Revised Edition of HIBERNATE IN ACTION

Christian Bauer
Gavin King

foreword by Linda DeMichiel

Praise for the First Edition

“2005 Best Java Book!”
—/Java Developer’s Journal

Hibernate In Action has to be considered the definitive tome on Hibernate. As
the authors are intimately involved with the project, the insight on Hibernate
that they provide can’t be easily duplicated.

—JavaRanch.com

“Not only gets you up to speed with Hibernate and its features...It also intro-
duces you to the right way of developing and tuning an industrial-quality Hiber-
nate application. ...albeit very technical, it reads astonishingly
easy...unfortunately very rare nowadays... [an] excellent piece of work...”
—Javalobby.com

“The first and only full tutorial, reference, and authoritative guide, and one of
the most anticipated books of the year for Hibernate users.”
—Dr. Dobb’s Journal

“...the book was beyond my expectations... this book is the ultimate
solution.”

—/Javalobby.org, (second review, fall 2005)

“...from none others than the lead developer and the lead documenter, this
book is a great introduction and reference documentation to using Hibernate.
It is organized in such a way that the concepts are explained in progressive
order from very simple to more complex, and the authors take good care of
explaining every detail with good examples. ... The book not only gets you up
to speed with Hibernate and its features (which the documentation does quite
well). It also introduces you to the right way of developing and tuning an indus-
trial-quality Hibernate application.”

—Slashdot.org

“Strongly recommended, because a contemporary and state-of-the-art topic is
very well explained, and especially, because the voices come literally from the
horses’ mouths.”

—C Vu, the Journal of the ACCU

“The ultimate guide to the Hibernate open source project. It provides in-depth
information on architecture of Hibernate, configuring Hibernate and develop-
ment using Hibernate...It also explains essential concepts like, object/rela-
tional mapping (ORM), persistence, caching, queries and describes how they
are taken care with respect to Hibernate...written by the creators of Hibernate
and they have made best effort to introduce and leverage Hibernate. I recom-
mend this book to everyone who is interested in getting familiar with
Hibernate.”

—JavaReference.com

“Well worth the cost... While the on-line documentation is good, (Mr. Bauer,
one of the authors is in charge of the on-line documentation) the book is bet-
ter. It begins with a description of what you are trying to do (often left out in
computer books) and leads you on in a consistent manner through the entire
Hibernate system. Excellent Book!”

—Books-on-Line

“A compact (408 pages), focused, no nonsense read and an essential resource
for anyone venturing into the ORM landscape. The first three chapters of this
book alone are indispensable for developers that want to quickly build an
application leveraging Hibernate, but more importantly really want to under-
stand Hibernate concepts, framework, methodology and the reasons that
shaped the framework design. The remaining chapters continue the compre-
hensive overview of Hibernate that include how to map to and persist objects,
inheritance, transactions, concurrency, caching, retrieving objects efficiently
using HQL, configuring Hibernate for managed and unmanaged environ-
ments, and the Hibernate Toolset that can be leveraged for several different
development scenarios.”

—Columbia Java Users Group

“The authors show their knowledge of relational databases and the paradigm
of mapping this world with the object-oriented world of Java. This is why the
book is so good at explaining Hibernate in the context of solving or providing

a solution to the very complex problem of object/relational mapping.”
—Denver JUG

Java Persistence
with Hibernate

REVISED EDITION OF
HIBERNATE IN ACTION

CHRISTIAN BAUER
AND GAVIN KING

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

Cherokee Station

PO Box 20386 Fax: (609) 877-8256

New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetters: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-88-5
Printed in the United States of America

123456789 10 - VHG - 10 09 08 07 06

brief contents

L 3 O Ot W~

10
11
12

Understanding object/relational persistence 3
Starting a project 37

Domain models and metadata 105

Mapping persistent classes 157

Inheritance and custom types 191

Mapping collections and entity associations 240
Advanced entity association mappings 277

Legacy databases and custom SQL 322

Working with objects 383
Transactions and concurrency 433

Implementing conversations 476
Modifying objects efficiently 517

BRIEF CONTENTS

13
14
15
16

Optimizing fetching and caching 559
Querying with HQL and JPA QL. 614

Advanced query options

Creating and testing layered applications

663

17 = Introducing JBoss Seam 747

appendix A SQL fundamentals 818

appendix B Mapping quick reference

822

697

contents

foreword to the revised edition xix
foreword to the first edition xxi
preface to the revised edition xxii
preface to the first edition xxv
acknowledgments — xxuviii

about this book xxix

about the cover illustration — xxxiii

Understanding object/relational persistence 3
1.1 Whatis persistence? 5

Relational databases 5 = UnderstandingSQL 6 = Using SQL
in Java 7 = Persistence in object-oriented applications 8

1.2 The paradigm mismatch 10

The problem of granularity 12 = The problem of subtypes 13
The problem of identity 14 = Problems relating to

associations 16 = The problem of data navigation 18

The cost of the mismatch 19

viii CONTENTS

1.3 Persistence layers and alternatives 20
Layered architecture 20 = Hand-coding a persistence
layer with SQL/[DBC 22 = Using serialization 23
Object-oriented database systems 23 = Other options 24
1.4 Object/relational mapping 24

What is ORM? 25 = Generic ORM problems 27
Why ORM? 28 = Introducing Hibernate, IJB3,
and JPA 31

1.5 Summary 35

Starting a project 37

2.1 Starting a Hibernate project 38
Selecting a development process 39 = Setting up
the project 41 = Hibernate configuration and
startup 49 = Running and testing the application 60
2.2 Starting a Java Persistence project 68
Using Hibernate Annotations 68 = Using Hibernate
EntityManager 72 = Introducing EJB components 79
Switching to Hibernate interfaces 86
2.3 Reverse engineering a legacy database 88
Creating a database configuration 89 = Customizing
reverse engineering 90 = Generating Java source code 92
2.4 Integration with Java EE services 96
Integration with J[TA 97 = |[NDI-bound SessionFactory 101
JMX service deployment 103

2.5 Summary 104

Domain models and metadata 105

3.1 The CaveatEmptor application 106

Analyzing the business domain 107 = The CaveatEmptor
domain model 108

3.2

3.3

3.4

3.5

CONTENTS

Implementing the domain model 110

Addressing leakage of concerns 111 = Transparent and
automated persistence 112 = Writing POJOs and persistent
entity classes 113 = Implementing POJO associations 116
Adding logic to accessor methods 120

Object/relational mapping metadata 123

Metadata in XML 123 = Annotation-based metadata 125
Using XDoclet 131 = Handling global metadata 133
Manipulating metadata at runtime 138

Alternative entity representation 140

Creating dynamic applications 141 = Representing data
in XML 148

Summary 152

ix

Mapping persistent classes 157

4.1

4.2

4.3

4.4

4.5

Understanding entities and value types 158

Fine-grained domain models 158 = Defining the concept 159
Identifying entities and value types 160

Mapping entities with identity 161
Understanding Java identity and equality 162 = Handling
database identity 162 = Database primary keys 166
Class mapping options 171

Dynamic SQL generation 172 = Making an entity
immutable 173 = Naming entities for querying 173
Declaring a package name 174 » Quoting SOL identifiers 175
Implementing naming conventions 175
Fine-grained models and mappings 177
Mapping basic properties 177 = Mapping components 184

Summary 189

CONTENTS

Inheritance and custom types 191

5.1 Mapping class inheritance 192
Table per concrete class with implicit polymorphism 192
Table per concrete class with unions 195 = Table per
class hierarchy 199 = Table per subclass 203
Mixing inheritance strategies 207 = Choosing a
strategy 210

5.2 The Hibernate type system 212

Recapitulating entity and value types 212
Built-in mapping types 214 = Using mapping
types 219

5.3 Creating custom mapping types 220

Constidering custom mapping types 221 = The
extension points 222 = The case for custom

mapping types 223 = Creating a UserType 224
Creating a CompositeUserType 228 = Parameterizing
custom types 230 = Mapping enumerations 233

54 Summary 239

Mapping collections and entity associations 240

6.1 Sets, bags, lists, and maps of value types 241
Selecting a collection interface 241 = Mapping a
set 243 = Mapping an identifier bag 244
Mapping a list 246 = Mapping a map 247
Sorted and ordered collections 248

6.2 Collections of components 251

Writing the component class 252 = Mapping the
collection 252 = Enabling bidirectional navigation 253
Avoiding not-null columns 254

6.3 Mapping collections with annotations 256

Basic collection mapping 256 = Sorted and ordered
collections 257 = Mapping a collection of embedded objects 258

CONTENTS

6.4 Mapping a parent/children relationship 260

Multiplicity 261 = The simplest possible association 261
Making the association bidirectional 264 = Cascading object
state 267

6.5 Summary 275

Advanced entity association mappings 277

7.1 Single-valued entity associations 278
Shared primary key associations 279 = One-to-one foreign
key associations 282 = Mapping with a join table 285
7.2 Many-valued entity associations 290
One-to-many associations 290 = Many-to-many
associations 297 = Adding columns to join tables 303
Mapping maps 310
7.3 Polymorphic associations 313

Polymorphic many-to-one associations 313 = Polymorphic
collections 315 = Polymorphic associations to unions 316
Polymorphic table per concrete class 319

7.4 Summary 321

Legacy databases and custom SQL 322

8.1 Integrating legacy databases 323
Handling primary keys 324 = Arbitrary join conditions

with formulas 337 = Joining arbitrary tables 342 = Working

with triggers 346

8.2 Customizing SQL 350
Writing custom CRUD statements 351
Integrating stored procedures and functions 356
8.3 Improving schema DDL 364

Custom SQL names and datatypes 365 = Ensuring data
consistency 367 = Adding domains and column

xi

xii CONTENTS

constraints 369 = Table-level constraints 370
Database constraints 373 = Creating indexes 375
Adding auxiliary DDL 376

8.4 Summary 378

Working with objects 383

9.1 The persistence lifecycle 384
Object states 385 = The persistence context 388

9.2 Object identity and equality 391
Introducing conversations 391 = The scope of object
identity 393 = The identity of detached objects 394
Extending a persistence context 400

9.3 The Hibernate interfaces 401

Storing and loading objects 402 = Working with detached
objects 408 = Managing the persistence context 414

9.4 The Java Persistence API 417
Storing and loading objects 417 = Working with detached
entity instances 423

9.5 Using Java Persistence in E]JB components 426

Injecting an EntityManager 426 = Looking up an
EntityManager 429 = Accessing an
EntityManagerFactory 429

9.6 Summary 431

Transactions and concurrency 433

10.1 Transaction essentials 434

Database and system transactions 435 = Transactions in
a Hibernate application 437 = Transactions with Java
Persistence 449

CONTENTS

10.2 Controlling concurrent access 453

Understanding database-level concurrency 453 = Optimistic
concurrency control 458 = Obtaining additional isolation
guarantees 465

10.3 Nontransactional data access 469

Debunking autocommit myths 470 = Working
nontransactionally with Hibernate 471 » Optional
transactions with J[TA 473

10.4 Summary 474

Implementing conversations 476

11.1 Propagating the Hibernate Session 477
The use case for Session propagation 478 = Propagation
through thread-local 480 = Propagation with
JTA 482 = Propagation with E[Bs 483

11.2 Conversations with Hibernate 485
Providing conversational guarantees 485 = Conversations
with detached objects 486 = Extending a Session for a
conversation 489

11.3 Conversations with JPA 497

Persistence context propagation in Java SE 498
Merging detached objects in conversations 499
Extending the persistence context in Java SE 501

11.4 Conversations with EJB 3.0 506

Context propagation with E[Bs 506
Extended persistence contexts with E[Bs 510

11.5 Summary 515

Modifying objects efficiently 517

12.1 Transitive persistence 518

Persistence by reachability 519 = Applying cascading to
associations 520 = Working with transitive state 524
Transitive associations with JPA 531

xiii

Xiv CONTENTS

12.2 Bulk and batch operations 532
Bulk statements with HQL and JPA QL 533 = Processing
with batches 537 = Using a stateless Session 539
12.3 Data filtering and interception 540
Dynamic data filters 541 = Intercepting Hibernate events 546
The core event system 553 = Entity listeners and callbacks 556

124 Summary 558

Optimizing fetching and caching 559

13.1 Defining the global fetch plan 560

The object-retrieval options 560 = The lazy default fetch
plan 564 = Understanding proxies 564 = Disabling proxy
generation 567 ® Lager loading of associations and
collections 568 ® Lazy loading with interception 571

13.2 Selecting a fetch strategy 573
Prefetching data in batches 574 = Prefetching collections with
subselects 577 = Eager fetching with joins 578 = Optimizing
fetching for secondary tables 581 = Optimization
guidelines 584

13.3 Caching fundamentals 592
Caching strategies and scopes 593 = The Hibernate cache
architecture 597

13.4 Caching in practice 602

Selecting a concurrency control strategy 602 = Understanding
cache regions 604 = Setting up a local cache provider 605
Setting up a replicated cache 606 = Controlling the second-level
cache 611

13.5° Summary 612

Querying with HQL and JPA QL 614

14.1 Creating and running queries 615
Preparing a query 616 = Executing a query 625
Using named queries 629

CONTENTS

14.2 Basic HQL and JPA QL queries 633
Selection 633 = Restriction 635 = Projection 641

14.3 Joins, reporting queries, and subselects 643

Joining relations and associations 643 = Reporting
queries 655 = Using subselects 659

14.4 Summary 662

Advanced query options 663
15.1 Querying with criteria and example 664

Basic criteria queries 665 = Joins and dynamic
Setching 670 = Projection and report queries 676
Query by example 680

15.2 Using native SQL queries 683
Automatic resultset handling 683 = Retrieving scalar
values 684 = Native SQL in Java Persistence 686

15.3 Filtering collections 688

15.4 Caching query results 691

Enabling the query result cache 691 = Understanding
the query cache 692 = When to use the query cache 693
Natural identifier cache lookups 693

15,5 Summary 695

Creating and testing layered applications 697

16.1 Hibernate in a web application 698

Introducing the use case 698 = Writing a controller 699
The Open Session in View pattern 701 = Designing smart
domain models 705

16.2 Creating a persistence layer 708

A generic data-access object pattern 709 = Implementing the

generic CRUD interface 711 = Implementing entity DAOs
Using data-access objects 715

XV

Xvi CONTENTS

16.3 Introducing the Command pattern 718
The basic interfaces 719 ® Executing command objects 721
Variations of the Command pattern 723

16.4 Designing applications with EJB 3.0 725

Implementing a conversation with stateful beans 725 = Writing
DAOs with E[Bs 727 = Utilizing dependency injection 728

16.5 Testing 730

Understanding different kinds of tests 731 = Introducing
TestNG 732 = Testing the persistence layer 736
Considering performance benchmarks 744

16.6 Summary 746

Introducing JBoss Seam 747

17.1 The Java EE 5.0 programming model 748
Considering JavaServer Faces 749 = Considering E[B 3.0 751
Writing a web application with JSF and EJB 3.0 752
Analyzing the application 762

17.2 Improving the application with Seam 765
Configuring Seam 766 = Binding pages to stateful Seam
components 767 = Analyzing the Seam application 773

17.3 Understanding contextual components 779

Writing the login page 779 = Creating the components 781
Aliasing contextual variables 784 = Completing the login/logout
feature 786

17.4 Validating user input 789

Introducing Hibernate Validator 790 = Creating the registration
page 791 = Internationalization with Seam 799

17.5

17.6

appendix A
appendix B

CONTENTS

Simplifying persistence with Seam 803

Implementing a conversation 804 = Letting Seam manage the
persistence context 811

Summary 816

SOL fundamentals 818
Mapping quick reference 822
references 824

index 825

xvii

Joreword to the revised edition

When Hibernate in Action was published two years ago, it was immediately recog-
nized not only as the definitive book on Hibernate, but also as the definitive work
on object/relational mapping.

In the intervening time, the persistence landscape has changed with the
release of the Java Persistence API, the new standard for object/relational map-
ping for Java EE and Java SE which was developed under the Java Community Pro-
cess as part of the Enterprise JavaBeans 3.0 Specification.

In developing the Java Persistence API, the EJB 3.0 Expert Group benefitted
heavily from the experience of the O/R mapping frameworks already in use in
the Java community. As one of the leaders among these, Hibernate has had a very
significant influence on the technical direction of Java Persistence. This was due
not only to the participation of Gavin King and other members of the Hibernate
team in the EJB 3.0 standardization effort, but was also due in large part to the
direct and pragmatic approach that Hibernate has taken towards O/R mapping
and to the simplicity, clarity, and power of its APIs—and their resulting appeal to
the Java community.

In addition to their contributions to Java Persistence, the Hibernate develop-
ers also have taken major steps forward for Hibernate with the Hibernate 3
release described in this book. Among these are support for operations over large
datasets; additional and more sophisticated mapping options, especially for han-
dling legacy databases; data filters; strategies for managing conversations; and

Xix

XX

FOREWORD TO THE REVISED EDITION

integration with Seam, the new framework for web application development with
JSF and EJB 3.0.

Java Persistence with Hibernate is therefore considerably more than simply a sec-
ond edition to Hibernate in Action. It provides a comprehensive overview of all the
capabilities of the Java Persistence API in addition to those of Hibernate 3, as well
as a detailed comparative analysis of the two. It describes how Hibernate has been
used to implement the Java Persistence standard, and how to leverage the Hiber-
nate extensions to Java Persistence.

More important, throughout the presentation of Hibernate and Java Persis-
tence, Christian Bauer and Gavin King illustrate and explain the fundamental
principles and decisions that need to be taken into account in both the design
and use of an object/relational mapping framework. The insights they provide
into the underlying issues of ORM give the reader a deep understanding into the
effective application of ORM as an enterprise technology.

Java Persistence with Hibernate thus reaches out to a wide range of developers—
from newcomers to object/relational mapping to experienced developers—seek-
ing to learn more about cutting-edge technological innovations in the Java com-
munity that have occurred and are continuing to emerge as a result of this work.

LINDA DEMICHIEL

Specification Lead

Enterprise JavaBeans 3.0 and Java Persistence
Sun Microsystems

Joreword to the first edition

Relational databases are indisputably at the core of the modern enterprise.

While modern programming languages, including Java™, provide an intuitive,
object-oriented view of application-level business entities, the enterprise data
underlying these entities is heavily relational in nature. Further, the main strength
of the relational model—over earlier navigational models as well as over later
OODB models—is that by design it is intrinsically agnostic to the programmatic
manipulation and application-level view of the data that it serves up.

Many attempts have been made to bridge relational and object-oriented tech-
nologies, or to replace one with the other, but the gap between the two is one of
the hard facts of enterprise computing today. It is this challenge—to provide a
bridge between relational data and Java™ objects—that Hibernate takes on
through its object/relational mapping (ORM) approach. Hibernate meets this
challenge in a very pragmatic, direct, and realistic way.

As Christian Bauer and Gavin King demonstrate in this book, the effective use
of ORM technology in all but the simplest of enterprise environments requires
understanding and configuring how the mediation between relational data and
objects is performed. This demands that the developer be aware and knowledge-
able both of the application and its data requirements, and of the SQL query lan-
guage, relational storage structures, and the potential for optimization that
relational technology offers.

xxi

xxii

FOREWORD TO THE FIRST EDITION

Not only does Hibernate provide a full-function solution that meets these
requirements head on, it is also a flexible and configurable architecture. Hiber-
nate’s developers designed it with modularity, pluggability, extensibility, and user
customization in mind. As a result, in the few years since its initial release,
Hibernate has rapidly become one of the leading ORM technologies for enter-
prise developers—and deservedly so.

This book provides a comprehensive overview of Hibernate. It covers how to
use its type mapping capabilities and facilities for modeling associations and
inheritance; how to retrieve objects efficiently using the Hibernate query lan-
guage; how to configure Hibernate for use in both managed and unmanaged
environments; and how to use its tools. In addition, throughout the book the
authors provide insight into the underlying issues of ORM and into the design
choices behind Hibernate. These insights give the reader a deep understanding
of the effective use of ORM as an enterprise technology.

Hibernate in Action is the definitive guide to using Hibernate and to object/rela-
tional mapping in enterprise computing today.

LINDA DEMICHIEL
Lead Architect, Enterprise JavaBeans
Sun Microsystems

preface to the revised edition

The predecessor of this book, Hibernate in Action, started with a quote from
Anthony Berglas: “Just because it is possible to push twigs along the ground with
one’s nose does not necessarily mean that that is the best way to collect firewood.”
Since then, the Hibernate project and the strategies and concepts software devel-
opers rely on to manage information have evolved. However, the fundamental
issues are still the same—every company we work with every day still uses SQL data-
bases, and Java is entrenched in the industry as the first choice for enterprise
application development.

The tabular representation of data in a relational system is still fundamentally
different than the networks of objects used in object-oriented Java applications.
We still see the object/relational impedance mismatch, and we frequently see that
the importance and cost of this mismatch is underestimated.

On the other hand, we now have a range of tools and solutions available to
deal with this problem. We’re done collecting firewood, and the pocket lighter
has been replaced with a flame thrower.

Hibernate is now available in its third major release; Hibernate 3.2 is the ver-
sion we describe in this book. Compared to older Hibernate versions, this new
major release has twice as many features—and this book is almost double the size
of Hibernate in Action. Most of these features are ones that you, the developers
working with Hibernate every day, have asked for. We’ve sometimes said that
Hibernate is a 90 percent solution for all the problems a Java application devel-

xxiii

XXiv

PREFACE TO THE REVISED EDITION

oper has to deal with when creating a database application. With the latest Hiber-
nate version, this number is more likely 99 percent.

As Hibernate matured and its user base and community kept growing, the Java
standards for data management and database application development were
found lacking by many developers. We even told you not to use EJB 2.x entity
beans in Hibernate in Action.

Enter E]JB 3.0 and the new Java Persistence standard. This new industry stan-
dard is a major step forward for the Java developer community. It defines a light-
weight and simplified programming model and powerful object/relational
persistence. Many of the key concepts of the new standard were modeled after
Hibernate and other successful object/relational persistence solutions. The latest
Hibernate version implements the Java Persistence standard.

So, in addition to the new all-in-one Hibernate for every purpose, you can now
use Hibernate like any Java Persistence provider, with or without other EJB 3.0
components and Java EE 5.0 services. This deep integration of Hibernate with
such a rich programming model enables you to design and implement applica-
tion functionality that was difficult to create by hand before.

We wrote this book to give you a complete and accurate guide to both Hiber-
nate and Java Persistence (and also all relevant EJB 3.0 concepts). We hope that
you’ll enjoy learning Hibernate and that you'll keep this reference bible on your
desk for your daily work.

preface to the first edition

Just because it is possible to push twigs along the ground with one’s nose does
not necessarily mean that that is the best way to collect firewood.
—Anthony Berglas

Today, many software developers work with Enterprise Information Systems (EIS).
This kind of application creates, manages, and stores structured information and
shares this information between many users in multiple physical locations.

The storage of EIS data involves massive usage of SQL-based database manage-
ment systems. Every company we’ve met during our careers uses at least one SQL
database; most are completely dependent on relational database technology at
the core of their business.

In the past five years, broad adoption of the Java programming language has
brought about the ascendancy of the object-oriented paradigm for software devel-
opment. Developers are now sold on the benefits of object orientation. However,
the vast majority of businesses are also tied to long-term investments in expensive
relational database systems. Not only are particular vendor products entrenched,
but existing legacy data must be made available to (and via) the shiny new object-
oriented web applications.

However, the tabular representation of data in a relational system is fundamen-
tally different than the networks of objects used in object-oriented Java applica-
tions. This difference has led to the so-called object/relational paradigm mismatch.

XXV

XXVi

PREFACE TO THE FIRST EDITION

Traditionally, the importance and cost of this mismatch have been underesti-
mated, and tools for solving the mismatch have been insufficient. Meanwhile, Java
developers blame relational technology for the mismatch; data professionals
blame object technology.

Object/relational mapping (ORM) is the name given to automated solutions to the
mismatch problem. For developers weary of tedious data access code, the good
news is that ORM has come of age. Applications built with ORM middleware can be
expected to be cheaper, more performant, less vendor-specific, and more able to
cope with changes to the internal object or underlying SQL schema. The astonish-
ing thing is that these benefits are now available to Java developers for free.

Gavin King began developing Hibernate in late 2001 when he found that the
popular persistence solution at the time—CMP Entity Beans—didn’t scale to non-
trivial applications with complex data models. Hibernate began life as an inde-
pendent, noncommercial open source project.

The Hibernate team (including the authors) has learned ORM the hard way—
that is, by listening to user requests and implementing what was needed to satisty
those requests. The result, Hibernate, is a practical solution, emphasizing devel-
oper productivity and technical leadership. Hibernate has been used by tens of
thousands of users and in many thousands of production applications.

When the demands on their time became overwhelming, the Hibernate team
concluded that the future success of the project (and Gavin’s continued sanity)
demanded professional developers dedicated full-time to Hibernate. Hibernate
joined jboss.org in late 2003 and now has a commercial aspect; you can purchase
commercial support and training from JBoss Inc. But commercial training
shouldn’t be the only way to learn about Hibernate.

It’s obvious that many, perhaps even most, Java projects benefit from the use of
an ORM solution like Hibernate—although this wasn’t obvious a couple of years
ago! As ORM technology becomes increasingly mainstream, product documenta-
tion such as Hibernate’s free user manual is no longer sufficient. We realized that
the Hibernate community and new Hibernate users needed a full-length book,
not only to learn about developing software with Hibernate, but also to under-
stand and appreciate the object/relational mismatch and the motivations behind
Hibernate’s design.

PREFACE TO THE FIRST EDITION XXVii

The book you’re holding was an enormous effort that occupied most of our
spare time for more than a year. It was also the source of many heated disputes
and learning experiences. We hope this book is an excellent guide to Hibernate
(or, “the Hibernate bible,” as one of our reviewers put it) and also the first com-
prehensive documentation of the object/relational mismatch and ORM in gen-
eral. We hope you find it helpful and enjoy working with Hibernate.

acknowledgments

This book grew from a small second edition of Hibernate in Action into a volume of
considerable size. We couldn’t have created it without the help of many people.

Emmanuel Bernard did an excellent job as the technical reviewer of this book;
thank you for the many hours you spent editing our broken code examples. We’d
also like to thank our other reviewers: Patrick Dennis, Jon Skeet, Awais Bajwa,
Dan Dobrin, Deiveehan Nallazhagappan, Ryan Daigle, Stuart Caborn, Patrick
Peak, TVS Murthy, Bill Fly, David Walend, Dave Dribin, Anjan Bacchu, Gary
Udstrand, and Srinivas Nallapati. Special thanks to Linda DiMichiel for agreeing
to write the foreword to our book, as she did to the first edition

Marjan Bace again assembled a great production team at Manning: Sydney
Jones edited our crude manuscript and turned it into a real book. Tiffany Taylor,
Elizabeth Martin, and Andy Carroll found all our typos and made the book read-
able. Dottie Marsico was responsible for typesetting and gave this book its great
look. Mary Piergies coordinated and organized the production process. We’d like
to thank you all for working with us.

XXviii

about this book

We had three goals when writing this book, so you can read it as

= A tutorial for Hibernate, Java Persistence, and EJB 3.0 that guides you
through your first steps with these solutions

= A guide for learning all basic and advanced Hibernate features for object/
relational mapping, object processing, querying, performance optimiza-
tion, and application design

= Areference for whenever you need a complete and technically accurate def-
inition of Hibernate and Java Persistence functionality

Usually, books are either tutorials or reference guides, so this stretch comes at a
price. If you’re new to Hibernate, we suggest that you start reading the book from
the start, with the tutorials in chapters 1 and 2. If you have used an older version
of Hibernate, you should read the first two chapters quickly to get an overview
and then jump into the middle with chapter 3.

We will, whenever appropriate, tell you if a particular section or subject is
optional or reference material that you can safely skip during your first read.

Roadmap
This book is divided into three major parts.

In part 1, we introduce the object/relational paradigm mismatch and explain
the fundamentals behind object/relational mapping. We walk through a hands-

XXIiX

XXX

ABOUT THIS BOOK

on tutorial to get you started with your first Hibernate, Java Persistence, or EJB 3.0
project. We look at Java application design for domain models and at the options
for creating object/relational mapping metadata.

Mapping Java classes and properties to SQL tables and columns is the focus of
part 2. We explore all basic and advanced mapping options in Hibernate and Java
Persistence, with XML mapping files and Java annotations. We show you how to
deal with inheritance, collections, and complex class associations. Finally, we dis-
cuss integration with legacy database schemas and some mapping strategies that
are especially tricky.

Part 3 is all about the processing of objects and how you can load and store
data with Hibernate and Java Persistence. We introduce the programming inter-
faces, how to write transactional and conversation-aware applications, and how to
write queries. Later, we focus on the correct design and implementation of lay-
ered Java applications. We discuss the most common design patterns that are used
with Hibernate, such as the Data Access Object (DAO) and EJB Command pat-
terns. You’ll see how you can test your Hibernate application easily and what other
best practices are relevant if you work an object/relational mapping software.

Finally, we introduce the JBoss Seam framework, which takes many Hibernate
concepts to the next level and enables you to create conversational web applica-
tions with ease. We promise you’ll find this chapter interesting, even if you don’t
plan to use Seam.

Who should read this book?

Readers of this book should have basic knowledge of object-oriented software
development and should have used this knowledge in practice. To understand the
application examples, you should be familiar with the Java programming lan-
guage and the Unified Modeling Language.

Our primary target audience consists of Java developers who work with SQL-
based database systems. We’ll show you how to substantially increase your produc-
tivity by leveraging ORM.

If you’re a database developer, the book can be part of your introduction to
object-oriented software development.

If you’re a database administrator, you’ll be interested in how ORM affects per-
formance and how you can tune the performance of the SQL database-manage-
ment system and persistence layer to achieve performance targets. Because data

ABOUT THIS BOOK XXXi

access is the bottleneck in most Java applications, this book pays close attention to
performance issues. Many DBAs are understandably nervous about entrusting per-
formance to tool-generated SQL code; we seek to allay those fears and also to
highlight cases where applications shouldn’t use tool-managed data access. You
may be relieved to discover that we don’t claim that ORM is the best solution to
every problem.

Code conventions

This book provides copious examples, which include all the Hibernate applica-
tion artifacts: Java code, Hibernate configuration files, and XML mapping meta-
data files. Source code in listings or in text is in a fixed-width font like this to
separate it from ordinary text. Additionally, Java method names, component
parameters, object properties, and XML elements and attributes in text are also
presented using fixed-width font.

Java, HTML, and XML can all be verbose. In many cases, the original source
code (available online) has been reformatted; we’ve added line breaks and
reworked indentation to accommodate the available page space in the book. In
rare cases, even this was not enough, and listings include line-continuation mark-
ers. Additionally, comments in the source code have often been removed from
the listings when the code is described in the text.

Code annotations accompany some of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that fol-
low the listing.

Source code downloads

Hibernate is an open source project released under the Lesser GNU Public
License. Directions for downloading Hibernate packages, in source or binary
form, are available from the Hibernate web site: www.hibernate.org/.

The source code for all Hello World and CaveatEmptor examples in this book
is available from http://caveatemptor.hibernate.org/ under a free (BSD-like)
license. The CaveatEmptor example application code is available on this web site
in different flavors—for example, with a focus on native Hibernate, on Java Persis-
tence, and on JBoss Seam. You can also download the code for the examples in
this book from the publisher’s website, www.manning.com/bauer?2.

xXxxii

ABOUT THIS BOOK

About the authors

Christian Bauer is a member of the Hibernate developer team. He works as a
trainer, consultant, and product manager for Hibernate, EJB 3.0, and JBoss Seam
at JBoss, a division of Red Hat. With Gavin King, Christian wrote Hibernate in
Action.

Gavin King is the founder of the Hibernate and JBoss Seam projects, and a
member of the EJB 3.0 (JSR 220) expert group. He also leads the Web Beans JSR
299, a standardization effort involving Hibernate concepts, JBoss Seam, JSF, and
EJB 3.0. Gavin works as a lead developer at JBoss, a division of Red Hat.

Author Online

Your purchase of Java Persistence with Hibernateincludes free access to a private web
forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the authors and from other
users. To access the forum and subscribe to it, point your web browser to
www.manning.com/bauer2. This page provides information on how to get onto the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue among individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the AO remains voluntary (and unpaid).
We suggest you try asking the authors some challenging questions, lest their inter-
est stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the cover illustration

The illustration on the cover of Java Persistence with Hibernate is taken from a col-
lection of costumes of the Ottoman Empire published on January 1, 1802, by Wil-
liam Miller of Old Bond Street, London. The title page is missing from the
collection and we have been unable to track it down to date. The book’s table of
contents identifies the figures in both English and French, and each illustration
bears the names of two artists who worked on it, both of whom would no doubt be
surprised to find their art gracing the front cover of a computer programming
book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to
be nothing more than an old-fashioned verbal agreement sealed with a hand-
shake. The seller simply proposed that the money be transferred to him by wire
and the editor walked out with the bank information on a piece of paper and the
portfolio of images under his arm. Needless to say, we transferred the funds the
next day, and we remain grateful and impressed by this unknown person’s trust in
one of us. It recalls something that might have happened a long time ago.

xxxiii

XXXIV

ABOUT THE COVER ILLUSTRATION

The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period—and
of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago, brought back to life by the pictures from this collection.

Part 1

Getting started with
Hibernate and EJB 3.0

In part 1, we show you why object persistence is such a complex topic and what
solutions you can apply in practice. Chapter 1 introduces the object/relational
paradigm mismatch and several strategies to deal with it, foremost object/rela-
tional mapping (ORM). In chapter 2, we guide you step by step through a tutorial
with Hibernate, Java Persistence, and EJB 3.0—you’ll implement and test a “Hello
World” example in all variations. Thus prepared, in chapter 3 you're ready to
learn how to design and implement complex business domain models in Java, and
which mapping metadata options you have available.

After reading this part of the book, you’ll understand why you need object/
relational mapping, and how Hibernate, Java Persistence, and EJB 3.0 work in
practice. You’ll have written your first small project, and you’ll be ready to take on
more complex problems. You’ll also understand how real-world business entities
can be implemented as a Java domain model, and in what format you prefer to
work with object/relational mapping metadata.

Understanding
object/relational
persistence

This chapter covers

Object persistence with SQL databases
The object/relational paradigm mismatch

Persistence layers in object-oriented
applications

Object/relational mapping background

CHAPTER 1
Understanding object/relational persistence

The approach to managing persistent data has been a key design decision in
every software project we’ve worked on. Given that persistent data isn’t a new or
unusual requirement for Java applications, you’d expect to be able to make a
simple choice among similar, well-established persistence solutions. Think of
web application frameworks (Struts versus WebWork), GUI component frame-
works (Swing versus SWT), or template engines (JSP versus Velocity). Each of the
competing solutions has various advantages and disadvantages, but they all share
the same scope and overall approach. Unfortunately, this isn’t yet the case with
persistence technologies, where we see some wildly differing solutions to the
same problem.

For several years, persistence has been a hot topic of debate in the Java commu-
nity. Many developers don’t even agree on the scope of the problem. Is persistence
a problem that is already solved by relational technology and extensions such as
stored procedures, or is it a more pervasive problem that must be addressed by spe-
cial Java component models, such as EJB entity beans? Should we hand-code even
the most primitive CRUD (create, read, update, delete) operations in SQL and
JDBC, or should this work be automated? How do we achieve portability if every
database management system has its own SQL dialect? Should we abandon SQL
completely and adopt a different database technology, such as object database sys-
tems? Debate continues, but a solution called object/relational mapping (ORM) now
has wide acceptance. Hibernate is an open source ORM service implementation.

Hibernate is an ambitious project that aims to be a complete solution to the
problem of managing persistent data in Java. It mediates the application’s interac-
tion with a relational database, leaving the developer free to concentrate on the
business problem at hand. Hibernate is a nonintrusive solution. You aren’t
required to follow many Hibernate-specific rules and design patterns when writing
your business logic and persistent classes; thus, Hibernate integrates smoothly with
most new and existing applications and doesn’t require disruptive changes to the
rest of the application.

This book is about Hibernate. We’ll cover basic and advanced features and
describe some ways to develop new applications using Hibernate. Often, these
recommendations won’t even be specific to Hibernate. Sometimes they will be
our ideas about the best ways to do things when working with persistent data,
explained in the context of Hibernate. This book is also about Java Persistence, a
new standard for persistence that is part of the also updated EJB 3.0 specification.
Hibernate implements Java Persistence and supports all the standardized map-
pings, queries, and APIs. Before we can get started with Hibernate, however, you
need to understand the core problems of object persistence and object/relational

11

111

What is persistence? 5

mapping. This chapter explains why tools like Hibernate and specifications such
as Java Persistence and EJB 3.0 are needed.

First, we define persistent data management in the context of object-oriented
applications and discuss the relationship of SQL, JDBC, and Java, the underlying
technologies and standards that Hibernate is built on. We then discuss the so-
called object/relational paradigm mismatch and the generic problems we encounter
in object-oriented software development with relational databases. These prob-
lems make it clear that we need tools and patterns to minimize the time we have
to spend on the persistence-related code of our applications. After we look at
alternative tools and persistence mechanisms, you’ll see that ORM is the best avail-
able solution for many scenarios. Our discussion of the advantages and drawbacks
of ORM will give you the full background to make the best decision when picking
a persistence solution for your own project.

We also take a look at the various Hibernate software modules, and how you
can combine them to either work with Hibernate only, or with Java Persistence
and EJB 3.0-compliant features.

The best way to learn Hibernate isn’t necessarily linear. We understand that
you may want to try Hibernate right away. If this is how you’d like to proceed, skip
to the second chapter of this book and have a look at the “Hello World” example
and set up a project. We recommend that you return here at some point as you
circle through the book. That way, you’ll be prepared and have all the back-
ground concepts you need for the rest of the material.

What is persistence?

Almost all applications require persistent data. Persistence is one of the funda-
mental concepts in application development. If an information system didn’t
preserve data when it was powered off, the system would be of little practical use.
When we talk about persistence in Java, we’re normally talking about storing
data in a relational database using SQL. We’ll start by taking a brief look at the
technology and how we use it with Java. Armed with that information, we’ll then
continue our discussion of persistence and how it’s implemented in object-ori-
ented applications.

Relational databases

You, like most other developers, have probably worked with a relational database.
Most of us use a relational database every day. Relational technology is a known
quantity, and this alone is sufficient reason for many organizations to choose it.

112

CHAPTER 1
Understanding object/relational persistence

But to say only this is to pay less respect than is due. Relational databases are
entrenched because they’re an incredibly flexible and robust approach to data
management. Due to the complete and consistent theoretical foundation of the
relational data model, relational databases can effectively guarantee and protect
the integrity of the data, among other desirable characteristics. Some people
would even say that the last big invention in computing has been the relational
concept for data management as first introduced by E.F. Codd (Codd, 1970)
more than three decades ago.

Relational database management systems aren’t specific to Java, nor is a rela-
tional database specific to a particular application. This important principle is
known as data independence. In other words, and we can’t stress this important fact
enough, data lives longer than any application does. Relational technology provides a
way of sharing data among different applications, or among different technolo-
gies that form parts of the same application (the transactional engine and the
reporting engine, for example). Relational technology is a common denominator
of many disparate systems and technology platforms. Hence, the relational data
model is often the common enterprise-wide representation of business entities.

Relational database management systems have SQL-based application program-
ming interfaces; hence, we call today’s relational database products SQL database
management systems or, when we’re talking about particular systems, SQL databases.

Before we go into more detail about the practical aspects of SQL databases, we
have to mention an important issue: Although marketed as relational, a database
system providing only an SQL data language interface isn’t really relational and in
many ways isn’t even close to the original concept. Naturally, this has led to confu-
sion. SQL practitioners blame the relational data model for shortcomings in the
SQL language, and relational data management experts blame the SQL standard
for being a weak implementation of the relational model and ideals. Application
developers are stuck somewhere in the middle, with the burden to deliver some-
thing that works. We’ll highlight some important and significant aspects of this
issue throughout the book, but generally we’ll focus on the practical aspects. If
you’re interested in more background material, we highly recommend Practical
Issues in Database Management: A Reference for the Thinking Practitioner by Fabian Pas-
cal (Pascal, 2000).

Understanding SQL

To use Hibernate effectively, a solid understanding of the relational model and
SQL is a prerequisite. You need to understand the relational model and topics
such as normalization to guarantee the integrity of your data, and you’ll need to

113

What is persistence? 7

use your knowledge of SQL to tune the performance of your Hibernate applica-
tion. Hibernate automates many repetitive coding tasks, but your knowledge of
persistence technology must extend beyond Hibernate itself if you want to take
advantage of the full power of modern SQL databases. Remember that the under-
lying goal is robust, efficient management of persistent data.

Let’s review some of the SQL terms used in this book. You use SQL as a data def-
inition language (DDL) to create a database schema with CREATE and ALTER state-
ments. After creating tables (and indexes, sequences, and so on), you use SQL as a
data manipulation language (DML) to manipulate and retrieve data. The manipula-
tion operations include insertions, updates, and deletions. You retrieve data by exe-
cuting queries with vestrictions, projections, and join operations (including the
Cartesian product). For efficient reporting, you use SQL to group, order, and aggregate
data as necessary. You can even nest SQL statements inside each other; this tech-
nique uses subselects.

You’ve probably used SQL for many years and are familiar with the basic opera-
tions and statements written in this language. Still, we know from our own experi-
ence that SQL is sometimes hard to remember, and some terms vary in usage. To
understand this book, we must use the same terms and concepts, so we advise you
to read appendix A if any of the terms we’ve mentioned are new or unclear.

