
Catch the
Next Wave °f java-Fueled

Internet Gaming

A Reference for
the Rest of Us!'
by Wayne Holder

& Doug Bell

DUNRUES BOORS

IN PRINT

The Fun and Easy Way'
to Create Your Own
Games and Put Them
on Your Web Page

Your First Aid Kif
for Adding Pizzazz
to Boring Web Sites

Creating Cool Games
in Java - Explained
in Plain English

	

IDG
BOOK
WORLDNN"ID

maxiwE

`ova wtne Programming
For Dummies`

<APPLET> Tag Attributes

Attribute Value

CODE

	

Required: The name of the Java class file containing the compiled Appl et

subclass to execute.

WIDTH,

	

Required: The suggested pixel width and height of the area the browser
HEIGHT

	

should reserve for the applet in the Web page.

CODEBAS E

	

The uniform resource locator (URL) of the directory or folder that contains the
applet code. If CODEBAS E is not specified, then the Web browser viewing the
document defaults to the location of the HTML document. COD EBAS E allows
the applet code to be place in a different location than the HTML.

NAME

	

The applet name that other applets on the Web page can use to find it and
communicate with it.

ALT

	

Text displayed by browsers that cannot run the applet. The ALT text is
displayed, for instance, if the user has turned off the Java option in their
browser.

ALIGN

	

The alignment of the applet relative to the text line containing it. This attribute
works like the ALI GN attribute for the I MG tag. The possible values are top,

mi ddI e, bottom, 1 eft, and ri ght. The alignment is bottom by default.

HSPAC E ,

	

The number of pixels of space the browser should leave around the applet
VSPACE

	

on the left and right (HSPAC E) and top and bottom (VSPACE).

Built-in Java Colors

Color

	

RGB values

Color.black 0,0,0

Col or.blue

	

0,0,255

Color.cyan 0,255,255

Color.darkGray 64,64,64

Col or. gray

	

1 28, 128, 128

Color.green 0,255,0

Color.lightGray 192,192,192

Color.magenta 255,0,255

Color.orange 255,200,0

Col or. pi nk

	

255, 175, 175

Col or. red

	

255,0,0

Color.white

	

255, 255, 255

Color.yellow 255,255,0

Copyright © 1998 IDG Books Worldwide, Inc.
All rights reserved.

IDG Cheat Sheet $2.95 value. Item 0168-2.
OOH

	

For more information about IDG Books,

WORLDWIDE

	

call 1-800-762-2974.

... For Dummies: # 1 Computer Book Series for Beginners

Commonly Overridden Applet
Methods

Applet Method Override It To . . .

void init(Perform any one-time
initialization the applet
needs before it runs.

void start() Begin animations,
processing, or threads.

void paint Draw the applet to the
(Graphics g) screen.

void stop() Suspend animations,
processing, or threads

> initiated in start().

void Clean up after the applet
destroy() before it quits.

Method and Parameters

fillRect(int ~, -
i nt width, i , - ~~ -

fillRoundRect(ir- x

y, int width, int r=

int arcWidth,int
arcHeight)

fillOval(int x, 4, nt _. .
int width, int heigh

fi113DRect(int x, int
i nt width, int -eigih^I-
boolean raised)

fil]Arc(int x, int y,
int width, int height,
boolean raised, int
startAngle, int arcAngle

fillPolygon(int[]
xPoints, int[] yPoints,
i nt nPoints)

Computer
BOOK SERIES
FROM IDG

ava?M Some ProgramM 4

For Dstmmiei

Drawing Outlined Shapes and Lines

Shape Outline Method and Parameters

Rectangle

	

drawRect(int x, int y,
i nt width, int height)

3-DRectangle draw3DRect(int x, int y,
i nt width, int height,
boolean raised)

Rounded
Rectangle

Arc

Tag

drawRoundRect(int x, int
y, int width, int
height, int arcWidth,
i nt arcHeight)

draw0val(int x, int y,
i nt width, int height)

drawArc(int x, int y, int
width, int height,
boolean raised, int
startAngle, int arcAngle)

drawPolygon(int[]
xPoints, int[] yPoints,
i nt nPoints)
or.,

Example Usage

	

Description

<A	-;FF=http: //www.

	

The anchor tag creates a link to another document
id .c~^ -ks.co m >IDGBooks

	

or Web page, in this case the IDG Books Web site.

APPLET	<APPLET CODE=MyAppl et	Insert a Java applet, in this case an applet with the
WIDTH=80 HEIGHT=50></APPLET>filenameMyApplet.

	

I nsert aGIForJPEGimage. IMGdoesn't require anendtag.

<P>This is anew paragraph< / P>

	

Starts anew paragraph. An end tag </P> is not
required, but is good practice.

==',T

	

<FONT

	

SIZE=5

	

COLOR=RED>	Set the font size and/or color of the contained text.
Big Red Text< / FONT>

<TT>Monospaced text< /TT>

	

The teletype tag displays the contained text using
monospaced text.

< I >Italic text< / I >

	

Italicize the contained text.

< B>Bold text< / B> Display the contained text with a bold face font.

<U>Underlinedtext</U>

	

Underline the contained text.

. . For Dummies: # 1 Computer Book Series for Beginners

http://-ks.com
http://-ks.com

Table of Contents

lntroduetion ... 1

About This Book .. 1
Who You Are... 1
About the Java Code in This Book.. 2
How This Book Is Organized .. 2

Part 1: Steppin' Out .. 2
Part II: Up to Speed .. 2
Part III: Seven League Boots ... 3
Part IV: The Part of Tens ... 3
Appendix: About the CD-ROM ... 3
CD Chapters: Fundamentals...3

Icons Used in This Book ... 4

Part 1: Steppin' Out... 5

Chapter 1: Follow the Bouncing Ball .. 7

Ticking Off the Time .. 7
Making Things Move ... 9

Floating the point... 9
Encapsulating the essence of a ball .. 9

Setting Bounds ... 10
Moving out of bounds ... 11
Bouncing back.. 11
Coding movement and bounce .. 11
Settin' things in motion... 13

Drawing the Details ... 14
Drawing offscreen .. 15
Overriding the flicker .. 15
Drawing the background and the ball .. 16
Putting.the action on the screen ... 16

Chapter 2: Ponglet.. 17

Setting State ... 17
Breaking down the task .. 18
Serving the ball .. 20

Up Java Creek without a Paddle .. 22
Returning the serve ... 23
Changing state .. 24
Creating a computer opponent.. 24
Rolling down the gutter .. 25
He shoots, he scores! .. 26
We have a winna!.. 26

Table of Contents
I.........*0000,000*0.*..*000.0.0 *&0*.0000

Introduction ... 1
About This Book .. 1
Who You Are... 1
About the Java Code in This Book .. 2
How This Book Is Organized .. 2

Part I: Steppin' Out .. 2
Part II: Up to Speed .. 2
Part III: Seven League Boots ... 3
Part IV: The Part of Tens ... 3
Appendix: About the CD-ROM ... 3
CD Chapters: Fundamentals ... 3

Icons Used in This Book ... 4

Part l: Steppin' Out... 5

Chapter 1: Follow the Bouncing Ball.. 7

Ticking Off the Time .. 7
Making Things Move ... 9

Floating the point... 9
Encapsulating the essence of a ball .. 9

Setting Bounds ... 10
Moving out of bounds ... 11
Bouncing back .. 11
Coding movement and bounce .. 11
Settin' things in motion... 13

Drawing the Details ... 14
Drawing offscreen .. 15
Overriding the flicker .. 15
Drawing the background and the ball .. 16
Putting.the action on the screen ... 16

Chapter 2: Ponglet.. 17

Setting State ... 17
Breaking down the task .. 18
Serving the ball .. 20

Up Java Creek without a Paddle .. 22
Returning the serve ... 23
Changing state.. 24
Creating a computer opponent.. 24
Rolling down the gutter .. 25
He shoots, he scores! .. 26
We have a winna! .. 26

k%V

	

Java Game Programming For Dummies

Tracking User Input... 27
Entering the control zone ... 27
Tracking the mouse ... 27

Displaying the State .. 28
Keeping score ... 29
Game over? ... 29

Chapter 3: Hole In One... 31

Modeling the Deceleration of a Ball.. 32
Using vectors.. 32
Creating a vector class .. 35

Starting from a Circle .. 36
Creating the C i r c 1 e class .. 37
Building a B a 1 1

	

by extending C i r c 1 e .. 37
Decelerating the ball ... 38
Moving the ball .. 39
Staying in bounds .. 39
Putting the ball ... 40

Selecting the ball ... 40
Executing the putt .. 41
Waiting for the ball to go in ... 41

Drawing the ball ... 41
Digging a Hole .. 42

Gravitating toward the center ... 43
Vectoring in... 44
Curving around the hole ... 44
Coding the curve ... 46

Pushing to the center ... 46
Sinking the putt ... 47
Spinning in the hole .. 47

Coding the H o 1 e I n 0 n e Applet ... 48
Completing the putting interface .. 48
Drawing the green .. 49

Chapter 4: JavaPool ... 51

Calculating Ball-to-Ball Collisions ... 52
Passing in the night ... 52
Reducing the distance... 52
Calculating position over time... 53
Calculating the distance to a collision ... 54
Solving for time .. 56

Two solutions? .. 56
Rearrange the equation ... 57
The complete set of equations (all you really need) 59

Timing and order ... 60
Checking the combinations .. 61

Bouncing Off the Bumpers ... 61
Coding the Collisions .. 62

Table of Contents

Conserving Momentum .. 63

Revisiting vectors .. 64

What if both balls are moving? ... 66

The dot product .. 66

The c o 1 1 i d e (

	

)

	

method ... 67

collide() dissected .. 67

Putting All the Pieces Together ... 68

Part ll: Up to Speed .. 71

Chapter 5: Sliding Blocks Brain Teaser... 73

Using Images in Games ... 74

Digital Stamp Pads .. 75

Drawing while downloading ... 77
Loading images with Medi aTracker .. 77

MediaTracker.addImage() ...78

MediaTracker.waitForAll()...78

Loading multiple images .. 79
Laying Out the Game Board ... 79

Reading the width and height of an I m a g e .. 81

Initializing gri dX, gri dY, pi eceWi dth, and pi eceHei ght81

Crafting the Puzzle .. 82

Making puzzle pieces that act like real puzzle pieces 82

Putting the pieces together .. 83

Mousing the Pieces Around ... 85

Selecting a puzzle piece .. 85

Moving the pieces .. 86
Slide() ing around ... 87

Checking for pieces that block the slide path with
Rectangl e. i ntersects () ..87

Checking for the board boundaries Re c t a n g 1 e. u n i o n () and
Rectangl e. equal s () ..88

Cleaning up after a move .. 89
Drawing the Board .. 90

Declaring the Puzzle Solved and Congratulating the Winner 91

Chapter 6: Blackjack ... 93

Understanding the Blackjack Game .. 93
Playing Blackjack ... 94

Designing the game ... 95

Creating a Reusable Deck of Cards ... 96

Shuffling and dealing the deck... 97

Building the C a r d class ... 99
Converting cards to strings ... 102

Extracting card graphics from a composite image 103

Customizing the deck .. 105

Java Game Programming for Dummies

Creating a User Interface with Components ... 106
Using buttons ... 106

Creating and placing buttons .. 107
Having your game respond to buttons .. 108

Reading and displaying text ... 108
Displaying status and scores with labels 109
Getting a few words from the user ... 109
Creating scrolling text areas ... 110

Using C a n v a s to create new components .. 112
Customizing your game's appearance with I mageButton......... 112
Displaying a hand of cards .. 114

Arranging the User Interface ... 117
Positioning components with a LayoutManager 118

FlowLayout .. 119
BorderLayout ... 119
GridLayout ... 120
Your own LayoutManager.. 120

Dividing the screen with panels .. 123
Laying out a game of Blackjack ... 124

The top-level applet.. 124
The HTML that loads the applet... 130
The players .. 131
The players' hands ... 134

Chapter 7: 2-D Maze... 137

Creating the Maze Class.. 138
The Bl ockMaze subclass.. 139
The WaI 1 Maze subclass.. 140

Generating a Maze ... 142
Selecting an algorithm .. 142
Adding to the Maze class .. 144
Generating a wall maze ... 145
Generating a block maze .. 149

Solving Mazes... 156
Representing the solution .. 156
Keeping your left hand on the wall ... 157
Using breadth-first searching to find the shortest path 159

Displaying a 2-D Maze ... 163
Using the p a i n t (

	

)

	

method

	

... 164
Repainting the maze in a thread-friendly manner 165
Calculating where the pixels go... 166
Knowing that block mazes are simple is half the battle 167
Displaying a wall maze .. 167
Displaying a solution ... 169

Putting the maze on the screen ... 170
Using a thread to animate, generate, and solve a maze................... 170
Reviewing parameters in the Maze App I et class 171

Table of Contents

Chapter 8: 2-D Sprite Maze... 173

Gentleman, Start Your Sprite Engines! ... 174
I mplementing a sprite ... 174
Putting sprites in their place ... 176
Moving sprites around the play field .. 178
Resolving collisions ... 179
Displaying sprites .. 180
Animating sprites... 181

A Sprite Framework... 183
The Spri teEngi ne class ... 184

Keeping track of all the sprites ... 188
Drawing sprites layer by layer .. 189
Moving sprites and detecting collisions 190

Improving the accuracy of collision detection 190
Selecting a movement frame rate .. 192

The BackgroundSpri teEngi ne class ... 194
Sprite events and handling them .. 194
Sprite control ... 195

Computer Adversaries .. 197
Using random intelligence to make adversaries smarter 197
Using a breadth-first search for adversary navigation 198
Prioritizing adversary goals ... 198

The Sprite Maze Game .. 200
I mplementing a cast of sprites .. 201

Running into a wall ... 202
Animating maze runners .. 202
Animating an adversary who shoots to kill 204
Whizzing bullets .. 205

Building on the B 1 o c k M a z e class .. 206
Initializing the game ... 210
Overriding drawSquare() ..210
Giving the player control ... 211
Keeping things moving... 211
Chasing the player .. 212

Finalizing the Sprite Maze applet .. 212

Part Ill: Seven League Boots...................................... 215

Chapter 9: Modeling the Real World .. 217

Making Things Happen at the Right Time with a Timeline 217
A heap of events .. 218
Adding events to the timeline.. 219
Processing events in order... 221
Changing the future: Removing events before they happen 222

Removing events ... 222
Searching the timeline ... 222

Playing Sounds ... 223

k(jj%%

	

Java Game Programming For Dummies

Matching Animations to Game Events with Scripts 224
Interfacing the programmer and the artist .. 225
Writing a script... 225
Reading scripts from text files ... 227
Looping an animation ... 228
Adding random behavior.. 228
Adding special effects and other goodies .. 230
Understanding the code ... 231

Organizing scripts by action ... 231
Filling a script with frames .. 233
I mplementing an A n i m F r a m e

	

.. 238
SoundFrame ..238
BranchFrame..239

Putting the code to work: The S c r i p t S p r i t e class 240

Chapter 10: 3-D Polygon Maze ... 243

Moving into Three Dimensions ... 243
Calculating perspective .. 243

Calculating the height of a wall .. 247
Finding the x-axis intersection.. 247
Expanding the grid into 3 dimensions ... 247
Sizing up the screen ... 247

Drawing the Maze .. 248
The painter's algorithm ... 248
Draw from the outside in ... 248
Deeper is wider ... 249

Creating a Rat's-Eye View ... 250
Writing G r i d V i ew .. 250
Coding M a z eMa p ... 252
Coding PolyMaze...253

Adding Shading, Light Effects, and a Reason to Solve the Maze 255
Updating MazeMap ...257
Updating Po l yM a z e ... 258

Running a Random Maze .. 259
Extending from Bl ockMaze..259
Sizing the maze in your HTML ... 260

Chapter 11: Texture-Mapped 3-D Maze ... 263

Mapping Some Texture ... 263
Scaling Images .. 264
Tiling Textures ... 268
Texture Mapping a 3-D Maze.. 269

Introducing Mr. Bresenham .. 270
Experimenting with Bresenham .. 271
Extending a TexVi ew class from Gri dVi ew....................................... 273

Loading textures ... 273
Overriding d rawSq () ... 273
Alternating wall textures ... 274

Table of Contents

Drawing front walls ... 275
Calculating the front wall's texture offset 275
Creating the front wall image .. 276
Clipping to the view.. 276
Slicing a column of texture .. 277

Drawing side walls ... 278
Calculating the side wall's texture offset 279
Tracing the side-wall edges ... 280
Masking the side walls ... 280

Darkening the walls ... 280
Computing a darkened color table... 280
Shading the walls .. 281
Shading the side walls .. 282

Assembling the Pieces .. 283

Chapter 12: Advanced Imaging .. 285

Drawing Partially Transparent Images ... 286
Creating new images with Memo ry I ma geSou rce 286
Coding an Al phaGradi ent ..287
Blending the edges of images with alpha masking 289

Creating alpha information from a GIF image 289
Using Pi xel Grabber ...290

Antialiasing in Java.. 293
Rendering to subpixels ... 293
Reading from offscreen images ... 294
Shrinking text ... 296

Drawing Direct ... 297
The ImageProducer interface ..298
Coding an ImageProducer ..298
Dancingthe ImageProducer tango .. 299
Demoing Di rectImage...301

Modifying GIF Images .. 304
Getting at the raw image data with the

ImageConsumer interface...304
Recoloring a GIF Image ... 307

Part I U: The Part o f Tens.. 309

Chapter 13: Ten Secrets for Making Fun Games 311

Knowing What Players Want .. 311
Understanding What Makes a Game Addictive ... 312
Start Easy and Then Increase Difficulty ... 312
Making It Easy to "Step In.. ... 313
Enhancing the Player's Suspension of Disbelief ... 313
Making the Player Feel Smart .. 314
What Did I Do Wrong? The Player Should Always Know 314

X'X+

	

Java Game Programming For Dummies

Cheating Spoils the Fun .. 315
Your Friend, Mr. Random Number .. 315
Playtesting .. 316

Chapter 14: Ten Ways to Say "Game Over'... 317

Fading to Black .. 317
Rolling the Credits ... 318
Providing an Instant Replay ... 318
Scoring and Points: the Competitive Obsession... 319
Marking Levels of Achievement .. 319
Ranking One Player against Another .. 320
Reusing Game Code to Make an Ending Animation 320
Offering a Practice Round .. 321
Losing Should Even Be Fun .. 321
Thanking Players for an Enjoyable Game .. 321

Chapter 15: Ten Ways to Optimize Your Java Code............................. 323

Code Profiling: Finding Where the Time Goes .. 323
A Shifty Divide.. 324
Inline Methods with the Compiler .. 325
Do Once, Use Often ... 325
Faster Variables ... 326
A Faster Loop ... 327
Faster Methods .. 328
Reduce the Cost of Synchronizing .. 328
Beware of Large Array Initializers ... 329
The Fastest Way to Copy Arrays ... 330

Appendix: What's on the CD-ROM .. 331

System Requirements ... 331
Using the CD with Microsoft Windows 95 or NT 4.0 332
Using the CD with Mac OS..333
Getting to the Content .. 333
Installing Programs ... 334
What You'll Find ... 335

The Java Development Kit.. 335
Microsoft Internet Explorer 4.0 ... 336
Adobe Acrobat Reader.. 336
CD Bonus Chapters ... 336

CD Chapter 1: An Applet a Day ... 336
CD Chapter 2: Using Threads .. 337
CD Chapter 3: Getting Savvy with Graphics 337
CD Chapter 4: Adding Color to Cool .. 337
CD Chapter 5: User Input ... 337

Applets and More Applets .. 337
Chinese Checkers for Java ... 339

Table of Contents

	

O`

GoldWave 3.24 .. 339
SoundForge XP 4.Od Demo ... 339
SoundApp 2.4.4 .. 339
SoundI-lack 0.872 .. 340

If You've Got Problems (Of the CD Kind) ... 340

Index ... 341

javaTM Development Kit Version 1. 0. 2 (Mac OS)
1.1.5 (windows) Binary Code License 356

IDG Books Worldwide, Inc., End-User
License Agreement.. 358

Installation Instructions .. 360

Book Registration Information Back of Book

Java Game Programming For Dummies

...........,.........*..,..0..0.*0..*.00..x.0

About This Book

Who You Are

I ntroduction

Welcome to Java Game Programming For Dummies. This book takes you
from writing your first, basic game applets all the way through

advanced, texture-mapped 3-D. Along the way, you see and apply all the
under-the-hood techniques like maze generation, collision detection, and
sprites that put the red meat in your game stew.

This book shows you the techniques that make games tick, and gives you
dozens of working Java code examples. In addition, each example is backed
up by detailed explanations that fully deconstruct the code so that you can
see how everything works. You can start from these working examples and
customize them, use the parts to create entirely new games, or simply use
them as a source of ideas for writing your own custom game code.

While this book does, where necessary, discuss a little theory, the real heart
of the book is intended more like a hands-on auto shop class than a physics
lecture. After all, understanding how a water pump works is a lot easier if
you can hold one in your hand and see where it fits on a real car engine.
Likewise, understanding game code is a lot easier if you can examine each
part of the code in detail and see where it fits in the overall structure of a
working program.

We wrote this book in such a way that it is accessible to all levels of Java
programmers. If you are fairly new to Java, you can copy the code in this
book and, with the tips and instruction we give (and a little adventure),
easily customize the games we present. You can, for example, take the
JavaPool applet in Chapter 4 and easily figure out how to change the color of
the pool table and balls, tweak the speed of play, and so on. If you find that
this book is really beyond your understanding, buy it anyway and then also
buy Java Programming For Dummies by Donald J. Koosis and David Koosis
(IDG Books Worldwide, Inc.) - no seriously, this book doesn't go into detail
about the most basic stuff, so if you've never touched Java before, you may
want to start with the Koosis' book.

Java Game Programming For Dummies

On the other hand, you experienced programmers can find a whole load of
tips and game-specific programming techniques in this book. You can also
copy and tweak the code we present, as well as get exposure to many game
programming techniques to use in creating your own Java games.

About the java Code is This Book'
All the code examples in this book are coded as Java applets so that they
can be used with Java-enabled Web browsers and published on the Web. At
the time of this writing, the current release of Java is release 1.1.5 with
version 1.2 just appearing as a developer release. Java versions 1.1 and later
add many new features, such as a completely new event model, but many
Web browsers have yet to fully incorporate these new features. Therefore,
the applets in this book are coded to be compatible with the earlier Java
1.0.2 standard so that they work with the widest variety of Web browsers.

How This Book Is Organized
This book is divided into three major parts, each covering a progressively
more involved array of game programming techniques. We then include
three more elements, each with useful tips and additional information. As
with all ... For Dummies books, you can pretty much dip in and out of chap-
ters to find information. The only exception is that in some cases, a later
section uses material or pieces of code from earlier chapters. We always
alert you to these cases when they arise so that you know where to look,
and you can always just go to the CD-ROM and pull in the necessary code if
you need to.

Part 1: Steppin' Out
This part covers the basics of animation and simulation and shows you how
to program imaginary objects to obey physical rules, such as momentum,
acceleration and rebounding from collisions. In this part, you create a Ping-
Pong game, putting green, and pool table while exploring some advanced
concepts, such as vector math, in a fun, straightforward way.

Part ll: up to Speed
This next part introduces the techniques you need to create professional-
quality games. Moving beyond the simple, solid-colored graphics of Part 1,

Part Ill: Seven League Boots

Part U/: The mart of Tens

Appendix: About the CD-ROM
The last section in this book contains information on the programs and
applets included on the Java Game Programming For Dummies CD-ROM.

Ca Chapters: Fundamentals

Introduction
J

Part II shows you how to use multicolor images in your games. Starting with
a logic puzzle, you progress to a multiplayer blackjack game, master 2-D
sprites, and combine sprites with code to generate random mazes and
create a maze chase game.

This part moves you beyond the flat world of 2-D games into the realm of 3-D
flat-shaded and texture-mapped graphics, and shows you how to create
several different styles of 3-D maze games. You also experiment with a
variety of advanced game programming techniques, such as using timelines,
employing animation scripts, playing sounds, and using the alpha channel to
create spectacular image effects - all in 100 percent Java.

If you've previously read any ...For Dummies books, you know that this
section is intended to pull together a variety of useful facts and other
goodies that just don't fit anyplace else. This book includes "Ten Secrets for
Making Fun Games," "Ten Ways to Say Game Over" and "Ten Ways to Optimize
Your Java Code."

The CD-ROM included with this book contains an additional five chapters of
the book in a part called "Fundamentals" which is provided as Adobe
Acrobat PDF files on the CD-ROM. These chapters cover many aspects of
Java that are particularly useful for game programming, but not necessarily
specific to game programming. If you're still new to coding Java and want to
brush up on the fine points of applets, threads, graphics, color, user input,
or basic HTML, you should check out these chapters. Whenever we discuss
topics that rely on information in the CD Chapters, we also include a helpful
reference to the appropriate chapter.

Java Game Programming For Dummies

1cans used in This Book
-e_ k

The tip icon marks information that can save you time or keep you out of
trouble.

This icon introduces a special technique or programming trick that can help
you program games like the pros.

This icon points out Java 1.1 differences from Java 1.02.

This icon points out Java 1.2 differences from Java 1.1 or Java 1.02.

This icon marks important information that you need to understand and
use later.

Danger, Will Robinson! Ignore this icon at your own peril because the advice
given can often save you from making a serious error. However, with appro-
priate attention, you'll have smooth sailing ahead.

This icon introduces a technical term that can help you find information on
this topic in other reference books. You can also sprinkle these terms into
your daily conversation to impress your friends.

This icon refers you to stuff you can find on the Java Game Programming For
Dummies CD-ROM included at the back of this book.

This icon points out technical details that may be interesting to you, but
which are not essential to understanding the topic under discussion.

Part I

Steppin' Out

WE. SHOULD NAVE T+ i5 ~iED IN VERSION 2"

In this part ...Simulation is at the heart of many computer games
because many of them are adapted from games you

can play in the real world. Simulation is a tricky subject,
though, because you can't put real balls and Ping-Pong
paddles into a computer game program. Instead, you have
to write code that mimics how these objects act in the
real world. Simulation is as much an art as it is a science,
and Part I gives you a good solid foundation in both the
craft and the technique of simulation.

0*0*0o0 0 0 00000#*0 0 ®0 s0*0 s00 ss0 0 0 **0 0s0000 s0 0 0 0

	

0

hr This Chapter

Making things animate

Modeling motion

Handling boundary collisions

p Reducing flicker with double buffering

i 0 0 0 0 0 0 . . . • 0 . . 6 . . . • 0 0 0 . 0 4 . 0 . • • b t . • 0 0 . • ! . • 0 0 . 0 0 .

Chapter 1

Follow the Bouncing Ball

M
oving objects across the screen is one of the basic skills you need to
create action games. The waY You simulate motion in a computer

game is fairly simple: First, you break time down into a small unit, such as
'/so second. Then, between each tiny tick of time, you move the object a
small amount. When you repeat this process quickly enough, the small steps
of movement blend together to create the illusion of motion.

This chapter discusses the various details and techniques used for animat-

I "
ing and modeling a bouncing ball. The completed applet and applet code is
on the Java fl-me Programming For Dummies CI)ROM- .

Trchia 0 f f the Time

Java's Th read class lets you easily construct a program that slices time into
tiny intervals using method s 1 eep () to rest for specified intervals of time.
You create a T h r e a d and then use a loop that alternates between doing
something, such as updating the position of your object, and sleeping. The
framework code you need to set up this alternation is

public class Bounce extends Applet implements Runnable {
private Thread

	

ticker;
private boolean

	

running = false;

public void run () {
while (running) {

repaint();

(continued)

Part I: Steppin' Out

(continued)

public synchronized void start () ['

i f (ticker == null I ~ ! ticker.isAlive()) i

running ° true;

ticker = new Thread(this);

ticker.setPriority(Thread.MIN_PRIORITY + 1);

ticker.start();

try I

ticker.sleep(1000 / 15);

catch (InterruptedException e) I }

public synchronized void stop () [

running = false;

I

This applet extends the R u n n a b 1 e interface so that it can start the new
ticker Thread in the applet's start() method. The start() method also
sets the boolean variable running to true to tell the run() method to
continue to s 1 e e p () and loop for as long as r u n n i n g remains t r u e. When
it's time for the animation to stop, the s t o p () method sets r u n n i n g to
f a 1 s e and the r u n () method exits.

If the browser calls the s t a r t () method again after it has stopped the applet,
the i s A l i v e () method returns f a l s e to indicate that the ticker

	

Thread

is no longer running. In response, the code creates a new Th read to restart
the animation.

Your animation code needs to respect the applet's life cycle as described in
the previous paragraph; otherwise the animation can continue to run - even
after the user leaves the page containing your applet - and waste CPU cycles.

The calculation 1000

	

/

	

30 inside the call to s 1 eep () sets the animation
rate for the applet. The s 1 e e p () method expects to be told how long to
sleep in units of 1 millisecond. A millisecond is one 1,000th of a second, so
dividing 1,000 by 30 calculates a time in milliseconds that results in the
animation repeating roughly 30 times a second.

The previous code example provides the applet with a heartbeat, so to speak,
to drive the animation. However, the sole task of the timing loop in r u n () is

simply to sleep and to call r e p a i n t (). You need additional code to make the
applet compute and display the next step, or f rame, in the animation.

Part 1: Steppin' Out

(continued)

try

ticker.sleep(1000 / 15);

1 catch (InterruptedException e) { I
1

public synchronized void start () f

if (ticker == null i ~ ! ticker.isAlive()) I

running = true;

ticker = new Thread(this);

ticker.setPriority(Thread.MIN_PRIORITY + 1);

ticker.start();

public synchronized void stop t)

running = false;

This applet extends the R u n n a b 1 e interface so that it can start the new
ticker Thread in the applet's start() method. The start() method also
sets the b o o l e a n variable running to true to tell the run() method to
continue to s 1 e e p () and loop for as long as r u n n i n g remains t r u e. When
it's time for the animation to stop, the s t op () method sets r u n n i n g to
f a 1 s e and the r u n () method exits.

If the browser calls the s t a r t () method again after it has stopped the applet,
the i s A l i v e () method returns f a l s e to indicate that the ticker

	

Thread

is no longer running. In response, the code creates a new T h re a d to restart
the animation.

Your animation code needs to respect the applet's life cycle as described in
the previous paragraph; otherwise the animation can continue to run - even
after the user leaves the page containing your applet - and waste CPU cycles.

The calculation 1000

	

/

	

30 inside the call to s 1 eep () sets the animation
rate for the applet. The s 1 e e p () method expects to be told how long to
sleep in units of 1 millisecond. A millisecond is one 1,000th of a second, so
dividing 1,000 by 30 calculates a time in milliseconds that results in the
animation repeating roughly 30 times a second.

The previous code example provides the applet with a heartbeat, so to speak,
to drive the animation. However, the sole task of the timing loop in r u n () is

simply to sleep and to call r e p a i n t (). You need additional code to make the
applet compute and display the next step, or f rame, in the animation.

Making Things Move
The position of an image in two dimensions can be specified with the x and
y coordinates of the image. In order to make the image move, you specify an
additional set of x and y values that define the amount to add to the image's
original position for the next frame; think of these as delta x and delta y
values (the Greek letter delta [0] is used in math and physics to indicate the
difference between two values). You can simply add the proper values of
delta x and delta y to the starting x and y position to specify motion in any
direction and at any speed.

For example, say you have an image of a ball at point 1,1. If you then specify
a delta x value of 1 and a delta y value of 1, the ball would move to position
2,2 for the next frame; 3,3 for the frame after that, and so on. If your delta x
value is 2 and your delta y value is 2, the ball moves in the same direction,
only twice as fast (or twice as far, depending on how you think about it) for
each new frame.

The x and y coordinates in Java use the upper-left corner of the applet
screen as the origin (0,0) and describe x and y locations in terms of pixels.

Floating the point

class Ball {

public float x, y, dx, dy;
private Color color;
private int

	

size;

Chapter 1: follow the Bouncing Ball

	

9

The best way to specify delta x and delta y values is with f 1 o a t-type rather
than i n t-type values. That way, your objects aren't limited to movement of a
whole pixel per frame, nor are they limited to moving in directions that can
only be expressed in terms of i n t-type values. Not so long ago, people used
fixed point math to do fractional calculations, and many books in print still
recommend this practice. However, all modern CPUs now include special
floating point calculation features so that using floating point (f 1 oat) values
for fractional calculations is quicker.

Encapsulating the essence vf a ba!!
Now that you understand the basics, you're ready to write code to use the
i deas presented in this chapter and create a Java class to represent a ball
that can move:

(continued)

10

	

Part I: Steppin' Out

(continued)

Ball (float x, float y, float dx, float dy, int size,

Color color) i

this.x = x;

this.y = y;

this.dy = dx;

this.dy = dy;

this.color = color;

this.size = size;

public void draw (Graphics g) f

g.setColor(color);

g.fillOval((int) x, (int) y, size, size);

The constructor for Ba 1 1 is straightforward. It simply copies the ball's initial
x,y position values, dx,dy delta values, and color and size into the class
variables x, y, dx, dy, coI or, and si z e, respectively.

B a 1 1 also defines a d r a w () method that you can call to make the ball draw
itself to a G r a p h i c s context. The code is really not much more than calls to
s e t C o l o r () and f i l 1 0 v a l (), but note that the f l o a t values x and y must
be cast to i n t in the call to f i 1 10 v a 1 () to avoid a compile error. Whenever
you intentionally reduce the precision of a number, you must use a cast to
tell the compiler that you are doing so intentionally.

Setting Bounds
The final thing you need to add to your B a 1 1 class is code to keep the ball
inside the bounds of the applet's screen area; you can add code that detects
when the ball reaches one of the boundaries and then responds by reversing
the appropriate delta value. Reversing either the delta x or delta y value
reverses the x or y direction of the ball's movement, respectively; doing so
at the boundary of the applet makes the ball appear to bounce off the
boundary.

The top boundary of an applet is y=0, and the left boundary of an applet is
x=0. The width and height of an applet are set by the applet's W I DT H and
H E I GHT attributes in the < A P P L E T> HTML tags used to place the applet, as
explained in CD Chapter 1.

Moving out of bounds
If the bouncing ball's x position becomes less than the boundary's x position
(x < bounds. x), the ball just collided with the left boundary. If the ball's y
position becomes less than the boundary's y position (y < bounds. y), the
ball just collided with the top edge. Detecting a collision between the ball
and the lower and right edges is only slightly more complicated. The right
edge is computed by adding bounds. x to bounds. w i d t h. You compare
this sum to the ball's x position plus its size (x + size

	

>

	

bounds . x +

bound s . wi dt h) to check for a collision on the right side. Likewise, you com-
pare the ball's y position plus its s i z e to bounds . y plus bounds. h e i ght

(y + size

	

>

	

bounds.y + bounds.height) to see if the ball collided with
the bottom edge.

Bouncing back

Chapter 1: Follow the Bouncing Ball

	

, ,

When you detect that the ball's position has moved out of bounds, you need
to reverse the sign of dx (if the ball collided with the left or right edges), or
dy (if the ball collided with the top or bottom edges). Reversing the sign of
dx or dy reverses the ball's movement in the given direction, thus making it
appear to bounce back from the collision. However, because you can't catch
a collision with a boundary until after the ball has actually moved out of
bounds, you need to move the ball back in bounds to a spot that makes it
appear as if it really bounced off the boundary edge.

After crossing the boundary edge, the ball wants to appear some distance
beyond the edge. If the ball had actually bounced off the edge, it would
have, instead, moved that same distance back in the other direction. Be-
cause a bounce is the action you actually want to create, you need to move
the ball from its projected out-of-bounds position to the desired "bounced"
position. You do this by moving the ball back by twice the distance it
traveled out of bounds, as shown in Figure 1-1.

If the ball bounced off the left edge, this distance is 2 *

	

(x

	

-

	

bounds. x).

Likewise, if the ball bounced off the top edge, this distance is 2 *

	

(y

	

-
bounds . y). When the ball bounces off the right edge, the distance is 2
((x +

	

size)-(bounds.x +

	

bounds. width)) and it's 2

	

*

	

((y

	

+

	

size)

-

	

(bounds.y -

	

bounds. height)) when it bounces off the bottom edge.

Coding movement and bounce
Your next job is to take all these different collision detection and bounce
handling calculations and convert them into code. The most convenient
place to put this code is in a new method called move () that you can add to
your B a 1 1 class. Here's the complete code for mo v e ()

' 2

	

Part I: Steppin' Out

Figure 1-1:

Afte r

detecting a

collision at

the top

of the

boundary,

you move

the ball

back in

bounds by

moving it

twice the

distance it

traveled out

of bounds.

Position where

ball bounces

off the edge

Position of ball

before adding dx

and dy

Position of ball

after adding dx

and dy moves it

out of bounds

Reflected position

i s 2 times the
distance out of

bounds

public void move (Rectangle bounds) I

// Add velocity values dx/dy to position to
get ,

// ball s new position

x +_ dx;

y +° dy;

// Check for collision with left edge

if (x < bounds.x && dx < 0)

dx = -dx;

x -= 2 * (x - bounds.x);

// Check for collision with right edge

else if ((x + size)) (bounds.x + bounds.width) &&

d x

	

>

	

0')

dx = -dx;

x -= 2 * ((x + size) - (bounds.x + bounds.width));

// Check for collision with top edge

if (y < bounds.y && dy < 0) I

dy = -dy;

y -° 2 * (y - bounds.y);

// Check for collision with bottom edge

else i f (
.

