Next Wave °f java-Fueled
Catch the _
Internet Ga™Ng

Explains
More Than
Ten Games!

The Fun and Easy Way'
to Create Your Own
Gamesand Put Them
on Your Web Page

Your First Aid Kif
for Adding Pizzazz
to Boring Web Sites

Creating Cool Games

in Java - Explained

in Plain English |
BXK

A Reference for
the Rest of Us!'

&

by Wayne Holder
& Doug Bell

l'-r-

maxiwE

ova wtnhe Programming;

For Dummies

CODE

W DTH,

Attribute

HEI GHT
CODEBAS E

HSPAC E
VSPACE

<APPLET> Tag Attributes

Value

Required: The name of the Java class file containing the compiled Appl et
subclass to execute.

Required: The suggested pixel width and height of the area the browser
should reserve for the applet in the Web page.

The uniform resource locator (URL) of the directory or folder that contains the
applet code. If CODEBAS E is not specified, then the Web browser viewing the
document defaults to the location of the HTML document. COD EBAS E allows
the applet code to be place in a different location than the HTML.

The applet name that other applets on the Web page can use to find it and
communicate with it.

Text displayed by browsers that cannot run the applet. The ALT text is
displayed, for instance, if the user has turned off the Java option in their
browser.

The alignment of the applet relative to the text line containing it. This attribute
works like the ALl GN attribute for the | Mstag. The possible values are top,
m ddl e, bottom 1 eft, and ri ght. The alignmentis bott om by default.
The number of pixels of space the browser should leave around the applet

on the left and right (HSPAC E) and top and bottom | VSPACE) .

Built-in Java Colors

Color
Col or.

Col or.

Col or.
Col or.
Col or.
Col or.
Col or.
Col or
Col or.
Col or.
Col or.
Col or.
Col or.

bl ack

bl ue
cyan

dar kG ay
gray
green

li ght Gray

. magent a

or ange
pi nk
red

whi te

yel | ow

Commonly Overridden Applet

Methods
RGB values
0,0,0
0,0, 255 void init(Pgrform ._any one-time
initialization the applet
0, 255, 255 needs hefore it runs.
64, 64,64 void start() Begin animations,
128, 128, 128 processing orthreads.
0, 255,0 voi d paint Draw the applet to the
192,192, 192 L G’.a.ph.l_cs_g.). screen.
255, 0, 255 void stop() Suspend animations,
processing, or threads
255, 200, 0 N pitiated in start()
255, 175, 175 voi d Clean up after the applet
255,0,0 destroy() hefore it quits,
255, 255, 255
255, 255, 0

All rights reserved.

I% Cheat Sheet $2.95 value. Item 0168-2.

For more information about IDG Books,

call 1-800-762-2974.

WORLDWIDE

_..For Dummies. #1 Computer Book Seriesfor Beginners

Copyright © 1998 IDG Books Worldwide, Inc.

ava?M Some ProgramM.
B Jre Towy
S For Dstmmiei \

v

Drawing Filled Shapes and Text

Drawing Outlined Shapes and Lines

Filled Shape Method and Parameters

Rectangle fillRect(int —, - .
int width, i,- ~~-=¢

3-D Rectangle fil13DRect(int x, int
i nt width, int -eigih”™I-
boolean raised)

Shape Outline Method and Parameters

Rectangle drawRect(int x, inty,
i nt width, int height)
3-DRectangle draw3DRect(int X, inty,
i nt width, int height,
boolean raised)

“Rounded drawRoundRect(int x, int_ Rounded filRoundRect(ir- x 5%
Rectangle vy, int width, int Rectangle y, int width, int r=igs,
height, int arcwWidth, int arcWidth,int
i nt arcHeight) = arcHeight)
Oval drawOval(int x, int y, Oval fillOval(int x, 4{nt_..
i nt width, int height) int width, int heigh T
Arc drawArc(int x, int y, int Arc filJArc(int x, int y,

width, int height,

boolean raised, int

startAngle, int arcAngle)
Polygon drawPolygon(int[]

xPoints, int[] yPoints,

i nt nPoints)

or,

drawPolygon(Polygon poly)
Line drawline(int x1, int yl,

int x2, int y2)

int width, int height,

boolean raised, int

startAngle, int arcAngle
Polygon fillPolygon(int[]

xPoints, int[] yPoints,

i Nt nPoints)

or:

fillPolygon(Polygon poly)
Text String drawString(String str,
int x, int ¥)

S Useful HTML Tags

Tag Example Usage Description

<A -;FF=http: //www. The anchor tag creates a link to another document

id c~" ks co m>IDGBooks or Web page, in this case the IDG Books Web site.

APPLET <APPLET CODE=MyApplet Insert a Java applet, in this case an applet with the
WIDTH=80 HEIGHT=50></APPLET>filenameMyApplet.

=" if" Insert aGlEor]PFGimage. IMGdoesn't require anendtag.

<P>This is anew paragraph< / P> Starts anew paragraph. An end tag </P> is not

required, but is good practice.
=T Set the font size and/or color of the contained text.

Big Red Text< / FONT>

<TT>Monospaced text< /TT> The teletype tag displays the contained text using
monospaced text.

< | >ltalic text< /| > Italicize the contained text.

< B>Bold text< / B> Display the contained text with a bold face font.

<U>Underlinedtext</U> Underline the contained text.

. For Dummies. #1 Computer Book Seriesfor Beginners

http://-ks.com
http://-ks.com

Table of Contents

(T T T AR EEEEERE R NN N NRE NN R R NN EREREE & B N ENENRESNEMNRERSE N BRJRJ

INtrodUEtion ... 1
ADOUL TRISBOOKccvviieiieieisiiiecs ettt s nesreneenens 1
LAY (O I o U N SRS 1
About the Java Code in ThiSBOOK.........cccouriiiiiiininieie e 2
How ThisSBOOK ISOrganizedccccceerereneniiienesie e 2

Part 1: SEEPPIN" OUL ..c.veueeecieeeeeeieseee e e st st st saennenens 2

Part [1: UP 10 SPEEH ..ot 2

Part [11: Seven League BOOLScovvveeeirieeeesieseeeeeses e 3

Part IV: The Part of TENScccco v 3
Appendix: About the CD-ROM ... 3

CD Chapters: Fundamentals...........ccocerieeeneneene e 3
1CONS USE IN THIS BOOKcvviiiiiiisisieeiesse e 4
Part 1: Steppin' OUt ...t 5
Chapter 1: Follow the Bouncing Ballcccoooiiiiiiiiiiiii e 7
Ticking Off the TIME ..o e 7
MaKing ThINGS MOVEcecvieieieciseees sttt et 9
FlOating the POINT.......coeeeiiiieree e 9
Encapsulating the essence of aball ... 9
SEtiNG BOUNGS ...ttt e 10
Moving out Of BOUNASooereiieiee e 11
BOoUNCING DACK........cciiicici e 11
Coding movement and BOUNCEcceecvieevicece e 11
Settin' thiNgS iN MOLION......c.oiiiiieeee s 13
Drawing the DEAIIS ..ot 14
Drawing OffSCrEENoc i 15
Overriding the flICKEY ..o 15
Drawing the background and the ballcccooevieiieiiccecce e 16
Putting.the action ONthe SCreenccoccvee e 16
Chapter 2: PONGIEL... ..o 17
S L] 00 RS = 17
Breaking down the task ... 18
ServiNg the Dall ..o 20

Up Java Creek without aPaddleccciiriicinininee e 22
RELUrNING the SEIVE ... s 23
Changing Staec.eceiereee e e 24
Creating a COMPULEr OPPONENL.........ceveerreerieerieeiererseeeseesree e eneeseesnes 24
Rolling down the QULLEYcoeiriiieree s 25

He ShOOtS, NE SCOMES! ...ttt 26

WEhAVE AWINNAL......ci ettt ettt s be e s s e e s sae s sbe e s saeeens 26

Table of Contents

.........x0000,0007%0.*..*000.0.0 *&0*.0000

INTtrOdUCTION .ovii e 1
ADOUL TRISBOOKccvviieiieieisiiiecs ettt s nesreneenens 1
LAY (O I o U N SRS 1
About the Java Code in ThISBOOKccccoceriiiiiiiieieee e 2
How ThisB0oOK ISOrganizedccccueererineninesese e 2

[A S = o] o1 O | 2

Part [1: UP 10 SPEEH ..ot 2

Part [11: Seven League BOOLScovvveeeirieeeesieseeeeeses e 3

Part IV: The Part of TENScccco v 3
Appendix: About the CD-ROM ... 3

CD Chapters: FUNDamMENtalsccooerirerenie e 3

1CONS USE IN THIS BOOKcvviiiiiiisisieeiesse e 4
Part |: Steppin’ OUt... .o 5
Chapter 1: Follow the Bouncing Ball.............cccociiiiiiiiiie 7
Ticking Off the TIME ..o e 7
MaKing ThINGS MOVEcecvieieieciseees sttt et 9
FlOating the POINT.......coeeeiiiieree e 9
Encapsulating the essence of aball ... 9
SEtiNG BOUNGS ...ttt e 10
Moving out Of BOUNASooereiieiee e 11
BOUNCING DACK ..ot 11
Coding movement and BOUNCEcceecviievi e 11
Settin' thiNngSiN MOLION.......cociiiie e e 13
Drawing the DELAIIScciiiiieieee e 14
Drawing OffSCrEENoc i 15
Overriding the flICKEY ..o 15
Drawing the background and the ballcccooevieiieiiccecce e 16
Putting.the action ONthe SCreenccoccvee e 16
Chapter 2: PONGIEL... ..o 17
S L] 00 RS = 17
Breaking down the task ... 18
ServiNg the Dall ..o 20

Up Java Creek without aPaddleccciiriicinininee e 22
RELUrNING the SEIVE ... s 23
(01710 10] o0 F =1 (= 24
Creating a COMPULEr OPPONENL.........ceveerreerieerieeiererseeeseesree e eneeseesnes 24
Rolling down the QULLEYcoeiriiieree s 25

He ShOOLS, NE SCOTES! ...ttt 26

WEAVE AWINNA! ...ttt st be e s st sae s s be e s sbeeeanns 26

kooV Java Game Programming For Dummies

Tracking USEr TNPUL.......ccuiiieireierietcriee ettt snenea 27
Entering the CONtrol ZONE ... 27
Tracking the MOUSEooviiieee e 27

Displaying the SEALEc.cccvveeeieiecece et s enea 28
(== oL a0 R oo - 29
(€= 010 Y= SR 29

Chapter 3: HOIE IN ONe....uiiiiii e 31

Modeling the Deceleration of aBall..........ccccceeinininiiinceeen 32
USING VECIONS.....eteeeeteeiesiee sttt ettt sttt s 32
Creating @VECLOr ClaSScoiiiviieie et 35

Starting fromM @ CITCIE ... s 36
Creatingthe Cir CLecClasS ..o 37
BuildingaBal1 by extending Circle ..., 37
Decelerating the ball ... 38
MOoVING the Ball ..o 39
StaYING 1N DOUNAS ... e 39
PULtiNg the DaI1 ..o 40

Selectingthe ballccoov e 40
EXECUtING thE PULLceveeeeeee e 41
Waiting for the ball t0 go iN ..o 41
Drawing the Dall ... 41

Digging @HOIE ... e e 42
Gravitating toward the CENLENcocoriiiieieeeee e 43
V2= (o 1 1o 1 TSR 44
Curving around the hol€ccovvviiiceccrcr e 44
CodiNG thE CUIVE ...t 46

PUShing tO the CENLEY ..o 46
SINKING the PULL ..o s 47
SpINNING INTNENOIE ... 47

CodingtheH 01 einone APPIEL c.oevieiieic s 48
Completing the putting iNterfaceccooeveveecce v 48
Drawing the green ... 49

Chapter 4: JAVaPOoO0!cooiuiiiiiec et 51

Calculating Ball-to-Ball COllISIONScceirieirieirierereree e 52
Passing iNthe NIGNE ..o 52
Reducing the diStanCe..........cccueierieirieee e e 52
Calculating poSition OVEr TIME..........coceririereneeie e e 53
Calculating the distance to acolliSioNcccccveveeieesieece e 54
SOIVING FOF tIME e 56

TWO SOIULIONS? ... 56
Rearrange the @qUationcooevereiriecineee e 57

The complete set of equations (all you really need) 59

TiMING 8N OFTEY ... e 60
Checking the combiNGLioNSccceeieieiisieie e 61
Bouncing Off the BUMPELSc..coveeeeeeeecese sttt sre e 61

Coding the CollISIONSccirerereeere e e ens 62

Table of Contents

CoNServing MOMENTUMocoiiiirieeeie st se e e 63
REVISITING VECLOIScveiiieiiieiie ettt 64
What if both ballsare moving? ... 66
LI (= (o108 oo LU Tox 66
Thecollide() MENOcooeeireiiciieiiceecee e 67
col lide() QISSECEd ..o 67
Putting All the Pieces TOQELNEYccoiiiiiieeee e 68
Part [1: Up t0 Speed 71
Chapter 5: Sliding Blocks Brain TEASEr.........ccovvvivviviiieiee e ccciiieeee e 73
USING IMAZJES IN GAIMEScueeeiirieiirieierieei et 74
Digital Stamp PadsSccooeiiiiiieee e 75
Drawing while downloading ..o 77
Loading images with Medi aracker ... m
Medi aTracker. addl MBGE() ..o\ vvrret ettt e e e 78
Medi aTracker. wai tFOT AT (). ..o e 78
Loading Multiple iMageSccoereeririeeeereeee s 79
Laying Out the GamME BOArdccoceruerierierieieeeeeeeeicee e e 79
Reading the width and height of anImage ... 8
Initializing gri dX, gri dY, pi eceW dth, and pi ecetei ght 81
Crafting the PUZZIEocee et s 82
Making puzzle pieces that act like real puzzle piecescccveevruenns 82
Putting the pieces togetherccoceiie e 83
Mousing the PIeCES ATOUNGcoereeiiiieie et 85
Selecting A PUZZIE PIECEcoeiieeerereee e s 85
MOVING thE PIECESecueceeeeeecec e e 86
Slide() INGAOUNccviieciiiiene s 87
Checking for pieces that block the slide path with
Rectangl €. 1 NEEISECES () vvvvt 87
Checking for the board boundaries rectangte union() and
ReCtangl €. BQUAL S () «vvveee i 88
Cleaning uUp after aMOVEcccoce e sne 89
Drawing the BOardcccevvvereie e seeseeee e eeees et neens 90
Declaring the Puzzle Solved and Congratulating the Winner 91
Chapter 6: Blackjackcccciveiiiiiiciececese e 93
Understanding the BlackjaCk Gamecccovevereerieieninine e 93
Playing BIACKJACKccoiririiririiinse e 94
DeSigniNg the QaIMEco.eiiii i e 95
Creating a Reusable Deck Of Cardsocooerieieneneneneeree e 96
Shuffling and dealing the decK..........cocvcveieiecce s 97
Buildingthe Car g ClaSS ... 99
Converting cards to SEHNQGScovevvereereeeeeeenese st 102
Extracting card graphics from a compositeimagecccecue.... 103

Customizing the deck ... 105

Java Game Programming for Dummies

Creating a User Interface with Componentscccceevevvenenenieenenenenee 106
USING DULEONS ...ttt 106
Creating and placing BUttONS ..o 107

Having your game respond to bUttoNnSccoceveriienen e 108
Reading and displaying teXtccceeeveeievisiececeesees e 108
Displaying status and scoreswith labelscccccoevevvccecceennee, 109

Getting afew words from the USer ... 109
Creating sCrolling tEXt @reascoeveeeererireneseese e 110

Using Canvas tO create New COMPONENESccceeuererreesieesieesieeeeenens 112
Customizing your game's appearance with | mageButton......... 112
Displaying ahand of cardscccceevevvnieieciccece e 114
Arranging the User INterfaCeooveeevevenie e 117
Positioning components with a LayoutMnager 118
FIOWLBYOUL ...ttt 119
BOIAErLAYOULcoeeiieiieirierie ettt e 119
GIOALAYOUL ..ot bbb 120

Y our OWN LayOULMaNAgEYcceevueiiiienniieeniessiee et 120
Dividing the screen with pan€ls..........ccccovveevvveccn s 123
Laying out agame of Blackjackc.ccoevvinineiniineneeceeee 124

The top-level @pplet........oociiiiiie s 124
The HTML that loads the applét.........cccoieeieiiiiiiiieieeeeeeeee, 130

TRE PIAYELS ..o e 131
The players handsccccceieeeciece e e 134
Chapter 7: 2-D MaAZE......ooiuiiii ettt 137
Creating the Maize Gass...............ooooiiiie e 138
TRE Bl 0CKMAZE SUBCIASS.\ oo oo e e e 139
TRE WA 1 MiZe SUDCISS.oeve et 140
GENEratiNg 8MEAZE ..o 142
Selecting an algorithim ..o 142
Adding tothe Maze ClaSS ... 144
Generating awall MAZEcccovveeieiiieie e 145
Generating ablock Mazecccoovveveeceee e 149
SOIVING MAZES......ciieeiireriee ettt et et 156
Representing the SOIULION ... 156
Keeping your left hand onthewall ... 157
Using breadth-first searching to find the shortest path 159
Displaying @2-D MaZEcccvveieeee ettt 163
Usingthepaint (| Method ... 164
Repainting the maze in athread-friendly mannerc.cccceeveeuene 165
Calculating where the piXElS g0........coeieirerineese e 166
Knowing that block mazes are simple is half the battle................... 167
Displaying awall Mazeccoereireiineieeseere e s 167
Displaying @ SOIULIONccccveireeeeicece s s 169
Putting the maze 0N the SCreeNccccv e 170
Using athread to animate, generate, and solve a maze................... 170

Reviewing parametersin the vaze App 1 et ClaSS..cccovovveveevveieenenne, 171

Table of Contents

Chapter 8: 2-D SPrit€ MAzZe.......cccovuviieeiiiiiee e e e 173
Gentleman, Start Your Sprite ENgines!coeeiiiinniinirecseneeseseeee 174
IMPIEMENtING @ SPIITE ..ceeieieieie e 174
Putting spritesin their place ... 176
Moving spritesaround the play fieldccooovveeii i, 178
RESOIVING COIISIONS ..ot 179
Displaying SPILEScevvevireirieerieerere e 180
ANIMELING SPITTES....ccveeetireetereet e 181
A SPIite FrameWOrK.........oouieeieeee e 183
The Spri teEngi ne ClaSS...ciiiii i 184
Keeping track of all the SPrites.......cccovvvevvceve e 188
Drawing sprites layer by [ayercccecvvvveevivseese e 189
Moving sprites and detecting colliSIONSccccoverienienieencnenn 190
Improving the accuracy of collision detectionc........ 190
Selecting a movement frame ratecoceeeeveeieneeie e 192
The BackgroundSpri teEngi ne ClaSS.....cccooiiicieiviiec e 194
Sprite events and handling them ..., 194
S o 1 (=0 1 | SR 195
COMPULEr AQVEISANESecveiieeeieete ettt e seene s 197
Using random intelligence to make adversaries smarter 197
Using a breadth-first search for adversary navigation 198
Prioritizing adversary goalsccooeeeeieneeniniene e e 198
The SPritE MazZe GAMEc.cceeeeeeeeeeee et 200
Implementing acast Of SPrtESc.c.eeveveeeereeceeeeeee e 201
RUNNING INtO @Wall ..o 202
ANIMaLiNg MAZE FUNNESSooviiieiieeieieie et saesseeee e 202
Animating an adversary who shootsto Kill ... 204
WhIZZING BUIELS ... 205
Buildingonthe B1ockMaze ClaSS ..umrireirieriererieserreeesesesese e 206
INitializing the game ..o 210
Overrldlng Ar QWSQUAT ©() seerrrrrrrrmninnmnrminn s s 210
Giving the player CONIolcoiieiiieiieeeee e 211
Keeping thingS MOVING........cccoiiiiiiiiereee e 211
Chasing the Player ... 212
Finalizing the Sprite Maze appletccocvveevieveeveneece e 212
Part Ill: Seven League BOOLS.........c.cooeviiiiiiiiiiiiiiienen. 215
Chapter 9: Modeling the Real WOorld ... 217
Making Things Happen at the Right TimewithaTimeline 217
A DEAP Of BVENES ... s 218
Adding eventsto the timeling........cccccovce e e 219
Processing eVentSin OFder..........cooe e 221
Changing the future: Removing events before they happen 222
REMOVING BVENES ..ot e 222
Searching the timeling ... 222

Playing SOUNGScoveeeeriiieise et se s st see e neens 223

k(jj%% Java Game Programming For Dummies

Matching Animations to Game Events with SCriptscccocvvvvcviceeveenne 224
Interfacing the programmer and the artistcceeeveveeiiiencnnnns 225
WITING @ SCITPL. ...ttt 225
Reading scripts from text fileS ... 227
LoOPiNg @N @NiMELIONccoeiiirerieeieiee et 228
Adding random BeNaVIOr..........cceccieiieecece e 228
Adding special effects and other goodiesccccvvvveeveececcin e 230
Understanding the COOe ..o 231

Organizing SCriptsS by aCtionc.cooeveieeieeiinineee e 231

Filling ascript With frames ... 233
Implementing @ A NTMETame ..o 238
SOUNAFTAIME ...ttt 238

BranChFrame. ..o s 239
Putting the codetowork: TheScriptSpriteclass............ 240

Chapter 10: 3-D PolYgON MAZEcccoiiiiiieiiiiiiee e 243

Moving into Three DIMENSIONScccoviieeririeeneseeeeie e 243

Calculating PErSPECHIVEcveueriirieieeriee e 243
Calculating the height of awall ..., 247
Finding the X-axiS iNterseCtion...........ccoeerereeie e 247
Expanding the grid into 3dimensions............ccccceevveevieevecceceesenns 247
SIZING UP thE SCrEEN ... 247

Drawing the MaZe ..o 248
The painter's algorithm ... 248
Draw from the QUESIAE INcc.ooiieiiiiee e 248
DEEPEI ISWIEN ...ttt e e 249

Creating @aRaA'S EYE VIBWc.ocveiieeee e s 250
WIING G T T AV I BW vttt 250
COUINGM BZ EMAP .o s 252
Coding POIYMBEZE.........ccooiiiiiieee e 253

Adding Shading, Light Effects, and a Reason to Solve the Maze 255
UpPdating MaZEM@Dcc.cceeuerierieenie ittt e be e 257
Updating PO I YM @Z € ..ottt et s 258

RUNNiNg @ RANAOM M@ZEcceiuieierieseisiese et s 259
Extending from Bl OCKMaZe...........cccoririininenrseeese e 259
Sizing themaze in your HTML ..o 260

Chapter 11: Texture-Mapped 3-D MaAzeccccocveiiiiiiiieeniene e 263

MapPING SOME TEXIUIEeueevieeiirieierieeerte st 263

SCAING IMBGES ...ttt et et b e 264

THING TEXIUIES ...ttt et b et 268

Texture Mapping @ 3-D MazZe........cccoeieiieiecece e 269
Introducing Mr. BreSENhamcccceeeeireveneseseseeseseseeseeeeese e 270
Experimenting with Bresenhamcccocvvvinenenninennenenenenee 271
Extending a TexVi ew class from Gri dVi @W.........ccocecvveeneinencnienenn 273

LOAING LEXEUMESc.eeviiiie ettt 273
OVErriding d rAWSG () «.eoveeeeeerrereeere e e 273

Alternating Wall tEXTUIEScceveeiereie e 274

Table of Contents

Drawing front WallScooveeeieeiee e 275
Calculating the front wall'stexture offsetcccoeevvvcvveveenennen. 275
Creating the front wall imagecooeevirireinieeeeeee 276
ClippiNg tO the VIBW......ccveieiiie et 276
Slicing acolumn Of tEXIUFecocereriieie e 277
Drawing SIAe@WallSccoceiiiiceie e 278
Calculating the side wall's texture offsetccccccvvcivevcee e e, 279
Tracing the side-wall €4gESocvcvviriirree e 280
Masking the SIde WallS ... 280
Darkening the WallS ... 280
Computing a darkened color table...........ccoooeiieriiinineeeeeeen, 280
Shading the WallSc.veeeeece e 281
Shading the SIdeWallScccovvverieercre e 282
ASSEMDIING the PIECES ...t s 283
Chapter 12: Advanced IMagingccoccvevierieiiiieiienee e 285
Drawing Partially Transparent IMagesccoceeverenenenieseneeeeeesenieniens 286
Creating new images with Memo ry | mageSou rcecoeeevrreenenen 286
Coding an Al phaGradi €Ntcoceiieiieieeeeie e 287
Blending the edges of images with alphamaskingc.ccccceeeeens 289
Creating alphainformation fromaGIFimagec..cccocvevevienneee. 289
Using Pi Xel Grabbercccov e 290
ANLAlIESING 1N JAVAL.....ceiiieiriiiiee et 293
Rendering t0 SUDPIXEISceiuiriiieirieicre e 293
Reading from of fSCreen imagescocceovieeneneese e 294
SHMNKING TEXE ... 296
D TN aTo] = o: TS 297
The ImageProducer interfacecocvvvvevceese v 298
Coding an IMagePrOTUCEYooereeriereeiireee e 298
Dancingthe ImageProducer tangoccocvveereereeneneineereeeees 299
Demoing Di reCIMAGE.......cooeeieeieeie et e 301
MOdifying GIF IMAGESc.civeiierire ettt 304
Getting at the raw image data with the
ImageConsumer INtErfaCe.........coovvvvieecerirere e 304
Recoloring @ GIF IMAGE ..o 307
Part | U: ThePart of TeNS......cc.oveeviiiiiiiiiiieeeeeeeeeea 309
Chapter 13: Ten Secrets for Making Fun Gamesccocceeeeeiinnnnnn. 311
Knowing What Players Wantcccceeeverireneneereeeeeee e s 311
Understanding What Makes a Game AddiCtiveccceeovvevvnceencnneennnenns 312
Start Easy and Then Increase DiffiCultyccccoovvveiini i 312
Making It Easy t0 "StEP IN.. ..o e 313
Enhancing the Player's Suspension of Disbelief ... 313
Making the Player Feel Smart ... 314

What Did | Do Wrong? The Player Should Always Knowcccccccveeeeneene. 314

Java Game Programming For Dummies

X' X+

Cheating SPOIlSthE FUN ... 315
Your Friend, Mr. Random NUMDEScccviiiininnenseneee e 315
PLAYLESIING .ttt 316
Chapter 14: Ten Ways to Say "Game OVer'........cccooiiiiiiieeieeeeeeieiiine 317
(= 0 1010 (0 1 2] = o: TR 317
ROIHING the Creditsc.coveiiiiiriieeeee e 318
Providing an Instant REPIAYcooeereiiiinereee e s 318
Scoring and Points: the Competitive ObsSession.........c.cccoeeviieeieeneeneennee. 319
Marking Levels of AChieVementcccooiiiererienire e 319
Ranking One Player against ANOhErccoveeeecie i 320
Reusing Game Code to Make an Ending Animationc.ccoeveeeeeenene, 320
Offering aPractiC@ ROUNc.coveieieire e 321
Losing Should EVEN BEFUNccooiriieeeereeee e 321
Thanking Playersfor an Enjoyable Gameccoceieeieieeie e 321
Chapter 15: Ten Ways to Optimize Your Java Code.........ccccceevvvveeenns 323
Code Profiling: Finding Wherethe Time GOESccooveeererieene e 323
A ShIfLY DIVIAE.....civeieieieierieteree ettt st st nre e 324
Inline Methods with the Compilercccceveeieie v 325
DO ONCE, USE OFEN ...ttt 325
Faster VariablESoiveeeseeeeee e st 326
A FASEEN LOOP ..ttt e 327
Faster MEthOUScc.oieee e e 328
Reduce the Cost of Synchronizingcccceoeveeerieienineneeeeeee e 328
Beware of Large Array INitialiZersccoceveveeieeeecececeeeees e 329
The Fastest Way t0 COPY ATTAYScccerererereeeereesesaesseseeeesesssessessessesssenes 330

Appendix: What's on the CD-ROMcccciiiiiiiiiiieeee e 331

SYStEM REQUITEMENLScoueeueeeerieseesiesieseesees e steseeseeeseeeesessessessessessessessesseseens 331
Using the CD with Microsoft Windows 95 or NT 4.0cccoecvveevievvennniens 332
Using the CD With MaC OS.........coooirinereeneeeeesee s 333
Getting t0 the CONLENTcc.eeiieie e e 333
INStAlliNg PrOQramsooi i 334
WhHEE YOU'll FIN ..o 335
The Java Development Kit.......ccoeeeeeerie i 335
Microsoft Internet EXpPlOrer 4.0ocoereienienene e 336
Adobe Acrobat REATEScoviieierie e 336

CD BONUS ChapEr'Sceeeeeeiereeeeieriesie et s se e enens 336

CD Chapter 1: AN ApPlet aDaycccceeereiinene e 336

CD Chapter 2: Using Threadscccevvvevecieeee e 337

CD Chapter 3: Getting Savvy with Graphics.........ccccceeevvvceeniennen, 337

CD Chapter 4: Adding Color to CoOlccoveeriereinerereenenens 337

CD Chapter 5: USEr INPULc.ccverieeirieieriecnieesieesiesesie e 337
Appletsand More APPIELS ... 337

Chinese CheCKersfor JAVAcuueeiceeeie i 339

Table of Contents

GOIAWAVE .24 ...ttt sttt ere ettt nan 339

SoundForge XP 4.0d DEMOccccvveeeeriireeeseseeseseeeesese e seeeenenees 339

SOUNTAPP 2.4.4 ..ottt 339

SOUNAI-IACK 0.872 ...ttt 340

If You've Got Problems (Of the CD Kind)cccooeiinininenieie e 340

(0 [341
javalm Development Kit Version 1. 0. 2 (Mac OS)

1.1.5 (windows) Binary Code License.........c..cceeuuue.. 356

IDG Books Worldwide, Inc., End-User
License AQreement......cceeeeeecceveieeeee e e e e ceieeeeee e 358
Installation INStrUCLIONScevvvveeieeeeeeeeeee e, 360

Book Registration Information Back of Book

Java Game Programming For Dummies

Introduction
........... eeenn.*0...0..0.%0..*.00..x.0

W el come to Java Game Programming For Dummies. This book takes you

from writing your first, basic game applets all the way through
advanced, texture-mapped 3-D. Along the way, you see and apply all the
under-the-hood techniques like maze generation, collision detection, and
spritesthat put the red meat in your game stew.

About This Book

This book shows you the techniques that make games tick, and gives you
dozens of working Java code examples. In addition, each example is backed
up by detailed explanations that fully deconstruct the code so that you can
see how everything works. Y ou can start from these working examples and
customize them, use the partsto create entirely new games, or simply use
them as a source of ideas for writing your own custom game code.

While this book does, where necessary, discuss alittle theory, the real heart
of the book is intended more like a hands-on auto shop class than a physics
lecture. After all, understanding how awater pump worksisalot easier if
you can hold one in your hand and see where it fitson areal car engine.
Likewise, understanding game code isalot easier if you can examine each
part of the code in detail and see where it fitsin the overall structure of a
working program.

Who You Are

We wrote this book in such away that it is accessible to all levels of Java
programmers. If you are fairly new to Java, you can copy the code in this
book and, with the tips and instruction we give (and alittle adventure),
easily customize the games we present. Y ou can, for example, take the
JavaPool applet in Chapter 4 and easily figure out how to change the color of
the pool table and balls, tweak the speed of play, and so on. If you find that
this book is really beyond your understanding, buy it anyway and then also
buy Java Programming For Dummies by Donald J. Koosis and David Koosis
(IDG Books Worldwide, Inc.) - no seriously, this book doesn't go into detail
about the most basic stuff, so if you've never touched Java before, you may
want to start with the Koosis' book.

Java Game Programming For Dummies

On the other hand, you experienced programmers can find a whole load of
tips and game-specific programming techniques in this book. Y ou can also
copy and tweak the code we present, as well as get exposure to many game
programming techniques to use in creating your own Java games.

About the java Code is This Book'

All the code examples in this book are coded as Java applets so that they
can be used with Java-enabled Web browsers and published on the Web. At
the time of this writing, the current release of Javaisrelease 1.1.5 with
version 1.2 just appearing as a developer release. Javaversions 1.1 and later
add many new features, such as a completely new event model, but many
Web browsers have yet to fully incorporate these new features. Therefore,

the appletsin this book are coded to be compatible with the earlier Java
1.0.2 standard so that they work with the widest variety of Web browsers.

How This Book Is Organized

This book is divided into three major parts, each covering a progressively
more involved array of game programming techniques. We then include
three more elements, each with useful tips and additional information. As
with all ... For Dummies books, you can pretty much dip in and out of chap-
tersto find information. The only exception is that in some cases, alater
section uses material or pieces of code from earlier chapters. We always
alert you to these cases when they arise so that you know where to look,
and you can always just go to the CD-ROM and pull in the necessary code if
you need to.

Part 1: Steppin' Out

This part covers the basics of animation and simulation and shows you how
to program imaginary objects to obey physical rules, such as momentum,
acceleration and rebounding from collisions. In this part, you create a Ping-
Pong game, putting green, and pool table while exploring some advanced
concepts, such as vector math, in afun, straightforward way.

Part II: yp 10 Speed

This next part introduces the techniques you need to create professional -
quality games. Moving beyond the simple, solid-colored graphics of Part 1,

Introduction

Part Il shows you how to use multicolor images in your games. Starting with
alogic puzzle, you progress to a multiplayer blackjack game, master 2-D
sprites, and combine sprites with code to generate random mazes and
create a maze chase game.

Part 1ll: Seven League Boots

This part moves you beyond the flat world of 2-D gamesinto the realm of 3-D
flat-shaded and texture-mapped graphics, and shows you how to create
several different styles of 3-D maze games. Y ou also experiment with a
variety of advanced game programming techniques, such as using timelines,
employing animation scripts, playing sounds, and using the alpha channel to
create spectacular image effects - all in 100 percent Java.

Part U/: The mart of Tens

If you've previously read any ...For Dummies books, you know that this
section is intended to pull together a variety of useful facts and other
goodiesthat just don't fit anyplace else. This book includes "Ten Secrets for
Making Fun Games," "Ten Ways to Say Game Over" and "Ten Ways to Optimize
Y our Java Code."

Appendix: About the CD-ROM

The last section in this book contains information on the programs and
applets included on the Java Game Programming For Dummies CD-ROM.

Ca Chapters. Fundamentals

The CD-ROM included with this book contains an additional five chapters of
the book in a part called "Fundamentals' which is provided as Adobe
Acrobat PDF files on the CD-ROM. These chapters cover many aspects of
Javathat are particularly useful for game programming, but not necessarily
specific to game programming. If you're still new to coding Java and want to
brush up on the fine points of applets, threads, graphics, color, user input,
or basic HTML, you should check out these chapters. Whenever we discuss
topicsthat rely on information in the CD Chapters, we also include a hel pful
reference to the appropriate chapter.

Java Game Programming For Dummies

1cakns used in This Book
e

The tip icon marks information that can save you time or keep you out of
trouble.

Thisicon introduces a special technique or programming trick that can help
you program games like the pros.

Thisicon points out Java 1.1 differences from Java 1.02.

Thisicon points out Java 1.2 differences from Java 1.1 or Java 1.02.

Thisicon marks important information that you need to understand and
use later.

Danger, Will Robinson! Ignore thisicon at your own peril because the advice
given can often save you from making a serious error. However, with appro-
priate attention, you'll have smooth sailing ahead.

Thisicon introduces atechnical term that can help you find information on
thistopic in other reference books. Y ou can also sprinkle these terms into
your daily conversation to impress your friends.

Thisicon refers you to stuff you can find on the Java Game Programming For
Dummies CD-ROM included at the back of this book.

Thisicon points out technical details that may be interesting to you, but
which are not essential to understanding the topic under discussion.

Part |

Steppin' Out

WE. SHOULD NAVE T+ i5 ~iED IN VERSION 2"

In this part

imulation is at the heart of many computer games

i because many of them are adapted from games you
- canplay in thereal world. Simulation is atricky subject,
~ though, because you can't put real balls and Ping-Pong
- paddlesinto a computer game program. Instead, you have
~ to write code that mimics how these objects act in the

real world. Simulation isas much an art asit is a science,

- and Part | gives you a good solid foundation in both the
- craft and the technique of simulation.

Followw the Bounmncimng sall

0*0*000 O O OO0O0O0#*0 O ®0 sO*0 s00 ssO 0 0 **O0 0sO0O00sO000 0

hr This Chapter
Making things animate
Modeling motion
Handling boundary collisions
p Reducing flicker with double buffering

io00000,., .-0..6...-000.04.0.++bt.=00.-!1.-00.00.

oving objects across the screen is one of the basic skills you need to
N\~ create action games. The waY Y ou simulate motion in a computer
gameisfairly simple: First, you break time down into a small unit, such as
'/so second. Then, between each tiny tick of time, you move the object a
small amount. When you repeat this process quickly enough, the small steps
of movement blend together to create the illusion of motion.

co
h This chapter discusses the various details and techniques used for animat-
Ing and modﬁling abouncing ball. The completed applet and applet codeis
on the Java "' "me Programming For Dummies CI)ROM .

Trchia Of f the Time

Java's Th read class lets you easily construct a program that slices time into
tiny intervals using method s 1 eep () to rest for specified intervals of time.
YoucreateaT hr ead and then use aloop that alternates between doing
something, such as updating the position of your object, and sleeping. The
framework code you need to set up this alternation is

ublic class Bounce extends Applet implements Runneble{
private Thread ticker;
private boolean running = false;

public void run () {
while (running) {
repaint();
(continued)

Part |I: Steppin' Out

(conti nued)

try |
ticker. sl eep(1000 / 15);
catch (I nterruptedException e) | }

public synchronized void start () ['
if (ticker == null |- 1ticker.isAlive()) i
running ° true;
ticker = new Thread(this);
ticker.setPriority(Thread. MN_PRIORI TY + 1);

ticker.start();

public synchroni zed void stop () [

running = fal se;

This applet extendsthe Runnab 1 e interface so that it can start the new
ticker Thread inthe applet's start() Method. The start() method aso
sets the bool ean variable runni ng to true totell the run() method to
continuetosleep() andloopforaslongas running remans: rve When
it's time for the animation to stop, the s t o p () method sets running to
fatse andtherun() method exits.

If the browser callsthe st art () method again after it has stopped the applet,
theisariive() methodreturnst ai se toindicate that the ti cker Thread
is no longer running. In response, the code creates anew Th read to restart
the animation.

Y our animation code needs to respect the applet'slife cycle as described in
the previous paragraph; otherwise the animation can continue to run - even
after the user leaves the page containing your applet - and waste CPU cycles.