If you need more details, especially about any performance aspects and how
SQL is executed, get a copy of the excellent book SQL Tuning by Dan Tow (Tow,
2003). Also read An Introduction to Database Systems by Chris Date (Date, 2003) for
the theory, concepts, and ideals of (relational) database systems. The latter book
is an excellent reference (it’s big) for all questions you may possibly have about
databases and data management.

Although the relational database is one part of ORM, the other part, of course,
consists of the objects in your Java application that need to be persisted to and
loaded from the database using SQL.

Using SQL in Java

When you work with an SQL database in a Java application, the Java code issues
SQL statements to the database via the Java Database Connectivity (JDBC) APL
Whether the SQL was written by hand and embedded in the Java code, or gener-
ated on the fly by Java code, you use the JDBC API to bind arguments to prepare
query parameters, execute the query, scroll through the query result table,
retrieve values from the result set, and so on. These are low-level data access tasks;
as application developers, we’re more interested in the business problem that
requires this data access. What we’d really like to write is code that saves and

1.1.4

CHAPTER 1
Understanding object/relational persistence

retrieves objects—the instances of our classes—to and from the database, reliev-
ing us of this low-level drudgery.

Because the data access tasks are often so tedious, we have to ask: Are the rela-
tional data model and (especially) SQL the right choices for persistence in object-
oriented applications? We answer this question immediately: Yes! There are many
reasons why SQL databases dominate the computing industry—relational data-
base management systems are the only proven data management technology, and
they’re almost always a requirement in any Java project.

However, for the last 15 years, developers have spoken of a paradigm mismatch.
This mismatch explains why so much effort is expended on persistence-related
concerns in every enterprise project. The paradigms referred to are object model-
ing and relational modeling, or perhaps object-oriented programming and SQL.

Let’s begin our exploration of the mismatch problem by asking what persistence
means in the context of objectoriented application development. First we’ll
widen the simplistic definition of persistence stated at the beginning of this sec-
tion to a broader, more mature understanding of what is involved in maintaining
and using persistent data.

Persistence in object-oriented applications

In an object-oriented application, persistence allows an object to outlive the pro-
cess that created it. The state of the object can be stored to disk, and an object
with the same state can be re-created at some point in the future.

This isn’t limited to single objects—entire networks of interconnected objects
can be made persistent and later re-created in a new process. Most objects aren’t
persistent; a transient object has a limited lifetime that is bounded by the life of
the process that instantiated it. Almost all Java applications contain a mix of per-
sistent and transient objects; hence, we need a subsystem that manages our per-
sistent data.

Modern relational databases provide a structured representation of persistent
data, enabling the manipulating, sorting, searching, and aggregating of data.
Database management systems are responsible for managing concurrency and
data integrity; they’re responsible for sharing data between multiple users and
multiple applications. They guarantee the integrity of the data through integrity
rules that have been implemented with constraints. A database management sys-
tem provides data-level security. When we discuss persistence in this book, we’re
thinking of all these things:

What is persistence? 9

= Storage, organization, and retrieval of structured data
= Concurrency and data integrity

= Data sharing

And, in particular, we're thinking of these problems in the context of an object-
oriented application that uses a domain model.

An application with a domain model doesn’t work directly with the tabular rep-
resentation of the business entities; the application has its own object-oriented
model of the business entities. If the database of an online auction system has ITEM
and BID tables, for example, the Java application defines Item and Bid classes.

Then, instead of directly working with the rows and columns of an SQL result
set, the business logic interacts with this object-oriented domain model and its
runtime realization as a network of interconnected objects. Each instance of a Bid
has a reference to an auction Item, and each Item may have a collection of refer-
ences to Bid instances. The business logic isn’t executed in the database (as an
SQL stored procedure); it’s implemented in Java in the application tier. This
allows business logic to make use of sophisticated object-oriented concepts such as
inheritance and polymorphism. For example, we could use well-known design
patterns such as Strategy, Mediator, and Composite (Gamma and others, 1995), all of
which depend on polymorphic method calls.

Now a caveat: Not all Java applications are designed this way, nor should they
be. Simple applications may be much better off without a domain model. Com-
plex applications may have to reuse existing stored procedures. SQL and the JDBC
API are perfectly serviceable for dealing with pure tabular data, and the JDBC
RowSet makes CRUD operations even easier. Working with a tabular representation
of persistent data is straightforward and well understood.

However, in the case of applications with nontrivial business logic, the domain
model approach helps to improve code reuse and maintainability significantly. In
practice, both strategies are common and needed. Many applications need to exe-
cute procedures that modify large sets of data, close to the data. At the same time,
other application modules could benefit from an object-oriented domain model
that executes regular online transaction processing logic in the application tier.
An efficient way to bring persistent data closer to the application code is required.

If we consider SQL and relational databases again, we finally observe the mis-
match between the two paradigms. SQL operations such as projection and join
always result in a tabular representation of the resulting data. (This is known as

10

1.2

CHAPTER 1
Understanding object/relational persistence

transitive closure; the result of an operation on relations is always a relation.) This is
quite different from the network of interconnected objects used to execute the
business logic in a Java application. These are fundamentally different models,
not just different ways of visualizing the same model.

With this realization, you can begin to see the problems—some well understood
and some less well understood—that must be solved by an application that com-
bines both data representations: an object-oriented domain model and a persistent
relational model. Let’s take a closer look at this so-called paradigm mismatch.

The paradigm mismatch

The object/relational paradigm mismatch can be broken into several parts, which
we’ll examine one at a time. Let’s start our exploration with a simple example that
is problem free. As we build on it, you’ll begin to see the mismatch appear.

Suppose you have to design and implement an online e-commerce applica-
tion. In this application, you need a class to represent information about a user of
the system, and another class to represent information about the user’s billing
details, as shown in figure 1.1.

In this diagram, you can see that a User has many BillingDetails. You can
navigate the relationship between the classes in both directions. The classes repre-
senting these entities may be extremely simple:

public class User ({
private String username;
private String name;

private String address;
private Set billingDetails;

// Accessor methods (getter/setter), business methods, etc.

}

public class BillingDetails {
private String accountNumber;
private String accountName;
private String accountType;
private User user;

// Accessor methods (getter/setter), business methods, etc.

Figure 1.1
User ; BillingDetails A simple UML class diagram of the
User and BillingDetails entities

The paradigm mismatch 11

Note that we’re only interested in the state of the entities with regard to persis-
tence, so we’ve omitted the implementation of property accessors and business
methods (such as getUsername () or billAuction()).

It’s easy to come up with a good SQL schema design for this case:

create table USERS (

USERNAME varchar(15) not null primary key,
NAME varchar (50) not null,
ADDRESS varchar (100)

lreate table BILLING_DETAILS (

ACCOUNT_NUMBER varchar (10) not null primary key,
ACCOUNT_NAME varchar (50) not null,

ACCOUNT_TYPE varchar(2) not null,

USERNAME varchar (15) foreign key references user

)

The relationship between the two entities is represented as the foreign key,
USERNAME, in BILLING_DETAILS. For this simple domain model, the object/rela-
tional mismatch is barely in evidence; it’s straightforward to write JDBC code to
insert, update, and delete information about users and billing details.

Now, let’s see what happens when we consider something a little more realistic.
The paradigm mismatch will be visible when we add more entities and entity rela-
tionships to our application.

The most glaringly obvious problem with our current implementation is that
we’ve designed an address as a simple String value. In most systems, it’s neces-
sary to store street, city, state, country, and ZIP code information separately. Of
course, we could add these properties directly to the User class, but because it’s
highly likely that other classes in the system will also carry address information, it
makes more sense to create a separate Address class. The updated model is
shown in figure 1.2.

Should we also add an ADDRESS table? Not necessarily. It’'s common to keep
address information in the USERS table, in individual columns. This design is
likely to perform better, because a table join isn’t needed if you want to retrieve
the user and address in a single query. The nicest solution may even be to create a
user-defined SQL datatype to represent addresses, and to use a single column of
that new type in the USERS table instead of several new columns.

Basically, we have the choice of adding either several columns or a single col-
umn (of a new SQL datatype). This is clearly a problem of granularity.

1.* "
Address - User BillingDetails | Figure 1.2
The User has an Address

12

1.2.1

CHAPTER 1
Understanding object/relational persistence

The problem of granularity

Granularity refers to the relative size of the types you’re working with.

Let’s return to our example. Adding a new datatype to our database catalog,
to store Address Java instances in a single column, sounds like the best
approach. A new Address type (class) in Java and a new ADDRESS SQL datatype
should guarantee interoperability. However, you’ll find various problems if you
check the support for user-defined datatypes (UDT) in today’s SQL database
management systems.

UDT support is one of a number of so-called object-relational extensions to tradi-
tional SQL. This term alone is confusing, because it means that the database man-
agement system has (or is supposed to support) a sophisticated datatype system—
something you take for granted if somebody sells you a system that can handle
data in a relational fashion. Unfortunately, UDT support is a somewhat obscure
feature of most SQL database management systems and certainly isn’t portable
between different systems. Furthermore, the SQL standard supports user-defined
datatypes, but poorly.

This limitation isn’t the fault of the relational data model. You can consider
the failure to standardize such an important piece of functionality as fallout from
the objectrelational database wars between vendors in the mid-1990s. Today, most
developers accept that SQL products have limited type systems—no questions
asked. However, even with a sophisticated UDT system in our SQL database man-
agement system, we would likely still duplicate the type declarations, writing the
new type in Java and again in SQL. Attempts to find a solution for the Java space,
such as SQLJ, unfortunately, have not had much success.

For these and whatever other reasons, use of UDTs or Java types inside an SQL
database isn’t common practice in the industry at this time, and it’s unlikely that
you’ll encounter a legacy schema that makes extensive use of UDTs. We therefore
can’t and won'’t store instances of our new Address class in a single new column
that has the same datatype as the Java layer.

Our pragmatic solution for this problem has several columns of built-in ven-
dor-defined SQL types (such as boolean, numeric, and string datatypes). The
USERS table is usually defined as follows:

create table USERS (

USERNAME varchar (15) not null primary key,
NAME varchar (50) not null,
ADDRESS_STREET varchar (50),

ADDRESS_CITY wvarchar(15),
ADDRESS_STATE varchar (15),

1.2.2

The paradigm mismatch 13

ADDRESS_ZIPCODE varchar (5),
ADDRESS_COUNTRY varchar (15)
)

Classes in our domain model come in a range of different levels of granularity—
from coarse-grained entity classes like User, to finer-grained classes like Address,
down to simple String-valued properties such as zipcode. In contrast, just two
levels of granularity are visible at the level of the SQL database: tables such as
USERS, and columns such as ADDRESS_ZIPCODE.

Many simple persistence mechanisms fail to recognize this mismatch and so
end up forcing the less flexible SQL representation upon the object model. We’ve
seen countless User classes with properties named zipcode!

It turns out that the granularity problem isn’t especially difficult to solve. We
probably wouldn’t even discuss it, were it not for the fact that it’s visible in so
many existing systems. We describe the solution to this problem in chapter 4, sec-
tion 4.4, “Fine-grained models and mappings.”

A much more difficult and interesting problem arises when we consider
domain models that rely on inheritance, a feature of object-oriented design we may
use to bill the users of our e-commerce application in new and interesting ways.

The problem of subtypes

In Java, you implement type inheritance using superclasses and subclasses. To
illustrate why this can present a mismatch problem, let’s add to our e-commerce
application so that we now can accept not only bank account billing, but also
credit and debit cards. The most natural way to reflect this change in the model is
to use inheritance for the BillingDetails class.

We may have an abstract BillingDetails superclass, along with several con-
crete subclasses: CreditCard, BankAccount, and so on. Each of these subclasses
defines slightly different data (and completely different functionality that acts on
that data). The UML class diagram in figure 1.3 illustrates this model.

SQL should probably include standard support for supertables and subtables.
This would effectively allow us to create a table that inherits certain columns from

User BillingDetails

!

CreditCard BankAccount

Figure 1.3
Using inheritance for different billing strategies

14

123

CHAPTER 1
Understanding object/relational persistence

its parent. However, such a feature would be questionable, because it would intro-
duce a new notion: virtual columns in base tables. Traditionally, we expect virtual
columns only in virtual tables, which are called views. Furthermore, on a theoreti-
cal level, the inheritance we applied in Java is lype inheritance. A table isn’t a type,
so the notion of supertables and subtables is questionable. In any case, we can
take the short route here and observe that SQL database products don’t generally
implement type or table inheritance, and if they do implement it, they don’t fol-
low a standard syntax and usually expose you to data integrity problems (limited
integrity rules for updatable views).

In chapter 5, section 5.1, “Mapping class inheritance,” we discuss how ORM
solutions such as Hibernate solve the problem of persisting a class hierarchy to a
database table or tables. This problem is now well understood in the community,
and most solutions support approximately the same functionality.

But we aren’t finished with inheritance. As soon as we introduce inheritance
into the model, we have the possibility of polymorphism.

The User class has an association to the BillingDetails superclass. This is a
polymorphic association. At runtime, a User object may reference an instance of any
of the subclasses of BillingDetails. Similarly, we want to be able to write polymor-
phic queries that refer to the BillingDetails class, and have the query return
instances of its subclasses.

SQL databases also lack an obvious way (or at least a standardized way) to rep-
resent a polymorphic association. A foreign key constraint refers to exactly one tar-
gettable;itisn’tstraightforward to define a foreign key that refers to multiple tables.
We’d have to write a procedural constraint to enforce this kind of integrity rule.

The result of this mismatch of subtypes is that the inheritance structure in your
model must be persisted in an SQL database that doesn’t offer an inheritance
strategy. Fortunately, three of the inheritance mapping solutions we show in chap-
ter 5 are designed to accommodate the representation of polymorphic associa-
tions and the efficient execution of polymorphic queries.

The next aspect of the object/relational mismatch problem is the issue of object
identity. You probably noticed that we defined USERNAME as the primary key of our
USERS table. Was that a good choice? How do we handle identical objects in Java?

The problem of identity

Although the problem of object identity may not be obvious at first, we’ll encoun-
ter it often in our growing and expanding e-commerce system, such as when we
need to check whether two objects are identical. There are three ways to tackle

The paradigm mismatch 15

this problem: two in the Java world and one in our SQL database. As expected,
they work together only with some help.
Java objects define two different notions of sameness:

= Object identity (roughly equivalent to memory location, checked with
a==Db)

= Equality as determined by the implementation of the equals() method
(also called equality by value)

On the other hand, the identity of a database row is expressed as the primary key
value. As you’ll see in chapter 9, section 9.2, “Object identity and equality,” nei-
ther equals () nor == is naturally equivalent to the primary key value. It’s com-
mon for several nonidentical objects to simultaneously represent the same row of
the database, for example, in concurrently running application threads. Further-
more, some subtle difficulties are involved in implementing equals () correctly
for a persistent class.

Let’s discuss another problem related to database identity with an example. In
our table definition for USERS, we used USERNAME as a primary key. Unfortunately,
this decision makes it difficult to change a username; we need to update not only
the USERNAME column in USERS, but also the foreign key column in BILLING_
DETAILS. To solve this problem, later in the book we’ll recommend that you use
surrogate keys whenever you can’t find a good natural key (we’ll also discuss what
makes a key good). A surrogate key column is a primary key column with no
meaning to the user; in other words, a key that isn’t presented to the user and is
only used for identification of data inside the software system. For example, we
may change our table definitions to look like this:

create table USERS (

USER_ID bigint not null primary key,

USERNAME varchar (15) not null unigque,
NAME varchar (50) not null,

)

create table BILLING_DETAILS (
BILLING_DETAILS_ID bigint not null primary key,
ACCOUNT_NUMBER VARCHAR (10) not null unique,
ACCOUNT_NAME VARCHAR(50) not null,
ACCOUNT_TYPE VARCHAR(2) not null,
USER_ID bigint foreign key references USER

)

The USER_ID and BILLING_DETAILS_ID columns contain system-generated values.
These columns were introduced purely for the benefit of the data model, so how

16

124

CHAPTER 1
Understanding object/relational persistence

(if at all) should they be represented in the domain model? We discuss this ques-
tion in chapter 4, section 4.2, “Mapping entities with identity,” and we find a solu-
tion with ORM.

In the context of persistence, identity is closely related to how the system han-
dles caching and transactions. Different persistence solutions have chosen differ-
ent strategies, and this has been an area of confusion. We cover all these
interesting topics—and show how they’re related—in chapters 10 and 13.

So far, the skeleton e-commerce application we’ve designed has identified the
mismatch problems with mapping granularity, subtypes, and object identity. We’'re
almost ready to move on to other parts of the application, but first we need to dis-
cuss the important concept of associations: how the relationships between our
classes are mapped and handled. Is the foreign key in the database all you need?

Problems relating to associations

In our domain model, associations represent the relationships between entities.
The User, Address, and BillingDetails classes are all associated; but unlike
Address, BillingDetails stands on its own. BillingDetails instances are stored
in their own table. Association mapping and the management of entity associa-
tions are central concepts in any object persistence solution.

Object-oriented languages represent associations using object references; but in
the relational world, an association is represented as a foreign key column, with
copies of key values (and a constraint to guarantee integrity). There are substan-
tial differences between the two representations.

Object references are inherently directional; the association is from one object
to the other. They’re pointers. If an association between objects should be naviga-
ble in both directions, you must define the association twice, once in each of the
associated classes. You’ve already seen this in the domain model classes:

public class User {
private Set billingDetails;

}
public class BillingDetails {
private User user;

}

On the other hand, foreign key associations aren’t by nature directional. Naviga-
tion has no meaning for a relational data model because you can create arbitrary
data associations with table joins and projection. The challenge is to bridge a com-
pletely open data model, which is independent of the application that works with

The paradigm mismaich 17

the data, to an application-dependent navigational model, a constrained view of
the associations needed by this particular application.

Itisn’t possible to determine the multiplicity of a unidirectional association by
looking only at the Java classes. Java associations can have many-to-many multiplic-
ity. For example, the classes could look like this:

public class User {
private Set billingDetails;

}
public class BillingDetails {
private Set users;

}

Table associations, on the other hand, are always one-to-many or one-to-one. You can
see the multiplicity immediately by looking at the foreign key definition. The fol-
lowing is a foreign key declaration on the BILLING_DETAILS table for a one-to-
many association (or, if read in the other direction, a many-to-one association):

USER_ID bigint foreign key references USERS
These are one-to-one associations:

USER_ID bigint unique foreign key references USERS
BILLING_DETAILS_ID bigint primary key foreign key references USERS
If you wish to represent a many-to-many association in a relational database, you
must introduce a new table, called a link table. This table doesn’t appear anywhere
in the domain model. For our example, if we consider the relationship between
the user and the billing information to be many-to-many, the link table is defined
as follows:
create table USER_BILLING_DETAILS (
USER_ID bigint foreign key references USERS,
BILLING_DETAILS_ID bigint foreign key references BILLING_DETAILS,
PRIMARY KEY (USER_ID, BILLING_DETAILS_ID)
)
We discuss association and collection mappings in great detail in chapters 6 and 7.
So far, the issues we’ve considered are mainly structural. We can see them by
considering a purely static view of the system. Perhaps the most difficult problem
in object persistence is a dynamic problem. It concerns associations, and we’ve
already hinted at it when we drew a distinction between object network navigation
and table joins in section 1.1.4, “Persistence in object-oriented applications.” Let’s
explore this significant mismatch problem in more depth.

18

1.2.5

CHAPTER 1
Understanding object/relational persistence

The problem of data navigation

There is a fundamental difference in the way you access data in Java and in a rela-
tional database. In Java, when you access a user’s billing information, you call
aUser.getBillingDetails () .getAccountNumber () or something similar. This is
the most natural way to access object-oriented data, and it’s often described as
walking the object network. You navigate from one object to another, following
pointers between instances. Unfortunately, this isn’t an efficient way to retrieve
data from an SQL database.

The single most important thing you can do to improve the performance of
data access code is to minimize the number of requests to the database. The most obvi-
ous way to do this is to minimize the number of SQL queries. (Of course, there are
other more sophisticated ways that follow as a second step.)

Therefore, efficient access to relational data with SQL usually requires joins
between the tables of interest. The number of tables included in the join when
retrieving data determines the depth of the object network you can navigate in
memory. For example, if you need to retrieve a User and aren’t interested in the
user’s billing information, you can write this simple query:

select * from USERS u where u.USER_ID = 123

On the other hand, if you need to retrieve a User and then subsequently visit each
of the associated BillingDetails instances (let’s say, to list all the user’s credit
cards), you write a different query:
select *

from USERS u

left outer join BILLING_DETAILS bd on bd.USER_ID = u.USER_ID

where u.USER_ID = 123
As you can see, to efficiently use joins you need to know what portion of the object
network you plan to access when you retrieve the initial User—this is before you
start navigating the object network!

On the other hand, any object persistence solution provides functionality for
fetching the data of associated objects only when the object is first accessed. How-
ever, this piecemeal style of data access is fundamentally inefficient in the context
of a relational database, because it requires executing one statement for each
node or collection of the object network that is accessed. This is the dreaded n+1
selects problem.

This mismatch in the way you access objects in Java and in a relational database
is perhaps the single most common source of performance problems in Java
applications. There is a natural tension between too many selects and too big

1.2.6

The paradigm mismatch 19

selects, which retrieve unnecessary information into memory. Yet, although we’ve
been blessed with innumerable books and magazine articles advising us to use
StringBuffer for string concatenation, it seems impossible to find any advice
about strategies for avoiding the n+1 selects problem. Fortunately, Hibernate pro-
vides sophisticated features for efficiently and transparently fetching networks of
objects from the database to the application accessing them. We discuss these fea-
tures in chapters 13, 14, and 15.

The cost of the mismatch

We now have quite a list of object/relational mismatch problems, and it will be
costly (in time and effort) to find solutions, as you may know from experience.
This cost is often underestimated, and we think this is a major reason for many
failed software projects. In our experience (regularly confirmed by developers we
talk to), the main purpose of up to 30 percent of the Java application code written
is to handle the tedious SQL/JDBC and manual bridging of the object/relational
paradigm mismatch. Despite all this effort, the end result still doesn’t feel quite
right. We’ve seen projects nearly sink due to the complexity and inflexibility of
their database abstraction layers. We also see Java developers (and DBAs) quickly
lose their confidence when design decisions about the persistence strategy for a
project have to be made.

One of the major costs is in the area of modeling. The relational and domain
models must both encompass the same business entities, but an object-oriented
purist will model these entities in a different way than an experienced relational
data modeler would. The usual solution to this problem is to bend and twist the
domain model and the implemented classes until they match the SQL database
schema. (Which, following the principle of data independence, is certainly a safe
long-term choice.)

This can be done successfully, but only at the cost of losing some of the advan-
tages of object orientation. Keep in mind that relational modeling is underpinned
by relational theory. Object orientation has no such rigorous mathematical defini-
tion or body of theoretical work, so we can’t look to mathematics to explain how
we should bridge the gap between the two paradigms—there is no elegant trans-
formation waiting to be discovered. (Doing away with Java and SQL, and starting
from scratch isn’t considered elegant.)

The domain modeling mismatch isn’t the only source of the inflexibility and
the lost productivity that lead to higher costs. A further cause is the JDBC API
itself. JDBC and SQL provide a statement-oriented (that is, command-oriented)
approach to moving data to and from an SQL database. If you want to query or

20

1.3

131

CHAPTER 1
Understanding object/relational persistence

manipulate data, the tables and columns involved must be specified at least three
times (insert, update, select), adding to the time required for design and
implementation. The distinct dialects for every SQL database management system
don’t improve the situation.

To round out your understanding of object persistence, and before we
approach possible solutions, we need to discuss application architecture and the role
of a persistence layer in typical application design.

Persistence layers and alternatives

In a medium- or large-sized application, it usually makes sense to organize classes
by concern. Persistence is one concern; others include presentation, workflow,
and business logic.! A typical object-oriented architecture includes layers of code
that represent the concerns. It’s normal and certainly best practice to group all
classes and components responsible for persistence into a separate persistence
layer in a layered system architecture.

In this section, we first look at the layers of this type of architecture and why we
use them. After that, we focus on the layer we’re most interested in—the persis-
tence layer—and some of the ways it can be implemented.

Layered architecture

A layered architecture defines interfaces between code that implements the vari-
ous concerns, allowing changes to be made to the way one concern is implemented
without significant disruption to code in the other layers. Layering also determines
the kinds of interlayer dependencies that occur. The rules are as follows:

= Layers communicate from top to bottom. A layer is dependent only on the
layer directly below it.

= Each layer is unaware of any other layers except for the layer just below it.

Different systems group concerns differently, so they define different layers. A typ-
ical, proven, high-level application architecture uses three layers: one each for
presentation, business logic, and persistence, as shown in figure 1.4.

Let’s take a closer look at the layers and elements in the diagram:

' There are also the so-called cross-cutting concerns, which may be implemented generically—by frame-
work code, for example. Typical cross-cutting concerns include logging, authorization, and transaction
demarcation.

Persistence layers and alternatives 21

Presentation Layer

i Interceptors,
Utility,
Business Layer }—» and
Helper
i Classes
Persistence Layer
Sy
Database Figure 1.4

A persistence layer is the basis in a layered architecture

Presentation layer—The user interface logic is topmost. Code responsible for
the presentation and control of page and screen navigation is in the presen-
tation layer.

Business layer—The exact form of the next layer varies widely between appli-
cations. It’s generally agreed, however, that the business layer is responsible
for implementing any business rules or system requirements that would be
understood by users as part of the problem domain. This layer usually
includes some kind of controlling component—code that knows when to
invoke which business rule. In some systems, this layer has its own internal
representation of the business domain entities, and in others it reuses the
model defined by the persistence layer. We revisit this issue in chapter 3.

Persistence layer—The persistence layer is a group of classes and components
responsible for storing data to, and retrieving it from, one or more data
stores. This layer necessarily includes a model of the business domain enti-
ties (even if it’s only a metadata model).

Database—The database exists outside the Java application itself. It’s the
actual, persistent representation of the system state. If an SQL database is
used, the database includes the relational schema and possibly stored pro-
cedures.

Helper and utility classes—Every application has a set of infrastructural helper
or utility classes that are used in every layer of the application (such as
Exception classes for error handling). These infrastructural elements don’t
form a layer, because they don’t obey the rules for interlayer dependency in
a layered architecture.

22

1.3.2

CHAPTER 1
Understanding object/relational persistence

Let’s now take a brief look at the various ways the persistence layer can be imple-
mented by Java applications. Don’t worry—we’ll get to ORM and Hibernate soon.
There is much to be learned by looking at other approaches.

Hand-coding a persistence layer with SQL/JDBC

The most common approach to Java persistence is for application programmers
to work directly with SQL and JDBC. After all, developers are familiar with rela-
tional database management systems, they understand SQL, and they know how to
work with tables and foreign keys. Moreover, they can always use the well-known
and widely used data access object (DAO) pattern to hide complex JDBC code and
nonportable SQL from the business logic.

The DAO pattern is a good one—so good that we often recommend its use
even with ORM. However, the work involved in manually coding persistence for
each domain class is considerable, particularly when multiple SQL dialects are
supported. This work usually ends up consuming a large portion of the develop-
ment effort. Furthermore, when requirements change, a hand-coded solution
always requires more attention and maintenance effort.

Why not implement a simple mapping framework to fit the specific require-
ments of your project? The result of such an effort could even be reused in future
projects. Many developers have taken this approach; numerous homegrown
object/relational persistence layers are in production systems today. However, we
don’t recommend this approach. Excellent solutions already exist: not only the
(mostly expensive) tools sold by commercial vendors, but also open source
projects with free licenses. We’re certain you’ll be able to find a solution that
meets your requirements, both business and technical. It’s likely that such a solu-
tion will do a great deal more, and do it better, than a solution you could build in
a limited time.

Developing a reasonably full-featured ORM may take many developers months.
For example, Hibernate is about 80,000 lines of code, some of which is much
more difficult than typical application code, along with 25,000 lines of unit test
code. This may be more code than is in your application. A great many details can
easily be overlooked in such a large project—as both the authors know from expe-
rience! Even if an existing tool doesn’t fully implement two or three of your more
exotic requirements, it’s still probably not worth creating your own tool. Any ORM
software will handle the tedious common cases—the ones that kill productivity.
It’s OK if you need to hand-code certain special cases; few applications are com-
posed primarily of special cases.

133

1.34

Persistence layers and alternatives 23

Using serialization

Java has a built-in persistence mechanism: Serialization provides the ability to
write a snapshot of a network of objects (the state of the application) to a byte
stream, which may then be persisted to a file or database. Serialization is also used
by Java’s Remote Method Invocation (RMI) to achieve pass-by value semantics for
complex objects. Another use of serialization is to replicate application state
across nodes in a cluster of machines.

Why not use serialization for the persistence layer? Unfortunately, a serialized
network of interconnected objects can only be accessed as a whole; it’s impossible
to retrieve any data from the stream without deserializing the entire stream. Thus,
the resulting byte stream must be considered unsuitable for arbitrary search or
aggregation of large datasets. It isn’t even possible to access or update a single
object or subset of objects independently. Loading and overwriting an entire
object network in each transaction is no option for systems designed to support
high concurrency.

Given current technology, serialization is inadequate as a persistence mecha-
nism for high concurrency web and enterprise applications. It has a particular
niche as a suitable persistence mechanism for desktop applications.

Object-oriented database systems

Because we work with objects in Java, it would be ideal if there were a way to store
those objects in a database without having to bend and twist the object model at
all. In the mid-1990s, object-oriented database systems gained attention. They're
based on a network data model, which was common before the advent of the rela-
tional data model decades ago. The basic idea is to store a network of objects, with
all its pointers and nodes, and to re-create the same in-memory graph later on.
This can be optimized with various metadata and configuration settings.

An object-oriented database management system (OODBMS) is more like an
extension to the application environment than an external data store. An
OODBMS usually features a multitiered implementation, with the backend data
store, object cache, and client application coupled tightly together and interact-
ing via a proprietary network protocol. Object nodes are kept on pages of mem-
ory, which are transported from and to the data store.

Object-oriented database development begins with the top-down definition of
host language bindings that add persistence capabilities to the programming lan-
guage. Hence, object databases offer seamless integration into the object-ori-
ented application environment. This is different from the model used by today’s

24

1.3.5

14

CHAPTER 1
Understanding object/relational persistence

relational databases, where interaction with the database occurs via an intermedi-
ate language (SQL) and data independence from a particular application is the
major concern.

For background information on object-oriented databases, we recommend the
respective chapter in An Introduction to Database Systems (Date, 2003).

We won’t bother looking too closely into why object-oriented database technol-
ogy hasn’t been more popular; we’ll observe that object databases haven’t been
widely adopted and that it doesn’t appear likely that they will be in the near
future. We’re confident that the overwhelming majority of developers will have
far more opportunity to work with relational technology, given the current politi-
cal realities (predefined deployment environments) and the common require-
ment for data independence.

Other options

Of course, there are other kinds of persistence layers. XML persistence is a varia-
tion on the serialization theme; this approach addresses some of the limitations
of byte-stream serialization by allowing easy access to the data through a stan-
dardized tool interface. However, managing data in XML would expose you to an
object/hierarchical mismatch. Furthermore, there is no additional benefit from
the XML itself, because it’s just another text file format and has no inherent
capabilities for data management. You can use stored procedures (even writing
them in Java, sometimes) and move the problem into the database tier. So-called
objectrelational databases have been marketed as a solution, but they offer only
a more sophisticated datatype system providing only half the solution to our
problems (and further muddling terminology). We’re sure there are plenty of
other examples, but none of them are likely to become popular in the immedi-
ate future.

Political and economic constraints (long-term investments in SQL databases),
data independence, and the requirement for access to valuable legacy data call for
a different approach. ORM may be the most practical solution to our problems.

Object/relational mapping

Now that we’ve looked at the alternative techniques for object persistence, it’s
time to introduce the solution we feel is the best, and the one we use with Hiber-
nate: ORM. Despite its long history (the first research papers were published in
the late 1980s), the terms for ORM used by developers vary. Some call it object
relational mapping, others prefer the simple object mapping; we exclusively use

14.1

Object/relational mapping 25

the term object/relational mapping and its acronym, ORM. The slash stresses the
mismatch problem that occurs when the two worlds collide.

In this section, we first look at what ORM is. Then we enumerate the problems
that a good ORM solution needs to solve. Finally, we discuss the general benefits
that ORM provides and why we recommend this solution.

What is ORM?

In a nutshell, object/relational mapping is the automated (and transparent) per-
sistence of objects in a Java application to the tables in a relational database, using
metadata that describes the mapping between the objects and the database.

ORM, in essence, works by (reversibly) transforming data from one represen-
tation to another. This implies certain performance penalties. However, if ORM is
implemented as middleware, there are many opportunities for optimization that
wouldn’t exist for a hand-coded persistence layer. The provision and manage-
ment of metadata that governs the transformation adds to the overhead at devel-
opment time, but the cost is less than equivalent costs involved in maintaining a
hand-coded solution. (And even object databases require significant amounts of
metadata.)

FAQ Isn’t ORM a Visio plug-in? The acronym ORM can also mean object role
modeling, and this term was invented before object/relational mapping
became relevant. It describes a method for information analysis, used in
database modeling, and is primarily supported by Microsoft Visio, a
graphical modeling tool. Database specialists use it as a replacement or as
an addition to the more popular entity-relationship modeling. However, if
you talk to Java developers about ORM, it’s usually in the context of
object/relational mapping.

An ORM solution consists of the following four pieces:

= An API for performing basic CRUD operations on objects of persistent
classes

= A language or API for specifying queries that refer to classes and properties
of classes

= A facility for specifying mapping metadata

= A technique for the ORM implementation to interact with transactional

objects to perform dirty checking, lazy association fetching, and other opti-
mization functions

26

CHAPTER 1
Understanding object/relational persistence

We’re using the term full ORM to include any persistence layer where SQL is auto-
matically generated from a metadata-based description. We aren’t including per-
sistence layers where the object/relational mapping problem is solved manually
by developers hand-coding SQL with JDBC. With ORM, the application interacts
with the ORM APIs and the domain model classes and is abstracted from the
underlying SQL/JDBC. Depending on the features or the particular implementa-
tion, the ORM engine may also take on responsibility for issues such as optimistic
locking and caching, relieving the application of these concerns entirely.

Let’s look at the various ways ORM can be implemented. Mark Fussel (Fussel,
1997), a developer in the field of ORM, defined the following four levels of ORM
quality. We have slightly rewritten his descriptions and put them in the context of
today’s Java application development.

Pure relational

The whole application, including the user interface, is designed around the rela-
tional model and SQL-based relational operations. This approach, despite its defi-
ciencies for large systems, can be an excellent solution for simple applications
where a low level of code reuse is tolerable. Direct SQL can be fine-tuned in every
aspect, but the drawbacks, such as lack of portability and maintainability, are sig-
nificant, especially in the long run. Applications in this category often make heavy
use of stored procedures, shifting some of the work out of the business layer and
into the database.

Light object mapping

Entities are represented as classes that are mapped manually to the relational
tables. Hand-coded SQL/JDBC is hidden from the business logic using well-
known design patterns. This approach is extremely widespread and is successful
for applications with a small number of entities, or applications with generic,
metadata-driven data models. Stored procedures may have a place in this kind of
application.

Medium object mapping

The application is designed around an object model. SQL is generated at build
time using a code-generation tool, or at runtime by framework code. Associations
between objects are supported by the persistence mechanism, and queries may be
specified using an object-oriented expression language. Objects are cached by the
persistence layer. A great many ORM products and homegrown persistence layers
support at least this level of functionality. It’s well suited to medium-sized

14.2

Object/relational mapping 27

applications with some complex transactions, particularly when portability
between different database products is important. These applications usually
don’t use stored procedures.

Full object mapping
Full object mapping supports sophisticated object modeling: composition, inher-
itance, polymorphism, and persistence by reachability. The persistence layer
implements transparent persistence; persistent classes do not inherit from any
special base class or have to implement a special interface. Efficient fetching strat-
egies (lazy, eager, and prefetching) and caching strategies are implemented trans-
parently to the application. This level of functionality can hardly be achieved by a
homegrown persistence layer—it’s equivalent to years of development time. A
number of commercial and open source Java ORM tools have achieved this level
of quality.

This level meets the definition of ORM we’re using in this book. Let’s look at
the problems we expect to be solved by a tool that achieves full object mapping.

Generic ORM problems

The following list of issues, which we’ll call the ORM problems, identifies the fun-
damental questions resolved by a full object/relational mapping tool in a Java
environment. Particular ORM tools may provide extra functionality (for example,
aggressive caching), but this is a reasonably exhaustive list of the conceptual issues
and questions that are specific to object/relational mapping.

1 What do persistent classes look like? How transparent is the persistence tool?
Do we have to adopt a programming model and conventions for classes of
the business domain?

2 How is mapping meladata defined? Because the object/relational transforma-
tion is governed entirely by metadata, the format and definition of this
metadata is important. Should an ORM tool provide a GUI interface to
manipulate the metadata graphically? Or are there better approaches to
metadata definition?

3 How do object identity and equality relate to database (primary key) identity? How
do we map instances of particular classes to particular table rows?

4 How should we map class inheritance hierarchies? There are several stan-
dard strategies. What about polymorphic associations, abstract classes, and
interfaces?

28

143

CHAPTER 1
Understanding object/relational persistence

5 How does the persistence logic interact at runtime with the objects of the business
domain? This is a problem of generic programming, and there are a num-
ber of solutions including source generation, runtime reflection, runtime
bytecode generation, and build-time bytecode enhancement. The solution
to this problem may affect your build process (but, preferably, shouldn’t
otherwise affect you as a user).

6 What is the lifecycle of a persistent object? Does the lifecycle of some objects
depend upon the lifecycle of other associated objects? How do we translate
the lifecycle of an object to the lifecycle of a database row?

7 What facilities are provided for sorting, searching, and aggregating? The applica-
tion could do some of these things in memory, but efficient use of relational
technology requires that this work often be performed by the database.

8 How do we efficiently retrieve data with associations? Efficient access to rela-
tional data is usually accomplished via table joins. Object-oriented applica-
tions usually access data by navigating an object network. Two data access
patterns should be avoided when possible: the n+I selects problem, and its
complement, the Cartesian product problem (fetching too much data in a
single select).

Two additional issues that impose fundamental constraints on the design and
architecture of an ORM tool are common to any data access technology:

= Transactions and concurrency

= Cache management (and concurrency)

As you can see, a full object/relational mapping tool needs to address quite a
long list of issues. By now, you should be starting to see the value of ORM. In the
next section, we look at some of the other benefits you gain when you use an
ORM solution.

Why ORM?
An ORM implementation is a complex beast—less complex than an application
server, but more complex than a web application framework like Struts or Tapes-
try. Why should we introduce another complex infrastructural element into our
system? Will it be worth it?

It will take us most of this book to provide a complete answer to those ques-
tions, but this section provides a quick summary of the most compelling benefits.
First, though, let’s quickly dispose of a nonbenefit.

Object/relational mapping 29

A supposed advantage of ORM is that it shields developers from messy SQL.
This view holds that object-oriented developers can’t be expected to understand
SQL or relational databases well, and that they find SQL somehow offensive. On
the contrary, we believe that Java developers must have a sufficient level of famil-
iarity with—and appreciation of—relational modeling and SQL in order to work
with ORM. ORM is an advanced technique to be used by developers who have
already done it the hard way. To use Hibernate effectively, you must be able to
view and interpret the SQL statements it issues and understand the implications
for performance.

Now, let’s look at some of the benefits of ORM and Hibernate.

Productivity

Persistence-related code can be perhaps the most tedious code in a Java applica-
tion. Hibernate eliminates much of the grunt work (more than you’d expect) and
lets you concentrate on the business problem.

No matter which application-development strategy you prefer—top-down,
starting with a domain model, or bottom-up, starting with an existing database
schema—Hibernate, used together with the appropriate tools, will significantly
reduce development time.

Maintainability

Fewer lines of code (LOC) make the system more understandable, because it
emphasizes business logic rather than plumbing. Most important, a system with
less code is easier to refactor. Automated object/relational persistence substan-
tially reduces LOC. Of course, counting lines of code is a debatable way of measur-
ing application complexity.

However, there are other reasons that a Hibernate application is more main-
tainable. In systems with hand-coded persistence, an inevitable tension exists
between the relational representation and the object model implementing the
domain. Changes to one almost always involve changes to the other, and often the
design of one representation is compromised to accommodate the existence of
the other. (What almost always happens in practice is that the object model of the
domain is compromised.) ORM provides a buffer between the two models, allow-
ing more elegant use of object orientation on the Java side, and insulating each
model from minor changes to the other.

Performance
A common claim is that hand-coded persistence can always be at least as fast, and
can often be faster, than automated persistence. This is true in the same sense that

30

CHAPTER 1
Understanding object/relational persistence

it’s true that assembly code can always be at least as fast as Java code, or a hand-
written parser can always be at least as fast as a parser generated by YACC or
ANTLR—in other words, it’s beside the point. The unspoken implication of the
claim is that hand-coded persistence will perform at least as well in an actual
application. But this implication will be true only if the effort required to imple-
ment atleast-as-fast hand-coded persistence is similar to the amount of effort
involved in utilizing an automated solution. The really interesting question is
what happens when we consider time and budget constraints?

Given a persistence task, many optimizations are possible. Some (such as query
hints) are much easier to achieve with hand-coded SQL/JDBC. Most optimiza-
tions, however, are much easier to achieve with automated ORM. In a project with
time constraints, hand-coded persistence usually allows you to make some optimi-
zations. Hibernate allows many more optimizations to be used all the time. Fur-
thermore, automated persistence improves developer productivity so much that
you can spend more time hand-optimizing the few remaining bottlenecks.

