uides —

Nine quick reference g
one great price!

« Java Basics

* Programming Basics

* Object-Oriented Programming
= Strings, Arrays, and Collections
* Programming Techniques

* Swing

* Web Programming

* Files and Databases

* Fun and Games

Doug Lowe

Java

ALL-IN-ONE DESK REFERENCE

DUMMIES

by Doug Lowe

WILEY

Wiley Publishing, Inc.

Java™ All-in-One Desk Reference For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Java is a trademark of Sun
Microsystems, Inc. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMEN-
DATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923064
ISBN-13: 978-0-7645-8961-4

ISBN-10: 0-7645-8961-X

Manufactured in the United States of America
109 87654321

10/RU/QU/QV/IN

WILEY

About the Author

Doug Lowe has been writing computer programming books since the guys who
invented Java were still in high school. He’s written books on COBOL, Fortran,
Visual Basic, for IBM mainframe computers, mid-range systems, PCs, Web pro-
gramming, and probably a few he’s forgotten about. He’s the author of more
than 30 For Dummies books, such as Networking For Dummies (7th Edition),
Networking For Dummies All-in-One Desk Reference, PowerPoint 2003 For
Dummies, and Internet Explorer 6 For Dummies. He lives in that sunny All-
American City Fresno, California, where the motto is, “It’s a sunny, All-FAmerican
City,” with his wife and the youngest of his three daughters. He’s also one of
those obsessive-compulsive decorating nuts who puts up tens of thousands of
lights at Christmas and creates computer-controlled Halloween decorations
that rival Disney’s Haunted Mansion. Maybe his next book should be Tacky
Holiday Decorations For Dummies.

Dedication

To Debbie, Rebecca, Sarah, and Bethany.

Author’s Acknowledgments

I'd like to thank project editor Kim Darosett, who did a great job of managing
all the editorial work that was required to put this book together in spite of a
short schedule and oft-missed deadlines, and acquisitions editor Katie Feltman
who made the whole project possible. I'd also like to thank John Purdum who
gave the entire manuscript a thorough technical review, tested every line of
code, and offered many excellent suggestions, as well as copy editor Rebecca
Senninger who made sure the i’'s were crossed and the t’s were dotted (oops,
reverse that!). And, as always, thanks to all the behind-the-scenes people who
chipped in with help I'm not even aware of.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online registration form located
at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Composition Services

Media Development Project Coordinator: Maridee Ennis

Project Editor: Kim Darosett Layout and Graphics: Andrea Dahl,

Acquisitions Editor: Katie Feltman Lauren Goddard, Stephanie D. Jumper,
Copy Editor: Rebecca Senninger Me.lanef.e Pren.dergast, Heather Ryan,
Julie Trippetti

Technical Editor: John Purd
echmic Htor: John Furdum Proofreaders: John Greenough, Leeann Harney,

Editorial Manager: Leah Cameron Jessica Kramer, Arielle Mennelle,
Media Development Manager: Carl Pierce
Laura VanWinkle Indexer: Ty Koontz

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave. com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

TNEFOAUCEIONeeeeeeeeeeaaaeeeeeeeeeeennnnaaeeeeeeeeennnnnsseseeeeeeee]

Book I: Java Basics............cceceeeeiceeeiaeecaenesneeeasseeeseeeas 1

Chapter 1: WelCOmE t0 JAVA......ccceccuieiiciiieiieeieeeteeteete ettt s reesveesveeteeveeaeesaesanens 9
Chapter 2: Installing and Using Java TOOIScccocvvvieriiniiniiiieeieeiesieseeeeeeeen 21
Chapter 3: Working with TeXtPad..........cccevvevierieniieiceceeeeeeeeeee e 35
Chapter 4: USING ECHPSE....cc.cocuieiieieeieciecteeett ettt sttt sveesaeeteeaeebe s e saeee 43

Book 1I: Programming Basics.............cccccccueeiceeeiaeeeanee. 03

Chapter 1: Java Programming BasiCS..........ccceeieeiieiiiecieeieciecieseeeee et 65
Chapter 2: Working with Variables and Data Types........cccccoevivrirrerienieniienieneereene 83
Chapter 3: Working with Numbers and EXpressionsccccocceeverviencienieneeneennenns 113
Chapter 4: MaKing ChOICES........ccieviieiiiiecieeccteeteete ettt saesaeeaesae s eseeens 141
Chapter 5: Going Around in Circles (Or, Using LOOPS)cccccevververiererenirieeeienn 161
Chapter 6: Pulling a SWitCherooccocoviiviiiiniiniiieetcceecce e 187
Chapter 7: Adding Some Methods to Your Madnessccceeeevieevienienieneeneennenns 199
Chapter 8: Handling EXCEPIONScccieeiieriieiiieiicieciectecteseeee ettt 217
Book 11I: Object-Oriented Programming......................235
Chapter 1: Understanding Object-Oriented Programming...........c.cccccecvevveneenieennnns 237
Chapter 2: Making YOUr OWN CLaSSESccveivuiriiiriieniienientenieenieesieeie st svesaeeseeens 249
Chapter 3: Working with StatiCsccccveeieiriieiieiierieeceeeeeeeereee e 265
Chapter 4: Using Subclasses and Inheritance...........ccccoeovevienienieecieccieniecieseeseeiens 273
Chapter 5: Using Abstract Classes and Interfacesccccoevevieeeenieneeceeseeneenens 293
Chapter 6: Using the Object and Class ClasSescccoeveveeriirnieriieniieniienieneenieeiens 305
Chapter 7: Using INNEr ClaSSEScccccuivierienieiiiieiieieeieetestese e seeesaesaessessesseesenens 329
Chapter 8: Packaging and Documenting Your ClasSescccccceevueeienieseeneenieenneens 339
Book 1V: Strings, Arrays, and Collections....................353
Chapter 1: Working with Strings........ccccceeierieiieiicieeececeee et 355
Chapter 2: USING AITAYS.....ccctevirrierierienienitenterieesieerieetesteseesseesseessesssessessesssesssesseens 371
Chapter 3: Using the ArrayList Classccoceeveeviirriieiieniienieseeseesieesie e 397
Chapter 4: Using the LinkedList Classccccecieviieiieeienienienieieeie e ste e seesveenveens 409

Chapter 5: Creating Generic Collection ClasSes.........ccccvevievieevieecieeciesiecieseesieeiens 419

Book U: Programming Techniquesccucceeeeee.. 431

Chapter 1: Programming Threadsccocevieviiriiiniiiniiinienececsieeieeie st eeeens 433
Chapter 2: Network Programiming..........cccceeeeviirciieiiiesieniienieseeseeseeeseesie e snesseesseens 453
Chapter 3: Using Regular EXpressions..........ccoccecevierirenineeieeieeieseseececeee e 475
Chapter 4: Using RECUISION......c.ccociiiiiiiiiiiieiiecienieetetetet et s 491
Book Ul: SWing........ccccecouecieiecnicceinieeicnsesseessssesseneees 305
Chapter 1: SWinging into SWINGccccveeieieiiirieiireee et srens 507
Chapter 2: Handling EVENES........c.ccccieviiiiiiieiieieciecteetectestese e saeete e sae s see e 521
Chapter 3: Getting Input from the USerccooviiiririninineeeeeee e 537
Chapter 4: Choosing from @ LiStccccieriiiiiiiniiniinieeteceeeee st 563
Chapter 5: Using Layout ManaZErScccceeeeierieriieresteeieeetesiessessessesseesessessessessenns 585
Book VII: Web Programming................cccccueeeceeeiarenes.. 603
Chapter 1: Creating APPIETS......cccciiiiiiieiieieeieee ettt ae e teste e saeesaeebeens 605
Chapter 2: Creating SErVIETSccoiviririieieeeieerereeee ettt sttt 613
Chapter 3: Using Java Server Pagesc.ccooevveriiiiiiinieniienieneeseeieeiesie st 633
Chapter 4: UsSing JAVABEANSc.cccuiviiiieriieieeienie ittt e e seessaestesnesaesaaenanens 647
Book VIII: Files and Databases....................cccccev.... 0663
Chapter 1: Working With FIlescccccoiiiiiiiiiiiciicecececceeeee e 665
Chapter 2: Using File StrEAMScceoeriiriiriirieieieiereeseeicet ettt 679
Chapter 3: Database for $100, PLEASE.........c.coceveriereeereereeeeeeeee e ereeereenens 703
Chapter 4: Using JDBC to Connect to a Databaseccccevvvvieevieriiencieniieneenieeiens 717
Chapter 5: Working with XMLccccciiiirienieniieiecieciectestese e sve e sae e s ae e e seeens 733
Book IX: Fun and Gamescccecueeeeeecceeccneceaeec 751
Chapter 1: Fun with Fonts and Colorscceceverierininieieeeeee e 753
Chapter 2: Drawing SHAPESccceeviiriiiiiniiiceeieeetenteste ettt st 767
Chapter 3: Using Images and SOUnd...........ccccecevvieriinienieniienieeienieseeseeseeseenieeeeens 789
Chapter 4: Animation and Game Programming............ccccecverienieevierriessiesseeneeneenieens 803

JRACK «eeeeeeeeeeeeeeeeeeaaaaeaeaaaaaaeeeeeeeeeeeensssssennnnnnnnnnnnnnaeeS2]

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaaeeeennasaeeesnnnseeessnnsseeeens]

ADbout This BOOK.......cooiiiiiiiriiiietetetteee ettt 2
How to Use This BOOKccccuiieiiiiiieiececeeteeeeees et 3
How This BOOK Is Organized............cccceeviiriieienienieniieneesieeie e eesveeseeens 3
BOOK I: Java BasSiCScccueriiiiieienieceeeeeeeete ettt 3
Book II: Programming BasiCsccceevevierciiniiinienieneceeieeieceeseeen 3
Book III: Object-Oriented Programmingccecceveevervienvieneeneennen. 4
Book IV: Strings, Arrays, and Collections..........c.cccceeeevieeciriceeenieennnns 4
Book V: Programming Techniquesccccoceeieniivenninnennenicncenen. 4
BOOK VI: SWINEG ..ttt sve e e 4
Book VII: Web Programmingccccceevveevienvienienieneenieenieesiessessennees 4
Book VIII: File and Database Programming...........ccccceeeevierriercveneennen. 4
Book IX: Fun and Games.............ccecveierienerieeeneeieienieseseeeeeessessensenns 5
This DO0k’S WED SIteccccveviieiirieieieieieeeeeee e 5
Icons Used in This BOOK..........cccciiiiiiiiiiiieceeeeeeee et 5
Where to GO from Here.........ccooevieieiieiieeciectece et 6

Book I: Java Basicscecoeeeaeeeiceeeaeeeieecneeesneeseeeseeeans 7

Chapter 1: WelcometoJavaccovviiiiinninnnnn.. 9
What Is Java, and Why Is It SO Great?.........cccccceevveevirieneeceeceeeeeeeeeeeeen, 9
Platform independenceocoocevieierieninienineee e 10

Object Orientationccccueevieeierieiiereeeee e 11

The Java APL......ooo ettt e 12

The INternet......cccooeiiiiiiiieeee ettt 12
Comparing Java to Other Languages..........ccocceveevieninniennieniienieneeneeeene, 13
Important Features of the Java Language.........c..cccocoevvieciiiciecciieieee, 15
Type CheCKing......ccceeviiiiiiriiiee e 15

Automatic memory management.............cocceeeveecieecienieneeneeneesieenens 17

Exception handlingc.cceceevienienienieiieieciecieseeeeeeie e 17

On the Downside: Java’s WEaKNeSSEScccevierienieniennieniienienieneeneeenees 18

Java Version INSanityccccoeceriiriiniiiiiiecieeeceecteeee e 19
What’s in @ Name?cc.cocoviiiiiiiiieecceeene e 20
Chapter 2: Installing and Using JavaTools 21
Downloading and Installing the Java Development Kit...........cccccoceeneenee. 21
Downloading the JDK.........cccooiiiiiiiiiiiineneeteeeeeeeeeeeeeeeene 22

Installing the JDK.........ccooiiiiieieieeeeecee et 23

Perusing the JDK folderscccceeviirviieiieniienieniesecieciecieeveseeeeeae 23

Setting the pathccccociriiriiiii e 24

X Java All-in-One Desk Reference For Dummies

Using Java’s Command-Line TOOISc.cccecevvieriiniiinieneiieeienienieseeneeene 25
Compiling @ Programccccecervieiiieriieniienie ettt see e 26
Compiling more than one file...........ccccoouevirinirinneneeeceeeeeene 26
Using Java compiler Options........ccccceeeeverieniinnieneneeneeseeeeeeneene 27
Running a Java Programcccceceveereeneenieesieeiiesieeseeseeseesseesaesseens 29
Using the javap command...........cccoceeviinerveniiiniieniieneeseeneeeeee e 31
Other Java command-line tools.........ccocceeveririerincieninenenineeeene 32

Using Java Documentation.........c..cooeevieriiiniiiniienienieneeieeieeeeeee st 32
JS2E APIDOCSeiiiiieeieeeeeie ettt sttt ettt s 33
Java Language Specificationcoccocevevininininiinieenccceee 34

Chapter 3: WorkingwithTextPad 35

Downloading and Installing TextPadcccceeeveeienieneeneecieecieeeeeeeeeeene 35

Editing SoUrce Files........ccciiiiiiiniiieieececeeteee et 36

Compiling @ Programcccceeveevieriiniinienierecsecseese et se e 38

Running a Java Program.........c.ccceceviiniininniinnienienienceecseseese e 40

RUNNing an APPIet.......coceiiiiiiiiiieeeeeeeeete ettt 41

Chapter4: UsingEclipseccciiiiiiiiiiiiiann, 43

Getting Some Perspective on Eclipse.........ccccoviiviiniiiiniiniiniinienieee, 44

Understanding Projects........ccooevevirininiieeeeseseeeeee e 46

Creating a Simple Projectcoceviivieninininiieeeeeeceeee e 47

Adding a Class Filecoceeieieieiicieceeeeeeeeee et 52

RUNNING @ PrOGramccccoecveiiiiiiiiieeeceeteeese ettt 56

Debugging a Java Program............ccccceeeveeiecieniineneececeeeeesesee e 57
Stepping through your programs...........cecceeveervieriieneeneenensienseenneenne 57
Examining variablesccocooiririeiieiienieereeeee e 59
Setting breakpointsccvecieeierienieseeeee et 60

Refactoring Your Code..........cioiiriiniinieniieieciecieeteseeseeste e 61

Book I1: Programming Basicscccoueeeecceecereeaenn. 03

Chapter 1: Java Programming Basics 65
Looking At the Infamous Hello, World! Program...........ccccceccevvvenenencnnen. 65
Dealing with KeyWords.........c.ccceeieeienieriieiicieciecee st 68
Working with Statementsccecveeiiiiinienieeeece e 70

Types Of StatemMENtScccevverieriiiieiccceee e 71
WHRIte SPACE......ioeeieieeeeeecee e 71
Working with BIOCKScociiiiiiiiiiiiiteeeneetetee e 72
Creating [dentifierscocooeeieieieeeee s 73
Crafting COMMENLTSccoooiriiriieieieieene ettt 74
End-of-line COMMENLSc.cccueeiiriiiiirieieiecieeie e 74
Traditional COMMENLS.........cccecvieiireeieieiereceeeee e 75

JavaDOC COMMENTESoccovviiiiiiiicccieec et ceare e e 76

Table of Contents XI

Introducing Object-Oriented Programming...........ccccoevvervieneeneeneenenneennne. 76
Understanding classes and ODJECtSccceveevirneriieniieniienieneeneene 76
Understanding static methodsc.cccocevviiniininnniinneeeee 76
Creating an object from a classccceceevievieninineniccceeeeeee 77
A program that uses an Objectcecveevvervierienieneeciceeeeeeee e 78
So what’s the difference?..........ccccocoomiriinieiininnneccncnceeene 80

Importing Java API ClasSSescocuvviervieriiniinienitcieeieeieetese et 81

Chapter 2: Working with Variables and Data Types 83

Declaring Variablescocooiiiiiiiiniiinieieteceeeese ettt 83
Declaring two or more variables in one statement...............c........ 84
Declaring class variables..........ccooeviririiiiienienineceeceee e 84
Declaring instance variables............ccccevueeierierienieneeieeieereeeeseenne 85
Declaring local variablescccccocieviieiieniieniieniereeecieeie e 86

[nitializing Variables..........ccooiiiiiriiniirieeieeieecce et 88
Initializing variables with assignment statements.............ccccc..c..... 88
Initializing variables with initializers............ccccocvvnveinncncncnncnnn. 89

Using Final Variables (Or Constants).........cccceceruevieneneneneeneenieiesenee e 89

Working with Primitive Data TYPEScccccceevieevieriicieceeceeceeieeeeveeeeeeens 90
INEEGET LYPES .veevieieeieeieeteete ettt ettt et e beeteebessae e enseenes 91
Floating-point tyPesccccevieriirieriiiiiecicetecteteeee et 93
The Char tYPe...covieieeieceeeete et 94
The DOOLEAN LYPE.....ccvevieeeieieieieieeeeeeeee et 95
WIAPPET CLASSES ...oeiniiieiieiieieieiee ettt ettt ae b eeeens 96

Using Reference TYPEScc.ooevieiiienienierieeieeeetete ettt 96

Working wWith StringsS......cceecvieiiiiieieieececeeee e 98
Declaring and initializing Strings.........cccceeveervierienieenieniienienieseeseenne 98
Combining StrINGSc.ccciviiriiriiiieieeeereetee et 99
Converting primitives to Stringscccevevveeniinennenienienieneeneee 99
Converting strings to primitivesccccceeceverienienenenereeeeeeene 100

Converting and Casting Numeric Dataccccocoevivenienieneneneneneeeene 101
Automatic CONVErsioNS.......ccccoivireririeieneeneneeeeeee e 101
TYDPE CASEING ..cuvieiieiieiieieeeeeeeeeee ettt 102

Understanding SCOPE........ceevieriiriiriiniineeeeieeie ettt 102

Shadowing Variables...........cccceeieriiriiniiniiecieeceeeetete et 104

Printing Data with System.out..........cocoeieiieiienenieeeeeee e 105
Standard input and output streams...........ccocevveeieiieneneneneneeene 105
Using System.out and SyStem.err.........ccceeveveenieecieesienrieeieseeneenes 107

Getting Input with the Scanner Classcccvvirvencieniinienieneereeeee, 107
Importing the Scanner classccocevvievienieneenenceneneeeeeeeen 108
Declaring and creating a Scanner object........cccceccerviirvierienceenennne. 109
Getting INPUL c...ocviiiieieeceee et 109

Getting Input with the JOptionPane Classcccoceviiiiiiinenineninne 111

xii Java All-in-One Desk Reference For Dummies

Chapter 3: Working with Numbers and Expressions 113
Working with Arithmetic Operatorsccceceecieecieeeeneeceeceeecieeeeeen 113
Dividing INTEGETSoooveiiieiieiieieeteceee ettt e e a e 116
Combining OPEratorsccceevuervieriiiriienieniestene ettt esteeresteseessesaesaeens 118
Using the Unary Plus and Minus Operatorscccceverviervieniieneeneennenn 119
Using Increment and Decrement Operators..........cccceeeveecieeieeveevenneennen. 120
Using the Assignment Operator...........ccccoccevirerieierienenieneee et 122
Using Compound Assignment OpPeratorsccccceeeveecieevieeiveesvesseeseennnns 123
Using the Math Classccceciviinieniieceeeceetecee et 124

Constants of the Math class.........ccccevcvvvvieniiniiineiiiiineeceeeeen 125
Mathematical functions.........ccccoeceevienieniniiniinneeeeeeeen 126
Creating random NUMDETSc.cceeverienienieneeie et 129
Rounding functionsccceoeeieieienenineceeeteeee e 131
Formatting NUMDEYS.........ccccciiiiiieieeeeeeeeee ettt 133
Weird Things about Java Math..........ccccceeveviiviiniiiniincceeceeeeeeen 136
Integer OVEIflOW.......cccoviiriiiiiieiiieceec e 136
Floating-point Weirdnesscooceevevviniiiniieniienienteeeeeeeee e 137
Dividing DY ZET0......ueeeeiieieeieeeeeeeese et 138

Chapter 4: Making Choicescciiiiiiiiinnnn.. 1M
Using Simple Boolean EXpressions.........c.ccccoceeiieveecieecieecieecieeieeeeeveene 141
Using If Statementscocvevieriiriririeeeeee et 144

Simple if statements.........cceecveeieriinieceeeee e 144
if-else statements.......cccooeriririiieie e 146
Nested if statementscoceevieriirienieneceeeeeeee e 147
else-if StatemMeENts........ccovvevevieieieeee e 151
Mr. Spock’s Favorite Operators (The Logical Ones, of Course)............. 153
Using the | OPeratorccccooeeveiiiniiniineeeeeeeeee e 153
Using the & and && Operators..........ccceeeveeieeeeneeneenieeneeeeee e 154
Using the | and || OPerators........c.ccceceeeeeeeeeerieniesieseeeeeeeeesaennens 155
Using the N OPeratorccceceeeeieieiececeeeeeeerese e 156
Combining logical OPerators.........ccceccevvierieriineeneenieieeeeeeeeees 157
Using the Conditional Operatorc.ccceeveiieiieneecieeece e 159
Comparing SYNGS........cecveriererierieieeeteere ettt sttt ae e 159
Chapter 5: Going Around in Circles (Or, Using Loops) 161
Your Basic While LOODcoceiiiriiniiiiiiieeeceeeeeeeeeee e 162
The while statementcccoeeeiiiiiiinine e 162
A coUNtiNG LOOP ...oovvieiiiiiiieeece et 162
Breaking Out of @ LOOPcccocviviiniiniiieiieciecectcctcteeeeete e 163
LOOPING FOTEVETooiiiiiiiiciiiieteteeeeeeeete ettt 164
Letting the user decide when to quit........ccccceeeeveeciiicieeciieiee, 165
Another way to let the user decide.........ccocooeeieinneneninienee. 166
Using the continue Statementccccoecveeiiiienienieneeeeeee e 167
AO-WhILE LOOPS ..ottt ste et et aesa e 168

Validating Input from the USerccccevvvvviriiiniiiniiicicecieceeeeeeen 170

Table of Contents XIII

The FAamous fOr LOOP.......ccciiiiiieiiecieeeeeee ettt 173
The formal format of the for 100pc.ccccvvveciieiieeieeee, 173
Scoping out the counter variable.............cccoevvevieiiicincieeieeeene, 176
Counting even NUIMDETScccooeruiririierierieneneeteteee e 177
Counting backwardsc.ccccoevieeiienieniienieeeeeeee e 177
for loops without bodiescccecuevieniiniiniinieecceeeee e 178
Ganging Up yOUr €XPIESSIONSccecuereerieerieeneerienreniesiesaeseesseennes 179
Omitting eXPreSSIONScccevviiriieriieriereereeeeee et 181
Breaking and continuing your for loops.........ccceverviniinieneenennne. 181

INEStinG YOUY LOOPS.....ccciiiieiieiiciecieeteseesie ettt eteeteeee e e sreesasesseesseesean 182
A simple nested for loOpccceeciieciieieeciecieceeeeeee e 182
A gUESSING GAME ..ot 183

Chapter 6: Pulling a Switcheroo 187

else-if MONStrOSItIES......cvvvvivviiriiriiiieteeeeceee e 187

A Better Version of the Voter Machine Error Decoder Program............ 189

Using the switch Statementccocoviiviiiiiiinniee, 190

A Boring Business Example Complete with Flowchart 191

Putting if Statements Inside switch Statements.............ccccooevininennnnes 193

Creating Character CaSES........cccevverierierienieeieeieeie e et et eseesaeesaeeaees 194

Falling through the Cracks.........cccccoeieieieiierierieniieeceeeeeeteeseee s 195

Chapter 7: Adding Some Methods to Your Madness............... 199

The Joy Of Methodsccccociiriiniiieieciiciecctce ettt 199

The Basics of Making Methods..........ccccoeviiviiniiniininnienienienieseeeeeenn 200
AN EXAMPIE.....c.viiiiiiieiicieeteeeee ettt re et e e e aeeaa e reeens 201
Another examplec.oocooiiiiiiiinirieeeeeee e 202

Methods That Return Valuesccocoveeeeciieiiieiiieieeieeieceeeee e 204
Declaring the method’s return type........ccccceeveeveecieeciinciencieneeneene 205
Using the return statement to return the value.............ccceuenenne. 205
Using a method that returns a typeccoceevevvevviniinvinienieneee, 206
You gotta have a proper return statement..........ccccecevveervieneenennne. 206
Another version of the guessing game programccoeenen... 208

Using Methods That Take Parametersc.cccceecveecieeieniienieseeneesieenen. 211
Declaring parametersc.cccoecveeeieeriieniieniieeie et este et 211
Scoping OUt PATAMELELScccveviierierierirereereeseerreete e sresee e enees 212
Understanding pass-by-value...........ccocevveriinenneniinsienienieneeneenne 213
Yet another example of the guessing game program..................... 214

Chapter 8: Handling Exceptions 217

Understanding EXCEPtionS.........cccoviiviineiiieiiinieiieeeeeteteteeeeeie e 217
Witnessing an eXCeption........ccceevirvierrierienienieneereeeee et 219
Finding the CUlPrit......ccccooieiiiiiecieeeeeeeeeee e 219

Catching EXCEPIONScueviieiieiieiccieteeeeceee ettt 220
A simple eXamplecoccoeiiriiriiiieec s 221

Another eXampleccoocvieiiiiciiceeceeeeeeee e e 222

xiv Java All-in-One Desk Reference For Dummies

Handling Exceptions with a Pre-emptive Strikeccccocevinnniencnnn. 223
Catching All Exceptions at OncCe.........ccocevievienieneenennienieeieeeeeeseeens 225
Displaying the Exception MesSSagecccoeceverieieienienieneneneeeeieeeans 226
Using a finally BIOCK..........cccooiiiiiiiieeee e 227
Handling Checked EXCEPHIONS........ccccccevviieiiieieniecieceeeeeeie e 229
The catch-or-throw compiler error..........cccoccevvervienceeneeneeneeneennnn. 229
Catching FileNotFoundException........c.cccocueviineriiniinniiniienieneenen. 230
Throwing the FileNotFoundException.........ccccocceviininninnicnniennnnne. 231
Throwing an exception from maincccceceeeevieneniinienicnieceees 232
Swallowing €XCEePiONS........ccvverieeriiecieeieeieeieeeeeee st 232
Throwing Your Own EXCeptions..........ccecueeieiiiniineenicieecieciecieeee e 233

Book l1I: Object-Oriented Programming235

Chapter 1: Understanding Object-Oriented Programming 237
What Is Object-Oriented Programming?cccoceevveveeveecieesreeieneenen. 237
Understanding ODJECtS........ccoviiiriririeierieneeee ettt 238

Objects have Identity......cccocceevierieeiieeiecieceeeeeee e 239
ODbjJeCtS NAVE LYPE..ccuiiiiiiiiieieeeeteeeete et 240
Objects have State........ccooeevieiiiriieieeieeicececcee e 240
Objects have behavior..........cccovervieriiiniiniiiricceeee e, 241
The Life Cycle of an ObjJeCt........cccuveiieciieieeeeceeceeeee e 242
Working with Related Classes..........coeeeeviiiieninineniieeeeeeeeee e 243
INNETItanCeoouiiiiiiiiee e 243
INtEI ACES ..ottt 244
Designing a Program with Objects.......c.cccocevvieviiiniiiniiniienieneeieeeeene 244
Diagramming Classes with UML..........cccccocvvirininincieeereeeeeeeeeeens 245
DYawing ClaSSEScoveierierieriieiieieieiete ettt ettt naens 246
DIaWiNg QYTOWS.....c.eeeuieiiieiieiteeieeteeteseesteesseesseesseesesssessaesseessesssesnss 248

Chapter 2: Making Your Own Classescvnun. 249

Declaring @ ClaSScc.eeeeierierierientieietetete ettt ettt 249
Picking Class NAMEScccceeveeieieiiieiceeeeeee e 250
What goes in the class bodycccceeveieieierienicececeeeeeeee e 250
WHhETE ClASSES O ..cuviovieeieeeeiieiieieieiee ettt sae et ssesresneas 251

Working with MEemDETSccoccvvivirieieieeeeee e 253
FLEIAS ..ottt 253
MELNOAS ...ttt 253
Understanding ViSibilityccccevveviniiiiieicceseseeeeeeeereee e 254

Getters and SETLErSooeiieiiiiiriie ettt 254

Overloading Methodscccccvieirieieienieseceeeeeee e eene 257

Creating CONStIUCLOTS ...c.c.eivirierienieritereeeete ettt 258
BasiC CONSIIUCLOTSc.couevueeriiiiiiiicicccccc e 258
Default CONSTIUCLOTSceevueiiiiriiiiiieieecee et 259
Calling other CONStrUCtOrScccevveeverieniieieeee et 260

More Uses fOr thiscoccevueviiriirininirieieicenecnteteeeseeeeeeete e 262

UsIng INTHAlIZETS ..coviiiiiiiiiiciieeeeeee et 263

Table of Contents xv

Chapter 3: Working with Statics 265
Understanding Static Fields and Methodsccccococieiiiiinininininnnnns 265
Working with Static Fields.........ccocooiiininniiiiiiceeeenccees 266
Using Static MethodsS........coeviiviiiiiiiinieteeceeieeieeeeeete st 267
Counting INSTANCEScocuiriiriiriiriecieteeeeee ettt 268
Preventing INStancCescocevviivieiiiniiniiecieeeeeeteeeete e 271
Using Static InitialiZersccooveieririnirieeeeeeee e 271

Chapter 4: Using Subclasses and Inheritance 273
Introducing Inheritance..........c.cocoriiniininiiie e 273

Plains, trains, and automobilesccccovvviiiiiiiiiiiiieeiieeeceee, 274
Playing GAMESccecvieuieieieiecti ettt e e e s s re v seesnennens 275
A businesslike eXxamplecccooivvirrieniinienien e 276
Inheritance hierarchies..........cccocevieniiniiniinieneceeeeeeeen 276
Creating SUDCIASSEScccuieiieieeiecieceeeee ettt 277
Overriding Methods.........coeviiieiiirinieeeeeeee e 278
Protecting YOUr MEMDETScccueeiiriinieiieieeiecieeteeee et 279
Using this and super in Your SUbCIasS€esccccevvevierienienieneeneecieeen. 280
Inheritance and CONSLIUCLOYSccceeveevieeiieiiiiiieeieneeeeeeeeeeeeee e 281
USING fINAL....iiiiiiieiieieeeeeeee ettt 283
Final methodscccooiiiiiiiiiie e 283
FINal ClasSeScooviiiiiiieieeeette e 283
Casting Up and DOWIc.cccueeiiiieiieiieeeiecieeie e seeesae e 284
Determining an ObJecCt’s TYPEc.cccveviereeieiiiieieeieeieete et 286
POLY WRAE? .ottt 287
Creating Custom EXCeptionsccccoceviiniiiiniinnienienieneestesceeeieenn 289
The Throwable hierarchy..........ccccoeoeerviiieciiniiieceeeeeeee e, 289
Creating an exception Classcceceeeeevierieniinenieieeereceee e 290
Throwing a custom eXCeptioncccceecveeierieneeniesieeieeee e 291

Chapter 5: Using Abstract Classes and Interfaces 293
Using ADStract ClaSSEScccueeierieiiinieniecieeieeie et ete s e e sae e eeees 293
USING INTEITACEScvieiieiieiieieeteetetetee et 296

Creating a basic interface..........cccoevevienienienennececeeeeeeeeee 296
Implementing an interfaceccoceevveeviiniininneniiceeeeeeen 297
Using an interface as a type.......ccoceeecieeciiecieecieecee e, 298
More Things You Can Do with Interfaces.........ccccocoveerininiinenenineneene 299
Adding fields to an interface.........cccceceeeveeienieniececceceeeeeeee 299
Extending interfacescccoccovveeierienienieneeseeeee e 299
Using interfaces for callbacks..........ccccevverieniniiniinninienieneeee, 300

Chapter 6: Using the Object and Class Classes 305

The Mother of All Classes: Object........ccocevierienerniernienienienieneeneeseeeenn 305
Every object is an ODJECtcccvvvvieiecieieeeceeeeeeee e 305
Using ODbject @s @ tyPeueecveeeiieeieeeieeee et 306
Methods of the Object Classccceeeeeevieiienireeeeeeeeee e 307

Primitives aren’t ObJectscccoecveeienieniinieceeece e 308

xvi Java All-in-One Desk Reference For Dummies

The toString Method.........cccociviiiiiniiiiieceeeee e 309
USING tOSEIING ..ovviiiiiiiiiiiieeeeteteteeeee et 309
Overriding tOStrINGooeevieiiieeeee e 310

The equals Methodcceeviieiiiieeieeeeeeeeee e 311
USING €QUALSeeevieeieiieiecieeieeteet ettt et e e beeaeeaeeneas 312
Overriding the equals method...........ccceccovviirviinviiniiiniiiccceceee, 313

The clone Methodcocooivirinininiiceccceeeeeeeeree e 316
Implementing the clone methodccoccooviniiniiniiniiniiee, 317
Using clone to create a shallow COPYccceecveeeiieecereciieeieeee e, 320
Creating deep COPIESc.ooeviriirieieieeeeee et 321

The Class Class.....cc.ceeeieieiiirenenieeee ettt ettt s 327

Chapter 7: Using InnerClassescccoivinnnnn.. 329

Declaring INNer CLASSESccceevueeciirciieiiieieniesiest e este e sreereeaesaesseeseees 329
Understanding inner Classes.........ccccecvevvierieniieneeneeneeneeniesieseennns 330
AN €XAMPIE.....uiiiiiiieeceecee e e e eens 330

Using Static Inner ClasSescoieveiveriiiniienieniententeieeeeie e 333

Using Anonymous Inner ClassSesccceceeeereenieneeneecieecieeieeve e 334
Creating an anonymous Classcccoceveeereenienieneneneseeeeceeenne 335
Tick Tock with an anonymous classcccecevceerveneeneenieeceeenennn 336

Chapter 8: Packaging and Documenting Your Classes 339

Working with Packages.........cccvvvuieieriinienieeesieciecteceeeese e 339
Importing classes and packages.......ccccocevvierieneeneeneeneenieeieniennns 339
Creating your own packages........cccceevueevierienieneeneeneenieeeeieseeenees 340
AN €XAMPIE......iiiiieciieceeeee e e 342

Putting Your Classes in @ JARFile.......cccccoeoiiiiiniiniicicecececeeeeeen 343
jar command-line OPtioNScccccveeiereeriieciieieeeeeece e 344
Archiving @ pPaCKageccvevveviivieriieieececeeee e 345
Adding a jar to your classpathcccccevirvirviinciniiinieniecceee 346
Running a program directly from an archive.........ccccoccoceecvevenencn. 346

Using JavaDoc to Document Your Classes.........coceevevviervienvieniienieeneennen. 347
Adding JavaDOC COMMENTScccueeeerrieirierieieereeeecie e see e 347
Using the javadoc command.........cccccecervierienieneenienenneneneeneee 350
Viewing JavaDOC PAZES........cccevvevierieerieeiereierestesteereeee e resesse e eeees 351

Book 1V: Strings, Arrays, and Collections353

Chapter 1: Working with Strings 355
ReVIEWING StrINGScceeciiieieiieiee e 355
Using the String Classcccooeririeriririeiereneres ettt 357

Finding the length of a String...........ccocoeeiiieieieveneeeeeeeee, 359
Making simple string modifications.........c.cccecevcverienieneenenniennenne 360
Extracting characters from a string.........ccceceeveeevveinennensennennenne 360

Extracting substrings from a stringc.ccecevveevveinennennenneneene 361

Table of Contents xvii

Splitting UP @ StYANGcocveviiiiirierieeeeeeee e 363
Replacing parts of a stringc.ccceceevieniiniiniineniinieeeeeeeee, 365
Using the StringBuilder and StringBuffer Classes..........ccccocevvvinencnnnnne 365
Creating a StringBuilder objectcocceivevirininieieereeeeeeee 366
Using StringBuilder methods..........ccoecvevieniinienieciciiciecieceeee, 367

A StringBuilder example.........cccoovvviienieniiiniienienieeeeee e 369
Using the CharSequence Interface...........cocvvevviinviiniiinciinienieniereeeeene 369
Chapter 2:Using Arraysccoiiiiiriiirnnnennnnnnnens 3N
Understanding ATTAYSccceceevieriieriieniienienieenieenieesieestessestestesasesseessesnsens 371
Creating ATTAYS.....ccceevieiiiiieeieeieete ettt ettt ettt et st st st e saeesbeebees 372
INitialiZING QN ATTAYcccieiieeieeieeie ettt saeereereeaesbesaaesseesseenseas 373
Using for LoOps With ArTays........cccccveevieeienieeniieiiesiecieeie et 374
Solving Homework Problems with Arraysccceceeeeeciencienieneeneeneennen. 375
Using the Enhanced for LOODccccceviiviiniiiiiiiiiiciccieceneeeeeeen 377
Using Arrays with Methodsccoceviiniiniiiiniieceeceeeeeen 378
Using Two-Dimensional Arrayscccceceeveeveenenniennienieenienieneeseesieeeeen 379
Creating a two-dimensional arraycccccceeveeeeecieecieecieecieeeeeeeenne 380
Accessing two-dimensional array elements...........ccccccceevveevennnnnne. 381
Initializing a two-dimensional array.........c.ccceceeeeeveeciercieesienseeneenne 382
USING JAZZEA AITAYSeevveereriirieiieniententesttenieeseeesseessessessesssesssenses 382
Going beyond two dimensionsc.cccecverieneeniensiensienienieneeneenes 384

A Fun but Complicated Example: A Chess Boardcccccoeeveeuvenneennen. 385
Using the Arrays Class........ccceevieeieiieeieneeseeiieesieecte et eve e aesaeseee e sseeneas 392
FilliNg QN QITAY .evveevveeiieeieeieeieeieeireeteeeeseeseesaeeseeesseeseeaeesesssessaenns 393
SOTTING AN AYTAY ..eevvvevieiieieeieeieereete ettt et e steesteesbesaeeaessaeesneens 393
Searching an array.......coccocceeceeriersenienieeneeneeseese e e saeseesns 394
COMPATING AITAYS ...eervieveeierierieritententesteseeseessesssesssesssesssesssesseesses 394
Converting arrays to Stringsc.ccoccevvevveeriineenennenrenieeieneeseenes 395
Chapter 3: Using the ArraylistClass 397
The ArrayList Class.......cccvcieeerieriereeeeeeeeteee e ees 398
Creating an ArrayList ODJECtcoovviririeieieeceee e 401
Adding EIEMENTEScccueeiieiiiieciieieeieete ettt eve ettt e s sae e en 402
Accessing EIBMENTESc.cocviiiiniiiiieieeiieieceescese ettt s 403
Printing an ArrayLiStccccovivviiiiiiiiinieeeceeeeeeee e 403
USING AN [EEFAtOY......eiiiiiiiiieieetetertetetccce et 404
Updating EIemMents..........ccocevvieriiniiniiieeeieceeeeeetest ettt 406
Deleting EIEMENtScoceeirieiieieieeeeceteteeeeee ettt 407
Chapter 4: Using the LinkedListClass 409
The LINKedLISt ClaSS.......ocoviieiiieeiecrieeeree et eeee e e eeneeeevee e 409
Creating a LINKedLiStcoeviiiiiiiiiieeeeeee e 413
Adding Items to a LinkedLiSt........cccccevieiiniinienieecececeece e 414
Retrieving Items from a LinkedList.........ccccceeviriirnieniieniienienienieseeeeenn 416
Updating LinkedList It€mMSccccoceeviiriiniiiiiinieceteteteeeeeeee e 417

Removing LinkedList [te€mS........ccccoociiriiniiiiiiiiiiieeeeeteteeee 417

xviii Java All-in-One Desk Reference For Dummies

Chapter 5: Creating Generic Collection Classes 419
WRY GEINETICS? ...nviiiieiieiieieeie ettt ettt este et e e tessae s e e saeesseebeeseenseeneas 420
Creating @ GENETIC Classcccoveevieriiiriierienierieneeseesieesteesreeaeseeesesaeseeens 421
A Generic Stack Classcooevevinerenieieeneneeteeeetee et 422
Using Wildcard Type Parameters..........ccccoeceevieniininnienniennienienieneeseeeen 426
A Generic QUEUE ClASSoeeeueeeeeeieeeeeeeeeeteeetee et eneeereeen 427

Book U: Programming Techniques..............cuuueeeeeeeeee. 431

Chapter 1: Programming Threads 433
Understanding Threads.........ccoccoecveriiniiiinnienienienicneeeeeie e 433
Creating @ Thread.......ccoceviiriiiniiieeieeieseetetet ettt 434

Understanding the Thread classc.cccceeeveeveeeeenienieneeceeeeee 435
Extending the Thread class.......ccccoverviiriiriiiniienieneieeeeceeeee 436
Creating and starting a thread...........ccccevievieneeceecieeececeeeeeen 437
Implementing the Runnable Interfacecccoceveeviecinvinciencieniereeen, 438
Using the Runnable interface.........cccoccevvieriiiniiiniinienineciceieeeee 438
Creating a class that implements Runnable...........cccoccevvieninnennen. 439
Using the CountDoOWNAPD Classcccceeveeveeeeneeniecieeeeeeeee e 440
Creating Threads That Work Together............ccocviiiininininieeene, 442
Synchronizing Methods..........cccoecieiieiieciiciecieeeeeeeee e 446
Threadus INtEITUPLUScceeiieiieieeeeceeeceee et 447
Finding out if you've been interrupted........cccceceevvrninneenercrennenne 447
Aborting the countdownccoocueviiniiniiiiiineeeeeeee 449
Chapter 2: Network Programming 453
Understanding Network Programming............ccoccovveeviriinniniieniienieeneennen. 453
IP addresses and POTESccecceeeveecieecieciicieceeseec et e 454
Host names, DNS, and URLS..........cccccoovvieiiiieiieeeeeceee e 455
TEINEL ..ottt a e be st beeae s sb e beebeereas 455
Getting Information about Internet Hosts..........cccccevvvevievinciinciinsieeieens 456
The INetAddress Class.........ccceeveieierienieecieeeesese e 456
A program that looks up host namescccecvevciiniiniinennennnnne 458
Creating Network Server Applications...........cccceevveevieecieeciescieeieeeeeeenens 460
The SOCKEt Classccoeiiiirieiieiieeeeeee e 461
The ServerSocKet Class.........ccociereeciecieecieeieeteseeceese e 462
Introducing BARTcoouiiiiiiieieceeeeeeeeeee ettt 463
The BartQuUote Classccveeeeeieeiieiieiiieeeeeeeee et 464
The BartServer programccocceeeeveeneriiensiensienieneeneeseeseesseesaees 465
The BartClient program...........ccccceecueecieecreeieeiieneeneeseeseesseeveeneenns 468

BartSEIVET 2.0uveiiiiieiiieeeeeee ettt ettt e et e e st e e e ssate e s seane e e ssanees 471

Table of Contents xix

Chapter 3: Using Regular Expressions 475
A Program for Experimenting with Regular Expressions........................ 476
Basic Character MatChing........ccoccevieriirieniiiieieciccesteeee e 478

Matching single characters.......ccccocevvievienienieneciecieseeieeeeeee 479
Using predefined character classes........cccccooceevevvervieniiinieneeneenne, 479
Using custom character classes........c.ccocceveeveeciieccieerieececereee, 481
USING TANGESeenvieiieiieieeieete ettt ettt sttt saeesseennes 482
USING NEZAtIONeeviiiieiiciecieceeeeteee et 483
Matching multiple characters...........coccovvvevienieveecencenieeieeeeeee 483
USING €SCAPES ...cvvervevierieeieieientesteeteeseeseesessessessesseesessessessessessesssessens 485
Using parentheses to group charactersccccecevviirviinviencennennne. 485
Using the | symbol.........ccccooiiiiiiiiniiieeeeeee e 487
Using Regular Expressions in Java Programs.........c.ccocceevevieniincnnennnen. 488
The String problemcccocveviiiieiieieceeceeee e 488
Using regular expressions with the String class...........cccceeueennenne. 489
Using the Pattern and Matcher classes.........ccocecevvierviencienvennnnnne. 489
Chapter 4:UsingRecursionccoiiiiiiinnnnn.. 491
The Classic Factorial Example..........ccccccooeniiniininniniienienieneeneeneesieenn 491
The non-recursive SOIULIONcccocevvieriiiriiniienieeceeeeeee e 491
The recursive SOIULION........ccccoviiiiiriiiniiriic e 492
Displaying DIireCtOriescocceevieriiriinieninenieeeeeeteeeeseesee e 494
Writing Your Own Sorting Routine...........ccocceeevinienienieneecieciecieeeeeeene 497
Understanding how Quicksort Works..........cceeeevieeciinciencieneenneenne. 498
The sort method..........ocovieriiiiiiie e 499
The partition method...........ccooviiiiiieiiciceceeeee e 500
Putting it all tOGetherc.cccvieieeieeieeeeee e 502

BOOk VI: SWItGccoeeeeiairiacinrininiacneininnccssecsaneeeees 305

Chapter 1: SwingingintoSwingc.ccovvnnt.. 507
Some Important Swing Concepts You Need to Know........c.ccccceevuveuenneen. 507
Understanding what Swing doesccccevvvveeveniiniinienieneeeee, 507

The Swing class hierarchy..........ccccocoeevieceniinienieececeeeeeee, 508

I've Been Framed!..........cooouieiieiiiiiiieceeeeece ettt 510
Hello, World! in SWINGc.cccvevieiieeiieiicieeteeeeteeete et ennens 511
Positioning the Frame On-Screen...........ccocceeveeviirvieeiieniienieneeneeseesieennn 513
Using the JPanel Classccocvevieviiniiienieieieiesieee et ee e seesse s eesnens 514
USING LADEIS ..ottt eesaennens 516
Creating BUtONSc.ccciiiieiieieeeeceeeeee ettt saeeae e an 518

A Word about the Layout of Components............cccoeceveeerierieneneneneneennn. 520

XX Java All-in-One Desk Reference For Dummies

Chapter 2: HandlingEventscoiinin.. 521
Examining EVENESccoiiiiiiiiiiieciececteeeeeee ettt 521
Handling EVENTS........c.ocoveiiiiiiiiiiceeeeeeeeeee ettt 524
The CIliICKME PrOZIamc.ccveveeiieeieeieieienieeeseeiteeeae e seeeseesesensesseeneas 526
Using Inner Classes to Listen for Events.........ccoccovvevvivviniiniinienceneeen. 528
Adding an Exit BUttON...........ccoiviiiiecieeeeeeeeeee e 530
Catching the WindowClosing Event...........cccocoeviriiiiiiininineneeeeene, 532
The ClickMe Program Revisited..........ccceceeierieniiniecieieeceeeeieceeeeeen 534

Chapter 3: Getting Input fromtheUser 537
USINg Text FIEldScoieiiieieeiieieeteeeeeeeeeeee ettt 537

Looking at a sample Programc.cccceecveevveeieenceeneeneeneeneeseeeeeenns 539
Using text fields for numeric entryccoceecvevvenieneeneeniensiennene 541
Creating a validation Classc.cccoccevviiriiiniiniincceneeeeeeseeen 543
USING TEXE ATAS...c.uiiivieieeieeieeiectesteete et et eteeeesee e e sre e seeteeveeseesaesseens 544
The JTEXtATEa ClAaSS ...c.covverieiiiieeeieeeeeeeee et 545
The JScrollPane Class.......c.cooeeerieieiienenereeeee e 547
USIiNG CheCK BOXESocviieiiiicieciieeeeeeete ettt eae v 548
Using Radio BULLONScccooviiiiiiieicieeeeeeeeetete et 551
USING BOTAETS ..ottt sttt se e ss et sessesnees 553
Designing a Pizza-Ordering Programccccoceveveevieecieecieecieereeeeeeeeen 556
USING SHAETS ...ttt st ettt s 559

Chapter 4: Choosing fromalist 563

Using CombO BOXEScoveiiiiiiitiiieeeteeieeeee ettt 563
Creating COMDO DOXEScccvieiiieiiieieeieciecte ettt 565
Getting items from a combo DOX.....cccccecveviivienieciinciieieeieeieeeeeen 566
Handling combo boX eVENLSccecevviiriiirienienieeeieeeeieee e 567

USING LISTS ...eeiiiiiieiieieeeietetese ettt se st sse s e e ssensesesaesnens 567
Creating @ LStc.cccueiiieieceeeeeee e 569
Getting items from a listcoceevieiieiiininieeeee e 570
Changing list itE€MSc.ccveiieiiieiieeciece e 571

USING SPINNETS ...c.viviiieeiciieieieceeteeeeeeete sttt re e s e s e sesaesreas 573

USING TTEES ...vvivveieieeiieeetetete ettt ettt ae s sa s e se b e se e e essessensesseseens 575
BUIldINg @ tr€€......ooveeeieieeeeeeeeeee e 576
Creating a JTree COMPONENtcceeveeeiiieeieeeieeie et 579
Getting the selected NOdEccceevverievierinieeeeee e 580
Putting it all tOgetherc.ocovveieiiiieeeececeeeee e 581

Chapter 5: Using Layout Managers 585
Introducing Layout Managers..........ccceceevueeeerieneeneenieesieesieesseessessessesseas 585
Using FIOW LaYOULccocveiiiiiiicieeceeeeeee ettt 587

Using Border LaAYOULccoceveriieieieieiesieee ettt sie e e s s ssesnesnens 588

Table of Contents xxi

USIiNg BOX LAYOULcvovviiiieiieiieieieeceeceeete ettt aennens 590
UsIing Grid LAYOULooveveieeirieieieiesieseeeee ettt ennens 592
Using GridBag Layoutcoccecieiieriiririeieeeeesiecseetee e 593
Sketching out @ Plan........c.ccooeviieririeeeeeete e 594
Adding components to a GridBagcccccevveerieeeeeciecieneceeeeeennn 595
Working with GridBagConstraints...........cccceceeeeveeceecienieneseeeeeenns 597
A GridBag layout example...........ccoceeeeievierenenineeeeeese e 598

Book VII: Web Programmingccccccecueeiceeeiaeenes.. 003

Chapter 1: Creating Appletscvieiiiiiiiiiannt. 605
Understanding APPIEtS........cceecvevieviirieecieeeieieseeie et enesnens 605

The JAPPIEt Class.....ccceeciirierieriieieeieeie ettt ettt ste st ee s 606
Looking At a Sample Applet.......cocoviiriiniiniiiiiieeieeeeeee e 607
Creating an HTML Page for an Appletccocovveirieiecienieeseeeeeeeene 611
Testing an APPIEtcoooiieieeiieeee e 611
Chapter 2: Creating Servletscciiiiiiiinn... 613
Understanding SErvIetsc.ccocevirerieieiienieesee et 613
USING TOIMCAL ...ttt ettt st 614
Installing and configuring Tomcat..........ccoocveveeveeviieciencienieneeeeee 615

Starting and stopping Tomcatccccevverieneeneenenrienieeeeeeeee 617

Testing TOMCALccceeciiriieieeeeeteeee e 618

Creating a SImple Serviet ...t 619
Importing the servlet packages..........ccocereeererieieneneneceeeeeee 619

Extending the HttpServlet classcccocevieviecieecieciieieeieceeeee 619

Printing to a Web pPage........cccoocuveieeienienieeeeeeceee e 620
Responding with HTMLccccccoviiiniiniiiecccececieseeeeseee e 620

RUNNING @ SEIVIELccuviiiiiiieieeetetteee ettt 623

An Improved HelloWorld Serviletccooeoveeienieniieieeieeecee e 623
Getting Input from the USEercoveiieeieciieiiciecececeee et 625
Working with fOrms........c.ccceeviiiiiiiiieiceceeeceee e 625

