIDIlet Implementation with Case Studies 105

ui_form.addCommand (quit) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;

// GUI for the Addition Screen...
void addScreen() {
ui_form = new Form("Add an Entry..");

name = new TextField("Name ..","",50,0);
ul_ form.append (name) ;

phone = new TextField("Phone No.. ","",50,0);
ul_ form.append (phone) ;

ui_form.addCommand (addnow) ;
ui_form.addCommand (quit) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;

}

// GUI for the Delete Screen...
void deleteScreen() {
ul form = new Form("Delete An Address");

name = new TextField("Name to Delete..","",50,0);
ul_ form.append (name) ;

ui_form.addCommand (delete) ;
ui_form.addCommand (quit) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;

public void pauselpp () {
menu = null;

}

public void destroyApp (boolean unconditional) {
menu = null;
notifyDestroyed() ;

}

public void commandAction (Command c, Displayable d) {
// Event handling for the Button..
if (¢ == quit) {

106 Chapter 4: MIDP-MIDlet Implementation with Case Studies

try {
close() ;
}
catch (RecordStoreException rse) {
rse.printStackTrace() ;
}
destroyApp (true) ;
}
else if (c == search) {
// When Search button is pressed (search add is called)
String temp search = name.getString();
search add(temp search) ;

}

else if (¢ == mainmenu) {

// To return to Main Menu...
startApp () ;

}

else if (c == delete) {

// When delete button is pressed (delete add) is called
String temp delete = name.getString();
delete add(temp delete) ;
}
else if (c == addnow) {
// When add button is pressed (address add) is called
String temp name = name.getString() ;
String temp phone = phone.getString() ;

address_add(temp name, temp phone) ;

}

else {
List down = (List)display.getCurrent() ;
switch (down.getSelectedIndex()) {

case 0: searchScreen() ;break;
case 1: addScreen() ;break;
case 2: deleteScreen() ;break;
case 3: destroyApp (true) ;break;
}
}
}

void search add(String address) {
// Function for searching...
String temp = " ";
String phone number;
String person name;
int size = address.length();
try {

RecordEnumeration re =
recordStore.enumerateRecords (
null, null, false);

ui_form = new Form("Search Result.");

while (re.hasNextElement ()) {
String namel = new String(re.nextRecord()) ;
try {

Chapter 4: MIDP-MIDlet Implementation with Case Studies 107

person _name = namel.substring(
2 ,namel.indexOf ("?")) ;
}
catch (Exception ef) {
person name = "check";
}
String check name =
person name.substring(0,size) ;
if (check name.equals (address)) {
try {
phone number = namel.substring(
namel .indexOf ("?")+1) ;
}
catch (Exception e) {
phone number = "";
}
temp = temp +"\nName.."+
person_name+"\nPhone.."+
phone number;

}

if (temp.equals(" ")) {
temp = "The required address not found...";
}

ul form.append (temp) ;

ul form.addCommand (quit) ;
ui_form.addCommand (mainmenu) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;

}

catch (RecordStoreNotOpenException rsnoe) ({
rsnoe.printStackTrace () ;

catch (InvalidRecordIDException irid) {
irid.printStackTrace() ;
}
catch (RecordStoreException rse) {
rse.printStackTrace() ;
}
}

void delete add(String address) {
// Function for deletion....
String temp = " ";
String phone number;
String person name;

int 1 = 1;
int del id = 0;
try {

RecordEnumeration re =

108 Chapter 4: MIDP-MIDIet Implementation with Case Studies

recordStore.enumerateRecords (
null, null, false);
ui_form = new Form("Delete Result..");

while (re.hasNextElement ()) {
String namel = new String(re.nextRecord()) ;
try {
person name = namel.substring (

2,namel.indexOf ("?")) ;
}
catch (Exception ef) {

person _name = "check";
}
if (person name.equals (address)) {
del id = i;
}
i++;

}
if (del _id != 0) {
recordStore.deleteRecord(del id) ;

temp = "One Record Deleted Successfully...";
}
else {
temp = "The Record is not Listed...";

}
}
catch (Exception e) {

}
ul form.append (temp) ;

ul form.addCommand (quit) ;
ui_form.addCommand (mainmenu) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;

void address add(String address, String phone) {
// Function for address addtion...
String data = address+"?"+phone;

// ? (to distinguish between name and phone number

ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
DataOutputStream outputStream =
new DataOutputStream (baos) ;
try {
outputStream.writeUTF (data) ;
byte[] b = baos.toByteArray();

recordStore.addRecord(b,0, b.length);

ui_form = new Form("Success..... U g

Chapter 4: MIDP-MIDlet Implementation with Case Studies 109

ul form.append("One Record Entered
Successfully...");

ul form.addCommand (quit) ;
ul_ form.addCommand (mainmenu) ;

// Invoking Action Listener..
ui_form.setCommandListener (this) ;

display.setCurrent (ui_form) ;
}
catch (IOException ioe) {
ioe.printStackTrace() ;

}

catch (RecordStoreException rse) {
rse.printStackTrace() ;
}
}

public void close() throws RecordStoreNotOpenException,
RecordStoreException {
recordStore.closeRecordStore () ;

}
} // End of AddressBook.

TestHTTP

We end the chapter by showing how connectivity can be established with a MIDlet. It is done by using

the HttpConnection interface and Connector class of javax.io package. We first open an
HTTP connection by usingthe open(url) method and then calling the openInputStream
method on this connection in order to allow reading data from it by using the read (data) method. The
file to be read is passed as a URL to the connection. Both the connection and the input stream are closed
by calling the close method. This final part is done inside a finally block to release all the
resources. It is a simple MIDlet, but a useful one. To see the output refer to Figure 4-23.

User Interface -
TextField
http: ityashhello txd

Thiz iz a Test Hitp
application.

Figure 4-23: Output TestHTTP.
Listing 4-7: TestHTTP.java

import java.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.io.*;

import javax.microedition.midlet.*;

/** This is a program to test HTTP connection using MIDP. This
* class reads a text file from an http URL and displays

* the content in a TextFeild.

*/

110 Chapter 4: MIDP-MIDIet Implementation with Case Studies

public class TestHTTP extends MIDlet {
String url = "http://yash/hello.txt";
HttpConnection con = null;
InputStream ins = null;
String str = null;
TextField tx = null;
Form myform = null;
private Display show = null;
public TestHTTP() {
try {

try {
con = (HttpConnection)Connector.open (url) ;

ins = con.openInputStream() ;

}
catch (IOException ex) {
ex.printStackTrace() ;

}
int i = (int)con.getLength() ;

byte[] data = new byte[i];

if (i>0) {
try {
int actual = ins.read(data);

}
catch (IOException ex) {
ex.printStackTrace() ;

}

str = new String(data) ;

show = Display.getDisplay(this);

myform = new Form("User Interface - TextField");
tx = new TextField(url,str,70,0);
myform.append (tx) ;

show.setCurrent (myform) ;

System.out.println(str + "hello");

}

finally {
try {
if(con != null)
con.close() ;
if(ins != null)

ins.close() ;
}
catch (IOException ex) {
ex.printStackTrace() ;
}
str = null;
tx = null;

public void startApp() {

Chapter 4: MIDP-MIDIlet Implementation with Case Studies 111

new TestHTTP() ;
}

public void pauseApp() {
}

public void destroyApp (boolean b) {}
}

Summary
This chapter gives you a feel for programming mobile devices and a sense of the restrictions in terms of
resources for mobile devices. This chapter is groundwork for the six unique projects in this book. You
should be well conversant with the APIs before going on to these chapters. Chapter 5 concentrates on
XML parsing using kxml parser for J2ME. This is an important chapter as we have four project chapters
that have extensive use of XML.

Chapter 5
Handling and Parsing XML in J2ME

Java is a cross-platform application development environment. J2ME is the edition of Java used for
handling micro devices such as cell phones and PDAs. The code written in Java is portable across various
platforms. Besides this, transferability of the data across platforms is also required. XML is used to
provide portable data formats, which can be used by various application development environments.

Brief Overview of XML

XML may be described as a metalanguage, a language that defines other languages. With the help of
XML, the user can define his own tags. Since the tag description is also in XML, the description can be
understood by every platform making the data portable. Since XML allows the user to create a new
language with new tags, it allows the data to be stored in any format. In fact, it is basically used to
describe the way information is stored. XML can provide much better browser capabilities using CSS and
XSL style sheets. Once the tags have been defined in XML, it is quite easy to use this data in any XML
software.

In XML, DTD (Document Type Definition) is used to define the structure and type of tags used by the
program code. DTD defines the names of the tags, their placement, and their relationship with one
another. The DTD definition follows the SGML tag-declaration rules. Sometimes, this definition of tags
becomes the part of the document containing the tags. In that case, the document is called a DTDLess
code. The XML DTD, or Schema, can also be used to define the contents of the XML document.

XML is a format-specific language; it first reads the data definition, understands it, and stores it in the
memory before taking up the document to execute the functioning of the tags defined. To render the data
format understandable by the application defined in the DTD requires special software called parsers.

Structure of XML

An XML document is just like an HTML document, having the new tags defined in the Schema, or the
DTD. The first line is used for declaring the version of the XML; and the second line indicates the name
of the DTD to be used by the document. These constitute the XML Prolog.

The XML Prolog is written as:

<?xml version="1.0"7?>
<!DOCTYPE shop SYSTEM "shopfile.dtd">

Further, the document will have the structure of the HTML body, in which tags will be used as per their
structure, and nesting will be defined in the DTD:

<shoplist>

<itemname> Computer </itemname>
<price> $500 </price>
<gty> 2 </gty>

<memory> 1.2MB </memory>
</shoplist>

Chapter 5: Handling and Parsing XML in J2ME 113

The declaration of these tags will be defined in shopfile.dtd as shown in Listing 5-1:
Listing 5-1: shopfile.dtd

© 2001 Dreamtech Software India, Inc.
All Rights Reserved.

1)
2)
3)
4)
5)
6)

<!ELEMENT shop (shoplist)+>

<!ELEMENT shoplist (itemname,price,gty,memory) +>
<!ELEMENT itemname (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT gty (#PCDATA)>

<!ELEMENT memory (#PCDATA) #REQUIRED>

The preceding declaration explains the functionality of the tags as follows:

¢ Line 1: The tag group shop contains the main container tag shoplist. The plus (+) indicates that
a shoplist can occur several times in shop.

* & & o o

Line 2: The shoplist tag contains itemname, price, gty, and memory.
Line 3: The i temname tag contains character data.

Line 4: The price tag contains character data.

Line 5: The gty tag contains character data.

Line 6: The memory tag contains character data and is mandatory.

The preceding example declares an external DTD. The following example in Listing 5-2 illustrates an
embedded DTD.

Listing 5-2: shopfile.xml

© 2001 Dreamtech Software India, Inc.
All Rights Reserved.

<?xml version="1.0"7?>

<!DOCTYPE
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<shoplist>

shop [<!ELEMENT shop (shoplist)+>
shoplist (itemname, price, gty, memory) +>
itemname (#PCDATA)>

price (#PCDATA)>

aty (#PCDATA)>

memory (#PCDATA) #REQUIRED>

<itemname> Computer </itemname>

<price> $500 </price>

<gty> 2

</gty>

<memory> 1.2MB </memory>
</shoplist>

The other special symbols used to define tags are:

¢ #FIXED: Defines the fixed value of an element.
¢ #IMPLIED: Specification of default value.

¢ ID: Defining ID.

¢ ENTITY: Pointing to external data.

¢ |: OR (EITHER).

114 Chapter 5: Handling and Parsing XML in J2ME

+: ONE OR MORE.

*: ZERO OR MORE.

?: OPTIONAL.

EMPTY: Defines an empty tag.

* & & o o

ANY: indicates that it can contain any element.

XML Schema

We have just seen that only ELEMENT is used to define the type of tag in DTD. To define further types
for the tags for the validation of the datatypes inserted in between the tags, XML Schemas are used. The
Schemas are written as an XML file so that the need for the processing software to read the XML
declaration syntax is obviated. XML Schema is a complete language used to define and describe the
classes for the XML document. It contains the type declarations such as byte, integer, date, sequence, and
so on. It also allows derived data-type declarations from the basic data types available in the language. It
is the function of the XML Schema to define the relationship between the XML document, namespaces,
and DTDs. These Schemas are also used to check the validity of the XML document.

XML Parsing

XML parsing refers to the concept of translating the tag definition and executing the document with the
new tags so that the user or the application development environment can understand the data stored in
the document. The special software required for this is called a parser.

A parser is software that parses an XML document on the basis of XML tags. The parser recognizes the
XML tag on the basis of parameters passed to it and gets the text associated with the tag (refer to Listing
5-1). This is accomplished by interpreting and translating the definition of tags contained in a DTD.

There are two categories of parsers:

+ Validating parsers

¢ Nonvalidating parsers
In order to understand these types, it is required to know the meaning of valid and well-formed documents.
A valid XML document is a document that is compliant to the DTD which is associated with the XML
document. The DTD can be written in the same XML document (embedded) or it can be specified as a link.
A valid document has to be well-formed. While you’re defining tags in a DTD, their inter-relationships are
also defined. A well-formed document is one in which all the tags adhere to the relationships defined in the
DTD. Some of the rules to be followed by well-formatted documents are:

¢ All the tags used in the document have to be balanced by including start and end tags.
All the essential attributes defined in the DTD should be present.
The attribute values have to be given within quotes.

The container and containing tags must be strictly as per the DTD, or the Schema.

* & & o

Markup characters such as < or & cannot be present alone. If required, they have to be used as
&1lt, &, etc.

¢ All empty tags should end with />.
It is the function of the parser to check for the preceding rules.

Based on the XML documents we have discussed above, there are two types of XML parsers, one for
parsing valid XML documents and the other one for non-valid XML documents.

Chapter 5: Handling and Parsing XML in J2ME 115

¢ Nonvalidating parser: These parsers check only to determine whether the document is well-
formed or not; in other words, the parser performs only the syntactical verification of the DTD in a
document, which is why it is known as a nonvalidating parser. All the parsers discussed in this
chapter are nonvalidating parsers, since J2ME cannot support XML document validations. So to
run the code and to check the execution, validating parsers will also be required, along with these
parsers.

¢ Validating parser: These parsers compile DTD and execute the tag declaration to generate the
output in the user readable form.

XML parsers available for KVM

There can be different kinds of parsers for KVM. The parsers discussed in the following sections work on
KVM. We will be discussing just the functionality of the parsers. kXML will be discussed in detail in the
kXML section.

¢ Pull parsers: In these parsers, first the data is read and then it is parsed from the definition. The
parsing can be done in recursive functions in order to translate the tree structure of the document.

¢ Push parsers: These parsers process the data definition before processing the document. The
complete tree structure is created in the memory before the actual processing of the XML document
starts. In this case, the complete DOM tree is generated in the memory even without the need of
doing so.

kXML

This is the most important and popularly used XML parser for KVM. This is a combination of the pull
parser and the XML Writer, which is used for writing XML. It contains a WAP Binary XML (WBXML),
which is used for transmitting XML documents over wireless communication channels. For this, it has
support for Wireless Markup Language. It does contain a special kDOM, which is a Document Object
Model replacement for kXML. It is simpler and manages the space more efficiently than Document
Object Model. It compiles and works in the Mobile Information Device environment without any
modifications. It is present in de . kxml.parser package. Its functionality is defined in the Parser class.