Finally, the people who implemented your ORM software probably had much
more time to investigate performance optimizations than you have. Did you
know, for instance, that pooling PreparedStatement instances results in a signifi-
cant performance increase for the DB2 JDBC driver but breaks the InterBase
JDBC driver? Did you realize that updating only the changed columns of a table
can be significantly faster for some databases but potentially slower for others? In
your handcrafted solution, how easy is it to experiment with the impact of these
various strategies?

Vendor independence
An ORM abstracts your application away from the underlying SQL database and
SQL dialect. If the tool supports a number of different databases (and most do),
this confers a certain level of portability on your application. You shouldn’t neces-
sarily expect write-once/run-anywhere, because the capabilities of databases dif-
fer, and achieving full portability would require sacrificing some of the strength
of the more powerful platforms. Nevertheless, it’s usually much easier to develop
a cross-platform application using ORM. Even if you don’t require cross-platform
operation, an ORM can still help mitigate some of the risks associated with ven-
dor lock-in.

In addition, database independence helps in development scenarios where
developers use a lightweight local database but deploy for production on a differ-
ent database.

144

Object/relational mapping 31

You need to select an ORM product at some point. To make an educated deci-
sion, you need a list of the software modules and standards that are available.

Introducing Hibernate, EJB3, and JPA

Hibernate is a full object/relational mapping tool that provides all the previously
listed ORM benefits. The API you’re working with in Hibernate is native and
designed by the Hibernate developers. The same is true for the query interfaces
and query languages, and for how object/relational mapping metadata is defined.

Before you start your first project with Hibernate, you should consider the EJB
3.0 standard and its subspecification, Java Persistence. Let’s go back in history and
see how this new standard came into existence.

Many Java developers considered EJB 2.1 entity beans as one of the technolo-
gies for the implementation of a persistence layer. The whole EJB programming
and persistence model has been widely adopted in the industry, and it has been
an important factor in the success of J2EE (or, Java EE as it’s now called).

However, over the last years, critics of EJB in the developer community became
more vocal (especially with regard to entity beans and persistence), and compa-
nies realized that the EJB standard should be improved. Sun, as the steering party
of J2EE, knew that an overhaul was in order and started a new Java specification
request (JSR) with the goal of simplifying EJB in early 2003. This new JSR, Enter-
prise JavaBeans 3.0 (JSR 220), attracted significant interest. Developers from the
Hibernate team joined the expert group early on and helped shape the new spec-
ification. Other vendors, including all major and many smaller companies in the
Java industry, also contributed to the effort. An important decision made for the
new standard was to specify and standardize things that work in practice, taking
ideas and concepts from existing successful products and projects. Hibernate,
therefore, being a successful data persistence solution, played an important role
for the persistence part of the new standard. But what exactly is the relationship
between Hibernate and EJB3, and what is Java Persistence?

Understanding the standards
First, it’s difficult (if notimpossible) to compare a specification and a product. The
questions that should be asked are, “Does Hibernate implement the EJB 3.0 speci-
fication, and what is the impact on my project? Do I have to use one or the other?”
The new EJB 3.0 specification comes in several parts: The first part defines
the new EJB programming model for session beans and message-driven beans,
the deployment rules, and so on. The second part of the specification deals with
persistence exclusively: entities, object/relational mapping metadata, persistence

32

CHAPTER 1
Understanding object/relational persistence

manager interfaces, and the query language. This second part is called Java Per-
sistence API (JPA), probably because its interfaces are in the package
javax.persistence. We’ll use this acronym throughout the book.

This separation also exists in EJB 3.0 products; some implement a full EJB 3.0
container that supports all parts of the specification, and other products may
implement only the Java Persistence part. Two important principles were
designed into the new standard:

= JPA engines should be pluggable, which means you should be able to take
out one product and replace it with another if you aren’t satisfied—even if
you want to stay with the same EJB 3.0 container or Java EE 5.0 applica-
tion server.

= JPA engines should be able to run outside of an EJB 3.0 (or any other) run-
time environment, without a container in plain standard Java.

The consequences of this design are that there are more options for developers
and architects, which drives competition and therefore improves overall quality of
products. Of course, actual products also offer features that go beyond the specifi-
cation as vendor-specific extensions (such as for performance tuning, or because
the vendor has a focus on a particular vertical problem space).

Hibernate implements Java Persistence, and because a JPA engine must be
pluggable, new and interesting combinations of software are possible. You can
select from various Hibernate software modules and combine them depending on
your project’s technical and business requirements.

Hibernate Core

The Hibernate Core is also known as Hibernate 3.2.x, or Hibernate. It’s the base
service for persistence, with its native API and its mapping metadata stored in XML
files. It has a query language called HQL (almost the same as SQL), as well as pro-
grammatic query interfaces for Criteria and Example queries. There are hun-
dreds of options and features available for everything, as Hibernate Core is really
the foundation and the platform all other modules are built on.

You can use Hibernate Core on its own, independent from any framework or
any particular runtime environment with all JDKs. It works in every Java EE/J2EE
application server, in Swing applications, in a simple servlet container, and so on.
As long as you can configure a data source for Hibernate, it works. Your applica-
tion code (in your persistence layer) will use Hibernate APIs and queries, and
your mapping metadata is written in native Hibernate XML files.

Object/relational mapping 33

Native Hibernate APIs, queries, and XML mapping files are the primary focus
of this book, and they’re explained first in all code examples. The reason for that
is that Hibernate functionality is a superset of all other available options.

Hibernate Annotations

A new way to define application metadata became available with JDK 5.0: type-safe
annotations embedded directly in the Java source code. Many Hibernate users are
already familiar with this concept, as the XDoclet software supports Javadoc meta-
data attributes and a preprocessor at compile time (which, for Hibernate, gener-
ates XML mapping files).

With the Hibernate Annotations package on top of Hibernate Core, you can now
use type-safe JDK 5.0 metadata as a replacement or in addition to native Hibernate
XML mapping files. You’ll find the syntax and semantics of the mapping annota-
tions familiar once you’ve seen them side-by-side with Hibernate XML mapping
files. However, the basic annotations aren’t proprietary.

The JPA specification defines object/relational mapping metadata syntax and
semantics, with the primary mechanism being JDK 5.0 annotations. (Yes, JDK 5.0
is required for Java EE 5.0 and EJB 3.0.) Naturally, the Hibernate Annotations are
a set of basic annotations that implement the JPA standard, and they’re also a set
of extension annotations you need for more advanced and exotic Hibernate
mappings and tuning.

You can use Hibernate Core and Hibernate Annotations to reduce your lines
of code for mapping metadata, compared to the native XML files, and you may
like the better refactoring capabilities of annotations. You can use only JPA anno-
tations, or you can add a Hibernate extension annotation if complete portability
isn’t your primary concern. (In practice, you should embrace the product you've
chosen instead of denying its existence at all times.)

We’ll discuss the impact of annotations on your development process, and how
to use them in mappings, throughout this book, along with native Hibernate XML
mapping examples.

Hibernate EntityManager

The JPA specification also defines programming interfaces, lifecycle rules for per-
sistent objects, and query features. The Hibernate implementation for this part of
JPA is available as Hibernate EntityManager, another optional module you can
stack on top of Hibernate Core. You can fall back when a plain Hibernate
interface, or even a JDBC Connection is needed. Hibernate’s native features are a
superset of the JPA persistence features in every respect. (The simple fact is that

34

CHAPTER 1
Understanding object/relational persistence

Hibernate EntityManager is a small wrapper around Hibernate Core that provides
JPA compatibility.)

Working with standardized interfaces and using a standardized query language
has the benefit that you can execute your JPA-compatible persistence layer with
any EJB 3.0 compliant application server. Or, you can use JPA outside of any partic-
ular standardized runtime environment in plain Java (which really means every-
where Hibernate Core can be used).

Hibernate Annotations should be considered in combination with Hibernate
EntityManager. It’s unusual that you’d write your application code against JPA
interfaces and with JPA queries, and not create most of your mappings with JPA
annotations.

Java EE 5.0 application servers

We don’t cover all of EJB 3.0 in this book; our focus is naturally on persistence,
and therefore on the JPA part of the specification. (We will, of course, show you
many techniques with managed EJB components when we talk about application
architecture and design.)

Hibernate is also part of the [Boss Application Server (JBoss AS), an implementa-
tion of J2EE 1.4 and (soon) Java EE 5.0. A combination of Hibernate Core, Hiber-
nate Annotations, and Hibernate EntityManager forms the persistence engine of
this application server. Hence, everything you can use stand-alone, you can also
use inside the application server with all the EJB 3.0 benefits, such as session
beans, message-driven beans, and other Java EE services.

To complete the picture, you also have to understand that Java EE 5.0 applica-
tion servers are no longer the monolithic beasts of the J2EE 1.4 era. In fact, the
JBoss EJB 3.0 container also comes in an embeddable version, which runs inside
other application servers, and even in Tomcat, or in a unit test, or a Swing applica-
tion. In the next chapter, you’ll prepare a project that utilizes EJB 3.0 compo-
nents, and you’ll install the JBoss server for easy integration testing.

As you can see, native Hibernate features implement significant parts of the
specification or are natural vendor extensions, offering additional functionality if
required.

Here is a simple trick to see immediately what code you’re looking at, whether
JPA or native Hibernate. If only the javax.persistence. * import is visible, you're
working inside the specification; if you also import org.hibernate.*, you're
using native Hibernate functionality. We’ll later show you a few more tricks that
will help you cleanly separate portable from vendor-specific code.

15

Summary 35

FAQ What is the future of Hibernate? Hibernate Core will be developed inde-
pendently from and faster than the EJB 3.0 or Java Persistence specifica-
tions. It will be the testing ground for new ideas, as it has always been.
Any new feature developed for Hibernate Core is immediately and auto-
matically available as an extension for all users of Java Persistence with
Hibernate Annotations and Hibernate EntityManager. Over time, if a
particular concept has proven its usefulness, Hibernate developers will
work with other expert group members on future standardization in an
updated EJB or Java Persistence specification. Hence, if you're interested
in a quickly evolving standard, we encourage you to use native Hibernate
functionality, and to send feedback to the respective expert group. The
desire for total portability and the rejection of vendor extensions were
major reasons for the stagnation we saw in EJB 1.x and 2.x.

After so much praise of ORM and Hibernate, it’s time to look at some actual code.
It’s time to wrap up the theory and to set up a first project.

Summary

In this chapter, we’ve discussed the concept of object persistence and the impor-
tance of ORM as an implementation technique.

Object persistence means that individual objects can outlive the application pro-
cess; they can be saved to a data store and be re-created at a later pointin time. The
object/relational mismatch comes into play when the data store is an SQL-based
relational database management system. For instance, a network of objects can’t be
saved to a database table; it must be disassembled and persisted to columns of por-
table SQL datatypes. A good solution for this problem is object/relational mapping
(ORM), which is especially helpful if we consider richly typed Java domain models.

A domain model represents the business entities used in a Java application. In
a layered system architecture, the domain model is used to execute business logic
in the business layer (in Java, not in the database). This business layer communi-
cates with the persistence layer beneath in order to load and store the persistent
objects of the domain model. ORM is the middleware in the persistence layer that
manages the persistence.

ORM isn’t a silver bullet for all persistence tasks; its job is to relieve the devel-
oper of 95 percent of object persistence work, such as writing complex SQL state-
ments with many table joins, and copying values from JDBC result sets to objects or
graphs of objects. A full-featured ORM middleware solution may provide database
portability, certain optimization techniques like caching, and other viable func-
tions that aren’t easy to hand-code in a limited time with SQL and JDBC.

36

CHAPTER 1
Understanding object/relational persistence

It’s likely that a better solution than ORM will exist some day. We (and many
others) may have to rethink everything we know about SQL, persistence API stan-
dards, and application integration. The evolution of today’s systems into true rela-
tional database systems with seamless object-oriented integration remains pure
speculation. But we can’t wait, and there is no sign that any of these issues will
improve soon (a multibillion dollar industry isn’t very agile). ORM is the best solu-
tion currently available, and it’s a timesaver for developers facing the object/rela-
tional mismatch every day. With EJB 3.0, a specification for full object/relational
mapping software that is accepted in the Java industry is finally available.

Starting a project

This chapter covers

m “Hello World” with Hibernate and Java
Persistence

m The toolset for forward and reverse engineering
m Hibernate configuration and integration

37

38

2.1

CHAPTER 2
Starting a project

You want to start using Hibernate and Java Persistence, and you want to learn it
with a step-by-step example. You want to see both persistence APIs and how you
can benefit from native Hibernate or standardized JPA. This is what you’ll find in
this chapter: a tour through a straightforward “Hello World” application.

However, a good and complete tutorial is already publicly available in the
Hibernate reference documentation, so instead of repeating it here, we show you
more detailed instructions about Hibernate integration and configuration along
the way. If you want to start with a less elaborate tutorial that you can complete in
one hour, our advice is to consider the Hibernate reference documentation. It
takes you from a simple stand-alone Java application with Hibernate through the
most essential mapping concepts and finally demonstrates a Hibernate web appli-
cation deployed on Tomcat.

In this chapter, you’ll learn how to set up a project infrastructure for a plain
Java application that integrates Hibernate, and you’ll see many more details about
how Hibernate can be configured in such an environment. We also discuss config-
uration and integration of Hibernate in a managed environment—that is, an envi-
ronment that provides Java EE services.

As a build tool for the “Hello World” project, we introduce Ant and create
build scripts that can not only compile and run the project, but also utilize the
Hibernate Tools. Depending on your development process, you’ll use the Hiber-
nate toolset to export database schemas automatically or even to reverse-engineer
a complete application from an existing (legacy) database schema.

Like every good engineer, before you start your first real Hibernate project you
should prepare your tools and decide what your development process is going to
look like. And, depending on the process you choose, you may naturally prefer
different tools. Let’s look at this preparation phase and what your options are,
and then start a Hibernate project.

Starting a Hibernate project

In some projects, the development of an application is driven by developers ana-
lyzing the business domain in object-oriented terms. In others, it’s heavily influ-
enced by an existing relational data model: either a legacy database or a brand-
new schema designed by a professional data modeler. There are many choices to
be made, and the following questions need to be answered before you can start:

= Can you start from scratch with a clean design of a new business require-
ment, or is legacy data and/or legacy application code present?

211

Starting a Hibernate project 39

= Can some of the necessary pieces be automatically generated from an exist-
ing artifact (for example, Java source from an existing database schema)?
Can the database schema be generated from Java code and Hibernate map-
ping metadata?

= What kind of tool is available to support this work? What about other tools
to support the full development cycle?

We’ll discuss these questions in the following sections as we set up a basic Hiber-
nate project. This is your road map:

1 Select a development process
2 Set up the project infrastructure
3 Write application code and mappings
4 Configure and start Hibernate
5 Run the application.
After reading the next sections, you’ll be prepared for the correct approach in

your own project, and you’ll also have the background information for more com-
plex scenarios we’ll touch on later in this chapter.

Selecting a development process

Let’s first get an overview of the available tools, the artifacts they use as source
input, and the output that is produced. Figure 2.1 shows various import and

—— - ——— -

1~ UML Model |

Andrc'>MDA

Persistent Class Mapping Metadata Data Access Object Documentation
Java Source Annotations Java Source HTML

I
$ <annotationconfiguration>¢ $ $

<hbm|2java> <hbm2java> <hbm2dao> <hbm2doc>
|
Hibernate
Metamodel
I I |
<hbm2ddl> T <hbm2hbmxmi> ¢ <hbm2cfgxmi> <hbmtemplate>

<jdbcconfiguration> ¢ <configuration>

(Database Schema) (Mapping Metadata XML) (Configuration XML) (Freemarker Template)

Figure 2.1 Input and output of the tools used for Hibernate development

40

CHAPTER 2
Starting a project

export tasks for Ant; all the functionality is also available with the Hibernate Tools
plug-ins for Eclipse. Refer to this diagram while reading this chapter.!

NOTE Hibernate Tools for Eclipse IDE—The Hibernate Tools are plug-ins for the

Eclipse IDE (part of the JBoss IDE for Eclipse—a set of wizards, editors, and
extra views in Eclipse that help you develop EJB3, Hibernate, JBoss Seam,
and other Java applications based on JBoss middleware). The features for
forward and reverse engineering are equivalent to the Ant-based tools.
The additional Hibernate Console view allows you to execute ad hoc Hiber-
nate queries (HQL and Criteria) against your database and to browse
the result graphically. The Hibernate Tools XML editor supports auto-
matic completion of mapping files, including class, property, and even
table and column names. The graphical tools were still in development
and available as a beta release during the writing of this book, however,
so any screenshots would be obsolete with future releases of the software.
The documentation of the Hibernate Tools contains many screenshots
and detailed project setup instructions that you can easily adapt to create
your first “Hello World” program with the Eclipse IDE.

The following development scenarios are common:

s Top down—In top-down development, you start with an existing domain

model, its implementation in Java, and (ideally) complete freedom with
respect to the database schema. You must create mapping metadata—
either with XML files or by annotating the Java source—and then optionally
let Hibernate’s hbm2ddl tool generate the database schema. In the absence
of an existing database schema, this is the most comfortable development
style for most Java developers. You may even use the Hibernate Tools to
automatically refresh the database schema on every application restart in
development.

Bottom up—Conversely, bottom-up development begins with an existing data-
base schema and data model. In this case, the easiest way to proceed is to
use the reverse-engineering tools to extract metadata from the database.
This metadata can be used to generate XML mapping files, with hbm2hbmxm1
for example. With hbm2java, the Hibernate mapping metadata is used to
generate Java persistent classes, and even data access objects—in other
words, a skeleton for a Java persistence layer. Or, instead of writing to XML

! Note that AndroMDA, a tool that generates POJO source code from UML diagram files, isn’t strictly

considered part of the common Hibernate toolset, so it isn’t discussed in this chapter. See the commu-
nity area on the Hibernate website for more information about the Hibernate module for AndroMDA.

212

Starting a Hibernate project 41

mapping files, annotated Java source code (EJB 3.0 entity classes) can be
produced directly by the tools. However, not all class association details and
Java-specific metainformation can be automatically generated from an SQL
database schema with this strategy, so expect some manual work.

s Middle out—The Hibernate XML mapping metadata provides sufficient
information to completely deduce the database schema and to generate the
Java source code for the persistence layer of the application. Furthermore,
the XML mapping document isn’t too verbose. Hence, some architects and
developers prefer middle-out development, where they begin with handwrit-
ten Hibernate XML mapping files, and then generate the database schema
using hbm2ddl and Java classes using hbm2java. The Hibernate XML map-
ping files are constantly updated during development, and other artifacts
are generated from this master definition. Additional business logic or data-
base objects are added through subclassing and auxiliary DDL. This devel-
opment style can be recommended only for the seasoned Hibernate expert.

» Meet in the middle—The most difficult scenario is combining existing Java
classes and an existing database schema. In this case, there is little that the
Hibernate toolset can do to help. It is, of course, not possible to map arbi-
trary Java domain models to a given schema, so this scenario usually
requires at least some refactoring of the Java classes, database schema, or
both. The mapping metadata will almost certainly need to be written by
hand and in XML files (though it might be possible to use annotations if
there is a close match). This can be an incredibly painful scenario, and it is,
fortunately, exceedingly rare.

We now explore the tools and their configuration options in more detail and set
up a work environment for typical Hibernate application development. You can
follow our instructions step by step and create the same environment, or you can
take only the bits and pieces you need, such as the Ant build scripts.

The development process we assume first is top down, and we’ll walk through
a Hibernate project that doesn’t involve any legacy data schemas or Java code.
After that, you’ll migrate the code to JPA and EJB 3.0, and then you’ll start a
project bottom up by reverse-engineering from an existing database schema.

Setting up the project

We assume that you’ve downloaded the latest production release of Hibernate
from the Hibernate website at http://www.hibernate.org/ and that you unpacked
the archive. You also need Apache Ant installed on your development machine.

42

CHAPTER 2
Starting a project

You should also download a current version of HSQLDB from http://hsqldb.org/
and extract the package; you’ll use this database management system for your
tests. If you have another database management system already installed, you only
need to obtain a JDBC driver for it.

Instead of the sophisticated application you’ll develop later in the book, you’ll
get started with a “Hello World” example. That way, you can focus on the develop-
ment process without getting distracted by Hibernate details. Let’s set up the
project directory first.

Creating the work directory
Create a new directory on your system, in any location you like; C:\helloworld is a
good choice if you work on Microsoft Windows. We’ll refer to this directory as
WORKDIR in future examples. Create lib and src subdirectories, and copy all
required libraries:
WORKDIR
+1ib

antlr.jar

asm.jar

asm-attrs.jars

c3p0.jar

cglib.jar

commons-collections.jar

commons-logging.jar

dom4j.jar

hibernate3.jar

hsgldb. jar

jta.jar

+src
The libraries you see in the library directory are from the Hibernate distribution,
most of them required for a typical Hibernate project. The hsqldb.jar file is from
the HSQLDB distribution; replace it with a different driver JAR if you want to use a
different database management system. Keep in mind that some of the libraries
you’re seeing here may not be required for the particular version of Hibernate
you’re working with, which is likely a newer release than we used when writing this
book. To make sure you have the right set of libraries, always check the lib/
README.txt file in the Hibernate distribution package. This file contains an up-to-
date list of all required and optional third-party libraries for Hibernate—you only
need the libraries listed as required for runtime.
In the “Hello World” application, you want to store messages in the database

and load them from the database. You need to create the domain model for this
business case.

Starting a Hibernate project 43

Creating the domain model
Hibernate applications define persistent classes that are mapped to database tables.
You define these classes based on your analysis of the business domain; hence,
they’re a model of the domain. The “Hello World” example consists of one class
and its mapping. Let’s see what a simple persistent class looks like, how the map-
ping is created, and some of the things you can do with instances of the persistent
class in Hibernate.

The objective of this example is to store messages in a database and retrieve
them for display. Your application has a simple persistent class, Message, which
represents these printable messages. The Message class is shown in listing 2.1.

Listing 2.1 Message.java: a simple persistent class

package hello;

public class Message { Ideqﬂﬁer
private Long id; attribute
private String text; <+———— Message text

private Message nextMessage; Reference to another

Message () {} Message instance

public Message (String text) {
this.text = text;

}

public Long getId() {
return id;

}

private void setId(Long id) {
this.id = id;

}

public String getText () {
return text;

}

public void setText (String text) {
this.text = text;

}

public Message getNextMessage () {
return nextMessage;

}

public void setNextMessage (Message nextMessage) {
this.nextMessage = nextMessage;

44

CHAPTER 2
Starting a project

The Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another Message object. The identifier attribute allows
the application to access the database identity—the primary key value—of a per-
sistent object. If two instances of Message have the same identifier value, they rep-
resent the same row in the database.

This example uses Long for the type of the identifier attribute, but this isn’t a
requirement. Hibernate allows virtually anything for the identifier type, as you’ll
see later.

You may have noticed that all attributes of the Message class have JavaBeans-
style property accessor methods. The class also has a constructor with no parame-
ters. The persistent classes we show in the examples will almost always look some-
thing like this. The no-argument constructor is a requirement (tools like
Hibernate use reflection on this constructor to instantiate objects).

Instances of the Message class can be managed (made persistent) by Hiber-
nate, but they don’t have to be. Because the Message object doesn’t implement any
Hibernate-specific classes or interfaces, you can use it just like any other Java class:

Message message = new Message("Hello World");
System.out.println(message.getText ());
This code fragment does exactly what you’ve come to expect from “Hello World”
applications: It prints Hello World to the console. It may look like we’re trying to be
cute here; in fact, we’re demonstrating an important feature that distinguishes
Hibernate from some other persistence solutions. The persistent class can be used
in any execution context at all—no special container is needed. Note that this is
also one of the benefits of the new JPA entities, which are also plain Java objects.

Save the code for the Message class into your source folder, in a directory and

package named hello.

Mapping the class to a database schema

To allow the object/relational mapping magic to occur, Hibernate needs some
more information about exactly how the Message class should be made persistent.
In other words, Hibernate needs to know how instances of that class are supposed
to be stored and loaded. This metadata can be written into an XML mapping docu-
ment, which defines, among other things, how properties of the Message class map
to columns of a MESSAGES table. Let’s look at the mapping document in listing 2.2.

Starting a Hibernate project 45

Listing 2.2 A simple Hibernate XML mapping

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class
name="hello.Message"
table="MESSAGES">

<id
name="3id"
column="MESSAGE_ID">
<generator class="increment"/>
</id>

<property
name="text"
column="MESSAGE_TEXT" />

<many-to-one
name="nextMessage"
cascade="all"
column="NEXT_MESSAGE_ID"
foreign-key="FK_NEXT_MESSAGE"/>

</class>

</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a foreign key column named NEXT_MESSAGE_ID. Hibernate also gen-
erates the database schema for you and adds a foreign key constraint with the
name FK_NEXT MESSAGE to the database catalog. (Don’t worry about the other
details for now.)

The XML document isn’t difficult to understand. You can easily write and
maintain it by hand. Later, we discuss a way of using annotations directly in the
source code to define mapping information; but whichever method you choose,

46

CHAPTER 2
Starting a project

Hibernate has enough information to generate all the SQL statements needed to
insert, update, delete, and retrieve instances of the Message class. You no longer
need to write these SQL statements by hand.

Create a file named Message.hbm.xml with the content shown in listing 2.2,
and place it next to your Message.java file in the source package hello. The
hbm suffix is a naming convention accepted by the Hibernate community, and
most developers prefer to place mapping files next to the source code of their
domain classes.

Let’s load and store some objects in the main code of the “Hello World”
application.

Storing and loading objects
What you really came here to see is Hibernate, so let’s save a new Message to the

database (see listing 2.3).

Listing 2.3 The “Hello World” main application code

package hello;
import java.util.*;

import org.hibernate.*;
import persistence.*;

public class HelloWorld ({
public static void main(String[] args) {

// First unit of work

Session session =
HibernateUtil.getSessionFactory () .openSession() ;

Transaction tx = session.beginTransaction() ;

Message message = new Message ("Hello World") ;
Long msgId = (Long) session.save (message);

tx.commit () ;
session.close();

// Second unit of work

Session newSession =
HibernateUtil.getSessionFactory () .openSession() ;

Transaction newTransaction = newSession.beginTransaction() ;

List messages =
newSession.createQuery ("from Message m order by
m.text asc").list();

System.out.println(messages.size() +
" message(s) found:");

Starting a Hibernate project 47

for (Iterator iter = messages.iterator();
iter.hasNext();) {
Message loadedMsg = (Message) iter.next();
System.out.println(loadedMsg.getText ());
}

newTransaction.commit () ;
newSession.close() ;

// Shutting down the application
HibernateUtil.shutdown() ;

Place this code in the file HelloWorld.java in the source folder of your project, in
the hello package. Let’s walk through the code.

The class has a standard Java main () method, and you can call it from the com-
mand line directly. Inside the main application code, you execute two separate
units of work with Hibernate. The first unit stores a new Message object, and the
second unit loads all objects and prints their text to the console.

You call the Hibernate Session, Transaction, and Query interfaces to access
the database:

= Session—A Hibernate Session is many things in one. It’s a single-threaded
nonshared object that represents a particular unit of work with the data-
base. It has the persistence manager API you call to load and store objects.
(The Session internals consist of a queue of SQL statements that need to be
synchronized with the database at some point and a map of managed persis-
tence instances that are monitored by the Session.)

» Transaction—This Hibernate API can be used to set transaction bound-
aries programmatically, but it’s optional (transaction boundaries aren’t).
Other choices are JDBC transaction demarcation, the JTA interface, or con-
tainer-managed transactions with E]Bs.

= Query—A database query can be written in Hibernate’s own object-oriented
query language (HQL) or plain SQL. This interface allows you to create que-
ries, bind arguments to placeholders in the query, and execute the query in
various ways.

Ignore the line of code that calls HibernateUtil.getSessionFactory ()—we’ll
get to it soon.

48

CHAPTER 2
Starting a project

The first unit of work, if run, results in the execution of something similar to
the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)

values (1, 'Hello World', null)
Hold on—the MESSAGE_ID column is being initialized to a strange value. You
didn’t set the id property of message anywhere, so you expect it to be NULL, right?
Actually, the 1d property is special. It’s an identifier property: It holds a generated
unique value. The value is assigned to the Message instance by Hibernate when
save () is called. (We’ll discuss how the value is generated later.)

Look at the second unit of work. The literal string "from Message m order by
m.text asc" is a Hibernate query, expressed in HQL. This query is internally
translated into the following SQL when 1list () is called:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID

from MESSAGES m

order by m.MESSAGE_TEXT asc
If you run this main() method (don’t try this now—ryou still need to configure
Hibernate), the output on your console is as follows:

1 message(s) found:

Hello World
If you’ve never used an ORM tool like Hibernate before, you probably expected to
see the SQL statements somewhere in the code or mapping metadata, but they
aren’t there. All SQL is generated at runtime (actually, at startup for all reusable
SQL statements).

Your next step would normally be configuring Hibernate. However, if you feel
confident, you can add two other Hibernate features—automatic dirty checking
and cascading—in a third unit of work by adding the following code to your main
application:

// Third unit of work

Session thirdSession =

HibernateUtil.getSessionFactory () .openSession() ;
Transaction thirdTransaction = thirdSession.beginTransaction() ;

// msgId holds the identifier value of the first message
message = (Message) thirdSession.get(Message.class, msgId);

message.setText ("Greetings Earthling");
message.setNextMessage (
new Message("Take me to your leader (please)")

)i

thirdTransaction.commit () ;
thirdSession.close() ;

213

Starting a Hibernate project 49

This code calls three SQL statements inside the same database transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES
set MESSAGE_TEXT = 'Greetings Earthling', NEXT MESSAGE_ID = 2
where MESSAGE_ID 1

Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database—Hiber-
nate did aulomatic dirty checking. This feature saves you the effort of explicitly ask-
ing Hibernate to update the database when you modify the state of an object
inside a unit of work. Similarly, the new message was made persistent when a refer-
ence was created from the first message. This feature is called cascading save. It
saves you the effort of explicitly making the new object persistent by calling
save (), as long as it’s reachable by an already persistent instance.

Also notice that the ordering of the SQL statements isn’t the same as the order
in which you set property values. Hibernate uses a sophisticated algorithm to
determine an efficient ordering that avoids database foreign key constraint viola-
tions but is still sufficiently predictable to the user. This feature is called transac-
tional write-behind.

If you ran the application now, you’d get the following output (you’d have
to copy the second unit of work after the third to execute the query-display
step again):

2 message(s) found:

Greetings Earthling

Take me to your leader (please)

You now have domain classes, an XML mapping file, and the “Hello World” appli-
cation code that loads and stores objects. Before you can compile and run this
code, you need to create Hibernate’s configuration (and resolve the mystery of
the HibernateUtil class).

Hibernate configuration and startup

The regular way of initializing Hibernate is to build a SessionFactory object from

a Configuration object. If you like, you can think of the Configuration as an

object representation of a configuration file (or a properties file) for Hibernate.
Let’s look at some variations before we wrap it up in the HibernateUtil class.

50

CHAPTER 2
Starting a project

Building a SessionFactory
This is an example of a typical Hibernate startup procedure, in one line of code,
using automatic configuration file detection:
SessionFactory sessionFactory =
new Configuration().configure() .buildSessionFactory() ;
Wait—how did Hibernate know where the configuration file was located and
which one to load?

When new Configuration() is called, Hibernate searches for a file named
hibernate.properties in the root of the classpath. If it’s found, all hibernate. *
properties are loaded and added to the Configuration object.

When configure() is called, Hibernate searches for a file named hiber-
nate.cfg.xml in the root of the classpath, and an exception is thrown if it can’t
be found. You don’t have to call this method if you don’t have this configuration
file, of course. If settings in the XML configuration file are duplicates of proper-
ties set earlier, the XML settings override the previous ones.

The location of the hibernate.properties configuration file is always the
root of the classpath, outside of any package. If you wish to use a different file or
to have Hibernate look in a subdirectory of your classpath for the XML configura-
tion file, you must pass a path as an argument of the configure () method:

SessionFactory sessionFactory = new Configuration/()
.configure("/persistence/auction.cfg.xml")
.buildSessionFactory () ;

Finally, you can always set additional configuration options or mapping file loca-
tions on the Configuration object programmatically, before building the Ses-
sionFactory:

SessionFactory sessionFactory = new Configuration|()

.configure("/persistence/auction.cfg.xml")

.setProperty (Environment . DEFAULT_SCHEMA, "CAVEATEMPTOR")

.addResource ("auction/CreditCard.hbm.xml")

.buildSessionFactory () ;
Many sources for the configuration are applied here: First the hibernate.proper-
ties file in your classpath is read (if present). Next, all settings from /persistence/
auction.cfg.xml are added and override any previously applied settings. Finally, an
additional configuration property (a default database schema name) is set pro-
grammatically, and an additional Hibernate XML mapping metadata file is added
to the configuration.

You can, of course, set all options programmatically, or switch between different

XML configuration files for different deployment databases. There is effectively no

Starting a Hibernate project 51

limitation on how you can configure and deploy Hibernate; in the end, you only
need to build a SessionFactory from a prepared configuration.

NOTE Method chaining—Method chaining is a programming style supported by
many Hibernate interfaces. This style is more popular in Smalltalk than
in Java and is considered by some people to be less readable and more
difficult to debug than the more accepted Java style. However, it’s conve-
nient in many cases, such as for the configuration snippets you’ve seen in
this section. Here is how it works: Most Java developers declare setter or
adder methods to be of type void, meaning they return no value; but in
Smalltalk, which has no void type, setter or adder methods usually return
the receiving object. We use this Smalltalk style in some code examples,
but if you don’t like it, you don’t need to use it. If you do use this coding
style, it’s better to write each method invocation on a different line. Oth-
erwise, it may be difficult to step through the code in your debugger.

Now that you know how Hibernate is started and how to build a SessionFactory,
what to do next? You have to create a configuration file for Hibernate.

Creating an XML configuration file

Let’s assume you want to keep things simple, and, like most users, you decide to
use a single XML configuration file for Hibernate that contains all the configura-
tion details.

We recommend that you give your new configuration file the default name
hibernate.cfg.xml and place it directly in the source directory of your project, out-
side of any package. That way, it will end up in the root of your classpath after
compilation, and Hibernate will find it automatically. Look at the file in
listing 2.4.

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property name="hibernate.connection.driver_class">
org.hsgldb. jdbcDriver

</property>

<property name="hibernate.connection.url">
jdbc:hsgldb:hsgl://localhost

</property>

<property name="hibernate.connection.username">
sa

</property>

52

CHAPTER 2
Starting a project

<property name="hibernate.dialect">
org.hibernate.dialect.HSQLDialect
</property>

<!-- Use the C3P0 connection pool provider -->

<property name="hibernate.c3p0.min_size">5</property>

<property name="hibernate.c3p0.max_size">20</property>

<property name="hibernate.c3p0.timeout">300</property>

<property name="hibernate.c3p0.max_statements">50</property>
<property name="hibernate.c3p0.idle_test_period">3000</property>

<!-- Show and print nice SQL on stdout -->
<property name="show_sgl">true</property>
<property name="format_sqgl">true</property>

<!-- List of XML mapping files -->
<mapping resource="hello/Message.hbm.xml"/>

</session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD. Note that this isn’t the same DTD as the
one for Hibernate XML mapping files. Also note that we added some line breaks
in the property values to make this more readable—you shouldn’t do this in your
real configuration file (unless your database username contains a line break).

First in the configuration file are the database connection settings. You need to
tell Hibernate which database JDBC driver you’re using and how to connect to the
database with a URL, a username, and a password (the password here is omitted,
because HSQLDB by default doesn’t require one). You set a Dialect, so that
Hibernate knows which SQL variation it has to generate to talk to your database;
dozens of dialects are packaged with Hibernate—look at the Hibernate API docu-
mentation to get a list.

In the XML configuration file, Hibernate properties may be specified without
the hibernate prefix, so you can write either hibernate.show_sgl or just
show_sql. Property names and values are otherwise identical to programmatic
configuration properties—that is, to the constants as defined in org.hiber-
nate.cfg.Environment. The hibernate.connection.driver_class property, for
example, has the constant Environment . DRIVER.

Before we look at some important configuration options, consider the last line
in the configuration that names a Hibernate XML mapping file. The Config-
uration object needs to know about all your XML mapping files before you build
the SessionFactory. A SessionFactory is an object that represents a particular

Starting a Hibernate project 53

Hibernate configuration for a particular set of mapping metadata. You can either
list all your XML mapping files in the Hibernate XML configuration file, or you
can set their names and paths programmatically on the Configuration object. In
any case, if you list them as a resource, the path to the mapping files is the relative
location on the classpath, with, in this example, hello being a package in the root
of the classpath.

You also enabled printing of all SQL executed by Hibernate to the console, and
you told Hibernate to format it nicely so that you can check what is going on
behind the scenes. We’ll come back to logging later in this chapter.

Another, sometimes useful, trick is to make configuration options more
dynamic with system properties:

<property name="show_sqgl">${displaysqgl}</property>

You can now specify a system property, such as with java -displaysgl=true, on
the command line when you start your application, and this will automatically be
applied to the Hibernate configuration property.

The database connection pool settings deserve extra attention.

The database connection pool

Generally, it isn’t advisable to create a connection each time you want to interact
with the database. Instead, Java applications should use a pool of connections.
Each application thread that needs to do work on the database requests a connec-
tion from the pool and then returns it to the pool when all SQL operations have
been executed. The pool maintains the connections and minimizes the cost of
opening and closing connections.

There are three reasons for using a pool:

= Acquiring a new connection is expensive. Some database management sys-
tems even start a completely new server process for each connection.

= Maintaining many idle connections is expensive for a database manage-
ment system, and the pool can optimize the usage of idle connections (or
disconnect if there are no requests).

= Creating prepared statements is also expensive for some drivers, and the

connection pool can cache statements for a connection across requests.

Figure 2.2 shows the role of a connection pool in an unmanaged application run-
time environment (that is, one without any application server).

54

CHAPTER 2
Starting a project

|
! |
: , Application |
|

| -
| main | User-managed S
l: | JCBC Connections | . .
|

|
|
Ll JSP :

|

Figure 2.2 JDBC connection pooling in a nonmanaged environment

With no application server to provide a connection pool, an application either
implements its own pooling algorithm or relies on a third-party library such as the
open source C3P0 connection pooling software. Without Hibernate, the applica-
tion code calls the connection pool to obtain a JDBC connection and then exe-
cutes SQL statements with the JDBC programming interface. When the
application closes the SQL statements and finally closes the connection, the pre-
pared statements and connection aren’t destroyed, but are returned to the pool.

With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate Session
and Query API for persistence operations, and it manages database transactions
(probably) with the Hibernate Transaction APL

Hibernate defines a plug-in architecture that allows integration with any con-
nection-pooling software. However, support for C3P0 is built in, and the software
comes bundled with Hibernate, so you’ll use that (you already copied the c3p0.jar
file into your library directory, right?). Hibernate maintains the pool for you, and
configuration properties are passed through. How do you configure C3P0
through Hibernate?

N Connection

|
|
Hibernate 1
|
|
|

Figure 2.3 Hibernate with a connection pool in a nonmanaged environment

Starting a Hibernate project 55

One way to configure the connection pool is to put the settings into your
hibernate.cfg.xml configuration file, like you did in the previous section.

Alternatively, you can create a hibernate.properties file in the classpath root of
the application. An example of a hibernate.properties file for C3P0 is shown in
listing 2.5. Note that this file, with the exception of a list of mapping resources, is
equivalent to the configuration shown in listing 2.4.

hibernate.connection.driver_class = org.hsgldb.jdbcDriver
hibernate.connection.url = jdbc:hsgldb:hsgl://localhost
hibernate.connection.username = sa

hibernate.dialect = org.hibernate.dialect.HSQLDialect

hibernate.c3p0.min_size = 5 <19 ?
hibernate.c3p0.max_size = 20
hibernate.c3p0.timeout = 300 "
hibernate.c3p0.max_statements = 50
hibernate.c3p0.idle_test_period = 3000 qib

hibernate.show_sqgl = true
hibernate.format_sgl = true

This is the minimum number of JDBC connections that C3P0 keeps ready at all
times.

This is the maximum number of connections in the pool. An exception is thrown
at runtime if this number is exhausted.

You specify the timeout period (in this case, 300 seconds) after which an idle con-
nection is removed from the pool.

A maximum of 50 prepared statements will be cached. Caching of prepared state-
ments is essential for best performance with Hibernate.

This is the idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as the connec-
tion pool (the c3p0.max_size option is needed—you don’t need any other switch
to enable C3P0 support). C3P0 has more features than shown in the previous
example; refer to the properties file in the etc/ subdirectory of the Hibernate dis-
tribution to get a comprehensive example you can copy from.

The Javadoc for the class org.hibernate.cfg.Environment also documents
every Hibernate configuration property. Furthermore, you can find an up-to-date
table with all Hibernate configuration options in the Hibernate reference

56

CHAPTER 2
Starting a project

documentation. We’ll explain the most important settings throughout the book,
however. You already know all you need to get started.

FAQ Can I supply my own connections? Implementthe org.hibernate.connec-
tion.ConnectionProvider interface, and name your implementation
with the hibernate.connection.provider_class configuration option.
Hibernate will now rely on your custom provider if it needs a database
connection.

Now that you’ve completed the Hibernate configuration file, you can move on
and create the SessionFactory in your application.

Handling the SessionFactory

In most Hibernate applications, the SessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any Session should be created using this single
SessionFactory. The SessionFactory is thread-safe and can be shared; a Ses-
sion is a single-threaded object.