The InputServiet Serviet..........cccocveveevieeiiinienieneeeeeeeee e 626

Using Classes iN @ SEIVIEtccceviiriinienieneeieeiecieeresteeeese e 627
Chapter 3: Using Java ServerPages 633
Understanding Java Server Pages........c.ccccoveveienineninniencncneneneneeeens 633
Using Page DIr€CtiVESccecieieieriireeeeieeeeeseseseee et seeseens 635
USING EXPreSSIONSooiviiiiiienieniieniteiteeeiece ettt st 636
USING SCIIPLIELS ...ooviiiiieiieee et 638
Using Declarationscoceeueeieriiiiiniieeeeieeeeeeteeeeeee et 640

USING CLASSES ...eeuvievieiieiieieeteeteete ettt ste et steesaeebe st e ssaesseesaaesseeseensens 642

xxii Java All-in-One Desk Reference For Dummies

Chapter4:Using JavaBeansccviene. 647
What Is a JavaBean?..........cccoiiririiiiieieeeeeete et 647
Looking Over a Sample Beanccccccvvviievieeiieniienienieneeseeieeie e 648
Using Beans with JSP Pages.........ccccocvevieiininiceciceeeeeeeeee e 651

Creating bean inStanCesccocevvieriinienienieneceee et 651
Getting Property ValUes.........ccccecvevieecieeieeiecieeeeeeee et 652
Setting property Valuesccooceevierierienenenieieiesiesese e 653
A JSP page that uses a bean...........ccccceeveevieeeeeeiecieceeceeeeeeeee, 654
ScoPIing YOUT BEANSccoecviiiiiiieteeieceieeee ettt 656
A shopping cart application..........cceceeviereiiiininninieneeeeeeee 657
The shopping Cart PAZe.......ccoecveveierierireeieeetereseee e 658
The BookCart JavaBean...........cccceeverienirerieieienieseseseeeeieee e 659

Book VIII: Files and Databases..............cccceauueeeeeeee..063

Chapter 1: Working with Filesccooiit 665
Using the File Classcccvevieviiiiiieieeeieienese sttt esesae e 665
Creating a File ODJECtcceevuiriiiiiiiiieiieieeceeeeeeeee e 667
Creating @ fil€coceeieieeieeeeeeee e 668
Getting information about a fileccccocvvvvieevieeienieeeeeee, 668
Getting the contents of a directory.......cccoceeecveveeceecieeciecciecieeeeen, 669
Renaming files........ccoieiiiriiiiiiniecieceeeccce e 670
Deleting a filecccoeieiiiiiiieeececece s 670
Using Command-Line Parameters.........c.cccocovieniinenninnienneniienienieneeeen 671
Choosing Files in a Swing Application..........cccceceeevevierieninenenceeeeeene 672
Creating an Open dialog DOX......cccccceeveiienienieneecieeeeeere e 674
Getting the selected file..........coevvieieeiiniiniiceeeeeeee 675
UsINg file filterScceevuieiiiiiieiececcteeeeee e 676
Chapter 2: Using FileStreamsccoieinnt.. 679
Understanding STreamscocevvereereeiiienieeiienieceese et eve e ssesaesenens 679
Reading Character Streamsccocooveeviirnieniieniieniienieneeeeie e 680
Creating a BufferedReaderccccoevvevviiriiniiniinieiceeeeieeeeee, 682
Reading from a character stream............cccoeeeeeciieceiccieccieceee, 682
Reading the movies.txt file..........cccooerinininieiie e, 683
Writing Character Streams..........ccccecveiiereeneeiienieeieeeese e sre e 686
Connecting a PrintWriter to a text file........ccccoeveeeeecinciniencieneenen. 687
Writing to a character stream...........coocceeevviinvencieniienienieeeeeiee 688
Writing the movies.txt fileccoceviiniiniiniiiecee 689
Reading Binary Streamscccccveeeevieeniieiieeieeie e seesie e ere e aeeaesenens 692
Creating a DatalnputStream..........ccccooeveeirennienenenereeeeeeeeeenee 693
Reading from a data input stream..........c.cccceeveevvereenieneenieeieeiee 694

Reading the movies.dat file...........cccceeviviiieicieeeeeeee, 695

Table of Contents xxiii

Writing Binary Streams..........ccoceevieeieniiinienieneeiecieeeeteseese e 698
Creating a DataOutputStream..........ccoceveeveinennennensenienieneeneee 699
Writing to a binary streamcoceceeeievienenenineeeeese e 700
Writing the movies.dat filecccoeeievieiieciceceeeeeeeees 700

Chapter 3: Database for $100,Please 703

What Is a Relational Database?ccccocevieiieiieneneninieeieeseeeeeeeeene 703

What Is SQL, and How Do You Pronounce It?..........c.cccoeeeiiiiiccinennnen. 704

SQL StAtEIMENTSeeeievvieiieiiieeeeteee ettt eaae e eetae e e esaaeeeeeaanees 704

Creating a SQL Databaseccceviiruirerieieieiesieeeseeeeteee e sresre e esnennens 705

Querying a Database.........cccoceviiriiniiniiiceceeee e 707
Using your basic SEIECt........ccoviviririeieieiereeeetee e 707
Narrowing down the qUETrYccccecveeierierienieceeeeie e 709
EXCIUAING FOWS.....cotiiiieiieieciecieetestcseeie e te e te ettt es 709
SINGLEtON SEIECES.....covieiieiieieeierteetee e 709
SOUNAS LK ...ttt 710
Column funNCHONS ...c..coirieieiiiieecee e 710
Selecting from more than one table...........ccocevieiieienienenineeeee 711
Eliminating duplicatesc..ccocceeveeiinieniiniieeeeeeeeeeeeeeee 713

Updating and Deleting ROWS........cccocuiviiiieniiiiiiecieciececeeeee e 713
The delete statementccceeevirerinieneneneneeeeee e 713
The update statement..........ccecveiveeiiieiiiecieeeececeee e 715

Chapter 4: Using JDBC to Connect to a Database ni

Setting Up @ DIIVETcociiiiiiieiirienteteeccce ettt 717
Setting up an ODBC data SOUICecccceevveeverierienienienieneeneeenes 717
Setting up the MySQL JDBC connectorccccceeeveecieeieeieneenneenne. 719

Connecting to a Databasecccooeveririeiieiieereeee e 720

Querying a Database.........cccccveeiieiiiienieeeeeeee e 721
Executing a select statementcccceevvvevieneenencinnieniereeeeeeen 723
Navigating through the result set........ccccoovvviiveniiniiniinienieee, 723
Getting data from a result Setcccoceeviiriiienneniinieneeeeeen 723
Putting it all together: A program that reads from a database.....725

Updating SQL Data.....cc.coeeiiiiieieenieeeeeteeesee ettt 728

Using an Updatable RowSet Objectcccccevieviieciencienienieceeseeseeieeeen 729
Deleting @ TOWcovvieiieiiiieeieeieeeetest ettt s 730
Updating the value of a row column...........cccceverviiriiinvieniieneennnnne. 731
INSEITING @ TOW ...eiiiiiiiiiiiieeieeteeteetet ettt st 732

Chapter 5: Workingwith XMLcoiiatt. 133

What Exactly Is XML, ADYWAY?......ccccevriiriiniiiinienienieeteseesieesieeseeeseeeeen 733
TGS ettt sttt ettt ettt e neene e neen 734
ABTIDULES oo 735
The movies.Xml fileccooeriiiiiiie e 735

USING @ DTD ittt ettt st ettt sae e ae e s 736

xxiv Java All-in-One Desk Reference For Dummies

Processing XML in TWO Wayscccoccevviiriiniinieniintceciesiesie e 739
Reading a DOM Documentcooeeveriiinnieniieniienienieneeieeie et 741
Creating a document builder factory.........ccccoeveeeieciieciieciecieeeeen. 741
Configuring the document builder factorycccocovevininieninnnenn 742
Creating a document builder and the document 742
Using the getDocument method...........ccccoecviviiniiniininninicniene 743
Reading DOM NOAEScoceriiriiniiniiiieeieeieeieeteste st sie e ste e ssesaesaeens 743
Processing elementscoceecieriinieniineniienienientcceeeeee e 745
Getting attribute values..........ccccceevieeiiiiicieceeeeeeeee e 746
Getting child element valuesccocoovevieiriieieneneeneeeeeeee 747
Putting It All Together: A Program That Lists Movies.........cccccceecveruennen. 748

Book IX: Fun and Games..................eeeeueeeeeeeeeeeeecennnena 751

Chapter 1: Fun with Fonts and Colors 753
Working wWith FONESc.cocveiiiiiiiiieieeeeetee e 753
Using font NAMEScccooviiiiriirieieteeeee e 754
Using fOnt STYIESoovveiiiiiiieeeceeee et 754
Setting a component’s foNtccoccevieeeeeieceneneeeeeeee e 755
Getting a list of all available fontsccoccovvieniiniininniniiienieen, 756

A program that plays with fonts..........ccccevervirieiineneneeeeee, 756
Working With ColOrcocveiieiiiriiririeieeeeee e 760
Creating CoOlOYS....oouiiiiiiiiiieee e 760
USINg SYStEM COLOTSc.uiiviiiieiieieeiecie ettt 761
Setting the color of Swing components..........ccoccevveeveeneenersiennenne 763
Using a color ChOOSETcocueviiriiiieicieeceeecceeee e 763
Chapter 2: Drawing Shapesccoiiiiiiiiinnnnnn.. 767
Getting a Graphics ConteXt.......ccccovviiriiinieniinieiieieeieetecte et 767
Drawing SHAPESc.eovuiiriiiiiiiieteeteeee ettt sttt 768
Creating SHAPEScccvevieiiieiieeee ettt sre e re b e b e b sreens 771
Creating lINescocooiiiiiiieeeeeeee et 772
Creating rectanglesooeocvecieerieenieeiieeieeie et 773
Creating €lliPSEScccevievieriieieeieeteeteete ettt 774
Creating QrCS ...cccevcieriinierieieeieeeeiee ettt ettt eesbesaees 774
Looking at the ShapeMaker program...........cccceeceeveenernernenseeneenne 775
FilliNg SNAPESeevitieiieieteeieeee ettt ettt 777
Drawing transparentlyccccoeceeeieeniieniienieeeeeeee et 777
Using a gradient fillcccooeevieniiinienieecececeeeeeee e 778
Rotating and Translatingcccoceeeeveriinnenienienicseeeeee e 780
Translate method ..o 780
Rotate methodccociviiiiininicceecccceee 780
DYaWING TEXE ...c.vivetieieieieieese ettt ettt ettt ettt sae e 782

Letting the User Draw on a Component...........cccceceeeeveerieneneneneeneeniennns 782

Table of Contents XXV

Chapter 3: Using Imagesand Sound 789
USING IMALESeeveeiieiieiieieeieeteete et et sre et steesaeebeesaesaessaesssesseeseenseas 790
Using the Imagelcon Classcccevveviereeniiiiieiieciecieeeeeee st 790

Using Imagelcon in a Swing applicationccccceccevvenvienvieneennnnne. 791
Using Imagelcon in an applet........ccccoovvvviiniininninniniinieeieneeeee 793
Using the IMage Class.........cccieiieieiieeieeeeeceeie et 793
Creating an Image ObJECtcccvevveeieeierieeeeee e 794
Drawing an Image ODJECTccooveeveerieieieieeeeeeeeeeee et 795
An IMage eXamPIEcccveeiieieriiieeeeieee et 796
Playing Sounds and Making MUSIC........cccccccevviirriirnieniienienienieneeneesieenn 799

Chapter 4: Animation and Game Programming 803
Animating @ SPYte......c.cvciiriiiieieeceee e 803
What about Double Buffering?ccccocevviinieniininnenienienienteneeeeeen 807
Bouncing the Ballcccoooiiiiieeeeeeeeeeee e 807
Bouncing a Bunch of Ballscccccooiriiiiiiiiiiiieeeeeeeeieeeeeene 809

Creating a Ball Classccceecuiriieiieiecieeecteseee e 809
Animating random ballsccceceeviereniiniiinieneeeeee e 811
Creating Collidable Ballsccccoociiriiniinieniiiiiniecieeieseeseeste e 812
Playing GamMESc.coceriiiiiiirienienientest ettt ettt see st e st esaeesae e s s 814

JRAEK «...enenaaaaaaaaaeaaaaaaeaeeeeeeeeeeneeennnnnnnnnncnnannnnnnnaaeaee 821

xxvi Java All-in-One Desk Reference For Dummies

Introduction

Welcome to Java All-in-One Desk Reference For Dummies, the one Java
book that’s designed to replace an entire shelf full of the dull and
tedious Java books you’d otherwise have to buy. This book contains all the
basic and not-so-basic information you need to know to get going with Java
programming, starting with writing statements and using variables and ending
with techniques for writing programs that use animation and play games.
Along the way, you find information about programming user interfaces,
working with classes and objects, creating Web applications, and dealing
with files and databases.

You can, and probably should, eventually buy separate books on each of
these topics. It won’t take long before your bookshelf is bulging with 10,000
or more pages of detailed information about every imaginable nuance of
Java programming. But before you're ready to tackle each of those topics in
depth, you need to get a birds-eye picture. That’s what this book is about.

And if you already own 10,000 pages or more of Java information, you may
be overwhelmed by the amount of detail and wonder, do I really need to
read 1,200 pages about JSP just to create a simple Web page? And do I really
need a six-pound book on Swing? Truth is, most 1,200 page programming
books have about 200 pages of really useful information — the kind you use
every day — and about 1,000 pages of excruciating details that apply mostly
if you're writing guidance control programs for nuclear missiles or trading
systems for the New York Stock Exchange.

The basic idea here is that I've tried to wring out the 100 or so most useful
pages of information on nine different Java programming topics: setup and
configuration, basic programming, object-oriented programming, program-
ming techniques, Swing, file and database programming, Web programming,
and animation and game programming. Thus, a nice, trim 900 page book that’s
really nine 100 page books. (Well, they didn’t all come out to 100 pages each.
But close!)

So whether you're just getting started with Java programming or you're a
seasoned pro, you've found the right book.

2

About This Book

About This Book

Java All-in-One Desk Reference For Dummies is intended to be a reference for
all the great things (and maybe a few not-so-great things) that you may need
to know when you’re writing Java programs. You can, of course, buy a huge
1,200-page book on each of the programming topics covered in this book.
But then, who would carry them home from the bookstore for you? And
where would you find the shelf space to store them? In this book, you get the
information you need all conveniently packaged for you in between one set
of covers.

This book doesn’t pretend to be a comprehensive reference for every detail
on these topics. Instead, it shows you how to get up and running fast so that
you have more time to do the things you really want to do. Designed using
the easy-to-follow For Dummies format, this book helps you get the informa-
tion you need without laboring to find it.

Java All-in-One Desk Reference For Dummies is a big book made up of several
smaller books — minibooks, if you will. Each of these minibooks covers the
basics of one key element of programming, such as installing Java and com-
piling and running programs, or using basic Java statements, or using Swing
to write GUI applications.

Whenever one big thing is made up of several smaller things, confusion is
always a possibility. That’s why this book is designed to have multiple
access points to help you find what you want. At the beginning of the book
is a detailed table of contents that covers the entire book. Then, each mini-
book begins with a minitable of contents that shows you at a miniglance
what chapters are included in that minibook. Useful running heads appear
at the top of each page to point out the topic discussed on that page. And
handy thumbtabs run down the side of the pages to help you quickly find
each minibook. Finally, a comprehensive index lets you find information any-
where in the entire book.

This isn’t the kind of book you pick up and read from start to finish, as if it
were a cheap novel. If [ever see you reading it at the beach, I'll kick sand in
your face. This book is more like a reference, the kind of book you can pick
up, turn to just about any page, and start reading. You don’t have to memo-
rize anything in this book. It’s a “need-to-know” book: You pick it up when
you need to know something. Need a reminder on the constructors for the
ArrayList class? Pick up the book. Can’t remember the goofy syntax for
anonymous inner classes? Pick up the book. After you find what you need,
put the book down and get on with your life.

How This Book Is Organized 3

How to Use This Book

This book works like a reference. Start with the topic you want to find out
about. Look for it in the table of contents or in the index to get going. The
table of contents is detailed enough that you can find most of the topics you're
looking for. If not, turn to the index, where you can find even more detail.

Of course, the book is loaded with information, so if you want to take a brief
excursion into your topic, you're more than welcome. If you want to know
the big picture on inheritance, read the whole chapter on inheritance. But if
you just want to know the rules for calling the superclass constructor, just
read the section on inheritance and constructors.

Whenever I describe console output from a program or information that you
see on-screen, | present it as follows:

A message from not-another-Hello-World program

If the program involves an interaction with the user, you see the text entered
by the user in bold type.

How This Book Is Organized

Each of the nine minibooks contained in Java All-in-One Desk Reference
For Dummies can stand alone. Here is a brief description of what you find
in each minibook.

Book I: Java Basics

This minibook contains the information you need to get started with Java.
After a brief introduction to what Java is and why it’s so popular, you down-
load Java and install it on your computer and use its command-line tools.
Then, you use two popular development tools — TextPad and Eclipse — to
create Java programs.

Book 11: Programming Basics

This minibook covers all the basic details of programming with the Java lan-
guage. | start with such basics as data types, variables, and statements, and
then move on to expressions, conditional statements, looping statements, and
methods. I end with a discussion of how to handle exceptions. You really need
to know everything that’s in this minibook to do any serious programming, so
you’ll probably spend a lot of time here if you're new to programming.

4

How This Book Is Organized

Book I11: Object-Oriented Programming

This minibook goes deep into the details of object-oriented programming
with Java. You create your own classes, as well as work with inheritance and
polymorphism. You also get the scoop on abstract classes, interfaces, pack-
ages, inner classes, and even anonymous inner classes.

Book 1U: Strings, Arrays, and Collections

This minibook focuses on working with strings, arrays, and collections.
You find out all about Java’s strange immutable strings as well as the
StringBuilder and StringBuffer classes. You also create and work
with arrays, and their collection counterparts including array lists and
linked lists. Along the way, you find out about a cool new object-oriented
programming feature called generics, which is designed to simplify the han-
dling of arrays and collections.

Book U: Programming Techniques

In this minibook, you discover a variety of interesting and often useful pro-
gramming techniques. For example, [include a chapter on working with
threads so you can create programs that do more than one thing at a time.
There’s a chapter on using regular expressions that shows you how to do
some amazing string handling. And there’s a chapter on a programming tech-
nique called recursion that every programmer needs to feel comfortable with.

Book VI: Swing

Swing is the part of Java that lets you create graphical user interfaces. In this
minibook, you find out all about Swing: how to create windows with controls
like buttons, text fields, check boxes, drop-down lists, and so on; how to write
programs that respond when the user clicks a button or types text; and how
to control the layout of complicated forms.

Book VII: Web Programming

In this minibook, you use various Java features for creating Web applications.
First, you turn Swing applications into applets that run in a user’s browser.
Then, you create full-blown Web applications using servlets and JSP.

Book VIII: File and Database Programming

The chapters in this minibook show you how to work with data stored on
disk, whether it’s in files, in a database, or in an XML file. You find chapters
on working with files and directories, reading and writing data from streams,
using Java’s database interface (JDBC) to access databases, and using Java’s
XML features to read and write XML data.

lcons Used in This Book 5

Book IX: Fun and Games

This last minibook gets into some of the more interesting and fun aspects of
Java programming. Specifically, you play with fonts and colors, draw pic-
tures, work with images and media, and even create animations and write
simple game programs.

This book’s Web site

This book has an accompanying Web site (www . dummies.com/go/
javaaiofd) that includes even more goodies. If you're the kind of person
who’s always looking for a way to save time typing, the Web page includes
all the code listings that are used in this book. And for those of you who are
yearning for even more Java information, be sure to check out the three
bonus chapters on the Web site: “Using the BigDecimal Class,” “Twiddling
Your Bits,” and “Using Menus.”

Icons Used in This Book

©]

QNG/
$‘
SMBER

‘;\‘

Like any For Dummies book, this book is chock-full of helpful icons that draw
your attention to items of particular importance. You find the following icons
throughout this book:

Pay special attention to this icon; it lets you know that some particularly
useful tidbit is at hand.

Hold it — overly technical stuff is just around the corner. Obviously, because
this is a programming book, almost every paragraph of the next 900 or so
pages could get this icon. So I reserve it for those paragraphs that go in
depth into explaining how something works under the covers — probably
deeper than you really need to know to use a feature, but often enlightening.

You also sometimes find this icon when [want to illustrate a point with an
example that uses some Java feature that hasn’t been covered so far in the
book, but that is covered later. In those cases, the icon is just a reminder
that you shouldn’t get bogged down in the details of the illustration, and
instead focus on the larger point.

Danger, Will Robinson! This icon highlights information that may help you
avert disaster.

Did I tell you about the memory course I took?

7 Where to Go from Here

NALUL : . . .

By One of the recent hot topics among programming gurus is the notion of

a8 design patterns, which provide predictable ways to do common things.
This icon appears alongside sidebars that describe such patterns.

Where to Go from Here

Yes, you can get there from here. With this book in hand, you're ready
to plow right through the rugged Java terrain. Browse through the table
of contents and decide where you want to start. Be bold! Be courageous!
Be adventurous! And above all, have fun!

" Book |

Java Basics

The Sth WﬁV@ By Rich Tennant

-

=

*T'n sute there will be 2 good obmarket,
when I gradwte. | created g virve that
will go off that gear

Contents at a Glance

Chapter 1: Welcome to Java

Chapter 2: Installing and Using Java Tools
Chapter 3: Working with TextPad

21
35

Chapter 4: Using Eclipse

43

MBER
é“'
&

Chapter 1: Welcome to Java

In This Chapter

v+ Finding out about programming
1+ Scoping out Java
v Comparing Java with other programming languages

+ Understanding Java’s incomprehensible version numbers

Fis chapter is a gentle introduction to the world of Java. In the next few
pages, you find out what Java is, where it came from, and where it’s
going. You also discover some of the unique strengths of Java, as well as
some of its weaknesses. And I also compare Java to the other popular pro-
gramming languages, including C, C++, C#, and Visual Basic.

By the way, [assume in this chapter that you have at least enough back-
ground to know what computer programming is all about. That doesn’t mean
that [assume you're an expert or professional programmer. It just means that
[don’t take the time to explain such basics as what a computer program is,
what a programming language is, and so on. If you have absolutely no pro-
gramming experience, [suggest you pick up a copy of Java 2 For Dummies.

Throughout this chapter, you find little snippets of Java program code, plus
a few snippets of code written in other languages like C, C++, or Basic. If you
don’t have a clue what this code means or does, don’t panic. I just want to
give you a feel for what Java programming looks like and how it compares to
programming in other languages.

All the code listings that are used in this book are available for download at
www . dummies.com/go/javaaiofd.

What Is Java, and Why Is It So Great?

Java is a programming language in the tradition of C and C++. As a result, if
you have any experience with C or C++, you'll find yourself in familiar terri-
tory often as you learn the various features of Java. (For more information
about the similarities and differences between Java and C or C++, see the
section “Comparing Java to Other Languages” later in this chapter.)

However, Java differs from other programming languages in a couple of signifi-
cant ways. The following sections describe the most important differences.

10 whaels Java, and Why Is It So Great?

Platform independence

One of the main reasons Java is so popular is its platform independence,
which means simply that Java programs can be run on many different types
of computers. A Java program runs on any computer with a Java Runtime
Environment, also known as a JRE, installed. A JRE is available for almost
every type of computer you can think of, from PCs running any version of
Windows, Macintosh computers, Unix or Linux computers, huge mainframe
computers, and even cell phones.

Before Java, other programming languages promised platform independence
by providing compatible compilers for different platforms. (A compiler is the
program that translates programs written in a programming language into a
form that can actually run on a computer.) The idea was that you could com-
pile different versions of the programs for each platform. Unfortunately, this
idea never really worked. The compilers were never completely identical on
each platform — each had its own little nuances. As a result, you had to
maintain a different version of your program for each platform you wanted
to support.

Java’s platform independence isn’t based on providing compatible compilers
for different platforms. Instead, Java is based on the concept of a virtual
machine. You can think of the Java Virtual Machine (sometimes called the
JVM) as a hypothetical computer platform — a design for a computer that
doesn’t really exist on any actual computer. Instead, the Java Runtime
Environment is an emulator that creates a Java Virtual Machine environment
that can execute Java programs.

The Java compiler doesn’t translate Java into the machine language of the
computer the program is run on. Instead, the compiler translates Java into
the machine language of the Java Virtual Machine, which is called bytecode.
Then the Java Runtime Environment runs the bytecode in the JVM. Because
of the JVM, you can execute a Java program on any computer that has a Java
Runtime Environment installed, without recompiling the program.

That’s how Java provides platform independence, and believe it or not, it
works pretty well. The programs you write run just as well on a PC running
any version of Windows, a Macintosh, Unix or Linux, or any other computer
with a JRE installed.

While you lay awake tonight pondering the significance of Java’s platform
independence, here are a few additional thoughts to ponder:

4+ The JRE is separate from the Java compiler. As a result, you don’t have
to install a Java compiler to run compiled Java programs. All you need is
the JRE.

What Is Java, and Why Is It So Great? 11

4+ When someone asks if your computer “has Java,” they usually mean Book I
“have you installed the Java Runtime Environment” so that you can run Chapter 1
Java programs.

4+ Platform independence only goes so far. If you have some obscure type
of computer system, such as an antique Olivetti Programma 101, and a
Java JRE isn’t available for it, you can’t run Java programs on it.

4+ If you're interested, the Java Virtual Machine is completely stack
oriented — it has no registers for storing local data. I'm not going to
explain what that means, so if it didn’t make sense, skip it. It’s not impor-
tant. It’s just interesting to nerds who know about stacks, registers, and
things of that ilk.

eAe[0} BWOI[INN

4+ Java’s platform independence isn’t perfect. Although the bytecode runs
identically on every computer that has a JRE, some parts of Java use
services provided by the underlying operating system. As a result, some-
times minor variations crop up, especially with applications that use
graphical interfaces.

4+ Because a runtime system that emulates a Java Virtual Machine executes
Java bytecode, some people mistakenly compare Java to interpreted lan-
guages, such as Basic or Perl. However, those languages aren’t compiled
at all. Instead, the interpreter reads and interprets each statement as it is
executed. Java is a true compiled language — it’s just compiled to the
machine language of JVM rather than the machine language of an actual
computer platform.

4+ [didn’t make up the Olivetti Programma 101. It was a desktop computer
made in the early 1960s, and happened to be my introduction to com-
puter programming. (My junior high school math teacher had one in the
back of his classroom and let me play with it during lunch.) Do a Google
search for “Olivetti Programma 101,” and you can find several interesting
Web sites about it.

Object orientation

Java is inherently object-oriented, which means that Java programs are made
up from programming elements called objects. Simply put (don’t you love it
when you read that in a computer book?), an object is a programming entity
that represents either some real-world object or an abstract concept.

All objects have two basic characteristics:
4+ Objects have data, also known as state. For example, an object that rep-

resents a book has data such as the book’s title, author, and publisher.

4+ Objects also have behavior, which means that they can perform certain
tasks. In Java, these tasks are called methods. For example, an object
that represents a car might have methods such as start, stop, drive, or

12 Whatls Java, and Why Is It So Great?

crash. Some methods simply allow you to access the object’s data. For
example, a book object might have a getTit1le method that tells you
the book’s title.

Classes are closely related to objects. A class is the program code you write
to create objects. The class describes the data and methods that define the
object’s state and behavior. Then, when the program executes, classes are
used to create objects.

For example, suppose you're writing a payroll program. This program proba-
bly needs objects to represent the company’s employees. So, the program
includes a class (probably named Employee) that defines the data and
methods for each employee object. Then, when your program runs, it uses
this class to create an object for each of your company’s employees.

The Java APl

The Java language itself is very simple. However, Java comes with a library
of classes that provide commonly used utility functions that most Java pro-
grams can’t do without. This class library, called the Java API, is as much a
part of Java as the language itself. In fact, the real challenge of learning how
to use Java isn’t learning the language; it’s learning the API. The Java lan-
guage has only 48 keywords, but the Java API has several thousand classes,
with tens of thousands of methods you can use in your programs.

For example, the Java API has classes that let you do trigonometry, write
data to files, create windows on-screen, or retrieve information from a data-
base. Many of the classes in the API are general purpose and commonly
used. For example, a whole series of classes stores collections of data. But
many are obscure, used only in special situations.

Fortunately, you don’t have to learn anywhere near all of the Java API. Most
programmers are fluent with only a small portion of it — the portion that
applies most directly to the types of programs they write. If you find a need to
use some class from the API that you aren’t yet familiar with, you can look up
what the class does in the Java APl documentation at java.sun.com/docs.

The Internet

Java is often associated with the Internet, and rightfully so. That’s because
Al Gore invented Java just a few days after he invented the Internet. Okay,
Java wasn’t really invented by Al Gore. But Java was developed during the
time that the Internet’s World Wide Web was becoming a phenomenon, and
Java was specifically designed to take advantage of the Web. In particular,
the whole concept behind the Java Virtual Machine is to allow any computer
that’s connected to the Internet to be able to run Java programs, regardless
of the type of computer or the operating system it runs.

Comparing Java to Other Languages 73

You can find two distinct types of Java programs on the Internet: Book |
Chapter 1
4+ Applets, which are Java programs that run directly within a Web browser.
To run an applet, the browser starts a Java Virtual Machine, and that vir-
tual machine is given a portion of the Web page to work with. Then the
virtual machine runs the applet’s bytecode.

Applets are a grand idea. However, marketing and legal battles between
Microsoft and Sun have left applets in a precarious situation. The prob-
lem is that not all Web browsers provide a JVM, and those that do often
provide an old version that isn’t able to take advantage of the latest and
greatest Java features.

eAe[0} BWOI[INN

4+ Servlets, which are Web-based Java programs that run on an Internet
server computer rather than in an Internet user’s Web browser. Servlets
are how many, if not most, commercial Web sites work. Basically, a
servlet is a program that generates a page of HTML that is then sent to a
user’s computer to be displayed in a Web browser. For example, if you
request information about a product from an online store, the store’s
Web server runs a servlet to generate the HTML page that contains the
product information you requested.

You find out how to create both types of applications in Book VIL.

Comparing Java to Other Languages

Superficially, Java looks a lot like many of the programming languages that
preceded it. For example, here’s the classic Hello, World! program written in
the C programming language:

main ()

{
}

Printf ("Hello, world!");

This program simply displays the text "Hello, World!" on the com-
puter’s console. Here’s the same program (almost) written in Java:

public class HelloApp
{

public static void main(String[] args)

{
3

System.out.println("Hello, World!");

74 Comparing Java to Other Languages

Although the Java version is a bit more verbose, the two have several
similarities:

4+ Both require that each executable statement end with a semicolon.
4+ Both use braces ({}) to mark blocks of code.

4+ Both use a routine called main as the main entry point for the program.

There are many other similarities besides these that aren’t evident in this
simple example.

However, these two trivial examples bring the major difference between
C and Java front and center: Java is inherently object-oriented. Object-oriented
programming rears its ugly head even in this simple example:

4+ In Java, even the simplest program is a class, so you have to provide a
line that declares the name of the class. In this example, the class is
named HelloApp. HelloApp has a method named main, which the
Java Virtual Machine automatically calls when a program is run.

4 In the C example, printf is a library function you call to print informa-
tion to the console. In Java, you use the PrintStream class to write
information to the console. PrintStream? There’s no PrintStream
in this program! Yes, there is. Every Java program has available to it a
PrintStream object that writes information to the console. You can get
this Print Stream object by calling the out method of another class,
named System. Thus, System. out gets the PrintStream object that
writes to the console. The PrintStream class, in turn, has a method
named println that writes a line to the console. So System.out.
println really does two things:

e [t uses the out field of the System class to get a PrintStream
object.

e Then it calls the print1n method of that object to write a line to the
console.

Confusing? You bet. It will all make sense when you read about object-
oriented programming in Book IIl, Chapter 1.

4+ void looks familiar. Although it isn’t shown in the C example, you could
have coded void on the main function declaration to indicate that the
main function doesn’t return a value. void has the same meaning in
Java. But static? What does that mean? That, too, is evidence of Java’s
object orientation. It’s a bit early to explain what it means in this chap-
ter, though, but you can find out in Book II, Chapter 7.

Important Features of the Java Language 15

Important Features of the Java Language Book|

Chapter 1

If you believe the marketing hype put out by Sun and others, you’d think
that Java is the best thing to happen to computers since the invention of
memory. Java may not be that revolutionary, but Java does have many built-in
features that set it apart from other languages (with the possible exception
of Microsoft’s C#, which is basically a rip-off of Java). The following sections
describe just three of the many features that make Java so popular.

eAe[0} BWOI[INN

Type checking

All programming languages must deal in one way or the other with type
checking. Type checking refers to how a language handles variables that
store different types of data. For example, numbers, strings, and dates are
commonly used data types available in most programming languages. Most
programming languages also have several different types of numbers, such
as integers and real numbers.

All languages must do type checking, so make sure that you don’t try to do
things that don’t make sense, such as multiplying the gross national product by
your last name. The question is, does the language require you to declare every
variable’s type so you can do type checking when it compiles your programs,
or does the language do type checking only after it runs your program?

Some languages, such as Basic, do almost no type checking at compile time.
For example, in Microsoft’s Visual Basic for Applications (VBA), you can
assign any type of data to a variable. Thus, the following statements are all

allowed:

Let A =5

Let A = "Strategery"
Let A = 3.14159

Here, three different types of data — integer, string, and decimal — have
been assigned to the same variable. This flexibility is convenient, but comes
with a price. For example, the following sequence is perfectly legal in VBA:

Let A =5
Let B = "Strategery"
Let C = A * B

Here, an integer is assigned to variable A, and a string is assigned to variable
B. Then the third statement attempts to multiply the string by the integer.
You can’t multiply strings, so the third statement fails.

16 Important Features of the Java Language

Java, on the other hand, does complete type checking at run time. As a
result, you must declare all variables as a particular type so the compiler
can make sure you use the variables correctly. For example, the following bit
of Java code won’t compile:

int a = 5
String b
String c

"Strategery";
a * b;

If you try to compile these lines, you get an error message saying that Java
can’t multiply an integer and a string.

In Java, every class you define creates a new type of data for the language to
work with. Thus, the data types you have available to you in Java aren’t just
simple predefined types, such as numbers and strings. You can create your
own types. For example, if you're writing a payroll system, you might create
an Employee type. Then you can declare variables of type Employee that
can only hold Employee objects. This prevents a lot of programming errors.
For example, consider this code snippet:

Employee newHire;
newHire = 21;

This code creates a variable (newHire) that can hold only Employee
objects. Then it tries to assign the number 21 to it. The Java compiler won’t
let you run this program because 21 is a number, not an employee.

An important object-oriented programming feature of Java called inheritance
adds an interesting and incredibly useful twist to type checking. Inheritance
is way too complicated to completely get into just yet, so I'll be brief here. In
Java, you can create your own data types that are derived from other data
types. For example, Employees are people. Customers are people too. So you
might create a Person class and then create Employee and Customer
classes that both inherit the Person class. Then you can write code like this:

Person p;

Employee e;

Customer c;

p = e; // this is allowed because an Employee is also a Person.

c = e; // this isn't allowed because an Employee is not a Customer.

Confused yet? If so, that’s my fault. Inheritance is a pretty heady topic for
Chapter 1 of a Java book. Don’t panic if it makes no sense. It will all be clear
by the time you finish reading Book IIl, Chapter 4, which covers all the subtle
nuances of using inheritance.

Important Features of the Java Language 17

Automatic memory management

Memory management is another detail that all programming languages have
to deal with. All programming languages let you create variables. When you
create a variable, the language assigns a portion of the computer’s memory
to store the data referred to by the variable. Exactly how this memory is allo-
cated is a detail that you can usually safely ignore, no matter what language
you're working with. But a detail that many languages do not let you safely
ignore is what happens to that memory when you no longer need the data
that was stored in it.

In C++ and similar languages, you had to write code that explicitly released
that memory so that other programs could access it. If you didn’t do this, or
if you did it wrong, your program might develop a memory leak, which means
that your program slowly but surely sucks memory away from other pro-
grams, until the operating system runs out of memory and your computer
grinds to a halt.

In Java, you don’t have to explicitly release memory when you're done with
it. Instead, memory is freed up automatically when it is no longer needed.
The Java Virtual Machine includes a special process called the garbage col-
lector that snoops around the Virtual Machine’s memory, determines when
data is no longer being used, and automatically deletes that data and frees
up the memory it occupied.

A feature related to garbage collection is bounds checking, which guarantees
that programs can’t access memory that doesn’t belong to them. Languages
such as C or C++ don’t have this type of safety. As a result, programming
errors in C or C++ can cause one program to trample over memory that’s
being used by another program. That, in turn, can cause your whole com-
puter to crash.

Exception handling

As Robert Burns said, “The best laid schemes of mice and men gang oft
agley, and leave us nought be grief and pain for promised joy.” (Well, that’s
not exactly what he said, but pretty close.) When you tinker with computer
programming, you'll quickly discover what he meant. No matter how care-
fully you plan and test your programs, errors happen. And when they do,
they threaten to grind your whole program to a crashing halt.

Java has a unique approach to error handling that’s superior to that found in
any other language (except, as I've mention a few times, C# that just copies
Java’s approach). In Java, the Java Runtime Environment intercepts and folds
errors of all types into a special type of object called an exception object. After
all, Java is object-oriented through and through, so why shouldn’t its excep-
tion handling features be object-oriented?

Book |
Chapter 1

eAe[0} BWOI[INN

18 0n the Downside: Java's Weaknesses

Java requires that any statements that can potentially cause an exception
must be bracketed by code that can catch and handle the exception. In other
words, you as the programmer must anticipate errors that can happen while
your program is running, and make sure that those errors are properly dealt
with. Although this feature can sometimes be annoying, the result is pro-
grams that are more reliable.

On the Downside: Java's Weaknesses

So far, I've been tooting Java’s horn pretty loudly. Lest you think that learn-
ing Java is a walk in the park, the following paragraphs point out some of
Java’s shortcomings. Note that many of these drawbacks have to do with the
API rather than the language itself:

4+ The APl is way too big. It includes so many classes and methods, you’ll
never learn even half of them. And the sheer size of the Java API doesn’t
allow you to wander through it on your own, hoping to discover that one
class that’s perfect for the problem you’re working on.

4+ The APl is overdesigned. In some cases, it seems as if the Java designers
go out of their way to make things that should be simple hard to use. For
example, the API class that defines a multi-line text input area doesn’t
have a scroll bar. Instead, a separate class defines a panel that has a
scroll bar. To create a multi-line text area with a scroll bar, you have to
use both classes. That'’s fine if you ever want to create a text area that
doesn’t have a scroll bar, but you never will. Java’s designers compli-
cated the design of the text area and scroll panel classes to provide for a
case that no one ever uses or would want to use.

4+ Some corners of the API are haphazardly designed. Most of the problems
can be traced back to the initial version of Java, which was rushed to
market so it could ride the crest of the World Wide Web explosion in the
late 1990s. Since then, many parts of the API have been retooled more
thoughtfully. But the API is still riddled with remnants of Java’s early
days.

4+ As long as Microsoft and Sun don’t get along, Windows computers with
Internet Explorer will have problems running Java applications. These
problems are easily solved by going to the Sun Web site and download-
ing the latest version of the Java Runtime Environment, but that requires
extra effort that, in an ideal world, you shouldn’t have to deal with. Sigh.
Maybe one of these days there will be peace.

§gkl ST(/& 4+ In my opinion, the biggest weakness of Java is that it doesn’t directly

support true decimal data. This issue is a little too complicated to get
into right now, but the implication is this: Without special coding (which
few Java books explain), Java doesn’t know how to add. For example,
consider this bit of code:

Java Version Insanity 19

double x = 5.02; Book I
double v = 0.01; Chapter 1
double z = x + v;

System.out.println(z);

This little program should print 5. 03, right? It doesn’t. Instead, it prints
5.029999999999999. This little error may not seem like much, but it
can add up. If you ever make a purchase from an online store and notice
that the sales tax is a penny off, this is why. The explanation for why
these errors happen and how to prevent them is pretty technical, but it’s
something every Java programmer needs to understand. You can find all
the gory details in Bonus Chapter 1 on this book’s Web site.

eAe[0} BWOI[INN

Java Version Insanity

Like most products, Java gets periodic upgrades and enhancements. Since
its initial release in 1996, Java has undergone the following version updates:

4+ Java 1.0: The original release of Java in 1996. Most of the language itself
is still pretty much the same as it was in version 1.0, but the API has
changed a lot since this release.

4+ Java 1.1: This version was the first upgrade to Java, released in 1997.
This release is important because most Internet browsers include built-
in support for applets based on Java 1.1. To run applets based on later
versions of Java, you must, in most cases, download and install a cur-
rent JRE.

4+ Java 1.2: This version, released in late 1998, was a huge improvement
over the previous version. So much so, in fact, that Sun called it “Java 2.”
It included an entirely new API called Swing for creating graphical user
interfaces, as well as other major features.

4+ Java 1.3: This version, released in 2000, was mostly about improving
performance by changing the way the runtime system works.
Interestingly, Java 1.3 is actually called Java 2 version 1.3. Go figure.

4+ Java 1.4: Released in 2001, this version offered a slew of improvements.
As you might guess, it is called Java 2 version 1.4. Keep figuring. . . .

4+ Java 1.5: Released in 2004, this version of Java is the latest and greatest.
To add to Sun’s apparent unpredictability with its version numbering,
this version officially has two version numbers. Sun’s official Java Web
site explains it like this:

“Both version numbers “1.5.0” and “5.0” are used to identify this
release of the Java 2 Platform Standard Edition. Version “5.0” is the
product version, while “1.5.0” is the developer version.”

2 0 What’s in a Name?

MBER
®£
&

That clears it right up, doesn’t it? Personally, I think someone at Sun has
been talking to George Lucas. I fully expect the next version of Java to be
a prequel, called Java 2 Episode 1.

Anyway, throughout this book I use the version numbers 1.5 and 5.0
interchangeably to mean the current version. (Of course, Sun isn’t fin-
ished with Java, so there will probably one day be a version 1.6 or 6.0 or
whatever.)

You may need to be aware of version differences if you're writing applications
that you want to be able to run on earlier versions of Java. Bear in mind, how-
ever, that one of the chief benefits of Java is that the runtime system is free
and can be easily downloaded and installed by end users. As a result, you
shouldn’t hesitate to use the features of Java 1.5 when you need them.

What's in a Name?

The final topic [want to cover in this chapter is the names of the various
pieces that make up Java’s technology — specifically, the acronyms you con-
stantly come across whenever you read or talk about Java, such as JVM, JRE,
JDK, J2EE, and so on. Here they are, in no particular order of importance:

4+ JDK: The Java Development Kit — that is, the toolkit for developers that

includes the Java compiler and the runtime environment. To write Java
programs, you need the JDK. This term was used with the original ver-
sions of Java (1.0 and 1.1) and abandoned with version 1.2 in favor of
SDK. But with version 5.0, the term JDK is officially back in vogue.

SDK: The Software Development Kit — what Sun called the JDK for ver-
sions 1.2, 1.3, and 1.4.

JRE: The Java Runtime Environment — the program that emulates the
JVM, so that users can run Java programs. To run Java programs, you
need only download and install the JRE.

JVM: The Java Virtual Machine — the platform-independent machine
that is emulated by the JRE. All Java programs run in a JVM.

J2SE: Java 2 Standard Edition — a term that describes the Java language
and the basic set of API libraries that are used to create Windows and
applet applications. Most of this book focuses on J2SE.

J2EE: Java 2 Enterprise Edition — an expanded set of API libraries that
provide special functions, such as servlets.

Chapter 2: Installing and Using
Java Tools

In This Chapter

v+ Downloading Java from the Sun Web site
v~ Installing Java

v+~ Using Java’s command-line tools

v Getting help

ava development environments have two basic approaches. On the one

hand, you can use a sophisticated Integrated Development Environment
(IDE) such as Sun’s Forte for Java or Inprise’s JBuilder. These tools combine
a full-featured source editor that lets you edit your Java program files with
integrated development tools, including visual development tools that let
you create applications by dragging and dropping visual components onto a
design surface.

At the other extreme, you can use just the basic command-line tools that are
available free from Sun’s Java Web site (java. sun.com). Then you can use
any text editor you wish to create the text files that contain your Java pro-
grams (called source files), and compile and run your programs by typing
commands at a command prompt.

P As a compromise, you may want to use a simple development environment,
such as TextPad or Eclipse. TextPad is an inexpensive Java tool that pro-
vides some nice features for editing Java programs (such as automatic
indentation) and shortcuts for compiling and running programs. However, it
doesn’t generate any code for you or provide any type of visual design aids.
TextPad is the tool I used to develop all the examples shown in this book.
For information about downloading and using TextPad, refer to Book I,
Chapter 3. Eclipse is an open-source free development environment that’s
gaining popularity. [describe it in Book I, Chapter 4.

Downloading and Installing the Java Development Kit

Before you can start writing Java programs, you have to download and install
the correct version of the Java Development Kit (JDK) for the computer
system you're using. Sun’s Java Web site provides versions for Windows,
Solaris, and Unix. The following sections show you how to download and
install the JDK.

22 Downloading and Installing the Java Development Kit

Downloading the JDK

To get to the download page, point your browser to: java.sun.com/j2se/
1.5.0/download. jsp. Then follow the appropriate links to download
the J2SE 5.0 JDK for your operating system.

P At the time I wrote this, a menu of popular downloads is on the right side of
Java’s home page at java.sun.com. At the top of that menu is a link to the
download site for the current version of Java. So, if you don’t want to type
the entire link, you can just go to java . sun.com and then use the popular
downloads links to get to the download page.

When you get to the Java download page, you find links to download the JDK
or the JRE. Follow the JDK link; the JRE link gets you only the Java Runtime
Environment, not the complete Java Development Kit.

The JDK download comes in two versions: an online version that requires an
active Internet connection to install the JDK, and an offline version that lets
you download the JDK installation file to your disk, then install it later. I rec-
ommend you use the offload version. That way, you can reinstall the JDK if
you need to without downloading it again.

The exact size of the offline version depends on the platform, but they’re all
between 40MB and 50MB. As a result, the download takes a few hours if you
don’t have a high-speed Internet connection. With a cable, DSL, or T1 con-
nection, the download takes less than five minutes.

Legal mumbo jumbo

Before you can download the JDK, you haveto ¢~ The party of the second part (you) in turn

approve of the Java license agreement, all promise to use Java only to write pro-
2,393 words of it including the thereupons, grams. You're not allowed to try to figure
whereases, and hithertos all finely crafted by out how Java works and sell your secrets
Sun’s legal department. I'm not a lawyer (and | to Microsoft.

don’t play one on TV), but I'll try to summarize

.) v+~ You can't use Java to run a nuclear power
the license agreement for you:

plant. (I'm not making that up. It's actually
v+~ Sun grants you the right to use Java as-is in the license agreement.)

and doesn't promise that it will do anything

atall.

Downloading and Installing the Java Development Kit 2 3

Installing the JDK

After you download the JDK file, you can install it by running the executable
file you downloaded. The procedure varies slightly depending on your oper-
ating system, but basically you just run the JDK installation program file
after you download it:

4+ On a Windows system, open the folder you saved the installation pro-
gram to and double-click the installation program’s icon.

4+ For a Linux or Solaris system, use console commands to change to the
directory you downloaded the file to, and then run the program.

After you start the installation program, it asks any questions it needs to
know to properly install the JDK. You're prompted for information such as
which features you want to install and what folder you want to install the
JDK to. You can safely choose the default answers for each of the options.

Perusing the JDK folders

When the JDK installs, it creates several folders on your hard drive. The loca-
tion of these folders vary depending on your system, but in most cases the
JDK root folder is found under Program Files\Java on your boot drive.
The name of the JDK root folder also varies, depending on the exact Java
version you've installed. For version 1.5, the root folder is named jdk1.5.0.

Table 2-1 lists the subfolders created in the JDK root folder. As you work with
Java, you’ll frequently refer to these folders.

Table 2-1 Folders in the JDK Root Folder

Folder Description

bin The compiler and other Java development tools.

demo Demo programs you can study to learn how to use various Java
features.

docs The Java APl documentation. (For instructions on how to create

this folder, see the section “Using Java Documentation” later
in this chapter.)

include This library contains files needed to integrate Java with pro-
grams written in other languages.

jre The runtime environment files.
lib Library files, including the Java API class library.
src The source code for the Java API classes. This folder is only

created if you unpack the src . zip file (this file may be named
src.jar). After you get your feet wet with Java, looking at
these source files can be a great way to learn more about how
the API classes work.

Book |

[x]
=
)
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

24

QUING/

Downloading and Installing the Java Development Kit

In addition to these folders, the JDK installs several files into the JDK root
folder. I list these files in Table 2-2.

Table 2-2 Files in the JDK Root Folder

File Description

README.html The Java readme file in HTML format.

README.txt The readme file again, this time in text format.

LICENSE The Java license that you agreed to when you downloaded the JDK, on

the outside chance you enjoyed it so much the first time you want to
read it again. (If you work for Microsoft, you probably should read it
again, at least twice.)

LICENSE.rtf The license file once again, this time in RTF format. (RTF is a document
format that can be understood by most word processing programs.)

COPYRIGHT Most companies are happy to just say © 2004 Sun Microsystems, Inc.
at the bottom of the readme file or in the 1icense file. But not Sun.
It puts the copyright notice in a separate text file, along with information
about all the copyright and export laws that apply.

I guess the Java license you have to agree to at least twice — once when you
download the JDK, and again when you install it — isn’t clear enough about
what you’re not allowed to use Java for. The license says you can’t use it for
nuclear power applications. But the copyright notice (in the COPYRIGHT
file) also prohibits you from using it in missile systems or chemical or bio-
logical weapons systems. If you work for the Defense Department, you'd
better read the copyright notice!

Setting the path
After you install the JDK, you need to configure your operating system so
that it can find the JDK command-line tools. To do that, you must set the
Path environment variable. This variable is a list of folders that the operating
system uses to locate executable programs. To do this on Windows XP,
follow these steps:

1. Open the Control Panel and double-click the System icon.

The System Properties dialog box comes up.

2. Click the Advanced tab, and then click the Environment Variables
button.

The Environment Variables dialog box, as shown in Figure 2-1, appears.
3. In the System Variables list, select Path, and then click the Edit button.

A little dialog box comes up to let you edit the value of the Path variable.
4. Add the JDK bin folder to the beginning of the path value.

Figure 2-1:
The
Environment
Variables
dialog box.

Using Java’s Command-Line Tools 25

Envi Variables 2]

User variables For Dowg Lowe:

Wariable Value
CLASSPATH " jGiiProgrsm Fiks\avalRE
TEMP ztiDoouments and Setting:
TP GiiDocuments and Settings\Doug Lowel...

(ew J[eae | [peke |

System variables

Wariable Yalue

Cam3pec GAWINDOWS|systemaZicmd. exe

MUMEER_OF P... 1

o5 Windows_NT

Path GWINDOW S systemn3z; G WINDOWS;...

PATHEXT LCOM; DX} BAT; CVD; VBS; VO 15...._|e
wew | Edt | [Delete |

Use a semicolon to separate the bin folder from the rest of the informa-
tion that may already be in the path. Note: The exact name of the bin
folder may vary on your system. For example:

c:\Program Files\Java\jdkl.5.0\bin; other
directories...

5. Click OK three times to exit.

The first OK gets you back to the Environment Variables dialog box. The
second OK gets you back to the System Properties dialog box. And the
third OK closes the System Properties dialog box.

For earlier versions of Windows (such as ancient Windows 98 or Me), you set
the path by adding a Path statement to the AutoExec . bat file in the root
directory of your C drive. For example:

path c:\Program Files\Java\jdkl.5.0\bin;other
directories...