TinyXML

This is a nonvalidating push parser, which compiles the entire DOM tree into the memory and then parses
the entire XML document in one go. It needs modifications to the source code to run on Mobile
Information Device. The main feature of the TinyXML is that it follows only a few specific encoding
types: ASCIIL, UTF-16, UTF-16BE, and UTF-8. The encoding type has to be specified in the XML
Prolog. If the type specified in the XML Prolog is not of the encoding ASCII, UTF-16, UTF-16BE, and
UTF-8,the TinyXML parser will not parse the XML document and will throw an exception.

NanoXML

This is another parser for KVM, which works on push-parsing technology. It has a specific feature for
modifying a document and writing the modified document back onto the stream. Since this feature is not
very useful for MID at present, this parser does not have any major use or popularity. However, once this
feature is accepted in the MID specifications, it will be an important parser for wireless communication.

Working with kXML

XML has support for various packages. We have used the kXML minimum version, which uses a zip file
named kxml-min. This version has only the org.kxml.io and the org.kxml.parser package with
Attribute class, PrefixMap class, and XML class. The minimum version of kXML parser is for
KVM, which is for most resource constraint devices, which is why only the necessary classes are given in
the minimum version. The packages not present in this minimum version are:

116 Chapter 5: Handling and Parsing XML in J2ME

¢ org.kxml.kdom

¢ org.kxml.wap

Let’s discuss the classes and packages present in the minimum version of kXML parser, as we will be
using this version.

¢ Attribute class: This class represents the attribute of a tag. When you call the
StartTag.getAttribute method, it returns an object of type Attribute that is the attribute
of that tag. This class has four methods. Of these, the getname () method returns the name of the
attribute of the tag.You can also get the value of the attribute by calling its getvalue () method.
The tostring () method will give the string representation of the Attribute object.

¢ XML class: This class represents XML data. This class is used by the parser. All the methods in
this class are static. It has some fields, which are used by the parser, such as START-TAG, TEXT,
END-TAG, etc.

¢ PrefixMap class: This class represents the PrefixMap of the tag. When you call the
StartTag.getPrefixMap () method, it returns an object of get PrefixMap. This class has

three methods: the getNamespace () method, which returns the namespace of this prefix, the
getPrefix() method, which returns the string representation of prefix, and the
PrefixEnumeration() method.

org.kxml parser package
This package contains classes related to parsing XML data. Let us discuss these classes one by one:

¢ AbstractXml Parser: This class is an abstract class. All XML parser classes extend this class. To
start parsing data, you have to call the read () method of this class. This method generates an
object of ParserEvent class. All the other methods are used by the parser. For details of the
methods, refer to the help provided with this package.

¢ Xml Parser: This class extends AbstractXmlParser class. The constructor of this class needs a
reader class object, from which it starts reading the XML data and, while parsing it, simultaneously
generates the parser events. This class inherits all the methods of AbstractXmlParser class. For
details of the methods, refer to the help provided with this package.

¢ ParseEvent Class: This is an abstract class, which represents the events generated by the parser
while parsing the XML data.

+ StartTag class: This class extends ParseEvent class. The object of this class is generated when
the parser finds the starting of a tag — for example:

<?xml version="1.0"7?>
< Hello> Hello How are you
</Hello>

While parsing the preceding XML, when the parser comes across the <Hello> tag, it will generate a
StartTag event. The getname () method of this class will return Hello, which is the name of the
tag. For details of using this tag, refer to the case study in this chapter.

¢ TextEvent class: This class also extends ParseEvent class. The object of this class is generated
when the parser finds some text associated with the tag. For example, in the preceding XML, when
the parser comes across Hello How are you, it will generate a text event. The getText ()
method of this class will return Hello How are you, which is the text of the tag.

¢ EndTag class: This is a subclass of the ParseEvent class. The object of this class is generated
when the parser finds the end of a tag. For example, in the XML given in the StartTag class,
when the parser comes across the </Hello> tag, it will generate an EndTag event. The
getName () method of this class will return He11o, the name of the end tag.

Chapter 5: Handling and Parsing XML in J2ME 117

¢ EndDocument: This is a sub-class of the ParseEvent class. The object of this class is generated
when the parser finds the end of a document — that is, the end of an XML file.

org.kxml.io package

This package contains classes for writing XML data. Let us discuss these classes one by one:

¢ AbstractXmlWriter: This class is a base class for Xm1Writer class and provides functionality
for the Xm1Writer class. This class has methods which are used for writing XML documents; the
methods like attribute (), endTag (), and startTag () are used to create XML documents.

¢ LookAheadReader: This class is like a reader class, but there is a peek () function in this class
that shows the next character; this class also doesn’t throw TOException.

¢ XmlWriter: This class gets its functionlity from AbstractXmlWriter class. This class has
checkpending (), close(), andwrite(char c), other than the methods inherited from
AbstractXmlWriter class.

Application

This application will illustrate XML parsing by defining subject ID and subjectname tags, parsing
the data, displaying the parsed data on the screen, and reading the data.

Structure of the application

The application is made up of two files:

¢ XmlCaseStudy.java: The main file that reads and parses the data.

¢ result_screen.java: This is used to display the output on the screen.

Functioning of the application

The first file, Xm1CaseStudy . java, defines the packages, classes, buttons, and so on., to read and
parse the data. Once the data is parsed, the result is given to a second file, result screen.java,
which displays it on the screen.

Application description

The code listings for the two programs are given in Listings 5-3 and 5-4.
Listing 5-3: XmiCaseStudy.java

© 2001 Dreamtech Software India, Inc.
All Rights Reserved.

/**

* Basic packages used by various classes.
*

*/

import java.io.InputStream;
import java.util.Hashtable;
import java.util.Enumeration;
import com.sun.kjava.*;

import java.lang.*;

import javax.microedition.io.*;
import java.io.*;

~N oUW N

/**

* Packages used by the XML parser...

118 Chapter 5: Handling and Parsing XML in J2ME

*

*/

8. dimport org.kxml.*;

9. dimport org.kxml.io.*;

10. import org.kxml.parser.*;

/**

* Declaring a class XmlCaseStudy. This class is responsible for
* reading the file and parsing it. Then it displays a screen
* which contains the parsed results.

*/

11. public class XmlCaseStudy extends Spotlet

12. {

/**

& declaring the variables used by the parser..
*

*/

13. AbstractXmlParser xmlparser;
14. ParseEvent event;

15. DataInputStream din;

16. String result string = "";

/**

* Declaring the GUI components

17. private Button bt = new Button("Ok",70,145);
// Gui Components (Button)

18. private Button exit = new Button ("Exit",35,145);
// Gui Components (Button)

/**

* main Class which calls the Class XmlCaseStudy.

*

*/
19. public static void main(String args[])throws Exception
20. {
21. XmlCaseStudy casestudy = new XmlCaseStudy() ;
22. 1}
23. public XmlCaseStudy ()
24. {
/**

Getting the Graphics and redrawing the screen.

25. Graphics graphics = Graphics.getGraphics/() ;
26. graphics.resetDrawRegion() ;
27. graphics.clearScreen() ;

/**

Chapter 5: Handling and Parsing XML in J2ME 119

* Painting the title on the screen.,
*

*/

28. graphics.drawString("XML case Study..",25,10);
29. graphics.drawString("Press OK to fetch XML file and Parse it",5,40);

/**

* Registering the Spotlet and painting the GUI components.

*

*/

30. register (NO _EVENT OPTIONS) ;
31. bt.paint();
32. exit.paint();

33. 1}

34. public void penDown (int x, int vy)
35. {

/**

* When Ok is pressed unregister the spotlet, call the startReading
* class to read the XML file then call the XML parser which will
*parse the file and store the results in a string which is passed
*as a parameter to another class which displays the result.

*/

36. if (bt.pressed(x,y))

37. |

38. unregister();

39. startReading() ;

40. parseDatal();

41. new result screen(result string);

42. }
43. else
/**

* Exit the program
*

*/
44 . {
45. System.exit(0);
46. }
47. '}
48. public void startReading ()
49. {
50. try
51. {
/**

* Read the file and pass to the XML parser..
*

*/

52. din = Connector.openDataInputStream("testhttp://pankaj/books.xml") ;
53. xmlparser = new XmlParser (new InputStreamReader (din)) ;

120 Chapter 5: Handling and Parsing XML in J2ME

54. }
55. catch(IOException e)
56. {

57. System.out.println("Exception Occurred while reading") ;
58. 1}

59. 1}

60. void parseData ()
61. {

62. do

63. {

64. try

65. {

66. event = xmlparser.read ();

/**

* Start Tag is encountered.. and Appended to a string.
*

*/

67. 1if(event.getType ()==Xml.START TAG)
68. {

69. StartTag stag = (StartTag)event;
70. String name = stag.getName () ;

71. result string = result string + "Start "+name + "\n";
72. }

/**

* text between tags is encountered and appended to the String.
*

*/
73. if(event.getType()== Xml.TEXT)
74. |
75. TextEvent tevent = (TextEvent)event;
76. String name = tevent.getText () ;
77. name = name.trim() ;
78. result string = result string +"Value "+name + "\n";
79. '}
/**

* End Tag is encountered.. and Appended to a string.
*

*/

80. if(event.getType()== Xml.END TAG)
81l. {

82. EndTag end tag = (EndTag)event;
83. String name = end tag.getName() ;

84. result string = result string + "End "+name + "\n";
85. }

86. }

87. catch(IOException ex)

88. {

89. System.out.println("Exception occured") ;
90. 1}

91. 1}

Chapter 5: Handling and Parsing XML in J2ME 121

92. while (! (event instanceof EndDocument)) ;

93. System.out.println("**** END OF DOCUMENT ****"). // End od document is
reached.

94. }

95. 1}

Code description
+ Lines 1-7: Basic packages used by various classes.

¢ Lines 8-10: Packages used by the XML parser.

¢ Lines 11-12: Declaring a class Xm1CaseStudy. This class is responsible for reading the file and
parsing it. Then it displays a screen, which contains the parsed results.

¢ Lines 13-16: Variable declaration to be used within this code.

¢ Lines 17-18: Declaration of GUI components.

<>

Lines 19-22: Declaration of constructor of Xm1lCaseStudy class to run the Java application is
encoded here.

Lines 25-27: Getting the graphics and redrawing the screen.
Lines 28-29: Painting the title on the screen.
Lines 30-33: Registering the spotlet and painting the GUI components.

* & & o

Lines 36-42: When OK is pressed, this code unregisters the spotlet, calls the startReading class
to read the XML file and then calls the XML parser, which will parse the file and store the results
in a string that is passed as a parameter to another class, which will display the result.

<>

Lines 43-46: To exit from the program.

¢ Lines 48-66: For reading the file and passing it to the XML parser. The code block serves to open
the file and catch the exception if the file is not found. Opens and displays the file on the screen if
found.

¢ Lines 67-72: This if condition is true if the Start tag is encountered and the name of the tag is
passed to the String variable called name. The name is appended in another String variable
result_string.

¢ Lines 73-79: It reads the data as a string and trims it till the end tag is encountered. The string is
appended to the String variable.

Lines 80-95: Checks for the end tag in the loop and catches any exception encountered. It checks
for the end of the document, and when this is done, the message is printed on the screen.

Output
Figures 5-1 and 5-2 give the user a sense of the look of DTD and XML files.

ML case Study.

Press QK to fetch #ML file and Parse i

Figure 5-1: The starting screen.

122 Chapter 5: Handling and Parsing XML in J2ME

Listing 5-4: result_screen.java

© 2001 Dreamtech Software India, Inc.
All Rights Reserved.

/**

* Basic packages used by various classes..
*

*/
1. import com.sun.kjava.*;

/**

* Decalaring a class result screen which is responsible for
* showing the results in the ScrollTextBox
*/

2. public class result screen extends Spotlet
3. |

/**

* Declaring the GUI components

*/
4. Button exit = new Button("Exit", 80,145);
5. ScrollTextBox result box;
6. result screen(String result)
7. |

/**

* Getting the Graphics and redrawing the screen.

8. Graphics graphics = Graphics.getGraphics();
9. graphics.resetDrawRegion () ;
10. graphics.clearScreen() ;
/**
Painting the title on the screen.,

*

*/
11. graphics.drawString("Result of parsing",25,2);

/**
* Registering the Spotlet and painting the GUI components.

*

*/

12. result box = new ScrollTextBox(result,10,20,120,120) ;
13. exit.paint();

14. result box.paint();

15. register (NO_EVENT OPTIONS) ;

16. 1}

17. public void penDown (int x, int y)

18. {

Chapter 5: Handling and Parsing XML in J2ME 123

/**

* Exit the program
*

*/

19. if (exit.pressed(x,y))

20. {
21. System.exit(0);
22. 1}

23. else if (result box.contains(x,y))
24 . result box.handlePenMove (x,VY) ;
25. 1}
// declaration of the penMove function

26. public void penMove (int x, int vy)
27. A

28. 1if (result box.contains(x,y))

29. result box.handlePenMove (x,VY) ;

30. 1}

31. 3}

Code description
¢ Line 1: Basic packages used by various classes.

¢ Line 2: Declaring a class resultscreen that is responsible for showing the results in the
ScrollTextBox.

Lines 4-6: Declaration of the GUI components to display on the screen.
Lines 8-10: Getting the graphics and redrawing the screen.

Lines 12-18: Registering the spotlet and painting the GUI components.
Lines 19-25: Exit the program.

* & & o o

Lines 26-30: Declaration of penmove function.

Output

Figure 5-2 shows the output screen.
P

Fesult of parzing

Start ROOT 5
Start Subjecti
End SubjectiCr
Start SubjectiD
Value 001

End SubjectiCr
Start SubjectMarne
Malue MT Serwer 4
End SubjectMarne
Start Subjecti

Figure 5-2: The output screen.

124 Chapter 5: Handling and Parsing XML in J2ME

Summary

This chapter serves to give the reader an overview of the parsers available for XML to be used with
J2ME. The XML parsers are small, since the memory and other resources are limited in the case of
wireless devices.

Some of the common XML browsers are:

¢ kXML

¢ NanoXML
¢ TinyXML
¢+ WBXML

More details of these browsers can be found at the following links:

¢ kKXML: http://kxml.enhydra.org/

¢ NanoXML: http://nanoxml.sourceforge.net/
¢ TinyXML: htttp://gibaradunn.srac.org/tiny/
¢ WBXML: http://trantor.de/wbxml/

We have discussed the kXML parser and the main classes and methods for handling the wireless devices.
Further details of these classes can be obtained from http://kxml.enhydra.org/.

The example given in the application section of this chapter illustrates the usage of some of the classes
discussed in the text. The application presented takes the data from the file, parses it, and displays the
output on the screen.

Chapter 6
Project 1: Online Testing Engine

That Internet has made it possible to do many things remotely and is now a fact of life. You can buy
things, play games, chat with anybody sitting anywhere in the world, and do innumerable other things.
One of the areas where the Net can play a very positive role is education. Examinations are an important
part of education. There are applications to manage these exams. This is what our first full-blown
application of this chapter does.

This Testing Engine application is called TestManager. It allows the user to take exams remotely.
Many such applications are available. The specialty of this application is that it works on a Palm device;
In other words, you don’t need a PC to take exams. Since you can do it on a PDA, theoretically there is
no need to sit in one place for the whole duration of the exam. However, whether the examination
authorities who may potentially use such an application allow you to move around during the period of
the exam is another matter.