Thecalculation 1000 / 30insidethecall to s 1 eep () setsthe animation
rate for the applet. Thes 1 e e p () method expects to be told how long to
sleep in units of 1 millisecond. A millisecond is one 1,000th of a second, so
dividing 1,000 by 30 calculates atime in milliseconds that resultsin the
animation repeating roughly 30 times a second.

The previous code example provides the applet with a heartbeat, so to speak,
to drive the animation. However, the sole task of the timingloopin run () is
simply to sleepandtocall repaint (). You need additional code to make the

applet compute and display the next step, or f rame, inthe animation.

Part 1: Steppin' Out

(conti nued)

try
ticker. sl eep(1000 / 15);
| catch (InterruptedException e){ |

public synchroni zed void start () f

if (ticker == null . Iticker.isAlive()) |
running = true;
ticker = new Thread(this);
ticker.setPriority(Thread. M N.PRIORITY + 1);

ticker.start();

public synchroni zed void stop t)

running = fal se;

This applet extendsthe Runnab1e interface so that it can start the new
ticker Thread intheapplet's start() Method. The start() method also
setsthebool ean variable runni ng totrue totell the run() method to
continuetos1 eep() andloopforaslongas running remainst r ue. When
it's time for the animation to stop, the st op () method sets r unning to
fatse andtherun() method exits.

If the browser callsthe st art () method again after it has stopped the applet,
theisaiive() methodreturnst ai se toindicate that the ti cker Thread
is no longer running. In response, the code createsanew Thre a d to restart
the animation.

Y our animation code needs to respect the applet's life cycle as described in
the previous paragraph; otherwise the animation can continue to run - even
after the user leaves the page containing your applet - and waste CPU cycles.

The calculation 1000 / 30insidethecall to s 1 eep () Setsthe animation
rate for the applet. Thes 1 « e p () method expects to be told how long to
sleep in units of 1 millisecond. A millisecond is one 1,000th of a second, so
dividing 1,000 by 30 calculates atime in milliseconds that resultsin the
animation repeating roughly 30 times a second.

The previous code example provides the applet with a heartbeat, so to speak,
to drive the animation. However, the sole task of thetimingloopin run()is

simply to sleepandtocall repaint (). You need additional code to make the
applet compute and display the next step, or f rare, inthe animation.

Chapter 1: follow the Bouncing Ball

Making Things Move

*'358

i

Me,

The position of an image in two dimensions can be specified with the x and
y coordinates of the image. In order to make the image move, you specify an
additional set of x and y values that define the amount to add to the image's
original position for the next frame; think of these as delta x and delta y
values (the Greek letter delta[0] is used in math and physics to indicate the
difference between two values). Y ou can simply add the proper values of
deltax and deltay to the starting x and y position to specify motion in any
direction and at any speed.

For example, say you have an image of aball at point 1,1. If you then specify
adeltax value of 1 and adeltay value of 1, the ball would move to position
2,2 for the next frame; 3,3 for the frame after that, and so on. If your delta x
valueis 2 and your deltay valueis 2, the ball movesin the same direction,
only twice asfast (or twice as far, depending on how you think about it) for
each new frame.

The x and y coordinates in Java use the upper-left corner of the applet
screen as the origin (0,0) and describe x and y locations in terms of pixels.

Floating the point

The best way to specify deltax and deltay valuesiswith 1 o at-type rather
than i nt-type values. That way, your objects aren't [imited to movement of a
whole pixel per frame, nor are they limited to moving in directions that can
only be expressed in terms of i nt-type values. Not so long ago, people used
fixed point math to do fractional calculations, and many booksin print still
recommend this practice. However, all modern CPUs now include special
floating point calculation features so that using floating point (f 1 oat) values
for fractional calculationsis quicker.

Encapsulating the essence vf a bal!

Now that you understand the basics, you're ready to write code to use the
ideas presented in this chapter and create a Java class to represent a ball
that can move:

class Ball {
public float x, y, dx, dy;
private Color color;
private int size;

(continued)

10 Part I: Steppin' Out

(conti nued)

Ball (float x, float y, float dx, float dy, int size,
Col or color) i

this.x = x;

this.y =vy;

this.dy = dx;

this.dy = dy;

this.color = color;

this.size = size;

public void draw (Graphics g) f
g.set Col or(col or);

g.filloval ((int) x, (int) y, Size, size);

The constructor for Ba 1l 1 is straightforward. It simply copies the ball'sinitial
X,y position values, dx,dy delta values, and color and size into the class
variables x, y, dx, dy, col or, and si z e, respectively.

sallalsodefinesadraw () method that you can call to make the ball draw
itself toacraphi cscontext. The code isreally not much more than callsto
setColor()and fitlOval (), but notethat the f1 0oat valuesx and y must
becasttointinthecall to fi110val() toavoid acompile error. Whenever
you intentionally reduce the precision of a number, you must use a cast to
tell the compiler that you are doing so intentionally.

Setting Bounds

gﬂ'eﬂ

Thefinal thing you need to add to your sal 1 classis code to keep the ball
inside the bounds of the applet's screen area; you can add code that detects
when the ball reaches one of the boundaries and then responds by reversing
the appropriate delta value. Reversing either the deltax or deltay value
reversesthe x or y direction of the ball's movement, respectively; doing so

at the boundary of the applet makes the ball appear to bounce off the
boundary.

The top boundary of an applet isy=0, and the left boundary of an applet is
x=0. The width and height of an applet are set by the applet'sw | DT + and
HE 1 GHT attributesinthe< A PPL 1> HTML tags used to place the applet, as
explained in CD Chapter 1.

Chapter 1: Follow the Bouncing Ball

Moving out of bounds

If the bouncing ball's x position becomes |ess than the boundary's x position
(x < bounds. x), theball just collided with the left boundary. If the ball'sy
position becomes less than the boundary'sy position (y < bounds. y), the
ball just collided with the top edge. Detecting a collision between the ball
and the lower and right edges is only slightly more complicated. The right
edge is computed by adding bounds. X to bounds. wi dt h. You compare
this sum to the ball's x position plusits size (x + size > bounds . x +
bound s . wi dt h) to check for acollision on theright side. Likewise, you com-
pare the ball'sy position plusitssi z e to bounds . y plus bounds. h e i ght

(y + size > bounds.y + bounds. hei ght) toseeif the ball collided with
the bottom edge.

Bouncing back

When you detect that the ball's position has moved out of bounds, you need
to reverse the sign of dx (if the ball collided with the left or right edges), or
dy (if the ball collided with the top or bottom edges). Reversing the sign of
dx or dy reversesthe ball's movement in the given direction, thus making it
appear to bounce back from the collision. However, because you can't catch
acollision with a boundary until after the ball has actually moved out of
bounds, you need to move the ball back in bounds to a spot that makes it
appear asif it really bounced off the boundary edge.

After crossing the boundary edge, the ball wants to appear some distance
beyond the edge. If the ball had actually bounced off the edge, it would
have, instead, moved that same distance back in the other direction. Be-
cause a bounce is the action you actually want to create, you need to move
the ball from its projected out-of -bounds position to the desired "bounced"
position. Y ou do this by moving the ball back by twice the distance it
traveled out of bounds, as shown in Figure 1-1.

If the ball bounced off the left edge, thisdistanceis2* (X - bounds. x).
Likewise, if the ball bounced off the top edge, thisdistanceis2* (y -
bounds . y). Whenthe ball bounces off the right edge, the distance is 2
((X + size)-(bounds.x + bounds. width)) andit's2 * ((y *+ size)
(bounds.y - bounds. height)) When it bounces off the bottom edge.

Coding movement and bounce

Y our next job isto take al these different collision detection and bounce
handling calculations and convert them into code. The most convenient
place to put this code isin a new method called mve () that you can add to
your B al 1 class. Here's the complete code for mvee ()

Part I: Steppin' Out

Figure 1-1:
After
detecting a
collision at
the top

of the
boundary,
you move
the ball
back in
bounds by
moving it
twice the
distance it
traveled out
of bounds.

public void nove (Rectangle bounds) |

Position of ball
after adding dx
and dy moves it

out of bounds

Position where
ball bounces
off the edge

Reflected position

Position of ball is 2 times the
before adding dx . “ 77 distance out of

and dy bounds

get

/1 Add velocity values dx/dy to position to
/1 ball s new position
X +_ dx;
y +° dy;
/1 Check for collision with left edge
if (x < bounds.x && dx < 0)
dx = -dx;

X -= 2 * (x - bounds.x);

/1 Check for collision with right edge

else if ((x + size)) (bounds.x + bounds.w dth) &&

ax > 7
dx = -dx;
X -= 2 * ((x + size) - (bounds.x + bounds.w dth));

/1l Check for collision with top edge

if (y < bounds.y & dy < 0) |
dy = -dy;

y -° 2 * (y - bounds.y);

/1 Check for collision with bottom edge

Chapter 1: Follow the Bouncing Ball

else (f (|y + size) > |bounds.y + bounds. height) &&

dy = -dy;
y -=2* ((y + size) - (bounds.y + bounds. height));

The move () method starts by adding the dx and dy delta valuesto the ball's
x and y position values to update the ball's position. This calculation may
move the ball out of bounds, so move () then checks the new position
against the left and right bounds and then the top and bottom bounds.

Y ou may notice that each collision test code case not only checks the ball's
position, but also checksto seeif dx and dy are less than or greater than
zero, depending on the case. This extra bit of checking adds afail-safe
feature to the code that prevents a ball from getting stuck should you
accidentally initialize it in a position where it's already colliding with an
edge. Without this check, a ball in collision with an edge may not be able to
move away from the edge before colliding with the edge again. This would
cause the ball's direction to reverse, then reverse again, on and on, forever.

To avoid this problem when checking for a collision with the left edge, the
code also verifiesthat dx islessthan zero. Similarly, the code makes sure
that dy islessthan zero when checking the top edge for a collision. A

collision with the right edge requires that dx be greater than zero, and a
bottom edge collision makes sure dy is also greater than zero. The code

ignores collisions where dx or dy do not match these tests.

Settin' thingsin motion

Now you're ready to create aB a 1 1 object initialized with values that move

and bounce it around inside the applet's draw area. Y ou should add the
variables as class variables (inside the Bounce class, but not inside a
method) and initialize them in the applet'si nit() method, like this:

private Rectangl e bounds;

private Ball bal | ;
private int wi dth, height;
public void init() {

width = width = size().w dth;
hei ght = size(). height;
bounds = new Rect angl e(w dth, height);
/1 Initialize Ball position and velocity
ball = new Ball (width / 3f, height / 4f, 1.5f,
2.3f, 12, Color. blue);

.3

14

Part I: Steppin' Out

The new instance of s 1 1issaved in the variable ba 1 1. The starting posi-
tionfor ba11 iSset to an x position that is 1/3 of the way in from the left
boundary, and ay position that is 1/4 of the way down from the top bound-
ary. The ax valueisset to 1. st (you add an ¢ suffix to anumber in order to
create a floating point constant) and the dy to 1 . 3t. vou Caninitialize the
ball's position to any value you choose, but the calculationsw i ¢t h/ 3¢ and
height /4t andthevalues 1. 51 and 1. 3t set the ball's position inside the
bounds of the applet and start it moving slowly down and to the right.

The init () method also recordsthe applet'ssizeini nt variables called

width and nei ght. Then, i nit() usesthesevaluesto create a rectangl e
object named bounds. The applet later passestheb o unds object to sa11's
mve () Method, which usesit to check for collisions with the edges of the

applet.

Drawing the Details

The next step isto add code to the applet to draw ba 1 1 on the screen. Also,
just so things aren't too boring, you may want to draw a si m;})]Ie background
pattern so that you can more easily see ba 11 move. Here's the code for a
paint () Method that draws a2 x 2 checkerboard pattern for the background,
animatesba11bycalingmve (), anddrawsbai1 into the background by
calllng draw()

public void paint (Gaphics g) f
if (offscr == null) {
of f screenl mage = creat el nage(w dt h, hei ght)
of fscr = of f screenl mage. get Graphi cs();
|
1/ Draw checkerboard background
int x2 = width » 1;
int y2 = height » 1;
of fscr. set Col or (Col or. gray);
offscr.fillRect(0, 0, x2, y2);
offscr.fillRect(x2, y2, width - x2, height - Y2);
of f scr. set Col or (Col or.white);
offscr.fill Rect(x2, O, width - x2, height - y2);
of fscr.fill Rect (0, y2, x2, y2);
bal | . nove(bounds);
bal | . draw(of fscr);

g. drawl nage(of f screerl nmage, 0, 0, null);

Examine this code carefully - it includes a few new things that you may not
have seen before, as the following sections explain.

Chapter 1: Follow the Bouncing Ball

Drawing offsereen

First, much of thecodein pa i nt () methods doesn't draw directly to the
screen. Notice that the code to draw the background pattern uses a series of
setColo() andfillrct () calsthat aren't prefixed with the g aphics
context ¢ that you normally use. Instead, thepaint () method starts by
creating an offscreen Image, like this:

if (offscr == null) i
of f screenl mage = createl mage(w dth, height);

of fscr = of f screenl nage. get Graphi cs();

Y ou draw into an offscreen 1 mage so that you can construct the entire
image, containing the background pattern and the image of the ball (both of
which need to be redrawn each frame), before you draw it to the screen.
Using an offscreen image helps reduce the flicker that results if you draw the
pattern and ball directly to the screen.

Creating an offscreen | m g e that you can draw to is done in two steps:. First,
you create an offscreen | mage sized the same as the applet, like this:

of f screeni mage = createl mage(w dth, height);

After you have an offscreen | mge youcangetacraphi ¢ scontext for this
I mage, likethis:

of fscr - of fscreenl mage. get G aphi cs(I;

Y ou only need to perform this step once, so you can declare class variables
at the top of the applet to hold the reference to these two objects, like this:

private | mage of f screenl mage;

private G aphics of fscr;

The listing for the complete applet on the CD-ROM shows where to place
these two variable declarations.

Overriding the flicker

All applets have amethod calledupdat e () that, by default, clears the
screen beforepaint () is called. In many cases, you want the screen cleared
beforepai nt () is called, and so this default behavior can be useful. But,
when you use an offscreen | m g e and then draw this offscreen | m g e to the
screen, theold | mageis erased and the new | mageis drawn (asyou can see

1.5

6

Part I: Steppin' Out

Figure 1-2:
The
completed
Bounce
applet.

by the momentary screen flicker). Because you're drawing over the applet's
entire visible areawith the offscreen | mage theupd ate () method screen
clear is unnecessary.

To remove the screen clear caused by the default versionof updat e (), you
write anew update () method in your applet. Your new update() omitsthe
screen clear code and, instead, simply callspai nt (), likethis:

public void update (G aphics g) {

paint(g);

Drawing the background and the ball

The code to draw the 2 x 2 checkerboard pattern computes two variables x2
and y 2 that are the center points of the offscreen | m g e The code then uses
the values for x2 and y2 to draw the upper-left and lower-right sectionsin

gr ay, and the upper-right and lower-left sectionsinw hi t e

Next, the code callsthe methodsin Ba1 1 tomove a1 1 toits new position
and draw ba11 onto the offscreen 1 mage, likethis:

bal | . nove(bounds);

bal | . draw(of fscr):

Putting the action on the screen

The final step isto copy this 1 mage onto the screen. Here's the code you
need:

g. drawi mage(of f screenl nage, 0, O, null);

Figure 1-2 shows your completed applet in action.

The code for your completed applet, with all the details discussed in this
chapter filled in, is on the Java Game Programming For Dummies CD-ROM.

Chapter 2

Ponglet

rrr &L ...a.0.. .0, &. a0 a...o0.000 . aaaoova

This Chapter
Designing with state
Using the mouse
Keeping score
w Creating a computer opponent

aaaooa.0O*o0oasaa0ssa0asa0o00009a00090a.00 .S.0 a0 s0 * W

d Often, the hardest thing to do when creating a computer program is to

decide how to organize al its different actions. Y ou know that each
separate action isreally quite simple by itself, but making them all work
smoothly together can be confusing. Fortunately, managing all those pro-
gram actionsis actually fairly easy.

And, to proveit, in this chapter you're going to create your own Ping-Pong
applet (Ponglet), complete with mouse controls, score display, and a
computer opponent. The techniques you use to work with and organize the

different actions in the Ponglet game are equally useful for many other
games you may create.

As you go through the examples and read about the techniques presented in
this chapter, you may want to follow along with the complete code for the
Ponglet applet included on the Java Came Programming For Dummies CD-ROM.

Setting State

Imagine that you are arobot, and your job isto perform a series of tasks

that take five minutes each, but every six minutes your power is switched
off, and you forget everything. However, you have a detailed book of instruc-

tions on how to do your job. Each page in the book is organized like this:
Step 1: IMPORTANT: Y ou have only five minutes to complete this task.
Step 2: The description of the task.
Step 3: When task is complete, turn to page xx, and wait.

I S Part I: Steppin' Out

Each time you wake up, you are on the page that you turned to in Step 3 and
you see the next task to perform (having now forgotten the wait command),
and you do it. Then, by turning to the next page, you set up the next task to
perform when you wake up again. The page you select servesto set the state
of your brain when you wake up. Organizing atask in this fashion is called
state-driven design.

The key to state-driven design is how the task is organized. The obvious
difficulty for the robot is deciding how to break up a complex job into a set
of tasksthat can each be completed in five minutes or less. The advantage,
when you break up ajob thisway, is that each individual task is so simple
that you don't need to keep track of any other details.

Breaking down the task

When you play Ping-Pong, you go through a series of sequential steps. First,
your opponent waits for you to get ready. Then, your opponent serves and
you scrambl e to return the serve. Then, your opponent tries to hit your
return. This process continues until one player misses. After one player
misses, the score of the other player is advanced, and you both get ready
for the next round. Finally, after one of you has enough points, the winner of
the round is declared, and the victor gets a moment to bask in the glory.

The different steps, or states, in a game of table tennis can be described as
wait, serve, return, playerl scores, player2 scores, playerl wins, player2
wins. Of course, unlike the robot example earlier in this chapter, the states
of the table tennis game can appear in a variety of different sequences as the
gameis played.

In acomputer simulation of table tennis, each state is a separate action that
you need to animate, and each animated action takes a different amount of
time to complete. For example, the serve state lasts until the ball travels
down to where the returning player hits or misses the ball.

In the bouncing ball example in Chapter 1, the ball bounces around indefi-
nitely or at least until you stop the applet. So the animation loop consists
entirely of code to move the ball and check for collisions. However, in the
case of a Ponglet game, there are some states where the ball isn't visible,
such as when the ball has moved off the table. Therefore, the code to draw
the ball needs to check the current game state before it draws.

One way of structuring all thisisto define constants for every possible state
and avariable to keep track of what state the game is currently in. Then the
codeinpaint () andthecontrol codeinr un () can check the current state
to decide what to paint to the screen and what task the game should perform.

Chapter 2: Ponglet 19

The codethat goesinr un () is going to be the most complex, so you want to
think out a clean way to organizeit. Using aswi t ch Statement turns out to
be a nice approach. Y ou can use the current state variable to select which
case to execute. This code goesinsideawni1e (rUnni ng) loop that uses
sleep() toset theanimation framerate. Here'sthe completer un() frame
work for Ponglet:

public void run () |
whil e (running) {
switch (gstate)
case WAIT:
br eak;
case SERVE:
br eak;
case RETURN:
break;
case PGQUTTER
break;
case GGQUTTER:
br eak;
case PSCORE:
br eak;
case GSCORE:
br eak;
case PWN:
case GAON:

break;

repaint();
try |
ticker.sl eep(1000 / 30):

| catch (InterruptedException e) { ; 1

Note that there is no break between the pwon and evon states because you
want your code to do the same thing for both states. Therefore, when the switch
statement selects the pvon state, the code will fall through to the anon state.

The states that we discuss in the earlier example of atable tennis game are
analogousto thec as e statementsin this code. The key to dealing with these
case statementsisin the code that you add to complete the c as e state-
ments (this code is missing here - you add it alittle later in this chapter).

This code includes a few new states not mentioned in the table tennis
example, such as pautTeER and cautTER The reason for these particular
C a s e statements becomes clear as you work through the sectionsin this
chapter and fill in the missing code.

20 Part I: Steppin' Out

First, though, here are the definitions for the state constantsand theg st ate
variable:

private static final int WAIT = 1|;
private static final int SERVE = 2;
private static final int RETURN = 4;
private static final int PGUTTER = 8;
private static final int GAUTTER = 16;
private static final int PSCORE = 32;
private static final int GSCORE = 64;
private static final int PWN = 128:
private static final int GADN = 256;

private int gstate = WAIT;

Note that the declaration of the variableg st at einitializesg st at eto the
value WA | T. Thisis necessary so that the first case that is executed when the
run() method startswill bethe WA | T case.

Serving the ball

The WA | T state isresponsible for serving the ball and then settingg stat eto
serv e Here'sthe code you need for the WA | T case:

case WAIT:

if (!nouse in)
delay = 20;

else if (delay < 0) {
/1 Serve the ball
int sLoc = rndlnt(table.width - ballSize) +

[ball Size » 1);
ball - new Ball (sLoc, -ballSize, rnd(5f) + O, 5f,
rnd(4f) + 3f, ball Size, Color.blue);

gstate = SERVE;
wi n-show = 100;
delay = 20;

break;

Thetest i + (! mouse i n) checksto see whether the player isready to play
and has moved the mouse pointer into the control area (the area of the
applet's screen that tracks the player's mouse movements - more about
thislater in the section "Entering the control zone"). After the player moves
the mouse to the control area, the delay value counts down, and the code in
theelse i+ block servesthe ball.

Chapter 2: Ponglet

The value s Loc computes a random location from which to serve the ball,
and this value is passed to the constructor for Bal 1. This codeis nearly

identical to the Ball classin Chapter 1, except that it only checks for
bounces off the left and right bounds. Here's the compl ete code:

class Ball t
public float x,y, dx, dy;
public int size, radius;
private Color color;
Ball (float x, float y; float dx, float dy,
int size, Color color) i

this.y = x;

this.y = vy;

this.dx = dx:
this.dy = dy;
this.color = color;
this.size = size;
radius = size >> 1;

public void move (Rectangle pd) f
// Add velocity to position to get new position
X += dx;
y +=dy:
// Check for collision with bounding Rectangle
if ((x <bdx &&dx<o0Of) |l
((x + size) > (bd.x + bd.width) && dx > Of))
X += (dx = -dx):

public void draw (Graphics g) |
g.setColor(color);
g.fillOval((int) x - radius, (int) y - radius,

size, size);

The codein WA | T that servesthe ball also calls two new methodsrndint()
and rnd() that generate randomi nt and float values. WAI T usesthese
methods to generate a random velocity (speed) for the ball and to serveit
from a random point along the top edge of the applet window. The
rndint(nn) method generatesarandomi nt (integer) between O and nn.
Thernd (nn) method generates arandom f1oat (floating-point value) that
is greater than or equal to 0 and less than nn. Here's how you need to write
these two methods:

22 Part I: Steppin' Out

public float rnd (float range) |

return (float) Math.random(* range;

public int rndlnt (int range) |
return (int) (Math.randon() * range);

Up java Creek without a Paddle

Okay - the ball isin motion and headed acrossthe table toward you -
timeto add codefor a P add 1 e object that you can useto return the serve.

Here'sthe code:

class Paddle |
public int X, y, width, height;

private Col or color;

Paddle (int x, int y, int width, int height,
Col or color) |
th'is.x = x:
this.y =vy;
this.width = width;
thi s. hei ght = hei ght;

this.color = color;

public void nove (int x, Rectangle bd) I
\f [Xx > (wWidth >> 1) & x < (bd.width - (width)>1)))

this.x = x;

public int checkReturn (Ball ball, bool ean plyr,
int rl, int r2, int r3) |
if (plyr & ball.y > (y - ball.radius)
Iplyr && ball.y < (y + ball.radius))
if ((int) Math.abs(ball.x - x) < (width 1 2 +
ball.radius)) |
ball.dy = -ball.dy;
1! Put a little english on the ball
ball.dx += (int) (ball.dx * Math.abs(ball.x - x) /
(width / 2));
return r2;
!

el se

Chapter 2: Ponglet 23

- public void draw (Graphics g) f

g.setCol or(color);

g.fillRect(x - (width >> 1), y, width, height);

Padd1 e is structured similarly tothe B a1 1 class; it has values to record its x
andy position,width,height, and Co1lor. However, becausePaddt e doesn't
move on its own, its move () method is called by the mouse input code, aswe
cover in the "Entering the control zone" section alittle later in this chapter.

Returning the serve

ThecheckRetu ra() may look alittle complicated at first, but itsmain job is
simply to check whether the ball hits the paddle. Y ou use the same code to
create a paddle for the player and also for the computer. The boolean
parameter plyristrue if checkReturn() ischecking the player's paddie;
otherwise, it checks the computer's paddle.

Thefirst bit of codeincheckReturn () checksto see whether the ball has
reached the position on the table where the ball collides with the paddie.
The code for the player's paddleis

ball.y > (y - ball.radius)
and the code for the computer's paddle is

ball.y < (y + ball.radius)
If the ball isin position to be hit by the paddle, the code checks to see
whether the x position of the paddle is correct to connect with the ball. The
code for this check is

(int) Math.abs(ball.x - x) ((width / 2 + ball.radius)

If the ball does connect with the paddle, the code needs to reverse the dy
value for the ball to send it back across the table, like this:

bal | . dy

24

Part I: Steppin' Out

However, the game would be pretty boring if the ball simply reversed
direction (dy value isreversed) and retraced its original path every time the
player's paddle hit the ball. Y ou can add code to tweak the dx value and
apply alittleengl i sh to the ball, like this:

" Ja,r.0,~ to)
n o 0-1 1 02))

You can play withthe (wid:n 1 2) valueto changethe feel of the paddie
and how it returns the ball.

Finaly, checkreturn() returnsone of three different parameter values, r 1
r2, Of r3, depending on the results of itschecks. checkreturn() returns
the value that is passed in r 1 if the ball hasn't yet reached the paddle, r 2if
the ball reached the paddle and the paddle hit the ball, and 3 if the ball
reached the paddle but the paddle missed the ball.

Changing state

Now that you've created the raddi e class, you can add code to call it. You
need to call it to check the player's paddle when in the S e rv e State and to
check the computer's paddle when in the reTu ry State. Here's the code you
need to add to the serve caseto call checkreturn (). Thiscode goesin the
s E R/ E Case in the switch statement because the S e rv £ case isthe case the
codewill call whengstate €QUAS sERVE

case SERVE:
/1 Check for ball in position for player to hit
gstate = pPaddl e. checkReturn(ball, true, SERVE, RETURN,
PGUTTER) ;
if (gstate == RETURN)
gPaddl e = new Paddl e((int) (trackX = width / 2), 3.
20, 3, Color.red);

br eak;

When the player hitsthe ball, the call to checkReturn () SetSgstate tO
reTurn. |f the player missed the ball, gstate issetto paurter When
gstate is Set to ReTuRN, the code also createsanew raddl e object for the
computer to use to try and return the ball.

Creating a computer opponent

Timeto create a simple computer opponent to play against. Y ou can start
out by making the computer fairly easy to beat, but you can easily tweak the
program to make the computer harder to beat - it's your choice!

Chapter 2: Ponglet

When the player hitsthe ball, the codeinthe S erve case instantiates a paddle
for the computer and changes g st ate to ReTURN. You NOw need to put code
inthe reTurn case to control the computer's paddle. Here's that code:

case RETURN:
/1 1 nplement our sinple-mnded conputer opponent
if [Math.abs(gPaddle.x - ball.x) >= 1)
gPaddl e. nove((int) (trackX += (gPaddle.x < ball.x ?
1.5f : -1.5f)), table);
/1 Check for ball in position for gane to hit
gstate = gPaddl e. checkReturn(ball, false, RETURN, SERVE,
GGUTTER) ;

br eak;

The code for the computer opponent simply tries to move the paddle to
intercept the ball. However, the computer islimited in how fast it can move
the paddle by the two constants 1. 5+ and -1 . s . These constants are
added or subtracted from the paddle position each animation tick in order
to make the paddle attempt to track the ball.

Settol.sf and -1 . sf, the paddle can only move 1.5 pixels per tick in either
direction. Make these constants larger if you want your computer opponent
to be able to move the paddle faster and, therefore, be a more difficult
opponent.

IRolling down the gutter

In the case where the player or the computer misses the ball, you need to
wait until the ball moves off the table before serving the next ball. The
pcuTTER State waits for the computer's scoring ball to move off the player's
side of the table. It then setsg st at eto cscore to record the score. Here's
the code:

case PGUTTER
/1 Wait for conputer s scoring ball to nove off table
if ((int) ball.y > (table.height + ball.radius))
gstate = GSCORE;
br eak;
The code for GGUTTER i S nearly identical:
case GAUTTER
/1 Wait for player s scoring ball to nove off table
if ((int) ball.y < (table.y - ball.radius))
gstate = PSCORE;

br eak;

25

Part 1: Steppin' Out

He shoots, he scores!

After scoring apoint, theP SC O r e Case Increments the player's score and
checks whether the player has scored atotal of 10 points (the criteriafor
declaring awinner). If the player haswon, gstateis SttoPWON.Ifthe
player has not yet reached ascore of 10, gst at e is Set back to wai 1 towalt
to serve the next ball. Here's the code:

case PSCORE:
/1 Increment player s score and check if she has won
gstate = (++pScore >= MAX_SCORE ? PWON : WAIT);

break;

This code uses Javas ++ prefix increment operator to advancep Scor e tO
the new point before checking to seeif pscore hasreached mx_score. |If
pScor e equals MAX_SCORE, the code sets gstate to PWON, elseit sets
gstate tOwAIT.

If the computer scores, the codein the ¢score Caseisnearly identical:

case GSCORE:
/1 Increnment conputer s score and check if it has won
gstate = (++gScore >= MAX SCORE ? GAON WAIT);

br eak;

We have a winna!

When the player or the computer wins the game, you need to provide time
to bask in the thrill of victory. To provide thistime, codein the w1 1 Case
initializes avariable called wi n_s h ow to avalue of 100. The code also counts
downwi n show s Valueinthe codefor the pvon and enon states. The code
is the same for both states, so the case statements fall through, like this:

case PWN:
case GWON:
/1 Delay while we show who won
If (win show< 0) 1
gstate = WAIT;

gScore = pScore = O;

Chapter 2: Ponglet 2 7

Tracking User I nput

Now that you have constructed the game logic, you need to add code to
handle input from the user.

Entering the control zone

First, the game draws a small area at the bottom of the applet that serves as
the control areafor the mouse. Moving the mouse pointer into this area
causes the player's paddle to start tracking the mouse's movement to the
left or right. To track when the mouse has moved into this area, you heed to
overridethemuseenter () method, like this:

publ i c bool ean nmouseEnter (Event evt, int x, int y) {
pPaddl e. nove(x, table);
nouse- i n = true;

return true;

Thecal topraddie mve(x, tabl e Setsthe position of the paddleto
match the mouse's x position when mouseenter () is caled. The boolean
variablem us eii nis settot rue toindicate that the game can start. Codein
thepaint () method also checks mo u's ei nso that it knows when to draw
the player's paddle.

You also need to overridemouseexit () to providecodeto Setmuseinto
fatlse in casethe player moves the mouse out of the control area. This
resetsthede1ay counter inthe WA | T state so that the game doesn't serve

the ball until the player has had a chance to get ready (by moving the
mouse back into the control ared). Here'sthe code for mouseexit ()

Publ i ¢ bool ean nobuseExit (Event evt, int x, int y) |
mouse-in = false;

return true

Tracking the mouse

Finally, you also need to overridethe musewmove () method to update the
position of the player's paddle whenever the mouse moves, like this:

ubl i c bool ean nobuseMove (Event evt, int x, int y)
pPaddl e. nove(x, table);

return true;

28 Part I: Steppin' Out
1Jisplaying the state

Now you're in the home stretch. Y our final task isto add code to draw the
Ping-Pong table, the ball, the paddles, the score, and the control area. You
can put most of the new code into the paint () method for the applet.

Start with the same framework code that you used to create the bouncing

ball example in Chapter 1. Y ou can use the same code from Chapter 1 that
drawsto an offscreen Image in order to reduce flicker in the animation. Y ou
can also borrow the code that draws a checkerboard background image, or
you can invent your own creative background pattern.

Here's the borrowed framework code:

public void paint (G aphics g) |
i f (offscr == null) I
of f screenl mage = createl mage(w dth, height)';

of fscr = of f screenl mage. get G aphi cs();

1/ Fill offscreen buffer with a background B/ W checker board

int x2 = table.width >> 1;

int y2 = table. height >> 1|;

of f scr. set Col or (Col or. gray);

offscr.fillRect(0, 0, x2, y2);

offscr.fill Rect(x2, y2, table.width - x2,
tabl e. hei ght - y2);

of f scr. set Col or (Col or. white);

of fscr.fill Rect(x2, 0, table.width - x2,
tabl e. hei ght - y2);

of fscr.fillRect(0, y2, x2, y2);

g. draw mage(of f screenl mage, 0, O, this);

Y our new code goes into the paint() method just before the call to
drawlmage() at the end of poi nt().

Y ou also need to initialize afew variablesin the applet'si nit() method to
create afont for displaying the score and to handle afew other details for
the preceding sections. Here's the code you need to writefori nit()

public void init() {
width = size().wdth;
hei ght = size(). height;
/1 Set up table and nouse control area di nensions
tabl e = new Rectangl e(wi dth, width);
msePad = new Di nensi on(wi dth, height - width);

Chapter 2: Pongl et 2 9

pPaddl e = new Paddl e(width » |, table.height - fi, 20.
3, Col or. bl ack);

Pl ayer = new Point(width - width / 4, 5);

gane = new Point(width / 4, 5);

|/ Create of fscreen inmage

of f screenl nage = createl nage(w dth, height);

of fscr = of f screenl nage. get G aphi cs();

I/ Setup text font for displaying the score

font = new Font(TimesRoman , Font.PLAIN, 14);

font Met = get FontMetrics(font);

font Hei ght = font Met. get Ascent();

K eeping score
Next, you can add codeto pa i nt () to draw the score, like this:

/1 Draw Scores
of fscr. set Font (font);
cent er Text (of fscr, ganme, Color.white, + gScore);

cent er Text (of fscr, player, Color.gray, + pScore);

This code uses anew method called centerText () to center the code on
the screen locations given by the poi nt oObjectsg a e and pi aye r. Here'sthe
code for cent erText():

private void centerText (G aphics g, Point loc, Color clr,
String str) {
g.setColor(clr);
g.drawsString(str, loc.x - -(fontMet.stringWdth(str) / 2).

oc.y + fontHeight);

Theroint parameter 1 0 c specifiesalocationforcenter Text () to center

the score passed inthe string str and draw itin color ¢ | r. The
FontMetrics object font et iscalledto compute the width of the string.

Thevalue font Hei ghtis addedtothey valueof 1 o c so that the string is
centered relative to the top center of the text.

Game over

If the game is over, you need to declare the winner. The following code
displaysthe string "Win" beneath the winning player's score. Add this code
after the code to draw the score:

30 Part I: Steppin’' Out

if ((gstate & (PWON | GMN)) !'= 0) {
Point winner - gstate == GAON ? gane : player;
Point loc = new Point(w nner.x, winner.y + 15);

center Text (of fscr, loc, Color.black, Wn);

If the game isn't over, you need code to draw the ball and the paddies. Y ou can
add this code to an e 1 s e statement that follows the code to declare a winner:

el se

/1 Draw ball

if ((gstate & (SERVE | RETURN | PGQUTTER)) != 0)
bal | . draw(of f scr);

I/ Draw player s paddle

if (nouse-in || ([gstate & (SERVE | RETURN.® PGUTTER | GAUTTER)) 1= 0)
pPaddl e. dr awm of f scr) ;

fl Draw conputer s paddle

i f (gstate == RETURN)

gPaddl e. draw of f scr) ;

Finally, you need to add code to draw the mouse control pad at the bottom
of the screen. This code also needs to prompt the player to move the mouse
into the control areato start the game, like this:

/1 Fill in nouse pad area
of fscr. set Col or (Col or. yel | ow):
offscr.fill Rect (0, nsePad.w dth, table.w dth,
msePad. hei ght) ;
if (!rmuse-in) |
Point loc = new Point(table.width >> 1, table. height +
((msePad. height - fontHeight))> 1));

center Text (of fscr, loc, Color.black, Move Mouse Here):

Figure 2-1 shows the completed Ponglet applet in action. Y ou can find the
complete code for Ponglet on the Java Game Programming For Dummies
CD-ROM included with the book.

A

Figure 2-1:
Here's

how the
completed
Ponglet
game looks.

Chapter 3

Hole In One

o = B R S R AR RS SRS RS ERNESERERESEESNERERESESESRSERESESRSE SN

dating golf
Making a click-and-drag putt interface
g the physics of a ball

erhaps you play golf as a personal pastime. Or maybe you've putted a

few holes of the miniature varietY down at the family fun center. If you
have, you're in good company: Golf isahugely popular sport in the United
States, around the world, and even off the world. (Golf has the distinction of
being possibly the only game played on the surface of the moon, as Alan
Shepard did on February 6, 1971, during the Apollo X1V mission. Reportedly,
Shepard hit his first shot about 400 yards and then badly shanked his
second.)

Golf is also popular as a computer game. Dozens of versions of computer
golf have appeared over the years. Some of these games present fanciful
versions of the miniaturized game, some bear the names of famous players
or golf courses, and some claim to be accurate simulations that model the
physics and aerodynamics of real golf.

In this chapter, you won't be tackling anything as lofty as trying to calculate
the wind forces on a golf ball in flight. Instead, this chapter's goal isto
explore how to simplify the simulation of one aspect of golf, in this case
putting, by faking the calculations just well enough to get a result that feels
realistic. By the end of the chapter you'll be ready to turn this knowledge
into your own HolelnOne applet.

This chapter describes all the techniques used in the Hol e I nOne applet.

'The complete code and ready-to-use applet isincluded on the Java Came
Programming For Dummies CD-ROM at the back of this book.

Part I: Steppin' Out

Faking physics

Don't be shocked by the idea of faking the
calculations for a game. In truth, all calcula-
tions that claim to simulate a real phenom-
enon are really just faking it-you can never
take every single variable into account land
even if you do, El Nino is just around the cor-
ner). Some calculations just happen to be less
fake than others.

Your goal should be to fake (perhaps simplify
sounds better) the calculations well enough to

create a realistic and fungolf simulation, while
avoiding needless complications.

Think of the unpredictability of a golf ball roll-
ing across a grassy surface. Just a single
blade of grass at the edge of the hole could
prevent the ball from falling in. But do you
really spoil the simulation if you treat the hole
as a perfectly round, sharp-edged circle?
Naabh - it works just fine, as this chapter
shows.