(y + size) > (bounds.y + bounds.height) &&

dy = -dy;

y -= 2 * ((y + size) - (bounds.y + bounds.height));

Chapter 1: Follow the Bouncing Ball

	

,3

The move () method starts by adding the dx and dy delta values to the ball's
x and y position values to update the ball's position. This calculation may
move the ball out of bounds, so move () then checks the new position
against the left and right bounds and then the top and bottom bounds.

You may notice that each collision test code case not only checks the ball's
position, but also checks to see if dx and dy are less than or greater than
zero, depending on the case. This extra bit of checking adds a fail-safe
feature to the code that prevents a ball from getting stuck should you
accidentally initialize it in a position where it's already colliding with an
edge. Without this check, a ball in collision with an edge may not be able to
move away from the edge before colliding with the edge again. This would
cause the ball's direction to reverse, then reverse again, on and on, forever.

To avoid this problem when checking for a collision with the left edge, the
code also verifies that dx is less than zero. Similarly, the code makes sure
that dy is less than zero when checking the top edge for a collision. A
collision with the right edge requires that dx be greater than zero, and a
bottom edge collision makes sure dy is also greater than zero. The code
ignores collisions where dx or dy do not match these tests.

Settin' things in motion
Now you're ready to create a B a 1 1 object initialized with values that move
and bounce it around inside the applet's draw area. You should add the
variables as class variables (inside the Bounce class, but not inside a
method) and initialize them in the applet's i n i t () method, like this:

private Rectangle bounds;

private Ball

	

ball;

private int

	

width, height;

public void init() {

width = width = size().width;

height = size().height;

bounds = new Rectangle(width, height);

// Initialize Ball position and velocity

ball = new Ball(width / 3f, height / 4f, 1.5f,

2.3f, 12, Color.blue);

14

	

Part I: Steppin' Out

The new instance of B a 1 1 is saved in the variable b a 1 1. The starting posi-
tion for b a 1 1 is set to an x position that is 1/3 of the way in from the left
boundary, and a y position that is 1/4 of the way down from the top bound-
ary. The dx value is set to 1. 5f (you add an f suffix to a number in order to
create a floating point constant) and the dy to 1 . 3f. You can initialize the
ball's position to any value you choose, but the calculations w i d t h / 3 f and
h e i g h t / 4 f and the values 1 . 5 f and 1 . 3 f set the ball's position inside the
bounds of the applet and start it moving slowly down and to the right.

The i n i t () method also records the applet's size in i n t variables called
width and hei ght. Then, i nit() uses these values to create a Rectangl e

object named b o u n d s. The applet later passes the b o u n d s object to B a 1 1 's

move () method, which uses it to check for collisions with the edges of the
applet.

Drawing the Details
The next step is to add code to the applet to draw b a 1 1 on the screen. Also,
just so things aren't too boring, you may want to draw a simple background
pattern so that you can more easily see b a 1 1 move. Here's the code for a
p a i n t () method that draws a 2 x 2 checkerboard pattern for the background,
animates b a 1 1 by calling mo v e () , and draws b a 1 1 into the background by
calling d r a w ()

public void paint (Graphics g) f

i f (offscr == null) {

offscreenImage = createImage(width, height)

offscr = offscreenImage.getGraphics();

I

1/ Draw checkerboard background

i nt x2 = width » 1;

i nt y2 = height » 1;

ball.move(bounds);

ball.draw(offscr);

g.drawlmage(offscreerlmage, 0, 0, null);

Examine this code carefully - it includes a few new things that you may not
have seen before, as the following sections explain.

offscr.setColor(Color.gray);

offscr.fillRect(0, 0, x2, y2);

offscr.fillRect(x2, y2, width - x2, height - y2);

offscr.setColor(Color.white);

offscr.fillRect(x2, 0, width - x2, height - y2);

offscr.fillRect(0, y2, x2, y2);

Drawing offsereen
First, much of the code in pa i nt () methods doesn't draw directly to the
screen. Notice that the code to draw the background pattern uses a series of
s e t C o l or() and f i l 1 Re c t () calls that aren't prefixed with the Graphics

context g that you normally use. Instead, the p a i n t () method starts by
creating an offscreen Image, like this:

if (offscr == null) i

offscreenImage = createImage(width, height);

offscr = offscreenImage.getGraphics();

You draw into an offscreen I mage so that you can construct the entire
image, containing the background pattern and the image of the ball (both of
which need to be redrawn each frame), before you draw it to the screen.
Using an offscreen image helps reduce the flicker that results if you draw the
pattern and ball directly to the screen.

Creating an offscreen I ma g e that you can draw to is done in two steps: First,
you create an offscreen I mage sized the same as the applet, like this:

offscreenimage = createImage(width, height);

Chapter 1: Follow the Bouncing Ball

	

1.5

After you have an offscreen I ma g e, you can get a G r a p h i c s context for this
Image, like this:

offscr - offscreenlmage.getGraphics(l;

You only need to perform this step once, so you can declare class variables
at the top of the applet to hold the reference to these two objects, like this:

private Image

	

offscreenImage;

private Graphics

	

offscr;

The listing for the complete applet on the CD-ROM shows where to place
these two variable declarations.

Overriding the flicker
All applets have a method called u p d a t e () that, by default, clears the
screen before p a i n t () is called. In many cases, you want the screen cleared
before p a i n t () is called, and so this default behavior can be useful. But,
when you use an offscreen I ma g e and then draw this offscreen I ma g e to the
screen, the old I m a g e is erased and the new I m a g e is drawn (as you can see

6

	

Part I: Steppin' Out

Figure 1-2:

The

completed

Bounce

applet.

by the momentary screen flicker). Because you're drawing over the applet's
entire visible area with the offscreen I m a g e, the u p d ate () method screen
clear is unnecessary.

To remove the screen clear caused by the default version of u p d a t e (), you

write a new update () method in your applet. Your new u p d a t e () omits the
screen clear code and, instead, simply calls p a i n t (), like this:

public void update (Graphics g) {

paint(g);

1

Drawing the background and the ball
The code to draw the 2 x 2 checkerboard pattern computes two variables x2
and y 2 that are the center points of the offscreen I ma g e. The code then uses
the values for x2 and y2 to draw the upper-left and lower-right sections in
g r a y, and the upper-right and lower-left sections in w h i t e.

Next, the code calls the methods in B a 1 1 to move b a 1 1 to its new position
and draw ba11 onto the offscreen Image, like this:

ball.move(bounds);

ball.draw(offscr):

Putting the action on the screen
The final step is to copy this Image onto the screen. Here's the code you
need:

g.drawimage(offscreenlmage, 0, 0, null);

Figure 1-2 shows your completed applet in action.

The code for your completed applet, with all the details discussed in this
chapter filled in, is on the Java Game Programming For Dummies CD-ROM.

This Chapter

Designing with state

Using the mouse

Keeping score

w Creating a computer opponent

Setting State

Chapter 2

Ponglet
. a a . 0 . . . 0 . & . a a . . . 0 . 0 0 0

	

. a a a 0 0 V a

a a a 0 0 a.0 +*0 asaa0 ssa0 asa0 0 0 0 0 9 a0 0 0 9 0 a. 0 0 .s. 0 a0 s0 * W

d Often, the hardest thing to do when creating a computer program is to
decide how to organize all its different actions. You know that each

separate action is really quite simple by itself, but making them all work
smoothly together can be confusing. Fortunately, managing all those pro-
gram actions is actually fairly easy.

And, to prove it, in this chapter you're going to create your own Ping-Pong
applet (Ponglet), complete with mouse controls, score display, and a
computer opponent. The techniques you use to work with and organize the
different actions in the Ponglet game are equally useful for many other
games you may create.

As you go through the examples and read about the techniques presented in
this chapter, you may want to follow along with the complete code for the
Ponglet applet included on the Java Came Programming For Dummies CD-ROM.

Imagine that you are a robot, and your job is to perform a series of tasks
that take five minutes each, but every six minutes your power is switched
off, and you forget everything. However, you have a detailed book of instruc-
tions on how to do your job. Each page in the book is organized like this:

Step 1: IMPORTANT: You have only five minutes to complete this task.

Step 2: The description of the task.

Step 3: When task is complete, turn to page xx, and wait.

i s

	

Part I: Steppin' Out

Each time you wake up, you are on the page that you turned to in Step 3 and
you see the next task to perform (having now forgotten the wait command),
and you do it. Then, by turning to the next page, you set up the next task to
perform when you wake up again. The page you select serves to set the state
of your brain when you wake up. Organizing a task in this fashion is called
state-driven design.

The key to state-driven design is how the task is organized. The obvious
difficulty for the robot is deciding how to break up a complex job into a set
of tasks that can each be completed in five minutes or less. The advantage,
when you break up a job this way, is that each individual task is so simple
that you don't need to keep track of any other details.

Breaking down the task
When you play Ping-Pong, you go through a series of sequential steps. First,
your opponent waits for you to get ready. Then, your opponent serves and
you scramble to return the serve. Then, your opponent tries to hit your
return. This process continues until one player misses. After one player
misses, the score of the other player is advanced, and you both get ready
for the next round. Finally, after one of you has enough points, the winner of
the round is declared, and the victor gets a moment to bask in the glory.

The different steps, or states, in a game of table tennis can be described as
wait, serve, return, playerl scores, player2 scores, playerl wins, player2
wins. Of course, unlike the robot example earlier in this chapter, the states
of the table tennis game can appear in a variety of different sequences as the
game is played.

In a computer simulation of table tennis, each state is a separate action that
you need to animate, and each animated action takes a different amount of
time to complete. For example, the serve state lasts until the ball travels
down to where the returning player hits or misses the ball.

In the bouncing ball example in Chapter 1, the ball bounces around indefi-
nitely or at least until you stop the applet. So the animation loop consists
entirely of code to move the ball and check for collisions. However, in the
case of a Ponglet game, there are some states where the ball isn't visible,
such as when the ball has moved off the table. Therefore, the code to draw
the ball needs to check the current game state before it draws.

One way of structuring all this is to define constants for every possible state
and a variable to keep track of what state the game is currently in. Then the
code in p a i n t () and the control code in r u n () can check the current state
to decide what to paint to the screen and what task the game should perform.

The code that goes in r u n () is going to be the most complex, so you want to
think out a clean way to organize it. Using a swi tch statement turns out to
be a nice approach. You can use the current state variable to select which
case to execute. This code goes inside a w h i 1 e

	

(r u n n i n g) loop that uses
s l e e p () to set the animation frame rate. Here's the complete r u n () frame-
work for Ponglet:

public void run () I

while (running) {

switch (gstate)

case WAIT:

break;

case SERVE:

break;

case RETURN:

break;

case PGUTTER:

break;

case GGUTTER:

break;

case PSCORE:

break;

case GSCORE:

break;

case PW0N:

case GWON:

break;

repaint();

try I

ticker.sleep(1000 / 30):

} catch (InterruptedException e) { ; 1

Chapter 2: Ponglet

	

19

Note that there is no break between the PW0N and GW0N states because you
want your code to do the same thing for both states. Therefore, when the switch
statement selects the PW0N state, the code will fall through to the GWON state.

The states that we discuss in the earlier example of a table tennis game are
analogous to the c a s e statements in this code. The key to dealing with these
c a s e statements is in the code that you add to complete the c a s e state-
ments (this code is missing here - you add it a little later in this chapter).

This code includes a few new states not mentioned in the table tennis
example, such as PGUTTER and GGUTTER. The reason for these particular
c a s e statements becomes clear as you work through the sections in this
chapter and fill in the missing code.

20

	

Part I: Steppin' Out

First, though, here are the definitions for the state constants and the g s t a t e
variable:

private static final int WAIT = l;

private static final int SERVE = 2;

private static final int RETURN = 4;

private static final int PGUTTER = 8;

private static final int GGUTTER = 16;

private static final int

	

PSCORE = 32;

private static final int GSCORE = 64;

private static final int PW0N = 128:

private static final int GWON = 256;

private int

	

gstate = WAIT;

Note that the declaration of the variable g s t a t e initializes g s t a t e to the
value WA I T. This is necessary so that the first case that is executed when the
r u n () method starts will be the WA I T case.

Serving the ball
The WA I T state is responsible for serving the ball and then setting g s t a t e to
S E RV E. Here's the code you need for the WA I T case:

case WAIT:

if (!mouse in)

delay = 20;

else if (delay < 0) {

// Serve the ball

int sLoc = rndlnt(table.width - ballSize) +

(ballSize » 1);

ball - new Ball(sLoc, -ballSize, rnd(5f) + 0,5f,

rnd(4f) + 3f, ballSize, Color.blue);

gstate = SERVE;

win-show = 100;

delay = 20;

break;

The test i f

	

(! mouse_i n) checks to see whether the player is ready to play
and has moved the mouse pointer into the control area (the area of the
applet's screen that tracks the player's mouse movements - more about
this later in the section "Entering the control zone"). After the player moves
the mouse to the control area, the delay value counts down, and the code in
the e 1 s e

	

i f block serves the ball.

The value s Loc computes a random location from which to serve the ball,
and this value is passed to the constructor for Bal 1. This code is nearly
identical to the B a 1 1 class in Chapter 1, except that it only checks for
bounces off the left and right bounds. Here's the complete code:

class Ball t

	

-

public float x, y, dx, dy;

public i nt

	

size, radius;

private Color color;

Ball (float x, float y; float dx, float dy,

int

	

size,

	

Color

	

color) i

this.y = x;

this.y = y;

this.dx = dx:

this.dy = dy;

this.color = color;

this.size = size;

radius = size >> 1;

public void move (Rectangle pd) f

// Add velocity to position to get new position

x += dx;

y += dy:

// Check for collision with bounding Rectangle

i f ((x < bd.x && dx < Of) 1 1
((x + size) > (bd.x + bd.width) && dx > Of))

x += (dx = -dx):

public void draw (Graphics g) I

g.setColor(color);

g.fillOval((int) x - radius, (int) y - radius,

size, size);

Chapter 2: Ponglet

	

2 ,

The code in WA I T that serves the ball also calls two new methods rn d I n t ()

and rn d () that generate random i n t and f 1 o a t values. WAI T uses these
methods to generate a random velocity (speed) for the ball and to serve it
from a random point along the top edge of the applet window. The
rnd I n t (n n) method generates a random i n t (integer) between 0 and nn.
The r n d (n n) method generates a random f 1 o a t (floating-point value) that
is greater than or equal to 0 and less than nn. Here's how you need to write
these two methods:

22

	

Part I: Steppin' Out

public float rnd (float range) I

return (float) Math.random(* range;

public int rndlnt (int range) I

return (int) (Math.random() * range);

Up java Creek without a Paddle
Okay - the ball is in motion and headed across the table toward you -
time to add code for a P a dd 1 e object that you can use to return the serve.
Here's the code:

class Paddle I

public int

	

x, y, width, height;

private Color color;

Paddle (int x, int y, int width, int height,

Color color) I

th'is.x = x:

this.y = y;

this.width = width;

this.height = height;

this.color = color;

public void move (int x, Rectangle bd) I

i f (x > (width >> 1) && x < (bd.width - (width)> l)))

this.x = x;

public int checkReturn (Ball ball, boolean plyr,

i nt rl, int r2, int r3) I

if (plyr && ball.y > (y - ball.radius)

! plyr && ball.y < (y + ball.radius))

if ((int) Math.abs(ball.x - x) < (width 1 2 +

ball.radius)) I

ball.dy = -ball.dy;

1! Put a little english on the ball

ball.dx += (int) (ball.dx * Math.abs(ball.x - x) /

(width / 2));

return r2;

1

else

return r3;

return rl;

public void draw (Graphics g) f

g.setColor(color);

g.fillRect(x - (width >> 1), y, width, height);

P a d d 1 e is structured similarly to the B a 1 1 class; it has values to record its x
and y position, w i d t h, h e i g h t, and C o 1 o r. However, because P a d d 1 e doesn't
move on its own, its move () method is called by the mouse input code, as we
cover in the "Entering the control zone" section a little later in this chapter.

Returning the serve

Chapter 2: Ponglet

	

23

The c h e c k Re t u r n () may look a little complicated at first, but its main job is
simply to check whether the ball hits the paddle. You use the same code to
create a paddle for the player and also for the computer. The boolean
parameter p 1 y r is t rue if c h e c k Re t u r n () is checking the player's paddle;
otherwise, it checks the computer's paddle.

The first bit of code in c h e c k R e t u r n () checks to see whether the ball has
reached the position on the table where the ball collides with the paddle.
The code for the player's paddle is

ball.y > (y - ball.radius)

and the code for the computer's paddle is

ball.y < (y + ball.radius)

If the ball is in position to be hit by the paddle, the code checks to see
whether the x position of the paddle is correct to connect with the ball. The
code for this check is

(int) Math.abs(ball.x - x) ((width / 2 + ball.radius)

If the ball does connect with the paddle, the code needs to reverse the dy
value for the ball to send it back across the table, like this:

ball.dy

24

	

Part I: Steppin' Out

However, the game would be pretty boring if the ball simply reversed
direction (dy value is reversed) and retraced its original path every time the
player's paddle hit the ball. You can add code to tweak the dx value and
apply a little English to the ball, like this:

You can play with the (w i d t h

	

/

	

2) value to change the feel of the paddle
and how it returns the ball.

Finally, c h e c k Re t u r n () returns one of three different parameter values, r 1,

r2, or r3, depending on the results of its checks. c h e c k R e t u r n () returns
the value that is passed in r 1 if the ball hasn't yet reached the paddle, r 2 if
the ball reached the paddle and the paddle hit the ball, and r3 if the ball
reached the paddle but the paddle missed the ball.

Changing state

- ~)a , r.0,~- to)

~ n

	

C1 -1-

	

/

	

2))

Now that you've created the P a d d 1 e class, you can add code to call it. You
need to call it to check the player's paddle when in the S E RV E state and to
check the computer's paddle when in the RETU RN state. Here's the code you
need to add to the SERVE case to call checkReturn (). This code goes in the
S E RV E case in the switch statement because the S E RV E case is the case the
code will call when g s t a t e equals S E R V E.

case SERVE:

// Check for ball in position for player to hit

gstate = pPaddle.checkReturn(ball, true, SERVE, RETURN,

PGUTTER);

if (gstate == RETURN)

gPaddle = new Paddle((int) (trackX = width / 2), 3.

20, 3, Color.red);

break;

When the player hits the ball, the call to checkReturn () sets gstate to
RETURN. If the player missed the ball, gstate is set to PGUTTER. When
gstate is set to RETURN, the code also creates a new P a d d l e object for the
computer to use to try and return the ball.

Creating a computer opponent
Time to create a simple computer opponent to play against. You can start
out by making the computer fairly easy to beat, but you can easily tweak the
program to make the computer harder to beat - it's your choice!

When the player hits the ball, the code in the S E R V E case instantiates a paddle
for the computer and changes g s t ate to RETURN. You now need to put code
in the RETURN case to control the computer's paddle. Here's that code:

case RETURN:

// Implement our simple-minded computer opponent

i f

	

(Math.abs(gPaddle.x -

	

ball.x)

	

>=

	

1)

gPaddle.move((int) (trackX += (gPaddle.x < ball.x ?

1.5f : -1.5f)), table);

// Check for ball in position for game to hit

gstate = gPaddle.checkReturn(ball, false, RETURN, SERVE,

GGUTTER);

break;

Chapter 2: Ponglet

	

25

The code for the computer opponent simply tries to move the paddle to
i ntercept the ball. However, the computer is limited in how fast it can move
the paddle by the two constants 1. 5 f and -1 . 5 f. These constants are
added or subtracted from the paddle position each animation tick in order
to make the paddle attempt to track the ball.

Set to 1. 5 f and -1 . 5f, the paddle can only move 1.5 pixels per tick in either
direction. Make these constants larger if you want your computer opponent
to be able to move the paddle faster and, therefore, be a more difficult
opponent.

!Rolling down the gutter
In the case where the player or the computer misses the ball, you need to
wait until the ball moves off the table before serving the next ball. The
P G U TT E R state waits for the computer's scoring ball to move off the player's
side of the table. It then sets g s t a t e to G S C 0 R E to record the score. Here's
the code:

case PGUTTER:

// Wait for computer s scoring ball to move off table

i f ((int) ball.y > (table.height + ball.radius))

gstate = GSCORE;

break;

The code for GGUTTER iS nearly identical:

case GGUTTER:

// Wait for player s scoring ball to move off table

if ((int) ball.y < (table.y - ball.radius))

gstate = PSCORE;

break;

Part 1: Steppin' Out

He shoots, he scores!
After scoring a point, the P S C 0 R E case increments the player's score and
checks whether the player has scored a total of 10 points (the criteria for
declaring a winner). If the player has won, g s t a t e is set to P W 0 N. If the
player has not yet reached a score of 10, g s t a t e is set back to W A I T to wait
to serve the next ball. Here's the code:

case PSCORE:

// Increment player s score and check if she has won

gstate = (++pScore >= MAX_SCORE ? PW0N : WAIT);

break;

This code uses Java's ++ prefix increment operator to advance p S c o r e to
the new point before checking to see if pScore has reached MAX_SCORE. If
pScore equals MAX_SCORE, the code sets gstate to PW0N, else it sets
gstate to WAIT.

If the computer scores, the code in the G S C 0 R E case is nearly identical:

case GSCORE:

// Increment computer s score and check if it has won

gstate = (++gScore >= MAX SCORE ?

	

GWON

	

:

	

WAIT);

break;

We have a winna!
When the player or the computer wins the game, you need to provide time
to bask in the thrill of victory. To provide this time, code in the WA I T case
initializes a variable called w i n_s h ow to a value of 100. The code also counts
down wi n show's value in the code for the PW0N and GWON states. The code
is the same for both states, so the case statements fall through, like this:

case PW0N:

case GW0N:

// Delay while we show who won

i f (win show < 0) 1

gstate = WAIT;

gScore = pScore = 0;

Tracking User Input
Now that you have constructed the game logic, you need to add code to
handle input from the user.

Entering the control zone

public boolean mouseEnter (Event evt, int x, int y) {

pPaddle.move(x, table);

mouse - i n = true;

return true;

Chapter 2: Ponglet

	

2 7

First, the game draws a small area at the bottom of the applet that serves as
the control area for the mouse. Moving the mouse pointer into this area
causes the player's paddle to start tracking the mouse's movement to the
left or right. To track when the mouse has moved into this area, you need to
override the mo u s e E n t e r () method, like this:

The call to p P a d d 1 e. move (x,

	

t a b l e) sets the position of the paddle to
match the mouse's x position when m o u s e E n t e r () is called. The boolean
variable mo u s e_i n is set to t rue to indicate that the game can start. Code in
the p a i n t () method also checks m o u s e_i n so that it knows when to draw
the player's paddle.

You also need to override m o u s e E x i t () to provide code to set mo u s e_i n to
f a 1 s e in case the player moves the mouse out of the control area. This
resets the d e 1 a y counter in the WA I T state so that the game doesn't serve
the ball until the player has had a chance to get ready (by moving the
mouse back into the control area). Here's the code for m o u s e E x i t ()

Public boolean mouseExit (Event evt, int x, int y) l

mouse-in = false;

return true

Tracking the mouse
Finally, you also need to override the mo u s e M o v e () method to update the
position of the player's paddle whenever the mouse moves, like this:

ublic boolean mouseMove (Event evt, int x, int y)

pPaddle.move(x, table);

return true;

28

	

Part I: Steppin' Out

1Jispla ying the state
Now you're in the home stretch. Your final task is to add code to draw the
Ping-Pong table, the ball, the paddles, the score, and the control area. You
can put most of the new code into the pa i nt () method for the applet.

Start with the same framework code that you used to create the bouncing
ball example in Chapter 1. You can use the same code from Chapter 1 that
draws to an offscreen I ma g e in order to reduce flicker in the animation. You
can also borrow the code that draws a checkerboard background image, or
you can invent your own creative background pattern.

Here's the borrowed framework code:

public void paint (Graphics g) I

i f (offscr == null) I

offscreenImage = createlmage(width, height)';

offscr = offscreenImage.getGraphics();

! / Fill offscreen buffer with a background B/W checkerboard

i nt x2 = table.width >> 1;

i nt y2 = table.height >> l;

offscr.setColor(Color.gray);

offscr.fillRect(0, 0, x2, y2);

offscr.fillRect(x2, y2, table.width - x2,

table.height - y2);

offscr.setColor(Color.white);

offscr.fillRect(x2, 0, table.width - x2,

table.height - y2);

offscr.fillRect(0, y2, x2, y2);

g.drawImage(offscreenlmage, 0, 0, this);

Your new code goes into the pa i nt () method just before the call to
drawImage() at the end of poi nt().

You also need to initialize a few variables in the applet's i n i t () method to
create a font for displaying the score and to handle a few other details for
the preceding sections. Here's the code you need to write for i n i t ()

public void init() {

width = size().width;

height = size().height;

// Set up table and mouse control area dimensions

table = new Rectangle(width, width);

msePad = new Dimension(width, height - width);

pPaddle = new Paddle(width » l, table.height - fi, 20.

3, Color.black);

Player = new Point(width - width / 4, 5);

game = new Point(width / 4, 5);

//Create offscreen image

offscreenImage = createImage(width, height);

offscr = offscreenImage.getGraphics();

//Setup text font for displaying the score

font = new Font(TimesRoman , Font.PLAIN, 14);

fontMet = getFontMetrics(font);

fontHeight = fontMet.getAscent();

!Keeping score
Next, you can add code to pa i nt () to draw the score, like this:

// Draw Scores

offscr.setFont(font);

centerText(offscr, game, Color.white,

	

+ gScore);

centerText(offscr, player, Color.gray,

	

+ pScore);

This code uses a new method called c e n t e r T e x t () to center the code on
the screen locations given by the P o i n t objects g a me and p 1 aye r. Here's the
code for centerText():

private void centerText (Graphics g, Point loc, Color clr,

g.setColor(clr);

Game over

String str) {

g.drawString(str, loc.x - -(fontMet.stringWidth(str) / 2).

l oc.y + fontHeight);

Chapter 2: Ponglet

	

29

The P o i n t parameter 1 o c specifies a location for c e n t e r Te x t () to center
the score passed in the String str and draw it in Color c l r. The
F o n t M e t r i c s object f o n t Me t is called to compute the width of the string.
The value f o n t H e i g h t is added to the y value of 1 o c so that the string is
centered relative to the top center of the text.

If the game is over, you need to declare the winner. The following code
displays the string "Win" beneath the winning player's score. Add this code
after the code to draw the score:

30

	

Part I: Steppin' Out

Figure 2-1:

Here's

how the

completed

Ponglet

game looks.

if ((gstate & (PW0N I GW0N)) != 0) {

Point winner - gstate == GWON ? game : player;

Point loc = new Point(winner.x, winner.y + 15);

centerText(offscr, loc, Color.black, Win);

If the game isn't over, you need code to draw the ball and the paddles. You can
add this code to an e 1 s e statement that follows the code to declare a winner:

else

// Draw ball

if ((gstate & (SERVE I RETURN I PGUTTER)) != 0)

ball.draw(offscr);

I/ Draw player s paddle

if (mouse- i n 1 1 (gstate & (SERVE I RETURN.` PGUTTER I GGUTTER)) 1= 0)

pPaddle.draw(offscr);

fl Draw computer s paddle

i f (gstate == RETURN)

gPaddle.draw(offscr);

Finally, you need to add code to draw the mouse control pad at the bottom
of the screen. This code also needs to prompt the player to move the mouse
into the control area to start the game, like this:

// Fill in mouse pad area

offscr.setColor(Color.yellow):

offscr.fillRect(0, msePad.width, table.width,

msePad.height);

i f (!mouse-in) I

Point loc = new Point(table.width >> 1, table.height +

((msePad.height - fontHeight))> 1));

centerText(offscr, loc, Color.black, Move Mouse Here):

Figure 2-1 shows the completed Ponglet applet in action. You can find the
complete code for Ponglet on the Java Game Programming For Dummies
CD-ROM included with the book.

.I6 Eius Chapter

dating golf

Making a click-and-drag putt interface

Il

	

g the physics of a ball

Chapter 3

Hole In One

erhaps you play golf as a personal pastime. Or maybe you've putted a
few holes of the miniature varietY down at the family fun center. If you

have, you're in good company: Golf is a hugely popular sport in the United
States, around the world, and even off the world. (Golf has the distinction of
being possibly the only game played on the surface of the moon, as Alan
Shepard did on February 6, 1971, during the Apollo XIV mission. Reportedly,
Shepard hit his first shot about 400 yards and then badly shanked his
second.)

Golf is also popular as a computer game. Dozens of versions of computer
golf have appeared over the years. Some of these games present fanciful
versions of the miniaturized game, some bear the names of famous players
or golf courses, and some claim to be accurate simulations that model the
physics and aerodynamics of real golf.

In this chapter, you won't be tackling anything as lofty as trying to calculate
the wind forces on a golf ball in flight. Instead, this chapter's goal is to
explore how to simplify the simulation of one aspect of golf, in this case
putting, by faking the calculations just well enough to get a result that feels
realistic. By the end of the chapter you'll be ready to turn this knowledge
into your own H o 1 e I n 0 n e applet.

This chapter describes all the techniques used in the Ho1 e I n0ne applet.
The complete code and ready-to-use applet is included on the Java Came
Programming For Dummies CD-ROM at the back of this book.

32

	

Part I: Steppin' Out

Don't be shocked by the idea of faking the
calculations for a game. In truth, all calcula-
tions that claim to simulate a real phenom-
enon are really just faking it-you can never
take every single variable into account land
even if you do, El Nino is just around the cor-
ner). Some calculations just happen to be less
fake than others.

Your goal should be to fake (perhaps simplify
sounds better) the calculations well enough to

using vectors

Faking physics
create a realistic and fungolf simulation, while
avoiding needless complications.

Think of the unpredictability of a golf ball roll-
i ng across a grassy surface. Just a single
blade of grass at the edge of the hole could
prevent the ball from falling in. But do you
really spoil the simulation if you treat the hole
as a perfectly round, sharp-edged circle?
Naah - it works just fine, as this chapter

shows.

Modeling the Deceleration of a Ba!!
Chapters 1 and 2 show code that simulates a ball that bounces around the
screen and that moves at a constant speed. In the real world, balls behave
differently. For example, a golf ball starts out moving at a certain speed
proportional to how hard it's hit by the putter. And immediately after the
ball is hit, it starts to slow down as it travels toward the hole. This slow-
down, or more formally, deceleration, is the result of a variety of forces
acting on the ball, but deceleration of a golf ball is mostly caused by the
rolling friction of the grass.

When real objects decelerate (or accelerate), Sir Isaac Newton's famous
second law gets involved. Mr. Newton says that the deceleration of a real
golf ball is proportional to the forces acting on it divided by the mass of the
ball. Simulated golf balls don't have real mass, of course, and they don't
have real forces acting on them either, but you do need some type of
calculation to simulate Sir Newton's law in action.

The code in Chapters 1 and 2 moves the ball by adding values called dx and
dy to the ball's x,y position. Therefore, you've certainly deduced that
slowing the motion of the ball is going to require you to reduce the dx and
dy values. Before you start working out the details, though, you may want to
consider vector math, a new way to do these types of motion calculations.

A vector (not to be confused with the j a v a . u t i 1 class of the same name) is
another name for a pair of dx and dy values. You can think of a vector as
representing the difference between two points; the dx and dy values form a

Chapter 3: Hole In One

	

33
vector because they represent the difference between two points along the
path of the ball.

You can slow the movement of your golf ball by reducing the distance it
travels in each successive animation frame. However, the tricky part is
reducing the distance the ball travels without changing the direction it's
moving.

If you think of dx and dy as proportional to the length of two sides of a right
triangle (see Figure 3-1), the distance a ball travels when you add dx and dy
is proportional to the length of the diagonal side of the same triangle. To
compute the length of the diagonal you use the formula for the lengths of
sides of right triangles, discovered by one Mr. Pythagoras:

a2 +b2 =C 2

dx

dy

magnitude = Math.sgrt(dx * dx + dy * dy);

By rearranging this formula, you can compute the length of the diagonal as

math.sgrttdx * dx + dy * dy)

The length of a vector's diagonal is commonly called the magnitude of the
vector.

Vector magnitude is important because it's the key to understanding how to
decelerate your golf ball. You can visualize what happens when you reduce
the magnitude of a vector by examining the relationship between the three
nested triangles in Figure 3-2.

34

	

Part I: Steppin' Out

Figure 3-2:

To increase

or decrease

the magni-

tude of a

vector,

proportionally

change the

vector's

dx and dy

values.

The biggest triangle, with sides dx,/dy,, has a diagonal that is as long as the
other two triangles combined. To reduce the biggest triangle so that it has
a diagonal as long as the next smaller triangle, shown with sides dx2/dye, you
have to subtract the lengths of the sides of the smallest triangle, dx3/dy3,
from the sides of dx,/dy,.

However, notice that you subtract more from dx, than you do from dy,. If
you were to subtract the same amount from dx, and dy e , you would change
the shape of the triangle rather than just the length of the diagonal (or more
specifically, hypotenuse). To keep the shape of the triangle the same, you
need to maintain the same ratio between the lengths of the sides defined by
dx and dy.

The secret to keeping the ratio of dx and dy the same is to divide dx and dy
by the magnitude of the vector formed by dx and dy:

dx = dx / Math.sqrt(dx * dx + dy * dy)

dy = dy / Math.sqrt(dx * dx + dy * dy)

Dividing by the magnitude changes dx and dy into a unit vector (see the
following techno term icon), with values for dx and dy ranging from 0 to 1.
The unit vector represents the direction the ball is moving, independent
from the ball's speed. And because you divide dx and dy by the same
number, you maintain the same ratio between dx and dy and therefore the
same direction for the ball. For example, when the ball's movement is
completely vertical (dx = 0), the value of dy divided by the magnitude of
the vector is 1, regardless of how fast the ball is moving.

When you divide a vector's dx and dy values by its magnitude, you get a new
type of vector called a unit vector. The magnitude of a unit vector is always 1,
hence the name. Unit vectors are used extensively in 2-D and 3-D graphics
calculations because they can be used to represent a direction independent
of speed.

You can also use a unit vector to calculate how to decelerate your ball
without altering its direction. First, you calculate a unit vector from the
ball's current motion vector. Then, because the magnitude of this unit
vector is 1, you can scale it to any size you want by multiplying its dx and dy
values by a value that represents the magnitude of the vector you want to
create. Then, you simply subtract this vector from your original motion
vector, and voila! you've reduced the speed of the ball while keeping it
moving in the same direction.

Creating a vector class
The golf simulation in this chapter uses vectors extensively to do many of
the motion calculations, and you need code to perform the basic vector
math operations, such as adding one vector to another, computing a unit
vector, and so on. So why not bundle up all these methods into a useful new
utility class called V e c 2 D, like this:

public class Vec2D I

public float dx, dy;

public void setVec (float dx, float dy) I

this.dx = dx;

this.dy = dy;

public float mag () {

return (float) Math.sgrt(dx * dx + dy * dy);

public void addVec (Vec2D vec) I

dx += vec.dx;

dy += vec.dy;

public void subVec (Vec2D vec) I

dx -= vec.dx:

dy -= vec.dy;

Chapter 3: Hole In One

	

35

(continued)

36

	

Part I: Steppin' Out

(continued)

public void unitVec () f

float mag = mag();

setVec(dx / mag, dy / mag);

public void mulVec (float scale) t

setVec(dx * scale, dy * scale);

1

V e c 2 D defines internal d x and d y values so that you can create a V e c 2 D

object whenever you need to keep track of a vector quantity. For example,
you can create a V e c 2 D object called v e 1 to control the motion of your golf
ball. Then, after you have this V e c 2 D object, you can call the methods on it,
such as s e t V e c () to set the direction and speed of the ball by setting the d x
and dy values in vel.

The methods addVec() and subVec () in V e c 2 D are used to add or subtract
one vector from another. You use these methods in the Golf game to apply
forces to the moving ball, such as the deceleration effect of friction and the
force of gravity acting to push the ball into the hole whenever the ball
crosses the edge of the rim.

The method u n i t V e c () converts a vector into a unit vector. You can use
this method in combination with m u 1 V e c () to proportionally scale the d x
and d y values in a vector by the f 1 o a t parameter passed to it by m u 1 V e c () .
Notice that u n i t V e c () is coded to use the method m a g () that returns the
magnitude of the vector.

With just these six vector operations, you can simulate all the motion
dynamics needed to create a nice putting simulation. So now that you have
these code elements ready to go, move on to the next section where we
present the code that uses these elements to simulate the golf ball and the
hole on the putting green.

Starting gain a Circle
Your golf simulation requires code to simulate both a ball and a hole in the
putting green. The code for simulating a hole shares many things in common
with the code for a ball. For example, to calculate when the ball rolls into
the hole, you need code to compute the distance between the hole and the
ball. So thinking along object-oriented lines, why not start by creating a
common base class called C i r c 1 e to contain the code that is common to
both a hole and a ball?