A frequently asked question is where the factory should be stored after cre-
ation and how it can be accessed without much hassle. There are more advanced
but comfortable options such as JNDI and JMX, but they’re usually available only
in full Java EE application servers. Instead, we’ll introduce a pragmatic and quick
solution that solves both the problem of Hibernate startup (the one line of code)
and the storing and accessing of the SessionFactory: you’ll use a static global
variable and static initialization.

Both the variable and initialization can be implemented in a single class, which
you’ll call HibernateUtil. This helper class is well known in the Hibernate com-
munity—it’s a common pattern for Hibernate startup in plain Java applications
without Java EE services. A basic implementation is shown in listing 2.6.

package persistence;

import org.hibernate.*;
import org.hibernate.cfg.*;

public class HibernateUtil {
private static SessionFactory sessionFactory;

static {
try {
sessionFactory=new Configuration/()
.configure ()

Starting a Hibernate project 57

.buildSessionFactory () ;
} catch (Throwable ex) {
throw new ExceptionInInitializerError (ex) ;
}
}

public static SessionFactory getSessionFactory() {
// Alternatively, you could look up in JNDI here
return sessionFactory;

}

public static void shutdown () {
// Close caches and connection pools
getSessionFactory () .close();

You create a static initializer block to start up Hibernate; this block is executed by
the loader of this class exactly once, on initialization when the class is loaded. The
first call of HibernateUtil in the application loads the class, builds the Session-
Factory, and sets the static variable at the same time. If a problem occurs, any
Exception or Error is wrapped and thrown out of the static block (that’s why you
catch Throwable). The wrapping in ExceptionInInitializerError is mandatory
for static initializers.

You've created this new class in a new package called persistence. In a fully
featured Hibernate application, you often need such a package—for example, to
wrap up your custom persistence layer interceptors and data type converters as
part of your infrastructure.

Now, whenever you need access to a Hibernate Session in your application,
you can get it easily with HibernateUtil.getSessionFactory () .openSession(),
just as you did earlier in the HelloWorld main application code.

You’re almost ready to run and test the application. But because you certainly
want to know what is going on behind the scenes, you’ll first enable logging.

Enabling logging and statistics

You've already seen the hibernate.show_sqgl configuration property. You’ll need
it continually when you develop software with Hibernate; it enables logging of all
generated SQL to the console. You'll use it for troubleshooting, for performance
tuning, and to see what’s going on. If you also enable hibernate. format_sql, the
output is more readable but takes up more screen space. A third option you
haven’t set so far is hibernate.use_sql_comments—it causes Hibernate to put

58

CHAPTER 2
Starting a project

comments inside all generated SQL statements to hint at their origin. For exam-
ple, you can then easily see if a particular SQL statement was generated from an
explicit query or an on-demand collection initialization.

Enabling the SQL output to stdout is only your first logging option. Hiber-
nate (and many other ORM implementations) execute SQL statements asynchro-
nously. An INSERT statement isn’t usually executed when the application calls
session.save(), nor is an UPDATE immediately issued when the application
calls item.setPrice(). Instead, the SQL statements are usually issued at the end
of a transaction.

This means that tracing and debugging ORM code is sometimes nontrivial. In
theory, it’s possible for the application to treat Hibernate as a black box and
ignore this behavior. However, when you’re troubleshooting a difficult problem,
you need to be able to see exactly what is going on inside Hibernate. Because
Hibernate is open source, you can easily step into the Hibernate code, and occa-
sionally this helps a great deal! Seasoned Hibernate experts debug problems by
looking at the Hibernate log and the mapping files only; we encourage you to
spend some time with the log output generated by Hibernate and familiarize
yourself with the internals.

Hibernate logs all interesting events through Apache commons-logging, a thin
abstraction layer that directs output to either Apache Log4j (if you put log4;j jar in
your classpath) or JDK 1.4 logging (if you’re running under JDK 1.4 or above and
Log4j isn’t present). We recommend Log4j because it’s more mature, more popu-
lar, and under more active development.

To see output from Log4j, you need a file named log4j.properties in your class-
path (right next to hibernate.properties or hibernate.cfg.xml). Also, don’t forget
to copy the log4j.jar library to your lib directory. The Log4j configuration exam-
ple in listing 2.7 directs all log messages to the console.

Direct log messages to stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.Target=System.out

log4dj.appender.stdout.layout=org.apache.logd4j.PatternLayout

log4dj.appender.stdout.layout.ConversionPattern=3d{ABSOLUTE}
$5p %$c{l}:%L - %m%n

Root logger option
log4j.rootLogger=INFO, stdout

Hibernate logging options (INFO only shows startup messages)
log4j.logger.org.hibernate=INFO

Starting a Hibernate project 59

Log JDBC bind parameter runtime arguments
log4j.logger.org.hibernate. type=INFO

The last category in this configuration file is especially interesting: It enables the
logging of JDBC bind parameters if you set it to DEBUG level, providing information
you usually don’t see in the ad hoc SQL console log. For a more comprehensive
example, check the log4j.properties file bundled in the etc/ directory of the
Hibernate distribution, and also look at the Log4j documentation for more infor-
mation. Note that you should never log anything at DEBUG level in production,
because doing so can seriously impact the performance of your application.

You can also monitor Hibernate by enabling live statistics. Without an applica-
tion server (that is, if you don’t have a JMX deployment environment), the easiest
way to get statistics out of the Hibernate engine at runtime is the SessionFactory:

Statistics stats =
HibernateUtil.getSessionFactory () .getStatistics();

stats.setStatisticsEnabled(true);

stats.getSessionOpenCount () ;
stats.logSummary () ;

EntityStatistics itemStats =
stats.getEntityStatistics("auction.model.Item");

itemStats.getFetchCount () ;
The statistics interfaces are Statistics for global information, Entity-
Statistics for information about a particular entity, CollectionStatistics for
a particular collection role, QueryStatistics for SQL and HQL queries, and Sec-
ondLevelCacheStatistics for detailed runtime information about a particular
region in the optional second-level data cache. A convenient method is logSum-
mary (), which prints out a complete summary to the console with a single call. If
you want to enable the collection of statistics through the configuration, and not
programmatically, set the hibernate.generate_statistics configuration prop-
erty to true. See the API documentation for more information about the various
statistics retrieval methods.

Before you run the “Hello World” application, check that your work directory
has all the necessary files:

WORKDIR

build.xml
+1ib

60

214

CHAPTER 2
Starting a project

<all required libraries>
+src
+hello
HelloWorld. java
Message.java
Message.hbm.xml
+persistence
HibernateUtil.java
hibernate.cfg.xml (or hibernate.properties)
log4j.properties
The first file, build.xml, is the Ant build definition. It contains the Ant targets for
building and running the application, which we’ll discuss next. You’ll also add a

target that can generate the database schema automatically.

Running and testing the application

To run the application, you need to compile it first and start the database manage-
ment system with the right database schema.

Ant is a powerful build system for Java. Typically, you’d write a build.xml file
for your project and call the build targets you defined in this file with the Ant
command-line tool. You can also call Ant targets from your Java IDE, if that is
supported.

Compiling the project with Ant

You’ll now add a build.xml file and some targets to the “Hello World” project. The
initial content for the build file is shown in listing 2.8—you create this file directly
in your WORKDIR.

Listing 2.8 A basic Ant build file for “Hello World”

<project name="HelloWorld" default="compile" basedir=".">
<!-- Name of project and version -->
<property name="proj.name" value="HelloWorld" />
<property name="proj.version" value="1.0"/>
<!-- Global properties for this build -->
<property name="src.java.dir" value="src"/>
<property name="1lib.dir" value="1ib"/>
<property name="build.dir" value="bin" />
<!-- Classpath declaration -->

<path id="project.classpath">
<fileset dir="${lib.dir}">
<include name="**/*_ jar"/>
<include name="**/*_zip"/>
</fileset>

Starting a Hibernate project 61

</path>

<!-- Useful shortcuts -->
<patternset id="meta.files">
<include name="**/* xml"/>
<include name="**/* . properties"/>
</patternset>

<!-- Clean up -->
<target name="clean">
<delete dir="${build.dir}"/>
<mkdir dir="${build.dir}"/>
</target>

<!-- Compile Java source -->
<target name="compile" depends="clean">
<mkdir dir="${build.dir}"/>
<javac
srcdir="${src.java.dir}"
destdir="${build.dir}"
nowarn="on">
<classpath refid="project.classpath"/>

</javac>
</target>
<!-- Copy metadata to build classpath -->

<target name="copymetafiles">
<copy todir="${build.dir}">
<fileset dir="${src.java.dir}">
<patternset refid="meta.files"/>

</fileset>
</copy>
</target>
<!-- Run HelloWorld -->

<target name="run" depends="compile, copymetafiles"
description="Build and run HelloWorld">
<java fork="true"
classname="hello.HelloWorld"
classpathref="project.classpath">
<classpath path="${build.dir}"/>
</java>
</target>

</project>

The first half of this Ant build file contains property settings, such as the project
name and global locations of files and directories. You can already see that this
build is based on the existing directory layout, your WORKDIR (for Ant, this is the
same directory as the basedir). The default target, when this build file is called
with no named target, is compile.

62

CHAPTER 2
Starting a project

Next, a name that can be easily referenced later, project.classpath, is
defined as a shortcut to all libraries in the library directory of the project. Another
shortcut for a pattern that will come in handy is defined as meta.files. You need
to handle configuration and metadata files separately in the processing of the
build, using this filter.

The clean target removes all created and compiled files, and cleans the
project. The last three targets, compile, copymetafiles, and run, should be self-
explanatory. Running the application depends on the compilation of all Java
source files, and the copying of all mapping and property configuration files to
the build directory.

Now, execute ant compile in your WORKDIR to compile the “Hello World”
application. You should see no errors (nor any warnings) during compilation and
find your compiled class files in the bin directory. Also call ant copymetafiles
once, and check whether all configuration and mapping files are copied correctly
into the bin directory.

Before you run the application, start the database management system and
export a fresh database schema.

Starting the HSQL database system

Hibernate supports more than 25 SQL database management systems out of the
box, and support for any unknown dialect can be added easily. If you have an
existing database, or if you know basic database administration, you can also
replace the configuration options (mostly connection and dialect settings) you
created earlier with settings for your own preferred system.

To say hello to the world, you need a lightweight, no-frills database system
that is easy to install and configure. A good choice is HSQLDB, an open source
SQL database management system written in Java. It can run in-process with the
main application, but in our experience, running it stand-alone with a TCP port
listening for connections is usually more convenient. You've already copied the
hsqldb. jar file into the library directory of your WORKDIR—this library includes
both the database engine and the JDBC driver required to connect to a run-
ning instance.

To start the HSQLDB server, open up a command line, change into your
WORKDIR, and run the command shown in figure 2.4. You should see startup mes-
sages and finally a help message that tells you how to shut down the database sys-
tem (it’s OK to use Ctrl+C). You'll also find some new files in your WORKDIR,
starting with test—these are the files used by HSQLDB to store your data. If you
want to start with a fresh database, delete the files between restarts of the server.

Starting a Hibernate project 63

Default

d [m Jmain]
ad[main,5,main]]: c
artup sequence initiat

illy in 582

IN SQL
rupt ly

Figure 2.4 Starting the HSQLDB server from the command line

You now have an empty database that has no content, not even a schema. Let’s
create the schema next.

Exporting the database schema
You can create the database schema by hand by writing SQL. DDL with CREATE
statements and executing this DDL on your database. Or (and this is much more
convenient) you can let Hibernate take care of this and create a default schema
for your application. The prerequisite in Hibernate for automatic generation of
SQL DDL is always a Hibernate mapping metadata definition, either in XML map-
ping files or in Java source-code annotations. We assume that you’ve designed and
implemented your domain model classes and written mapping metadata in XML
as you followed the previous sections.

The tool used for schema generation is hbm2ddl; its class is org.hibernate.
tool.hbm2ddl.SchemaExport, so it’s also sometimes called SchemaExport.

There are many ways to run this tool and create a schema:

= You can run <hbm2ddl> in an Ant target in your regular build procedure.

= You can run SchemaExport programmatically in application code, maybe in
your HibernateUtil startup class. This isn’t common, however, because you
rarely need programmatic control over schema generation.

= You can enable automatic export of a schema when your SessionFactory
is built by setting the hibernate.hbm2ddl.auto configuration property to
create or create-drop. The first setting results in DROP statements fol-
lowed by CREATE statements when the SessionFactory is built. The second
setting adds additional DROP statements when the application is shut down
and the SessionFactory is closed—effectively leaving a clean database
after every run.

64

CHAPTER 2
Starting a project

Programmatic schema generation is straightforward:

Configuration cfg = new Configuration().configure();

SchemaExport schemaExport = new SchemaExport (cfg) ;

schemaExport.create(false, true);

A new SchemaExport object is created from a Configuration; all settings (such as
the database driver, connection URL, and so on) are passed to the SchemaExport
constructor. The create(false, true) call triggers the DDL generation process,
without any SQL printed to stdout (because of the false setting), but with DDL
immediately executed in the database (true). See the SchemaExport API for more
information and additional settings.

Your development process determines whether you should enable automatic
schema export with the hibernate.hbm2ddl.auto configuration setting. Many
new Hibernate users find the automatic dropping and re-creation on Session-
Factory build a little confusing. Once you’re more familiar with Hibernate, we
encourage you to explore this option for fast turnaround times in integration test-
ing.

An additional option for this configuration property, update, can be useful
during development: it enables the built-in SchemaUpdate tool, which can make
schema evolution easier. If enabled, Hibernate reads the JDBC database metadata
on startup and creates new tables and constraints by comparing the old schema
with the current mapping metadata. Note that this functionality depends on the
quality of the metadata provided by the JDBC driver, an area in which many driv-
ers are lacking. In practice, this feature is therefore less exciting and useful than
it sounds.

WARNING We’ve seen Hibernate users trying to use SchemaUpdate to update the
schema of a production database automatically. This can quickly end in
disaster and won’t be allowed by your DBA.

You can also run SchemaUpdate programmatically:

Configuration cfg = new Configuration() .configure() ;

SchemaUpdate schemaUpdate = new SchemaUpdate (cfg) ;

schemaUpdate.execute (false) ;
The false setting at the end again disables printing of the SQL DDL to the con-
sole and only executes the statements directly on the database. If you export the
DDL to the console or a text file, your DBA may be able to use it as a starting point
to produce a quality schema-evolution script.

Another hbm2ddl.auto setting useful in development is validate. It enables
SchemaValidator to run at startup. This tool can compare your mapping against

Starting a Hibernate project 65

the JDBC metadata and tell you if the schema and mappings match. You can also
run SchemaValidator programmatically:

Configuration cfg = new Configuration().configure();

new SchemaValidator (cfg) .validate() ;
An exception is thrown if a mismatch between the mappings and the database
schema is detected.

Because you’re basing your build system on Ant, you’ll ideally add a schemaex-
port target to your Ant build that generates and exports a fresh schema for your
database whenever you need one (see listing 2.9).

Listing 2.9 Ant target for schema export

<taskdef name="hibernatetool"
classname="org.hibernate.tool.ant.HibernateToolTask"
classpathref="project.classpath"/>

<target name="schemaexport" depends="compile, copymetafiles"
description="Exports a generated schema to DB and file">

<hibernatetool destdir="${basedir}">
<classpath path="${build.dir}"/>

<configuration
configurationfile="${build.dir}/hibernate.cfg.xml"/>

<hbm2ddl
drop="true"
create="true"
export="true"
outputfilename="helloworld-ddl.sqgl"
delimiter=";"
format="true"/>

</hibernatetool>

</target>
|

In this target, you first define a new Ant task that you’d like to use, Hiber-
nateToolTask. This is a generic task that can do many things—exporting an SQL
DDL schema from Hibernate mapping metadata is only one of them. You’ll use it
throughout this chapter in all Ant builds. Make sure you include all Hibernate
libraries, required third-party libraries, and your JDBC driver in the classpath of
the task definition. You also need to add the hibernate-tools.jar file, which can be
found in the Hibernate Tools download package.

66

CHAPTER 2
Starting a project

The schemaexport Ant target uses this task, and it also depends on the com-
piled classes and copied configuration files in the build directory. The basic use of
the <hibernatetool> task is always the same: A configuration is the starting point
for all code artifact generation. The variation shown here, <configuration>,
understands Hibernate XML configuration files and reads all Hibernate XML
mapping metadata files listed in the given configuration. From that information,
an internal Hibernate metadata model (which is what sbm stands for everywhere)
is produced, and this model data is then processed subsequently by exporters. We
discuss tool configurations that can read annotations or a database for reverse
engineering later in this chapter.

The other element in the target is a so-called exporter. The tool configuration
feeds its metadata information to the exporter you selected; in the preceding
example, it’s the <hbm2ddl> exporter. As you may have guessed, this exporter
understands the Hibernate metadata model and produces SQL DDL. You can con-
trol the DDL generation with several options:

= The exporter generates SQL, so it’s mandatory that you set an SQL dialect in
your Hibernate configuration file.

= If drop is set to true, SQL DROP statements will be generated first, and all
tables and constraints are removed if they exist. If create is set to true, SQL
CREATE statements are generated next, to create all tables and constraints. If
you enable both options, you effectively drop and re-create the database
schema on every run of the Ant target.

» Ifexport is set to true, all DDL statements are directly executed in the data-
base. The exporter opens a connection to the database using the connec-
tion settings found in your configuration file.

= If an outputfilename is present, all DDL statements are written to this file,
and the file is saved in the destdir you configured. The delimiter charac-
ter is appended to all SQL statements written to the file, and if format is
enabled, all SQL statements are nicely indented.

You can now generate, print, and directly export the schema to a text file and the
database by running ant schemaxport in your WORKDIR. All tables and con-
straints are dropped and then created again, and you have a fresh database ready.
(Ignore any error message that says that a table couldn’t be dropped because it
didn’t exist.)

Starting a Hibernate project 67

Check that your database is running and that it has the correct database
schema. A useful tool included with HSQLDB is a simple database browser. You
can call it with the following Ant target:

<target name="dbmanager" description="Start HSQLDB manager">

<java
classname="org.hsgldb.util.DatabaseManagerSwing"
fork="yes"

classpathref="project.classpath"
failonerror="true">
<arg value="-url"/>
<arg value="jdbc:hsgldb:hsgl://localhost/"/>
<arg value="-driver"/>
<arg value="org.hsgldb. jdbcDriver" />
</java>
</target>

You should see the schema shown in figure 2.5 after logging in.

Run your application with ant run, and watch the console for Hibernate log
output. You should see your messages being stored, loaded, and printed. Fire an
SQL query in the HSQLDB browser to check the content of your database directly.

You now have a working Hibernate infrastructure and Ant project build. You
could skip to the next chapter and continue writing and mapping more complex
business classes. However, we recommend that you spend some time with the

O 06 HSQL Database Manager
File View Command Recent Options Tools Schemas Help
%g Clear SQL‘ili‘_’ Execute SQL

3

jdbc:hsgldb:hsql:/ /localhost/ select * from MESSAGES
¥ | PUBLIC.MESSAGES

PUBLIC
¥ | MESSAGE_ID
Type: BIGINT
Nullable: false =
v (7 MESSAGE_TEXT ~ MESSAGE_ID MESSAGE_TEXT = NEXT_MESSAGE_ID

Type: VARCHAR
Nullable: true
> NEXT_MESSAGE_ID
P | Indices
> | Properties

© Ready

Figure 2.5 The HSQLDB browser and SQL console

68

2.2

221

CHAPTER 2
Starting a project

“Hello World” application and extend it with more functionality. You can, for
example, try different HQL queries or logging options. Don’t forget that your
database system is still running in the background, and that you have to either
export a fresh schema or stop it and delete the database files to get a clean and
empty database again.

In the next section, we walk through the “Hello World” example again, with
Java Persistence interfaces and EJB 3.0.

Starting a Java Persistence project

In the following sections, we show you some of the advantages of JPA and the new
EJB 3.0 standard, and how annotations and the standardized programming inter-
faces can simplify application development, even when compared with Hibernate.
Obviously, designing and linking to standardized interfaces is an advantage if you
ever need to port or deploy an application on a different runtime environment.
Besides portability, though, there are many good reasons to give JPA a closer look.

We’ll now guide you through another “Hello World” example, this time with
Hibernate Annotations and Hibernate EntityManager. You’ll reuse the basic
project infrastructure introduced in the previous section so you can see where JPA
differs from Hibernate. After working with annotations and the JPA interfaces,
we’ll show how an application integrates and interacts with other managed com-
ponents—E]Bs. We’ll discuss many more application design examples later in the
book; however, this first glimpse will let you decide on a particular approach as
soon as possible.

Using Hibernate Annotations

Let’s first use Hibernate Annotations to replace the Hibernate XML mapping files
with inline metadata. You may want to copy your existing “Hello World” project
directory before you make the following changes—you’ll migrate from native
Hibernate to standard JPA mappings (and program code later on).

Copy the Hibernate Annotations libraries to your WORKDIR/lib directory—see
the Hibernate Annotations documentation for a list of required libraries. (At the
time of writing, hibernate-annotations.jar and the API stubs in ejb3-persistence.jar
were required.)

Now delete the src/hello/Message.hbm.xml file. You’ll replace this file with
annotations in the src/hello/Message.java class source, as shown in listing 2.10.

Starting a Java Persistence project 69

Listing 2.10 Mapping the Message class with annota

package hello;
import javax.persistence.*;

Q@QEntity
@Table (name = "MESSAGES")
public class Message {

@Id @Generatedvalue
@Column (name = "MESSAGE_ID")
private Long id;

@Column (name = "MESSAGE_TEXT")
private String text;

@ManyToOne (cascade = CascadeType.ALL)
@JoinColumn (name = "NEXT MESSAGE_ID")
private Message nextMessage;

private Message() {}

public Message(String text) {
this.text = text;
}

public Long getId() {
return id;

}

private void setId(Long id) ({
this.id = id;

}

public String getText () {
return text;

}

public void setText (String text) {
this.text = text;

public Message getNextMessage() {
return nextMessage;

}

public void setNextMessage (Message nextMessage) {
this.nextMessage = nextMessage;

The first thing you’ll probably notice in this updated business class is the import
of the javax.persistence interfaces. Inside this package are all the standardized
JPA annotations you need to map the @Entity class to a database @Table. You put

70

CHAPTER 2
Starting a project

annotations on the private fields of the class, starting with @Id and @Generated-
Value for the database identifier mapping. The JPA persistence provider detects
that the @Id annotation is on a field and assumes that it should access properties
on an object directly through fields at runtime. If you placed the @Id annotation
on the getId() method, you'd enable access to properties through getter and set-
ter methods by default. Hence, all other annotations are also placed on either
fields or getter methods, following the selected strategy.

Note that the @Table, @Column, and @JoinColumn annotations aren’t necessary.
All properties of an entity are automatically considered persistent, with default
strategies and table/column names. You add them here for clarity and to get the
same results as with the XML mapping file. Compare the two mapping metadata
strategies now, and you’ll see that annotations are much more convenient and
reduce the lines of metadata significantly. Annotations are also type-safe, they sup-
port autocompletion in your IDE as you type (like any other Java interfaces), and
they make refactoring of classes and properties easier.

If you’re worried that the import of the JPA interfaces will bind your code to
this package, you should know that it’s only required on your classpath when the
annotations are used by Hibernate at runtime. You can load and execute this class
without the JPA interfaces on your classpath as long as you don’t want to load and
store instances with Hibernate.

A second concern that developers new to annotations sometimes have relates
to the inclusion of configuration metadata in Java source code. By definition, config-
uration metadata is metadata that can change for each deployment of the applica-
tion, such as table names. JPA has a simple solution: You can override or replace
all annotated metadata with XML metadata files. Later in the book, we’ll show you
how this is done.

Let’s assume that this is all you want from JPA—annotations instead of XML.
You don’t want to use the JPA programming interfaces or query language; you’ll
use Hibernate Session and HQL. The only other change you need to make to
your project, besides deleting the now obsolete XML mapping file, is a change in
the Hibernate configuration, in hibernate.cfg.xml:

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>
<!-- ... Many property settings ... -->

<!-- List of annotated classes-->
<mapping class="hello.Message"/>

Starting a Java Persistence project 71

</session-factory>

</hibernate-configuration>
The Hibernate configuration file previously had a list of all XML mapping files.
This has been replaced with a list of all annotated classes. If you use programmatic
configuration of a SessionFactory, the addAnnotatedClass () method replaces
the addResource () method:

// Load settings from hibernate.properties

AnnotationConfiguration cfg = new AnnotationConfiguration() ;
// ... set other configuration options programmatically

cfg.addAnnotatedClass (hello.Message.class) ;

SessionFactory sessionFactory = cfg.buildSessionFactory() ;

Note that you have now used AnnotationConfiguration instead of the basic
Hibernate Configuration interface—this extension understands annotated
classes. At a minimum, you also need to change your initializer in HibernateUtil
to use that interface. If you export the database schema with an Ant target, replace
<configuration> with <annotationconfiguration> in your build.xml file.

This is all you need to change to run the “Hello World” application with anno-
tations. Try running it again, probably with a fresh database.

Annotation metadata can also be global, although you don’t need this for the
“Hello World” application. Global annotation metadata is placed in a file named
package-info.java in a particular package directory. In addition to listing anno-
tated classes, you need to add the packages that contain global metadata to your
configuration. For example, in a Hibernate XML configuration file, you need to
add the following:

<!DOCTYPE hibernate-configuration SYSTEM
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<gsession-factory>
<!-- ... Many property settings ... -->

<!-- List of annotated classes-->
<mapping class="hello.Message"/>

<!-- List of packages with package-info.java -->
<mapping package="hello"/>

</session-factory>
</hibernate-configuration>

Or you could achieve the same results with programmatic configuration:

72

222

CHAPTER 2
Starting a project

// Load settings from hibernate.properties
AnnotationConfiguration cfg = new AnnotationConfiguration() ;
// ... set other configuration options programmatically

cfg.addClass (hello.Message.class) ;
cfg.addPackage ("hello") ;

SessionFactory sessionFactory = cfg.buildSessionFactory() ;

Let’s take this one step further and replace the native Hibernate code that loads
and stores messages with code that uses JPA. With Hibernate Annotations and
Hibernate EntityManager, you can create portable and standards-compliant map-
pings and data access code.

Using Hibernate EntityManager

Hibernate EntityManager is a wrapper around Hibernate Core that provides the
JPA programming interfaces, supports the JPA entity instance lifecycle, and allows
you to write queries with the standardized Java Persistence query language.
Because JPA functionality is a subset of Hibernate’s native capabilities, you may
wonder why you should use the EntityManager package on top of Hibernate.
We’ll present a list of advantages later in this section, but you’ll see one particular
simplification as soon as you configure your project for Hibernate EntityManager:
You no longer have to list all annotated classes (or XML mapping files) in your
configuration file.

Let’s modify the “Hello World” project and prepare it for full JPA compatibility.

Basic JPA configuration

A SessionFactory represents a particular logical data-store configuration in a
Hibernate application. The EntityManagerFactory has the same role in a JPA
application, and you configure an EntityManagerFactory (EMF) either with con-
figuration files or in application code just as you would configure a SessionFac-
tory. The configuration of an EMF, together with a set of mapping metadata
(usually annotated classes), is called the persistence unit.

The notion of a persistence unit also includes the packaging of the applica-
tion, but we want to keep this as simple as possible for “Hello World”; we’ll assume
that you want to start with a standardized JPA configuration and no special packag-
ing. Not only the content, but also the name and location of the JPA configuration
file for a persistence unit are standardized.

Create a directory named WORKDIR/ etc/META-INF and place the basic config-
uration file named persistence.xml, shown in listing 2.11, in that directory:

Starting a Java Persistence project 73

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="helloworld">
<properties>
<property name="hibernate.ejb.cfgfile"
value="/hibernate.cfg.xml"/>
</properties>
</persistence-unit>

</persistence>

Every persistence unit needs a name, and in this case it’s helloworld.

NOTE The XML header in the preceding persistence unit configuration file
declares what schema should be used, and it’s always the same. We’ll
omit it in future examples and assume that you’ll add it.

A persistence unit is further configured with an arbitrary number of properties,
which are all vendorspecific. The property in the previous example, hiber-
nate.ejb.cfgfile, acts as a catchall. It refers to a hibernate.cfg.xml file (in the
root of the classpath) that contains all settings for this persistence unit—you’re
reusing the existing Hibernate configuration. Later, you’ll move all configuration
details into the persistence.xml file, but for now you’re more interested in run-
ning “Hello World” with JPA.

The JPA standard says that the persistence.xml file needs to be present in the
META-INF directory of a deployed persistence unit. Because you aren’t really pack-
aging and deploying the persistence unit, this means that you have to copy persis-
tence.xml into a META-INF directory of the build output directory. Modify your
build.xml, and add the following to the copymetafiles target:

<property name="src.etc.dir" value="etc"/>
<target name="copymetafiles">

<!-- Copy metadata to build -->
<copy todir="${build.dir}">
<fileset dir="${src.java.dir}">
<patternset refid="meta.files"/>
</fileset>
</copy>

74

CHAPTER 2
Starting a project

<!-- Copy configuration files from etc/ -->
<copy todir="${build.dir}">
<fileset dir="${src.etc.dir}">
<patternset refid="meta.files"/>
</fileset>
</copy>

</target>

Everything found in WORKDIR/etc that matches the meta.files pattern is
copied to the build output directory, which is part of the classpath at runtime.
Let’s rewrite the main application code with JPA.

“Hello World” with JPA
These are your primary programming interfaces in Java Persistence:

javax.persistence.Persistence—A startup class that provides a static
method for the creation of an EntityManagerFactory.

javax.persistence.EntityManagerFactory—The equivalent to a Hiber-
nate SessionFactory. This runtime object represents a particular persis-
tence unit. It’s thread-safe, is usually handled as a singleton, and provides
methods for the creation of EntityManager instances.

javax.persistence.EntityManager—The equivalent to a Hibernate Ses-
sion. This single-threaded, nonshared object represents a particular unit of
work for data access. It provides methods to manage the lifecycle of entity
instances and to create Query instances.

javax.persistence.Query—This is the equivalent to a Hibernate Query.
An object is a particular JPA query language or native SQL query representa-
tion, and it allows safe binding of parameters and provides various methods
for the execution of the query.

javax.persistence.EntityTransaction—This is the equivalent to a
Hibernate Transaction, used in Java SE environments for the demarcation
of RESOURCE_LOCAL transactions. In Java EE, you rely on the standardized
javax.transaction.UserTransaction interface of JTA for programmatic
transaction demarcation.

To use the JPA interfaces, you need to copy the required libraries to your
WORKDIR/lib directory; check the documentation bundled with Hibernate
EntityManager for an up-to-date list. You can then rewrite the code in WORKDIR/
src/hello/HelloWorld.java and switch from Hibernate to JPA interfaces (see
listing 2.12).

Starting a Java Persistence project 75

Listing 2.12 The “Hello World” main application code with JPA

package hello;

import java.util.*;
import javax.persistence.*;

public class HelloWorld {
public static void main(Stringl[] args) {

// Start EntityManagerFactory
EntityManagerFactory emf =
Persistence.createEntityManagerFactory ("helloworld") ;

// First unit of work

EntityManager em = emf.createEntityManager () ;
EntityTransaction tx = em.getTransaction();
tx.begin() ;

Message message = new Message ("Hello World");
em.persist (message) ;

tx.commit () ;
em.close() ;

// Second unit of work

EntityManager newEm = emf.createEntityManager () ;
EntityTransaction newTx = newEm.getTransaction() ;
newTx.begin() ;

List messages = newEm
.createQuery ("select m from Message m
order by m.text asc")
.getResultList();

System.out.println(messages.size() + " message(s) found");

for (Object m : messages) {
Message loadedMsg = (Message) m;
System.out.println(loadedMsg.getText ()) ;
}

newTx.commit () ;
newEm.close() ;

// Shutting down the application
emf.close();

76

CHAPTER 2
Starting a project

The first thing you probably notice in this code is that there is no Hibernate
import anymore, only javax.peristence.*. The EntityManagerFactory is cre-
ated with a static call to Persistence and the name of the persistence unit. The
rest of the code should be self-explanatory—you use JPA just like Hibernate,
though there are some minor differences in the API, and methods have slightly
different names. Furthermore, you didn’t use the HibernateUtil class for static
initialization of the infrastructure; you can write a JPAUt11 class and move the cre-
ation of an EntityManagerFactory there if you want, or you can remove the now
unused WORKDIR/src/persistence package.

JPA also supports programmatic configuration, with a map of options:

Map myProperties = new HashMap() ;

myProperties.put ("hibernate.hbm2ddl.auto", "create-drop");

EntityManagerFactory emf =

Persistence.createEntityManagerFactory ("helloworld", myProperties);
Custom programmatic properties override any property you’ve set in the persis-
tence.xml configuration file.

Try to run the ported HelloWorld code with a fresh database. You should see
the exact same log output on your screen as you did with native Hibernate—the
JPA persistence provider engine is Hibernate.

Automatic detection of metadata
We promised earlier that you won’t have to list all your annotated classes or XML
mapping files in the configuration, but it’s still there, in hibernate.cfg.xml. Let’s
enable the autodetection feature of JPA.

Run the “Hello World” application again after switching to DEBUG logging for
the org.hibernate package. Some additional lines should appear in your log:

Ejb3Configuration:141

- Trying to find persistence unit: helloworld
Ejb3Configuration:150

- Analyse of persistence.xml:

file:/helloworld/build/META-INF/persistence.xml

PersistenceXmlLoader:115

- Persistent Unit name from persistence.xml: helloworld
Ejb3Configuration:359

- Detect class: true; detect hbm: true
JarVisitor:178

- Searching mapped entities in jar/par: file:/helloworld/build
JarVisitor:217

- Filtering: hello.HelloWorld
JarVisitor:217

- Filtering: hello.Message

Starting a Java Persistence project 77

JarVisitor:255

- Java element filter matched for hello.Message
Ejb3Configuration:101

- Creating Factory: helloworld

On startup, the Persistence.createEntityManagerFactory() method tries to
locate the persistence unit named helloworld. It searches the classpath for all
META-INF/persistence.xml files and then configures the EMF if a match is found.
The second part of the log shows something you probably didn’t expect. The JPA
persistence provider tried to find all annotated classes and all Hibernate XML
mapping files in the build output directory. The list of annotated classes (or the
list of XML mapping files) in hibernate.cfg.xml isn’t needed, because hello.Mes-
sage, the annotated entity class, has already been found.

Instead of removing only this single unnecessary option from hiber-
nate.cfg.xml, let’s remove the whole file and move all configuration details into
persistence.xml (see listing 2.13).

Listing 2.13 Full persistence unit configuration file

<persistence-unit name="helloworld">

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<!-- Not needed, Hibernate supports auto-detection in JSE
<class>hello.Message</class>
—-——>

<properties>
<property name="hibernate.archive.autodetection"
value="class, hbm"/>

<property name="hibernate.show_sgl" value="true"/>
<property name="hibernate.format_sql" value="true"/>

<property name="hibernate.connection.driver_class"
value="org.hsgldb.jdbcDriver" />

<property name="hibernate.connection.url"
value="jdbc:hsgldb:hsgl://localhost" />

<property name="hibernate.connection.username"
value="sa"/>

<property name="hibernate.c3p0.min_size"
value="5"/>

<property name="hibernate.c3p0.max_size"
value="20"/>

<property name="hibernate.c3p0.timeout"
value="300"/>

<property name="hibernate.c3p0.max_statements"
value="50"/>

78

CHAPTER 2
Starting a project

<property name="hibernate.c3p0.idle_test_period"
value="3000"/>

<property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect" />

<property name="hibernate.hbm2ddl.auto" value="create"/>

</properties>
</persistence-unit>

There are three interesting new elements in this configuration file. First, you set
an explicit <provider> that should be used for this persistence unit. This is usu-
ally required only if you work with several JPA implementations at the same time,
but we hope that Hibernate will, of course, be the only one. Next, the specifica-
tion requires that you list all annotated classes with <class> elements if you
deploy in a non-Java EE environment—Hibernate supports autodetection of map-
ping metadata everywhere, making this optional. Finally, the Hibernate
configuration setting archive.autodetection tells Hibernate what metadata to
scan for automatically: annotated classes (class) and/or Hibernate XML map-
ping files (hbm). By default, Hibernate EntityManager scans for both. The rest of
the configuration file contains all options we explained and used earlier in this
chapter in the regular hibernate.cfg.xml file.

Automatic detection of annotated classes and XML mapping files is a great fea-
ture of JPA. It’s usually only available in a Java EE application server; at least, this is
what the EJB 3.0 specification guarantees. But Hibernate, as a JPA provider, also
implements it in plain Java SE, though you may not be able to use the exact same
configuration with any other JPA provider.

You've now created an application that is fully JPA specification-compliant.
Your project directory should look like this (note that we also moved log4j.proper-
ties to the etc/ directory):

WORKDIR

+etc

log4j.properties
+META-INF
persistence.xml
+1ib
<all required libraries>
+src
+hello
HelloWorld. java
Message.java
All JPA configuration settings are bundled in persistence.xml, all mapping meta-
data is included in the Java source code of the Message class, and Hibernate

223

Starting a Java Persistence project 79

automatically scans and finds the metadata on startup. Compared to pure Hiber-
nate, you now have these benefits:

= Automatic scanning of deployed metadata, an important feature in large
projects. Maintaining a list of annotated classes or mapping files becomes
difficult if hundreds of entities are developed by a large team.

= Standardized and simplified configuration, with a standard location for the
configuration file, and a deployment concept—the persistence unit—that
has many more advantages in larger projects that wrap several units (JARs)
in an application archive (EAR).

= Standardized data access code, entity instance lifecycle, and queries that are
fully portable. There is no proprietary import in your application.

These are only some of the advantages of JPA. You’ll see its real power if you com-
bine it with the full EJB 3.0 programming model and other managed components.

Introducing EJB components

Java Persistence starts to shine when you also work with EJB 3.0 session beans and
message-driven beans (and other Java EE 5.0 standards). The EJB 3.0 specification
has been designed to permit the integration of persistence, so you can, for exam-
ple, get automatic transaction demarcation on bean method boundaries, or a per-
sistence context (think Session) that spans the lifecycle of a stateful session EJB.

This section will get you started with EJB 3.0 and JPA in a managed Java EE
environment; you’ll again modify the “Hello World” application to learn the
basics. You need a Java EE environment first—a runtime container that provides
Java EE services. There are two ways you can get it:

= You can install a full Java EE 5.0 application server that supports EJB 3.0 and
JPA. Several open source (Sun GlassFish, JBoss AS, ObjectWeb EasyBeans)
and other proprietary licensed alternatives are on the market at the time of
writing, and probably more will be available when you read this book.

= You can install a modular server that provides only the services you need,
selected from the full Java EE 5.0 bundle. At a minimum, you probably want
an EJB 3.0 container, JTA transaction services, and a JNDI registry. At the
time of writing, only JBoss AS provided modular Java EE 5.0 services in an
easily customizable package.

To keep things simple and to show you how easy it is to get started with EJB 3.0,
you’ll install and configure the modular JBoss Application Server and enable only
the Java EE 5.0 services you need.

80

CHAPTER 2
Starting a project

Installing the EJB container

Go to http://jboss.com/products/ejb3, download the modular embeddable
server, and unzip the downloaded archive. Copy all libraries that come with the
server into your project’s WORKDIR/lib directory, and copy all included configu-
ration files to your WORKDIR/src directory. You should now have the following
directory layout:

WORKDIR
+etc
default.persistence.properties
ejb3-interceptors-aop.xml
embedded-jboss-beans.xml
jndi.properties
logdj.properties
+META-INF
helloworld-beans.xml
persistence.xml
+1ib
<all required libraries>
+src
+hello
HelloWorld.java
Message.java

The JBoss embeddable server relies on Hibernate for Java Persistence, so the
default.persistence.properties file contains default settings for Hibernate that are
needed for all deployments (such as JTA integration settings). The ejb3-intercep-
tors-aop.xml and embedded-jboss-beans.xml configuration files contain the ser-
vices configuration of the server—you can look at these files, but you don’t need
to modify them now. By default, at the time of writing, the enabled services are
JNDI, JCA, JTA, and the EJB 3.0 container—exactly what you need.

To migrate the “Hello World” application, you need a managed datasource,
which is a database connection that is handled by the embeddable server. The eas-
iest way to configure a managed datasource is to add a configuration file that
deploys the datasource as a managed service. Create the file in listing 2.14 as
WORKDIR/ etc/META-INF/helloworld-beans.xml.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:jboss:bean-deployer bean-deployer_1_0.xsd"
xmlns="urn:jboss:bean-deployer:2.0">

<!-- Enable a JCA datasource available through JNDI -->
<bean name="helloWorldDatasourceFactory"

Starting a Java Persistence project 81

class="org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">
<property name="jndiName">java:/HelloWorldDS</property>

<!-- HSQLDB -->

<property name="driverClass">
org.hsgldb. jdbcDriver

</property>

<property name="connectionURL">
jdbc:hsgldb:hsgl://localhost

</property>

<property name="userName">sa</property>

<property name="minSize">0</property>

<property name="maxSize">10</property>

<property name="blockingTimeout">1000</property>
<property name="idleTimeout">100000</property>

<property name="transactionManager">
<inject bean="TransactionManager"/>

</property>

<property name="cachedConnectionManager">
<inject bean="CachedConnectionManager"/>

</property>

<property name="initialContextProperties">
<inject bean="InitialContextProperties"/>

</property>

</bean>

<bean name="HelloWorldDS" class="java.lang.Object">
<constructor factoryMethod="getDatasource">
<factory bean="helloWorldDatasourceFactory"/>
</constructor>
</bean>

</deployment>
||

Again, the XML header and schema declaration aren’t important for this exam-
ple. You set up two beans: The first is a factory that can produce the second type
of bean. The LocalTxDataSource is effectively now your database connection
pool, and all your connection pool settings are available on this factory. The fac-
tory binds a managed datasource under the JNDI name java: /HelloWorldDs.