Modeling the Deceleration of a Bal!

Chapters 1 and 2 show code that simulates a ball that bounces around the
screen and that moves at a constant speed. In the real world, balls behave
differently. For example, agolf ball starts out moving at a certain speed
proportional to how hard it's hit by the putter. And immediately after the
ball ishit, it starts to slow down as it travels toward the hole. This slow-
down, or more formally, deceleration, is the result of avariety of forces
acting on the ball, but deceleration of a golf ball is mostly caused by the

rolling friction of the grass.

When real objects decelerate (or accelerate), Sir Isaac Newton's famous
second law getsinvolved. Mr. Newton says that the deceleration of areal
golf ball is proportional to the forces acting on it divided by the mass of the
ball. Simulated golf balls don't have real mass, of course, and they don't
have real forces acting on them either, but you do need some type of
calculation to simulate Sir Newton's law in action.

The code in Chapters 1 and 2 moves the ball by adding values called dx and
dy to the ball's x,y position. Therefore, you've certainly deduced that
slowing the motion of the ball is going to require you to reduce the dx and
dy values. Before you start working out the details, though, you may want to
consider vector math, a new way to do these types of motion calculations.

using vectors

A vector (not to be confused withthej av a. uti 1 class of the same name) is
another name for a pair of dx and dy values. Y ou can think of avector as
representing the difference between two points; the dx and dy values form a

Chapter 3: Hole In One 33

vector because they represent the difference between two points along the
path of the ball.

Y ou can slow the movement of your golf ball by reducing the distance it
travels in each successive animation frame. However, the tricky part is
reducing the distance the ball travels without changing the direction it's
moving.

If you think of dx and dy as proportional to the length of two sides of aright
triangle (see Figure 3-1), the distance a ball travels when you add dx and dy
is proportional to the length of the diagonal side of the same triangle. To
compute the length of the diagonal you use the formulafor the lengths of
sides of right triangles, discovered by one Mr. Pythagoras:

a +hy =C?

o
“\ﬁg/l dy

ax
magnitude = Math.sgrt(dx * dx + dy * dy);

By rearranging this formula, you can compute the length of the diagonal as

math.sgrttdx * dx + dy * dy)

The length of avector's diagonal is commonly called the nagni t ude of the
Vector.

Vector magnitude is important because it's the key to understanding how to
decelerate your golf ball. Y ou can visualize what happens when you reduce
the magnitude of a vector by examining the relationship between the three
nested triangles in Figure 3-2.

34

Part I: Steppin' Out

Figure 3-2:
To increase
or decrease

the magni-

tude of a
vector,
proportionally
change the
vector's

dx and dy

values.

Jo

- dy,

dx, |
dx,

The biggest triangle, with sides dx,/dy,, has adiagonal that is aslong as the
other two triangles combined. To reduce the biggest triangle so that it has
adiagonal aslong asthe next smaller triangle, shown with sides dx2/dye, you
have to subtract the lengths of the sides of the smallest triangle, dx3/dy3,
from the sides of dx,/dy,.

However, notice that you subtract more from dx, than you do from dy,. If
you were to subtract the same amount from dx, and dy ¢, you would change
the shape of the triangle rather than just the length of the diagonal (or more
specifically, hypotenuse). To keep the shape of the triangle the same, you
need to maintain the same ratio between the lengths of the sides defined by
dx and dy.

The secret to keeping the ratio of dx and dy the sameisto divide dx and dy
by the magnitude of the vector formed by dx and dy:

dx = dx / Math.sqrt(dx * dx + dy * dy) ';w‘:%
i

dy = dy / Math.sqrt(dx * dx + dy * dy)

Dividing by the magnitude changes dx and dy into a unit vector (see the
following techno term icon), with values for dx and dy ranging from O to 1.
The unit vector represents the direction the ball is moving, independent
from the ball's speed. And because you divide dx and dy by the same
number, you maintain the same ratio between dx and dy and therefore the
same direction for the ball. For example, when the ball's movement is
completely vertical (dx = 0), the value of dy divided by the magnitude of
the vector is 1, regardless of how fast the ball is moving.

Chapter 3: Hole In One 35

When you divide a vector's dx and dy values by its magnitude, you get a new
type of vector called a unit vector. The magnitude of a unit vector isaways 1,
hence the name. Unit vectors are used extensively in 2-D and 3-D graphics
calculations because they can be used to represent a direction independent
of speed.

Y ou can also use a unit vector to calculate how to decelerate your ball
without altering its direction. First, you calculate a unit vector from the
ball's current motion vector. Then, because the magnitude of this unit

vector is 1, you can scale it to any size you want by multiplying its dx and dy
values by a value that represents the magnitude of the vector you want to
create. Then, you simply subtract this vector from your original motion
vector, and voilal you've reduced the speed of the ball while keeping it
moving in the same direction.

Creating a vector class

The golf simulation in this chapter uses vectors extensively to do many of
the motion calculations, and you need code to perform the basic vector
math operations, such as adding one vector to another, computing a unit
vector, and so on. So why not bundle up all these methods into a useful new
utility classcalled V ec 2 D, like this:

public class vec2D |
public fl oat dx, dy;

public void setVec (float dx, float dy) I
this.dx = dx;

this.dy = dy;

public float mag () {
return (float) Math.sgrt(dx * dx + dy * dy);

public void addVec (Vec2D vec) |
dx += vec. dx;

dy += vec. dy;

public void subvec (Vec2D vec) |
dx -= vec. dx:

dy -= vec.dy;

(conti nued)

36 Part I: Steppin' Out

(conti nued)

public void unitVec () f
float mag = mag():

setVec(dx / mag, dy / mag);

public void nul Vec (float scale) t

setVec(dx * scale, dy * scale);
i i i Bran St it hasatt it
Vecz o definesinternal « x and dy values so that you can createaVV ec 2 o
object whenever you need to keep track of a vector quantity. For example,
you can create aV e c2 o object called v e 1 to control the motion of your golf
ball. Then, after you have thisV e c 2 o object, you can call the methods on it,

suchassetvec () tosetthedirection and speed of the ball by setting the d x
and ay valuesin ver .

The methods addvec() and subvec () iNvec2p areused to add or subtract
one vector from another. Y ou use these methods in the Golf game to apply
forces to the moving ball, such as the deceleration effect of friction and the
force of gravity acting to push the ball into the hole whenever the ball
crosses the edge of the rim.

Themethod unitvec() cOnvertsavector into aunit vector. Y ou can use
this method in combination withmu 1 vec () to proportionally scale the d x
and 4y valuesin avector by thef 1 o a+ parameter passedtoitbymulVec().
Noticethat uni t vec () is coded to use the method mag () that returnsthe
magnitude of the vector.

With just these six vector operations, you can simulate all the motion
dynamics needed to create a nice putting simulation. So now that you have
these code elements ready to go, move on to the next section where we
present the code that uses these elements to simulate the golf ball and the
hole on the putting green.

Starting gain aCircle

Y our golf simulation requires code to simulate both aball and a hole in the
putting green. The code for simulating a hole shares many thingsin common
with the code for aball. For example, to calculate when the ball rollsinto
the hole, you need code to compute the distance between the hole and the
ball. So thinking along object-oriented lines, why not start by creating a
common base class called Ci r ¢ 1 e to contain the code that is common to
both a hole and a ball?

Chapter 3: Hole In One

CreatingtheCircle class

Your Circleclassneedstodefinex,y,anddi am valuesto store its location
and size. It also needs to have a constructor to initialize these values. And to
simplify some of the calculations you need to do in your Bal1 class, you
need the constructor to initialize avalue for theradi u s of thecircle. Finaly,
you need code to compute the distance from one point to another; you can
put this code into amethod called di st () . Here's the complete code for
Circl e

class Circle i
public float X, Ys
protected float radius;

protected int di am

Circle (int x, int y, int diam {
this.x = x;
this.y = vy;
radius = (float) (this.diam= diam / 2;

protected float dist (Crcle loc) {
float xSq = loc.x - x;
float ySq = loc.y - vy;
return (float) Math.sgrt((xSq * xSq) + (ySg * ySq));

BuildingaB all by extendingCircle

Next, you canextend Cir c 1 eto create anew class called B a 11. You put
codeinBall essentially to do the same thing as the bouncing ball in
Chapter 1, but you can use your new V e c 2 D class (see "Creating a vector
class," earlier in this chapter) to do the motion calculations. The new
featuresin Vec2D also help you handle decelerating the ball asit moves.
Y ou can start by declaring the basic class, like this:

glass Ball extends Crcle {
public Vec2D vel = new Vec2D();
,'vate Vec2D tvec = new Vec2X);
_- = bool ean sunk = fal se;

nt x, int y, int diam [
oor-r(x, y, diam;

37

38

Part I: Steppin' Out

In addition to the constructor, this code defines two Vec2D objects: vel and
t v e c. The code for the Golf game usesv e 1 to hold the ball'sd x and dy
valuesand t v e ¢ as atemporary variable to do your deceleration calcula-
tions. Y ou use the boolean flag s u nk to keep track of when the ball fallsinto
the hole. In addition, you usesunk inbothBal1'sdraw () method and inthe
code you write to implement the hole.

Decelerating the ball

The next job to tackle is the code to handle decelerating the ball. Y ou use
this code in two different places, so you may aswell put it into its own
method calleddecel (). decel () takesasingle parameter called v a1 that
specifies the amount you want to subtract from the vector's magnitude.

Y our decel () code needs to start by checking that the magnitude of the
ball'sv e 1 vector isn't lessthanv al. If ve lislessthanv al, the ball has
slowed so much that if you were to further slow down the ball by subtract-
ing the amount inv alfromv e 1, the ball would start to roll backward. To
avoid having the ball roll backward, you can simply set the vel vector to
zero. However, if the magnitude is greater than or equal to v a1 (meaning
that the ball has not yet rolled to a stop), you can go ahead and do the
deceleration calculation, like this:

public void decel (float val) f
if (val >- vel.mag())
vel . set Vec(0; 0):
el se f
tvec. set Vec(vel . dx, vel.dy);
tvec. unitvec();
tvec. nul Vec(val);

vel . subVec(tvec);

The deceleration code starts by initializing a temporary Vec2D object called
tvec. Itinitializesby callingsetV ec () and passingv e1'sd x and dy values,
which givesyouacopy of velintvec.

Next, you call theunitV ec () method to convert t v e c into a unit vector.
Then you call mul Vec () to shrink this vector down to the same magnitude
asv al. Finally, you subtract this scaled vector from v e 1 by calling
subVec().

3$ Part I: Steppin' Out

In addition to the constructor, this code definestwo V e c 2 o objects: v e 1 and
tvec. The code for the Golf game uses vel to hold the ball's dx and dy
values and tvec as atemporary variable to do your deceleration calcula-
tions. Y ou use the boolean flag s un « to keep track of when the ball falls into
the hole. In addition, you usesunkinbothBall'sdraw () method andin the
code you write to implement the hole.

Decelerating the ball

The next job to tackle is the code to handle decelerating the ball. Y ou use
this code in two different places, so you may aswell put it into its own
method calleddecel().decel () takesasingle parameter called v a1 that
specifies the amount you want to subtract from the vector's magnitude.

Y our decel () code needsto start by checking that the magnitude of the
ball'sv e 1 vector isn't lessthanv al. If ve lislessthanv al, the ball has
slowed so much that if you were to further slow down the ball by subtract-
ing the amount inv alfromv e 1, the ball would start to roll backward. To
avoid having the ball roll backward, you can simply set the ve 1 vector to
zero. However, if the magnitude is greater than or equal to v a1 (meaning
that the ball has not yet rolled to a stop), you can go ahead and do the
deceleration calculation, like this:

public void decel (float val)
if Oval >= vel.mag())
vel . setvec(o, 0);
el se f
tvec. set Vec(vel . dx, vel.dy);
tvec. unitVec();
tvec. mul Vec(val);

vel . subVec(tvec);

The deceleration code starts by initializing atemporary V e c 2 o object called
tvec. Itinitializesby callingsetV ec () and passingv e1'sd x and dy values,
which gives you a copy of vel in tvec.

Next, you call theunitV ec () method to convert t v e cinto a unit vector.
Then you call mu 1 Vec () to shrink this vector down to the same magnitude
asv al. Finally, you subtract this scaled vector from v e 1 by calling
subVec().

Chapter 3: Hole In One 39

Moving the ba«

Now that you've conquered deceleration, you can write the code to imple-
ment sa11'smove () Method. This method isthe one your applet callsto
advance the ball's position on each frame of the animation. Your move ()
method takes two parameters: The first parameter, nd, specifies the bounds
of the applet. Y ou need bd to detect when the ball needs to bounce off the
edges of the applet so that it doesn't roll out of the applet's play field.

The second parameter, 1 riction, Specifies how much to decelerate the
ball for each frame of animation. Youuse i rictiontocal dece1() inorder
to update the ball's deceleration, like this:

Callingdece1() updatesve1 toaccount for deceleration, after which you
canadd ve: to the ball's position to move the ball. Y ou need to modify the
ball's position in one other place in your code, so you may as well create a
methodin sa11 for thispurpose: Youcancall it acdros(). addp0S() needs
totakeaVe ¢ 2 o Object asitsinput parameter. When you call addvec (),
addvec () should add the dax and ay valuesin the vector to the ball's
position, like this:

mmmWMmmmswmﬂ>VdH
+= ve l. dx;

+-- vel .dy;

After youcode addvec (), youcanaddthecodetomove () tocalit, like
this:

Staying in bounds

After advancing the ball, mve () must check whether the ball has moved
out of bounds, which mve () does by comparing the ball's position to the
bd parameter. (bd, remember, isthe bounds of the applet.) The code to do
this comparison is nearly identical to the code in the "Bouncing back"
section of Chapter 1, except that you add the decel () in order to slow the
ball's movement when it bounces off an edge, like this:

lean hitEdge:
‘hitEdge = (X < bd.x + radius
(x + radius) > (bd.x + bd.width)))

(continued)

40 Part I: Steppin’' Out

Figure 3-3:
The golf
game
interface

uses ai

rubber-
band style
display to
control the
direction
and force
of a putt.

(conti nued)
x += (vel.dx = -vel.dx);
if (hitEdge I=(y < bd.y + radius ()
|y + radius) > (bd.x + bd. height)))
y += (vel.dy = -vel.dy);
i f (hitEdge)
decel (vel .mag() * .Sf);

Y ou use the boolean flag hi tedge to signal that the ball has bounced off a
vertical or horizontal edge. Then, you usethe ¢ ce1 () Method to reduce
the ball's speed by 80 percent after arebound by multiplying v e 1's current
magnitude by .8.

Putting the bait

Y ou also need to add code to sa 1 to support a mouse-driven, click-and-
drag putt interface. Using this interface, the player can click on the ball to
select it. Then, while holding down the mouse button, the player can drag
the mouse cursor back in the direction opposite from the hole, as shown in
Figure 3-3. Doing so draws a rubber-band line from the mouse's current
position to the ball. The player can then use thisline to aim a putt. The
player makes the putt by releasing the mouse button. The length of the
rubber-band line when the button is released indicates the force of the putt-

Seleeting the ball

Thesa11 Class needs several methods to support thisinterface. First, you
need amethod called (o uches () to detect when the user clicks the ball:

publ i c bool ean touches (int nx, int ny) t

return (new Gircle(nk, ny, 0)).dist(this) < radius;

Chapter 3: Hole In One 4 1

Whenyoucal t ouches(), youpassittwoi nt parameters called m and ny
to indicate where the user clicked. Y ou use these values to create a new
circ1e Object located in the spot where the user clicked. Then you can call
circlesdist () Method to calculate the distance from this point to the
center of the ball. If thisdistanceislessthantheball's radi us, touches()
returns true, indicating that the user has clicked the ball.

freeuting the putt

To actually make a putt, your applet callsamethodinB a11 caledputt ()
and passesitaPoi nt object caled pt r that indicates the location of the
mouse When the mouse button isreleased. Poi nt is aclassinjava. aw.
CreatingaPo i nt object (in thisexample, pt r) is aconvenient way to pass
X,y values as asingle parameter. Using these values, put t () callsse: vec()
to set the ball'sv e 1 variable in order to put the ball in motion. Here's the
code for putt():

public void putt (Point ptr) |
vel.setvec((x - ptr.y) 120, (y - ptr.y) f 20);

Notice that the speed of the puit is defined as the difference between the
mouse's position and the ball's position, divided by 20. Dividing by 20
provides greater resolution for aiming the putt without imparting too much
force to the ball. However, you can adjust this value to suit your own
preferences.

Waiting for theball togoin

Y ou need a final method to support the putting interface: noving(). The
Golf applet calls movi ng() in order to check the ¢ x and dy valuesinveland
returns : r v €if the ball is currently in motion. Y our interface code can use
this method to prevent the player from trying to select the ball whileit is
still in motion from the last shot. Here's the code:

public boolean moving () {
return vel.dx =0 || vel.dy!=0;

Drawing the ball

The last bit of code you needtoaddtoB a1 1is adraw() method. To add a
nice 3-D effect, you can code 4 aw() t0 put ashadow beneath the ball. Y ou
can create a shadow by drawing adark gray circle offset two pixels down
and to the right of the ball.

42

Part I: Steppin' Out

Fictitious Force?

If you tie arock to a string and whirl it around
your head you can demonstrate centrifugal
force. However, centrifugal forceisn't really a
force at all. You are merely seeing the result of
the ball'sinertia asit orbits around your head.
However, for the sake of convenience, you
pretend that areal forceis pulling on the rock.
Thistype of pretend forceis called, appropri-
ately, afictitious force.

Why invent afictitious force? Well, sometimes
simulating afictitious forceis easier than com-
puting all the effects of real forces - suchis
the case for your golf simulation. Thereisn't a
real force that pulls the ball toward the center
of the hole, but the calculations get alot sim-
pler if you pretend such aforce exists.

The shadow needs to be drawn before the ball; however, you don't want a
shadow when the ball isin the hole. Y ou can check the state of the su n k flag
to see whether the ball isin the hole, and if so, not draw the shadow. Also,

when the ball isin the hole, it looks better to draw it in light gray in order to

simulate the darkness of looking down into areal golf hole. Here's the code

for draw():

public void draw (G aphics g)
i f (!sunk)
g. set Col ar (Col or. dar kG ay) :
g.fillOval ((int) (X -
(int) (y -
|

g.setCol or(sunk ? Color.lightGay :

g.fillOval ((int) (x -
diam dian):

radi us).

Digging a Note

(int) (y -

radius) + 2,

radius) + 2, diam diam;

Col or. white);

radi us),

Now that you have code (the B a1 1 class) to simulate the golf ball, the next

step isto create code for the holeintheformof aH o1 eclass. H o 1 eisalittle

trickier to create than Ba 1 1 because the physics of how areal golf ball
interacts with areal hole are far from simple. However, by using your new
V e c 2 D code and by faking the calculations, you can get nice results without

too much work.

Chapter 3: Hole In One 4 3

Hole,justlikeBall,extendsfromCircle. Inside 1o 1 eyou canwritea
constructor that sets the position and size of the hole. o 1 e also requiresa
temporary vector for its calculations, so you can go ahead and declare a

V ec 2D object caledt v e cfor this purpose. And because thed r aw () method
for 1o 1 eisso simple, you can go ahead and write it, too:

class Hole extends Circle |
Vec2D tvec = new Vec2DX();

Hole (int x, int y, int diam)f
super (X, Yy, diam);

public void draw (Graphics g) |
g. set Col or (Col or. bl ack) ;
g.fillOval ((int) (x - radius),
(int) (y - radius), diam, diam);

Gravitating toward the center

When the ball is sailing across the green, nowhere near the hole, the hole
has no influence on the motion of the ball. However, when the ball strays
close enough to the edge of the hole, gravity, using the hole as a lever, tries
to push the ball into the hole. If the ball is moving fast enough and isat a
sufficient distance from the hol€'s center, the ball escapes the force pulling
itin. If not, gravity wins, and the ball is captured, spinning around futilely at
the bottom of the hole until it slowsto a stop.

The force of gravity normally can only push aball down against the grass.
However, when the center of gravity of the ball isinside the radius of the
hole, the force of gravity gets redirected by the lip of the hole and creates
afictitious force that seems to push the ball toward the center of the hole.
In your simulated golf game, this happens whenever the distance from the
center of the ball to the center of the hole isless than the radius of the hole,
as shown in Figure 3-4.

If you were to more closely simulate the forces acting on the ball, you'd have
to consider that the fictitious force acting on the ball changes as the ball
moves closer toward the center of the hole. This happens because the edge
acts like aramp that gets steeper and steeper as the ball topplesinto it.

Y ou could add code to simulate this, but you don't need to be this precise in
order to get arealistic result. The important part is that the ball reacts as if
aforceis pushing it toward the center of the hole.

44

Part I: Steppin' Out

Figure 3-4:
Gravity
pushesthe
ball down
against the
edge of the
hole, which
acts like

a fictitious
force
pushing the
ball toward

the center.

Vectoring in

When you animate the ball by adding the v e 1 vector to the ball's position,
you use Vv e 1 to simulate the force of the putter acting on the ball and the
ball's resulting momentum pushing it in a particular direction. The fictitious
force pushing the ball to the center of the hole can also be represented by a
vector. However, the effect of the hole doesn't replace v e 1 's effect on the
ball. Instead, the hol€'s effect gets added to v e 1 and changes the direction of
the force created by the ball's momentum.

Y ou can simulate the effect of combining two different forces by adding the
vectorsthat represent those two forces. And, as Figure 3-5 shows, when you
add two vectors, you get a new vector that represents their combined
forces. The new vector can have a greater magnitude than the two vectors
you add, or it can produce a vector that has an equal or lesser magnitude,
depending on the values of the two vectors you add.

Curving around the hole

In the case of afast moving ball that only grazes the edge of the hole, the
fictitious force acting to push the ball into the hole is much weaker than the
force of the ball's momentum. So the combined force only manages to de-
flect the ball's path. However, because the fictitious force deflects the ball in
the direction of the hol€'s center, the force keeps on pushing on the ball as
long as it stays near the hole. As Figure 3-6 shows, even this weaker force
can manage to redirect the ball's path into one that curves around the lip

Rpre 3-5:
The result
of adding
dMrectors
is anew
awtur that
iconbines
effects

of the

S WO.

e 3-6:
the
sasxance

and speed

ammammmmraoon
aumirte force

Chapter 3: Hole In One

of the hole. And this curved path may even move the ball closer to the
center of the hole and wind up causing the ball to spiral in. If not, the ball's
path eventually leads away from the hole, and the ball travels off in a new
direction.

Ball's 1ngm"nlt!m

45

Part I: Steppin' Out

Codi ng the curve

Now that you've got the theory down, you're ready to start converting it into
real code. You can start by adding amethodtoH o1 ecalledi nfluence()in
which you put the code that computes the fictitious force acting to push the
ball into the hole. Y ou also need to put codeini nfiuence () to detect when
the ball has been captured by the hole, and in turn set thesu nk flagtotrue.
Also, although not strictly necessary, it's fun to add code that simulates the
effect of a sunk ball bouncing around in the hole until it settles to a stop.

Yourinfl uence () code starts by computing two values to which you need
to refer in several placesin the code. The first value, di st 1n, must be set to
theradi usof thehole minusther adi u s of the ball. The second value,

hopli St, must be set to the distance from the center of the ball to the center
of the hole; you can determine this distance by callingthe Ci r c | e method
di st (). These values are used to determine if the ball has strayed close
enough to the hole that the fictitious force should begin acting on it.

If the hopi stislessthanther adi usof theholeand greater thandi st In,
then the fictitious force should act on the ball. If hbpi St isgreater than the
radius of the hole, then the ball's center of gravity is not inside the diameter
of the hole, and the fictitious force has no effect on the ball. If nbpistisless
thandi st n, then the ball has fallen completely into the hole and is ho
longer in contact with the lip of the hole, so the fictitious force should stop
acting on the ball.

Pushing to the center

Whenever the fictitious force is acting on the ball, you can simulate its effect
by computing a unit vector that points from the ball's center to the center of
the hole. You can usetheV ec 2 » object t v e ¢ to do the computation, like
this:

tve—. et'Jec(x - ball.x, y - ball.y);
tvec. ;ni~Ve ();

Y ou can then multiply this unit vector by some number in order to increase
or decrease the force of gravity pulling the ball into the hole, but the force of
the unchanged unit vector turns out to be just about right for this simula-
tion. Soyou canuseaddV ec () to add this new vector to the ball's momen-
tum vector vel, likethis:

ball.vel .addV ecff" ~

Chapter 3: Hole In One 4 7

Sinking the putt

Next, you need to add the code that detects when the ball is sunk. At its
heart, this check looks to see whether the distance from the ball's center to
the hole's center (hb D i st) islessthan the radius of the hole minus the
radius of theball (di st n). But for alittle extrarealism, you want to first
make sure that the ball isn't moving too fast to simply skip over the hole.
Shki %pilng over iswhat areal ball does, even if it is hit to the dead center of
the hole.

Y ou can check for areasonable speed by comparing the magnitude of v e 1 to
the hole's radius. This comparison isn't a precise calculation, but it works
reasonably well. The result of these checks set the ball's sunk flag, like this:

ball. sunk |= ball.vel.naq() < radius && hbDist < distin;

The code sets the radius of the hole at 15 pixels, so if the magnitude of the

ball's movement vector is greater than or equal to 15, then the ball is
moving too fast to go in.

Spinning in the hol e

Even after the ball drops into the hole, the ball's momentum vector still tries
to make it move. A real golf ball bounces off the sides of the hole, but your
Hol e class doesn't yet include any code to simulate this. So unless you add
more code, the Java golf ball would simply keep moving as if the hole
weren't there.

The way you can simulate a ball bouncing off the inside of acircular holeis
similar to the approach you use in the section " Staying in bounds" in order
to make the ball bounce off the edges of applet's display area (see Chapter 1).
In effect, you wait until the ball has moved outside the bounds of the hole
and then compute a new location and path for the ball that mimics the path
the ball would have taken if it had bounced off the sides of areal hole.

Thefirst step tests whether the ball has been sunk. If it has, the code needs
to check whether the ball has moved beyond the bounds of the hole:

ball.sunk && hbDist = distin)

Next, you need to write code to go between the { } brackets to calculate the
position to which the ball should move after it bounces off the sides of the
hole. Y ou also need to calculate the new direction the ball will be moving
after this bounce and change the ball's v e 1 vector to make the ball movein
that new direction. The calculations to do this so that the movement is
modeled on the real-life behavior of aball can get quite complex. However,
because this effect is only for show, you can just fakeit.

48

Part I: Steppin' Out

Step one in faking it is to update the ball's velocity vector vel to simulate a
bounce off the sides. A real ball bounces off the sides of a hole on a path
that is related to the angle between the point where the ball touches the
side of the hole and aradial line between the center of the hole and this
point. However, just calculating the point of intersection requires more math
than you need to use here.

Instead, you can simply compute a vector to apply aforce to the ball that
pushes it back toward the center of the hole by an amount proportional to
the distance the ball has strayed outside the hole. Here's the code:

tvec.setVec(x - ball.x, y - ball.y);
tvec mu|Vec((hbDist - distln) / hbbDist);

bal | . vel . addVec(tvec);

Y ou also need to update the ball's position to make it appear that it bounced
off the sides. Again, you can resort to sheer fakery by simply moving the ball
back toward the center of the hole by an amount proportional to how far the
ball moved beyond the bounds of the hole. Here's the code:

tvec.setVec(x - ball.x, y - ball.y);
float n2 = tvec. mag() - distln;
tvec. unitVec();

tvec. mul Vec(nR):

bal | . addPos(tvec):

Coding the Hol e | nOne Applet

Now that you've accomplished the hard part - that of writing the code that
simulates the ball and the hole - the code to complete the applet isa
straightforward exercise. Y ou mostly need to fill in the details that follow
from the work you've already done in Chapters 1 and 2. For example, you
need to create a run () method and Th read to handle the animation. The
complete code is on the CD-ROM included with this book, so you can look
thereif you've forgotten any details.

Completing the putting interface

You still need to add the applet side of the code in order to complete the
rubber-band putting interface. As discussed in the earlier section "Putting
the ball," your code must use a roi nt Object to record the position of the
mouse and passittotheputt () methodin ea11 Andyou need to override
the applet methods mousebown (), no usebrag(), and no useup() toimple-
ment the full mouse interface. Here's the complete code for these three
methods:

http://tvec.mu
http://tvec.mu

Chapter 3: Hole In One 49

publ i ¢ bool ean mouseDown (Event evt, iﬂt X, inty) i
if (ball.sunk)
ball = new Ball (x, y, BALLSIZE);
repa i nt

if (Iball.moving() && [select = ball.touches(x, y))) i

putt = new Point(x, y);
repaint();
1

return true;

publ i c bool ean nmouseUp (Event evt, int x, int y) |
i f (select)
bal | . putt(putt);

repaint();

sel ect = fal se;

return true

public bool ean nouseDrag (Event evt, int x, int y)
if (select)
putt = new Point(x, y);

repaint():

ret.irn ra?:

Drawing the green

Y ou can customize the code you write for the applet'sp ai nt ()method so
that it drawsthe green in any shape you desire, but here's code that draws a
simplecircular green. Thiscode also includesthe code to draw the rubber -

band, putt-control line:

-,blic void paint (G aphics g) |
if (offscr == null) |
of f screenl mage = createl nage(w dth, height);

of fscr = of f screenl mage. get Gr aphi cs();

of f scr. set Col or (roughCol or);
Offscr.fill Rect(0, 0, width, height):
_ffscr.setCol or(greenCol or);
(continued)

50 Part I: Steppin' Out

(conti nued)
of fscr.fillOval (gap / 2, gap / 2, width - gap,
hei ght - gap);
nol e. draw(of f scr);
bal | . draw(of f scr);

i f (select)
of f scr. set Col or (Col or. bl ack) ;
of fscr.drawLi ne((int) ball.x, (int) ball.y,
[int) putt.x, (int) putt.y);

£
g. drawl mage(of f screenl nage, 0, O, this);

The complete code for Ho 1 e In on e isincluded on the Java Game Program-
ming For Dummies CD-ROM at the back of this book.

Chapter 4

JavaPool

x
6. e O 00000 000 0 *000000000* 000060 #

h This Chapter

w The mathematics of detecting collisions

[Simulating pool

->Modeling billiard ball physics

..... * O00000 0O00000* 4000000 . O *

he game of billiards certainly appealsto barflies and pool hustlers still
y ein' the color of the next guy's money. It also appeals to physicists

because it demonstrates, in a fun way, some of the basic laws that make the
universe work. For example, when abilliard ball smacks, dead center, into
another billiard ball, the moving ball comes to a complete stop. The second
ball stealsthe first ball's momentum and travels off at nearly the same
velocity asthe first ball - basic physics demonstrated with elegant
simplicity.

This chapter shows you how to create a simplified game of billiardsin Java.
However, the main point of this chapter isto introduce you to the art and
science of collision detection. Because of the math involved, programmers
often regard collision detection as one of the more difficult problems lurking
in game design. However, the goal of this chapter isto get you past the math
and down to useful techniques that you can use to get results.

This chapter also shows you how to simulate the physical laws that control
how one billiard ball bounces off another. Simulating billiards and program-
ming collision detection requires a bit of math, but don't panic; the math
isn't that hard to use, even if you don't understand all the physics behind it.
In the end, all equations turn back into Java code so that only your com-
puter has to worry about them.

This chapter largely deals with the concepts you need to understand to
write code that can detect and handle collisions. The full code for the applet
described in this chapter is contained on the Java Came Programming For
Dummies CD-ROM.

52 Part I: Steppin' Out

calculating 13att-to-46att cottisions

Chapters 1 and 3 show you how to simulate balls that move, bounce of f
fixed boundaries, and fall into holes on a simulated golf green. However,
simulating the interaction of billiard ballsis alittle more complicated
because billiard balls bounce off each other, not just static boundaries or
holes. Thisistricky to simulate because you have to compute both the
exact moment when two balls collide and the exact point at which they
touch in order to simulate properly the rebound from the collision.

Passing in the night

Before you think too much about billiard balls, start by imagining two ocean
liners sailing across the sea. One liner is heading in a northeast direction
and the other is heading in a southeast direction. Further, the path each is

traveling crosses the other's path at some distance in front of their presene
locations.

If both ships are the same distance from this intersection (crossing point)
and if both ships are traveling at the same speed, it's obvious that the two
ships arrive at the intersecting point at exactly the same time. In other
words, the ships are on a collision course (man the lifeboats).

If one shipisjust aship'slength closer or farther from the point of intersec-
tion, the two ships won't collide. Instead, the closer ship passes the inter-
section point, just as the other ship arrives at it. The passengers scream, but
the ships don't collide. Likewise, if one ship travels sufficiently slower or
faster than the other, the two ships don't collide because the faster ship
clears the intersection point before the slower ship arrives.

In between the possibility of one ship passing the intersection point before
the other arrives and afull on collision, is atiny window of time where the
slower or more distant ship reaches the intersection point before the other
ship completely passesit. Exactly when the slower or more distant ship
arrives determines where it hits the other ship. If it arrives at nearly the
same time as the other ship arrives, it ramsinto the front of the other ship.
If the slower, or more distant ship arrives just slightly before the other ship
passes the intersection point, it clips the rear of the other ship.

Reducing the distance

As the two ships approach the point where their paths cross, the distance
between the two ships gets smaller and smaller. Conversely, after one of the
ships passes the intersection point, the distance between the ships starts to

Chapter 4: JavaPool 53

increase. All this decreasing and increasing of distance means that there
must be a point in time at which the distance between the shipsis as small
asit'sgoing to get.

If this distance is small enough, both ships will try to sail into the same
place at the same time and means that the ships are doomed to collide.
However, if this distance is large enough, both ships can pass without a
collision. In between these two distances, you need to know the shape and
size of each ship in order to calculate how close the ships can pass before
risking a collision.

Y ou see the obvious parallel between ships on an ocean and billiard balls on
apool table, of course. However, unlike ships, billiard balls are spheres of
the same size, and calculating how close two hilliard balls can get to each
other without colliding is much easier than a ship shape. Because rea
billiard balls are never exact spheres, this distance, measured from the
center of one ball to the center of the other, isjust ahair larger than twice
the radius of a billiard ball. However, for your pool simulation you can
simplify thisto simply twice the radius.

Calculating position over time

Imagine abilliard ball rolling across the felt surface of areal pool table at a
constant speed. Then, imagine aruler lying on the table parallel to the path
of the billiard ball, as shown in Figure 4-1. At time zero, the ball is at position
1 onthe diagram, and the ball is moving at a speed that carriesit to position
4 one second later. Therefore, you know that in 1/4 second, the ball arrives
at position 2 and in 1/2 second, the ball reaches position 3. In other words,
the distance the ball travelsis proportional to time.

If you know the position of the ball at any two points and you also know the
time it takes for the ball to travel between those two points, you can calcu-
late the position of the ball at any point in time. For example, suppose that
you know that the coordinates for the ball when it isin position 1 are x=10
and y=20 and that the coordinates for the ball when it is at position 2 are
x=12 and y=17. Y ou know that it takes 1/4 second for the ball to travel from
position 1 to position 2, and you also know that it takes 1 full second for the
ball to travel from position 1 to position 4. This means that in 1/4 second,
the x value of the ball's position increases by 2 and the y values, decreases
by 3. In one full second, the x value increases by 8 (4 x 2) and they value
decreases by 12 (4 x 3.) Therefore, in one second, the ball reaches coordi-
nates x=18, y=7.

o4

Part I: Steppin' Out

Figure 4-1:
Because
distance is
proportional
to time,

you can
calculate
the position
of a ball
moving at a
constant
speed if you
know two
points and
the time it
takes to
travel
between
them.

te-1

When you animate a moving ball, you add dx and dy to the ball'sx and y
position values at each tick of the animation. This means that in one anima-
tion tick, the ball moves from coordinate x, y to coordinate x + dx, y + dy.
Therefore, in three ticks of the animation clock, the ball movesto coordinate
x +3xdx,y+ 3xdy. If you replace a specific number of ticks with the
variable t to represent any number of animation ticks, you can easily write
equations for x and y to calculate the position of the ball at anew point in
time nx, ny like this:

Calculating the distance to a co«ision

Chapter 3 covers using the relationship a2 + b2 = ¢2 (the Pythagorean Theo-
rem) to calculate the distance between two points. Y ou may recall that the
distance between two points pointl and point2 is the square root of

(‘point Lx - point2.x)? + (point Ly - point2.y)?. Thisformulais called the
distance formula. Now that you know how to calculate the position of a
moving ball over time, you can use this formula to compute the distance
between two moving balls, bl and b2, over time.

Chapter 4: JavaPool 5 5

Ball bl's current position is given by bl.x, hl.y, and ball b2's current posi-
tionisgiven by b2.x, b2.y. For each animation tick, ball bl adds bl.dx to its
X position and bl.dy to itsy position. Likewise, ball b2 adds bl.dx and bl.dy
toitsx and y position. Therefore, the x and y coordinates of ball bl at point
tintimeisx=bl.x + bl.dx x t, y = bl.y + bl.dy x t and the coordinate for ball
b2 at the same point intimeisx =b2.x + bl.dx x t, y = b2.y + bl.dy x t.

Combining the formula to compute the distance between two points and the
formulas for the position of balls bl and b2 over time produces this formula
that computes the distance d between ball bl and b2 at time t:

d = sgrt((bl.x + bl.dx x t) - (b2.x + bl.dx x t))z+
sgrt((bl.y + bl.dy x t) - (b2.y + bl.dy x t))z

Think of this equation as a formula for computing distance over time. It's
arather large formula, but it's really just an expanded form of the distance
formulalisted at the start of this section. The differenceis that the expression
(bl.x + bl.dx x t) replaces pl.x in the original formula, (b2.x + bl.dx x t)
replaces p2.x, (bl.y + bl.dy x t) replaces pl.y, and (b2.y + bl.dy x t)
replaces p2.y.

Using this formula, you can take any two moving balls and calculate the
distance between them at any future point in time. For example, you can use
this formulato see whether two balls collide in the next tick of the anima-
tion clock by computing the distance and checking whether it is less than
twice the radius of the balls.

However, using the formulain this fashion isn't a fool proof solution. For
example, Figure 4-2 shows the paths of two moving balls. Ball A moves from
Bal to A2 in onetick of the animation clock, and ball B moves from B1 to B2.
The distance between the balls at Al/B1 isn't close enough to collide, and
the sameistrue at A2/B2. As Figure 4-2 shows, the two balls should have

collided at the position shown by the dotted outlines. However, the code
can fail to detect thisif it only checksfor collisions at fixed time intervals.