Creating the C i r c 1 e class
Your C i r c 1 e class needs to define x, y, and d i a m values to store its location
and size. It also needs to have a constructor to initialize these values. And to
simplify some of the calculations you need to do in your Ba 1 1 class, you
need the constructor to initialize a value for the r a d i u s of the circle. Finally,
you need code to compute the distance from one point to another; you can
put this code into a method called d i s t () . Here's the complete code for
Ci rcl e:

class Circle i

public float

	

x, y;

protected float radius;

protected int

	

diam;

Circle (int x, int y, int diam) {

this.x = x;

this.y = y;

radius = (float) (this.diam = diam) / 2;

protected float dist (Circle loc) {

float xSq = loc.x - x;

float ySq = loc.y - y;

return (float) Math.sgrt((xSq * xSq) + (ySq * ySq));

Building a B a 11 by extending C i r c 1 e
Next, you can extend C i r c 1 e to create a new class called B a 11. You put
code in B a 1 1 essentially to do the same thing as the bouncing ball in
Chapter 1, but you can use your new V e c 2 D class (see "Creating a vector
class," earlier in this chapter) to do the motion calculations. The new
features in Vec2D also help you handle decelerating the ball as it moves.
You can start by declaring the basic class, like this:

glass Ball extends Circle {

public Vec2D

	

vel = new Vec2D();

, ' vate Vec2D

	

tvec = new Vec2D();

.- = boolean

	

sunk = false;

::

	

-; ` nt x, int y, int diam) [

- :-r(x, y, diam);

Chapter 3: Hole In One

	

37

38

	

Part I: Steppin' Out

In addition to the constructor, this code defines two Vec2D objects: vel and
t v e c. The code for the Golf game uses v e 1 to hold the ball's d x and dy
values and t v e c as a temporary variable to do your deceleration calcula-
tions. You use the boolean flag s u n k to keep track of when the ball falls into
the hole. In addition, you use s u n k in both B a 1 1 's d r a w () method and in the
code you write to implement the hole.

Decelerating the ball
The next job to tackle is the code to handle decelerating the ball. You use
this code in two different places, so you may as well put it into its own
method called d e c e 1 (). d e c e 1 () takes a single parameter called v a 1 that
specifies the amount you want to subtract from the vector's magnitude.

Your dece1 () code needs to start by checking that the magnitude of the
ball's v e 1 vector isn't less than v a 1. If v e 1 is less than v a 1, the ball has
slowed so much that if you were to further slow down the ball by subtract-
ing the amount in v a 1 from v e 1, the ball would start to roll backward. To
avoid having the ball roll backward, you can simply set the vel vector to
zero. However, if the magnitude is greater than or equal to v a 1 (meaning
that the ball has not yet rolled to a stop), you can go ahead and do the
deceleration calculation, like this:

public void decel (float val) f

if (val >-- vel.mag())

vel.setVec(0; 0):

else f

tvec.setVec(vel.dx, vel.dy);

tvec.unitvec();

tvec.mulVec(val);

vel.subVec(tvec);

The deceleration code starts by initializing a temporary Vec2D object called
t v e c. It initializes by calling s e t V e c () and passing v e 1 's d x and dy values,
which gives you a copy of v e 1 in t v e c.

Next, you call the u n i t V e c () method to convert t v e c into a unit vector.
Then you call muI Vec () to shrink this vector down to the same magnitude
as v a 1. Finally, you subtract this scaled vector from v e 1 by calling
subVec().

3$

	

Part I: Steppin' Out

In addition to the constructor, this code defines two V e c 2 D objects: v e 1 and
tvec. The code for the Golf game uses vel to hold the ball's dx and dy
values and tvec as a temporary variable to do your deceleration calcula-
tions. You use the boolean flag s u n k to keep track of when the ball falls into
the hole. In addition, you use s u n k in both B a 1 1 's d r a w () method and in the
code you write to implement the hole.

Decelerating the ball
The next job to tackle is the code to handle decelerating the ball. You use
this code in two different places, so you may as well put it into its own
method called d e c e 1 (). d e c e l () takes a single parameter called v a 1 that
specifies the amount you want to subtract from the vector's magnitude.

Your decel () code needs to start by checking that the magnitude of the
ball's v e 1 vector isn't less than v a 1. If v e 1 is less than v a 1, the ball has
slowed so much that if you were to further slow down the ball by subtract-
ing the amount in v a 1 from v e 1, the ball would start to roll backward. To
avoid having the ball roll backward, you can simply set the ve 1 vector to
zero. However, if the magnitude is greater than or equal to v a 1 (meaning
that the ball has not yet rolled to a stop), you can go ahead and do the
deceleration calculation, like this:

public void decel (float val)

i f Oval >= vel.mag())

vel.setvec(o, 0);

else f

tvec.setVec(vel.dx, vel.dy);

tvec.unitVec();

tvec.mulVec(val);

vel.subVec(tvec);

The deceleration code starts by initializing a temporary V e c 2 D object called
t v e c. It initializes by calling s e t V e c () and passing v e 1 's d x and dy values,
which gives you a copy of vel in tvec.

Next, you call the u n i t V e c () method to convert t v e c into a unit vector.
Then you call mu 1 Vec () to shrink this vector down to the same magnitude
as v al. Finally, you subtract this scaled vector from v e 1 by calling
subVec().

Moving the ba«

Chapter 3: Hole In One

	

39

Now that you've conquered deceleration, you can write the code to imple-
ment B a 1 1 's m o v e () method. This method is the one your applet calls to
advance the ball's position on each frame of the animation. Your move ()

method takes two parameters: The first parameter, bd , specifies the bounds
of the applet. You need bd to detect when the ball needs to bounce off the
edges of the applet so that it doesn't roll out of the applet's play field.

The second parameter, f r i c t i o n , specifies how much to decelerate the
ball for each frame of animation. You use f r i c t i o n to call d e c e 1 () in order
to update the ball's deceleration, like this:

Calling d e c e 1 () updates v e 1 to account for deceleration, after which you
can add v e 1 to the ball's position to move the ball. You need to modify the
ball's position in one other place in your code, so you may as well create a
method in B a 1 1 for this purpose: You can call it a d d P o s (). a d d P o s () needs
to take a V e c 2 D object as its input parameter. When you call a d d V e c () ,

addVec () should add the dx and dy values in the vector to the ball's
position, like this:

p~hlic void addPos (Vec2D vel) (
+=

	

ve l. dx;

+-- vel .dy;

After you code a d d V e c () , you can add the code to m o v e () to call it, like
this:

Staying in bounds
After advancing the ball, move () must check whether the ball has moved
out of bounds, which move () does by comparing the ball's position to the
bd parameter. (bd, remember, is the bounds of the applet.) The code to do
this comparison is nearly identical to the code in the "Bouncing back"
section of Chapter 1, except that you add the decel () in order to slow the
ball's movement when it bounces off an edge, like this:

l ean hitEdge:

'hitEdge = (x < bd.x + radius

(x + radius) > (bd.x + bd.width)))

(continued)

40

	

Part I: Steppin' Out

(continued)

x += (vel.dx = -vel.dx);

i f (hitEdge J = (y < bd.y + radius ()

(y + radius) > (bd.x + bd.height)))

y += (vel.dy = -vel.dy);

i f (hitEdge)

decel(vel.mag() * .Sf);

You use the boolean flag hi tEdge to signal that the ball has bounced off a
vertical or horizontal edge. Then, you use the d e c e 1 () method to reduce
the ball's speed by 80 percent after a rebound by multiplying v e I's current
magnitude by .8.

Figure 3-3:
The golf

game

i nterface

uses a i

rubber-

band style

display to

control the

direction !I

and force

of a putt.

	

--- --~---~

Putting the bait
You also need to add code to Bal 1 to support a mouse-driven, click-and-
drag putt interface. Using this interface, the player can click on the ball to
select it. Then, while holding down the mouse button, the player can drag
the mouse cursor back in the direction opposite from the hole, as shown in
Figure 3-3. Doing so draws a rubber-band line from the mouse's current
position to the ball. The player can then use this line to aim a putt. The
player makes the putt by releasing the mouse button. The length of the
rubber-band line when the button is released indicates the force of the putt-

Seleeting the ball
The B a 1 1 class needs several methods to support this interface. First, you
need a method called t o u c h e s () to detect when the user clicks the ball:

public boolean touches (int mx, int my) t

return (new Circle(mx, my, 0)).dist(this) < radius;

freeuting the putt

public void putt (Point ptr) I
vel.setvec((x - ptr.y) 120, (y - ptr.y) f 20);

Waiting for the ball to go in

public boolean moving () {
return vel.dx != 0 1 1 vel.dy != 0;

DraWing the ball

Chapter 3: Hole In One

	

4 1

When you call t o u c h e s (), you pass it two i n t parameters called mx and my

to indicate where the user clicked. You use these values to create a new
C i r c 1 e object located in the spot where the user clicked. Then you can call
C i r c l e's d i s t () method to calculate the distance from this point to the
center of the ball. If this distance is less than the ball's r a d i u s, t o u c h e s ()

returns true, indicating that the user has clicked the ball.

To actually make a putt, your applet calls a method in B a 1 1 called p u t t ()

and passes it a P o i n t object called p t r that indicates the location of the
mouse when the mouse button is released. Poi nt is a class in j a v a . awt.

Creating a Po i nt object (in this example, pt r) is a convenient way to pass
x,y values as a single parameter. Using these values, p u t t () calls s e t V e c ()
to set the ball's v e 1 variable in order to put the ball in motion. Here's the
code for putt():

Notice that the speed of the putt is defined as the difference between the
mouse's position and the ball's position, divided by 20. Dividing by 20
provides greater resolution for aiming the putt without imparting too much
force to the ball. However, you can adjust this value to suit your own
preferences.

You need a final method to support the putting interface: moving(). The
Golf applet calls moving() in order to check the d x and dy values in v e 1 and
returns t r u e if the ball is currently in motion. Your interface code can use
this method to prevent the player from trying to select the ball while it is
still in motion from the last shot. Here's the code:

The last bit of code you need to add to B a 1 1 is a d r a w () method. To add a
nice 3-D effect, you can code d r a w () to put a shadow beneath the ball. You
can create a shadow by drawing a dark gray circle offset two pixels down
and to the right of the ball.

42

	

Part I: Steppin' Out

If you tie a rock to a string and whirl it around
your head you can demonstrate centrifugal
force. However, centrifugal force isn't really a
force at all. You are merely seeing the result of
the ball's inertia as it orbits around your head.
However, for the sake of convenience, you
pretend that a real force is pulling on the rock.
This type of pretend force is called, appropri-
ately, a fictitious force.

Fictitious Force?

The shadow needs to be drawn before the ball; however, you don't want a
shadow when the ball is in the hole. You can check the state of the s u n k flag
to see whether the ball is in the hole, and if so, not draw the shadow. Also,
when the ball is in the hole, it looks better to draw it in light gray in order to
simulate the darkness of looking down into a real golf hole. Here's the code
for draw():

public void draw (Graphics g)

i f (!sunk)

g.setColar(Color.darkGray):

g.fillOval((int)

	

(x

	

- radius)

	

+

	

2,

(int) (y - radius) + 2, diam, diam);

I

g.setColor(sunk ? Color.lightGray : Color.white);

g.fillOval((int) (x - radius). (int) (y - radius),

diam, diam):

Digging a Note

Why invent a fictitious force? Well, sometimes
simulating a fictitious force is easier than com-
puting all the effects of real forces - such is
the case for your golf simulation. There isn't a
real force that pulls the ball toward the center
of the hole, but the calculations get a lot sim-
pler if you pretend such a force exists.

Now that you have code (the B a 1 1 class) to simulate the golf ball, the next
step is to create code for the hole in the form of a H o 1 e class. H o 1 e is a little
trickier to create than Ba 1 1 because the physics of how a real golf ball
interacts with a real hole are far from simple. However, by using your new
V e c 2 D code and by faking the calculations, you can get nice results without
too much work.

Ho l e , just like B a 1 1 , extends from C i r c 1 e. Inside H o 1 e you can write a
constructor that sets the position and size of the hole. H o 1 e also requires a
temporary vector for its calculations, so you can go ahead and declare a
V e c 2 D object called t v e c for this purpose. And because the d r a w () method
for Ho 1 e is so simple, you can go ahead and write it, too:

class Hole extends Circle I

Vec2D

	

tvec = new Vec2D();

Hole (int x, int y, int diam) f
super(x, y, diam);

public void draw (Graphics g) I

g.setColor(Color.black);

g.fillOval((int) (x - radius),

(int) (y - radius), diam, diam);

Gravitating toward the center

Chapter 3: Hole In One

	

43

When the ball is sailing across the green, nowhere near the hole, the hole
has no influence on the motion of the ball. However, when the ball strays
close enough to the edge of the hole, gravity, using the hole as a lever, tries
to push the ball into the hole. If the ball is moving fast enough and is at a
sufficient distance from the hole's center, the ball escapes the force pulling
it in. If not, gravity wins, and the ball is captured, spinning around futilely at
the bottom of the hole until it slows to a stop.

The force of gravity normally can only push a ball down against the grass.
However, when the center of gravity of the ball is inside the radius of the
hole, the force of gravity gets redirected by the lip of the hole and creates
a fictitious force that seems to push the ball toward the center of the hole.
In your simulated golf game, this happens whenever the distance from the
center of the ball to the center of the hole is less than the radius of the hole,
as shown in Figure 3-4.

If you were to more closely simulate the forces acting on the ball, you'd have
to consider that the fictitious force acting on the ball changes as the ball
moves closer toward the center of the hole. This happens because the edge
acts like a ramp that gets steeper and steeper as the ball topples into it.
You could add code to simulate this, but you don't need to be this precise in
order to get a realistic result. The important part is that the ball reacts as if
a force is pushing it toward the center of the hole.

4 4

	

Part I: Steppin' Out

Figure 3-4:

Gravity

pushesthe

ball down

against the

edge of the

hole, which

acts like

a fictitious

force

pushing the

ball toward

the center.

Vectoring in
When you animate the ball by adding the v e 1 vector to the ball's position,
you use v e 1 to simulate the force of the putter acting on the ball and the
ball's resulting momentum pushing it in a particular direction. The fictitious
force pushing the ball to the center of the hole can also be represented by a
vector. However, the effect of the hole doesn't replace v e 1 's effect on the
ball. Instead, the hole's effect gets added to v e 1 and changes the direction of
the force created by the ball's momentum.

You can simulate the effect of combining two different forces by adding the
vectors that represent those two forces. And, as Figure 3-5 shows, when you
add two vectors, you get a new vector that represents their combined
forces. The new vector can have a greater magnitude than the two vectors
you add, or it can produce a vector that has an equal or lesser magnitude,
depending on the values of the two vectors you add.

Curving around the hole
In the case of a fast moving ball that only grazes the edge of the hole, the
fictitious force acting to push the ball into the hole is much weaker than the
force of the ball's momentum. So the combined force only manages to de-
flect the ball's path. However, because the fictitious force deflects the ball in
the direction of the hole's center, the force keeps on pushing on the ball as
long as it stays near the hole. As Figure 3-6 shows, even this weaker force
can manage to redirect the ball's path into one that curves around the lip

Rpre 3-5:
The result
of adding

am rectors
is a new

awtur that
iconbines

effects
of the

s wo.

e 3-6:

the
sasxance

,and speed
mw .zrrect,

the

ammammmmraoon
aumirte force

the
III!ii sm the
ftk and

s
inmanmummm a:, an

MEM lie
W to

it{l w a
Path

Toe.

of the hole. And this curved path may even move the ball closer to the
center of the hole and wind up causing the ball to spiral in. If not, the ball's
path eventually leads away from the hole, and the ball travels off in a new
direction.

Ball's 1nom"nlt!m

Chapter 3: Hole In One

	

45

Part I: Steppin' Out

Coding the curve

Now that you've got the theory down, you're ready to start converting it into
real code. You can start by adding a method to H o 1 e called i n f 1 u e n c e () in
which you put the code that computes the fictitious force acting to push the
ball into the hole. You also need to put code in i n f I u en ce () to detect when
the ball has been captured by the hole, and in turn set the s u n k flag to t r u e.
Also, although not strictly necessary, it's fun to add code that simulates the
effect of a sunk ball bouncing around in the hole until it settles to a stop.

Your i n f 1 u e n c e () code starts by computing two values to which you need
to refer in several places in the code. The first value, d i s t I n , must be set to
the r a d i u s of the hole minus the r a d i u s of the ball. The second value,
h b D i s t , must be set to the distance from the center of the ball to the center
of the hole; you can determine this distance by calling the C i r c I e method
d i s t (). These values are used to determine if the ball has strayed close
enough to the hole that the fictitious force should begin acting on it.

If the h b D i s t is less than the r a d i u s of the hole and greater than d i s t I n ,

then the fictitious force should act on the ball. If h b D i s t is greater than the
radius of the hole, then the ball's center of gravity is not inside the diameter
of the hole, and the fictitious force has no effect on the ball. If h b D i s t is less
than d i s t I n , then the ball has fallen completely into the hole and is no
longer in contact with the lip of the hole, so the fictitious force should stop
acting on the ball.

Pushing to the center
Whenever the fictitious force is acting on the ball, you can simulate its effect
by computing a unit vector that points from the ball's center to the center of
the hole. You can use the V e c 2 D object t v e c to do the computation, like
this:

tve~. et'Jec(x - ball.x, y - ball.y);

tvec. ;ni~Ve_();

You can then multiply this unit vector by some number in order to increase
or decrease the force of gravity pulling the ball into the hole, but the force of
the unchanged unit vector turns out to be just about right for this simula-
tion. So you can use a d d V e c () to add this new vector to the ball's momen-
tum vector v e 1 , like this:

ball.vel.addVecff" ~

Sinking the putt

Next, you need to add the code that detects when the ball is sunk. At its
heart, this check looks to see whether the distance from the ball's center to
the hole's center (h b D i s t) is less than the radius of the hole minus the
radius of the ball (d i s t I n). But for a little extra realism, you want to first
make sure that the ball isn't moving too fast to simply skip over the hole.
Skipping over is what a real ball does, even if it is hit to the dead center of
the hole.

ball. sunk

	

1 = ball.vel.naq()

	

<

	

radius

	

&&

	

hbDist

	

<

	

distIn;

Chapter 3: Hole In One

	

4 7

You can check for a reasonable speed by comparing the magnitude of v e 1 to
the hole's radius. This comparison isn't a precise calculation, but it works
reasonably well. The result of these checks set the ball's s u n k flag, like this:

The code sets the radius of the hole at 15 pixels, so if the magnitude of the
ball's movement vector is greater than or equal to 15, then the ball is
moving too fast to go in.

Spinning in the hole

Even after the ball drops into the hole, the ball's momentum vector still tries
to make it move. A real golf ball bounces off the sides of the hole, but your
Hol e class doesn't yet include any code to simulate this. So unless you add
more code, the Java golf ball would simply keep moving as if the hole
weren't there.

The way you can simulate a ball bouncing off the inside of a circular hole is
similar to the approach you use in the section "Staying in bounds" in order
to make the ball bounce off the edges of applet's display area (see Chapter 1).
In effect, you wait until the ball has moved outside the bounds of the hole
and then compute a new location and path for the ball that mimics the path
the ball would have taken if it had bounced off the sides of a real hole.

The first step tests whether the ball has been sunk. If it has, the code needs
to check whether the ball has moved beyond the bounds of the hole:

ball.sunk && hbDist > distln)

Next, you need to write code to go between the { } brackets to calculate the
position to which the ball should move after it bounces off the sides of the
hole. You also need to calculate the new direction the ball will be moving
after this bounce and change the ball's v e 1 vector to make the ball move in
that new direction. The calculations to do this so that the movement is
modeled on the real-life behavior of a ball can get quite complex. However,
because this effect is only for show, you can just fake it.

48

	

Part I: Steppin' Out

Step one in faking it is to update the ball's velocity vector v e 1 to simulate a
bounce off the sides. A real ball bounces off the sides of a hole on a path
that is related to the angle between the point where the ball touches the
side of the hole and a radial line between the center of the hole and this
point. However, just calculating the point of intersection requires more math
than you need to use here.

Instead, you can simply compute a vector to apply a force to the ball that
pushes it back toward the center of the hole by an amount proportional to
the distance the ball has strayed outside the hole. Here's the code:

tvec.setVec(x - ball.x, y - ball.y);

tvec.m u] Vec((hbDist - distln) / hbDist);

ball.vel.addVec(tvec);

You also need to update the ball's position to make it appear that it bounced
off the sides. Again, you can resort to sheer fakery by simply moving the ball
back toward the center of the hole by an amount proportional to how far the
ball moved beyond the bounds of the hole. Here's the code:

tvec.setVec(x - ball.x, y - ball.y);

float m2 = tvec.mag() - distln;

tvec.unitVec();

tvec.mulVec(m2):

ball.addPos(tvec):

Coding the Ho1 e I n0ne Applet
Now that you've accomplished the hard part - that of writing the code that
simulates the ball and the hole - the code to complete the applet is a
straightforward exercise. You mostly need to fill in the details that follow
from the work you've already done in Chapters 1 and 2. For example, you
need to create a run () method and Th read to handle the animation. The
complete code is on the CD-ROM included with this book, so you can look
there if you've forgotten any details.

Completing the putting interface
You still need to add the applet side of the code in order to complete the
rubber-band putting interface. As discussed in the earlier section "Putting
the ball," your code must use a Poi nt object to record the position of the
mouse and pass it to the p u t t () method in B a 1 1. And you need to override
the applet methods mouseDown (), mo useDrag(), and mo useUp() to imple-
ment the full mouse interface. Here's the complete code for these three
methods:

http://tvec.mu
http://tvec.mu

public boolean mouseDown (Event evt, i nt x, int y) i

if (ball.sunk)

ball = new Ball(x, y, BALLSIZE);

repa i nt

i

if (lball.moving() && (select = ball.touches(x, y))) i

putt = new Point(x, y);

repaint();

1

return true;

public boolean mouseUp (Event evt, int x, int y) I

i f (select)

ball.putt(putt);

repaint();

select= false;

return true

public boolean mouseDrag (Event evt, int x, int y)

i f (select)

putt = new Point(x, y);

repaint():

ret.irn ra?:

Drawing the green

-,blic void paint (Graphics g) I

i f (offscr == null) I

offscreenImage = createImage(width, height);

offscr = offscreenlmage.getGraphics();

offscr.setColor(roughColor);

Offscr.fillRect(0, 0, width, height):

_ffscr.setColor(greenColor);

Chapter 3: Hole In One

	

49

You can customize the code you write for the applet's p a i n t ()method so
that it draws the green in any shape you desire, but here's code that draws a
simple circular green. This code also includes the code to draw the rubber-
band, putt-control line:

(continued)

50

	

Part I: Steppin' Out

(continued)

offscr.fillOval(gap / 2, gap / 2, width - gap,

-

	

height - gap);

nole.draw(offscr);

- ball.draw(offscr);

i f (select)

offscr.setColor(Color.black);

offscr.drawLine((int) ball.x, (int) ball.y,

(i nt) putt.x, (int) putt.y);

E

g.drawImage(offscreenImage, 0, 0, this);

The complete code for Ho 1 e In On e is included on the Java Game Program-
ming For Dummies CD-ROM at the back of this book.

lh This Chapter

w The mathematics of detecting collisions

rSimulating pool

-> Modeling billiard ball physics

Chapter 4

JavaPool
6....0* 00000 000

	

0 *000000000*000060 #

.....*000000 000000*4000000 . 0

	

*

h
Y
e game of billiards certainly appeals to barflies and pool hustlers still
ein' the color of the next guy's money. It also appeals to physicists

because it demonstrates, in a fun way, some of the basic laws that make the
universe work. For example, when a billiard ball smacks, dead center, into
another billiard ball, the moving ball comes to a complete stop. The second
ball steals the first ball's momentum and travels off at nearly the same
velocity as the first ball - basic physics demonstrated with elegant
simplicity.

This chapter shows you how to create a simplified game of billiards in Java.
However, the main point of this chapter is to introduce you to the art and
science of collision detection. Because of the math involved, programmers
often regard collision detection as one of the more difficult problems lurking
in game design. However, the goal of this chapter is to get you past the math
and down to useful techniques that you can use to get results.

This chapter also shows you how to simulate the physical laws that control
how one billiard ball bounces off another. Simulating billiards and program-
ming collision detection requires a bit of math, but don't panic; the math
isn't that hard to use, even if you don't understand all the physics behind it.
In the end, all equations turn back into Java code so that only your com-
puter has to worry about them.

This chapter largely deals with the concepts you need to understand to
write code that can detect and handle collisions. The full code for the applet
described in this chapter is contained on the Java Came Programming For
Dummies CD-ROM.

52

	

Part I: Steppin' Out

calculating 13att-to-46att cottisions
Chapters 1 and 3 show you how to simulate balls that move, bounce off
fixed boundaries, and fall into holes on a simulated golf green. However,
simulating the interaction of billiard balls is a little more complicated
because billiard balls bounce off each other, not just static boundaries or
holes. This is tricky to simulate because you have to compute both the
exact moment when two balls collide and the exact point at which they
touch in order to simulate properly the rebound from the collision.

Passing in the night
Before you think too much about billiard balls, start by imagining two ocean
liners sailing across the sea. One liner is heading in a northeast direction
and the other is heading in a southeast direction. Further, the path each is
traveling crosses the other's path at some distance in front of their presen•_
locations.

If both ships are the same distance from this intersection (crossing point)
and if both ships are traveling at the same speed, it's obvious that the two
ships arrive at the intersecting point at exactly the same time. In other
words, the ships are on a collision course (man the lifeboats).

If one ship is just a ship's length closer or farther from the point of intersec-
tion, the two ships won't collide. Instead, the closer ship passes the inter-
section point, just as the other ship arrives at it. The passengers scream, but
the ships don't collide. Likewise, if one ship travels sufficiently slower or
faster than the other, the two ships don't collide because the faster ship
clears the intersection point before the slower ship arrives.

In between the possibility of one ship passing the intersection point before
the other arrives and a full on collision, is a tiny window of time where the
slower or more distant ship reaches the intersection point before the other
ship completely passes it. Exactly when the slower or more distant ship
arrives determines where it hits the other ship. If it arrives at nearly the
same time as the other ship arrives, it rams into the front of the other ship.
If the slower, or more distant ship arrives just slightly before the other ship
passes the intersection point, it clips the rear of the other ship.

Reducing the distance
As the two ships approach the point where their paths cross, the distance
between the two ships gets smaller and smaller. Conversely, after one of the
ships passes the intersection point, the distance between the ships starts to

Chapter 4: JavaPool

	

53
increase. All this decreasing and increasing of distance means that there
must be a point in time at which the distance between the ships is as small
as it's going to get.

If this distance is small enough, both ships will try to sail into the same
place at the same time and means that the ships are doomed to collide.
However, if this distance is large enough, both ships can pass without a
collision. In between these two distances, you need to know the shape and
size of each ship in order to calculate how close the ships can pass before
risking a collision.

You see the obvious parallel between ships on an ocean and billiard balls on
a pool table, of course. However, unlike ships, billiard balls are spheres of
the same size, and calculating how close two billiard balls can get to each
other without colliding is much easier than a ship shape. Because real
billiard balls are never exact spheres, this distance, measured from the
center of one ball to the center of the other, is just a hair larger than twice
the radius of a billiard ball. However, for your pool simulation you can
simplify this to simply twice the radius.

Calculating position over time
Imagine a billiard ball rolling across the felt surface of a real pool table at a
constant speed. Then, imagine a ruler lying on the table parallel to the path
of the billiard ball, as shown in Figure 4-1. At time zero, the ball is at position
1 on the diagram, and the ball is moving at a speed that carries it to position
4 one second later. Therefore, you know that in 1/4 second, the ball arrives
at position 2 and in 1/2 second, the ball reaches position 3. In other words,
the distance the ball travels is proportional to time.

If you know the position of the ball at any two points and you also know the
time it takes for the ball to travel between those two points, you can calcu-
late the position of the ball at any point in time. For example, suppose that
you know that the coordinates for the ball when it is in position 1 are x=10
and y=20 and that the coordinates for the ball when it is at position 2 are
x=12 and y=17. You know that it takes 1/4 second for the ball to travel from
position 1 to position 2, and you also know that it takes 1 full second for the
ball to travel from position 1 to position 4. This means that in 1/4 second,
the x value of the ball's position increases by 2 and the y values, decreases
by 3. In one full second, the x value increases by 8 (4 x 2) and the y value
decreases by 12 (4 x 3.) Therefore, in one second, the ball reaches coordi-
nates x=18, y=7.

54

	

Part I: Steppin' Out

Figure 4-1:

Because

distance is

proportional

to time,

you can

calculate

the position

of a ball

moving at a

constant

speed if you

know two

points and

the time it

takes to

travel

between

them.

nx=x+dx * t;

ny=y+dx * t;

When you animate a moving ball, you add dx and dy to the ball's x and y
position values at each tick of the animation. This means that in one anima-
tion tick, the ball moves from coordinate x, y to coordinate x + dx, y + dy.
Therefore, in three ticks of the animation clock, the ball moves to coordinate
x + 3 x dx, y + 3 x dy. If you replace a specific number of ticks with the
variable t to represent any number of animation ticks, you can easily write
equations for x and y to calculate the position of the ball at a new point in
time nx, ny like this:

Calculating the distance to a co«ision
Chapter 3 covers using the relationship a2 + b2 = c2 (the Pythagorean Theo-
rem) to calculate the distance between two points. You may recall that the
distance between two points pointl and point2 is the square root of
(point Lx - point2.x) 2 + (point Ly - point2.y) 2 . This formula is called the
distance formula. Now that you know how to calculate the position of a
moving ball over time, you can use this formula to compute the distance
between two moving balls, bl and b2, over time.

d = sqrt((bl.x + bl.dx x t) - (b2.x + bl.dx x t))z+

sqrt((bl.y + bl.dy x t) - (b2.y + bl.dy x t))z

Chapter 4: JavaPool

	

55
Ball bl's current position is given by bl.x, hl.y, and ball b2's current posi-
tion is given by b2.x, b2.y. For each animation tick, ball bl adds bl.dx to its
x position and bl.dy to its y position. Likewise, ball b2 adds bl.dx and bl.dy
to its x and y position. Therefore, the x and y coordinates of ball bl at point
t in time is x = bl.x + bl.dx x t, y = bl.y + bl.dy x t and the coordinate for ball
b2 at the same point in time is x = b2.x + bl.dx x t, y = b2.y + bl.dy x t.

Combining the formula to compute the distance between two points and the
formulas for the position of balls bl and b2 over time produces this formula
that computes the distance d between ball bl and b2 at time t:

Think of this equation as a formula for computing distance over time. It's
a rather large formula, but it's really just an expanded form of the distance
formula listed at the start of this section. The difference is that the expression
(bl.x + bl.dx x t) replaces pl.x in the original formula, (b2.x + bl.dx x t)
replaces p2.x, (bl.y + bl.dy x t) replaces pl.y, and (b2.y + bl.dy x t)
replaces p2.y.

Using this formula, you can take any two moving balls and calculate the
distance between them at any future point in time. For example, you can use
this formula to see whether two balls collide in the next tick of the anima-
tion clock by computing the distance and checking whether it is less than
twice the radius of the balls.

However, using the formula in this fashion isn't a foolproof solution. For
example, Figure 4-2 shows the paths of two moving balls. Ball A moves from
BAl to A2 in one tick of the animation clock, and ball B moves from B1 to B2.
The distance between the balls at Al/B1 isn't close enough to collide, and
the same is true at A2/B2. As Figure 4-2 shows, the two balls should have
collided at the position shown by the dotted outlines. However, the code
can fail to detect this if it only checks for collisions at fixed time intervals.

You can try to solve this "missed collision" problem by using a loop to check
the distance between the two balls at points in time even closer together
than a single animation tick. However, unless you were to loop until you
were checking extremely tiny distances, computing the exact time one ball
its another would be difficult. You need to know the exact time to calculate
the exact location of each ball when the collision happens. If you don't know
the exact position of both balls at the moment of collision, you can't prop-
erly calculate the result of the collision. Even a small error in position can
make a big difference in the direction and speed of the balls after the

Lision.

56

	

Part I: Steppin' Out

Figure 4-2:
Some

potential
collisions

would take
place

between
the time

i ntervals
used to
animate

movement,
which

results in
the collision

being
missed.

Solving for time

If you still remember any high-school algebra, you probably recall that
formulas - like the one presented in the previous section for computing
distance over time - can be rearranged to solve for specific values. From
the position, direction, and velocity information for two objects at a speci-
fied time, the distance-over-time formula calculates the distance separating
the two objects.

You already know that the only distance you care about is the distance at
which two balls collide, which is twice a ball's radius. So what you want is
an equation that assumes d = radius x 2 and solves for time.

Two solutions?

Although your algebra may be a bit too rusty to figure out how to solve the
distance-over-time equation for time, some quite sophisticated computer
programs are available that can do it for you. One such program,
Mathematica 3.0 from Wolfram Research (www. ma themati ca . com), takes
only a few seconds to figure out the correct solution. With the solved
equation, you can spend time working on your code rather than digging
through your old math textbooks.

However, before you start examining this equation, you need to know that it
actually has two possible solutions that solve for time when d = radius x 2,
as demonstrated in Figure 43.

When two

Ills are on

iz9f that

IIIIId the

maws are

s aed
M"M exact

adluimmmr : a of

IIIIIIII

IIIIC;,° . .

	

2

I n Figure 43, ball A is moving from A1 to A2, and ball B is moving from 131 to
B2. As the balls approach the intersection point, the distance between the
balls becomes equal to radius x 2 at the point marked Solution 1. However,
as Figure 43 shows, at another place on the path marked as Solution 2, the
distance between the balls is also equal to radius x 2. Physically, only
Solution 1 makes any sense because the balls collide at that point and can
never reach the position for Solution 2 unless they pass through one an-
other. Solution 2 is a perfectly valid mathematical solution, it just doesn't
make sense for a pair of solid billiard balls.

Rearrange the quation
To solve the distance-over-time formula for t, you first rearrange the equa-
tion into a polynomial equation of the form

Chapter 4: JavaPool

	

5 7

Rearranging the distance-over-time formula into a fully expanded polyno-
mial form produces

58

	

Part 1: Steppin' Out

The

distance-

over-time

formula

from the

previous

section,

expanded

here into

the general

polynomial

form.

The

subexpression

i n the

quadratic

formula that

gives you

the two

possible

solutions.

((bl.x - 62.x) 2 + (bl.dy - b2.dy) 2) x t2 +

2 x ((bl.x - b2.x) x (bl.x - b2.x) x (bl.dx - b2.y) x (bl.dy - b2.dy)) x t +

((bl.x - b2.x)' + (b1.y - b2.y)' - (bl.radius + b2.radius)') = 0

Note: This equation is broken into three lines to show the parts that corre-
spond to the a, b, and c terms of the polynomial form.

You then solve this polynomial equation using the quadratic formula. The
general form of the quadratic formula is

The

quadratic

	

t= -b+

	

b'
-4ac

formula.
2a

The strange ± notation shows how you get two solutions to the equation.
Solution 1 results when you subtract the subexpression

Vb2 -4ac

and Solution 2 results from adding the same subexpression. Given that you
know that you only want to find the first collision, you need only Solution 1.

Iluumiic;i-: :.r ~

n

Mr R,

u„ 2711

1110111~~~

The complete set of equations (all you really need)

d = bl.radius + bl.radius

ddx = bl.dx - bl.dx

ddy = bl.dy - bl.dy

distx = b l.x - b2.x

disty = b1.y - b2.y

a=ddx'+ddy'

b=2x(dxxddx+dyxddy)

c=dx'+dy'-d'

t

	

-b -

	

bb x)
=

2a

JOS

Chapter 4: JavaPool

	

5v

The values a, b, and c in the quadratic formula are only placeholders for
the real subexpressions, which you pull from the polynomial form of the
distance-over-time formula. You can, in turn, reduce these equations to a
simpler set by noting the repeated subexpressions in the fully expanded
polynomial form. The complete set of calculations for a, b, and c, when
calculated for your two balls bl and b2, is as follows:

Note: The values d, ddx, ddy, distx, and disty are simply intermediate values
that show how to avoid duplicate calculations in the equations that calcu-
late the values for a, b, and c.

Then you can plug these computed values for a, b, and c into the Solution 1
version of the quadratic formula to precisely calculate the time t when two
balls first collide, like this:

If the value of t that you compute with this formula is exactly zero, the balls
are at the point of collision. If the value of t is greater than zero but less than 1,
the balls collide at some point before the balls reach their respective x + dx
and y + dy positions, that is, some time before the next frame in the animation.

You can also use the value of t to compute the precise positions where bl
and b2 collide by multiplying each ball's dx and dy values by t and adding
the result to each ball's x and y values, like this:

60

	

Part I: Steppin' Out

nbl.x = bl.x + bl.dx x t

nbl.y = bl.y + bl.dx x t

nbl.x = b2.x + bl.dx x t

nbl.y = b2.y + bl.dx x t

nbl.x / nbl.y represents the position where ball bl collides with ball b2,
and nbl.x / nbl.y represents the position where ball b2 collides with ball bl.

Timing and order
The solution worked out in the previous sections is a great way to calculate
the precise time and place where two balls collide. What happens, though,
when you have more than two balls on a collision course? With two balls
you only had to calculate when they would collide. With three balls you
have three different ways for the balls to collide. With four balls you have
six different possible collisions, and the combinations climb faster as you
add more balls.