The second bean configuration declares how the registered object named
HelloWorldDS should be instantiated, if another service looks it up in the JNDI
registry. Your “Hello World” application asks for the datasource under this name,
and the server calls getDatasource() on the LocalTxDataSource factory to
obtain it.

82

CHAPTER 2
Starting a project

Also note that we added some line breaks in the property values to make this
more readable—you shouldn’t do this in your real configuration file (unless your
database username contains a line break).

Configuring the persistence unit

Next, you need to change the persistence unit configuration of the “Hello World”
application to access a managed JTA datasource, instead of a resource-local connec-
tion pool. Change your WORKDIR/ etc/META-INF/ persistence.xml file as follows:

<persistence ...>

<persistence-unit name="helloworld">
<jta-data-source>java:/HelloWorldDS</jta-data-source>
<properties>
<property name="hibernate.show_sgl" value="true"/>
<property name="hibernate.format_sgl" value="true"/>
<property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect" />
<property name="hibernate.hbm2ddl.auto" value="create"/>

</properties>
</persistence-unit>

</persistence>

You removed many Hibernate configuration options that are no longer relevant,
such as the connection pool and database connection settings. Instead, you set a
<jta-data-source> property with the name of the datasource as bound in JNDIL
Don’t forget that you still need to configure the correct SQL dialect and any other
Hibernate options that aren’t present in default.persistence.properties.

The installation and configuration of the environment is now complete, (we’ll
show you the purpose of the jndi.properties files in a moment) and you can
rewrite the application code with EJBs.

Writing EJBs

There are many ways to design and create an application with managed compo-
nents. The “Hello World” application isn’t sophisticated enough to show elabo-
rate examples, so we’ll introduce only the most basic type of E]JB, a stateless session
bean. (You've already seen entity classes—annotated plain Java classes that can
have persistent instances. Note that the term entity bean only refers to the old EJB
2.1 entity beans; EJB 3.0 and Java Persistence standardize a lightweight program-
ming model for plain entity classes.)

Starting a Java Persistence project 83

Every EJB session bean needs a business interface. This isn’t a special interface
that needs to implement predefined methods or extend existing ones; it’s plain
Java. Create the following interface in the WORKDIR/src/hello package:

package hello;
public interface MessageHandler {
public void saveMessages() ;

public void showMessages|() ;
}
A MessageHandler can save and show messages; it’s straightforward. The actual
EJB implements this business interface, which is by default considered a local
interface (thatis, remote EJB clients cannot call it); see listing 2.15.

Listing 2.15 The “Hello World” EJB session bean application code

package hello;

import javax.ejb.Stateless;
import javax.persistence.*;
import java.util.List;

@Stateless
public class MessageHandlerBean implements MessageHandler {

@PersistenceContext
EntityManager em;

public void saveMessages () {
Message message = new Message("Hello World") ;
em.persist (message) ;

}

public void showMessages () {
List messages =
em.createQuery("select m from Message m
order by m.text asc")
.getResultList () ;

System.out.println (messages.size() + " message(s) found:");

for (Object m : messages) {
Message loadedMsg = (Message) m;
System.out.println(loadedMsg.getText ()) ;

84

CHAPTER 2
Starting a project

There are several interesting things to observe in this implementation. First, it’s a
plain Java class with no hard dependencies on any other package. It becomes an
EJB only with a single metadata annotation, @Stateless. EJBs support container-
managed services, so you can apply the @PersistenceContext annotation, and
the server injects a fresh EntityManager instance whenever a method on this
stateless bean is called. Each method is also assigned a transaction automatically
by the container. The transaction starts when the method is called, and commits
when the method returns. (It would be rolled back when an exception is thrown
inside the method.)

You can now modify the HelloWorld main class and delegate all the work of
storing and showing messages to the MessageHandler.

Running the application

The main class of the “Hello World” application calls the MessageHandler state-
less session bean after looking it up in the JNDI registry. Obviously, the managed
environment and the whole application server, including the JNDI registry, must
be booted first. You do all of this in the main () method of HelloWorld. java (see
listing 2.16).

package hello;

import org.jboss.ejb3.embedded.EJB3StandaloneBootstrap;
import javax.naming.InitialContext;

public class HelloWorld {
public static void main(String[] args) throws Exception {

// Boot the JBoss Microcontainer with EJB3 settings, automatically
// loads ejb3-interceptors-aop.xml and embedded-jboss-beans.xml
EJB3StandaloneBootstrap.boot (null) ;

// Deploy custom stateless beans (datasource, mostly)
EJB3StandaloneBootstrap
.deployXmlResource ("META-INF/helloworld-beans.xml") ;

// Deploy all EJBs found on classpath (slow, scans all)
// EJB3StandaloneBootstrap.scanClasspath() ;

// Deploy all EJBs found on classpath (fast, scans build directory)
// This is a relative location, matching the substring end of one
// of java.class.path locations. Print out the value of

// System.getProperty("java.class.path") to see all paths.
EJB3StandaloneBootstrap.scanClasspath("helloworld-ejb3/bin") ;

// Create InitialContext from jndi.properties

Starting a Java Persistence project 85

InitialContext initialContext = new InitialContext();

// Look up the stateless MessageHandler EJB
MessageHandler msgHandler = (MessageHandler) initialContext
.lookup ("MessageHandlerBean/local") ;

// Call the stateless EJB
msgHandler.saveMessages () ;
msgHandler.showMessages () ;

// Shut down EJB container
EJB3StandaloneBootstrap.shutdown () ;

The first command in main() boots the server’s kernel and deploys the base ser-
vices found in the service configuration files. Next, the datasource factory config-
uration you created earlier in helloworld-beans.xml is deployed, and the
datasource is bound to JNDI by the container. From that point on, the container is
ready to deploy EJBs. The easiest (but often not the fastest) way to deploy all EJBs
is to let the container search the whole classpath for any class that has an EJB
annotation. To learn about the many other deployment options available, check
the JBoss AS documentation bundled in the download.

To look up an EJB, you need an InitialContext, which is your entry point for
the JNDI registry. If you instantiate an InitialContext, Java automatically looks for
the file jndi.properties on your classpath. You need to create this file in WORKDIR/
etc with settings that match the JBoss server’s JNDI registry configuration:

java.naming. factory.initial

org.jnp.interfaces.LocalOnlyContextFactory

java.naming. factory.url.pkgs org.jboss.naming:org.jnp.interfaces
You don’t need to know exactly what this configuration means, but it basically
points your InitialContext to a JNDI registry running in the local virtual
machine (remote EJB client calls would require a JNDI service that supports
remote communication).

By default, you look up the MessageHandler bean by the name of an imple-
mentation class, with the /local suffix for a local interface. How EJBs are named,
how they’re bound to JNDI, and how you look them up varies and can be custom-
ized. These are the defaults for the JBoss server.

Finally, you call the MessageHandler EJB and let it do all the work automati-
cally in two units—each method call will result in a separate transaction.

86

224

CHAPTER 2
Starting a project

This completes our first example with managed EJB components and inte-
grated JPA. You can probably already see how automatic transaction demarcation
and EntityManager injection can improve the readability of your code. Later,
we’ll show you how stateful session beans can help you implement sophisticated
conversations between the user and the application, with transactional semantics.
Furthermore, the EJB components don’t contain any unnecessary glue code or
infrastructure methods, and they’re fully reusable, portable, and executable in
any EJB 3.0 container.

NOTE Packaging of persistence units—We didn’t talk much about the packaging
of persistence units—you didn’t need to package the “Hello World”
example for any of the deployments. However, if you want to use features
such as hot redeployment on a full application server, you need to pack-
age your application correctly. This includes the usual combination of
JARs, WARs, EJB-JARs, and EARs. Deployment and packaging is often also
vendor-specific, so you should consult the documentation of your appli-
cation server for more information. JPA persistence units can be scoped
to JARs, WARs, and EJB-JARs, which means that one or several of these
archives contains all the annotated classes and a META-INF/persis-
tence.xml configuration file with all settings for this particular unit. You
can wrap one or several JARs, WARs, and EJB-JARs in a single enterprise
application archive, an EAR. Your application server should correctly
detect all persistence units and create the necessary factories automati-
cally. With a unit name attribute on the @PersistenceContext annota-
tion, you instruct the container to inject an EntityManager from a
particular unit.

Full portability of an application isn’t often a primary reason to use JPA or EJB 3.0.
After all, you made a decision to use Hibernate as your JPA persistence provider.
Let’s look at how you can fall back and use a Hibernate native feature from time
to time.

Switching to Hibernate interfaces

You decided to use Hibernate as a JPA persistence provider for several reasons:
First, Hibernate is a good JPA implementation that provides many options that
don’t affect your code. For example, you can enable the Hibernate second-level
data cache in your JPA configuration, and transparently improve the performance
and scalability of your application without touching any code.

Second, you can use native Hibernate mappings or APIs when needed. We dis-
cuss the mixing of mappings (especially annotations) in chapter 3, section 3.3,

Starting a Java Persistence project 87

“Object/relational mapping metadata,” but here we want to show how you can
use a Hibernate API in your JPA application, when needed. Obviously, importing a
Hibernate API into your code makes porting the code to a different JPA provider
more difficult. Hence, it becomes critically important to isolate these parts of your
code properly, or at least to document why and when you used a native Hibernate
feature.

You can fall back to Hibernate APIs from their equivalent JPA interfaces and
get, for example, a Configuration, a SessionFactory, and even a Session when-
ever needed.

For example, instead of creating an EntityManagerFactory with the Persis-
tence static class, you can use a Hibernate Ejb3Configuration:

Ejb3Configuration cfg = new Ejb3Configuration();

EntityManagerFactory emf =

cfg.configure("/custom/hibernate.cfg.xml")
.setProperty ("hibernate.show_sqgl", "false")
.setInterceptor(new MyInterceptor())
.addAnnotatedClass(hello.Message.class)

.addResource("/Foo.hbm.xml")
.buildEntityManagerFactory () ;

AnnotationConfiguration
hibCfg = cfg.getHibernateConfiguration() ;
The Ejb3Configuration is a new interface that duplicates the regular Hibernate
Configuration instead of extending it (this is an implementation detail). This
means you can get a plain AnnotationConfiguration object from an
Ejb3Configuration, for example, and pass it to a SchemaExport instance pro-
grammatically.

The SessionFactory interface is useful if you need programmatic control over
the second-level cache regions. You can get a SessionFactory by casting the
EntityManagerFactory first:

HibernateEntityManagerFactory hibEMF =

(HibernateEntityManagerFactory) emf;
SessionFactory sf = hibEMF.getSessionFactory () ;

The same technique can be applied to get a Session from an EntityManager:

HibernateEntityManager hibEM =
(HibernateEntityManager) em;
Session session = hibEM.getSession() ;
This isn’t the only way to get a native API from the standardized EntityManager.
The JPA specification supports a getDelegate () method that returns the underly-
ing implementation:

88

2.3

CHAPTER 2
Starting a project

Session session = (Session) entityManager.getDelegate() ;

Or you can get a Session injected into an EJB component (although this only
works in the JBoss Application Server):

@Stateless
public class MessageHandlerBean implements MessageHandler ({

@PersistenceContext
Session session;

}
In rare cases, you can fall back to plain JDBC interfaces from the Hibernate Session:
Connection jdbcConnection = session.connection() ;

This last option comes with some caveats: You aren’t allowed to close the JDBC
Connection you get from Hibernate—this happens automatically. The exception
to this rule is that in an environment that relies on aggressive connection releases,
which means in a JTA or CMT environment, you have to close the returned con-
nection in application code.

A better and safer way to access a JDBC connection directly is through resource
injection in a Java EE 5.0. Annotate a field or setter method in an EJB, an EJB lis-
tener, a servlet, a servlet filter, or even a JavaServer Faces backing bean, like this:

@Resource (mappedName="java: /HelloWorldDS") DataSource ds;

So far, we’ve assumed that you work on a new Hibernate or JPA project that
involves no legacy application code or existing database schema. We now switch
perspectives and consider a development process that is bottom-up. In such a sce-
nario, you probably want to automatically reverse-engineer artifacts from an exist-
ing database schema.

Reverse engineering a legacy database

Your first step when mapping a legacy database likely involves an automatic
reverse-engineering procedure. After all, an entity schema already exists in your
database system. To make this easier, Hibernate has a set of tools that can read a
schema and produce various artifacts from this metadata, including XML map-
ping files and Java source code. All of this is template-based, so many customiza-
tions are possible.

You can control the reverse-engineering process with tools and tasks in your
Ant build. The HibernateToolTask you used earlier to export SQL DDL from

231

Reverse engineering a legacy database 89

Hibernate mapping metadata has many more options, most of which are
related to reverse engineering, as to how XML mapping files, Java code, or even
whole application skeletons can be generated automatically from an existing
database schema.

We’ll first show you how to write an Ant target that can load an existing data-
base into a Hibernate metadata model. Next, you’ll apply various exporters and
produce XML files, Java code, and other useful artifacts from the database tables
and columns.

Creating a database configuration

Let’s assume that you have a new WORKDIR with nothing but the lib directory
(and its usual contents) and an empty src directory. To generate mappings and
code from an existing database, you first need to create a configuration file that
contains your database connection settings:
hibernate.dialect = org.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class = org.hsgldb.jdbcDriver
hibernate.connection.url = jdbc:hsgldb:hsgl://localhost
hibernate.connection.username = sa
Store this file directly in WORKDIR, and name it helloworld.db.properties. The
four lines shown here are the minimum that is required to connect to the data-
base and read the metadata of all tables and columns. You could have created a
Hibernate XML configuration file instead of hibernate.properties, but there is no
reason to make this more complex than necessary.
Write the Ant target next. In a build.xml file in your project, add the following
code:
<taskdef name="hibernatetool"

classname="org.hibernate.tool.ant.HibernateToolTask"
classpathref="project.classpath"/>

<target name="reveng.hbmxml"
description="Produces XML mapping files in src directory">

<hibernatetool destdir="${basedir}/src">

<jdbcconfiguration
propertyfile="${basedir}/helloworld.db.properties"
revengfile="${basedir}/helloworld.reveng.xml" />

<hbm2hbmxml/> <!-- Export Hibernate XML files -->
<hbm2cfgxml/> <!-- Export a hibernate.cfg.xml file -->
</hibernatetool>

</target>

90

23.2

CHAPTER 2
Starting a project

The HibernateToolTask definition for Ant is the same as before. We assume that
you’ll reuse most of the build file introduced in previous sections, and that refer-
ences such as project.classpath are the same. The <hibernatetool> task is set
with WORKDIR/src as the default destination directory for all generated artifacts.

A <jdbconfiguration> is a Hibernate tool configuration that can connect to a
database via JDBC and read the JDBC metadata from the database catalog. You usu-
ally configure it with two options: database connection settings (the properties
file) and an optional reverse-engineering customization file.

The metadata produced by the tool configuration is then fed to exporters. The
example Ant target names two such exporters: the hbm2hbmxml exporter, as you
can guess from its name, takes Hibernate metadata (hbm) from a configuration,
and generates Hibernate XML mapping files; the second exporter can prepare a
hibernate.cfg.xml file that lists all the generated XML mapping files.

Before we talk about these and various other exporters, let’s spend a minute
on the reverse-engineering customization file and what you can do with it.

Customizing reverse engineering

JDBC metadata—that is, the information you can read from a database about itself
via JDBC—often isn’t sufficient to create a perfect XML mapping file, let alone
Java application code. The opposite may also be true: Your database may contain
information that you want to ignore (such as particular tables or columns) or that
you wish to transform with nondefault strategies. You can customize the reverse-
engineering procedure with a reverse-engineering configuration file, which uses an
XML syntax.

Let’s assume that you're reverse-engineering the “Hello World” database you
created earlier in this chapter, with its single MESSAGES table and only a few col-
umns. With a helloworld.reveng.xml file, as shown in listing 2.17, you can custom-
ize this reverse engineering.

<?xml version="1.0" encoding="UTF-8"?> <$ﬂ’
<!DOCTYPE hibernate-reverse-engineering SYSTEM
"http://hibernate.sourceforge.net/
hibernate-reverse-engineering-3.0.dtd">

<hibernate-reverse-engineering>
<table-filter match-name=".*" package="hello"/> QSD

<table name="MESSAGES" schema="PUBLIC" class="Message"> 45,

<primary-key> 442’

o
o

Reverse engineering a legacy database 91

<generator class="increment"/>
<key-column name="MESSAGE_ID" property="id" type="long"/>
</primary-key>

<column name="MESSAGE_TEXT" property="text"/> Q!P

<foreign-key constraint-name="FK_NEXT_MESSAGE">
<many-to-one property="nextMessage"/> qih
<set exclude="true"/>

</foreign-key>

</table>

</hibernate-reverse-engineering>

This XML file has its own DTD for validation and autocompletion.

A table filter can exclude tables by name with a regular expression. However, in
this example, you define a a default package for all classes produced for the tables
matching the regular expression.

© You can customize individual tables by name. The schema name is usually

o

optional, but HSQLDB assigns the PUBLIC schema to all tables by default so this
setting is needed to identify the table when the JDBC metadata is retrieved. You
can also set a custom class name for the generated entity here.

The primary key column generates a property named id, the default would be
messageId. You also explicitly declare which Hibernate identifier generator
should be used.

An individual column can be excluded or, in this case, the name of the generated
property can be specified—the default would be messageText.

0O If the foreign key constraint FK_NEXT_MESSAGE is retrieved from JDBC metadata, a

many-to-one association is created by default to the target entity of that class. By
matching the foreign key constraint by name, you can specify whether an inverse
collection (one-to-many) should also be generated (the example excludes this)
and what the name of the many-to-one property should be.

If you now run the Ant target with this customization, it generates a Mes-
sage.hbm.xml file in the hello package in your source directory. (You need to
copy the Freemarker and jTidy JAR files into your library directory first.) The
customizations you made result in the same Hibernate mapping file you wrote
earlier by hand, shown in listing 2.2.

In addition to the XML mapping file, the Ant target also generates a Hibernate
XML configuration file in the source directory:

92

233

CHAPTER 2
Starting a project

<hibernate-configuration>
<session-factory>

<property name="hibernate.connection.driver_class">
org.hsgldb. jdbcDriver

</property>

<property name="hibernate.connection.url">
jdbc:hsgldb:hsqgl://localhost

</property>

<property name="hibernate.connection.username">
sa

</property>

<property name="hibernate.dialect">
org.hibernate.dialect.HSQLDialect

</property>

<mapping resource="hello/Message.hbm.xml" />

</session-factory>

</hibernate-configuration>
The exporter writes all the database connection settings you used for reverse engi-
neering into this file, assuming that this is the database you want to connect to
when you run the application. It also adds all generated XML mapping files to the
configuration.

What is your next step? You can start writing the source code for the Message
Java class. Or you can let the Hibernate Tools generate the classes of the domain
model for you.

Generating Java source code

Let’s assume you have an existing Hibernate XML mapping file for the Message
class, and you’d like to generate the source for the class. As discussed in chapter 3,
a plain Java entity class ideally implements Serializable, has a no-arguments
constructor, has getters and setters for all properties, and has an encapsulated
implementation.

Source code for entity classes can be generated with the Hibernate Tools and
the hbm2java exporter in your Ant build. The source artifact can be anything that
can be read into a Hibernate metadata model—Hibernate XML mapping files are
best if you want to customize the Java code generation.

Add the following target to your Ant build:

<target name="reveng.pojos"
description="Produces Java classes from XML mappings">

<hibernatetool destdir="${basedir}/src">

<configuration>

Reverse engineering a legacy database 93

<fileset dir="${basedir}/src">
<include name="**/* hbm.xml"/>
</fileset>
</configuration>

<hbm2java/> <!-- Generate entity class source -->
</hibernatetool>
</target>

The <configuration> reads all Hibernate XML mapping files, and the <hbm2-
java> exporter produces Java source code with the default strategy.

Customizing entity class generation

By default, hbm2java generates a simple entity class for each mapped entity. The
class implements the Serializable marker interface, and it has accessor methods
for all properties and the required constructor. All attributes of the class have pri-
vate visibility for fields, although you can change that behavior with the <meta>
element and attributes in the XML mapping files.

The first change to the default reverse engineering behavior you make is to
restrict the visibility scope for the Message’s attributes. By default, all accessor
methods are generated with public visibility. Let’s say that Message objects are
immutable; you wouldn’t expose the setter methods on the public interface, but
only the getter methods. Instead of enhancing the mapping of each property with
a <meta> element, you can declare a meta-attribute at the class level, thus applying
the setting to all properties in that class:

<class name="Message"
table="MESSAGES">

<meta attribute="scope-set">private</meta>

</class>

The scope-set attribute defines the visibility of property setter methods.

The hbm2java exporter also accepts meta-attributes on the next higher-level,
in the root <hibernate-mapping> element, which are then applied to all classes
mapped in the XML file. You can also add fine-grained meta-attributes to single
property, collection, or component mappings.

One (albeit small) improvement of the generated entity class is the inclusion
of the text of the Message in the output of the generated toString () method.
The text is a good visual control element in the log output of the application. You
can change the mapping of Message to include it in the generated code:

94

CHAPTER 2
Starting a project

<property name="text" type="string">
<meta attribute="use-in-tostring">true</meta>
<column name="MESSAGE_TEXT" />

</property>

The generated code of the toString () method in Message. java looks like this:

public String toString() {
StringBuffer buffer = new StringBuffer();
buffer.append(getClass () .getName())

.append ("@"

.append(Integer.toHexString (hashCode()))

.append (" [");

.append ("text") .append("="'") .append (getText ()) .append ("' ");
.append ("1");

return buffer.toString() ;
}
Meta-attributes can be inherited; that is, if you declare a use-in-tostring at the
level of a <class> element, all properties of that class are included in the
toString () method. This inheritance mechanism works for all hbm2java meta-
attributes, but you can turn it off selectively:

<meta attribute="scope-class" inherit="false">public abstract</meta>

Setting inherit to false in the scope-class meta-attribute creates only the par-
ent class of this <meta> element as public abstract, but not any of the (possibly)
nested subclasses.

The hbm2java exporter supports, at the time of writing, 17 meta-attributes for
fine-tuning code generation. Most are related to visibility, interface implementa-
tion, class extension, and predefined Javadoc comments. Refer to the Hibernate
Tools documentation for a complete list.

If you use JDK 5.0, you can switch to automatically generated static imports and
generics with the jdk5="true" setting on the <hbm2java> task. Or, you can pro-
duce EJB 3.0 entity classes with annotations.

Generating Java Persistence entity classes

Normally, you use either Hibernate XML mapping files or JPA annotations in your
entity class source code to define your mapping metadata, so generating Java
Persistence entity classes with annotations from XML mapping files doesn’t seem
reasonable. However, you can create entity class source code with annotations
directly from JDBC metadata, and skip the XML mapping step. Look at the follow-
ing Ant target:

Reverse engineering a legacy database 95

<target name="reveng.entities"

description="Produces Java entity classes in src directory">
<hibernatetool destdir="${basedir}/src">

<jdbcconfiguration
propertyfile="${basedir}/helloworld.db.properties"
revengfile="${basedir}/helloworld.reveng.xml" />

<hbm2java jdk5="true" ejb3="true"/>
<hbm2cfgxml ejb3="true"/>

</hibernatetool>

</target>

This target generates entity class source code with mapping annotations and a

hibernate.cfg.xml file that lists these mapped classes. You can edit the Java source
directly to customize the mapping, if the customization in helloworld.reveng.xml
is too limited.

Also note that all exporters rely on templates written in the FreeMarker tem-

plate language. You can customize the templates in whatever way you like, or

even write your own. Even programmatic customization of code generation is
possible. The Hibernate Tools reference documentation shows you how these
options are used.

Other exporters and configurations are available with the Hibernate Tools:

An <annotationconfiguration> replaces the regular <configuration> if
you want to read mapping metadata from annotated Java classes, instead of
XML mapping files. Its only argument is the location and name of a hiber-
nate.cfg.xml file that contains a list of annotated classes. Use this approach
to export a database schema from annotated classes.

An <ejb3configuration> is equivalent to an <annotationconfiguration>,
except that it can scan for annotated Java classes automatically on the class-
path; it doesn’t need a hibernate.cfg.xml file.

The <hbm2dao> exporter can create additional Java source for a persistence
layer, based on the data access object pattern. At the time of writing, the
templates for this exporter are old and need updating. We expect that the
finalized templates will be similar to the DAO code shown in chapter 16,
section 16.2, “Creating a persistence layer.”

The <hbm2doc> exporter generates HTML files that document the tables
and Java entities.

96

2.4

CHAPTER 2
Starting a project

= The <hbmtemplate> exporter can be parameterized with a set of custom
FreeMarker templates, and you can generate anything you want with this
approach. Templates that produce a complete runable skeleton application
with the JBoss Seam framework are bundled in the Hibernate Tools.

You can get creative with the import and export functionality of the tools. For
example, you can read annotated Java classes with <annotationconfiguration>
and export them with <hbm2hbmxml>. This allows you to develop with JDK 5.0 and
the more convenient annotations but deploy Hibernate XML mapping files in
production (on JDK 1.4).

Let’s finish this chapter with some more advanced configuration options and
integrate Hibernate with Java EE services.

Integration with Java EE services

We assume that you've already tried the “Hello World” example shown earlier
in this chapter and that you’re familiar with basic Hibernate configuration and
how Hibernate can be integrated with a plain Java application. We’ll now dis-
cuss more advanced native Hibernate configuration options and how a regular
Hibernate application can utilize the Java EE services provided by a Java EE
application server.

If you created your first JPA project with Hibernate Annotations and Hibernate
EntityManager, the following configuration advice isn’t really relevant for you—
you’re already deep inside Java EE land if you're using JPA, and no extra integra-
tion steps are required. Hence, you can skip this section if you use Hibernate
EntityManager.

Java EE application servers such as JBoss AS, BEA WebLogic, and IBM Web-
Sphere implement the standard (Java EE-specific) managed environment for
Java. The three most interesting Java EE services Hibernate can be integrated with
are JTA, JNDI, and JMX.

JTA allows Hibernate to participate in transactions on managed resources.
Hibernate can look up managed resources (database connections) via JNDI and
also bind itself as a service to JNDI. Finally, Hibernate can be deployed via JMX and
then be managed as a service by the JMX container and monitored at runtime
with standard JMX clients.

Let’s look at each service and how you can integrate Hibernate with it.

24.1

Integration with Java EE services 97

Integration with JTA

The Java Transaction API (JTA) is the standardized service interface for transaction
control in Java enterprise applications. It exposes several interfaces, such as the
UserTransaction API for transaction demarcation and the TransactionManager
API for participation in the transaction lifecycle. The transaction manager can
coordinate a transaction that spans several resources—imagine working in two
Hibernate Sessions on two databases in a single transaction.

A JTA transaction service is provided by all Java EE application servers. How-
ever, many Java EE services are usable stand-alone, and you can deploy a JTA pro-
vider along with your application, such as JBoss Transactions or ObjectWeb JOTM.
We won’t have much to say about this part of your configuration but focus on the
integration of Hibernate with a JTA service, which is the same in full application
servers or with stand-alone JTA providers.

Look at figure 2.6. You use the Hibernate Session interface to access your
database(s), and it’s Hibernate’s responsibility to integrate with the Java EE ser-
vices of the managed environment.

:- Application Server :
|
: ______ - Hibernate Service :
| : Application : | Database
: | EJB] Session Transaction : .
| I
Iy | Manager |
| i —
[I UserTransaction | < >
: (VEvEvEvEvEvE - I Resource L
| Query Manager | Database
| T |
| |
b o e = = = 4

Figure 2.6 Hibernate in an environment with managed resources

In such a managed environment, Hibernate no longer creates and maintains a
JDBC connection pool—Hibernate obtains database connections by looking up a
Datasource object in the JNDI registry. Hence, your Hibernate configuration
needs a reference to the JNDI name where managed connections can be
obtained.

<hibernate-configuration>
<session-factory>

<property name="hibernate.connection.datasource">
java:/MyDatasource

98

CHAPTER 2

Starting a project

</property>

<property name="hibernate.dialect">

org.hibernate.dialect.HSQLDialect

</property>

</session-factory>
</hibernate-configuration>

With this configuration file, Hibernate looks up database connections in JNDI
using the name java: /MyDatasource. When you configure your application server
and deploy your application, or when you configure your stand-alone JTA provider,
this is the name to which you should bind the managed datasource. Note that a
dialect setting is still required for Hibernate to produce the correct SQL.

NOTE

Hibernate with Tomcal—Tomcat isn’t a Java EE application server; it’s just
a servlet container, albeit a servlet container with some features usually
found only in application servers. One of these features may be used
with Hibernate: the Tomcat connection pool. Tomcat uses the DBCP
connection pool internally but exposes it as a J[NDI datasource, just like a
real application server. To configure the Tomcat datasource, you need
to edit server.xml, according to instructions in the Tomcat JNDI/JDBC
documentation. Hibernate can be configured to use this datasource by
setting hibernate.connection.datasource. Keep in mind that Tomcat
doesn’t ship with a transaction manager, so you still have plain JDBC
transaction semantics, which Hibernate can hide with its optional
Transaction APIL Alternatively, you can deploy a JTA-compatible stand-
alone transaction manager along with your web application, which you
should consider to get the standardized UserTransaction API. On the
other hand, a regular application server (especially if it’s modular like
JBoss AS) may be easier to configure than Tomcat plus DBCP plus JTA,
and it provides better services.

To fully integrate Hibernate with JTA, you need to tell Hibernate a bit more about

your transaction manager. Hibernate has to hook into the transaction lifecycle,
for example, to manage its caches. First, you need to tell Hibernate what transac-
tion manager you’re using:

<hibernate-configuration>

<session-factory>

<property name="hibernate.connection.datasource">

java:/MyDatasource

</property>

Integration with Java EE services 99

<property name="hibernate.dialect">
org.hibernate.dialect.HSQLDialect
</property>

<property name="hibernate.transaction.manager_lookup_class">
org.hibernate.transaction.JBossTransactionManagerLookup
</property>

<property name="hibernate.transaction.factory_ class">
org.hibernate.transaction.JTATransactionFactory
</property>

</session-factory>

</hibernate-configuration>
You need to pick the appropriate lookup class for your application server, as you
did in the preceding code—Hibernate comes bundled with classes for the most
popular JTA providers and application servers. Finally, you tell Hibernate that you
want to use the JTA transaction interfaces in the application to set transaction
boundaries. The JTATransactionFactory does several things:

= It enables correct Session scoping and propagation for JTA if you decide to
use the SessionFactory.getCurrentSession () method instead of opening
and closing every Session manually. We discuss this feature in more detail
in chapter 11, section 11.1, “Propagating the Hibernate session.”

= [ttells Hibernate that you’re planning to call the JTA UserTransaction inter-
face in your application to start, commit, or roll back system transactions.

= [t also switches the Hibernate Transaction API to JTA, in case you don’t
want to work with the standardized UserTransaction. If you now begin a
transaction with the Hibernate API, it checks whether an ongoing JTA trans-
action is in progress and, if possible, joins this transaction. If no JTA transac-
tion is in progress, a new transaction is started. If you commit or roll back
with the Hibernate API, it either ignores the call (if Hibernate joined an
existing transaction) or sets the system transaction to commit or roll back.
We don’t recommend using the Hibernate Transaction API if you deploy
in an environment that supports JTA. However, this setting keeps existing
code portable between managed and nonmanaged environments, albeit
with possibly different transactional behavior.

There are other built-in TransactionFactory options, and you can write your
own by implementing this interface. The JDBCTransactionFactory is the default
in a nonmanaged environment, and you have used it throughout this chapter in

100

CHAPTER 2
Starting a project

the simple “Hello World” example with no JTA. The CMTTransactionFactory
should be enabled if you’re working with JTA and E]JBs, and if you plan to set trans-
action boundaries declaratively on your managed EJB components—in other
words, if you deploy your EJB application on a Java EE application server but don’t
set transaction boundaries programmatically with the UserTransaction interface
in application code.

Our recommended configuration options, ordered by preference, are as
follows:

= If your application has to run in managed and nonmanaged environments,
you should move the responsibility for transaction integration and resource
management to the deployer. Call the JTA UserTransaction API in your
application code, and let the deployer of the application configure the
application server or a stand-alone JTA provider accordingly. Enable
JTATransactionFactory in your Hibernate configuration to integrate with
the JTA service, and set the right lookup class.

= Consider setting transaction boundaries declaratively, with EJB components.
Your data access code then isn’t bound to any transaction API, and the CMT-
TransactionFactory integrates and handles the Hibernate Session for you
behind the scenes. This is the easiest solution—of course, the deployer now
has the responsibility to provide an environment that supports JTA and EJB
components.

= Write your code with the Hibernate Transaction API and let Hibernate
switch between the different deployment environments by setting either
JDBCTransactionFactory or JTATransactionFactory. Be aware that trans-
action semantics may change, and the start or commit of a transaction may
result in a no-op you may not expect. This is always the last choice when
portability of transaction demarcation is needed.

FAQ How can I use several databases with Hibernate? If you want to work with
several databases, you create several configuration files. Each database is
assigned its own SessionFactory, and you build several SessionFactory
instances from distinct Configuration objects. Each Session that is
opened, from any SessionFactory, looks up a managed datasource in
JNDI. It’s now the responsibility of the transaction and resource manager
to coordinate these resources—Hibernate only executes SQL statements
on these database connections. Transaction boundaries are either set
programmatically with JTA or handled by the container with EJBs and a
declarative assembly.

24.2

Integration with Java EE services 101

Hibernate can not only look up managed resources in JNDI, it can also bind itself
to JNDI. We’ll look at that next.

JNDI-bound SessionFactory

We already touched on a question that every new Hibernate user has to deal with:
How should a SessionFactory be stored, and how should it be accessed in appli-
cation code? Earlier in this chapter, we addressed this problem by writing a
HibernateUtil class that held a SessionFactory in a static field and provided the
static getSessionFactory () method. However, if you deploy your application in
an environment that supports JNDI, Hibernate can bind a SessionFactory to
JNDI, and you can look it up there when needed.

NOTE The Java Naming and Directory Interface AP (JNDI) allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transaction
contexts, datasources, and so on), configuration settings (environment
settings, user registries, and so on) and even application objects (EJB ref-
erences, object factories, and so on) can all be bound to JNDI.

The Hibernate SessionFactory automatically binds itself to JNDI if the hiber-
nate.session_factory_name property is set to the name of the JNDI node. If your
runtime environment doesn’t provide a default JNDI context (or if the default
JNDI implementation doesn’t support instances of Referenceable), you need to
specify a JNDI initial context using the hibernate.jndi.url and hiber-
nate.jndi.class properties.

Here is an example Hibernate configuration that binds the SessionFactory to
the name java:/hibernate/MySessionFactory using Sun’s (free) file-system-
based JNDI implementation, fscontext.jar:

hibernate.connection.datasource = java:/MyDatasource

hibernate.transaction.factory_class = \
org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \

org.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect
hibernate.session_factory _name = java:/hibernate/MySessionFactory
hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
hibernate.jndi.url = file:/auction/jndi

You can, of course, also use the XML-based configuration for this. This example
isn’t realistic, because most application servers that provide a connection pool
through JNDI also have a JNDI implementation with a writable default context.

102

CHAPTER 2
Starting a project

JBoss AS certainly has, so you can skip the last two properties and just specify a
name for the SessionFactory.

NOTE JNDI with Tomcat—Tomcat comes bundled with a read-only JNDI context,
which isn’t writable from application-level code after the startup of the
servlet container. Hibernate can’t bind to this context: You have to either
use a full context implementation (like the Sun FS context) or disable
JNDI binding of the SessionFactory by omitting the session_
factory_name property in the configuration.

The SessionFactory is bound to JNDI when you build it, which means when
Configuration.buildSessionFactory() is called. To keep your application
code portable, you may want to implement this build and the lookup in
HibernateUtil, and continue using that helper class in your data access code,
as shown in listing 2.18.

Listing 2.18 HibernateUtil for JNDI lookup of SessionFactory

public class HibernateUtil {
private static Context jndiContext;

static {
try {
// Build it and bind it to JNDI
new Configuration () .buildSessionFactory () ;

// Get a handle to the registry (reads jndi.properties)
jndiContext = new InitialContext();

} catch (Throwable ex) {
throw new ExceptionInInitializerError (ex);
}
}

public static SessionFactory getSessionFactory(String sfName) {
SessionFactory sf;
try {
sf = (SessionFactory) jndiContext.lookup (sfName) ;
} catch (NamingException ex) {
throw new RuntimeException (ex) ;
}
return sf;

243

Integration with Java EE services 103

Alternatively, you can look up the SessionFactory directly in application code
with a JNDI call. However, you still need at least the new Configuration().build-
SessionFactory() line of startup code somewhere in your application. One way
to remove this last line of Hibernate startup code, and to completely eliminate the
HibernateUtil class, is to deploy Hibernate as a JMX service (or by using JPA and
Java EE).

JMX service deployment

The Java world is full of specifications, standards, and implementations of these. A
relatively new, but important, standard is in its first version: the Java Management
Extensions (JMX). JMX is about the management of systems components or, better,
of system services.

Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services, like managed transactions and
pooled datasources. Also, with Hibernate JMX integration, Hibernate can be a
managed JMX service, depended on and used by others.

The JMX specification defines the following components:

s The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

= The JMX container—Mediates generic access (local or remote) to the MBean

s The JMX client—May be used to administer any MBean via the JMX con-
tainer

An application server with support for JMX (such as JBoss AS) acts as a JMX con-
tainer and allows an MBean to be configured and initialized as part of the applica-
tion server startup process. Your Hibernate service may be packaged and
deployed as a JMX MBean; the bundled interface for this is org.hibernate. jmx
.HibernateService. You can start, stop, and monitor the Hibernate core through
this interface with any standard JMX client. A second MBean interface that can be
deployed optionally is org.hibernate.jmx.StatisticsService, which lets you
enable and monitor Hibernate’s runtime behavior with a JMX client.

How JMX services and MBeans are deployed is vendor-specific. For example,
on JBoss Application Server, you only have to add a jboss-service.xml file to your
application’s EAR to deploy Hibernate as a managed JMX service.

Instead of explaining every option here, see the reference documentation for
JBoss Application Server. It contains a section that shows Hibernate integration
and deployment step by step (http://docs.jboss.org/jbossas). Configuration and

104

2.5

CHAPTER 2
Starting a project

deployment on other application servers that support JMX should be similar, and
you can adapt and port the JBoss configuration files.

Summary

In this chapter, you have completed a first Hibernate project. We looked at how
Hibernate XML mapping files are written and what APIs you can call in Hibernate
to interact with the database.

We then introduced Java Persistence and EJB 3.0 and explained how it can sim-
plify even the most basic Hibernate application with automatic metadata scan-
ning, standardized configuration and packaging, and dependency injection in
managed EJB components.

If you have to get started with a legacy database, you can use the Hibernate
toolset to reverse engineer XML mapping files from an existing schema. Or, if you
work with JDK 5.0 and/or EJB 3.0, you can generate Java application code directly
from an SQL database.

Finally, we looked at more advanced Hibernate integration and configuration
options in a Java EE environment—integration that is already done for you if you
rely on JPA or EJB 3.0.

A high-level overview and comparison between Hibernate functionality and
Java Persistence is shown in table 2.1. (You can find a similar comparison table at
the end of each chapter.)

Table 2.1 Hibernate and JPA comparison

Hibernate Core Java Persistence and EJB 3.0
Integrates with everything, everywhere. Flexi- Works in Java EE and Java SE. Simple and standard-
ble, but sometimes configuration is complex. ized configuration; no extra integration or special con-

figuration is necessary in Java EE environments.

Configuration requires a list of XML mapping JPA provider scans for XML mapping files and anno-
files or annotated classes. tated classes automatically.

Proprietary but powerful. Continually improved Standardized and stable interfaces, with a sufficient
native programming interfaces and query subset of Hibernate functionality. Easy fallback to
language. Hibernate APIs is possible.

In the next chapter, we introduce a more complex example application that we’ll
work with throughout the rest of the book. You’ll see how to design and imple-
ment a domain model, and which mapping metadata options are the best choices
in a larger project.

Domain models
and metadata

This chapter covers

m The CaveatEmptor example application
m POJO design for rich domain models
m Object/relational mapping metadata options

105

106

3.1

CHAPTER 3
Domain models and metadata

The “Hello World” example in the previous chapter introduced you to Hibernate;
however, it isn’t useful for understanding the requirements of real-world applica-
tions with complex data models. For the rest of the book, we use a much more
sophisticated example application—CaveatEmptor, an online auction system—to
demonstrate Hibernate and Java Persistence.

We start our discussion of the application by introducing a programming
model for persistent classes. Designing and implementing the persistent classes is
a multistep process that we’ll examine in detail.

First, you’ll learn how to identify the business entities of a problem domain.
You create a conceptual model of these entities and their attributes, called a
domain model, and you implement it in Java by creating persistent classes. We
spend some time exploring exactly what these Java classes should look like, and
we also look at the persistence capabilities of the classes, and how this aspect influ-
ences the design and implementation.

We then explore mapping metadata options—the ways you can tell Hibernate
how your persistent classes and their properties relate to database tables and col-
umns. This can involve writing XML documents that are eventually deployed
along with the compiled Java classes and are read by Hibernate at runtime.
Another option is to use JDK 5.0 metadata annotations, based on the EJB 3.0 stan-
dard, directly in the Java source code of the persistent classes. After reading this
chapter, you’ll know how to design the persistent parts of your domain model in
complex real-world projects, and what mapping metadata option you’ll primarily
prefer and use.