For Linux or Solaris, the procedure depends on which shell you're using.
Consult the documentation for the shell you're using for more information.

Using Java’'s Command-Line Tools

Java comes with several command-line tools you can run directly from a com-
mand prompt. The two most important are javac, the Java compiler used to
compile a program, and java, the runtime used to run a Java program. These
tools work essentially the same no matter what operating system you're
using. The examples in this section are all for Windows XP.

Book |

[x]
=
)
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

26

Using Java’s Command-Line Tools

Compiling a program

You can compile a program from a command prompt by using the javac
command. Before you can do that, however, you need a program to compile.
Using any text editor, type the following text into a file and save it as
HelloApp.java:

public class HelloApp
{
public static void main(String[] args)

{
3

System.out.println("Hello, World!");
}

Save the file in any directory you wish. Pay special attention to capitaliza-
tion. For example, if you type Public instead of public, the program won’t
work. (If you don’t want to bother with the typing, you can download the
sample programs from this book’s Web site.)

Open a command prompt and use a cd command to change to the directory
you saved the program file in. Then enter the command javac HelloApp.
java. This command compiles the program (javac) and creates a class file
named HelloApp.class.

Assuming you typed the program exactly right, the javac command doesn’t
display any messages at all. If the program contains any errors, one or more
error messages display. For example, if you type Public instead of public,
the compiler displays the following error message:

C:\java\samples>javac HelloApp.java
HelloApp.java:1l: 'class' or 'interface' expected
Public class HelloApp

1l error

C:\java\samples>

The compiler error message indicates that an error is in line 1 of the
HelloApp.java file. If the compiler reports an error message like this one,
your program contains a coding mistake. You need to find the mistake, cor-
rect it, and then compile the program again.

Compiling move than one file

Normally, the javac command compiles just the file that you specify on the
command line. However, you can coax javac into compiling more than one file
at once by using any of the techniques [describe in the following paragraphs:

Using Java’s Command-Line Tools 27

4+ If the Java file you specify on the command line contains a reference to
another Java class that’s defined by a java file in the same folder, the
Java compiler automatically compiles that class too.

For example, suppose you have a java program named TestProgram,
and that program refers to a class called TestClass, and the Test
Class.java file is located in the same folder as the TestProgram.
java file. Then, when you use the javac command to compile the
TestProgram. java file, the compiler automatically compiles the
TestClass. java file, too.

4 You can list more than one filename on the javac command. For exam-
ple, the following command compiles three files:

javac TestPrograml.java TestProgram2.java
TestProgram3. java

4+ You can use a wildcard to compile all the files in a folder, like this:
javac *.java
4+ If you need to compile a lot of files at once, but don’t want to use a wild-
card (perhaps you want to compile a large number of files, but not all the
files in a folder), you can create an argument file that lists the files to com-
pile. In the argument file, you can type as many filenames as you want.

You can use spaces or line breaks to separate the files. For example, here’s
an argument file named TestPrograms that lists three files to compile:

TestPrograml. java

TestProgram?.java

TestProgram3. java
Then, you can compile all the programs in this file by using an @ charac-
ter followed by the name of the argument file on the javac command
line, like this:

javac @TestPrograms

Using Java compiler options

The javac command has a gaggle of options you can use to influence the
way it compiles your programs. For your reference, I list these options in
Table 2-3. To use one or more of these options, type the option either before
or after the source filename. For example, either of the following commands
compile the Hel 1loApp. java file with the -verbose and -deprecation
options enabled:

javac HelloWorld.java -verbose -deprecation
javac -verbose -deprecation HelloWorld.java

Don’t get all discombobulated if you don’t understand what all these options
do. Most of them are useful only in unusual situations. The options you’ll use

the most are

Book |

[x]
=
)
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

28

Using Java’s Command-Line Tools

-classpath or -cp: Use this option if your program makes use of
class files that you've stored in a separate folder.

-deprecation: Use this option if you want the compiler to warn you
whenever you use API methods that have been deprecated. (Deprecated
methods are older methods that were once a part of the Java standard
API but are now on the road to obsolescence. They still work, but may
not in future versions of Java.)

-source: Use this option to limit the compiler to previous versions of
Java. Note, however, that this option only applies to features of the Java
language itself, not to the API class libraries. For example, if you specify
-source 1.4, the compiler won’t allow you to use new Java language
features that were introduced with Java 1.5, such as generics or enhanced
for loops. However, you can still use the new API features that were
added with version 1.5, such as the Scanner class.

4+ -help: Use this option to list the options that are available for the

javac command.

Table 2-3 Java Compiler Options
Option Description

-g Generate all debugging info
-g:none Generate no debugging info

-g:{1lines,vars, source}

Generate only some debugging info

-nowarn Generate no warnings
-verbose Output messages about what the compiler is doing
-deprecation Output source locations where deprecated APls

are used

-classpath <path>

Specify where to find user class files

-cp <path>

Specify where to find user class files

-sourcepath <path>

Specify where to find input source files

-bootclasspath <path>

Override location of bootstrap class files

-extdirs <dirs>

Override location of installed extensions

-endorseddirs <dirs>

Override location of endorsed standards path

-d <directory>

Specify where to place generated class files

-encoding <encoding>

Specify character encoding used by source files

-source <release>

Provide source compatibility with specified release

-target <release>

Generate class files for specific VM version

-version Version information

-help Print a synopsis of standard options

-X Print a synopsis of nonstandard options
-J<flag> Pass <f1lag> directly to the runtime system

Using Java’s Command-Line Tools 29

Running a Java program

When you successfully compile a Java program, you can then run the pro-
gram by typing the java command followed by the name of the class that
contains the program’s main method. The Java Runtime Environment loads,
along with the class you specify, and then runs the main method in that
class. For example, to run the Hel1loApp program, type this command:

C:\java\samples>java HelloApp
The program responds by displaying the message "Hello, World!".

The class must be contained in a file with the same name as the class and
the extension .class. You don’t usually have to worry about the name

of the class file because it’s created automatically when you compile the
program with the javac command. Thus, if you compile a program in a file
named HelloApp . java, the compiler creates a class named HelloApp
and saves it in a file named HelloApp.class

If Java can’t find a filename that corresponds to the class, you get a simple
error message indicating that the class can’t be found. For example, here’s
what you get if you type Jel1loApp instead of HelloApp:

C:\java\samples>java JelloApp
Exception in thread "main"
java.lang.NoClassDefFoundError: JelloApp

This error message simply means that Java couldn’t find a class named
JelloApp.

However, if you get the class name right but capitalize it incorrectly, you get
a slew of error messages. Ponder this example:

C:\java\samples>java helloapp
Exception in thread "main" java.lang.
NoClassDefFoundError: helloapp (wrong name:
HelloApp)
at java.lang.ClassLoader.defineClassl (Native Method)
at java.lang.ClassLoader.defineClass (ClassLoader.
java:620)
at java.security.SecureClassLoader.defineClass
(SecureClassLoader.java:124)
at java.net.URLClassLoader.defineClass
(URLClassLoader.java:260)
at java.net.URLClassLoader.access$100
(URLClassLoader.java:56)
at java.net.URLClassLoaderS$l.run
(URLClassLoader.java:195)

Book |

[x]
=
)
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

30

Using Java’s Command-Line Tools

at java.security.AccessController.doPrivileged

(Native Method)

at java.net.URLClassLoader.findClass
(URLClassLoader.java:188)
at java.lang.ClassLoader.loadClass

(ClassLoader.java:306)

at sun.misc.Launcher$AppClassLoader.loadClass

(Launcher.java:268)

at java.lang.ClassLoader.loadClass

(ClassLoader.java:251)

at java.lang.ClassLoader.loadClassInternal

(ClassLoader.java:319)

Wow, that’s a pretty serious looking set of error messages considering that
the only problem is that I forgot to capitalize HelloApp. Java isn’t just case

sensitive, it’s very case sensitive.

Like the Java compiler, the Java runtime lets you specify options that can
influence its behavior. Table 2-4 lists the most commonly used options.

Table 2-4 Commonly Used Java Command Options

Option Description

-client Runs the client VM.

-server Runs the server VM, which is optimized

for server systems.

-classpath directories
and archives

Alist of directories or JAR or Zip archive
files used to search for class files.

-cp <search path>

Same as -classpath.

-D name=value

Sets a system property.

-verbose Enables verbose output.

-version Displays the JRE version number, then
stops.

-showversion Displays the JRE version number, then
continues.

-?or ~help Lists the standard options.

-X Lists nonstandard options.

-eaor —enableassertions

Enables the assert command.

-ea classes or packages

Enables assertions for the specified
classes or packages.

-esa or —enablesystemassertions

Enables system assertions.

-dsaor -disablesystemassertions

Disables system assertions.

Using Java’s Command-Line Tools 3 1

Using the javap command

The javap command is called the Java disassembler because it takes apart
class files and tells you what’s inside them. It’s not a command you’ll use
often, but using it to find out how a particular Java statement works is some-
times fun. You can also use it to find out what methods are available for a
class if you don’t have the source code that was used to create the class.

For example, here’s the information you get when you run the javap
HelloApp command:

C:\java\samples>javap HelloApp

Compiled from "HelloApp.java"

public class HelloApp extends java.lang.Object({
public HelloApp () ;
public static void main(java.lang.Stringl[]);

}

As you can see, the javap command indicates that the Hel1loApp class
was compiled from the HelloApp. java file and that it consists of a
HelloApp public class and a main public method.

You may want to use two options with the javap command. If you use the
-c option, the javap command displays the actual Java bytecodes created
by the compiler for the class. And if you use the -verbose option, the byte-
codes plus a ton of other fascinating information about the innards of the class
are displayed. For example, here’s the -c output for the Hel 1loApp class:

C:\java\samples>javap HelloApp -c

Compiled from "HelloApp.java"

public class HelloZApp extends java.lang.Object{
public HelloZpp () ;

Code:
0: aload_0
1: invokespecial #1; //Method
java/lang/Object."<init>": ()V
4: return

public static void main(java.lang.Stringl[]);

Code:
0: getstatic #2; //Field
java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3; //String Hello, World!
5: invokevirtual #4; //Method

java/io/PrintStream.println: (Ljava/lang/String;)V
8: return

Book |

[x]
=
)
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

32

Using Java Documentation

If you become a big-time Java guru, you can use this type of information to
find out exactly how certain Java features work. Until then, you should proba-
bly leave the javap command alone, except for those rare occasions when
you want to impress your friends with your in-depth knowledge of Java. (Just
hope that when you do, they don’t ask you what the aload or invokevirtual
instruction does.)

Other Java command-line tools

Java has many other command-line tools that might come in handy from time
to time. You can find a complete list of command-line tools at the following
Web site:

java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#basic
I describe three of these additional tools elsewhere in this book:

4+ applet viewer: Runs a Web applet application. For more information, see
Book VII, Chapter 1.

4+ javadoc: Automatically creates HTML documentation for your Java
classes. For more information, see Book IIl, Chapter 8.

4+ jar: Creates Java archive files, which store classes in a compressed file
similar to a Zip file. I cover this command in Book Ill, Chapter 8.

Using Java Documentation

\\J

You won'’t get very far learning Java before you find yourself wondering

if some class has some other method that I don’t describe in this book, or if
some other class may be more appropriate for an application you’re working
on. When that time comes, you’ll need to consult the Java help pages.

Complete documentation for Java is available from the Sun Java Web site at
java.sun.com/docs. Although this page contains many links to documen-
tation pages, the two you’ll use the most are the JS2E API documentation
pages and the Java Language Specification pages. The following sections
describe these two links.

If you don’t have a reliable high-speed Internet connection, you can down-
load Java’s documentation by using the download links on the main java.
sun.com/docs page. Then, you can access the documentation pages
directly from your computer.

Using Java Documentation 33

JS2E API Docs

The links under the Java 2 SDK, Standard Edition, Documentation heading
take you to the complete documentation for all currently supported versions
of the Java AP], in English as well as Japanese. Figure 2-2 shows the English
JS2E API documentation page.

You can use this page to find complete information for any class in the APIL.
By default, all the Java classes are listed in the frame that appears at the
bottom left of the page. You can limit this display to just the classes in a par-
ticular package by selecting the package from the menu at the upper-left side
of the page. (If you don’t know what a package is, don’t worry. You find out
about packages in Book I, Chapter 4.)

Click the class you're looking for in the class list to call up its documentation
page. For example, Figure 2-3 shows the documentation page for the String
class. If you scroll down this page, you find complete information about
everything you can do with this class, including an in-depth discussion of
what the class does, a list of the various methods it provides, and a detailed
description of what each method does. In addition, you also find links to
other classes that are similar.

[ET Overview (Java 2 Platiorm SE 5.0) - Microsoft Internet Explorer SEE
File Edit View Favorites Tools Help o

@Back =0 x) 2 . S seach 5 ¢ ravores @meds €8 O 0l B - [E] mj;i c%

Address ej thp:,l',ljava.sun.l:qm,l’stc.l'E \5.0{docs}apifindes. hirl vl ﬂ Go Liks:
~ A.
Java™2 Platforr | BRI Fackage Class Use Tree Deprecated Index Help Java™ 2 Plagfo -
Standard Ed. 5.0 FREWV NEZT ERAMES MO FRAMES Seandand Ed.
All Classes
Packages v Java™ 2 Platform Standard Edition 5.0
Tl API Specification
All Classes - I -
) s ra 2 P

e This document 15 the AP spectfication for the Java 2 Platform Standard Edition 5.0,
AbstractBorder
AbstractButton See:
AbstractCelEditor Description

AbstractCollection
AbstractColorChoos

Figure 2-2:
The docu-
mentation
page for
JS2E API 5.0
(English
version).

AbstractDocument Java 2 Platform Packages

AbsiractDocument £

AbBstraciDocUmEnt.C Prowides the classes necessary to create an
AbstractDocument £ java.applet applet and the classes an applet uses to
AbstractExecitorsel commuricate with its applet context,
Apstractinterruptinle = =
Abstractl ayourCach Contains all of the classes for creating user
Abstractl ayoutCach java.awt mterfaces and for painting graphics and
Abstractlist mages.

Abstractl isthiodel

Anstracttdan *|| Hava.awt.color Prowmdes classes for color spaces. k]
& [|

] Done 4 Internet

Book |

[x]
=
o
=
=3
@
-
N

s|oo] eaep
fuisn pue buijjelsu|

3 4 Using Java Documentation

€7 String (Java 2 Platform SE 5.0) - Microsoft Internet Expl [S[ENX]
File Edit View Favorites Tools Help o

@Back - &I x'"l _:] , P!) search \.':Fawxes @ reda £ Ol B - E mj;i (%

Address -&ﬂ thp:,l’,ljava.sun.l:l;m,l’stc\l’E.S.O,I’dncs,l’api,lindcx.hh'v'l vl ﬂ Go Links: **
~ A.

Java™ 2 Platform | Overview Package Use Tree Deprecated Index Help Java™ 2 Platform

Standard Ed. 5.0 EREY CLASS NEXTCLASS ERAMES MO FRAMES Standard Ed. 5.0

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Al Classes
Packanes sl
P - B javalang

StreamREesUl ~| Class String
StreamSource

T java. lang.Ohject
gg:l?m L L Java.lang.String
StringBuffer
stincButterinputstre | Al Implemented Interfaces:
StringBulider Serializable, CharSequence, Comparable<String=
StringCharacteritera
StringContent
stringHolder
Strmqlnde:{DutOfElol public final class String

1 2 s i extends Chiect

Figure 2-3: SUINGMOMROIMBES! |y jements Serislizable, Comparable<String>, CharSequence

The docu- StringMameHelper
StringReader - . .)

mentation StringRetAddr The String class represents character strings. All string iterals m Java programs, such as "abe®,
StringSelection are woplernented as instances of this class,

page forthe | stingseqHeiper |v ¥

String class. ¢l = [FA £3) ! . i’

8] B Intermet

C itor

Java Language Specification

If you're interested in learning details about some element of the Java lan-
guage itself rather than the information about a class in the API class library,
click the Java Language Specification link near the bottom of the page. That
takes you to a set of pages that describe in sometimes excruciating and
obscure detail exactly how each element of the Java language works.

Frankly, this documentation isn’t that much help for beginning program-
mers. It was written by computer scientists for computer scientists. You can
tell just by looking at the table of contents that it isn’t for novices. The first
chapter is called Introduction (that’s not so bad), but then Chapters 2 and 3
are titled “Grammars” and “Lexical Structure.”

That’s why you’re reading this book, after all. You won’t even find a single
sentence about Lexical Structure in this book (other than this one, of
course). Even so, at some time in your Java journeys you may want to get to
the bottom of the rules that govern strange Java features, such as anony-
mous inner classes. When that day arrives, grab a six pack of Jolt Cola, roll
up your sleeves, and open the Java Language Specification pages.

Chapter 3: Working with TextPad

In This Chapter

v+ Downloading and installing TextPad
1 Using TextPad to edit source files
v Compiling Java programs

+ Running Java programs

TextPad is an inexpensive ($29) text editor that you can integrate with
the Java SDK to simplify the task of coding, compiling, and running Java
programs. It isn’t a true Integrated Development Environment (IDE), as it
lacks features such as integrated debugging, code generators, or drag-and-
drop tools for creating graphical user interfaces. If you want to work with an
IDE, I suggest you skip this chapter and instead look to Book I, Chapter 4,
which covers a free IDE called Eclipse.

TextPad is a popular tool for developing Java programs because of its sim-
plicity and speed. It’s ideal for learning Java because it doesn’t generate any
code for you. Writing every line of code yourself may seem like a bother, but
the exercise pays off in the long run because you have a better understand-
ing of how Java works.

Downloading and Installing TextPad

You can download a free evaluation version of TextPad from Helios Software
Systems at www . textpad . com. You can use the evaluation version free of
charge, but if you decide to keep the program, you must pay for it. Helios
accepts credit card payment online.

If the Java SDK is already installed on your computer when you install
TextPad, TextPad automatically configures itself to compile and run Java
programs. If you install the SDK after you install TextPad, you need to con-
figure TextPad for Java. Follow these steps:

1. Choose Configurer>Preferences.

2. Click Tools in the tree that appears at the left of the Preferences
dialog box.

36

Figure 3-1:
Configuring
tools in
TextPad.

Editing Source Files

3. Click the Add button to reveal a drop-down list of options, and then

click Java SDK Commands.

Figure 3-1 shows how the Preferences dialog box appears when the
Java tools are installed. As you can see, the Tools item in the tree at the
left of the dialog box includes three Java tools: Compile Java, Run Java

Application, and Run

Java Applet.

Preferences

General X
File

E ditor
Wiaw

Compile Java

Run Java Application
|Fun Java Applet
Document Classes

Associgled Files

Backup

File Mame Fikers

Folders

Keyboard

Language

Macios
Spclll_'_\g

21

Emple Java
Run Java dpplcati
Fun Java dpplet

< »

ok | [Cancel

+ e

Usze this form to 2dd. delete, rename
o change the oider of the taols you
want to appess on the Tools menw

Ta zet the praperties of & new tool,

click Spphy then sebect & in the free
coriral

Help

4. Click OK.

The commands to compile and run Java programs are added to TextPad’s

Tools menu.

Editing Source Files

\\J

Figure 3-2 shows TextPad

When you first create a file (by clicking the New button on the toolbar or by
choosing File>New), TextPad treats the file as a normal text file, not as a
Java program file. After you save the file (click the Save button or choose
Filew>Save) and assign java as the file extension, TextPad’s Java editing fea-

tures kick in.

editing a Java source file. If you've worked with a
Windows text editor before, you’ll have no trouble learning the basics of
using TextPad. | won’t go over such basic procedures as opening and saving
files because they’re standard. Instead, the following paragraphs describe
some of TextPad’s features that are useful for editing Java program files.

£ TextPad - [G:Documents and SettingsiDoug LoweiMy Dacuments.Java Al0WApps'Bookd\Chi4iHalloApp java]
& File Edit Search Wiew Tools Macros Configure Windo Help
oFd B&8kE R D EE 2T VLR EFm e 2
] public class HelloApp =
HelloApp.java t : = x oy Sy i
TeslClase java |;|u].|J.¢-_-, static void main{String[] args)
printHello({ “world”)
private static void printHello(String grestee)
Systen.out println{"Hello. " + grestes + "1"});
—
Figure 3-2:
Editing a
Javafilein
TextPad. I
For Help, press F1 10 13

Editing Source Files 3 7

The following paragraphs describe some of TextPad’s more noteworthy fea-
tures for working with Java files:

4+ You can’t really tell from Figure 3-2, but TextPad uses different colors to
indicate the function of each word or symbol in the program. Brackets
are red so you spot them quickly and make sure they’re paired correctly.
Keywords are blue. Comments and string literals are green. Other text,
such as variable or method names, are black.

4+ TextPad automatically indents whenever you type an opening bracket,
and then reverts to the previous indent when you type a closing bracket.
Keeping your code lined up is easy.

4+ Line numbers display down the left edge of the editing window. You can
turn these line numbers on or off by choosing Viewr>Line Numbers.

4+ To go to a particular line, press Ctrl+G to bring up the Go To dialog box.
Make sure Line is selected in the Go to What box, enter the line number
in the text box, and click OK.

4+ If you have more than one file open, you can switch between the files by
using the Document Selector, the pane on the left side of the TextPad
window. If the Document Selector isn’t visible, choose ViewroDocument
Selector to summon it.

Book |
Chapter 3

pedixal
yum Buppiop

38

Compiling a Program

Using workspaces

In TextPad, a workspace is a collection of files
that you work on together. Workspaces are
useful for projects that involve more than just
one file. When you open a workspace, TextPad
opens all the files in the workspace. And you
can configure TextPad to automatically open
the last workspace you were working on when-
ever TextPad starts.

To create a workspace, first open all the files
that you want to be a part of the workspace.
Then, choose File=>Workspace=>Save As and
give a name to the workspace. (The list of files
that make up the workspace is saved in a file
with the tws extension.)

To open a workspace, choose Filec>Workspacer>
Open. Then, select the workspace file you
previously saved and click Open. Or, choose the
workspace from the list of recently used work-
spaces that appears at the bottom of the File=>
Workspace menu.

To configure TextPad to automatically open the
most recently used workspace whenever you
start TextPad, choose Configurec>Preferences.
Click General in the preferences tree at the left
of the dialog box, and then check the Reload
Last Workspace at Startup option and click OK
to close the Preferences dialog box.

Another way to switch between multiple files is to choose View=>Document

Tabs. The tabs at the bottom of the document window display. You can
click these tabs to switch documents.

A handy Match Bracket feature lets you pair up brackets, braces, and

parentheses. To use this feature, move the insertion point to a bracket.
Then press Ctrl+M. TextPad finds the matching bracket.

To search for text, press F5. In the Find dialog box, enter the text you're
looking for and click OK. To repeat the search, press Ctrl+F.

To replace text, press F8.

Compiling a Program

To compile a Java program in TextPad, choose Tools=>Compile Java or use the
keyboard shortcut Ctrl+1. The javac command launches in a separate com-
mand prompt window and displays the compiler output to a separate Command
Results window. If the program compiles successfully, TextPad returns imme-
diately to the source program. But if the compiler finds something wrong with
your program, the Command Results window stays open, as shown in Figure 3-3.

In this example, the following three compiler error messages are displayed:

J:\Bookl1l\ChO4\HelloApp.java:10: ')
System.out.println("Hello,

expected
+ Jgreetee +

||!||),.

~

\\J

\\3

Figure 3-3:
Error
messages
displayed by
the Java
compiler.

Compiling a Program 39

J:\Bookl\ChO4\HelloApp.java:10: unclosed string literal
System.out.println("Hello, + greetee + "!");

A~

J:\Bookl\ChO4\HelloApp.java:11l: ';' expected
}

~

3 errors

Tool completed with exit code 1

If you double-click the first line of each error message, TextPad takes you to
the spot where the error occurred. For example, if you double-click the line
with the unclosed string literal message, you're taken to line 10,
and the insertion point is positioned on the last quotation mark on the line,
right where the compiler found the error. Then, you can correct the error
and recompile the program.

Often, a single error can cause more than one error message to display.
That’s the case here. The error is that I left off a closing quotation mark after
the word Hello in line 10. That one error caused all three error messages.

X" TextPad - [Command Results] ESEN=]
& File Edit Search Wiew Tools Macros Configure Window Help -2 %
0= B&RE =l = =T (D B Fath e LY
=] > J:%BooklsChi4~Hellodpp Java:10: ')' expected —
o R Systen out println(’Hello, + greetes + "1}
Hellodpp.java J:~Bookl1~Chi4~HelloApp. java:10: unclosed string literal
Systen.out.println(*Hella., + grestes + "1"}:
J:“Bookl~Ch04~Hellodpp java:11l: ':' expected
¥

3 errors

Tool completed vith exit code 1

J

Tool completed with exit cods 1 13 1 Fead

Book |
Chapter 3

pedixal
yum Buppiop

40 Running a Java Program

Running a Java Program

Figure 3-4:
Running a
program.

After you compile a Java program with no errors, you can run it by choosing
Tools=>Run Java Application or pressing Ctrl+2. A command window opens,
in which the program runs. For example, Figure 3-4 shows the HelloApp
program running in a separate window atop the TextPad window.

When the program finishes, the message Press any key to continue
displays in the command window. When you press a key, the window closes
and TextPad comes back to life.

In case you're wondering, TextPad actually runs your program by creating
and running a batch file — a short text file that contains the commands nec-
essary to run your program. This batch file is given a cryptic name, such as
tp02allc.BAT. Here’s the batch file generated for the HelloApp program:

@ECHO OFF

C:

CD \Book1\Ch04

"G:\Program Files\Java\jdkl.5.0\bin\java.exe" HelloApp
PAUSE

E lextPad - [J!\BookT\Chi4'HelloApp.javal
D BSRE BOo2EE27 V4R Taih . 2
== public class HellodApp —
Commard Resuts i 7 s : < 3
Hello&pp.java public static void main(String[] args

WINDOWS \System32\emd.exe

¥
ny key to continue . . .

Running an Applet 4 1

Here’s a closer look at these commands:
4 The first command tells MS-DOS not to display the commands in the
command window as the batch file executes.

4+ The next two commands switch to the drive and directory that contains
the java program.

+

Next, the java . exe program is called to run the Hel 1loApp class.

4 And finally, a PAUSE command executes. That’s what displays the Press
any key to continue message when the program finishes.

Running an Applet

Figure 3-5:
Running an
applet.

You can also run an applet directly from TextPad. First, compile the program.
Then, if the program contains no errors, choose Toolsw>Run Java Applet or
press Ctrl+3. A command window appears. Then, the Java applet viewer is
started. It runs the applet in a separate window, without the need for a Web
browser. Figure 3-5 shows an applet in action.

When you quit the applet, the applet viewer window and the DOS command
window closes and you return to TextPad.

E lextPad - [G:'\Documents and Settings\Doug Lowe'\My DocumentsJava Al0'Experiments\Games\Game?2.java|
D BEkE B EE 29 V4R TaHh e 2
B G Program Fill & Applet Viewer: Game2.class =0/ =101 x| Bl
Carmrmard F Applet |
Game2 jave
’»vel:1 Balls; 21 13..
® o
& e
Applet started
JOptionPane showlsssagelizlog(this, =)
b
< >

262 3

Book |
Chapter 3

pedixal
yum Buppiop

H2 Book I Java Basics

\\J

Chapter 4: Using Eclipse

In This Chapter

1+ Understanding Eclipse projects and workbenches
v Creating a Java project

1 Compiling, running, and debugging with Eclipse
v Refactoring with Eclipse

Eclipse is a development environment that includes many powerful
features for creating Java programs. Because Eclipse is free and very
powerful, it has become popular among Java developers. In this chapter,
you discover the basics of using Eclipse for simple Java development.

Because Eclipse is such a powerful tool, it has a steep learning curve. If
you're brand new to Java, | suggest you start out using a simpler environ-
ment, such as TextPad (described in Book I, Chapter 3) and turn to Eclipse
only after you have your mind around some of Java’s programming funda-
mentals. That way, you start out by concentrating on Java programming
rather than learning Eclipse.

When you’re ready to get started with Eclipse, go to the Eclipse Web site
(www.eclipse.org), click the downloads link, and download the current
version of Eclipse. Unlike most programs, Eclipse doesn’t have a compli-
cated setup program. You just download the Eclipse Zip file, extract all of
the files, and then run the Eclipse executable file (eclipse. exe) directly
from the folder you extracted it to.

If you're using Windows, you may want to add a desktop shortcut for Eclipse
to make it more convenient to start. To do that, open the folder that contains
the eclipse. exe file. Then, right-click the file and drag it to the desktop.
Release the mouse button and choose Create Shortcut from the menu that
appears. You can then start Eclipse by double-clicking this desktop shortcut.

Note that many of the techniques I describe in this chapter won’t make much
sense to you until you learn how to use the Java programming features they
apply to. For example, the information about how to create a new Java class
file won’t make much sense until you learn about creating Java classes in
Book III. As you learn about Java programming features in later chapters, you
may want to refer back to this chapter to learn about related Eclipse features.

If you plan on using Eclipse, | suggest you pick up a copy of Eclipse For
Dummies by Barry Burd (Wiley Publishing).

44

Getting Some Perspective on Eclipse

Getting Some Perspective on Eclipse

Eclipse is designed to be a general-purpose development environment, which
means that it isn’t specifically designed for Java. It’s like the Seinfeld of IDEs:
As its own designers put it, Eclipse is “an IDE for anything and nothing in
particular.” You can easily customize Eclipse with plug-in components called
features that make it useful for specific types of development tasks. And
because Eclipse is most commonly used for Java program development, it
comes pre-configured with features designed for developing Java programs.

Eclipse uses some unusual terminology to describe its basic operation. In
particular:

4+ Workbench: The workbench is the basic Eclipse desktop environment.
When you run Eclipse, the workbench opens in a window, as shown in
Figure 4-1.

Workbench window Java perspective

[Java - HalloApp java - Eclipse Platiorm ' ey
File Edit Source Refactor Mavigate Search Project Run Window Help
[+ TR SRy R N @~ | i = B &ava
B vl = M ow v
[Package. 33 ™ = 0| U] SwingTestApp java | Ul HelloApp.java 23 glgzouw. 2708
g - Fi . =
EE=) HellaAps ‘ Created on Nov 19, 2004 laz \ ¥ e ¥
= i javaaio &+ robo & java_aio
#-[1] Hello&pp java e = @, HelloApp
+ = JRE Systern Library -~ © < main(st
Java.policy. applet package java aio;
1 SwingTest Tt
.
it2] * TOD0 To change che template for this rated o
* Window Preferences Java Code St Code "
“public class Hellolpp |
- public static void main{String[] args) {
String[] w = new String[3]: |
< > £ >
—— [Problems &% Javadoc | Declaration Seo e bl
- . 0 errors, 0 wamings, 0 infos
Flglll'e 4 I: | Description | Besource | In Folder | Location
The Eclipse
Workbench
window. &l : 2
Witable Smart Insert 1:1
Package Explorer view Problems view Java editor

\\3

Getting Some Perspective on Eclipse 45

If you can juggle and chew gum at the same time, you may want to open
two workbench windows to work on two different projects at once.
However, those of us with less than super-hero abilities of concentration
can work with just one workbench window at a time.

Editor: An editor is a workbench window pane that’s designed for editing
a certain type of file. Eclipse comes with a standard text editor that can
edit any kind of text file and a special Java editor that’s specifically
designed for editing Java programs. In Figure 4-1, the Java editor is in
the middle portion of the workbench window.

The Java editor in this figure looks small because I captured this screen
image with the computer’s monitor set to 800 x 600 pixels. Because
Eclipse puts so much information on the screen at once, however, run-
ning it on a large monitor (preferably 19" or larger) at a resolution of at
least 1,024 x 768 is best. That way, the editor window is large enough

to let you comfortably work with your program’s text, while leaving
ample room for the other elements displayed in the Eclipse workbench
window.

Views: A view is a pane of the workbench window that displays other infor-
mation that’s useful while you're working with Eclipse. Figure 4-1 displays
several additional views in addition to the editor. For example, the Package
Fxplorer view lets you navigate through the various files that make up an
Eclipse project, and the Problems view displays error messages.

You can display a view in its own pane, or combine it with other views in
a single pane. Then, the views in the pane are indicated with tabbed
dividers you can click to call up each view in the pane. For example, the
Problems view in Figure 4-1 shares its pane with two other views, called
JavaDoc and Declaration.

Strictly speaking, an editor is a type of view.

Perspective: A perspective is a collection of views that’s designed to help
you with a specific type of programming task. For example, the work-
bench window pictured in Figure 4-1 shows the Java perspective, designed
for working with Java program files. Figure 4-2 shows a different perspec-
tive, called the Debug perspective. In this perspective, the Java editor is
still present, but a different set of views that are useful while testing and
debugging Java programs are shown. For example, a Console view
appears at the bottom of the window so you can see the output created
by the program, and a Variables view lets you monitor the contents of
variables as the program executes. (For more information about the
Debug perspective, see the section “Debugging a Java Program” later in
this chapter.)

Book |
Chapter 4

asdijag buisn

46 Understanding Projects

Breakpoints view (hidden)

Debug view Variables view

[@Depug - HelloApp java - Eclipse Platiarm
Eile |Edit Source Refactor MNavigate Search Project Run [Window Help

el & 0 ~Q~ | @ B | & v Fl w1 G~ Fi TxDebug &'Java
%#Debug 53 = O |p9-Variables I Breakpoints Tk O o« 20
] T

=1 [2] =terminated> HelloApp (1) [Java Application]
= <terminated, exit value; 0> G\Program Files\avatidk1.5

< | i >
4] SwangTestApp. java |1] HelloApp. java &2 £ || 5% Outline 52 !
- public static void main(Scring[] args) { | - w e W v
St;:’mf[]' Ulf]J':E'W String[3]: o java_aia
:H S = ©, HelloApp
w[2] = " World!"; @~ main(Strng(])
= Tor(int 1 = 0: 1<3; 1i+4)
Syatem.out.print (w[i]):
| o7
1
™
< | >
— @ console 11 Tasks M| EE & | 2 =
Figure 4-2: <terminated> HelloApp (1) [Java Application] G:\Program Files'Javaljdk1 5. Dibintjayaw exe (MNov 22, 2004 &:36:53 PM)
. Hello, World!
Debugging
a program in
Eclipse.
Witable Smart Insert 24:1
Console view Java editor

Understanding Projects

An Eclipse project is a set of Java files that together build a single Java pro-
gram. Although some simple Java programs consist of just one file, most
real-world Java programs are made up of more than one Java program file.
In fact, a complicated Java program may require hundreds of Java program
files. When you work on programs that require more than one file, Eclipse
lets you treat those files together as a project.

A project consists not just of Java source files, but also the class files that
are created when you compile the project and any other files that the pro-
gram requires. That might include data files or configuration files, as well as
other files such as readme files, program documentation, image files, sound
files, and so on.

All the files for a project are stored together in a project folder, which may
include subfolders if necessary. In addition to the files required by the

Creating a Simple Project 4 7

program, the project folder also includes files that are created by Eclipse Book I
to store information about the project itself. For example, a file named Chapter 4
.project stores descriptive information about the project, and a file named
.classpath stores the locations of the classes used by the project.

All your project folders are stored in a folder called the workspace. Each time
you start Eclipse, a dialog box appears asking for the location of the work-
space folder. If you want to change to a different workspace, use Filec>Switch

Workspace.

asdijag buisn

Eclipse lets you create two types of projects:

4+ For simple projects that have just a few Java source files, you can create
a project that stores all the project’s Java files in a single folder. Then,
when those files are compiled, the resulting class files are stored in this
same folder. This type of project is the easiest to work with, and it’s ideal
for small and medium-sized projects.

4+ For large projects — those that involve dozens or even hundreds of Java
source files — you can create a project that uses one or more subfolders
to store source files. You are then free to create whatever subfolders you
want to help you organize your files. For example, you might create one
subfolder for user interface classes, another for database access classes,
and a third for image files displayed by the application.

Eclipse doesn’t have a File=>Open command that lets you open projects or
individual files. Instead, the Package Explorer view (on the left side of the
Java perspective; refer to Figure 4-1) displays a list of all the Java projects in
your workspace. When you start Eclipse, the project you were last working
on is automatically displayed. You can switch to a different project by right-
clicking the project in the Package Explorer, and then choosing Open Project.
And you can open an individual file in a project by double-clicking the file in
the Package Explorer.

A\

Creating a Simple Project

The following procedure takes you step by step through the process of creat-
ing a simple project based on a slightly more complicated version of the
Hello, World! program from Book I, Chapter 1. Follow these steps to create

this application:

1. Start Eclipse and click OK when the Workspace Launcher dialog box
appears.
The Workspace Launcher dialog box asks for the location of your work-
space folder; in most cases, the default location is acceptable. When you
click OK, Eclipse opens with the Java perspective, with no projects or
files displayed as shown in Figure 4-3.

48 Creating a Simple Project

Figure 4-3:
Eclipse
waits for
you to
create a
project.

[& Java - Eclipse Platform S[O[%]
File Edit Source Refactor Mavigate Search Project Run Window Help
[FrO0-Q- |HFG | ™y R AR E %¥Debug | &' Java
[Package.. 23~ ™ =08 52 Outline 52 =5
o & - An outline is not

available

Problems Javadoc | Declaration| B Cansale 12 il
Console

2. Choose Filer>Newr>Project.

The New Project dialog box comes up, shown in Figure 4-4. This dialog
box lists several wizards you can use to create various types of Eclipse
projects.

3. Select Java Project from the list of wizards, and then click Next.
The New Java Project dialog box displays, shown in Figure 4-5.
4. Type HelloApp in the text box, and then click Finish.

HelloApp is the project name. The other options in this dialog box let
you specify whether the project should be stored in the workspace
folder or some other folder and whether the project should use the proj-
ect folder for source files or create separate subfolders for source files.
The default settings for both of these options is fine for the Hel1loApp
application.

When you click Finish, you return to the Java perspective. But now,
HelloApp appears in the Package Explorer view to indicate that you've
added a project by that name to your workspace.

Creating a Simple Project 49

B New Project Book |
Select a wizard 3 Chapter 4

Create a Java project

4% Java Project
+-(= Plug-in Development
3 [= Simple

Wizards; s
=i

I Plug-in Project ?I'I

¥ (= CVS o
== Java .g
&

(-]

Figure 4-4:
The New
Project

dialog box. Hack | Mext = I il Cancel

& New Java Project %]

Create a Java project

Create a Java project in the workspace or in an extemal location. [.l]

Eroject name: | HelloApp
Location

 Create project in workspace

" Create project at external location

~Project layout

% Usza project folder as oot for sources and class files

(" Create separate source and output folders

Configure Defaults. .. !

Figure 4-5:
The New
Java Project

dia|og box. < Back Mext » | Einish | Cancel

50 Creating a Simple Project

5. Right-click Helloapp in the Package Explorer view, and then choose
Newr>Class from the shortcut menu that appears.

The New Java Class dialog box opens, as shown in Figure 4-6.
6. Set the options for the new class.
In particular:
e Set the Package text field to JavaAIO.
¢ Set the Name text field to HelloApp.
e Select the Public Static Void main (String[] args) check box.
7. Click Finish.

The HelloApp. java file is created and Eclipse displays it in the Java
editor, as shown in Figure 4-7.

& New Java Class %]

Java Class

Create a new Java class. { b

!rreahe 2 new Java dass. l_

Source Folder: }HellnApp Browse, .
Package: | {defaulf) Browse... ‘
I” Enclosing type: | Hrowse
Mame; J
Madifiers: = public " default £ 1 £

I” abstract [fina] I=
Superclass: ;java.lang.Othci Browsa, .
Interfaces; Add. .

Which method stubs would you like to create?
I public static void main{String[] args)
I™ Constructors from superclass
W Inherited abstract methods

Figure 4-6:
The New
Java Class

dialog box. | Cancel

it
i Douy Lowe
il * TODD To change the template for this generated
* Window - Preferences - Java - Code Style f‘ﬂrf
wpublic class Hellolpp |
- public static void wain(String(]l args) {
)
H
[}
4 [> £ I >
Figure 4-7: Problems | Javadoc | Declaration El Console i =H)
Console
The newly
created
HelloApp
class. il ' -
Witable Smart Insert 1:1

51

Creating a Simple Project

File Edit Source Refactor MNavigate Search Project Run Window Help
HHGE~ ™y : i

+ 4] HelloApp java

SEI%]

Gir{a|s-0~--
H Package... 52 . ™ = O1|[[2] HelloApp java 23
O R £
= 122 HelloAgp =
— B JavadlO

& | -5 f=

E5 %#Debug | &'Java

5 | 5 Outline 52 =&
L R S
| B Javadlo

=@, Helloagp

@ ° main(String

+ Bh JRE System Library
package JaveldIo;

8. Edit the main method.

Move the insertion point to the empty block for the main method, and
then edit it to look exactly like this:

public static void main(String[] args) {

String[] w = new String[3];

w[0] = "Hello";

wll] =", *;

w[2] = "world!";

for (int 1 = 0; 1<3; 1i++)

System.out.print(wl[i]);

}
9. Choose Run=>Run Asc>Java Application.

The program is compiled and run. A console window with the program’s
output appears at the bottom of the Eclipse window, as shown in
Figure 4-8.

Note: If a Save Resources dialog box appears before the program runs,
click OK. The program then runs.

Book |
Chapter 4

asdijo3 buisp

52 Adding a Class File

Figure 4-8:
The
HelloApp
programin
Eclipse.

|E Java - HelloApp.java - Eclipse Platform DE=]
File Edh Source Refactor ua\rigale Search Project Run Window Help
3" B -Qr | HHEHG @5 - el E5 %#Debug | &'Java
[Package. 23 ™ = 0| [1] Hellodpp java i £ | 5% Outline &2 =0
=R nalnkagﬁ Javahlo: G L W e v
= 1= HelloApp #H JavahlD
= Javado /e -0, Helln.ﬁ\np
+ 4] ﬁ'!a_l_l_gﬁﬂp_j;a_‘\@j * Ga v Doug Lows @ main(String
+ =i JRE System Library|
el * TO0DO To change the template for this generated|

* Window Preferences Java Code 3tyle Cog

=public class Helloklpp |

- public static void main{String[] args) [
String[]l w = new String[3];
w[0] = "Hella";
wEi] =, "}
w[2] = "world!":
for (int i = 0; i<3; i++)

System.out.print (w[i]):

I fud]
4 I > & >
Problems Javadoc | Declaration| B Cansale 12 % | &H = =i
<terminated= Helloﬂpp (2) [Java Application] G:\Program Files\Javayydk1.5.1 D\bm\;a\law exe (Mov 22, 200:
Hello, world!
3 >

Adding a Class File

ANG/
&>

In this section, [walk you through the process of adding a second class file
to the HelloApp application to demonstrate some of Eclipse’s most useful
features for speeding up Java program development by generating code for
commonly used class features.

Unless you’ve already read Book III, you probably won’t understand much
(if any) of the code that’s presented in this procedure. Don’t worry; this code
will make complete sense once you read about creating your own classes.

So follow these steps to add a second class to the HelloApp application:

1. Right-click HelloApp in the Package Explorer and choose Add->Class.
The New Java Class dialog box opens (refer to Figure 4-6).
2. Set the options for the new class.
For this class, set the options as follows:
e Leave the Package text field to JavaATO.
e Set the Name text field to HelloSayer.
e Uncheck the Public Static Void main (String[] args) check box.

Adding a Class File 53

3. Click Finish. Book |
: . . . Chapter 4
A new class file named HelloSayer is created and Ecilpse opens it in a
Java editor.
4. Add declarations for two public fields named greeting and %
addressee. a
m
Add these lines immediately after the line that declares the HelloSayer _%
class. Then, other than the comments and the package statement that @

appears at the beginning of the class, the class looks like this:

public class HelloSayer {

private String greeting;
private String addressee;

}
5. Use a wizard to add a constructor to the class.

To do that, choose Source=>Generate Constructor Using Fields. The
Generate Contructors Using Fields dialog box appears, shown in
Figure 4-9.

& Generate Constructor using Fields =]

Select super constructor to involke:

|Objact() |

Select fields to initialize:

[]= gresting Select Al
[Fl= addressee
Deselect All

I
Dowene

Insertion point:

— 0 Last method =
Flgure 4-9: Access modifier

EC"pSE # public " protected " default ™ private

can auto- ¥ Generate constructor comment

matically ¥ Cimif cal o defaull constructor super(k

create i 20f2 selected.

constructors

for you. OK | Cancel

5 4 Adding a Class File

Check both greeting and addressee in the list of fields to initialize, select
First Method in the Insertion Point drop-down list, and check the Omit
Call to Default Constructor Super() option. Then click OK. The following
code is inserted into the class:

/**
* @param greeting
* @param addressee
*/
public HelloSayer (String greeting, String
addressee) {
this.greeting = greeting;
this.addressee = addressee;

}
6. Add the code for a method named sayHello.

Add the following code after the constructor created in Step 5, immedi-
ately before the closing brace (}) in the last line of the program:

public void sayHello ()
{

System.out.println(greeting + ", " + addressee
+ "!");

}
The entire HelloSayer class file is shown in Listing 4-1.

LisTING 4-1: THE HELLOSAYER CLASS

/*
* Created on Nov 22, 2004
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

package JavaAIO;

/**

* @author Doug Lowe
*

* TODO To change the template for this generated type comment
* go to Window - Preferences - Java - Code Style - Code Templates
*/

public class HelloSayer {

private String greeting;
private String addressee;

/**
* @param greeting
* @param addressee
*/

Adding a Class File 55

public HelloSayer(String greeting, String addressee) {
this.greeting = greeting;
this.addressee = addressee;

}

public void sayHello() {
System.out.println(greeting + ", " + addressee + "!");
}

7. Click the HelloApp.java tab at the top of the Java editor pane.
The HelloApp. java file comes to the front so you can edit it.
8. Edit the main method so that it uses the new HelloSayer class.

Delete the code that was in the main method and replace it with this
code:

public static void main(String[] args) {
HelloSayer h = new HelloSayer ("Hello",
"World!") ;
h.sayHello() ;

}

The entire Hel1loApp . java class now looks like Listing 4-2. Eclipse
generated all the code except the two lines within the main method.

LisTING 4-2: THE HELLOAPP CLASS

/*
* Created on Nov 22, 2004
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

package JavaAIO;

/**
* @author Doug Lowe
*
* TODO To change the template for this generated type comment
* go to Window - Preferences - Java - Code Style - Code Templates
*/
public class HelloApp {

public static void main(String[] args) {
HelloSayer h = new HelloSayer("Hello", "World!");
h.sayHello();

Book |
Chapter 4

asdijo3 buisp

56

Running a Program

Running a Program

Figure 4-10:
The Console
View
displays the
program’s
console
output.

After you enter the source code for your Eclipse project, you can run it to
see if it works as expected. Eclipse has several ways to run a Java program:

4+ In the Package Explorer, select the source file for the class you want to
run. Then, choose Run>Run As=>Java Application.

4+ Right-click the source file for the class you want to run, then choose

Runc>Java Application from the shortcut menu that appears.

Select the source file in the Package Explorer, and then click the Run
button (shown in the margin) and choose Run As=>Java Application from
the menu that appears. (If you recently ran the program, you can also
choose the program from the list of recently run programs that appears
in this menu.)

When the program runs, its console output is displayed in a Console view
that appears beneath the Java Editor pane, as shown in Figure 4-10.

Note: If the program uses Swing to create a window, that window is dis-
played separately, not within the Eclipse workbench window. (See Book VI
for more on Swing.)

[Java - HelloSayer java - Eclipse Plattorm S
File Edit Source Refactor MNavigate Search Project Run Window Help
- HrD-Q - B @G~ | @ E5 %#Debug | &'Java
~ - ‘Q"_. :_ - -
[Package. 53 T 0| [l HelloAppjava | [2] HelloSayer java 22 5 | 2% Dutline 53 =a
E e 2l 18w o ul -
w L-_}HB"O.»&pp Created on Nov 22, 2004 # JavadlD
T H:JGWQA'D 2 L] To change the te for this rated = G HQ"DSGY?r
=141 HelloApp.java + e T ¥ SR 5 i z o greeling : 3
wiow - Preferences - Java — Code 3 - Cogf
= @ Hellotpp -~ o addresses
: & main(Stin A —— | ©° HelloSayer(
4] HelloSayer java @& sayHellof}
+ B\ JRE Systemn Library wfre
ug Lowe
r] To change the template for this ted
* Window Preferences Java Code St Coc
“public class HelloSayer {
private String greeting:
private String addressee; ||
4 I > < | >
Problams Javadoc | Declaration &l Consaole @ % | oH & | ot =i
<terminated> HelloApp (2) [Java Application] G:\Program Files\avaydk1.5.00binYavav. exe (Moy 20, 200
Hello, World!
<] >

Console view

Debugging a Java Program 57

Eclipse is designed so that it automatically compiles Java programs as you Book |
work on them. Every time you save a Java source file in Eclipse, the file is Chapter 4
automatically compiled to create a class file. As a result, you don’t usually
have to perform a separate compile step before you can run a program. If the
project contains large source files, this feature can become annoying. To dis-
able automatic compilation, choose Project=>Build Automatically. Then, you
must manually build the project by choosing Projecte>Build All before you
can run it. (To switch back to automatic builds, choose Projecte>Build
Automatically again.)

\\J

asdijag buisn

Debugging a Java Program

No matter how carefully you plan your programs, sooner or later you
encounter bugs. You need to watch out for basically two kinds of bugs:

4+ Incorrect results, such as a program that’s supposed to calculate test
scores but gives you a C when you score 99 out of 100 or a program
that’s supposed to calculate sales tax of 5% but that says the sales tax
on a $29.95 purchase is $149.75 instead of $1.50.

4+ Program crashes, such as when a program that’s supposed to divide
one number into another and print the answer instead prints out this
message:
Exception in thread "main" java.lang.ArithmeticException: / by

Zero
at BugApp.main (BugApp.java:19)

Then, the program abruptly stops.

Fortunately, Eclipse has a powerful debugger that can help you find the
ﬁ; cause of either type of bug and fix it. To start the debugger, run your pro-
gram by choosing Project=>Debug As>Java Application instead of Project=>
Run As>Java Application. Or, click the Debug button on the Workbench tool-
bar as shown in the margin. Eclipse switches to the Debug perspective, as
shown in Figure 4-11, and runs the program in debug mode.

The following sections describe some of the key features of the Debug per-
spective that are useful for tracking down and correcting bugs in your Java
programs.

Stepping through your programs

One of the most basic skills for debugging is executing program statements
one at a time. This is called stepping, and it can be a very useful debugging
technique. By stepping through your program one statement at a time, you
can view the effects of each statement and identify the source of errors.
Sometimes, just knowing which statements are being executed is all you
need to know to determine why your program isn’t working.

58 Debugging a Java Program

Breakpoints view (hidden)

Debug view Variables view
[Dy - BiigApp java - Eclipse Platform. ESEN=]
File |Edit Source Refactor MNavigate Search Project Run | Window Help
it RS Ry IR A B | & ~Fl G~ Fi TxDebug &'Java
%5 Debug 52 = B ||td=Variables 1 . Breakpoints Tk B 20
B - 3. R @ args= String[D] (id=13)
= [3] BugApp [Java Application) '=_D
= &# BugApp at localhost 1936 b £eR
= 4@ Thread [main] (Suspended (exception ArithmeticExce
= BugApp.main(String(]) line: 19
w GAProgram Files\Javaljdk 1 5.0bin\javaw exe (Moy 30, 20
< | I >
|J] BugApp.java &2 hiiThread.class 5| 5= Outline 52)
wpublic class Buglpp | | 12\ w e W v
- ©, Bugtpp
- public static void main({Scring[] args) | g 5 .
int 1 = 0; @~ main{Sting[])
int z = 55;
o dnt e =i
System.out.println("The anzwer iz " + x):
—
H
:))
Figure 4-11: m
The Debug <] | >
Perspective ||Econsoke 2 Tasks AT A —
|etS you Bugipp [Java Application] G\Program Files\avaydk1.5. Dbintjavaw. exe (Nov 30, 2004 740459 Phd)
debug
errant Java
programs.
Witable Smart Insert 19::1
Console view Java editor

In Eclipse, the Debug View section of the Debug perspective is where you con-
trol the execution of the program you're debugging. This view displays a tree
that indicates each of the threads in your program. (If you don’t know what
threads are, don’t worry about it. Most console-based programs, such as the
BugApp program, shown in Figure 4-11 uses only one thread anyway. You find
out how to code programs that use more than one thread in Book V.)