Our TestManager uses CLDC and Kjava — it is basically a spotlet. In addition, it makes use of ASP and
a third-party XML parser to read XML output from ASP scripts. We can divide the project into two parts:
the server side and the client side. On the server side, we have ASP scripts and an MS Access database.
On the client side, we have Java (J2ME) classes, including those of the parser.

User Interface

The main class of TestManager is named, not surprisingly, TestManager. It contains the GUI
components that the user sees on the screen, such as scroll text box, buttons, text fields, etc. When the
application is started, the user sees a Welcome screen. He can proceed from here by pressing the OK
button, or if he changes his mind, he can quit the application by pressing Exit. If he wants to go on and
presses OK, he sees a scroll text box showing the topics on which he can test his knowledge. He enters
the serial number of one of the topics and presses the OK button. He is presented with the first question
on that topic, picked randomly from the database. There are three buttons on the screen labeled Next,
Prev, and Review. He can decide on attempting a question by entering the serial number of the option he
thinks is correct. Or he can leave the question unanswered and go to the next question by pressing Next.
In the same way, he can tackle more questions. At any stage during the test, he can see the status of the
test by pressing the Review button. If he does this, the number of questions attempted, number of correct
and wrong answers, and the number of unattempted questions are displayed. On this Review screen, he
can decide whether the test is too tough for him and quit the test by pressing Exit. Otherwise, he can get
back to the test by pressing OK. Moreover, while answering the question, he can even go back to the
previous question by pressing the Prev button.

On completing the test, he can see the final result. Results are given in terms of how many questions were
answered correctly, how many were unattempted, how many remain unanswered (that is, were read but
not attempted), and how many were answered but were wrong. The test also has one “history sheet,”
where the user can see a chronological summary of all the tests and the results.

126 Chapter 6: Project 1: Online Testing Engine

Running the Project

To run this application, you can create a run.bat file with the following entries:

javac -g:none -bootclasspath c:\j2me cldc\bin\apilclasses; -classpath
c:\j2mecldc\bin\api\classes;
-d c:\testmanager *.java
c:\j2mecldc\bin\preverify -d c:\testmanager
-classpath c:\j2me cldc\bin\apil\classes; c:\testmanager
c:\j2mecldc\bin\kvm -classpath

c:\j2mecldc\bin\api\classes;c: \testmanager %1%

Here it is assumed that the CLDC has been installed in the ¢ : \j2mec1dc directory and the
TestManager project has been installed in the c: \testmanager directory. The complete source code
for the project is given in the TestManager.java, MainScreen.java, QuestionParser.java, Books.asp, and
TestFile.asp sections in the chapter. You can also copy it from the CD to run it. However, you should
have Personal Web Server (or any other Web server) installed and running for testing this application.
Moreover, you will have to copy the ASP files in the root directory of the server.

How It Works

The project includes the following files:

¢ TestManager.java: The main Java (CLDC) file.

¢ MainSreen.java file: Contains four inner classes named NextScreen, Results,
ResultScreen, and TestHistory.

QuestionParser.java
A third-party XML parser
Books.asp

TestFile.asp

* & & oo o

MaintenanceSoft.mdb: MS Access database, where topics, questions, results, etc., are stored.

The topics on which the user can test his knowledge, questions on these topics, options for these
questions, and the answers are stored on the server in the MS Access file named
MaintenanceSoft.mdb. The MaintenanceSoft.mdb file has three tables: MainData, QuestionData,
and AnswerData. These tables store all the data related to the Test for table structure of the given tables
refer to Figures 6-1, 6-2, and 6-3. The MainData table shown in Figure 6-1 contains the name of the
subjects on which tests are available.

The QuestionData table as shown in Figure 6-2 stores details related to the questions. The information
like the Questionld, the QuestionText, and the NoOfChoices for that Question are stored in this table.

The AnswerData table as shown in Figure 6-3 stores details related to the answer of a particular question.
The information like the Questionld to which this answer is associated the ChoiceNo field stores the no
of choices the AnswerText field stores the content of the answer, Correct field stores the correct option to
this answer etc.

Chapter 6: Project 1: Online Testing Engine 127

E2 Microsoft Access - [MainData : Table]

| File Edit View Insert Tools Window Help
|- B|EAY|RRY| | 53BN D0a- 0.
Field Narne | DataType | Description

3B bjectiame Text

| |RandomCuestions Text

| |LessonidiseQuastions Text

|| TimeLimik Text

| |CurrentTextRelsase Text

| |L_Max Quest Texk

| |L_Min_Per Texk

| |L_Max_Per Texk

|| T_Min_Quest Texk

|| T_Max_Quest Text

| |T_Min_Per Text

|| T_Max_Per Text

| |Mode Texk

|| Quest_Per_Level Text

| |MNa_Question Text

| |'Weight Textk

| |Pass_Scors Taxt

|| SubjectiD Texk

Figure 6-1: MainData Table.

E Microsoft Access - [QuestionData : Table]

| File Edit ¥iew Insert Tools Window Help
m-B|E&LYV|§REY |7 &2FNDa- 0.
Field Name Data Type Description
I3 ouestonio NI Text
| |QuestionText Femo
| |TopiclD Texk
| |Level MO Text
| 1Quest_Type Texk
Picture Text
| |MoOfChoices Text
| |GokoTopic Text
| |Hint Text
| |'Weightage Text
| | Cabenory Text
| |SubjectiD Text
| |ReleaselD Text
| |FLT Text
| |Scenario Text YN
|| CSID Text
| |GrouplD Text
|| Tagho Texk

Figure 6-2: QuestionData Table.

128 Chapter 6: Project 1: Online Testing Engine

E2 Microsoft Access - [AnswerData : Table]

|E File Edit Yiew Insert Took Window Help

B-RB[2Rv]inay o1 #[x>8NBa- 0.
Fleld Name | DataType | Description

|| QuestionID Text

[| choicenio Text

| lAnswerText IMemo

|| Correct Text

| subjectio Text

| |PeleaselD Text

Figure 6-3: AnswerData Table.

On starting the application (Figure 6-4), a request is sent to the ASP file kept on the server, to which the
ASP responds by reading the database of topics and sending the list of the topics in XML format. The
XML parser reads this list, and it is shown in a scroll text box to the user. It is stored on the Palm device
in a Palm database. When the user selects a topic for the exam, the ASP file reads the database on
questions, picks up questions at random on the selected topic, and returns these to the client in XML
format. The XML parser again reads these and then shows them to the user.

Welcorne to the Test Manager..

Exit

Figure 6-4: Welcome Screen.

The flow of the program is shown in the flow chart and is explained as follows:

¢ Executing the Java class file TestManager starts the application. It causes the ASP file
http://host/books.asp to read the topics stored in the MS Access file and return them in
XML format.

¢ The XML parser parses the XML and stores the result in a Palm database on the PDA.

¢ The class MainScreen is called, which creates the GUI components and displays the text parsed
from XML (the list of topics) on the scroll text box as shown in Figure 6-5.

Chapter 6: Project 1: Online Testing Engine 129

1. NT Server 4 n
2. MT WorkStation

3. MT Server 4in Enterprise
4. Metworking Essentials

5. TCP/IP

6. A+

b
optiond]_

Figure 6-5: List of topics.

¢ The user enters the serial number of the test he wants to attempt and presses OK. At this, class
QuestionParser is called. The choice is passed as a parameter to an ASP file called
TestFile.asp as a search string. A file of the same name is created. For example, if the user
entered 1, a file 001 . xm1 would be generated.

¢ The parser again parses the XML which contains data related to the test ie the questions their
choices and the correct choice of the respective question are stored in a database.

¢ An inner class of MainScreen, named NextScreen, is now called. It creates the new GUI
components and displays the first question as shown in Figure 6-6.

k..

Q1 What type of command
interface is found on g Cotalyst
2924 ¥L with the Enterprise Edition
image?

1 Logonlocally to the
workstation

2 Maintain a current active
session on the network

v

Choice: [Mext|[Prev| [Review

Figure 6-6: Question Screen.

+ Now the user has the option to press one out of these three buttons: Next, Prev (Previous), or
Review.

If the user presses one of the first two buttons, a function critical is called, which displays either
the next question or the previous one, depending on the user’s choice.

¢ When Next is pressed, the correct answer of the question is matched with the answer selected by
the user and, accordingly, one out of these four options is stored: Correct, Wrong, Unanswered, and
Unattempted. This goes on till all the questions are answered.

130 Chapter 6: Project 1: Online Testing Engine

If the user presses the Review button mentioned previously, an inner class of MainScreen, named
Result, is called. A tentative result of the test up to that time is displayed on the screen. The user
sees three buttons labelled OK, Exit, and Result as shown in Figure 6-7.

QNo. Status

Unattempted
Unattempted
Unattempted
Unattempted
Unattempted
Unottempted
Unattempted
Unattempted
Unattempted

|0_k, @I |Result|

Figure 6-7: Review Screen.

¢ If the user presses the Exit button, the application is closed.

¢ If the user presses the OK button, a function named critical is called. This function moves back
to the question where the user pressed the Review button.

¢ If the user decides to quit the test, he can press the Result button. At this, the class NextScreen is
called, which tells the user the details of the test as shown in Figure 6-8. It presents the results in
terms of the following:

Result Screen... 1
Exarmination 12
Date 12.4.2001
Questions Asked :5
Correct Answers -1
Your Score b

-
Exit | |History

Figure 6-8: Result Screen.

Name of the test

Date on which the test is being taken
e Questions asked
e Correct answers to the questions asked

Score in the test

Chapter 6: Project 1: Online Testing Engine 131

e Required minimum score to clear the test
e The final result

¢ At this point, the user sees two buttons labelled Exit and History. If he or she presses the Exit
button, the application is closed. In case he or she presses the History button, a class named
TestHistory is called, which provides the information about the tests taken by the user so far as
shown in Figure 6-9. This information includes:
e Names of the tests
¢ Dates on which they were taken
o Questions
e Correct answers

e The current status

¢ The application can now be closed by pressing the Exit button.

Exarn Dt. Qno. Correct Status

2 5.4.2001 1 Fail
£.4.2001 1 Fail
5.4.2001 Fail
£.4.2001 Fail

6.4.2001 Fail

Figure 6-9: History Screen.

132 Chapter 6: Project 1: Online Testing Engine

TestManager flow chart
Figures 6-10 through 6-12 are flow charts for TestManager.

Rmithe chss restdanagec.
The W elcomn 20@ed appeard.

Tatip Vhosthooks asp &
calkd. b gnerates af ik
Todks aml.

l

¥IML parser parses the XL and
gores i Paln database

}

Chss sainftceen ¥ calkd whih

disphys a bst of topics.
But The wser
resses a
Tatore
1) 34
Achss guesbionkacae c ¥ callkd. Choke ¥ passedas
Qi PAram eter to an SSP ik vom ed TestFile a5p a5 aserach
ang.

|

The ASF resuls inafik of the sume
rame, &g, ¥ the choice 1 was selected, m
ML fik 001laanlwoaldbe gremted.

|

The parser agnin parses the XML
wd stores ia dutabase,

l

I ket ches of wainSeceen named
WextSeeasn ¥calkd

Figure 6-10: Flow Chart-I.

Chapter 6: Project 1: Online Testing Engine 133

The dass NextScreen
displgres the first question

The 1Eer can artter the
chace mthe choice box

and press Next. Or he can .
) press Prev or Review. me,edb’“ all
queshons are
Inthis case, the firished o £l
imer class the user goes

Result is called to the final
result.
° A fimctimnamed critical is
called that displays the questionn [

accadirg to the button pressed

4

Vhen Next is pressed, the result of
the questianis matched with the
option selected by the user.

&) queston are over
or Review button
is pressed

The dass Result uses an avay of aswersto
display the stahis of the question on the screen

Thizer presses a

Figure 6-11: Flow Chart - II.

134 Chapter 6: Project 1: Online Testing Engine

Calls the dlass ResultsScze an, whichtells
C'alls the finction the user the detadls of the test undertaleen,
critical tomove airh as thenane of the tes taken dde
backtothe question quesiar asked, carect arswers, score,
xﬂm ‘IT::EHM mrinnem seave requred and the vesdt,
buttan was pressed

Lnmma dﬁSTestHistot}r ls
cdled Ths clsss provides the
ofamshon sbout the tedstaken so
far, suchas the name of thetest, date
quesiar, noube o carect amwas
arxl the ourrent stah.

¥

The user presses

the Exiit buttan,

Figure 6-12: Flow Chart - Il

TestManager.java

This is the main class of the TestManager. It starts the TestManager with a welcome screen and
when the user presses the "OK" button it calls an XML parser and stores the results provided by the
parser in the palm Database. This class calls the QuestionParser class internally.

Listing 6-1: TestManager.java

© 2001 Dreamtech Software India, Inc.
All rights reserved.

import java.io.InputStream;

import java.util.Hashtable;

import java.util.Enumeration;

import com.sun.kjava.*;

import java.lang.*;

import javax.microedition.io.*;

import java.io.*;

import java.util.*;

import org.kxml.*;

import org.kxml.io.*;

import org.kxml.parser.*;

/* This is the main class of the testmanager. It starts the testmanager with
a welcome screen... when the user presses the “0k” button it calls an XML
parser and stores the results provided by the parser in the palm Database...
13) */

14) public class TestManager extends Spotlet {

P W oo Jo Ul W
NP O —— — — — — — — —

=

=

Chapter 6: Project 1: Online Testing Engine 135

// temporary variables used for storing the results in
// Database. .

boolean subject id = false;

// temporary variables used for storing the results in
// Database. .

boolean subject name = false;

// temporary variables used for storing the results in
// Database. .

boolean root flag = false;

int ij = 1;

int ijk = 0;

String namel = "";

Database dbg;

// An Object of the class AbstractXmlparser (xml parser).
AbstractXmlParser xmlParser;

// An Object to record the events generated by the xml
// parser.

ParseEvent event;

// InputStream initialization...

DataInputStream dos;

DataInputStream din;

// Declaration of buttons...and textBoxes.

private Button bt = new Button("Ok",85,145);

private Button exit = new Button("Exit",110,145);
private TextBox message = new TextBox("Welcome to the Test

Manager..",10,10,130,50) ;
// Main Class...
public static void main (String args[])throws Exception {
/**
* Call to the Parser to generate the list of possible tests from
* the site

*/

TestManager CallParser = new TestManager();
/**

* GUI for the topic list screen...

*/

}

// Constructor for the Testmanager Class..

public TestManager ()

{

// No other events should interfere

register (NO_EVENT OPTIONS) ;

//Put the textbox, the buttons(0Ok and Exit on to the GUI.
bt.paint () ;

exit.paint () ;

message.paint () ;

// Initializing the Database by creating the name of the
// Database, the creator id(cid) and the table id(tid)..
String nameing = "data base";

int cid = 0x4B415754;

int tid = 0x44425370;

dbg = new Database (tid,cid,Database.READWRITE) ;

// Creating the Database...
Database.create(0,nameing, cid, tid, false) ;

} // end Constructor..

// Handling the events... fired on the buttons..

136 Chapter 6: Project 1: Online Testing Engine

71) public void penDown (int x, int y) {

72) // If “0Ok” is pressed..

73) if (bt.pressed(x,y))

74) {

75) unregister(); // unregister the Spotlet..

76) // Call the start function

77) start();

78) // Call the parseData function to get/store the

79) // results in the Database..

80) parseDatal() ;

81) // After storing the results call the main screen

82) // class which pertains to the main testing portion...
83) new main screen() ;

84) }

85) else // If “Exit” is pressed..