Finally, in the last (probably optional) section of this chapter, we look at Hiber-
nate’s capability for representation independence. A relatively new feature in
Hibernate allows you to create a domain model in Java that is fully dynamic, such
as a model without any concrete classes but only HashMaps. Hibernate also sup-
ports a domain model representation with XML documents.

Let’s start with the example application.

The CaveatEmptor application

The CaveatEmptor online auction application demonstrates ORM techniques and
Hibernate functionality; you can download the source code for the application
from http://caveatemptor.hibernate.org. We won’t pay much attention to the
user interface in this book (it could be web based or a rich client); we’ll concen-
trate instead on the data access code. However, when a design decision about data

3.11

The CaveatEmptor application 107

access code that has consequences for the user interface has to be made, we’ll nat-
urally consider both.

In order to understand the design issues involved in ORM, let’s pretend the
CaveatEmptor application doesn’t yet exist, and that you’re building it from
scratch. Our first task would be analysis.

Analyzing the business domain

A software development effort begins with analysis of the problem domain
(assuming that no legacy code or legacy database already exists).

At this stage, you, with the help of problem domain experts, identify the main
entities that are relevant to the software system. Entities are usually notions
understood by users of the system: payment, customer, order, item, bid, and so
forth. Some entities may be abstractions of less concrete things the user thinks
about, such as a pricing algorithm, but even these would usually be understand-
able to the user. All these entities are found in the conceptual view of the busi-
ness, which we sometimes call a business model. Developers and architects of
object-oriented software analyze the business model and create an object-ori-
ented model, still at the conceptual level (no Java code). This model may be as
simple as a mental image existing only in the mind of the developer, or it may be
as elaborate as a UML class diagram created by a computer-aided software engi-
neering (CASE) tool like ArgoUML or Together]. A simple model expressed in
UML is shown in figure 3.1.

This model contains entities that you’re bound to find in any typical auction
system: category, item, and user. The entities and their relationships (and perhaps
their attributes) are all represented by this model of the problem domain. We call
this kind of object-oriented model of entities from the problem domain, encom-
passing only those entities that are of interest to the user, a domain model. It’s an
abstract view of the real world.

The motivating goal behind the analysis and design of a domain model is to
capture the essence of the business information for the application’s purpose.
Developers and architects may, instead of an object-oriented model, also start the
application design with a data model (possibly expressed with an Entity-Relation-
ship diagram). We usually say that, with regard to persistence, there is little

" x *
User selsp 0. Item 0. Category

Figure 3.1 A class diagram of a typical online auction model

108

3.1.2

CHAPTER 3
Domain models and metadata

difference between the two; they’re merely different starting points. In the end,
we’re most interested in the structure and relationships of the business entities,
the rules that have to be applied to guarantee the integrity of data (for example,
the multiplicity of relationships), and the logic used to manipulate the data.

In object modeling, there is a focus on polymorphic business logic. For our
purpose and top-down development approach, it’s helpful if we can implement
our logical model in polymorphic Java; hence the first draft as an object-oriented
model. We then derive the logical relational data model (usually without addi-
tional diagrams) and implement the actual physical database schema.

Let’s see the outcome of our analysis of the problem domain of the Caveat-
Emptor application.

The CaveatEmptor domain model

The CaveatEmptor site auctions many different kinds of items, from electronic
equipment to airline tickets. Auctions proceed according to the English auction
strategy: Users continue to place bids on an item until the bid period for that item
expires, and the highest bidder wins.

In any store, goods are categorized by type and grouped with similar goods
into sections and onto shelves. The auction catalog requires some kind of hierar-
chy of item categories so that a buyer can browse these categories or arbitrarily
search by category and item attributes. Lists of items appear in the category
browser and search result screens. Selecting an item from a list takes the buyer to
an item-detail view.

An auction consists of a sequence of bids, and one is the winning bid. User
details include name, login, address, email address, and billing information.

A web of trust is an essential feature of an online auction site. The web of trust
allows users to build a reputation for trustworthiness (or untrustworthiness). Buy-
ers can create comments about sellers (and vice versa), and the comments are vis-
ible to all other users.

A high-level overview of our domain model is shown in figure 3.2. Let’s briefly
discuss some interesting features of this model.

Each item can be auctioned only once, so you don’t need to make Item dis-
tinct from any auction entities. Instead, you have a single auction item entity
named Item. Thus, Bid is associated directly with Item. Users can write Comments
about other users only in the context of an auction; hence the association
between Item and Comment. The Address information of a User is modeled as a
separate class, even though the User may have only one Address; they may alter-
natively have three, for home, billing, and shipping. You do allow the user to have

The CaveatEmptor application 109

delivery p

Shipment
inspectionPeriodDays : int seller
state : ShipmentState buyer |V
created : Date v

successful p 0..1

Bid
children B 0..+ | @amount : BigDecimal

created : Date
<« parent 0..1 r

*

0.*
[category | ltem
=y = sold by B User home p
[name : String | gzrs’{::i'ﬂs;:ngtrm 0 firstname : String Address
1.0 gesorpron - oirtng - lastname : String |, biling »>_ | street : String
initialPrice : BigDecimal » o & iocode : Stri
username : String shipping p_ | ZiPcode : String

reservePrice : BigDecimal P e Sy Qi
startDate : Date pass_w.ord_. String city : String
email : String

endDate : Date <« bought ranking int

state : ltemState admin - boolean
approvalDatetime : Date 0.. -

3

default
v

b‘t
abou 0.*

Comment from p [BillingDetails |

rating : Rating [ownername : String__ |
text : String

created : Date

I
CreditCard BankAccount
type : CreditCardType number : String
number : String bankname : String
expMonth : String swift : String
expYear : String

Figure 3.2 Persistent classes of the CaveatEmptor domain model and their relationships

many BillingDetails. The various billing strategies are represented as subclasses
of an abstract class (allowing future extension).

A Category may be nested inside another Category. This is expressed by a
recursive association, from the Category entity to itself. Note that a single Cate-
gory may have multiple child categories but at most one parent. Each Item
belongs to at least one Category.

The entities in a domain model should encapsulate state and behavior. For
example, the User entity should define the name and address of a customer and
the logic required to calculate the shipping costs for items (to this particular cus-
tomer). The domain model is a rich object model, with complex associations,
interactions, and inheritance relationships. An interesting and detailed discussion
of object-oriented techniques for working with domain models can be found in
Patterns of Enterprise Application Architecture (Fowler, 2003) or in Domain-Driven
Design (Evans, 2003).

110

3.2

CHAPTER 3
Domain models and metadata

In this book, we won’t have much to say about business rules or about the
behavior of our domain model. This isn’t because we consider it unimportant;
rather, this concern is mostly orthogonal to the problem of persistence. It’s the
state of our entities that is persistent, so we concentrate our discussion on how to
best represent state in our domain model, not on how to represent behavior. For
example, in this book, we aren’t interested in how tax for sold items is calculated
or how the system may approve a new user account. We’re more interested in how
the relationship between users and the items they sell is represented and made
persistent. We’ll revisit this issue in later chapters, whenever we have a closer look
at layered application design and the separation of logic and data access.

NOTE ORM without a domain model—We stress that object persistence with full
ORM is most suitable for applications based on a rich domain model. If
your application doesn’t implement complex business rules or complex
interactions between entities (or if you have few entities), you may not
need a domain model. Many simple and some not-so-simple problems
are perfectly suited to table-oriented solutions, where the application is
designed around the database data model instead of around an object-
oriented domain model, often with logic executed in the database
(stored procedures). However, the more complex and expressive your
domain model, the more you’ll benefit from using Hibernate; it shines
when dealing with the full complexity of object/relational persistence.

Now that you have a (rudimentary) application design with a domain model,
the next step is to implement it in Java. Let’s look at some of the things you
need to consider.

Implementing the domain model

Several issues typically must be addressed when you implement a domain model
in Java. For instance, how do you separate the business concerns from the cross-
cutting concerns (such as transactions and even persistence)? Do you need auto-
mated or transparent persistence? Do you have to use a specific programming
model to achieve this? In this section, we examine these types of issues and how to
address them in a typical Hibernate application.

Let’s start with an issue that any implementation must deal with: the separation
of concerns. The domain model implementation is usually a central, organizing
component; it’s reused heavily whenever you implement new application func-
tionality. For this reason, you should be prepared to go to some lengths to ensure

3.2.1

Implementing the domain model 111

that concerns other than business aspects don’t leak into the domain model
implementation.

Addressing leakage of concerns

The domain model implementation is such an important piece of code that it
shouldn’t depend on orthogonal Java APIs. For example, code in the domain
model shouldn’t perform JNDI lookups or call the database via the JDBC API. This
allows you to reuse the domain model implementation virtually anywhere. Most
importantly, it makes it easy to unit test the domain model without the need for a
particular runtime environment or container (or the need for mocking any ser-
vice dependencies). This separation emphasizes the distinction between logical
unit testing and integration unit testing.

We say that the domain model should be concerned only with modeling the
business domain. However, there are other concerns, such as persistence, transac-
tion management, and authorization. You shouldn’t put code that addresses these
crosscutting concerns in the classes that implement the domain model. When
these concerns start to appear in the domain model classes, this is an example of
leakage of concerns.

The EJB standard solves the problem of leaky concerns. If you implement your
domain classes using the entity programming model, the container takes care of
some concerns for you (or at least lets you externalize those concerns into meta-
data, as annotations or XML descriptors). The EJB container prevents leakage of
certain crosscutting concerns using interception. An EJB is a managed compo-
nent, executed inside the EJB container; the container intercepts calls to your
beans and executes its own functionality. This approach allows the container to
implement the predefined crosscutting concerns—security, concurrency, persis-
tence, transactions, and remoteness—in a generic way.

Unfortunately, the EJB 2.1 specification imposes many rules and restrictions on
how you must implement a domain model. This, in itself, is a kind of leakage of
concerns—in this case, the concerns of the container implementer have leaked!
This was addressed in the EJB 3.0 specification, which is nonintrusive and much
closer to the traditional JavaBean programming model.

Hibernate isn’t an application server, and it doesn’t try to implement all the
crosscutting concerns of the full EJB specification. Hibernate is a solution for just
one of these concerns: persistence. If you require declarative security and transac-
tion management, you should access entity instances via a session bean, taking
advantage of the EJB container’s implementation of these concerns. Hibernate in

112

3.2.2

CHAPTER 3
Domain models and metadata

an EJB container either replaces (EJB 2.1, entity beans with CMP) or implements
(EJB 3.0, Java Persistence entities) the persistence aspect.

Hibernate persistent classes and the EJB 3.0 entity programming model offer
transparent persistence. Hibernate and Java Persistence also provide automatic
persistence.

Let’s explore both terms in more detail and find an accurate definition.

Transparent and automated persistence

We use transparent to mean a complete separation of concerns between the per-
sistent classes of the domain model and the persistence logic, where the persistent
classes are unaware of—and have no dependency on—the persistence mecha-
nism. We use automatic to refer to a persistence solution that relieves you of han-
dling low-level mechanical details, such as writing most SQL statements and
working with the JDBC APIL

The Item class, for example, doesn’t have any code-level dependency on any
Hibernate API. Furthermore:

= Hibernate doesn’t require that any special superclasses or interfaces be
inherited or implemented by persistent classes. Nor are any special classes
used to implement properties or associations. (Of course, the option to use
both techniques is always there.) Transparent persistence improves code
readability and maintenance, as you’ll soon see.

= Persistent classes can be reused outside the context of persistence, in unit
tests or in the user interface (UI) tier, for example. Testability is a basic
requirement for applications with rich domain models.

= In a system with transparent persistence, objects aren’t aware of the under-
lying data store; they need not even be aware that they are being persisted
or retrieved. Persistence concerns are externalized to a generic persistence
manager interface—in the case of Hibernate, the Session and Query. In
JPA, the EntityManager and Query (which has the same name, but a differ-
ent package and slightly different API) play the same roles.

Transparent persistence fosters a degree of portability; without special interfaces,
the persistent classes are decoupled from any particular persistence solution. Our
business logic is fully reusable in any other application context. You could easily
change to another transparent persistence mechanism. Because JPA follows the
same basic principles, there is no difference between Hibernate persistent classes
and JPA entity classes.

3.23

Implementing the domain model 113

By this definition of transparent persistence, certain nonautomated persis-
tence layers are transparent (for example, the DAO pattern) because they decou-
ple the persistence-related code with abstract programming interfaces. Only plain
Java classes without dependencies are exposed to the business logic or contain the
business logic. Conversely, some automated persistence layers (including EJB 2.1
entity instances and some ORM solutions) are nontransparent because they
require special interfaces or intrusive programming models.

We regard transparency as required. Transparent persistence should be one of
the primary goals of any ORM solution. However, no automated persistence solu-
tion is completely transparent: Every automated persistence layer, including
Hibernate, imposes some requirements on the persistent classes. For example,
Hibernate requires that collection-valued properties be typed to an interface such
as java.util.Set or java.util.List and not to an actual implementation such
as java.util.HashSet (thisis a good practice anyway). Or, a JPA entity class has to
have a special property, called the database identifier.

You now know why the persistence mechanism should have minimal impact
on how you implement a domain model, and that transparent and automated
persistence are required. What kind of programming model should you use?
What are the exact requirements and contracts to observe? Do you need a spe-
cial programming model at all? In theory, no; in practice, however, you should
adopt a disciplined, consistent programming model that is well accepted by the
Java community.

Writing POJOs and persistent entity classes

As a reaction against EJB 2.1 entity instances, many developers started talking
about Plain Old Java Objects (POJOs),! a back-to-basics approach that essentially
revives JavaBeans, a component model for UI development, and reapplies it to
the business layer. (Most developers now use the terms POJO and JavaBean almost
synonymously.) The overhaul of the EJB specification brought us new lightweight
entities, and it would be appropriate to call them persistence-capable JavaBeans.
Java developers will soon use all three terms as synonyms for the same basic
design approach.

In this book, we use persistent class for any class implementation that is capa-
ble of persistent instances, we use POJO if some Java best practices are relevant,

! POJO is sometimes also written Plain Ordinary Java Objects. This term was coined in 2002 by Martin
Fowler, Rebecca Parsons, and Josh Mackenzie.

114

CHAPTER 3
Domain models and metadata

and we use entity class when the Java implementation follows the EJB 3.0 and JPA
specifications. Again, you shouldn’t be too concerned about these differences,
because the ultimate goal is to apply the persistence aspect as transparently as pos-
sible. Almost every Java class can be a persistent class, or a POJO, or an entity class
if some good practices are followed.

Hibernate works best with a domain model implemented as POJOs. The few
requirements that Hibernate imposes on your domain model implementation are
also best practices for the POJO implementation, so most POJOs are Hibernate-
compatible without any changes. Hibernate requirements are almost the same as
the requirements for EJB 3.0 entity classes, so a POJO implementation can be eas-
ily marked up with annotations and made an EJB 3.0 compatible entity.

A POJO declares business methods, which define behavior, and properties,
which represent state. Some properties represent associations to other user-
defined POJOs.

A simple POJO class is shown in listing 3.1. This is an implementation of the
User entity of your domain model.

public class User

implements Serializable { Declaration of

private String username; Serializable
private Address address;

public User() {} <+ No-argument class constructor

public String getUsername() { g
return username;

}

public void setUsername (String username) { <—

this.username = username; Property
} accessor
methods

public Address getAddress() { <

return address;

}

public void setAddress(Address address) { <+
this.address = address;
}

public MonetaryAmount calcShippingCosts (Address fromLocation) {

} <— Business method

Implementing the domain model 115

Hibernate doesn’t require that persistent classes implement Serializable. How-
ever, when objects are stored in an HttpSession or passed by value using RMI,
serialization is necessary. (This is likely to happen in a Hibernate application.)
The class can be abstract and, if needed, extend a nonpersistent class.

Unlike the JavaBeans specification, which requires no specific constructor,
Hibernate (and JPA) require a constructor with no arguments for every persistent
class. Hibernate calls persistent classes using the Java Reflection API on this con-
structor to instantiate objects. The constructor may be nonpublic, but it has to be
at least package-visible if runtime-generated proxies will be used for performance
optimization. Proxy generation also requires that the class isn’t declared final
(nor has final methods)! (We’ll come back to proxies in chapter 13, section 13.1,
“Defining the global fetch plan.”)

The properties of the POJO implement the attributes of the business entities—
for example, the username of User. Properties are usually implemented as private
or protected instance variables, together with public property accessor methods: a
method for retrieving the value of the instance variable and a method for chang-
ing its value. These methods are known as the getter and setter, respectively. The
example POJO in listing 3.1 declares getter and setter methods for the username
and address properties.

The JavaBean specification defines the guidelines for naming these methods,
and they allow generic tools like Hibernate to easily discover and manipulate the
property value. A getter method name begins with get, followed by the name of
the property (the first letter in uppercase); a setter method name begins with set
and similarly is followed by the name of the property. Getter methods for Boolean
properties may begin with is instead of get.

You can choose how the state of an instance of your persistent classes should
be persisted by Hibernate, either through direct access to its fields or through
accessor methods. Your class design isn’t disturbed by these considerations. You
can make some accessor methods nonpublic or completely remove them. Some
getter and setter methods do something more sophisticated than access instance
variables (validation, for example), but trivial accessor methods are common.
Their primary advantage is providing an additional buffer between the internal
representation and the public interface of the class, allowing independent refac-
toring of both.

The example in listing 3.1 also defines a business method that calculates the
cost of shipping an item to a particular user (we left out the implementation of
this method).

116

3.24

CHAPTER 3
Domain models and metadata

What are the requirements for JPA entity classes? The good news is that so far,
all the conventions we’ve discussed for POJOs are also requirements for JPA enti-
ties. You have to apply some additional rules, but they’re equally simple; we’ll
come back to them later.

Now that we’ve covered the basics of using POJO persistent classes as a pro-
gramming model, let’s see how to handle the associations between those classes.

Implementing POJO associations

You use properties to express associations between POJO children P
classes, and you use accessor methods to navigate from « parent
object to object at runtime. Let’s consider the associations 0.
. Category
defined by the Category class, as shown in figure 3.3. name : String

As with all our diagrams, we left out the association-
related attributes (let’s call them parentCategory and Figure 3.3 Diagram
) i . of the Category
childCategories) because they would clutter the illustra- ¢jass with associations
tion. These attributes and the methods that manipulate
their values are called scaffolding code.
This is what the scaffolding code for the one-to-many self-association of Cate-
gory looks like:
public class Category {
private String name;

private Category parentCategory;
private Set childCategories = new HashSet () ;

public Category() { }

}

To allow bidirectional navigation of the association, you require two attributes.
The parentCategory field implements the single-valued end of the association
and is declared to be of type Category. The many-valued end, implemented by
the childCategories field, must be of collection type. You choose a Set, because
duplicates are disallowed, and initialize the instance variable to a new instance of
HashSet.

Hibernate requires interfaces for collection-typed attributes, so you must use
java.util.Set or java.util.List rather than HashSet, for example. This is con-
sistent with the requirements of the JPA specification for collections in entities. At
runtime, Hibernate wraps the HashSet instance with an instance of one of Hiber-
nate’s own classes. (This special class isn’t visible to the application code.) It’s

Implementing the domain model 117

good practice to program to collection interfaces anyway, rather than concrete
implementations, so this restriction shouldn’t bother you.

You now have some private instance variables but no public interface to allow
access from business code or property management by Hibernate (if it shouldn’t
access the fields directly). Let’s add some accessor methods to the class:

public String getName() {

return name;

}

public void setName (String name) {
this.name = name;

}

public Set getChildCategories() {
return childCategories;
}

public void setChildCategories(Set childCategories) {
this.childCategories = childCategories;
}

public Category getParentCategory () {
return parentCategory;

}

public void setParentCategory (Category parentCategory) {
this.parentCategory = parentCategory;

}
Again, these accessor methods need to be declared public only if they're part of
the external interface of the persistent class used by the application logic to create
arelationship between two objects. However, managing the link between two Cat-
egory instances is more difficult than setting a foreign key value in a database
field. In our experience, developers are often unaware of this complication that
arises from a network object model with bidirectional references. Let’s walk
through the issue step by step.

The basic procedure for adding a child Category to a parent Category looks
like this:

Category aParent = new Category();
Category aChild = new Category () ;
aChild.setParentCategory (aParent) ;
aParent.getChildCategories () .add(aChild) ;

Whenever a link is created between a parent Category and a child Category, two
actions are required:

118 CHAPTER 3

Domain models and metadata

= The parentCategory of the child must be set, effectively breaking the asso-
ciation between the child and its old parent (there can only be one parent
for any child).

= The child must be added to the childCategories collection of the new par-

ent Category.

NOTE

Managed relationships in Hibernate—Hibernate doesn’t manage persistent
associations. If you want to manipulate an association, you must write
exactly the same code you would write without Hibernate. If an associa-
tion is bidirectional, both sides of the relationship must be considered.
Programming models like EJB 2.1 entity beans muddled this behavior by
introducing container-managed relationships—the container automati-
cally changes the other side of a relationship if one side is modified by
the application. This is one of the reasons why code that uses EJB 2.1
entity beans couldn’t be reused outside the container. EJB 3.0 entity asso-
ciations are transparent, just like in Hibernate. If you ever have problems
understanding the behavior of associations in Hibernate, just ask your-
self, “What would I do without Hibernate?” Hibernate doesn’t change
the regular Java semantics.

It’s a good idea to add a convenience method to the Category class that groups
these operations, allowing reuse and helping ensure correctness, and in the end

guarantee data integrity:

public void addChildCategory (Category childCategory) {

(childCategory == null)

throw new IllegalArgumentException("Null child category!");

(childCategory.getParentCategory () != null)

childCategory.getParentCategory () .getChildCategories ()

.remove (childCategory) ;

childCategory.setParentCategory (this) ;
childCategories.add(childCategory) ;

}

The addchildCategory () method not only reduces the lines of code when deal-
ing with Category objects, but also enforces the cardinality of the association.
Errors that arise from leaving out one of the two required actions are avoided.
This kind of grouping of operations should always be provided for associations, if

possible. If you compare this with the relational model of foreign keys in a rela-
tional database, you can easily see how a network and pointer model complicates
a simple operation: instead of a declarative constraint, you need procedural code

to guarantee data integrity.

Implementing the domain model 119

Because you want addChildCategory () to be the only externally visible muta-
tor method for the child categories (possibly in addition to a removeChildCate-
gory() method), you can make the setChildCategories() method private or
drop it and use direct field access for persistence. The getter method still returns
a modifiable collection, so clients can use it to make changes that aren’t reflected
on the inverse side. You should consider the static methods Collections.unmod-
ifiableCollection(c) and Collections.unmodifiableSet (s), if you prefer to
wrap the internal collections before returning them in your getter method. The
client then gets an exception if it tries to modify the collection; every modification
is forced to go through the relationship-management method.

A different kind of relationship exists between the Category and Item classes:
a bidirectional many-to-many association, as shown in figure 3.4.

children p ltem
name : String
< parent 0.* description : String

initialPrice : BigDecimal
| nar?”laet'egg':x | 1= 0 reservePrice : BigDecimal
[name : String] 1.. * | startDate : Date
endDate : Date

state : IltemState Figure 3.4
approvalDatetime : Date Category and the associated Item class

In the case of a many-to-many association, both sides are implemented with collec-
tion-valued attributes. Let’s add the new attributes and methods for accessing the
Item relationship to the Category class, as shown in listing 3.2.

Listing 3.2 Category to Item scaffolding code

public class Category {

private Set items = new HashSet () ;

public Set getItems() {
return items;

}

public void setItems(Set items) {
this.items = items;

}

120

3.2.5

CHAPTER 3
Domain models and metadata

The code for the Item class (the other end of the many-to-many association) is
similar to the code for the Category class. You add the collection attribute, the
standard accessor methods, and a method that simplifies relationship manage-
ment, as in listing 3.3.

public class Item {

private String name;
private String description;

private Set categories = new HashSet () ;

public Set getCategories() {
return categories;

}

private void setCategories(Set categories) {
this.categories = categories;

}

public void addCategory (Category category) {
if (category == null)
throw new IllegalArgumentException("Null category") ;
category.getItems () .add(this) ;
categories.add (category) ;

The addCategory () method is similar to the addChildCategory() convenience
method of the Category class. It’s used by a client to manipulate the link between
an Item and a Category. For the sake of readability, we won’t show convenience
methods in future code samples and assume you’ll add them according to your
own taste.

Using convenience methods for association handling isn’t the only way to
improve a domain model implementation. You can also add logic to your accessor
methods.

Adding logic to accessor methods

One of the reasons we like to use JavaBeans-style accessor methods is that they
provide encapsulation: The hidden internal implementation of a property can be
changed without any changes to the public interface. This lets you abstract the
internal data structure of a class—the instance variables—from the design of the

Implementing the domain model 121

database, if Hibernate accesses the properties at runtime through accessor meth-
ods. It also allows easier and independent refactoring of the public API and the
internal representation of a class.

For example, if your database stores the name of a user as a single NAME col-
umn, but your User class has firstname and lastname properties, you can add
the following persistent name property to the class:

public class User ({

private String firstname;
private String lastname;

public String getName () {
return firstname + ' ' + lastname;

}

public void setName (String name) {
StringTokenizer t = new StringTokenizer (name) ;
firstname = t.nextToken();
lastname = t.nextToken() ;

}

Later, you’ll see that a Hibernate custom type is a better way to handle many of
these kinds of situations. However, it helps to have several options.

Accessor methods can also perform validation. For instance, in the following
example, the setFirstName () method verifies that the name is capitalized:

public class User {
private String firstname;

public String getFirstname() {
return firstname;

}

public void setFirstname (String firstname)
throws InvalidNameException {

if (!'StringUtil.isCapitalizedName (firstname))
throw new InvalidNameException (firstname) ;
this.firstname = firstname;

}

Hibernate may use the accessor methods to populate the state of an instance when
loading an object from a database, and sometimes you’ll prefer that this validation

122

CHAPTER 3
Domain models and metadata

not occur when Hibernate is initializing a newly loaded object. In that case, it
makes sense to tell Hibernate to directly access the instance variables.

Another issue to consider is dirty checking. Hibernate automatically detects
object state changes in order to synchronize the updated state with the database.
It’s usually safe to return a different object from the getter method than the
object passed by Hibernate to the setter. Hibernate compares the objects by
value—not by object identity—to determine whether the property’s persistent
state needs to be updated. For example, the following getter method doesn’t
result in unnecessary SQL UPDATES:

public String getFirstname () {

return new String(firstname);
}
There is one important exception to this: Collections are compared by identity!
For a property mapped as a persistent collection, you should return exactly the
same collection instance from the getter method that Hibernate passed to the set-
ter method. If you don’t, Hibernate will update the database, even if no update is
necessary, every time the state held in memory is synchronized with the database.
This kind of code should almost always be avoided in accessor methods:

public void setNames (List namesList) {

names = (String[]) namesList.toArray();

}

public List getNames () {
return Arrays.asList (names) ;

}

Finally, you have to know how exceptions in accessor methods are handled if you
configure Hibernate to use these methods when loading and storing instances. If
a RuntimeException is thrown, the current transaction is rolled back, and the
exception is yours to handle. If a checked application exception is thrown, Hiber-
nate wraps the exception into a RuntimeException.

You can see that Hibernate doesn’t unnecessarily restrict you with a POJO pro-
gramming model. You’re free to implement whatever logic you need in accessor
methods (as long as you keep the same collection instance in both getter and set-
ter). How Hibernate accesses the properties is completely configurable. This kind
of transparency guarantees an independent and reusable domain model imple-
mentation. And everything we have explained and said so far is equally true for
both Hibernate persistent classes and JPA entities.

Let’s now define the object/relational mapping for the persistent classes.

3.3

3.3.1

Object/relational mapping metadata 123

Object/relational mapping metadata

ORM tools require metadata to specify the mapping between classes and tables,
properties and columns, associations and foreign keys, Java types and SQL types,
and so on. This information is called the object/relational mapping metadata.
Metadata is data about data, and mapping metadata defines and governs the
transformation between the different type systems and relationship representa-
tions in object-oriented and SQL systems.

It’s your job as a developer to write and maintain this metadata. We discuss var-
ious approaches in this section, including metadata in XML files and JDK 5.0
source code annotations. Usually you decide to use one strategy in a particular
project, and after reading these sections you’ll have the background information
to make an educated decision.

Metadata in XML

Any ORM solution should provide a human-readable, easily hand-editable map-
ping format, not just a GUI mapping tool. Currently, the most popular object/
relational metadata format is XML. Mapping documents written in and with XML
are lightweight, human readable, easily manipulated by version-control systems
and text editors, and they can be customized at deployment time (or even at run-
time, with programmatic XML generation).

But is XML-based metadata really the best approach? A certain backlash
against the overuse of XML can be seen in the Java community. Every framework
and application server seems to require its own XML descriptors.

In our view, there are three main reasons for this backlash:

= Metadata-based solutions have often been used inappropriately. Metadata is
not, by nature, more flexible or maintainable than plain Java code.

= Many existing metadata formats weren’t designed to be readable and easy
to edit by hand. In particular, a major cause of pain is the lack of sensible
defaults for attribute and element values, requiring significantly more typ-
ing than should be necessary. Even worse, some metadata schemas use only
XML elements and text values, without any attributes. Another problem is
schemas that are too generic, where every declaration is wrapped in a
generic extension attribute of a meta element.

= Good XML editors, especially in IDEs, aren’t as common as good Java coding
environments. Worst, and most easily fixable, a document type declaration
(DTD) often isn’t provided, preventing autocompletion and validation.

124 CHAPTER 3
Domain models and metadata

There is no getting around the need for metadata in ORM. However, Hibernate
was designed with full awareness of the typical metadata problems. The XML
metadata format of Hibernate is extremely readable and defines useful default
values. If attribute values are missing, reflection is used on the mapped class to
determine defaults. Hibernate also comes with a documented and complete DTD.
Finally, IDE support for XML has improved lately, and modern IDEs provide
dynamic XML validation and even an autocomplete feature.

Let’s look at the way you can use XML metadata in Hibernate. You created the
Category class in the previous section; now you need to map it to the CATEGORY
table in the database. To do that, you write the XML mapping document in
listing 3.4.

<?xml version="1.0"?> 4!?

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping> <1—0 S’
<class

name="auction.model.Category"
table="CATEGORY" >

<id
name="1id"
column="CATEGORY_ID"
type="long">
<generator class="native"/>
</id>

<property QJ

name="name"
column="NAME"
type="string"/>

</class>
</hibernate-mapping>

@ The Hibernate mapping DTD should be declared in every mapping file—it’s
required for syntactic validation of the XML.

(2] Mappings are declared inside a <hibernate-mapping> element. You may include
as many class mappings as you like, along with certain other special declarations
that we’ll mention later in the book.

o

3.3.2

Object/relational mapping metadata 125

The class Category (in the auction.model package) is mapped to the CATEGORY
table. Every row in this table represents one instance of type Category.

We haven’t discussed the concept of object identity, so you may be surprised by
this mapping element. This complex topic is covered in the next chapter. To
understand this mapping, it’s sufficient to know that every row in the CATEGORY
table has a primary key value that matches the object identity of the instance in
memory. The <id> mapping element is used to define the details of object iden-
tity.

The property name of type java.lang.String is mapped to a database NAME col-
umn. Note that the type declared in the mapping is a builtin Hibernate type
(string), not the type of the Java property or the SQL column type. Think about
this as the converter that represents a bridge between the other two type systems.

We’ve intentionally left the collection and association mappings out of this exam-
ple. Association and especially collection mappings are more complex, so we’ll
return to them in the second part of the book.

Although it’s possible to declare mappings for multiple classes in one mapping
file by using multiple <class> elements, the recommended practice (and the
practice expected by some Hibernate tools) is to use one mapping file per persis-
tent class. The convention is to give the file the same name as the mapped class,
appending a suffix (for example, Category.hbm.xml), and putting it in the same
package as the Category class.

As already mentioned, XML mapping files aren’t the only way to define map-
ping metadata in a Hibernate application. If you use JDK 5.0, your best choice is
the Hibernate Annotations based on the EJB 3.0 and Java Persistence standard.

Annotation-based metadata

The basic idea is to put metadata next to the information it describes, instead of
separating it physically into a different file. Java didn’t have this functionality
before JDK 5.0, so an alternative was developed. The XDoclet project introduced
annotation of Java source code with meta-information, using special Javadoc tags
with support for key/value pairs. Through nesting of tags, quite complex struc-
tures are supported, but only some IDEs allow customization of Javadoc templates
for autocompletion and validation.

Java Specification Request (JSR) 175 introduced the annotation concept in the
Java language, with type-safe and declared interfaces for the definition of annota-
tions. Autocompletion and compile-time checking are no longer an issue. We
found that annotation metadata is, compared to XDoclet, nonverbose and that it

126

CHAPTER 3
Domain models and metadata

has better defaults. However, JDK 5.0 annotations are sometimes more difficult to
read than XDoclet annotations, because they aren’t inside regular comment
blocks; you should use an IDE that supports configurable syntax highlighting of
annotations. Other than that, we found no serious disadvantage in working with
annotations in our daily work in the past years, and we consider annotation-meta-
data support to be one of the most important features of JDK 5.0.

We’ll now introduce mapping annotations and use JDK 5.0. If you have to work
with JDK 1.4 but like to use annotation-based metadata, consider XDoclet, which
we’ll show afterwards.

Defining and using annotations

Before you annotate the first persistent class, let’s see how annotations are cre-
ated. Naturally, you’ll usually use predefined annotations. However, knowing
how to extend the existing metadata format or how to write your own annota-
tions is a useful skill. The following code example shows the definition of an
Entity annotation:

package javax.persistence;

@Target (TYPE)

@Retention (RUNTIME)

public @interface Entity {

String name() default "";

}
The first line defines the package, as always. This annotation is in the package
javax.persistence, the Java Persistence API as defined by EJB 3.0. It’s one of the
most important annotations of the specification—you can apply it on a POJO to
make it a persistent entity class. The next line is an annotation that adds meta-
information to the @Entity annotation (metadata about metadata). It specifies
that the @Entity annotation can only be put on type declarations; in other words,
you can only mark up classes with the @Entity annotation, not fields or methods.
The retention policy chosen for this annotation is RUNTIME; other options (for
other use cases) include removal of the annotation metadata during compilation,
or only inclusion in byte-code without possible runtime reflectivity. You want to
preserve all entity meta-information even at runtime, so Hibernate can read it on
startup through Java Reflection. What follows in the example is the actual declara-
tion of the annotation, including its interface name and its attributes (just one in
this case, name, with an empty string default).

Let’s use this annotation to make a POJO persistent class a Java Persistence
entity:

Object/relational mapping metadata 127

package auction.model;
import javax.persistence.*;

@Entity
@Table (name = "ITEM")
public class Item {

}

This public class, Item, has been declared as a persistent entity. All of its proper-
ties are now automatically persistent with a default strategy. Also shown is a second
annotation that declares the name of the table in the database schema this persis-
tent class is mapped to. If you omit this information, the JPA provider defaults to
the unqualified class name (just as Hibernate will if you omit the table name in an
XML mapping file).

All of this is type-safe, and declared annotations are read with Java Reflection
when Hibernate starts up. You don’t need to write any XML mapping files, Hiber-
nate doesn’t need to parse any XML, and startup is faster. Your IDE can also easily
validate and highlight annotations—they are regular Java types, after all.

One of the clear benefits of annotations is their flexibility for agile develop-
ment. If you refactor your code, you rename, delete, or move classes and proper-
ties all the time. Most development tools and editors can’t refactor XML element
and attribute values, but annotations are part of the Java language and are
included in all refactoring operations.

Which annotations should you apply? You have the choice among several stan-
dardized and vendor-specific packages.

Considering standards

Annotation-based metadata has a significant impact on how you write Java appli-
cations. Other programming environments, like C# and .NET, had this kind of
support for quite a while, and developers adopted the metadata attributes quickly.
In the Java world, the big rollout of annotations is happening with Java EE 5.0. All
specifications that are considered part of Java EE, like EJB, JMS, JMX, and even the
servlet specification, will be updated and use JDK 5.0 annotations for metadata
needs. For example, web services in J2EE 1.4 usually require significant metadata
in XML files, so we expect to see real productivity improvements with annotations.
Or, you can let the web container inject an EJB handle into your servlet, by adding
an annotation on a field. Sun initiated a specification effort (JSR 250) to take care
of the annotations across specifications, defining common annotations for the

128

CHAPTER 3
Domain models and metadata

whole Java platform. For you, however, working on a persistence layer, the most
important specification is EJB 3.0 and JPA.

Annotations from the Java Persistence package are available in javax.persis-
tence once you have included the JPA interfaces in your classpath. You can use
these annotations to declare persistent entity classes, embeddable classes (we’ll
discuss these in the next chapter), properties, fields, keys, and so on. The JPA
specification covers the basics and most relevant advanced mappings—everything
you need to write a portable application, with a pluggable, standardized persis-
tence layer that works inside and outside of any runtime container.

What annotations and mapping features aren’t specified in Java Persistence? A
particular JPA engine and product may naturally offer advantages—the so-called
vendor extensions.

Utilizing vendor extensions
Even if you map most of your application’s model with JPA-compatible annota-
tions from the javax.persistence package, you’ll have to use vendor extensions
at some point. For example, almost all performance-tuning options you’d expect
to be available in high-quality persistence software, such as fetching and caching
settings, are only available as Hibernate-specific annotations.

Let’s see what that looks like in an example. Annotate the Item entity source
code again:

package auction.model;

import javax.persistence.*;

@Entity
@Table (name = "ITEM")
@Qorg.hibernate.annotations.BatchSize(size = 10)

@org.hibernate.annotations.DiscriminatorFormula (
"case when ITEM_IS_SPECIAL is not null then A else B end"
)

public class Item {

}

This example contains two Hibernate annotations. The first, @BatchSize, is a
fetching option that can increase performance in situations we’ll examine later
in this book. The second, @DiscriminatorFormula, is a Hibernate mapping
annotation that is especially useful for legacy schemas when class inheritance
can’t be determined with simple literal values (here it maps a legacy column
ITEM_IS_SPECIAL—probably some kind of flag—to a literal value). Both anno-
tations are prefixed with the org.hibernate.annotations package name.

Object/relational mapping metadata 129

Consider this a good practice, because you can now easily see what metadata of
this entity class is from the JPA specification and which tags are vendor-spe-
cific. You can also easily search your source code for “org.hibernate.annota-
tions” and get a complete overview of all nonstandard annotations in your
application in a single search result.

If you switch your Java Persistence provider, you only have to replace the ven-
dor-specific extensions, and you can expect a similar feature set to be available
with most sophisticated solutions. Of course, we hope you’ll never have to do this,
and it doesn’t happen often in practice—just be prepared.

Annotations on classes only cover metadata that is applicable for that particu-
lar class. However, you often need metadata at a higher level, for a whole package
or even the whole application. Before we discuss these options, we’d like to intro-
duce another mapping metadata format.

XML descriptors in JPA and EJB 3.0
The EJB 3.0 and Java Persistence standard embraces annotations aggressively.
However, the expert group has been aware of the advantages of XML deployment
descriptors in certain situations, especially for configuration metadata that
changes with each deployment. As a consequence, every annotation in EJB 3.0
and JPA can be replaced with an XML descriptor element. In other words, you
don’t have to use annotations if you don’t want to (although we strongly encour-
age you to reconsider and give annotations a try, if this is your first reaction to
annotations).

Let’s look at an example of a JPA XML descriptor for a particular persistence
unit:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://java.sun.com/xml/ns/persistence/orm orm_1_0.xsd"
version="1.0">

<persistence-unit-metadata>
<xml-mapping-metadata-complete/>
<persistence-unit-defaults>
<schema>MY_SCHEMA</schema>
<catalog>MY_CATALOG</catalog>
<cascade-persist/>
</persistence-unit-defaults>
</persistence-unit-metadata>

130

CHAPTER 3
Domain models and metadata

<package>auction.model</package>

<entity class="Item" access="PROPERTY"
metadata-complete="true">
<attributes>
<id name="id">
<generated-value strategy="AUTO"/>
</id>
</attributes>
</entity>

</entity-mappings>

This XML is automatically picked up by the JPA provider if you place it in a file
called orm.xml in your classpath, in the META-INF directory of the persistence
unit. You can see that you only have to name an identifier property for a class; as
in annotations, all other properties of the entity class are automatically consid-
ered persistent with a sensible default mapping.

You can also set default mappings for the whole persistence unit, such as the
schema name and default cascading options. If you include the <xml-mapping-
metadata-complete> element, the JPA provider completely ignores all annota-
tions on your entity classes in this persistence unit and relies only on the map-
pings as defined in the orm.xml file. You can (redundantly in this case) enable
this on an entity level, with metadata-complete="true". If enabled, the JPA pro-
vider assumes that all properties of the entity are mapped in XML, and that all
annotations for this entity should be ignored.

If you don’t want to ignore but instead want to override the annotation meta-
data, first remove the global <xml-mapping-metadata-complete> element from
the orm.xml file. Also remove the metadata-complete="true" attribute from any
entity mapping that should override, not replace, annotations:

<entity-mappings ...>
<package>auction.model</package>

<entity class="Item">
<attributes>
<basic name="initialPrice" optional="false">
<column name="INIT_ PRICE"/>
</basic>
</attributes>
</entity>

</entity-mappings>

Here you map the initialPrice property to the INIT_PRICE column and specify
itisn’t nullable. Any annotation on the initialPrice property of the Item class is

3.3.3

Object/relational mapping metadata 131

ignored, but all other annotations on the Item class are still applied. Also note
that you didn’t specify an access strategy in this mapping, so field or accessor
method access is used depending on the position of the @Id annotation in Item.
(We’ll get back to this detail in the next chapter.)