Also, when two balls collide, the collision sends the balls off in new direc-
tions. This means that your code needs to redo all your collision calcula-
tions to consider the new courses of the two balls that collided. However,
instead of being a problem, this fact leads to the key idea at the center of the
billiards simulation. At any given moment, you only need to calculate when
the next collision is going to take place; it doesn't matter which balls are
involved. If you know the time of the next collision, you can run the motion
simulation forward to that point in time, calculate the result of the collision
that occurs, and then repeat the process.

You can find the first collision between a set of balls by computing the
collision times for the different combinations of balls and then selecting the
shortest time. Take three balls for example: balls bl and b2 can collide, balls
b2 and b3 can collide, and balls bl and b3 can collide. Whichever pair of
balls collides first becomes the next collision that your code needs to
handle, and in the meantime, the code can proceed smoothly through the
motion simulation for the balls.

Of course, all three balls can collide at the exact same time as well, which
may seem to complicate things. However, arbitrarily picking one pair of balls
to handle first works just fine for a game simulation because the calculations
all happen so fast that the player doesn't notice.

Checking the combinations

for (int ii = 0; ii < numBalls; ii++)

for (ii = 0; ii < numBalls; jj++)

// check ball[ii] to ball[jjl

for (int ii = 1: ii < numBalls; ii++)

for (ii = 0; ii < ii; jj++)

// check ball[ii] to ball[jjl

ncinq Of f the Bumpers

Chapter 4: JavaPool

	

6 ,

Finding the collision times for different combinations of balls requires a
method to figure out which combinations of balls to check. The obvious
approach is to use two nested loops, like this:

However, this approach isn't optimal. First of all, it checks for a ball colliding
with itself. In addition, it checks mirror combinations, such as comparing
ball [01 to ball Ell and bal 1 [11 to ball [0]. Here's a more efficient way
to arrange your loops:

By changing the first loop to start at 1 and by changing the second loop's
comparison test to j j < i i, you create a loop that checks each combina-
tion only once.

You can see the complete code for checking all the different combinations of
balls and edges in the JavaPool applet's u p d a t e B a 1 1 s () method in the
listing on the Java Came Programming For Dummies CD-ROM.

Chapters 1, 2, and 3 introduce a simple technique to detect and handle a
collision between the ball and the applet boundary. However, the technique
in those chapters isn't suitable for your pool applet because it can only
detect and process collisions after they've occurred. Instead, you need a
new method that works like your ball-to-ball collision code and computes
the time when a ball hits an edge so that you can decide if the first collision
that happens is a ball-to-ball collision or a ball-to-wall collision.

Computing when a ball hits an edge is much easier than computing when a
bull hits another ball. First, a moving ball, always eventually hits an edge
(unless of course, the ball slows down to a stop before reaching an edge -
but more on that later in the "Putting All the Pieces Together" section).
Second, the sign of the ball's dx and dy values limits which edge the ball can
bit- For example, if the dx value is positive, the ball is moving to the right
.and can hit the right edge but can't ever hit the leit edge. Likewise, it the

of dy is positive, the ball can hit the bottom edge but not the top edge.

62

	

Part 1: Steppin' Out

After you know which edge (left, right, top, or bottom) the ball can hit, you
can compute the distance to each edge and then divide by dx or dy, respec-
tively, to get the time to reach each edge. For example, the time to reach the
left or right edge is the distance to the edge divided by dx. Likewise, the
time to reach the top or bottom edge is the distance to the edge divided by
dy. The next ball-to-wall collision is the one with the shorter time to collision-

Ball-to-wall collisions are different from ball-to-ball collisions, but your pool
simulation code will have to watch for both types of collisions at the same
time. At any given moment, the code needs to know what type of collision
will happen next and how to handle it - the next section shows you how.

Coding the Collisions
Now you need to convert your collision math into code. You can use an
approach similar to the one discussed in Chapter 3 and extend a new Ba 11

class from the C i r c 1 e class and extend C i r c 1 e from the P o i n t 2 D class.

The code for B a 1 1 is similar to the B a 1 1 class in Chapter 3 except that it
contains several new methods to compute ball-to-ball and ball-to-wall
collisions. The method to compute ball-to-ball collisions is called
p a t h I n t e r c e p t () , and it contains code that uses your new formula to
compute the time one ball hits another. Here's the code for
pathIntercept():

public float pathIntercept (Ball b)

float d = radius + b.radius;

float ddx = vel.dx - b.vel.dx;

float ddy = vel.dy - b.vel.dy;

float dx = x - b.x;

float dy = y - b.y;

float A = ddx * ddx + ddy * ddy;

float B = 2 * (dx * ddx + dy * ddy);

f 1 oat

	

C

	

=

	

d x

	

*

	

d x

	

+

	

d y

	

*

	

d y

	

-

	

d

	

*

	

d ;

return (-B - (float) Math.sgrt(B*B - 4*A*C)) / (2*A);

The code to compute the time for a ball to collide with an edge goes into a
new method called edgeIntercept(). Here's the code:

public float edgeIntercept (Rectangle bd) ;

if (vel.dx >= 0)

hCol = (bd.width + bd.x - x - radius) / vel.dx;

else

hCol = (bd.x - x + radius) / vel.dx;

i f (vel.dy

vCol = (bd.height + bd.y - y - radius) /vel.dy;

else

vCol = (bd.y - y + radius) / vel.dy;

return Math.min(hCol, vCol);

You need to declare h C o 1 and v C o 1 as class variables so that you can use
the values to compute the new direction for a ball that bounces off an edge.
Then, code a method called b o u n c e () that uses these values to compute
the result of an edge bounce. Here's the code for b o u n c e ()

public void bounce (float t)

i f (t == hCol)

vel.dx = -vel.dx;

i f (t == VCol)

vel.dy = -vel.dy;

Chapter 4: JavaPool

	

63

Notice that b o u n c e () accepts a single float parameter called t. b o u n c e ()

that uses t to decide if the ball bounces off a left/right edge, a top/bottom
edge, or both. Your code needs to calculate the time to the next collision,
run the simulation forward to this point in time, and then resolve that
collision. (This stuff is all covered in the "Timing and order" section, later
in this chapter.)

The code only calls b o u n c e () when the next collision is a ball-to-wall
collision, and so hCol and vCol values are set by edgeIntercept() j ust
prior to calling b o u n c e (). Therefore, if b o u n c e ()'s t parameter passes in
the same time value returned by e d g e I n t e r c e p t (), you compare this time
value to h C o 1 and v C o 1 to determine if the ball bounced off a left/right or
top/bottom edge, or both.

After you know which edge the ball bounces off of, you handle the collision
by reversing the appropriate dx or dy value in the ball's vel vector. For a
collision on a left/right edge, you reverse dx, and for a collision along a top/
bottom edge, you reverse dy. (See Chapter 1 for more details.)

Conserving Momentum
Handling a ball-to-ball collision is a bit more complicated than handling a
ball-to-wall collision. When one ball collides with another, Newton's law of
conservation of momentum controls how each ball reacts, and you need to
write code that simulates this behavior.

64

	

Part I: Steppin' Out

The momentum of a moving object is equal to the object's mass times its
velocity. When two objects collide, if you calculate the sum of the momen-
tum of the two objects before and after the collision, the law of conservatimm
of momentum says that you have to get the same sum in both cases (minus
friction, of course). To appear realistic, your collision calculations must
maintain this balance (you don't want to break the law, do you?).

Imagine that a moving ball strikes a stationary ball and that at the point of
collision, the stationary ball is exactly 45 degrees to the right of the path of
the moving ball. After the collision, the previously stationary ball moves off
at the 45 degree angle. Conversely, the path of the moving ball is deflected
45 degrees to the left of its original direction. The law of conservation of
momentum tells you that the sum of the momentum of both balls after the
collision is equal to the momentum of the moving ball before the collision_
However, because you are working in two dimensions, you need to vector
math to calculate the velocity of both balls after the collision.

Because billiard balls all have the same mass, you can assign all your
simulated billiard balls a mass of one and greatly simplify your calculations
(one times any value equals the same value). This trick means that you can
use a ball's velocity as its momentum.

Revisiting Vectors
Chapter 3 demonstrates that the result of adding two vectors is a new
vector that combines the effects of the original two. This same principle also
applies in reverse. If you add the velocity vectors for the two balls after the
collision, you must get a value that exactly equals the velocity vector of the
moving ball before the collision. Figure 4-4 graphically illustrates conserva-
tion of momentum by using a vector diagram to show how adding the
velocity vectors for the balls after the collision produces a vector that
equals the original moving ball's velocity vector.

To determine the velocities of the two balls after the collision, you need to
compute how momentum is redistributed. As Figure 4-5 shows, the transfer
of momentum from the moving ball to the stationary ball is proportional to
the cosine of the angle formed by a line drawn between the centers of the
balls at the moment of impact and the line defined by the motion of the
moving ball. Conversely, the momentum retained by the moving ball is
proportional to the sine of this same angle.

Figm 4-4:
After a

,=lesion
lbaeen a

ball
and a

aa ry
ing

vectors
of the

ma bob
I

Ie
wectorof the

(mmIml9monly
iuiioic~ ball

Chapter 4: JavaPool

	

65

66

	

Part I: Steppin' Out

For example, in the case where the moving ball hits in the dead center of the
moving ball, this angle is zero. Therefore, cos(0) equals 1 and sin(0) equals t;„ I
and the stationary ball receives all the momentum from the moving ball and
the previously moving ball comes to a complete stop. Likewise, if the mower
ball barely grazes the stationary ball, the angle between the centers is new.*,
90 degrees with respect to the path of the ball. Therefore, because the cosime
of an angle close to 90 degrees is a very small number, very little of the
moving ball's momentum transfers to the stationary ball.

What i f both balls are moving?

You may be wondering how to deal with distributing momentum if both balls
are moving before the collision. Easy: You can pretend that one ball is
stationary simply by calculating the collision in that ball's frame of reference..
For example, if you were riding in a tiny helicopter that was exactly match-
ing the speed of one of the moving balls, a physicist would say you were in
that ball's frame of reference. From your aerial perspective, the collision
would appear to have happened between a moving ball and a stationary
ball. Albert Einstein's theory of relativity says that the laws of physics have
to look valid no matter where you observe from.

With the following approach, you convert the problem of two moving balls.
ball A and ball B, into one where you always have one moving ball and one
stationary ball:

1. Subtract ball A's velocity vector from ball B.

2. Set ball A's velocity vector to zero.

This is the same as subtracting the ball As vector from itself.

3. Compute the collision as though ball A (with the modified vector)
strikes a stationary ball A.

4. Add ball A's original vector back to both balls.

The code to perform these calculations is fairly simple to write using a
slightly improved and expanded version of the Vec2D class from Chapter 3.
The main addition is a new method called d of P r od () that calculates the dot
product of two vectors.

The dot product

The dot product is what you get when you multiply the first vector's dx value
times the second vector's dx value and then add this to the first vector's dy
value times the second vector's dy value. This may seem like a strange
calculation, but when both vectors are unit vectors (unit vectors are ex-
plained in Chapter 3), the dot product is just a fast way to compute the
cosine of the angle between the two vectors.

The col l i de() method

Use this dot product trick to write anew method called col 1 i de () for your
B a 1 1 class. c o 1 1 i d e computes the result of a collision between two balls.
You call c o 1 1 i d e () by passing it a reference to a second ball. For example,
to collide ball bl with ball b2 you write:

ba.collide(b2)

Here's the code for coI 1 i de():

public void collide (Ball b) I

// calculate collision in b s reference frame

float my = vel.subVec(b.vel).mag();

Vec2D v12 = (new Vec2D(this, b)).unitVec();

Vec2D vlc = vel.copy():unitVec();

float cos = vlc.dotProd(vl2);

vel.subVec(v12,mulVec(cos * mv)).addVec(b.vel);

b,vel.addVec(v12);

Chapter 4: JavaPool

	

6 7

This code is made more compact by a revision to the V e c 2 D class (see
"Creating a vector class" in Chapter 3) which changes any method that
previously returned v o i d to instead return a reference to the same object.
This trick means that you can combine several calls to successive V e c 2 D

methods into a single statement. For example, instead of writing

vel.subVec(b.vel);

float my = vel.mag();

you can write the more compact

float my - vel.subVec(b.vel).mag();

col 1 i de() dissected

After you understand this new way of writing vector code, you can examine
how c o 1 1 i d e () works in more detail. The first line of code

float mv- = vel.subVec(b.vel).mag();

makes the collision calculation relative to ball b's frame of reference. It does
this by subtracting its velocity vector from the current ball's velocity vector.
This code also calculates the magnitude of the current ball's velocity vector
after subtracting ball b's vector and saves this in the variable mv.

68

	

Part I: Steppin' Out

The code then creates two new V e c 2 D objects: v 12 and v 1 c. The code that
creates v 12 uses a new V e c 2 D constructor, takes references to two P o i n t.2'1
objects, and creates a vector that is the difference between the two Poi nit.
objects. The code then converts this difference to a unit vector. The foIIoVF-
ing line of code accomplishes these steps:

Vec2D vl2 = (new Vec2D(this, b1?.unitVec(?;

Next, the code creates the v 1 c V e c 2 D object by copying the current ball's
vel vector and converting the copy to a unit vector, like this:

Vec2D vlc = vgl.copy . unitVec();

The code then calculates the cosine of the angle between v 12 and v 1 c by
computing the dot product, like this:

float cos ° v1c.dotProd(vl2);

ve I. subVec(V12.mulyecfco,

	

•

	

mv)).addVec(b.vel);

Next, the code sets the magnitude of v 12 to equal my * cos. Before this
calculation, v 12 is a unit vector that points along a line from b to the current
ball. Adjusting the magnitude to cos * my converts v12 into a vector that
represents the amount of momentum to be transferred from the current baB
to ball b.

In the next step, the code subtracts v 12 from the current ball's v e 1 vector.
Doing so removes the momentum from the current ball - the same momen-
tum that the code later transfers to ball b in the next step. Then, the code
restores the current ball's original frame of reference by adding back the
original, unmodified vector for ball b. All these steps are accomplished in
this line of code:

Finally, the code transfers the momentum taken from the current ball to ball
b and restores its original frame of reference by adding v 12 to ball b's
original vel vector, like this:

b.vel.addVec(vl2);

Putting A« the Pieces Together
Much of the code for the J a v a P o o 1 applet is copied directly from the
H o 1 e I n 0 n e applet in Chapter 3, so there's no point in describing it again
here. However, there is new code to watch for.

;~igmre 4-6:
The

completed
JavaPool

et shows

>lhm racked

balls, a cue

hall, and a

ket hole

iir ^nie lower-

- - -orner.

Chapter 4: JavaPool

	

69
First, the J a v a P o o 1 applet creates and maintains a list of active B a 1 1 objects
using the Vector object bal 1 s. resetTabl e() creates four balls and adds
them to the empty V e c t o r list. It adds a white cue ball and arranges three
colored balls into a triangular shape that resembles a rack of billiard balls.

The controlling code for J a v a P o o 1 applet is the code in the method
update Ba11 s (). The code in update Ba11 s () is based on the ideas dis-
cussed earlier in the "Timing and order" section. For each tick of the
animation, updateBal 1 s() calls each ball's edgeIntercept() and
p a t h I n t e r c e p t () methods to see whether a collision occurs during the
current animation tick. If u p d a t e B a 1 1 s () finds a collision, it processes the
collision by calling b o u n c e () or c o 1 1 i d e (), depending on the type of
collision - ball-to-ball or ball-to-wall, respectively - it finds.

When u p d a t e B a 1 1 s () can't find any more collisions that occur during the
current animation cycle, it calls each ball's d e c e 1 () method to simulate
slowing the ball's motion due to friction. update Ba 1 1 s () also checks to see
whether each ball is close enough to the hole to fall in or be influenced by it
by calling the H o 1 e method i n f 1 u e n c e (). (See the section "Digging a Hole"
in Chapter 3 for the whole hole story.) If i n f 1 u e n c e () returns t r u e, the
code knows that the ball has fallen into the hole and removes it from the list
of active balls.

The interface for shooting a ball is identical to the click-and-drag interface
described in Chapter 3, except that with the J a v a P o o 1 interface you can
select and shoot any of the four balls. The applet's i n i t () method also
creates a pocket hole in the lower-left corner of the applet. You can move this
hole to another location by changing the values passed to the constructor.

The completed JavaPool applet is shown in Figure 46.

You can find the completed JavaPool applet and the complete code for the
applet on the Java Game Programming For Dummies CD-ROM.

70

	

Part I: Steppin' Out

Semi qlm A:q-

W= I - I I jr,

WWI "N' -A

IM3 slH
104Mone one BUD WMAIK

,aft3O C,-& us~~ 06
`NM WrJOK Nv8D; -dammm 31h-l

to 05MR) AL WA ISOP 513"

Ire this part . . .

Froducing a professional-quality game means
mastering more than just the basics of game coding.

A finished game must attend to a myriad of practical
details while also serving up a heaping measure of eye
appeal and style. Part II shows you how to apply spit and
polish to your core game logic in order to create that
professional look.

Part II also delves into the ins and outs of mazes by
showing you how to create them and how to solve them.
Mazes are an integral part of many games, and the maze
code this part presents is used to create some of the
games in both Part 11 and Part III.

Chapter 5

Sliding Blocks Brain Teaser

In Tkis Chapter

Spicing up your games with images

USing the Medi aTracker class

fogramming puzzle logic

Ilmmplementing a click and drag interface

In the 1870s, an American named Sam Loyd drove the world crazy with a
new type of game called a Sliding Block Puzzle. Sam arranged 15 wooden

tiles in a 4 x 4 grid in a small cardboard box. Because Loyd left out a tile, the
box had room for you to slide one tile past another, and by a series of
moves, rearrange the order of tiles.

Each tile was numbered, and the box started with tile number 1 in the upper-
left corner. The sequence continued to the right and then down, but the last
two numbers, 14 and 15, were reversed, as shown in Figure 5-1. Thus, Loyd
called his invention the 14-15 puzzle and offered a prize of $1,000 to the first
person who could solve the puzzle by putting all the numbers in sequence.

The blocks in Loyd's puzzle can be arranged in over 600 billion ways, but
each rearrangement of the tiles can result only from an even number of
exchanges between the blocks. Therefore, Loyd's fiendish little puzzle is
impossible to solve, and the $1,000 prize, was never claimed.

!I 5-1:

~i mmssible L 7 to it i
mw~sie.

	

t3 t3 , t4

In this chapter, we show you how to construct your own sliding block
puzzle. This puzzle is difficult to solve, but unlike sneaky Sam's puzzle, it
does have a solution. And instead of using Sam's numbers, the puzzle in this
chapter has sliding blocks with colorful images.

74

	

Part 11: Up to Speed

Figure 5-2:

The starting

position for

the Sliding

Block Brain

Teaser.

The puzzle presented in this chapter simulates a set of wooden blocks that
slide around inside a recessed rectangular area cut into a game board. You
move puzzle pieces by clicking and dragging with the mouse, but the
particular arrangement of the pieces (see Figure 5-2) constrains how the
pieces can move. Solving the puzzle requires the player to discover the
sequence of moves needed to relocate the large square piece from the top
center of the board to the winning position at the bottom center.

This chapter covers all the techniques used in the Sliding Blocks Brain
Teaser applet. The complete code and ready-to-run applet is on the Java
Game Programming For Dummies CD-ROM included with this book.

Using Images is Games
To paraphrase an old saw: When programming games, one picture can be far
cooler than a thousand f i 1 1 Re ct () calls. Besides, modern game players
expect games to have snazzy graphics, which usually means using fancy
artwork rather than plain, solid colors. With modern tools, like Adobe
Photoshop, you can easily create custom pictures to use in your games,
even if you aren't the next Rembrandt.

The puzzle we present in this chapter uses GIF (Graphics Interchange
Format - one of two graphics formats used on the World Wide Web) images
to create the illusion that the puzzle is constructed from wooden blocks.
These pieces slide around on a puzzle board, which is also made to re-
semble wood.

The puzzle uses puzzle pieces in three different sizes. If you think of the
smallest pieces as 1 x 1 unit squares, the remaining two sizes of pieces are
1 x 2 and 2 x 2. These pieces slide around in a recessed rectangular area
on the puzzle board. Using the 1 x 1 puzzle pieces as a unit, the size of
this rectangular area is four puzzle-piece units wide by five puzzle-piece
units high.

Chapter 5: Sliding Blocks Brain Teaser

	

75

The puzzle pieces and the puzzle board shown in Figure 5-2 are all con-
structed in Photoshop using a third-party plug-in called PhotoTools (from
Extensis Corporation) that modifies a background texture, in this case a
picture of wood grain, to create the look of beveled edges similar to the
effect created by the f i 11 3 D Re c t () in the G r a p h i c s class (see CD Chapter 3
for more information). This effect creates a raised look on the pieces, as if
they were cut with a routing tool. The effect is reversed to create the re-
cessed look of the rectangular area that holds the pieces. The same effect is
also used on the outside edge of the puzzle board, except that the plug-in is
set to create a rounded bevel.

You can easily create your own graphics to replace the files provided on the
Java Game Programming For Dummies CD by using the included GIF files as
templates. You need to construct 10 different piece files to replace the files
piece0.gif through piece9.gif. You can also replace the game board by
creating your own board.gif file. You can use almost any image editing
program that can save files in the GIF format.

iytitat stamp Pads
Using I ma ge in Java is like having a digital stamp pad that you can use to
stamp down copies of a picture onto a G r a p h i c s context. In this case, the
stamp pad is an I m a g e object, and you stamp it using the d r a w I m a g e ()

method provided in the G r a p h i c s class. However, before you can call
d r a w I m a g e (), you first have to load an image file and create a Java I m a g e

object. You can create an Image object by loading files from a Web server or
from your hard disk.

To create an I m a g e object, you use a method called g e t I m a g e () that is
provided in the A p p 1 e t class. When you call g e t I m a g e (), you pass it a URL
parameter (Universal Resource Locator, or more simply, Web address) that
tells g e t I m a g e () where to find an image file. Usually the image file is
located on a Web server, but it can also come from your hard drive if you
only need to run your applet on your computer. g e t I m a g e () loads the data
from this image file and uses it to construct an I ma ge object.

You can also call get Image () and pass it a URL and a string that specifies the
name of an image file. The string is appended to the URL to specify the exact
location of the file. This form of g e t I ma g e () can be conveniently used with
two other App I et methods called getCodeBase() and get DocumentBase().

Calling g e t C od e B a s e () returns a URL that points to the directory on the Web
server from which the applet was loaded. Calling g e t D o c u m e n t B a s e ()

returns a U R L that points to the directory from which the HTML document
that created the applet was loaded. So you can easily fetch an Image from the
same directory that contains an applet's class files like this:

76

	

Part II: Up to Speed

After you have an Image, you can draw it to a G r a phi c s context by calling

the G r a phi c s method d r a w I m age(). Here's an example of a simple apple

that fetches an I m age using get I m age() and then draws the same I m age

with drawImage():

i mport java.awt.*;

i mport java.applet.Applet;

public class Example extends Applet I

Image coffee;

public void init() {

coffee = gettmage(getCodeBase(), coffee.gif);

I

public void paint (Graphics g) I

g.drawImage(coffee, 0, 0, null);

I

You can use getImage() tofetch an I mage

from a file encoded in the GIF format, but you
can also call getImage() to fetch a JPEG
encoded Image. The code is basically the
same in either case; you just pass the name of
the image file, whether it be JPEG or GIF. JPEG

files let you use images that contain millions of
colors, whereas GIF files have a limit of 256
colors. However, JPEG's larger color palette
may sometimes be a disadvantage.

Some people may want to play your games on
systems that can only display 256 colors. In
this case, Java has to convert a J PEG before it
can display it. This conversion process, called
dithering, can produce a grainy, undesirable
result. You are best off testing your games on

Choosing GIF or JPEG
a 256-color system to make sure that you like
the result. To completely avoid dithering, you
need to be careful to create your GIF files
using only the 216-color browser-safe palette.

(CD Chapter 4 covers the ins and outs of the
browser-safe palette.)

I f you use Adobe Photoshop to create your GIF
files, you can convert any type of image to the
216-color browser-safe palette. If you are
starting with a JPEG file and wantto convert it
to a GIF file, simply select Image-:>Modee
I ndexed Color. Then in the dialog box that ap-
pears, set the palette option to Web. You can
also let Photoshop predither the image by se-
l ecting something other than None for the
Dither option in the same dialog box.

Chapter 5: Sliding Blocks Brain Teaser

	

7 7

In this code, d r a w I ma g e () gets passed four parameters. The first parameter
is the reference to the I m age object you want d r a w I m age() to draw. The
next two parameters are the x and y offset that tell d r a w I m a g e () where to
position the upper-left corner of the I m a g e. In this example, the I m a g e is

drawn exactly in the upper-left corner at 0,0 (the origin) of the applet's
screen area.

The last parameter (n u l l) passed to d r a w I m a g e () is used to pass a refer-
ence to an I mageObserver. ImageObserver is an interface you can imple-
ment in your applet if you want the applet to be notified of the status of an
I ma g e while it is downloading. However, you don't need this capability for
the applet in this chapter and can simply pass n u 1 1 when you call
drawImage().

Drawing while downloading
When you try the previous applet, you may notice a strange thing, depend-
ing on how fast your browser or applet viewer loads images. When you call
g et I ma ge (), it returns almost immediately, passing back a reference to an
Image object. However, the Image hasn't actually been loaded at this point
and doesn't start to load until the first time d r a w I m a g e () is called. To make
things even stranger, d r a w I ma g e () attempts to draw an Image even when
the I m a g e isn't fully loaded.

According to the developers of Java, Java's incremental display of images as
they are loaded is a "feature," not a bug. The intent is to let you duplicate
the effect of a browser displaying an image while it is still loading it. How-
ever, for many game applications this can be a real nuisance.

One way to solve this problem is to use the I m a g e O b s e r v e r interface,
mentioned earlier in this chapter, to write code that keeps track of the
status of the images you are fetching and determines when all of them have
been fully loaded. An even simpler solution is to use Java's Medi a T r a c k e r

class to manage image loading and keep track of when the images are
loaded, as the next section explains.

Loading images with Medi aTracker
The Medi aTracker class lets you construct a list of images you have
requested with get Image (). After this list is complete, you can tell
Medi aTracker to start loading all of them and to wait until all the images
have been loaded before proceeding.

78

	

Part II: Up to Speed

The first step in using Media Tracker is to create anew Media Tracker

object, like this:

MediaTracker tracker = new MediaTracker(this);

The t h i s parameter passed to the M e d i a T r a c k e r constructor is a referenot
to the applet that needs to use the images. M e d i a T r a c k e r uses this param-
eter to register with the code that actually loads the images.

MediaTracker.addImage()

After you have a new M e d i a T r a c k e r object, you can start making a list of
images for M e d i a T r a c k e r to manage. You add an image to the list by calling
MediaTracker's a d d I ma g e () method. Here's an example:

Image boardImage = getlmage(getCodeBaseC), board.gif);

tracker.addlmage(boardImage, board.gif), 0);

Notice that you still need to call g e t I m a g e () to request the I m a g e you wauL

However, you then also call a d d I m a g e () to add the I m a g e to the list of
images your M e d i a T r a c k e r is managing.

When you call a d d I m a g e (), you are required to give it an i n t parameter
that specifies an ID value for the I m a g e you are telling M e d i a T r a c k e r to
track. M e d i a T r a c k e r supports several different methods for monitoring
image loading. For example, the M e d i a T r a c k e r method w a i t F o r I D () waits
for all images that were assigned a particular ID value to load before it
returns. However, it's usually easier to call the M e d i a T r a c k e r method
wa i t For AI 1 (), which doesn't return until all the images you added with
add Image () are loaded. If you use wai t ForAl 1 (), it doesn't matter what ID
value you pass to add Image().

MediaTracker.waitForAIIO

After you add alI the images to your M e d i a T r a c k e r object, you call the
method wa i t For AI 1 () to start loading the images and wait for loading to
finish. This call doesn't return until all the images you added with
a d d I m a g e () are fully loaded and ready to use. However, the wai t F o rA l 1 ()

method has one more detail you have to handle.

The wa i t For AI 1 () method specifies that it can throw an
I n t e r r u p t e d E x c e p t i o n. This exception isn't currently implemented in Java
1.0.2, but you still need to provide a t ry/c a t c h block so that the code
compiles properly, like this:

try f

tracker.waitForAll();

I catch (InterruptedException e

Loading multiple images
The sliding blocks puzzle has 11 different images that you need to load - 10
puzzle pieces plus the puzzle board. The image for the puzzle board is called
board.gif; the images for the puzzle pieces are named piece0.gif through
piece9.gif. You can simplify the code to load the puzzle pieces by taking
advantage of the sequential naming of the puzzle piece files. Code a loop
and then use string concatenation (fancy lingo meaning to combine multiple
strings into one) to create the name of each file from the loop counter
variable. For example, if you have an i n t variable called i i and the current
value of i i is zero, the following code creates the string pi ece0 . gi f:

String frame = piece + ii + gif ;

Using this string concatenation trick, here is the code you need to load the
puzzle board and all 10 puzzle pieces:

MediaTracker tracker = new MediaTracker(this);

boardImage = getImage(getCodeBase(), board.gif);

tracker.addlmage(boardImage, 0);

for (int ii = 0; ii < 10; ii++) {

piecelmages[ii] = getImage(getCodeBase(),

piece + ii + gif);

tracker.addImage(piecelmages[ii], 0);

try' I

tracker.waitForAll();

I catch (InterruptedException e) I

	

}

You can put this code in the i n i t () method of the puzzle applet. You also
need to declare b o a r d I m a g e and the p i e c e s [] array as class variables, like
this:

private Image

	

offscreenImage, boardImage;

private Image[]

	

pieceImages = new Image[10];

Lr~r~iaq Out the Game t3oard

Chapter 5: Sliding Blocks Brain Teaser

	

79

The design of the puzzle board, shown in Figure 5-3, aligns all the puzzle
pieces onto an invisible 4 x 5 grid to make calculating how to draw each
puzzle piece onto the board as easy as possible. The origin (upper-left
corner) of the grid is offset from the applet's origin by the values specified
in the variables g r i d X and g r i d Y. The width and height of a grid square is
specified by the variables pi eceWi dth and pi eceHei ght.

so

	

Part II: Up to Speed

Figure 5-3:

All the

puzzle

pieces on

the game

board align

to an

i nvisible

4x5grid

centered in

the middle
of the

board.

pieceHeight

gridX I pieceWidth

gridY

(0,0)

(0,2)

(0,3)

(0,4)

(2,0)

(2,2)

(2,3)

(2,4)

(3,0)

(3,2)

(3,3)

(3,4)

The grid squares are arranged such that grid square x=0, y=0 is the upper-
left square, and x=3, y=4 is the lower-right square, as shown in Figure 5-3.
When you draw a puzzle piece onto the board, you calculate the upper-left
corner for any grid square from these four variables, g r i d X, g r i dY,

pi eceWi dt h, and pi eceHei ght, using the following formulas:

imageX = gridX x pieceWidth + gridX

imageY = gridY x pieceHeight + gridY

However, you can't apply these formulas until you know the proper values
to assign to gridX, gridY, pieceWidth, and pi eceHei ght. You can write
the code to initialize these values from constants, but this means you can'
change the size of the puzzle graphics without recompiling the code.
Instead, because the size of the grid square is equal to the size of the
smallest puzzle piece, you can initialize p i e c e W i d t h and p i e c e H e i g h t by
reading the width and height of one of the puzzle piece images.

Chapter 5: Sliding Blocks Brain Teaser

Reading the width and height of an Image
The Image class contains methods called getWi dth() and get Height()

that determine the width and height of an Image. For example, to read the
width and height of the game board I mage board Image, use the following
code:

int wi dt^ -

	

boardImage.getWidth(na113;

i nt height = boardlmage.getHeight(null);

Due to the design of the Java AWT, you can't reliably read an Image's width
and height until the Image has been fully loaded. This isn't a problem when
you use M e d i a T r a c k e r to wait for an I mage to fully load before you use it -
a very good reason to always use M e d i a T r a c k e r to load your images.

Initializing gri dX, gri dY, pi eceWi dth,
and pieceHeight
Using getWi dth() and get Height() lets you initialize pieceWidth and
p i e c e H e i g h t by reading the width and height of one of the small puzzle
piece images. The earlier section "Loading multiple images" shows code that
loads all the puzzle piece image files and saves references to the Image

objects in an Image[] array called pieceImages. pieceImages [51 contains
a reference to the image file piece5.gif, which is one of the small puzzle
pieces. Read the width and height of p i e c e I m a g e s [51 to initialize
pi eceWi dth and pi eceHei ght, like this:

nt pieceWidth - pieceImages[5],getWidth(null);

int pieceHeight = pieceTmages[5l.getHeight(null);

You still haven't initialized g r i d X or g r i d Y, but you can easily calculate
these values from the width and height of the game board image
boardImage and pi eceWi dth and pi eceHei ght. Because the grid is
centered in the middle of the game board, you calculate g r i d X by subtract-
ing the width of the grid from the width of the game board (b o a r d I m a g e)

and then divide the result by two. The width of the grid is 4 x pi eceWi dth,

so you calculate g r i d X like this:

ridX = (boardlmage.getWidth(null) -

(pieceWidth * 4)) / 2;

You calculate g r i d Y using nearly identical code:

:•idY = (boardlmage.getHeight(null) -

(pieceHeight * 5)) / 2;

S2

	

Part II: Up to Speed

Craftinly the Puzzle
To make the puzzle work, you need to construct a class to encapsulate the
logic that handles each individual puzzle piece. This new class, called
P i e c e, needs to contain a constructor to instantiate (create and define) the
pieces needed by the puzzle, code to draw the I mage that represents the
piece on the board, and code to handle sliding the piece from place to platy-.
on the board.

Making puzzle pieces that act
like real puzzle pieces
One of the trickiest aspects of coding the puzzle is designing the logic that
makes the puzzle pieces act like real puzzle pieces placed on a real board_
For example, when you try to slide a puzzle in the direction of an adjacent
piece, the adjacent piece either blocks the first piece from moving, or, if tha
piece is able to slide in the same direction, is pushed along.

To accomplish this, each puzzle piece needs to know its size and current
position and be able to check the size and position of the other pieces. In
addition, you need to have some way to monitor when one piece pushes
another piece.

Thankfully, the Java AWT includes a built-in class called Re c t a n g 1 e that is
designed to represent a movable rectangular area. Re c t a n g 1 e includes cod
that can check whether one rectangular area overlaps or intersects another
rectangular area and greatly simplifies your task of creating the logic of
sliding puzzle pieces. Re c t a n g 1 e's built-in features make it the perfect
superclass for your new Pi ece class.

Starting with Rectangl e, you can easily code the beginnings of your new
Pi ece class, including code to draw the image of the puzzle piece, like this

class Piece extends Rectangle {

private I mage pic;

Piece (int bx, int by, Rectangle grid, Image img) i

super(bx * grid.width + grid.x,

by * grid.height + grid.y,

i mg.getWidth(null), img.getHeight(null));

pic = img;

;blic void draw (Graphics g)

g.drawImage(pic, x, y, null);

The first two parameters to Pi ece, bx and by , specify the location of the
piece on the invisible 4 x 5 grid shown in Figure 5-3. For example, to position
a piece in the upper-left position on the grid, specify bx = 0 and by = 0.

Even though you specify the location of a piece on the grid, the piece can't
calculate where to draw the Image that represents the piece unless it knows
the values you computed for gri dX, gri dY, pi eceWi dth, and pHyt. You could
pass these parameters to the constructor for P i e c e in four i n t parameters.
However, it's easier to create a Re c t a n g 1 e object from these four values and
pass a reference to this object to P i e c e in a parameter called g r i d.

The last parameter for P i e c e, i m g, is a reference to the I m a g e that repre-
sents the piece on the board. The constructor saves this reference in the
variable p i c, which is used by P i e c e's d r a w () method. The constructor
calls i mg . getWi dth() and i mg . getHei ght() to determine the size of the
I m a g e and passes this to the superclass constructor, along with the pixel
position. Therefore, after a piece is instantiated, Pi ece's x and y values
record the pixel position of the piece on the board, and the P i e c e's w i d t h

and h e i g h t values give the real size of the P i e c e, in pixels.

P i e c e's d r a w () method, as shown in the code in this section, uses the
I m a g e variable p i c and the x and y pixel position values to draw the image
that represents the piece onto the game board.

Putting the pieces together
Now that you can instantiate a puzzle piece, you're ready to finish the
applet's i n i t () method by adding the code to instantiate all the pieces for
the puzzle. Here's the completed code for i n i t () along with all the needed
class variables for the puzzle applet:

public class Puzzle

private Image

private Image[]

private Graphics

private Piece[]

private Piece

private Rectangle

private Font

extends Applet I

offscreenImage, boardImage;

pieceImages = new Image[10];

offscr;

pieces = new Piece[10];

picked = null;

grid, clickArea;

bbCourier = new Font(Courier ,

Font.BOLD,

Chapter 5: Sliding Blocks Brain Teaser

	

83

48) ;

(continued)

(continued)

:rivate String

	

winMsg = Win!

i vate Point

	

selectedPiece, winLocation;

/ The pcs[] array specifies the starting position of the

/ different puzzle pieces on the 45 grid.