86) {

87) System.exit (0);

88) }

89) }

90) // The start function helps in sending the request to the
91) // central server to get the list of all the tests

92) // currently present. Then the Stream is passed on to
93) // the xmlparser for parsing...

94) public void start()

95) {

96) try {

97) din =

98) Connector.openDatalnputStream("testhttp://www.s-cop.com/books.asp") ;
99) din.close() ;

100) dos = Connector.openDataInputStream("testhttp://www.s-cop.com/books.xml") ;
xmlParser = new XmlParser (new InputStreamReader (dos)) ;

101) 1}

102) catch(IOException e) {

103) System.out.println("gh");

104) }

105) }

106) // This function is used to generate all the callbacks..
107) // and storing them in Database...

108) void parseData () {

109) do {

110) try {

111) event = xmlParser.read ();

112) // If start tag then set the flags for SubsjectId
113) // and SubjectName. .

114) if (event.getType ()==Xml.START TAG) {

115) StartTag stag = (StartTag)event;

116) String name = stag.getName () ;

117) root flag = true;

118) if (name.equals("SubjectID")) {

119) subject _id = true;

120) 1}

121) else if (name.equals ("SubjectName")) {

122) subject name = true;

123) }

124) 1}

125) // Store the text in the database using delimiters.

Chapter 6: Project 1: Online Testing Engine 137

126) if (event.getType()== Xml.TEXT) {

127) TextEvent tevent = (TextEvent)event;

128) String name = tevent.getText() ;

129) name = name.trim() ;

130) if ((subject id)&& (root flag))

131) namel = namel+"&"+name+"e";

132) else if ((root flag)&& (subject name))

133) namel = namel+name+"\n";

134) }

135) // When End tag is encountered reset all the flags and
136) // add a record onto the database...

137) if (event.getType()== Xml.END TAG) {
138) EndTag end tag = (EndTag)event;

139) String name = end tag.getName () ;

140) if (name.equals ("ROOT")) {

141) root_flag = false;

142) namel = namel +"i";

143) byte[] data = namel.getBytes();

144) dbg.setRecord(ij,data) ;

145) ij++;

146) namel = "";

147) 1}

148) else if (name.equals ("SubjectID")) {

149) subject_id = false;

150) }

151) else if (name.equals ("SubjectName")) {

152) subject name = false;

153) }

154) }

155) }

156) catch (IOException ex) {

157) System.out.println("Exception occured");
158) 1}

159) 1}

160) while (! (event instanceof EndDocument)) ;
161) System.out.println("**** END OF DOCUMENT ****m) .
162) // When the end of the document is encountered store
163) // in the first record of the database the total
164) // number of records..

165) String stre = ""+ij;

166) byte[] data2 = stre.getBytes();

167) dbg.setRecord(ijk,data2) ;

168) 1}

169) }

Code explanation

¢ Lines 1-8: The code between these lines pertains to the inclusion of the basic packages used by
various classes in the project, such as java.util. * for vectors and enumerations and
java.io.* for input and output.

¢ Lines 9-11: The code between these lines pertains to the inclusion of the packages required by the
various classes in the XML parser.

¢ Line 14: The code here pertains to declaring the main class of the online Testing Engine. It starts
the TestManager with a welcome screen. Subsequently, when the user presses the OK button, it
calls an XML parser and stores the results provided by the parser in the Palm database.

138 Chapter 6: Project 1: Online Testing Engine

¢ Lines 17-27: The code between these lines pertain to declaring the temporary variables used for
storing the results.

¢ Lines 29-32: Declares the variables for the XML parser and parse event (where the callbacks after
the parsing will be stored).

¢ Lines 34-39: Declares the variables for the DataInputStream — for reading the ASP, for
buttons (OK and Exit), for textbox (message), etc.

¢ Lines 42-51: This is the main program that indicates the starting of the Online Testing Application
by calling the class TestManager.

¢ Line 56: The code here pertains to making the spotlet the current spotlet. The system keys can
cancel the spotlet any time.

¢ Lines 58-60: The code here pertains to painting the buttons and the textbox on to the screen.

¢ Lines 63-68: Initializing the database by creating the name of the database, the creator- idis cid and
the table-id is tidand subsequently creating the database.

¢ Lines 73-84: The code between these lines pertains to the action taken when the user presses the
OK button.

e 75: The spotlet is unregistered thereby making way for the next spotlet.

e 77: The code here pertains to calling a function start (), which is used to send a request to the
server.

e 80: A function parseData () is called in which the results of parsing are stored.

® 83: After storing the results, a call is made to a user-defined class, main screen, which
pertains to the main testing portion.

¢ Lines 85-88: The code between these lines is used when the user presses the button Exit. When the
button is pressed, the application is closed, and control is returned to the OS.

¢ Lines 94-105: The code here pertains to sending an ASP request to the server to get a list of all the
available tests. This request is made using the class Connector of the CLDC’s
javax.microedition.io package. The server returns an XML file. The XML stream is then
directly passed on to the parser, which parses the XML file.

¢ Lines 108-168: The code between these lines pertains to an important function parseData. This is
the function in which the XML parser sends the callbacks. The callbacks are identified accordingly
by using the functions (whether the element obtained is the start tag or end tag, etc).

e 118-119: If the tag encountered is SubjectID, the corresponding flag — that is, subject_id
— is made true.

e 121-122: If the tag encountered is SubjectName, the corresponding flag — that is,
subject name — is made true.

e 130-133: If the flags (subject_id and root_flag) are true, the text obtained between the
nodes is stored in a string variable of the name name1, separated by a predetermined delimiter
(ALT + 232). Similarly, if the flags (subject name and root_flag) are true, the text
obtained between the nodes is appended to the variable namel.

e 137-152: When the end of the XML document is obtained, all the flags are made false, and the
data in the variable name is appended by a last delimiter (ALT+237) and then finally converted
into a byte array and stored into the Palm database created earlier.

e 165-167: When the end of the XML document is reached, the total number of records are counted
and stored in the first recording place of the Palm database.

Chapter 6: Project 1: Online Testing Engine 139

MainScreen.java

This class pertains to the TestManager’s screen. This class shows all the number of tests available at a
particular instant of time. When the user presses a choice, then a request is made to the central server to
generate that test based on the choice made. The test generated is in XML format and is sent to the parser,
after which the first question is shown to the user.

Listing 6-2: MainScreen.java

© 2001 Dreamtech Software India, Inc.
All rights reserved.

import com.sun.kjava.*;

import java.lang.?*;

import javax.microedition.io.*;
import java.io.*;

import java.util.*;

/* This screen pertains to the main testmanager’s screen. On this screen all
the tests available at a particular instant of time are shown..When the user
presses a choice then a request is made to the central server to generate
that test’ s XML file and and send it to the parser and then show the first
question to the user..

*/

public class MainScreen extends Spotlet {

/**

* Global Data.... which is used in all the classes..
*/

static int op = 1;

static int serialno = 1;

static String answer[][] = new String[50][2];

static Database database;

static String exam code = "";

static String exam name = "";

static String total number = "";

/* this is a static function and therefore initialized only
once. It is used to maintain the History of the Test
taken by the user...

*/

static void entry(String str) {

String previous = "";

byte[] data prev;

try {

data_prev = database.getRecord(65535) ;
previous = new String(data prev) ;

}

catch (Exception e) {

previous = "?";

}

try {

database.deleteRecord(65535) ;

}

catch (Exception e) {

}

previous = previous+str+"?";

byte[] enter = previous.getBytes();
database.addRecord (enter) ;

}

140 Chapter 6: Project 1: Online Testing Engine

40) /**

41) * Data for the TestManager...

42) */

43) // GUI Components ie two buttons namely “Ok”, “Exit”,
44) // A choice field..

45) private Button bt = new Button("Ok",85,145);

46) private Button exit = new Button("Exit",110,145);
47) private TextField choicefield;

48) String strp = "";

49) Database dbg; // DataBase variable...

50) private ScrollTextBox first;s

51) String choose[] = new String[150];

52) String choose text[] = new String[150];

53) int gno = 1;

)
)
)
)
)
)
)
)
)
)
)
)
)
)
54) // Initializing Graphics...
)
)
)
)
)
)
)
)
)
)
)
)
)

55) Graphics gr = Graphics.getGraphics() ;

56) // Constructor for the Class MainScreen

57) public MainScreen ()

58) {

59) // Registering the Spotlet

60) register (NO_EVENT OPTIONS) ;

61) // initializing the TextField and putting the cursor

62) // on to the focus..

63) choicefield = new TextField("Option:",10,145,50,10);

64) choicefield.setUpperCase (true) ;

65) choicefield.setFocus () ;

66) String textx = " ";

67) /* Call to an important function is made known as Reading
this function reads the database created and puts the
results in a proper format onto the ScrollTextBox also
stores the result in a 2-D Array...

It returns a String which is put onto the
ScrollTextBox. . .

68) */

69) textx = reading() ;

70) // initializing the ScrollText Box..

71) first = new ScrollTextBox (textx,0,0,150,140);

72) /* Putting the ScrollTextBox, Buttons (0Ok, Exit) and the

73) TextField on the Screen..

74) */

75) bt.paint () ;

76) exit.paint () ;

77) first.paint () ;

78) choicefield.paint () ;

79) /* Initializing the Database by creating the name of the
Database, the creator id(cid) and the table id(tid)..
This Database is used to maintain the History of the
Tests undertaken by the user..

80) */

81) String name = "history";

82) int cid = 0x4B415755;

83) int tid = 0x44425371;

84) database = new Database (tid,cid,Database.READWRITE) ;

85) // Creating the databse..

86) Database.create(0,name,cid, tid, false) ;

87) }

97)

Chapter 6: Project 1: Online Testing Engine 141

/**

Event to query the database. It Reads the Database generated by the
testmanager.class and stores the result in a 2-D array and also stores in a
string in proper format as this screen is used for Display to the user all
the available tests at a particular instant of time..It reads the Database
with the help of delimiters and whereever it encounters those delimiters it
stroes the result..

*/

public String reading() {

/* Opening the Database by providing the same name,

cid(creator id) and Tid (table id)

*/

String nameing = "data base";

String str22 = " ";

int cid = 0x4B415754;98) int tid = 0x44425370; 90)// initializing the

Database in a READONLY mode. .

99)
100
101
102
103
104

dbg = new Database (tid,cid,Database.READONLY) ;

) byte[] data = dbg.getRecord(1l);

) String questiontext = new String(data) ;
) String puttext = "";

) char kg = 'a';

)

/* the process of reading is as follows..from the database the record
containing the subject number and subject name is chosen and read character
by character when a delimiter is found then the contents of string buffer
are stored in an array and also appended at the end of string the
stringbuffer is emptied..this process is continued till the last delimiter
is encountered.At that instant the string is returned to the calling
program. .

*/

int ig = 1;

int county = 0;

StringBuffer sb = new StringBuffer();

while (kg != 'i') {

kg = questiontext.charAt (iq) ;

if(kg !'= 'e")

sb= sb.append (kg) ;

else {

county++;

)

)

)

)

)

)

)

)

)

)

) int check = county / 2;

) int rem = county - check*2;

) if (rem == 1) {

) choose[gno] = sb.toString() ;

) puttext = puttext+ gno+ ". 0 g
)}

) else {

) puttext = puttext + sb.toString() + "\n";
) choose text[gno] = sb.toString();
) gno++;

)}

) sb.delete(0,sb.capacity());

)}

) ig++;

)}

) dbg.close() ;

) return (puttext) ;

)

}

142 Chapter 6: Project 1: Online Testing Engine

154
154
155

156
157

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

)
)
)

)
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

/**

* Event handling for various buttons on the Class Main Screen
* which is first screen.

*/

public void penDown (int x, int y) {

if (bt.pressed(x,y)) // When “0Ok” is pressed..

{

// Unregister the events of the Spotlet

unregister () ;

// Get the Choice entered by the user and store it in the variable str3.
String str3 = choicefield.getText () ;

// Disable the cursor of the choicefield.

choicefield.loseFocus() ;

// The array in which test serial no. is maintained along with the
testnumber is referenced to get the testnumber on the basis of str3(Integer
value)

strp = choose[Integer.parselnt(str3)];

exam name = choose text[Integer.parselnt(str3)];

exam name = exam name.substring (0, exam name.length()-1);

strp = strp.substring(0,3);

exam code = str3;

strp = strp+".xml";

// That exam name is passed on to the question parser to generate an xml
file of the same name.

QuestionParser parser= new QuestionParser (strp) ;

// A function is called to send the request

parser.startl () ;

// parsedata is called to parse the XML file generated in response to the
request. .

parser.parseDatal() ;

// After parsing the database will be generated and a class(inner) is called
of the name nextscreen|()

new NextScreen() ;

}

// Handling events..

if (exit.pressed(x,y)) // When exit button is

pressed. .

{

System.exit (0) ;

}

if (first.contains(x,vy))

first.handlePenMove (x,VY) ;

}

public void penMove (int x, int y) {

if (first.contains(x,vy))

first.handlePenMove (x,VY) ;

}

// Event for the textfield..

public void keyDown (int x)

{

if (choicefield.hasFocus()) {

choicefield.handleKeyDown (x) ;

}

}

/**

* Class for displaying the next screen which shows the appropriate

Chapter 6: Project 1: Online Testing Engine 143

183) * test after the user has made a choice.
184) */

185) public class NextScreen extends Spotlet {
186) /**

187) * GUI components for the screen...

)
)
)
)
)
188) */
189) private ScrollTextBox text;
190) private TextField choice = new TextField("Choice:",10,145,50,20);

)

)

)

)

)

)

)

191) private Button btl = new Button ("Next",70,145) ;

192) private Button bt2 = new Button("Review",130,145);

193) private Button bt3 = new Button("Prev",100,145);

194) /**

195) * Database initialization for generating questions during the tests.

196) */

197) // The database is generated by a given name , cid(creator id), (Table
id) tid..

198) String strp = "not";

199) String nameing = "www.S-cop.com";

200) int cid = 0x4B425754;

201) int tid = 0x44445370;

202) // Database is initialized in read/write mode. .

203) Database dbgl = new Database

204) (tid,cid,Database.READWRITE) ;

205) String str22;

207) Graphics grl = Graphics.getGraphics();

208) NextScreen/() // Next Screen Constructor..
209) {

210) // Registering the spotlet

211) register (NO_EVENT OPTIONS) ;
212) grl.resetDrawRegion() ;
213) grl.clearScreen() ;

)
)
)
)
)
)
)
)
206) // Initializing the Graphics
)
)
)
)
)
)
)
)

214) // The Database generated by the questionParser.java is run, the first
record is read to get the total number of questions..

byte[] datal = dbgl.getRecord(0) ;

str22 = new String(datal) ;

str22 =str22.substring(0,str22.indexO0f ("?"));

218) grl.resetDrawRegion () ;
219) grl.clearScreen() ;
220) // A function called critical is called which is responsible for generating

the questions

grl.clearScreen() ;
choice.setUpperCase (true) ;
choice.setFocus () ;

221) critical (serialno) ;
222) // Call to generate the questions according to the format...
223) }// End of the constructor..
224) /**
225) * To generate questions after querying the database...
226) */
227) // The function critical takes the argument the question to be generated..
228) public void critical (int Jjk)
229) {
230) // Register the spotlet..
231) register (NO_EVENT OPTIONS) ;
232) grl.resetDrawRegion () ;
)
)
)

144 Chapter 6: Project 1: Online Testing Engine

236) choice.setText("");
237) // Query the database on the record index.. and put the data in question

text..