You can try to solve this "missed collision” problem by using aloop to check
the distance between the two balls at points in time even closer together
than a single animation tick. However, unless you were to loop until you
were checking extremely tiny distances, computing the exact time one ball
its another would be difficult. Y ou need to know the exact time to calculate
the exact location of each ball when the collision happens. If you don't know
the exact position of both balls at the moment of collision, you can't prop-
erly calculate the result of the collision. Even asmall error in position can
make a big difference in the direction and speed of the balls after the

Lision.

56

Part I: Steppin' Out

Figure 4-2:
Some
potential
collisions
would take
place
between
thetime
intervals
used to
animate
movement,
which
resultsin
the collision
being
missed.

<\

Solving for tinme

If you still remember any high-school algebra, you probably recall that
formulas - like the one presented in the previous section for computing
distance over time - can be rearranged to solve for specific values. From
the position, direction, and velocity information for two objects at a speci-
fied time, the distance-over-time formula cal culates the distance separating
the two objects.

Y ou already know that the only distance you care about is the distance at
which two balls collide, which is twice aball's radius. So what you want is
an equation that assumes d = radius x 2 and solves for time.

Two solutions?

Although your algebra may be a bit too rusty to figure out how to solve the
distance-over-time equation for time, some quite sophisticated computer
programs are available that can do it for you. One such program,
Mathematica 3.0 from Wolfram Research (www. mathemati ca . com), takes
only afew seconds to figure out the correct solution. With the solved
equation, you can spend time working on your code rather than digging
through your old math textbooks.

However, before you start examining this equation, you need to know that it
actually has two possible solutions that solve for time when d = radius x 2,
as demonstrated in Figure 43.

Chapter 4: JavaPool 5 7

When two

lls are on
z9f that
e lld the
maws are

Solution 1

In Figure 43, ball A ismoving from Alto A2, and ball B is moving from 131 to
B2. Asthe balls approach the intersection point, the distance between the
balls becomes equal to radius x 2 at the point marked Solution 1. However,
as Figure 43 shows, at another place on the path marked as Solution 2, the
distance between the ballsis also equal to radius x 2. Physically, only
Solution 1 makes any sense because the balls collide at that point and can
never reach the position for Solution 2 unless they pass through one an-
other. Solution 2 is a perfectly valid mathematical solution, it just doesn't
make sense for a pair of solid billiard balls.

Rearrange the quation

To solve the distance-over-time formulafor t, you first rearrange the equa-
tion into a polynomial equation of the form

axti+bxt+c=0

Rearranging the distance-over-time formulainto afully expanded polyno-
mial form produces

58

The
distance-
over-time

formula
from the
previous
section,
expanded
here into
the general
polynomial
form.

The
quadratic
formula.

The
subexpression
inthe
quadratic
formula that
gives you
the two
possible
solutions.

Part 1. Steppin’' Out

((bl.x - 62.X)2 + (bl.dy - b2.dy)?) X t2 +
2 x ((bl.x - b2.x) x (bl.x - b2.x) x (bl.dx - b2.y) x (bl.dy - b2.dy)) x t +
((bl.x - b2.x)" + (bly - b2.y)" - (bl.radius + b2.radius)') = 0

Note: This equation is broken into three lines to show the parts that corre-
spond to the a, b, and ¢ terms of the polynomial form.

Y ou then solve this polynomial equation using the quadratic formula. The
general form of the quadratic formulais

t= zb+ 0 =dac
2a

The strange + notation shows how you get two solutions to the equation.
Solution 1 results when you subtract the subexpression

Vb2 -4ac

and Solution 2 results from adding the same subexpression. Given that you
know that you only want to find the first collision, you need only Solution 1.

JOS
Chapter 4: JavaPool 5V

The complete set of equations (all you really need)

The values a, b, and c in the quadratic formula are only placeholders for
the real subexpressions, which you pull from the polynomial form of the
distance-over-time formula. Y ou can, in turn, reduce these equationsto a
simpler set by noting the repeated subexpressions in the fully expanded

polynomial form. The complete set of calculationsfor a, b, and ¢, when
calculated for your two balls bl and b2, is as follows:

d = bl.radius + bl.radius

ddx = bl.dx - bl.dx

ddy = bl.dy - bl.dy

distx =bl.x - b2.x

disty = bly - b2.y

a=ddx'+ddy"

b=2x(dxxddx+dyxddy)

c=dx'+dy'-d'
Note: The values d, ddx, ddy, distx, and disty are simply intermediate values

that show how to avoid duplicate calculations in the equations that calcu-
late the valuesfor a, b, and c.

Then you can plug these computed values for a, b, and c into the Solution 1
version of the quadratic formulato precisely calculate the time t when two
ballsfirst collide, like this:

Mr R, t= b- hhx)

w2711 2a

o~~~

If the value of t that you compute with this formulais exactly zero, the balls
are at the point of collision. If the value of t is greater than zero but lessthan 1,
the balls collide at some point before the balls reach their respective x + dx
and y + dy positions, that is, some time before the next frame in the animation.

Y ou can also use the value of t to compute the precise positions where bl
and b2 collide by multiplying each ball's dx and dy values by t and adding
the result to each ball's x and y values, like this:

60

Part I: Steppin' Out

nbl.x =bl.x + bl.dx x t

nbl.y =bl.y + bl.dx x t
nbl.x =b2.x + bl.dx x t
nbl.y =b2.y + bl.dx x t

nbl.x / nbl.y represents the position where ball bl collides with ball b2,
and nbl.x / nbl.y represents the position where ball b2 collides with ball bl.

Timing and order

The solution worked out in the previous sectionsis a great way to calculate
the precise time and place where two balls collide. What happens, though,
when you have more than two balls on a collision course? With two balls
you only had to calculate when they would collide. With three balls you
have three different ways for the balls to collide. With four balls you have
six different possible collisions, and the combinations climb faster as you
add more balls.

Also, when two balls collide, the collision sends the balls off in new direc-
tions. This means that your code needs to redo all your collision calcula-
tions to consider the new courses of the two balls that collided. However,
instead of being aprobl em thisfact leads to the key idea at the center of the
billiards simulation. At any given moment, you only need to calculate when
the next collision is going to take place; it doesn't matter which balls are
involved. If you know the ti e of the next collision, you can run the motion
simulation forward to that point in time, calculate the result of the collision
that occurs, and then repeat the process.

Y ou can find the first collision between a set of balls by computing the
collision times for the different combinations of balls and then selecting the
shortest time. Take three balls for example: balls bl and b2 can collide, balls
b2 and b3 can collide, and balls bl and b3 can collide. Whichever pair of
balls collides first becomes the next collision that your code needs to
handle, and in the meantime, the code can proceed smoothly through the
motion simulation for the balls.

Of course, al three balls can collide at the exact same time as well, which
may seem to complicate things. However, arbitrarily picking one pair of balls
to handle first works just fine for a game simulation because the calculations
al happen so fast that the player doesn't notice.

Chapter 4: JavaPool

Checking the combinations

Finding the collision times for different combinations of balls requires a
method to figure out which combinations of balls to check. The obvious
approach isto use two nested loops, like this:

for (int ii =0; ii < nunBalls; ii++)
for (ii =0; ii < nunBalls; jj++)
/1 check ball[ii] to ball[jjl

However, this approach isn't optimal. First of all, it checksfor aball colliding
with itself. In addition, it checks mirror combinations, such as comparing
ball [01 to ball Ell and bal 1 [11 to ball [0]. Here's a more efficient way
to arrange your loops:

for (int ii = 1: ii < nunBalls; ii++)
for (ii =0; ii <ii; jj++)
/1 check ball[ii] to ball[jjl

By changing the first loop to start at 1 and by changing the second loop's
comparisontestto j j < i i, you create aloop that checks each combina-
tion only once.

Y ou can see the complete code for checking all the different combinations of
balls and edges in the JavaPool applet'supdateB alls() methodinthe
listing on the Java Came Programming For Dummies CD-ROM.

ncing O f the Bunpers

Chapters 1, 2, and 3 introduce a simple technique to detect and handle a
collision between the ball and the applet boundary. However, the technique
in those chaptersisn't suitable for your pool applet because it can only
detect and process collisions after they've occurred. Instead, you need a
new method that works like your ball-to-ball collision code and computes
the time when a ball hits an edge so that you can decide if the first collision
that happens is a ball-to-ball collision or a ball-to-wall collision.

Computing when aball hits an edge is much easier than computing when a
bull hits another ball. First, amoving ball, always eventually hits an edge
(unless of course, the ball slows down to a stop before reaching an edge -
but more on that later in the "Putting All the Pieces Together" section).
Second, the sign of the ball's dx and dy values limits which edge the ball can
bit- For example, if the dx value is positive, the ball is moving to the right
and can hit the right edge but can't ever hit the leit edge. Likewise, it the

of dy is positive, the ball can hit the bottom edge but not the top edge.

62 Part 1. Steppin' Out

After you know which edge (left, right, top, or bottom) the ball can hit, you
can compute the distance to each edge and then divide by dx or dy, respec-
tively, to get the time to reach each edge. For example, the time to reach the
left or right edge is the distance to the edge divided by dx. Likewise, the
time to reach the top or bottom edge is the distance to the edge divided by

dy. Thenext ball-to-wall collision isthe one with the shorter time to collision-

Ball-to-wall collisions are different from ball-to-ball collisions, but your pool
simulation code will have to watch for both types of collisions at the same
time. At any given moment, the code needs to know what type of collision
will happen next and how to handle it - the next section shows you how.

Coding the Collisions

Now you need to convert your collision math into code. Y ou can use an
approach similar to the one discussed in Chapter 3 and extend anew Ba 11
classfromtheCirc1e classand extend circ1e fromtheroint 2o class.

Thecodefor sa11is Similar tothe sa11 classin Chapter 3 except that it
contains several new methods to compute ball-to-ball and ball-to-wall
collisions. The method to compute ball-to-ball collisionsis called
pathintercept (), anditcontainscode that uses your new formulato
compute the time one ball hits another. Here's the code for

pat hl ntercept ():

public float pathlntercept (Ball b)
float d = radius + b.radius;
float ddx = vel.dx - b.vel.dx;
float ddy = vel.dy - b.vel.dy;
float dx = x - b.x;
float dy =y - b.y;
float A = ddx * ddx + ddy * ddy;
float B =2 * (dx * ddx + dy * ddy);
float C = dx * dx +dy* dy - d* @
return (-B - (float) Math.sgrt(B*B - 4*A*C)) / (2*A);

The code to compute the time for a ball to collide with an edge goesinto a
new method called edgel ntercept (). Here'sthe code:

public float edgelntercept (Rectangle bd) ;
if (vel.dx >= 0)
hCol = (bd.width + bd.x - x - radius) / vel.dx;
el se

hCol = (bd.x - x + radius) / vel.dx;

Chapter 4: JavaPool 63

I f (vel.dy
vCol = (bd. height + bd.y radius) /vel.dy
el se
vCol = (bd.y - y + radius) / vel.dy;

return Math. m n(hCol, vCol);

You needto declare hco1 andv C 0 1 as class variables so that you can use
the values to compute the new direction for aball that bounces off an edge.
Then, code amethod called bounce () that usesthese values to compute
the result of an edge bounce. Here'sthe code for bounce ()

public void bounce (float t)
if (t == hCol)
vel .dx = -vel.dx;
if (t == VCol)
vel .dy = -vel.dy;

Noticethat bounce () acceptsasingle float parameter called t. bounce()
that uses t to decide if the ball bounces off aleft/right edge, a top/bottom
edge, or both. Your code needs to calculate the time to the next collision,
run the simulation forward to this point in time, and then resolve that
collision. (This stuff isall covered in the "Timing and order" section, later
in this chapter.)

The code only callsb ounce () whenthe next collision is a ball-to-wall
collision, and so hcol and vCol values are set by edgel ntercept() just
prior to calingbounce (). Therefore, if bounce()'st parameter passesin
the same time valuereturned by edgelntercept (), you COMpare thistime
valuetoh Co1landv C o 1to determine if the ball bounced off aleft/right or
top/bottom edge, or both.

After you know which edge the ball bounces off of, you handle the collision
by reversing the appropriate dx or dy valuein the ball's vel vector. For a
collision on aleft/right edge, you reverse dx, and for acollision along a top/
bottom edge, you reverse dy. (See Chapter 1 for more details.)

Conserving Momentum

Handling a ball-to-ball collision is a bit more complicated than handling a
ball-to-wall collision. When one ball collides with another, Newton's law of
conservation of momentum controls how each ball reacts, and you need to
write code that simulates this behavior.

o4

Part I: Steppin' Out

The momentum of a moving object is equal to the object's masstimes its
velocity. When two objects collide, if you calculate the sum of the momen-
tum of the two objects before and after the collision, the law of conservatimm
of momentum says that you have to get the same sum in both cases (minus
friction, of course). To appear realistic, your collision cal culations must

mai ntain this balance (you don't want to break the law, do you?).

Imagine that a moving ball strikes a stationary ball and that at the point of
collision, the stationary ball is exactly 45 degrees to the right of the path of
the moving ball. After the collision, the previously stationary ball moves off
at the 45 degree angle. Conversely, the path of the moving ball is deflected
45 degreesto the left of itsoriginal direction. The law of conservation of
momentum tells you that the sum of the momentum of both balls after the
collision is equal to the momentum of the moving ball before the collision_
However, because you are working in two dimensions, you need to vector
math to calculate the velocity of both balls after the collision.

Because hilliard balls all have the same mass, you can assign all your
simulated billiard balls a mass of one and greatly simplify your calculations
(one times any value equals the same value). This trick means that you can
use aball's velocity as its momentum.

Revisiting Vectors

Chapter 3 demonstrates that the result of adding two vectorsis a new
vector that combines the effects of the original two. This same principle also
appliesin reverse. If you add the velocity vectors for the two balls after the
collision, you must get a value that exactly equals the velocity vector of the
moving ball before the collision. Figure 4-4 graphically illustrates conserva-
tion of momentum by using a vector diagram to show how adding the
velocity vectors for the balls after the collision produces a vector that
equals the original moving ball's velocity vector.

To determine the velocities of the two balls after the collision, you need to
compute how momentum is redistributed. As Figure 4-5 shows, the transfer
of momentum from the moving ball to the stationary ball is proportional to
the cosine of the angle formed by aline drawn between the centers of the
balls at the moment of impact and the line defined by the motion of the

moving ball. Conversely, the momentum retained by the moving ball is
proportional to the sine of this same angle.

Chapter 4: JavaPool 6 5

New vector for
moving ball

Moving ball's
original vector

uiioic~ball

= mi

m2 = cos(ac) xm1
m3 =sinfac) xm1

66

Part I: Steppin' Out

For example, in the case where the moving ball hitsin the dead center of the
moving ball, this angle is zero. Therefore, cos(0) equals 1 and sin(0) equalst;,, |
and the stationary ball receives all the momentum from the moving ball and
the previously moving ball comes to a complete stop. Likewise, if the mower
ball barely grazes the stationary ball, the angle between the centersis new.*,
90 degrees with respect to the path of the ball. Therefore, because the cosime
of an angle close to 90 degreesis avery small number, very little of the
moving ball's momentum transfers to the stationary ball.

What i f both balls are moving?

Y ou may be wondering how to deal with distributing momentum if both balls
are moving before the collision. Easy: Y ou can pretend that one ball is
stationary simply by calculating the collision in that ball's frame of reference..
For example, if you wereriding in atiny helicopter that was exactly match-
ing the speed of one of the moving balls, a physicist would say you werein
that ball's frame of reference. From your aerial perspective, the collision
would appear to have happened between amoving ball and a stationary
ball. Albert Einstein's theory of relativity saysthat the laws of physics have
to look valid no matter where you observe from.

With the following approach, you convert the problem of two moving balls.
ball A and ball B, into one where you always have one moving ball and one
stationary ball:

1. Subtract ball A's velocity vector from ball B.
2. Set ball A's velocity vector to zero.
Thisisthe same as subtracting the ball As vector from itself.

3. Compute the collision as though ball A (with the modified vector)
strikes a stationary ball A.

4. Add ball A'sorigina vector back to both balls.

The code to perform these calculationsis fairly simple to write using a
dlightly improved and expanded version of the Vec2D class from Chapter 3.
The main addition is a new method called d of P r od () that calculatesthe dot
product of two vectors.

The dot product

The dot product is what you get when you multiply the first vector's dx value
times the second vector's dx value and then add this to the first vector's dy
value times the second vector's dy value. This may seem like a strange
calculation, but when both vectors are unit vectors (unit vectors are ex-
plained in Chapter 3), the dot product isjust afast way to compute the
cosine of the angle between the two vectors.

Chapter 4: JavaPool 6 7

The col | i de() method

Use this dot product trick to write anew method called col 1 i de () for your
Ballclass.col1lidecomputestheresult of acollision between two balls.
Youcadlcollide() by passing it areference to asecond ball. For example,
to collide ball bl with ball b2 you write:

ba.collide(b2)
Here's the code for col 1i de():

public void collide (Ball b) 1
// calculate collision in b s reference frame
float my = vel.subVec(b.vel).mag();
Vec2D v12 = (new Vec2D(this, b)).unitvVec();
Vec2D vic = vel.copy():unitVec();

float cos = vic.dotProd(vi2);
vel.subVec(v1l2,mulVec(cos * mv)).addVec(b.vel);

b,vel.addVec(v12);

This code is made more compact by arevisiontotheV ec 2D class (see
"Creating avector class' in Chapter 3) which changes any method that
previously returned v 0 i d to instead return areference to the same object.
This trick means that you can combine several callsto successiveV ec 2D
methods into a single statement. For example, instead of writing

vel.subVec(b.vel);

float my = vel.mag();
you can write the more compact
float my - vel.subVec(b.vel).mag();

col 1ide() dissected

After you understand this new way of writing vector code, you can examine
howcol1l1lide()worksinmoredetail. Thefirst line of code

float mv- = vel.subVec(b.vel).mag();

makes the collision calculation relative to ball b's frame of reference. It does
this by subtracting its velocity vector from the current ball's velocity vector.
This code aso calculates the magnitude of the current ball's velocity vector
after subtracting ball b's vector and saves thisin the variable mv.

68

Part I: Steppin' Out

The code then creates two new V e c2 o objects: v 12 and v 1 c. The code that
createsv 12 usesanew V ec 2 D constructor, takes referencestotwo Poi nt.2'1
objects, and creates a vector that is the difference between the two Poi nit.
objects. The code then converts this difference to a unit vector. The folloVF-
ing line of code accomplishes these steps:

Vec2D vl 2 = (new Vec2D(this, bl?.unitVec(?;

Next, the code createsthev 1 ¢V e c 2 o object by copying the current ball's
vel vector and converting the copy to a unit vector, like this:

Vec2D V|C:vgl copy uni t Vec();

The code then calculates the cosine of the angle betweenv 12 and v 1 ¢ by
computing the dot product, like this:

float cos ° vilc.dotProd(vl2);

Next, the code sets the magnitude of v 12 to equal my * cos. Before this
calculation, v 12 is a unit vector that points along aline from b to the current
ball. Adjusting the magnitude to cos* my converts v12 into a vector that
represents the amount of momentum to be transferred from the current baB
to ball b.

In the next step, the code subtracts v 12 from the current ball's v e 1 vector.
Doing so removes the momentum from the current ball - the same momen-
tum that the code later transfersto ball b in the next step. Then, the code
restores the current ball's original frame of reference by adding back the
original, unmodified vector for ball b. All these steps are accomplished in
this line of code:

ve |. subVec(V12.nmulyecfco, <+ nv)).addVec(b.vel);
Finally, the code transfers the momentum taken from the current ball to ball
b and restoresits original frame of reference by adding v 12 to ball b's
original vel vector, like this:

b. vel . addVec(vl 2);

Putting A« the Pieces Together

Much of the code for theJav aP oo 1 applet is copied directly from the
Holel n0neapplet in Chapter 3, so there's no point in describing it again
here. However, there is new code to watch for.

;~igmre 4-6:
The
completed
JavaPool

et shows
>hm racked
balls, a cue
hall, and a
ket hole

ir “nie lower-
-- -orner.

Chapter 4: JavaPool 6 9

First,thesavaroo1 applet creates and maintainsalist of active 8a 11 objects
using the vect or Object bal 1 s. resetTabl e() creates four balls and adds
them to theempty vect or list. It adds awhite cue ball and arranges three
colored ballsinto atriangular shape that resembles arack of billiard balls.

The controlling codefor savaroo1 appletisthe codein the method

update Ball s (). Thecodein update Ball s () is based ontheideasdis-
cussed earlier in the "Timing and order” section. For each tick of the
animation, updateBal 1 s() callseach ball's edgel ntercept() and
pathintercept () Methodsto see whether a collision occurs during the
current animation tick. If updatesa11s() findsacollision, it processes the
collison by calling bounce() orcottide(), dependingon thetype of
collision - ball-to-ball or ball-to-wall, respectively - it finds.

Whenupdatesatis() can't find any more collisions that occur during the
current animation cycle, it calls each ball's ¢ece1() method to simulate
slowing the ball's motion due to friction. update Ba 1 1s () also checksto see
whether each ball is close enough to the hole to fall in or be influenced by it
by callingtheH o1 ¢ method i nf1uence (). (Seethe section "Digging aHole"
in Chapter 3 for the whole hole story.) If infiuence() returnstrue the
code knows that the ball has fallen into the hole and removes it from the list
of active balls.

The interface for shooting aball isidentical to the click-and-drag interface
described in Chapter 3, except that withthe 1avaroo1 interface you can
select and shoot any of the four balls. The applet's i ni t () method also
creates a pocket hole in the lower-left corner of the applet. Y ou can move this
hole to another location by changing the values passed to the constructor.

The completed JavaPool applet is shown in Figure 46.

Y ou can find the completed JavaPool applet and the complete code for the
applet on the Java Game Programming For Dummies CD-ROM.

70 Part I: Steppin' Out

IM3 dH
one one BUD WMAHM
,aft30 c= Us— — O6
‘NM WrJOK Nv8D; dammm 3th
tO 05MR) AL WA ISOP 513"

e

Ire this part . . .

roducing a professional-quality game means :

mastering more than just the basics of game coding.
A finished game must attend to a myriad of practical '
details while also serving up a heaping measure of eye ;
appeal and style. Part Il shows you how to apply spitand |
polish to your core game logic in order to createthat
professional look. P

Part Il also delvesinto the ins and outs of mazes by
showing you how to create them and how to solve them.
Mazes are an integral part of many games, and the maze
code this part presents is used to create some of the
gamesin both Part 11 and Part I11.

Chapter 5

Sliding Blocks Brain Teaser

R RN N NN EENEE NN RN EREE N N

In Tkis Chapter
Spicing up your games with images
USing the Medi aTracker class
fogramming puzzle logic
IImmplementing a click and drag interface

El s neoneneedesceododdeocedssesnsossnosdonsonen

In the 1870s, an American named Sam Loyd drove the world crazy with a

new type of game called a Sliding Block Puzzle. Sam arranged 15 wooden
tilesina4 x 4 grid in asmall cardboard box. Because Loyd left out atile, the
box had room for you to slide one tile past another, and by a series of
moves, rearrange the order of tiles.

Each tile was numbered, and the box started with tile number 1 in the upper-
left corner. The sequence continued to the right and then down, but the last
two numbers, 14 and 15, were reversed, as shown in Figure 5-1. Thus, Loyd
called hisinvention the 14-15 puzzle and offered a prize of $1,000 to the first
person who could solve the puzzle by putting all the numbers in sequence.

The blocksin Loyd's puzzle can be arranged in over 600 billion ways, but
each rearrangement of the tiles can result only from an even number of
exchanges between the blocks. Therefore, Loyd's fiendish little puzzleis
impossible to solve, and the $1,000 prize, was never claimed.

5-1:

immssibleL 7toiti
Mrsie. 3 3, s

In this chapter, we show you how to construct your own sliding block
puzzle. This puzzle is difficult to solve, but unlike sneaky Sam's puzzle, it
does have a solution. And instead of using Sam's numbers, the puzzle in this
chapter has diding blocks with colorful images.

4

Part 11: Up to Speed

Figure 5-2:

The starting
position for
the Sliding

Block Brain |
Teaser.

The puzzle presented in this chapter simulates a set of wooden blocks that
dide around inside a recessed rectangular area cut into a game board. Y ou
move puzzle pieces by clicking and dragging with the mouse, but the
particular arrangement of the pieces (see Figure 5-2) constrains how the
pieces can move. Solving the puzzle requires the player to discover the
sequence of moves needed to rel ocate the large square piece from the top
center of the board to the winning position at the bottom center.

This chapter covers all the techniques used in the Sliding Blocks Brain
Teaser applet. The complete code and ready-to-run applet is on the Java
Game Programming For Dummies CD-ROM included with this book.

Using Images is Games

To paraphrase an old saw: When programming games, one picture can be far
cooler than athousand fi11Rect() calls. Besides, modern game players
expect games to have snazzy graphics, which usually means using fancy
artwork rather than plain, solid colors. With modern tools, like Adobe
Photoshop, you can easily create custom pictures to use in your games,
even if you aren't the next Rembrandt.

The puzzle we present in this chapter uses GIF (Graphics Interchange
Format - one of two graphics formats used on the World Wide Web) images
to create theillusion that the puzzle is constructed from wooden blocks.
These pieces slide around on a puzzle board, which is also made to re-
semble wood.

The puzzle uses puzzle pieces in three different sizes. If you think of the
smallest pieces as 1 x 1 unit squares, the remaining two sizes of pieces are
1x2and 2 x 2. These pieces slide around in a recessed rectangular area
on the puzzle board. Using the 1 x 1 puzzle pieces as a unit, the size of

this rectangular areais four puzzle-piece units wide by five puzzle-piece
units high.

Chapter 5: Sliding Blocks Brain Teaser 75

The puzzle pieces and the puzzle board shown in Figure 5-2 are all con-
structed in Photoshop using a third-party plug-in called PhotoTools (from
Extensis Corporation) that modifies a back%round texture, inthiscase a
picture of wood grain, to create the look of beveled edges similar to the
effect created by thefi 113 Drect () intheGrapni ¢ sclass(see CD Chapter 3
for moreinformation). This effect creates araised look on the pieces, as if
they were cut with arouting tool. The effect is reversed to create the re-
cessed ook of the rectangular areathat holds the pieces. The same effect is
also used on the outside edge of the puzzle board, except that the plug-inis
set to create a rounded bevel.

Y ou can easily create your own graphics to replace the files provided on the
Java Game Programming For Dummies CD by using the included GIF files as
templates. Y ou need to construct 10 different piece files to replace the files
piece0.gif through piece9.gif. Y ou can also replace the game board by
creating your own board.gif file. Y ou can use amost any image editing
program that can save filesin the GIF format.

lytitat stamp Pads

Using 1 m ge in Javaislike having adigital stamp pad that you can use to
stamp down copies of apictureontoaGrapni ¢ Scontext. Inthis case, the
stamp padisan 1mage Object, and you stamp it using thed rawi mage ()
method providedinthe Grapni ¢ s class. However, before you can call

drawl mage (), you first haveto load animagefileand createaJava 1mage
object. You can create an 1 mage Object by loading files from a Web server or
from your hard disk.

Tocreatean | mage Object, youuseamethod called get 1 mage () thatis
providedintheappiet class. Whenyoucall get 1 mage (), you passitaURL
parameter (Universal Resource Locator, or more simply, Web address) that
tellsget 1 mage () wheretofind animagefile. Usually theimagefileis
located on a Web server, but it can also come from your hard drive if you
only need to run your applet on your computer. get 1 mage () loadsthe data
from thisimage file and uses it to construct an | m ge object.

You can alsocal get 1mage () and passitaURL and astring that specifies the
name of an image file. The string is appended to the URL to specify the exact
location of thefile. Thisformof get 1 mge () Ccanbeconveniently used with
two other App | et methods called get CodeBase() and get Docunent Base().
Callinggetcoatesase () returnsaURL that pointsto the directory on the Web
server from which theapplet was |oaded. Calllng getDocumentBase()
returnsa U rL that pointsto the directory from which the HTML document
that created the applet was loaded. So you can easily fetch an 1 mage from the
same directory that contains an applet's classfiles like this:

76

Part II: Up to Speed

After you have an | mage, you can draw it to a G a phi c s context by calling
the Gr aphic s method dr awl mage(). Here's an example of a simple apple
that fetches an | mage using get 1 mage() and then draws the same | mage

with dr awl mage():

inport java.aw.*;

inport java.applet. Applet;

public cl ass Exanpl e extends Applet |

Image coffee;

public void init() {

cof fee = gettnage(get CodeBase(),

public void paint (Gaphics g) |

g. draw mage(coffee, 0, O, null);

coffee.gif);

Choosing GIF or JPEG

You can use get | mage() tofetch an | mage
from a file encoded in the GIF format, but you
can also call getlmage() to fetch a JPEG
encoded | mage. The code is basically the
same in either case; you just pass the name of
the image file, whether it be JPEG or GIF. JPEG
files let you use images that contain millions of
colors, whereas GIF files have a limit of 256
colors. However, JPEG's larger color palette
may sometimes be a disadvantage.

Some people may want to play your games on
systems that can only display 256 colors. In
this case, Java has to convert a J PEG before it
can display it. This conversion process, called
dithering, can produce a grainy, undesirable
result. You are best off testing your games on

a 256-color system to make sure that you like
the result. To completely avoid dithering, you
need to be careful to create your GIF files
using only the 216-color browser - saf e palette.
(CD Chapter 4 covers the ins and outs of the
browser-safe palette.)

If you use Adobe Photoshop to create your GIF
files, you can convert any type of image to the
216-color browser-safe palette. If you are
starting with a JPEG file and wantto convert it
to a GIF file, simply select Image-:>Modee
I ndexed Color. Then in the dialog box that ap-
pears, set the palette option to Web. You can
also let Photoshop predither the image by se-
lecting something other than None for the
Dither option in the same dialog box.

Chapter 5: Sliding Blocks Brain Teaser

Inthiscode, ¢rawi mge() getspassed four parameters. The first parameter
isthe reference to the 1 mage object youwant d r a w1 mage() to draw. The
next two parametersarethe x and y offset that tell ¢rawi mage() whereto
position the upper-left corner of the 1 mage Inthisexample, the 1 mageis
drawn exactly in the upper-left corner at 0,0 (the origin) of the applet's
screen area.

The last parameter (nul I) passedto ¢ awi mage () is used to pass arefer-
enceto an | rageserver. | mageCbserver is an interfaceyou can imple—
ment in your applet if you want the applet to be notified of the status of an
I'm g e Whileitisdownloading. However, you don't need this capability for

the applet in this chapter and can simply passn u 1 1 when you call
dr awm mage() .

Drawing while downloading

When you try the previous applet, you may notice a strange thing, depend-
ing on how fast your browser or applet viewer loads images. When you call
get 1 mge (), It returnsamost immediately, passing back areference to an

I mage Object. However, the 1 mage hasn't actually been loaded at this point
and doesn't start to load until thefirst time ¢rawi mage () is caled. To make
things even stranger, drawi mge () attemptsto draw an 1 mage even when
the 1 ma ge isn't fU”y loaded.

According to the developers of Java, Java's incremental display of images as
they are loaded is a"feature," not abug. The intent isto let you duplicate
the effect of abrowser displaying an image whileit is still loading it. How-
ever, for many game applications this can be areal nuisance.

One way to solvethisproblemistousethe 1 mageobserver interface,
mentioned earlier in this chapter, to write code that keeps track of the
status of the images you are fetching and determines when all of them have
been fully loaded. An even simpler solution isto use Java's mdi aTracker
class to manage image loading and keep track of when the images are
loaded, as the next section explains.

Loading images With Medi aTr acker

The medi aTracker Classletsyou construct alist of images you have
requested with get 1mage (). After thislist iscomplete, you can tell

Medi aTracker 1O Start loading al of them and to wait until all the images
have been |oaded before proceeding.

77

18

Part II: Up to Speed

Thefirst step inusing medi a Tracker is tO create anew Medi a Tracker
object, like this:

Medi aTracker tracker = new Medi aTracker (this);

Thet ni sparameter passed tothemedi aTracker constructor is areferenot
to the applet that needsto usetheimages. medi aTracker Usesthis param-
eter to register with the code that actually loads the images.

Medi aTr acker . addl nage()

After you haveanew Medi aTracker object, you can start making alist of
imagesfor medi aTracker to manage. You add an image to the list by calling
MediaTracker's addi mge () method. Here's an example:

| mage boar dl mage = get| mage(get CodeBaseC), board.gif);
tracker. addl mage(boar dl mage, board.gif), 0);

Notice that you still needtocall getimage() torequestthel ma g e you wauL
However, youthenalsocall addimage () toaddthe i mage tothelist of
imagesyour Mmedi aTrackeris Mmanaging.

Whenyoucall addi mage (), you arerequired togiveitani »t parameter
that specifiesan ID valuefor thel ma g e you aretellingmedi atracker to
track. medi aTracker Supports severa different methods for monitoring
image loading. For example, the medi atracker methodwaitForip() waits
for al images that were assigned a particular ID value to load before it
returns. However, it'susually easier to call the medi aTracker method

wa it For A 1 (), whichdoesn't return until all the images you added with
add 1mage () areloaded. If youusewai t Foral | (), it doesn't matter what ID
value you pass to add | mage().

Medi aTr acker. wai t ForAl | O

After you add all theimagestoyour medi aTracker Object, you call the
method wa i t For A 1 () to start loading the images and wait for loading to
finish. This call doesn't return until all the images you added with
addimage() arefully loaded and ready to use. However, the vai t Foral 1()
method has one more detail you have to handle.

Thew i t For A 1 () method specifiesthat it can throw an
InterruptedException Thisexceptionisn't currently implemented in Java
1.0.2, but you still need to provideat ryic at ¢ h block so that the code
compiles properly, like this:

try f

L R SR
Y T u..' (VLS e
| catch (InterruptedException e Ehad At v L RER :.L’-"

tracker.wai t ForAll ();

Chapter 5: Sliding Blocks Brain Teaser

L oading multiple images

The dliding blocks puzzle has 11 different images that you need to load - 10
puzzle pieces plus the puzzle board. The image for the puzzle board is called
board.qgif; the images for the puzzle pieces are named piece0.gif through
piece9.gif. Y ou can simplify the code to load the puzzle pieces by taking
advantage of the sequential naming of the puzzle piece files. Code aloop
and then use string concatenation (fancy lingo meaning to combine multiple
strings into one) to create the name of each file from the loop counter
variable. For example, if you haveani nt variable called i i and the current
value of i i is zero, the following code creates the string pi ece0 . gi f:

String frame = piece + ii + gif ;

Using this string concatenation trick, here is the code you need to load the
puzzle board and all 10 puzzle pieces:

Medi aTr acker tracker = new Medi aTr acker (this);
boar dl mrage = get | nage(get CodeBase(), board.gif);

tracker. addl nage(boar dl mage, 0);

pi ecel mages[ii] = getl| nage(get CodeBase(),
piece + ii + gif);
tracker. addl mage(pi ecel mages[ii], 0);

try' |
tracker.wait ForAll ();

| catch (InterruptedException e) |]

Y ou can put thiscodeinthei nit() method of the puzzle applet. You also
need to declareboardimageandthepi eces|] array asclassvariables, like
this:

private | mage of f screenl mage, boar dl nage;

private | mage[] pi ecel mages = new | nage[10];

Lr~r~iaq Out the Gamet3oard

The design of the puzzle board, shown in Figure 5-3, aligns all the puzzle
pieces onto an invisible 4 x 5 grid to make calculating how to draw each
puzzle piece onto the board as easy as possible. The origin (upper-left
corner) of the grid is offset from the applet's origin by the values specified
inthevariablesgridx and grid Y. The width and height of agrid squareis
specified by the variables pi eceWi dth and pi eceHel ght.

79

O

Part II: Up to Speed

Figure 5-3:
All the
puzzle

pieces on
the game
board align
to an
invisible
4x5grid
centered in
the middle
of the
board.

gridX \ pieceWidth

gridY

pieceHeight | (0,0 (2,0) 8.0)

| 0,2) (2,2) (3,2)

0,3 (2,3) (3,3)

(2,4) 34

The grid squares are arranged such that grid square x=0, y=0 is the upper-
left square, and x=3, y=4 is the lower-right square, as shown in Figure 5-3.
When you draw a puzzle piece onto the board, you calcul ate the upper-left
corner for any grid square from these four variables, gri dX gri dv,

pi ecew dt h, and pi ecerei ght, using the following formulas:

imageX = gridX x pieceWidth + gridX
imageY = gridY x pieceHeight + gridY

However, you can't apply these formulas until you know the proper values
to assignto gridx, gridy, piecewdth, and pi eceHei ght. You Canwrite
the code to initialize these values from constants, but this means you can'
change the size of the puzzle graphics without recompiling the code.
Instead, because the size of the grid square is equal to the size of the
smallest puzzle piece, you can initializepiecewi ¢t h andpieceteight by
reading the width and height of one of the puzzle piece images.

Chapter 5: Sliding Blocks Brain Teaser

Reading the width and height of an Image

The 1 mage class contains methods called getw dth() and get Hei ght ()
that determine the width and height of an 1 mage. For example, to read the
width and height of the game board 1 mage board I mage, use the following
code:

int W dt” - boardl nage. get Wdth(nall3;

i nt hei ght = boardl mage. get Hei ght (nul 1) ;

Due to the design of the Java AWT, you can't reliably read an 1 mage' s width
and height until the | mage has been fully loaded. Thisisn't a problem when
youuse medi aTracker towait for an | mage to fully load before you use it -
avery good reason to always use medi aTracker toload your images.

Initializing gri dX, gri dY, pi eceWi dth,
and pieceHeight

Using getw dth() and get Height() letsyou initialize pi ecew dt h and
pieceHei gnt by reading the width and height of one of the small puzzle
piece images. The earlier section "L oading multiple images" shows code that
loads all the puzzle piece image files and saves references to the 1 nage
objectsinan 1 mage[] array caled pi ecel mages. pi ecel mages [51 contains
areference to the image file pieceb.gif, which is one of the small puzzle
pieces. Read the width and height of pi ecei mages| 51toinitialize

pi ecew dth and pi eceHei ght, likethis:

_nt pi eceWdth - piecel nages[5],getWdth(null);
| int pieceHei ght = pieceTmages[5l. getHei ght(null);

You still haven'tinitialized gri dx or gri ¢y, but you can easily calculate
these values from the width and height of the game board image

boar dl mage and pi ecew dth and pi ecetei ght. Becausethe grid is
centered in the middle of the game board, you calculate ¢+ i d x by subtract-
ing the width of the grid from the width of the game board (boar d1 mage)
|and then divide the result by two. The width of the grid iS4 X pi ecew dth,
soyou calculate g r i d x likethis:

ridx = (boardl mage. get Wdth(null) -
(pieceWdth * 4)) / 2;

You calculate g1 i ¢ Y using nearly identical code:

:eidY = (boardl mage. get Hei ght (nul ') -
(pieceHeight * 5)) / 2;

S2

Part 1l: Up to Speed

Craftinly the Puzzle

To make the puzzle work, you need to construct a class to encapsulate the
logic that handles each individual puzzle piece. This new class, called

pi ece Needsto contain aconstructor to instantiate (create and define) the
pieces needed by the puzzle, code to draw the | mage that represents the
piece on the board, and code to handle sliding the piece from place to platy-.

on the board.