, private int[][]

	

pcs = {11,01.10,01,(0,21,(3',01;{3,21,

(0,41,t1,31,t2,31,13,41,t1,2)1;public void init_:,!

MediaTaacker tracker = new MediaTracker(this);

boardImage = getImage(getCodeBase(), board.gif);

tracker.addlmage(boardImage, 0);

for (int ii = 0; ii < 10; ii++)

piece + ii + GIF);

1
tracker.addImage(piecelmages[ii], 0);

try t

i
tracker.waitForAll();

v

	

I catch (InterruptedException e) I ; }

i nt pieceWidth = pieceImages[5].getWidth(null);

i nt pieceHeight = piecelmages[51.getHeight(null);

int gridX = (boardImage.getWidth(null) -

(pieceWidth * 4)) / 2;

i nt gridY = (boardimage.getHeight(mull) -

(pieceHeight * 5)) / 2;

grid = new Rectangle(gridX, gridY,

pieceWidth, pieceHeight);

winLocation = new Point(pieceWidth + gridX,

3 * pieceHeight + gridY);

clickArea = new Rectangle(gridX, gridY,

4 * pieceWidth,

5 * pieceHeight);

for (int ii = O; ii < 10; ii++)

pieces[ii] = new Piece(pcs[ii][0], pcs[ii][1],

grid, pieceimages[ii]);

offscreenImage = createlmage(size().width,

size().height);

offscr = offscreenImage.getGraphics()

repaint();

The puzzle pieces are instantiated inside the last f o r loop. The values in the
pcs [] [] array define the starting position for each piece. Notice also how
grid is initialized using the values computed for grid X, grid Y, p i e c e W i d t h,
and pieceHeight.

The puzzle uses an offscreen I m age to draw the puzzle graphics, asset up
by the calls to createImage()and getGraphi cs(). (See the section

"Drawing offscreen" in Chapter 1 for more on creating offscreen Images.)

However, notice the call to r e p a i n t () i n the last line of i n i t (). In many
examples, you don't need this call, but because M e d i a T r a c k e r can take
some time to load all the images and because Java is multithreaded (see CD
Chapter 2), p a i n t () is almost certainly called before the graphics are
loaded. So you need to call r e p a i n t () to schedule another call to p a i n t ()

after the images are loaded so that they actually appear onscreen.

The Re c t a n g 1 e object c 1 i c k A r e a is created for use in the interface, as
described in the next section.

, 1 ousing the Pieces Around

To make your puzzle easy to play (or playable at all, for that matter), you
need to create an interface. Probably the easiest way to come up with an
interface is to create simple code that lets the user click a piece and then,
while holding the mouse button down, drag the piece to a new position.

Selecting a puzzle piece
The first step in implementing your user interface, that of detecting when
the user has clicked on a piece to select it, is implemented by overriding the
mouseDown() method, like this:

public boolean mouseDown (Event evt, int x, int y) I

i f (clickArea.inside(x, y)) (

for (int ii = 0; ii < pieces.length; ii++) {

i f (pieces[ii].inside(x, y)) I

picked = pieces[ii];

selectedPiece = new Point(x, y);

break;

return true;

Chapter 5: Sliding Blocks Brain Teaser

	

85

This code first checks whether the user clicks the mouse inside the puzzle
board's recessed area. The applet's inito method, described in the earlier
section "Putting the pieces together," creates a Rectangle called clickArea
that defines the boundaries of the area where the pieces can move. The
Rectangle class has a method called inside0 that returns true if a point,
defined by its two x and y parameters, is inside the rectangle.

86

	

Part II: Up to Speed

Next, the code uses a f o r loop to iterate through the list of pieces and,
again, uses the i n s i d e () method to check whether the user clicks the
mouse inside this piece. If the mouse is clicked inside a piece, the reference
for that P i e c e is copied to the p i c k e d variable, and the location where the
user clicked is recorded by creating the P o i n t object s e 1 e c t e d P i e c e and
passing the x and y location of the click to the P o i n t constructor.

A Poi nt is an AWT class that holds the values of an x,y pair.

Moving the pieces
Next, you override the mo u s e D r a g () method so that you can track the
movement of the mouse while the mouse button is held down. However, you
need to make sure that you only try to track the mouse when a puzzle piece
is selected. So the code starts by testing to see if p i c k e d ! = n u 1 1 and
selectedPiece != null.

Your users can drag the mouse in any direction, including diagonally, but the
code to slide the pieces is simpler if you constrain the mouse to moving
either vertically or horizontally. You can divide the code into separate
sections to handle movement along each axis like this:

public boolean mouseDrag (Event evt, int x, int
y) f -

i f (picked != null && selectedPiece != null) I

i nt dx, dy;

while ((dx = limit(y - selectedPiece.x)) != 0 &&

picked.slide(pieces, dx, 0, clickArea))

selectedPiece.translate(dx, 0);

E

while ((dy = limit(y - selectedPiece.y)) != 0 &&

picked.slide(pieces, 0, dy, clickArea))

selectedPiece.translate(0, dy);

!

repaint();

return true;

Taking the horizontal movement first, the code calls a small helper method
called 1 i m i t () that constrains the movement to stepping by a single pixel,
or not at all, by limiting the movement to ±1 or zero. Here's the code for
limit:

Chapter 5: Sliding Blocks Brain Teaser

	

97

If you're not familiar with it, 1 i mi t ()'s use of the conditional operator(? :)
in the return statement may look strange. However, this is just a more
compact way of writing:

i f (val > 0) .
return l;

else 1

i f (val f 0)
return -l;

else

return 0;

Inside m o u s e D r a g (), the code computes the difference between the original
location where the user clicked the mouse to select the piece, which is held
in the P o i n t value s e 1 e c t e d P i e c e, and the current position of the mouse,
which is passed to mo u s e D r a g () in the x and y parameters. Then,
m o u s e D r a g () uses two w h i 1 e loops to move the piece, one pixel at a time,
until the position of the piece matches the current location of the mouse.
The first wh i 1 e loop handles moving the piece left or right, and the second
wh i 1 e loop controls movement up or down.

The wh i 1 e loops also have to handle one other important detail: As the user
drags the piece around on the game board, the piece the user is moving may
bump into another piece. If the piece does bump into another piece, the
code needs to check if the piece that the selected piece bumped into blocks
further movement of the selected piece or if the selected piece can push the
blocking piece out of the way. The check to determine if the selected piece
moves a blocking piece or is blocked by it is determined by a new method
called s 1 i d e ().

S 1 i d e C) ing around
Writing s 1 i d e () is the trickiest bit of code in this book so far, but it isn't
that hard to write if you break the problem down into simpler steps. The key
is to leverage several of the methods provided in Re c t a n g 1 e.

Checking for pieces that block the slide path
With Rectangle.intersects()

Given two rectangles, the R e c t a n g 1 e method i n t e r s e c t s () returns t r u e if
one Re c t a n g 1 e overlaps or intersects the other. You can use i n t e r s e c t s ()
to determine whether the player is trying to move one puzzle piece on top
of another by creating a new Recta n g 1 e that holds the new position for the

g$

	

Part 11: Up to Speed

piece (the one that indicates the move the player intends to make) and then
coding a loop that checks this new position against all the other puzzle
pieces in the game. If the new position Re c t a n g 1 e i ntersects with any other
puzzle piece, the piece that the player wants to move is potentially blocked
from moving.

Of course, you also need to check whether the puzzle piece that is poten-
tially blocking the player's move is itself able to slide in the same direction-
You can check this potential movement by allowing Pi ece to recursively ca/'
itself and attempt to move the blocking puzzle piece. Then, if the blocking
piece is able to move, you allow the original piece to move as well. The neat
trick about the way the code makes this check recursively is that it allows a
blocking puzzle piece, in turn, to move a puzzle piece that blocks it, and so
on - as though the code walks down the line and checks all the pieces in a
given direction to see whether they can move.

Checking for the board boundaries Rectangl e. u n i o n ()

and Rectangle.equals()

After the code lets the player move a piece, it also needs to make sure that the
move doesn't push the piece beyond the bounds of the playing area on the
board. The Re c t a n g 1 e class provides a simple way to check for the piece's
position in the form of two additional methods: u n i on () and eq u a 1 s ().

The u n i o n () method starts with two Re c t a n g 1 e s and creates a new
Rectangl e that is as large as the smallest Rectangl e you can draw that
would contain both the original rectangles. The e q u a 1 s () method compares
two Recta n g l e s and returns t rue if both Recta n g l e s describe exactly the
same rectangular area. Using these two methods, you can easily check
whether a piece is trying to move outside the bounds of the playing area, as
shown in the following code where bd is the Re c t a n g 1 e that describes the
bounds of the board and n p is a Re c t a n g 1 e object that describes the new
position for the piece:

if (bd.union(np).equals(bd))

When a method calls itself, that is a recursive
call. Writing recursive code is not something
you do every day, but there are some types of
calculations that are easier to accomplish if
you use recursion. The classic example is us-
i ng recursion to compute factorials, like this:

Recursion
int factorial (int n)

i f (n > 1)

return n * factorial(n - 1);

else

return 1;

This statement is false only if Re c t a n g 1 e n p goes outside the bounds of b d

and causes bd. u n i o n (n p) to return a Rectangl e larger than bd. Note that
np is created by adding dx and dy to the current position of the piece. The
variables x, y, w i dth, and h e i ght are inherited from the Rectangl e class
from which P i e c e extends.

Now that you understand the basic approach, here's the complete code for
slide():

public boolean slide (Piece[] pp, int dx, int dy,

Rectangle bd)

Rectangle np = new Rectangle(x + dx, y + dy,

width, height);

for (int jj = 0; jj < pp.length: jj++)

i f (this != pplij] && pp[jj].intersects(np)) I

i f (ppfjj1.slide(pp, dx, dy, bd))

continue;

return false;

E

J

i f (bd.union(np).equals(bd))

translate(dx, dy);

return true;

1

return false;

Cleaning up after a move

Chapter 5: Sliding Blocks Brain Teaser

	

gg

The final step in moving a puzzle piece is the call to t r a n s 1 a t e (), which
moves the position of the P i e c e to the same location that your code just
checked (as we discuss earlier in this section). Notice that the code only
allows t r a n s 1 a t e () to happen when all the other checks have passed, the
puzzle piece has space to move, and the move keeps the piece on the board.

One last step is "cleaning up" after the player releases the mouse button. To
keep the layout of the puzzle pieces nice and tidy, and also to simplify the
check for solving the puzzle, you need to add code to slide the pieces to the
closest grid position when the player releases the mouse button after a
move. You can put this code in m o u s e U p () like this:

90

	

Part II: Up to Speed

D i s boolean mouseUp (Event evt, int x, int y)

- -r (int ii = 0; ii < pieces.length; ii++)

pieces[iil.snap(grid):

cked = null;

, ., paint();

r Aurn true;

The code in mouseUp() uses a loop to adjust every puzzle piece on the
board by getting the reference to each piece from the p i e c e s E I array and
calling a new P i e c e method called s n a p () . You need to add code for
snap() to the Piece class, like this:

public void snap (Rectangle grid)

move(((x - gridx + grid.width 1 2) / grid.width)

grid.width + gridx,

((y - grid.y + grid.height 1 2) / grid.height)

grid.height + grid.y);

s n a p () calculates the grid position closest to the current location of a piece
and calls the Re c t a n g 1 e method mo v e () to move the piece to this location_
The Rectangle parameter grid passes in the values for gridX and gridY

(described in the section "Laying Out the Game Board") in g r i d . x and
g r i d . y and the width and height of a grid square in g r i d . w i d t h and
grid.height.

The calculation (x

	

-

	

g r i d . x

	

+

	

g r i d . w i d t h

	

/

	

2) computes the position
of the center of the piece on the x axis and the calculation (y

	

-

	

g r i d . y +

g r i d . h e i g h t

	

/

	

2) does the same on the y axis. Then, dividing by
g r i d . w i d t h and g r i d . h e i g h t, respectively, computes the closest position
i n grid coordinates (take a look back at Figure 5-3). Finally, multiplying the x
axis value by g r i d . w i d t h and adding g r i d . x (gridX) converts the piece's
horizontal position on the grid back to a pixel position on the game board.
Likewise, multiplying by g r i d . h e i g h t and adding g r i d . y (gridY) converts
the vertical grid position back to a pixel position.

Drawing the Board
You're best off drawing the board to an offscreen I m a g e and then copying this
Image to the screen to get smooth screen updates (see "Drawing offscreen"
in Chapter I for more info). Draw the board first and then draw the puzzle
pieces on top of the board with a loop to call each piece's draw() method:

public void paint (Graphics g)

i f (offscr != null) I

offscr.drawlmage(boardlmage, 0, 0, null);

for (int ii = 0; ii C pieces.length; ii++)

aces[iil.draw(cffscr);

g.-:'r - lmage(offscreenlmage,

	

0,

	

0,

	

this);

And when drawing to an offscreen I ma ge, you need to always override
u p d a t e () to remove the flicker that it can cause:

public void update (Graphics g) I

paint(g);

Declaring the Puzzle Sawed and
Congratutating the Winner

Finally, you need to add code to determine when the player has solved the
puzzle and to display an appropriate congratulatory message. As we cover
in the "Putting pieces together" section earlier in this chapter, you use the
i nit() method to create a Point object called winLocation that contains
the upper-left pixel coordinates for a 2 x 2 square in the winning location.
w i n L o c a t i o n thus allows your code to check for a solved puzzle simply by
checking whether the 2 x 2 sized puzzle piece (which is the first entry in the
p i e c e s [] array) has moved to the same location as w i n L o c a t i o n, like this:

i f (pieces[CI.x °= winLocation.x &&

pieces[Ol.y == winLocation.y)

Chapter 5: Sliding Blocks Brain Teaser

	

g,

Next, you need to display a nice simple message like "Win!" to herald the
success of the player. You can display such a message by adapting the code
from CD Chapter 3 that displays centered text. However, to create a nice
effect and help make the text stand out against the somewhat busy back-
ground of the puzzle board, you may also want to put a shadow beneath the
text. You can add a shadow by drawing the text twice: First, set the draw
color to black and draw the text offset down and to the right by a few pixels.
Then, set the color of the text, in this case yellow, and draw the text at the
centered position.

92

	

Part II: Up to Speed

Figure 5-4:
The puzzle

solved.

This new code, along with the w i n Lo c a t ion check, is best added to the
p a i n t () method just after the f o r loop that draws the pieces. Here's the
code:

if (pieces[0].x == winLocation.x &&

pieces[O].y == winLocation.y) I

FontMetrics fm = offscr.getFontMetrics(bbCourier):

offscr.setFont(bbCourier);

i nt strHyt = fm.getAscent();

int OOffset = (size().width - fm.stringWidth(winMsg)) / 2;

i nt OOffset = (size().height - strHyt) / 2 + strHyt;

offscr.setColor(Color.black);

offscr.drawString(winMsg , Offset + 3, OOffset + 3);

offscr.setColor(Color.yellow);

offscr.drawString(winMsg , Offset, OOffset);

The solved puzzle is shown in Figure 5-4. Have fun trying to solve the puzzle
yourself!

The complete code for the Sliding Blocks puzzle is on the Java Game
Programming For Dummies CD-ROM included with this book.

In Tbis Chapter

ding a complete game of Blackjack

r Programming the fundamentals of card games
~Eitracting graphics from composite images

Creating a user interface using AWT components
4?Tanging AWT components on the screen

Card games make fantastic Java games: They are relatively easy to
program and are great for playing on a computer, whether by single or

multiple players. You can create Java card games from any of the popular
card games you're already familiar with, or you can invent your own.

All most card games require is a deck of cards and a playing surface. In this
chapter, we present a complete game of Blackjack to demonstrate a reusable
deck of cards, and show how to create a playing surface using the standard

omponent classes from the Abstract Window Toolkit (AWT). We also show
you how to use the b u t t o n and t e x t components, and how to arrange
various components on the screen using the AWT's L a y o u t M a n a g e r classes;
both of these techniques are applicable to many types of games.

ndiaq the Blackjack Game
®ackjack (also called Twenty-One) is the most popular casino card game in
the United States. The Blackjack dealer plays against one or more players,
and in the casino version of Blackjack, the house rules strictly regulate the
dealer's options for play. The dealer's predictable behavior makes Blackjack
=excellent choice for a computer card game: You can make the computer

'Iy the role of dealer and easily program a strict set of dealer actions.

94 Part II: Up to Speed

!'lacing Blackjack
The object in Blackjack is to end up with a hand that scores higher than
dealer's hand without going over 21. A hand's score is the sum of the Vahm
of all the cards in the hand, using the following point values for the cards

- Face cards (Jack, Queen, and King) are each worth 10 points.

- 2 through 10 are worth points equal to the face value of the card.

- Ace is worth 11 points, except when the addition of 11 points makes
the player's hand total more than 21 points, in which case the Ace is
worth 1 point.

Each player places a bet to begin play. Next the dealer deals one card face-
down to everyone at the table, including herself. Then the dealer deals a
second card face-down to each player and a second card face-up to herselL
Each player then has an opportunity to receive additional cards dealt face
up one at a time (be hit) until either the cards in his hand exceed 21 points
(the hand busts) or he declines additional cards (stand). After all players
receive any additional cards they want, if any, the dealer exposes her face-
down card and then takes cards according to the house rules - typically
hitting the hand until it busts or totals at least 17 points.

The player loses his bet if he busts (goes over 21) or if the dealer's hand
totals more than the player's hand. The dealer returns the bet if the player
and dealer have hands with the same point totals and pays the player an
amount equal to the bet if the dealer busts or the player's hand is higher
than the dealer's hand.

In addition, Blackjack has a few special situations:

Blackjack's Special Situations

Blackjack

	

A Blackjack, or natural, is a hand that totals 21 points after
the first two cards (an Ace counting as 11 points and a 10 or
a face card). If a player has a natural and the dealer doesn't,
the player wins 1 1/2 times the initial bet, and gets back his
original bet as well. A natural beats a non-natural 21.

Double Down

	

After the first two cards are dealt, a player may opt to
double down, which means the player doubles his bet and
takes a single additional card. Some casinos restrict
doubling down to when the player's hand totals 10 or 11.

li t

.,
tT-lWIT.: IIr

Split

	

A player may split a hand consisting of two cards with the
same point value into two hands, thereby doubling the
chance for a win (or a loss, of course). The player puts the
two hands side by side on the table and places a bet on the
new hand equal to the original bet. The player then plays
each hand normally, except that if a split hand totals 21
after two cards, it doesn't count as a natural.

Designing the game

Chapter 6: Blackjack

	

95

The first step in designing an object-oriented program (Remember: Java is
an object-oriented programming language) is to look at the objects being
modeled by the program. Figure 6-1 shows the objects in a real game of
Blackjack.

96

	

Part II: Up to Speed

After you identify the objects your game needs to model, you need to
organize the objects according to their relationships and functions in the
game. Although programming challenges usually have more than one
solution, the elements typically suggest certain logical relationships that, in
turn, suggest the most elegant way to program them. The Blackjack game
presented in this chapter organizes the elements of Blackjack, as shown in
Figure 6-2.

As Figure 6-2 shows, the Blackjack Applet provides the playing surface and
contains an array of player objects, a dealer hand object, a deck object, and
a user interface. The deck and dealer hand objects each contain an array of
card objects. Each player object contains a player hand object and a bank-
roll. The player hand contains an array of card objects and a bet. The user
interface is a panel component that contains the button objects for the
various options available to the player. The fact that the object relationships
for Blackjack look similar to the layout of the real-world "objects" is no
coincidence: The game design is derived from the real-world objects.

Creating a Reusable Deck a f Cards
A deck of cards is a common element to all card games (bet you didn't know
that), and many of the techniques presented in this section can be applied tc
any card game you want to program. You can even create specialized decks
(for example, Pinochle or Poker with the Joker added) with minor changes
here and there, as we explain a bit later in this chapter.

One of the powerful aspects of object-oriented programming is how it
facilitates reusing code. This section shows how to create a reusable Deck

class that you can use in any card game that uses a standard deck. This section
also presents the Ca rd objects that the Deck class shuffles and deals.

Blackjack Applet (Playing Surface)

Player[] Dealer Deck

Hand

d
Card[] Card[]

Card fl

User fiterface
Bet',

Figure 6-2: Deal I I Stand Split
Blackjack

object Bankroll Hit Double Down
relationships.

Shuffling and dealing the deck
The Deck class uses an array to keep track of the cards in the deck. Rather
than actually remove cards from the array as they are dealt, the Deck class
maintains an index to the last card in the card array and deals cards from
the end of the array. As each card is dealt, the index to the last card in the
array is decremented. The complete De c k class is:

i mport java.util.NoSuchElementException;

public class Deck {

protected Card[] cards;

protected int

	

top;

protected int

	

packs;

public int getSize t)

	

(return top; I

	

/Ilf undealt cards

public int getPacks () (return packs;

	

packs in deck

public i nt packSize () I return 52; }

	

cards in pack

public Deck () C this(1)

	

I

public Deck (int packs) i

i f ((this.packs = packs) > 0)

top = packs * packSize();

cards = new Card[topl;

reshuffle();

// Fills the deck with cards and shuffles

public synchronized void reshuffle () {

top = 0;

for (int packs = this.packs; --packs >= 0;)

for (int suit = Card.CLUB: suit <= Card.SPADE; suit-)

for (int rank = Card.ACE; rank <= Card.KING; rank++)

cards[top++] = new Card(rank, suit);

shuffle();

// Shuffles the undealt cards in the deck

public synchronized void shuffle ()

i f (top > 1)

for (int ii = top; --ii >= 0;)

i nt rnd = (int) (Math.random() * top);

Card temp = cards[ii];

cards[ii] = cards[rnd];

cards[rndl = temp;

Chapter 6: Blackjack

	

9 7

(continued)

98

	

Part I1: Up to Speed

(continued)

// Deals the top, card from the deck

public Card deal () throws NoSuchElementException I

return deal(O);

1

1/ Deals a card from the deck. <pos> is relative to the

top of the deck (0 = top, 1 = second from top, etc.)

public synchronized Card deal (int pos)

throws NoSuchElementException

Card c = peek(pos);

i f (pos > 0) //deal card from middle of deck

System.arraycopy(cards, top - pos,

cards, top - pos - 1, pos);',

top--;

return c;

// Returns the top card from the deck without dealing it

public Card peek () throws NoSuchElementException I

return peek(0);

// Returns a card from the deck without dealing it.

// <pos> is relative to the top of the deck (0 = top)

` public synchronized Card peek -(int pos)

throws NoSuchElementException

if (POs < 0)

throw new NoSuchElementException();

try I return cards[top - (pos + 1)1; l

catch (lndexOutOfBoundsException e) {

throw new NoSuchElementException();

l

// end class Deck

The algorithm used in Deck. shuffle() works by swapping each card in the
deck with another randomly selected card. This swapping randomizes the
deck after a single pass through the deck and is much simpler than simulat-
ing a real shuffle.

Chapter 6: Blackjack

	

99
The d e a 1 () and p e e k () methods fetch cards from the deck. d e a 1 () re-
moves the fetched cards from the deck, but p e e k () does not. Both d e a 1 ()

and p e e k () are overloaded methods, meaning that they are given alternate
versions with different parameters. One version operates on the top card in
the deck; the other version accepts a parameter specifying the card posi-
tion. The Blackjack applet doesn't use pee k () or the ability to deal from the
middle of the deck; neither is necessary for a functioning Blackjack game.
However, other computer card games, like Solitaire, use these methods to
cycle through the deck multiple times and play cards from arbitrary
positions.

Notice that instead of defining its own subclass of Excepti on to indicate
when a requested card is unavailable, De c k uses the standard
j ava . uti 1 . NoSuchEl ementExcepti on class included as part of the Java
API. Using this standard class eliminates your having to write and the
player's web browser having to download extra code to define a class to
handle unavailable cards.

Some card games, including Blackjack, use a deck built from combining
several packs of cards. The Deck class supports multipack decks by over-
loading the De c k () constructor to accept the number of packs to use.

Building the C a r d class

Each card must remember just two things: its suit (Club, Diamond, Heart,
Spade) and its rank (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King). You
can give cards the following capabilities to make working with them as easy
as possible:

v Assign the suits and ranks to s t a t i c f i n a 1 variables.

- Override 0 b j e c t . t o S t r i n g () so that a card can display its name.

v Have cards draw themselves to a specified G r a p h i c s context.

V Override 0 b j e c t . e q u a l s () so that cards can compare themselves.

The resulting Ca rd class is

import java.awt.*;

import java.applet.Applet;

public class Card {

public static final int

CLUB = 0, DIAMOND = l, HEART = 2, SPADE = 3:

(continued)

100

	

Part II: Up to Speed

(continued)

public static final int

JOKER = 0, ACE = 1, TWO = 2, THREE = 3, FOUR = A,

FIVE = 5, SIX = 6, SEVEN = 7, EIGHT = 8, NINE _ 9,"

TEN = 10, JACK = 11, QUEEN = 12, KING = 13;

private static final String[] suitNames =

I Club , Diamond , Heart , Spade I;

private static final String[] rankNames =

I Joker , Ace , Two , Three , Four , Five

Six , Seven , Eight , Nine , Ten , Jack ,

Queen , King };

private static Image cardsImage;

private static int

	

cardWidth, cardHeight; // in pixels

private int rank;

private int suit;

public final int getRank () (return rank; I

public final int getSuit () (return suit; I

public Card (int rank, int suit) I

if ((this.rank = rank) != JOKER)

this.suit = suit;

I

public final String getSuitName ()

return rank == JOKER ?

	

: suitNames[suit];

public final String getPluralSuitName () (

return rank == JOKER ?

	

: suitNames[suit] + s-;

public final String getRankName ()

I return rankNames[rank];

public final String getPluralRankName ()

return rankNames[rank] + (rank == SIX ? es : s

I

public final String getArticle () I

return rank == ACE 1 1 rank == EIGHT ? an

	

, a

public final boolean isRed () I

return suit == DIAMOND 1 1 suit == HEART;
I

public' final boolean isFace ()

return rank >= JACK;

I

public static int getCardWidth ()

	

{ return cardWidth;

public static int getCardHeight () i return cardHeight;)

/* If not currently loaded, then loads and inits the

cards.gif image. This image is laid out as a 14 wide

* by 4 tall grid of card images laid out as:

public static synchronized void initGraphics(Applet

if (cardsImage == null) {

MediaTracker tracker = new MediaTracker(app);

cardsImage = app.getlmage(app.getCodeBase(),

cards.gif);

tracker.addlmage(cardslmage, 0);

try { tracker.waitForAll(); I

catch (InterruptedException e) {}

cardWidth = cardslmage.getWidth(app) l 14;

cardHeight'- cardslmage,getHeight(app) / 4;

public static void drawCardBack (Graphics g,

i nt x, int y) f

// card back is second card down in first column

doDraw(g, x, y, 0, cardHeight);

app)

private static void doDraw (Graphics g, int x, int y,

i nt xaff, int yoff) I

if (cardsImage != null) {

Graphics gcopy = g.create();

gcopy.clipRect(x, y, cardWidth, cardHeight);

gcopy.drawimage(cardslmage, x - xoff, y - yoff, null);

gcopy.dispose();

public void draw (Graphics g, int x, int y)

doDraw(g, x, y, rank * cardWidth, suit * cardHeight);

Chapter 6: Blackjack

	

10 1

(continued)

* JOKER A 2 3 4 5 6 7 8 9 10 J 0K (CLUBS)

* CARDBACK A 2 3 4 5 6 7 8 9 10 J 0 K (DIAMONDS)

* BLANK A2345678910J0K (HEARTS)

* BLANK A2345678910J0K (SPADES)

102

	

Part I1: Up to Speed

(continued)

public String toString ()

StringBuffer buf = new StringBuffer(rankNames[rankl);

if (rank != JOKER)

buf.append(of).append(getPluralSuitName(-))-;

return buf.toString();

public boolean equals (Object obj) {

if (obj instanceof Card) f

Card c = (Card)obj;

return crank == rank && c.suit == suit;

1

return false;

public int hashCode () t

return (rank << 2) + suit;,
)

end, class

	

Card

Converting cards to strings

The Ca rd class supports Jokers even though Blackjack does not use a
Joker. Ca rd is a general-purpose class useful for all kinds of games, includ-
ing those that use a Joker.

Most computer games use an image of a card to represent a card on screen,
but sometimes cards need to be displayed as text. For example, if you are
trying to develop and debug a game, you may want the cards to appear as
text so that you can work out the process of the game before creating the
images for the cards.

To convert cards to strings, override 0 b j e c t. t o S t r i n g () so that it implic-
itly converts an object to a string when using the + string concatenation
operator. A Ca rd object has methods for returning the plural and singular
names of its suit and rank. C a r d uses these methods in t o S t r i n g () to
construct and return the name of the card.

For example, the following code displays The card is an Ace of Spades:

Card c = new Card(Card.ACE, Card.SPADE);

System.out.println(The card is

	

+ c.getArticlet) +

Notice that Card overrides both Object.

equals() and Object. has hCode(). The
Vector, Hashtabl e, and other data struc-
ture classes use equal s(). A Vector is

like an array that automatically grows as new
objects are added to it. A Hashtabl e is a
vector where the objects are located by using
a key object, such as a string, instead of an
index. Ha s ht a bl e uses a hash code I an inte-
ger) -calculated by calling the hashCode ()

method for the key object-to find the object
~n the hash table. You need to maintain certain
elationships between equals(and

=zhCode() i n order for an object to work
orrectly with these data structures. While the

-d objects work fine with the array used by
-ie Deck class, the games that use the Ca rd

:^ass may place Card objects in Vectors or
s-tab1 es. So whenever you override

-_~ 's() or hashCode(),you must make
Z- , a that the following expressions remain
, Q

Overriding equal s ()
a,equals(b) == b.equals(a)

i f (a,equals(b))

a.hashCode() == b.hashCode()

Chapter 6: Blackjack

	

103

I n addition, both equals(and

hashCode() need to return consistent re-
sults throughout the lifetime of the object. The
data structures use equals(and

hashCode () to organize and find the objects
placed in the data structure. If the result of
equal s() or hashCode()

changes, the ob-ject could become "lost" in the data structure.
You use immutable (unchangeable) attributes
to calculate the hash code and perform the
equality comparison consistently. For ex-
ample, the Card class uses the suit and
r a n k attributes in both eq u a 1 s () and
ha s In Code () but never changes their values
after the C a rd () constructor runs.

Extracting card graphics from a composite image
Ca rd contains several methods that load and display card graphics. Instead
of loading 54 individual images (52 cards plus a joker and a card back), the
methods in C a r d use a composite image (a single large image that contains
all the individual images) and then extract a piece of the composite image to
draw the particular card to the screen, as shown in Figure 6-3. Think of the
composite image as a quilt of card "patches" from which the code extracts
the necessary patch to display.

A single large image downloads faster, requires less memory to store, and is
easier to create and edit than multiple small images. It also keeps all the
images for a deck of cards encapsulated in a single object, and that fits well
with an object-oriented design.

104

	

Part II: Up to Speed

Figure 6-3:

The

"cards.gif"

composite

image.

Four rows of 14 card images - one row for each suit - combine to form the

composite image. You call the static method i n i t G r a p h i c s () to load the

combined image. i n i t G r a p h i c s () uses the Medi aTracker class discussed

in Chapter 5 to load the cardsImage image. i n i t G r a p h i c s () calculates the

width (ca rdWi dth) of an individual card by dividing the composite image's

width by 14 and the height (c a rd H e i g h t) by dividing the composite's height

by 4.

To draw a single card rather than the entire c a rd s I ma g e graphic, you need

to define a clipping region to restrict where the graphics context draws

pixels. To understand how a clipping region works, imagine that the graph-

ics context is a piece of paper. To create a clipping region take another piece

of paper the same size, cut a rectangular hole in it, and position it over the

first piece of paper. Now when you draw on the graphics context, you can

only draw within the clipping region. To draw a card from the c a r d s I m a g e

graphic, you make the clipping region the size of a single card, then position

c a r d s I ma g e to line up the desired card with the clipping region and call

d r a w I m a g e () to draw the card. Figure 6-4 shows what this clipping image

looks like if c a r d s I m a g e is a third piece of paper and you place it between

the other two sheets of paper.

The draw() and drawCardBack() methods use card Wi dth and

c a r d H e i g h t to calculate the x,y pixel coordinates of the upper-left corner of

the image to extract from c a r d s I ma ge. These methods pass the x,y pixel

coordinates to d o D r a w (), which uses them as the offsets for positioning

c a rd s I ma g e so that the card to be drawn is in the correct place relative to

the clipping region. d o D r a w () sets the clipping region and draws the card

using the following code:

Graphics gcopy = g.create();

gcopy.clipRect(x, y, cardWidth, cardHeight);

gcopy.drawImage(cardsImage, x - xoff, y - yoff, null);

gcopy.dispose();

J(MtBlt
2
;

3 ; 44 54 ; 67 8

9

~ 4 14,
4
4 J

a8 M0f
4 4 4 4 4

••s
,,
''

4 4
*Lt I

4 4
**••e

4*4* 4 4
•*'i * s ! • ; 1 **Ss t • t •a w

2 3 • 44 4 5• 4 6 84 4 9• 4 q 4,b j • C7
Sti 4 4 4 • 4 4 ~4~

o•

w • 3 • 4• • ;• • 6• • ~• • 8• i 9.• • 10~••• :i '',., Q~ry.. •
Y

• 1 • • • • 4 •••
-•' Iy i, ~ 'z • q • +j+ • •S • •g • •L • •'g • •6 •• •01 =~, y

: r 4V *;•w7,~~;V V;•* ~,f*I r :

I

I ~. :.:

Z £ *4 S 4 L 8 6 A01 f g

Figure6-4:
Using a
clipping

region to
draw the

four of
spades.

Graphics context

	

Clipping region

The c l i p Re c t () call sets the upper-left corner of the clipping region to the
specified x and y coordinates and sets the width and height of the region to
the dimensions of a single card. d r a w I m a g e () accepts the position for the
upper-left corner of c a r d s I m a g e. You calculate the position of c a r d s I m a g e
relative to the clipping region by subtracting the x and y offsets within
c a r d s I m a g e (x o f f and y o f f) of the upper-left corner of the card to draw.

Setting the clipping region of a graphics context is an irreversible operation.
Each subsequent call to cl i pRect () sets the clipping region to the intersec-
tion of the current clipping region and the new region, which means that you
can never enlarge the clipping region. In order to keep from permanently
setting the main clipping region of the component, the preceding code from
d o D r a w () obtains a temporary copy of the graphics context, sets the
clipping region in the copy, and performs the draw operations using the
copy. The code obtains a copy of the graphics context by calling the
context's c r e a t e () method. After it finishes with the temporary copy, the
code calls its d i s p o s e () method so that the Java Virtual Machine (JVM)
can reclaim its memory.

Java t.1 adds the s e t C 1 i p () method to the G r a p h i c s class and allows the
clipping area to be more flexibly resized. You don't need to make a copy of
the graphics context before using s e t C 1 i p (). However, until Java 1.1
becomes more widely used, use cl i pRect () for maximum portability.

Customizing the deck

Chapter 6: Blackjack

	

105

You can give the cards in the deck custom graphics by creating a new
c a r d s . g i f image. The C a r d class automatically calculates the size of the
cards based on the image.

106

	

Part 11: Up to Speed

In addition, you can extend the Deck class to play Poker with a joker in the
deck or to play games such as Pinochle that use a nonstandard deck of
cards. You override p a c k S i z e () and r e s h u f f 1 e () to initialize the custom
deck. A Pinochle deck has 48 cards - two of each suit of the ranks nine
through ace. You implement a Pinochle deck like this:

public class PinochleDeck extends Deck I

public PinochleDeck ()

	

(super(); f

public PinochleDeck (int packs) (super(packs); I

public int packSize (;)

	

(return 48; }

public synchronized void reshuffle () (

top = 0:

for tint packs = this.packs * 2; --packs >= 0;)

for (int suit = Card.C'LUB; suit <= Card.SPADE; suit++)

(

for (Int rank = Card.NINE; rank <= Card.KING; rank++)

cards[top++] = new Card(rank, suit);

cards[top++] = new Card(Card.ACE, suit):

shuffle():

1

l II end class PinochleDeck

Creating a User Interface
with Components

You create a user interface in Java from AWT components. Component is an
abstract class in the j ava. awt package that embodies all the common
functions of user interface elements. You build your interface from the
subclasses of Component: Button, Canvas, Checkbox, Choi ce, Label, Li s -_
ScrolIbar,TextArea,and TextField.

Using buttons
Buttons are a common interface element. You use buttons to represent an
action the user can perform. Unlike menus, which also represent available
actions, a button is

W Visible, so the user doesn't have to look through menus to determine
what actions are available.

- Convenient, because it requires a single mouse click to perform the
associated action.

You use the Button class in the j ava . awt package to add buttons to your
game.

Creating and placing buttons

In order to create a button, you invoke the B u t t o n () constructor and pass
it a string to use as the button label. The button automatically adjusts its
size to fit the label. Optionally, you can omit the string in the constructor
call and call the button's s e t L a b e 1 () method to set the label string.