238) byte[] data = dbgl.getRecord(jk) ;

239) String questiontext = new String(data) ;

240) String puttext = "";

241) char kg = 'a';

242) /* the process of reading is as follows..from the database the record is
chosen and read character by character when a delimiter is found then the
contents of string buffer are appended at the end of string also if the
option has correct answer then the 2-D array is initialized with serial
number of the option and answer [questionno][1l] = “u” is also set, the
stringbuffer is emptied..this process is continued till the last delimiter
is encountered.At that instant the string is returned to the calling
program. .

242) */

243) int ig = 1;

244) int county = 0;

245) StringBuffer sb = new StringBuffer();

246) while (kg != '"i') {

247) kg = questiontext.charAt (iq) ;

248) if(kg != '&"')

249) sb= sb.append(kg) ;

250) else {

251) county++;

252) if (county == 1) {

253) puttext = "Q"+serialno + " "

254) 1}

255) if ((county ==2) || (county ==5) || (county ==8) ||

256) (county == 11) || (county ==14) || (county ==17) ||

257) (county ==20) || (county == 23) || (county == 26))

258) puttext = puttext + sb.toString() + " g

259) else if ((county ==3) || (county ==6) || (county ==9) ||

260) (county == 12) || (county ==15) || (county ==18) ||

261) (county ==21) || (county == 24) || (county == 27)) {

262) String gfd = sb.toString() ;

263) if ((gfd.equals("Y")) && (county == 3)) {

264) answer[serialno] [0] = "1";

265) answer[serialno] [1] = "U";

266) }

267) else if ((gfd.equals("Y")) && (county == 6)) {

268) if (answer([serialno] [0] != null)

269) answer[serialno] [0] = 266)answer[serialno] [0]+","+"2";

270) else

271) answer[serialno] [0] = "2";

272) answer[serialno] [1] = "U";

273) }

274) else if ((gfd.equals("Y")) && (county == 266)9)) {

275) if (answer[serialno] [0] != null)

276) answer [serialno] [0] =

277) answer[serialno] [0]+","+ "3";

278) else

279) answer[serialno] [0] = "3";

280) answer[serialno][1] = "U";

281) 1}

282) else if ((gfd.equals("Y")) && (county == 266)12)) {

Chapter 6: Project 1: Online Testing Engine 145

283) if (answer[serialno] [0] != null)

284) answer[serialno] [0] =

285) answer[serialno] [0]+","+"4";

286) else

287) answer[serialno] [0] = "4";

288) answer[serialno][1] = "U";

289)1}

290) else if ((gfd.equals("Y")) && (county == 266)15)) {
291) if (answer[serialno] [0] != null)

292) answer[serialno] [0] = 266)answer[serialno] [0]+","+"5";
293) else

294) answer[serialno] [0] = "5";

295) answer[serialno] [1] = "U";

296) }

297) else if ((gfd.equals("Y")) && (county == 18)) {
298) if (answer[serialno] [0] != null)

299) answer[serialno] [0] = answer[serialno] [0]+","+"6";
300) else

301) answer[serialno] [0] = "6";

302) answer[serialno][1] = "U";

303) 1}

304) else if ((gfd.equals("Y")) && (county == 21))

305) {

306) if (answer[serialno] [0] != null)

307) answer[serialno] [0] = 300)answer[serialno] [0]+","+"7";
308) else

309) answer[serialno] [0] = "7";

310) answer[serialno][1] = "U";

311) }

312) else if ((gfd.equals("Y")) && (county == 24))

313) {

314) if (answer[serialno] [0] != null)

315) answer[serialno] [0] = 300)answer[serialno] [0]+","+"8";
316) else

317) answer[serialno] [0] = "8";

318) answer[serialno][1] = "U";

319) 1}

320) else if ((gfd.equals("Y")) && (county == 27))
321) {

322) if (answer[serialno] [0] != null)

323) answer[serialno] [0] = 300)answer[serialno] [0]+","+"9";
324) else

325) answer[serialno] [0] = "9";

326) answer[serialno][1] = "U";

327) }

328) 1}

329) else

330) puttext = puttext + sb.toString() + "\n\n";

331) sb.delete(0,sb.capacity());

332) }

333) ig++;

334) }

335) // The text returned is put on the scrolltextbox initialized below..
336) text = new ScrollTextBox (puttext,0,0,150,130);

337) btl.paint();

338) // Painting various GUI components on the screen...

146 Chapter 6: Project 1: Online Testing Engine

339) bt2.paint();

340) // Painting various GUI components on the screen...
341) bt3.paint();

342) 343) text.paint () ;

344) // Painting various GUI components on the screen...
345) choice.paint () ;

346) }

347) /**

348) * Event handling for the GUI components.

349) */

350) public void penDown (int x, int y) {

351) if (btl.pressed(x,vy)) // When next is pressed

352) {

353) // When next is pressed then the choice entered by the user is taken and

added to answer[][1l] set against the serial number of the question.

354) // The serial no. is advanced..checked if it is not the last number if not
then again critical function is called to generate the bnext question..else
if the serial number is the last serial then a class(inner) result is
called.. (by giving total number of questions and the state as parameter)

355) String stre = choice.getText () ;

356) answer[serialno] [1] = stre;

357) serialno++;

358) if (serialno < Integer.parselnt (str22))

359) critical (serialno);

360) else {

361) choice.loseFocus() ;

362) grl.clearScreen();

363) new Results(str22,1);

364) }

365) 1}

366) if (bt2.pressed(x,y)) // If review button is pressed

367) {

368) // then a class(inner) result is called.. (by giving total number of
questions and the state (0) as parameter)

369) choice.loseFocus() ;

370) grl.clearScreen();

371) new Results(str22,0);

372) }

373) if (bt3.pressed(x,y)) // If prev button is pressed..

374) {

375) // Check whether the question is not the first question itself.. if not then

decrease the serial number
by one and again call the critical function..

376) if(serialno != 1)

377) {

378) choice.loseFocus() ;

379) grl.clearScreen() ;

380) serialno--;

381) answer[serialno] [0] = "";
382) answer[serialno] [1] = "U";
383) critical (serialno);

384) }

385) 1}

386) if (text.contains(x,Vy))
387) text.handlePenDown (X,VY) ;
388) 1}

Chapter 6: Project 1: Online Testing Engine 147

private Button end;
private Button result;

389) public void keyDown (int x) {
390) if (choice.hasFocus()) {
391) choice.handleKeyDown (X) ;
392) }
393) 1}
394) public void penMove (int x, int y) {
395) if (text.contains(x,Vy))
396) text.handlePenMove (X,VY) ;
397) }
398) } // End of Class NextScreen
399) /*x*
400) * Class responsible for handling results at intermediate stage...
401) */
402) public class Results extends Spotlet {
403) /**
404) * Local variables for GUI components used in this screen...
405) */
406) private ScrollTextBox stb;
407) private Button ok;
)
)
410) String total num =""

411) String str;

412) // Initializing the Graphics.

Graphics gr2 = Graphics.getGraphics();
) Results(String str22, int state) { // Constructor...
) gr2.clearScreen() ;
) // registering the Spotlet
416) register (NO_EVENT OPTIONS) ;
)
)
)

417) total num = str22;
418) // A String str is first initialized with question no and sttus text..
419) str = "QONo." + " "+ "Status" + 400)"\n\n\n";

420) // A Loop is executed from 1 to the total number of questions and

answer [loop] [0] is mapped with answer[loop][1l] and accordingly the message is
appended to the string variable str. (correct,wrong,unanswered,unattempted)
421) for(int i = 1l;i<serialno;i++) {

422) if (i<=9) {

423) if (answer[i] [0].equals (answer([i][1]))

424) str = str +"Q" +i+" "+"Correct"+ 400)"\n";
425) else if (answer[i][1l].equals(""))

426) str = str +"Q" +i+" 400) "+"Unanswered"+ "\n";
427) else

428) str = str +"Q" +i+" "+"Wrong"+ "\n";

429) }

430) else {

431) if (answer[i] [0].equals (answer([i][1]))

432) str = str +"Q" +i+ " "+"Correct"+ "\n";

433) else if (answer[i][1l].equals(""))

434) str = str +"Q" +i+ " 400) "+"Unanswered"+ "\n";
435) else

436) str = str +"Q" +i+ " "+"Wrong"+ "\n";

437) }

438) }

439) for(int yu = serialno;yu<Integer.parselnt (str22);yu++)
440) {

441) if (yu<=9)

148 Chapter 6: Project 1: Online Testing Engine

442) str = str +"Q" +yu+ " "+"Unattempted"+ "\n";
443) else

444) str = str +"Q" +yu+ " "+"Unattempted"+ "\n";
445) }

446) // The str variable is then put on to a ScrollTextBox
447) stb = new ScrollTextBox(str,0,0,150,140);

448) stb.paint(); // The Scroll Textbox is then painted on to the window.
449) // Three Buttons are also initialized..

450) ok = new Button("Ok",25,145);

451) end = new Button ("Exit",50,145);

452) result = new Button("Result",80,145) ;

453) if (state ==0)

454) ok.paint () ;

455) end.paint () ;

456) result.paint();

457) }// End Constructor results.

458) // Event handling...

459) public void penDown (int x, int vy)

460) {

461) if (ok.pressed(x,y)) // When Ok button is pressed.
462) {

463)unregister(); // Unregister the Spotlet..

464) new NextScreen(); // Call the nextscreen class.

465) // When Ok button is pressed then if the result screen was pressed before
the test is completed then
the control reaches back to the question..

466) }

467) if (end.pressed(x,y)) // If end button is pressed..
468) {

469) System.exit (0) ;

470) }

471) if (result.pressed(x,vy)) // If result button is pressed
472) {

473) // Unregister the Spotlet..

474) unregister() ;

ATS) e

476) * Call to the class that shows the final result
477) */

478) new ResultScreen(total num) ;

479) }

480) if (stb.contains(x,vy))

481) stb.handlePenDown (X,VY) ;

482) 1}

483) public void penMove (int x, int y) {

484) if (stb.contains(x,vy))

485) stb.handlePenMove (X,VY) ;

486) }

487) } // End of Results class...

488) /**

489) * Class that shows final result of the test
490) */

491) public class ResultScreen extends Spotlet {
AO2N /%

493) * Local variables used for GUI components...
494) */

Chapter 6: Project 1: Online Testing Engine 149

495) // This class shows the final result ie the name of the test the date of
test taking.., the total number of questions, the total number of correct
answers, the required score. And the status.. along with it,it has two more
buttons exit and history..

private Button exit;

private Button history;

)
)
498) private ScrollTextBox stb;

499) Calendar cal;

500) // Initialize the graphics..

501) Graphics gr23 = Graphics.getGraphics() ;

502) ResultScreen(String total num) // Constructor of the Result Screen.

503) {

504) // Clear the drawing region

505) gr23.resetDrawRegion () ;

506) gr23.clearScreen() ;

507) // register the Spotlet..

508) register (NO_EVENT OPTIONS) ;

509) // Calendar for getting the Date.

510) cal =Calendar.getInstance() ;

511) String current date;

512) total_number = total num;

513) int question asked = Integer.parselnt (total num) - 1;

514) String questions = ""+question asked;

515) int year = cal.get(Calendar.YEAR) ;

516) int date = cal.get(Calendar.DAY OF WEEK) ;

517) int month = cal.get(Calendar.MONTH) +1;

518) current date = date+"."+month+"."+year;

519) String exam namel = exam name;

520) int number = 0;

521) // Check the number of correct answers and store the number in the variable

number. .
522) for(int i=1;i<Integer.parselnt (total num);i++) {
523) if (answer[i][0] .equals (answer[i][1]))
number++;
}
// Calculate the required score..
int required score = (75*question_asked)/100;

527) String status = "";

528) //Calculate the status on the basis of the required score..
529) if (number<required score)

530) status = "Fail";

531) else

532) status = "Pass";

533) String printtext;

534) // Append all this information in a string

536) printtext = " Result Screen... \n\n";
537) printtext = printtext + "Examination 8
538) "+exam name+"\n\n";

539) printtext = printtext + "Date

)
)
)
)
)
)
)
)
)
)
)
535) printtext..
)
)
)
)
)
)
)
)
)
)

540) "+date+"."+month+"."+year+"\n\n";

541) printtext = printtext + "Questions Asked
542) "+question asked+"\n\n";

543) printtext = printtext + "Correct Answers
544) "+number+"\n\n";

545) printtext = printtext + "Your Score

150 Chapter 6: Project 1: Online Testing Engine

546
547

"+number+"\n\n";
printtext = printtext + "Required Score
548) "+required score+"\n\n";

549) printtext = printtext + "Result

550) "+status+"\n\n";

551) // Initialize the ScrollTextBox With printtextbox
552) stb = new ScrollTextBox (printtext,0,0,150,140);

)
)
)
)
)
)
)
553) exit = new Button("Exit",35,145);
)
)
)
)
)
)
)

554) history = new Button("History",60,145);

555) stb.paint();// paint the GUI components.

556) exit.paint();// paint the GUI components.

557) history.paint();// paint the GUI components.

558) String entry string = exam namel+">"+current date+

559) ">"+questions+">"+number+">"+status+">";

560) // Initialize a variable of the name entry string with all the information
collected and pass it as a parameter to the function entry so as to make an
entry in the history database.

561) entry(entry string) ;

562) }

563) public void penDown (int x, int y) { // Event handling....

564) if (exit.pressed(x,y)) // If exit button is pressed

565) {

566) System.exit (0);

567) }

568) if (history.pressed(x,vy)) // When history Button is pressed.

569) {

570) // Unregister the Spotlet..

571) unregister () ;

572) // Call the class(inner) test history which will display all the test given
so far..

573) new test history();

574) 1}

575) if (stb.contains(x,Vy))

576) stb.handlePenDown (x,V) ;

577) }

578) public void penMove (int x, int y) {

579) if (stb.contains(x,vy))

580) stb.handlePenMove (x,V) ;

581) 1}

582) } // End of ResultScreen class

583) // This class maintains the History of all the tests taken by the user

584) public class TestHistory extends Spotlet {

585) private Button exit; // Declaring button

586) private ScrollTextBox stb; // Declaring ScrollTextBox

587) // Initializing the graphics..

588) Graphics gr23 = Graphics.getGraphics() ;

589) String data string[] = new String[5];

590) String printtext = "Exam Dt. Qno. Correct Status \n\n";

591) String final text = " ";

592) TestHistory() // Constructor of the Class TestHistory..

593) {

594) // Reset the drawing region

595) gr23.resetDrawRegion () ;

596) // Clear the drawing region

597) gr23.clearScreen() ;

598) // registering the Spotlet..