Making puzzle pieces that act
like real puzzle pieces

One of thetrickiest aspects of coding the puzzle is designing the logic that
makes the puzzle pieces act like real puzzle pieces placed on areal board_
For example, when you try to slide a puzzle in the direction of an adjacent
piece, the adjacent piece either blocks the first piece from moving, or, if tha
pieceis able to slide in the same direction, is pushed along.

To accomplish this, each puzzle piece needs to know its size and current
position and be able to check the size and position of the other pieces. In
addition, you need to have some way to monitor when one piece pushes
another piece.

Thankfully, the Java AWT includes a built-in classcalled rect ang1e thatis
designed to represent amovable rectangular area. fectangle includes cod
that can check whether one rectangular area overlaps or intersects another
rectangular area and greatly simplifies your task of creating the logic of
sliding puzzle pieces. R ct ang1es built-in features make it the perfect
superclass for your new Pi ece class.

Starting with Rectangl e, you Can easily code the beginnings of your new
pi ece Class, including code to draw the image of the puzzle piece, like this

cl ass Piece extends Rectangle {
private mage pic;
Piece (int bx, int by, Rectangle grid, Image ing) i
super(bx * grid.width + grid. x,
by * grid.height + grid.y,
i mg.getWdth(null), ing.getHeight(null));
pic = ing;

Chapter 5: Sliding Blocks Brain Teaser

;blic void draw (G aphics g)
g.draw mage(pic, x, y, null);

The first two parametersto ri ece, bx and by , %)ecif the location of the
piece on theinvisible 4 x 5 grid shown in Figure 5-3. For example, to position
apiece in the upper-left position on the grid, specify bx = o and by = o.

Even though you specify the location of a piece on the grid, the piece can't
calculate where to draw the 1 mage that represents the piece unlessit knows
the values you computed for gri dx, gri dY, pi ecew dth, and pHyt. You could
pass these parameters to the constructor for riece infour i nt parameters.
However, it'seasier tocreateare ¢ t an g 1 e object from these four values and
pass areference to this object to ri e c e in aparameter called g1 i o

The last parameter for riece i mg isareferencetothe i mage that repre-
sents the piece on the board. The constructor saves this reference in the
variablepi ¢, whichisused by rpiecesdaraw() method. The constructor
calsiny . getw dth() andiny . getrei ght() to determinethe size of the
I mage and passes this to the superclass constructor, along with the pixel
position. Therefore, after apieceisinstantiated, pi ece's x andy values
record the pixel position of the piece on the board, andthe pi eceswidtn
andneignt valuesgivethereal sizeof the ri ece inpixels.

piecesdraW () method, asshown inthe codein this section, uses the
I mage Variablepi c and the x and y pixel position values to draw the image
that represents the piece onto the game board.

Putting the piecestogether

Now that you can instantiate a puzzle piece, you're ready to finish the
applet'sinit () method by adding the code to instantiate all the pieces for
the puzzle. Here's the completed code for i ni « () aong with all the needed
classvariables for the puzzle applet:

public class Puzzle extends Applet |

private | nmage of f scr eenl mage, boar dl mage;
private | nmage[] pi ecel mages = new | mage[10] ;
private G aphics of fscr;

private Piece[] pi eces = new Pi ece[10] ;
private Piece pi cked = null;

private Rectangle grid, clickArea;
private Font bbCouri er = new Font(Courier ,

Font . BOLD, 48) ;

(conti nued)

83

(continued)

:rivate String wi nMsg = Wn!

!
/

i vate Poi nt sel ect edPi ece, w nLocation;

The pcs[] array specifies the starting position of the

di fferent puzzle pieces on the 45 grid.

. private int[][] pcs = {11,01.10,01, (0,21, (3",01; {3, 21,

(0,41,t1,31,t2,31,13,41,t1,2)1; public void init_:,!
Medi aTaacker tracker = new Medi aTracker (this);
boar dl mage = get| mage(get CodeBase(), board.gif);
tracker. addl mage(boardl nage, 0);

for (int ii =0; ii < 10; ii++)

piece + ii + GF);

tracker. addl mage(pi ecel mages[ii], 0);
try t

tracker.waitForAll();
| catch (InterruptedException e) | ; }
i nt pieceWdth = piecel mages[5].getWdth(null);
I'nt pi eceHei ght = pi ecel nages[51. get Hei ght (nul |);
int gridX = (boardl mage. get Wdth(null) -
(piecewdth * 4)) / 2;
int gridY = (boardi nage. get Hei ght (nul) -
(pi eceHeight * 5)) / 2;
grid = new Rectangl e(gridX, gridy,
pi eceWdth, pieceHeight);
W nLocation = new Point (pi eceWdth + gridX,
3 * pieceHeight + gridyY);
clickArea = new Rectangl e(gridX, gridy,
4 * pieceWdth,
5 * pieceHeight);
for (int ii =G ii < 10; ii++)
pieces[ii] = new Piece(pcs[ii][0], pecs[ii][1],

grid, pieceinmages[ii]);

of f screenl mage = createl mage(si ze().w dth,
si ze().height);

of fscr = of f screenl nage. get Graphi cs()

repaint();

The puzzle pieces are instantiated insidethelast f or loop. The valuesin the
pcs[][]array definethe starting position for each piece. Notice also how
grid isinitialized using the values computed for grid X, grid Y,piecewidth,
and pieceHeight.

Chapter 5: Sliding Blocks Brain Teaser 85

The puzzle uses an offscreen 1 m age to draw the puzzle graphics, asset up

by the callsto createl mage()and get aaphi cs(). (Seethe section
"Drawing offscreen” in Chapter 1 for more on creating offscreen 1 nages.)
However, noticethecall to repaint () inthelastlineofinit (). Inmany
examples, you don't need this call, but because medi atracker cantake
some time to load all the images and because Javais nul tit hr eaded (See CD
Chapter 2), pai nt () is almost certainly called before the graphics are
loaded. Soyou needtocall repaint () to schedule another call to paint ()
after the images are loaded so that they actually appear onscreen.

The rectangieobjectclickAareais created for usein the interface, as
described in the next section.

.1 ousing the Pieces Around

To make your puzzle easy to play (or playable at al, for that matter), you
need to create an interface. Probably the easiest way to come up with an
interface is to create simple code that lets the user click a piece and then,
while holding the mouse button down, drag the piece to a new position.

Selecting a puzzle piece

The first step in implementing your user interface, that of detecting when
the user has clicked on a piece to select it, isimplemented by overriding the
mouseDown() Method, like this:

publ i c bool ean nouseDown (Event evt, int x, int y) |
i f (clickArea.inside(x, y)) (
for (int ii =0; ii < pieces.length; ii++) {
I f (pieces[ii].inside(x, y)) |
pi cked = pieces[ii];
sel ect edPi ece = new Point(x, y);

br eak;

return true;

This code first checks whether the user clicks the mouse inside the puzzle
board's recessed area. The applet's inito method, described in the earlier
section "Putting the pieces together," creates a Rectangle called clickArea
that defines the boundaries of the area where the pieces can move. The
Rectangle class has a method called insideO that returnstrue if a point,
defined by itstwo x and y parameters, isinside the rectangle.

86 Part II: Up to Speed T

fﬂ‘l

Next, the code uses af or loop to iterate through the list of pieces and,
again, usesthei nside () method to check whether the user clicks the
mouse inside this piece. If the mouse is clicked inside a piece, the reference
forthat Pi eceis copiedtothepi c ked variable, and the location where the
user clicked isrecorded by creating the Point object selectedPiece and
passing the x and y location of the click to the P oint constructor.

A Poi nt is an AWT class that holds the values of an x,y pair.

Moving the pieces

Next, you overridethemo useDr ag () method so that you can track the
movement of the mouse while the mouse button is held down. However, you
need to make sure that you only try to track the mouse when a puzzle piece
is selected. So the code starts by testing to seeif picked!=null and
selectedPiece != null.

Y our users can drag the mouse in any direction, including diagonally, but the
code to slide the piecesis simpler if you constrain the mouse to moving
either vertically or horizontally. Y ou can divide the code into separate
sections to handle movement along each axislike this:

publ i c bool ean nouseDrag (Event evt, int x, int LR

if (picked !'= null && selectedPiece != null) |
int dx, dy;
while ((dx = limt(y - selectedPiece.x)) != 0 &

pi cked. sl i de(pi eces, dx, 0, clickArea))
sel ect edPi ece. transl ate(dx, 0);
£
while ((dy = limt(y - selectedPiece.y)) != 0 &&
pi cked. sl i de(pi eces, 0, dy, clickArea))
sel ect edPi ece. transl ate(0, dy);
|

repaint();

return true;

Taking the horizontal movement first, the code calls a small helper method
caled1limi t() that constrains the movement to stepping by asingle pixel,
or not at all, by limiting the movement to £1 or zero. Here's the code for

i mit:

Chapter 5: Sliding Blocks Brain Teaser

If you're not familiar withit, 1i mi t ()'s use of the conditional operator(?)
in the return statement may look strange. However, thisisjust amore
compact way of writing:

if(val >0).
return [;
else 1
if (val f 0)
return -I;

else
return O;

Insidemousebrag(), the code computes the difference between the original
| ocation where the user clicked the mouse to select the piece, which is held
inthePoi ntvalueselectedPiece, and the current position of the mouse,
whichispassedtomousebrag() inthex andy parameters. Then,
mouseDrag() Usestwow hi 1 e loops to move the piece, one pixel at atime,
until the position of the piece matches the current location of the mouse.
Thefirst whi 1 e loop handles moving the piece left or right, and the second
whi 1 e loop controls movement up or down.

The whi 1 e loops also have to handle one other important detail: Asthe user
drags the piece around on the game board, the piece the user is moving may
bump into another piece. If the piece does bump into another piece, the
code needs to check if the piece that the selected piece bumped into blocks
further movement of the selected piece or if the selected piece can push the
blocking piece out of the way. The check to determine if the selected piece
moves a blocking piece or is blocked by it is determined by a new method
caledslide().

Slide C)ingaround

Writings1i de () is the trickiest bit of code in this book so far, but it isn't
that hard to write if you break the problem down into simpler steps. The key
isto leverage several of the methods provided in Rectangle.

Checking for pieces that block the slide path
With Rect angl e. i ntersects()

Given two rectangles, the Rectang1e methodi ntersects() returnstrue if
one Rectangle overlapsor intersects the other. You canuseintersects()
to determine whether the player is trying to move one puzzle piece on top
of another by creating anew Rectan g 1 e that holds the new position for the

o7

g5

Part 11: Up to Speed

piece (the one that indicates the move the player intends to make) and then
coding aloop that checks this new position against all the other puzzle
pieces in the game. If the new position rect ang1e intersects with any other
puzzle piece, the piece that the player wants to move is potentially blocked
from moving.

Of course, you also need to check whether the puzzle piece that is poten-
tially blocking the player's move isitself able to slide in the same direction-

Y ou can check this potential movement by allowing Pi ece to recursively cal"
itself and attempt to move the blocking puzzle piece. Then, if the blocking
piece is able to move, you allow the original piece to move as well. The neat
trick about the way the code makes this check recursively isthat it allows a
blocking puzzle piece, in turn, to move a puzzle piece that blocksit, and so
on - as though the code walks down the line and checks all the piecesin a
given direction to see whether they can move.

Checking for the board boundaries Rectangl e. uni on ()
and Rrect angl e. equal s()

After the code lets the player move a piece, it also needs to make sure that the
move doesn't push the piece beyond the bounds of the playing area on the
board. The rect ang1e Classprovidesasimple way to check for the piece's
position in the form of two additional methods: uni on () and equats().

Theuni on () method startswithtwo rect angies and creates anew
Rectangl e that isaslarge asthe smallest Rectang!l e you candraw that
would contain both the original rectangles. The equats () method compares
two Recta n g | e s and returnst rue if both recta n g I e s describe exactly the
same rectangular area. Using these two methods, you can easily check
whether a piece is trying to move outside the bounds of the playing area, as
shown in the following code wherebd isthe rec t an g 1 e that describes the
bounds of theboardand npis arct ang1e Object that describes the new
position for the piece:

if (bd.union(np).equals(bd))

Recursion
When amethod callsitself, that isa recursive int factorial (int n)
call. Writing recursive code is not something if(n=>1)
you do every day, but there are some types of return n * factorial(n - 1);

calculations that are easier to accomplish if else
you use recursion. The classic exampleis us-

’ . . : . return 1;
ing recursion to compute factorials, like this:

Chapter 5: Sliding Blocks Brain Teaser gg

This statement isfalseonly if rect ang1enp goesoutside the bounds of b
and causes bd. Uni on (np tOreturn arectangl e larger than . Note that
np is created by adding dx and dy to the current position of the piece. The
variablesx, y, wi dth, and he i gnt areinherited fromthe rectangl e class

fromwhich ri e c e extends.

Now that you understand the basic approach, here's the complete code for
slide():

public boolean slide | Piece[] pp, int dx, int dy,
Rect angl e bd)
Rectangl e np = new Rectangle(x + dx, y + dy,
wi dt h, height);
for (int jj =0; jj < pp.length: jj++)
if (this !'= pplij] & pp[jj].intersects(np)) |
I f (ppfjjl.slide(pp, dx, dy, bd))
conti nue;
return fal se;

t

f (bd. uni on(np). equal s(bd))
transl ate(dx, dy);
return true;
1

return fal se;

Thefinal step in moving apuzzle pieceisthecall tot ranstate(), Which
moves the position of the ri ¢ c e to the same location that your code just
checked (as we discuss earlier in this section). Notice that the code only
allows:ransiate() tohappen when all the other checks have passed, the
puzzle piece has space to move, and the move keeps the piece on the board.

Cleaning up after a move

Onelast stepis"cleaning up" after the player releases the mouse button. To
keep the layout of the puzzle pieces nice and tidy, and also to simplify the
check for solving the puzzle, you need to add code to slide the piecesto the
closest grid position when the player releases the mouse button after a
move. Y ou can put thiscodeinmouseup () likethis:

90

Part II: Up to Speed

D i s bool ean nouseUp (Event evt, int x, int y)
--r (int ii = 0; ii < pieces.length; ii++)
pieces[iil.snap(grid):
cked = null;
paint();

rAurn true;

Thecodein nouseup() usesaloop to adjust every puzzle piece on the
board by getting the reference to each piece fromthepi e¢ces E | array and
callinganew ri ece method called snap () . You need to add code for
snap() tothe piece class, likethis:

public void snap (Rectangle grid)
move(((x - gridx + grid.width 1 2) / grid.w dth)
grid.width + gridx,
((y - grid.y + grid.height 1 2) / grid. height)
grid. height + grid.y);

snap() calculatesthe grid position closest to the current location of a piece
and callsthe rect ang1e method mve () to move the pieceto thislocation
The Rect angl e parameter grid passesin the valuesfor gri dx and gridvy
(described in the section "Laying Out the Game Board") in gri d. x and
grid.y andthe width and height of agrid squarein gri d. wi dt h and

gri d. hei ght.

Thecalculation (X - grid.x + grid.width | 2) computesthe position
of the center of the piece on the x axisand the calculation(y - grid.y+
grid.height ; 2) doesthesame onthey axis. Then, dividing by
grid.widthandgrid.neighnt, respectively, computes the closest position
in grid coordinates (take a look back at Figure 5-3). Finally, multiplying the x
axisvalueby grid.width andadding gri ¢. x (gridX) converts the piece's
horizontal position on the grid back to a pixel position on the game board.
Likewise, multiplyingby grid. height andadding¢ri¢.y (gridY) converts
the vertical grid position back to a pixel position.

Drawing the Board

Y ou're best off drawing the board to an offscreen | ma g ¢ and then copying this
I mage tO the screen to get smooth screen updates (see "Drawing offscreen”
in Chapter | for more info). Draw the board first and then draw the puzzle
pieces on top of the board with aloop to call each piece's draw) method:

Chapter 5: Sliding Blocks Brain Teaser

public void paint (G aphics g)
f (offscr !'=null) 1
of f scr. drawl mage(boardl mage, 0, O, null);
for (int ii =0; ii Cpieces.length; ii++)
aces[iil.draw(cffscr);

g1 - | mage(of fscreenl nage, 0, 0, this);

And when drawing to an offscreen 1 mage, you need to always override
update () toremove the flicker that it can cause:

public void update (G aphics g) |
paint (g);

Declaring the Puzzle Sawed and
Congratutating the Winner

Finally, you need to add code to determine when the player has solved the
puzzle and to display an appropriate congratulatory message. As we cover
In the "Putting pieces together” section earlier in this chapter, you use the

i nit() method to create a Point object caled winLocation that contains
the upper-Ileft pixel coordinates for a2 x 2 square in the winning location.
winLocation thusalowsyour code to check for a solved puzzle simply by
checking whether the 2 x 2 sized puzzle piece (which is the first entry in the
pieces[]aray) hasmoved to the same locationaswi nLocation, likethis:

if (pieces[Cl.x °= winLocation.x &

pieces[A .y == wi nLocation.y)

Next, you need to display anice simple message like "Win!" to herald the
success of the player. Y ou can display such a message by adapting the code
from CD Chapter 3 that displays centered text. However, to create anice
effect and help make the text stand out against the somewhat busy back-
ground of the puzzle board, you may also want to put a shadow beneath the
text. Y ou can add a shadow by drawing the text twice: First, set the draw
color to black and draw the text offset down and to the right by afew pixels.
Then, set the color of the text, in this case yellow, and draw the text at the
centered position.

92 Part II: Up to Speed

This new code, along withthe win Lo cation check, isbest added to the
paint() method just after thef or loop that draws the pieces. Here's the
code:

if (pieces[0].x == wi nLocation.x &%
pieces[J .y == winLocation.y) |
FontMetrics fm = offscr.get FontMetrics(bbCourier):
of fscr. set Font (bbCourier);

int strHyt = fmgetAscent();
int OOffset = (size().width - fmstringWdth(w nMsg)) / 2;
int OOffset = (size().height - strHyt) / 2 + strHyt;

of f scr. set Col or (Col or. bl ack);

of fscr.drawString(winvsg , O fset + 3, OOffset + 3);

of f scr. set Col or (Col or. yel | ow);

of fscr.drawStri ng(winMsg , O fset, OOffset);

The solved puzzle is shown in Figure 5-4. Have fun trying to solve the puzzle
yourself!

The complete code for the Sliding Blocks puzzle is on the Java Game
Programming For Dummies CD-ROM included with this book.

Figure 5-4:
The puzzle
solved.

Chapter 6
Blackjack

_ " AR R BN N NEENRNEEEEENEREREEENEEREEENEREEENREESNNENERSEHNHSEHREH:®SHNHJ]

n Tbis Chapter

ding a complete game of Blackjack

[Programming the fundamentals of card games
Eitracting graphics from composite images
eating auser interface using AWT components
fTanging AWT components on the screen

LA B N R R E NN EREENENEREREEENSEEERESNENRSERBEREHRHSEHESSNRHRHNHE-RHEH: RN

‘ ard games make fantastic Java games: They arerelatively easy to

rogram and are great for playing on a computer, whether by single or
multiple players. Y ou can create Java card games from any of the popular
card games you're already familiar with, or you can invent your own.

All most card games require is adeck of cards and a playing surface. In this
chapter, we present a complete game of Blackjack to demonstrate a reusable
deck of cards, and show how to create a playing surface using the standard

omponent classes from the Abstract W ndow Toolkit (AWT). We aso show
you how to usetheb utton and te xt components, and how to arrange
various components on the screen using the AWT'sL ay outManager classes,
both of these technigues are applicable to many types of games.

ndiag the Blackjack Game

®ackjack (also called Twenty-One) isthe most popular casino card gamein
the United States. The Blackjack dealer plays against one or more players,
and in the casino version of Blackjack, the house rules strictly regulate the
dealer's options for play. The dealer's predictable behavior makes Blackjack
=excellent choice for acomputer card game: Y ou can make the computer
1y the role of dealer and easily program a strict set of dealer actions.

94

Part II: Up to Speed

I'lacing Blackjack

The object in Blackjack isto end up with a hand that scores higher than
dealer's hand without going over 21. A hand's score is the sum of the Vah
of all the cards in the hand, using the following point values for the cards

- Face cards (Jack, Queen, and King) are each worth 10 points.
2 through 10 are worth points equal to the face value of the card.

- Aceisworth 11 points, except when the addition of 11 points makes r
the player's hand total more than 21 points, in which case the Aceis
worth 1 point.

Each player places a bet to begin play. Next the dealer deals one card face-
down to everyone at the table, including herself. Then the dealer deals a
second card face-down to each player and a second card face-up to herselL
Each player then has an opportunity to receive additional cards dealt face
up one at atime (be hit) until either the cards in his hand exceed 21 points
(the hand busts) or he declines additional cards (stand). After all players
receive any additional cards they want, if any, the dealer exposes her face-
down card and then takes cards according to the house rules - typically
hitting the hand until it busts or totals at least 17 points.

The player loses his bet if he busts (goes over 21) or if the dealer's hand
totals more than the player's hand. The dealer returnsthe bet if the player
and dealer have hands with the same point totals and pays the player an
amount equal to the bet if the dealer busts or the player's hand is higher
than the dealer's hand.

In addition, Blackjack has a few special situations:
Blackjack's Special Situations

Blackjack A Blackjack, or natural, is a hand that totals 21 points after
the first two cards (an Ace counting as 11 points and a 10 or
aface card). If aplayer has a natural and the dealer doesn't,
the player wins 1 1/2 times the initial bet, and gets back his
original bet aswell. A natural beats a non-natural 21.

Double Down After thefirst two cards are dealt, a player may opt to
double down, which means the player doubles his bet and
takes a single additional card. Some casinos restrict
doubling down to when the player's hand totals 10 or 11.

UT-IWIT.: e

Chapter 6: Blackjack 95

Split A player may split a hand consisting of two cards with the
same point value into two hands, thereby doubling the
chance for awin (or aloss, of course). The player putsthe
two hands side by side on the table and places a bet on the
new hand equal to the original bet. The player then plays
each hand normally, except that if a split hand totals 21
after two cards, it doesn't count as a natural.

Designing the game
Thefirst step in designing an object-oriented program (Remember: Javais
an object-oriented programming language) is to look at the objects being

modeled by the program. Figure 6-1 shows the objectsin area game of
Blackjack.

Playing Surface

Card
O O
g
Y]
OnS . LRO

96

Part II: Up to Speed

Figure 6-2:
Blackjack
object
relationships.

After you identify the objects your game needs to model, you need to
organi ze the objects according to their relationships and functionsin the
game. Although programming challenges usually have more than one
solution, the elements typically suggest certain logical relationships that, in
turn, suggest the most elegant way to program them. The Blackjack game
presented in this chapter organizes the elements of Blackjack, as shown in
Figure 6-2.

Blackjack Applet (Playing Surface)

Player(] Dealer Deck
Hand
d
Card[] Card[]
Card fl
User fiterface
Bet',
Deal | | Stand Split
Bankroll

Hit Double Down

As Figure 6-2 shows, the Blackjack Applet provides the playing surface and
contains an array of player objects, a dealer hand object, a deck object, and
auser interface. The deck and dealer hand objects each contain an array of
card objects. Each player object contains a player hand object and a bank-
roll. The player hand contains an array of card objects and a bet. The user
interface is a panel component that contains the button objects for the
various options available to the player. The fact that the object relationships
for Blackjack look similar to the layout of the real-world "objects’ isno
coincidence: The game design is derived from the real-world objects.

Creating a Reusable Deck af Cards

A deck of cardsisacommon element to all card games (bet you didn't know
that), and many of the techniques presented in this section can be applied tc
any card game you want to program. Y ou can even create specialized decks
(for example, Pinochle or Poker with the Joker added) with minor changes
here and there, as we explain a bit later in this chapter.

One of the powerful aspects of object-oriented programming is how it
facilitates reusing code. This section shows how to create areusable peck
classthat you can use in any card game that uses a standard deck. This section
also presents the Ca rd objects that the peck class shuffles and deals.

Chapter 6: Blackjack 9 7

Shuffling and dealing the deck

The peck class uses an array to keep track of the cards in the deck. Rather
than actually remove cards from the array asthey are dealt, the Deck class
maintains an index to the last card in the card array and deals cards from
the end of the array. As each card is dealt, the index to the last card in the
array is decremented. The complete Deck classis:

nmport java.util.NoSuchEl enent Excepti on;

public cl ass Deck {
protected Card[] cards;

protected int top;

protected int packs;

public int getSize t) (return top; | /11f undealt cards
public int getPacks () (return packs; packs in deck
public i nt packSize () | return 52; } cards in pack

public Deck () C this(1) |
public Deck (int packs) i
f ((this.packs = packs) > 0)
top = packs * packSize();
cards = new Card[topl;
reshuffle();

/1 Fills the deck with cards and shuffles
public synchroni zed void reshuffle () {
top = O;
for (int packs = this.packs; --packs >= 0;)
for (int suit = Card.CLUB: suit <= Card. SPADE; suit-)
for (int rank = Card. ACE; rank <= Card. KING rank++)
cards[top++] = new Card(rank, suit);

shuffle();

/1 sShuffles the undealt cards in the deck
public synchroni zed void shuffle ()
if (top > 1)
for (int ii =top; --ii >=0;)
int rnd = (int) (Math.random() * top);
Card tenp = cards[ii];
cards[ii] = cards[rnd];

cards[rndl = tenp;

(conti nued)

Part 11: Up to Speed

(continued)

/1 Deals the top, card fromthe deck

public Card deal () throws NoSuchEl ement Exception |
return deal (O;

1/ Deals a card fromthe deck. <pos> is relative to the
top of the deck (0 = top, 1 = second fromtop, etc.)
public synchroni zed Card deal (int pos)
t hrows NoSuchEl enent Excepti on

Card c = peek(pos);
if (pos > 0) //deal card frommiddl e of deck
System arraycopy(cards, top - pos,
cards, top - pos - 1, pos);',
top--;

return c;

/!l Returns the top card fromthe deck w thout dealing it

public Card peek () throws NoSuchEl enent Exception |
return peek(0);

/! Returns a card fromthe deck w thout dealing it.
I/l <pos> is relative to the top of the deck (0 = top)
‘public synchronized Card peek -(int pos)

t hrows NoSuchEl ement Excepti on

if (PCs < 0)
t hr ow new NoSuchEl ement Exception();
try | return cards[top - (pos + 1)1; |
catch (I ndexQut Of BoundsException e) {
t hrow new NoSuchEl ement Exception();
|

SECREy Thealgorithm used in Deck. shuffle() worksby swapping each card in the
! deck with another randomly selected card. This swapping randomizesthe

deck after a single passthrough the deck and is much simpler than simulat-
ing a real shuffle.

Chapter 6: Blackjack

Thedea1() and peek () Methodsfetch cardsfromthedeck. dea1() re-
moves the fetched cards from the deck, but pe ek () doesnot. Bothdea1 ()
andpeek() areoverl oaded Methods, meaning that they are given alternate
versions with different parameters. One version operates on the top card in
the deck; the other version accepts a parameter specifying the card posi-
tion. The Blackjack applet doesn't use pee k () Or the ability to deal from the
middle of the deck; neither is necessary for afunctioning Blackjack game.
However, other computer card games, like Solitaire, use these methods to
cycle through the deck multiple times and play cards from arbitrary
positions.

Notice that instead of defining its own subclass of Excepti on toindicate
when arequested card is unavailable, o ¢ k usesthe standard

j ava . uti 1. NoSuchEl ementExcepti on Classincluded as part of the Java
API. Using this standard class eliminates your having to write and the
player's web browser having to download extra code to define a classto
handle unavailable cards.

Some card games, including Blackjack, use a deck built from combining
several packs of cards. The peck class supports multipack decks by over-
loading the = ¢ k () constructor to accept the number of packsto use.

Building the Car d class

Each card must remember just two things: its suit (Club, Diamond, Heart,
Spade) and its rank (Ace, 2,3, 4,5, 6, 7, 8,9, 10, Jack, Queen, King). You
can give cards the following capabilities to make working with them as easy
as possible;
v Assign the suitsand rankstostati cfinal variables.
OverrideObject.toString () so that acard can display its name.
v Have cards draw themselves to a specified G r 2 p hi ¢ s context.

V OverrideObject.equal s () so that cards can compare themselves.

Theresulting ca rd classis

inport java.awt.*;

import java. appl et. Appl et;

puwlic cl ass Card {
public static final int
CLUB = 0, DIAMOND = |, HEART = 2, SPADE = 3:

(continued)

99

irs
100 Part Il: Up to Speed __

(conti nued)

public static final int
JOKER = 0, ACE = 1, TWO = 2, THREE = 3, FOUR = A
FIVE =5 SIX=6, SEVEN =7, EIGHT =8, NINE _ 9,"
TEN = 10, JACK = 11, QUEEN = 12, KING = 13;

private static final String[] suitNanmes =
| Club , Dianond , Heart , Spade I;

private static final String[] rankNanes =

Joker , Ace , Two , Three , Four , Five

Six , Seven , Eight , Nine , Ten , Jack ,
Queen , King };
private static |mage cardsl mage;
private static int cardwWdth, cardHeight; /Il in pixels
private int rank;

private int suit;

public final int getRank () (return rank; |
public final int getSuit () (return suit; |
public Card (int rank, int suit) |

if ((this.rank = rank) != JOKER)

this.suit = suit;

public final String getSuitName ()
return rank == JOKER ? . suitNames[suit];

public final String getPlural SuitName () (

return rank == JOKER ? . suitNanmes[suit] + s-;

public final String get RankNanme ()
| return rankNames[rank];
public final String getPlural RankNane ()

return rankNanes[rank] + (rank == SIX ? es : s

|
public final String getArticle () |

return rank == ACE !! rank == EIGHT ? an ., a

public final boolean isRed () |

return suit == DIAMOND 1! suit == HEART;

public' final bool ean isFace ()

return rank >= JACK;

Chapter 6: Blackjack

public static int getCardWdth () | return cardWdth;

public static int getCardHeight () i return cardHeight;)

/* If not currently |oaded, then |loads and inits the
cards.gif image. This inage is laid out as a 14 wi de

*by 4 tall grid of card imges laid out as:

* JOKER A23456789101J OK [CLUBS)

* CARDBACK A 2 3456789 10J 0 K |D AMONDS)

* BLANK A2345678910IJIOK | HEARTS)

* BLANK A2345678910IJIOK | SPADES)

public static synchroni zed void initG aphics(Appl et app)
if (cardslmage == null) {
Medi aTr acker tracker = new Medi aTracker (app);
cardsl mage = app. get| mage(app. get CodeBase(),
cards.gif);
tracker. addl mage(cardsl mage, 0);
try { tracker.waitForAll(); |
catch (InterruptedException e) {}
cardWdth = cardsl nage. get Wdt h(app) | 14;
cardHei ght' - cardsl nage, get Hei ght (app) / 4;

public static void drawCardBack (G aphics g,
int x, int y) f
/! card back is second card down in first colum

doDrawm(g, x, y, O, cardHeight);

private static void doDraw (Graphics g, int x, int vy,
I'nt xaff, int yoff) 1
if (cardslmage != null) {

Graphi cs gcopy = g.create();
gcopy. clipRect(x, y, cardWdth, cardHeight);

gcopy. dr awi mage(cardsl nage, x - xoff, y - yoff, null);

gcopy. di spose();

public void draw (Graphics g, int x, int y)
doDrawm(g, x, y, rank * cardWdth, suit * cardHeight);

(conti nued)

101

102 Part 11: Up to Speed

(conti nued)

public String toString ()
StringBuffer buf = new StringBuffer(rankNames[rankl);
if (rank !'= JOKER)
buf . append(of). append(get Pl ural Sui t Nane(-))-;
return buf.toString();

publi c bool ean equal s (Cbject obj) {
if (obj instanceof Card) f
Card ¢ = (Card)obj;
return crank == rank && c.suit == suit;
1

return fal se;

public int hashCode () t

return (rank << 2) + suit;,

end, class Card

WBER
f The Card class supports Jokers even though Blackjack does not use a
Joker. Card isageneral-purpose class useful for all kinds of games, includ-
ing those that use a Joker.

Converting cardsto strings

Most computer games use an image of a card to represent a card on screen,
but sometimes cards need to be displayed as text. For example, if you are
trying to develop and debug a game, you may want the cards to appear as
text so that you can work out the process of the game before creating the
images for the cards.

To convert cards to strings, overrideObject.toString() sothatitimplic-
itly converts an object to a string when using the + string concatenation
operator. A Card object has methods for returning the plural and singular
names of its suit and rank. C ar d usesthese methodsinto String()to
construct and return the name of the card.

For example, the following code displays The card is an Ace of Spades:

Card ¢ = new Card(Card. ACE, Card. SPADE);
Systemout.println(The card is + c.getArticlet) +

Chapter 6: Bl ackjack

Overriding equal s ()

Noticethat Card overridesboth bj ect.
equal s() and bj ect. has hCode(). The
Vector, Hashtabl e, and other data struc-
ture classes use equal s(). A Vector is
like an array that automatically grows as new
objectsare added toit. A Hashtabl e is a
vector where the objects are located by using
akey object, such as astring, instead of an
index. Ha s ht a bl e usesa hash code |an inte-

ger) -calculated by calling the hashCode ()
method for the key object-to find the object
~n the hash table. Y ou need to maintain certain
elationships between egquals(and
=zhCode() in order for an object to work
orrectly with these data structures. While the
-d objects work fine with the array used by
-ie Deck class, the games that use the Ca rd
:Aass may place Car d objectsin vect ors or

s-tabl es. S0 whenever you override

-_—~"'s() or hashCode(),you must make
z-. @ that the following expressionsremain
)

a,equals(b) == b.equals(a)
i f (a,equals(b))
a.hashCode() == b.hashCode()

'n addition, both equals(and
hashCode() heed to return consistent re-
sults throughout the lifetime of the object. The
data structures use equal s(and
hashCode () to organize and find the objects
placed in the data structure. If the result of
equal s() Or hashCode()

s e ol T necasioe
You use i mut abl e (unchangeable) attributes
to calculate the hash code and perform the
equality comparison consistently. For ex-
ample, the card classusesthe suit and
ran Kk attributesin both equals () and
ha's In Code () but never changes their values
after theCard () constructor runs.

Extracting card graphics from a composite image

103

ca rd contains several methods that load and display card graphics. Instead
of loading 54 individual images (52 cards plus a joker and a card back), the
methodsin Car d use a composite image (asingle large image that contains
all the individual images) and then extract a piece of the composite image to
draw the particular card to the screen, as shown in Figure 6-3. Think of the
composite image as a quilt of card "patches" from which the code extracts
the necessary patch to display.

A single large image downloads faster, requires less memory to store, and is
easier to create and edit than multiple small images. It also keeps all the
images for adeck of cards encapsulated in a single object, and that fits well
with an object-oriented design.

Part I1: Up to Speed

Figure 6-3:

The
"cards.gif"
conposite

Image.

J(MtBIt ! H g ; L4 k4 H 7 ~4 1414 J
4 4 4 |44|aalaa|Hs]|b4
a8 Mof il ~s 1e:|1 *§ t .g:. ~¢ **.E t e, o*! w]
7 5. P44 - 844 9 agab|i . [C7
g 4 44|-a 4 |~a~
oe
Ve 3 e |Jeeo|;®®|Gee |~e 8e | [O.0 ¢ | i Qry..«
Y ~ o - gf-it[eeS|eeg|el|--g] - -5|---0 1= = v
Y Wi, [V V[[1T 1
l | X4 § 4 ! § 6| a1 il g

Four rows of 14 card i mages - one row for each suit - conmbine to formthe
conposite image. You call the static method i ni t Gr aphi cs () toload the
conbined inage. i ni t Gr ap hi cs () uses the Medi aTracker class discussed
in Chapter 5 to load the cardslmage image. i ni t Gr ap hi cs () calculates the
width (ca rdW dth) of an individual card by dividing the conposite i mage's
width by 14 and the height (c ard He i g h t) by dividing the conposite's hei ght
by 4.

To draw a single card rather than the entire c ard s | ma g e graphic, you need
to define a clipping region to restrict where the graphics context draws

pi xel s. To understand how a cli pping region works, imagi ne that the graph-
ics context is a piece of paper. To create a clipping region take another piece
of paper the sane size, cut a rectangular hole in it, and position it over the
first piece of paper. Now when you draw on the graphics context, you can
only draw within the clipping region. To draw a card fromthe c ar d sl mage
graphic, you nmake the clipping region the size of a single card, then position
car ds | magetoline up the desired card with the clipping region and call

dr awl mage () todraw the card. Figure 6-4 shows what this clipping i nage
looks like if car ds | mageis athird piece of paper and you place it between

the other two sheets of paper.

The draw() and drawCardBack() nethods use card W dth and

car dHei ght to calculate the x,y pixel coordinates of the upper-left corner of
the inmage to extract fromc ar d s | na ge. These nethods pass the x,y pixel
coordinates tod o Dr a w(), which uses themas the offsets for positioning
cards | mugesothat the card to be drawn is in the correct place relative to
the clipping region. d o Dr a w() sets the clipping region and draws the card

using the foll owi ng code:

Graphi cs gcopy = g.create();
gcopy. clipRect(x, y, cardWdth, cardHeight);
gcopy. dr awl mage(cardsl mage, x - xoff, y - yoff, null);

gcopy. di spose();

Using a
clipping
region to
draw the
four of
spades.

105

Chapter 6: Blackjack

Graphics context Clipping region

JOKER
B &
HEHOT
‘ L
v
A
id
<
¢
v

The clipRect() call setsthe upper-left corner of the clipping region to the
specified x and y coordinates and sets the width and height of the region to
the dimensions of asinglecard. draw | mag e () accepts the position for the
upper-left corner of cardsl mag e. You calculate the positionof cardsl mage
relative to the clipping region by subtracting the x and y offsets within
cardsimage (xoff andy of f) of the upper-left corner of the card to draw.