Button dealButton = new Button(Deal);

Button cancel

	

= new Button();

cancel.setLabel(Cancel + operation);

After you create a button, you must call a d d () to add the button to a
Container component-a Panel, Applet, Window, Frame, or Dial og-in
order to use it. After adding components to a container, you need to call the
container's 1 a y o u t () or v a 1 i d a t e () method to tell the container to
arrange its components and set their sizes. 1 ayout () arranges the current
container; v a l i d a t e () arranges the current container as well as any con-
tainers inside the current container.

n't usually subclass Button or most
components to create custom versions.

. anvas and the container compo-
- Panel, Applet, Window, Frame,

and Fi l eDi al og - are designed
or !* extended. The reason is that each AWT
,went has a platform-specific component

ent peer is a class that connects an
component such as a button to the

ouu

	

's native implementation. The peers

Component peers
then draw the component and handle the com-
ponent events. So for example, Microsoft
Windows implements the Button Peer using
a Windows button, and Apple Computer's
MacOS implements the Bu tton Peer using a
Mac button, and so on. The component peer
feature is why Java buttons on a Mac look
different than Java buttons on a PC. The two
figures below show the same applet (Colored
Applet) running in Netscape Navigator 3.0, one
i n Windows 95, a PC, and one on a Mac running
OS 8.

Chapter 6: Blackjack

	

107

108

	

Part II: Up to Speed

Having your game respond to buttons

Button converts a mouse click into an ACT I ON-EVENT. You override
Component. a c t i on() in the parent container in order to handle action
events. You identify the button that generated the event in a c t i o n () by

comparing the Event. t a r g e t field to the Button objector, alternately, by
comparing the Event. a r g field to the button label string.

Here is an example of an applet creating and responding to a button:

i mport java awt.*;

public class ColoredApplet extends java.applet.Applet I

private Button red = new Button(Red);

private Button blue = new Button(Blue);

public void init () i

add(red);

add(blue);

l ayout();

public boolean action (Event evt. Object arg) I

i f (evt.target == red)

setBackground(Color.red);

else if (Blue equals(arg))

setBackground(Color.blue):

repaint();

return true;

I // end class ColoredApplet

Notice that the a ct i on () method in Col oredApp I et uses the evt . to rget

field to find the red button and uses the a rg parameter to identify the bl ue

button. We include both techniques in the example just to show both ways
of checking. However, the evt. t a r g e t way is faster, because comparing
object references is less work than comparing strings.

Reading and displa ying text
At some point, most programs need to display text or collect information
entered by the user. Java 1.0 provides three components for displaying text:
Text Fi el d, TextArea, and Label. The Blackjack applet uses labels to
display each player's name and current bankroll. Text Fi el d and TextArea

also accept text typed by the user. Text Fi el d displays and accepts a single
line of text; TextArea creates a scrollable, editable text area that displays
multiple lines. This section shows how to use each of these components.

Ope 6-5-

The
t 'SwreLabel

applet. `

Displaying status and scores with labels
You use a L a b e 1 component to display text in a container. The program
code can change the text in a label, but the user cannot edit the text on
screen. You can use labels to display things such as game scores or to
create, well ... labels such as those used to describe on-screen buttons or
other objects. You create a label and add it to a container like this:

i mport java.awt.*;

public class ScoreLabel extends java.applet.Applet {

private int score;

private Label scoreDisplay;

public void init () I

add(new Label(Score));

add(scoreDisplay = new Label(

	

0 , Label.RIGHT));

layout();

I

public boolean mouseDown (Event evt, int x, int y) I

scoreDisplay.setText(Integer.toString(score += x));

return true;

end cla s ~, -•Label

This example initially sets the s c o r e D i s p 1 a y label to a right-aligned string
with several leading zeros, as shown in Figure 6-5. The spaces cause the
label to automatically set its size to be larger than the space required for
just the 0 character. The RIGHT alignment positions the label text from the
right edge of the label so that additional digits appear on the left. You align a
label to the L E FT, C E N T E R, or R I G H T - the default alignment is L E FT.

Getting a few words from the user

Chapter 6: Blackjack

	

109

Use a Text Fi el d component to collect a single line of text from the user. As
with other components, you add a text field to a C o n t a i n e r component. You
override a c t i o n () in the container to detect when the user enters text.

1 1 0	 Part II: Up to Speed

Text Fi el d is a subclass of TextComponent. A Text Comp onent supports th4
normal cut, copy, paste, and text edit functions of the underlying operating
system (OS). Table 6-1 lists some of the TextComponent methods for
working with text.

Table 6-1

Method

getText()

setText(str)

getSelectedText()

select(start, end)

setEditable(edit)

The offset of a character is the position in a string of that character, startinc
from 0 and counting up. For example, the letter "n" has an offset of 3 in the
word "Barney"

Creating scrolling text areas
You use a Text Area to create editable and scrollable text displays. As is
Text Fi el d, TextArea is a subclass of TextComponent and has all the text
editing features listed in Table 6-1. Text Area also has the three additional
methods for working with the text, listed in Table 6-2.

Table 6-2

Method

appendText(str)

i nsertText(str, pos)

replaceText(str,

start, end)

TextComponent Methods

Use This Method to ...

Retrieve the current text from the component.

Set the value of the component's text to the
string s t r.

Retrieve the currently selected text in the
component.

Set the component's selection to the characters
from offset sta rt to offset end, i nclusive.

I f the boolean parameter edi t is fal se, user
editing is disabled for the component; otherwise
editing is enabled.

Additional TextArea Methods

Use This Method to . ..

Append the string s t r to the end of the
area's current text.

I nsert the string str at the character offset
pos.

Replace the text from character offset
sta rt to offset end, i nclusive, with the
string str.

Chapter 6: Blackjack

The following example uses a Label, Text Field, and TextArea:

i mport java.awt.*;

public class ListEntry extends java.applet.Applet I

static final String newline =

System.getProperty(line.separator);

private TextArea

	

l ist = new TextArea(5, 20);

private TextField`

	

entry = new TextField(20);

public void init () I

list.setEditable(false):

add(Iist);

add(new Label(Name: . Label.RIGNT));

add(entry);

public boolean action (Event evt, Object arg)

if (evt.target == entry) I

list.appendText(entry.getText() + newline):

entry.selectAll();

return true;

return false;

I ll end class ListEntry

L i s t E n t ry creates a Text Area that holds five lines of approximately 20
characters each and a Text Fi el d that holds a single line of approximately
20 characters. The AWT calls L i s t E n t ry . action() when the user presses
the Enter or Return key in the e n t ry text field. a c t i o n () appends the
e n t ry text to the 1 i s t text area and selects the text in e n t ry so that the
next text that the user types replaces the current text. Figure 6-6 shows the
program running.

App

George Washington
Thomas Jefferson
RRroham Lincoln
Teddy Roosevelt
Ronald Reaoen

Name:

Ao Ut strted

Ronald Reagan

tFp.1ty

112

	

Part II: Up to Speed

The System.getProperty(line.separator) call in the preceding
example gets the system-dependent character string used to separate lines
text. You would think that operating systems would standardize on some-
thing as simple and basic as a line separator, but they don't. Under UNIX-
based operating systems, the separator is a linefeed character (\ n); under

Mac OS, the separator is a carriage return character (\ r); and under DOS
and Windows operating systems, the separator is a carriage return follow
by a linefeed (\ r \ n).

Using C a n v a s to create new components

Customizing your game's appearance With I m a g e B u t t o n

i mport java.awt.*;

public class ImageButton extends Canvas implements Runnable I
private ThreadGroup tg;

private Image[]

	

i mg = new Image[2]; //up = 0, down = 1

private int

	

i mgndx;

	

//index into img[l

public ImageButton (Image up, Image down)

tg = Thread.currentThread().getThreadGroup();

i mg[0] = up;

)
img[1] = down;

public synchronized Dimension minimumSize ()

int x = Math.max(img[0].getWidth(null),

i mg[1].getWidth(null));

i nt y = Math.max(img[Ol.getHeight(null),

i mg[1l.getHeight(null)):

return new Dimension(x < 0 ? 10 : x; y < 0 ? 10 : y).;

A C a n v a s component is a way to create your own component - it provides
all the hooks to collect user events and draw itself, but the default canvas is
basically a blank slate. You can use C a n v a s to create your game's playfield,
displays, and just about anything else that you want to display a certain way.

The AWT components are functional but not particularly colorful. You can
design your own custom components by subclassing the C a n v a s compo-
nent. The simplest and probably the most useful component to customize is
Button. The following I mageButton class uses two images-the pressed
and unpressed button images - rather than the standard button with a text
label:

public Dimension preferredSize () I

return minimumSize();

public void paint (Graphics g) t

if (img[imgndx] != null)

g.drawImage(img[imgndx1, 0, 0, this);

public void update (Graphics g) 1

paint(g);

I

public synchronized void run ()

i mgndx = l;

repaint();

Component p = getParent{);

i f (p != null)

p.postEvent{new Event(this,

	

Event.ACTION EVENT,

i mg[01));

try I Thread.sleep(200); } // press for 1/5 second

catch (InterruptedException e) I}

i mgndx = 0;

repaint();

public synchronized boolean mouseDown (Event evt,

int x, int y) I

(new Thread(tg, this)).start();

return true;

1

/f end class ImageButton

The following are the key points for implementing ImageButton:

Chapter 6: Blackjack

	

113

V ImageButton overrides Component. preferredSize() and
Component. mini mumSi ze () in order to have the button automatically
size itself to the size of the largest image.

V mo u s e D own () spawns a thread to animate the button press so that it
doesn't perform the animation in the AWT Interface thread. (CD
Chapter 2 explains what the AWT Interface thread is and how to spawn
threads from mouseDown () and other event handlers.)

v mouseDown() and run() are synchroni zed to prevent the animation
from being interrupted. Synchronization prevents mouse clicks from
being processed faster than the animation rate.

14

	

Part II: Up to Speed

Figure 6-7:
A

BlackjackHand
with four

cards.

Displaying a hand o f cards

- run () passes an ACT I ON-EVENT to the parent container's
post Event() method so that you handle ImageButton events in the
same way as Button events. Because an ImageButton doesn't have a
label string, it uses the "up" image for the E v e n t . a r g field.

- The button animation is state-driven; run () sets the i mg ndx variaY
to change the state, and pa i nt() uses i mg ndx to display the current
state.

Java 1.2 has something called lightweight components that support custom
appearances without having to re-create the entire functionality of the
component.

The Blackjack computer game extends C a n v a s to create a displayable hand
of cards, as shown in Figure 6-7.

RIO

The B 1 a c k j a c k H a n d class includes both the code for displaying the hand
and for handling the details of a Blackjack hand - dealing cards to the hand,
calculating the value of the hand, testing for a Blackjack (natural), and so
on. The Bl ackjackHand class is

i mport java.awt.*;

i mport java.util.*;

class BlackjackHand extends Canvas I

protected int

	

horizInset;

protected boolean soft;

protected Vector hand = new Vector(6);

private boolean exposed, active;

private Image

	

offscreenImage;

private Graphics offscr:

public Dimension preferredSize () I

return new Dimension((Card.getCardWidth() + horizInset)

* 2, Card.getCardHeight());

BlackjackHand () I

resize(preferredSize());

i nt cardCount ()

	

i return hand.size(); I

protected boolean isDealer () I return true; I

boolean blackjack () (// is a blackjack?

return hand.size() == 2 && value() == 21;

boolean isSoft ()"(// has an 11-point ace in the hand?

value();. // sets <soft> field

return soft;

void setActive (boolean on) f // highlight this hand

active = on;

repaint():

void expose () I // expose the dealer s hole card

exposed = true;

repaint();

I

void clearHand () I // remove all cards from hand

hand.removeAllElements();

exposed = active = soft =,false;

repaint();

Thread.yieldf7:'

void deal (Card card) (// deal a card to the hand

hand.addElement(card);

repaint();

public void paint (Graphics g) f

if (offscreenImage == null) I

offscreenImage = createlmage(size().width,

size().height);

offscr = offscreenlmage.getGraphics();

Chapter 6: Blackjack

	

115

(continued)

116

	

Part II: Up to Speed

(continued)

offscr.setColor(aetive ? Color.yellow : Color.gray);

offscr.fillRect(0, 0, size().width, size().height);

i nt handsize = hand.size():

i f (handsize > 0)

int overlap = Math.min(Card.getCardWidth().

(size().width - Card.getCardWidth() -

2*horizinset) l Math.max(1, handsize-1));

Enumeration deal = hand.elements();

i nt xoff = horizInset;

while (deal.hasMoreElements())

Card card = (Card)deal.nextElement();

if (!exposed && isDealer() && xoff == horizInset)

Card.drawCardBack(offscr, xoff, 0);

else

card.draw(offscr, xoff, 0);

xoff += overlap;

l

9 . drawlmage(offscreenImage, 0, this);

.,ublic void update (Graphics g) I paint(g); }

/ returns the point value for the hand

; nt value () I

int val = 0;

boolean ace = false;

for

	

(int

	

ii

	

= hand.size();

	

--ii

	

>=

	

0;

	

)

	

I

i nt v = value(ii);

Val += v;

i f (v ==Card.ACE) ace = true;

i f (soft = (val <= 11 && ace))

Val += 10;

return val;,

I returns base point value of card <cardNum> in the hand

[^otected int value (int cardNum)

i nt rank = ((Card)hand.elementAt(cardNum)).getRank();

return Math.min(Card.TEN, rank); // face cards are 10's

I // end class BlackjackHand

Here are the key elements in B 1 a c k j a c k H and:

Chapter 6: Blackjack

	

117

v BlackjackHand extends java.awt. Canvas so that it can display itself
on the screen.

V The B 1 a c k j a c kH a n d () constructor sets the size of the canvas -
necessary because by default a canvas is zero pixels wide and zero
pixels tall.

r The j a v a . u t i 1 . V e c t o r field h a n d stores the cards. (Remember, a
Vector works like an array that automatically reslzes itself as more
objects are added to it) Using a vector allows a hand to accept any
number of cards dealt to it. d e a 1 () adds cards to the vector and
c l e a r H a n d () removes all the cards from the vector.

rr B 1 a c k j a c k H a n d overrides p a i n t () to create the display for the hand.
If necessary, p a i n t () overlaps the cards to fit within the display area -
this makes the cards look like they are "fanned out" on the table, as
shown back in Figure 6-1.

W p a i n t () uses the graphics context o f f s c r to draw to the offscreen
image. o f f screen Image. p a i n t () copies the offscreen image to the
screen to smoothly draw the hand to the screen in a single operation.
p a i n t () initializes the offscreen buffer the first time it runs. (Chapter 1
discusses the details of using an offscreen image.)

v h o r i z I n s e t holds the number of pixels to inset the hand from the
left and right edges of the canvas. The Blackjack applet uses the inset
space to highlight the active hand. setActi ve() sets or clears the
hand's active state.

Arranging the User Interface
Like the Web pages in which Java runs, Java configures its screen area to fit
the available space and allows a Java applet to automatically adapt to
smaller or larger screens. Creating an interface that configures itself pre-
sents challenges. On the one hand, you don't have to worry about specifying
the pixel location of each interface component. On the other hand, trying to
get your game to look just the way you want can be frustrating. Compound-
ing this frustration is the fact that the size and look of the individual compo-
nents vary between platforms. But rest assured, with a little work you can
create a user interface that looks good and intelligently configures itself to
fit a variety of screen sizes.

Part II: Up to Speed

Positioning components With a
LayoutManager
The AWT uses classes that implement the j ava . awt . LayoutManager
interface to determine what size to make AWT components and where to
place them. Each container -a Panel , Appl et, Wi nd ow, Frame, Di al og. or

F i 1 eDi a 1 o g -has its own layout manager to accomplish this task.

A layout manager positions each of the components in the container and can
also set the sizes of the contained components. The layout manager calls a
component's mo v e () method to position the component, calls r e s i z e () tf

set the component's size, and calls r e s h a p e () to set both the size and
position. Most layout managers use the component's p r e f e r r e d S i z e () ar

mi ni mumSi ze() methods to determine its dimensions, but some layout
managers ignore these suggested sizes (see Table 6-3).

You can subclass L a b e 1, B u t t o n, and other AWT components to override
the preferredSize() and minimumSize() methods. By doing so, you can

explicitly control the size of the laid-out component.

The AWT provides five layout managers - B o r d e r Layout, C a r d Layout,

F1 ow Layout, Gri d Layout, Gri dBagLayout. Table 6-3 lists types of layout
managers assigned by default to each type of container.

A container can have a n u 1 1 layout manager for which you must explicitly
position its components. A container with a layout that doesn't need to
adapt to different screen sizes - for example, a container that conforms b
background graphic - may be best with a n u1 1 layout manager.

If you want to use a different layout manager than the default, pass the nei
layout manager to the container's set Layout () method. For example, if y
want to have an applet use a B o r d e r L a y o u t, place the following in the
applet's i n i t () method:

Table 6-3 Default Layout Managers

Container Layout Manager Comments

Panel FlowLayout

Applet FlowLayout

Window BorderLayout (ignores suggested size)

Frame BorderLayout (ignores suggested size)

Di al og BorderLayout (ignores suggested size)

Fi IeDialog null

applet
using

-ut.

If you change a container's layout manager after it has already been laid out,
you need to tell the container. To do so, call i n v a 1 i d a t e () to tell the
container to invalidate its current layout and then call v a 1 i d a t e () to have
the container recursively layout itself along with any nested containers.

The following code produces the applet that Figure 6-8 shows:

public class Flow extends java.applet.Applet 1

public void init () f

for (int i = 1; i < 10; i++)

add(new java.awt.Button(Integer.toString(i)));

1

Chapter 6: Blackjack

	

11 9

You use a F 1 ow L a y o u t manager to arrange the components from left to right
and top to bottom. Each horizontal row aligns its components LEFT, CENTER,

or R I GHT. The default alignment is CENTER.

B o r d e r L a y o u t arranges as many as five components: one along each of the
four sides and one in the center of the container. You call the container's
add() method with the name of the location (North

	

,

	

South

	

,

	

East

	

,

West , or

	

Center) at which to add a component to a BorderLayout

container. If you don't specify a location, the layout manager places the
component in the center location.

B o r d e r Layout resizes the components according to the following rules:

- The north and south components use their preferred height but are
resized as wide as the container.

The east and west components use their preferred width but are
resized to be, as tall as the container minus the heights of the north
and south components.

120

	

Part II: Up to Speed

Figure 6-9:
An applet

using
BorderLayout

Figure 6-10:

An applet
using

GridLayout.

- The center component is resized to fill the remaining space not used
by the other components in the container. It is as tall as the east and
west components, and as wide as the container minus the widths of the
east and west components.

The following code produces the applet shown in Figure 6-9:

public class Border extends java.applet.Applet {

public void init () {

setLayout(new java.awt.BorderLayout());

add(North , new java.awt.Button(North));

add(East ,

	

new java.awt.Button(East)):

add(West ,

	

new java.awt.Button(West));

add(South , new java.awt.Button(South)3;

add(Center , new java.awt.Button(Center));

I

GridLayout

Your own LayoutManager

If none of the layout managers supplied by the AWT is right for your con-
tainer, you can always write your own. You create a layout manager by
implementing the Lay o u t M a n a g e r interface in your class.

You use a Gri dLayout to arrange all the components on an evenly spaced
grid. G r i d Lay o u t resizes each component to fit the grid. You can create the
applet Figure 6-10 shows by replacing the s e t Layo u t () call in the preceding
B o r d e r example with

Chapter 6: Blackjack

	

12 1

v Determine the preferred and minimum sizes needed to layout the
components in a container.

tr Lay out a container's components, which requires positioning and
possibly sizing the components.

The Blackjack applet uses a custom layout manager to arrange the hands for
a player. A Blackjack player starts out with a single hand of cards. When a
player splits a hand, the hand becomes two new hands. (Remember. The
player may split a hand into two hands if the first two cards have the same
point value.) Further, the player can potentially split either or both of the
new hands. Because it takes a lot of space to display each hand, reserving
space for the unlikely possibility that each player would end up with four
hands more than doubles the size of the applet. A better solution is to
overlap the hands to cover up part of the hand, as Figure 6-11 shows.

The following custom layout manager lays out the hands as Figure 6-11 shows:

i mport java.awt.

class PlayerHandLayout implements layoutManager i

private BlackjackPlayer player;

private float overlap;

public PlayerHandLayout (BlackjackPlayer player,

float overlap) {

this.player = player;

this.overlap = overlap;

public void addLayoutComponent (String nm, Component c) {)

public void removeLayoutComponent (Component c) t)

public Dimension preferredLayoutSize (Container parent) S

Dimension ds = ((BlackjackHand)parent.getComponent(0)). preferreaSize l;

int numHands = parent.countComponents();

i f (numHands <-- 2)

return new Dimension(ds.width, ds.height * numHands);

(continued)

122

	

Part II: Up to Speed

(continued)

else

return new Dimension(ds.width, (ds.height * 2) +

(numHands - 2) * (int)(overlap * ds.height));

public Dimension minimumLayoutsize (Container parent) I

return preferredLayoutSize(parent);

public void layoutContainer (Container parent) I

Dimension hsize = ((BlackjackHand)parent.getComponent(O)).preferredSize();

int numHands = parent.countComponents();

int h, y = D;
for (int ii = 0; ii < numHands

	

i i++)

if (ii == player.getHandlndex() 1 1
ii == player.getActiveHandCount(3-1)

h = hsize.height;

else

h = (int)(hsize.height * overlap);

parent.getComponent(ii).

reshape(0, y, hsize.width, hsize.height):

y += h ;

class PlayerHandLayout

The prevalent aspects of P1 ayerHandLayout are

r The B 1 a c k j a c k P 1 a y e r passes a reference to itself and the vertical
overl ap ratio to the P1 ayerHandLayout () constructor.
1 ayoutConta i ner () uses pl ayer to access information about the
hand.

v 1 a y o u t C o n t a i n e r () leaves the active hand exposed so that it's easier
to recognize. Figure 6-12 shows the layout of four split hands where the
second hand is the exposed, active hand.

V 1 ayoutContai ner() calls reshape() to set the size of overlapped
hands to the size of the exposed area of the hand. Using r e s h a p e () is

important, because you can't rely on the draw order to obscure other
hands; the AWT doesn't guarantee any particular draw order for the
components.

Figure 6-12:

Exposing

active

hand.

preferred Layout Si ze() calculates the dimensions needed to
display n u mH a n d s hands by assuming two exposed hands: the active
hand and the last hand. If the active hand is the last hand, only one
hand is exposed, but the calculation still sets the size of the hands as if
two hands were exposed. The result of this calculation allows the
container to size itself based on the maximum number of hands a
player can have.

Layouts such as BorderLayout, which separate the components into
different named groups, use the addLayoutComponent() and
removeLayoutComponent() methods to organize the components
into groups. However, P 1 aye r H a n d Lay o u t doesn't use these methods
and just needs to include empty methods to complete the
LayoutManager interface.

7* 4 rw *1

aA i

	

s

Dividinq the screen with panels

1. Create a panel for each column of radio buttons.

Chapter 6: Blackjack

	

123

Frequently, you cannot arrange an applet or other container with a single
layout manager. In these cases, you can arrange your interface hierarchically
by grouping components within P a n e 1 containers and using the panel's
layout manager to arrange the components inside the panel. The panel itself
is a single component arranged by the layout manager for the container
containing the panel.

For example, consider an applet with four groups of radio buttons and
several standard buttons. You can use these steps to arrange the radio
buttons into separate columns and the standard buttons into a row across
the bottom:

Give each of these panels a G r i d Layout (0,

	

1) layout manager. Add
the radio button C h e c k b ox components to their respective groups.

124

	

Part II: Up to Speed

Figure 6-13:
Nested
panels.

2. Create a panel to hold the radio button column panels.

Leave its layout manager set to the default F1 owLayout. Add the
column panels to this group.

3. Create a panel for the standard buttons.

Leave its layout manager set to the default F1 ow Layout. Add the
B u t t o n components to this group.

4. Give the applet a BorderLayout layout manager.

Add the panel from Step 2 to the Center

	

location of the border
layout. Add the panel from Step 3 to the South

	

location of the border
layout.

Figure 6-13 shows the hierarchical organization these steps produce.

Panel with Grid Layout

	

(1,0)

ouu.
Oa.
o a~.
O oer
ow.

oae. oon. Sao.
0 oa. a err o w+
o oa. ~ a oe. 13Oft

a a..

	

a o..
oar

00000]--AppIetBorderLayout South

Panel with F1 owl-ayout

-Applet BorderLayout

	

Center"

You can also arrange this example with a Gri dBagLayout. A
G r i d B a g L a y o u t is a powerful layout manager for creating complex arrange-
ments. Unfortunately, using a G r i d B a g L a y o u t is a fairly complicated
process, and nested panels, as in this example, are usually easier to create
and maintain.

Laying out a game of Blackjack
Figure 6-2 earlier in this chapter shows the logical organization of the
Blackjack applet. This organization translates to a physical organization on
the screen, as Figure 6-14 shows.

The top-level applet
The Blackjack applet that implements the top level of the game is as follows:

import java.awt.*;

i mport java.util.StringTokenizer;

public class BlackjackApplet extends java.applet.Applet

i mplements Runnable

private Deck

	

deck;

private BlackjackHand

	

dealer, lastActive;

private BlackjackPlayer[] players;

private int

	

curPlayer;

private Button

	

newdeal, stand, hit, doubledown,

split;

private ThreadGroup

	

appTG;

private Panel

	

dpan, ppan, bpan;

public void init () {

int

	

numPlayers = 1, deckSize = l, bankroll = 0;

String param;

String[] names = null;

Thread curT = Thread.currentThread();

appTG = curT.getThreadGroup();

curT.setPriority(curT.getPriority() - 1);

setLayout(new BorderLayout());

Chapter 6: Blackjack

	

125

(continued)

126

	

Part 11: Up to Speed

(continued)

if ((param = getParameter(PLAYERS)) != null)

StringTokenizer st = new StringTokenizer(param,

names = new String[st.countTokens()];

for

	

(numPlayers = 0;

	

st,hasMoreTokens();

	

numPlayers++)

names[numPlayers] = st.nextToken();

Card.initGraphics(this);

	

11 load the card images

deck = new Deck(deckSize);

players = new BlackjackPlayer[numPlayers];

Bpan = new Panel();

dpan.add(dealer = new BlackjackHand());

add(North , dpan);

bpan = new Panel();

add(Center , bpan);

bpan.add(newdeal

	

= new Button(Deal));

bpan.add(new Label(

	

)):

bpan.add(stand

	

= new Button(Stand)):

bpan.add(hit

	

= new Button(Hit));

bpan.add(doubledown = new Button(Double Down));

bpan.add(split

	

= new Button(Split));

setButtons(null);

ppan = new Panel();

add(South , ppan);

for (int ii = 0; ii < numPlayers; ii++)

players[ii] = new BlackjackPlayer(ppan,

names == null ? null : names[ii], bankroll);

public boolean action (Event evt, Object what) I

i f (evt.target == newdeal)

new Thread(appTG, this).start();

else I

BlackjackPlayer player = getPlayert);

i f (evt target == stand)

nextHand(false);

else

BlackjackPlayerHand hand = player.getHand();

i f (evt.target == hit) i

hand.deal(deal());

if (hand.value() > 21)

nextHand(false);

else

setButtons(player);

else if (evt.target == doubledown) I

hand.deal(dea1());

player.addToBankroll(-hand.bet):

hand.bet <<= 1;

nextHand(false);

else if (evt.target == split) {

BlackjackPlayerHand splitHand =

player.newHand(hand.bet);

hand.split(splitHand);

hand.deal(deal());

splltHand.deal(deal()):

setButtons(player);

I

else

return super.action(evt, what):

public synchronized void run () {

newDeal():

newdeal.disable();

try I
BlackjackPlayerHand hand;

for (int card = 2; --card 7= 0:)

for (int pp = 0; pp < players.length; pp++)

i f ((hand = players[ppl.getHand()) != null) l

hand.deal(deal());

Thread.sleep(500);

I

dealer.deal(deal());

Thread.sleep(500);

F

if ((hand = nextHand(true)) != null) I

setButtons(getPlayer());

wait(); // wait for players to play their hands

setButtons(null);

dealer.expose();

Thread.sleep(1000);

i f (hand != null)

while (dealer.value() <= 16) {

dealer.deal(deal());

Thread.sleep(500);

Chapter 6: Blackjack

	

127

(continued)

28

	

Part I1: Up to Speed

(continued)

E

catch (InterruptedException e) 11

for (int pp = 0; pp < players.length;

players[ppl.resolveDeal(dealer);

newdeal.enable();

I

BlackjackPlayer getPlayer () I

return curPlayer)- players.length ?

null : players[curPlayerl;

BlackjackPlayer nextPlayer () I

curP]ayer++;

return getPlayer();

pp++)

BlackjackPlayerHand nextHand (boolean firstHand) {

BlackjackPlayer

	

player = null;

BlackjackPlayerHand hand = null:

i f (dealer.blackjack())

curPlayer = players.length;

else if ((player = getPlayer()) != null)

hand = firstHand ?

player.getHand() : player.nextHand();

while (player != null && hand == null)

if ((player = nextPlayer()) != null)

hand = player.getHand();

i f (player == null) I

setButtons(null);

synchronized (this) I notify(); I // deal to dealer

return null;

1

i f (hand.blackjack()) // skip this hand

return nextHand(false);

setButtons(player);

return hand;

boolean newDeal ()

int

	

ii = players.length;

boolean shuffled;

curPlayer = 0;

if (shuffled = (deck.getSize() < ii * 3 + 3))

deck.reshuffle();

dealer,clearHand();

while (--ii >= 0) {

players[iil.clearHands();

players[iij.newHand(0);

newdeal.enable();

setButtons(null);

return shuffled;

private void setButtons (BlackjackPlayer player) I

i f (lastActive != null) I

l astActive.setActive(false);

l astActive = null;

stand.disable();

hit.disable();

split.disable();

doubledown.disable();

i f (player != null)

BlackjackPlayerHand hand = player.getHand();

i f (hand != null) I

(lastActive = hand).setActive(true):

stand.enable();

int val = hand.value();

i f (val < 21)

hit.enable():

i € (player.getBankroll() >= hand.bet) I

i f (player.canSplit() && hand.canSplit())

split.enable(};

i f (val <= 11 && hand.cardCount() == 2)

doubledown.enable();

private Card deal ()

try f return deck.deal();)

catch (NoSuchElementException e) {

deck.reshuffle();

return deal();

I

} Jl end class BlackjackApplet

Chapter 6: Blackjack

	

129

130

	

Part II: Up to Speed

The HTML that loads the applet

The HyperText Markup Language (HTML) document invokes the Blackjack
applet using the following applet tag:

<APPLET CODE=BlackjackApplet WIDTH=480 HEIGHT=460>

<PARAM NAME= PLAYERS VALUE= Doug,Wayne,Fast Freddy

</APPLET>

The B 1 a c k j a c k A p p 1 e t gets going like this:

1. HTML passes the player names to the applet.

The applet automatically adjusts the layout for more or fewer players.

2. The applet uses a B o r d e r La y o u t to divide the applet into the dealer's
hand at the top (N o rth), the button controls in the middle (C e n -

te r), and the players at the bottom (S o u t h).

3. i n i t () creates a panel for each of the B o r d e r Lay o u t locations to
hold the individual components.

The

	

North

	

location contains only the dealer's hand, but still uses a
panel in order to prevent the border layout from resizing the dealer's
hand, and cause border layout to resize the panel instead. Each of
these panels uses the default F1 owLayout manager.

4. s et B u t t o n s () enables and disables the buttons to match the legal
options for a given point in the game.

The state-driven approach determines by examining the state of the
game the required state of the buttons.

5. d e a 1 () deals cards from the deck and automatically reshuffles if the
cards have all been dealt.

6. The applet spawns a new thread when the user presses the Deal
button.

The thread controls the tempo of the deal from the run () method.

7. After r u n () deals the initial hands, the applet's Deal thread needs to
wait for the players to play their hands.

run () calls wa i t () on the applet and waits for acti on () to handle the
user options.

8. n ex t H a n d () determines the next hand to play and sets it as the active
hand.

If the next hand is the dealer's hand, nextHand () calls not i fy () to
wake up the Deal thread. When the Deal thread wakes up, run () plays
the dealer's hand, settles the bets with each player, enables the Deal
button, and exits the thread.

The players

Each player requires additional user interface elements:

- Label s to display the player's name and current bankroll

- A C h o i c e selector to allow the amount of the next bet to be selected

- A P a n e 1 to display the player's Blackjack hand(s)

B 1 a c k j a c k P 1 a y e r panel groups together these interface elements. A
B 1 a c k j a c k P 1 a y e r also includes all the necessary methods and fields for
keeping track of a player. The following code implements B 1 a c k j a c k P 1 a y e r:

i mport java.awt.*;

class BlackjackPlayer extends Panel {

public static final int STANDARD BET = 10;

public static final int STANDARD-BANKROLL = 1000;

private static int[]

	

betAmount

I l, 5, 10, 20, 30, 50, 100, 200, 500, 10001;

private static int

	

playerCount;

private String

	

name;

private int

	

l astBet, bankroll, curHand,

numHands;

private final BlackjackPlayerHand[]

BlackjackPlayerHand getHand () I

return curHand >= numHands ? null : hands[curHand];

l

i nt getHandlndex () i

return curl-and >= numHands ? 1 : curl-and;

I

BlackjackPlayerHand nextHand ()

curHand++;

handsPanel.layout();

return getHand();

1

i nt getBankroll () (return bankroll; }

i nt getActiveHandCount () I return numHands; l

Chapter 6: Blackjack

	

131

(continued)

hands = new BlackjackPlayerHand[4];

private Label bankrollLabel;

private Choice betEntry;

private Panel handsPanel;

32

	

Part II: Up to Speed

(continued)

BlackjackPlayer (Container parent, String name,

i nt bankroll) I

parent.add(this);

setLayout(new BorderLayout()):

playerCount++;

i f (name == null)

name = Player

	

+ playerCount;

add(North ,

	

new

	

Label (this.name = name,

	

Label. CENTER));

i f (bankroll <= 0)

bankroll = STANDARD_BANKROLL;

String bankStr = Integer.toString(bankroll);''

Font font = new Font(Courier , Font.PLAIN, 10);

bankrollLabel = new Label(bankStr, Label.RIGNT);

betEntry = new Choice();

for (int ii = 0; ii < betAmount.1ength; ii++)

betEntry.addItem(Integer.toString(betAmount[iil));

bankrollLabel.setFont(font);

betEntry.setFont(font):

Panel pbank = new Panel();

add(Center , pbank);

pbank.add(bankrol]Label);

pbank.add(betEntry);

addToBankroll(bankroll);

setBet(STANDARDBET);

boolean canSplit () I return numHands < hands length; I

BlackjackPlayer (Container parent) I

this(parent, null, STANDARD_BANKROLL);

I

handsPanel = new Panel():

handsPanel.setLayout(new PlayerHandLayout(this, .3Of));

handsPanel.setBackground(Color.gray);

add(South , handsPanel);

for (int hh = 0; hh < hands.length; hh++)

handsPanel.add(hands[hh] =

new BlackjackPlayerHand(this));

public boolean action (Event evt, Object what)

i f (evt.target == betEntry)

setBet(Integer.parselnt(betEntry.getSelectedltem()));

synchronized void clearHands () {

while (numHands > 0)

hands[--numHandsl.clearHand();

curHand = 0;

handsPanel.layout();

synchronized void resolveDeal (BlackjackHand dealer) I

for (int hh = numHands; --hh >= 0;)

addToBankroll(hands[hh].winnings(dealer));

synchronized BlackjackPlayerHand newHand (int bet) I

BlackjackPlayerHand result = null;

i f (bet == 0)

bet = lastBet;

i f (numHands < hands.length && (bet = setBet(bet)) > 0)f

result = hands[numHands++];

addToBankroll(-(result.bet = bet));

handsPanel.layout();

return result;

i nt setBet (int bet) {

i f (bet > bankroll)

for (int i = betAmount.length;

i > 0 && (bet = betAmount[--i]) > bankroll;);

betEntry.select(Integer.toString(bet));

return lastBet = bet;

else

return super.action(evt, what);

return true;

void addToBankroll (int amount) I

this.bankroll += amount;

bankrollLabel.setText(Integer.teString(this.bankroll));

I /I end class BlackjackPlayer

Chapter 6: Blackjack

	

133

4

	

Part II: Up to Speed

The responsibilities of a B 1 a c k j a c k P 1 a y e r are

V A B 1 a c k j a c k P 1 aye r can have up to four hands active at once. The
h and s C] array field stores all the hands.

- BlackjackPlayer uses a BorderLayout and places the name label in
the

	

N o r t h

	

location, the current bankroll and the bet selector in
the

	

C e n t e r , and the player's Blackjack hands in the

	

S o u t h .

- g e t H a n d () and n ext H a n d () return and update the current active
hand. n ewH a n d () activates a new hand after first checking that the
player has enough money to cover the bet.

V The addToBankro110 and setBet() methods manage the player's
money. These methods are responsible for making sure that the player
never gambles money he doesn't have.

V B 1 a c k j a c k P 1 aye r overrides a c t i o n () to handle the events from the
C h o i c e selector used to set the player's next bet.