Chapter 6: Project 1: Online Testing Engine 151

register (NO_EVENT OPTIONS) ;

// To maintain history a database of the name”database” was opened in the
main screen constructor..It is then queried to get the history information..

byte[] data = database.getRecord(65535);
String temp data = new String(data) ;

int temp = 1;

StringBuffer sb = new StringBuffer();
String intermediate;

while (temp != temp data.length()) {

while (temp data.charAt(temp)!='?") {
sb.append (temp data.charAt (temp)); temp++;
}

if (temp data.charAt(temp)=='?") {
intermediate = sb.toString() ;

sb.delete (0, sb.capacity()) ;

// Function display is called..
display (intermediate) ;

temp++;

}

}

final text = printtext + final text;
// initialize the scrolltextbox. .

stb = new ScrollTextBox(final text,0,0,150,140);

exit = new Button("Close",35,145);

// Putting the ScrollTextBox on the Screen
stb.paint () ;

// Putting the ExitButton on the Screen
exit.paint () ;

}

void display(String str) {

StringBuffer sb display = new StringBuffer();

int r = 0;
int temp = 0;

// The delimiter’s used are “ > “ and until the delimiter is encountered the
characters generated will be put on to a stringbuffer and when the

delimitter is obtained then then it is put onto

while (temp != str.length()) {

while (str.charAt(temp)!='>") {

sb display.append(str.charAt (temp)) ;
temp++;

}

if (str.charAt (temp)=='>") {

data string[r] = sb display.toString() ;
sb display.delete(0,sb display.capacity()) ;
temp++;

r++;

}

}

String data temp = "";

for (int y= 0;y<5;y++) {

data temp = data temp + data stringly] + "
}

// Later that array is displayed..

final text = final text+data temp + "\n\n";
}// End Constructor.. Test history..

// Handling events on buttons

an array..

152 Chapter 6: Project 1: Online Testing Engine

652) // If close button is pressed then the control goes back to the result

screen. .

653) public void penDown (int x, int y) { // Event handling...
654) if (exit.pressed(x,y)) {

655) new ResultScreen(total number) ;

656) 1}

657) // For handling scrolling down action. .
658) if (stb.contains(x,Vy))

659) stb.handlePenDown (x,V) ;

660) 1}

661) // For handling pen move. .

662) public void penMove (int x, int y) {
663) if (stb.contains(x,y))

664) stb.handlePenMove (x,V) ;

665) 1}

666) } // End of the inner class

667) } // End of Class MainScreen

Code explanation

¢ Lines 1-5: The code contained in these lines pertains to the inclusion of the basic packages used by
various classes in the project, such as java.util. * for vectors and enumerations and
java.io.* for input and output.

¢ Line 8: The most important class of the online Testing Engine MainScreen is declared here. A list
of all the tests available at a particular instant of time is shown. When the user makes a choice, a
request is made to the central server to generate the XML file for that test, send it to the parser, and
then show the first question to the user.

¢ Lines 12-18: The declarations of the static data variables, which are used by all the inner classes of
the MainScreen, are encoded in these lines. These include examination code (exam _code),
examination name (exam_name), and total number of questions in a test (total number).

¢ Lines 21-39: The static function entry is declared here. This function is used to maintain a history
of the tests taken by the user.

e 25: The data is stored in a specific position on the database — that is, record number 65535.
e 26: The earlier data is retrieved from the location.
32: The old data is deleted from the location.

36: The new entry is added to the database location.

¢ Lines 45-47: The button variables bt and exit are initialized and a Textfield variable
choicefieldis declared.

¢ Line 60: The code here pertains to making the spotlet the current spotlet. The system keys can
cancel the spotlet at any time.

¢ Lines 63-65: These lines initializes the TextField and put the cursor onto the focus.

¢ Line 69: A call to an important function is made known as reading () . This function reads the
database created and puts the results in a proper format onto the Scrol1TextBox and also stores
the result in a 2-D array. It returns a String, which is put onto the ScrollTextBox.

¢ Lines 71-78: These are for initializing the Scrol1TextBox variable of the name first and
painting the buttons and the Scrol1TextBox onto the screen.

¢ Lines 81-86: These are for initializing the database by creating the name of the database, the cid
(creator id), and the tid(table id). This database is used to maintain the history of the tests
undertaken by the user.

Chapter 6: Project 1: Online Testing Engine 153

Lines 91-132: The code in these lines pertains to the declaration of a function reading (), which
is used for reading the database generated earlier and storing the results in the appropriate format. It
reads the database generated by the testmanager.class and stores the result in a 2-D array,
and it also stores it in a String in proper format, as this screen is used to display to the user all the
available tests at a particular instant of time. The function reading () reads the database with the
help of delimiters, and wherever it encounters these delimiters, it stores the result.

e 106-131: These lines encode the process of reading from the database. The process is as follows:
From the database, the record containing the subject number and subject name is chosen and read
character by character. When a delimiter is found, the contents of the string buffer are stored in
an array and also appended at the end of the String. The string buffer is emptied, and this process
is continued till the last delimiter is encountered, and then the String is returned to the calling
program.

Lines 138-161: These represent the action taken when the user presses the OK button.
e 141: The spotlet is unregistered, thereby making way for the next spotlet.

e 143-149: The choice entered by the user is taken, and the array in which the test serial numbers
are maintained along with the test number is referenced to get the test number on the basis of the
number entered by the user.

e 152: An XML extension (.xml) is appended to the filename returned by the array.

e 153-157: The filename is passed on to a class QuestionParser to generate the XML file of
the same name. The class is responsible for sending a request to the server, using an ASP for
which it uses a function startl ().). The server sends response in XML data which is parsed
and stored in the Palm Database using function parsedata() .

e 159: After the parsing, another inner class, NextScreen, is called, which is responsible for
displaying the questions to the user along with the choices for each question.

Lines 162-166: These correspond to the event of the user pressing the Exit button. When the button
is pressed, the game is closed and control is returned to the OS.

Line 185: The code here pertains to declaring an inner class of MainScreen (NextScreen). Here
on the screen, the first question of the test selected by the user is displayed — that is, the test-taking
procedure is started.

Lines 189-193: The GUI components of the class that are to be displayed on the screen are
declared. These lines contain a variable of the class Scrol1TextBox, a variable of TextField,
and three variables of the button type (Next, Prev, and Review)

¢ Lines 198-204: The database is initialized in read/write mode.

¢ Line 211: This code is for making the spotlet the current spotlet. The system keys can cancel the

spotlet at any time.

Lines 212-213: The code represents initializing the variable of the graphics class and clearing the
drawing region by calling the appropriate functions of the graphics class — namely,
resetDrawRegion () and clearScreen().

Line 221: An important function, critical, is called, which is used to generate the questions one
after the other.

Lines 228-346: These lines indicate the declaration of the function critical. The function
critical takes an integer value as argument which is a question number that will be shown to the
user.

e 238: The code queries the database on the record index and put the data in the question text.

e 242-328: The code between these lines represents the reading of a particular question from the
database. The process of reading is as follows: From the database, the record is chosen and read
character by character. When a delimiter is found, the contents of the string buffer are appended

154

Chapter 6: Project 1: Online Testing Engine

at the end of String; also, if the option has the correct answer, the 2-D array is initialized with the
serial number of the option, and answer [questionno] [1] = “u” is also set, and the string
bufter is emptied. This process is continued till the last delimiter is encountered. At that instant,
the String is returned to the calling program.

e 336: The String is put onto the ScrollTextBox for display.
e 337-345: The various GUI components are painted onto the screen.

Lines 351-365: These lines encode the event executed when the button Next is pressed. When Next
is pressed, the choice entered by the user is taken and added to a two dimentional array

answer [] [1]. The first value to the array is a serialnumber of the question the
serialnumber is checked in case the serialnumber is not last number a function named
critical is called to generate the next question. If the serial number is the last serial, a class
Results is called (by giving the total number of questions and the state as a parameter).

Lines 366-372: This code is executed when the button Review is pressed.
e 369 - 370: The TextField’s caret is killed and the graphics is redrawn.

e 371: An inner class Results is called (by giving total number of questions and the state (0) as
parameters).

Lines 373-385: The code contained in these lines is executed when the button Prev is pressed.

e 376-384: A check is made to see whether the current question is the first question or not. If the
current question displayed is the first question, nothing is done; otherwise, the serialno
variable is decremented by one and passed on to the function critical.

Line 402: The code here is for declaring the inner class Results, which is responsible for
handling the results at an intermediate stage.

¢ Lines 406-411: Various variables (Button, ScrollTextBox, etc.) are being declared.

¢ Lines 414-416: The code makes the spotlet the current spotlet, besides initializing the variable of

the graphics class and clearing the drawing region by calling the appropriate functions of the
graphics class — namely, resetDrawRegion () and clearScreen ().

¢ Line 419: A String str is first initialized with question number and status text.

¢ Lines 421-445: A Loop is called from 1 to the total number of questions, and answer [1oop] [0]

is matched with answer [loop] [1] and, accordingly, the message is appended to the String
variable str (correct, wrong, unanswered, unattempted, etc).

¢ Lines 447: The String variable str is then put onto a ScrollTextBox.
¢ Lines 450-452: Three buttons of the label (Ok,Exit and Result) are also initialized and placed at

appropriate positions on the screen.

Lines 461-466: The code between these lines pertains to the situation when the OK button is
pressed.

e 463: The spotlet is unregistered, thereby making way for the next spotlet.

e 464: The class NextScreen is called, meaning that the control returns to the screen where the
user had pressed the Review button.

Lines 467-470: The code between these lines is used when the user presses the button Exit. When
the button is pressed, the Test is closed and the control is returned to the OS.

Lines 471-479: The code between these lines is used when the user presses the button Result.
e 474: The spotlet is unregistered, thereby making way for the next spotlet.

e 478: A call is made to another inner class, which shows the final result of the test
(ResultScreen).

Chapter 6: Project 1: Online Testing Engine 155

Line 491: The code here pertains to declaring an inner class of the MainClass (ResultScreen).
This class is responsible for showing the final result — that is, the name of the test, the date of
taking the test, the total number of questions, the total number of correct answers, the required
score, and the status along with it. It has two more buttons, Exit and History.

Lines 496-498: Declaration of the various GUI components used in the display of the class
ResultScreen, such as buttons (Exit and History) and ScrollTextBox.

Lines 505-508: The code between these lines pertains to making the spotlet the current spotlet,
initializing the variable of the graphics class, and clearing the drawing region by calling the
appropriate functions of the graphics class — namely, resetDrawRegion () and
clearScreen ().

¢ Lines 509-518: From the Calendar object, the date is constructed.
¢ Lines 522-524: A Loop is used, which checks the total number of correct answers.
¢ Lines 534-550: All the information — that is, the name of the test, the test-taking date, the score

scored, the minimum score required to pass, and the status of the text — is appended to a String.

¢ Line 552: The String is then displayed in a Scrol1TextBox.
¢ Lines 555-557: The GUI components are then painted onto the screen.
¢ Lines 564-567: The code between these lines is used when the user presses the button Exit. When

the button is pressed, the application is closed and the control is returned to the OS.
Lines 568-574: The code between these lines is used when the user presses the button History.
e 571: The spotlet is unregistered, thereby making way for the next spotlet.

e 573: A new class, test_history, is called, which will display a record of all the tests taken by
the user so far.

Line 584: A class is declared (test_history), which is used to maintain the history of all the
tests taken by the user so far.

Lines 595-599: The code between these lines pertains to making the spotlet the current spotlet,
initializing the variable of the graphics class, and clearing the drawing region by calling the
appropriate functions of the graphics class — namely, resetDrawRegion () and
clearScreen ().

¢ Lines 601-612: The database is checked to get the history information.
¢ Line 649: The history information is then passed on to the Scrol1TextBox for display.

¢ Lines 653-656: If the Close button is pressed, the control returns to the Results screen.

QuestionParser.java

When the user, after seeing all the available tests, selects a test to give, a request is made to the server to
generate that test by calling an ASP of the name test . asp and passing it a parameter bookid =
choice selected. The ASP then generates an XML file of the same name; the XML file is then
passed on to the XML parser, which parses the XML; and the callbacks generated by the XML parser are
stored in the Database.

Listing 6-3: QuestionParser.java

© 2001 Dreamtech Software India Inc.
All rights reserved.

s wWw N

)
)
)
)

import java.io.InputStream;
import java.util.Hashtable;
import java.util.Enumeration;
import com.sun.kjava.*;

156 Chapter 6: Project 1: Online Testing Engine

5) dimport java.lang.*;

6) import javax.microedition.io.*;

7) dimport java.io.*;

8) dimport java.util.*;

9) dimport org.kxml.*;

10) import org.kxml.io.*;

11) import org.kxml.parser.*;

12) public class QuestionParser {

13) // temporary variables used for storing the results in
14) // Database. .

15) boolean question flag = false;

16) boolean question id = false;

17) boolean gquestion text = false;

18) boolean option id = false;

19) boolean text id = false;

20) boolean correct id = false;

21) int ij = 1;

22) int ijk = 0;

23) String namel = "";

24) Database base;

25) String filename = "";

26) // Object of the Class AbstractXmlParser (Xml Parser Used)
27) AbstractXmlParser xmlParser;

28) // Object of the Class ParseEvent used to store all the callbacks..

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

) ParseEvent event;

) // InputStream to be used to request the Server..

) InputStream dos;

) InputStream din;
) // Constructor of the class QuestionParser.. it takes as a

34) // parameter the file name to be generated..
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

35) public QuestionParser (String file)

36) {

37) filename = file;

38) // Initializing the Database of the name, creator id and
39) // table id

40) String nameing = "data base";

41) int cid = 0x4B415754;

42) int tid = 0x44425370;

43) // Initialize the Database in read/write mode. .

44) base = new Database (tid,cid,Database.READWRITE) ;

45) // Create the Database of the given name with creator
46) // id and table id..

47) Database.create(0,naming,cid, tid, false) ;

48) }

49) // startl method of the class questionparser is called
50) // which helps in generating the request to the server and
51 // passing the file generated by the server onto the
52) xmlparser for parsing...

53) public void startl() {

54) try {

55) String temp =

56) filename.substring (0, filename.indexOf ("."));

57) // Generating the request

58) din =

59) Connector.openInputStream("testhttp://www.s-cop.com/testfile. 60)
asp?bookid="+temp) ;

Chapter 6: Project 1: Online Testing Engine 157

din.close() ;
// Creating the inputstream from the file generated..
InputStream dos =
Connector.openInputStream("testhttp://www.s-cop.com/"+filename) ;
// Passing the inputstream to the xml parser
xmlParser = new XmlParser (new 20) InputStreamReader (dos)) ;
}
catch (IOException e) {
System.out.println("gh");
}

}// This is the function on which when the parser parses the data then it put

callbacks on this function..

void parseData() {

do {

try {

event = xmlParser.read ();

// If start tag is found.. then identify it as a question tag, option_ tag,

correct tag,or option _text and accordingly the corresponding flag is set
true..

if (event.getType () ==Xml.START TAG)
{
StartTag stag = (StartTag)event;
String name = stag.getName () ;
if (name.equals("question")) {
question flag = true;
}
else if (name.equals("questiontext")) {
question text = true;
}
else if (name.equals("optionno")) {
option id = true;
}
else if (name.equals("correct")) {
correct _id = true;
}
else if (name.equals("text")) {
text id = true;
}
}
if (event.getType ()== Xml.TEXT)
{
// When the text of the tags is encountered then after checking for the

appropriate tag they are stored in a String variable called name after
applying the delimiters..

TextEvent tevent = (TextEvent)event;
String name = tevent.getText () ;

name = name.trim() ;

i1f ((question text)&&(question flag))
namel = namel+"&"+name+"e";

else if ((qguestion flag)&& (option id))
namel = namel+name+"&";

else if ((qguestion flag)&& (correct id))
namel = namel+name+"&";

else if ((guestion flag)&&(text id))
namel = namel+name+"&";

}

158

113)
114)
115)

Chapter 6: Project 1: Online Testing Engine

if (event.getType()== Xml.END TAG)
{

// When the End tag(question) is encountered the respective flag is reset

and the the name (variable)is stored in the databse.. else if for all the
tags only the respective flags are reset.