Before you can control the execution of a thread, you must first suspend the
thread so that its statements stop executing. In general, you can suspend a
thread for debugging three ways:

4+ When an unhandled exception occurs, the thread is automatically sus-
pended. In Figure 4-11, the BugApp program’s main method is suspended
because a divide-by-zero exception has occurred and the program didn’t
catch it. If your program is throwing an exception that you don’t expect,
you can simply debug the program and allow the exception to suspend
the thread. Then, you can try to track down the cause of the problem.

U

Debugging a Java Program 5 9

4+ Before you debug the program, you can set a breakpoint at any state-
ment in the program. Then, when execution reaches that statement, the
thread is suspended. To set a breakpoint, simply double-click the left
margin of the Java editor next to the statement where you want the
thread to be suspended.

4+ If a long-running thread is in a loop, you can suspend it by clicking the
thread in the Debug View window and clicking the Suspend button
(shown in the margin).

When you suspend a thread, the statement that will be executed next is high-
lighted in the Java editor. Then, you can continue the thread’s execution one
or more statements at a time by clicking the buttons at the top of the Debug
view. Table 4-1 describes the most commonly used buttons.

Table 4-1 Commonly Used Buttons
Button Name Description

Resume Resumes execution with the next
[statement. The thread continues

executing until itis suspended by an
uncaught exception or a breakpoint.

IEI Terminate Terminates the thread.
Step Into Executes the highlighted statement,
?!’ and then suspends the thread.

— Step Over Skips the highlighted statement and
"'_E.!’ executes the next statement, and
then suspends the thread.

Run to Return Executes the highlighted statement
- [|-{3 and continues executing statements
until the end of the current method
is reached. Then, the thread is
suspended.

Examining variables

When a thread is suspended, you can examine its variables to see if they’re
set to the values you expect. In many cases, you can discover programming
errors. For example, if you think a variable named customerFirstName
should contain a customer’s first name and instead it contains the name of
the state in which the customer lives, you can conclude that you didn’t
assign the variable’s value properly. (Of course, this might be ambiguous if
the customer happens to be named Indiana Jones.)

Book |
Chapter 4

asdijo3 buisp

60 Debugging a Java Program

P The easiest way to examine the value of a variable is to simply point the
mouse at the variable in the Java editor. For example, Figure 4-12 shows how
the value of the variable i appears when you hover the mouse pointer over
it. Here, the pop-up message indicates that the variable i is an int type and
has a value of 0. (This message might be a clue as to why the program has
thrown a divide by zero exception.)

J| BugApp.java &2 i Thread.class
“public class Bughpp | A
- public static veoid main{String[] args) |

— int 1 = 0:

Figure 412 |, | It =2

Displaying Systam.out f= g answer is " 4+ x):

a variable . e

value. (]

< I >
You can also inspect variables by using the Variables view, as shown in Figure
4-13. Each variable is listed on a separate line in the top part of the Variables
view. In addition, the bottom part (called the Detail pane) displays the value
of the currently selected variable. Note that as you step through the various
statements in your program, variables appear in the Variables view as they are
declared and they disappear from view when they go out of scope.

Figure 4-13: t=Variables 1 Breakpoints =0

The -t -

Variables o Stingl] args= Stringl0] (id=11)

view shows N

the value

of each 55

variable.

Setting breakpoints

A breakpoint is a line in your program where you want the program to be sus-
pended. Setting a breakpoint allows you to efficiently execute the portions of
your program that are working properly, while stopping the program when it
reaches the lines you believe to be in error.

All the breakpoints in your program are listed in Breakpoints view, as shown
in Figure 4-14. The following paragraphs describe some of the ways you can
work with breakpoints in this view:

A\

Figure 4-14:
The
Breakpoints
view is
where you
control
breakpoints.

Refactoring Your Code o1

4+ The check box next to each breakpoint indicates whether or not the
breakpoint is enabled. Execution is suspended at a breakpoint only if
the breakpoint is enabled.

4+ You can delete a checkpoint by clicking the breakpoint to select it, and
then pressing the Delete key or clicking the Remove Selected button
(shown in the margin).

4+ You can remove all the breakpoints you’ve set by clicking the Remove
All Breakpoints button (shown in the margin).

4+ If you double-click a breakpoint in Breakpoint view, the Java Editor
window scrolls to the line at which the breakpoint is set.

4+ If you only want the program to be suspended after it has hit the break-
point a certain number of times, right-click the breakpoint and choose
Hit Count from the shortcut menu that appears. Then, enter the number
of times you want the statement to execute before suspending the pro-
gram and click OK.

Wariables | ®a Braakpoints £ L]
R -G w |-

@ BugApp [line: 17 - main(String[]) |
[#] 2@ BugApp [line: 20] - main(String])

Refactoring Your Code

Refactoring refers to the task of making mass changes to a project. For exam-
ple, suppose you decide that a class name you created when you started the
project doesn’t really accurately describe the purpose of the class, so you
want to change it. Simple text editors, such as TextPad, include a Replace
command that lets you change occurrences of text strings within a file, but
changing the name of a class requires that you change the name in all the
files in a project.

Eclipse includes a whole menu of refactoring options — called, as you might
guess, the Refactor menu. This menu contains 18 different types of refactoring
commands. If you're just starting to learn Java, most of these 18 commands
won’t make any sense to you. For example, the Refactor menu contains com-
mands that let you change an anonymous inner class to a nested class, push
members down to a subclass, or introduce a factory.

Book |
Chapter 4

asdijo3 buisp

62 Refactoring Your Code

A few of the Refactor menu commands are useful to you as you work your
way through the basics of learning Java. In particular:

4+ Rename: Lets you rename a variable, method, or other symbol. First,
select the symbol you want to rename. Then, choose Refactor=>Rename,
type the new name, and then click OK.

4+ Extract Method: This command lets you create a separate method from
one or more statements. Select the statements you want to place in the
method, and then choose Refactor>Extract Method. In the dialog box
that appears, type the name you want to use for the method. Eclipse cre-
ates a method with the statements you selected, and then replaces the
original selection with a call to the new method.

4 Inline: This command is pretty much the opposite of the Extract Method
command. It replaces a call to a method with the statements that are
defined in the body of that method. This command is most useful in
situations where you thought a method was going to be either more
complicated than it turned out to be, or you thought you’d call it from
more locations than you ended up calling it from.

4+ Extract Local Variable: This one is weird. Sometimes, you discover that
you have a whole string of statements in a row that use an expression,
such as x + 1.Wouldn't it be better if you just created a separate vari-
able to hold the value of x + 1, and then used that variable instead of
repeatedly recalculating the expression? The Extract Local Variable com-
mand can do this for you. Highlight the first occurrence of the expression
and choose Refactor~Extract Local Variable. Eclipse creates a local vari-
able, adds an assignment statement that assigns the expression to the
new local variable, and then replaces all occurrences of the expression
with the local variable.

Book II

- Programming Basics

] T_he 5th Wim By Rich Tennant,

| ORCHTENNANT Ao
qAr

) Okag~you were vight,
I was wWrong. F5 opens

i+ The garage door, and

1Y o backs the

cay out.

77 =%§

7 7 zﬁE&?ﬁ -3 ,'.-‘"-':":‘-‘.-'3:}:’_-’5-‘:'5’55:’_—'

Il

4

Contents at a Glance

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:

Java Programming Basics

65

Working with Variables and Data Types

83

Working with Numbers and Expressions

Making Choices

Going Around in Circles (Or, Using Loops)

Pulling a Switcheroo

Adding Some Methods to Your Madness

Handling Exceptions

113
141
161
187
199
217

MBER
6“'
&

Chapter 1: Java Programming
Basics

In This Chapter

v+ The famous Hello, World! program

v~ Basic elements of Java programs such as keywords, statements, and
blocks

v~ Different ways to add comments to your programs
v Basic information about object-oriented programming

v Importing classes

n this chapter, you find the basics of writing simple Java programs. The

programs you see in this chapter don’t do anything very interesting;
they just display simple information on a console (in Windows, that’s a
command prompt window). You need to cover a few more chapters before
you start writing programs that do anything worthwhile. But the simple
programs you see in this chapter are sufficient to illustrate the basic struc-
ture of Java programs.

Be warned that in this chapter, I introduce you to several Java programming
features that are explained in greater detail in later chapters. For example,
you see some variable declarations, a method, and even an i f statement
and a for loop. The goal of this chapter isn’t for you to become proficient
with these programming elements, but just to get an introduction to them.

You can find all the code listings used in this book at www . dummies . com/
go/javaaiofd.

Looking At the Infamous Hello, World! Program

Many programming books begin with a simple example program that dis-
plays the text, "Hello, World!" on the console. In Book I, Chapter 1,

[show you a Java program that does that to compare it with a similar pro-
gram written in C. Now, take a closer look at each element of this program,
shown in Listing 1-1.

06

Looking At the Infamous Hello, World! Program

LisTiNG 1-1: THE HELLOAPP PROGRAM

public class HelloApp

{

public static void main(String[] args)

{
}

System.out.println("Hello, World!");

1iilill

Later in this chapter, you discover in detail all the elements that make up
this program. But first, [want to walk you through it word by word.

Lines 1 and 2 mark the declaration of a public class named Hel1loApp:

— 1 public: A keyword of the Java language that indicates that the ele-

- 2

ment that follows should be made available to other Java elements. In
this case, what follows is a class named Hel1loApp. As a result, this
keyword indicates that the Hel1oApp class is a public class, which
means other classes can use it. (In Book I, Chapter 2, I cover the
most common alternative to public: private. There are also other
alternatives, but they’re covered in later chapters.)

class: Another Java keyword that indicates that the element being
defined here is a class. All Java programs are made up of one or more
classes. A class definition contains code that defines the behavior of
the objects created and used by the program. Although most real-
world programs consist of more than one class, the simple programs
you see in this minibook have just one class.

HelloApp: An identifier that provides the name for the class being
defined here. While keywords, such as public and class, are
words that are defined by the Java programming language, identifiers
are words that you create to provide names for various elements you
use in your program. In this case, the identifier Hel1loApp provides a
name for the public class being defined here. (Although identifier is
the technically correct term, sometimes identifiers are called symbols
or names.)

{: The opening brace on line 2 marks the beginning of the body of the
class. The end of the body is marked by the closing brace on line 7.
Everything that appears within these braces belongs to the class. As
you work with Java, you'll find that it uses these braces a lot. Pretty
soon the third and fourth fingers on your right hand will know exactly
where they are on the keyboard.

Looking At the Infamous Hello, World! Program 67

Lines 3 through 6 define a method of the Hel1oApp class named main:

- 3

- 4

— 5

public: The public keyword is used again, this time to indicate
that a method being declared here should have public access. That
means classes other than the Hel1loApp class can use it. All Java
programs must have at least one class that declares a public method
named main. The main method contains the statements that are exe-
cuted when you run the program.

static: You find all about the static keyword in Book IIl, Chapter 3.
For now, just take my word that the Java language requires that you
specify static when you declare the main method.

void: In Java, a method is a unit of code that can calculate and
return a value. For example, you could create a method that calcu-
lates a sales total. Then, the sales total would be the return value of
the method. If a method doesn’t need to return a value, you must use
the void keyword to indicate that no value is returned. Because Java
requires that the main method not return a value, you must specify
void when you declare the main method.

main: Finally, the identifier that provides the name for this method.
As I've already mentioned, Java requires that this method be named
main. Besides the main method, you can also create additional
methods with whatever names you want to use. You discover how to
create additional methods in Book II, Chapter 7. Until then, the pro-
grams consist of just one method named main.

(string[] args): Oh boy. This Java element is too advanced to
thoroughly explain just yet. It’s called a parameter list, and it’s used
to pass data to a method. Java requires that the main method must
receive a single parameter that’s an array of String objects. By con-
vention, this parameter is named args. If you don’t know what a
parameter, a String, or an array is, don’t worry about it. You can
find out what a String is in the next chapter, and parameters are in
Book II, Chapter 7; arrays in Book IV. In the meantime, realize that you
have to code (String[] args) on the declaration for the main
methods in all your programs.

Another {: Another set of braces begins at line 4 and ends at line 6.
These mark the body of the main method. Notice that the closing brace
in line 6 is paired with the opening brace in line 4, while the closing
brace in line 7 is paired with the one in line 2. This type of pairing is
commonplace in Java. In short, whenever you come to a closing brace,
it is paired with the most recent opening brace that hasn’t already been
closed — that is, that hasn’t already been paired with a closing brace.

System.out.println("Hello, World!™") ;: This is the only
statement in the entire program. It calls a method named println
that belongs to the System. out object. The print1ln method dis-
plays a line of text on the console. The text to be displayed is passed

Book Il
Chapter 1

soiseg
Buiuweiboid eaep

68

Dealing with Keywords

to the print1ln method as a parameter in parentheses following the
word println. In this case, the text is the string literal Hello,
World! enclosed in a set of quotation marks. As a result, this state-
ment displays the text Hel1lo, World! on the console.

Note that in Java, statements end with a semicolon. Because this is
the only statement in the program, this line is the only one that
requires a semicolon.

— 6 }:Line 6 contains the closing brace that marks the end of the main
method body that was begun by the brace on line 4.

— 7 Another }:Line 7 contains the closing brace that marks the end
of the HelloApp class body that was begun by the brace on line 2.
Because this program consists of just one class, this line also marks
the end of the program.

To run this program, you must first use a text editor to enter it exactly as it
appears in Listing 1-1 into a text file named Hel loApp. java. Then, you can
compile it by running this command at a command prompt:

javac HelloApp.java

This command creates a class file named HelloApp.class that contains
the Java bytecodes compiled for the HelloApp class.

You can run the program by entering this command:
java HelloApp

Now that you've seen what a Java program actually looks like, you're in a
better position to understand exactly what this command does. First, it
loads the Java Virtual Machine into memory. Then, it locates the Hel1loApp
class, which must be contained in a file named HelloApp. class. Finally,
it runs the HelloApp class’ main method. The main method, in turn, dis-
plays the message "Hello, World!" on the console.

The rest of this chapter describes some of the basic elements of the Java
programming language in greater detail.

Dealing with Keywords

A keyword is a word that has special meaning defined by the Java program-
ming language. The program shown earlier in Listing 1-1 uses four keywords:
public, class, static, and void. In all, Java has 51 keywords. They’re
listed in alphabetical order in Table 1-1.

NG/
QV'

Dealing with Keywords 7 9

Table 1-1 Java's Keywords

abstract do if package synchronized
boolean double implements private this
break else import protected throw
byte extends instanceof public throws
case false int return transient
catch final interface short true

char finally long static try

class float native strictfp void
const for new super volatile
continue goto null switch while
default

Strangely enough, three keywords listed in Table 1-1 — true, false, and
null — aren’t technically considered to be keywords. Instead, they’re
called literals. Still, they’re reserved for use by the Java language in much
the same way that keywords are, so [lumped them in with the keywords.

Stranger still, two keywords — const and goto — are reserved by Java but
don’t do anything. Both are carryovers from the C++ programming language.
The const keyword defines a constant, which is handled in Java by the
final keyword. As for goto, it’s a C++ statement that is considered anath-
ema to object-oriented programming purists, so it isn’t used in Java. Java
reserves it as a keyword solely for the purpose of scolding you if you
attempt to use it.

Like everything else in Java, keywords are case sensitive. Thus, if you type
If instead of if or For instead of for, the compiler complains about your
error. Because Visual Basic keywords begin with capital letters, you’ll make
this mistake frequently if you have programmed in Visual Basic.

Considering the Java community’s disdain for Visual Basic, it’s surprising
that the error messages generated when you capitalize keywords aren’t
more insulting. Accidentally capitalizing a keyword in Visual Basic style can
really throw the Java compiler for a loop. For example, consider this pro-
gram, which contains the single error of capitalizing the word For:

public class CaseApp

{
public static void main(String[] args)
{
For (int i = 0; 1<5; i++)
System.out.println("Hi") ;
}

Book Il
Chapter 1

soiseg
fuiuweiboid eaep

70 Working with Statements

When you try to compile this program, the compiler generates a total of six
error messages for this one mistake:

C:\Java AIO\CaselApp.java:5: '.class' expected
For (int i = 0; i<5; i++)
C:\Java AIO\CaselApp.java:5: ')' expected
For (int i = 0; i<5; i++)

C:\Java AIO\CaselApp.java:5: illegal start of type
For (int i = 0; i<5; i++)
C:\Java AIO\CaselApp.java:5: > expected
For (int i = 0; i<5; i++)

A

C:\Java AIO\CaselApp.java:5: not a statement

For (int i = 0; i<b; i++)
C:\Java AIO\CaselApp.java:5: ';' expected
For (int i = 0; i<b; i++)

A

6 errors

Even though this single mistake generates six error messages, none of the
messages actually point to the problem. The little arrow beneath the source
line indicates what part of the line is in error, and none of these error mes-
sages have the arrow pointing anywhere near the word For! The compiler
isn’t smart enough to realize that you meant for instead of For. So it treats
For as a legitimate identifier, and then complains about everything else on
the line that follows it. It would be much more helpful if it generated an error
message like this:

C:\Java AIO\CaseApp.java:5: 'For' is not a keyword
For (int i = 0; i<5; i++)

~

The moral of the story is that keywords are case sensitive, and if your pro-
gram won’t compile and the error messages don’t make any sense, check for
keywords that you've mistakenly capitalized.

Working with Statements

Like most programming languages, Java uses statements to build programs.
Unlike most programming languages, statements are not the fundamental
unit of code in Java. Instead, that honor goes to the class. However, every
class must have a body, and the body of a class is made up of one or more
statements. In other words, you can’t have a meaningful Java program with-
out at least one statement. The following sections describe the ins and outs
of working with Java statements.

\\J

Working with Statements 71

Types of statements

Java has many different types of statements. Some statements simply create
variables that you can use to store data. These types of statements are often
called declaration statements, and tend to look like this:

int 1i;
String s = "This is a string";
Customer c¢ = new Customer () ;

Another common type of statement is an expression statement, which per-
forms calculations. Here are some examples of expression statements:

i = a + b;
salesTax = invoiceTotal * taxRate;
System.out.println("Hello, World!");

Notice that the last statement in this group is the same as line 5 in Listing
1-1. Thus, the single statement in the Hel1loApp program is an expression
statement.

There are many other kinds of statements besides these two. For example,
if-then statements execute other statements only if a particular condition
has been met. And statements such as for, while, or do execute a group of
statements one or more times.

It is often said that all Java statements must end with a semicolon. Actually,
this isn’t quite true. Some types of Java statements must end with a semi-
colon, but others don’t. The basic rule is that declaration and expression
statements must end with a semicolon, but most other statement types do
not. Where this rule gets tricky, however, is that most other types of state-
ments include one or more declaration or expression statements that do use
semicolons. For example, here’s a typical i f statement:

if (total > 100)
discountPercent = 10;

Here, the variable named discountPercent is given a value of 10 if the
value of the total variable is greater than 100. The expression statement
ends with semicolons, but the i f statement itself doesn’t. (The Java com-
piler lets you know if you use a semicolon when you shouldn’t.)

White space

In Java, the term white space refers to one or more consecutive space char-
acters, tab characters, or line breaks. All white space is considered the
same. In other words, a single space is treated the same as a tab or line
break or any combination of spaces, tabs, or line breaks.

Book Il
Chapter 1

soiseg
Buiuweiboid eaep

72 Working with Blocks

A\

If you’ve programmed in Visual Basic, white space is different from what
you're used to. In Visual Basic, line breaks mark the end of statements unless
special continuation characters are used. In Java, you don’t have to do any-
thing special to continue a statement onto a second line. Thus, the statement

x = (y +5) / z;

is identical to this statement:

X
(y + 5) / z;

In fact, you could write the above statement like this if you wanted:

N ~—U1+K ~ 1 %

[wouldn’t advise it, but the statement does compile and execute properly.

Using white space liberally in your programs is a good idea. In particular, you
should usually use line breaks to place each statement on a separate line and
use tabs to line up elements that belong together. The compiler ignores the
extra white space, so it doesn’t affect the bytecode that’s created for your
program. As a result, using extra white space in your program doesn’t affect
your program’s performance in any way, but it does make the program’s
source code easier to read.

Working with Blocks

A block is a group of one or more statements that’s enclosed in braces. A
block begins with an opening brace ({) and ends with a closing brace (}).
Between the opening and closing brace, you can code one or more state-
ments. For example, here’s a block that consists of three statements:

{
int i, 3J;
i =100;
j = 200;

A\

Creating ldentifiers /3

A block is itself a type of statement. As a result, any time the Java language
requires a statement, you can substitute a block to execute more than one
statement. For example, in Book II, Chapter 4, you discover that the basic
syntax of an if statement is this:

if (expression) statement

Here, the statement can be a single statement or a block. If you find this idea
confusing, don’t worry. It will make more sense when you turn to Book II,
Chapter 4.

You can code the braces that mark a block in two popular ways. One is to
place both braces on separate lines, and then indent the statements that
make up the block. For example:

if (1 > 0)

{
String s = "The value of i is " + 1i;
System.out.print(s) ;

}

The other style is to place the opening brace for the block on the same line
as the statement the block is associated with, like this:

if (1 > 0) {
String s = "The value of i is " + 1i;
System.out.print(s) ;

}

Which style you use is a matter of personal preference. I prefer the first
style, and that’s the style I use throughout this book. But either style works,
and many programmers prefer the second style because it’s more concise.

Creating ldentifiers

An identifier is a word that you make up to refer to a Java programming ele-
ment by name. Although you can assign identifiers to many different types of
Java elements, they’re most commonly used for the following elements:

4+ Classes, such as the Hel1oApp class in Listing 1-1

4+ Methods, such as the main method in Listing 1-1

4+ Variables and fields, which hold data used by your program

4+ Parameters, which pass data values to methods

Book

Chapter 1

soiseg
Buiuweiboid eaep

74 Crafting Comments

Q\Q’N' S Tg&

\\3

Identifiers are also sometimes called names. Strictly speaking, a name isn’t
quite the same thing as an identifier. A name is often made up of two or more
identifiers connected with periods (called dots). For example, in line 5 of
Listing 1-1, System and out are both identifiers. But System.out is a
name. In practice, the terms name and identifier are used interchangeably.

You must follow a few simple rules when you create identifiers:

4+ Identifiers are case sensitive. As a result, SalesTax and salesTax are
distinct identifiers.

4+ Identifiers can be made up of upper- or lowercase letters, numerals,
underscore characters (), and dollar signs ($).

4+ All identifiers must begin with a letter. Thus, al5 is a valid identifier, but
13Unlucky isn’t because it begins with a numeral.

4+ An identifier can’t be the same as any of the Java keywords listed in
Table 1-1. Thus, you can’t create a variable named for or a class named
public.

4+ The Java language specification recommends that you avoid using dollar
signs in names you create. Instead, dollar signs are used by code genera-
tors to create identifiers. Thus, avoiding dollar signs helps you avoid
creating names that conflict with generated names.

Crafting Comments

A comment is a bit of text that provides explanations of your code. Comments
are completely ignored by the compiler, so you can place any text you wish in
a comment. Using plenty of comments in your programs is a good idea to
explain what your program does and how it works.

Java has three basic types of comments: end-of-line comments, traditional
comments, and JavaDoc comments.

End-of-line comments

An end-of-line comment begins with the sequence // and ends at the end
of the line. You can place an end-of-line comment at the end of any line.
Everything you type after the // is ignored by the compiler. For example:

total = total * discountPercent; // calculate the discounted total

If you want, you can also place end-of-line comments on separate lines,
like this:

// calculate the discounted total
total = total * discountPercent;

\NG/
S

Crafting Comments 75

You can place end-of-line comments in the middle of statements that span
two or more lines. For example:

total = (total * discountPercent) // apply the discount first
+ salesTax; // then add the sales tax

Traditional comments

A traditional comment begins with the sequence /* and ends with the
sequence */ and can span multiple lines. For example:

/* HelloApp sample program.
This program demonstrates the basic structure
that all Java programs must follow. */

A traditional comment can begin and end anywhere on a line. If you want,
you can even sandwich a comment between other Java programming ele-
ments, like this:

x = (y + /* a strange place for a comment */ 5) / z;

Usually, traditional comments appear on separate lines. One common use for
traditional comments is to place a block of comment lines at the beginning
of a class to indicate information about the class such as what the class
does, who wrote it, and so on. However, that type of comment is usually
better coded as a JavaDoc comment, as described in the next section.

You may be tempted to temporarily comment out a range of lines by placing
/* in front of the first line in the range and */ after the last line in the range.
However, that can get you in trouble if the range of lines you try to comment
out includes a traditional comment. That’s because traditional comments
can’t be nested. For example, the following code won’t compile:

/*

int x, v, zZ;

y = 10;

z = 5;

x = (y + /* a strange place for a comment */ 5) / z;
*/

Here, [tried to comment out a range of lines that already included a tradi-
tional comment. Unfortunately, the * / sequence near the end of the fifth line
is interpreted as the end of the traditional comment that begins in the first
line. Then, when the compiler encounters the * / sequence in line 6, it gener-
ates an error message.

Book |
Chapter 1

soiseg
Buiuweiboid eaep

76 Introducing Object-Oriented Programming

JavaDoc comments

JavaDoc comments are actually a special type of traditional comment that
you can use to automatically create Web-based documentation for your pro-
grams. Because you’ll have a better appreciation of JavaDoc comments
when you know more about object-oriented programming, | devoted a
section in Book IIl, Chapter 8 to creating and using JavaDoc comments.

Introducing Object-Oriented Programming

Having presented some of the most basic elements of the Java programming
language, most Java books would next turn to the important topics of vari-
ables and data types. However, because Java is an inherently object-oriented
programming language, and classes are the heart of object-oriented program-
ming, | look next at classes to explore the important role they play in creating
objects. I get to variables and data types first thing in the next chapter.

Understanding classes and objects

As I've already mentioned, a class is code that defines the behavior of a Java
programming element called an object. An object is an entity that has both
state and behavior. The state of an object consists of any data that the object
might be keeping track of, and the behavior consists of actions that the
object can perform. The behaviors are represented in the class by one or
more methods that can be called upon to perform actions.

The difference between a class and an object is similar to the difference
between a blueprint and a house. A blueprint is a plan for a house. A house is
an implementation of a blueprint. One set of blueprints can be used to build
many houses. Likewise, a class is a plan for an object, and an object is — in
Java terms — an instance of a class. You can use a single class to create more
than one object.

When an object is created, Java sets aside an area of computer memory
that’s sufficient to hold all the data that’s stored by the object. As a result,
each instance of a class has its own data, independent of the data used by
other instances of the same class.

Understanding static methods

You don’t necessarily have to create an instance of a class to use the meth-
ods of the class. If a method is declared with the static keyword, the
method can be called without first creating an instance of the class. That’s
because static methods are called from classes, not from objects.

The main method of a Java application must be declared with the static
keyword. That’s because when you start a Java program by using the java

Introducing Object-Oriented Programming 7’7

command from a command prompt, Java doesn’t create an instance of the
application class. Instead, it simply calls the program’s static main method.

The difference between static and non-static methods will become more
apparent when you look at object-oriented programming in more depth in
Book III. But for now, consider this analogy. The blueprints for a house
include the details about systems that actually perform work in a finished
house, such as electrical and plumbing systems. In order to use those sys-
tems, you have to actually build a house. In other words, you can’t turn on
the hot water by using the blueprint alone; you have to have an actual house
to heat the water.

However, the blueprints do include detailed measurements of the dimen-
sions of the house. As a result, you can use the blueprints to determine the
square footage of the living room. Now imagine that the blueprints actually
had a built-in calculator that would display the size of the living room if you
pushed the “Living Room” button. That button would be like a static method
in a class: You don’t actually have to build a house to use it; you can use it
from the blueprints alone.

Many Java programs — in fact, many of the programs in the rest of Book Il —
are entirely made up of static methods. However, most realistic programs
require that you create one or more objects that the program uses as it exe-
cutes. As a result, learning how to create simple classes and how to create
objects from those classes is a basic skill in Java programming.

Creating an object from a class

In Java, you can create an object from a class in several ways. But the most
straightforward is to create a variable that provides a name you can use to
refer to the object, then use the new keyword to create an instance of the
class, and assign the resulting object to the variable. The general form of a
statement that does that is this:

ClassName variableName = new ClassName() ;

For example, to create an object instance of a class named Classl1 and
assign it to a variable named myClass10Object, you would write a state-
ment like this:

Classl myClasslObject = new Classl();

Why do you have to list the class name twice? The first time, you’re providing
a type for the variable. In other words, you're saying that the variable you're
creating here can be used to hold objects created from the Classl class.
The second time you list the class name, you're creating an object from the
class. The new keyword tells Java to create an object, and the class name
provides the name of the class to use to create the object.

Book Il
Chapter 1

soiseg
Buiuweiboid eaep

/8

WMBER
@“'
&

Introducing Object-Oriented Programming

The equals sign (=) is an assignment operator. It simply says to take the
object created by the new keyword and assign it to the variable. Thus, this
statement actually does three things:

4 It creates a variable named myClasslObject that can be used to hold
objects created from the Class1 class. At this point, no object has been
created — just a variable that can be used to store objects.

4 It creates a new object in memory from the Class1 class.

4+ It assigns this newly created object to the myClass10bject variable.
That way, you can use the myClassObject variable to refer to the
object that was created.

A program that uses an object

To give you an early look at what object-oriented programming really looks
like, Listings 1-2 and 1-3 show another version of the He11oApp application,
this time using two classes, one of which is actually made into an object
when the program is run. The first class, named HelloApp?2, is shown in
Listing 1-2. This class is similar to the Hel1loApp class shown in Listing 1-1.
However, it uses an object created from the second class, named Greeter,
to actually display the "Hello, World!" message on the console. The
Greeter class is shown in Listing 1-3. It defines a method named sayHello
that displays the message.

Both the Hel1loApp and the Greeter class are public classes. Java requires
that each public class be stored in a separate file, with the same name as the
class and the extension . java. As a result, the Hel1loApp2 class is stored
in a file named HelloApp?2 . java, and the Greeeter class is stored in a
file named Greeter. java.

The HelloApp2 class
The HelloApp?2 class is shown in Listing 1-2.

LisTING 1-2: THE HELLOAPP2 CLASS

// This application displays a hello message on - 1
// the console by creating an instance of the

// Greeter class, then calling the Greeter

// object's sayHello method.

public class HelloApp2 — 6
{
public static void main(String[] args) — 8
{

Greeter myGreeterObject = new Greeter(); — 10

Introducing Object-Oriented Programming 79

myGreeterObject.sayHello(); — 11

The following paragraphs describe the key points:

— 1 This class begins with a series of comment lines that identify the func-
tion of the program. For these comments, [used simple end-of-line
comments rather than traditional comments. (For more on comment-
ing, see the “Crafting Comments” section, earlier in this chapter.)

— 6 The HelloApp?2 class begins on line 6 with the public class declara-
tion. Because the public keyword is used, a file named HelloApp?2 .
java must contain this class.

— 8 The main method is declared using the same form as the main
method in the first version of this program (Listing 1-1). Get used to
this form because all Java applications must include a main method
that’s declared in this way.

—10 The first line in the body of the main method creates a variable
named myGreeterObject that can hold objects created from the
Greeter class. Then, it creates a new object using the Greeter
class and assigns this object to the myGreeterObject variable.

—11 The second line in the body of the main method calls the
myGreeterObject object’s sayHello method. As you'll see
in a moment, this method simply displays the message "Hello,
World!" on the console.

The Greeter class
The Greeter class is shown in Listing 1-3.

LisTING 1-3: THE GREETER CLASS

// This class creates a Greeter object - 1
// that displays a hello message on
// the comnsole.

public class Greeter — 5
{
public void sayHello() - 7
{
System.out.println("Hello, World!"):; — 9

}

Book Il
Chapter 1

soiseg
fuiuweiboid eaep

80

Introducing Object-Oriented Programming

The following paragraphs describe the key points:

— 1 This class also begins with a series of comment lines that identify the
function of the program.

— 5 The class declaration begins on this line. The class is declared as
public so other classes can use it. This declaration is required so that
the Hel1loApp2 class can access the Greeter class.

— 7 The sayHello method is declared using the public keyword so
that it’s available to other classes that use the Greeter class. The
void keyword indicates that this method doesn’t provide any data
back to the class that calls it, and sayHello simply provides the
name of the method.

— 9 The body of this method consists of just one line of code that displays
the "Hello, World!" message on the console.

So what’s the difference?

You might notice that the only line that actually does any real work in the
HelloApp2 program is line 9 in the Greeter class (Listing 1-3), and this line
happens to be identical to line 5 in the original Hel1loApp class (Listing 1-1).
Other than the fact that the second version requires roughly twice as much
code as the first version, what really is the difference between these two
applications?

Simply put, the first version is procedural, and the second is object-oriented.
In the first version of the program, the main method of the application class
does all the work of the application by itself: It just says hello. The second
version defines a class that knows how to say hello to the world, and then
creates an object from that class and asks that object to say hello. The appli-
cation itself doesn’t know or even care exactly how the Greeter object
says hello. It doesn’t know exactly what the greeting will be, what language
the greeting will be in, or even how the greeting will be displayed.

To illustrate this point, consider what would happen if you used the Greeter
class shown in Listing 1-4 rather than the one shown in Listing 1-3. This
version of the Greeter class uses a Java library class called JOptionPane
to display a message in a dialog box rather than in a console window. (I won’t
bother explaining how this code works, but you can find out more about it in
the next chapter.) If you were to run the Hel 1oApp2 application using this
version of the Greeter class, you’d get the dialog box shown in Figure 1-1.

LisTING 1-4: ANOTHER VERSION OF THE GREETER CLASS

// This class creates a Greeter object
// that displays a hello message
// in a dialog box.

Figure 1-1:
The class in
Listing 1-4
displays this
dialog box.

Importing Java APl Classes 81

import javax.swing.JOptionPane; — 5

public class Greeter

{
public void sayHello()
{
JOptionPane.showMessageDialog(null, "Hello, — 11
World!", "Greeter", JOptionPane.
INFORMATION MESSAGE) ;
}
}
Greeter

N
L) Hello, world!

[o]

The important point to realize here is that the Hel1loApp2 class doesn’t
have to be changed to use this new version of the Greeter class. Instead,
all you have to do is replace the old Greeter class with the new one, and
the HelloApp?2 class won’t know the difference. That’s one of the main ben-
efits of object-oriented programming.

Importing Java APl Classes

You may have noticed that the Greeter class in Listing 1-4 includes this
statement:

import javax.swing.JOptionPane;

The purpose of the import statement is to let the compiler know that the

program is using a class that’s defined by the Java API called JOptionPane.

Because the Java API contains literally thousands of classes, some form of
organization is needed to make the classes easier to access. Java does this
by grouping classes into manageable groups called packages. In the previous
example, the package that contains the JOptionPane class is named
javax.swing.

Book

Chapter 1

soiseg
Buiuweiboid eaep

82

A\

Importing Java APl Classes

Strictly speaking, import statements are never required. But if you don’t
use import statements to import the API classes your program uses, you
must fully qualify the names of the classes when you use them by listing the
package name in front of the class name. So, if the class in Listing 1-4 didn’t
include the import statement in line 5, you’d have to code line 11 like this:

javax.swing.JOptionPane.showMessageDialog(null, "Hello,
World!", "Greeter", JOptionPane.
INFORMATION_ MESSAGE) ;

In other words, you’d have to specify javax.swing.JOptionPane
instead of just JOpt ionPane whenever you referred to this class.

Here are some additional rules for working with import statements:

4+ import statements must appear at the beginning of the class file, before
any class declarations.

4 You can include as many import statements as are necessary to import
all the classes used by your program.

4+ You can import all the classes in a particular package by listing the pack-
age name followed by an asterisk wildcard, like this:

import javax.swing.*;

4+ Because many programs use the classes that are contained in the
java.lang package, you don’t have to import that package. Instead,
those classes are automatically available to all programs. The System
class is defined in the java.lang package. As a result, you don’t have
to provide an import statement to use this class.

Chapter 2: Working with Variables
and Data Types

In This Chapter

v Creating proper variable declarations

v+ Discovering the difference between primitive and reference types
v Looking at Java’s built-in data types

v~ Introducing strings

v Getting input from the console

v+ Getting input if you’re using an older version of Java

In this chapter, you find out the basics of working with variables in Java.
Variables are the key to making Java programs general purpose. For
example, the Hello, World! programs in the previous chapter are pretty spe-
cific: The only thing they say are “Hello, World!” But with a variable, you can
make this type of program more general. For example, you could vary the
greeting, so that sometimes it would say “Hello, World!” and other times it
would say “Greetings, Foolish Mortals.” Or you could personalize the greet-
ing, so that instead of saying “Hello, World!,” it said “Hello, Bob!” or “Hello,
Amanda!”

Variables are also the key to creating programs that can perform calculations.
For example, suppose you want to create a program that calculates the area
of a circle given the circle’s radius. Such a program uses two variables: one to
represent the radius of the circle, the other to represent the circle’s area. The
program asks the user to enter a value for the first variable. Then, it calculates
the value of the second variable.

Declaring Variables

In Java, you must explicitly declare all variables before using them. This rule
is in contrast to some languages — most notably Basic and Visual Basic —
which let you use variables that haven’t been automatically declared.
Allowing you to use variables that you haven’t explicitly declared might seem
like a good idea at first glance. But it’s a common source of bugs that result
from misspelled variable names. Java requires that you explicitly declare
variables so that if you misspell a variable name, the compiler can detect
your mistake and display a compiler error.

8 4 Declaring Variables

The basic form of a variable declaration is this:
type name;
Here are some examples:

int x;
String lastName;
double radius;

In these examples, variables named x, 1astName, and radius, are declared.
The x variable holds integer values, the 1astName variable holds String
values, and the radius variable holds double values. For more information
about what these types mean, see the section “Working with Primitive Data
Types” later in this chapter. Until then, just realize that int variables can hold
whole numbers (like 5, 1, 340, and -34), double variables can hold numbers
with fractional parts (like 0.5, 99.97, or 3.1415), and String variables can
0 hold text values (like "Hello, World!" or "Jason P. Finch").

<\
Notice that variable declarations end with a semicolon. That’s because the
variable declaration is itself a type of statement.

MBER Variable names follow the same rules as other Java identifiers, as I describe
in Book II, Chapter 1. In short, a variable name can be any combination of
letters and numerals, but must start with a letter. Most programmers prefer
to start variable names with lowercase letters, and capitalize the first letter
of individual words within the name. For example, firstName and
salesTaxRate are typical variable names.

Declaring two or more variables in one statement

You can declare two or more variables of the same type in a single state-
ment, by separating the variable names with commas. For example:

int x, v, z;

Here, three variables of type int are declared, using the names x, vy, and z.
\J
) As arule, I suggest you avoid declaring multiple variables in a single state-
ment. Your code is easier to read and maintain if you give each variable a
separate declaration.

Declaring class variables

A class variable is a variable that any method in a class can access, including
static methods such as main. When declaring a class variable, you have two
basic rules to follow:

\\J

Declaring Variables 85

4+ You must place the declaration within the body of the class, but not
within any of the class methods.

4 You must include the word static in the declaration. The word
static comes before the variable type.

The following program shows the proper way to declare a class variable
named helloMessage:

public class HelloApp

{ static String helloMessage;
public static void main(String[] args)
{ helloMessage = "Hello, World!";
System.out.println (helloMessage) ;
) }

As you can see, the declaration includes the word static and is placed
within the Hel1loApp class body, but not within the body of the main
method.

You don’t have to place class variable declarations at the beginning of a
class. Some programmers prefer to place them at the end of the class, as in
this example:

public class HelloApp

{
public static void main(Stringl[] args)
{
helloMessage = "Hello, World!";
System.out.println (helloMessage) ;
}
static String helloMessage;
}

Here, the helloMessage variable is declared after the main method.

I think classes are easier to read if the variables are declared first, so that’s
where you seem them in this book.

Declaring instance variables

An instance variable is similar to a class variable, but doesn’t specify the
word static in its declaration. As its name suggests, instance variables are
associated with instances of classes. As a result, you can only use them

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

86

Declaring Variables

when you create an instance of a class. Because static methods aren’t associ-
ated with an instance of the class, you can’t use an instance variable in a
static method — including the main method.

For example, the following program won’t compile:

public class HelloApp
{

String helloMessage; // error -- should use static keyword

public static void main(String[] args)

{
helloMessage = "Hello, World!";
System.out.println(helloMessage) ; // will not compile

}
If you attempt to compile this program, you get the following error messages:

C:\Java\HelloApp.java:7: non-static variable helloMessage
cannot be referenced from a static context
helloMessage = "Hello, World!";

C:\Java\HelloApp.java:8: non-static variable helloMessage

cannot be referenced from a static context
System.out.println (helloMessage) ;

Both of these errors occur because the main method is static, so it can’t
access instance variables.

Instance variables are useful whenever you create your own classes. But
because [don’t cover that until Book IlI, you won’t see many examples of
instance methods in the remainder of the chapters in Book II.

Declaring local variables

A local variable is a variable that’s declared within the body of a method.
Then, you can use the variable only within that method. Other methods in
the class aren’t even aware that the variable exists.

Here’s a version of the Hel1loApp class in which the helloMessage vari-
able is declared as a local variable:

public class HelloApp
{

public static void main(Stringl[] args)

{

\\3

Declaring Variables 87

String helloMessage;
helloMessage = "Hello, World!";
System.out.println (helloMessage) ;

3

Note that you don’t specify static on a declaration for a local variable. If
you do, the compiler generates an error message and refuses to compile
your program. Local variables always exist in the context of a method, and
they exist only while that method is executing. As a result, whether or not an
instance of the class has been created is irrelevant.

Unlike class and instance variables, where you position the declaration for
a local variable is important. In particular, you must place the declaration
prior to the first statement that actually uses the variable. Thus, the follow-
ing program won’t compile:

public class HelloApp
{

public static void main(String[] args)

{
helloMessage = "Hello, World!"; // error -- helloMessage
System.out.println(helloMessage); // is not yet declared
String helloMessage;

}

When it gets to the first line of the main method, the compiler generates an
error message complaining that it can’t find the symbol "helloMessage".
That’s because it hasn’t yet been declared.

Although most local variables are declared near the beginning of a method’s
body, you can also declare local variables within smaller blocks of code
marked by braces. This will make more sense to you when you read about
statements that use blocks, such as if and for statements. But here’s an
example:

if (taxRate > 0)

double taxAmount;
taxAmount = subTotal * taxRate;
total = subTotal + total;

}

Here, the variable taxAmount exists only within the set of braces that
belongs to the i f statement.

Book |
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

88

Initializing Variables

Initializing Variables

\\J

In Java, local variables are not given initial default values. The compiler
checks to make sure that you have assigned a value before you use a local
variable. For example, the following program won’t compile:

public class testApp

{
public static void main(String[] args)
{
int 1i;
System.out.println("The value of i is " + 1i);
}
}

If you try to compile this program, you get the following error message:

C:\Java\testApp.java:6: variable i might not have been
initialized
System.out.println("The value of i is " + 1i);

A

To avoid this error message, you must initialize local variables before you
can use them. You can do that by using an assignment statement or an ini-
tializer, as [describe in the following sections.

Unlike local variables, class variables and instance variables are given
default values. Numeric types are automatically initialized to zero, and String
variables are initialized to empty strings. As a result, you don’t have to ini-
tialize a class variable or an instance variable, although you can if you want
them to have an initial value other than the default.

Initializing variables with assignment statements

One way to initialize a variable is to code an assignment statement following
the variable declaration. Assignment statements have this general form:

variable = expression;

Here, the expression can be any Java expression that yields a value of the same
type as the variable. For example, here’s a version of the main method from
the previous example that correctly initializes the i variable before using it:

public static void main(String[] args)
{

int 1i;

i = 0;

System.out.println("i is " + 1i);

ANG/
o

Using Final Variables (Or Constants) &9

In this example, the variable is initialized to a value of zero before the
println method is called to print the variable’s value.

You find out a lot more about expressions in Book II, Chapter 3. For now, you
can just use simple literal values, such as 0 in this example.

Initializing variables with initializers

Java also allows you to initialize a variable on the same statement that
declares the variable. To do that, you use an initializer, which has the follow-
ing general form:

type name = expression;

In effect, the initializer lets you combine a declaration and an assignment
statement into one concise statement. Here are some examples:

int x = 0;
String lastName = "Lowe";
double radius = 15.4;

In each case, the variable is both declared and initialized in a single statement.

When you declare more than one variable in a single statement, each can
have its own initializer. For example, the following code declares variables
named x and vy, and initializes x to 5 and y to 10:

int x = 5, y = 10;

When you declare two class or instance variables in a single statement but
use only one initializer, you can mistakenly think the initializer applies to
both variables. For example, consider this statement:

static int x, y = 5;

Here, you might think that both x and y would initialize to 5. But the initializer
only applies to vy, so x is initialized to its default value, 0. (If you make this mis-
take with a local variable, the compiler displays an error message for the first
statement that uses the x variable because it isn’t properly initialized.)

Using Final Variables (Or Constants)

A final variable, also called a constant, is a variable whose value you can’t
change once it’s been initialized. To declare a final variable, you add the
final keyword to the variable declaration, like this:

final int WEEKDAYS = 5;

Book |
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

90 Working with Primitive Data Types

¥

Although you can create final local variables, most final variables are class or
instance variables. To create a final class variable (sometimes called a class
constant), add static final (not final static) to the declaration:

static final WEEKDAYS = 5;

Although it isn’t required, using all capital letters for final variable names is
common. You can easily spot the use of final variables in your programs.

Constants are useful for values that are used in several places throughout a
program and that don’t change during the course of the program. For exam-
ple, suppose you're writing a game that features bouncing balls and you
want the balls to always have a radius of 6 pixels. This program probably
needs to use the ball diameter in several different places — for example,

to draw the ball on-screen, to determine whether the ball has hit a wall, to
determine whether the ball has hit another ball, and so on. Rather than just
specify 6 whenever you need the ball’s radius, you can set up a class con-
stant named BALIL_RADIUS, like this:

static final BALL_RADIUS = 6;
Using a class constant has two advantages:

4+ If you later decide that the radius of the balls should be 7, you make the
change in just one place — the initializer for the BALI,_ RADIUS constant.

4+ The constant helps document the inner workings of your program. For
example, the operation of a complicated calculation that uses the ball
radius is easier to understand if it specifies BALL_RADIUS rather than 6.

Working with Primitive Data Types

The term data type refers to the type of data that can be stored in a variable.
Java is sometimes called a strongly typed language because when you declare
a variable, you must specify the variable’s type. Then, the compiler ensures
that you don’t try to assign data of the wrong type to the variable. For exam-
ple, the following code generates a compiler error:

int x;
x = 3.1415;

Because x is declared as a variable of type int (which holds whole num-
bers), you can’t assign the value 3.1415 to it.

Java has an important distinction between primitive types and reference
types. Primitive types are the data types that are defined by the language
itself. In contrast, reference types are types that are defined by classes in the
Java API rather than by the language itself.

Working with Primitive Data Types 91

A key difference between a primitive type and a reference type is that the
memory location associated with a primitive type variable contains the
actual value of the variable. As a result, primitive types are sometimes called
value types. In contrast, the memory location associated with a reference
type variable contains an address (called a pointer) that indicates the
memory location of the actual object. I explain reference types more fully in
the section “Using Reference Types” later in this chapter, so don’t worry if
this explanation doesn’t make sense just yet.

It isn’t quite true that reference types are defined by the Java API and not by
the Java language specification. A few reference types, such as Object and
String, are defined by classes in the API, but those classes are specified in
the Java Language API. And a special type of variable called an array, which
can hold multiple occurrences of primitive or reference type variables, is
considered to be a reference type.

Java defines a total of eight primitive types. For your reference, Table 2-1
lists them. Of the eight primitive types, six are for numbers, one is for char-
acters, and one is for true/false values. Of the six number types, four are
types of integers and two are types of floating-point numbers. I describe
each of the primitive types in the following sections.

Table 2-1 Java's Primitive Types
Type Explanation

int A 32-bit (4-byte) integer value
short A 16-bit (2-byte) integer value
long A 64-hit (8-byte) integer value
byte An 8-bit (1-byte) integer value
float A 32-bit (4-byte) floating-point value
double A 64-hit (8-byte) floating-point value
char A 16-bit character using the Unicode encoding scheme
boolean Atrue or false value

Integer types

An infeger is a whole number — that is, a number with no fractional or deci-
mal portion. Java has four different integer types, which you can use to store
numbers of varying sizes. The most commonly used integer type is int.
This type uses four bytes to store an integer value that can range from about
negative two billion to positive two billion.

If you're writing the application that counts how many hamburgers
McDonald’s has sold, an int variable might not be big enough. In that case,
you can use a 1ong integer instead. 1ong is a 64-bit integer that can hold

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

92 Working with Primitive Data Types

numbers ranging from about negative 9,000 trillion to positive 9,000 trillion.
That’s a big number, even by Federal Deficit standards.

In some cases, you may not need integers as large as the standard int type
provides. For those cases, Java provides two smaller integer types. The
short type represents a two-digit integer, which can hold numbers from
-32,768 to +32,767. And the byte type defines an 8-bit integer that can range
from -128 to +127.

Although the short and byte types require less memory than the int or
long types, there’s usually little reason to use them. A few bytes here or
there isn’t going to make any difference in the performance of most pro-
grams, so you should stick to int and 1ong most of the time. And use 1ong
only when you know that you're dealing with numbers too large for int.

In Java, the size of integer data types is specified by the language and is the
same regardless of what computer a program runs on. This is a huge improve-
ment over the C and C++ languages, which let compilers for different platforms
determine the optimum size for integer data types. As a result, a C or C++
program written and tested on one type of computer might not execute identi-
cally on another computer.

Java allows you to promote an integer type to a larger integer type. For exam-
ple, Java allows the following:

int xInt;
long yLong;
xInt = 32;
yvLong = xInt;

Here, you can assign the value of the xInt variable to the yLong variable
because yLong is a larger size than xInt. However, Java does not allow the
converse:

int xInt;
long yLong;
yvLong = 32;
xInt = yLong;

The value of the yLong variable cannot be assigned to the xInt because
xInt is smaller than yLong. Because this assigment might result in a loss of
data, Java doesn’t allow it.

(If you need to assign a long to an int variable, you must use explicit cast-
ing as described in the section “Type casting” later in this chapter.)

Working with Primitive Data Types 93

Floating-point types

Floating-point numbers are numbers that have fractional parts. You should
use a floating-point type whenever you need a number with a decimal, such
as 19.95 or 3.1415.

Java has two primitive types for floating-point numbers: £1oat, which uses
four bytes, and double, which uses eight bytes. In almost all cases, you
should use the double type whenever you need numbers with fractional
values.

The precision of a floating-point value indicates how many significant digits
the value can have. The precision of a f1oat type is only about 6 or 7 deci-
mal digits, which isn’t sufficient for most types of calculations. For example,
if you use Java to write a payroll system, you might get away with using
float variables to store salaries for employees such as teachers or fire-
fighters, but not for professional baseball players or corporate executives.

In contrast, double variables have a precision of about 15 digits, which is
enough for most purposes.