The players' hands

The hand for a player is a specialized case of the B 1 a c k j a c k H a n d that the
dealer uses, as discussed earlier in this chapter. On top of the dealer's
hand's function, the player's hand has to handle the additional duties of
wagering and splitting. The B 1 a c k j a c k P 1 a y e r H a n d extends the
B1 ackjackHand like this:

import java.awt.*;

class BlackjackPlayerHand extends BlackjackHand I

i nt bet;

private boolean hasSplit;

BlackjackPlayerHand (Container parent) I

super();

horizInset = 3;

parent.add(this);

protected boolean isDealer () { return false

boolean blackjack () {

return !hasSplit && super.blackjack();

1

boolean canSplit () I

return hand.size() == 2 && value(o) == value(1);

void clearHand () f

super.clearHand();

hasSplit = false;

1

void split (BlackjackPlayerHand splitHand) {

splitHand.deal((Card)hand.elementAt(l)):

hand.removellementAt(l);

hasSplit = splitHand.hasSplit = true;

int winnings (BlackjackHand dealer) i

i nt hval = value();

i f (hval <= 21) I

i f (blackjack()) I

i f (dealer.blackjack())

return bet;

else

return (bet << 1) + (bet » 1);

else i

int dval = dealer.value();

i f (rival ? 21 () rival < hval)

return bet <(1;

else if (dual == hval && !dealer.blackjack())

return bet;

return

36

	

Part II: Up to Speed

0 • • 0 ! 0 • t

	

• 0 0 0 0 0 • 0 • 0 ! • 0 0 0 0 0 6 0 0 0 0 • 0 0 • 0 0 Y` 4 0 0 8

w This Chapter

Creating block and wall mazes
Generating random mazes

p. Solving mazes using the right-hand rule
Solving mazes using breadth-first searching

em. Displaying 2-D mazes

0*00:*0*sa*si*sesoss*a0s00so*00a0000s*os®s09***0

Computer games are about challenges that the game player attempts to
overcome. A maze is a confusing, intricate network of passages. The

challenge of finding your way around a maze makes computer games and
mazes a perfect match. In one form or another, many games base their game
environments on a maze. Here are some examples of the types of mazes
computer games use:

Chapter 7

2-D Maze

V Adventure games use graph mazes in which locations in the environ-
ment connect to each other in an arbitrary arrangement. Any point
on the graph can connect to any other point. These mazes have less to
do with representing a physical structure than with organizing the
sequence in which the game is played.

r Games like PacMan and DungeonMaster use a block grid maze in
which a flat grid of uniform rectangles defines the maze. Each square
is either open (a floor) or closed (a solid wall).

v Wizardry, one of the original fantasy role-playing games, uses a wall
grid maze in which a flat grid of uniform rectangles defines the
maze. The edges of the rectangles define the walls, and the planes of
the rectangles define the floor and ceiling.

v Games like Doom use an extruded polygon maze in which adjacent
polygonal columns define the regions in the game. The bottom and
top surfaces of the polygonal column define the floor and ceiling, and
the sides of the columns define the walls. (Doom varies the height of
the floor and ceiling polygons in order to effectively create the illusion
of a 3-D maze, but the actual topography of the maze is two-dimensional.)

138

	

Part II: Up to Speed

This chapter shows how to create block and wall grid mazes and how to find
a path between two locations in a maze. Chapter 8 uses the block maze from
this chapter as a playing field for "intelligent" computer adversaries called
sprites that incorporate the capability of navigating a maze.

Creating the M a z e Class

You use a two-dimensional array to represent grid mazes. Wall and block
mazes (both types use a grid) have many common features, so the mazes
this chapter presents use a common a b s t r a c t class named M a z e. M a z e

extends the C a n v a s component from the j a v a . a wt package so that a maze
can display itself. The W a 1 1 M a z e and B 1 o c k M a z e classes extend M a z e to
implement the features specific to each type of maze.

You can extend an abstract class, but you can't instantiate (have objects
created from) the class. You use abstract classes as superclasses to imple-
ment common functionality for subclasses. An abstract class can contain
abstract methods. Abstract methods don't have implementations and simply
define methods that must be implemented by nonabstract subclasses.

The M a z e class uses a two-dimensional array of bytes (a by t e holds an 8-bit
value in the range -128 to 127) to represent the maze. Each byte in the array
represents a single rectangle in the grid that makes up the maze. The values
in the array have different meaning in the W a 1 1 M a z e and B 1 o c kM a z e sub
classes. However, both classes reserve the high bit (the bit corresponding to
the value 0x80) in each byte for the display code in Ma ze. The display code
(the methods in Maze involved with drawing the maze on the screen) uses
the high bit as a D I RTY flag to keep track of which squares have changed
since p a i n t () drew them on the screen - when the high bit is set to one,
the square is "dirty" and needs to be drawn. (The "Displaying a 2-D Maze"
section later in this chapter discusses how Maze uses the DI RT Y flag.)

Computers store values using binary numbers composed of a series of bits
set to 0 or 1. The bits are ordered from the high bit on the left to the low bit
on the right. Sometimes it is useful to use the individual bits to store several
values in a single number.

The declaration of the M a z e class starts with the following:

i n, pcrt

	

java.awt.

abstract class Maze extends Canvas {

static final byte TOP

	

= 0x01;

Fqprre 1-t:
block
- aze.

protected byte[][] maze;

protected: abstract byte

	

i nitSq

	

();

M a z e also contains a c 1 e a r M a z e () method for initializing a blank maze.
Because wall and block mazes use different values for the squares in the
m a z e [] [] array, M a z e defines the abstract method i n i t S q () to return the
initial value for the squares with this line:

protected abstract byte initSq ();

Declaring i n i t S q () as an a b s t r a c t method requires that any classes that
extend the M a z e class must implement i n i t S q ().

The complete source code for the Ma ze class is on the Java Game Program-
ming For Dummies CD-ROM at the back of this book.

The B 1 o c kM a z e subclass
Each square in a block maze is either floor or wall. Figure 7-1 shows an
example of a block maze.

To extend M a z e to implement a block maze, you implement the abstract
method i n i t Sq () that Maze defines. The portion of the B 1 ockMaze class
responsible for representing the maze looks like this:

public class BlockMaze extends Maze

public static final byte WALL = 0, FLOOR = 1;

protected byte initSq () { return (byte) (WALL I DIRTY); 1

E // end class BlockMaze

Chapter 7:2-D Maze

	

139
static final byte RIGHT = 0x02;

static final byte BOTTOM = OxO4;

static finial byte LEFT = OxO8;

static final byte DIRTY = (byte) OxBO;

160

	

Part II: Up to Speed

Figure 7-2:
A wall
maze.

The code (WA L L

	

I

	

D I RTY) "ORs" the D I RTY flag with the WA L L value to set
the high bit and indicate that the code has changed the square since the last
time the maze displayed the square, or in this case, has set a square that
has never been displayed.

The W a 11 Maze subclass
Each square in a wall maze needs to keep track of which sides of the square
have walls and which sides are open. Figure 7-2 shows an example of a wall
maze.

You give squares the capability to keep track of themselves by setting or
clearing a different bit for each wall in the byte for the maze E 1 E 1 grid
square. You set the bit when the wall exists and clear the bit when the wall
is open. The LEFT, RIGHT, TOP, and BOTTOM static final variables in Maze

define the bit values used in maze E] E 1. The portion of the Wa 1 1 Ma ze class
responsible for representing the maze looks like

public class WallMaze extends Maze

public static final byte BLOCKED =

(byte) (TOP I RIGHT I BOTTOM) LEFT):

protected byte initSq () l

return (byte) (BLOCKED I DIRTY);

end class WallMaze

You display a square with all walls set as a solid wall. The static final
B LOCKED variable holds the value with all the walls set - a solid wall is
BLOCKED on all sides. i ni tSq() creates its return value from BLOCKED.

Note that because squares share walls with adjacent squares, ma ze E 1 E 1

records every interior wall in the two squares that share it. (We define an
interior wall as a wall between two squares as opposed to an exterior wall
on the edge of the maze.) Recording the wall in two places means that you
must always change both squares when setting or clearing a wall. Although
this approach is redundant and therefore susceptible to errors, it makes

People count using decimal numbers. Each
digit in a decimal number can be one of the ten
values from 0 to 9. The decimal counting sys-
tem is called base 10because it has ten digits.

People probably use decimal numbers be-
cause our counting system arose from primi-
tive people counting on their fingers. You (most

likely) have ten fingers and can represent ten
different values by holding up some number of

ur fingers.

Computers don't have fingers to count on - at
ast not yet- and instead use a series of on/

off values as a counting system. Every value

€ ored in a computer is composed of bits. Each
i s either an off value or an on value. By

c--nvention, an off bit represents the value 0
ar d an on bit represents 1. The computer rep-
resents values l arger than 1 by combining bits
t= form base 2 or binarynumbers.

,lava doesn't have a representation for using
msnary numbers in your code, but it does have
_-e for hexadecimal (base 16)numbers. In the

-=xadecimal counting system, each digit is
icr- of the values from 0 to 9 or from A to F
rr-ere A = 10, B = 11, and so on. A hexadeci-
na digit represents exactly four binary digits
sc converting between hexadecimal and bi-

~rary numbers is relatively easy. You indicate a
hexadecimal number in Java by beginning the
member with a zero followed by an x, like this:

example, the decimal number 23 is 10111
a binary and 0x17 in hexadecimal. 23 stands

checking for walls easier than if ma ze C] C 7 were to record the walls in only
one square. Given that a game typically changes the maze much less fre-
quently than it checks the state of the maze, making checking the maze

easier than changing it is a good trade-off.

,x10 OxAlB2C3 OxDEADBEEF 0x17

Working with bits

Chapter 7: 2-D Maze

	

161

for 2 tens and 3 ones; 10111 stands for 1 six-
teen, 0 eights, 1 four, 1 two, and 1 one; and
0x17 stands for 1 sixteen and 7 ones.

20+3 = 23 10 = 16+4+2+1 = 10111 = 16+7 = 17 16

You use the "bitwise" operators &, I , A,-,<<,

>>, and >>> to work with individual bits and
the "or" (I) operator to set or combine bits:

x 1 = 1 // sets the ones bit in x

You use the "and" (&) operator to clear or test
bits:

(x & 1) != 0 // true if the ones bit in

x is set

x &= 1 // clears all bits in x except the

ones bit.

You use the "exclusive-or" (^) operator to
toggle bits:

x ^= 1 // toggle the ones bit in x (0-

>1, 1->0)

You use the "bitwise complement" (~) opera-
tor to toggle all the bits in a value:

x &= -1 // clears the ones bit in x

You use the "left shift" operator («) to move
all the bits in the value to the left:

x «= 1 // equivalent to x *= 2 (10111 «

1 = 101110)

You use the "right shift" operator (> >) to move
all the bits in the value to the right:

x >>= 1 // equivalent to x i=

1 = 1011)

142

	

Part II: Up to Speed

Generating a Maze
One way to add infinite variety to your game is to randomly generate the
game environment. The problem with random-generated environments is
that they tend to be less interesting than hand-crafted environments.
However, when the central element in the game environment is a maze, pva
have some good reasons to use a randomly generated maze rather than a
hand-crafted maze:

ri To prevent players in a multiplayer game from gaining or losing
advantage due to familiarity with the terrain.

r To connect hand-crafted environments with sections of randomly
generated mazes so that each time the player plays the game, or
perhaps each time they enter the section with the generated maze,
the maze is different.

ci To create environments that extend indefinitely.

V To reduce download time by creating the environment on the
player's browser instead of downloading it.

V Because solving the maze is the game.

The code in this section generates mazes that start on the left edge and
finish on the right edge. The only reason the maze generation uses start and
finish squares is to make the animations for generating and solving the maze
more interesting. You can arbitrarily select start and finish squares, if you
even need them, after generating the maze.

Selecting an algorithm
You can use a number of different algorithms to generate mazes. The most
important consideration when selecting an algorithm is what type of maze
you want to generate. Some of the questions to consider when selecting a
maze generation algorithm are

V Do you want to be able to navigate between any two points in the
maze?

v Do you want the maze to connect back on itself so that it has more
than one path between two points in the maze? If so, how much

	

r
interconnection do you want?

r Do you want rooms or open spaces in the maze?

r Do you want a dense maze or a sparse maze?

:*41 0MI Wk,.

	

..

	

. . .

	

_

	

.

	

_ .

	

_ `

	

.

oO Do you want to favor straight hallways or twisty passages?

- Do you want lots of branching passageways or longer stretches
between branches?

This section shows you how to implement two different maze generation
algorithms: one for generating wall mazes and one for block mazes. Both of
these algorithms create dense mazes that allow navigation between any two
points in the maze.

The wall maze algorithm creates mazes that have a single path between any
two points in the maze, are constructed entirely of passages with no open
space, and favor twisty passages with moderate branching.

The block maze algorithm is configurable: You can change the settings for
the generator in order to produce generated mazes with different character-
istics. The default settings create mazes that allow multiple paths between
points, have small rooms and open spaces, and favor straighter passages
with lots of branching.

Wall mazes and block mazes impose different constraints on the generator.
In particular, block mazes are a little trickier to generate because you have
to leave room in the grid to create walls. Wall mazes can place a wall be-
tween any two squares on the grid, so you don't need to reserve squares on
the grid to separate passages.

In general terms, the algorithm for generating a maze is

1. Initialize the maze so that every square is a solid wall.

2. Select a square in which to start the maze.

3. Extend the path from the selected square to an adjacent square.

4. Select a square on the current path.

Chapter 7:2-D Maze

	

143

Frequently, the algorithm selects the adjacent square from Step 3 in
order to continue along the same path.

5. Repeat Steps 3 and 4 until done.

The algorithm may consider the maze done when all squares have been
included, or may use a combination of criteria to decide to call it quits.

The wall maze and block maze generation algorithms are both based on this
general maze-generating algorithm, but the specific details of each algorithm
vary. In particular, the algorithms differ in how they choose the adjacent
square in Step 3 and how they select a new square in Step 4.

144 Part II: Up to Speed

Adding to the M a z e class

You add the common methods and fields needed to generate mazes to the
Maze superclass. (The "Creating the Maze Class" section earlier in this
chapter presents the Maze class.) You add the specific generation algo-
rithms to the W a 1 1 M a z e and B 1 o c k M a z e subclasses. Here are the fields and
methods you add to the Ma ze superclass to keep track of which squares am
"dirty" and need to be redrawn by p a i n t 0 f f screen Image()

protected

	

i nt mi nXdirty,

	

mi nYdirty,

	

maxXdirty,

	

maxYdirty;

protected int dirtySquare (int x, int y)

i f (x < minXdirty) minXdirty = x:

i f (x > maxXdirty) maxXdirty = x;

if (y < minYdirty) minYdirty = y;

i f (y > maxYdirty) maxYdirty = y;

return maze[xl[y] 1 = DIRTY;

The (mi nXdi rty, mi nYdi rty) and (maxXdi rty, maxYdi rty) fields keep
track of the upper-left and lower-right limits of the squares that have
changed - and are therefore "dirty" - since p a i n t 0 f f screen Image()

drew them. The d i r ty S q u a re() method maintains the "dirty" fields. You
use the "dirty" fields and methods to minimize the work done to redraw the
screen. The "Displaying a 2-D Maze" section later in this chapter shows how
the dirty fields help minimize redraw time.

If you don't keep track of which part of the maze has changed, you have to
draw the entire maze each time it changes, and the animation rate slows
down dramatically under most Web browsers and Java runtimes.

You also add declarations to M a z e for the following abstract methods that
must be implemented by subclasses of Maze:

abstract boolean isOpen (int x, int y):

abstract void generate (boolean displaySearch);

The a b s t r a c t method i s 0 p e n () defines a method to test a square in the
maze grid in order to determine whether it's a solid wall. Each type of maze
implements a different test.

Maze defines the abstract method generate(), which the classes that
extend M a z e implement in order to generate the maze. g e n e r a t e () accepts
a b o o 1 e a n parameter of t r u e if you want the maze to display its progress as
it builds itself. You pass f a 1 s e to g e n e r a t e () if you don't want the
progress of the maze displayed as it's built.

Generating a wall maze
Here are the steps the W a 1 1 M a z e class uses to generate a maze:

1. Set all the squares in the maze grid to the B LO C K E D state.

Chapter 7:2-D Maze

	

165

2. Randomly select a square on the left edge of the maze as the current
square, clear the wall on the left side of the square, and set 1 a s t S i d e

to LEFT.

3. Randomly choose a sequence to rotate through the remaining sides
(the sides other than 1 a s t S i d e) of the current square.

4. Set nextSi de to the next selected side in the rotation.

5. If a BLOCKED square lies adjacent to the nextSi d e of the current
square, go to Step 9.

6. If more sides remain in the rotation sequence decided on in Step 3,
go to Step 4.

7. You get to this step when the current square isn't adjacent to any
BLOCKED squares. Randomly select a non-BLOCKED square (a square
already added to the maze) as the current square.

This creates a new branch in the maze by starting a path at the newly
selected square.

8. Set 1 a s t S i d e to one of the open sides of the selected square and go
to Step 3.

9. You get to this step when you have found a square to add to the
maze. Remove the wall between the current square and the square
adjacent to its next Si de.

10. Set the new current square to the adjacent square and set 1 a s t S i d e

to the wall of this square removed in Step 9.

This sets 1 a s t S i d e to the side opposite n e x t S i d e. For example, if
nextSi de is TOP, the new 1 astSi de is BOTTOM.

11. If any BLOCKED squares remain in the maze grid, go to Step 3, other-
wise you're done.

The W a 1 1 M a z e class implements the abstract methods i s 0 p e n () and
g e n e r a t e () defined in the M a z e superclass like this:

public boolean isOpen (int x, int y)

return inBounds(x, y) && sqr(x, y) != BLOCKED:

(continued)

46

	

Part II: Up to Speed

(continued)

public synchronized void generate

(boolean displayConstruction)

i nt xx, yy, sq, lastSide = LEFT;

i nt count = mzWid * mzHyt, threshold = count

// Step #1 - initialize the maze

clearMaze();

i f (displayConstruction)

showMaze(true);

// Step #2 - select and set the starting square

startX = xx = 0;

startY = yy = rint(mzHyt);

sq = (byte) ((BLOCKED I DIRTY) & LEFT);

while (-- count >= 0) {

// Step #3 - choose a sequence to rotate thru the sides

i nt nextSide, nx = 0, ny = 0, nsq;

int scnt = 3; // 9k of sides left to try in current sqr"

i nt sideInc = rint(3); // offset from lastSide to try

boolean branch = false, found = false;

do {

// Step #4 - set nextSide to direction to search

nsq = 0;

if ((nextSide = lastSide << (sideInc + 1)) > BLOCKED)

nextSide >>= 4;

switch (nextSide) { // get next square to add to maze

case TOP:

i f (yy > 0)

nsq = sgr(nx = xx, ny = yy

break;

case BOTTOM:

i f (yy < mzHyt - 1)

(ail

	

nsq = sgr(nx = xx, ny = yy + 1);

break;

case LEFT:

i f (xx > 0)

nsq = sgr(nx = xx - 1, ny = yy);

break:

case RIGHT:

i f (xx < mzWid - 1)

nsq = sgr(nx = xx + 1, ny = yy);

else if (finishX < 0) I // mark sqr as maze exit

found = branch = true;

finishX = xx; finishY = yy;

break;

}

if (!found) f

if (nsq == BLOCKED)

	

// unused square, use it

found = true;

	

// Step #5 - add the square

else if (--sent > 0)

	

J/ try next direction

sideInc = (sideInc + 1) % 3; // Step #6 - new side

else ''// dead end, start a new branch

branch = true;

	

// goto step #7 below
I

i f (found 1 1 branch)

// Step #9 - add the square to the maze

l/ sq contains the current square which was either

-

	

1/ inited in step #2 before the main loop, or set in

// step #9a below. If found then the nextSide

// wall is cleared in sq before setting maze[][]

maze[xx][yyl = (byte)

(found

	

?

	

(sq

	

& -nextSide)

	

:

	

sq);

dirtySquare(xx, yy);

i f (displayConstruction)

showMaze(false);

i f (branch) f

// Step #7 - select a square to branch from

i f (count < threshold) I

// exhaustively search for remaining squares

sq = BLOCKED;

SEARCH:

	

for (xx = 0; xx < mzWid; xx++

for (yy = 0: yy < mzHyt; yy++)

i f (sgr(nx, yy) == BLOCKED)

i nt dir = rint(4);

for (int ii = 4; --ii >= 0;) f

nx = xx; ny = yy;

switch (dir = ++dir & 3)'I

case 0: nx--; break;

case l: nx++; break;

case 2: ny--; break;

case 3: ny++; break;

1

if (inBounds(nx, ny) &&

(sq = sqr(nx, ny)) != BLOCKED) {

xx = nx; yy = ny;

break SEARCH; // found sqr for branch

!

i f (sq _= BLOCKED)

break; // maze done

Chapter 7:2-D Maze

	

1

(continued)

148

	

Part II: Up to Speed

(continued)

i f (finishX (0) f // no exit square selected, do it now

maze[xx - mzWid - 1l[yy = rint(mzHyt)[&= (byte)-RIGHT:

dirtySquare(xx, yy);

i f (displayConstruction)

showMaze(false):

1

else I // randomly search for a sqr for new branch

do i

xx = rint(mzWid);

yy = rint(mzHyt):

sq = sqr(xx, yy);

} while (sq == BLOCKED);

// Step ##8 - set lastSide to an open side

for (lastSide = l: (lastSide & sq) != 0;.)

lastSide <<= l;

scnt = 3;

sideInc = rint(3):

branch = found = false;

} while (!found);

// Step ##10 - init the new square and set lastSide

if ((lastSide = nextSide << 2) > BLOCKED)

lastSide >>= 4;

sq = nsq & -lastSide; // Step ##9a

xx = nx; yy = ny;

if (!displayConstruction && (count & OxFF) == 0)'

Thread.yield(): // give some time to other threads
I/ Step ##11 - check for more squares (at top of loop)

if (!displayConstruction)

repaint();

} // generate()

Notice that each time the code modifies them a ze[] C] array, it calls
d i r ty Sq u are() to tell the display code that it needs to redraw the square.
Also, if displayConstruction is true, the code calls showMaze() to display
the maze after it adds a square to the maze. You call showMaze() to animate
the progress of the maze generation. (The "Displaying a 2-D Maze" section
l ater in the chapter discusses how s h owMa z e () works.)

Step 7 in g e n e r a t e () employs two different strategies for picking a random
square from which to start a new branch. When lots of BLOCKED squares
remain, g e n e r a t e () randomly selects squares in the grid until it finds an
unblocked square. Using random selection creates more interesting and
varied mazes. When the number of BLOCKED squares remaining in maze[][]
falls below the t h r e s h o 1 d level - arbitrarily set to 1/8 of the total grid
squares - the code uses an exhaustive search to find the remaining
BLOCKED squares. An exhaustive search quickly adds the remaining squares
to the maze, additions that could take a long time to make randomly.

Generating a buck maze
The block maze algorithm maintains a list of squares that it must explore.
The algorithm adds squares to the list as it adds them to the maze grid.
Each square in the list keeps track of the unexplored directions from itself.
Each square also remembers the direction in which the search was proceed-
ing when the particular square was added to the list so that the algorithm
can give a preference to continuing to search in the same direction. Each
entry in the list is an object of the Sq r class shown here:

class Sqr

private boolean t, b, 1, r; !/ top, bottom, left, right

private int

	

dir;

	

// direction square entered

int

	

x, y;

	

// coordinates of square

Sqr (int x, int y, int dir,

boolean t, boolean b, boolean l, boolean r) {

this.x = x; this.y = y; this.dir = dir;

this.t = t; this.b = b; this.] = 1; this.r ° r;

// open() returns a count of the unexplored directions

i nt open () i

return (t ? 1:0) + (b ? 1:0) + (r ? 1:0) + (1 ? 1:0);

1

i nt select (int n, boolean sameDir)

// Step #6b - select dir to explore and mark as explored

i f (sameDir) // try to expand in dir square was entered

switch (dir) i

case Maze.TOP:

	

i f (t) { t = false; return dir; }

break;

Chapter 7:2-D Maze

	

169

(continued)

150

	

Part II: Up to Speed

(continued)

case Maze.BOTTOM: if (b) I b = false; return dir; 1

break;

case Maze.LEFT;

	

i f (1) 1 1 = false; return dir; 1

break;

case Maze.RIGHT: if (r) I r = false: return dir; }

break;

// return the n th unexplored direction

i f

	

(t && --n < 0) (t = false; return Maze.TOP; I

else if (b&& --n < 0) 1 b = false; return Maze.BOTTOM;l

else if (r && --n < 0) (r = false; return Maze.RIGHT;

else

	

{ 1 = false; return Maze.LEFT: 1
I

i /l end class Sqr

The open () method in the Sq r class returns the number of unexplored
directions from the square. s e l e c t () returns an unexplored direction and
then marks the direction as explored.

Here are the steps the B 1 o c k M a z e class uses to generate a maze:

1. Set all the squares in the maze grid to WALL.

2. Randomly select a noncorner square on the left edge of the maze and
set the square to FLOOR. Create a Sqr object with the RIGHT direction
unexplored and add it to the list of available squares.

3. If the list of available squares is empty, you're done.

4. Select a square to explore from the list of available squares.

5. If less than two unexplored directions are available from the square.
remove the square from the list of available squares.

The single remaining direction is the last direction to explore, so you
remove the square from the list.

6. Select a direction to explore from the square and mark the direction
as explored.

7. Check to see whether you need to add the square in the selected
direction to the maze grid.

If the answer is "yes," add the square to the maze and to the list of
available squares. When adding the square to the list of available
squares, mark all of the directions to explore from the square to the
directions that contain adjacent WALL squares.

8. Go to Step 3.

The B 1 o c k M a z e class implements the abstract methods i s O p e n () and
generate() defined in the Maze superclass. generate() in turn uses the
private method tryDi r(). tryDi r() uses the private methods
blocked(), noDi ag (), and an overloaded version of i sOpen(). (Remem-
ber, an overloaded version of a method is an alternate method that accepts
different parameters.) Here are fields and methods you add to B 1 o c kM a z e to
generate mazes:

private Vector pending; // list of available Sqr objects

private int strt = 70; // prcb of exploring from same sqr

private int sdir =

	

60;

	

// prob of exploring in same dir

private int thru = 90; // prob of blocking thru loop

private int side = 60; // prob of blocking wide area

private int diag = 100; // prob of blocking diag connection

private int dens = 15; /I prob of leaving areas unexplored

public boolean isOpen (int x, int y)

return inBounds(x, y) && sqr(x, y) == FLOOR;

private boolean isOpen (int x,

	

i nt y,

	

i nt al lowProb)

reti~~rn

	

_

	

, (allowProb)

	

&&

	

i sOpen(x,

	

y);

private boolean blocked (int x, int y) i

return inBounds(x, y) && sgr(x, y) == WALL;

private boolean noDiag (int x, int y, int dx, int dy) {

return blocked(x + dx, y) && blocked(x, y + dy) &&

isOpen(x + dx, y + dy, diag);

private boolean tryDir (int x, int y, int dir) {

ll Step #7 - check if adjacent square in direction dir

//

	

should be added to the maze

switch (dir) f

case TOP:

Y ;

i f (isOpen(x, y-1, thru)

isOpen(x-1, y, side) I ~ i sopen(x+l, y, side)

noDiag(x, y, -1, -1) ~~ noDiag(x, y, 1, - 1))

return false;

break;

Chapter 7: 2-D Maze

	

151

(continued)

52

	

Part 11: Up to Speed

(continued)

case BOTTOM:

y++;

i f (isOpen(x, y+1, thru)

isOpen(x-1, y, side) ~ I isOpen(x+1, y, side)

noDiag(x, y, -1, 1) ~ I noDiag(x, y, 1, 1))

return false;

break;

case LEFT:

i f (isOpen(x-1, y, thru) I (

isOpen(x, y-1, side) ~~ isOpen(x, y+l, side)

noDiag(x, y, -1, -1) ~~ noDiag(x, y, -1, 1))

return false;

break;

case RIGHT:

x++:

i f (isOpen(x+l, y, thru) I I

i sOpen(x, y-1, side) ~ I isOpen(x, y+1, side) ~~

noDiag(x, y, 1, -1) I I n,oDiag(x,, y, 1, 1))

return false;

break;

1

if (finishX < 0 && x == mzWid-1)

finishX = x;

	

finishY = y;

	

// found exit

I

else

	

i f

	

(x

	

<=

	

0

	

I I

	

x

	

>=

	

mzWid -1

	

I I

	

y

	

<=

	

D

	

()

	

y

	

>=

	

mZHyt-1)

return false; /I square on border or out of bounds

else {

Sqr sq = new Sqr(x, y, dir,

blocked(x, y-1), blocked(x, y+l),

blocked(x-l, y), blocked(x+1, y));

// if pruning density, replace last pending Sqr

if (pending.size() > 10 && prob(dens))

pending.setElementAt(sq, pending.size() -, 1);

else // not pruning, add pending Sqr to list

pending.addElement(sq);

maze[x][y] = FLOOR;

dirtySquare(x, y);

return true;

public synchronized void generate

(boolean displayConstruction)

i nt free, idx;

/ / Step #1 - initialize the maze

clearMaze();

i f (displayConstruction)

showMaze(true);

// Step lit - select and set the starting square

pending = new Vector();

maze[startX = 01[startY = rint(mzHyt - 2) + 11 = FLOOR;

dirtySquare(startX, startY);

pending.add[lement(new Sgr(startX, startY, RIGHT,

false, false, false, true));

// Step #3 - loop until list of squares is empty

while (!pending.isEmpty()) i

// Step #4 - select a square to explore

i f (prob(sdit))

idx = pending.size() - l;

	

// continue with last Sqr

else

i dx = rint(pending,size()); // choose random Sqr

Sqr next = (Sqr) pending.elementAt(idx);

ll Step #5 - remove square if no more sides to explore

// Also randomly remove squares to reduce maze density.

i f ((free = next.open()) <= 1 1 1

(pending.size() > 10 && prob(dens)))

pending.remove[lementAt(idx);

i f (free > 0)

// Step 4i6a

	

-

	

select a

	

direction to explore

i f (tryDir(next.x, next.y,

next.seleet(rint(free), prob(sdir))))

i f (displayConstruction)

showMaze(false);

Step #8 - explore another square

1' (ldisplayConstruction),

repaint();

1 // generate()

Chapter 7: 2-D Maze

	

1

The key to generating an interesting block maze is how Step 7 in the method
t ry D i r () decides whether to add a square to the maze. t ry D i r () looks at
the squares surrounding the new square candidate. Figure 7-3 shows the
operations t ry D i r () performs when the d i r parameter is R I GHT.

156

	

Part II: Up to Speed

Figure 7-3:
Checking a

square in
tryDi r
(x. Y,

RIGHT).

Square at (x, y)
coordinates passed
to tryDi r()

Target square
at (++x, y)

	

isOpen(x, y+1, side)

Here is the code from the t ry D i r () s w i t c h statement:

case RIGHT:
x++;

i f {isOpen(x+1, y. thru) ~ ~
i sOpen(x, y-1, side) ~ ~ isOpen(x, y+1, side)

noDiag(x, y, 1. -1) ~ ~ noDiag(x, y, 1, 1))

return false;

break;

The first thing the code does is increment x to adjust the (x, y) coordinates
from the current square (square 1 in Figure 7-3) to the new square candidate
(square 2). Working from the candidate square, the code calls i s0pen (x+1.
y ,

	

t h r u) to check whether the square to the right (square 3) is a floor
square. Here is the i s0pen () method:

private boolean isOpen (int x, int y, int allowProb) I

return prob(allowProb) && i sOpen(x, y);

I

The thru parameter specifies the probability (from 0 to 100) that i s0pen()
returns t r u e regardless of whether or not the square is open. Because t h r u
is 90 and square 3 in Figure 7-3 is open, there is a 90 percent chance that
p rob (90) returns t r u e and a 90 percent chance that the first call to
i sOpen() returns true. If i sOpen() returns true, tryDi r() returns fal se
and doesn't use the square.

Even if t ry D i r () decides not to use the square this time, the square could
still be selected when evaluated from another direction. For example, square 2
in Figure 7-3 could be selected when moving to the L E FT from square 3.

Assuming that the first test beats the odds and i s 0 p e n () returns f a 1 s e, the
next check i s 0 p e n (x ,

	

y -1 ,

	

s i d e) looks to see whether the square to the
top (square 4 in Figure 7-3) is open. The s i d e probability is 80 percent, but
because square 4 is a wall, i s o p e n () returns f a 1 s e regardless of the results
of the probability test. The next check is for the other side at the bottom
(square 5); square 5 is also a wall square, so i s0pen () again returns f a 1 s e.

The last two checks are looking to see whether using square 2 creates two
diagonally opposed open squares, as shown in Figure 7-4.

The test n o D i a g (x ,

	

y ,

	

1 ,

	

-1) checks to see whether using square 2
creates diagonally opposed open squares between squares 2 and 6 in
Figure 7-3. The n o D i a g () test is

private boolean noDiag (int x, int y, int dx, int dy) I

return blocked(x + dx, y) && blocked(x, y + dy) &&

i sOpen(x + dx, y + dy, diag):

Table 7-1 shows all the settings that you can tinker with to change the
characteristics of the maze that B 1 o c k M a z e generates. You change the
settings by changing the initialization values of the private fields in the
Bl ockMaze class.

Chapter 7: 2-D Maze

	

155

noDi ag() first checks that both of the other opposing corners (squares 4
and 3 from Figure 7-3 in this case) are wall squares. If they are, it checks
whether the diagonal square (square 6) is open. However, because
B 1 o c k M a z e sets the d i a g probability to 100, t ry D i r () never uses a square
that creates diagonally opposed open squares.

Although diagonally opposed open squares don't create a faulty maze, they
are aesthetically undesirable, at least when viewed from overhead.

56

	

Part II: Up

sowing Mazes
You solve a maze by finding a path between two points in the maze. Games
need to solve mazes in order to allow computer adversaries to navigate
through the maze. This section shows how to implement algorithms to find
a path through the maze. Chapter 8 discusses how to use the capability to
navigate through mazes to instill "artificial intelligence" in your computer
opponents.

Representing the solution
You declare the following two-dimensional array of bytes in the Maze class
to keep track of a maze solution:

protected byte[][] path;

Each entry in the array records the sides of the corresponding maze square
through which the solution passes. You mark a path in the array by setting
the bit for the corresponding side. The static final fields L E FT, R I GHT, TOP,
and BOTTOM in the Maze class define the bits. For example, if the path enters
the left side of the square and exits out the top, the entry in p a t h [I [I is

(LEFT I TOP).

You add the following methods to the M a z e class to define the methods for
traversing the maze:

to Speed

Table 7-1 B1 ockMaze Maze Generation Settings

Field Default Increasing This Value Generates a Maze That...

s t rt 70 has longer uninterrupted passageways

s d i r 60 has straighter passageways with fewer turns

thru 90 has fewer loops and alternate paths

side 60 has fewer open areas and fewer areas wider than the
passageway

diag 100 allows fewer diagonally opposed squares like the
squares shown in Figure 7-4

dens 15 has more walls and a lower path density

dlpe 7-5:

Reverse

maze

using the

left-hand

rule.

abstract boolean traverse (int startX, int startY,

int finishX, int finishY,

boolean displaySearch);

public boolean traverse (boolean displaySearch) I

return traverse(startX, startY, finishX, finishY,

displaySearch);

The classes that extend Ma z e must implement the abstract method
traverse(). You declare the overloaded traverse(bool can

d i s p 1 a y S e a r c h) method to use as a shortcut for traversing from the start
and finish squares of the maze.

Keeping your !eft hand on the wa!!
A relatively simple yet effective strategy for traversing a maze is to keep
your left or right hand in contact with the wall as you move through the
maze. Keeping your left hand on the wall causes you to take all the left-hand
branches. When you reach a dead end, your hand sweeps along the dead-
end wall and you start walking back down the path. Figure 7-5 shows tra-
versing a maze while keeping the left hand on the wall.

Chapter 7:2-D Maze

	

15 7

The left-hand (or right-hand) rule only works reliably for mazes with a single
solution between any two points. If a maze has more than one solution, you
can end up traveling in an endless circle if you follow the left-hand rule. To
see why you can move in an endless circle, consider a hallway with a
column in the middle. Your objective in this simple maze is to get from one
end of the hall to the other with two solutions: You can go around the
column to the left or to the right. If you happen to start your search with
your hand on the column, you perpetually walk around the column; your
hand never leaves the column, and you never reach the goal of the maze.