EndTag end tag = (EndTag)event;

String name = end tag.getName () ;

if (name.equals("question")) {

question flag = false;

namel = namel +"i";

byte[] data = namel.getBytes();
base.setRecord(ij,data) ;

ij++;

namel = "";

}

else if (name.equals("questiontext")) {
question text = false;

}

else if (name.equals ("optionno")) {

option id = false;

}

else if (name.equals("correct")) {
correct_id = false;

}

else if (name.equals("text")) {

text id = false;

}

}

}

catch (IOException ex) {

System.out.println ("Exception occured") ;

}

}

while (! (event instanceof EndDocument)) ;

// When the end of document is reached, to the first record of the database
a number is added. This number denotes the total number of records present..
System.out.println("**** END OF DOCUMENT ****m) .

String stre = ""+ij+"?";

byte[] data2 = stre.getBytes();

base.setRecord(ijk,data2) ;

Code explanation

L4

*
*

L4

Lines 1-8: The code here pertains to the inclusion of the basic packages used by various classes in
the project, such as java.util. * for vectors and enumerations and java.io.* for input and
output.

Lines 9-11: These encode the packages required by the various classes in the XML parser.

Line 12: This signifies declaring another important class of the online Testing Engine
(QuestionParser). It sends a request to the server to generate a test on the basis of the test
number of the test passed to it as a parameter. It then parses the XML response sent by the server
and stores the result of the parsing in a Palm database.

Lines 15-20: Various Boolean flags used in parsing are initialized to false.

Chapter 6: Project 1: Online Testing Engine 159

Lines 27-29: Declaring variables for the XML parser and parse event (where the Callbacks after the
parsing will be stored).

¢ Lines 31-32: Declaring the variable for the DataInputStream (for reading the ASP).

¢ Lines 40-47: Initializing the database by creating the name of the database, the cid(creator- id),

and the tid(table id) and then creating the database.

Lines 53-70: The code pertains to the declaration of the method start1. This method helps in
generating the request to the server and passing the file generated by the server onto the XML
parser for parsing.

Lines 73-151: The function parseData is encoded here. This is the function by which the XML
parser sends the Callbacks. The Callbacks are identified accordingly by using the functions
(whether the element obtained is the start tag or end tag, etc.).

Lines 82-83: If the tag encountered is question, the corresponding flag — that is,
question flag— is made true.

Lines 85-86: If the tag encountered is questiontext, the corresponding flag — that is,
questiontext flag— is made true.

Lines 88-89: If the tag encountered is optionno, the corresponding flag — that is, option id —
is made true.

Lines 91-92: If the tag encountered is correct, the corresponding flag — that is, correct_id —
is made true.

Lines 94-95: If the tag encountered is text, the corresponding flag — that is, text _id — is made
true.

Lines 100-112: In these lines of code XML parser throws a TextEvent when it encounters
text associated with a tag.The text is extracted and stored in a String
variable name with delimiter (ALT+232).

Lines 116-139: When the end tag (question) is encountered, the respective flags are reset and the
name (variable) is stored on the database.

Lines 147-149: When the end of the XML document is reached , the total number of records are
counted and stored in the first recording place of the Palm database.

Books.asp

This asp file is requested for the list of topics available on which the test can be given. The asp file sends
query to the database and generates XML data to be sent as response to the client.

Listing 6-4: Books.asp

© 2001 Dreamtech Software India Inc.
All rights reserved.

1
2
3
4
5
6
7
8

9
10
11
12

<%@ Language=VBScript %>
<?xml version="1.0"7?>
<ROOT>
<%
Dim conn,objrs,objrsl,sgll, tsgl, count
set conn = Server.CreateObject ("ADODB.Connection")
conn.ConnectionString="DRIVER={Microsoft Access Driver (*.mdb)};"&_
"DBQ=c: \Shared\MaintenanceSoft .mdb"
conn.Open
Set objrs = Server.CreateObject ("ADODB.Recordset")
Set objrsl = Server.CreateObject ("ADODB.Recordset")
objrs.CursorType = adOpenStatic

160

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Chapter 6: Project 1: Online Testing Engine

objrsl.CursorType = adOpenStatic

tsgl = "SELECT DISTINCT (SubjectID) from QuestionData order by
SubjectID"

objrs.Open tsqgl,conn

Function changequote (tmpstring)

tmpstring = REPLACE (tmpstring, "<","<")

tmpstring = REPLACE (tmpstring, ">",">")

tmpstring = REPLACE (tmpstring,"""" ,""")
tmpstring = REPLACE (tmpstring, "&", "& ")
changequote = tmpstring

End Function
while not (objrs.EOF)
subid = objrs.Fields ("SubjectID")
sgll = "SELECT SubjectName from MainData where SubjectID='" & subid & "'"
objrsl.Open sgll,conn
while not (objrsl.EOF)
subjecttext = objrsl.Fields ("SubjectName")
stext = changequote (subjecttext)
%>
<SubjectID><%Response.Write (objrs.Fields("SubjectID"))%>
</SubjectID>
<SubjectName><%Response.Write stext %>
</SubjectName><%
objrsl.MoveNext
wend
objrsl.Close
objrs.MoveNext
wend
conn.Close
set conn=Nothing
%>
</ROOT>

Code explanation
¢ Line 5: Variables are declared here.

¢ Lines 6-9: An ADODB connection object with name conn is created here, which is used to

establish the connection with MaintenanceSoft database on the MS-Access. A connection object
represents an open connection to a data source. Here ADODB connection object is used to establish
a connection with MS-Access. A connection object is needed to acces data using data environment
and will represent a connection to a database residing on server that is used as a data source.

Lines 10-13: The new instances of the ADODB recordset are created here and have names
objrs,objrs1 and set their CursorType as adopenstatic . A cursor type is way to cache data on the
client machine and to provide local scrolling, filtering and sorting capabilities. Adopenstatic is a
static copy of a set of records and can be used to find data or generate reports, in this changes by
other users are not visible).

Lines 14-16: A SQL query is defined in the variable tsql which is selecting distinct subjectID from
the QuestionData table. Then selected record will be opened in the objrs recordset.

Lines 17-23: Function changequote is defined here. This function stores the passed parameter’s
value in the tmpstring variable. Then this function calls the REPLACE function to replace the

escape sequeces like “<”, ”>”,”&”, ”*” into “<”, “>”, “&”, “"” respectively in the
tmpstring and then returns the resulted string.

Lines 24-40: An XML is generated on the base of the records selected in the objrs recordset. A
SQL query is defined in the variable sqll which is selecting SubjectName from the MainData table

Chapter 6: Project 1: Online Testing Engine 161

where SubjectID is equal to the SubjectIDs selected in the objrs recorset. Then selected records are
opened in the objrs1 recordset. Then selected SubjectID and SubjectName will be displayed in the
XML format.

¢ Lines 41-42: The instance of the connection which is created in the beginning of the file, are going
to be closed and destroyed here. These lines help in closing the connection “conn” created earlier
and set it to null value.

TestFile.asp

This asp file is requested for the test questions on the basis of topics given as parameter given to this asp.
The asp file sends a query to the database and generates a set of questions with choices and answers in
XML data to be sent as responses to the client.

Listing 6-5: TestFile.asp

© 2001 Dreamtech Software India Inc.
All rights reserved.

1 <%@ Language=VBScript %>

2 <html>

3 <body>

4 <%

5 Dbookid = Request.QueryString ("bookid")

6 Dim conn,i,objrs,objrsl, tsqgl, tsgl2,questionarr () ,boolvalue
7 set conn = Server.CreateObject ("ADODB.Connection")

8 conn.ConnectionString="DRIVER={Microsoft Access Driver

9 (*.mdb)};" &

10 "DBQ=c:\inetpub\wwwroot\MaintenanceSoft.mdb"

11 conn.Open

12 Set objrs = Server.CreateObject ("ADODB.Recordset")

13 Set objrsl = Server.CreateObject ("ADODB.Recordset")

14 Set objrs2 = Server.CreateObject ("ADODB.Recordset")

15 objrs.CursorType = adOpenStatic

16 objrsl.CursorType = adOpenStatic

17 objrs2.CursorType = adOpenStatic

18 Dboolvalue = FALSE

19 tsgl = "SELECT QuestionID from QuestionData where SubjectID='" & bookid &
"' order by QuestionID"

20 objrs.Open tsgl,conn

21 Set fso Server.CreateObject ("Scripting.FileSystemObject")

22 fname = bookid & ".xml"

23 Set MyFile=fso.CreateTextFile("c:\inetpub\wwwroot\" & fname)

24 MyFile.WriteLine("<?xml version='1.0'?><RO0OT>")

25 Function changequote (tmpstring)

26 tmpstring = REPLACE (tmpstring, "<","&1lt;")

27 tmpstring = REPLACE (tmpstring, ">", ">")

28 tmpstring = REPLACE (tmpstring,"'", "'")

29 tmpstring = REPLACE (tmpstring,"""", """)

30 tmpstring = REPLACE (tmpstring, "&", "& ")

31 changequote = tmpstring

32 End Function

33 while not (objrs.EOF)

34 1if boolvalue = FALSE Then

35 ReDim Preserve questionarr (0)

36 questionarr(0) = objrs.Fields("QuestionID")

37 boolvalue = TRUE

162 Chapter 6: Project 1: Online Testing Engine

38 else

39 ReDim Preserve questionarr (UBound(questionarr) + 1)

40 questionarr (UBound(questionarr)) = objrs.Fields ("QuestionID")
41 end if

42 objrs.MoveNext

43 wend

44 objrs.Close

45 maxno = Int (UBound(questionarr))

46 1if (maxno<30) then
47 num = maxno

48 else
49 num= 30
50 end if
51 1 =0

52 while (i<num)

53 Randomize ()

54 MyValue = Int((maxno * Rnd) + 0)

55 qgid = questionarr (MyValue)

56 tsgl2 = "SELECT QuestionID,ChoiceNo, AnswerText,Correct, SubjectID,ReleaseID
from AnswerData where SubjectID='" & bookid & "' and QuestionID='" & gid & "'
and ChoiceNo <> '0O' order by choiceNo"

57 objrsl.Open tsqgl2,conn

58 tsgl3 = "SELECT QuestionText from QuestionData where QuestionID = '" & qgid
& now

59 objrs2.0pen tsgl3,conn

60 gtext = objrs2.Fields("QuestionText")

61 gtext = changequote (gtext)

62 MyFile.WriteLine ("<question><gquestionid>")

63 MyFile.WriteLine(gid & "</questionid>")

64 MyFile.WriteLine("<gquestiontext>")

65 MyFile.WriteLine(gtext & "</questiontext>")

66 objrs2.Close

67 while not (objrsl.EOF)

68 cno = objrsl.Fields("ChoiceNo")

69 correct = objrsl.Fields("Correct")

70 text = objrsl.Fields ("AnswerText")

71 text = changequote (text)

72 MyFile.WriteLine("<optionno>" & cno & "</optionno>")

73 MyFile.WriteLine("<correct>" & correct & "</correct>")

74 MyFile.WriteLine("<text>" & text &"</text>")

75 objrsl.MoveNext

76 wend

77 MyFile.WriteLine("</question>")

78 1 =1 + 1

79 objrsl.Close

80 wend

81 MyFile.WriteLine("</ROOT>")

82 conn.Close

83 set conn = Nothing

84 %>

85 </body>

86 </html>

Chapter 6: Project 1: Online Testing Engine 163

Code explanation

*
*

Line 5: Variables are declared here.

Line 6: This line initializes the value of variable bookid with the value of query string variable
“bookid” retrieved from client.

Lines 7-11: An ADODB connection object with name conn is created here, which is used to
establish the connection with MaintenanceSoft database on the MS-Access. A connection object
represents an open connection to a data source. Here ADODB connection object is used to establish
a connection with MS-Access. A connection object is needed to acces data using data environment
and will represent a connection to a database residing on server that is used as a data source.

Lines 12-17: The new instances of the ADODB recordset are created here and having names
objrs,objrs1,0bjrs3 and set their CursorType as adopenstatic. (A cursor type is a way to cache data
on the client machine and to provide local scrolling, filtering, and sorting capabilities. Adopenstatic
is a static copy of a set of records can be used to find data or generate reports, in this changes by
other users are not visible).

¢ Line 18: The value of variable boolvalue is set to false here.

*

* & & o

Lines 19-20: A SQL query is defined in the variable tsql which is selecting the QuestionID from the
QuestionData table where SubjectID is equal to the value of bookid variable. Then selected record
will be opened in the objrs recordset.

Line 21: This line creates a FileSystem object fso.
Line 22: This line sets the name of the xml filename in the fname variable.
Line 23: A new xml file is created by fso object here.

Lines 25-32: Function changequote is defined here. This function stores the passed parameter’s
value in the tmpstring variable. Then this function calls the REPLACE function to replace the
escape sequences like “<”, 7>, 7”&, into “<”, “>”, “&”, “"” respectively in the
tmpstring and then returns the resulting string.

Lines 33-43: An array questionaire is creating here and its elements are set with the values of
QuestionIDs selected in the objrs recordset.

¢ Line 45: This line sets the value of maxno variable with the upperlimit of the questionaire variable.

¢ Lines 46-50: Value of the num variable set with the value of max if the value of max if less than 30,

otherwise it is set to 30.

Lines 52-80: A random number between 1 to 30 is generated here using the Rnd function. And on
the basis of this random number a record is picked up from the database to be written in the above
created xmlfile in the xml format.

Lines 82-83: The instance of the connection which is created in the beginning of the file is going to
be closed and destroyed here. These lines help in closing the connection “conn” created earlier and
set it to null value.

Summary

This chapter was the first full-blown application developed using J2ME for Palm devices; there are five
more such applications described in the coming chapters which will make the reader conversant with
J2ME technology. We have another application based on CLDC and Kjava APIs in Chapter 11. You can
go to Chapter 11 directly if you are interested in developing a game for Palm devices, as Chapter 11 is
based on developing a game using CLDC and Kjava APIs. In Chapter 7, we will develop an application
using MIDP APIs.

Chapter 7
Project 2: Online Ordering System

Even as e-commerce becomes popular, m-commerce is taking its place: handling business on the move is
the new mantra. Anybody with anything to sell or any business proposal wants to make it available via
mobile devices. Because J2ME is meant for these devices, we believe it very relevant to present an
example of a J2ME application that enables you to do business on, say, a mobile phone. We’ve already
built a CLDC application in Chapter 6, so we now turn to MIDP. This is certainly appropriate,
considering mobile phones remain the most common small devices and are growing at the fastest rate.

We call this application OrderManager. It enables the user to place an order by using a cell phone. A
customer may place an order merely after viewing a list of available items, which is what he can do on a
cell phone. But still the application is useful if it makes the user aware of the products a supplier offers
and, as a result, the user decides to order while on the move. This application presents the opportunity to
place such an order. If the ordering option isn’t available in such a scenario, the customer’s impulse may
subside or he may opt for another supplier.

OrderManager uses the Mobile Information Device Profile (MIDP) of the J2ME platform, along with
JSP and a third-party XML parser. We can also divide the application into two parts: server side and
client side. Because the J2ME classfile is on the mobile phone, the client side is what interests us here.

User Interface

The main class of the project is named OrderManager. It contains the GUI components and displays
the list of items and the stock available. It receives the quantity being ordered, calculates the total amount
of the order as well as the cost, and updates the database by calling a JSP script. It has an inner class
named GetData, which opens a URL and reads XML data on the fly. This class calls a JSP script, which
queries the database and generates XML data about the item, quantity available, and the cost. It uses a
Java-based XML parser to parse XML data.