Setting the clipping region of a graphics context is an irreversible operation.
Each subsequent call to cl i pRect () setsthe clipping region to the intersec-
tion of the current clipping region and the new region, which means that you
can never enlarge the clipping region. In order to keep from permanently
setting the main clipping region of the component, the preceding code from
doDraw () obtains atemporary copy of the graphics context, setsthe
clipping region in the copy, and performs the draw operations using the
copy. The code obtains a copy of the graphics context by calling the
context'screate () method. After it finishes with the temporary copy, the
codecallsitsdi spose () method so that the Java Virtua Machine (JVM)
can reclaim its memory.

Javat.l addsthesetC 1lip () methodtothe Graphi csclassand alowsthe
clipping area to be more flexibly resized. Y ou don't need to make a copy of
the graphics context beforeusing setc 1ip (). However, until Javal.1
becomes more widely used, usecl i pRect () for maximum portability.

Customizing the deck

Y ou can give the cards in the deck custom graphics by creating a new
cards.gi f image. The C ar d class automatically calculates the size of the
cards based on the image.

106 Part 11: Up to Speed

In addition, you can extend the Deck class to play Poker with ajoker in the
deck or to play games such as Pinochle that use a nonstandard deck of
cards. Youoverridepack Size()andreshuff1 e () toinitialize the custom
deck. A Pinochle deck has 48 cards - two of each suit of the ranks nine
through ace. Y ou implement a Pinochle deck like this:

public class Pinochl eDeck extends Deck |

public Pinochl eDeck () | super(); f
publi ¢ Pi nochl eDeck (int packs) (super(packs); |
public int packSize (;) | return 48; }
public synchroni zed void reshuffle () (

top = 0:

for tint packs = this.packs * 2; --packs >= 0;)

for (int suit = Card. C LUB; suit <= Card. SPADE; suit++)

for (Int rank = Card. NINE; rank <= Card. KING rank++)
cards[top++] = new Card(rank, suit);

cards[top++] = new Card(Card. ACE, suit):

shuffle():
1
| Il end class Pinochl eDeck

Creating a User Interface
with Components

Y ou create a user interface in Javafrom AWT components. Component is an
abstract classin the j ava. awt package that embodies all the common
functions of user interface elements. Y ou build your interface from the
subclasses of Component: Button, Canvas, Checkbox, Choi ce, Label, Li s -
Scrollbar, TextArea,and TextField.

Using buttons

Buttons are a common interface element. Y ou use buttons to represent an
action the user can perform. Unlike menus, which also represent available
actions, abutton is

W Visible, so the user doesn't have to look through menus to determine
what actions are available.

— Convenient, because it requires a single mouse click to perform the
associated action.

Chapter 6: Blackjack

game.

Button cancel = new Button();

cancel . set Label (Cancel

You usethe Button classinthej ava .

Creating and placing buttons

In order to create a button, you invokethe But t on () constructor and pass
it astring to use as the button label. The button automatically adjusts its
sizeto fit the label. Optionally, you can omit the string in the constructor
call and call the button'sset Label () method to set the label string.

awt package to add buttons to your

Button deal Button = new Button(Deal);
+ operation);

After you create a button, you must call ad d () to add the button to a

Cont ai ner component-aPanel, Applet, Wndow, Frame, Of Dial Og-in
order to use it. After adding components to a container, you need to call the
container'slayout () orvatidate() method to tell the container to
arrange its components and set their sizes. 1 ayout () arrangesthe current
container; validat e () arranges the current container as well as any con-
tainersinsi de the current container.

n't usually subclass But t on or most
components to create custom versions.
~anvas and the container compo-
— Panel, Applet, Wndow, Frane,
and Fi | eD al og - aredesigned
r I* extended. The reason isthat each AWT
went has a platform-specific conponent

ent peer is aclass that connects an
component such as a button to the
il 's native implementation. The peers

Component peers

then draw the component and handle the com-
ponent events. So for example, Microsoft
Windows implements the But t on Peer using
a Windows button, and Apple Computer's
MacOS implementsthe Bu tton Peer using a
Mac button, and so on. The component peer
feature is why Java buttons on a Mac look
different than Java buttons on a PC. The two
figures below show the same applet (Colored
Applet) running in Netscape Navigator 3.0, one
in Windows 95, a PC, and one on a Mac running

0S8.

107

108 rParti:

Up to Speed

Having your game respond to buttons

But t on convertsamouse click into an acr 1 ovEvENT. You Override
conponent. a ¢ t i on() iNthe parent container in order to handle action
events. You identify the button that generated theeventin act i on () by
comparingthe event. t ar g et fieldtothe sutton objector, alternately, by
comparing the event. a r ¢ field to the button label string.

Hereis an example of an applet creating and responding to a button:

i nport java awt.*;
public class Col oredAppl et extends java. appl et. Applet |
private Button red = new Button(Red);
private Button blue = new Button(Blue);
public void init () i
add(red);
add(bl ue);
[ayout ();

public bool ean action (Event evt. Cbject arg) |
if (evt.target == red)
set Backgr ound(Col or. red);
else if (Blue equal s(arg))
set Backgr ound(Col or. bl ue):
repaint();

return true;

/1 end cl ass Col or edAppl et

field to find the red button and usesthe a rg parameter to identify the bi e

P\ s Noticethat the act i on () method in Col or edApp | et usesthe evt . to rget

button. We include both techniquesin the example just to show both ways
of checking. However, the ewt. t ar g e t Way isfaster, because comparing
object referencesis less work than comparing strings.

Reading and displa ying text

At some point, most programs need to display text or collect information
entered by the user. Java 1.0 provides three components for displaying text:
Text Fi el d, TextArea, and Lavel. The Blackjack applet uses labelsto
display each player's name and current bankroll. text i el d and Text Area
also accept text typed by the user. Text Fi el d displaysand accepts asingle
line of text; Text Area creates ascrollable, editable text area that displays
multiple lines. This section shows how to use each of these components.

Ope 6-5
The
« 'Swrel abel

applet.

Chapter 6: Blackjack 10 9

Displaying status and scoreswith labels

Youuseal abelcomponent to display text in acontainer. The program
code can change the text in alabel, but the user cannot edit the text on
screen. Y ou can use labels to display things such as game scores or to
create, well ... labels such as those used to describe on-screen buttons or
other objects. You create alabel and add it to a container like this:

import java.awt.*;
public class ScorelLabel extends java.applet. Applet {
private int score;

private Label scorebDisplay;

public void init () |
add(new Label (Score));
add(scorebDi spl ay = new Label (0 , Label .RIGHT));

layout ();

publ i c bool ean nouseDown (Event evt, int x, int y) |
scoreDi spl ay. set Text (I nteger.toString(score += x));

return true;

end cla s ~-eLabel

Thisexampleinitialy setsthescoreD isp lay label to aright-aligned string
with several leading zeros, as shown in Figure 6-5. The spaces cause the
label to automatically set itssizeto be larger than the space required for
just the O character. The rigHT alignment positions the label text from the
right edge of the label so that additional digits appear on the left. You align a
label tothe LEFT,cCENTER, Or RIGH T - the default alignment is LEFT.

Getting a few words from the user

Use aText ri el d component to collect a single line of text from the user. As
with other components, you add atext fieldtoaC ontai ne r component. Y ou
overrideaction() inthe container to detect when the user enters text.

1 1 O Part II: Up to Speed

Text Fi el dis asubclassof Text Conponent. A Text Comp onent SUPpPOrtsth4
normal cut, copy, paste, and text edit functions of the underlying operating
system (OS). Table 6-1 lists some of the Text Conponent methods for
working with text.

Table 6-1 TextComponent Methods

Method Use This Method to ...

get Text () Retrieve the current text from the component.

set Text (str) Set the value of the component's text to the
string st r.

get Sel ect edText () Retrieve the currently selected text in the
component.

sel ect (start, end) Set the component's selection to the characters
from offset sta rt tooffsetend, inclusive.

set Edi t abl e(edi t) If the boolean parameter edi t is fal se, user
editing is disabled for the component; otherwise
editing is enabled.

The offset of acharacter isthe position in a string of that character, startinc
from 0 and counting up. For example, the letter "n" has an offset of 3in the
word "Barney"

Creating scrolling text areas

You useaText Area to create editable and scrollable text displays. Asis
Text Fi el d TextArea i s asubclass of Text Conponent and hasall the text
editing features listed in Table 6-1. Text Area also hasthe three additional
methods for working with the text, listed in Table 6-2.

Table 6-2 Additional TextArea Methods

appendText (str) Append the string st r to the end of the
area's current text.

i nsert Text (str, pos) Insert the string st r at the character offset
pos.

repl aceText (str, Replace the text from character offset

start, end) sta rt tooffset end, inclusive, with the

string str.

Chapter 6: Blackjack

The following example uses a Label, Text Field, and Text Area:

import java.awt.*;
public class ListEntry extends java. applet. Applet |

static final String newine =

System get Property(|ine.separator);
private TextArea ist = new Text Area(5, 20);

private TextField" entry = new Text Fi el d(20);

public void init () |
list.setEditabl e(fal se):

add(list);
add(new Label (Nane: . Label . RIGNT));

add(entry);

public bool ean action (Event evt, Cbject arg)

if (evt.target == entry) |
|i st.appendText (entry. get Text() + new ine):
entry.selectAll();

return true;
return fal se;

Il end class ListEntry

ListEntry createsaText Area that holdsfive lines of approximately 20
characterseach and a Text ri el d that holdsasingle line of approximately
20 characters. The AWT calls Li st Ent ry . action() When the user presses
the Enter or Return key inthe e nt ry textfield. action() appendsthe

ent ry texttotheli st text areaand selectsthetextin e nt ry so that the
next text that the user types replaces the current text. Figure 6-6 shows the

program running.

App
LEpdty

George Washington
Thomas Jefferson
RRroham Lincoln
Teddy Roosevelt
Ronald Reaoen

Name: |Ronald Reagan

Ao Ut strted

112 Part Il: Up to Speed

The syst em get Property(|ine.separator) callinthe preceding
example gets the system-dependent character string used to separate lin
text. Y ou would think that operating systems would standardize on some-
thing as simple and basic as aline separator, but they don't. Under UNIX-
based operating systems, the separator is alinefeed character (\ n); under
Mac OS, the separator is a carriage return character (\ r); and under DOS
and Windows operating systems, the separator is a carriage return follo
by alinefeed (\ 1\ n).

Using C an v asto create new components

ACanvas component isaway to create your own component - it provides
all the hooks to collect user events and draw itself, but the default canvasis
basically ablank slate. You canuse Canv as to create your game's playfield,
displays, and just about anything else that you want to display a certain way.

Customizing your game's appearance With 1 mageButton

The AWT components are functional but not particularly colorful. You can
design your own custom components by subclassing the C anvas compo-
nent. The simplest and probably the most useful component to customizeis
Button. Thefollowing | mageBut t on class uses two images-the pressed
and unpressed button images - rather than the standard button with a text
label:

inport java.aw.*;

public class | mageButton extends Canvas inplenments Runnabl e ‘
private ThreadG oup tg;
private | mage[] img = new lmage[2]; //up = 0, down =1

private int I mgndx; //index into ing[l

public | mageButton (I nmage up, |nmage down)
tg = Thread. current Thread().get ThreadG oup();
img[0] = up;

| ing[1] = down;

public synchroni zed Di nension m ni nunti ze ()
int x = Math. max(ing[0].getWdth(null),
img[1].getWdth(null));
int y = Math. max(ing[d .getHeight(null),
inmg[1l . get Hei ght (nul 1)) :

return new Dinension(x <0 ? 10 : x; y <0 ? 10 :

Chapter 6: Blackjack 113

public Dinmension preferredSize () |

return mni nunSi ze();

public void paint (Gaphics g) t

if (inglingndx] !'= null)
g. drawi mage(i ng[ingndx1, 0, 0, this);

public void update (G aphics g) 1
paint(g);

public synchronized void run ()

imgndx = |;

repaint();

Conponent p = getParent{);

if (p!=null)

p. post Event { new Event (this, Event.ACTI ON EVENT,
img[01));
try | Thread. sl eep(200); } // press for 1/5 second
catch (I nterruptedException e) 1}
i mgndx = 0;

repaint();

publi ¢ synchroni zed bool ean nobuseDown (Event evt,
int x, int y) I
(new Thread(tg, this)).start();
return true;
1

/f end cl ass | mageButton
Thefollowing are the key pointsfor implementing | mageBut t on:

V ImageButton overrides Component. preferredSize() and
Component. mini mumSi ze () in order to have the button automatically
sizeitself to the size of the largest image.

V mouseD own () spawnsathread to animate the button press so that it
doesn't perform theanimation in the AWT Interfacethread. (CD
Chapter 2 explainswhat the AWT Interfacethread isand how to spawn
threadsfrom nousebown () and other event handlers.)

v mouseDown() and run() are synchroni zed to prevent the animation
from being interrupted. Synchronization prevents mouse clicks from
being processed faster than the animation rate.

14 Part Il: Up to Speed

— run () passesan ACT | ON-EVENT tothe parent container's
post Event() method sothat you handle | rageBut t on eventsin the
same way as But t on events. Because an ImageButton doesn't have a
label string, it usesthe” up" imagefor theE v ent.arg field.

— Thebutton animation is state-driven; run () setsthei ng ndx variaY |
to changethe state, and pa i nt() usesi ng ndx to display the current
state.

12
9*’ Java 1.2 has something called lightweight components that support custom

appear ances without having to re-create the entire functionality of the
component.

Displaying a hand of cards

The Blackjack computer game extends C anvas to create a displayable hand!
of cards, asshown in Figure 6-7.

Figure 6-7:
A RO %
BlackjackHand
with four
cards.

LI O 2

The B1ackjackHand classincludes both the code for displaying the hand
and for handling the details of a Blackjack hand - dealing cardsto the hand,
calculating the value of the hand, testing for a Blackjack (natural), and so
on. The Bl ackjackHand classis

i nport java.awt.*;

i mport java.util.*;

cl ass Bl ackj ackHand extends Canvas |
protected int hori zl nset;
protected bool ean soft;
protected Vector hand = new Vector (6);
private bool ean exposed, active;
private | mage of f scr eenl mage;
private G aphics offscr:
public Dinension preferredSize () |
return new Di nension((Card. getCardWdth() + horizlnset)
* 2, Card.getCardHeight());

Chapter 6: Blackjack 115

Bl ackj ackHand () |

resi ze(preferredSi ze());

int cardCount () i return hand.size(); |
protected boolean isDealer () | return true; |
bool ean bl ackjack () (// is a blackjack?

return hand.size() == 2 && value() == 21;

bool ean isSoft ()"(// has an 11-point ace in the hand?
value();. // sets <soft> field

return soft;

voi d setActive (boolean on) f // highlight this hand
active = on;

repaint():

void expose () | // expose the dealer s hole card
exposed = true;

repaint();

void clearHand () | // renove all cards from hand
hand. renoveAl | El ement s();
exposed = active = soft =, fal se;
repaint();
Thread. yieldf 7:"'

void deal (Card card) (// deal a card to the hand
hand. addEl enent (card) ;

repaint();

public void paint (Gaphics g) f
if (offscreenlmage == null) |
of f screenl mage = creat el mage(si ze().w dth,
si ze(). height);

of fscr = of f screenl nage. get G- aphi cs();

(conti nued)

116 Part Il: Up to Speed

(continued)

of fscr.setCol or(aetive ? Color.yellow : Color.gray);
offscr.fill Rect (0, 0, size().width, size().height);
int handsi ze = hand. si ze():
i f (handsize > 0)
int overlap = Math.m n(Card. get CardWdth().
(size().width - Card.getCardWdth() -
2*hori zinset) | Math. max(1, handsize-1));
Enuner ati on deal = hand. el ements();
I'nt xoff = horizlnset;
whi | e (deal . hasMor eEl enents())
Card card = (Card)deal . nextEl ement ();
if (!exposed && isDealer() && xoff == horizlnset)
Car d. dr awCar dBack(of fscr, xoff, 0);
el se
card. draw of fscr, xoff, 0);

xof f += overl ap;

9 . drawl mage(of f scr eenl nage, O, this);

.,ublic void update (Graphics g) | paint(g); }
| returns the point value for the hand
.nt value () |
int val = 0;
bool ean ace = fal se;
for (int ii = hand.size(); --ii >= 0;) |
int v = value(ii);
Val += v;

if (v ==Card. ACE) ace = true;

if (soft = (val <= 11 && ace))
Val += 10;

return val;,

! returns base point value of card <cardNunm> in the hand
| "otected int value (int cardNum
int rank = ((Card)hand. el enent At (cardNum)). get Rank();

return Math. mn(Card. TEN, rank); /1l face cards are 10's

| /1 end cl ass Bl ackj ackHand

Chapter 6: Blackjack

Here arethe key elementsin B 1 ackj ack Hand:

V Bl ackj ackHand extende ava. awt. Canvas so that it can dlsplay itself
on the screen.

V Thestackjackiand() constructor setsthe size of the canvas -
necessary because by default a canvasis zero pixels wide and zero
pixelstall.

r Thejava. utit. vector field nand Storesthe cards. (Remember, a
vect or WOrkslike an array that automatically reslzes itself as more
objects are added to it) Using a vector allows a hand to accept any
number of cardsdealttoit. 4eal () adds cardsto the vector and

cleartand() removesall the cardsfrom the vector.
nBlackjackHandOverridespaint () to createthe display for the hand.
If necessary, pai nt () Overlapsthe cardsto fit within the display area -

this makes the cards look like they are "fanned out" on the table, as
shown back in Figure 6-1.

wpaint () Usesthegraphicscontext ot fscr to draw to the offscreen
image. Of f screen Image. pai nt () copies the offscreen image to the
screen to smoothly draw the hand to the screen in a single operation.
paint () initializesthe offscreen buffer the first timeit runs. (Chapter 1
discusses the details of using an offscreen image.)

vV horizinset holdsthe number of pixelsto inset the hand from the
left and right edges of the canvas. The Blackjack applet uses the inset
spaceto highlight the active hand. set acti ve() Setsor clearsthe
hand's active state.

Arranging the User Interface

Like the Web pages in which Java runs, Java configures its screen area to fit
the available space and allows a Java applet to automatically adapt to
smaller or larger screens. Creating an interface that configuresitself pre-
sents challenges. On the one hand, you don't have to worry about specifying
the pixel location of each interface component. On the other hand, trying to
get your game to look just the way you want can be frustrating. Compound-
ing thisfrustration is the fact that the size and look of the individual compo-
nents vary between platforms. But rest assured, with alittle work you can
create a user interface that looks good and intelligently configuresitself to
fit avariety of screen sizes.

117

Part II: Up to Speed

Positioning components With a
LayoutManager

The AWT uses classes that implement thej ava . awt . Layout Manager

i nterface to determine what size to make AWT components and where to
place them. Each container -a Panel , Appl et, W nd ow, Frane, Di al og. or
Fi1ed alog -hasitsown layout manager to accomplish this task.

A layout manager positions each of the components in the container and can
also set the sizes of the contained components. The layout manager calls a
component'sm v e () Method to position the component, calls resize () tf
set the component's size, and calls reshape () to set both the size and
position. Most layout managers use the component'sp referredsize() a
mi ni mns ze() Methodsto determine its dimensions, but some layout
managers ignore these suggested sizes (see Table 6-3).

Youcansubclass Labet, 8ut t on, @ndother AWT components to override

the preferredsi ze() and mi ni nunsi ze() Methods. By doing so, you can
explicitly control the size of the laid-out component.

The AWT providesfive layout managers- 8o r d e r Layout, Car d Layout,

F1 ow Layout, Gi d Layout, Gi dBagLayout. Table_6'3 lists types of layout
managers assigned by default to each type of container.

Table 6-3 Default Layout Managers
Container Layout Manager Comments
Panel FI owlLayout
Applet Elowl ayout.
Erane Borderlayout (ignares sggested size)
Fi leDial og nul |
A container can have a1 | layout manager for which you must explicitly

position its components. A container with alayout that doesn't need to
adapt to different screen sizes - for example, a container that conforms b
background graphic - may be best with a n u1 1 layout manager.

If you want to use a different layout manager than the default, pass the nei
layout manager to the container's set Layout () method. For example, if y
want to have an applet useasorderLayout, placethefollowinginthe
applet'sinit () method:

Chapter 6: Bl ackjack 11 9

l?a%

If you change a container's layout manager after it has already been laid out,
you need to tell the container. Todo so, call invatidate() totell the
container to invalidate its current layout and thencall vatidate() tohave
the container recursively layout itself along with any nested containers.

FlowLayout

Youusearimlayout Manager to arrange the components from left to right
and top to bottom. Each horizontal row aligns its components LeFT, ceENTER
or r1 ar. The default alignment i s center

The following code produces the applet that Figure 6-8 shows:

public class Flow extends java.applet.Applet 1
public void init ()
for (inti=1;i< 10; i++)
add(new java.awt.Button(Integer.toString(i)));

[plsalea

BorderLayout arangesasmany as five components. one along each of the
four sides and one in the center of the container. Y ou call the container's
add() Method with the name of thelocation (North sSouth . East

west , OF center) a which toadd acomponent to a Bor der Layout
container. If you don't specify alocation, the layout manager placesthe
component in the center location.

Border Layout F€Sizesthe componentsaccording to the following rules:
- The north and south components use their preferred height but are

resized as wide as the container.

The east and west components use their preferred width but are
resized to be, astall asthe container minus the heights of the north
and south components.

12 O Part 1I: Up to Speed

— The center component is resized to fill the remaining space not used
by the other componentsin the container. It is astall asthe east and
west components, and as wide as the container minus the widths of the
east and west components.

The following code produces the applet shown in Figure 6-9:

public class Border extends java.applet. Applet {
public void init () {

set Layout (new j ava. awt . Bor der Layout ());
add(North , new java.awt.Button(North));
add(East , new j ava. awt . Button(East)):
add(Vest , new j ava. awt . Button(West));
add(South , new java.awt.Button(South)3;
add(Center , new java.awt.Button(Center));

Figure 6-9: _
North East

An applet I
using
BorderLayout

Gi dLayout

You use a Gri dLayout to arrange all the components on an evenly spaced
grid. GridLayout resizeseach component to fit the grid. Y ou can create the
applet Figure 6-10 shows by replacing these tLayout() cal inthe preceding
Border example with

Figure 6-10; (]

North East
An applet e ~
using
. Center
GridLayout.

Your own Layout Manager

If none of the layout managers supplied by the AWT isright for your con-
tainer, you can always write your own. Y ou create alayout manager by
implementing the LayoutManager interface in your class.

Chapter 6: Blackjack 12]_

A layout manager needs to do two things:

V Determine the preferred and minimum sizes needed to layout the
components in a container.

tr Lay out a container's components, which requires positioning and
possibly sizing the components.

The Blackjack applet uses a custom layout manager to arrange the hands for
aplayer. A Blackjack player starts out with asingle hand of cards. When a
player splits a hand, the hand becomes two new hands. (Renmenber. The
player may split ahand into two handsiif the first two cards have the same
point value.) Further, the player can potentially split either or both of the
new hands. Because it takes alot of space to display each hand, reserving
space for the unlikely possibility that each player would end up with four
hands more than doubles the size of the applet. A better solution isto
overlap the hands to cover up part of the hand, as Figure 6-11 shows.

; v e
:. Y
r*.‘o

L AR N)1

The following custom layout manager lays out the hands as Figure 6-11 shows:
import java.awt.

cl ass Pl ayer HandLayout i npl enents | ayout Manager i
private Bl ackj ackPl ayer player;
private float overl ap;
publ i c Pl ayer HandLayout (Bl ackj ackPl ayer pl ayer,
float overlap) {
this.player = player;

this.overlap = overl ap;

publ i c void addLayout Conponent (String nm Conponent c) {)

public void renpveLayout Conponent (Conponent c) t)

public Di nmension preferredLayoutSi ze (Contai ner parent) S
Di mensi on ds = ((Bl ackj ackHand) par ent. get Conponent (0)). preferreaSize |;
int nunmHands = parent. count Conponents();
i f (nunHands <-- 2)

return new Di nensi on(ds. wi dth, ds.height * nunHands);

(conti nued)

12 2 Part II: Up to Speed

(conti nued)

el se
return new Di nension(ds.w dth, (ds.height * 2) +

(numHands - 2) * (int)(overlap * ds.height));

publi ¢ Di mension m ni nuniLayoutsi ze (Contai ner parent) |

return preferredLayout Si ze(parent);

public void | ayout Container (Container parent) |
Di nensi on hsi ze = ((Bl ackj ackHand) par ent. get Conponent (O)). preferredSi ze();

int nunHands = parent. count Conponents();

int h, y=D;
for (int ii = 0; ii < nunmHands [0 ++)
if (ii == player.getHandl ndex() I
|| == pl ayer. get Acti veHandCount (3- 1)

h = hsi ze. hei ght;

el se
h = (int)(hsize. height * overlap);

par ent . get Conponent (ii).
reshape(0, y, hsize.wi dth, hsize. height):
y +=h;

- cl ass Pl ayer HandLayout

The prevalent aspects of P1 ayer HandLayout are

r TheBlackjackPlayer passesareferencetoitself and thevertical
overl ap ratiototheP1 ayer HandLayout () constructor.
ayoutConta i ner () usespl ayer toaccessinformation about the

hand.

V layoutContainer () leavesthe active hand exposed so that it's easier
to recognize. Figure 6-12 shows the layout of four split handswherethe
second hand isthe exposed, active hand.

V 1 ayout Contai ner() callsreshape() to setthesizeof overlapped
handsto the size of the exposed area of thehand. Using reshape()is
important, because you can't rely on the draw order to obscure other
hands; the AWT doesn't guarantee any particular draw order for the

components.

Chapter 6: Blackjack 123

¥ preferred Layout si ze() Calculatesthe dimensions needed to
display numiands hands by assuming two exposed hands: the active
hand and the last hand. If the active hand is the last hand, only one
hand is exposed, but the calculation still sets the size of the hands as if
two hands were exposed. The result of this calculation allows the
container to size itself based on the maximum number of hands a
player can have.

¥ Layouts such as gor der Layout, Which separate the components into
different named groups, use the addLayout Conponent () and
renovelayout Conponent () Mmethods to organize the components
INto groups. HOWEVEY, p1ayer Hand Lay o ut doesn't use these methods

and just needs to include empty methods to complete the
Layout Manager interface.

Figure 6-12:
Exposi ng

active
hand.

Dividing the screen with panels

Frequently, you cannot arrange an applet or other container with asingle
layout manager. In these cases, you can arrange your interface hierarchically
by grouping components within ranc1 containers and using the panel's
layout manager to arrange the components inside the panel. The panel itself
isasingle component arranged by the layout manager for the container
containing the panel.

For example, consider an applet with four groups of radio buttons and
several standard buttons. Y ou can use these steps to arrange the radio
b#ttgns into separate columns and the standard buttons into a row across
the bottom:

1. Create a panel for each column of radio buttons.

Give each of these panelsaG r i d Layout (0, 1) layout manager. Add
theradio button Ch e ¢ k b ox COMpONeNts to their respective groups.

124

Part II: Up to Speed

Figure 6-13:

Nested
panels.

2. Create a panel to hold the radio button column panels.

Leaveits layout manager set to the default F1 owLayout. Add the
column panels to this group.

3. Create a panel for the standard buttons.

Leaveitslayout manager set to the default F1 ow Layout. Add the
Button COMponents to this group.

4. Give the applet a BorderLayout layout manager.

Add the panel from Step 2tothe center |ocation of the border

layout. Add the panel from Step 3tothe south location of the border
layout.

Figure 6-13 shows the hierarchical organization these steps produce.

Panel with Grid Layout (1,0)

ouu. oae. oon. Sao.
Oa. 0Ooa.aerrow+

ga~ ooa~age 180t _Applet BorderLayout Center”

oar

OOOOO]--AppletBorderLayout South

Panel with F1 owl-ayout

Y ou can also arrange this example with aGri dBagLayout. A

GridBagLayoutis apowerful layout manager for creating complex arrange-
ments. Unfortunately, usingaGri dBagLayoutis afairly complicated

process, and nested panels, asin this example, are usually easier to create
and maintain.

Laying out a game of Blackjack

Figure 6-2 earlier in this chapter shows the logical organization of the
Blackjack applet. This organization translates to a physical organization on
the screen, as Figure 6-14 shows.

The top-level applet
The Blackjack applet that implements the top level of the gameis asfollows:

Chapter 6: Blackjack 125

(Stend) (Wit (Gouble Gown) (Seiit)

Boug Wayne Fast Freddy
219 (GS)

inport java.awt.*;
import java.util.StringTokeni zer;
public class Bl ackj ackAppl et extends java. appl et. Appl et

npl enents Runnabl e

private Deck deck;
private Bl ackjackHand deal er, |astActive;
private Bl ackj ackPl ayer[] pl ayers;

private int cur Pl ayer;

private Button newdeal , stand, hit, doubl edown,
split;

private ThreadG oup appTG

private Panel dpan, ppan, bpan;

public void init () {
int nunPl ayers = 1, deckSize =1, bankroll = 0;
String param
String[] nanes = null;
Thread curT = Thread. current Thread();
appTG = cur T. get ThreadG oup();
curT.setPriority(curT.getPriority() - 1);

set Layout (new Bor der Layout ());

(conti nued)

126 Part 11: Up to Speed __

(continued)

if ((param = getParanmeter(PLAYERS)) != null)
StringTokeni zer st = new StringTokeni zer (param
nanmes = new String[st.count Tokens()];
for (nunPlayers = 0; st,hasMreTokens(); nunPl ayer s++)

nanmes[nunPl ayers] = st.nextToken();

Card. i ni t Graphi cs(this); 11 load the card inages
deck = new Deck(deckSi ze);

pl ayers = new Bl ackj ackPl ayer [nunPl ayers];

Bpan = new Panel ();

dpan. add(deal er = new Bl ackj ackHand());

add(North , dpan);

bpan = new Panel ();

add(Center , bpan);

bpan. add(newdeal = new Button(Deal));
bpan. add(new Label ()):

bpan. add(st and = new Button(Stand)):
bpan. add(hi t = new Button(Hit));

bpan. add(doubl edown = new Button(Doubl e Down));
bpan. add(split = new Button(Split));
setButtons(null);

ppan = new Panel ();

add(South , ppan);

for (int ii = 0; ii < nunPlayers; ii++)
players[ii] = new Bl ackj ackPl ayer (ppan,
names == null ? null : nanes[ii], bankroll);

public bool ean action (Event evt, Object what) |
i f (evt.target == newdeal)
new Thread(appTG this).start();
else |
Bl ackj ackPl ayer player = getPlayert);
if (evt target == stand)
next Hand(f al se);
el se
Bl ackj ackPl ayer Hand hand = pl ayer. get Hand() ;
if (evt.target == hit) i
hand. deal (deal ());
if (hand.value() > 21)
next Hand(f al se) ;
el se

set Butt ons(pl ayer);

Chapter 6: Blackjack 127

else if (evt.target == doubl edown) |
hand. deal (deal());
pl ayer . addToBankr ol | (- hand. bet):
hand. bet <<= 1;

next Hand(f al se);

else if (evt.target == split) {
Bl ackj ackPl ayer Hand splitHand =
pl ayer . newHand(hand. bet) ;
hand. split(splitHand);
hand. deal (deal ());
spl | t Hand. deal (deal ()):
set But t ons(pl ayer);
|
el se

return super.action(evt, what):

public synchroni zed void run () {

newDeal ():
newdeal . di sabl e();
try |
Bl ackj ackPl ayer Hand hand;
for (int card = 2; --card 7= 0:)

for (int pp = 0; pp < players.length; pp++)
if ((hand = players[ppl.getHand()) != null) |
hand. deal (deal ());
Thr ead. sl eep(500) ;
|
deal er. deal (deal ());
Thr ead. sl eep(500) ;

if ((hand = nextHand(true)) != null) |
set Buttons(get Pl ayer());

wait(); /!l wait for players to play their hands

setButtons(null);
deal er. expose();
Thr ead. sl eep(1000) ;
if (hand !'= null)
whil e (deal er.value() <= 16) {
deal er. deal (deal ());
Thr ead. sl eep(500) ;

(conti nued)

28 Part 11: Up to Speed

(conti nued)

catch (InterruptedException e) 11
for (int pp = 0; pp < players.length; pp++)
pl ayer s[ppl . resol veDeal (deal er);

newdeal . enabl e();

@

ackj ackPl ayer get Pl ayer () |
return curPlayer)- players.length ?

null : players[curPlayerl;

@

ackj ackPl ayer nextPlayer () |
cur P] ayer ++;

return getPlayer();

Bl ackj ackPl ayer Hand next Hand (bool ean firstHand) {
Bl ackj ackPl ayer player = null;
Bl ackj ackPl ayer Hand hand = nul | :
i f (deal er. bl ackjack())
cur Pl ayer = players.|ength;
else if ((player = getPlayer()) != null)
hand = firstHand ?
pl ayer. get Hand() : player. next Hand();
while (player !'= null && hand == null)
if ((player = nextPlayer()) != null)
hand = pl ayer. get Hand();
i f (player == null) I
setButtons(null);
synchroni zed (this) | notify(); | // deal to dealer

return null;

i f (hand. bl ackj ack()) /1 skip this hand
return nextHand(fal se);
set Buttons(pl ayer);

return hand;

bool ean newbDeal ()
int ii = players.|ength;
bool ean shuffl ed;
cur Pl ayer = 0;
if (shuffled = (deck.getSize() <ii * 3 + 3))
deck.reshuffle();

|

deal er, cl ear Hand() ;

pl ayers[iil.cl earHands();
pl ayers[iij.newHand(O0);

newdeal . enabl e() ;
setButtons(null);

return shuffl ed;

private void setButtons (Bl ackjackPl ayer player) |
i f (lastActive != null) |
ast Acti ve. set Active(fal se);

ast Active = null;

stand. di sabl e();
hit.disable();
split.disable();
doubl edown. di sabl e();
i f (player !'= null)
Bl ackj ackPl ayer Hand hand = pl ayer. get Hand() ;
if (hand !'= null) 1|
(lastActive = hand).setActive(true):
stand. enabl e();
int val = hand.val ue();
if (val < 21)
hit.enable():
i € (player.getBankroll () >= hand. bet) |
if (player.canSplit() &% hand.canSplit())
split.enable(};
if (val <= 11 && hand. cardCount () == 2)

doubl edown. enabl e() ;

private Card deal ()
try f return deck.deal ();)
catch (NoSuchEl enent Exception e) {
deck.reshuffle();

return deal ();

JI end cl ass Bl ackj ackAppl et

Chapter 6: Blackjack

129

130 Part Il: Up to Speed

The HTML that loads the applet
The HyperText Markup Language (HTML) document invokes the Blackjack
applet using the following applet tag:

<APPLET CODE=BI ackj ackAppl et W DTH=480 HElI GHT=460>
<PARAM NAME= PLAYERS VALUE= Doug, Wayne, Fast Freddy
</ APPLET>

ThestlackjackApplet getsgoing likethis:

1. HTML passes the player names to the applet.
The applet automatically adjusts the layout for more or fewer players.

2. Theapplet usesa Bor derLay out to divide the applet into the dealer's
hand at thetop (North), the button controlsinthemiddle (Cen-
te r), and the players at the bottom (South).

3.ini t() createsapanel for each of the sorderLay outlocationsto
hold the individual components.

The north location contains only the dealer's hand, but still uses a
panel in order to prevent the border layout from resizing the dealer's
hand, and cause border layout to resize the panel instead. Each of
these panels uses the default F1 owLayout manager.

4. setsuttons() enablesand disables the buttons to match the legal
options for a given point in the game.

The state-driven approach determines by examining the state of the
game the required state of the buttons.

5. d eal () deals cards from the deck and automatically reshufflesif the
cards have all been dealt.

6. The applet spawns a new thread when the user presses the Deal

button.
The thread controls the tempo of the deal from the run () method.

7. After run () dealstheinitial hands, the applet's Deal thread needsto
wait for the playersto play their hands.
run () callswai t () onthe applet and waits for acti on () to handlethe
user options.

8. n extHand () determines the next hand to play and setsit as the active
hand.

If the next hand is the dealer's hand, nextHand () callsnot i fy () tO
wake up the Deal thread. When the Deal thread wakes up, run () plays
the dedler's hand, settles the bets with each player, enablesthe Deal
button, and exits the thread.

Chapter 6: Blackjack 131

The pl ayers
Each player requiresadditional user interface elements:

— Label stodisplay the player's name and current bankroll
— A Choiceselector to allow theamount of the next bet to be selected

— A Paneltodisplay the player's Blackjack hand(s)

Bl ackjackPl ay er panel groupstogether theseinterface elements. A
gl ackjackr! ayer alsoincludesall the necessary methods and fields for
keeping track of a player. Thefollowing codeimplementsB 1ac kjackPlayer:

import java.awt.*;

cl ass Bl ackj ackPl ayer extends Panel {
public static final int STANDARD BET = 10;

public static final int STANDARD- BANKROLL = 1000;
private static int[] bet Anount
|, 5, 10, 20, 30, 50, 100, 200, 500, 10001;

private static int pl ayer Count ;

private String nane;

private int | astBet, bankroll, curHand,
nunHands;

private final Bl ackjackPl ayerHand[]
hands = new Bl ackj ackPl ayer Hand[4] ;

private Label bankr ol | Label ;
private Choice bet Entry;
private Panel handsPanel ;

Bl ackj ackPl ayer Hand get Hand () |

return curHand >= nunmHands ? null : hands[cur Hand];

i nt getHandl ndex () i
return curl-and >= nunHands ? 1 : curl-and;

Bl ackj ackPl ayer Hand next Hand ()
cur Hand++;
handsPanel . | ayout () ;

return getHand();

int getBankroll () (return bankroll; }
i nt getActiveHandCount () | return nunmHands; |

(conti nued)

32 Part II: Up to Speed _

(continued)

bool ean canSplit () | return nunHands < hands |ength; |

Bl ackj ackPl ayer (Container parent) |
this(parent, null, STANDARD BANKROLL) ;

Bl ackj ackPl ayer (Container parent, String nane,
i nt bankroll) |
parent . add(this);
set Layout (new Bor der Layout ()):
pl ayer Count ++;
i f (name == null)

nane = Pl ayer + pl ayer Count ;

add(North , new Label (this.name = nanme, Label. CENTER));
i f (bankroll <= 0)

bankrol | = STANDARD_BANKROLL;
String bankStr = Integer.toString(bankroll);""

Font font = new Font(Courier , Font.PLAIN, 10);
bankrol | Label = new Label (bankStr, Label.RI GNT);
bet Entry = new Choice();
for (int ii = 0; ii < betAnount.length; ii++)

bet Entry. addl ten(| nteger.toString(bet Amount[iil));
bankr ol | Label . set Font (font);
bet Entry. set Font (font):
Panel pbank = new Panel ();
add(Center , pbank);
pbank. add(bankr ol] Label) ;
pbank. add(bet Entry);
addToBankr ol | (bankrol 1) ;
set Bet (STANDARDBET) ;

handsPanel = new Panel ():
handsPanel . set Layout (new Pl ayer HandLayout (this, .30f));
handsPanel . set Backgr ound(Col or. gray) ;
add(South , handsPanel);
for (int hh = 0; hh < hands. | ength; hh++)
handsPanel . add(hands[hh] =
new Bl ackj ackPl ayer Hand(this));

public bool ean action (Event evt, Object what)
if (evt.target == betEntry)

- — ——— ., e -
Y ¥ . F T I S L A M s TR ST =

set Bet (I nt eger. parsel nt (betEntry. get Sel ectedl ten()));

il

Chapter 6: Blackjack

el se
return super.action(evt, what);

return true;

synchroni zed void clearHands () {
whi | e (nunHands > 0)
hands| - - nunHandsl . cl ear Hand() ;
curHand = 0;

handsPanel . | ayout () ;

synchroni zed voi d resol veDeal (Bl ackjackHand deal er) |
for (int hh = nunHands; --hh >= 0;)
addToBankr ol | (hands[hh] . wi nni ngs(deal er));

synchroni zed Bl ackj ackPl ayer Hand newHand (int bet) |
Bl ackj ackPl ayer Hand result = null;
if (bet == 0)
bet = | astBet;
i f (numHands < hands.length &% (bet = setBet(bet)) > 0)f
result = hands[nunHands++] ;
addToBankrol | (-(result.bet = bet));

handsPanel . | ayout () ;

return result;

int setBet (int bet) {
if (bet > bankroll)
for (int i = betAnount.|ength;
> 0 & (bet = betAmount[--i]) > bankroll;);
bet Entry. sel ect (I nteger.toString(bet));

return | astBet = bet;

voi d addToBankrol | (int anount) |
t hi s. bankrol | += anount;

bankrol | Label . set Text (I nteger.teString(this.bankroll));

/1 end cl ass Bl ackj ackPl ayer

133

Part II: Up to Speed

Theresponsibilitiesof aBlackjackPlayelr are

VABlackjackP1ayer Canhaveup tofour handsactive at once. The
hands c] array field storesall the hands.