Floating-point numbers actually use exponential notation (also called scien-
tific notation) to store their values. That means that a floating-point number
actually records two numbers: a base value (also called the mantissa) and an
exponent. The actual value of the floating-point number is calculated by mul-
tiplying the mantissa by two raised to the power indicated by the exponent.
For float types, the exponent can be from -127 to +128. For double types,
the exponent can be from —1023 to +1024. Thus, both f1oat and double
variables are capable of representing very large and very small numbers.

You can find more information about some of the nuances of working with
floating-point values in Book II, Chapter 3.

When you use a floating-point literal, you should always include a decimal
point, like this:

double period = 99.0;

If you omit the decimal point, the Java compiler treats the literal as an inte-
ger. Then, when it sees that you're trying to assign the literal to a double
variable, it generates a compiler error message.

You can add an F or D suffix to a floating-point literal to indicate whether the
literal itself is of type f1oat or double. For example:

float valuel = 199.33F;
double value2 = 200495.995D;

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

94 Working with Primitive Data Types

Getting scientific with floats and doubles

If you have a scientific mind, you may wantto Note that the exponent can be negative to indi-
use scientific notation when you write floating- cate values smaller than 1. For example
point literals. For example

double e = 5.10e+6;
This equation is equivalent to
double e = 5100000D;

The sign is optional if the exponent is positive,
S0 you can also write:

double e = 5.10e6;

double impulse = 23e-7;
This equation is equivalent to
double impulse = 0.0000023;

If you omit the suffix, D is assumed. As a result, you can usually omit the D
suffix for double literals.

Interestingly, floating-point numbers have two distinct zero values: a nega-
tive zero and a positive zero. You don’t have to worry about these much,
because Java treats them as equal. Still, it would make for a good question
on Jeopardy!. (“I'll take weird numbers for $200, Alex.”)

The char type

The char type represents a single character from the Unicode character set.
Keeping in mind that a character is not the same as a string is important.
You find out about strings later in this chapter, in the section “Working with
Strings.” For now, just realize that a char variable can store just one charac-
ter, not a sequence of characters as a string can.

To assign a value to a char variable, you use a character literal, which is
always enclosed in apostrophes rather than quotes. For example:

char code = 'X';
Here, the character X is assigned to the variable named code.

The following statement won’t compile:

char code = "X"; // error -- should use apostrophes, not quotes

That’s because quotation marks are used to mark strings, not character
constants.

\\3

\NG/
S

Working with Primitive Data Types 95

Unicode is a two-byte character code that can represent the characters used
in most languages throughout the world. Currently, about 35,000 codes in
the Unicode character set are defined. That leaves another 29,000 codes
unused. The first 256 characters in the Unicode character set are the same
as the characters of the ASCII character set, which is the most commonly
used character set for computers with Western languages.

For more information about the Unicode character set, see the official
Unicode Web site at www.unicode.org.

Character literals can also use special escape sequences to represent spe-
cial characters. Table 2-2 lists the allowable escape sequences. These
escape sequences let you create literals for characters that can’t otherwise
be typed within a character constant.

Table 2-2 Escape Sequences for Character Constants
Escape Sequence Explanation

\b Backspace

\t Horizontal tab

\n Linefeed

\f Form feed

\r Carriage return

\" Double quote

\! Single quote

A\ Backslash

The boolean type

A boolean type can have one of two values: true or false. Booleans are
used to perform logical operations, most commonly to determine whether
some condition is true. For example:

boolean enrolled
boolean credited

true;
false;

Here, a variable named enrolled of type boolean is declared and initial-
ized to a value of true, and another boolean named credited is declared
and initialized to false.

In some languages, such as C or C++, integer values can be treated as booleans,
with 0 equal to false and any other value equal to true. Not so in Java. In
Java, you can’t convert between an integer type and boolean.

Book |
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

90

Using Reference Types

Wrapper classes

Every primitive type has a corresponding class defined in the Java API class
library. This class is sometimes called a wrapper class, because it wraps a
primitive value with the object-oriented equivalent of pretty wrapping paper
and a bow to make the primitive type look and behave like an object. Table
2-3 lists the wrapper classes for each of the eight primitive types.

As you find out later in this chapter, you can use these wrapper classes to
convert primitive values to strings and vice-versa.

Table 2-3 Wrapper Classes for the Primitive Types
Primitive Type Wrapper Class

int Integer

short Short

long Long

byte Byte

float Float

double Double

char Character

Boolean Boolean

Using Reference Types

In Book IIl, Chapter 1, you're introduced to some of the basic concepts of
object-oriented programming. In particular, you see how all Java programs
are made up of one or more classes, and how to use classes to create objects.
In this section, | show how you can create variables that work with objects
created from classes.

To start, a reference type is a type that’s based on a class rather than on one
of the primitive types that are built-in to the Java language. The class can
either be a class that’s provided as part of the Java API class library or a
class that you write yourself. Either way, when you create an object from a
class, Java allocates however much memory the object requires to store the
object. Then, if you assign the object to a variable, the variable is actually
assigned a reference to the object, not the object itself. This reference is the
address of the memory location where the object is stored.

For example, suppose you're writing a game program that involves balls, and
you create a class named Ball that defines the behavior of a ball. To declare
a variable that can refer to a Ball object, you use a statement like this:

MBER
é&
&

Using Reference Types 97

Ball b;
Here, the variable b is a variable of type Ball.

To create a new instance of an object from a class, you use the new keyword
along with the class name. This second reference to the class name is actually
a call to a special routine of the class called a constructor. The constructor is
responsible for initializing the new object. For example, here’s a statement
that declares a variable of type Ball, calls the Ball class constructor to
create a new Ball object, and assigns a reference to the Ball object to the
variable:

Ball b = new Ball();

One of the key concepts for working with reference types is to remember
that a variable of a particular type doesn’t actually contain an object of that
type. Instead, it contains a reference to an object of the correct type. An
important side effect is that two variables can refer to the same object. For
example, consider these statements:

Ball bl
Ball b2

new Ball() ;
bl;

Here, I've declared two Ball variables, named bl and b2. But I've only cre-
ated one Ball object. In the first statement, the Ball object is created, and
b1l is assigned a reference to it. Then, in the second statement, the variable
b2 is assigned a reference to the same object that’s referenced by b1. As a
result, both b1 and b2 refer to the same Ball object.

If you use one of these variables to change some aspect of the ball, the
change is visible to the ball no matter which variable you use. For example,
suppose the Ball class has a method called set Speed that lets you set
the speed of the ball to any int value, and a get Speed method that
returns an integer value that reflects the ball’s current speed. Now consider
these statements:

bl.setSpeed(50) ;
b2 .setSpeed(100) ;
int speed = bl.getSpeed() ;

When these statements complete, is the value of the speed variable 50 or
100? The correct answer is 100. Because both b1 and b2 refer to the same
Ball object, changing the speed using b2 affects b1 as well.

This is one of the most confusing aspects of programming with an object-
oriented language such as Java, so don'’t feel bad if you get tripped up from
time to time.

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

98 Working with Strings

Working with Strings

A\

A string is a sequence of text characters, such as the message "Hello,
World! " displayed by the HelloApp program illustrated in this chapter
and the previous chapter. In Java, strings are an interesting breed. Java
doesn’t define strings as a primitive type. Instead, strings are a reference type
that are defined by the Java API String class. The Java language does have
some built-in features for working with strings. In some cases, these features
make strings appear to be primitive types rather than reference types.

Java’s string-handling features are advanced enough to merit an entire chap-
ter to explain them. So, for the full scoop on strings, I refer you to Book IV,
Chapter 1. The following sections present just the bare essentials of working
with strings so you can incorporate simple strings in your programs.

Declaring and initializing strings

Strings are declared and initialized much like primitive types. In fact, the
only difference you may notice at first is that the word String is capital-
ized, unlike the keywords for the primitive types such as int and double.
That’s because String isn’'t a keyword. Instead, it’s the name of the Java
API class that provides for string objects.

The following statements define and initialize a string variable:

String s;
s = "Hello, World!";

Here, a variable named s of type String is declared and initialized with the
string literal "Hello, World! " Notice that string literals are enclosed in
quotation marks, not apostrophes. Apostrophes are used for character liter-
als, which are different than string literals.

Like any variable declaration, a string declaration can include an initializer.
Thus, you can declare and initialize a string variable in one statement, like
this:

String s = "Hello, World!";

Class variables and instance variables are automatically initialized to empty
strings, but local variables aren’t. To initialize a local string variable to an

empty string, use a statement like this:

String s = "";

A\

Working with Strings 99

Combining strings

Combine two strings by using the plus sign (+) as a concatenation operator.
(In Java-speak, combining strings is called concatenation.) For example, the
following statement combines the value of two string variables to create a
third string:

String hello = "Hello, ";
String world = "World!";
String greeting = hello + world;

The final value of the greeting variable is "Hello, World!"

When Java concatenates strings, it doesn’t insert any blank spaces between
the strings. As a result, if you want to combine two strings and have a space
appear between them, you need to make sure that the first string ends with a
space or the second string begins with a space. In the previous example, the
first string ends with a space.

Alternatively, you can concatenate a string literal along with the string vari-
ables. For example:

String hello = "Hello";
String world = "World!";
String greeting = hello + ", " + world;

Here, the comma and the space that appear between the words Hello and
World are inserted as a string literal.

Concatenation is one of the most commonly used string handling tech-
niques, so you see plenty of examples in this book. In fact, I've already used
concatenation once in this chapter. Earlier, I showed you a program that
included the following line:

System.out.println("The value of i is " + 1i);

Here, the println method of the System. out object prints the string
that’s created when the literal "The value of i is " is concatenated
with the value of the i variable.

Converting primitives to strings

Because string concatenation lets you combine two or more string values,
and primitive types such as int and double are not string types, you might
be wondering how the last example in the previous section can work. In other
words, how can Java concatenate the string literal "The value of 1 is "
with the integer value of i in this statement:

Book |
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

100 Working with Strings

\\J

System.out.println("The value of i is " + 1i);

The answer is that Java automatically converts primitive values to string
values whenever you use a primitive value in a concatenation.

You can explicitly convert a primitive value to a string by using the toString
method of the primitive type’s wrapper class. For example, to convert the int
variable x to a string, you use this statement:

String s = Integer.toString(x);

In the next chapter, you discover how to use a special class called the
NumberFormat class to convert primitive types to strings while applying
various types of formatting to the value, such as adding commas, dollar
signs, or percentage marks.

Converting strings to primitives

Converting a primitive value to a string value is pretty easy. Going the other
way — converting a string value to a primitive — is a little more complex,
because it doesn’t always work. For example, if a string contains the value
10, you can easily convert it to an integer. But if the string contains
thirty-two, you can’t.

To convert a string to a primitive type, you use a parse method of the
appropriate wrapper class, as listed in Table 2-4. For example, to convert a
string value to an integer, you use statements like this:

String s = "10";
int x = Integer.parselnt(s);

Of course, you have no real reason to do this. However, as you see later in
this chapter, you can use the parse methods to convert string values entered
by the user to primitive types. That way, you can write programs that let the
user enter numeric data via the console window.

Table 2-4 Methods That Convert Strings to Numeric Primitive Types
Wrapper Parse Method Example

Class

Integer parselnt(String) int x = Integer.parseInt ("100");
Short parseShort(String) short x = Short.parseShort ("100");
Long parseLong(String) long x = Long.parseLong("100");
Byte parseByte(String) byte x = Byte.parseByte("100");
Float parseByte(String) float x = Float.parseFloat

("19.95");

Converting and Casting Numeric Data 101

Wrapper Parse Method Example

Class
Double parseByte(String) double x = Double.parseDouble
("19.95");
Character (none)
Boolean parseBoolean boolean x = Boolean.parseBoolean
(String) ("true");

Note that you don’t need a parse method to convert a String to a
Character. If you need to do that, you can find out how in Book 1V,

Chapter 1. Book II
Chapter 2

Converting and Casting Numeric Data

From time to time, you need to convert numeric data of one type to another.
For example, you might need to convert a double value to an integer, or vice
versa. Some conversions can be done automatically. Others are done using a
technique called casting. I describe automatic type conversions and casting
in the following sections.

sadA]
eje(pue sajqenep
yum Bunpopp

Automatic conversions

Java can automatically convert some primitive types to others and do so
whenever necessary. Figure 2-1 shows which conversions Java allows. Note
that the conversions shown with dotted arrows in the figure may cause some
of the value’s precision to be lost. For example, an int can be converted to a
float, but large int values won’t be converted exactly because int values
can have more digits than can be represented by the f1oat type.

byte
i short
Figure 2-1:

Numeric

type

that are

7

done
automati-
cally.

double)

102 Understanding Scope

“NG‘
Q\\ !

Whenever you perform a mathematical operation on two values that aren’t
of the same type, Java automatically converts one of them to the type of the
other. Here are the rules Java follows when doing this conversion:

4+ If one of the values is a double, the other value is converted to a
double.

4 If neither is a double but one is a f1oat, the other is converted to a
float.

4 If neither is a double nor a float but one is a 1ong, the other is con-
verted to a long.

4+ If all else fails, both values are converted to int.

Type casting

Casting is similar to conversion, but isn’t done automatically. You use casting
to perform a conversion that is not shown in Figure 2-1. For example, if you
want to convert a double to an int, you must use casting.

When you use casting, you run the risk of losing information. For example,
a double can hold larger numbers than an int. In addition, an int can’t
hold the fractional part of a double. As a result, if you cast a double to
an int, you run the risk of losing data or accuracy. For example, 3.1415
becomes 3.

To cast a primitive value from one type to another, you use a cast operator,
which is simply the name of a primitive type in parentheses placed before
the value you want to cast. For example:

double pi = 3.1314;
int 1iPi;
iPi = (int) pi;

Note that the fractional part of a double is simply discarded when cast to an
integer; it isn’t rounded. For example:

double price = 9.99;
int iPrice = (int) price;

Here, i Price is assigned the value 9. If you want to round the double value
when you convert it, use the Round method of the Math class as [show you
in the next chapter.

Understanding Scope

The scope of a variable refers to which parts of a class the variable exists in.
In the simplest terms, every variable exists only within the block in which

MBER
@&
&

Understanding Scope 103

the variable is declared as well as any blocks that are contained within that
block. That’s why class and instance variables, which are declared in the
class body, can be accessed by any methods defined by the class, but local
variables defined within a method can be accessed only by the method in
which they are defined.

In Java, a block is marked by a matching pair of braces. Java has many differ-
ent kinds of blocks: class bodies, method bodies, and block statements that
belong to statements such as i1 f or for statements. But in each case, a
block marks the scope boundaries for the variables declared within it.

The program in Listing 2-1 can help clarify the scope of class and local
variables.

LisTING 2-1: A PROGRAM THAT DEMONSTRATES SCOPE FOR CLASS AND
LocAL VARIABLES

sadA]
eje(pue sajqenep
yum Bunpopp

public class ScopeApp
{ - 2

static int x;

public static void main(String[] args)

{
x = 5;
System.out.println("main: x = " + x);
myMethod () ;
}
public static void myMethod ()
{
int y;
y = 10; — 16
if (y == x + 5) - 17
{
int z;
z = 15; — 20
System.out.println("myMethod: z = " + z);
} - 22
System.out.println("myMethod: x = " + x);
System.out.println("myMethod: v = " + y);
} — 25
} - 27

The following paragraphs explain the scope of each of the variables used in
this class:

Book Il
Chapter 2

704 Shadowing Variables

4 The variable x is a class variable. Its scope begins in line 2 and ends in
line 27. As a result, both the main method and the myMethod method
can access it.

4 The variable y is a local variable that’s initialized in line 16. As a result,
its scope begins in line 16 and ends in line 25, which marks the end of
the body of the myMethod method.

4+ The variable z is a local variable that’s declared and initialized in the
statement block that belongs to the i f statement in line 17. Its scope
begins when the variable is initialized in line 20 and ends when the state-
ment block ends in line 22.

Strictly speaking, the scope of a local variable begins when the variable is
initialized and ends when the block that contains the variable’s declaration
ends. In contrast, the scope for a class or instance variable is the entire class
in which the variable is declared. That means that you can use a class or
instance variable in a method that physically appears before the variable is
declared. But you can’t use a local variable before it’s declared.

Shadowing Variables

A shadowed variable is a variable that would otherwise be accessible, but is
temporarily made unavailable because a variable with the same name has
been declared in a more immediate scope. That’s a mouthful, but the exam-
ple in Listing 2-2 makes the concept clear. Here, a class variable named x is
declared. Then, in the main method, a local variable with the same name is
declared.

LisTiING 2-2: A CLASS THAT DEMONSTRATES SHADOWING

public class ShadowApp
{ - 2

static int x; — 4

public static void main(String[] args)

{

x = 5; — 8
System.out.println("x = " + x); — 9
int x; — 10
x = 10; - 11
System.out.println("x = " + x); - 12

System.out.println("ShadowApp.x = " +
ShadowApp.x) ; — 13
} - 14
} — 16

TEC/, %,

\NG/
s

Printing Data with System.out 105

The following paragraphs explain the scoping issues in this program:

4+ The class variable x is declared in line 4. Its scope is the entire class
body, from line 2 to line 16.

4+ The class variable x is assigned a value of 5 in line 8. Then, this value is
printed to the console in line 9.

4 Inline 10, a local variable named x is declared. The local variable shadows
the class variable %, so any reference to x through the end of this method
in line 14 refers to the local variable rather than the class variable.

4+ The local variable x is initialized in line 11. At that point, the local vari-
able x comes into scope and remains in scope until the end of the
method in line 14.

4 The System.out.println statement in line 12 prints the value of the
local variable x. Note that this statement is identical to the statement in
line 9, which printed the class variable x because the class variable had
not yet been shadowed.

4+ While a class variable is shadowed, you can access it by specifying the
class name as shown in line 13. Here, ShadowApp . x refers to the class
variable.

4 When the main method ends in line 14, the class variable x is no longer
shadowed.

The scope of a local variable that shadows a class variable doesn’t necessarily
begin at the same point that the local variable’s scope begins. The shadow-
ing begins when the local variable is declared, but the local variable’s scope
doesn’t begin until the variable is initialized. If you attempt to access the
variable between the declaration and the initialization, the Java compiler
displays an error message.

Because shadowing is a common source of errors, | suggest you avoid it as
much as possible.

Printing Data with System.out

You've already seen several programs that use System.out.println to
display output on the console. In the following sections, I officially show you
how this method works, along with a related method called just print.

Standard input and output streams

Java applications are designed to work in a terminal [/O environment. Every
Java application has at its disposal three I/O streams that are designed for
terminal-based input and output, which simply sends or receives data one
character at a time. The three streams are

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

106 Printing Data with System.out

4+ Standard input: A stream designed to receive input data. This stream is
usually connected to the keyboard at the computer where the program
is run. That way, the user can type characters directly into the standard
input stream. In the section “Getting Input with the Scanner Class” that
appears later in this chapter, you connect this input stream to a class
called Scanner that makes it easy to read primitive data types from the
standard input stream.

4+ Standard output: A stream designed to display text output on-screen.
When you run a Java program under Windows, a special console window
is opened, and the standard output stream is connected to it. Then, any
text you send to standard output is displayed in that window.

4+ Standard error: Another stream designed for output. This stream is also
connected to the console window. As a result, text written to the stan-
dard output stream is often intermixed with text written to the error
stream.

Windows and other operating systems allow you to redirect standard output
to some other destination — typically a file. When you do that, only the
standard output data is redirected. Text written to standard error is still
displayed in the console window.

To redirect standard output, you use a greater-than sign on the command
that runs the Java class, followed by the name of the file you want to save
the standard output text to. For example:

C:\Java>java TestApp >output.txt

Here, the standard output created by the class TestApp is saved in a file
named output . txt. However, any text sent to the standard error stream
still appears in the console window. As a result, the standard error stream is
useful for programs that use output redirection to display status messages,
error messages, or other information.

All three standard streams are available to every Java program via the fields
of the System class, as described in Table 2-5.

Table 2-5 Static Fields of the System Object
Field Description

System.in Standard input

System.out Standard output

System.err Standard error

Getting Input with the Scanner Class 107

Using System.out and System.err

Both System.out and System. err represent instances of a class called
PrintWriter, which defines the print and println methods used to
write data to the console. You can use both methods with either a String
argument or an argument of any primitive data type.

The only difference between the print and the print1n methods is that the
println method adds a line-feed character to the end of the output, so the
output from the next call to print or println begins on a new line.

Because it doesn’t start a new line, the print method is useful when you

want to print two or more items on the same line. For example: Book Il
Chapter 2

int 1 = 64;

int j = 23;

System.out.print (i) ;
System.out.print (" and ");
System.out.println(j) ;

The console output produced by these lines is:

sadA]
eje(pue sajqenep
yum Bunpopp

64 and 23

Note that you could do the same thing with a single call to print1ln by
using string concatenation, like this:

int i 64;
int j 23;
System.out.println(i + " and " + j);

Getting Input with the Scanner Class

Until recently, getting text input from the user in a console-based Java pro-
gram wasn’t easy. But with Java 1.5, a new class — called Scanner — has
been introduced to simplify the task of getting input from the user. In the fol-
lowing sections, you use the Scanner class to get simple input values from
the user. The techniques that I present here are used in many of the programs
shown in the rest of this book.

If you're using an older version of Java, you should still read this section,
because many of the programs in this book use the Scanner class.
However, you should also read the next section, “Getting Input with the
JOptionPane Class,” because that section describes a way of getting user
input that works with earlier versions of Java.

108 Getting Input with the Scanner Class

\\3

Throughout the following sections, I refer to the program shown in Listing 2-3.
This simple program uses the Scanner class to read an integer value from
the user, and then displays the value back to the console to verify that the pro-
gram received the value entered by the user. Here’s a sample of the console
window for this program:

Enter an integer: 5
You entered 5.

The program begins by displaying the message Enter an integer: on
the first line. Then, it waits for you to enter a number. When you press the
Enter key, it displays the confirmation message (You entered 5.) onthe
second line.

LisTING 2-3: A PROGRAM THAT USES THE SCANNER CLASS

import java.util.Scanner; - 1

public class ScannerApp

{
static Scanner sc = new Scanner(System.in); — 6
public static void main(String[] args)
{
System.out.print ("Enter an integer: "); — 10
int x = sc.nextInt(); - 11
System.out.println("You entered " + x + "."); — 12
}
}

Importing the Scanner class

Before you can use the Scanner class in a program, you must import it. To
do that, you code an import statement at the beginning of the program,
before the class declaration as shown in line 1 of Listing 2-3:

import java.util.Scanner;

Note that java and util are not capitalized, but Scanner is.

If you're using other classes in the java.util package, you can import the
entire package by coding the import statement like this:

import java.util.*;

Getting Input with the Scanner Class 10 9

Declaring and creating a Scanner object

Before you can use the Scanner class to read input from the console, you
must declare a Scanner variable and create an instance of the Scanner
class. recommend you create the Scanner variable as a class variable, and
create the Scanner object in the class variable initializer, as shown in line 6
of Listing 2-3:

static Scanner sc = new Scanner (System.in);
That way, you can use the sc variable in any method in the class.

To create a Scanner object, you use the new keyword followed by a call to
the Scanner class constructor. Note that the Scanner class requires a
parameter that indicates the input stream that the input comes from. You
can use System. in here to specify standard keyboard console input.

Getting input

To read an input value from the user, you can use one of the methods of the
Scanner class that are listed in Table 2-6. As you can see, the primitive data
type has a separate method.

Table 2-6 Scanner Class Methods that Get Input Values
Method Explanation

boolean nextBoolean () Reads a boolean value from the user.
byte nextByte() Reads a by te value from the user.
double nextDouble () Reads a double value from the user.
float nextFloat () Reads a f1oat value from the user.
int nextInt () Reads an int value from the user.
String nextLine () Reads a String value from the user.
long nextLong () Reads a 1ong value from the user.
short nextShort () Reads a short value from the user.

Notice in the first column of the table that each method listing begins

with the type of the value that’s returned by the method. For example, the
nextInt method returns an int value. Also, notice that each of the meth-
ods ends with an empty set of parentheses. That means that none of these
methods require parameters. If a method requires parameters, the param-
eters are listed within these parentheses.

Because these methods read a value from the user and return the value,
you most often use them in statements that assign the value to a variable.
For example, line 11 in Listing 2-3 reads an int and assigns it to a variable
named x.

Book |
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

110 Getting Input with the Scanner Class

A\

When the nextInt method is executed, the program waits for the user to
enter a value in the console window. To let the user know what kind of input
the program expects, you should usually call the System.out.print
method before you call a Scanner method to get input. For example, line 10
in Listing 2-3 calls System.out.print to display the message Enter an
integer: on the console. That way, the user knows that the program is
waiting for input.

If the user enters a value that can’t be converted to the correct type, the pro-
gram crashes, which means that it abruptly terminates. As the program
crashes, it displays a cryptic error message that indicates what caused the
failure. For example, if you enter three instead of an actual number, the
console window looks something like this:

Enter an integer: three
Exception in thread "main" java.util.InputMismatchException
at java.util.Scanner.throwFor (Scanner.java:819)
at java.util.Scanner.next (Scanner.java:1431)
at java.util.Scanner.nextInt (Scanner.java:2040)
at java.util.Scanner.nextInt (Scanner.java:2000)
at ScannerApp.main(ScannerApp.java:1ll)

This message indicates that an exception called InputMismatch
Exception has occurred, which means that the program was expecting to
see an integer, but got something else instead. In Book II, Chapter 8, you find
out how to provide for exceptions like these so that the program can display
a friendlier message and give the user another shot at entering a correct
value. Until then, you have to put up with the fact that if the user enters
incorrect data, your programs crash ungracefully.

You can prevent the nextInt and similar methods from crashing with
incorrect input data by using one of the methods listed in Table 2-7 to first
test the next input to make sure it’s valid. [haven’t covered the Java state-
ments you need to perform this test yet. Don’t worry; in Book II, Chapter 8,
[show you the solution.

Table 2-7 Scanner Class Methods That Check for Valid Input Values
Method Explanation
boolean hasNextBoolean () Returns true if the nextvalue entered by the user

is avalid boolean value.

boolean hasNextByte () Returns true if the next value entered by the user
is a valid by te value.

boolean hasNextDouble () Returns true if the next value entered by the user
is a valid double value.

Getting Input with the JOptionPane Class 111

Method Explanation

boolean hasNextFloat () Returns true if the next value entered by the user
is avalid float value.

boolean hasNextInt () Returns true if the next value entered by the user
is avalid int value.

boolean hasNextLong () Returns true if the next value entered by the user
is a valid Long value.

boolean hasNextShort () Returns true if the next value entered by the user
is avalid short value.

Getting Input with the JOptionPane Class

Figure 2-2:
A dialog box
displayed

by the
JOptionPane
class.

If you're using a version of Java prior to Java 1.5, you don’t have the luxury of
using the Scanner class to read input directly from the user via a console
window. However, you can use the JOptionPane class to display simple
dialog boxes such as the one shown in Figure 2-2 to get text input from the user.
Then, you can use the parse methods of the primitive type wrapper classes
to convert the text entered by the user to the appropriate primitive type.

Input

Iz‘ Enter an integer:
|

1100

Cancel |

Although the JOptionPane class has many methods, the only one you
need to get simple text input is the showInputDialog method. This
method uses a single parameter that specifies the prompting message that’s
displayed in the dialog box. It returns a string value that you can then parse
to the proper type.

The JOptionPane class is a part of the javax . swing package, so you
need to add an import javax.swing.JOptionPane statement to the
beginning of any program that uses this class.

Listing 2-4 shows a simple program that uses the JOPt ionPane class to get
an integer value and display it on the console.

Book Il
Chapter 2

sadA]
eje(pue sajqenep
yum Bunpopp

112 Getting Input with the JOptionPane Class

LisTING 2-4: A PROGRAM THAT UsEes THE JOPTIONPANE CLASS TO GET USER INPUT

import javax.swing.JOptionPane; - 1

public class DialogApp

{
public static void main(String[] args)
{
String s;
s = JOptionPane.showInputDialog("Enter an
integer:"); — 8
int x = Integer.parseIlnt(s); - 9
System.out.println("You entered " + x + "."); — 10
}
}

The following paragraphs describe the important lines in this program:

— 1 This line imports the JOptionPane class.

— 8 This statement displays an input dialog box with the prompt Enter
an integer: and assigns the string entered by the user to the vari-
able named s.

— 9 This statement uses the parseInt method of the Integer class to
convert the string entered by the user to an integer.

—10 This statement displays the integer value to confirm that the data
entered by the user was converted properly to an integer.

This program terminates abruptly if the user enters anything other than an
integer in the input dialog box. For example, if the user enters ten, the pro-
gram terminates, and a cryptic message indicating that a NumberFormat
Exception has occurred is displayed. You can provide for this situation in
Book II, Chapter 8. Until then, just be careful to enter correct numbers when
you use the JOptionPane class.

Chapter 3: Working with Numbers
and Expressions

In This Chapter

v Dealing with operators, such as +, -, *, and /
v+ Creating finely crafted expressions

v+ Incrementing and decrementing

1 Accepting an assignment

v Using the Math class

v Formatting your numbers

1~ Strange things that can happen with numbers

In Book II, Chapter 2, you discover the various primitive numeric types
that are supported by Java. In this chapter, you build on that knowledge
by doing basic operations with numbers. Much of this chapter focuses on
the complex topic of expressions, which combine numbers with operators
to perform calculations. But this chapter also covers techniques for format-
ting numbers when you display them and performing advanced calculations
using the Math class. In addition, you find out why Java’s math operations
sometimes produce results you might not expect.

Working with Arithmetic Operators

An operator is a special symbol or keyword that’s used to designate a mathe-
matical operation or some other type of operation that can be performed

on one or more values, called operands. In all, Java has about 40 different
operators. This chapter focuses on the operators that do arithmetic. These
arithmetic operators perform basic arithmetic operations, such as addition,
subtraction, multiplication, and division. In all, there are 7 of them. Table 3-1
summarizes them.

] ’4 Working with Arithmetic Operators

e

Table 3-1 Java's Arithmetic Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

++ Increment

- Decrement

The following section of code can help clarify how these operators work for
int types:

int a = 21, b = 6;

int ¢ = a + b; // c is 27

int d = a - b; // d is 15

int e = a * b; // e is 126

int £ = a / b; // £ i1s 3 (21 / 6 is 3 remainder 3)
int g = a % b; // g is 3 (20 / 6 is 3 remainder 3)
a++; // a is now 22

b--; // b is now 5

Notice that for division, the result is truncated. Thus, 21 / 6 returns 3, not
3.5. For more information about integer division, see the section “Dividing
Integers” later in this chapter.

Here’s how the operators work for double values:

double x = 5.5, y = 2.0;

double m = x + vy; // m is 7.5
double n = x - y; // n is 3.5
double o = x * vy; // o is 11.0
double p = x / v; // p is 2.75
double g = x % y; // g is 1.5
X++; // x is now 6.5
Y-—i // y is now 1.0

When you divide two int values, the result is an integer value, even if you
assign it to a double variable. For example:

int a = 21, b
double answer

6;
a / b; // answer = 3.0

Working with Arithmetic Operators 115

Categorizing operators by the number of operands

A common way to categorize Java's operators ¢~ Binary operators: Operators that work on

is by the number of operands the operator two operands. Examples of binary opera-
works on. Categorizing the operators in this tors are addition (x +), multiplication
way, there are three types: (invoiceTotal * taxRate), and

comparison operators (x < leftEdge).
In Java, all binary operators are infix oper-
ators, which means they appear between
the operands, like this:

v+~ Unary operators: Operators that work on
just one operand. Examples of unary oper-
ators are negation (—x, which returns the

negative of x) and increment (x++, which Book II
adds 1to x). operandl operator operand2 Chapter 3
A unary operator can be a prefix operator +~ Ternary operators: Operators that work on

or a postfix operator. A prefix operator is three operands. Java has only one ternary

written before the operand, like this: operator, called the conditional operator

(? :). The conditional operator is also infix:
operator operand

operandl ? operand2 : operand3

suoissaldx3
pue siaquinp
yum Bunpop

A postfix operator is written after the
operand:

operand operator

If that’s not what you want, you can cast one of the operands to a double
before performing the division, like this:

int a = 21, b
double answer

= 6 ;
= (double)a / b; // answer = 3.5
The moral of the story is that if you want to divide int values and get an accu-
rate double result, you must cast at least one of the int values to a double.
\\3
Here are a few additional things to think about tonight as you lay awake pon-
dering the wonder of Java’s arithmetic operators:

4+ In algebra, you can write a number right next to a variable to imply
multiplication. For example, 4x means “four times x.” Not so in Java.
The following statement doesn’t compile:
int x;
y = 4x; // error, won't compile

4+ The remainder operator (%) is also called a modulus operator. It
returns the remainder when the first operand is divided by the second
operand. The remainder operator is often used to determine if one
number is evenly divisible by another, in which case the result is 0. For
more information, see the next section, “Dividing Integers.”

116

Dividing Integers

4+ All operators, including the arithmetic variety, are treated as separators
in Java. As a result, any use of white space in an expression is optional.
Thus, the following two statements are equivalent:

a=((x+4) *7) / (y * x);
a=((x+4)*7)/(y*x);

Just remember that a little bit of white space never hurt anyone, and
sometimes it helps make Java a little more readable.

Dividing Integers

When you divide one integer into another, the result is always another inte-
ger. Any remainder is simply discarded, and the answer is not rounded up.
For example, 5 / 4 gives theresult 1,and 3 / 4 gives the result 0. If you
want to know that 5 / 4 isactually 1.25orthat3 / 4 isactually 0.75,
you need to use floats or doubles instead of integers.

If you need to know what the remainder is when you divide two integers,

use the remainder operator (%). For example, suppose you have a certain
number of marbles to give away and a certain number of children to give

them to. The program in Listing 3-1 lets you enter the number of marbles

and the number of children. Then, it calculates the number of marbles to
give to each child and the number of marbles you have left over.

Here’s a sample of the console output for this program, where the number of
marbles entered is 93 and the number of children is 5:

Welcome to the marble divvy upper.
Number of marbles: 93

Number of children: 5

Give each child 18 marbles.

You will have 3 marbles left over.

LisTING 3-1: A PROGRAM THAT Divies Up IMARBLES

import java.util.Scanner; - 1

public class MarblesApp
{
static Scanner sc = new Scanner (System.in); - 5

public static void main(String[] args)
{
// declarations — 9
int numberOfMarbles;
int numberOfChildren;
int marblesPerChild;
int marblesLeftOver;

A\

Dividing Integers 117

// get the input data — 15
System.out.println("Welcome to the marble divvy upper.");
System.out.print ("Number of marbles: ");

numberOfMarbles = sc.nextInt();

System.out.print ("Number of children: ");

numberOfChildren = sc.nextInt();

// calculate the results

marblesPerChild = numberOfMarbles / numberOfChildren; - 23
marblesLeftOver = numberOfMarbles % numberOfChildren; - 24
// print the results - 26

System.out.println("Give each child " +
marblesPerChild + " marbles.");

System.out.println("You will have " +
marblesLeftOver + " marbles left over.");

The following paragraphs describe the key lines in this program:
— 1 Imports the java.util.Scanner class so the program can use it
to get input from the user.

— 5 Creates the Scanner object and assigns it to a class variable so it
can be used in any method in the class.

— 9 The next four lines declare the local variables used by the program.
—15 The next five lines get the input from the user.

—23 Calculates the number of marbles to give to each child by using inte-
ger division, which discards the remainder.

—24 Calculates the number of marbles left over.
—26 The next two statements print the results.
It’s probably obvious if you think about it, but you should realize that if you

use integer division to divide a by b, then the result times b plus the remain-
der equals a. In other words:

int a 29; // any value will do

int b 3; // any value will do

int ¢ = a / b;

int d = a % b;

int e = (¢ * b) + d; // e will always equal a

Book |
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

118 Combining Operators

Combining Operators

A\

You can combine operators to form complicated expressions. When you do,
the order in which the operations are carried out is determined by the prece-
dence of each operator in the expression. The order of precedence for the
arithmetic operators is:

4+ Increment (++) and decrement (--) operators are evaluated first.
4+ Next, sign operators (+ or -) are applied.

4+ Then, multiplication (*), division (/), and remainder (%) operators are
evaluated.

4+ Finally, addition (+) and subtraction (-) operators are applied.

For example, in the expressiona + b * ¢, multiplication has a higher
precedence than addition. Thus, b is multiplied by c first. Then, the result of
that multiplication is added to a.

If an expression includes two or more operators at the same order of prece-
dence, the operators are evaluated left to right. Thus, in the expression a *
b / c,ais first multiplied by b, then the result is divided by c.

If you want, you can use parentheses to change the order in which opera-
tions are performed. Operations within parentheses are always performed
before operations that aren’t in parentheses. Thus, in the expression (a +
b) * c,ais added to b first. Then, the result is multiplied by c.

If an expression has two or more sets of parentheses, the operations in the
innermost set are performed first. For example, in the expression (a * (b
+ ¢)) / d,bis first added to c. Then, the result is multiplied by a. And
finally, that result is divided by d.

Apart from the increment and decrement operators, these precedence rules
and the use of parentheses are the same as they are for basic algebra. So if
you were paying attention in the eighth grade, precedence should make
sense.

With double or float values, changing the left to right order for operators
with the same precedence doesn’t affect the result. However, with integer
types, it can make a huge difference if division is involved. For example, con-
sider these statements:

int a =5, b=6, ¢ =17;
int d1 = a * b / c; // dl is 4
int d2 = a * (b / ¢c); // d2 is O

Using the Unary Plus and Minus Operators 119

This difference occurs because integer division always returns an integer
result, which is a truncated version of the actual result. Thus, in the first
expression, a is first multiplied by b, giving a result of 30. Then, this result is
divided by c. Truncating the answer gives a result of 4. But in the second
expression, b is first divided by c, which gives a truncated result of 0. Then,
this result is multiplied by a, giving a final answer of 0.

Using the Unary Plus and Minus Operators

A\

The plus and minus unary operators let you change the sign of an operand.
Note that the actual operator used for these operations is the same as the
binary addition and subtraction operators. The compiler figures out whether
you mean to use the binary or the unary version of these operators by exam-
ining the expression.

The unary minus operator doesn’t necessarily make an operand have a nega-
tive value. Instead, it changes whatever sign the operand has to start with.
Thus, if the operand starts with a positive value, the unary minus operator
changes it to negative. But if the operand starts with a negative value, the
unary minus operator makes it positive. The following examples illustrate
this point:

int a = 5; // a is b5
int b = -a; // b is -5
int ¢ = -b; // c is +5

Interestingly enough, the unary plus operator doesn’t actually do anything.
For example:

int a = -5; // a is -5
int b = +a; // b is -5
a=>5; // a is now 5
int ¢ = +a; // c is 5

Notice that if a starts out positive, +a is also positive. But if a starts out neg-
ative, +a is still negative. Thus, the unary + operator has no effect. I guess
Java provides the unary plus operator out of a need for balance.

You can also use these operators with more complex expressions, like this:

=4

, = 5;
a * -(b +

) ; // d is -27

int a
int d

I
w
o

C
C

Here, b is added to c, giving a result of 9. Then, the unary minus is applied,
giving a result of —9. Finally, -9 is multiplied by a giving a result of -27.

Book Il
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

120 Using Increment and Decrement Operators

Using Increment and Decrement Operators

A\

One of the most common operations in computer programming is adding or
subtracting 1 from a variable. Adding 1 to a variable is called incrementing
the variable. Subtracting 1 is called decrementing. The traditional way to
increment a variable is like this:

a=a+ 1;

Here, the expression a + 1 is calculated, and the result is assigned to the
variable a.

Java provides an easier way to do this type of calculation: the increment
(++) and decrement (--) operators. These are unary operators that apply to
a single variable. Thus, to increment the variable a, you can code just this:

a++;

Note that an expression that uses an increment or decrement operator is a
statement by itself. That’s because the increment or decrement operator is
also a type of assignment operator, as it changes the value of the variable it
applies to.

You can only use the increment and decrement operators on variables, not
on numeric literals or other expressions. For example, Java doesn’t allow the
following expressions:

b * 5++; // can't increment the number 5
(b * 5)++; // can't increment the expression (b *
5)

a
a

Note that you can use an increment or decrement operator in an assignment
statement. For example:

int

a 5;
int b -

= a-—; // both a and b are set to 4

When the second statement is executed, the expression a-- is evaluated
first, so a is set to 4. Then, the new value of a is assigned to b. Thus, both a
and b are set to 4.

The increment and decrement operators are unusual because they are unary
operators that can be placed either before (prefix) or after (postfix) the vari-
able they apply to. Whether you place the operator before or after the variable
can have a major affect on how an expression is evaluated. If you place an
increment or decrement operator before its variable, the operator is applied
before the rest of the expression is evaluated. As a result, the incremented
value of the variable is used in the expression. In contrast, if you place the

\NG/
S

Using Increment and Decrement Operators 121

operator after the variable, the operator is applied after the expression is eval-
uated. Thus, the original value of the variable is used in the expression.

Confused yet? A simple example can clear it up. First, consider these state-
ments with an expression that uses a postfix increment:

int a = 5;
int b = 3;
int ¢ = a * b++; // ¢ is set to 15

When the expression in the third statement is evaluated, the original value of
b — 3 —is used in the multiplication. Thus, c is set to 15. Then, b is incre-
mented to 4.

Now consider this version, with a prefix increment:

int a = 5;
int b = 3;
int ¢ = a * ++b; // ¢ is set to 20

This time, b is incremented before the multiplication is performed, so c is
set to 20. Either way, b ends up set to 4.

Similarly, consider this example:

5;
--a; // b is set to 5, a 1is set to 4.

int a
int b

This example is similar to an earlier example, but this time the prefix incre-
ment operator is used. When the second statement is executed, the value of
a is assigned to b. Then, a is decremented. As a result, b is set to 5, and a is
set to 4.

Because the increment and decrement operators can be confusing when used
with other operators in an expression, I suggest you use them alone. Whenever
you're tempted to incorporate an increment or decrement operator into a
larger expression, pull the increment or decrement out of the expression and
make it a separate statement either before or after the expression. In other
words, code this:

b++;
c =a * b;

instead of this:
c =a * ++b;

In the first version, it’s crystal clear that b is incremented before the multi-
plication is done.

Book |
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

122 Using the Assignment Operator

Using the Assignment Operator

“NG‘
Q\\ !

The standard assignment operator (=) is used to assign the result of an
expression to a variable. In its simplest form, you code it like this:

variable = expression;
For example:
int a = (b * ¢c) / 4;

You've already seen plenty of examples of assignment statements like this
one, so [won’t belabor this point any further. However, I do want to point
out — just for the record — that you cannot code an arithmetic expression
on the left side of an equals sign. Thus, the following statement doesn’t
compile:

int a;
a+ 3= (b * c);

In the rest of this section, I point out some unusual ways in which you can
use the assignment operator. I don’t actually recommend that you use any of
these techniques, as they are rarely necessary and almost always confusing.
However, knowing about them can shed light on how Java expressions work
and can sometimes help you find sneaky problems in your code.

The key to understanding the rest of this section is realizing that in Java,
assignments are expressions, not statements. In other words, a = 5is an
assignment expression, not an assignment statement. It becomes an assign-
ment statement only when you add a semicolon to the end.

The result of an assignment expression is the value that’s assigned to the
variable. For example, the result of the expression a = 5 is 5. Likewise, the
result of the expressiona = (b + c¢) * dis the result of the expression
(b + c) * d.

The implication is that you can use assignment expressions in the middle of
other expressions. For example, the following is legal:

int a;
int b;
a= (b=3)* 2; // a is 6, b is 3

As in any expression, the part of the expression inside the parentheses is
evaluated first. Thus, b is assigned the value 3. Then, the multiplication
is performed, and the result (6) is assigned to the variable a.

Using Compound Assignment Operators 12 3

Now consider a more complicated case:

int a;
int b = 2;
a= (b =3) * b; // a is 9, b is 3

What’s happening here is that the expression in the parentheses is evaluated
first, which means that b is set to 3 before the multiplication is performed.

The parentheses are important in the previous example because without
parentheses, the assignment operator is the last operator to be evaluated in
Java’s order of precedence. Thus, consider one more example:

Book II
int a; Chapter 3
int b = 2;
a=Db=37*Db; // a is 6, b is 6

rES
This time, the multiplication 3 * b is performed first, giving a result of 6. E 2=
Then, this result is assigned to b. Finally, the result of that assignment 8. g a
expression (6) is assigned to a. S g

=

Incidentally, the following expression is also legal:
a=>b==c=3;

This expression assigns the value 3 to all three variables. Although this code
seems pretty harmless, you're better off just writing three assignment state-
ments. (You might guess that clumping the assignments together is more
efficient than writing them on three lines, but you’d be wrong. These three
assignments require the same number of bytecode instructions either way.)

Using Compound Assignment Operators

A compound assignment operator is an operator that performs a calculation
and an assignment at the same time. All of Java’s binary arithmetic operators
(that is, the ones that work on two operands) have equivalent compound
assignment operators. Table 3-2 lists them.

Table 3-2 Compound Arithmetic Operators
Operator Description
+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

~
1l

Division and assignment

oe
1l

Remainder and assignment

12 4 Using the Math Class

NG/

For example, this statement

a += 10;

is equivalent to

a=a + 10;

And this statement

zZ *=2;

is equivalent to

z =2z * 2;

To avoid confusion, compound assignment expressions are best used by
themselves, not in combination with other expressions. For example, con-
sider these statements:

int a

int b ;
a *= b + 1;

2
3

Is a setto 7 or 8?

In other words, is the third statement equivalent to

a=a*b+ 1; // This would give 7 as the result
or
a=a%* (b+1); // This would give 8 as the result

At first glance, you might expect the answer to be 7, because multiplication
has a higher precedence than addition. But assignment has the lowest
precedence of all, and the multiplication here is performed as part of the
assignment. As a result, the addition is performed before the multiplication.
Thus, the answer is 8. (Gotcha!)

Using the Math Class

Java’s built-in operators are useful, but they don’t come anywhere near pro-
viding all the mathematical needs of most Java programmers. That’s where
the Math class comes in. It includes a bevy of built-in methods that perform
a wide variety of mathematical calculations, from basic functions such as
calculating an absolute value or a square root to trigonometry functions

\\3

Using the Math Class 125

such as sin and cos, to practical functions such as rounding numbers or gen-
erating random numbers.

[was going to make a joke here about having to take a Math class to fully
appreciate the Math class, or how you’d better stay away from the Math
class if you didn’t do so well in Math class, or how if you're on the football
team, maybe you can get someone to do the Math class for you. But it
seemed too easy, so I decided not to.

All the methods of the Math class are declared as static methods, which
means you can use them by specifying the class name Math followed by a
period and a method name. For example, here’s a statement that calculates
the square root of a number stored in a variable named y:

double x = Math.sqgrt(y);

The Math class is contained in the java . lang package, which is automati-
cally available to all Java programs. As a result, you don’t have to provide an
import statement to use the Math class.

The following sections describe the most useful methods of the Math class.

Constants of the Math class

The Math class defines two constants that are useful for many mathematical
calculations. Table 3-3 lists these constants.

Table 3-3 Constants of the Math Class

Constant What It Is Value

PI The constant Pi (r), the 3.141592653589793
ratio of a circle’s radius and
diameter

E The base of natural logarithms 2.718281828459045

Note that these constants are only approximate values, because both n and e
are irrational numbers.

The program shown in Listing 3-2 illustrates a typical use of the constant PT.
Here, the user is asked to enter the radius of a circle. The program then cal-
culates the area of the circle in line 13. (The parentheses aren’t really
required in the expression in this statement, but they help clarify that the
expression is the Java equivalent to the formula for the area of a circle, nr*)

Book Il
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

126 Using the Math Class

Here’s the console output for a typical execution of this program, in which
the user entered 5 as the radius of the circle:

Welcome to the circle area calculator.
Enter the radius of your circle: 5
The area is 78.53981633974483

LisTING 3-2: THE CIRCLE AREA CALCULATOR

import java.util.Scanner;

public class CircleAreaApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{
System.out.println(
"Welcome to the circle area calculator.");
System.out.print ("Enter the radius of your circle: ");
double r = sc.nextDouble();
double area = Math.PI * (r * r); - 13
System.out.println("The area is " + area);

Mathematical functions

Table 3-4 lists the basic mathematical functions that are provided by the
Math class. As you can see, you can use these functions to calculate such
things as the absolute value of a number, the minimum and maximum of two
values, square roots, powers, and logarithms.

Table 3-4 Mathematical Functions Provided by the Math Class
Method Explanation
abs (argument) Returns the absolute value of the argument. The argument can

be an int, long, float, or double. The return value is the
same type as the argument.

cbrt (argument) Returns the cube root of the argument. The argument and
return value are doubles.

exp (argument) Returns e raised to the power of the argument. The argument
and the return value are doubles.

hypot (argl, arg2) Returnsthe hypotenuse of a right triangle calculated according
to the Pythagorean theorem — x2 + y2 The argument and the
return values are doubles.

Using the Math Class 127

Method Explanation

log (argument) Returns the natural logarithm (base ¢) of the argument. The
argument and the return value are doubles.

logl0 (argument) Returns the base 10 logarithm of the argument. The argument
and the return value are doubles.

max (argl, arg2) Returns the larger of the two arguments. The arguments can be
int, long, float, or double, but both must be of the
same type. The return type is the same type as the arguments.

min(argl, arg2) Returns the smaller of the two arguments. The arguments can
be int, long, float, or double, but both must be of the
same type. The return type is the same type as the arguments.

pow (argl, arg2) Returns the value of the first argument raised to the power of
the second argument. Both arguments and the return value are
doubles.

random () Returns a random number that’s greater than or equal to 0.0 but

less than 1.0. This method doesn’t accept an argument, but the
return value is a double.

signum(argument) Returns a number that represents the sign of the argument: —1.0

if the argument is negative, 0.0 if the argument is zero, and 1.0 if
the argument is positive. The argument can be a double ora
float. The return value is the same type as the argument.

sgrt (argument) Returns the square root of the argument. The argument and

return value are doubles.

The program shown in Listing 3-3 demonstrates each of these methods
except random. When run, it produces output similar to this:

abs (b)
cbrt (x)
exp (y)
hypot (v, z)
log(y)
logl0(y)
max(a, b)
min(a, b)
pow(a, c)
random ()
signum(b)
sgrt (x)

50
2.924017738212866
54.598150033144236
5.0
1.0986122886681096
0.47712125471966244
100

-50

1000000.0
0.8536014557793756
-1.0
1.7320508075688772

You can use this output to get an idea of the values returned by these Math
class methods. For example, you can see that the expression Math. sqgrt (y)
returns a value of 5.0 when y is 25.0.

Book |
Chapter 3

suoissaldx3
pue siaquiny
yum Bunpop

128 Using the Math Class

The following paragraphs point out a few interesting tidbits concerning
these methods:

4+ You can use the abs and signnum methods to force the sign of one
variable to match the sign of another, like this:
int a = 27;
int b = -32;
a = Math.abs(a) * Math.signum(b) ; // a is
now -27;

4 You can use the pow method to square a number, like this:

double x 4.0;
double vy Math.pow(x, 2); // a is now 16;

However, simply multiplying the number by itself is often just as easy
and just as readable:

double x = 4.0;
double v = x * x; // a is now 16;
P 4+ In the classic movie The Wizard of Oz, when the Wizard finally grants

the Scarecrow his brains, the Scarecrow suddenly becomes intelligent
and quotes the Pythagorean theorem, which is used by the hypot
method of the Math class. Unfortunately, he quotes it wrong. What the
Scarecrow actually says in the movie is: “The sum of the square roots of
any two sides of an isosceles triangle is equal to the square root of the
remaining side.” Silly scarecrow. What he should have said, of course, is
“The square of the hypotenuse of any right triangle is equal to the sum
of the squares of the other two sides.”

4+ Every time you run the program in Listing 3-3, you get a different result for
the random method call. The random method is interesting enough that I
describe it separately, in the next section “Creating random numbers.”