An obvious problem with XML deployment descriptors in Java Persistence is
their compatibility with native Hibernate XML mapping files. The two formats
aren’t compatible at all, and you should make a decision to use one or the other.
The syntax of the JPA XML descriptor is much closer to the actual JPA annotations
than to the native Hibernate XML mapping files.

You also need to consider vendor extensions when you make a decision for an
XML metadata format. The Hibernate XML format supports all possible Hibernate
mappings, so if something can’t be mapped in JPA/Hibernate annotations, it can
be mapped with native Hibernate XML files. The same isn’t true with JPA XML
descriptors—they only provide convenient externalized metadata that covers the
specification. Sun does not allow vendor extensions with an additional namespace.

On the other hand, you can’t override annotations with Hibernate XML map-
ping files; you have to define a complete entity class mapping in XML.

For these reasons, we don’t show all possible mappings in all three formats; we
focus on native Hibernate XML metadata and JPA/Hibernate annotations. How-
ever, you'll learn enough about the JPA XML descriptor to use it if you want to.

Consider JPA/Hibernate annotations the primary choice if you're using JDK
5.0. Fall back to native Hibernate XML mapping files if you want to externalize a
particular class mapping or utilize a Hibernate extension that isn’t available as an
annotation. Consider JPA XML descriptors only if you aren’t planning to use any
vendor extension (which is, in practice, unlikely), or if you want to only override a
few annotations, or if you require complete portability that even includes deploy-
ment descriptors.

But what if you’re stuck with JDK 1.4 (or even 1.3) and still want to benefit from
the better refactoring capabilities and reduced lines of code of inline metadata?

Using XDoclet

The XDoclet project has brought the notion of attribute-oriented programming
to Java. XDoclet leverages the Javadoc tag format (@attribute) to specify class-,
field-, or method-level metadata attributes. There is even a book about XDoclet
from Manning Publications, XDoclet in Action (Walls and Richards, 2004).
XDoclet is implemented as an Ant task that generates Hibernate XML meta-
data (or something else, depending on the plug-in) as part of the build process.

132

CHAPTER 3
Domain models and metadata

Creating the Hibernate XML mapping document with XDoclet is straightforward;
instead of writing it by hand, you mark up the Java source code of your persistent
class with custom Javadoc tags, as shown in listing 3.5.

Listing 3.5 Using XDoclet tags to mark up Java classes with mapping metadata

/**

* The Category class of the CaveatEmptor auction site domain model.
*

* @hibernate.class
* table="CATEGORY"
*/
public class Category {

/**
* @hibernate.id
* generator-class="native"
* column="CATEGORY_ID"
*/
public Long getId() {
return id;

}

/**
* @hibernate.property
*/
public String getName () {
return name;

}

With the annotated class in place and an Ant task ready, you can automatically
generate the same XML document shown in the previous section (listing 3.4).

The downside to XDoclet is that it requires another build step. Most large Java
projects are using Ant already, so this is usually a nonissue. Arguably, XDoclet
mappings are less configurable at deployment time; but there is nothing stopping
you from hand-editing the generated XML before deployment, so this is probably
not a significant objection. Finally, support for XDoclet tag validation may not be
available in your development environment. However, the latest IDEs support at
least autocompletion of tag names. We won’t cover XDoclet in this book, but you
can find examples on the Hibernate website.

3.34

Object/relational mapping metadata 133

Whether you use XML files, JDK 5.0 annotations, or XDoclet, you’ll often
notice that you have to duplicate metadata in several places. In other words, you
need to add global information that is applicable to more than one property,
more than one persistent class, or even the whole application.

Handling global metadata

Consider the following situation: All of your domain model persistent classes are
in the same package. However, you have to specify class names fully qualified,
including the package, in every XML mapping file. It would be a lot easier to
declare the package name once and then use only the short persistent class name.
Or, instead of enabling direct field access for every single property through the
access="field" mapping attribute, you’d rather use a single switch to enable
field access for all properties. Class- or package-scoped metadata would be much
more convenient.

Some metadata is valid for the whole application. For example, query strings
can be externalized to metadata and called by a globally unique name in the
application code. Similarly, a query usually isn’t related to a particular class, and
sometimes not even to a particular package. Other application-scoped metadata
includes user-defined mapping types (converters) and data filter (dynamic view)
definitions.

Let’s walk through some examples of global metadata in Hibernate XML map-
pings and JDK 5.0 annotations.

Global XML mapping metadata
If you check the XML mapping DTD, you’ll see that the <hibernate-mapping>
root element has global options that are applied to the class mapping(s) inside
it—some of these options are shown in the following example:
<hibernate-mapping
schema="AUCTION"
default-lazy="false"

default-access="field"
auto-import="false">

<class ...>
</class>
</hibernate-mapping>
The schema attribute enables a database schema prefix, AUCTION, used by Hiber-

nate for all SQL statements generated for the mapped classes. By setting default-
lazy to false, you enable default outerjoin fetching for some class associations, a

134

CHAPTER 3
Domain models and metadata

topic we’ll discuss in chapter 13, section 13.1, “Defining the global fetch plan.”
(This default-lazy="true" switch has an interesting side effect: It switches to
Hibernate 2.x default fetching behavior—useful if you migrate to Hibernate 3.x
but don’t want to update all fetching settings.) With default-access, you enable
direct field access by Hibernate for all persistent properties of all classes mapped
in this file. Finally, the auto-import setting is turned off for all classes in this file.
We’ll talk about importing and naming of entities in chapter 4, section 4.3, “Class
mapping options.”

TIP Mapping files with no class declarations—Global metadata is required and
present in any sophisticated application. For example, you may easily
import a dozen interfaces, or externalize a hundred query strings. In
large-scale applications, you often create mapping files without actual
class mappings, and only imports, external queries, or global filter and
type definitions. If you look at the DTD, you can see that <class> map-
pings are optional inside the <hibernate-mapping> root element. Split
up and organize your global metadata into separate files, such as
AuctionTypes.hbm.xml, AuctionQueries.hbm.xml, and so on, and load
them in Hibernate’s configuration just like regular mapping files.
However, make sure that all custom types and filters are loaded before
any other mapping metadata that applies these types and filters to
class mappings.

Let’s look at global metadata with JDK 5.0 annotations.

Global annotation metadata

Annotations are by nature woven into the Java source code for a particular class.
Although it’s possible to place global annotations in the source file of a class (at
the top), we’d rather keep global metadata in a separate file. This is called pack-
age metadata, and it’s enabled with a file named package-info.java in a particu-
lar package directory:

@org.hibernate.annotations.TypeDefs ({
Qorg.hibernate.annotations.TypeDef (
name="monetary_amount_usd",
typeClass = MonetaryAmountType.class,
parameters = { @Parameter (name="convertTo", value="USD") }
)
@Qorg.hibernate.annotations.TypeDef (
name="monetary_amount_eur",
typeClass = MonetaryAmountType.class,
parameters = { @Parameter (name="convertTo", value="EUR") }

Object/relational mapping metadata 135

@Qorg.hibernate.annotations.NamedQueries ({
@org.hibernate.annotations.NamedQuery (
name = "findItemsOrderByPrice",
query = "select i from Item i order by i.initialPrice)"

1)

package auction.persistence.types;

This example of a package metadata file, in the package auction.persis-
tence.types, declares two Hibernate type converters. We’ll discuss the Hiber-
nate type system in chapter 5, section 5.2, “The Hibernate type system.” You
can now refer to the user-defined types in class mappings by their names. The
same mechanism can be used to externalize queries and to define global identi-
fier generators (not shown in the last example).

There is a reason the previous code example only includes annotations from
the Hibernate package and no Java Persistence annotations. One of the (last-
minute) changes made to the JPA specification was the removal of package visibil-
ity of JPA annotations. As a result, no Java Persistence annotations can be placed in
a package-info.java file. If you need portable global Java Persistence metadata, put
itin an orm.xml file.

Note that you have to name a package that contains a metadata file in your
Hibernate or JPA persistence unit configuration if you aren’t using automatic
detection—see chapter 2, section 2.2.1, “Using Hibernate Annotations.”

Global annotations (Hibernate and JPA) can also be placed in the source code
of a particular class, right after the import section. The syntax for the annotations
is the same as in the package-info.java file, so we won’t repeat it here.

You now know how to write local and global mapping metadata. Another issue
in large-scale applications is the portability of metadata.

Using placeholders

In any larger Hibernate application, you’ll face the problem of native code in
your mapping metadata—code that effectively binds your mapping to a particular
database product. For example, SQL statements, such as in formula, constraint, or
filter mappings, aren’t parsed by Hibernate but are passed directly through to the
database management system. The advantage is flexibility—you can call any native
SQL function or keyword your database system supports. The disadvantage of put-
ting native SQL in your mapping metadata is lost database portability, because
your mappings, and hence your application, will work only for a particular DBMS
(or even DBMS version).

136

CHAPTER 3
Domain models and metadata

Even simple things, such as primary key generation strategies, usually aren’t
portable across all database systems. In the next chapter, we discuss a special iden-
tifier generator called native, which is a built-in smart primary key generator. On
Oracle, it uses a database sequence to generate primary key values for rows in a
table; on IBM DB2, it uses a special identity primary key column by default. This is
how you map it in XML:

<class name="Category" table="CATEGORY">

<id name="id" column="CATEGORY_ID" type="long">
<generator class="native"/>
</id>

</cl$éé>
We’ll discuss the details of this mapping later. The interesting part is the declara-
tion class="native" as the identifier generator. Let’s assume that the portability
this generator provides isn’t what you need, perhaps because you use a custom
identifier generator, a class you wrote that implements the Hibernate
IdentifierGenerator interface:

<id name="id" column="CATEGORY_ID" type="long">

<generator class="auction.custom.MyOracleGenerator"/>

</id>
The XML mapping file is now bound to a particular database product, and you
lose the database portability of the Hibernate application. One way to deal with
this issue is to use a placeholder in your XML file that is replaced during build
when the mapping files are copied to the target directory (Ant supports this).
This mechanism is recommended only if you have experience with Ant or already
need build-time substitution for other parts of your application.

A much more elegant variation is to use custom XML entities (not related to
our application’s business entities). Let’s assume you need to externalize an ele-
ment or attribute value in your XML files to keep it portable:

<id name="id" column="CATEGORY_ID" type="long">

<generator class="&idgenerator;"/>

</id>
The &idgenerator; value is called an entity placeholder. You can define its value
at the top of the XML file as an entity declaration, as part of the document type
definition:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping SYSTEM

Object/relational mapping metadata 137

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[

<!ENTITY idgenerator "auction.custom.MyOracleGenerator">

1>
The XML parser will now substitute the placeholder on Hibernate startup, when
mapping files are read.

You can take this one step further and externalize this addition to the DTD in a
separate file and include the global options in all other mapping files:

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping SYSTEM

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[

<!ENTITY % globals SYSTEM "classpath://persistence/globals.dtd">

%globals;

1>
This example shows the inclusion of an external file as part of the DTD. The syn-
tax, as often in XML, is rather crude, but the purpose of each line should be clear.
All global settings are added to the globals.dtd file in the persistence package on
the classpath:

<!ENTITY idgenerator "auction.custom.MyOracleGenerator">

<!-- Add more options if needed... -->
To switch from Oracle to a different database system, just deploy a different glo-
bals.dtd file.

Often, you need not only substitute an XML element or attribute value but also
to include whole blocks of mapping metadata in all files, such as when many of
your classes share some common properties, and you can’t use inheritance to cap-
ture them in a single location. With XML entity replacement, you can externalize
an XML snippet to a separate file and include it in other XML files.

Let’s assume all the persistent classes have a dateModified property. The first
step is to put this mapping in its own file, say, DateModified.hbm.xml:

<property name="dateModified"

column="DATE_MOD”

type="timestamp" />
This file needs no XML header or any other tags. Now you include it in the map-
ping file for a persistent class:

<?xml version="1.0"7?>

<!DOCTYPE hibernate-mapping SYSTEM

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"
[

138

3.3.5

CHAPTER 3
Domain models and metadata

<!ENTITY datemodified SYSTEM "classpath://model/DateModified.hbm.xml">
1>

<hibernate-mapping>

<class name="Item" table="ITEM"

<id ...>
&datemodified;
</class>

The content of DateModified.hbm.xml will be included and be substituted for the
&datemodified; placeholder. This, of course, also works with larger XML snippets.

When Hibernate starts up and reads mapping files, XML DTDs have to be
resolved by the XML parser. The built-in Hibernate entity resolver looks for the
hibernate-mapping-3.0.dtd on the classpath; it should find the DTD in the
hibernate3.jar file before it tries to look it up on the Internet, which happens
automatically whenever an entity URL is prefixed with http://hibernate.source-
forge.net/. The Hibernate entity resolver can also detect the classpath:// pre-
fix, and the resource is then searched for in the classpath, where you can copy it
on deployment. We have to repeat this FAQ: Hibernate never looks up the DTD on
the Internet if you have a correct DTD reference in your mapping and the right
JAR on the classpath.

The approaches we have described so far—XML, JDK 5.0 annotations, and
XDoclet attributes—assume that all mapping information is known at develop-
ment (or deployment) time. Suppose, however, that some information isn’t
known before the application starts. Can you programmatically manipulate the
mapping metadata at runtime?

Manipulating metadata at runtime

It’s sometimes useful for an application to browse, manipulate, or build new map-
pings at runtime. XML APIs like DOM, dom4j, and JDOM allow direct runtime
manipulation of XML documents, so you could create or manipulate an XML doc-
ument at runtime, before feeding it to the Configuration object.

On the other hand, Hibernate also exposes a configuration-time metamodel
that contains all the information declared in your static mapping metadata.
Direct programmatic manipulation of this metamodel is sometimes useful, espe-
cially for applications that allow for extension by user-written code. A more dras-
tic approach would be complete programmatic and dynamic definition of the
mapping metadata, without any static mapping. However, this is exotic and

Object/relational mapping metadata 139

should be reserved for a particular class of fully dynamic applications, or applica-
tion building kits.

The following code adds a new property, motto, to the User class:

// Get the existing mapping for User from Configuration

PersistentClass userMapping =
cfg.getClassMapping (User.class.getName()) ;

// Define a new column for the USER table
Column column = new Column() ;

column. setName ("MOTTO") ;
column.setNullable(false) ;
column.setUnique (true) ;
userMapping.getTable () .addColumn (column) ;

// Wrap the column in a Value
SimplevValue value = new SimpleValue() ;
value.setTable(userMapping.getTable());
value.setTypeName ("string") ;
value.addColumn (column) ;

// Define a new property of the User class
Property prop = new Property();
prop.setValue (value) ;

prop.setName ("motto") ;

prop.setNodeName (prop.getName ()) ;
userMapping.addProperty (prop) ;

// Build a new session factory, using the new mapping

SessionFactory sf = cfg.buildSessionFactory () ;
A PersistentClass object represents the metamodel for a single persistent class,
and you retrieve it from the Configuration object. Column, SimpleValue, and
Property are all classes of the Hibernate metamodel and are available in the
org.hibernate.mapping package.

TIP Keep in mind that adding a property to an existing persistent class map-
ping, as shown here, is quite easy, but programmatically creating a new
mapping for a previously unmapped class is more involved.

Once a SessionFactory is created, its mappings are immutable. The Session-
Factory uses a different metamodel internally than the one used at configuration
time. There is no way to get back to the original Configuration from the Ses-
sionFactory or Session. (Note that you can get the SessionFactory from a Ses-
sion if you wish to access a global setting.) However, the application can read the
SessionFactory’s metamodel by calling getClassMetadata () or getCollection-
Metadata (). Here’s an example:

140

3.4

CHAPTER 3
Domain models and metadata

Item item = ...;

ClassMetadata meta = sessionFactory.getClassMetadata(Item.class);

String[] metaPropertyNames =

meta.getPropertyNames () ;
Object[] propertyValues =
meta.getPropertyValues (item, EntityMode.P0OJO) ;
This code snippet retrieves the names of persistent properties of the Item class
and the values of those properties for a particular instance. This helps you write
generic code. For example, you may use this feature to label UI components or
improve log output.

Although you’ve seen some mapping constructs in the previous sections, we
haven’t introduced any more sophisticated class and property mappings so far.
You should now decide which mapping metadata option you’d like to use in
your project and then read more about class and property mappings in the
next chapter.

Or, if you’re already an experienced Hibernate user, you can read on and find
out how the latest Hibernate version allows you to represent a domain model
without Java classes.

Alternative entity representation

In this book, so far, we’ve always talked about a domain model implementation
based on Java classes—we called them POJOs, persistent classes, JavaBeans, or
entities. An implementation of a domain model that is based on Java classes with
regular properties, collections, and so on, is type-safe. If you access a property of
a class, your IDE offers autocompletion based on the strong types of your model,
and the compiler checks whether your source is correct. However, you pay for
this safety with more time spent on the domain model implementation—and
time is money.

In the following sections, we introduce Hibernate’s ability to work with domain
models that aren’t implemented with Java classes. We’re basically trading type-
safety for other benefits and, because nothing is free, more errors at runtime
whenever we make a mistake. In Hibernate, you can select an entity mode for your
application, or even mix entity modes for a single model. You can even switch
between entity modes in a single Session.

These are the three built-in entity modes in Hibernate:

= POJO—A domain model implementation based on POJOs, persistent classes.
This is what you have seen so far, and it’s the default entity mode.

34.1

Alternative entity representation 141

= MAP—No Java classes are required; entities are represented in the Java appli-
cation with HashMaps. This mode allows quick prototyping of fully dynamic
applications.

= DOM4J—No Java classes are required; entities are represented as XML ele-
ments, based on the dom4j API. This mode is especially useful for exporting
or importing data, or for rendering and transforming data through XSLT
processing.

There are two reasons why you may want to skip the next section and come back
later: First, a static domain model implementation with POJOs is the common
case, and dynamic or XML representation are features you may not need right
now. Second, we’re going to present some mappings, queries, and other opera-
tions that you may not have seen so far, not even with the default POJO entity
mode. However, if you feel confident enough with Hibernate, read on.

Let’s start with the MAP mode and explore how a Hibernate application can be
fully dynamically typed.

Creating dynamic applications

A dynamic domain model is a model that is dynamically typed. For example,
instead of a Java class that represents an auction item, you work with a bunch of
values in a Java Map. Each attribute of an auction item is represented by a key (the
name of the attribute) and its value.

Mapping entity names
First, you need to enable this strategy by naming your business entities. In a Hiber-
nate XML mapping file, you use the entity-name attribute:

<hibernate-mapping>

<class entity-name="ItemEntity" table="ITEM_ ENTITY">
<id name="id" type="long" column="ITEM_ID">
<generator class="native"/>
</id>

<property name="initialPrice"
type="big_decimal"
column="INIT_PRICE"/>

<property name="description"
type="string"
column="DESCRIPTION" />

<many-to-one name="seller"
entity-name="UserEntity"
column="USER_ID"/>

142

CHAPTER 3
Domain models and metadata

</class>

<class entity-name="UserEntity" table="USER_ENTITY">
<id name="id" type="long" column="USER_ID">
<generator class="native"/>
</id>

<property name="username"
type="string"
column="USERNAME" />

<bag name="itemsForSale" inverse="true" cascade="all">
<key column="USER_ID"/>
<one-to-many entity-name="ItemEntity"/>

</bag>

</class>
</hibernate-mapping>

There are three interesting things to observe in this mapping file.

First, you mix several class mappings in one, something we didn’t recommend
earlier. This time you aren’t really mapping Java classes, but logical names of enti-
ties. You don’t have a Java source file and an XML mapping file with the same name
next to each other, so you’re free to organize your metadata in any way you like.

Second, the <class name="..."> attribute has been replaced with <class
entity-name="...">. You also append .. .Entity to these logical names for clar-
ity and to distinguish them from other nondynamic mappings that you made ear-
lier with regular POJOs.

Finally, all entity associations, such as <many-to-one> and <one-to-many>, now
also refer to logical entity names. The class attribute in the association mappings
is now entity-name. This isn’t strictly necessary—Hibernate can recognize that
you’re referring to a logical entity name even if you use the class attribute. How-
ever, it avoids confusion when you later mix several representations.

Let’s see what working with dynamic entities looks like.

Working with dynamic maps
To create an instance of one of your entities, you set all attribute values in a Java
Map:

Map user = new HashMap () ;
user.put ("username", "johndoe");

Map iteml = new HashMap () ;

iteml.put ("description", "An item for auction");
iteml.put("initialPrice", new BigDecimal (99)) ;
iteml.put("seller", user);

Alternative entity representation 143

Map item2 = new HashMap () ;

item2.put ("description", "Another item for auction");
item2.put("initialPrice", new BigDecimal (123));
item2.put ("seller", user);

Collection itemsForSale = new ArrayList();
itemsForSale.add(iteml) ;
itemsForSale.add(item2) ;

user.put ("itemsForSale", itemsForSale) ;

session.save ("UserEntity", user);

The first map is a UserEntity, and you set the username attribute as a key/value
pair. The next two maps are ItemEntitys, and here you set the link to the seller
of each item by putting the user map into the iteml and item2 maps. You're
effectively linking maps—that’s why this representation strategy is sometimes also
called “representation with maps of maps.”

The collection on the inverse side of the one-to-many association is initialized
with an ArrayList, because you mapped it with bag semantics (Java doesn’t have
a bag implementation, but the Collection interface has bag semantics). Finally,
the save () method on the Session is given a logical entity name and the user
map as an input parameter.

Hibernate knows that UserEntity refers to the dynamically mapped entity,
and that it should treat the input as a map that has to be saved accordingly. Hiber-
nate also cascades to all elements in the itemsForSale collection; hence, all item
maps are also made persistent. One UserEntity and two ItemEntitys are
inserted into their respective tables.

FAQ Can I map a Set in dynamic mode? Collections based on sets don’t work
with dynamic entity mode. In the previous code example, imagine that
itemsForSale was a Set. A Set checks its elements for duplicates, so
when you call add(iteml) and add(item2), the equals() method on
these objects is called. However, iteml and item2 are Java Map instances,
and the equals() implementation of a map is based on the key sets of
the map. So, because both iteml and item2 are maps with the same keys,
they aren’t distinct when added to a Set. Use bags or lists only if you
require collections in dynamic entity mode.

Hibernate handles maps just like POJO instances. For example, making a map per-
sistent triggers identifier assignment; each map in persistent state has an identifier
attribute set with the generated value. Furthermore, persistent maps are automat-
ically checked for any modifications inside a unit of work. To set a new price on an
item, for example, you can load it and then let Hibernate do all the work:

144

CHAPTER 3
Domain models and metadata

Long storedItemId = (Long) iteml.get("id");

Session session = getSessionFactory () .openSession() ;
session.beginTransaction() ;

Map loadedItemMap = (Map) session.load("ItemEntity", storedItemId);
loadedItemMap.put ("initialPrice", new BigDecimal (100)) ;

session.getTransaction () .commit () ;
session.close();
All session methods that have class parameters such as load() also come in an
overloaded variation that accepts entity names. After loading an item map, you set
a new price and make the modification persistent by committing the transaction,
which, by default, triggers dirty checking and flushing of the Session.
You can also refer to entity names in HQL queries:
List queriedItemMaps =
session.createQuery("from ItemEntity where initialPrice >= :p")
.setParameter ("p", new BigDecimal (100))
Jlist();
This query returns a collection of ItemEntity maps. They are in persistent state.
Let’s take this one step further and mix a POJO model with dynamic maps.
There are two reasons why you would want to mix a static implementation of your
domain model with a dynamic map representation:

= You want to work with a static model based on POJO classes by default, but
sometimes you want to represent data easily as maps of maps. This can be
particularly useful in reporting, or whenever you have to implement a
generic user interface that can represent various entities dynamically.

= You want to map a single POJO class of your model to several tables and
then select the table at runtime by specifying a logical entity name.

You may find other use cases for mixed entity modes, but they’re so rare that we
want to focus on the most obvious.

First, therefore, you’ll mix a static POJO model and enable dynamic map repre-
sentation for some of the entities, some of the time.

Mixing dynamic and static entity modes
To enable a mixed model representation, edit your XML mapping metadata and
declare a POJO class name and a logical entity name:

<hibernate-mapping>

<class name="model.ItemPojo"
entity-name="ItemEntity"

Alternative entity representation

table="ITEM ENTITY">

<many-to-one name="seller"
entity-name="UserEntity"
column="USER_ID"/>

</class>

<class name="model.UserPojo"
entity-name="UserEntity"
table="USER_ENTITY">

<bag name="itemsForSale" inverse="true" cascade="all">
<key column="USER_ID"/>
<one-to-many entity-name="ItemEntity"/>

</bag>

</class>

</hibernate-mapping>

145

Obviously, you also need the two classes, model.ItemPojo and model.UserPojo,
that implement the properties of these entities. You still base the many-to-one and

one-to-many associations between the two entities on logical names.

Hibernate will primarily use the logical names from now on. For example, the

following code does not work:

UserPojo user = new UserPojo();
ItemPojo iteml = new ItemPojo();
ItemPojo item2 = new ItemPojo();

Collection itemsForSale = new ArrayList();

session.save (user) ;

The preceding example creates a few objects, sets their properties, and links
them, and then tries to save the objects through cascading by passing the user
instance to save (). Hibernate inspects the type of this object and tries to figure
out what entity it is, and because Hibernate now exclusively relies on logical entity
names, it can’t find a mapping for model.UserPojo. You need to tell Hibernate

the logical name when working with a mixed representation mapping:

session.save ("UserEntity", user);

Once you change this line, the previous code example works. Next, consider
loading, and what is returned by queries. By default, a particular SessionFactory

146

CHAPTER 3
Domain models and metadata

is in POJO entity mode, so the following operations return instances of
model .ItemPojo:
Long storedItemId = iteml.getId();

ItemPojo loadedItemPojo =
(ItemPojo) session.load("ItemEntity", storedItemId);

List queriedItemPojos =
session.createQuery ("from ItemEntity where initialPrice >= :p")
.setParameter ("p", new BigDecimal (100))
Jlist();
You can switch to a dynamic map representation either globally or temporarily, but
a global switch of the entity mode has serious consequences. To switch globally,

add the following to your Hibernate configuration; e.g., in hibernate.cfg.xml:
<property name="default_entity_mode">dynamic-map</property>

All session operations now either expect or return dynamically typed maps! The
previous code examples that stored, loaded, and queried POJO instances no
longer work; you need to store and load maps.

It’s more likely that you want to switch to another entity mode temporarily, so
let’s assume that you leave the SessionFactory in the default POJO mode. To
switch to dynamic maps in a particular Session, you can open up a new tempo-
rary Session on top of the existing one. The following code uses such a tempo-
rary Session to store a new auction item for an existing seller:

Session dynamicSession = session.getSession (EntityMode.MAP) ;
Map seller = (Map) dynamicSession.load("UserEntity", user.getId());

Map newlItemMap = new HashMap () ;

newItemMap.put ("description", "An item for auction");
newlItemMap.put ("initialPrice", new BigDecimal (99));
newltemMap.put ("seller", seller);

dynamicSession.save ("ItemEntity", newlItemMap) ;
Long storedItemId = (Long) newltemMap.get("id");

Map loadedItemMap =
(Map) dynamicSession.load("ItemEntity", storedItemId) ;

List queriedItemMaps =
dynamicSession
.createQuery ("from ItemEntity where initialPrice >= :p")
.setParameter ("p", new BigDecimal (100))
Llist();

The temporary dynamicSession that is opened with getSession() doesn’t need
to be flushed or closed; it inherits the context of the original Session. You use it

Alternative entity representation 147

only to load, query, or save data in the chosen representation, which is the Entity-
Mode.MAP in the previous example. Note that you can’t link a map with a POJO
instance; the seller reference has to be a HashMap, not an instance of UserPojo.

We mentioned that another good use case for logical entity names is the map-
ping of one POJO to several tables, so let’s look at that.

Mapping a class several times
Imagine that you have several tables with some columns in common. For exam-
ple, you could have ITEM_AUCTION and ITEM_SALE tables. Usually you map each
table to an entity persistent class, ItemAuction and ItemSale respectively. With
the help of entity names, you can save work and implement a single persistent
class.

To map both tables to a single persistent class, use different entity names (and
usually different property mappings):

<hibernate-mapping>

<class name="model.Item"
entity-name="ItemAuction"
table="ITEM_AUCTION">

<id name="id" column="ITEM_AUCTION_ID">...</id>
<property name="description" column="DESCRIPTION"/>
<property name="initialPrice" column="INIT_ PRICE"/>

</class>

<class name="model.Item"
entity-name="ItemSale"
table="ITEM_SALE">

<id name="id" column="ITEM_SALE_ID">...</id>
<property name="description" column="DESCRIPTION"/>
<property name="salesPrice" column="SALES_PRICE"/>

</class>
</hibernate-mapping>
The model.Item persistent class has all the properties you mapped: id, descrip-

tion, initialPrice, and salesPrice. Depending on the entity name you use at
runtime, some properties are considered persistent and others transient:

Item itemForAuction = new Item() ;
itemForAuction.setDescription("An item for auction");
itemForAuction.setInitialPrice(new BigDecimal (99));
session.save ("ItemAuction", itemForAuction) ;

Item itemForSale = new Item() ;
itemForSale.setDescription("An item for sale");

148

34.2

CHAPTER 3
Domain models and metadata

itemForSale.setSalesPrice(new BigDecimal (123));

session.save("ItemSale", itemForSale) ;
Thanks to the logical entity name, Hibernate knows into which table it should
insert the data. Depending on the entity name you use for loading and querying
entities, Hibernate selects from the appropriate table.

Scenarios in which you need this functionality are rare, and you’ll probably
agree with us that the previous use case isn’t good or common.

In the next section, we introduce the third built-in Hibernate entity mode, the
representation of domain entities as XML documents.

Representing data in XML

XML is nothing but a text file format; it has no inherent capabilities that qualify it
as a medium for data storage or data management. The XML data model is weak,
its type system is complex and underpowered, its data integrity is almost com-
pletely procedural, and it introduces hierarchical data structures that were out-
dated decades ago. However, data in XML format is attractive to work with in Java;
we have nice tools. For example, we can transform XML data with XSLT, which we
consider one of the best use cases.

Hibernate has no built-in functionality to store data in an XML format; it relies
on a relational representation and SQL, and the benefits of this strategy should be
clear. On the other hand, Hibernate can load and present data to the application
developer in an XML format. This allows you to use a sophisticated set of tools
without any additional transformation steps.

Let’s assume that you work in default POJO mode and that you quickly want to
obtain some data represented in XML. Open a temporary Session with the Enti-
tyMode .DOM4J:

Session dom4jSession = session.getSession (EntityMode.DOM4J) ;

Element userXML =
(Element) dom4jSession.load(User.class, storedUserId);

What is returned here is a dom4j Element, and you can use the dom4j API to read
and manipulate it. For example, you can pretty-print it to your console with the
following snippet:

try {
OutputFormat format = OutputFormat.createPrettyPrint () ;
XMLWriter writer = new XMLWriter(System.out, format);
writer.write(userXML) ;

} catch (IOException ex) {
throw new RuntimeException (ex) ;

}

Alternative entity representation 149

If we assume that you reuse the POJO classes and data from the previous exam-
ples, you see one User instance and two Item instances (for clarity, we no longer
name them UserPojo and ItemPojo):

<User>
<id>1</id>
<username>johndoe</username>
<itemsForSale>
<Item>
<id>2</id>
<initialPrice>99</initialPrice>
<description>An item for auction</description>
<seller>l</seller>
</Item>
<Item>
<id>3</id>
<initialPrice>123</initialPrice>
<description>Another item for auction</description>
<seller>l</seller>
</Item>
</itemsForSale>
</User>

Hibernate assumes default XML element names—the entity and property names.
You can also see that collection elements are embedded, and that circular refer-
ences are resolved through identifiers (the <seller> element).

You can change this default XML representation by adding node attributes to
your Hibernate mapping metadata:

<hibernate-mapping>
<class name="Item" table="ITEM_ENTITY" node="item">

<id name="id" type="long" column="ITEM_ID" node="@id">
<generator class="native"/>
</id>

<property name="initialPrice"
type="big_decimal"
column="INIT_PRICE"
node="item-details/@initial-price"/>

<property name="description"
type="string"
column="DESCRIPTION"
node="item-details/@description"/>

<many-to-one name="seller"
class="User"
column="USER_ID"
embed-xml="false"

150 CHAPTER 3
Domain models and metadata

node="@seller-id" />
</class>
<class name="User" table="USERS" node="user">

<id name="id" type="long" column="USER_ID" node="@id">
<generator class="native"/>
</id>

<property name="username"
type="string"
column="USERNAME"
node="@username" />

<bag name="itemsForSale" inverse="true" cascade="all"
embed-xml="true" node="items-for-sale">
<key column="USER_ID"/>
<one-to-many class="Item"/>

</bag>

</class>
</hibernate-mapping>
Each node attribute defines the XML representation:

= A node="name" attribute on a <class> mapping defines the name of the
XML element for that entity.

= A node="name" attribute on any property mapping specifies that the prop-
erty content should be represented as the text of an XML element of the
given name.

= A node="@name" attribute on any property mapping specifies that the prop-
erty content should be represented as an XML attribute value of the given
name.

= A node="name/@attname" attribute on any property mapping specifies that
the property content should be represented as an XML attribute value of
the given name, on a child element of the given name.

The embed-xml option is used to trigger embedding or referencing of associated
entity data. The updated mapping results in the following XML representation of
the same data you’ve seen before:

<user id="1" username="johndoe">
<items-for-sale>
<item id="2" seller-id="1">
<item-details initial-price="99"
description="An item for auction"/>
</item>

Alternative entity representation 151

<item id="3" seller-id="1">
<item-details initial-price="123"
description="Another item for auction"/>
</item>
</items-for-sale>
</user>
Be careful with the embed-xml option—you can easily create circular references
that result in an endless loop!
Finally, data in an XML representation is transactional and persistent, so you
can modify queried XML elements and let Hibernate take care of updating the
underlying tables:

Element itemXML =
(Element) dom4jSession.get(Item.class, storedItemId);

itemXML.element ("item-details")
.attribute("initial-price")
.setValue("100") ;

session.flush(); // Hibernate executes UPDATEs

Element userXML =
(Element) dom4jSession.get (User.class, storedUserId);

Element newItem = DocumentHelper.createElement ("item") ;
Element newItemDetails = newlItem.addElement ("item-details");
newItem.addAttribute ("seller-id",

userXml.attribute("id") .getValue());
newlItemDetails.addAttribute("initial-price", "123");
newlItemDetails.addAttribute ("description", "A third item");

dom4jSession.save(Item.class.getName (), newltem) ;

dom4jSession.flush(); // Hibernate executes INSERTS

There is no limit to what you can do with the XML that is returned by Hibernate.
You can display, export, and transform it in any way you like. See the dom4j docu-
mentation for more information.

Finally, note that you can use all three built-in entity modes simultaneously, if
you like. You can map a static POJO implementation of your domain model, switch
to dynamic maps for your generic user interface, and export data into XML. Or,
you can write an application that doesn’t have any domain classes, only dynamic
maps and XML. We have to warn you, though, that prototyping in the software
industry often means that customers end up with the prototype that nobody
wanted to throw away—would you buy a prototype car? We highly recommend
that you rely on static domain models if you want to create a maintainable system.

152

3.5

CHAPTER 3
Domain models and metadata

We won’t consider dynamic models or XML representation again in this book.
Instead, we’ll focus on static persistent classes and how they are mapped.

Summary

In this chapter, we focused on the design and implementation of a rich domain
model in Java.

You now understand that persistent classes in a domain model should to be
free of crosscutting concerns, such as transactions and security. Even persistence-
related concerns should not leak into the domain model implementation. You
also know how important transparent persistence is if you want to execute and test
your business objects independently and easily.

You have learned the best practices and requirements for the POJO and JPA
entity programming model, and what concepts they have in common with the old
JavaBean specification. We had a closer look at the implementation of persistent
classes, and how attributes and relationships are best represented.

To be prepared for the next part of the book, and to learn all the object/rela-
tional mapping options, you needed to make an educated decision to use either
XML mapping files or JDK 5.0 annotations, or possibly a combination of both.
You’re now ready to write more complex mappings in both formats.

For convenience, table 3.1 summarizes the differences between Hibernate and
Java Persistence related to concepts discussed in this chapter.

Table 3.1 Hibernate and JPA comparison chart for chapter 3

Hibernate Core

Java Persistence and EJB 3.0

Persistent classes require a no-argument con-
structor with public or protected visibility if proxy-
based lazy loading is used.

The JPA specification mandates a no-argument
constructor with public or protected visibility for all
entity classes.

Persistent collections must be typed to interfaces.

Hibernate supports all JDK interfaces.

Persistent collections must be typed to interfaces.
Only a subset of all interfaces (no sorted collec-
tions, for example) is considered fully portable.

Persistent properties can be accessed through
fields or accessor methods at runtime, or a com-
pletely customizable strategy can be applied.

Persistent properties of an entity class are
accessed through fields or accessor methods, but
not both if full portability is required.

Summary 153

Table 3.1 Hibernate and JPA comparison chart for chapter 3 (continued)

Hibernate Core

Java Persistence and EJB 3.0

The XML metadata format supports all possible
Hibernate mapping options.

JPA annotations cover all basic and most advanced
mapping options. Hibernate Annotations are
required for exotic mappings and tuning.

XML mapping metadata can be defined globally,
and XML placeholders are used to keep metadata
free from dependencies.

Global metadata is only fully portable if declared in
the standard orm.xml metadata file.

In the next part of the book, we show you all possible basic and some advanced
mapping techniques, for classes, properties, inheritance, collections, and associa-

tions. You’ll learn how to solve the structural object/relational mismatch.

Part 2

Mapping concepts
and strategies

Tlis part is all about actual object/relational mapping, from classes and
properties to tables and columns. Chapter 4 starts with regular class and
property mappings, and explains how you can map fine-grained Java domain
models. Next, in chapter 5, you’ll see how to map more complex class inher-
itance hierarchies and how to extend Hibernate's functionality with the pow-
erful custom mapping type system. In chapters 6 and 7, we show you how to
map Java collections and associations between classes, with many sophisti-
cated examples. Finally, you’ll find chapter 8 most interesting if you need to
introduce Hibernate in an existing applications, or if you have to work with
legacy database schemas and hand-written SQL. We also talk about custom-
ized SQL DDL for schema generation in this chapter.

After reading this part of the book, you’ll be ready to create even the
most complex mappings quickly and with the right strategy. You’ll under-
stand how the problem of inheritance mapping can be solved, and how col-
lections and associations can be mapped. You’ll also be able to tune and
customize Hibernate for integration with any existing database schema or
application.

Mapping

persistent classes

This chapter covers

®m Understanding the entity and value-type concept
® Mapping classes with XML and annotations
®m Fine-grained property and component mappings

157

158

4.1

4.1.1

CHAPTER 4
Mapping persistent classes

This chapter presents the fundamental mapping options, explaining how classes
and properties are mapped to tables and columns. We show and discuss how you
can handle database identity and primary keys, and how various other metadata
settings can be used to customize how Hibernate loads and stores objects. All
mapping examples are done in Hibernate’s native XML format, and with JPA
annotations and XML descriptors, side by side. We also look closely at the map-
ping of fine-grained domain models, and at how properties and embedded com-
ponents are mapped.

First, though, we define the essential distinction between entities and value
types, and explain how you should approach the object/relational mapping of
your domain model.

Understanding entities and value types

Entities are persistent types that represent first-class business objects (the term
object is used here in its natural sense). In other words, some of the classes and
types you have to deal with in an application are more important, which naturally
makes others less important. You probably agree that in CaveatEmptor, Itemis a
more important class than String. User is probably more important than
Address. What makes something important? Let’s look at the issue from a differ-
ent perspective.

Fine-grained domain models

A major objective of Hibernate is support for fine-grained domain models, which
we isolated as the most important requirement for a rich domain model. It’s one
reason why we work with POJOs. In crude terms, fine-grained means more classes
than tables.

For example, a user may have both a billing address and a home address. In the
database, you may have a single USERS table with the columns BILLING_STREET,
BILLING_CITY, and BILLING_ZIPCODE, along with HOME_STREET, HOME_CITY, and
HOME_ZIPCODE. (Remember the problem of SQL types we discussed in chapter 1?)

In the domain model, you could use the same approach, representing the two
addresses as six string-valued properties of the User class. But it’s much better to
model this using an Address class, where User has the billingAddress and
homeAddress properties, thus using three classes for one table.

This domain model achieves improved cohesion and greater code reuse,
and it’s more understandable than SQL systems with inflexible type systems. In

4.1.2

Understanding entities and value types 159

the past, many ORM solutions didn’t provide especially good support for this
kind of mapping.

Hibernate emphasizes the usefulness of fine-grained classes for implementing
type safety and behavior. For example, many people model an email address as a
string-valued property of User. A more sophisticated approach is to define an
EmailAddress class, which adds higherlevel semantics and behavior—it may pro-
vide a sendEmail () method.

This granularity problem leads us to a distinction of central importance in
ORM. In Java, all classes are of equal standing—all objects have their own identity
and lifecycle.

Let’s walk through an example.

Defining the concept

Two people live in the same apartment, and they both register user accounts in
CaveatEmptor. Naturally, each account is represented by one instance of User, so
you have two entity instances. In the CaveatEmptor model, the User class has a
homeAddress association with the Address class. Do both User instances have a
runtime reference to the same Address instance or does each User instance have
a reference to its own Address? If Address is supposed to support shared runtime
references, it’s an entity type. If not, it’s likely a value type and hence is dependent
on a single reference by an owning entity instance, which also provides identity.