— BlackjackPlayer uses a BorderL ayout and placesthe namelabel in
the North location,the current bankroll and the bet selector in

the Center, and theplayer'sBlackjack handsinthe South.

— getHand() andnext Hand () returnand updatethecurrent active
hand. newiand () activatesanew hand after first checking that the
player has enough money to cover the bet.

V The addToBankr o110 and setBet() methods managethe player's
money. These methods ar e responsible for making surethat the player
never gambles money he doesn't have.

VBlackjackPlayer Overridesaction() tohandlethe eventsfrom the
choice Selector used to set the player's next bet.

The players' hands

The hand for a player isa specialized case of the Blackjackhand that the
dealer uses, asdiscussed earlier in thischapter. On top of the dealer's
hand'sfunction, the player's hand hasto handle the additional duties of

wagering and splitting. ThestackjackPiayerHand extendsthe
B1 ackj ackHand likethis:

inport java.awt.*;

cl ass Bl ackj ackPl ayer Hand ext ends Bl ackj ackHand |

int bet;
private bool ean hasSplit;

Bl ackj ackPl ayer Hand (Cont ai ner parent) |

super ();
hori zl nset = 3;

parent . add(this);

protected bool ean isDealer () { return false

bool ean bl ackj ack () {
return !hasSplit && super. bl ackj ack();

bool ean canSplit () |
return hand. size() == 2 && value(o) == value(1);

void clearHand () f
super . cl ear Hand() ;

hasSplit = fal se;

void split (Bl ackjackPl ayerHand splitHand) {
spl i t Hand. deal ((Card) hand. el ement At (1)):

hand. renovel | ement At (1) ;

hasSplit = splitHand. hasSplit = true;

int wnnings (Bl ackjackHand deal er) i
int hval = value();
if (hval <= 21) |
if (blackjack()) I
i f (deal er. bl ackj ack())
return bet;

el se

return (bet << 1) + (bet » 1);

else i
int dval = dealer.value();

if (rival ? 21 () rival < hval)
return bet <(1;
else if (dual == hval

&& ! deal er. bl ackj ack())
return bet;

return

=6 Part 11: Up to Speed

Chapter 7
2-D Maze

O«+«0!0t +«00000+0-0!-0000060000+-00-00Y 4008

W This Chapter
Creating block and wall mazes
Generating random mazes
p. Solving mazes using the right-hand rule
Solving mazes using breadth-first searching
e Displaying 2-D mazes
0*00: *0O*sa*si *sesoss*a0s00s0*00a0000s* os®s09***0

C)mputer games are about challenges that the game player attempts to

overcome. A maze is a confusing, intricate network of passages. The
challenge of finding your way around a maze makes computer games and
mazes a perfect match. In one form or another, many games base their game
environments on a maze. Here are some examples of the types of mazes
computer games use:

V Adventure games use graph mazes in which locations in the environ-
ment connect to each other in an arbitrary arrangement. Any point
on the graph can connect to any other point. These mazes have lessto
do with representing a physical structure than with organizing the
seguence in which the gameis played.

r Games likePacMan and DungeonMaster use a block grid maze in
which aflat grid of uniform rectangles defines the maze. Each square
is either open (afloor) or closed (a solid wall).

v Wizardry, one of the original fantasy role-playing games, uses a wall
grid maze in which aflat grid of uniform rectangles defines the
maze. The edges of the rectangles define the walls, and the planes of
the rectangles define the floor and ceiling.

v Games like Doom use an extruded polygon maze in which adjacent
polygonal columns define the regions in the game. The bottom and
top surfaces of the polygonal column define the floor and ceiling, and
the sides of the columns define the walls. (Doom varies the height of
the floor and ceiling polygons in order to effectively create the illusion
of a 3-D maze, but the actual topography of the maze is two-dimensional.)

138

Part II: Up to Speed

This chapter shows how to create block and wall grid mazes and how to find
a path between two locations in a maze. Chapter 8 uses the block maze from
this chapter as a playing field for "intelligent" computer adversaries called
sprites that incorporate the capability of navigating a maze.

Creating the Ma z e O ass

Y ou use atwo-dimensional array to represent grid mazes. Wall and block
mazes (both types use a grid) have many common features, so the mazes
this chapter presents use acommon abstract classnamed M aze.Maze
extends the Canvas component from the j ava.awt package so that a maze
can display itself. TheWai1Maze and BlockMaze classes extend maze to
implement the features specific to each type of maze.

Y ou can extend an abstract class, but you can't instantiate (have objects
created from) the class. Y ou use abstract classes as superclasses to imple-
ment common functionality for subclasses. An abstract class can contain
abstract methods. Abstract methods don't have implementations and simply
define methods that must be implemented by nonabstract subclasses.

Themaze class uses atwo-dimensiona array of bytes (a by te holds an 8-bit
value in the range -128 to 127) to represent the maze. Each byte in the array
represents a single rectangle in the grid that makes up the maze. The values
in the array have different meaninginthe Waiimaze and B1ockmaze sub
classes. However, both classes reserve the high bit (the bit corresponding to
the value 0x80) in each byte for the display code in Maze. The display code
(the methods in maze involved with drawing the maze on the screen) uses
the high bit asa pirty flag to keep track of which squares have changed
sincepaint() drew them on the screen - when the high bit is set to one,
the square is"dirty" and needs to be drawn. (The "Displaying a 2-D Maze"
section later in this chapter discusses how Maze usesthe pirTy flag.)

Computers store values usi r(li;] binary numbers composed of a series of bits
set to 0 or 1. The bits are ordered from the high bit on the left to the low bit
on the right. Sometimes it is useful to use the individual bitsto store several
valuesin asingle number.

The declaration of the maze class starts with the following:

in, pert java.awt.

abstract class Maze extends Canvas {
static final byte TOP = 0x01;

Foprre 1-t:
block
- aze.

Chapter 7:2-D Maze

static final byte RIGHT = 0x02;
static final byte BOTTOM = OxO4;
static finial byte LEFT = Ox0Cs8;
static final byte DIRTY = (byte) OxBO

protected byte[][] naze;

protected: abstract byte initSqg ();
Maze alsocontainsaclearMaze() method for initializing a blank maze.
Because wall and block mazes use different values for the squaresin the

maze[][] array, Maze definesthe abstract methodi nit Sq () to return the
initial value for the squares with thisline:

protected abstract byte initSq ();

Declaringi nitSq() asan abstract method requires that any classes that
extend the Maze classmust implementi nitSq().

The complete source code for the Ma ze classis on the Java Game Program-
ming For Dummies CD-ROM at the back of this book.

The B1ockMa z e subclass

Each square in a block maze is either floor or wall. Figure 7-1 shows an
example of ablock maze.

To extend Maze to implement a block maze, you implement the abstract
method i nitsq () that Maze defines. The portion of the B 1 ockMaze class
responsible for representing the maze looks like this;

public class Bl ockMaze extends Maze
public static final byte WALL = 0, FLOOR = 1;
protected byte initSq () { return (byte) (WALL | DIRTY); 1

t // end class Bl ockMaze

139

160 Part II: Up to Speed

Figure 7-2;
Awal
maze.

Thecode (wwLL | biI RrY) "ORS'theD | RTY flag with the w L L value to set
the high bit and indicate that the code has changed the square since the last
time the maze displayed the square, or in this case, has set a square that
has never been displayed.

The Wa 11 Maze Subclass

Each square in awall maze needs to keep track of which sides of the square
have walls and which sides are open. Figure 7-2 shows an example of awall
maze.

Y ou give squares the capability to keep track of themselves by setting or
clearing a different bit for each wall in the byt e for the maze £ 1 £ 1 grid
square. Y ou set the bit when the wall exists and clear the bit when the wall
isopen. The LErT, RicHr, Top, and BorTomgtatic final variablesin vaze
define the bit values used in mze £] 1. The portion of the w 1 1 v ze class
responsible for representing the maze looks like

public class Wall Maze extends Maze
public static final byte BLOCKED =
(byte) (TP | R | BOTTOM) LEFT):

protected byte initSq () |
return (byte) (BLOCKED | DIRTY);

end cl ass Wl | Maze

Y ou display a square with all walls set as a solid wall. The static final
B LockeD variable holds the value with all the walls set - asolid wall is
BLockeD on all sides. i ni tsq() createsitsreturn value from BLOCKED.

Note that because squares share walls with adjacent squares, m ze E 1 E 1
records every interior wall in the two squares that share it. (We define an
interior wall as awall between two squares as opposed to an exterior wall
on the edge of the maze.) Recording the wall in two places means that you
must always change both squares when setting or clearing awall. Although
this approach is redundant and therefore susceptible to errors, it makes

checking for walls easier than if ma ze C] C 7 were to record the walls in only

Chapter 7: 2-D Maze

one square. Given that a game typically changes the maze much less fre-
quently than it checks the state of the maze, making checking the maze
easier than changing it is a good trade-off.

Working with bits

People count using decimal numbers. Each
digit in a decimal number can be one of the ten
values from 0 to 9. The decimal counting sys-
tem is called base 10Obecause it has ten digits.
People probably use decimal numbers be-
cause our counting system arose from primi-
tive people counting on their fingers. You (most
likely) have ten fingers and can represent ten
different values by holding up some number of
ur fingers.

Computers don't have fingers to count on - at
ast not yet- and instead use a series of on/
off values as a counting system. Every value
tored in a computer is composed of bits. Each
is either an off value or an on value. By
c--nvention, an off bit represents the value 0
ar d an on bit represents 1. The computer rep-
resents values larger than 1 by combining bits
t= form base 2 or binarynumbers.

lava doesn't have a representation for using
msnary numbers in your code, but it does have
_-e for hexadecimal (base 16)numbers. In the
-=xadecimal counting system, each digit is
icr- of the values from 0 to 9 or from A to F
rr-ere A = 10, B = 11, and so on. A hexadeci-
na digit represents exactly four binary digits
sc converting between hexadecimal and bi-
rary numbers is relatively easy. You indicate a
hexadecimal number in Java by beginning the

member with a zero followed by an x, like this:
x10 OxAIB2C3 OxDEADBEEF 0x17

example, the decimal number 23 is 10111
a binary and 0x17 in hexadecimal. 23 stands

for 2 tens and 3 ones; 10111 stands for 1 six-
teen, O eights, 1 four, 1 two, and 1 one; and
0x17 stands for 1 sixteen and 7 ones.

20+3 =23 10 =16+4+2+1=10111 =16+7 =17 16

You use the "bitwise" operators &, |, A=<
>> and >>> to work with individual bits and
the "or" (I) operator to set or combine bits:

x 1= 1 // sets the ones bit in x

You use the "and" (&) operator to clear or test
bits:

[x & 1) !'=0// true if the ones bit in
X is set

X & 1 // clears all bits in x except the
ones bit.

You use the "exclusive-or" () operator to
toggle bits:

X "= 1// toggle the ones bit in x (0O-
>1, 1->0)

You use the "bitwise complement” (~) opera-
tor to toggle all the bits in a value:

X & -1 // clears the ones bit in x

You use the "left shift" operator («) to move
all the bits in the value to the left:

X «= 1 // equivalent to x *= 2 (10111 <<
1 = 101110)

You use the "right shift" operator (> >) to move
all the bits in the value to the right:

x >>= 1 // equivalent to x i=
1 = 1011)

161

142 Partli: Up to Speed

Generating a Maze

E\\J

One way to add infinite variety to your game isto randomly generate the
game environment. The problem with random-generated environmentsis
that they tend to be less interesting than hand-crafted environments.
However, when the central element in the game environment is a maze, pva
have some good reasons to use arandomly generated maze rather than a
hand-crafted maze:

i To prevent playersin amultiplayer game from gaining or losing
advantage due to familiarity with the terrain.

r To connect hand-crafted environments with sections of randomly
generated mazes so that each time the player plays the game, or
perhaps each time they enter the section with the generated maze,
the maze is different.

ti To create environments that extend indefinitely.

V To reduce download time by creating the environment on the
player's browser instead of downloading it.

V Because solving the maze is the game.

The code in this section generates mazes that start on the left edge and
finish on the right edge. The only reason the maze generation uses start and
finish squares is to make the animations for generating and solving the maze
more interesting. Y ou can arbitrarily select start and finish squares, if you
even need them, after generating the maze.

Selecting an algorithm

Y ou can use a number of different algorithmsto generate mazes. The most
important consideration when selecting an algorithm is what type of maze
you want to generate. Some of the questions to consider when selecting a
maze generation algorithm are

V Do you want to be able to navigate between any two pointsin the
maze?

Vv Do you want the maze to connect back on itself so that it has more
than one path between two pointsin the maze? If so, how much [
interconnection do you want?

Do you want rooms or open spaces in the maze?
Do you want a dense maze or a sparse maze?

ok,

Chapter 7:2-D Maze

oo Do you want to favor straight hallways or twisty passages?

- Do you want lots of branching passageways or longer stretches
between branches?

This section shows you how to implement two different maze generation
algorithms: one for generating wall mazes and one for block mazes. Both of
these algorithms create dense mazes that allow navigation between any two
points in the maze.

The wall maze algorithm creates mazes that have a single path between any
two points in the maze, are constructed entirely of passages with no open
space, and favor twisty passages with moderate branching.

The block maze algorithm is configurable: Y ou can change the settings for
the generator in order to produce generated mazes with different character-
istics. The default settings create mazes that allow multiple paths between
points, have small rooms and open spaces, and favor straighter passages
with lots of branching.

Wall mazes and block mazes impose different constraints on the generator.
In particular, block mazes are alittle trickier to generate because you have
to leave room in the grid to create walls. Wall mazes can place awall be-
tween any two sguares on the grid, so you don't need to reserve sguares on

the grid to separate passages.

In general terms, the algorithm for generating amaze is

1. Initialize the maze so that every squareis a solid wall.

2. Select a square in which to start the maze.

3. Extend the path from the selected square to an adjacent square.
4. Select a square on the current path.

Frequently, the algorithm selects the adjacent square from Step 3in
order to continue along the same path.

5. Repeat Steps 3 and 4 until done.

The algorithm may consider the maze done when all squares have been
included, or may use a combination of criteriato decide to call it quits.

The wall maze and block maze generation algorithms are both based on this
general maze-generating algorithm, but the specific details of each algorithm
vary. In particular, the algorithms differ in how they choose the adjacent
squarein Step 3 and how they select anew square in Step 4.

143

144 Part Il: Up to Speed ot}

Adding to the mazeclass

Y ou add the common methods and fields needed to generate mazesto the
Maze superclass. (The "Creating the maze Class' section earlier in this
chapter presents the maze class.) Y ou add the specific generation algo-
rithmstothewat1maze andB lockwma:z e subclasses. Here are the fields and
methods you add to the v ze superclass to keep track of which squares am
"dirty" and needto beredrawnby pai nt of f screen Inmage()

protected int mi nXdirty, m nYdirty, maxXdirty, maxYdirty;

protected int dirtySquare (int x, int y)
if (x < mnXdirty) mnXdirty = x:
If (x > maxXdirty) maxXdirty = x;
if (y <mnvdirty) minYdirty = vy;
if (y > maxvydirty) naxydirty =vy;
return maze[xI[y] [= bRy

The (ni nxdi rty, ni nvdi rty) and (maxxdi rty, maxvdi rty) fieldskeep
track of the upper-left and lower-right limits of the squares that have
changed - and are therefore "dirty" - sincep ai nt 0f f screen Imge()
drew them. Thedi r ty square) method maintainsthe "dirty"” fields. You
use the "dirty" fields and methods to minimize the work done to redraw the
screen. The "Displaying a2-D Maze" section later in this chapter shows how
the dirty fields help minimize redraw time.

If you don't keep track of which part of the maze has changed, you have to
draw the entire maze each time it changes, and the animation rate slows
down dramatically under most Web browsers and Java runtimes.

You also add declarationsto wa: e for the following abstract methods that
must be implemented by subclasses of maze:

abstract bool ean isOpen (int x, int y):

abstract void generate (bool ean displ aySearch);

Theavstract methodi sOpen () definesamethod to test a squarein the
maze grid in order to determine whether it's a solid wall. Each type of maze
implements a different test.

vaze definesthe abstract method generate(), which the classes that
extend ma z e implement in order to generatethe maze. generate() accepts
aboolean parameter of t r ue if you want the maze to display its progress as
it buildsitself. Youpassfaisetogenerate() if you don't want the
progress of the maze displayed asit's built.

Chapter 7:2-D Maze

Generating a wall maze

Here are the stepsthe wa 11 maz e Class usesto generate a maze:

1. Set al the squaresin the maze gridtothe B LO CK E D state.

2. Randomly select a square on the left edge of the maze as the current
square, clear the wall on the left side of the square, and set 1astside
to LEFT.

3. Randomly choose a sequence to rotate through the remaining sides
(the sides other than 1 ast si d ¢ Of the current square.

4. Set nextsi de tO the next selected side in the rotation.

5. 1f aBLOCKED square lies adjacent to the nextsi d e Of the current
square, go to Step 9.

6. If more sides remain in the rotation sequence decided on in Step 3,
go to Step 4.

7. You get to this step when the current square isn't adjacent to any
BLOCKED squares. Randomly select anon-BLOCKED square (a square
already added to the maze) asthe current square.

This creates a new branch in the maze by starting a path at the newly
selected square.

8. Set1ast si de tooneof the open sides of the selected square and go
to Step 3.

9. You get to this step when you have found a square to add to the
maze. Remove the wall between the current square and the square
adj acent to itSnext si de.

10. Set the new current square to the adjacent squareand set 1 ast si de
to the wall of this square removed in Step 9.

Thissets1 astsi ¢e tothe side opposite next si de. For example, if
nextSi de is ToP, thenew ! astsi de is BOTTOM

11. If any BLOCKED sguares remain in the maze grid, go to Step 3, other-
wise you're done.

The wat1maze Classimplements the abstract methodsi sopen () and
generate() defined in the wa: e Superclasslikethis:

publ i c bool ean isOpen (int x, int y)

return i nBounds(x, y) && sqr(x, y) != BLOCKED:

(continued)

165

46 Part II: Up to Speed .

(continued)

public synchroni zed voi d generate

| bool ean di spl ayConstruction)

int xx, yy, sq, |lastSide = LEFT;
int count = neWd * nezHyt, threshold = count
/1l Step #1 - initialize the nmaze
cl ear Maze();
i f (displayConstruction)
showMaze(true);
/1 Step #2 - select and set the starting square
startX = xx = 0O;
startY = yy = rint(nzHyt);
sq = (byte) ((BLOCKED | DIRTY) & LEFT);
while (-- count >= 0) {
/1l Step #3 - choose a sequence to rotate thru the sides
int nextSide, nx = 0, ny = 0, nsq;
int scnt = 3; // « of sides left to try in current sqr"
int sidelnc = rint(3); // offset fromlastSide to try
bool ean branch = false, found = false;
do {
// Step #4 - set nextSide to direction to search
nsq = O;
if ((nextSide = |astSide << (sidelnc + 1)) > BLOCKED)

next Si de >>= 4;

switch (nextSide) { /1 get next square to add to naze

case TOP:
It (yy >0
nsq = sgr(nx = xx, ny = yy
br eak;
case BOTTOM
It (yy < neHyt - 1)
(ail nsg = sgr(nx = xx, ny = yy + 1);
br eak;
case LEFT:
if (xx > 0)
nsq = sgr(nx = xx - 1, ny =yy);
br eak:
case RIGHT:

if (xx < mewd - 1)
nsq = sgr(nx = xx + 1, ny = yy);

else if (finishX < 0) I // mark sqr as maze exit
found = branch = true;

finishX = xx; finishy = yy;

br eak;

Chapter 7:2-D Maze 1

if (!found) f

if (nsq == BLOCKED) /1l unused square, use it
found = true; // Step #5 - add the square
else if (--sent > 0) J/ try next direction

sidelnc = (sidelnc + 1) %3; // Step #6 - new side
else ''// dead end, start a new branch

branch = true; /1 goto step #7 bel ow
|

if (found || branch)
/1l Step #9 - add the square to the maze
I/ sq contains the current square which was either
1/ inited in step #2 before the main |loop, or set in
/1 step #9a below. If found then the nextSide
/1 wall is cleared in sq before setting maze[][]
maze[xx] [yyl = (byte)
| found ? [sq & -nextSide) sq);

di rtySquar e(xx, yy);

f (displayConstruction)

showivaze(f al se);
if (branch) f

/1 Step #7 - select a square to branch from

if (count < threshold) |

/1 exhaustively search for remaining squares
sq = BLOCKED,
SEARCH: for (xx = 0; xx < nmeEWd; XX++
for (yy = 01 yy < neHyt; yy++)
if (sgr(nx, yy) == BLOCKED)
int dir =rint(4);
for (int ii = 4; --ii >=0;) f
nx = XX; ny =yy;

switch (dir = ++dir & 3)'1I

case 0: nx--; break;
case |: nx++; break;
case 2: ny--; break;

case 3: ny++; break;
1
if (inBounds(nx, ny) &&
(sg = sqr(nx, ny)) != BLOCKED) {
XX = nX; yy = ny;

break SEARCH; // found sqr for branch

|
i f (sq _= BLOCKED)
br eak; /1 maze done

(continued)

148 Part 1l: Up to Speed

(conti nued)

1

else | // randomy search for a sqr for new branch
do i
XX = rint(newd);
yy = rint(nzHyt):
sq = sqr(xx, yy);
| while (sq == BLOCKED);

I/l Step ##8 - set lastSide to an open side

for (lastSide = 1: (lastSide & sq) != 0;.)
last Side <<= 1;

scnt = 3;

sidelnc = rint(3):

branch = found = fal se;

| while (!found);
/1l Step ##10 - init the new square and set |astSide
if ((lastSide = nextSide << 2) > BLOCKED)
| ast Si de >>= 4;
sq = nsq & -lastSide; // Step ##9a
XX = nx; yy = ny;
if (!displayConstruction & [count & OxFF) == 0)'
Thread.yield(): // give some time to other thread
I/ Step ##11 - check for nore squares (at top of |oop)

if (finishX (0) f // no exit square selected, do it now
maze[xx - meWd - 1ll[yy = rint(nmeHyt)[& (byte)-RI GHT:
di rtySquare(xx, yy);
i f (displayConstruction)
showivaze(fal se):

if (!displayConstruction) —

repaint();

|1/ generate() il

Notice that each time the code modifiesthema ze[| C] array, it calls
dirtySquare() totell thedisplay codethat it needsto redraw the square.
Also, if di spl ayConstruction is true, the code calls showvaze() todisplay
the maze after it adds a square to the maze. You call showvaze() to animate
the progress of the maze generation. (The "Displaying a 2-D Maze" section
later in the chapter discusseshow sh owa z e () works.)

Chapter 7:2-D Maze 169

Step7ingenerate() employstwo different strategies for picking a random
square from which to start a new branch. When lots of BLOCKED squares
remain,gener at e () randomly selects squaresin the grid until it finds an
unblocked square. Using random selection creates more interesting and
varied mazes. When the number of BLOCKED squares remaining in maze[][]
falsbelow thethresho 1 dlevel - arbitrarily set to 1/8 of the total grid
sguares - the code uses an exhaustive search to find the remaining
BLOCKED squares. An exhaustive search quickly adds the remaining squares
to the maze, additions that could take along time to make randomly.

Generating a buck maze

The block maze algorithm maintains alist of squares that it must explore.
The algorithm adds squaresto the list as it adds them to the maze grid.
Each sguare in the list keeps track of the unexplored directions from itself.
Each square also remembers the direction in which the search was proceed-
ing when the particular square was added to the list so that the algorithm
can give a preference to continuing to search in the same direction. Each
entry in thelist is an object of the Sq r class shown here:

class Sgr
private boolean t, b, 1, r; !/tOp, bottom left, right
private int dir; /'l direction square entered
int X, Y; /1 coordinates of square

Sqr (int x, int y, int dir,
bool ean t, bool ean b, boolean |, boolean r) {
this.x = x; this.y =vy; this.dir =dir;
this.t =t; this.b =b; this.] =1; this.r ° r;

/1 open() returns a count of the unexplored directions
int open () i

return (t ? 1:0) + (b ? 1:0) + (r ? 1:0) + (1 ? 1:0);

int select (int n, boolean saneDir)
/1l Step #6b - select dir to explore and mark as expl ored
if (sameDir) // try to expand in dir square was entered
switch (dir) i
case Maze. TOP: if (t) { t =false; returndir; }
br eak;

(conti nued)

150 Part 1l: Up to Speed

(continued)

case Maze. BOTTOM if (b) | b = false; returndir; 1
br eak;

case Maze. LEFT; f (1) 11 =+false; returndir; 1
break;

case Maze. RIGHT: if (r) | r = false: return dir; }

break;

/1 return the n th unexplored direction

i f (t & --n < 0) (t = false; return Maze. TOP; |
else if (b& --n < 0) 1 b = false; return Maze. BOTTOM |
else if (r & --n < Q) (r = fal se; return Maze. Rl GHT;

el se { 1 = false; return Maze. LEFT: 1

/1 end class Sqgr

The open () method in the Sq r classreturnsthe number of unexplored
directionsfrom thesquare. sel ect () returnsan unexplored direction and
then marksthedirection as explored.

HerearethestepstheB 1ock M azeclassusesto generate a maze:

1. Set all the squaresin themaze grid to wALL.

2.

Randomly select a noncor ner squar e on the left edge of the maze and
set the squareto FLOOR. Create a Sqr object with the ri e+t direction
unexplored and add it to thelist of available squares.

. If thelist of available squaresis empty, you're done.

4. Select a squareto explorefrom thelist of available squares.

. If lessthan two unexplored directions are available from the square.

remove the square from the list of available squar es.

The single remaining direction isthelast direction to explore, so you
removethe square from thelist.

. Select a direction to explore from the squar e and mark the direction

as explored.

. Check to see whether you need to add the squarein the selected

direction to the maze grid.

If the answer is" yes," add the squareto the maze and to thelist of
available squares. When adding the squareto thelist of available
squares, mark all of the directionsto explore from the squareto the
directionsthat contain adjacent WAL L squares.

.Goto Step 3.

Chapter 7: 2-D Maze 151

Thestockuaze classimplements the abstract methodsi sopen() and

gener at e() defined in the maze superclass. generate() inturnusesthe
private method tryDi r(). tryD r() uses the private methods

bl ocked(), nobi ag (), and an overloaded version of i sopen(). (Remem-
ber, an overloaded version of amethod is an alternate method that accepts
different parameters.) Here are fields and methods you add to s1ockMaze tO

generate mazes:

private Vector pending; // list of available Sgr objects
private int strt = 70; // prcb of exploring from sane sqr
private int sdir = 60; /1 prob of exploring in sanme dir

private int thru = 90; // prob of blocking thru | oop
private int side = 60; // prob of blocking wi de area
private int diag = 100; // prob of blocking diag connection

private int dens = 15; /I prob of |eaving areas unexpl ored

public boolean isQpen (int x, int y)

return inBounds(x, y) && sqr(x, y) == FLOOR;
private bool ean i sQpen (int x, int y, int al |owProb)
reti~~rn _ , (all owProb) && isOpen(x, VY);

private bool ean bl ocked (int x, int y) i
return i nBounds(x, y) && sgr(x, y) == WALL;

prve oo noag i, iy, 0, ot) |
return bl ocked(x + dx, y) && blocked(x, y + dy) &&
isQpen(x + dx, y + dy, diag);

private boolean tryDir (int x, int y, int dir) {
Il Step #7 - check if adjacent square in direction dir
11l shoul d be added to the nmaze
switch (dir) f
case TOP:
Y
I f (isOpen(x, y-1, thru)
i sOpen(x-1, y, side)
noDi ag(x, y, -1, -1) ~~ noDiag(x, y, 1, -1))

\ i sopen(x+l, y, side)
return fal se;
br eak;

(conti nued)

52 Part 11: Up to Speed

(continued)

case BOTrTOM
y++;

i f (isOpen(x, y+1, thru)

isOpen(x-1, y, side) -1| isQpen(x+1l, y, side)
noDi ag(x, y, -1, 1) .| noDiag(x, y, 1, 1))
return fal se;
br eak;
case LEFT:

i f (isOpen(x-1, y, thru) I

isQpen(x, y-1, side) ~~ isQpen(x, y+l, side)
noDi ag(x, y, -1, -1) ~~ noD ag(x, y, -1, 1))
return fal se;
br eak;
case RIGHT:
X++:

i f (isOpen(x+l, y, thru) Il

i sOpen(x, y-1, side) I isOpen(x, y+l, side) -~
noDi ag(x, y, 1, -1) Il n,oDag(x,, y, 1, 1))
return false;
br eak;
|
if (finishX < 0 & x == nzWd-1)

finishX = x; finishyY =vy; /1 found exit

else If (x <=0 Il x > mWd-1 Il vy <=p [y >= nZHyt - 1)
return fal se; /1 square on border or out of bounds
el se {

Sqr sq = new Sqgr(x, y, dir,
bl ocked(x, y-1), blocked(x, y+l),
bl ocked(x-1, y), blocked(x+1, y));
/1 if pruning density, replace |last pending Sqr
if (pending.size() > 10 & prob(dens))
pendi ng. set El ement At (sq, pending.size() -, 1);
else // not pruning, add pending Sqr to |ist
pendi ng. addEl enent (sq) ;

maze[x][y] = FLOOR;

di rtySquare(x, y);
return true;

publ i c synchroni zed void generate
| bool ean di spl ayConst ructi on)
int free, idx;
[/ Step #1 - initialize the maze
cl ear Maze();
i f (displayConstruction)
showvaze(true);
/1 Step lit - select and set the starting square
pendi ng = new Vector();
maze[startX = Ol[startY = rint(meHyt - 2) + 11 = FLOOR;
dirtySquare(startX, starty);
pendi ng. add[| enment (new Sgr (startX, startyY, Rl GHT,
false, false, false, true));
/1l Step #3 - loop until list of squares is enpty
whil e (!pending.isEnpty()) i
/1 Step #4 - select a square to explore
if (prob(sdit))
idx = pending.size() - |; /1 continue with last Sgr

el se
idx = rint(pending,size()); // choose random Sqr
Sqr next = (Sgr) pending. el enment At (i dx);
Il Step #5 - renove square if no nore sides to explore
/1 Also randomy renove squares to reduce nmze density.
if ((free = next.open()) <=1 11
(pendi ng. si ze() > 10 && prob(dens)))
pendi ng. renove[| ement At (i dx);
if (free > 0)
/'l Step 4i6a - select a direction to explore
if (tryDir(next.x, next.y,
next.seleet(rint(free), prob(sdir))))
i f (displayConstruction)
showvaze(fal se);

Step #8 - explore another square
1" (IdisplayConstruction),

repaint();

! /1 generate()

Chapt er

7. 2-D Maze

The key to generating an interesting block maze is how Step 7 in the method
try Dir () decides whether to add a square to the maze. try oi r () looks at
the squares surrounding the new square candidate. Figure 7-3 showsthe
operationst ryoi r () performswhenthedi r parameter is r1 o

1

156 Part II: Up to Speed

Figure 7-3:
Checking a
squarein
tryDi r
(x. Y,
RIGHT).

Square at (X, Y) isOpen(x, y-1, side)
coordinates passed
to tryDi r() \

noDiag(x, y, 1, -1)
isOpen(x+l, y, thru)

Dip s REGHT——=
noDiag(x, y, 1, 1)
Target square
at (++x,y) isOpen(x, y+1, side)

Hereisthe codefromthetry Dir () swi t c h statement:

case RIGHT:
X++;
if {isOpen(x+1, y. thru)
i sOpen(x, y-1, side) ‘' isOpen(x, y+1, side)
noDiag(x, y, 1. -1) ** nob ag(x, y, 1, 1))
return fal se;

br eak;

The first thing the code does is increment x to adjust the (X, y) coordinates
from the current square (square 1 in Figure 7-3) to the new square candidate
(square 2). Working from the candidate square, the code callsi sOpen (x+1.
y, thru) tocheck whether the square to the right (square 3) is afloor
square. Hereisthe i sOpen () method:

private bool ean isOpen (int x, int y, int allowProb) I
return prob(al | owProb) & i sQpen(x, y);
|

The thru parameter specifies the probability (from 0 to 100) that i sOpen()
returnst r u e regardless of whether or not the square is open. Becauset hr u
is 90 and square 3 in Figure 7-3 is open, there is a 90 percent chance that

p rob (90) returnst r u e and a 90 percent chance that the first call to

i sOpen() returnstrue. If i sOpen() returnstrue, tryDi r() returnsfal se
and doesn't use the square.

Eveniftry Dir () decides not to use the square this time, the square could
still be selected when evaluated from another direction. For example, square 2
in Figure 7-3 could be selected when moving to the L EFT from square 3.

Chapter 7: 2-D Maze

Assuming that the first test beatsthe oddsand i sopen() returnsaise the
next check isopen(x, y-1, side) lOOkSto seewhether the squareto the
top (square 4 in Figure 7-3) isopen. The s i d e probability is 80 percent, but
because square 4 isawall, i sopen () returns i a1se regardless of the results
of the probability test. The next check isfor the other side at the bottom
(square 5); square 5 isalso awall square, soi sopen () againreturnStaise.

The last two checks are looking to see whether using square 2 creates two
diagonally opposed open squares, as shown in Figure 7-4.

Thetestnoniag(x, y, 1, -1) checksto seewhether using square 2
creates diagonally opposed open squares between squares 2 and 6 in
Figure 7-3. Thenooiag() testis

private boolean noDiag (int x, int y, int dx, int dy) I
return bl ocked(x + dx, y) && blocked(x, y + dy) &&
i sOpen(x + dx, y + dy, diag):

nobi ag() first checksthat both of the other opposing corners (squares 4
and 3 from Figure 7-3 in this case) are wall squares. If they are, it checks
whether the diagonal sguare (square 6) is open. However, because
BlockMaze SetSthe i a ¢ probability to 100,try D i r () never uses asquare
that creates diagonally opposed open squares.

Although diagonally opposed open sgquares don't create a faulty maze, they
are aesthetically undesirable, at least when viewed from overhead.

Table 7-1 shows all the settings that you can tinker with to change the
characteristics of the mazethat s10ckmaze generates. You change the
settings by changing the initialization values of the private fieldsin the
Bl ockMaze Class.

155

56 Part Il: Up to Speed

Table 7-1 B1 ockMaze Maze Generation Settings

Field Default Increasing This Value Generates a Maze That...

strt 70 has longer uninterrupted passageways

sdir 60 has straighter passageways with fewer turns

thru 90 has fewer loops and alternate paths

side 60 has fewer open areas and fewer areas wider than the
passageway

diag 100 allows fewer diagonally opposed squares like the

squares shown in Figure 7-4

dens 15 has more walls and alower path density

sowing Mazes

Y ou solve a maze by finding a path between two points in the maze. Games
need to solve mazes in order to allow computer adversaries to navigate
through the maze. This section shows how to implement algorithmsto find
apath through the maze. Chapter 8 discusses how to use the capability to
navigate through mazes to instill "artificial intelligence" in your computer
opponents.

Representing the solution

Y ou declare the following two-dimensional array of bytesin the Maze class
to keep track of a maze solution:

protected byte[][] path;

Each entry in the array records the sides of the corresponding maze square
through which the solution passes. Y ou mark a path in the array by setting
the bit for the corresponding side. The static final fieldsL E FT, R GHT, TOP,
and BOTTOM in the Maze class define the bits. For example, if the path enters
the left side of the square and exits out the top, theentryinpa th [I[1is
(LEFT | TOP).

Y ou add the following methods to the M a z e class to define the methods for
traversing the maze:

Chapter 7:2-D Maze 15 7

abstract bool ean traverse (int startX, int starty,
int finishX, int finishy,

bool ean di spl aySearch);

publi c bool ean traverse (bool ean di spl aySearch) |
return traverse(startX, startY, finishX, finishy,

di spl aySear ch) ;

The classes that extend m z e must implement the abstract method
traverse(). YoOU declare the overloaded t r aver se(bool can
displaysearch) method to use as ashortcut for traversing from the start
and finish sgquares of the maze.

K eeping your left hand on the wat!

A relatively simple yet effective strategy for traversing amaze isto keep
your left or right hand in contact with the wall as you move through the
maze. Keeping your left hand on the wall causes you to take all the left-hand
branches. When you reach a dead end, your hand sweeps along the dead-
end wall and you start walking back down the path. Figure 7-5 shows tra-
versing a maze while keeping the left hand on the wall.

ipe 7-5: —_— ; }

Reverse

maze

using the
| eft-hand
rule. _—

The left-hand (or right-hand) rule only works reliably for mazes with asingle
solution between any two points. If a maze has more than one solution, you
can end up traveling in an endless circle if you follow the left-hand rule. To
see why you can move in an endless circle, consider a hallway with a
column in the middle. Y our objective in this simple maze isto get from one
end of the hall to the other with two solutions: Y ou can go around the
column to the left or to the right. If you happen to start your search with
your hand on the column, you perpetually walk around the column; your
hand never leaves the column, and you never reach the goal of the maze.