LisTING 3-3: A PROGRAM THAT Uses THE MATHEMATICAL METHODS

OF THE MATH CLASS

public class MathFunctionsApp

{
public static void main(String[] args)
{

int a = 100;
int b = -50;

int ¢ = 3;
double x = 25.0;
double y = 3.0;
double z = 4.0;

" + Math.abs(b));
" 4+ Math.cbrt(x));

System.out.println("abs(b)
System.out.println("cbrt (x)

Using the Math Class 129

System.out.println("exp(y)
System.out.println("hypot (v, z)
System.out.println("log(y)
System.out.println("loglO(y)
System.out.println("max(a, b)
System.out.println("min(a, b)
System.out.println("pow(a, c)
System.out.println("random()
System.out.println("signum(b)
System.out.println("sqrt (x)

Math.exp(z));
Math.hypot(y,2z));
Math.log(y)):
Math.logl0(y));
Math.max(a, b));
Math.min(a, b));
Math.pow(a, c));
Math.random());
Math.signum(b));
Math.sqrt(y));

+ 4+ +

Creating random numbers

Sooner or later, you're going to want to write programs that play simple
games. Almost all games have some element of chance built in to them, so
you need a way to create computer programs that don’t work exactly the
same every time you run them. The easiest way to do that is to use the
random method of the Math class, which Table 3-4 lists along with the other
basic mathematical functions of the Math class.

The random method returns a double whose value is greater than or equal
to 0.0 but less than 1.0. Within this range, the value returned by the random
method is different every time you call it, and is essentially random.

Strictly speaking, computers are not capable of generating truly random
numbers. However, clever computer scientists over the years have devel-
oped ways to generate numbers that are random for all practical purposes.
These numbers are called pseudorandom numbers because although they
aren’t completely random, they look random to most mortal human beings.

The random method generates a random double value between 0.0 (inclu-
sive, meaning it could be 0.0) and 1.0 (exclusive, meaning it can’t be 1.0).
However, most computer applications that need random values need
random integers between some arbitrary low value (usually 1, but not
always) and some arbitrary high value. For example, a program that plays
dice needs random numbers between 1 and 6, while a program that deals
cards needs random numbers between 1 and 52 (53 if jokers are used).

As a result, you need a Java expression that converts the double value
returned by the random function into an int value within the range your
program calls for. The following code shows how to do this, with the values
set to 1 and 6 for a dice-playing game:

int low = 1; // the lowest value in the range
int high = 6; // the highest value in the range
int rnd = (int) (Math.random() * (high - low + 1)) + low;

Book |
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

73 0 Using the Math Class

This expression is a little complicated, so I show you how it’s evaluated step
by step:

1. The random method to get a random double value. This value is greater
than 0.0 but less than 5.0.

2. The random value is multiplied by the high end of the range minus the
low end, plus 1. In this example, the high end is 6, and the low end is 1,
so you now have a random number that’s greater than or equal to 0.0
but less than 6.0. (It could be 5.99999999999999, but it never is 6.0.)

3. This value is then converted to an integer by the (int) cast. You now
have an integer that’s either 0, 1, 2, 3, 4, or 5. (Remember that when you
cast a double to an int, any fractional part of the value is simply dis-
carded. Because the number is less than 6.0, it never truncates to 6. 0
when it is cast to an int.)

4. The low value in the range is now added to the random number.
Assuming the 1ow is 1, the random number is now either 1, 2, 3, 4, 5, or 6.
That’s just what you want: a random number between 1 and 6.

To give you an idea of how this random number calculation works, Listing 3-4
shows a program that places this calculation in a method called randomInt
and then calls it to simulate 100 dice rolls. The randomInt method accepts
two parameters representing the low and high ends of the range, and it
returns a random integer within the range. In the main method of this pro-
gram, the randomInt method is called 100 times, and each random number
is printed by a call to System.out.print.

The console output for this program looks something like this:

Here are 100 random rolls of the dice:

41161266665554544136131443335656¢61352
2633

4122422414365544241352133541631652¢6%¢6
3545

2545314252144 4664¢633

However, every time you run this program, you see a different sequence of
100 numbers.

The program in Listing 3-4 uses several Java features you haven’t seen yet.

LisTING 3-4: ROLLING THE DICE

public class DiceApp
{
public static void main(String[] args)
{
int roll;
String msg = "Here are 100 random rolls of the dice:";

Using the Math Class '3 1

System.out.println(msg);

for (int i=0; i<100; i++) - 8
{
roll = randomInt(1l, 6); — 10
System.out.print(roll + " "); - 11

}
System.out.println();

}

public static int randomInt(int low, int high) — 16
{
int result = (int) (Math.random() — 18
* (high - low + 1)) + low;
return result; — 20

The following paragraphs explain how the program works, but don’t worry
if you don’t get all of the elements in this program. The main thing to see is
the expression that converts the random double value returned by the
Math.double method to an integer.

— 8 The for statement causes the statements in its body (lines 10 and
11) to be executed 100 times. Don’t worry about how this statement
works for now; you find out about it in Book II, Chapter 5.

—10 This statement calls the randomInt method, specifying 1 and 6 as
the range for the random integer to generate. The resulting random
number is assigned to the rol1l variable.

—11 The System.out.print method is used to print the random
number followed by a space. Because this statement calls the print
method rather than the print1ln method, the random numbers are
printed on the same line rather than on separate lines.

—16 The declaration for the randomInt method indicates that the
method returns an int value and accepts two int arguments, one
named 1low, the other named high.

—18 This expression converts the random double value to an integer
between 1ow and high.

—20 The return statement sends the random number back to the state-
ment that called the randomInt method.

Rounding functions

The Math class has four methods that round or truncate f1oat or double
values. Table 3-5 lists these methods. As you can see, each of these methods
uses a different technique to calculate an integer value that’s near the
double or float value passed as an argument. Note that even though all
four of these methods rounds a floating-point value to an integer value, only

Book Il
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

73 2 Using the Math Class

the round method actually returns an integer type (int or long, depend-
ing on whether the argument is a float or a double). The other methods
return doubles that happen to be integer values.

Table 3-5 Rounding Functions Provided by the Math Class
Method Explanation
ceil (argument) Returns the smallest double value thatis an integer and is

greater than or equal to the value of the argument.

floor (argument) Returns the largest double value thatis an integer and is less
than or equal to the value of the argument.

rint (argument) Returns the double value thatis an integer and is closest to
the value of the argument. If two integer values are equally
close, returns the one that is even. If the argument is already an
integer, returns the argument value.

round (argument) Returns the integer that is closest to the argument. If the argu-
ment is a double, returns a 1ong. If the argument is a
float,returns an int.

Listing 3-5 shows a program that uses each of the four methods to round
three different double values: 29.4, 93.5,and —-19. 3. Here’s the output
from this program:

round(x) = 29
round(y) = 94
round(z) = -19
ceil(x) = 30.0
ceil(y) = 94.0
ceil(z) = -19.0
floor(x) = 29.0
floor(y) = 93.0
floor(z) = -20.0
rint(x) = 29.0
rint(y) = 94.0
rint(z) = -19.0

Note that each of the four methods produces a different result for at least
one of the values:

4+ All the methods except ceil return 29.0 (or 29) for the value 29 . 4.
ceil returns 30. 0, which is the smallest integer that’s greater than
29.4.

4+ All the methods except f1oor return 94.0 (or 94) for the value 93 . 5.
floor returns 93 .0 because that’s the largest integer that’s less than

Formatting Numbers '3 3

93.99. rint returns 94 .0 because it’s an even number, and 93.5 is
midway between 93.0 and 94.0.

4 All the methods except £1oor return -19.0 (or -19) for -19.3. floor
returns 2-20 because -20 is the largest integer that’s less than —19.3.

LisTING 3-5: A PROGRAM THAT Uses THE ROUNDING IMIETHODS

OF THE MATH CLASS

public class RoundingApp

{
public static void main(String[] args)
{

double x = 29.4;
double y = 93.5;
double z = -19.3;

" 4+ Math.round(x));
" + Math.round(y)):;
" 4+ Math.round(z));

System.out.println("round(x)
System.out.println("round(y)
System.out.println("round(z)
System.out.println();

System.out.println("ceil (x)
System.out.println("ceil(y)
System.out.println("ceil(z)
System.out.println();

System.out.println("floor (x)
System.out.println("floor(y)
System.out.println("floor(z)
System.out.println();

System.out.println("rint (x)
System.out.println("rint(y)
System.out.println("rint(z)

" + Math.ceil(x));
" + Math.ceil(y));
" + Math.ceil(z));

" 4+ Math.floor(x));
" + Math.floor(y)):
" 4+ Math.floor(z));

" + Math.rint(x));
" 4+ Math.rint(y));
" + Math.rint(z));

Formatting Numbers

Most of the programs you've seen so far have used the System. out.
printlnor System.out.print method to print the values of variables
that contain numbers. When you pass a numeric variable to one of these
methods, the variable’s value is converted to a string before it’s printed.
The exact format used to represent the value isn’t very pretty. For example,
large values are printed without any commas. And all the decimal digits for
double or float values are printed, whether you want them to or not.

In many cases, you want to format your numbers before you print them.
For example, you might want to add commas to large values and limit the
number of decimal places printed. Or, if a number represents a monetary
amount, you might want to add a dollar sign (or whatever currency symbol

Book |
Chapter 3

suoissaldx3
pue siaquiny
yum Bunpop

73 4 Formatting Numbers

“NG‘

is appropriate for your locale). To do that, you can use the NumberFormat
class. Table 3-6 lists the NumberFormat class methods.

Like many aspects of Java, the procedure for using the NumberFormat
class is a little awkward. It’s designed to be efficient for applications that
need to format a lot of numbers, but it’s overkill for most applications.

Table 3-6 Methods of the NumberFormat Class
Method Explanation
getCurrencyInstance () A static method that returns a

NumberFormat object that formats
currency values.

getPercentInstance () A static method that returns a
NumberFormat object that formats
percentages.

getNumberInstance () A static method that returns a

NumberFormat object that formats
basic numbers.

format (number) Returns a string that contains the format-
ted number.

setMinimumFractionDigits (int) Setsthe minimum number of digits to dis-
play to the right of the decimal point.

setMaximumFractionDigits (int) Setsthe maximum number of digits to dis-
play to the right of the decimal point.

The procedure for using the NumberFormat class to format numbers

takes a little getting used to. First, you must call one of the static
getXxxInstance methods to create a NumberFormat object that can
format numbers in a particular way. Then, if you want, you can call the
setMinimumFractionDigits or setMaximumFractionDigits meth-
ods to set the number of decimal digits to be displayed. Finally, you call that
object’s format method to actually format a number.

Note that the NumberFormat class is in the java. text package, so you
must include the following import statement at the beginning of any class
that uses NumberFormat:

import java.text.NumberFormat;

Here’s an example that uses the NumberFormat class to format a double
value as currency:

double salesTax = 2.425;
NumberFormat cf = NumberFormat.getCurrencyInstance() ;
System.out.println(cf.format (salesTax)) ;

\\J

Formatting Numbers '3 5

When you run this code, the following line is printed to the console:
$2.43
Note that the currency format rounds the value from 2.425 to 2.43.

Here’s an example that formats a number using the general number format,
with exactly three decimal places:

double x = 19923.3288;

NumberFormat nf = NumberFormat.getNumberInstance() ;
nf.setMinimumFractionDigits (3) ;
nf.setMaximumFractionDigits (3) ;
System.out.println(nf.format (x)) ;

When you run this code, the following line is printed:

19,923.329

Here, the number is formatted with a comma, and the value is rounded to
three places.

Here’s an example that uses the percentage format:

double grade = .92;
NumberFormat pf = NumberFormat.getPercentInstance() ;
System.out.println (pf.format (grade)) ;

When you run this code, the following line is printed:
92%

If your program formats several numbers, consider creating the
NumberFormat object as a class variable. That way, the NumberFormat
object is created once when the program starts. Then, you can use the
NumberFormat object from any method in the program’s class. Here’s a
simple example that shows how this works:

import java.text.NumberFormat;

public class NumberFormatClassApp
{

static NumberFormat cf =
NumberFormat .getCurrencyInstance() ;

public static void main(String[] args)
{
printMyAllowance () ;
printCostOfPaintBallGun() ;

Book |
Chapter 3

suoissaldx3
pue siaquinp
yum Bunpop

136

Weird Things about Java Math

public static void printMyAllowance ()
{
double myAllowance = 5.00;
cf = NumberFormat.getCurrencyInstance() ;
System.out.println("My allowance: "
+ cf.format (myAllowance)) ;

}

public static void printCostOfPaintBallGun ()
{
double costOfPaintBallGun = 69.95;
cf = NumberFormat.getCurrencyInstance() ;
System.out.println("Cost of Paint Ball Gun: "
+ cf.format (costOfPaintBallGun)) ;

}

Here, the cf variable is created as a class variable. Then, both the printMy
Allowance and printCostOfPaintBallGun methods can use it.

Weird Things about Java Math

“NG‘
Q) \| !

Believe it or not, computers — even the most powerful ones — have certain
limitations when it comes to performing math calculations. These limitations
are usually insignificant, but sometimes they sneak up and bite you. The fol-
lowing sections describe the things you need to watch out for when doing
math in Java.

Integer overflow

The basic problem with integer types is that they have a fixed size. As a
result, the number has a size limit that can be stored in a short, int, or
long variable. Although 1ong variables can hold numbers that are huge,
sooner or later you come across a number that’s too big to fit in even a long
variable.

For example, consider this admittedly contrived example:

int a = 1000000000;
System.out.println(a) ;
a += 1000000000;
System.out.println(a) ;
a += 1000000000;
System.out.println(a) ;
a += 1000000000;
System.out.println(a) ;

“NG‘
Q \| !

Weird Things about Java Math '3 7

Here, you expect the value of a to get bigger after each addition. But here’s
the output that’s displayed:

1000000000
2000000000
-1294967296
-294967296

The first addition seems to work, but after that, the number becomes nega-
tive! That’s because the value has reached the size limit of the int data
type. Unfortunately, Java doesn’t tell you that this error has happened. It
simply crams the int variable as full of bits as it can, discards whatever bits
don’t fit, and hopes you don’t notice. Because of the way int stores nega-
tive values, large positive values suddenly become large negative values.

The moral of the story is that if you're working with large integers, you
should use 1ong rather than int because 1ong can store much larger num-
bers than int. If your programs deal with numbers large enough to be a
problem for 1ong, consider using floating-point types instead. As you see in
the next section, floating-point types can handle even larger values than
long, and they let you know when you exceed their capacity.

Floating-point weirdness

Floating-point numbers have problems of their own. For starters, floating-
point numbers are stored using the binary number system (base 2), but
humans work with numbers in the decimal number system (base 10).
Unfortunately, accurately converting numbers between these two systems is
sometimes impossible. That’s because in any number base, certain fractions
can’t be represented exactly. For example, base 10 has no way to exactly rep-
resent the fraction ¥ You can approximate it as 0.3333333, but eventually you
reach the limit of how many digits you can store, so you have to stop. In
base 2, it happens that one of the fractions you can’t accurately represent is
the decimal value X. In other words, a f1oat or double variable can’t accu-
rately represent 0. 1.

Don’t believe me? Try running this code:

float x = 0.1f;

NumberFormat nf = NumberFormat.getNumberInstance() ;
nf.setMinimumFractionDigits (10) ;
System.out.println(nf.format (x)) ;

The resulting output is this:

0.1000000015

Although 0.1000000015 is close to 0.1, it isn’t exact.

Book Il
Chapter 3

suoissaldx3

pue siaquny
yim Bunpop

73 8 Weird Things about Java Math

\NG/
&

MBER
é“'
&

In most cases, Java’s floating-point math is close enough not to matter. The
margin of error is extremely small. If you're using Java to measure the size of
your house, you’d need an electron microscope to notice the error. However,
if you're writing applications that deal with financial transactions, normal
rounding can sometimes magnify the errors to make them significant. You
might charge a penny too much or too little sales tax. And, in extreme cases,
your invoices might actually have obvious addition errors.

I'll have much more to say about this floating-point numbers in Bonus
Chapter 1 on this book’s Web site. For now, just realize that you can’t use
float or double to represent money unless you don’t care whether or not
your books are in balance.

Of course, integer types are stored in binary too. But integers aren’t subject
to the same errors that floating-point types are because integers don’t repre-
sent fractions at all. So you don’t have to worry about this type of error for
integer types.

Dividing by zero

According to the basic rules of mathematics, you can’t divide a number by
zero. The reason is simple: Division is the inverse of multiplication. That
means thatifa * b = c,thenitisalsotruethata = ¢ / b.If youwere
to allow b to be zero, division would be meaningless because any number
times zero is zero. Therefore, both a and ¢ would also have to be zero. In
short, mathematicians solved this dilemma centuries ago by saying that divi-
sion by zero is simply not allowed.

So what happens if you do attempt to divide a number by zero in a Java pro-
gram? The answer depends on whether you're dividing integers or floating-
point numbers. If you're dividing integers, the statement that attempts the
division by zero chokes up what is called an exception, which is an impolite
way of crashing the program. In Book II, Chapter 8, you find out how to inter-
cept this exception to allow your program to continue. But in the meantime,
any program you write that attempts an integer division by zero crashes.

If you try to divide a floating-point type by zero, the results are not so abrupt.
Instead, Java assigns the floating-point result one of the special values listed
in Table 3-7. The following paragraphs explain how these special values are
determined:

4+ If you divide a number by zero and the sign of both numbers is the
same, the result is positive infinity. For example, 40 . 0 divided by 0.0 is
positive infinity, as is =34 . 0 divided by -0. 0.

4+ If you divide a number by zero and the signs of the numbers are differ-
ent, the result is negative infinity. For example, -40 . 0 divided by 0. 0 is
negative infinity, as is 34 . 0 divided by 0. 0.

Weird Things about Java Math '3 9

4+ If you divide zero by zero, the result is Not a Number regardless of the
signs.

MBER
‘x&
&

Floating-point zeros can be positive or negative. Java considers positive and
negative zeros to be equal numerically.

If you attempt to print a floating-point value that has one of these special
values, Java converts the value to an appropriate string. For example, sup-
pose you execute the following statements:

double i = 50.0;
double j = 0.0;
double k = 1 / 3; Book I
System.out.println (k) ; Chapter 3
The resulting console output is
rES
infinity E 2=
w D=3
7)
If 1 were —50. 0, the console would display —infinity. And if 1 were zero, % 2 i
=

the console would display NaN.

Table 3-7 Special Constants of the float and double Classes
Constant Meaning

POSITIVE_INFINITY Positive infinity
NEGATIVE_INFINITY Negative infinity

NaN Not a number

The following paragraphs describe some final bits of weirdness [want to
sneak in before closing this chapter:

4+ NaN is not equal to itself, which can have some strange consequences.
For example:

double x = Math.sqgrt(-50); // Not a number
double y = x;
if (x == v)

System.out.println("x equals y");

Okay, [know I jumped the gun here on the if statement, because [don’t
cover if statements until Book II, Chapter 4. So just assume for the sake
of argument that the i f statement tests whether the variable x is equal
to the variable y. Because this test follows immediately after an assign-
ment statement that assigns the value of x to y, you can safely assume
that x equals vy, right?

’40 Weird Things about Java Math

Wrong. Because x is NaN, y also is NaN. And NaN is never considered to
be equal to any other value, including another NaN. Thus, the compari-
son in the i f statement fails.

4+ Another strange consequence: You can’t assume that a number minus
itself is always zero. Consider this statement:

double z = x - x; // not necessarily zero

Shouldn’t this statement always set z to zero? Not if x is NaN. In that
case, not a number minus not a number is still not a number.

4+ One more, and then I'll stop: Any mathematical operation involving infin-
ity results in either another infinity or not a number. For example, infinity
+ 5 still equals infinity. So Buzz Lightyear’s call to “Infinity and beyond”
just isn’t going to happen. But infinity minus infinity gives not a number.

Chapter 4: Making Choices

In This Chapter

+ Boolean expressions for fun and profit (or is it, for fun or profit?)
+ Your basic, run-of-the mill i f statement

1 else clauses and else-1if statements

1 Nested if statements

v+~ Using logical operators

v The weird ? : operator

v The proper way to do string comparisons

S) far in this book, all the programs have run straight through from start
to finish, without making any decisions along the way. In this chapter,
you discover two Java statements that let you create some variety in your
programs. The i f statement lets you execute a statement or a block of
statements only if some conditional test turns out to be true. And the
switch statement lets you execute one of several blocks of statements
depending on the value of an integer variable.

The if statement relies heavily on the use of boolean expressions, which are
expressions that yield a simple true or false result. Because you can’t do
even the simplest if statement without a boolean expression, this chapter
begins by showing you how to code simple boolean expressions that test
the value of a variable. Later, after looking at the details of how the if state-
ment works, | revisit boolean expressions to see how to combine them to
make complicated logical decisions. Then, I get to the switch statement.
QMING/
7 You're going to have to put your thinking cap on for much of this chapter, as
most of it plays with logic puzzles. Find yourself a comfortable chair in a
quiet part of the house, turn off the TV, and pour yourself a cup of coffee.

Using Simple Boolean Expressions

All 1 f statements, as well as several of the other control statements that I
describe in Book II, Chapter 5 (while, do, and for) use boolean expres-
sions to determine whether to execute or skip a statement (or a block of
statements). A boolean expression is a Java expression that, when evalu-
ated, returns a boolean value — either true or false.

’42 Using Simple Boolean Expressions

As you discover later in this chapter, boolean expressions can be very compli-
cated. However, most of the time, you use simple expressions that compare
the value of a variable with the value of some other variable, a literal, or

| perhaps a simple arithmetic expression. This comparison uses one of the
relational operators listed in Table 4-1. All these operators are binary opera-
tors, which means they work on two operands.

Table 4-1 Relational Operators

Operator Description

== Returns true if the expression on the left evaluates to the
same value as the expression on the right.

1= Returns true if the expression on the left does not evaluate to
the same value as the expression on the right.

< Returns true if the expression on the left evaluates to a value
that is less than the value of the expression on the right.

<= Returns true if the expression on the left evaluates to a value
that is less than or equal to the expression on the right.

> Returns true if the expression on the left evaluates to a value
that is greater than the value of the expression on the right.

>= Returns true if the expression on the left evaluates to a value
that is greater than or equal to the expression on the right.

A basic boolean expression has this form:
expression relational-operator expression

Java evaluates a boolean expression by first evaluating the expression on
the left, then evaluating the expression on the right, and finally applying the
relational operator to determine if the entire expression evaluates to true
or false.

Here are some simple examples of relational expressions. For each example,
assume that the following statements were used to declare and initialize the
variables:

int i
int j
int k = 15;
double x
double vy
double z =

\NG/
&

ANG/
S

Using Simple Boolean Expressions ’43

Now, here are the sample expressions along with their results based on the
values supplied:

Expression Value Explanation

i==25 true The value of 1 is 5.

i ==10 false Thevalueof iisnot 10.

i == 3 false iis 5,and jis 10, so they are not equal.

i==3 -5 true iis5,and j - 5is 5.

i>1 true i is 5, which is greater than 1.

Jo==1i*2 true jis1l0,and iis5,so0i * 2isalso 10.

X =1 true Casting allows the comparison, and 5.0 is
equal to 5.

k < z false Casting allows the comparison, and 15 is

greater than 12. 3.

1 *2 <y false i * 2is 10, which is not less than 7.5.

Note that the relational operator that tests for equality is two equal signs in
arow (==). A single equal sign is the assignment operator. When you're first
learning Java, you may frequently type the assignment operator when you
mean the equals operator, like this:

Java won’t let you get away with this, so you have to correct your mistake
and recompile the program.

At first, doing so seems like a nuisance. The more you work with Java, the
more you realize that it really is a nuisance, but one you can get used to.

Another important warning: Do not test strings using any of the relational
operators listed in Table 4-1, including the equals operator. You're probably
tempted to test strings like this:

inputString == "Yes"
However, this is not the correct way to compare strings in Java. You find out

the correct way to compare strings in the section “Comparing Strings” later
in this chapter.

Book Il
Chapter 4

saaioyg bunjepy

144 Using If Statements

Using I Statements

\\J

The if statement is one of the most important statements in any program-
ming language, and Java is no exception. The following sections describe the
ins and outs of using the various forms of Java’s powerful i f statement.

Simple if statements

In its most basic form, an i f statement lets you execute a single statement
or a block of statements only if a boolean expression evaluates to true. The
basic form of the i f statement is this:

if (boolean-expression)
statement

Note that the boolean expression must be enclosed in parentheses. Also, if
you use only a single statement, it must end with a semicolon. But the state-
ment can also be a statement block enclosed by braces. In that case, each
statement within the block needs a semicolon, but the block itself doesn’t.

Here’s an example of a typical i f statement:

double commissionRate = 0.0;
if (salesTotal > 10000.0)
commissionRate = 0.05;

In this example, a variable named commissionRate is initialized to 0. 0,
and then set to 0. 05 if salesTotal is greater than 10,000.

Some programmers find it helpful to visualize the operation of an i f state-
ment in a flowchart, as shown in Figure 4-1. In this flowchart, the diamond
symbol represents the condition test. If the sales total is greater than 10,000,
the statement in the rectangle is executed. If not, that statement is bypassed.

Indenting the statement under the if statement is customary to make the
structure of your code more obvious. It isn’t necessary, but always a good
idea.

Here’s an example that uses a block rather than a single statement:

double commissionRate = 0.0;
if (salesTotal > 10000.0)
{

commissionRate = 0.05;

commission = salesTotal * commissionRate;

Figure 4-1:
The
flowchart
for an if
statement.

\NG/
&

Using If Statements 145

salesTotal
> 10000

commissionRate
=0.05

In this example, the two statements within the braces are executed if
salesTotal is greater than 10000.0. Otherwise, neither statement is
executed.

Here are a few additional points about simple i f statements:

Some programmers prefer to code the opening brace for the statement
block on the same line as the if statement itself, like this:

if (salesTotal > 10000.0) {
commissionRate = 0.05;
commission = salesTotal * commissionRate;

}
This method is simply a matter of style, so either technique is acceptable.

Indentation by itself doesn’t create a block. For example, consider this
code:

if (salesTotal > 10000.0)
commissionRate = 0.05;
commission = salesTotal * commissionRate;

Here, I didn’t use the braces to mark a block, but indented the last state-
ment as if it were part of the i f statement. Don’t be fooled; the last
statement is executed whether or not the expression in the if state-
ment evaluates to true.

Some programmers like to code a statement block even for if state-
ments that conditionally execute just one statement. For example:

Book Il
Chapter 4

saaioyg bunjepy

146 Using If Statements

\\J

if (salesTotal > 10000.0)
{

}

That’s not a bad idea, because it makes the structure of your code a
little more obvious by adding extra white space around the statement.
And if you later decide you need to add a few statements to the block,
the braces are already there.

commissionRate = 0.05;

4+ If only one statement needs to be conditionally executed, some program-
mers put it on the same line as the if statement, like this:

if (salesTotal > 10000.0) commissionRate = 0.05;

This method works, but I'd avoid it. Your classes are easier to follow if
you use line breaks and indentation to highlight their structure.

if-else statements

An 1f-else statement adds an additional element to a basic i f statement:
a statement or block that’s executed if the boolean expression is not true.
Its basic format is

if (boolean-expression)
statement

else
statement

Here’s an example:

double commissionRate;
if (salesTotal <= 10000.0)
commissionRate = 0.02;
else
commissionRate = 0.05;

In this example, the commission rate is set to 2% if the sales total is less than
or equal to 10,000. If the sales total is greater than 10,000, the commission
rate is set to 5%.

Figure 4-2 shows a flowchart for this i f-else statement.

In some cases, you can avoid the need for the else part ofan if-else
statement by cleverly rearranging your code. For example, this code has the
same effect as the previous i f-else statement:

double commissionRate = 0.05;
if (salesTotal <= 10000.0)
commissionRate = 0.02;

Figure 4-2:
The
flowchart
for an if-else
statement.

commissionRate
=0.05

salesTotal
> 10000

Using If Statements

commissionRate
=0.02

147

You can use blocks for either or both of the statements in an i f-else. For
example, here’s an 1 f-else statement in which both statements are blocks:

double commissionRate;

.02;

.05;

if (salesTotal <= 10000.0)

{
commissionRate = 0
levellCount++;

}

else

{
commissionRate = 0
level2Count++;

}

Nested if statements

The statement that goes in the if or else part of an i f-else statement can
be any kind of Java statement, including another if or i f-else statement.

This is called nesting, and an i f or 1f-else statement that includes

another 1 f or if-else statement is called a nested if statement.

The general form of a nested if statement is this:

if

(expression-1)

if

(expression-2)

statement-1

Book Il
Chapter 4

saaioyg bunjepy

148 Using If Statements

A\

else
statement-2
else
if (expression-3)
statement-3
else
statement-4

In this example, expression-1 is first evaluated. If it evaluates to true,
expression-2 is evaluated. If that expression is true, statement-1 is
executed; otherwise, statement-2 is executed. But if expression-1 was
false, then expression-3is evaluated. If expression-3is true,
statement-3 is executed; otherwise, statement-4 is executed.

An if statement that’s contained within another i f statement is called an
inner if statement, and an if statement that contains another i f statement

is called an outer if statement. Thus, in the previous example, the if statement
that tests expression-1 is an outer if statement, and the if statements that
test expression-2 and expression-3 are inner if statements.

Nesting can be as complex as you want, but try to keep it as simple as possi-
ble. And be sure to use indentation to indicate the structure of the nested
statements.

As an example, suppose your company has two classes of sales representa-
tives (class 1 and class 2), and they get a different sales commission for sales
below $10,000 and sales above $10,000 according to this table:

Sales Class 1 Class 2
$0 to $9,999 2% 2.5%
$10,000 and over 4% 5%

You could implement this commission structure with a nested i f statement:

if (salesClass == 1)
if (salesTotal < 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.04;

else

if (salesTotal < 10000.0)

commissionRate = 0.025;
else

commissionRate = 0.05;

This example assumes that if the salesClass variable isn’t 1, it must be 2.
If that’s not the case, you have to use an additional i f statement for class-2
sales reps:

149

Using If Statements

if (salesClass == 1)
if (salesTotal < 10000.0)

commissionRate = 0.02;
else

commissionRate = 0.04;

else if (salesClass == 2)

if (salesTotal < 10000.0)

commissionRate = 0.025;
else

commissionRate = 0.05;

Notice that [place this extra i f statement on the same line as the else key-
word. That’s a common practice for a special form of nested i f statements
called else-if statements. You find more about this type of nesting in the
next section.

You could also just use a pair of separate if statements:

if (salesClass == 1)
if (salesTotal < 10000.0)
commissionRate = 0.02;
else
commissionRate = 0.04;
if (salesClass == 2)
if (salesTotal < 10000.0)
commissionRate = 0.025;
else
commissionRate = 0.05;

The result is the same. However, this technique works only if the i f state-
ment itself doesn’t change the variable being tested. If the first i f statement
changes the value of the salesClass variable, this statement doesn’t work.

Note that you could also have implemented the sales commission structure
by testing the sales level in the outer i f statement and the sales representa-
tive’s class in the inner statements:

if (salesTotal < 10000)
if (salesClass == 1)

commissionRate = 0.02;
else
commissionRate = 0.04;
else
if (salesClass == 1)
commissionRate = 0.025;
else

Il
o

commissionRate .05;

Book Il
Chapter 4

saaioyg bunjepy

150 Using If Statements

\NG/
&

The trick when using nested i f statements is knowing how Java pairs else
keywords with if statements. The rule is actually very simple: Each i f key-
word is matched with the most previous 1 f statement that hasn’t already
been paired with an else keyword. You can’t coax Java into pairing the i f
and else keywords differently by using indentation. For example, suppose
that class 2 sales reps don’t get any commission, so the inner i f statements
in the previous example don’t need else statements. You might be tempted
to calculate the commission rate using this code:

if (salesTotal < 10000)
if (salesClass == 1)
commissionRate = 0.02;
else
if (salesClass == 1)
commissionRate = 0.025;

However, it won’t work. The indentation creates the impression that the
else keyword is paired with the first i £ statement, but in reality it’s paired
with the second 1if statement. As a result, no sales commission rate is set
for sales of $10,000 or more.

This problem has two solutions. One is to use braces to clarify the structure:

if (salesTotal < 10000)

{
if (salesClass == 1)
commissionRate = 0.02;
}
else
{
if (salesClass == 1)
commissionRate = 0.025;
}

The other is to add an else statement that specifies an empty statement
(a semicolon by itself) to the first inner if statement:

if (salesTotal < 10000)

if (salesClass == 1)
commissionRate = 0.02;
else ;
else
if (salesClass == 1)
commissionRate = 0.025;

The empty else statement is paired with the inner if statement, so the
second else keyword is properly paired with the outer if statement.

ANG/
o

Using If Statements 151

else-if statements

A common pattern for nested if statements is to have a series of if-else
statements with another i f-else statement in each else part:

if (expression-1)
statement-1

else if (expression-2)
statement-2

else if (expression-3)
statement-3

These are sometimes called el se-1f statements, although that’s an unoffi-
cial term. Officially, all that’s going on is that the statement in the else part
happens to be another if statement, so this statement is just a type of a
nested if statement. However, it’s an especially useful form of nesting.

For example, suppose you want to assign four different commission rates
based on the sales total, according to this table:

Sales Commission
Over $10,000 5%

$5,000 to $9,999 3.5%

$1,000 to $4,999 2%

Under $1,000 0%

You can easily implement a series of else-1if statements:

if (salesTotal >= 10000.0)
commissionRate = 0.05;
else if (salesTotal >= 5000.0)
commissionRate = 0.035;
else if (salesTotal >= 1000.0)
commissionRate = 0.02;

else
commissionRate = 0.0;

Figure 4-3 shows a flowchart for this sequence of else-if statements.

You have to carefully think through how you set up these else-if state-
ments. For example, at first glance, this sequence looks like it might also work:

if (salesTotal > 0.0)
commissionRate = 0.0;

else if (salesTotal >= 1000.0)
commissionRate = 0.02;

Book |
Chapter 4

saaioyg bunjepy

152 Using If Statements

else if (salesTotal >= 5000.0)

commissionRate = 0.035;
else if (salesTotal >= 10000.0)
commissionRate = 0.05;

However, this scenario won’t work. These i f statements always set the com-
mission rate to 0% because the boolean expression in the first 1 f statement
always tests true (assuming the salesTotal isn’t zero or negative — and
if it is, none of the other i f statements matter). As a result, none of the
other if statements are ever evaluated.

commissionRate
=0.05

salesTotal
>= 10000

commissionRate
=0.035

salesTotal
>=5000

commissionRate
=0.02

salesTotal
>=1000

Figure 4-3:
The
flowchart for
a sequence
of else-if
statements.

commissionRate
=0.0

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) ’53

Mr. Spock’s Favorite Operators
(The Logical Ones, of Course)

A logical operator (sometimes called a boolean operator) is an operator that
returns a boolean result that’s based on the boolean result of one or two
other expressions. Expressions that use logical operators are sometimes
called compound expressions because the effect of the logical operators is to
let you combine two or more condition tests into a single expression. Table
4-2 lists the logical operators.

. Book Il
Table 4-2 Logical Operators Chapter 4
Operator Name Type Description
! Not Unary Returns true if the operand to the right eval- =
uatesto false. Returns false Ifthe =
operand to the rightis true. =
& And Binary Returns true if both of the operands evalu- ::?-
ate to true. Both operands are evaluated =
before the And operator is applied. 5

Or Binary Returns true if at least one of the operands
evaluates to true. Both operands are evalu-
ated before the Or operator is applied.

~ Xor Binary Returns true if one and only one of the
operands evaluates to true. If both operands
evaluate to true or if both operands evaluate
to false, returns false.

&& Conditional And Binary Same as &, but if the operand on the left
returns false, returns false without eval-
uating the operand on the right.

|| Conditional Or Binary Same as |, butif the operand on the left
returns true, returns true without evaluat-
ing the operand on the right.

The following sections describe these operators in excruciating detail.

Using the ! operator

The simplest of the logical operators is not (!). Technically, it’s a unary
prefix operator, which means that you use it with one operand, and you code
it immediately in front of that operand. (Also, this operator is technically
called the complement operator, not the not operator. But in real life, every-
one calls it not.)

The not operator reverses the value of a boolean expression. Thus, if the
expression is true, not changes it to false. If the expression is false, not
changes it to true.

15 4 Mr. Spock’s Favorite Operators (The Logical Ones, of Course)

For example:

This expression evaluates to true if i is any value other than 4. If 1 is 4, it
evaluates to false. It works by first evaluating the expression (i = 4).
Then, it reverses the result of that evaluation.

P Don’t confuse the not logical operator (!) with the not equals relational
operator (! =). Although they are sometimes used in similar ways, the not
operator is more general. For example, I could have written the previous
example like this:

it=4

The result is the same. However, the not operator can be applied to any
expression that returns a true-false result, not just an equality test.

Note: You must almost always enclose the expression that the ! operator is
applied to in parentheses. For example, consider this expression:

L i==4

Assuming that i is an integer variable, the compiler doesn’t allow this
expression because it looks like you're trying to apply the ! operator to the
variable, not the result of the comparison. A quick set of parentheses solves
the problem:

1 (1 == 4)

Using the & and && operators

The & and && operators combine two boolean expressions and return true
only if both expressions are true. This is called an and operation, because
the first expression and the second expression must be true for the And
operator to return a true.

For example, suppose the sales commission rate should be 2.5% if the sales
class is 1 and the sales total is $10, 000 or more. You could perform this
test with two separate i f statements (as I did earlier in this chapter), or you
could combine the tests into one if statement:

if ((salesClass == 1) & (salesTotal >= 10000.0))
commissionRate = 0.025;
Here, the expressions (salesClass == 1) and (salesTotal >=

10000.0) are evaluated separately. Then, the & operator compares the
results. If they’re both true, the & operator returns true. If one or both are
false, the & operator returns false.

\\J

A\

\NG/
&

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) 155

Notice that [used parentheses liberally to clarify where one expression ends
and another begins. Using parentheses isn’t always necessary, but when you
use logical operators, I suggest you always use parentheses to clearly iden-
tify the expressions being compared.

The && operator is similar to the & operator but leverages our knowledge of
logic. Because both expressions compared by the & operator must be true
for the entire expression to be true, there’s no reason to evaluate the
second expression if the first one returns false. The & isn’t aware of this,
so it blindly evaluates both expressions before determining the results. The
&& operator is smart enough to stop when it knows what the outcome is.

As a result, almost always use && instead of &. Here’s the previous example,
this time coded smartly with &&:

if ((salesClass == 1) && (salesTotal >= 10000.0))
commissionRate = 0.025;

Why do [say you should almost always use &&? Because sometimes the
expressions themselves have side effects that are important. For example,
the second expression might involve a method call that updates a database,
and you want the database updated whether or not the first expression eval-
uates to true or false. In that case, you want to use & instead of && to
ensure that both expressions get evaluated.

Relying on side effects of expressions can be risky, and you can almost
always find a better way to write your code so that the side effects are
avoided. In other words, placing an important call to a database update
method inside a compound expression buried in an i f statement probably
isn’t a good idea.

Using the | and |l operators

The | and | | operators are called or operators because they return true if
the first expression is true or if the second expression is true. They also
return true if both expressions are true. (You find the | symbol on your

keyboard just above the Enter key.)

Suppose that sales representatives get no commission if the total sales are
less than $1,000 or if the sales class is 3. You could do that with two separate
if statements:

if (salesTotal < 1000.0)
commissionRate = 0.0;
if (salesClass == 3)

commissionRate 0.0;

Book |
Chapter 4

saaioyg bunjepy

15 o6 . Spock’s Favorite Operators (The Logical Ones, of Course)

But with an or operator, you can do the same thing with a compound condition:

if ((salesTotal < 1000.0) | (salesClass == 3))
commissionRate = 0.0;

To evaluate the expression for this i f statement, Java first evaluates the
expressions on either side of the | operator. Then, if at least one of them is
true, the whole expression is true. Otherwise, the expression is false.

\\J

In most cases, you should use the conditional Or operator (| |) instead of
the regular Or operator (|), like this:

if ((salesTotal < 1000.0) || (salesClass == 3))
commissionRate = 0.0;

Like the conditional And operator (&&), the conditional Or operator stops
evaluating as soon as it knows what the outcome is. For example, suppose
the sales total is $500. Then, there’s no need to evaluate the second expres-
sion. Because the first expression evaluates to true and only one of the
expressions needs to be true, Java can skip the second expression alto-
gether. Of course, if the sales total is $5,000, the second expression must still
be evaluated.

As with the And operators, you should use the regular Or operator only if
your program depends on some side effect of the second expression, such
as work done by a method call.

Using the " operator

The ~ operator performs what in the world of logic is known as an exclusive
or, commonly abbreviated as xor. It returns true if one and only one of the

two subexpressions is true. If both expressions are true or if both expres-
sions are false, the ~ operator returns false.

Most programmers don’t bother with the ~ operator because it’s pretty con-
fusing. My feelings won’t be hurt if you skip this section.

Put another way, the ~ operator returns true if the two subexpressions
have different results. If they both have the same result, it returns false.

As an example, suppose you’re writing software that controls your model
railroad set and you want to find out if two switches are set in a dangerous
position that might allow a collision. If the switches were represented by
simple integer variables named switchl and switch2 and 1 meant the
track was switched to the left and 2 meant the track was switched to the
right, you could easily test them like this:

QUING/

Mr. Spock’s Favorite Operators (The Logical Ones, of Course) 157

if (switchl == switch2)

System.out.println("Trouble! The switches are the same");
else

System.out.println("OK, the switches are different.");

But what if, for some reason, one of the switches is represented by an int
variable where 1 means the switch is left and any other value means the
switch is right, but the other is an int variable where -1 means the switch is
left and any other value means the switch is right. (Who knows, maybe the
switches were made by different manufacturers.) You could use a compound
condition like this:

if (((switchl==1)&&(switch2==-1)) ||
((switchl!=1)&&(switch2!=-1)))
System.out.println("Trouble! The switches are the same");
else
System.out.println("OK, the switches are different.");

But a xor operator could do the job with a simpler expression:

if ((switchl==1)"(switch2==-1))

System.out.println("OK, the switches are different.");
else

System.out.println("Trouble! The switches are the same");

Frankly, the "~ operator is probably one you should avoid using. In fact, most
of the Java books on my bookshelf (and believe me, [have a lot of them)
don’t even mention this operator except in its other, more useful application
as a bitwise operator (see Bonus Chapter 2 on this book’s Web site for infor-
mation about bitwise operators). That’s probably because many applications
don’t use it as a logic operator, and the applications that it is suitable for can
also be solved with the more traditional And and Or operators.

Combining logical operators

You can combine simple boolean expressions to create more complicated
expressions. For example:

if ((salesTota1<1OO O)||((sa1esTota1<5000.0)&&

(salesClass==1)) || ((salestotal < 10000.0)&&
(salesClass == 2)))
CommissionRate = 0.0;

Can you tell what the expression in this i f statement does? It sets the com-
mission to zero if any one of these three conditions is true:

4+ The sales total is less than $1,000.

4+ The sales total is less than $5,000, and the sales class is 1.

4+ The sales total is less than $10,000, and the sales class is 2.

Book |
Chapter 4

saaioyg bunjepy

158 wm. Spock’s Favorite Operators (The Logical Ones, of Course)

In many cases, you can clarify how an expression works just by indenting its
pieces differently and spacing out its subexpressions. For example, this ver-
sion of the previous if statement is a little easier to follow:

if ((salesTotal < 1000.0)
((salesTotal < 5000.0) && (salesClass == 1))
((salestotal < 10000.0) && (salesClass == 2))
)

commissionRate = 0.0;

However, figuring out exactly what this i £ statement does is still tough. In
many cases the better thing to do is to skip the complicated expression and
code separate if statements:

if (salesTotal < 1000.0)
commissionRate = 0.0;
if ((salesTotal < 5000.0) && (salesClass == 1))
commissionRate = 0.0;
if ((salestotal < 10000.0) && (salesClass == 2))
commissionRate = 0.0;
QNG
\/ Boolean expressions can get a little complicated when you use more than
one logical operator, especially if you mix And and Or operators. For exam-

ple, consider this expression:

if (a==1 && b==2 || c==3)
System.out.println("It's true!");
else
System.out.println("No it isn't!");

What do you suppose this i f statement does if ais 5, bis 7,and ¢ = 3?
The answer is that the expression evaluates to trueand "It's true!" is
printed. That’s because Java applies the operators from left to right. So the
&& operator is applied to a==1 (which is false) and b==2 (which is also
false). Thus, the && operator returns false. Then the | | operator is
applied to that false result and the result of c==3, which is true. Thus, the
entire expression returns true.

\\J
Wouldn't this expression have been more clear if you had used a set of
parentheses to clarify what the expression does? For example:

if ((a==1 && b==2) || c==3)
System.out.println("It's true!");
else
System.out.println("No it isn't!");

Now you can clearly see that the && operator is evaluated first.

Comparing Strings 15 9

Using the Conditional Operator

\\J

Java has a special operator called the conditional operator that’s designed to
eliminate the need for i f statements altogether in certain situations. It’s a
ternary operator, which means that it works with three operands. The gen-
eral form for using the conditional operator is this:

boolean-expression ? expression-1 : expression-2

The boolean expression is evaluated first. If it evaluates to true, then
expression-1 is evaluated, and the result of this expression becomes the
result of the whole expression. If the expression is false, expression-2 is
evaluated, and its results are used instead.

For example, suppose you want to assign a value of 0 to an integer variable
named salesTier if total sales are less than $10,000 and a value of 1 if the
sales are $10,000 or more. You could do that with this statement:

int tier = salesTotal > 10000.0 2 1 : O;

Although not required, a set of parentheses helps make this statement easier
to follow:

int tier = (salesTotal > 10000.0) 2 1 : 0;

One common use for the conditional operator is when you’re using concate-
nation to build a text string and you have a word that might need to be
plural, based on the value of an integer variable. For example, suppose you
want to create a string that says "You have x apples", with the value of
a variable named appleCount substituted for x. But if apples is 1, the
string should be "You have 1 apple",not "You have 1 apples".

The following statement does the trick:

String msg = "You have " + appleCount + " apple"
+ ((appleCount>1) ? "s." : ".");

When Java encounters the ? operator, it evaluates the expression
(appleCount>1). If true, it uses the first string (s .). If false, it uses the
second string (" . ").

Comparing Strings

Comparing strings in Java takes a little extra care because the == operator
doesn’t really work the way it should. For example, suppose you want to
know if a string variable named answer contains the value "Yes" . You
might be tempted to code an if statement like this:

Book |
Chapter 4

saaioyg bunjepy

’60 Compatring Strings

\NG/
S

if (answer == "Yes")
System.out.println("The answer is Yes.");

Unfortunately, that’s not correct. The problem is that in Java, strings are ref-
erence types, not primitive types, and when you use the == operator with
reference types, Java compares the references to the objects, not the objects
themselves. As a result, the expression answer == "Yes" doesn’t test
whether the value of the string referenced by the answer variable is "Yes".
Instead, it tests whether the answer string and the literal string "Yes" point
to the same string object in memory. In many cases, they do. But sometimes
they don’t, and the results are difficult to predict.

The correct way to test a string for a given value is to use the equals
method of the String class:

if (answer.equals("Yes"))
System.out.println("The answer is Yes.");

This method actually compares the value of the string object referenced by
the variable with the string you pass as a parameter and returns a boolean
result to indicate whether the strings have the same value.

The String class has another method, equalsIgnoreCase, that’s also
useful for comparing strings. It compares strings but ignores case, which is
especially useful when you're testing string values entered by users. For
example, suppose you're writing a program that ends only when the user
enters the word End. You could use the equals method to test the string:

if (input.equals("end"))
// end the program

But then, the user would have to enter end exactly. If the user enters End or
END, the program won’t end. It’s better to code the i f statement like this:

if (input.equalsIgnoreCase("end"))
// end the program

Then, the user could end the program by entering end, End, END, or
even eNd.

You can find much more about working with strings in Book IV, Chapter 1.
For now, just remember that to test for string equality in an i f statement (or
in one of the other control statements that’s presented in the next chapter),
you must use the equals or equalsIgnoreCase method instead of the
== operator.

\\J

Chapter 5: Going Around in Circles
(Or, Using Loops)

In This Chapter

v+~ The thrill of while loops

v The rapture of infinite loops
v The splendor of do loops

v The joy of validating input
v+~ The wonder of for loops

v+~ The ecstasy of nested loops

So far, all the programs in this book have started, run quickly through
their main method, and then ended. If Dorothy from The Wizard of Oz
were using these programs, she’d probably say, “My, programs come and go
quickly around here!”

In this chapter, you find out how to write programs that don’t come and go
so quickly. They hang around by using loops, which let them execute the
same statements more than once.

Loops are the key to writing one of the most common types of programs:
programs that get input from the user, do something with it, then get more
input from the user and do something with that, and keep going this way
until the user has had enough.

Or, put another way, loops are like the instructions on your shampoo:
Lather. Rinse. Repeat.

Like i f statements, loops rely on conditional expressions to tell them when
to stop looping. Without conditional expressions, loops would go on forever,
and your users would grow old watching them run. So, if you haven’t yet
read Book II, Chapter 4, [suggest you do so before continuing much further.

162 Vour Basic while Loop

Your Basic while Loop

The most basic of all looping statements in Java is while. The while state-
ment creates a type of loop that’s called a while loop, which is simply a loop
that executes continuously as long as some conditional expression evaluates
to true. while loops are useful in all sorts of programming situations, so
you use while loops alot. (I tell you about other kinds of loops later in this
chapter.)

The while statement

The basic format of the while statement is like this:

while (expression)
statement

The while statement begins by evaluating the expression. If the expression
is true, statement is executed. Then, the expression is evaluated again,
and the whole process repeats. If the expression is false, statement is
not executed, and the while loop ends.

Note that the statement part of the while loop can either be a single state-
ment or a block of statements contained in a pair of braces. Loops that have
just one statement aren’t very useful, so nearly all the while loops you
code use a block of statements. (Well, okay, sometimes loops with a single
statement are useful. It isn’t unheard of. Just not all that common.)

A counting loop

Here’s a simple program that uses a while loop to print the even numbers
from 2 through 20 on the console:

public class EvenCounter

{

public static void main(String[] args)

{
int number = 2;
while (number <= 20)
{
System.out.print (number + " ");
number += 2;

}
System.out.println() ;

}

If you run this program, the following output is displayed in the console
window:

2 46 8 10 12 14 16 18 20

Figure 5-1:
The
flowchart
for a while
loop.

Breaking Out of a Loop ’63

The conditional expression in this program’s while statement is number
<= 20. That means the loop repeats as long as the value of number is less
than or equal to 20. The body of the loop consists of two statements. The
first prints the value of number followed by a space to separate this number
from the next one. Then, the second statement adds 2 to number.

Figure 5-1 shows a flowchart for this program. This flowchart can help you
visualize the basic decision making process of a loop.

set number to 2

add 2 to number

Yes
n<u:m2%%r ————> print number
No

print blank line

Breaking Out of a Loop

In many programs, you need to set up a loop that has some kind of escape
clause. Java’s escape clause is the break statement. When a break state-

ment is executed in a while loop, the loop ends immediately. Any remaining

statements in the loop are ignored, and the next statement executed is
the statement that follows the loop.

Book Il
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

764 Looping Forever

For example, suppose you're afraid of the number 12. (I'm not doctor and I
don’t play one on TV, but I think the scientific name for this condition would
be duodecaphobia.) You could modify the counting program shown in the
previous section so that when it gets to the number 12, it panics and aborts
the loop:

public class Duodecaphobia
{

public static void main(String[] args)

{
int number = 2;
while (number <= 20)

{
if (number == 12)
break;
System.out.print (number + " ");
number += 2;

}
System.out.println() ;

}

When you run this program, the following line is displayed on the console:
2 4 6 810

Whew! That was close. Almost got to 12 there.