58

	

Part II: Up to Speed

public synchronized boolean traverse

The W a 1 1 M a z e class implements the left-hand rule traversal algorithm
like this:

(int xx, int yy, int fx, int fy, boolean displaySearch)

i f (!inBounds(xx, yy) J 1 ! i nBounds(fx, fy))

return false;

int

	

count = 0, sq = maze[xx][yy];

int

	

side = LEFT, sx = xx, sy = yy;

boolean solve = (xx == startX && yy == startY &&

fx == finishX && fy == finishY);

resetpath();

i f (solve) (// mark path to enter maze

path[xxl[yy] = LEFT;

dirtySquare(xx, yy);

side = TOP;

1

while (xx != fx 1 1 yy != fy) I

while ((sq & side) != 0) // search for direction to try

if ((side <f= 1) > BLOCKED)

side = TOP;

path[xx][yy] ^= side; // set exit from current square

dirtySquare(xx, yy);

switch (side) f // set entrance to new square

sq = dirtySquare(xx, yy):

i f (xx == sx && yy == sy && side == LEFT) {

// we ve searched the entire maze and we re back at

II the starting square, so there s no solution

resetPath():

i f (displayPath)

repaint();

return false;

i f (displaySearch)

showMaze(false);

else if ((++count & OxFF) == 0)

Thread.yield();

case LEFT: path[--xx][yy] ^= RIGHT; side = BOTTOM;

break;

case TOP: path[xxl[--yy] ^= BOTTOM; side = LEFT;

break;

case RIGHT: path[++xx][yy] ^= LEFT; side = TOP;

break;

case BOTTOM: path[xxI[++yy] ^= TOP; side = RIGHT;

break;

i f (solve)

	

mark path to exit maze

path[xx][yy] J = RIGHT;

dirtySquare(xx, yy);

I

i f (displayPath)

repaint();

return true;

} ll traverse()

Notice that t r a v e r s e () marks a square in the path using the exclusive-or
operator (^=). Remember that you use the exclusive-or operator to toggle
bits: A zero bit becomes a one and a one becomes a zero. This toggling
means that the first time t r a v e r s e () marks a path in a square, the code
sets the bit for the path to one. As t r a v e r s e () backtracks down a dead-end
path, this same instruction toggles the one and clears the path to zero,
effectively erasing the dead-end path from the p a t h [] [] array.

Using breadth-first searching to
find the shortest path

Chapter 7: 2-D Maze

	

159

You use a breadth-first search to find the shortest path between two points
in a maze. Unlike the left-hand rule, a breadth-first search is designed to find
the optimal solution in a maze with multiple paths between two squares.
Breadth-first searching works by taking one step at a time on each possible
path before taking a second step on any path. The search proceeds simulta-
neously along all paths that have not been pruned. You prune a path (elimi-
nate it from future searching) when the search reaches a dead end or a
square that has already been searched. Because all search paths are the
same length, you know that when you find the destination square, you've
also found the shortest path.

You use a two-dimensional array the same size as the maze grid to keep
track of which squares have been searched. You declare and allocate the
array like this:

byte[][] graph = new byte[mzWid][mzHyt];

First, you initialize each entry in the g r a p h [] [] array to zero. Next, set the
entry in g r a p h [] [] for the square where the search starts to -1. As you
search, you record in g r a p h [] [] the direction to move in order to return to
the previous square on the path. This record creates a backwards-pointing
graph that you can follow to get back to the square where the search was
begun. Figure 7-6 shows the breadth-first search path through a maze and
the resulting g r a p h [] [] array.

160

	

Part II: Up to Speed

Figure 7-6:

A breadth-

first search

path and

corresponding
graph array.

While searching, you maintain a queue of squares waiting to be searches.
After you add a square to the search path and set the corresponding erao ,
i n g r a p h [] [] , you add the square to the queue. Each iteration of the
pulls the next square out of the queue and checks each direction to see
whether the search path can be extended to the square in that direction
You add any squares you find to the search path, set the corresponding
entry in g r a p h [] [], and place them in the queue. This cycle continues UN

either you find the destination square, in which case you've solved the
maze, or the queue is empty, in which case the maze has no solution.

A queue is a first in, first out (FIFO) data structure, which means that the
first item put into the queue is the first item removed from the queue and
that you add items to the queue at one end and take them out at the oth®
The term queue means "a waiting line," and like a line at the Department 4
Motor Vehicles, the first person in line is the first person served.

Here is the breadth-first t r a v e r s e () method for the B 1 o c k Ma z e class:

public synchronized boolean traverse

(int sx, int sy, int fx, int fy, boolean displaySearch)

i f (!inBounds(fx, sy) || ! i nBounds(fx, fy))

return false;

int

	

dir, xx = sx, yy = sy, count = 0;

i nt

	

qhead, gtail, qsize = mzWid + mzHyt - 1) * 2;

short[][] queue = new short[gsize][21; // 0 = x, 1 = y

byte[][] graph = new byte[mzWid][mzHyt];

boolean

	

solve = (xx == startX && yy == startY &&

fx == finishX && fy == finishY);

if (displaySearch) l

resetPath();

i f (solve) 1

path[sx][sy] = LEFT;

dirtySquare(sx, sy);

showMaze(false);

graph[xxl[yyl

queue[0]E0] = (short)xx; queue[0]E1] = (short)ny;

qtail = 0: ghead'= 1:

TRAVERSE:

for (;;) {

if (qhead == gtail) I. // empty queue: unsolvable maze

resetPath();

i f (displayPath)

repaint();

return false;-

f

xx = queue[gtail][0]; yy = queue[gtail][1];

gtail = (qtail + 1) % gsize;

int gstart = qhead;

for (dir = TOP; dir <= LEFT; dir <(= 1) I

i nt ndir = 0, nx = xx, ny = yy;

if (inBounds(nx, ny) &&

graph[nx][ny] == 0 && maze[nx][ny] == FLOOR)

I // extend the search path i n direction dir

graph[nxl[nyl = (byte)ndir; // point to prev square

if (displaySearch) I

path[xx][yy] J = dir;

dirtySquare(xx, yy);

path[nx][nyl 1 = ndir;

dirtySquare(nx, ny);

if (nx == fx && ny == fy) // found solution

break TRAVERSE;

queue[ghead][0] = (short)nx;

queue[ghead][1] = (short)ny;

qhead = (qhead + 1) % qsize;

l

i f (displaySearch) I

i f (qhead == qstart) { // dead end, backtrack

while (path[xx][yy] == graph[xxl[yyl) I

path[xxl[yyl = 0;

dirtySquare(xx, yy);

Chapter 7:2-D Maze

	

161

(continued)

switch (dir) I

case TOP: ny--; ndir = BOTTOM; break;

case RIGHT: nx++; rdir = LEFT; break;

case BOTTOM: ny++; ndir = TOP; break;

case LEFT: nx--; ndir = RIGHT; break;

2

	

Part II: Up to Speed

(continued)

switch (graph[xx][yy]) I

1

dirtySquare(xx, yy);

1

showMaze(false);

else if ((++count & OxFF) _= 0)

Thread.yield();

if (displaySearch) I

i f (solve) {

path[xx][yyl J = RIGHT;

dirtySquare(xx, yy);

showMaze(false):'

/l reconstruct path by following graph

}

}

if (solve)

path[fx][fy] y= LEFT;

i f (displayPath)

repaint();

return true;

// from finish to start

resetPath();

i f (solve)

path[fx][fy] = RIGHT;

while ((dir = graph[fxl[fy]) != -1)

path[fx][fy] 1 = (byte)dir:

switch (dir) I

case TOP: path[fx][-- fy] = BOTTOM; break;

case RIGHT: path[++fx][fy] = LEFT; break;

case BOTTOM: path[fx][++fy] = TOP; break;

case LEFT: path[--fxl[fy] = RIGHT; break;

case TOP: path[xx][--yy] &_ (byte)-BOTTOM;

break:

case RIGHT: path[++xxl[yy] &_ (byte)-LEFT;

break;

case BOTTOM: path[xx][++yy] &_ (byte)-TOP;

break;

case LEFT: path[--xxl[yy] &_ (byte)-RIGHT;

break;

Chapter 7: 2-D Maze

	

163
Notice in the preceding code that after you find a solution, you reconstruct
the path by following g r a p h [] [] from the destination square to the starting
square.

The M a z e class extends j a v a . a wt . C a n v a s to give it a display area. You
draw the maze by overriding the p a i n t () method inherited from C a n v a s.

Because most of the work to draw a wall maze or a block maze is the same,
the M a z e class overrides p a i n t () to do the drawing. As far as the p a i n t ()
method is concerned, the only difference between the two Maze subclasses,
Bl ockMaze and Wal l Maze, is in the actual drawing of a square. paint()
calls d raw Squa re () to draw a single maze square. You have to implement
the abstract method d r a w S q u a r e () that Maze defines and that p a i nt()
calls in the classes that extend M a z e. B 1 o c k M a z e draws its squares as solid
blocks. Wa 1 1 Maze draws walls between squares and leaves the middle of the
squares open, except that W a 1 1 M a z e draws squares with walls on all four
sides (BLOCKED squares) as solid blocks.

4ei-head][0] = (short)nx;

zm~.6`:head][1] = (short)ny;

l = ;ghead + 1) % qsize;

I mplementing a circular queue
breadth-first traverse() code imple-

! thequeue[] array as a circular queue.
¢ai mular queue allows you to continually put

fires into one end of the queue and remove
Wires from the other end without ever run-
ing into theendofthequeue[] array. If you

TiOn't use a circular queue, you have to peri-
sAcally move the squares from the end of the

r back to the beginning. You add squares
in -r_ nead of the queue like this:

You increment qhead to point to the next
entry in the queue. The modulo operation

gsizesets qhead to zero if(qhead + 1)
equals q s i ze. (Remember, the modulo opera-
tor returns the remainder of dividing the left-
hand operand by the right-hand operand -
the remainder of dividing (ghead + l) by
qs i ze in this case.) You use similar code to
remove the next square from the tail of the
queue:

xx = queue[gtail][0];

yy = queue[gtail][1];

qtail = (qtail + 1) % qsize;

Part II: Up to Speed

Using the p a i n t () method
You draw the maze to an offscreen image and then copy this image to the
screen. (Chapter I shows how to use an offscreen image and override
u p d a t e () for smooth screen updates.) You add the following p a i n t (:

method and supporting fields to the Maze class:

protected Image

	

offscreenImage;

protected Graphics offscr;

public synchronized void paint (Graphics g) {

paintOffscreenImage();

g.drawImage(offscreenImage. 0, 0, this);

notifyAll();

paint() calls pai ntOffscreenlmage() (another method in the Maze

to do the work of creating the maze image in an offscreen image. You do the
work in p a i n t0 f f s c r ee n I ma g e () rather than in pai nt() so that the
subclasses can override pa i nt () without replacing the code in
pa i ntOffscreen Image(). Keeping the offscreen image code out of
pa i nt () allows the subclasses to modify how pa i nt () works and still
reuse the code in p a i n t 0 f f s c r e e n I m a g e () to generate the maze display-
(Chapter 8 shows an example of overriding p a i n t () to display sprites on
top of the offscreen maze image.)

The first thing paintOffscreenImage() does is check whether it needs to
create the offscreen image and then creates it if necessary.

You allocate the offscreen image from pa i nt () rather than in the Ma ze ()

constructor because c r e a t e Image () can't create the offscreen image unto
you place the maze canvas on the screen by adding it to a container. And
because you can't place the canvas on the screen until you create it, you port

the code that allocates the offscreen image in pa i nt (). The Abstract
Window Toolkit (AWT) can't call pa i nt () until you add the component to
the screen hierarchy, so c r e a t e I m a g e () is guaranteed to work when
paint() calls it.

Next, p a i n t O f f s c r e e n I m a g e () loops through all the squares in the range
of dirty squares and draws any squares that have the D I RTY bit set in the
square. For each DIRTY square, pa i ntOffscreenImage() calls
drawSquare() to draw the maze square and then calls draw Path Square

to draw any path through the square. (The "Displaying a solution" section
later in this chapter shows how to implement d r a w P a t h S q u a r e ().) If the
square is the maze's start or finish square, p a i n t O f f s c r e e n I m a g e () calls
d r a wT a r g e t () to draw colored circles to mark it.

Finally, you copy the offscreen image to the screen in p a i nt() with this
statement:

' g.drawimage(offscreenimage, 0, 0, this);

The complete Maze class, including the paintOffscreenImage() and
d r a wT a r g e t () methods, is included on the CD.

Repainting the maze in a
thread-friendly manner
Because Java calls p a i n t () from a different thread than the thread in which
your applet runs, you use wa i t () and not i fyAl 1 () to wait for paint() to
draw the maze. (CD Chapter 2 discusses the AWT Interface thread that calls
paint() and shows how to use w a i t () and n o t i f y A l 1 () to control the
timing of an animation.) This section shows how you use these techniques
to control the animation of a generating maze.

First, notice in the preceding section that before exiting, p a i n t () calls
noti fyAI 1 () to wake up any threads that are waiting for the maze to
repaint itself. The code waiting to wake up is in s h ow M a z e (). You call
showMaze () to repa i nt() the maze and wait for paint() to finish.
showMaze() sleeps long enough after displaying the maze to produce a
consistent 30 frames-per-second (fps) animation frame rate. Here is the
s howMaze () method and supporting fields you add to the Maze class:

protected long timer, maxFrameRate = 30L; // 30 fps

protected void showMaze (boolean allDirty)

i f (allDirty 1 1 offscreenImage == null)

repaint();

else

repaint(leftOffset + minXdirty * sgWid,

topOffset + minYdirty * sgHyt,

sgWid * (maxXdirty - minXdirty + 1) + lineWid,

sgHyt * (maxYdirty - minYdirty + 1) + lineHyt):

try I wait(); I catch (InterruptedException e) {}

l ong t = System.currentTimeMillis();

if ((timer -= t - (1000L / maxFrameRate)) > 0)

try (Thread.sleep(timer); I

catch (InterruptedException e) II

timer = System.currentTimeMillist);

Chapter 7: 2-D Maze

	

165

Part II: Up to Speed

Figure 7-7:
The pixel

dimensions
of a maze

square.

Calculating where the pikels go
You draw the maze squares at pixel locations determined by the size of the
Maze canvas and the grid dimensions of the maze. The pixel locations are
the same for wall mazes and block mazes, so you place the code to calculating
the pixel offsets and sizes in the Maze class. The drawSquare() methods

implemented by the classes that extend Ma ze use these pixel locations to
draw the maze squares.

You calculate the pixel values in resetMaze(). re setMaze() adjusts the
pixel width and height of each rectangle in the grid to fit the screen size aih
the Maze canvas. Maze overrides the reshape() method inherited from
C a n v a s to resize the maze whenever the size of the canvas changes. If
r e s h a p e () changes the size of the canvas, it calls r e s e t M a z e () to calcuilm
the new size of the grid squares. Figure 7-7 and Table 7-2 show the fields thW
resetMaze() calculates.

Table 7-2

Field

sgWid,sqHyt

l i neWid,lineHyt

sgLnWid,sqLnHyt

l eftOffset,

topOffset

Pixels Values for Drawing the Maze

What It Contains

The width and height of a grid square in pixels. These
i nclude the 1 i neWi d and 1 i neHyt, respectively, of
the line on one side of the square.

The pixel width and height of the lines separating grid
squares. You set these to zero for block mazes.

The pixel width and height of a grid square plus the
separating lines.

The pixel offsets to center the displayed maze within
the canvas. These are the canvas pixel offsets of the
upper-left corner of the square ma ze [01 [01.

iqm7-8:

7he 8 wall

actions

and

missulting

16 wa I I
squares

Knowing that block mazes are
simple is hat(the battle
The squares in a block maze are simple colored rectangles. The type of maze
square determines the color of the rectangle. Figure 7-1 earlier in this
chapter shows an example of a block maze. You implement the
drawSquare() method for the B1 ockMaze class like this:

protected void drawSquare (int xx, int yy) I

offscr.setColor(maze[xxl[yy1 == WALL ?

Color.gray : Color.white):

offscr.fillRect(leftOffset + (xx * sgWid),

topOffset + (yy * sgHyt), sgWid, sgHyt);

The expression 1 e f t 0 f f s e t

	

+

	

(x x

	

*

	

s q W i d) calculates the pixel offset of
the left edge of the maze square and t o p O f f set +

	

(yy *

	

s q Hy t) calcu-
lates the top pixel offset of the square.

Displaying a watt maze

Chapter 7:2-D Maze

	

16 7

Each square in a wall maze has 16 different possible combinations of walls,
and drawing one such square takes several steps. The first step is to check
whether the square has all the walls set, in which case you treat the square
as a solid wall. You draw a solid wall by filling the entire square with black.
If the square isn't a solid wall, you start by erasing the square to white and
then drawing the four sides and four corners depending on which walls
the square has set. Figure 7-8 shows the 8 wall sections that you draw and
the 16 resulting wall maze squares.

I

0 uF n,~A I
F

!LI
-7..

I J

6 7

68

	

Part II: Up to Speed

Notice that in Figure 7-8 all 16 squares draw all 4 corner sections of the
which happens because Wa 1 1 Maze only generates dense mazes with no
open areas. If you allow wall mazes with open areas, you only draw a
if the square on the opposite side of a corner that has any walls set that
share the corner, or if the corner of the square is on the edge of the m aze

Figure 7-2 earlier in this chapter shows an example of a wall maze.

The complete W a 1 1 M a z e class, including the d r a w S q u a r e () method, is
included on the CD.

To reduce the number of f i 1 1 Rect () calls that d rawSq ua re () has to Use i
order to draw the maze square, the f i 1 1 Re ct () calls that draw the wall
sides draw both corners as well. For example, the following code draws the
top wall and both top corners (sections 1, 2, and 3 in Figure 7-8) in the
square:

if (top - (sq & TOP) !- 0)

offscr.fillRect(xoff, yoff, sgl.nuid-, LineHyt);

This code also sets the local variable t o p to t r u e if it draws the top co
If d raw Squa re () doesn't draw the LEFT side of the square, it checks to
determine if it needs to draw the top-left corner of the square. If top is
fal se, drawSq ua re() didn't draw either the TOP or LEFT wall, so it draws
the corner. You repeat the TOP check for the BOTTOM wall of the square and
repeat the L E FT check for the R I GHT wall.

Customizing the appearance of a wall maze
You can change the look of a wall maze by
either setting the pixel width and height of the

grid squares to different values or by chang-
i ng the thickness of the lines that define the
walls. For example, the figure shows a maze
with squares that are 16 pixels wide, 8 pixels
tall, and have walls that are 6 pixels wide and
6 pixels tall.

MezeApplet

You control the pixel sizes of the squares
calling resize(width, height) to set

the dimensions of the maze canvas, and
calling setDimensions(squaresWide,

squa resHi gh) to set the maze dimensions.
To change the default line sizes, you cal
setLineSizes().

Displaying a solution
A maze stores the current solution path in the p a t h [] [] array. The bytes in
p a t h [] [I have a bit set for each side of the corresponding square in the
ma ze [] [] array that has a solution path. The "Solving Mazes" section earlier
in this chapter discusses how you set these bits.

You display the solution by drawing each path segment set in p a t h [] [1.

pa i ntOffscreenImage() calls the drawPathSquare() method in Maze to
draw a single path square. Because some subclasses of Ma ze may want to
calculate maze solutions but not display them, p a i n t O f f s c r e e n I ma g e ()

only calls d r a w P a t h S q u a r e () if the boolean field d i s p l a y P a t h is set.

d r a w P a t h S q u a r e () uses pixel sizes and offsets that you initialize in
r e s e t M a z e (). p W i d and p Hy t contain the pixel width and height of the
displayed path. You set pxoff to the pixel offset within a square of the left
edge of a vertical path segment and pyoff to the offset of the top edge of a
horizontal segment. You declare these fields in M a z e like this:

protected int pWid, pHyt, pxoff, pyoff;

You initialize these fields by adding the following code to resetMaze ():

i nt pw = sgWid - lineWid;

To center the path in the square, the width of the path must be even if the
square width is even and odd if the square width is odd. The following
instruction calculates the pixel width of a square:

int pw = sgWid - lineWid;

You use the pixel width pw to calculate the path width like this:

pWid = (pw & 1) == 0 ? Math.max(2, (pw >> 1) & -1)

Math.max(1, (pw >> 1) 1 1);

Chapter 7: 2-D Maze

	

169

(pw &

	

1)

	

==

	

0 is true if the path width is even and false if it is odd. You
set an even path width approximately half the width of the square and at least
two pixels wide by using Math. max (2,

	

(pw > > 1). You calculate an odd
path width at least one pixel wide using Math. max (1,

	

(pw

	

> >

	

1)

	

1

	

1).

pWid = (pw & 1) == 0 ? Math.max(2, (pw » 1) & -1)

Math.max(1. (pw)> 1) 1);

i nt ph = sgHyt - lineHyt;

pHyt = (ph & 1) _= 0 ? Math.max(2, (ph >> 1) & -1)

Math.max(1, (ph >> 1) (1);

pxoff = (sgLnWid - pWid) >> 1;

pyoff = (sgLnHyt - pHyt) >> l;

170

	

Part II: Up to Speed

Figure 7-9 shows what the completed path for a wall maze looks like.

.t-mom
Figure 7-9:

Displaying a

solved wall

maze.

Putting the maze on the screen

Figure 7-10:

Solving a

partially

generated

maze.

You place a Ma ze canvas on the screen by adding it to a container, such as
an applet. This section shows how to implement the M a z e A p p 1 e t class to
display the maze and how to use threads to animate the generation and
solving of multiple mazes simultaneously. In fact, the applet can even sole,
maze while it is still generating it. Figure 7-10 shows a block maze being
solved while it is still being generated.

Using a thread to animate, generate,
and solve a maze
You spawn a thread to animate, generate, or solve the maze. Because each
maze or applet can have more than one thread, you create a thread class
handle the different thread operations.

Because the only function of the class is to execute a thread,, you extend the
M a z e T h r e a d class directly from T h r e a d instead of implementing the
Runnabl e interface.

Depending on the s o l v e parameter passed to the M a z e T h r e a d () construc-
tor, the M a z e T h r e a d class either generates or solves the maze. Here is the
complete MazeThread class:

class MazeThread extends Thread {

private Maze maze;

private boolean show, solve;

MazeThread (ThreadGroup tg, Maze maze,

boolean show, boolean solve)

super(tg, solve ? Solve thread : Generate thread

this.maze = maze;

this.show = show;

this.solve = solve;

start();

public void run () {

i f (show)

setPriority(Thread.MIR'PRIORITY + 1);

i f (solve)

maze.traverse(show);

else

maze.generate(show);

1 // class MazeThread

Notice that if the operation is being animated, the r u n () method sets the
thread priority to M I N_P R I 0 R I TY + 1. Lowering the thread priority makes
the user input and screen updating more responsive.

Reviewing parameters in the
MazeAppl et class
To make the features of the maze accessible to HyperText Markup Language
(HTML), the M a z e A p p l e t class accepts certain HTML parameters. CD
Chapter 1 discusses how to pass parameters to an applet from HTML.
M a z e A p p 1 e t accepts the following parameters:

Parameter Name

	

What It Specifies

LI NEWIDTH

MAZEWIDTH

Chapter 7: 2-D Maze

	

17 1

The width and height of the lines (1 i neWi d, 1 i neHyt).

You only want to specify line width for wall mazes. The
line width defaults to zero for block mazes and one for
wall mazes.

The number of grid squares wide to make the maze.
The maze width defaults to 30 squares.

172

	

Part II: Up to Speed

Parameter Name

	

What It Specifies

MAZEHEIGHT

	

The number of grid squares tall to make the maze - "ho
maze height defaults to 20 squares.

MAZE

	

The Maze subclass to use. The default maze class
"Wa IIMaze".

For example, you add the following applet tag to your HTML document
block maze that is 20 squares wide and 15 squares tall:

<applet code=MazeApplet width=242 height=182>

<param name= MAZE value= BlockM'aze >

<param name= MAZEWIDTH value= 20">

<param name= MAZEHEIGHT value= 15">

</applet>

This HTML produces a block maze with squares that are 12 pixels wide
12 pixels tall with a 1-pixel border around the maze. M a z e A p p 1 e t derives
these pixel dimensions from the HTML tag like this:

square width = (width / MAZEWIDTH) = (242 / 20) = 12

square height

	

=

	

(height

	

/

	

MAZEHEIGHT) =

	

(182

	

/

	

15)

	

=

	

12

leftOffset = (width % MAZEWIDTH) / 2 = (242 % 20) / 2 = 1

topOffset = (height % MAZEHEIGHT) / 2 = (182 % 20) ! 2

	

1

MazeAppl et generates a new maze when the user clicks the maze with
mouse button. If the user holds the Shift key down while clicking the
on the maze and the maze has added the solution square to the maze. =me
applet solves the maze. m o u s e Down () spawns a thread to generate or
the maze. (CD Chapter 2 shows how to spawn threads from event handiew',
such as mouseDown ().)

The Maze Appl et class is included on the CD.

.......00 0x0*0*00.* * .a*0x0$.0*0...&000.0x0

~ This Chapter

Modeling game elements with sprites
Managing sprites with a sprite engine
Dusplaying and animating sprites
I

	

ecting and handling sprite collisions
long game elements some intelligence
meting a 2-D maze game using sprites

Chapter 8

2-D Sprite Maze

. a o . 0 s . a .

	

* 0

	

a * 0

	

* 0

	

0 o

	

*

	

0 0 0

	

0 # 0

	

+ .

sprite is an arbitrarily-shaped (not necessarily rectangular) graphic
object that moves nondestructively across a background. A familiar

example of a sprite is the mouse cursor - it can be any shape, and it moves
around the screen without changing the screen background. You use sprites
when you want to minimize redrawing the background.

Sprites are most useful for 2-D games - particularly arcade games where
you have a background and various objects moving over it. You use sprites
to represent game elements that move around the screen, although you can
also use sprites for stationary game elements. Game elements can be any
object in your game: spaceships, bullets, explosions, little men, obstacles,
walls, vicious blobs of slime, or a plumber named Mario.

Movable sprites contain code to move across a game background - which
brings up the questions of where and how to move the sprite - so we show
you how to give your sprites enough intelligence to answer these questions.
Of course, moving sprites can run into the boundaries of the background
and other moving and stationary sprites, so we show you how to detect and
resolve collisions when they occur.

In short, this chapter shows how to create, display, animate, and most
importantly, keep track of and manage sprites with a sprite engine. Finally,
this chapter puts all the sprite stuff together to make a simple game using
sprites and the B 1 o c k M a z e class from Chapter 7.

74

	

Part II: Up to Speed

Gentleman, Start Your Sprite Engines!
Sprite engine is j ust a fancy term for a data structure that keeps track ot
sprites and tells them when to perform certain operations such as draw 	g
moving, or animating. When applied to software, the term engine identid
code that stands on it's own and is general enough to be used in a varieft ~0
applications. A well-constructed sprite engine (which of course includes then
one we present in this chapter) can be extended and used in many games,

A sprite engine manages the sprites in a rectangular play field. You can give
your sprite engine all kinds of bells and whistles, but the four primary
of a sprite engine are to

v Maintain a list of all the sprites under its control and their position
in the play field

r Draw the sprites from back to front

r Move the sprites

v Detect and resolve collisions between sprites or between a sprite and
the edge of the play field

Actually, detecting and resolving collisions isn't a requirement for a sprite
engine. In some of your games, sprites may need to occupy the same space
in the play field without triggering a collision. However, for many games,
collision detection is the most important service the sprite engine provides
so we include it in our list of primary duties. After all, a shoot-'em-up game
wouldn't be much fun if the bullets never hit anything.

To leverage the power of object-oriented programming, your Java sprite
engine doesn't actually draw or move the sprites; it simply tells the sprites
when to move or draw themselves. Because collision detection either
involves more than one sprite or involves the sprite and the edge of the PIR
field, the sprite engine takes care of detecting collisions. However, the
engine just tells the colliding sprites what happened and lets the sprites
determine how to resolve the collision. This division of responsibilities
makes the code for both the sprites and the sprite engine fairly simple, yet
allows you to build games with hundreds of moving and animating game
elements that interact with each other.

Implementing a sprite
A sprite has only a few responsibilities:

r It draws itself.

r It updates its state. This usually involves moving and/or animating the
sprite, but it could be anything the sprite needs to do periodically.

r It defines its collision box. The collision box is a rectangular area that
moves with the sprite and functions as the sprite's area of influence,
determining where the sprite can collide with other sprites.

v It handles collisions with other sprites and with the edge of the play
field.

Because game elements that are sprites may need to extend classes that
aren't sprites, you use an interface to define the sprite methods. Using an
interface allows any class that implements the interface to function as a
sprite.

An interface is a definition of methods that a class implements in order to do
the job that the interface defines.

The sprite interface you use for the game in this chapter, as well as for many
other games, is quite simple. You declare the S p r i t e interface in the file
Sprite. java like this:

i mport java.awt.*;

public interface Sprite f

void

	

setSpriteEngine (SpriteEngine se);

boolean updateSprite ();

Rectangle drawSprite (Graphics g);

Rectangle collisionBox ();

Rectangle eollideWith (Object obj);

1 ll end interface Sprite

The sprite engine uses the S p r i t e interface methods to manage sprites.
Table 8-1 shows the responsibilities for each of the five methods the Spri to

interface defines.

Table 8-1

Method

setSpriteEngine()

updateSprite()

The Sprite Interface Methods

Chapter 8: 2-D Sprite Maze

	

175

What the Sprite Engine Expects It To Do

The sprite engine passes this method a reference
to the engine when the sprite is added to the
engine, and calls it with nul 1 when the sprite is
removed from the engine. The sprite uses the
reference to call methods in the sprite engine.

This method is the sprite's heartbeat. The sprite
engine calls this method periodically to tell the
sprite to update its state. You move, animate, and
i nitiate actions in update Spri te().

updateSpri te() returns true i f you change
the sprite's collision box, f a 1 s e if you don't.

(continued)

176

	

Part II: Up to Speed

Table 8-1 (continued)

Method

drawSprite()

collisionBox()

collideWith()

What the Sprite Engine Expects It To Do

Putting sprites in their place

The sprite engine passes this method a graphics
context in which to draw the sprite. It returns a
Rectangl e representing the region drawn to the
screen or n u 1 1 if it didn't draw anything.

This method returns a Rectangl e containing the
sprite's collision box. The sprite engine uses the
collision box to determine whether the sprite
collides with other sprites. coll i si onBox()
returns nul 1 to indicate that this sprite doesn't
collide with other sprites.

I n the event of a collision, the sprite engine passes
this method the object with which the sprite
collided. After resolving the collision with
whatever action is part of your game,
coI 1 i desWi th() returns the possibly changed
collision box for the sprite.

The object parameter that the sprite engine passes to the sprite's
c o l l i d eW i t h () method is usually another S p r i t e, but can also be one the
Spri teBorder constants- NORTH, SOUTH, EAST, or WEST-that
S p r i t e E n g i n e defines to represent collisions with the appropriate edge of
the play field. (Spri teBorder is an empty class that Spri teEngi ne uses to

define these object constants so that c o 1 1 i d eW i t h () can test for a border
collision using the test obj

	

i nstanceof Spri teBorder.) col l i deWi th

resolves the collision, which may include changing the position of the sprtse
c o l l i deWi t h () returns the new collision box or n u 1 1 if the sprite engine manr
not check for any more collisions with a given sprite during the current update

Although some S p r i t e classes may need to extend a non-S p r i t e class. the
main function of a Spri to class is usually just to be a sprite. In addition. th
methods defined by the Spri to interface all have logical default implemen-
tations. These two features of sprites often enable you to encapsulate the
common code shared between sprites and reduce the amount of code you
have to write for each new sprite you create by giving these sprites a
common superclass.

The S p r i t e O b j e c t class is exactly this superclass; it implements the
Spri to interface. The code to keep track of a sprite's position and collisim
box is pretty standard for all sprites, so you can implement it in
Spri teObject. Here is the Spri teObject class:

http://addition.th
http://addition.th

i mport java.awt.*;

public class SpriteObject implements Sprite I

protected double

	

x, y; // center of sprite

protected int

	

width, height;

protected SpriteEngine spriteEngine;

public SpriteObject (double x, double y, int w, int h) I

public void setSpriteEngine (SpriteEngine se)

spriteEngine = se;

public boolean updateSprite () I return false;)

public Rectangle drawSprite (Graphics g) I return null; I

public Rectangle collisionBox () I

return new Rectangle((int)(x - width / 2.0),

(int)(y - height / 2.0),

width, height);

public Rectangle collideWith (Object obj)

return collisionBox();I

} // end class SpriteObject

Chapter 8: 2-D Sprite Maze

	

177

Spri t e 0 b j e c t position sprites with an anchor point at the center of the
sprite image. Using the center of the sprite image for the anchor point is a
decision you need to make based on the kinds of actions your sprites need
to be able to perform. You can position sprites from any of the nine loca-
tions shown in Figure 8-1. The width and height of a sprite may change as it
is animated, but the anchor point continues to dictate how the sprite
positions itself. You need to choose the anchor point based on how the
sprite anchors itself to the background. We chose the center position as the
default because without any other selection criteria, the center is the best
choice.

However, some sprites may require anchor points at locations other than
the center of the sprite image. For example, an explosion sprite animates
from a small explosion image to a large explosion image. You want the
explosion to grow out from the center, so you use a center anchor point. On
the other hand, if your sprite represents a side view of a worm on the

this.x = x; this.y = y; width = w; height = h;

public double centerX () I return x;)

public double centerY () {return y; l

public int spriteWidth t) I return width;)

public int spriteHeight () 1 return height;

78

	

Part II: Up to Speed

Figure 8-1:

The nine

ways to

position a

sprite's

anchor

point.

ground, you probably want to use a bottom anchor point to anchor the
worm to the ground. Using a bottom anchor point, the sprite expands and
shrinks from the center as its width changes, but keeps the bottom of the
worm anchored to the ground as the height changes. Conversely, you
probably want to use a top anchor point when you have a sprite that crawel
across a ceiling.

Moving sprites around the play field
Notice that S p r i t e 0 b j e c t uses d o u b 1 e values for the x and y position
the sprite. Given that you can only draw images at integer pixel locations.
you may wonder why x and y are floating-point values. The answer lies in
the fact that using floating-point values results in much smoother move-
ment. Chapter 1 shows how you use floating-point coordinates and float
point delta x and y values to smoothly move objects at any speed and in m
direction.

protected double deltaX, deltaY; // the vector deltas

public boolean updateSprite () {

x += deltaX;

y += deltaY;

return true;

You give your sprites motion by changing their position in the method
u p d a t e S p r i t e () . Here is an example of how you add simple vector motion
to your sprite:

Notice that the movement code doesn't need to do any checking to see
whether the object moves out of bounds or runs into something because I
sprite engine handles all the collision detection. All updateSpri tell' r. _
to do is move the sprite.

Resolving collisions

Chapter 8:2-0 Sprite Maze

	

179

The sprite engine takes care of detecting collisions, but the sprite itself is
responsible for handling what happens as a result of the collision. When the
sprite engine detects a collision, it calls the c o 1 1 i d e W i t h () methods for
each sprite involved in the collision. You implement col 1 i deWi th () to
resolve the collision. (The "Implementing a sprite" section earlier in this
chapter discusses how the sprite engine calls c o 1 1 i d e W i t h ().)

The Object Detector class extends Spri teObject. It detects when a
specific object has collided with it and then notifies the sprite engine's
observers. (The observers are other objects, such as the S p r i t eMa z e game
presented in the "Building on the B 1 o c k M a z e class" section later in this
chapter, that receive messages from the sprites in the engine.) You can
trigger an event when a sprite reaches a location in the play field by adding
an Ob j ectDetect or sprite for that location to the sprite engine. The section
"Sprite events and handling them" later in this chapter discusses how the
notification process works. Here is the Ob j ectDetector class:

import java.awt.*;

class ObjectDetector extends SpriteObject

private Object target;

ObjectDetector(int x, i nt y, int w, int h, Object target){

super(x, y, w, h);

this.target = target;

1

public Rectangle collideWith (Object obj) I

i f (obj =- target)

spriteEngine.notifyObservers(this);

return collisionBox();

4

11 end class ObjectDetector

You can use sprite collision detection to do proximity detection. Proximity
detection is when you want a sprite to know when something is close to it
before it collides. You use proximity detection as an early warning system to
allow your sprite to change course, initiate defensive maneuvers, or launch
an attack. You give a sprite proximity detection by adding a slave sprite with
a col 1 i s i onBox () that defines the detection perimeter around the master
sprite. The slave sprite only needs to implement the col 1 i s i o n Box () and
c o l l i d e W i t h () methods; you leave the other methods empty like the
corresponding methods in the Spri teOb j ect class.

Part II: Up to Speed

Displaying sprites
You display a sprite by implementing the Sprite method d r a w S p r - : _

	

'!,....
The sprite engine passes d r a w S p r i t e () the graphics context in which W) 1
draw the sprite. As an example, the following R o u n d S p r i t e class draws
sprite as a colored oval:

i mport java.awt.*;

class RoundSprite extends SpriteObject I

protected Color color;

RoundSprite (double x, double y, int w, int h, Color c) i

super(*, y, w, h);

color = c;

public Rectangle drawSprite (Graphics g) {

g.setColor(color);

g.fillOval((int)(x - width / 2.0),

(int)(y - height / 2.0), width, height);

return collisionBox():

end class RoundSprite

Notice in the call to f i 1 10 v a 1 () that d r a wS p r i t e () translates the spr 	s
center anchor point to the upper-left corner of the sprite before drawing to
match the upper-left coordinates that f i 1 10 v a 1 () expects.

Drawing plain old colored geometric shapes has its place, but what you
really need in order to give your game visual appeal are some colorful
images zippin' around the screen. Here's an I ma g e S p r i t e class that you
use to create sprites from loaded images:

i mport java.awt.*;

class ImageSprite extends SpriteObject I

protected Image image:

ImageSprite (Image image, double x, double y)

super(x, y, 0, 0);

setImage(image);

public void setImage (Image img) I

i mage = img;

width = img.getWidth(null):

height = img.getHeight(null);