58 Part Il: Up to Speed

TheW allM azeclassimplementstheleft-hand ruletraversal algorithm
likethis:

public synchroni zed bool ean traverse

(int xx, int yy, int fx, int fy, bool ean displ aySearch)

if (!inBounds(xx, yy) 1! !inBounds(fx, fy))
return fal se;

i nt count = 0, sq = maze[xx][yy];

int side = LEFT, sx = XX, Sy = Vyy;

bool ean solve = (xx == startX & yy == startyY &&

fx == finishX & fy == finishY);

resetpath();

if (solve) (// mark path to enter maze
pat h[xxl [yy] = LEFT;
di rtySquare(xx, yy);
side = TOPR;
1
while (xx !'=fx 11 yy !=fy) I
while ((sq & side) !'= 0) // search for direction to try
if ((side <f= 1) > BLOCKED)
side = TOP;
pat h[xx][yy] "= side; // set exit fromcurrent square
di rtySquar e(xx, yy);
switch (side) f // set entrance to new square
case LEFT: path[-- xx][yy] "= RIGT; side = BOTTOM
br eak;
case TOP: pat h[xxI [--yy] ~= BOTTOM side = LEFT;
br eak;
case RIGHT: pat h[++xx] [yy] "= LEFT; side = TOP;
br eak;
case BOTTOM pat h[xxI [++yy] ~= TOP; side = RI GHT;

br eak;

sq = dirtySquare(xx, yy):
i f (xx == sx & yy == sy && side == LEFT){
/1 we ve searched the entire maze and we re back at
Il the starting square, so there s no solution
reset Pat h():
i f (displayPath)
repaint();

return fal se;

i f (displaySearch)
showaze(f al se);

else if ((++count & OxFF) == 0)
Thread. yield();

Chapter 7: 2-D Maze

if (solve) mark path to exit naze
path[xx] [yy] J = RIGHT;
di rtySquar e(xx, yy);

|

I'f (displayPath)
repaint();

return true;

|1l traverse()

Noticethattr av er se () marksasguare in the path using the exclusive-or
operator (*=). Remember that you use the exclusive-or operator to toggle
bits: A zero bit becomes a one and a one becomes a zero. This toggling
means that thefirst timetrav er se () marks apath in a square, the code
setsthe bit for the path to one. Astr av er se () backtracks down a dead-end
path, this same instruction toggles the one and clears the path to zero,
effectively erasing the dead-end path fromthepath[][] array.

Using breadth-first searching to
find the shortest path

Y ou use a breadth-first search to find the shortest path between two points
inamaze. Unlike the left-hand rule, a breadth-first search is designed to find
the optimal solution in a maze with multiple paths between two squares.
Breadth-first searching works by taking one step at atime on each possible
path before taking a second step on any path. The search proceeds simulta-
neously along all paths that have not been pruned. You prune a path (elimi-
nate it from future searching) when the search reaches adead end or a
square that has already been searched. Because all search paths are the
same length, you know that when you find the destination square, you've
also found the shortest path.

Y ou use atwo-dimensional array the same size as the maze grid to keep
track of which squares have been searched. Y ou declare and allocate the
array like this:

byte[][] graph = new byte[meWd] [neHyt];

First, you initialize each entry inthegraph [][] array to zero. Next, set the
entryingraph[1[] for the square where the search startsto -1. Asyou
search, yourecordingraph [][] thedirection to move in order to return to
the previous square on the path. This record creates a backwards-pointing
graph that you can follow to get back to the square where the search was
begun. Figure 7-6 shows the breadth-first search path through a maze and
theresultinggraph[][] array.

159

160 Part II: Up to Speed

Figure 7-6:

A breadth-

first search
path and
corresponding
graph array.

While searching, you maintain a queue of squares waiting to be searches.
After you add a sguare to the search path and set the corresponding erao
ingrapn[1r], you add the square to the queue. Each iteration of the s&s
pulls the next square out of the queue and checks each direction to see
whether the search path can be extended to the square in that direction
Y ou add any squares you find to the search path, set the corresponding |
entryingraphn(] [], and place them in the queue. This cycle continues uN
either you find the destination square, in which case you've solved the
maze, or the queue is empty, in which case the maze has no solution.

A queueis afirstin, first out (FIFO) data structure, which means that the
first item put into the queue is the first item removed from the queue and
that you add items to the queue at one end and take them out at the oth®
The term queue means "awaiting line," and like aline at the Department 4
Motor Vehicles, the first personin lineis the first person served.

Here isthe breadth-firstt rav er se () method for theB 1o c « vaz eclass:

public synchroni zed bool ean traverse

(int sx, int sy, int fx, int fy, bool ean displ aySearch)

i f (!inBounds(fx, sy) " I nBounds(fx, fy))
return fal se;
int dir, xx = sx, yy = sy, count = O;
int ghead, gtail, qgsize = neWd + nzHyt - 1) * 2;

short[][] queue = new short[gsize][21; // O =x, 1 =1y .
byte[][] graph = new byte[meWd] [nzHyt]; |
bool ean solve = (xx == startX & yy == startY &&
fx == finishX & fy == finishY);
if (displaySearch) |
reset Path();
if (solve) 1
pat h[sx] [sy] = LEFT;
di rtySquare(sx, sy);

showvaze(f al se);

Chapter 7:2-D Maze 161

graph[xxI [yyl

queue[0] EO] = (short) xx; queue[0] E1] = (short)ny;
qtail = 0: ghead = 1:
TRAVERSE:
for (53) {
if (ghead == gtail) |. // enpty queue: unsol vabl e maze

reset Pat h();
f (displayPath)
repaint();

return false;-

xx = queue[gtail][0]; yy = queue[gtail][1];

gtail = (qtail + 1) %gsize;

int gstart = ghead;

for (dir = TOP; dir <= LEFT; dir <(= 1) |
int ndir =0, nx = xx, ny = yy;

switch (dir) |

case TOP: ny--; ndir = BOTTOM br eak;
case Rl GHT: nx++; rdir = LEFT; br eak;
case BOTTOM ny++ ndir = TOP; br eak;
case LEFT: nx--; ndir = RIGHT; br eak;

if (inBounds(nx, ny) &&

graph[nx][ny] == 0 && maze[nx][ny] == FLOOR)

/1 extend the search path in direction dir
graph[nxl [nyl = (byte)ndir; // point to prev square
if (displaySearch) |

path[xx][yy] 1= dir;

di rtySquar e(xx, yy);

path[nx][nyl = ndir;

di rtySquare(nx, ny);

if (nx == fx & ny == fy) // found solution
break TRAVERSE;

queue[ghead] [0] = (short)nx;

queue[ghead] [1] = (short)ny;

ghead = (ghead + 1) % gsi ze;

i f (displaySearch) |
I'f (ghead == qgstart) { // dead end, backtrack
while (path[xx][yy] == graph[xxI[yyl) I
pat h[xx!I [yyl = 0;
di rtySquar e(xx, yy);
(continued)

Part Il: Up to Speed

(continued)

switch (graph[xx][yy]) |

case TOP: path[xx][--yy]l & (byte)-BOTTOM
br eak:

case RIGHT: path[++xxI [yy] & (byte)-LEFT;
br eak;

case BOTTOM pat h[xx] [++yy] &_ (byte)-TOP;
br eak;

case LEFT: path[--xxl[yy] & (byte)-RI GHT;
br eak;

|
di rtySquare(xx, yy);

!
showvaze(f al se);

else if ((++count & OxFF) _= 0)
Thread. yiel d();

if (displaySearch) I
if (solve) {
path[xx] [yyl = RIGHT;
di rtySquare(xx, yy);

showvaze(fal se):"'

/'l reconstruct path by follow ng graph

/1 fromfinish to start
reset Pat h();

i f (solve)
path[fx][fy] = RI GHT;
while ((dir = graph[fxI[fy]) !'= -1)
path[fx][fy] 1= (byte)dir:
switch (dir) |
case TOP: path[fx][-- fy] = BOTTOM br eak;
case RI GHT: path[++f x] [fy] = LEFT; br eak;
case BOTTOM path[fx][++fy] = TOP; br eak;
| case LEFT: path[--fxI[fy] = R GHT; br eak;
|
if (solve)

path[fx][fy] y= LEFT;
'f (displayPath)
repaint();

return true;

Chapter 7: 2-D Maze 163

Notice in the preceding code that after you find a solution, you reconstruct
the path by following g ra p h [][] from the destination square to the starting
square.

laying a 2-D Maze

The Mazeclassextendsjava.awt.Canvastogive ita display area. You
draw the maze by overriding the p ai nt () method inherited fromCanvas.

Because most of the work to draw a wall maze or a block maze is the same,
the M a z e class overrides paint () to do the drawing. As farasthe paint ()
method is concerned, the only difference between the two Maze subclasses,
Bl ockMaze and Wal | Maze, is in the actual drawing of a square. paint()
calls d raw Squa re () to draw a single maze square. You have to implement
the abstract methoddraw S quar e () that Maze defines and that p a i nt()
calls in the classes that extend Maze. B 10 c kM a z e draws its squares as solid
blocks. Wa 1 1 Maze draws walls between squares and leaves the middle of the
squares open, except that W a 1 1 M a z e draws squares with walls on all four
sides (BLOCKED squares) as solid blocks.

Implementing a circular queue

breadth-first traverse() code imple-
I thequeuel] array as a circular queue.
tamular queue allows you to continually put
fires into one end of the queue and remove
Wires from the other end without ever run-
ing into theendofthequeue[] array. If you
ion' t Use a circular queue, you have to peri-
sAcally move the squares from the end of the

i back to the beginning. You add squares
in -r_ nead of the queue like this:

4ei -head] [0] = (short)nx;
zm-. 6" : head] [1] = (short)ny;

| = ;ghead + 1) %qgsi ze;

You increment ghead to point to the next
entry in the queue. The modulo operation

gsizesets ghead to zero if(ghead + 1)
equals g s i ze. (Remember, the modulo opera-
tor returns the remainder of dividing the left-
hand operand by the right-hand operand -
the remainder of dividing (ghead + I) by
gs i ze in this case.) You use similar code to
remove the next square from the tail of the
queue:

xx = queue[gtail][O0];
yy = queue[gtail][1];

qtail = (qtail + 1) %qsize;

Part Il: Up to Speed

\F

Usingthep ai nt () method

Y ou draw the maze to an offscreen image and then copy thisimage to the
screen. (Chapter | shows how to use an offscreen image and override
update() for smooth screen updates.) You add the following pai nt (:
method and supporting fields to the maze class:

protected | nmage of f scr eenl mage;

protected Graphics offscr;

publ i c synchroni zed void paint (G aphics g) {
pai nt Of f scr eenl mage() ;
g. draw mage(of f screenl nage. 0, 0, this);

noti fyAl Il ();

pai nt () calls pai ntCffscreenl mage() (another method inthe maze
to do the work of creating the maze image in an offscreen image. Y ou do the
work inpaintotfscrenlimge() ratherthanin pai nt() so that the
subclasses can override pa i nt () without replacing the code in

pa i ntOffscreen Image(). Keeping the offscreen image code out of

pai nt () alowsthe subclassesto modify how pai nt () works and still
reusethecodeinpaintottfscreenimage() togeneratethe maze display-
(Chapter 8 shows an example of overridingpaint () todisplay spriteson
top of the offscreen maze image.)

Thefirst thing pai nt o f screenl nage() doesis check whether it needsto |
create the offscreen image and then creates it if necessary.

Y ou allocate the offscreen image from pai nt () rather thaninthem ze ()
constructor becausecreat e imge () can't create the offscreen image unto
you place the maze canvas on the screen by adding it to a container. And
because you can't place the canvas on the screen until you create it, you port
the code that allocates the offscreen imagein pai nt (). The Abstract
Window Toolkit (AWT) can't call pai nt () until you add the component to
the screen hierarchy, socreat el mage () is guaranteed to work when

pai nt() Ca“SIt

Next,paintoffscreenimage () loops through all the squaresin the range
of dirty squares and draws any squares that have the b1 rry bit set in the
square. For each pi RTY square, pa i nt Of fscreenl mage() calls
drawsquare() to draw the maze square and then calls draw Path Square
to draw any path through the square. (The "Displaying a solution" section
later in this chapter shows how to implement drawpathsquare().) If the
sguare isthe maze's start or finish square, paintoffscreenimage() cals
drawarget () todraw colored circlesto mark it.

Chapter 7: 2-D Maze

Finaly, you copy the offscreen image to the screeninpai nt() with this
statement:

g. drawi mage(of f screeni mage, 0, 0, this);

The complete maze class, including the pai nt O f scr eenl mage() and
drawarget () methods, isincluded onthe CD.

Repainting the mazein a
thread-friendly manner

Because Javacallspaint () from adifferent thread than the thread in which
your applet runs, youusewa i t () and not i fya 1 () towaitfor paint() to
draw the maze. (CD Chapter 2 discusses the AWT Interface thread that calls
paint() and showshowtousewait() andnotityall() tocontrol the
timing of an animation.) This section shows how you use these techniques
to control the animation of a generating maze.

First, notice in the preceding section that before exiting, paint () cals
noti fyA 1 () towake up any threads that are waiting for the maze to
repaint itself. The code waiting to wake up isin showMaze (). Youcal
showvaze () tO repai nt() the maze and wait for paint() tofinish.
showvaze() Sleepslong enough after displaying the maze to produce a
consistent 30 frames-per-second (fps) animation frame rate. Here isthe
s howvaze () method and supporting fields you add to the maze class:

protected long tinmer, maxFraneRate = 30L; // 30 fps

protected void showvaze (boolean allDrty)
if (allDirty || offscreenimage == null)
repaint();
el se
repaint(leftCffset + minXdirty * sgwd,
topOfset + mnYdirty * sgHyt,
sgWd * (maxXdirty - minXdirty + 1) + |ineWd,
sgHyt * (maxYdirty - minYdirty + 1) + lineHyt):
try | wait(); | catch (InterruptedException e) {}
long t = SystemcurrentTinmeMIlis();
if ((timer -=t - (1000L / maxFraneRate)) > 0)
try (Thread.sleep(tiner); |
catch (InterruptedException e) 11

timer = SystemcurrentTimeM I list);

165

Part Il: Up to Speed

Figure 7-7:
The pixel
dimensions
of amaze

square.

Calculating where the pikels go

Y ou draw the maze squares at pixel locations determined by the size of the
Maze canvas and the grid dimensions of the maze. The pixel locations are
the same for wall mazes and block mazes, so you place the code to calculatin
the pixel offsets and sizes in the Maze class. The drawsquare() mMethods
implemented by the classes that extend M ze use these pixel locations to
draw the maze squares.

You calculate the pixel valuesin resetMaze(). re setmaze() adjuststhe
pixel width and height of each rectangle in the grid to fit the screen size aih
the maze canvas. vaze overridesthe reshape() method inherited from
canvas tOresizethe maze whenever the size of the canvas changes. If
reshape() changesthesize of the canvas, itcalls reset maze() tocacuilm
the new size of the grid squares. Figure 7-7 and Table 7-2 show the fields thw
reset Maze() calculates.

sgLnWid

sgLnHyt By
LineHyt
LineWid

sqWid
Table 7-2 Pixels Values for Drawing the Maze
Eield What It Contains
sgW d, sqHyt Thewidth and height of agrid square in pixels. These

includethe1 i new d and ! i neryt, respectively, of
the line on one side of the square.

| i newd, |ineHyt The pixel width and height of the lines separating grid
squares. Y ou set these to zero for block mazes.

sgLnW d, sqLnHyt The pixel width and height of a grid square plusthe

Separating lines.
| eft OF f set, The pixel offsetsto center the displayed maze within
t opOf f set the canvas. These are the canvas pixel offsets of the

upper-left corner of the square ma ze [01 [o1.

Chapter 7:2-DMaze 16 7

Knowing that block mazes are
simpleis hat(the battle

The squares in a block maze are simple colored rectangles. The type of maze
square determines the color of the rectangle. Figure 7-1 earlier in this
chapter shows an example of a block maze. Y ou implement the

drawSquar e() method for the B1 ockMaze classlike this:

protected void drawSquare (int xx, int yy) I
of f scr. set Col or (maze[xxl [yyl == WALL ?
Color.gray : Color.white):
offscr.fill Rect(leftOffset + (xx * sgWd),
topOffset + (yy * sgHyt), sgWd, sgHyt);

Theexpressionleft0ffset + (xx * sqWid) calculatesthe pixel offset of
the left edge of the maze squareand t o p Of f set + (yy * sqHt) calcu-
lates the top pixel offset of the square.

Displaying a watt maze

Each sguare in awall maze has 16 different possible combinations of walls,
and drawing one such square takes several steps. The first step is to check
whether the square has all the walls set, in which case you treat the square
asasolid wall. You draw a solid wall by filling the entire square with black.
If the square isn't asolid wall, you start by erasing the square to white and
then drawing the four sides and four corners depending on which walls
the square has set. Figure 7-8 shows the 8 wall sections that you draw and
the 16 resulting wall maze squares.

actions LI ‘ J

E-7
issulting —“—-—l-

16 wall 6 7
squares

igm7-8:
7he 8 wall

|—

68 Part II: Up to Speed

Notice that in Figure 7-8 all 16 squares draw all 4 corner sections of the
which happens because va 1 1 vze ONly generates dense mazes with no|
open areas. If you allow wall mazes with open areas, you only draw a i@
if the square on the opposite side of a corner that has any walls set that
share the corner, or if the corner of the square is on the edge of the m aze

Figure 7-2 earlier in this chapter shows an example of awall maze.

The completewai11maze class, includingthe drawsquare() method, is
included on the CD.

To reducethe number of i 11 rect () callsthat d rawsq ua re () hasto Use
order to draw the maze square, the 1 i 11 re et () calsthat draw the wall
sides draw both corners as well. For example, the following code draws the
top wall and both top corners (sections 1, 2, and 3in Figure 7-8) in the
square:

if (top - (sq & TOP) I- 0)
offscr.fillRect(xoff, yoff, sgl.nuid-, LineHyt);

This code also setsthe local variablet o p to t r ue if it drawsthe top com
If d raw squa re () doesn't draw the Lert side of the square, it checkst
determineif it needsto draw the top-left corner of the square. If topis
fal se, drawsq ua re() didn't draw either the TOP or Lert wall, so it draws
the corner. Y ou repeat the TOP check for the sortov wall of the square an
repeat the 1 e rr check for the r1 e wall.

Customizing the appearance of a wall maze

You can change the look of a wall maze by You control the pixel sizes of the squares
either setting the pixel width and height of the calling resi ze(w dt h, hei ght) to set
grid squares to different values or by chang- the dimensions of the maze canvas, and
ing the thickness of the lines that define the calling set Di nensi ons(squar esW de,
walls. For example, the figure shows a maze squa resH gh) to setthe maze dimensions.
with squares that are 16 pixels wide, 8 pixels = To change the default line sizes, you cal
tall, and have walls that are 6 pixels wide and set Li neSi zes().

6 pixels tall.

MezeAppl et

Chapter 7: 2-D Maze

Displaying a solution

A maze stores the current solution pathinthep atn|][] array. The bytesin
path[][| have abit set for each side of the corresponding square in the
mze [][] array that hasasolution path. The "Solving Mazes" section earlier

in this chapter discusses how you set these bits.

Y ou display the solution by drawing each path segment setinpatn]|t
pa i ntOfscreenl mage() calsthe dr awPat hsquare() methodin mvaze to
draw a single path square. Because some subclasses of v ze may want to
calculate maze solutions but not display them, paintoffscreenli mge()
only calsdrawrathsquare() if thebooleanfielddispl ayrathisset.

drawpathsquare() USeSpixel sizesand offsetsthat you initialize in
resetMaze(). pWidandpr t contain the pixel width and height of the
displayed path. You set pxof t to the pixel offset within a square of the left
edge of avertical path segment and pyof f to the offset of the top edge of a
horizontal segment. Y ou declare these fieldsin ma: e like this:

protected int pwd, pHyt, pxoff, pyoff;

You initialize these fields by adding the following codeto resetvaze ():

int pw = sgWd - |ineWd;

pWd = (pw & 1) == 0 ? Math.max(2, (pw » 1) & -1)
Mat h. max(1. (pw)> 1) 1);

nt ph = sgHyt - |ineHyt;

pHyt = (ph & 1) _= 0 ? Math.max(2, (ph >> 1) & -1)

Mat h. max(1, (ph >> 1) | 1);
pxoff = (sgLnWd - pwd) >> 1;
pyoff = (sgLnHyt - pHyt) >>1;

To center the path in the square, the width of the path must be even if the
sqguare width is even and odd if the square width is odd. The following
instruction calculates the pixel width of a square:

int pw = sgWd - |ineWd,;
Y ou use the pixel width pw to calculate the path width like this:

pWd = (pw & 1) == 0 ? Math. max(2, (pw >> 1) & -1)
Mat h. max(1, (pw >> 1) 1 1);

(pw & 1) == 0is true if thepathwidthisevenand fai se if itisodd. You
set an even path width approximately half the width of the square and at least
two pixelswide by using vath. max (2, (pw > > 1). You calculate an odd
path width at least one pixel wideusing Math. max (1, (pw >> 1) | 1).

169

170 Part Il: Up to Speed

Figure 7-9 shows what the completed path for awall maze looks like.

Figure 7-9:
Displaying a
solved wall
maze.

Putting the maze on the screen

You place am ze canvas on the screen by adding it to a container, such as
an applet. This section shows how to implement the mazeappi1et classto
display the maze and how to use threads to animate the generation and
solving of multiple mazes simultaneously. In fact, the applet can even sole,
maze whileit is still generating it. Figure 7-10 shows a block maze being
solved whileit is still being generated.

Figure 7-10:
Solving a
partially &
generated
maze.

Using athread to animate, generate,
and solve a maze

Y ou spawn athread to animate, generate, or solve the maze. Because each
maze or applet can have more than one thread, you create a thread class
handle the different thread operations.

WBER
% Because the only function of the classisto execute athread,, you extend the
mazeThreadclassdirectly from Thread instead of implementing the
Runnabl e nterface.

Dependingonthesol ve parameter passedtothemazetnread () construc-
tor,themazetnread Classeither generates or solvesthe maze. Here isthe
complete MazeThr ead class:

Chapter 7: 2-D Maze 17 1

cl ass MazeThread extends Thread {
private Maze nmze;

private bool ean show, sol ve;

MazeThread (ThreadG oup tg, Maze maze,

bool ean show, bool ean sol ve)

super(tg, solve ? Solve thread : Generate thread
this. maze = maze;

this. show = show;

this.solve = sol ve;

start();

public void run () {
if (show
setPriority(Thread. MR PRIORITY + 1);
i f (solve)
maze. traver se(show);
el se

maze. gener at e(show) ;

1 I/l class MazeThread

Notice that if the operation is being animated, ther un () method sets the
thread priority to m1 npr1 0 RI TY + 1. LOwering the thread priority makes
the user input and screen updating more responsive.

Reviewing parametersin the
MazeAppl et class

To make the features of the maze accessible to HyperText Markup Language
(HTML), themazeappi et classaccepts certain HTML parameters. CD
Chapter 1 discusses how to pass parameters to an applet from HTML.
MmazeAppiet acceptsthefollowing parameters:

Parameter Name What It Specifies

L NEW DTH The width and height of thelines (1 i new d, 1 i nekyt).
Y ou only want to specify line width for wall mazes. The
line width defaults to zero for block mazes and one for
wall mazes.

MAZEW DTH The number of grid squares wide to make the maze.
The maze width defaults to 30 squares.

172 Part II: Up to Speed

Parameter Name What It Specifies

MAZEHEI GHT The number of grid squares tall to make the maze -
maze height defaults to 20 squares.

VAZE The mMaze subclass to use. The default maze class
"W || Maze".

For example, you add the following applet tag to your HTML document
block maze that is 20 squares wide and 15 squares tall:

<appl et code=MazeAppl et w dt h=242 hei ght =182>
<par am nanme= MAZE val ue= Bl ockM aze >

<par am nane= MAZEW DTH val ue= 20" >

<par am nane= MAZEHEl GHT val ue= 15">

</ appl et >

ThisHTML produces a block maze with squares that are 12 pixels Wide
12 pixelstall with a 1-pixel border around the maze. MazeApplet derive
these pixel dimensions from the HTML tag like this:

square width = (width / MAZEWDTH) = (242 / 20) = 12
square height = (height | MAZEHEIGHT) = (182 | 15) = 12
leftOfFfset = (wWidth % MAZEWDTH) / 2 = (242 %20) / 2 = 1
topOffset = (height % MAZEHEIGHT) / 2 = (182 % 20) ! 2 1

MazeAppl et generates anew maze when the user clicks the maze with
mouse button. If the user holds the Shift key down while clicking the &
on the maze and the maze has added the solution square to the maze. =me
applet solvesthe maze. mo us e Down () Spawns athread to generate or
the maze. (CD Chapter 2 shows how to spawn threads from event handiew’,
such as mouseDown ().)

The maze Appl et classisincluded on the CD.

Chapter 8

2-D Sprite Maze

_______ OO Ox<O*O*00.* * a*O0Ox0%H.0*0...&000.0x0

~This Chapter

Modeling game elements with sprites
Managing sprites with a sprite engine
Dusplaying and animating sprites

| ecting and handling sprite collisions
long game elements some intelligence
meting a 2-D maze game using sprites

rao.0s.a. *O #a *0 *O0 0o * 000 0#0 + .

spriteis an arbitrarily-shaped (not necessarily rectangular) graphic

object that moves nondestructively across a background. A familiar
example of a sprite isthe mouse cursor - it can be any shape, and it moves
around the screen without changing the screen background. Y ou use sprites
when you want to minimize redrawing the background.

Sprites are most useful for 2-D games - particularly arcade games where
you have a background and various objects moving over it. Y ou use sprites
to represent game elements that move around the screen, although you can
also use sprites for stati ongr%/ game elements. Game elements can be any
object in your game: spaceships, bullets, explosions, little men, obstacles,
walls, vicious blobs of slime, or a plumber named Mario.

Movable sprites contain code to move across a game background - which
brings up the questions of where and how to move the sprite - so we show
you how to give your sprites enough intelligence to answer these questions.
Of course, moving sprites can run into the boundaries of the background
and other moving and stationary sprites, so we show you how to detect and
resolve collisions when they occur.

In short, this chapter shows how to create, display, animate, and most
importantly, keep track of and manage sprites with a sprite engine. Finally,
this chapter puts all the sprite stuff together to make a simple game using
spritesand the B 1 0 ck M az e classfrom Chapter 7.

74 Part II: Up to Speed

Gentleman, Start Y our Sprite Engines!

%

4

Sprite engineis | ust afancy term for a data structure that keeps track ot
sprites and tells them when to perform certain operations such as draw
moving, or animating. When applied to software, the term engine identid
code that stands on it's own and is general enough to be used in avarieft -0
applications. A well-constructed sprite engine (which of course includes ther
one we present in this chapter) can be extended and used in many games

A sprite engine manages the spritesin arectangular play field. You can give
your sprite engine all kinds of bells and whistles, but the four primary
of asprite engine are to

V Maintain alist of all the sprites under its control and their position
in the play field

I' Draw the sprites from back to front
I' Movethe sprites

V Detect and resolve collisions between sprites or between a sprite anc
the edge of the play field

Actually, detecting and resolving collisions isn't arequirement for a sprite
engine. In some of your games, sprites may need to occupy the same space
in the play field without triggering a collision. However, for many games,
collision detection is the most important service the sprite engine provides
so weincludeit in our list of primary duties. After all, a shoot-'em-up game
wouldn't be much fun if the bullets never hit anything.

To leverage the power of object-oriented programming, your Java sprite
engine doesn't actually draw or move the sprites; it smply tells the sprites
when to move or draw themselves. Because collision detection either
involves more than one sprite or involves the sprite and the edge of the PIR
field, the sprite engine takes care of detecting collisions. However, the

engine just tells the colliding sprites what happened and | ets the sprites
determine how to resolve the collision. This division of responsibilities
makes the code for both the sprites and the sprite engine fairly ssmple, yet
allows you to build games with hundreds of moving and animating game
elements that interact with each other.

| mplementing a sprite
A sprite has only afew responsibilities:

I 1t drawsitself.

I' It updatesits state. This usually involves moving and/or animating the
sprite, but it could be anything the sprite needs to do periodically.

Chapter 8: 2-D Sprite Maze 175

I It definesits collision box. The collision box is arectangular area that
moves with the sprite and functions as the sprite's area of influence,
determining where the sprite can collide with other sprites.

V It handles collisions with other sprites and with the edge of the play
field.

Because game elements that are sprites may need to extend classes that
aren't sprites, you use an interface to define the sprite methods. Using an
interface allows any class that implements the interface to function as a

sprite.

An interface is a definition of methods that a class implements in order to do
the job that the interface defines.

The sprite interface you use for the game in this chapter, as well as for many
other games, is quite simple. You declarethe spr it e interfacein thefile
Sprite. java likethis:

inport java.aw.*;
public interface Sprite f
voi d set SpriteEngi ne (SpriteEngi ne se);
bool ean updateSprite ();
Rectangl e drawSprite (G aphics g);
Rectangl e col i sionBox ();
Rectangl e eol lideWth (Object obj);

1 1l end interface Sprite

The sprite engine usesthe Spr i t ¢ interface methods to manage sprites.
Table 8-1 shows the responsibilities for each of the five methodsthe spri to
interface defines.

Table 8-1 The Sprite Interface Methods
Met hod What the Sprite Engi ne Expects It To Do
set Spri t eEngi ne() The sprite engine passes this method a reference

to the engine when the sprite is added to the
engine, and callsit with nul | when the spriteis
removed from the engine. The sprite usesthe
reference to call methods in the sprite engine.

updat eSpri te() This method is the sprite's heartbeat. The sprite
engine calls this method periodically to tell the
sprite to update its state. Y ou move, animate, and
initiate actionsin update Spri te().
updateSpri te() returnstrue if you change
the sprite's collision box, 1 a 1 s ¢ if you don't.

(conti nued)

176 Part Il: Up to Speed

Table 8-1 (continued)
Method

drawSprite()

col I'i si onBox()

col Ii deW t h()

What the Sprite Engine Expects It To Do

The sprite engine passes this method a graphics
context in which to draw the sprite. It returns a
Rectangl e representing the region drawn to the
screenor vt if it didn't draw anything.

Thismethod returnsa Rrect angl e containing the
sprite's collision box. The sprite engine uses the
collision box to determine whether the sprite
collides with other sprites. coll i Si onBox()
returns nul 1 to indicate that this sprite doesn't
collide with other sprites.

In the event of acollision, the sprite engine passes
this method the object with which the sprite
collided. After resolving the collision with
whatever action is part of your game,

col 1i desw th() returnsthe possibly changed
collision box for the sprite.

The object parameter that the sprite engine passes to the sprite's

col Iidewith() methodisusually another Sprite but can aso be onethe
Spri teBorder constantss NORTH, SOUTH, EAST, or WEST-that
spriteEngine definesto represent collisions with the appropriate edge of
the play field. (spri teBorder is anempty classthat spri teEngi ne uses to
define these object constantssothatco1 1i dewi t h () cantest for aborder

collision using the test ob;j

i nstanceof Spri teBorder.) col | i deW th

resolves the collision, which may include changing the position of the sprtse
col Iidewth() returnsthe new collision box or nu11 if the sprite engine manr
not check for any more collisions with a given sprite during the current updat

Putting spritesin their place

Although some sprit e classes may need to extend anon-Sp it e class. the
main function of a spri to classisusually just to be a sprite. In addition. th
methods defined by the spri to interface all have logical default implemen
tations. These two features of sprites often enable you to encapsulate the
common code shared between sprites and reduce the amount of code you
have to write for each new sprite you create by giving these sprites a

common superclass.

Thespriteonject classisexactly this superclass; it implements the

spri to interface. The code to keep track of a sprite's position and collisim
box is pretty standard for all sprites, so you canimplement it in

Spri tebject. Hereisthe spri tebject class:

http://addition.th
http://addition.th

Chapter 8: 2-D Sprite Maze 177

inport java.aw.*;
public class SpriteObject inplenents Sprite |
protected doubl e X, Y; /'l center of sprite
protected int wi dt h, height;
protected SpriteEngi ne spriteEngine;
public SpriteObject (double x, double y, int w, int h) I
this.x = x; this.y = vy; width = w hei ght = h;

publ i c doubl e centerX () return x;)
public double centerY () return vy; |
public int spriteWdth t) return width;)
public int spriteHeight () 1 return height;

public void setSpriteEngi ne (SpriteEngine se)

spriteEngi ne = se;

publ i c bool ean updateSprite () | return false;)
public Rectangle drawSprite (Graphics g) | return null; |
public Rectangle collisionBox () |
return new Rectangle((int)(x - width / 2.0),
(int)(y - height / 2.0),
wi dt h, height);

public Rectangle collideWth (CObject obj)

| return collisionBox();

} /1 end class SpriteQbject

SpriteObj ect position spriteswith an anchor point at the center of the
sprite image. Using the center of the sprite image for the anchor point isa
decision you need to make based on the kinds of actions your sprites need
to be able to perform. Y ou can position sprites from any of the nine loca-
tions shown in Figure 8-1. The width and height of a sprite may change as it
is animated, but the anchor point continues to dictate how the sprite
positionsitself. Y ou need to choose the anchor point based on how the
sprite anchors itself to the background. We chose the center position as the
default because without any other selection criteria, the center is the best
choice.

However, some sprites may require anchor points at locations other than
the center of the sprite image. For example, an explosion sprite animates
from a small explosion image to alarge explosion image. Y ou want the
explosion to grow out from the center, so you use a center anchor point. On
the other hand, if your sprite represents a side view of aworm on the

78 Part II: Up to Speed

Figure 8-1:
The nine
ways to
position a
sprite's
anchor
point.

Top
Top left Top right
Left @ ® Right
Center
Bottom left Bottom right
Bottom

ground, you probably want to use a bottom anchor point to anchor the
worm to the ground. Using a bottom anchor point, the sprite expands and
shrinks from the center as its width changes, but keeps the bottom of the
worm anchored to the ground as the height changes. Conversely, you
probably want to use atop anchor point when you have a sprite that crawel
acrossaceiling.

Moving sprites around the play field

Noticethat SpriteObjectusesdoub 1 evaluesfor thex andy position

the sprite. Given that you can only draw images at integer pixel locations.
you may wonder why x and y are floating-point values. The answer liesin
the fact that using floating-point values results in much smoother move-
ment. Chapter 1 shows how you use floating-point coordinates and floa @&
point deltax and y values to smoothly move objects at any speed andin m
direction.

Y ou give your sprites motion by changing their position in the method
updateSprite().Hereisan example of how you add simple vector motion
to your sprite:

protected doubl e deltaX, deltaY; // the vector deltas
public bool ean updateSprite () {

x += del taX;

y += del tay;

return true;

Notice that the movement code doesn't need to do any checking to see
whether the object moves out of bounds or runs into something because |
sprite engine handles all the collision detection. All updateSpri tell' I._
to do is move the sprite.

Chapter 8:2-0 Sprite Maze 179

Resolving collisions

The sprite engine takes care of detecting collisions, but the sprite itself is
responsible for handling what happens as aresult of the collision. When the
sprite engine detects a collision, it callstheco11idewi t n () methodsfor
each spriteinvolved in the collision. You implement col 1i deWi th () to
resolve the collision. (The "Implementing a sprite" section earlier in this
chapter discusses how the spriteenginecallscollidewi th(),)

The vj ect Detector classextends spri temject. |t detectswhen a
specific object has collided with it and then notifies the sprite engine's
observers. (The observers are other objects, such asthe Spr i t em z ¢ game
presented in the "Building onthe s1ockmaze Class' section later in this
chapter, that receive messages from the spritesin the engine.) Y ou can
trigger an event when a sprite reaches a location in the play field by adding
an o j ectbetect or Spritefor that location to the sprite engine. The section
" Sprite events and handling them" later in this chapter discusses how the
notification process works. Hereisthe o j ectDetector class:

inmport java.aw.*;
cl ass bj ect Det ector extends SpriteQbject
private Object target;
ChjectDetector(int x, 'nt y, int w, int h, Object target){
super(x, y, w h);

this.target = target;

public Rectangle collideWth (Qbject obj) |
if (obj =- target)
spriteEngi ne. notifyGObservers(this);
return collisionBox();
|
11 end cl ass Obj ect Det ect or

Y ou can use sprite collision detection to do proximity detection. Proximity
detection is when you want a sprite to know when something is close to it
before it collides. Y ou use proximity detection as an early warning system to
allow your sprite to change course, initiate defensive maneuvers, or launch
an attack. Y ou give a sprite proximity detection by adding a slave sprite with
acol 1isionBox () that definesthe detection perimeter around the master
sprite. The slave sprite only needs to implement thecol 1i si 0 n 8 () and
collidewi t () methods; you leave the other methods empty like the
corresponding methods in the Spri te j ect class.

——rwp—

Part Il: Up to Speed

Displaying sprites

Y ou display a sprite by implementing the Sprite methoddraw Spr-:_ L.
The sprite engine passesdr aw Spri t e () the graphics context in which W) |
draw the sprite. Asan example, thefollowingRound Spriteclassdraws
sprite as a colored oval:

import java.aw.*;
cl ass RoundSprite extends SpriteCbject |
protected Col or color;
RoundSprite (double x, double y, int w, int h, Color c) i
super(*, y, w, h);

color = c;

public Rectangle drawSprite (G aphics g) {
g. set Col or(col or);
g.fi 1 oval ((int)(x - width / 2.0),
(int)(y - height / 2.0), width, height);

return collisionBox():

end class RoundSprite

Noticeinthecall to fi11oval()thadrawSprite() trandatesthespr s
center anchor point to the upper-left corner of the sprite before drawing to
match the upper-left coordinatesthat fi110val () expects.

Drawing plain old colored geometric shapes has its place, but what you
really need in order to give your game visual appeal are some colorful
images zippin' around the screen. Here'san I mage Sprit eclassthat you

use to create sprites from loaded images:

import java.aw.*;
class | mageSprite extends SpriteCbject |
protected | mage i mage:
I mageSprite (Inmage i mage, doubl e x, double y)
super(x, y, 0, 0);

set | mage(i mage) ;

public void setlnmge (Inage ing) |
image = ing;
width = ing.getWdth(null):
hei ght = ing. getHei ght(null);
;"-.l.'-!-.qu.&

A |