Looping Forever

One common form of loop is called an infinite loop. That’s a loop that goes on
forever. You can create infinite loops many ways in Java (not all of them inten-
tional), but the easiest is to just specify true for the while expression.

Here’s an example:

public class CountForever
{
public static void main(String[] args)
{
int number = 2;
while (true)

{

System.out.print (number + " ");
number += 2;

Looping Forever ’65

If you run this program, your console window quickly fills up with numbers

and just keeps going. That’s great if you like even numbers, but eventually

you'll tire of this and want it to stop. You can stop an infinite loop three ways:
4 Turn off your computer.

4+ Hit your computer with an ax or other heavy object.

4+ Close the console window.
The last one is probably the one you want to go with here.

Obviously, infinite loops are something you want to avoid in your programs. BEeEl]
So whenever you use a while expression that’s always true, be sure to Chapter 5
throw in a break statement to give your loop some way to terminate. For
example, you could use an infinite loop with a break statement in the duo-

o
decaphobia program: 5 5’_
53
public class Duodecaphobia S=>»
{ $°3
public static void main(String[] args) =L
{ gs
int number = 2;
while (true)
{
if (number == 12)
break;
System.out.print (number + " ");
number += 2;
}
System.out.println() ;
}
}

Here, the loop looks like it might go on forever, but the break statement
panics out of the loop when it hits 12.

Letting the user decide when to quit

It turns out that infinite loops are also useful when you want to let the user
be in charge of when to stop the loop. For example, suppose you don’t know
what numbers a user is afraid of, so you want to count numbers until the
user says to stop. Here’s a program that does that:

import java.util.Scanner;
public class NumberPhobia
{

static Scanner sc = new Scanner (System.in);

public static void main(String[] args)

766 Looping Forever

int number = 2;
String input;

while (true)
{
System.out.println (number + " ");
System.out.print ("Do you want keep
counting?"
+ " (Y or N)");
input = sc.next();
if (input.equalsIgnoreCase("N"))
break;
number += 2;
}
System.out.println("\nWhew! That was
close.\n");
}
}

Here’s some typical console output from this program, for a user who has
octophobia:

2
Do you want keep counting? (Y or N)y
4
Do you want keep counting? (Y or N)y
6
Do you want keep counting? (Y or N)n

Whew! That was close.

Another way to let the user decide

Another way to write a loop that a user can opt out of is to test the input
string in the while condition. The only trick here is that you must first ini-
tialize the input string to the value that continues the loop. Otherwise, the
loop doesn’t execute at all! Here’s a variation of the NumberPhobia pro-
gram that uses this technique:

import java.util.Scanner;

public class NumberPhobia?2
{

static Scanner sc = new Scanner (System.in) ;

public static void main(String[] args)
{

int number = 2;

String input = "Y";

Using the continue Statement 16 7

while (input.equalsIgnoreCase("Y"))

{
System.out.println (number + " ");
System.out.print ("Do you want keep

counting?"
+ " (Y or N)");
input = sc.next();
number += 2;
}
System.out.println ("\nWhew! That was close.");
}
}
: . . . Book Il
This program works almost the same as the previous version, but with a Chapter 5

subtle difference. In the first version, if the user says N after the program dis-
plays 6, the value of the number variable after the loop is 6. That’s because
the break statement bails out of the loop before adding 2 to number. But in
this version, the value of number is 8.

(sdooq
Buisn 10) sa]2419
ul punouy buion

Using the continue Statement

The break statement is rather harsh: It completely bails out of the loop.
Sometimes that’s what you need, but just as often, you don’t really need to
quit the loop; you just need to skip a particular iteration of the loop. For
example, the Duodecaphobia program presented earlier in this chapter
stops the loop when it gets to 12. What if you just want to skip the number
12, so you go straight from 10 to 14?

To do that, you can use the break statement’s kinder, gentler relative, the
continue statement. The continue statement sends control right back to
the top of the loop, where the expression is immediately evaluated again. If
the expression is still true, the loop’s statement or block is executed again.

Here’s a version of the Duodecaphobia program that uses a continue state-
ment to skip the number 12 rather than stop counting altogether when it
reaches 12:

public class Duodecaphobia?2
{
public static void main(String[] args)
{
int number = 0;
while (number < 20)
{
number += 2;
if (number == 12)
continue;
System.out.print (number + " ");

168 do-white Loops

}
System.out.println() ;

}
Run this program, and you get the following output in the console window:

2 46 8 10 14 16 18 20

Notice that [had to make several changes to this program to get it to work
with a continue statement instead of a break statement. If I had just
replaced the word break with continue, the program wouldn’t have
worked. That’s because the statement that added 2 to the number came
after the break statement in the original version. As a result, if you just
replace the break statement with a continue statement, you end up with
an infinite loop once you reach 12 because the statement that adds 2 to
number never gets executed.

To make this program work with a continue statement, I rearranged the
statements in the loop body so that the statement that adds 2 to number
comes before the cont inue statement. That way, the only statement
skipped by the continue statement is the one that prints number to the
console.

Unfortunately, this change affected other statements in the program as well.
Because 2 is added to number before number is printed, I had to change the
initial value of number from 2 to 0, and I had to change the while expres-
sion from number <= 20 to number < 20.

do-while Loops

A do-while loop (sometimes just called a do loop) is similar to a while loop,
but with a critical difference: In a do-while loop, the condition that stops
the loop isn’t tested until after the statements in the loop have executed.
The basic form of a do-while loop is this:

do
statement
while (expression);

Note that the while keyword and the expression aren’t coded until after the
body of the loop. As with a while loop, the body for a do-while loop can
be a single statement or a block of statements enclosed in braces.

Also, notice that the expression is followed by a semicolon. do-while is the
only looping statement that ends with a semicolon.

do-while Loops 16 9

Here’s a version of the EvenCounter program that uses a do-while loop
instead of awhile loop:

public class EvenCounter2

{

public static void main(Stringl[] args)

{
int number = 2;
do
{

System.out.print (number + " ");
number += 2;
} while (number <= 20); Book Il

. Chapter 5
System.out.println() ; et

}

sMBER Here’s the most important thing to remember about do-while loops: The
statement or statements in the body of a do-while loop are always exe-
cuted at least once. In contrast, the statement or statements in the body of
awhile loop are not executed at all if the while expression is false the
first time it is evaluated.

(sdooq
Buisn 10) sa]2419
ul punouy buion

Look at the flowchart in Figure 5-2 to see what I mean. You can see that exe-
cution starts at the top of the loop and flows through to the decision test
after the loop’s body has been executed once. Then, if the decision test is
true, control flies back up to the top of the loop. Otherwise, it spills out the
bottom of the flowchart.

Here are a few other things to be aware of concerning do-while loops:

4+ You often can skip initializing the variables that appear in the expression
before the loop because the expression isn’t evaluated until the state-
ments in the loop body have been executed at least once.

4 You can use break and continue statements in a do-while loop just
as you can in awhile loop.

4+ Some programmers like to place the brace that begins the loop body
on the same line as the do statement and the while statement that ends
the do-while loop on the same line as the brace that marks the end
of the loop body. Whatever makes you happy is fine with me. Just
remember that the compiler is agnostic when it comes to matters of
indentation and spacing.

170 Validating Input from the User

Figure 5-2:
The
flowchart
for a do-
while loop.

set number to 2

print number

add 2 to number

Yes

No

print blank line

Validating Input from the User

do-while loops are especially useful for validating input by the user. For
example, suppose you're writing a program that plays a betting game, and
you want to get the amount of the user’s bet from the console. The user can
bet any dollar amount he wants (whole dollars only though), but can’t bet
more than he has in the bank, and he can’t bet a negative amount or zero.
Here’s a program that uses a do-while loop to get this input from the user:

SMBER

\NG
S

Validating Input from the User 171

import java.util.Scanner;

public class GetABet

{
static Scanner sc = new Scanner (System.in) ;
public static void main(Stringl[] args)
{
int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user
System.out.println("You can bet between 1 and " +
bank) ;
do
{
System.out.print ("Enter your bet: ");
bet = sc.nextInt();
} while ((bet <= 0) || (bet > bank));
System.out.println("Your money's good here.");
}
}

Here, the expression used by the do-while loop validates the data entered
by the user, which means it checks the data against some set of criteria to
make sure the data is acceptable.

The | | operator performs an or test. It returns true if at least one of the
expressions on either side of the operator is true. So if the bet is less than
or equal to zero (bet <= 0), or if the bet is greater than the money in the
bank (bet > bank), this expression returns true.

This type of validation testing only checks that if the user has entered a valid
number, it is in an acceptable range. If the user enters something that isn’t a
valid number, such as the word But tercup or Humperdink, the program
chokes badly and spews forth a bunch of vile exception messages upon the
console. You find out how to clean up that mess in Book I, Chapter 8.

(Actually, you can avoid this problem by using either a do loop or awhile
loop and the hasNextDouble method of the Scanner class that [describe
in Book II, Chapter 2.)

If you want to display an error message when the user enters incorrect
input, you have to use an if statement inside the loop, and this if state-
ment must duplicate the expression that validates the input data. Thus, the
expression that does the validation has to appear twice. For example:

Book |
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

172 Validating Input from the User

import java.util.Scanner;

public class GetABet2
{

static Scanner sc = new Scanner (System.in);

public static void main(String[] args)

{

int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user
System.out.println("You can bet between 1 and " +
bank) ;

do
{

System.out.print ("Enter your bet: ");

bet = sc.nextInt();

if ((bet <= 0) || (bet > bank))

System.out.println("What, are you
crazy?");

} while ((bet <= 0) || (bet > bank));

System.out.println("Your money's good here.");
}

Here, the if statement displays the message "What, are you crazy?"
if the user tries to enter an inappropriate bet.

\P
) You can avoid duplicating the expression that does the data validation in two
ways. One is to add a boolean variable that’s set in the body of the do-
while loop if the data is invalid, as in this example:

import java.util.Scanner;

public class GetABet3
{

static Scanner sc = new Scanner (System.in);

public static void main(String[] args)

{
int bank = 1000; // assume the user has $1,000
int bet; // the bet entered by the user
boolean validBet; // indicates if bet is valid

System.out.println("You can bet between 1 and " +
bank) ;

do

{

The Famous for Loop 173

System.out.print ("Enter your bet: ");

bet = sc.nextInt();
validBet = true;
if ((bet <= 0) || (bet > bank))

{
validBet = false;
System.out.println("What, are you
crazy?");
}
} while (!validBet) ;
System.out.println("Your money's good here.");

} Book Il

. .1 Chapter 5
In this example, [use a boolean variable named validBet to indicate apter

whether the user has entered a valid bet. After the user enters a bet, this vari-
able is set to true before the i f statement tests the validation criteria. Then,
if the 1 f statement finds that the bet is not valid, validBet is set to false.

(sdooq
Buisn 10) sa]2419
ul punouy buion

The Famous for Loop

In addition to while and do-while loops, Java offers one more kind of
loop: the for loop. You may have noticed that many of the loops presented so
far in this minibook have involved counting. It turns out that counting loops
are quite common in computer programs, so the people who design computer
programming languages (they’re called “computer programming language
designers™) long ago concocted a special kind of looping mechanism that’s
designed just for counting.

The basic principle behind a for loop is that the loop itself maintains a
counter variable — that is, a variable whose value is increased each time the
body of the loop is executed. For example, if you want a loop that counts
from 1 to 10, you’d use a counter variable that starts with a value of 1 and is
increased by 1 each time through the loop. Then, you'd use a test to end the
loop when the counter variable reaches 10. The for loop lets you set this
up all in one convenient statement.

People who majored in Computer Science call the counter variable an iterator.
They do so because they think we don’t know what it means. But we know
perfectly well that the iterator is where you put your beer to keep it cold.

The formal format of the for loop

[would now like to inform you of the formal format for the for loop, so you
know how to form it from now on. The for loop follows this basic format:

1 74 The Famous for Loop

for (initialization-expression; test-expression; count-
expression)
statement;

The three expressions in the parentheses following the keyword for control
how the for loop works. The following paragraphs explain what these three
expressions do:

4+ The initialization expression is executed before the loop begins. Usually,
you use this expression to initialize the counter variable. If you haven’t
declared the counter variable before the for statement, you can declare
it here too.

4+ The test expression is evaluated each time the loop is executed to deter-
mine whether the loop should keep looping. Usually, this expression
tests the counter variable to make sure it is still less than or equal to the
value you want to count to. The loop keeps executing as long as this
expression evaluates to true. When the test expression evaluates to
false, the loop ends.

4+ The count expression is evaluated each time the loop executes. Its job is
usually to increment the counter variable.
Figure 5-3 shows a flowchart to help you visualize how a for loop works.

Here’s a simple for loop that displays the numbers 1 to 10 on the console:

public class CountToTen
{
public static void main(String[] args)
{
for (int i = 1; 1 <= 10; 1i++)
System.out.println (i) ;

}

Run this program and here’s what you see on the console:

PO JoUT ™ WN R

The Famous for Loop 175

initialization
expression
False
Done test Book Il
expression Chapter 5
o
True s S
—3a
S=>
S 95
2T E
FE
statement ==
7= -
Figure 5-3:
The
flowchart
for a for count expression
loop.

This for loop apart has the following pieces:

4+ The initialization expression is int i = 1. This expression declares a
variable named i of type int and assigns it an initial value of 1.

4+ The test expressionis 1 <= 10. As a result, the loop continues to exe-
cute as long as 1 is less than or equal to 10.

4+ The count expression is i++. As a result, each time the loop executes,
the variable i is incremented.

4+ The body of the loop is the single statement System. out.
println(i). As aresult, each time the loop executes, the value of the
i variable is printed to the console.

I made up those terms I use to describe the three expressions in a for loop.
Officially, Java calls them the Forinit Expression, the Expression, and the
ForUpdate Expression. Don’t you think my terms are more descriptive?

176 the Famous for Loop

Scoping out the counter variable

If you declare the counter variable in the initialization statement, the scope
of the counter variable is limited to the for statement itself. Thus, you can
use the variable in the other expressions that appear within the parentheses
and in the body of the loop, but you can’t use it outside of the loop. For
example, this code causes a compiler error:

public class CountToTenError

{
public static void main(String[] args)
{
for (int 1 = 1; 1 <=10; 1i++)
System.out.println (i) ;
System.out.println("The final value of i is " + 1i);
}
}

That’s because the last statement in the main method refers to the variable
i, which has gone out of scope because it was declared within the for loop.

However, you don’t have to declare the counter variable in the for statement
itself. Thus, the following program works:

public class CountToTenErrorFixed
{
public static void main(String[] args)

{

int 1i;
for (i = 1; i <=10; i++)

System.out.println (i) ;
System.out.println("The final value of 1 is " +

i);
}
}

Note that because the i variable is declared before the for statement, the
initialization expression doesn’t name the variable’s data type. When you
run this program, the following appears in the console window:

W JO U IxWN R

10
The final wvalue of i is 11

The Famous for Loop 177

Counting even numbers

Earlier in this chapter, you saw a program that counts even numbers up to
20. You can do that with a for loop too. All you have to do is adjust the
count expression. For example, here’s a version of the CountEven program
that uses a for loop:

public class ForEvenCounter

{
public static void main(String[] args)
{
for (int number = 2; number <= 20; number += 2)
System.out.print (number + " ");
System.out.println() ;
}
}

Run this program, and sure enough, the console window displays the following:

2 46 8 10 12 14 16 18 20

Counting backwards

No rule says for loops can count only forwards. To count backwards, you
simply have to adjust the three for loop expressions. As usual, the initializa-
tion expression specifies the starting value for the counter variable. The test
expression uses a greater-than test instead of a less-than test. And the count
expression subtracts from the counter variable rather than adds to it.

For example:

public class CountDown

{ public static void main(Stringl[] args)
{ for (int count = 10; count >= 1; count--)
{ System.out.println (count) ;
) }
3

Run this program, and you see this result in the console window:

0

UToy~J 0 WO

Book |
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

178 the Famous for Loop

A\

PN Wi

For those of you who grew up like I did in the 1960s, watching NASA launches
religiously, you'll appreciate this variation of the countdown program:

public class LaunchControl

{

public static void main(Stringl[] args)

{
System.out.print ("We are go for launch in T minus
")
for (int count = 10; count >= 0; count--)
{
if (count == 8)
System.out.println("Ignition sequence
start!");
else
System.out.println(count + "...");
}
System.out.println("All engines running!");
System.out.println("Liftoff! We have a liftoff!");

}
When you run it, here’s the output that’s displayed:
We are go for launch in T minus 10...

9...
Ignition sequence start!

ORNWhkUIoJ

All engines running!
Liftoff! We have a liftoff!

Can’t you hear the voice of Paul Haney, the famous “Voice of Mission Control”
for NASA in the 1960s? If you can’t, you're not nearly as nerdy as | am.

for loops without bodies

Some programmers get a kick out of writing code that is as terse as possible.
[think Seinfeld did an episode about that . .. Jerry had a girlfriend who was a
“terse-coder.” He had to dump her because he couldn’t understand her code.

\NG/
&

The Famous for Loop 179

Anyway, terse coders sometimes like to play with for statements in an
effort to do away with the body of a for loop altogether. To do that, they
take advantage of the fact that you can code any expression you want in the
count expression part of a for statement, including method calls. For exam-
ple, here’s a program that prints the numbers 1 to 10 on the console using a
for statement that has no body:

public class TerseCoder

{

public static void main(Stringl[] args)

{
3

for (int i = 1; i <=10; System.out.println(i++));
}

Here, the count expression is a call to System.out.println. The param-
eter to the print1ln method cleverly uses the increment operator so the
variable is both printed and incremented in the same expression.

Stay away from terse coders! Seinfeld was right to dump her.

Ganging up your expressions

An obscure aspect of for loops is that the initialization and count expres-
sions can actually be a list of expressions separated by commas. This can
sometimes be useful if you need to keep track of two counter variables at the
same time. For example, here’s a program that counts from 1 to 10 and 10 to
1 at the same time, using two counter variables:

public class CountBothWays

{
public static void main(Stringl[] args)
{
int a, b;
for (a =1, b = 10; a <= 10; a++, b--)
System.out.println(a + " " + b);
}
}

If you run this program, here’s what you see in the console window:

1 10
29
38
4 7
5 6
6 5
7 4
8 3
9 2
10 1

Book |
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

180 1he Famous for Loop

Keep in mind these rules when you use more than one expression for the ini-
tialization and counter expressions:

4+ In the initialization expression, you can’t declare variables if you use
more than one expression. That’s why I declared the a and b variable
before the for statement in the CountBothWays example.

4+ The expressions in an expression list can be assignment statements,
increment or decrement statements (such as a++), method calls, or
object creation statements that use the new keyword to create an object
from a class. Other types of statements, such as if statements or loops,
are not allowed.

4+ You can'’t list more than one expression in the test expression. However,
you can use compound conditions created with boolean operators, so you
don’t need to use an expression list.

Here, just to prove I could do it, is a version of the LaunchController pro-
gram that uses a bodiless for loop:

public class ExpressionGanging
{
public static void main(String[] args)
{
System.out.print ("We are go for launch in T minus

||)’

for (int count = 10; count >= 0;
System.out.println((count == 8) ?
"Ignition sequence start!"
count + "..."),
count--) ;

System.out.println("All engines running!");
System.out.println("Liftoff! We have a
liftoff!");
}
}

This program actually looks more complicated than it is. The count expres-
sion is a list of two expressions. First is a call to System.out .println
that uses the ternary ? : operator to determine what to print. The ? : opera-
tor first evaluates the count variable to see if it equals 8. If so, the string
"Ignition sequence start!" is senttothe println method.
Otherwise, count + "..." is sent. The second expression simply incre-
ments the count variable.

I think you’ll agree that coding the for statement like this example is way
out of line. It’s better to keep the expressions simple and do the real work in
the loop’s body.

\NG/
s

The Famous for Loop 181

Omniitting expressions

Yet another oddity about for loops is that all three of the expressions are
optional. If you omit one or more of the expressions, you just code the semi-
colon as a placeholder so the compiler knows.

Omitting the test expression or the iteration expression is not common, but
omitting the initialization expression is common. For example, the variable
you’re incrementing in the for loop may already be declared and initialized
before you get to the loop. In that case, you can omit the initialization
expression, as in this example:

Scanner sc = new Scanner (System.in) ;
System.out.print ("Where should I start? ");
int a = sc.nextInt();
for (; a >= 0; a--)

System.out.println(a) ;

This for loop simply counts down from whatever number the user enters to
Zero.

If you omit the test expression, you’'d better throw a break statement in the
loop somewhere. Otherwise, you find yourself in an infinite loop.

You can also omit all three of the expressions if you want to, as in this example:

for(;;)
System.out.println("Oops") ;

This program also results in an infinite loop. There’s little reason to do this
because while (true) has the same effect and is more obvious.

Breaking and continuing your for loops

You can use a break in a for loop just as you can in awhile or do-while
loop. For example, here I revisit the Duodecaphobia program from earlier in
the chapter, this time with a for loop:

public class ForDuodecaphobia
{
public static void main(String[] args)
{
for (int number = 2; number <=20; number += 2)
{
if (number == 12)
break;
System.out.print (number + " ");
}
System.out.println() ;

Book |
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

182 Nesting Your Loops

As before, this version counts by 2s until it gets to 20. But when it hits 12, it
panics and aborts the loop, so it never actually gets to 14, 16, 18, or 20. So
the console output loops like this:

2 46 8 10

And here’s a version that uses a continue statement to simply skip 12
rather than abort the loop:

public class ForDuodecaphobia?2

{

public static void main(String[] args)

{

for (int number = 2; number <=20; number += 2)
{
if (number == 12)
continue;

System.out.print (number + " ");

}
System.out.println() ;

}
The console output from this version looks like this:

2 46 8 10 14 16 18 20

Nesting Your Loops

Loops can contain loops. The technical term for this is Loop-de-Loop. Just
kidding. Actually, the technical term is nested loop. A nested loop is simply a
loop that is completely contained inside another loop. The loop that’s inside
is called the inner loop, and the loop that’s outside is called the outer loop.

A simple nested for loop

To demonstrate the basics of nesting, here’s a simple little program that uses
a pair of nested for loops:

public class NestedLoop
{

public static void main(Stringl[] args)
{
for(int x = 1; x < 10; x++)
{
for (int y = 1; yv < 10; y++)

Nesting Your Loops ’83

System.out.print(x + "-" + y + " ");
System.out.println() ;

3

This program consists of two for loops. The outer loop uses x as its
counter variable, and the inner loop uses y. For each execution of the outer
loop, the inner loop executes 10 times and prints a line that shows the value
of x and y for each pass through the inner loop. When the inner loop fin-
ishes, a callto System.out.println with no parameters starts a new
line. Then, the outer loop cycles so the next line is printed.

When you run this program, the console displays this text:

LWoJoaulikxwWwdNE
|
B N N N N RN RN

|
LWoJoaulkdwWwdNE
| |
00 00 00 OO OO OO 0O 0O 0O
|

LWoJoaulkd W
|
PR RRRERR R R

W ooJ0 U™ WN
| I

ST ST ST AN TN AT SN
I
I

WO J0 Ui WN
|
i O NG O N NG N NG

WO Ui WN
|
GG RGN G RGN N

WO J0UT I WN
|
WWWWWWwWWw
WO JO Ui WN -
|
O\ O\ O\ O\ OY O\ OY O\ O
WOJOUT ™ WN R
|
L L WV W W W WL

A guessing game

Listing 5-1 shows a more complicated but realistic example of nesting. This
program implements a simple guessing game in which the computer picks a
number between 1 and 10 and you have to guess the number. After you
guess, the computer tells you if you're right or wrong, and then asks if you
want to play again. If you enter Y or y, the game starts over.

The nesting comes into play because the entire game is written in awhile
loop that repeats as long as you say you want to play another game. Then,
within that loop, each time the game asks for input from the user, it uses a
do-while loop to validate the user’s entry. Thus, when the game asks the
user to guess a number between 1 and 10, it keeps looping until the number
entered by the user is in that range. And when the game asks the user
whether he or she wants to play again, it loops until the user enters Y, v, N,
or n.

Here’s a sample of the console output displayed by this program:
Let's play a guessing game!
I'm thinking of a number between 1 and 10.

What do you think it is? 5
You're wrong! The number was 8

Book Il
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

18 4 Nesting Your Loops

Play again? (Y or
I'm thinking of a
What do you think
I said, between 1

You're wrong! The
Play again? (Y or
Play again? (Y or
Play again? (Y or

I'm thinking of a
What do you think
You're right!

Play again? (Y or

N)y

number between 1 and 10.
it is? 32

and 10. Try again: 5
number was 6

N)maybe

N) ok

N)y

number between 1 and 10.

it is? 5

N)n

Thank you for playing.

LisTING 5-1: THE GUESSING GAME

import java.util.Scanner;

public class GuessingGame

{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)

{

boolean keepPlaying = true;

System.out.println("Let's play a guessing game!");
while (keepPlaying)

{

boolean validInput;
int number, guess;
String answer;

// Pick a random number
number = (int) (Math.random() * 10) + 1;

// Get the guess
System.out.println("\nI'm thinking of a number "
+ "between 1 and 10.");
System.out.print ("What do you think it is? ");
do
{
guess = sc.nextInt();
validInput = true;
if ((guess < 1)
{

| (guess > 10))

System.out.print ("I said, between 1 and 10.

10

13

15

20

26

Nesting Your Loops

+ "Try again: ");
validInput = false;
}

} while (!validInput);

// Check the guess
if (guess == number)

else

System.out.println("You're right!");

System.out.println("You're wrong!");

// Play again?

do

{

System.out.print ("\nPlay again? (Y or N)");
answer = sc.next();

validInput = true;

if (answer.equalsIgnoreCase("Y"))

I

else if (answer.equalsIgnoreCase("N"))
keepPlaying = false;

else
validInput = false;

} while (!validInput);

System.out.println("\nThank you for playing!");

185

— 36

— 39

— 46

— 57

— 58
— 59

The following paragraphs describe some of the key lines in this program:

—10 Defines a boolean variable named keepPlaying that’s initialized to

true and changed to false when the user indicates he or she has
had enough of this silly game.

—13 Begins the main while loop for the game. The loop continues as long

as keepPlaying is true. This loop ends on line 58.

—15 Defines a boolean variable named validInput that’s used to indi-

cate whether the user’s input is valid. The same variable is used for
both the entry of the user’s guess and the Y or N string at the end of
each round.

—20 Picks a random number between 1 and 10. For more information,

—26

refer to Book II, Chapter 3.

Begins the do-while loop that gets a valid guess from the user. This
loop ends on line 36. The statements in this loop read the user’s guess
from the console, and then test to make sure it is between 1 and 10. If
so, validInput is set to true. Otherwise, validInput is set to
false, an error message is displayed, and the loop repeats so the user
is forced to guess again. The loop continues as long as validInput is
false.

Book |
Chapter 5

(sdooq
Buisn 10) sa]2419
ul punouy buion

186 Nesting Your Loops

—39

—46

—59

The if statement compares the user’s guess with the computer’s
number. A message is displayed to indicate whether the user guessed
right or wrong.

Begins the do-while loop that asks whether the user wants to play
again. This loop ends on line 57. The statements in this loop read a
string from the user. If the user enters Y or y, validInput is set to
true. (keepPlaying is already true, so it is left alone.) If the user
enters N or n, validInput is set to true, and keepPlaying is set
to false. And if the user enters anything else, validInput is set to
false. The loop continues as long as validInput is false.

This statement is executed after the program’s main while loop fin-
ishes to thank the user for playing the game.

Chapter 6: Pulling a Switcheroo

In This Chapter

v+ The trouble with big el se-1f statements
v~ Using the switch statement

v Creating case groups

v Using characters with case

v~ Falling through the cracks

In Book II, Chapter 4, you find out about the workhorses of Java decision
making: boolean expressions and the mighty i f statement. In this chapter,
you discover another Java tool for decision making: the switch statement.
The switch statement is a pretty limited beast, but it excels at one particu-
lar type of decision making: choosing one of several actions based on a value
stored in an integer variable. As it turns out, the need to do just that comes
up a lot. So you want to keep the switch statement handy when such a
need arises.

else-if Monstrosities

Many applications call for a simple logical selection of things to be done
depending on some value that controls everything. As I describe in Book II,
Chapter 4, such things are usually handled with big chains of else-if
statements all strung together.

Unfortunately, these things can quickly get out of hand. else-1if chains
can end up looking like DNA double-helix structures, or those things that
dribble down from the tops of the computer screens in The Matrix.

For example, Listing 6-1 shows a bit of a program that might be used to decode
error codes in a Florida or Ohio voting machine.

188 else-if Monstrosities

LisTING 6-1: THE ELSE-IF VERSION OF THE VOTING MACHINE ERROR DECODER

import java.util.Scanner;

public class VoterApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)

{

System.out.println("Welcome to the voting machine "
+ "error code decoder.\n\n"
+ "If your voting machine generates "
+ "an error code, \n"
+ "you can use this program to determine "
+ "the exact\ncause of the error.\n");
System.out.print ("Enter the error code: ");
int err = sc.nextInt();

String msg;
if (err==1)
msg = "Voter marked more than one candidate.\n"
+ "Ballot rejected.";
else if (err==2)
msg = "Box checked and write-in candidate "
+ "entered.\nBallot rejected.";
else if (err==3)
msg = "Entire ballot was blank.\n"
+ "Ballot filled in according to secret plan.";
else if (err==4)
msg = "Nothing unusual about the ballot.\n"
+ "Voter randomly selected for tax audit.";
else if (err==5)
msg = "Voter filled in every box.\n"
+ "Ballot counted twice.";
else if (err==6)
msg = "Voter drooled in voting machine.\n"
+ "Beginning spin cycle.";
else if (err==7)
msg = "Voter lied to pollster after voting.\n"
+ "Voter's ballot changed "
+ "to match polling data.";
else
msg = "Voter filled out ballot correctly.\n"
+ "Ballot discarded anyway.";
System.out.println(msg);

Wow! And this program has to decipher just 7 different error codes. What if
the machine had 500 different codes?

A Better Uersion of the Uoter Machine Error Decoder Program 189

A Better Uersion of the Uoter Machine
Error Decoder Program

Fortunately, Java has a special statement that’s designed just for the kind of

task represented by the Voter Machine Error Decoder program: the switch

statement. Specifically, the switch statement is sometimes useful when you
need to select one of several alternatives based on the value of an integer or
character type variable.

Listing 6-2 shows a version of the Voter Machine Error Decoder program that

uses a switch statement instead of a big else-if structure. I think you'll Book Il
agree that this version of the program is a bit easier to follow. The switch Chapter 6
statement makes it clear that the messages are all selected based on the

value of the err variable.

LiSTING 6-2: THE swiTcH VERSION OF THE VOTING IMACHINE ERROR DECODER

0013Y2)IMg
e Buijng

import java.util.Scanner;

public class VoterApp2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

System.out.println("Welcome to the voting machine "
+ "error code decoder.\n\n"
+ "If your voting machine generates "
+ "an error code, \n"
+ "you can use this program to determine "
+ "the exact\ncause of the error.\n");
System.out.print ("Enter the error code: ");
int err = sc.nextInt();

String msg;

switch (err)

{

case 1:
msg = "Voter marked more than one candidate.\n"
+ "Ballot rejected.";
break;
case 2:
msg = "Box checked and write-in candidate "
+ "entered.\nBallot rejected.";
break;

continued

190 Using the switch Statement

LisTING 6-2 (CONTINUED)

case 3:
msg = "Entire ballot was blank.\n"
+ "Ballot filled in according to secret plan.";
break;
case 4:
msg = "Nothing unusual about the ballot.\n"
+ "Voter randomly selected for tax audit.";
break;
case 5:
msg = "Voter filled in every box.\n"
+ "Ballot counted twice.";
break;
case 6:
msg = "Voter drooled in voting machine.\n"
+ "Beginning spin cycle.";
break;
case 7:
msg = "Voter lied to pollster after voting.\n"

+ "Voter's ballot changed "
+ "to match polling data.";
break;
default:
msg = "Voter filled out ballot correctly.\n"
+ "Ballot discarded anyway.";
break;
}
System.out.println(msg);
}
}

Using the switch Statement

The basic form of the switch statement is this:

switch (expression)
{
case constant:
statements;
break;

[case constant-2:
statements;
break;]

[default:
statements;
break;]

The expression must evaluate to an int, short, byte, or char. It can’t be
a long or a floating-point type.

A Boring Business Example Complete with Flowchart 191

You can code as many case groups as you want or need. Each begins with
the word case followed by a constant (usually a simple numeric literal) and
a colon. Then, you code one or more statements that you want executed if
the value of the switch expression equals the constant. The last line of
each case group is a break statement, which causes the entire switch
statement to end.

The default group, which is optional, is like a catch-all case group. Its
statements are executed only if none of the previous case constants match
the switch expression.

P Note that the case groups are not true blocks marked with braces. Instead,
each case group begins with the case keyword and ends with the case key-
word that starts the next case group. However, all the case groups together
are defined as a block marked with a set of braces.

Book Il
Chapter 6

V.Q\“\NG! The last statement in each case group usually is a break statement. A break
statement causes control to skip to the end of the switch statement. If you
omit the break statement, control falls through to the next case group.
Accidentally leaving out break statements is the most common cause of
trouble with the switch statement.

0013Y2)IMg
e Buijng

A Boring Business Example Complete with Flowchart

Okay, the Voter Machine Error Decoder was kind of fun. Now here’s a more
down-to-earth example. Suppose you need to set a commission rate based
on a sales class represented by an integer that can be 1, 2, or 3, according to

this table:

Class Commission Rate
1 2%

2 3.5%

3 5%

Any other value 0%

You could do this with the following switch statement:

double commissionRate;
switch (salesClass)

{
case 1:
commissionRate = 0.02;
break;
case 2:
commissionRate = 0.035;

break;

192 4 Boring Business Example Complete with Flowchart

Figure 6-1:
The
flowchart
for a switch
statement.

case 3:
commissionRate
break;

default:
commissionRate
break;

}

Figure 6-1 shows a flowchart that describes the operation of this switch state-
ment. As you can see, this flowchart is similar to the flowchart that was shown

in Figure 4-3 in Book I, Chapter 4. That’s because the operation of the switch

statement is similar to the operation of a series of else-if statements.

salesClass
=1

commissionRate
=0.02

salesClass
=2

commissionRate
=0.035

salesClass
=3

commissionRate
=0.05

commissionRate
=0.0

Putting if Statements Inside switch Statements 193

P I like flowcharts because they remind me of my old days of computer pro-
gramming, when we had to draw flowcharts for every program we wrote
before we were allowed to write any code. The flowcharts didn’t really help
us write better programs, but they were fun to draw.

Putting if Statements Inside switch Statements

You're free to include any type of statements you want in the case groups,
including if statements. For example, suppose your commission structure
depends on total sales as well as sales class, like this:

Class Sales < $10,000 Sales $10,000 and Above
1 1% 2%

2 2.5% 3.5%

3 4% 5%

Any other value 0% 0%

Then, you can use the following switch statement:

double commissionRate;
switch (salesClass)

{
case 1:
if (salesTotal < 10000.0)
commissionRate = 0.01;
else
commissionRate = 0.02;
break;
case 2:
if (salesTotal < 10000.0)
commissionRate = 0.025;
else
commissionRate = 0.035;
break;
case 3:
if (salesTotal < 10000.0)
commissionRate = 0.04;
else
commissionRate = 0.05;
break;
default:
commissionRate = 0.0;
break;

Book |
Chapter 6

0013Y2)IMg
e Buijng

794 Creating Character Cases

Here, each case group includes an if statement. If necessary, these if state-
ments could be complex nested i f statements.

Other than the i f statements within the case groups, there’s nothing else
here to see, folks. Move along.

Creating Character Cases

Aside from having a nice alliterative title, this section shows how you can
use a char variable rather than an integer in a switch statement. When
you use a char type, providing two consecutive case constants for each
case group is common, to allow for both lower- and uppercase letters. For
example, suppose you need to set the commission rates based on character
codes rather than integer values for the sales class, according to this table:

Class Commission Rate
Aora 2%

Borb 3.5%

Corc 5%

Any other value 0%

Here’s the switch statement to do the trick:

double commissionRate;
switch (salesClass)
{
case 'A':
case 'a':
commissionRate
break;
case 'B':
case 'b':
commissionRate
break;
case 'C':
case 'c':
commissionRate = 0.05;
break;
default:
commissionRate = 0.0;
break;

11
o

.02;

0.035;

Falling through the Cracks 195

The key to understanding this example is realizing that you don’t have to
code any statements at all for a case group, and that if you omit the break
statement from a case group, control falls through to the next case group.
Thus, the case 'A' group doesn’t contain any statements, but it falls
égN\BEH through to the case 'a' group.
©
&
You use apostrophes, not quotation marks, to create character literals.

Falling through the Cracks

Although the most common cause of problems with the switch statement Book Il
is accidentally leaving out a break statement at the end of a case group, Chapter 6
sometimes you need to do it on purpose. For example, many applications have
features that are progressively added based on a control variable. For exam-
ple, your local car wash might sell several packages with different services:

0013Y2)IMg
e Buijng

Package Services

A Wash, vacuum, and hand dry

B Package A + Wax

C Package B + Leather/Vinyl Treatment
D Package C + Tire Treatment

E Package D + New Car Scent

Listing 6-3 shows an application that displays all the products you get when
you order a specific package. It works by testing the package codes in a
switch statement in reverse order (starting with package E) and adding

the products that come with each package to the details variable. None of
the case groups except the last includes a break statement. As a result, con-
trol falls through each case group to the next group. Thus, once a case group
has tested true, the rest of the case groups in the switch statement are
executed.

LiSTING 6-3: THE CAR WASH APPLICATION

import java.util.Scanner;
public class CarWashApp
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{

continued

796 Falling through the Cracks

\\3

LisTING 6-3 (CONTINUED)

System.out.println("The car wash application!n\n");
System.out.print ("Enter the package code: ");
String s = sc.next();

char p = s.charAt(0);

String details = "";

switch (p)
{
case 'E':
case 'e':
details += "\tNew Car Scent, plus...\n";
case 'D':
case 'd':
details += "\tTire Treatment, plus...\n";
case 'C':
case 'c':
details += "\tLeather/Vinyl Treatment, plus...\n";
case 'B':
case 'b':
details += "\tWax, plus...\n";
case 'A':
case 'a':
details += "\tWash, vacuum, and hand dry.\n";
break;
default:
details = "That's not one of the codes.";
break;
}
System.out.println("\nThat package includes:\n");
System.out.println(details);
}
}

Just between you and me, writing programs that depend on switch state-
ments falling through the cracks like this example isn’t really a good idea.
Instead, consider placing the statements for each case group in separate
methods, and then calling all the methods you need for each case group.
Then, you can use a break statement at the end of each group to prevent
falling through. Listing 6-4 shows a version of the car wash application that
uses this technique to avoid fall-throughs in the switch statement. (Using
simple fall throughs to treat upper- and lowercase characters the same isn’t
as confusing, so this program still uses that technique.)

LisTING 6-4: A VERSION OF THE CAR WASH PROGRAM THAT AvoiDs NASTY FALLS

import java.util.Scanner;

public class CarWashApp2
{

Falling through the Cracks

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)

{

}

System.out.println("The car wash application!\n\n");

System.out.print ("Enter the package code: ");
String s = sc.next();
char p = s.charAt(0);

String details = "";

switch (p)
{
case 'E':
case 'e':
details = packageE() + packageD() + packageC()
+ packageB() + packageA();

break;
case 'D':
case 'd':

details = packageD() + packageC()
+ packageB() + packageA();
break;
case 'C':
case 'c':
details = packageC() + packageB() + packageA():;
break;
case 'B':
case 'b':
details = packageB() + packageA();
break;
case 'A':
case 'a':
details = packageA();
break;
default:
details = "That's not one of the codes.";
break;
}
System.out.println("\nThat package includes:\n");
System.out.println(details);

public static String packageA()

{
}

return "\tWash, vacuum, and hand dry.\n";

public static String packageB()

{
}

return "\tWax, plus...\n";

197

continued

Book

Chapter 6

001312}IMS

e buijng

198 Falling through the Cracks

LisTING 6-4 (CONTINUED)

public static String packageC()

{

return "\tLeather/Vinyl Treatment, plus...\n";
}
public static String packageD()
{

return "\tTire Treatment, plus...\n";
}
public static String packageE()
{

return "\tNew Car Scent, plus...\n";
}

Chapter 7: Adding Some Methods
to Vour Madness

In This Chapter

v Introducing static methods
+* Some good reasons to use methods in your programs
1 Creating methods that return values

v Creating methods that accept parameters

n Java, a method is a block of statements that has a name and can be exe-

cuted by calling (also called invoking) it from some other place in your
program. You may not realize it, but you're already very experienced with
using methods. For example, to print text to the console, you use the
println or print methods. To get an integer from the user, you use the
nextInt method. And to compare string values, you use either the equals
method or the equalsIgnoreCase method. And the granddaddy of all
methods, main, is the method that contains the statements that are exe-
cuted when you run your program.

All the methods you've used so far (with the exception of main) have been
methods that are defined by the Java API and that belong to a particular
Java class. For example, the next Int method belongs to the Scanner
class, and the equalsIgnoreCase method belongs to the String class.

In contrast, the main method belongs to the class defined by your applica-
tion. In this chapter, you find out how to create additional methods that are
a part of your application’s class. You can then call these methods from
your main method. As you'll see, this method turns out to be very useful for
all but the shortest Java programs.

The Joy of Methods

The use of methods can dramatically improve the quality of your program-
ming life. For example, suppose the problem your program is supposed to
solve is complicated and you need at least 1,000 Java statements to get ’er
done. You could put all those 1,000 statements in the main method, but it
would go on for pages and pages. It’s better to break your program up into
a few well-defined sections of code and place each of those sections in a
separate method. Then, your main method can simply call the other meth-
ods in the right sequence.

200 the Basics of Making Methods

Or, suppose your program needs to perform some calculation, such as how
long to let the main rockets burn to make a mid-course correction on a
moon-flight, and the program needs to perform this calculation in several dif-
ferent places. Without methods, you’d have to duplicate the statements that
do this calculation. That’s not only error prone, but makes your programs
more difficult to test and debug. But if you put the calculation in a method,
you can simply call the method whenever you need to perform the calcula-
tion. Thus, methods help you cut down on repetitive code.

Another good use for methods is to simplify the structure of your code that
uses long loops. For example, suppose you have a while loop that has 500
statements in its body. That makes it pretty hard to track down the closing
brace that marks the end of the body. By the time you find it, you probably
will have forgotten what the while loop does. You can simplify this while
loop by placing the code from its body in a separate method. Then, all the
while loop has to do is call the new method.

At this point, the object-oriented programming zealots in the audience are
starting to boo and hiss. A few of them have already left the auditorium.
They’re upset because I'm describing methods in traditional procedural-
programming terms instead of modern object-oriented programming terms.

Well, phooey. They’re right, but so what? I get to the object-oriented uses for
methods in Book IIl. There, you find out that methods have a far greater pur-
pose than simply breaking a long main method into smaller pieces. But even
so, some of the most object-oriented programs [know use methods just to
avoid repetitive code or to slice a large method into a couple of smaller
ones. So there.

The Basics of Making Methods

All methods — including the main method — must begin with a method dec-
laration. Here’s the basic form for a method declaration, at least for the
types of methods I talk about in this chapter:

public static return-type method-name (parameter-1ist)

{
3

statements. ..

The following paragraphs describe method declarations piece-by-piece:

4+ public: This keyword indicates that the method’s existence should be
publicized to the world, and that any Java program that knows about
your program (or, more accurately, the class defined for your Java pro-
gram) should be able to use your method. That’s not very meaningful for
the types of programs you're dealing with at this point in the book, but
it will become more meaningful later on. In Book IlI, you find out more

\\J

\\J

The Basics of Making Methods 201

about what public means, as well as some alternatives to public that
are useful in various and sundry situations.

4+ static: This keyword declares that the method is a static method,
which means that it can be called without first creating an instance of
the class in which it’s defined. The main method must always be static,
and any other methods in the class that contains the main method
should usually be static as well.

4+ return-type: After the word static comes the return type, which
indicates whether the method returns a value when it is called and, if
so, what type the value is. If the method doesn’t return a value, specify
void. (I talk more about methods that return values later in this chap-
ter, in the section “Methods That Return Values.”)

4+ method-name: Now comes the name of your method. The rules for
making up method names are the same as the rules for creating variable
names: You can use any combination of letters and numbers, but the
name has to start with a letter. And, it can include the dollar sign ($) and
underscore character (_). No other special characters are allowed.

When picking a name for your method, try to pick a name that’s relatively
short but descriptive. A method name such as calculateTheTotal
AmountOfTheInvoice is a little long, but just calc is pretty ambigu-
ous. Something along the lines of calculateInvoiceTotal seems
more reasonable to me.

4 parameter list: You can pass one or more values to a method by
listing the values in parentheses following the method name. The param-
eter list in the method declaration lets Java know what types of parameters
a method should expect to receive and provides names so that the state-
ments in the method’s body can access the parameters as local variables.
You discover more about parameters in the section “Using Methods That
Take Parameters” later in this chapter.

If the method doesn’t accept parameters, you must still code the paren-
theses that surround the parameter list. You just leave the parentheses
empty.

4+ Method body: The method body consists of one or more Java state-
ments enclosed in a set of braces. Unlike Java statements such as if,
while, and for, you still have to use the braces even if the body of
your method consists of only one statement.

An example

Okay, all that was a little abstract. Now for a concrete example, I offer a ver-
sion of the Hello, World! program in which the message is displayed not by
the main method, but by a method named sayHel1lo that’s called by the
main method:

public class HelloWorldMethod
{

Book Il
Chapter 7

ssaupe
Inoy 0) SPOI3IAl
awog buippy

202 the Basics of Making Methods

a\\s

public static void main(String[] args)

{
}

sayHello() ;

public static void sayHello()
{

}

System.out.println("Hello, World!");
}

This program is admittedly trivial, but it illustrates the basics of creating and
using methods in Java. Here, the statement in the main method calls the
sayHello method, which in turn displays a message on the console.

The order in which methods appear in your Java source file doesn’t matter.
The only rule is that all the methods must be declared within the body of the
class — that is, between the first left brace and the last right brace. For
example, here’s a version of the HelloWorldMethod program in which I
reversed the order of the methods:

public class HelloWorldMethod
{
public static void sayHello()

{
3

System.out.println("Hello, World!");

public static void main(String[] args)

{
sayHello () ;

}
}

This version of the program works exactly like the previous version.

Another example

Okay, the last example was kind of dumb. No one in his (or her) right mind
would create a method that has just one line of code, and then call it from
another method that also has just one line of code. The Hello, World! pro-
gram is too trivial to illustrate anything remotely realistic.

For example, a program in Book II, Chapter 5 plays a guessing game. Most of
this program’s main method is a large while loop that repeats the game as
long as the user wants to keep playing. This loop has 41 statements in its
body. That’s not so bad, but what if the game were 100 times more compli-
cated, so that the while loop needed 4,100 statements to play a single cycle
of the game? Do you really want a while loop that has 4,100 statements in
its body? I should think not.

The Basics of Making Methods 2 03

Listing 7-1 shows how you can simplify this game a bit just by placing the
body of the main while loop into a separate method. I called this method
playARound, because its job is to play one round of the guessing game.
Now, instead of actually playing a round of the game, the main method of
this program delegates that task to the playARound method.

LisTING 7-1: A VERSION OF THE GUESSING GAME PROGRAM THAT USES A

PLAYARounD METHOD

import java.util.Scanner;

public class GuessingGameMethod

{

static Scanner sc = new Scanner(System.in);
static boolean keepPlaying = true; - 7

public static void main(String[] args)

¢ System.out.println("Let's play a guessing game!");
while (keepPlaying) - 12
¢ playARound () ; — 14
;ystem.out.println("\nThank you for playing!"):;

}

public static void playARound() — 19
{

boolean validInput;

int number, guess;

String answer;

// Pick a random number

number = (int) (Math.random() * 10) + 1;

System.out.println("\nI'm thinking of a number "
+ "between 1 and 10.");

// Get the guess
System.out.print ("What do you think it is? ");
do
{
guess = sc.nextInt();
validInput = true;
if ((guess < 1) || (guess > 10))
{
System.out.print ("I said, between 1
and 10. " + "Try again: ");
validInput = false;
}
} while (!validInput);

// Check the guess
if (guess == number)
System.out.println("You're right!");

continued

Book |
Chapter 7

ssaupep|
INoy 0} SpPoYya

awog Buippy

2 04 Methods That Return Values

LisTING 7-1 (CONTINUED)

else
System.out.println("You're wrong!"
+ " The number was " + number);

// Play again?
do
{
System.out.print ("\nPlay again? (Y or N)");
answer = sc.next();
validInput = true;
if (answer.equalsIgnoreCase("Y"))

else if (answer.equalsIgnoreCase("N"))
keepPlaying = false; — 60
else
validInput = false;
} while (!validInput);

Here are a few important details to notice about this method:

— 7 Because the main method (in line 12) and the playARound method
(in line 60) must both access the keepPlaying variable, I declared it
WMBER as a class variable rather than as a local variable in the main method.

Class variables must be static if you intend to access them from
static methods.

—14 The body of the while loop in the main method is just one line: a
call to the playARound method. Thus, each time the loop repeats,
the program plays one round of the game with the user.

—19 The declaration for the playARound method marks the method as
static so that the static main method can call it.

The body of the playARound method is identical to the body of the while
loop that was originally used in the single-method version of this program
shown in Book II, Chapter 5. If you want a refresher on how this code works,
I politely refer you to that chapter.

\\3

Methods That Return Values

Methods that just do work without returning any data are useful only in lim-
ited situations. The real utility of methods comes when they can perform
some mundane task such as a calculation, and then return the value of that
calculation to the calling method so the calling method can do something
with the value. You find out how to do that in the following sections.

Methods That Return Values 2 05

Declaring the method’s return type

To create a method that returns a value, you simply indicate the type of the
value returned by the method on the method declaration in place of the
void keyword. For example, here’s a method declaration that creates a
method that returns an int value:

public static int getRandomNumber ()

Here, the getRandomNumber method calculates a random number, and
then returns the number to the caller.

The return type of a method can be any of Java’s primitive return types
(described in Book II, Chapter 2):

int long float char

short byte double boolean

Or, the return type can be a reference type, including a class defined by the
API such as String or a class you create yourself.

Using the return statement to return the value

When you specify a return type other than void in a method declaration,
the body of the method must include a return statement that specifies the
value to be returned. The return statement has this form:

return expression;

The expression must evaluate to a value that’s the same type as the type
listed in the method declaration. In other words, if the method returns an
int, the expression in the return statement must evaluate to an int.

For example, here’s a program that uses a method that determines a random
number between 1 and 10:

public class RandomNumber

{

public static void main(String[] args)

{
int number = getRandomNumber () ;
System.out.println("The number is " + number) ;

}

public static int getRandomNumber ()

{
int num = (int) (Math.random() * 10) + 1;
return num;

Book Il
Chapter 7

ssaupe
Inoy 0) SPOI3IAl
awog buippy

2 06 Methods That Return Values

In this program, the getRandomNumber method uses the Math.random
method to calculate a random number from 1 to 10. (For more information
about the Math.random method, see Book I, Chapter 3.) The return
statement returns the random number that was calculated.

Because the return statement can specify an expression as well as a simple
variable, I could just as easily have written the getRandomNumber method
like this:

public static int getRandomNumber ()
{

}

return (int) (Math.random() * 10) + 1;

Here, the return statement includes the expression that calculates the
random number.

Using a method that returns a type

You can use a method that returns a value in an assignment statement, like this:
int number = getRandomNumber () ;

Here, the getRandomNumber method is called, and the value it returns is
assigned to the variable number.