On starting the application, the user sees a screen displaying the items and their available quantities. He
can select an item by pressing Enter. On this, a text field appears in which the quantity to order can be
entered. He can press the Save button so that the quantity is saved. Or he can go back to the list of items
by pressing the Back button. He can order as many items as he wants and can even change the quantity of
an item previously selected. At the end, he can quit by pressing the Exit button.

Running the Application

For running this application, you should have the J2ME Wireless Toolkit installed, as we explained in
Chapter 4 on MIDP. You can run it without the toolkit, but it is much simpler to compile, preverify, and
run with the toolkit, since the toolkit has a GUI which is easy to operate and you don’t have to mess
around with classpaths. The steps involved for running the application would be:

1. Start KToolbar of the J2ME Wireless Toolkit from the Start menu.
2. Begin a new project by clicking New Project.

3. Enter a name for the project — say, OrderManager.

Chapter 7: Project 2: Online Ordering System 165

Enter the name of the main MIDIet class, which is also named OrderManager.
Click Create Project.

Copy the source code for the project in the preceding directory.

Now come back to the KToolbar and click the Build button.

ol A

Once the project is successfully compiled and preverfied, click the Run button.

You should have a server running at the time that you follow the preceding steps, and JSP file should be
stored in the root directory of the server.

How It Works

The project includes the following files:

¢ OrderManager . java: The main file, which also includes an inner class called GetData.

¢ sgl xml.jsp: The JSP script that returns data from the database.

¢ sgl order_mon. jsp: The JSP script, which updates the database according to the order placed.
¢ A third-party XML parser.

OrderManager demonstrates the way in which a J2ME application can be used in concert with an
existing J2SE or J2EE application. The supplier may already have a J2SE or J2EE application for
receiving orders from customers sitting in front of their PCs. This means there is already an application
running for receiving requests and sending response. In the present case, this is done by using Java Server
Pages. The items and their quantities available are stored in a database on the server. Let’s go through the
database table structure which stores the data on the server. There are three tables in the database, namely
stock mast table,Order Table, and Status Table.

The table stored in Figure 7-1 is stock_mast table. The field item code stores information related to
the code of the item, field quantity stores information about the quantity of item available, and the
field unit_price stores information about the per unit price of the item.

=% Alter Table - dba.stock_mast

Column Mame [ata Type Width Dec Hull Drefault
> m char - 20 Na [=HiMone)

quiantity NLIMERc: - M Avez [=liMone)
Linit_price numeric - 11 Aves [=fliMone)

Figure 7-1: Stock table.

The table shown in Figure 7-2 is the order table that stores information related to the order placed. This
field order id stores information related to the order id, field order date stores information
about the date on which the order was placed, field item code stores information about the item
ordered, field quantity stores information about the quantity ordered and the field rate stores
information about the amount or the total price of order.

Calurnt M ame D ata Type Hull |Defau|t
= nLmeric - 5 OMo [=l[Mone)

order_date date - Mo |=l[Mone)
item_code wvarchar - 1a Mo |=l{Mone)
quantity nUMENc - 1 AMNa [=l[Mone]
rate R - 10 AMa [=liMane)

Figure 7-2 Order table.

166 Chapter 7: Project 2: Online Ordering System

The table shown in Figure 7-3 is the Status table that stores information about the status of the order.

:# Alter Table - dba.status

Calurmn Name Data Type idth Dec Hull Diefault
> |forder_id nUMEC |~ 5 Mo [=llitone

Figure 7-3: Status table.

There are two JSP scripts — one reads the database and displays the list of items and their quantities, and
the other saves the values of quantities ordered by the customer to the database. The J2ME application
does the rest. The control flow of the project is explained in the following paragraphs and is also shown
in the flow chart:

The application is started (Figure 7-4) by executing the Java classfile OrderManager.

}Chu:u:use Qe |

Crderhlanager

Figure 7-4: Launch Application screen.

The inner class GetData is called, which in turn calls a JSP script named sgql_xm1l . jsp. This JSP reads
the database, where items and their quantities are stored, and returns the item code, quantity available,
and the unit price of the item in XML format.

The XML data is parsed in the parseData method of the GetData class by using a third-party XML
parser. It is simultaneously stored in vectors.

After the data has been completely parsed, the values of the items stored (quantity and price) are returned.

At this point, the list of items is displayed, showing quantity and item codes in Figure 7-5.

'tEﬂ'IS |

Figure 7-5: Item Details screen.
The user can either press the Total button or select an item (see Figure 7-5).

If he selects an item, the next screen is displayed with a text field in which the quantity to order can be
entered as shown in Figure 7-6. After entering the quantity, the user can press either the Back button or
the Save button as shown in Figure 7-7. If the former, he is returned to the list of items. If the latter, the
quantity entered is saved. The user presses the Back button to go back to the list, which will display the
screen shown in Figure 7-5.

Chapter 7: Project 2: Online Ordering System 167

Ertry Form
Enter Guantity

_Elack
Figure 7-6: Enter Quantity Screen - I.
Ertry Form

Enter Cuantity
G5

Back

Figure 7-7: Enter Quantity Screen - Il.

If the user presses the Total button shown in Figure 7-5, a new screen appears that displays the total
amount ordered per item and the total order shown in Figure 7-8. The user can press either the Back
button or the OK button. If he presses the former, he is returned to the list shown in Figure 7-5. If he
presses the OK button, a JSP script, sql_order_mon. jsp, is called, values is passed as parameters, and
the database is updated to store the ordered values.

iewy Total

0102 B500
Total G200
Back Ok

Figure 7-8: Total Order screen.

Now the user can press the Exit button to quit the application. This button is present on earlier screens,
too, so the user could have quit at any stage, even without ordering anything. If the user presses the OK
button without entering anything, an error screen is displayed for some amount of seconds (in our case,
5000 milliseconds — see Figure 7-9).

WHAT IS THIS

Fleaze Don't mess
ith me

Figure 7-9: Error screen.

A flow chart for OrderManager is shown in Figure 7-10.

168

Chapter 7: Project 2: Online Ordering System

Start the apdication

brrexecuting the clEs

OrdezManagec

The itrer cl== FetData

£ calkd, whichcall=a
Jzia Server Page

xql xml jxp. Thie JSP
thronas HIVIL data.

l

The XM data i= par=ed in
par=eData rethod of
GetData caks brrusing 3 third
iy MIVE parser. ItE
sirnultaneois s tore d e tors.

¥

Lfter the datl £ completelvmmed,
the wales of the ene stord

{quartity-and price) are rehmred

l

LEt of ferns i=
derhsed, showirg [+
quEntty snd ierncode.

The n=er can either

press Thial or

Ttton or =ekct an
iter

P If the 1Eer selectes = iter,
the rext sceen E depased
with 3 text field i widch the
quEntity to e ordered can ke
enterad.

The u=e1

TTesEes B
Tartton

The quanti
entered E s,

h

The userpres ces
Bark buuan

Figure 7-10: Flow OrderManager.

TEar screen Apyesrs
which displr the total
arnotmt ordered per
itern and the total crder.

Total

& TSP o
xql order_mmom p wonld e
called and wahes would be

R==ed a= yErAreters and the
datdase woukdbe npdated.

Chapter 7: Project 2: Online Ordering System 169

OrderManager.java

This is the only java file in this application. All the functionality related to this application is handled by
OrderManager class. There is an inner class GetData to this class. The GetData class handles sends
request to the server for item details and handles XML parsing.

Listing 7-1: OrderManager.java

© 2001 Dreamtech Software India, Inc.
All rights reserved

1. dimport javax.microedition.midlet.MIDlet;

2.

3. import javax.microedition.lcdui.CommandListener;
4. import javax.microedition.lcdui.Command;

5. dimport javax.microedition.lcdui.Displayable;

6. dimport javax.microedition.lcdui.Display;

7. import javax.microedition.lcdui.List;

8. import javax.microedition.lcdui.Form;

9. import javax.microedition.lcdui.Command;

10. dimport javax.microedition.lcdui.TextField;

11. import javax.microedition.lcdui.StringItem;

12. dimport javax.microedition.lcdui.Alert;

13. dimport javax.microedition.lcdui.AlertType;

14.

15. import java.io.InputStream;

16. import java.io.IOException;

17. import java.io.InputStreamReader;

18.

19. dimport org.kxml.*;

20. dimport org.kxml.parser.XmlParser;

21. dimport org.kxml.parser.*;

22.

23. dimport java.util.Vector;

24. import java.util.Hashtable;

25. dimport java.util.Enumeration;

26.

27. import javax.microedition.io.HttpConnection;
28. import javax.microedition.io.Connector;

29.

30. dimport java.lang.String;

31

32. VA

33. * This class Displays the User Interface for this Project. It displays
34. * the list of items available with the stock of every item. Accepts the
Quantity

35. * to be Ordered and Calculates the total Amount of Order based on the
Quantity

36. * Ordered.And updates the Database by calling a JSP passing ITEMCODE,
QUNATITY ORDERED

37. * TOTAL AMOUNT as parameters.

38. */

39. public class OrderManager extends MIDlet implements CommandListener
40. {

41. /* This vector will contain Item Code */

42. private Vector vitem = null;

43. /* This Vector will contain Item Quantity */

170 Chapter 7: Project 2: Online Ordering System

44 . private Vector vquantity = null;

45. /* This Vector will contain Item Price */

46. private Vector vrate = null;

47 .

48. /* This Class GetData is an internal class and returns Item Code with
Quantity and Rate */

49. private GetData gdata = null;

50.

51. /* Declaring variables for Display class. */

52. private Display displaylist = null;

53.

54. /* Declaration of List which will Display the Items with Quantity */
55 . private List items = null;

56. /* Declaration of Form */

57. private Form entryform = null;

58. private Form displayform = null;

59.

60. private String itemselect = null;

61. /* This Command is a backcommmand */

62. private Command backcommand = null;

63. /* This command is to view the total */

64. private Command totalcommand = null;

65. /* This command is to place an order */

66. private Command okcommand = null;

67. /* This command again displays the list of items with the quantity */
68. private Command goback = null;

69. /* This command quits the application */

70. private Command exit = null;

71. /* This TextFeild is to get the quantity to be ordered */
72. private TextField enter = null;

73. /* This Hashtable contains entries of itemcode and the quantity ordered.
The key

74. is the itemcode. */

75. private Hashtable htable = null;

76. /* This HttpConnection object connects to the web server and updates the
database by

77 . placing an order */

78. private HttpConnection connection = null;

79.

80. /* Constructor Called */

81. public OrderManager ()

82. {

83. /* This will get the Display Object */

84 . displaylist = Display.getDisplay (this) ;

85.

86. /* Declarations */

87. items = new List("Items",List.IMPLICIT) ;

88. items.setCommandListener (this) ;

89. htable = new Hashtable() ;

90. backcommand = new Command ("Back", Command.BACK, 1) ;

91. goback = new Command ("Back",Command.BACK, 1) ;

92. totalcommand = new Command("Total",Command.SCREEN, 1) ;

93. okcommand = new Command ("OK",Command.SCREEN, 1) ;

94. exit = new Command ("Exit",Command.EXIT,1);

95. }

96.

Chapter 7: Project 2: Online Ordering System 171

97. /* This method is called when the application starts */

98. public void startApp ()

99. {

100. /* Gdata Instantiated */

101. gdata = new GetData() ;

102. /* GetData parseData method called. This method parses XML */
103. gdata.parseData() ;

104. /* GetData returnItem method returns vector object containing Item
list */

105. vitem = gdata.returnItem() ;

106. /* This line trims white spaces from the vector vitem */

107. vitem.trimToSize() ;

108. /* GetData returnStock method returns Vector object containing Stock
list (availabel

109. item quantity */

110. vquantity = gdata.returnStock() ;

111. /* Trims empty spaces from Vector */

112. vquantity.trimToSize () ;

113. /* GetData returnPrice method returns Vector object containing Price
list */

114. vrate = gdata.returnPrice() ;

115. /* Trims empty spaces from Vector */

116. vrate.trimToSize () ;

117. /* For loop starts

118. This for loop runs until there are values in Vector
vitem(vitem.size() give the size

119. of the vector) */

120. for(int i=1;i<=vitem.size();i++)

121. {

122. /* In this line List append method is called and the itemcode
and the quantity

123. available are added to the list */

124. items.append((String)vitem.elementAt (i-1) +" "
(String)vquantity.elementAt (i-1) ,null) ;

125. }

126. /* this line will display the list containing the items */

127. displaylist.setCurrent (items) ;

128. /* List is registered for totalcommand and commands other than Select
command have to be

129. registered with the List class object by calling its addCommand
method */

130. items.addCommand (totalcommand) ;

131. /* List is registred for exit command */

132. items.addCommand (exit) ;

133. /* entryform instantiated. A TextFeild will be added to this
form(Form behaves like

134. containers in the JAVA Standard Edition */

135. entryform = new Form("Entry Form");

136. /* entryform is registered with backcommand */

137. entryform.addCommand (backcommand) ;

138. /* entry form registered for receiving command */

139. entryform.setCommandListener (this) ;

140. /* displayform is instantaited. This will display the total amount of
order with item code */

141. displayform = new Form("View Total");

142. /* displayform registered for receiving command */

172 Chapter 7: Project 2: Online Ordering System

143. displayform.setCommandListener (this) ;

144. /* displayform is registered with goback command */

145. displayform.addCommand (goback) ;

146. /* displayform is registered with okcommand */

147. displayform.addCommand (okcommand) ;

148. }

149.

150. /**

151. * This method is called whenever a user presses a button or a command is
given on any

152. * of the Items. The two parameters are Command object and the displayable
object

153. */

154. public void commandAction (Command c, Displayable d)

155. {

156. int totalbill = 0;

157. int a = 0;

158. /* The code in this if condition is executed

159. when an item is selected in the list) */

160. if (c == List.SELECT_COMMAND)

161. {

162. /* This line of code gets the String value of the List item
selected by calling the

163. getString (). List getSelectedIndex() returns the index of the
item selected which

164. is passed as an argument to the getString(). */

165. String str = items.getString(items.getSelectedIndex()) ;

166. int i = str.indexOf (" ");

167. /* This line will get only the item value from str(str

contains item as well as its

168. quantity) */

169. itemselect = str.substring(0,1i);

170. /* TextFeild instantaited */

171. enter = new TextField("Enter
Quantity","",5,TextField.NUMERIC) ;

172. /* The code in if block cleares the entryform(deletes the
items in the entryform) */

173. if ((entryform.size() > 0))

174. {

175. entryform.delete(0) ;

176. }

177. /* This line adds items to the entryform. TextFeild entered

is added to the

178. entryform */

179. entryform.append (enter) ;

180. /* The entryform is displayed */

181. displaylist.setCurrent (entryform) ;

182. }

183.

184. /* The code in this if condition is executed when back command on the
entryform

185. is generated(i.e when user presses the Back button. */

186. if (¢ == backcommand)

187. {

188. /*The code in the if block is executed only when the user

enters

some value in the

Chapter 7: Project 2: Online Ordering System 173

189. Textfeild */

190. if (! (enter.getString() .equals("")))

191. {

192. /*Two values are put in htable (HashTable)the first one
is itemselect which is the

193. itemCode and the second one is quantity the user
entered to be ordered. Both the values are

194. String values */

195. htable.put (itemselect, enter.getString()) ;

196. }

197. /* the back command again displays the List */

198. displaylist.setCurrent (items) ;

199. }

200.

201. /* The code in this if condition is executed when total command on
th