You can also use methods that return values in expressions. For example:
number = getRandomNumber () * 10;

Here, the value returned by the getRandomNumber method is multiplied by
10, and the result is assigned to number.

You gotta have a proper return statement

If a method declares a return type other than void, it must use a return
statement to return a value. The compiler doesn’t let you get away with a
method that doesn’t have a correct return statement.

Things can sometimes get complicated if your return statements are inside
if statements. Sometimes, the compiler can get fooled and refuse to com-
pile your program. To explain this, I offer the following tale of multiple
attempts to solve what should be a simple programming problem:

Suppose you want to create a random number method that returns random
numbers between 1 and 20, but never returns 12 (because you have the condi-
tion known as duodecaphobia, which as Lucy from Peanuts would tell you is
the fear of the number 12). Your first thought is to just ignore the 12s, like this:

Methods That Return Values 2 07

public static int getRandomNumber ()

{
int num = (int) (Math.random() * 20) + 1;
if (num != 12)
return num;
}

However, the compiler isn’t fooled by your trickery here. It knows that if the
number is 12, the return statement won’t get executed. So it issues the mes-
sagemissing return statement and refuses to compile your program.
Your next thought is to simply substitute 11 whenever 12 comes up:

public static int getRandomNumber ()

{
int num = (int) (Math.random() * 20) + 1;
if (num != 12)
return num;
else
return 11;
}

However, later that day you realize this solution isn’t a good one because
the number isn’t really random anymore. One of the requirements of a good
random number generator is that any number should be as likely as any
other number to come up next. But because you're changing all 12s to 11s,
you’ve made 11 twice as likely to come up as any other number.

To fix this error, you decide to put the random number generator in a loop
that ends only when the random number is not 12:

public static int getRandomNumber ()

{
int num;
do
{
num = (int) (Math.random() * 20) + 1;
if (num !'= 12)
return num;
} while (num == 12);
}

But now the compiler refuses to compile the method again. It turns out
that the compiler is smart, but not real smart. It doesn’t catch the fact that
the condition in the do-whi le loop is the opposite of the condition in the
if statement, meaning that the only way out of this loop is through the
return statement in the if statement. So the compiler whines mi ssing
return statement again.

Book |
Chapter 7

ssaupe
Inoy 0) SPOI3IAl
awog buippy

208 Methods That Return Values

After thinking about it a while, you come up with this solution:

public static int getRandomNumber ()

{
int num;
while (true)
{
num = (int) (Math.random() * 20) + 1;
if (num != 12)
return num;
}
}

Now everyone’s happy. The compiler knows the only way out of the loop is
through the return statement, your doudecaphobic user doesn’t have to
worry about seeing the number 12, and you know that the random number
isn’t twice as likely to be 11 as any other number. Life is good, and you can
move on to the next topic.

Another version of the guessing game program

To illustrate the benefits of using methods that return values, Listing 7-2
presents another version of the guessing game program that uses four meth-
ods in addition to main:

4 playARound: This method plays one round of the guessing game. It
doesn’t return a value.
4 getRandomNumber: Returns a random number between 1 and 10.

4+ getGuess: Gets the user’s guess, makes sure it is between 1 and 10, and
returns the guess if it’s within the acceptable range.

4 askForAnotherRound: This method asks the user to play another
round and returns a boolean value to indicate whether or not the user
wants to continue playing.

LisTING 7-2: ANOTHER VERSION OF THE GUESSING GAME PROGRAM

import java.util.Scanner;

public class GuessingGameMethod2
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{
System.out.println("Let's play a guessing game!");
do - 11
{
playARound() ; - 13
} while (askForAnotherRound()); — 14

}

Methods That Return Values 2 09

System.out.println("\nThank you for playing!");

public static void playARound() — 18

{

}

boolean validInput;
int number, guess;
String answer;

// Pick a random number
number = getRandomNumber () ; - 25

// Get the guess
System.out.println("\nI'm thinking of a number "
+ "between 1 and 10.");
System.out.print ("What do you think it is? ");
guess = getGuess(); - 3

// Check the guess
if (guess == number)
System.out.println("You're right!");
else
System.out.println("You're wrong!"
+ " The number was " + number);

public static int getRandomNumber () - 41

{
}

return (int) (Math.random() * 10) + 1; - 43

public static int getGuess() — 46

{

}

while (true) — 48
{
int guess = sc.nextInt();
if ((guess < 1) || (guess > 10))
{
System.out.print ("I said, between 1 and
10. " + "Try again: ");
}
else
return guess; - 57

public static boolean askForAnotherRound() — 61

{

while (true) - 63
{
String answer;
System.out.print ("\nPlay again? (Y or N) ");
answer = sc.next();
if (answer.equalsIgnoreCase("Y"))
return true; - 69
else if (answer.equalsIgnoreCase("N"))
return false; - 71

Book |
Chapter 7

ssaupep|
INoy 0} SpPoYya

awog Buippy

2 70 Methods That Return Values

The following paragraphs point out the key lines of this program:

-1

—13
—14

—18
—25

—31

—41

—43

—46

—48

—57

—61

—63

—69

—71

The start of the do loop in the main method. Each cycle of this do
loop plays one round of the game. The do loop continues until the
user indicates that he or she wants to stop playing.

Calls the playARound method to play one round of the game.

Calls the askForAnotherRound method to determine whether the
user wants to play another round. The boolean return value from this
method is used as the expression for the do loop. Thus, the do loop
repeats if the askForAnotherRound method returns true.

The start of the playARound method.

This line calls the getRandomNumber method to get a random
number between 1 and 10. The value returned by this method is
stored in the number variable.

This line calls the getGuess method to get the user’s guess. This
method returns a number between 1 and 10, which is stored in the
guess variable.

The start of the getRandomNumber method, which indicates that
this method returns an int value.

The return statement for the getRandomNumber method. The
random number is calculated using the Math . random method,
and the result of this calculation is returned as the value of the
getRandomNumber method.

The start of the getGuess method, which indicates that this method
returns an int value.

The getGuess method uses a while loop, which exits only when
the user enters a number between 1 and 10.

The return statement for the getGuess method. Note that this
return statement is in the el se part of an i f statement that
checks if the number is less than 1 or greater than 10. If the number
is outside of the acceptable range, the return statement isn’t exe-
cuted. Instead, the program displays an error message, and the
while loop repeats.

The start of the askForAnotherRound method, which returns a
boolean value.

The askForAnotherRound method uses a while loop that exits
only when the user enters a valid Y or N response.

The askForAnotherRound method returns true if the user enters
Y orvy.

The askForAnotherRound method returns false if the user
enters N or n.

Using Methods That Take Parameters 211

Using Methods That Take Parameters

A parameter is a value that you can pass to a method. The method can then
use the parameter as if it were a local variable initialized with the value of
the variable passed to it by the calling method.

For example, the guessing game application that was shown in Listing 7-2
has a method named getRandomNumber that returns a random number
between 1 and 10:

public static int getRandomNumber ()

{ _ Book Il
return (int) (Math.random() * 10) + 1; Chapter 7
}

This method is useful, but it would be even more useful if you could tell it
the range of numbers you want the random number to fall in. For example, it
would be nice if you could call it like this to get a random number between 1
and 10:

ssaupe
Inoy 0) SPOI3IAl
awog buippy

int number = getRandomNumber (1, 10);

Then, if your program needs to roll dice, you could call the same method:
int number = getRandomNumber (1, 6);

Or, to pick a random card from a deck of 52 cards, you could call it like this:
int number = getRandomNumber (1, 52);

And you wouldn’t have to start with 1, either. To get a random number
between 50 and 100, you'd call it like this:

int number = getRandomNumber (50, 100);

In the following sections, you write methods that accept parameters.

Declaring parameters

A method that accepts parameters must list the parameters in the method
declaration. The parameters are listed in a parameter list that’s in the paren-
theses that follow the method name. For each parameter used by the method,
you list the parameter type followed by the parameter name. If you need
more than one parameter, you separate them with commas.

For example, here’s a version of the getRandomNumber method that
accepts parameters:

public static int getRandomNumber (int min, int max)
{

212 Using Methods That Take Parameters

return (int) (Math.random/()
* (max — min + 1)) + min;

}

Here, the method uses two parameters, both of type int, named min and
max. Then, within the body of the method, these parameters can be used as
if they were local variables.
P The names you use for parameters can be the same as the names you use for
the variables you pass to the method when you call it, but they don’t have to
be. For example, you could call the getRandomNumber method like this:

int min =
int max =

0;
int number =

getRandomNumber (min, max) ;
Or, you could call it like this:

int low = 1;

int high = 10;

int number = getRandomNumber (low, high) ;

Or, you can dispense with the variables altogether and just pass literal
values to the method:

int number = getRandomNumber (1, 10);
You can also specify expressions as the parameter values:
int min =

int max =
int number

1;
10;
= getRandomNumber (min * 10, max * 10);

Here, number is assigned a value between 10 and 100.

Scoping out parameters

The scope of a parameter is the method for which the parameter is declared.
As a result, a parameter can have the same name as local variables used in
other methods without causing any conflict. For example, consider this
program:

public class ParameterScope
{
public static void main(String[] args)
{
int min 1;
int max 10;
int number = getRandomNumber (min, max) ;
System.out.println (number) ;

Using Methods That Take Parameters 2 73

}

public static int getRandomNumber (int min, int max)

{
return (int) (Math.random()
* (max — min + 1)) + min;

3

Here, the main method declares variables named min and max, and the
getRandomNumber method uses min and max for its parameter names.
This doesn’t cause any conflict, because in each case the scope is limited to
a single method.

Understanding pass-by-value

When Java passes a variable to a method via a parameter, the method itself
receives a copy of the variable’s value, not the variable itself. This copy is
called a pass-by-value, and it has an important consequence: If a method
changes the value it receives as a parameter, that change is not reflected in
the original variable that was passed to the method. The following program
can help clear this up:

public class ChangeParameters

{
public static void main(Stringl[] args)
{
int number = 1;
tryToChangeNumber (number) ;
System.out.println (number) ;
}
public static void tryToChangeNumber (int 1)
{
i = 2;
}
}

Here, a variable named number is set to 1, and then passed to the method
named tryToChangeNumber. This method receives the variable as a
parameter named i, and then sets the value of i to 2. Meanwhile, back

in the main method, println is used to print the value of number after the
tryToChangeNumber method returns.

Because tryToChangeNumber only gets a copy of number and not the
number variable itself, this program displays the following on the console
(drumroll please. . .): 1.

The key point is this: Even though the tryToChangeNumber method
changes the value of its parameter, that change has no effect on the original
variable that was passed to the method.

Book Il
Chapter 7

ssaupe
Inoy 0) SPOI3IAl
awog buippy

2 74 Using Methods That Take Parameters

Vet another example of the guessing game program

To show off the benefits of methods that accept parameters, Listing 7-3
shows one more version of the guessing game program. This version uses
the following methods in addition to main:

4+ playARound: This method plays one round of the guessing game. It
doesn’t return a value, but it accepts two arguments: min and max,
which indicate the minimum and maximum values for the number to be
guessed.

4 getRandomNumber: Returns a random number between min and max
values passed as parameters.

4 getGuess: This method also accepts two parameters, min and max, to
limit the range within which the user must guess.

4+ askForAnotherRound: This method asks the user to play another
round and returns a boolean value to indicate whether or not the user
wants to continue playing. It accepts a String value as a parameter;
this string is displayed on the console to prompt the user for a reply.

LisTING 7-3: ANOTHER VERSION OF THE GUESSING GAME PROGRAM

import java.util.Scanner;

public class GuessingGameMethod3
{

static Scanner sc = new Scanner(System.in);

public static void main(String[] args)
{
System.out.println("Let's play a guessing game!");
do
{
playARound (1, getRandomNumber (7, 12)); — 13
} while (askForAnotherRound("Try again?"));
System.out.println("\nThank you for playing!");
}

public static void playARound(int min, int max)
{

boolean validInput;

int number, guess;

String answer;

// Pick a random number
number = getRandomNumber (min, max); — 25

// Get the guess
System.out.println("\nI'm thinking of a number "
+ "between " + min + " and " + max + "."); — 29

Using Methods That Take Parameters 215

System.out.print ("What do you think it is? ");
guess = getGuess(min, max); — 31

// Check the guess
if (guess == number)
System.out.println("You're right!");
else
System.out.println("You're wrong!"
+ " The number was " + number);
}

public static int getRandomNumber (int min, int max) - 41
{
return (int) (Math.random() — 43
* (max - min + 1)) + min;
} Book |
Chapter 7
public static int getGuess(int min, int max) - 47
{
while (true) =
{ 22
. =52
int guess = sc.nextInt(); o9 =
if ((guess < min) || (guess > max)) — 52 2 Fa
{ 2z9
System.out.print ("I said, between " £ §E
+ min + " and " + max =5 @

+ ", Try again: ");
}
else
return guess; - 59

}
public static boolean askForAnotherRound(String prompt) - 63
{
while (true)
{
String answer;
System.out.print("\n" + prompt + " (Y or N) ");
answer = sc.next();
if (answer.equalsIgnoreCase("Y"))
return true;
else if (answer.equalsIgnoreCase("N"))
return false;

The following paragraphs point out the key lines of this program:

—13 Calls the playARound method to play one round of the game. The
values for min and max are passed as literals. To add a small amount
of variety to the game, the getRandomNumber method is called here
to set the value for the max to a random number from 7 to 12.

—25 The call to the getRandomNumber method passes the values of min
and max as parameters to set the range for the random numbers.

216 Using Methods That Take Parameters

—29

—31

—41

—43

—47

—52

—59

—63

The message that announces to the user that the computer has
chosen a random number uses the min and max parameters to
indicate the range.

The call to the getGuess method now passes the range of accept-
able guesses.

The declaration for the getRandomNumber method specifies the
min and max parameters.

The calculation for the random number is complicated a bit by the
fact that min might not be 1.

The declaration for the getGuess method accepts the min and max
parameters.

The 1if statement in the getGuess method uses the min and max
values to validate the user’s input.

The return statement for the getGuess method. Note that this
return statement is in the el se part of an i f statement that checks
if the number is less than 1 or greater than 10. If the number is outside
of the acceptable range, the return statement isn’t executed. Instead,
the program displays an error message, and the while loop repeats.

The askForAnotherRound method accepts a string variable to use
as a prompt.

Chapter 8: Handling Exceptions

In This Chapter

+» What to do when bad things happen to good programs
v~ All about exceptions
v Using try, catch,and finally

v Preventing exceptions from happening in the first place

Fis chapter is about what happens when Java encounters an error sit-
uation that it can’t deal with. Over the years, computer programming
languages have devised many different ways to deal with these types of
errors. The earliest programming languages dealt with them rudely, by
abruptly terminating the program and printing out the entire contents of
the computer’s memory in hexadecimal. This output was called a dump.

Later programming languages tried various ways to keep the program run-
ning when serious errors occurred. In some languages, the statements that
could potentially cause an error had extra elements added to them that
would provide feedback about errors. For example, a statement that read
data from a disk file might return an error code if an I/O error occurred. Still
other languages let you create a special error processing section of the pro-
gram, to which control would be transferred if an error occurred.

Being an object-oriented programming language, Java handles errors by
using special exception objects that are created when an error occurs. In
addition, Java has a special statement called the try statement that you
must use to deal with exception objects. In this chapter, you find all the gory
details of working with exception objects and try statements.

Understanding Exceptions

An exception is an object that’s created when an error occurs in a Java pro-
gram and Java can’t automatically fix the error. The exception object contains
information about the type of error that occurred. However, the most impor-
tant information — the cause of the error — is indicated by the name of the
exception class used to create the exception. You don’t usually have to do
anything with an exception object other than figure out which one you have.

218 Understanding Exceptions

Each type of exception that can occur is represented by a different exception
class. For example, here are some typical exceptions:

<+

<+

+

<+

IllegalArgumentException: You passed an incorrect argument to
a method.

InputMismatchException: The console input doesn’t match the
data type expected by a method of the Scanner class.

ArithmeticException: You tried an illegal type of arithmetic opera-
tion, such as dividing an integer by zero.

IOException: A method that performs I/O encountered an unrecover-
able I/O error.

ClassNotFoundException: A necessary class couldn’t be found.

There are many other types of exceptions besides these. You find out about
many of them in later chapters of this book.

You need to know a few other things about exceptions:

<+

When an error occurs and an exception object is created, Java is said to
have thrown an exception. Java has a pretty good throwing arm, so the
exception is always thrown right back to the statement that caused it to
be created.

The statement that caused the exception can catch the exception if it
wants it. But it doesn’t have to catch the exception if it doesn’t want it.
Instead, it can duck and let someone else catch the exception. That
someone else is the statement that called the method that’s currently
executing.

If everyone ducks and the exception is never caught by the program, the
program ends abruptly and displays a nasty looking exception message
on the console. More on that in the next section.

Two basic types of exceptions in Java are checked exceptions and
unchecked exceptions:

® A checked exception is an exception that the compiler requires you to
provide for it one way or another. If you don’t, your program doesn’t
compile.

e An unchecked exception is an exception that you can provide for, but
you don’t have to.

So far in this book, I've avoided using any Java API methods that throw
checked exceptions. However, | have used methods that can throw
unchecked exceptions. For example, the next Int method of the
Scanner class throws an unchecked exception if the user enters some-
thing other than a valid integer value. For more information, read on.

Figure 8-1:
This
program
has slipped
into The
Exception
Zone.

Understanding Exceptions 219

Witnessing an exception

Submitted for your approval, a tale of a hastily written Java program, quickly
put together to illustrate certain Java programming details while ignoring
others. Out of sight, out of mind, as they say. Said program played a guessing
game with the user, accepting numeric input via a class called Scanner. Yet this
same program ignored the very real possibility that the user may enter strange
and unexpected data, data that could hardly be considered numeric, at least not
in the conventional sense. The time: Now. The place: Here. This program is
about to cross over into . . . the Exception Zone.

The program I'm talking about here is, of course, the guessing game program
that’s appeared in several forms in recent chapters. (You can find the most
recent version at the very end of Book I, Chapter 7.) This program includes

a validation routine that prevents the user from making a guess that’s not
between 1 and 10. However, that validation routine assumes that the user has
entered a valid integer number. If the user enters something other than an
integer value, the nextInt method of the Scanner class fails badly.

Figure 8-1 shows an example of what the console looks like if the user enters
text (such as five) instead of a number. The first line after the user enters
the incorrect data says the program has encountered an exception named
InputMismatchException. In short, this exception means that the data
entered by the user couldn’t be properly matched with the type of data that
was expected by the Scanner class. That’s because the nextInt method
expected to find an integer, and instead it found the word five.

Finding the culprit

You can find the exact statement in your program that caused the exception
to occur by examining the lines that are displayed right after the line that
indicates which exception was encountered. These lines, called the stack
trace, list the different methods that the exception passed through before

Book Il
Chapter 8

suondaosxy
Buipuey

220 Catching Exceptions

your program was completely aborted. Usually, the first method listed is
deep in the bowels of the Java API, and the last method listed is your appli-
cation’s main method. Somewhere in the middle, you find the switch from
methods in the Java API to a method in your program. That’s usually where
you find the statement in your program that caused the error.

In Figure 8-1, the stack trace lines look like this:

at java.util.Scanner.throwFor (Scanner.java:819)

at java.util.Scanner.next (Scanner.java:1431)

at java.util.Scanner.nextInt (Scanner.java:2040)

at java.util.Scanner.nextInt (Scanner.java:2000)

at GuessingGameMethod3.getGuess (GuessingGameMethod3.java:51)
at GuessingGameMethod3.playARound (GuessingGameMethod3.java:31)
at GuessingGameMethod3.main (GuessingGameMethod3.java:13)

Each line lists not only a class and method name, but also the name of

the source file that contains the class and the line number where the
exception occurred. Thus, the first line in this stack trace indicates that
the exception is handled in the throwFor method of the Scanner class
at line 819 of the Scanner. java file. The next three lines also indicate
methods in the Scanner class. The first line to mention the guessing game
class (GuessingGameMethod3) is the fifth line. It shows that the excep-
tion happened at line 51 in the GuessingGameMethod3 . java file. Sure
enough, that’s the line that calls the nextInt method of the Scanner
class to get input from the user.

Catching Exceptions

Whenever you use a statement that might throw an exception, you should
write special code to anticipate and catch the exception. That way, your pro-
gram won'’t crash as shown in Figure 8-1 if the exception occurs.

You catch an exception by using a try statement, which has this general
form:

try
{

}
catch (exception-type identifier)

{
}

statements that can throw exceptions

statements executed when exception is thrown

Here, you place the statements that might throw an exception within a try
block. Then, you catch the exception with a catch block.

Catching Exceptions 221

Here are a few things to note about try statements:

4+ You can code more than one catch block. That way, if the statements in
the try block might throw more than one type of exception, you can
catch each type of exception in a separate catch block.

4+ For scoping purposes, the try block is its own self-contained block, sep-
arate from the catch block. As a result, any variables you declare in the
try block are not visible to the catch block. If you want them to be,
declare them immediately before the try statement.

4+ You can also code a special block called a finally block after all the
catch blocks. For more information about coding finally blocks, see
the section “Using a finally Block” later in this chapter.

4+ The various exception classes in the Java API are defined in different
packages. If you use an exception class that isn’t defined in the standard
java.lang package that’s always available, you need to provide an
import statement for the package that defines the exception class.

A simple example

To illustrate how to provide for an exception, here’s a program that divides
two numbers and uses a try/catch statement to catch an exception if the
second number turns out to be zero:

public class DivideByZero

{
public static void main(String[] args)
{
int a = 5;
int b = 0; // you know this won't work
try
{
int ¢ = a / b; // but you try it anyway
}
catch (ArithmeticException e)
{
System.out.println("Oops, you can't divide by
zero.");
}
}
}

Here, the division occurs within a try block, and a catch block handles
ArithmeticException. ArithmethicException is defined by
java.lang, so an import statement for it isn’t necessary.

Book Il
Chapter 8

suondaosxy
Buipuey

222 Catching Exceptions

When you run this program, the following is displayed on the console:

Oops, you can't divide by =zero.

There’s nothing else to see here. The next section shows a more complicated
example, though.

Another example

Listing 8-1 shows a simple example of a program that uses a method to get a
valid integer from the user. If the user enters a value that isn’t a valid integer,
the catch block catches the error and forces the loop to repeat.

LisTING 8-1: GETTING A VALID INTEGER

import java.util.*;

public class GetInteger

{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args)
{
System.out.print ("Enter an integer: ");
int i = GetInteger();
System.out.println("You entered " + i);
}
public static int GetInteger()
{
while (true)
{
try
{
return sc.nextInt();
}
catch (InputMismatchException e)
{
sc.next();
System.out.print ("That's not an integer. "
+ "Try again: ");
}
}
}
}

Here, the statement that gets the input from the user and returns it to the
methods called is coded within the try block. If the user enters a valid inte-
ger, this statement is the only one in this method that gets executed.

Handling Exceptions with a Pre-emptive Strike 223

However, if the user enters data that can’t be converted to an integer, the
nextInt method throws an InputMismatchException. Then, this
exception is intercepted by the catch block, which disposes of the user’s
incorrect input by calling the next method as well as displays an error mes-
sage. The while loop then repeats.

Here’s what the console might look like for a typical execution of this program:

Enter an integer: three
That's not an integer. Try again: 3.001
That's not an integer. Try again: 3
You entered 3
Book Il

Here are a few other things to note about this program: Chapter 8

4+ The import statement specifies java.util. * to import all the
classes from the java.util package. That way, the Input
MismatchException class is imported.

4 The next method must be called in the catch block to dispose of the
user’s invalid input because the nextInt method leaves the input value
in the Scanner ' s input stream if an InputMismatchException is
thrown. If you omit the statement that calls next, the while loop keeps
reading it, throws an exception, and displays an error message in an infi-
nite loop. If you don’t believe me, look at Figure 8-2. I found this error
out the hard way. (The only way to make it stop is to close the console
window.)

suondaosxy
Buipuey

not an in
gain: Th - ! er Py a

Figure 8-2: integer. Try JIhat' s not an
Why you : ' ;
have to call
next to
discard the
invalid input.

Handling Exceptions with a Pre-emptive Strike

The try statement is a useful and necessary tool in any Java programmer’s
arsenal. However, the best way to handle exceptions is to prevent them from
happening in the first place. That’s not possible all the time, but in many

224 Handling Exceptions with a Pre-emptive Strike

cases it is. The key is to test your data before performing the operation that
can lead to an exception and skipping or bypassing the operation of the data
that is problematic. (One thing I really hate is problematic data.)

For example, you can usually avoid the ArithmethicException that
results from dividing integer data by zero by checking the data before per-
forming the division:

if (b 1= 0

This eliminates the need for enclosing the division in a try block because
you know the division by zero won’t happen.

You can apply this same technique to input validation using the hasNextInt
method of the Scanner class. This method checks the next input value to
make sure it’s a valid integer. (The Scanner class calls the next input value a
token, but that won’t be on the test.) You can do this technique in several
ways, and I've been encouraging you to ponder the problem since Book II,
Chapter 2. Now, the long awaited answer. Listing 8-2 shows a version of the
GetInteger method that uses a while loop to avoid the exception.

LisTING 8-2: ANOTHER VERSION OF THE GETINTEGER IMEETHOD

import java.util.*;
public class GetInteger2
{

static Scanner sc = new Scanner (System.in);

public static void main(String[] args)

{
System.out.print ("Enter an integer: ");
int i = GetInteger();
System.out.println("You entered " + i);
}
public static int GetInteger()
{
while (!sc.hasNextInt())
{
sc.nextLine();
System.out.print("That's not an integer. "
+ "Try again: ");
}
return sc.nextInt();
}

Catching All Exceptions at Once 225

This is a clever little bit of programming, don’t you think? The conditional
expression in the while statement calls the hasNextInt method of the
Scanner to see if the next value is an integer. The while loop repeats as
long as this call returns false, indicating that the next value is not a valid
integer. The body of the loop calls nextLine to discard the bad data and
displays an error message. The loop ends only when you know you have
good data in the input stream, so the return statement calls nextInt to
parse the data to an integer and return the resulting value.

Catching All Exceptions at Once

Java provides a catch-all exception class called Exception that all other Chapter 8
types of exceptions are based on. (Don’t worry about the details of what I
mean by that. When you read Book IIl, Chapter 4, it will make more sense.)

If you don’t want to be too specific in a catch block, you can specify
Exception instead of a more specific exception class. For example:

suondaosxy
Buipuey

try
{
int ¢ = a / b;
}
catch (Exception e)
{
System.out.println("Oops, you can't divide by
zero.");
}

In this example, the catch block specifies Exception rather than
ArithmeticException.

If you have some code that might throw several different types of exceptions,
and you want to provide specific processing for some but general processing
for all the others, code the try statement:

try

{
// statements that might throw several types of
// exceptions

iatch (InputMismatchException e)

{ // statements that process InputMismatchException
iatch (IOException e)

{ // statements that process IOException

}

catch (Exception e)

226 Displaying the Exception Message

\\J

{
}

// statements that process all other exception types

In this example, imagine that the code in the try block might throw an
InputMismatchException, an IOException, and perhaps some other
type of unanticipated exception. Here, the three catch blocks provide for
each of these possibilities.

When you code more than one catch block on a try statement, always list
the more specific exceptions first. If you include a catch block to catch
Exception, list it last.

Displaying the Exception Message

In most cases, the catch block of a try statement won’t do anything at
all with the exception object passed to it. However, you may occasionally
want to display an error message; exception objects have a few interesting
methods that can come in handy from time to time. These methods are
listed in Table 8-1.

Table 8-1 Methods of the Exception Class

Method Description

String getMessage () A text message that describes the error.

void printStackTrace () Printsthe stack trace to the standard error stream.
String toString() Returns a description of the exception. This descrip-

tion includes the name of the exception class fol-
lowed by a colon and the getMessage message.

The following example shows how you might print the message for an excep-
tion in a catch block:

try
{

}
catch (Exception e)

{
}

int ¢ = a / b;

System.out.println(e.getMessage()) ;

This code displays the text / by zero on the console if b has a value of
zero. You can get even more interesting output with this line in the catch
clause:

e.printStackTrace (System.out) ;

Using a finally Block 227

Using a finally Block

A finally block is a block that appears after all of the catch blocks for a
statement. It’s executed whether or not any exceptions are thrown by the
try block or caught by any catch blocks. Its purpose is to let you clean up
any mess that might be left behind by the exception, such as open files or
database connections.

The basic framework for a try statement with a £inally block is this:

try
{ , Book Il
statements that can throw exceptions Chapter 8
}
catch (exception-type identifier)
{
statements executed when exception 1s thrown U
) 82
finally ==
(-]
{ za
statements that are executed whether or not
exceptions occur
}

Listing 8-3 shows a contrived but helpful example that demonstrates

how to use the finally clause. In this example, a method called
divideTheseNumbers tries to divide the numbers twice. If the division
fails the first time (due to a divide-by-zero exception), it tries the division
again. Completely irrational, [know. But persistent, like a teenager.

LisTING 8-3: A PROGRAM THAT USES A FINALLY CLAUSE

public class CrazyWithZeros
{
public static void main(String[] args)

{

try
{
int answer = divideTheseNumbers (5, 0); - 7
}
catch (Exception e) - 9
{
System.out.println("Tried twice, "
+ "still didn't work!");
}
}
public static int divideTheseNumbers(int a, int b) — 16

throws Exception

continued

228 Using a finally Block

LisTING 8-3 (CONTINUED)

{

int ¢;
try
{
c=a/b; -
System.out.println("It worked!"); i
}
catch (Exception e)
{
System.out.println("Didn't work the first time."); nd
c=a/b; -
System.out.println("It worked the second time!"); nd
}
finally
{
System.out.println("Better clean up my mess."); i
}
System.out.println("It worked after all."); i
return c; —_

22
23

27

29

33

35
36

Here’s the console output for the program:
Didn't work the first time.
Better clean up my mess.

Tried twice, still didn't work!

The following paragraphs explain what’s going on, step by step:

— 7 The main method calls the divideTheseNumbers method, passing
5 and 0 as the parameters. You know already this method isn’t going

to work.
— 9 The catch clause catches any exceptions thrown by line 7.

—16 The divideTheseNumbers method declares that it throws
Exception.

—22 The first attempt to divide the numbers.

—23 If the first attempt succeeds, this line is executed, and the message

"Tt worked!" is printed. Alas, the division throws an exception, so

this line never gets executed.

—27 Instead, the catch clause catches the exception, and the message
"Didn't work the first time." is displayed. That’s the firs
line in the console output.

—28 The divideTheseNumbers method stubbornly tries to divide the
same two numbers again. This time, there’s no try statement to
catch the error.

t

Handling Checked Exceptions 229

—29 However, because another exception is thrown for the second divi-
sion, this line is never executed. Thus, you don’t see the message
"Tt worked the second time!" on the console. (If you do,
you're in an episode of The Twilight Zone.)

—33 This statement in the finally clause is always executed, no matter
what happens. That’s where the second line in the console output
came from.

After the finally clause executes, the ArithmeticException is
thrown back up to the calling method, where it is caught by line 9.
That’s where the last line of the console output came from.

—35 If the division did work, this line would be executed after the try
block ends, and you’d see the message "It worked after
all. " on the console.

—36 Then, the return statement would return the result of the division.

Handling Checked Exceptions

NG/

Checked exceptions are exceptions that the designers of Java feel your pro-
grams absolutely must provide for, one way or another. Whenever you code
a statement that might throw a checked exception, your program must do
one of two things:

4+ Catch the exception by placing the statement within a try statement
that has a catch block for the exception.

4+ Specify a throws clause on the method that contains the statement to
indicate that your method doesn’t want to handle the exception, so it’s
passing the exception up the line.

This is known as the catch-or-throw rule. In short, any method that includes a
statement that might throw a checked exception must acknowledge that it
knows the exception might be thrown. The method does this by either han-
dling it directly, or passing the exception up to its caller.

To illustrate the use of checked exceptions, [have to use some classes with
methods that throw them. Up to now, I've avoided introducing classes that
throw checked exceptions. So the following illustrations use some classes you
aren’t yet familiar with. Don’t worry about what those classes do or how they
work. The point is to learn how to handle the checked exceptions they throw.

The catch-or-throw compiler error

Here’s a program that uses a class called FileInputStream. To create an
object from this class, you must pass the constructor a string that contains
the path and name of a file that exists on your computer. If the file can’t be

found, the FileInputStream throws a FileNotFoundException that

Book Il
Chapter 8

suondaosxy
Buipuey

2 3 0 Handling Checked Exceptions

you must either catch or throw. This class is found in the java . io package,
so any program that uses it must include an import java.io statement.

Consider the following program:
import java.io.*;

public class FileExceptionl

{

public static void main(String[] args)
{

openFile("C:\test.txt");
}

public static void openFile(String name)

{

FileInputStream f = new FileInputStream(name) ;

3
}

This program won’t compile. The compiler issues the following error message:

unreported exception java.io.FileNotFoundException;
must be caught or declared to be thrown

This message simply means that you have to deal with the FileNotFound
Exception.

Catching FileNotFoundException

One way to deal with the FileNotFoundException is to catch it using an
ordinary try statement:

import java.io.*;

public class FileException2
{

public static void main(String[] args)

{

openFile("C:\test.txt");
}

public static void openFile(String name)
{

try

{

FileInputStream f£f = new
FileInputStream(name) ;
}
catch (FileNotFoundException e)

{

System.out.println("File not found.");

Handling Checked Exceptions 231

}

In this example, the message "File not found." is displayed if the
C:\test. txt file doesn’t exist.

Throwing the FileNotFoundException

Suppose you don’t want to deal with this error condition in the openFile
method, but would rather just pass the exception up to the method that
calls the openFile method?

To do that, you omit the try statement. Instead, you add a throws clause
to the openFile method’s declaration. That indicates that the openFile
method knows that it contains a statement that might throw a FileNot

FoundException, but that it doesn’t want to deal with that exception here.

Instead, the exception is passed up to the caller.

Here’s the openFile method with the throws clause added:

public static void openFile(String name)
throws FileNotFoundException

{
3

FileInputStream f = new FileInputStream(name) ;

As you can see, the throws clause simply lists the exception or exceptions
that the method might throw. If more than one exception is on the list, sepa-
rate them with commas:

public static void readFile(String name)
throws FileNotFoundException, IOException

Adding a throws clause to the openFile method means that when the
FileNotFoundException occurs, it is simply passed up to the method
that called the openFile method. That means the calling method (in this
illustration, main) must either catch or throw the exception. To catch the
exception, the main method would have to be coded like this:

public static void main(Stringl[] args)

{
try

{
openFile("C:\test.txt");

}
catch (FileNotFoundException e)

{
3

System.out.println("File not found.");

Book Il
Chapter 8

suondaosxy
Buipuey

2 32 Handling Checked Exceptions

ANG/
&>

Then, if the file doesn’t exist, the catch block catches the exception, and
the error message is displayed.

Throwing an exception from main

If you don’t want the program to handle the FileNotFound exception at
all, you can add a throws clause to the main method, like this:

public static void main(String[] args)
throws FileNotFoundException

{
3

openFile("C:\test.txt");

Then, the program abruptly terminates with an exception message and stack
trace if the exception occurs.

Swallowing exceptions

What if you don’t want to do anything if a checked exception occurs? In
other words, you want to simply ignore the exception? You can do that by
catching the exception in the catch block of a try statement, but leaving
the body of the catch block empty. For example:

public static void openFile(String name)

{
try
{

}
catch (FileNotFoundException e)
{
}

FileInputStream f = new FileInputStream(name) ;

}

Here, the FileNotFoundException is caught and ignored. This is called
swallowing the exception.

Swallowing an exception is considered to be a bad programming practice.
Simply swallowing exceptions that you know you should handle when work-
ing on a complicated program is tempting. Because you plan on getting back
to that exception handler after you iron out the basic functions of the pro-
gram, a little exception swallowing doesn’t seem like that bad of an idea.
The problem is, inevitably, you'll never get back to the exception handler.

So your program gets rushed into production with swallowed exceptions.

If you must swallow exceptions, at least write a message to the console indi-
cating that the exception occurred. That way, you have a constant reminder
that the program has some unfinished details yet to attend to.

Throwing Your Own Exceptions 2 33

Note that not all exception swallowing is bad. For example, suppose you want
the openFile method to return a boolean value to indicate whether the file
exists, rather than throw an exception. Then, you could code the method
something like this:

public static boolean openFile(String name)

{
boolean fileOpened = false;
try
{
FileInputStream f = new FileInputStream(name) ;
fileOpened = true;
} _ , Book Il
catch (FileNotFoundException e) Chapter 8
{
}
return fileOpened;
}

Here, the exception isn’t really swallowed. Instead, its meaning is converted
to a boolean result that’s returned from the method. As a result, the error
condition indicated by the FileNotFoundException isn’t lost.

suondaosxy
Buipuey

Throwing Your Own Exceptions

Although uncommon, you may want to write methods that throw exceptions
all on their own. To do that, you use a throw statement. The throw state-
ment has the following basic format:

throw new exception-class();

The exception-class can be Exception or a class that’s derived from
Exception. You find out how to create your own classes — including
exception classes — in Book Ill. For now, I just focus on writing a method
that throws a general Exception.

Here’s a program that demonstrates the basic structure for a method that
throws an exception:

public class MyException

{

public static void main(String[] args)

{
try
{

}

catch (Exception e)

{

doSomething (true) ;

23 4 Throwing Your Own Exceptions

s

}

System.out.println ("Exception!") ;

}

}

public static void doSomething(boolean t) throws
Exception

{
if (t)

throw new Exception() ;

Here, the doSomething method accepts a boolean value as a parameter. If
this value is true, it throws an exception. Otherwise, it doesn’t do anything.

Here are the essential points to glean from this admittedly trivial example:

+

+

You throw an exception by executing a throw statement. The throw
statement specifies the exception object to be thrown.

If a method contains a throw statement, it must include a throws
clause in its declaration.

A method that calls a method that throws an exception must either
catch or throw the exception.

Yup, this example is pretty trivial. But it illustrates the essential points.

Book Il

Object-Oriented
Programming

- The 5th ' By Rich Tennapt 7
| PROGENTIORS To THE JAVA PROGRAMMING LANGUGE
Tevelopad in Hawaii, ; . Oljjecks “grew”on
— Chjacts wWould suddenly compvkegk’free
~fetoet info 2 hot £lowirg girockre which rers tog)égl
& iot. o
7 Gtream of information 2 m%b.

Tabha, | Named ater fne Ohgcts et reforred |

| e Ut \ delopes, chiscts 10 25 "peans’, ut
=~ Lendad to SEb Jost i caber- {would vepeat ﬂxermgehressevdﬂ’hen

orerused.

Contents at a Glance

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:

Understanding Object-Oriented Programming

Making Your Own Classes

Working with Statics

Using Subclasses and Inheritance

Using Abstract Classes and Interfaces

Using the Object and Class Classes

237
249
265
273
293
305

Using Inner Classes

329

Packaging and Documenting Your Classes

339

Chapter 1: Understanding
Object-Oriented Programming

In This Chapter

v Looking at what object-oriented programming is
v+ Understanding objects and classes

v Investigating inheritance and interfaces

v Designing programs with objects

v+ Diagramming with UML

Fis chapter is a basic introduction to object-oriented programming. It
introduces you to some of the basic concepts and terms you need to
know as you learn about the specific details of how object-oriented pro-

gramming works in Java.

If you’re more of a hands-on type, you may want to just skip this chapter
and go straight to Book III, Chapter 2, where you find out how to create your
own classes in Java. Then, you can always return to this chapter later to
learn about the basic concepts that drive object-oriented programming.
Either way is okay by me. I get paid the same whether you read this chapter
now or skip it and come back to it later.

\\3

What Is Object-Oriented Programming?

The term object-oriented programming means many different things. But at
its heart, object-oriented programming is a type of computer programming
based on the premise that all programs are essentially computer-based sim-
ulations of real-world objects or abstract concepts. For example:

4+ Flight simulator programs attempt to mimic the behavior of real air-
planes. Some do an amazingly good job: military and commercial pilots
train on them. In the 1960s, the Apollo astronauts used a computer-
controlled simulator to practice for their moon landings.

4+ Many computer games are simulations of actual games humans play,
such as baseball, Nascar racing, and chess. But even abstract games
such as Pac Man or Final Fantasy 4 attempt to model the behavior
of creatures and objects that could exist somewhere. Thus, those

2 3 8 Understanding Objects

programs simulate a conceptual game — one that can’t actually be played
anywhere in the real world, but that can by simulated by a computer.

4+ Business programs can be thought of as simulations of business
processes, such as order taking, customer service, shipping, and billing.
For example, an invoice isn’t just a piece of paper; it’s a paper that repre-
sents a transaction that has occurred between a company and one of its
customers. Thus, a computer-based invoice is really just a simulation of
that transaction.

The notion of a programming language having a premise of this sort isn’t new.
Traditional programming languages such as C and its predecessors, including
even COBOL, are based on the premise that computer programs are comput-
erized implementations of procedures — the electronic equivalent of “Step 1:
Insert Tab A into Slot B.” The LISP programming language is based on the
idea that all programming problems can be looked at as different ways of
manipulating lists. And the ever popular database manipulation language
SQL views programming problems as ways to manipulate mathematical sets.

Here are some additional thoughts about the notion of computer programs
being simulations of real-world objects or abstract concepts:

4+ Sometimes the simulation is better than the real thing. Word processing
programs started out as simulations of typewriters, but a modern word
processing program is far superior to any typewriter.

4+ The idea that all computer programs are simulations of one type or
another isn’t a new one. In fact, the first object-oriented programming
language (Simula) was developed in the 1960s. By 1967, this language had
many of the features we now consider fundamental to object-oriented
programming, including classes, objects, inheritance, and virtual
methods.

4+ Come to think of it, manual business record keeping systems are simula-
tions too. A file cabinet full of printed invoices doesn’t hold actual
orders. It holds written representations of those orders. A computer is a
better simulation device than a file cabinet, but both are simulations.

Understanding Objects

All this talk of simulations is getting a little existential for me, so now I'm
turning to the nature of the objects that make up object-oriented program-
ming. Objects — both in the real world and in the world of programming —
are entities that have certain basic characteristics. The following sections
describe some of the more important of these characteristics: identity, type,
state, and behavior.

Understanding Objects 2 3 9

Objects have identity

Every object in an object-oriented program has an identity. In other words,
every occurrence of a particular type of object — called an instance — can
be distinguished from every other occurrence of the same type of object, as
well as from objects of other types.

In the real world, object identity is a pretty intuitive and obvious concept.
Pick up two apples, and you know that although both of them are apples
(that’s the object type, described in the next section), you know they aren’t
the same apple. Each has a distinct identity. They’re both roughly the same
color, but not exactly. They’re both roundish, but have minor variations in
shape. Either one (or both) could have a worm inside.

Open a file cabinet that’s full of invoices and you find page after page of
papers that look almost identical to one another. However, each one has an
invoice number printed somewhere near the top of the page. This number
isn’t what actually gives each of these invoices a unique identity, but it gives
you an easy way to identify each individual invoice, just as your name gives
others an easy way to identify you.

In object-oriented programming, each object has its own location in the com-
puter’s memory. Thus, two objects, even though they may be of the same
type, have their own memory location. The address of the starting location
for an object provides us with a way of distinguishing one object from
another, because no two objects can occupy the same location in memory.

Here are a few other important thoughts about object identity in Java:

4+ Java pretty much keeps each object’s identity to itself. In other words,
there’s no easy way to get the memory address of an object. Java figures
that’s none of your business, and rightfully so. If Java made that infor-
mation readily available to you, you’d be tempted to tinker with it, which
can cause all sorts of problems as any C or C++ programmer can tell you.

4+ Java objects have something called a hash code, which is an int value
that’s automatically generated for every object and almost represents
the object’s identity. In most cases, the hash code for an object is based
on the object’s memory address. But not always. Java doesn’t guarantee
that two distinct objects won’t have the same hash code.

4+ When used with objects, the equality operator (==) actually tests the
object identity of two variables or expressions. If they refer to the same
object instance, the two variables or expressions are considered equal.

Book I
Chapter 1

Hulwweiboiy
pajuauig-1aaiqQ
Buipuejsiapup

2 40 Understanding Objects

Objects have type

I remember studying Naming of Parts, a fine poem written by Henry Reed in
1942, back when [was an English major in college:

Today we have naming of parts. Yesterday,

We had daily cleaning. And tomorrow morning,

We shall have what to do after firing. But today,

Today we have naming of parts. Japonica

Glistens like coral in all of the neighboring gardens,
And today we have naming of parts.

Sure, it’s a fine anti-war poem and all that, but it’s also a little instructive
about object-oriented programming. After the first stanza, the poem goes on
to name the parts of a rifle:

This is the lower sling swivel. And this

Is the upper sling swivel, whose use you will see,

When you are given your slings. And this is the piling swivel,
Which in your case you have not got.

Imagine a whole room of new soldiers taking apart their rifles, while the drill
sergeant tells them “This is the lower sling swivel. And this is the upper sling
swivel. . .” Each soldier’s rifle has one of these parts — in object-oriented
terms, an object of a particular type. The lower-sling swivels in each sol-
dier’s rifle are different objects, but all are of the type LowerSlingSwivel.

Like the drill sergeant in this poem, object-oriented programming lets you
assign names to the different kind of objects in a program. In Java, types are
defined by classes. So when you create an object from a type, you're saying
that the object is of the type specified by the class. For example, the follow-
ing statement creates an object of type Invoice:

Invoice i = new Invoice();

Then, the identity of this object (that is, its address in memory) is assigned
to the variable i, which the compiler knows can hold references to objects
of type Invoice.

Objects have state

Now switch gears to another literary genius:

One fish, two fish,
Red fish, blue fish

In object-oriented terms, Dr. Seuss here is enumerating a pair of objects of
type Fish. The Fish type apparently has two attributes — call them number
and color. These two objects have differing values for these attributes:

Understanding Objects 2 4 1

Attribute Object 1 Object 2
Number One Two
Color Red Blue

The type of an object determines what attributes the object has. Thus, all
objects of a particular type have the same attributes. However, they don’t
necessarily have the same values for those attributes. In this example, all
Fish have attributes named Number and Color, but the two Fish objects
have different values for these attributes.

The combination of the values for all the attributes of an object is called the
object’s state. Unlike its identity, an object’s state can and usually does
change over its lifetime. For example, some fish can change colors. The total
sales for a customer changes each time the customer buys another product.
The grade point average for a student changes each time a new class grade
is recorded. And the address and phone number of an employee changes if
the employee moves.

Here are a few more interesting details about object state:

4+ Some of the attributes of an object are publicly known, but others can
be private. The private attributes may be vital to the internal operation
of the object, but no one outside of the object knows they exist. They’re
like your private thoughts: They affect what you say and do, but nobody
knows them but you.

4+ In Java, the state of an object is represented by class variables, which
are called fields. A public field is a field that’s declared with the public
keyword so the variable can be visible to the outside world.

Objects have behavior

Another characteristic of objects is that they have behavior, which means they
can do things. Like state, the specific behavior of an object depends on its
type. But unlike state, the behavior isn’t different for each instance of a type.
For example, suppose all the students in a classroom have calculators of the
same type. Ask them all to pull out the calculators and add two numbers —
any two numbers of their choosing. All the calculators display a different
number, but they all add the same. In other words, they all have a different
state, but the same behavior.

Another way to say that objects have behavior is to say they provide serv-
ices that can be used by other objects. You've already seen plenty examples
of objects that provide services to other objects. For example, objects cre-
ated from the NumberFormat class provide formatting services that turn
numeric values into nicely formatted strings like $32.95.

Book I
Chapter 1

Hulwweiboiy
pajuauig-1aaiqQ
Buipuejsiapup

2 42 The Life Cycle of an Object

In Java, the behavior of an object is provided by its methods. Thus, the
format method of the NumberFormat class is what provides the format-
ting behavior for NumberFormat objects.

Here are a few other notable points about object behavior:

4 The interface of a class is the set of methods and fields that the class
makes public so other objects can access them.

4+ Exactly how an object does what it does can and should be hidden
within the object. Someone who uses the object needs to know what the
object does, but doesn’t need to know how it works. If you later find a
better way for the object to do its job, you can swap in the new improved
version without anyone knowing the difference.

The Life Cycle of an Object

As you work with objects in Java, understanding how objects are born, live
their lives, and die is important. This topic is called the life cycle of an
object, and it goes something like this:

4+ Before an object can be created from a class, the class must be loaded.
To do that, the Java runtime locates the class on disk (in a . class file)
and reads it into memory. Then, Java looks for any static initializers that
initialize static fields — fields that don’t belong to any particular instance
of the class, but rather belong to the class itself and are shared by all
objects created from the class.

A class is loaded the first time you create an object from the class or the
first time you access a static field or method of the class. For example,
when you run the main method of a class, the class is initialized because
the main method is static.

4+ An object is created from a class when you use the new keyword. To
initialize the class, Java allocates memory for the object and sets up a
reference to the object so the Java runtime can keep track of it. Then,
Java calls the class constructor, which is like a method but is called only
once, when the object is created. The constructor is responsible for
doing any processing required to initialize the object, such as initializing
variables, opening files or databases, and so on.

4+ The object lives its life, providing access to its public methods and fields
to whoever wants and needs them.

4+ When it’s time for the object to die, the object is removed from memory
and Java drops its internal reference to it. You don’t have to destroy
objects yourself. A special part of the Java runtime called the garbage
collector takes care of destroying all objects when they are no longer
in use.

Working with Related Classes 2 43

Working with Related Classes

So far, most of the classes you've seen in this book have created objects that
stand on their own, each being a little island unto itself. However, the real
power of object-oriented programming lies in its ability to create classes that
describe objects that are closely related to each other.

For example, baseballs are similar to softballs. Both are specific types of
balls. They both have a diameter and a weight. And both can be thrown,
caught, or hit. However, they have different characteristics that cause them
to behave differently when thrown, caught, or hit.

If you're creating a program that simulated the way baseballs and softballs
work, you need a way to represent these two types of balls. One option is to
create separate classes to represent each type of ball. These classes are sim-
ilar, so you can just copy most of the code from one class to the other.

Another option is to use a single class to represent both types of balls. Then,
you pass a parameter to the constructor to indicate whether an instance of
the class behaves like a baseball or like a softball.

However, Java has two object-oriented programming features that are

designed specifically to handle classes that are related like this: inheritance Book I
and interfaces. I briefly describe these features in the following sections. Chapter 1
Inheritance

Inheritance is an object-oriented programming technique that lets you use
one class as the basis for another. The existing class is called the base class,
superclass, or parent class, and the new class that’s derived from it is called
the derived class, subclass, or child class.

Hulwweiboiy
pajuauig-1aaiqQ
Buipuejsiapup

When you create a subclass, the subclass is automatically given all the meth-
ods and fields defined by its superclass. You can use these methods and
fields as is, or you can override them to alter their behavior. In addition, you
can add additional methods and fields that define data and behavior that’s
unique to the subclass.

You could use inheritance to solve the baseball/softball problem from the
previous section by creating a class named Bal1l that provides the basic
features of all types of balls, and then using it as the base class for separate
classes named BaseBall and SoftBall. Then, these classes could over-
ride the methods that need to behave differently for each type of ball.

One way to think of inheritance is as a way to implement is-a-type-of relation-
ships. For example, a softball is a type of ball, as is a baseball. Thus, inheritance
is an appropriate way to implement these related classes. For more informa-
tion about inheritance, see Book IlI, Chapter 4.

2 44 Designing a Program with Objects

Interfaces

An interface is a set of methods and fields that a class must provide to imple-
ment the interface. The interface itself is simply a set of public method and
field declarations that are given a name. Note that the interface itself doesn’t
provide any code that implements those methods. Instead, it just provides
the declarations. Then, a class tha