We advocate a design with more classes than tables: One row represents multi-
ple instances. Because database identity is implemented by primary key value,
some persistent objects won’t have their own identity. In effect, the persistence
mechanism implements pass-by-value semantics for some classes! One of the
objects represented in the row has its own identity, and others depend on that. In
the previous example, the columns in the USERS table that contain address infor-
mation are dependent on the identifier of the user, the primary key of the table.
An instance of Address is dependent on an instance of User.

Hibernate makes the following essential distinction:

= An object of entity type has its own database identity (primary key value).
An object reference to an entity instance is persisted as a reference in the
database (a foreign key value). An entity has its own lifecycle; it may exist
independently of any other entity. Examples in CaveatEmptor are User,
Item, and Category.

= An object of value type has no database identity; it belongs to an entity
instance and its persistent state is embedded in the table row of the owning

160

4.1.3

CHAPTER 4
Mapping persistent classes

entity. Value types don’t have identifiers or identifier properties. The
lifespan of a value type instance is bounded by the lifespan of the owning
entity instance. A value type doesn’t support shared references: If two users
live in the same apartment, they each have a reference to their own homeAd-
dress instance. The most obvious value types are classes like Strings and
Integers, but all JDK classes are considered value types. User-defined classes
can also be mapped as value types; for example, CaveatEmptor has Address
and MonetaryAmount.

Identification of entities and value types in your domain model isn’t an ad hoc
task but follows a certain procedure.

Identifying entities and value types

You may find it helpful to add stereotype information to your UML class diagrams
so you can immediately see and distinguish entities and value types. This practice
also forces you to think about this distinction for all your classes, which is a first
step to an optimal mapping and well-performing persistence layer. See figure 4.1
for an example.

The Item and User classes are obvious entities. They each have their own iden-
tity, their instances have references from many other instances (shared refer-
ences), and they have independent lifecycles.

Identifying the Address as a value type is also easy: A particular Address
instance is referenced by only a single User instance. You know this because the
association has been created as a composition, where the User instance has been
made fully responsible for the lifecycle of the referenced Address instance.
Therefore, Address objects can’t be referenced by anyone else and don’t need
their own identity.

The Bid class is a problem. In object-oriented modeling, you express a compo-
sition (the association between Item and Bid with the diamond), and an Item
manages the lifecycles of all the Bid objects to which it has a reference (it’s a col-
lection of references). This seems reasonable, because the bids would be useless if

successful p 0..1

<< Entity >>

Bid
0..”
®

<<Entity>> sold by p <<Entity>> _home P [" << Value type >>
ltem User M Address

Figure 4.1 Stereotypes for entities and value types have been added to the diagram.

4.2

Mapping entities with identity 161

an Item no longer existed. But at the same time, there is another association to
Bid: An Item may hold a reference to its successfulBid. The successful bid must
also be one of the bids referenced by the collection, but this isn’t expressed in the
UML. In any case, you have to deal with possible shared references to Bid
instances, so the Bid class needs to be an entity. It has a dependent lifecycle, but it
must have its own identity to support shared references.

You’ll often find this kind of mixed behavior; however, your first reaction
should be to make everything a value-typed class and promote it to an entity only
when absolutely necessary. Try to simplify your associations: Collections, for exam-
ple, sometimes add complexity without offering any advantages. Instead of map-
ping a persistent collection of Bid references, you can write a query to obtain all
the bids for an Item (we’ll come back to this point again in chapter 7).

As the next step, take your domain model diagram and implement POJOs for
all entities and value types. You have to take care of three things:

» Shared references—Write your POJO classes in a way that avoids shared refer-
ences to value type instances. For example, make sure an Address object
can be referenced by only one User. For example, make it immutable and
enforce the relationship with the Address constructor.

» Lifecycle dependencies—As discussed, the lifecycle of a value-type instance is
bound to that of its owning entity instance. If a User object is deleted, its
Address dependent object(s) have to be deleted as well. There is no notion
or keyword for this in Java, but your application workflow and user interface
must be designed to respect and expect lifecycle dependencies. Persistence
metadata includes the cascading rules for all dependencies.

= Jdentity—Entity classes need an identifier property in almost all cases. User-
defined value-type classes (and JDK classes) don’t have an identifier prop-
erty, because instances are identified through the owning entity.

We’ll come back to class associations and lifecycle rules when we discuss more
advanced mappings later in the book. However, object identity is a subject you
have to understand at this point.

Mapping entities with identity

It’s vital to understand the difference between object identity and object equality
before we discuss terms like database identity and the way Hibernate manages
identity. Next, we explore how object identity and equality relate to database (pri-
mary key) identity.

162

4.2.1

4.2.2

CHAPTER 4
Mapping persistent classes

Understanding Java identity and equality

Java developers understand the difference between Java object identity and equal-
ity. Object identity, ==, is a notion defined by the Java virtual machine. Two object
references are identical if they point to the same memory location.

On the other hand, object equality is a notion defined by classes that imple-
ment the equals() method, sometimes also referred to as equivalence. Equiva-
lence means that two different (nonidentical) objects have the same value. Two
different instances of String are equal if they represent the same sequence of
characters, even though they each have their own location in the memory space
of the virtual machine. (If you’re a Java guru, we acknowledge that String is a spe-
cial case. Assume we used a different class to make the same point.)

Persistence complicates this picture. With object/relational persistence, a per-
sistent object is an in-memory representation of a particular row of a database
table. Along with Java identity (memory location) and object equality, you pick up
database identity (which is the location in the persistent data store). You now have
three methods for identifying objects:

= Objects are identical if they occupy the same memory location in the JVM.
This can be checked by using the == operator. This concept is known as
object identity.

= Objects are equal if they have the same value, as defined by the
equals (Object o) method. Classes that don’t explicitly override this
method inherit the implementation defined by java.lang.Object, which
compares object identity. This concept is known as equality.

= Objects stored in a relational database are identical if they represent the
same row or, equivalently, if they share the same table and primary key
value. This concept is known as database identity.

We now need to look at how database identity relates to object identity in Hiber-
nate, and how database identity is expressed in the mapping metadata.

Handling database identity
Hibernate exposes database identity to the application in two ways:

= The value of the identifier property of a persistent instance

= The value returned by Session.getIdentifier (Object entity)

Mapping entities with identity 163

Adding an identifier property to entities

The identifier property is special—its value is the primary key value of the data-
base row represented by the persistent instance. We don’t usually show the identi-
fier property in the domain model diagrams. In the examples, the identifier
property is always named id. If myCategory is an instance of Category, calling
myCategory.getId() returns the primary key value of the row represented by
myCategory in the database.

Let’s implement an identifier property for the Category class:

public class Category {
private Long id;

public Long getId() {
return this.id;

}

private void setId(Long id) {
this.id = id;
}

}

Should you make the accessor methods for the identifier property private scope or
public? Well, database identifiers are often used by the application as a convenient
handle to a particular instance, even outside the persistence layer. For example,
it’'s common for web applications to display the results of a search screen to the
user as a list of summary information. When the user selects a particular element,
the application may need to retrieve the selected object, and it’s common to use a
lookup by identifier for this purpose—you’ve probably already used identifiers
this way, even in applications that rely on JDBC. It’s usually appropriate to fully
expose the database identity with a public identifier property accessor.

On the other hand, you usually declare the setId() method private and let
Hibernate generate and set the identifier value. Or, you map it with direct field
access and implement only a getter method. (The exception to this rule is
classes with natural keys, where the value of the identifier is assigned by the
application before the object is made persistent instead of being generated by
Hibernate. We discuss natural keys in chapter 8.) Hibernate doesn’t allow you to
change the identifier value of a persistent instance after it’s first assigned. A pri-
mary key value never changes—otherwise the attribute wouldn’t be a suitable
primary key candidate!

164 CHAPTER 4
Mapping persistent classes

The Java type of the identifier property, java.lang.Long in the previous exam-
ple, depends on the primary key type of the CATEGORY table and how it’s mapped
in Hibernate metadata.

Mapping the identifier property
A regular (noncomposite) identifier property is mapped in Hibernate XML files
with the <id> element:

<class name="Category" table="CATEGORY">

<id name="id" column="CATEGORY_ID" type="long">

<generator class="native"/>
</1id>

;;élass>
The identifier property is mapped to the primary key column CATEGORY_ID of the
table CATEGORY. The Hibernate type for this property is long, which maps to a
BIGINT column type in most databases and which has also been chosen to match
the type of the identity value produced by the native identifier generator. (We
discuss identifier generation strategies in the next section.)

For a JPA entity class, you use annotations in the Java source code to map the
identifier property:

@Entity

@Table (name="CATEGORY")

public class Category {
private Long id;

@Id
@GeneratedvValue (strategy = GenerationType.AUTO)
@Column (name = "CATEGORY_ID")

public Long getId() {
return this.id;

}
private void setId(Long id) {

this.id = id;
}

}

The @Id annotation on the getter method marks it as the identifier property, and
@Generatedvalue with the GenerationType.AUTO option translates into a native
identifier generation strategy, like the native option in XML Hibernate map-
pings. Note that if you don’t define a strategy, the default is also Generation-

Mapping entities with identity 165

Type.AUTO, so you could have omitted this attribute altogether. You also specify a
database column—otherwise Hibernate would use the property name. The map-
ping type is implied by the Java property type, java.lang.Long.

Of course, you can also use direct field access for all properties, including the
database identifier:

@Entity

@Table (name="CATEGORY")
public class Category {

@Id @Generatedvalue
@Column (name = "CATEGORY_ID")
private Long id;

public Long getId() {
return this.id;

}

}

Mapping annotations are placed on the field declaration when direct field access
is enabled, as defined by the standard.

Whether field or property access is enabled for an entity depends on the posi-
tion of the mandatory @Id annotation. In the preceding example, it’s present on a
field, so all attributes of the class are accessed by Hibernate through fields. The
example before that, annotated on the getId() method, enables access to all
attributes through getter and setter methods.

Alternatively, you can use JPA XML descriptors to create your identifier
mapping:

<entity class="auction.model.Category" access="FIELD">
<table name="CATEGORY"/>
<attributes>
<id name="id">
<generated-value strategy="AUTO"/>
</id>

</at££ibutes>
</entity>
In addition to operations for testing Java object identity, (a == b), and object
equality, (a.equals(b)), you may now use a.getId().equals(b.getId())
to test database identity. What do these notions have in common? In what situa-
tions do they all return true? The time when all are true is called the scope of

166

4.2.3

CHAPTER 4
Mapping persistent classes

guaranteed object identity; and we’ll come back to this subject in chapter 9, sec-
tion 9.2, “Object identity and equality.”

Using database identifiers in Hibernate is easy and straightforward. Choosing a
good primary key (and key-generation strategy) may be more difficult. We discuss
this issue next.

Database primary keys

Hibernate needs to know your preferred strategy for generating primary keys.
First, though, let’s define primary key.

Selecting a primary key
The candidate key is a column or set of columns that could be used to identify a
particular row in a table. To become a primary key, a candidate key must satisfy
the following properties:

= Jts value (for any column of the candidate key) is never null.
= Each row has a unique value.

= The value of a particular row never changes.

If a table has only one identifying attribute, it’s, by definition, the primary key.
However, several columns or combinations of columns may satisfy these proper-
ties for a particular table; you choose between candidate keys to decide the best
primary key for the table. Candidate keys not chosen as the primary key should be
declared as unique keys in the database.

Many legacy SQL data models use natural primary keys. A natural key is a key
with business meaning: an attribute or combination of attributes that is unique by
virtue of its business semantics. Examples of natural keys are the U.S. Social Secu-
rity Number and Australian Tax File Number. Distinguishing natural keys is sim-
ple: If a candidate key attribute has meaning outside the database context, it’s a
natural key, whether or not it’s automatically generated. Think about the applica-
tion users: If they refer to a key attribute when talking about and working with the
application, it’s a natural key.

Experience has shown that natural keys almost always cause problems in the
long run. A good primary key must be unique, constant, and required (never null
or unknown). Few entity attributes satisfy these requirements, and some that do
can’t be efficiently indexed by SQL databases (although this is an implementation
detail and shouldn’t be the primary motivation for or against a particular key). In

Mapping entities with identity 167

addition, you should make certain that a candidate key definition can never
change throughout the lifetime of the database before making it a primary key.
Changing the value (or even definition) of a primary key, and all foreign keys that
refer to it, is a frustrating task. Furthermore, natural candidate keys can often be
found only by combining several columns in a composite natural key. These com-
posite keys, although certainly appropriate for some relations (like a link table in
a many-to-many relationship), usually make maintenance, ad-hoc queries, and
schema evolution much more difficult.

For these reasons, we strongly recommend that you consider synthetic identifi-
ers, also called surrogate keys. Surrogate keys have no business meaning—they’re
unique values generated by the database or application. Application users ideally
don’t see or refer to these key values; they’re part of the system internals. Intro-
ducing a surrogate key column is also appropriate in a common situation: If there
are no candidate keys, a table is by definition not a relation as defined by the rela-
tional model—it permits duplicate rows—and so you have to add a surrogate key
column. There are a number of well-known approaches to generating surrogate
key values.

Selecting a key generator
Hibernate has several built-in identifier-generation strategies. We list the most use-
ful options in table 4.1.

Table 4.1 Hibernate’s built-in identifier-generator modules

Generator JPA

name GenerationType LHEET L

native AUTO - The native identity generator picks other
identity generators like identity,
sequence, or hilo, depending on the capa-
bilities of the underlying database. Use this
generator to keep your mapping metadata por-
table to different database management sys-
tems.

identity IDENTITY - This generator supports identity columns in
DB2, MySQL, MS SQL Server, Sybase, and
HypersonicSQL. The returned identifier is of
type long, short, or int.

168 CHAPTER 4

Mapping persistent classes

Table 4.1 Hibernate’s built-in identifier-generator modules (continued)

Generator
name

JPA
GenerationType

Options

Description

sequence

SEQUENCE

sequence,
parameters

This generator creates a sequence in DB2,
PostgreSQL, Oracle, SAP DB, or Mckoi; or a
generator in InterBase is used. The returned
identifier is of type 1long, short, or int.
Use the sequence option to define a catalog
name for the sequence (hibernate_
sequence is the default) and parameters
if you need additional settings creating a
sequence to be added to the DDL.

increment

(Not avail-
able)

At Hibernate startup, this generator reads the
maximum (numeric) primary key column value
of the table and increments the value by one
each time a new row is inserted. The gener-
ated identifier is of type long, short, or
int. This generator is especially efficient if
the single-server Hibernate application has
exclusive access to the database but should
not be used in any other scenario.

hilo

(Not avail-
able)

table, column,
max_1lo

A high/low algorithm is an efficient way to gen-
erate identifiers of type long, given a table
and column (by default
hibernate_unique_key and next,
respectively) as a source of high values. The
high/low algorithm generates identifiers that
are unique only for a particular database. High
values are retrieved from a global source and
are made unique by adding a local low value.
This algorithm avoids congestion when a sin-
gle source for identifier values has to be
accessed for many inserts. See “Data Model-
ing 101" (Ambler, 2002) for more information
about the high/low approach to unique identifi-
ers. This generator needs to use a separate
database connection from time to time to
retrieve high values, so it isn’t supported with
user-supplied database connections. In other
words, don’t use it with
sessionFactory.openSession (myCo
nnection). The max_1o option defines
how many low values are added until a new
high value is fetched. Only settings greater
than 1 are sensible; the default is 32767
(Short .MAX_VALUE).

Mapping entities with identity 169

Table 4.1 Hibernate’s built-in identifier-generator modules (continued)

Generator
name

JPA
GenerationType

Options

Description

seghilo

(Not avail-
able)

sequence,
parameters,
max_1lo

This generator works like the regular hilo
generator, except it uses a named database
sequence to generate high values.

(JPA
only)

TABLE

table, catalog,
schema,
pkColumnName,
valueColumnNam
e,
pkColumnValue,
allocationSize

Much like Hibernate’s hilo strategy, TABLE
relies on a database table that holds the last-
generated integer primary key value, and each
generator is mapped to one row in this table.
Each row has two columns: pkColumnName
and valueColumnName. The pkColumn-
Value assigns each row to a particular gen-
erator, and the value column holds the last
retrieved primary key. The persistence provider
allocates up to allocationSize integers
in each turn.

uuid.hex

(Not avail-
able)

separator

This generator is a 128-bit UUID (an algorithm
that generates identifiers of type string,
unique within a network). The IP address is
used in combination with a unique timestamp.
The UUID is encoded as a string of hexadeci-
mal digits of length 32, with an optional
separator string between each component
of the UUID representation. Use this generator
strategy only if you need globally unique identi-
fiers, such as when you have to merge two
databases regularly.

guid

(Not avail-
able)

This generator provides a database-generated
globally unique identifier string on MySQL and
SQL Server.

select

(Not avail-
able)

key

This generator retrieves a primary key
assigned by a database trigger by selecting
the row by some unique key and retrieving the
primary key value. An additional unique candi-
date key column is required for this strategy,
and the key option has to be set to the name
of the unique key column.

170

CHAPTER 4
Mapping persistent classes

Some of the built-in identifier generators can be configured with options. In a
native Hibernate XML mapping, you define options as pairs of keys and values:

<id column="MY_ID">
<generator class="sequence">
<parameter name="sequence">MY_ SEQUENCE</parameter>
<parameter name="parameters">
INCREMENT BY 1 START WITH 1
</parameter>
</generator>
</id>

You can use Hibernate identifier generators with annotations, even if no direct
annotation is available:

@Entity
@org.hibernate.annotations.GenericGenerator (
name = "hibernate-uuid",
strategy = "uuid"
)
class name MyEntity {

@Id

@GeneratedvValue (generator = "hibernate-uuid")
@Column (name = "MY_ID")

String id;

}

The @GenericGenerator Hibernate extension can be used to give a Hibernate
identifier generator a name, in this case hibernate-uuid. This name is then refer-
enced by the standardized generator attribute.

This declaration of a generator and its assighment by name also must be
applied for sequence- or table-based identifier generation with annotations. Imag-
ine that you want to use a customized sequence generator in all your entity classes.
Because this identifier generator has to be global, it’s declared in orm.xml:

<sequence-generator name="mySequenceGenerator"
sequence-name="MY_SEQUENCE"
initial-value="123"
allocation-size="20"/>
This declares that a database sequence named MY_SEQUENCE with an initial value
of 123 can be used as a source for database identifier generation, and that the per-
sistence engine should obtain 20 values every time it needs identifiers. (Note,
though, that Hibernate Annotations, at the time of writing, ignores the initial-
Value setting.)
To apply this identifier generator for a particular entity, use its name:

4.3

Class mapping options 171

@Entity
class name MyEntity {

@Id @GeneratedvValue (generator = "mySequenceGenerator")
String id;

}

If you declared another generator with the same name at the entity level, before
the class keyword, it would override the global identifier generator. The same
approach can be used to declare and apply a @TableGenerator.

You aren’t limited to the built-in strategies; you can create your own identifier
generator by implementing Hibernate’s IdentifierGenerator interface. As
always, it’s a good strategy to look at the Hibernate source code of the existing
identifier generators for inspiration.

It’s even possible to mix identifier generators for persistent classes in a single
domain model, but for nonlegacy data we recommend using the same identifier
generation strategy for all entities.

For legacy data and application-assigned identifiers, the picture is more com-
plicated. In this case, we're often stuck with natural keys and especially composite
keys. A composite key is a natural key that is composed of multiple table columns.
Because composite identifiers can be a bit more difficult to work with and often
only appear on legacy schemas, we only discuss them in the context of chapter 8,
section 8.1, “Integrating legacy databases.”

We assume from now on that you’ve added identifier properties to the entity
classes of your domain model, and that after you completed the basic mapping of
each entity and its identifier property, you continued to map value-typed proper-
ties of the entities. However, some special options can simplify or enhance your
class mappings.

Class mapping options

If you check the <hibernate-mapping> and <class> elements in the DTD (or the
reference documentation), you’ll find a few options we haven’t discussed so far:

= Dynamic generation of CRUD SQL statements

= Entity mutability control

= Naming of entities for querying

= Mapping package names

= Quoting keywords and reserved database identifiers

= Implementing database naming conventions

172

4.3.1

CHAPTER 4
Mapping persistent classes

Dynamic SQL generation

By default, Hibernate creates SQL statements for each persistent class on startup.
These statements are simple create, read, update, and delete operations for read-
ing a single row, deleting a row, and so on.

How can Hibernate create an UPDATE statement on startup? After all, the col-
umns to be updated aren’t known at this time. The answer is that the generated
SQL statement updates all columns, and if the value of a particular column isn’t
modified, the statement sets it to its old value.

In some situations, such as a legacy table with hundreds of columns where the
SQL statements will be large for even the simplest operations (say, only one col-
umn needs updating), you have to turn off this startup SQL generation and switch
to dynamic statements generated at runtime. An extremely large number of enti-
ties can also impact startup time, because Hibernate has to generate all SQL state-
ments for CRUD upfront. Memory consumption for this query statement cache
will also be high if a dozen statements must be cached for thousands of entities
(this isn’t an issue, usually).

Two attributes for disabling CRUD SQL generation on startup are available on
the <class> mapping element:

<class name="Item"

dynamic-insert="true"
dynamic-update="true">

</class>
The dynamic-insert attribute tells Hibernate whether to include null property
values in an SQL INSERT, and the dynamic-update attribute tells Hibernate
whether to include unmodified properties in the SQL UPDATE.

If you’re using JDK 5.0 annotation mappings, you need a native Hibernate
annotation to enable dynamic SQL generation:

@Entity
@org.hibernate.annotations.Entity (
dynamicInsert = true, dynamicUpdate = true

)

public class Item {
The second @Entity annotation from the Hibernate package extends the JPA
annotation with additional options, including dynamicInsert and dynamicUpdate.

Sometimes you can avoid generating any UPDATE statement, if the persistent
class is mapped immutable.

4.3.2

4.3.3

Class mapping options 173

Making an entity immutable

Instances of a particular class may be immutable. For example, in CaveatEmptor,
a Bid made for an item is immutable. Hence, no UPDATE statement ever needs to
be executed on the BID table. Hibernate can also make a few other optimizations,
such as avoiding dirty checking, if you map an immutable class with the mutable
attribute set to false:

<hibernate-mapping default-access="field">
<class name="Bid" mutable="false">

;}élass>

</hibernate-mapping>
A PQJO is immutable if no public setter methods for any properties of the class are
exposed—all values are set in the constructor. Instead of private setter methods,
you often prefer direct field access by Hibernate for immutable persistent classes,
so you don’t have to write useless accessor methods. You can map an immutable
entity using annotations:

@Entity

@org.hibernate.annotations.Entity(mutable = false)

@Qorg.hibernate.annotations.AccessType ("field")

public class Bid {
Again, the native Hibernate @Entity annotation extends the JPA annotation with
additional options. We have also shown the Hibernate extension annotation
@AccessType here—this is an annotation you’ll rarely use. As explained earlier,
the default access strategy for a particular entity class is implicit from the position
of the mandatory @Id property. However, you can use @AccessType to force a
more fine-grained strategy; it can be placed on class declarations (as in the pre-
ceding example) or even on particular fields or accessor methods.

Let’s have a quick look at another issue, the naming of entities for queries.

Naming entities for querying
By default, all class names are automatically “imported” into the namespace of the
Hibernate query language, HQL. In other words, you can use the short class
names without a package prefix in HQL, which is convenient. However, this auto-
import can be turned off if two classes with the same name exist for a given Ses-
sionFactory, maybe in different packages of the domain model.

If such a conflict exists, and you don’t change the default settings, Hibernate
won’t know which class you’re referring to in HQL. You can turn off auto-import

174

4.3.4

CHAPTER 4
Mapping persistent classes

of names into the HQL namespace for particular mapping files with the auto-
import="false" setting on the <hibernate-mapping> root element.

Entity names can also be imported explicitly into the HQL namespace. You can
even import classes and interfaces that aren’t explicitly mapped, so a short name
can be used in polymorphic HQL queries:

<hibernate-mapping>

<import class="auction.model.Auditable" rename="IAuditable"/>
</hibernate-mapping>

You can now use an HQL query such as from IAuditable to retrieve all persistent
instances of classes that implement the auction.model.Auditable interface.
(Don’t worry if you don’t know whether this feature is relevant to you at this
point; we’ll get back to queries later in the book.) Note that the <import> ele-
ment, like all other immediate child elements of <hibernate-mapping>, is an
application-wide declaration, so you don’t have to (and can’t) duplicate this in
other mapping files.

With annotations, you can give an entity an explicit name, if the short name
would result in a collision in the JPA QL or HQL namespace:

@Entity (name="AuctionItem")
public class Item { ... }

Now let’s consider another aspect of naming: the declaration of packages.

Declaring a package name

All the persistent classes of the CaveatEmptor application are declared in the Java
package auction.model. However, you don’t want to repeat the full package
name whenever this or any other class is named in an association, subclass, or
component mapping. Instead, specify a package attribute:

<hibernate-mapping package="auction.model">
<classname="Item" table="ITEM">

</éi$ss>
</hibernate-mapping>
Now all unqualified class names that appear in this mapping document will be
prefixed with the declared package name. We assume this setting in all mapping
examples in this book and use unqualified names for CaveatEmptor model classes.
Names of classes and tables must be selected carefully. However, a name you’ve
chosen may be reserved by the SQL database system, so the name has to be quoted.

4.3.5

4.3.6

Class mapping options 175

Quoting SQL identifiers

By default, Hibernate doesn’t quote table and column names in the generated
SQL. This makes the SQL slightly more readable, and it also allows you to take
advantage of the fact that most SQL databases are case insensitive when compar-
ing unquoted identifiers. From time to time, especially in legacy databases, you
encounter identifiers with strange characters or whitespace, or you wish to force
case sensitivity. Or, if you rely on Hibernate’s defaults, a class or property name in
Java may be automatically translated to a table or column name that isn’t allowed
in your database management system. For example, the User class is mapped to a
USER table, which is usually a reserved keyword in SQL databases. Hibernate
doesn’t know the SQL keywords of any DBMS product, so the database system
throws an exception at startup or runtime.

If you quote a table or column name with backticks in the mapping document,
Hibernate always quotes this identifier in the generated SQL. The following prop-
erty declaration forces Hibernate to generate SQL with the quoted column name
"DESCRIPTION". Hibernate also knows that Microsoft SQL Server needs the varia-
tion [DESCRIPTION] and that MySQL requires *DESCRIPTION .

<property name="description"

column=""DESCRIPTION "/>
There is no way, apart from quoting all table and column names in backticks, to
force Hibernate to use quoted identifiers everywhere. You should consider renam-
ing tables or columns with reserved keyword names whenever possible. Quoting
with backticks works with annotation mappings, but it’s an implementation detail
of Hibernate and not part of the JPA specification.

Implementing naming conventions

We often encounter organizations with strict conventions for database table and
column names. Hibernate provides a feature that allows you to enforce naming
standards automatically.

Suppose that all table names in CaveatEmptor should follow the pattern
CE_<table name>. One solution is to manually specify a table attribute on all
<class> and collection elements in the mapping files. However, this approach is
time-consuming and easily forgotten. Instead, you can implement Hibernate’s
NamingStrategy interface, as in listing 4.1.

176 CHAPTER 4
Mapping persistent classes

Listing 4.1 NamingStrategy implementation

public class CENamingStrategy extends ImprovedNamingStrategy {

public String classToTableName (String className) {
return StringHelper.unqualify (className) ;

}

public String propertyToColumnName (String propertyName) {
return propertyName;

public String tableName (String tableName) {
return "CE_" + tableName;

}

public String columnName (String columnName) {
return columnName;

public String propertyToTableName (String className,
String propertyName) {
return "CE_"
+ classToTableName (className)
b
+ propertyToColumnName (propertyName) ;

You extend the ImprovedNamingStrategy, which provides default implementa-
tions for all methods of NamingStrategy you don’t want to implement from
scratch (look at the API documentation and source). The classToTableName ()
method is called only if a <class> mapping doesn’t specify an explicit table
name. The propertyToColumnName () method is called if a property has no
explicit column name. The tableName () and columnName () methods are called
when an explicit name is declared.
If you enable this CENamingStrategy, the class mapping declaration

<class name="BankAccount">

results in CE_BANKACCOUNT as the name of the table.
However, if a table name is specified, like this,

<class name="BankAccount" table="BANK_ACCOUNT">

then CE_BANK_ACCOUNT is the name of the table. In this case, BANK_ACCOUNT is
passed to the tableName () method.

4.4

4.4.1

Fine-grained models and mappings 177

The best feature of the NamingStrategy interface is the potential for dynamic
behavior. To activate a specific naming strategy, you can pass an instance to the
Hibernate Configuration at startup:

Configuration cfg = new Configuration() ;

cfg.setNamingStrategy (new CENamingStrategy ());

SessionFactory sessionFactory sf =

cfg.configure() .buildSessionFactory () ;
This allows you to have multiple SessionFactory instances based on the same
mapping documents, each using a different NamingStrategy. This is extremely
useful in a multiclient installation, where unique table names (but the same data
model) are required for each client. However, a better way to handle this kind of
requirement is to use an SQL schema (a kind of namespace), as already discussed
in chapter 3, section 3.3.4, “Handling global metadata.”

You can set a naming strategy implementation in Java Persistence in your per-
sistence.xml file with the hibernate.ejb.naming strategy option.

Now that we have covered the concepts and most important mappings for enti-
ties, let’s map value types.

Fine-grained models and mappings

After spending the first half of this chapter almost exclusively on entities and
the respective basic persistent class-mapping options, we’ll now focus on value
types in their various forms. Two different kinds come to mind immediately:
value-typed classes that came with the JDK, such as String or primitives, and
value-typed classes defined by the application developer, such as Address and
MonetaryAmount.

First, you map persistent class properties that use JDK types and learn the basic
mapping elements and attributes. Then you attack custom value-typed classes and
map them as embeddable components.

Mapping basic properties

If you map a persistent class, no matter whether it’s an entity or a value type, all
persistent properties have to be mapped explicitly in the XML mapping file. On
the other hand, if a class is mapped with annotations, all of its properties are con-
sidered persistent by default. You can mark properties with the @javax.persis-
tence.Transient annotation to exclude them, or use the transient Java
keyword (which usually only excludes fields for Java serialization).

In a JPA XML descriptor, you can exclude a particular field or property:

178

CHAPTER 4
Mapping persistent classes

<entity class="auction.model.User" access="FIELD">
<attributes>

<££ansient name="age" />
</attributes>

</entity>
A typical Hibernate property mapping defines a POJO’s property name, a data-
base column name, and the name of a Hibernate type, and it’s often possible to
omit the type. So, if description is a property of (Java) type java.lang.String,
Hibernate uses the Hibernate type string by default (we come back to the
Hibernate type system in the next chapter).

Hibernate uses reflection to determine the Java type of the property. Thus, the
following mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" column="DESCRIPTION"/>
It’s even possible to omit the column name if it’s the same as the property name,
ignoring case. (This is one of the sensible defaults we mentioned earlier.)

For some more unusual cases, which you’ll see more about later, you may need
to use a <column> element instead of the column attribute in your XML mapping.
The <column> element provides more flexibility: It has more optional attributes
and may appear more than once. (A single property can map to more than one
column, a technique we discuss in the next chapter.) The following two property
mappings are equivalent:

<property name="description" column="DESCRIPTION" type="string"/>

<property name="description" type="string">

<column name="DESCRIPTION"/>

</property>
The <property> element (and especially the <column> element) also defines cer-
tain attributes that apply mainly to automatic database schema generation. If you
aren’t using the hbm2ddl tool (see chapter 2, section 2.1.4, “Running and testing
the application”) to generate the database schema, you may safely omit these.
However, it’s preferable to include at least the not-null attribute, because Hiber-
nate can then report illegal null property values without going to the database:

<property name="initialPrice" column="INITIAL_PRICE" not-null="true"/>

JPA is based on a configuration by exception model, so you could rely on defaults.
If a property of a persistent class isn’t annotated, the following rules apply:

Fine-grained models and mappings 179

= If the property is of a JDK type, it’s automatically persistent. In other words,
it’s handled like <property name="propertyName"/> in a Hibernate XML
mapping file.

= Otherwise, if the class of the property is annotated as @Embeddable, it’s
mapped as a component of the owning class. We’ll discuss embedding of
components later in this chapter.

= Otherwise, if the type of the property is Serializable, its value is stored in
its serialized form. This usually isn’t what you want, and you should always
map Java classes instead of storing a heap of bytes in the database. Imagine
maintaining a database with this binary information when the application is
gone in a few years.

If you don’t want to rely on these defaults, apply the @Basic annotation on a par-
ticular property. The @Column annotation is the equivalent of the XML <column>
element. Here is an example of how you declare a property’s value as required:

@Basic (optional = false)

@Column (nullable = false)

public BigDecimal getInitialPrice { return initialPrice; }
The @Basic annotation marks the property as not optional on the Java object
level. The second setting, nullable = false on the column mapping, is only
responsible for the generation of a NOT NULL database constraint. The Hibernate
JPA implementation treats both options the same way in any case, so you may as
well use only one of the annotations for this purpose.

In a JPA XML descriptor, this mapping looks the same:

<entity class="auction.model.Item" access="PROPERTY">
<attributes>

<basic name="initialPrice" optional="false">
<column nullable="false"/>
</basic>
</attributes>
</entity>
Quite a few options in Hibernate metadata are available to declare schema con-
straints, such as NOT NULL on a column. Except for simple nullability, however,
they’re only used to produce DDL when Hibernate exports a database schema
from mapping metadata. We’ll discuss customization of SQL, including DDL, in
chapter 8, section 8.3, “Improving schema DDL.” On the other hand, the Hiber-
nate Annotations package includes a more advanced and sophisticated data vali-
dation framework, which you can use not only to define database schema

180

CHAPTER 4
Mapping persistent classes

constraints in DDL, but also for data validation at runtime. We’ll discuss it in
chapter 17.
Are annotations for properties always on the accessor methods?

Customizing property access

Properties of a class are accessed by the persistence engine either directly
(through fields) or indirectly (through getter and setter property accessor meth-
ods). In XML mapping files, you control the default access strategy for a class with
the default-access="field|property|noop|custom.Class" attribute of the
hibernate-mapping root element.An annotated entity inherits the default from
the position of the mandatory €Id annotation. For example, if @Id has been
declared on a field, not a getter method, all other property mapping annotations,
like the name of the column for the item’s description property, are also
declared on fields:

@Column (name = "ITEM_DESCR")
private String description;

public String getDescription() { return description; }

This is the default behavior as defined by the JPA specification. However, Hiber-
nate allows flexible customization of the access strategy with the @org.hiber-
nate.annotations.AccessType (<strategy>) annotation:

= If AccessType is set on the class/entity level, all attributes of the class are
accessed according to the selected strategy. Attribute-level annotations are
expected on either fields or getter methods, depending on the strategy.
This setting overrides any defaults from the position of the standard @Id
annotations.

s If an entity defaults or is explicitly set for field access, the Access-
Type ("property") annotation on a field switches this particular attribute to
runtime access through property getter/setter methods. The position of the
AccessType annotation is still the field.

= If an entity defaults or is explicitly set for property access, the
AccessType ("field") annotation on a getter method switches this particu-
lar attribute to runtime access through a field of the same name. The posi-
tion of the AccessType annotation is still the getter method.

= Any @Embedded class inherits the default or explicitly declared access strat-
egy of the owning root entity class.

= Any @MappedSuperclass properties are accessed with the default or explic-
itly declared access strategy of the mapped entity class.

Fine-grained models and mappings 181

You can also control access strategies on the property level in Hibernate XML
mappings with the access attribute:

<property name="description"

column="DESCR"

access="field"/>
Or, you can set the access strategy for all class mappings inside a root <hibernate-
mapping> element with the default-access attribute.

Another strategy besides field and property access that can be useful is noop. It
maps a property that doesn’t exist in the Java persistent class. This sounds strange,
but it lets you refer to this “virtual” property in HQL queries (in other words, to
use the database column in HQL queries only).

If none of the builtin access strategies are appropriate, you can define your
own customized property-access strategy by implementing the interface
org.hibernate.property.PropertyAccessor. Set the (fully qualified) class
name on the access mapping attribute or @AccessType annotation. Have a look
at the Hibernate source code for inspiration; it’s a straightforward exercise.

Some properties don’t map to a column at all. In particular, a derived property
takes its value from an SQL expression.

Using derived properties
The value of a derived property is calculated at runtime by evaluating an expres-
sion that you define using the formula attribute. For example, you may map a
totalIncludingTax property to an SQL expression:
<property name="totalIncludingTax"
formula="TOTAL + TAX_RATE * TOTAL"
type="big_decimal"/>
The given SQL formula is evaluated every time the entity is retrieved from the
database (and not at any other time, so the result may be outdated if other
properties are modified). The property doesn’t have a column attribute (or sub-
element) and never appears in an SQL INSERT or UPDATE, only in SELECTs. For-
mulas may refer to columns of the database table, they can call SQL functions,
and they may even include SQL subselects. The SQL expression is passed to the
underlying database as is; this is a good chance to bind your mapping file to a
particular database product, if you aren’t careful and rely on vendor-specific
operators or keywords.
Formulas are also available with a Hibernate annotation:

@org.hibernate.annotations.Formula ("TOTAL + TAX_RATE * TOTAL")
public BigDecimal getTotalIncludingTax() {

182

CHAPTER 4
Mapping persistent classes

return totalIncludingTax;
}
The following example uses a correlated subselect to calculate the average
amount of all bids for an item:
<property
name="averageBidAmount"
type="big_decimal"
formula=
"(select AVG(b.AMOUNT) from
BID b where b.ITEM_ID = ITEM_ID)"/>
Notice that unqualified column names refer to columns of the table of the class to
which the derived property belongs.
Another special kind of property relies on database-generated values.

Generated and default property values

Imagine a particular property of a class has its value generated by the database,
usually when the entity row is inserted for the first time. Typical database-gener-
ated values are timestamp of creation, a default price for an item, and a trigger
that runs for every modification.

Typically, Hibernate applications need to refresh objects that contain any
properties for which the database generates values. Marking properties as gener-
ated, however, lets the application delegate this responsibility to Hibernate. Essen-
tially, whenever Hibernate issues an SQL INSERT or UPDATE for an entity that has
defined generated properties, it immediately does a SELECT afterwards to retrieve
the generated values. Use the generated switch on a property mapping to enable
this automatic refresh:

<property name="lastModified"

column="LAST_MODIFIED"

update="false"

insert="false"

generated="always" />
Properties marked as database-generated must additionally be noninsertable and
nonupdateable, which you control with the insert and update attributes. If both
are set to false, the property’s columns never appear in the INSERT or UPDATE
statements—the property value is read-only. Also, you usually don’t add a public
setter method in your class for an immutable property (and switch to field access).

With annotations, declare immutability (and automatic refresh) with the
@Generated Hibernate annotation:

Fine-grained models and mappings 183

@Column (updatable = false, insertable = false)

@org.hibernate.annotations.Generated (

org.hibernate.annotations.GenerationTime.ALWAYS

grivate Date lastModified;

The settings available are GenerationTime.ALWAYS and GenerationTime.INSERT,
and the equivalent options in XML mappings are generated="always" and gen-
erated="insert".

A special case of database-generated property values are default values. For
example, you may want to implement a rule that every auction item costs at least
$1. First, you’d add this to your database catalog as the default value for the
INITIAL_PRICE column:

create table ITEM (
INITIAL_PRICE number(10,2) default '1',

)i
If you use Hibernate’s schema export tool, hbm2ddl, you can enable this output
by adding a default attribute to the property mapping:

<class name="Item" table="ITEM"
dynamic-insert="true" dynamic-update="true">

<property name="initialPrice" type="big_decimal">
<column name="INITIAL_PRICE"
default="'1""
generated="insert" />
</property>

</class>
Note that you also have to enable dynamic insertion and update statement gener-
ation, so that the column with the default value isn’t included in every statement
if its value is null (otherwise a NULL would be inserted instead of the default
value). Furthermore, an instance of Item that has been made persistent but not

yet flushed to the database and not refreshed again won’t have the default value
set on the object property. In other words, you need to execute an explicit flush:

Item newltem = new Item(...);
session.save (newlItem) ;

newltem.getInitialPrice() ; // is null

session.flush(); // Trigger an INSERT
// Hibernate does a SELECT automatically

newltem.getInitialPrice() ; // is S$1

184

4.4.2

CHAPTER 4
Mapping persistent classes

Because you set generated="insert", Hibernate knows that an immediate addi-
tional SELECT is required to read the database-generated property value.
You can map default column values with annotations as part of the DDL defini-
tion for a column:
@Column (name = "INITIAL_PRICE",
columnDefinition = "number (10,2) default '1'")
Qorg.hibernate.annotations.Generated (

org.hibernate.annotations.GenerationTime.INSERT

;rivate BigDecimal initalPrice;
The columnDefinition attribute includes the complete properties for the col-
umn DDL, with datatype and all constraints. Keep in mind that an actual nonport-
able SQL datatype may bind your annotation mapping to a particular database
management system.

We’ll come back to the topic of constraints and DDL customization in chapter
8, section 8.3, “Improving schema DDL.”

Next, you’ll map user-defined value-typed classes. You can easily spot them in
your UML class diagrams if you search for a composition relationship between two
classes. One of them is a dependent class, a component.

Mapping components

So far, the classes of the object model have all been entity classes, each with its
own lifecycle and identity. The User class, however, has a special kind of associa-
tion with the Address class, as shown in figure 4.2.

In object-modeling terms, this association is a kind of aggregation—a part-of rela-
tionship. Aggregation is a strong form of association; it has some additional
semantics with regard to the lifecycle of objects. In this case, you have an even
stronger form, composition, where the lifecycle of the part is fully dependent
upon the lifecycle of the whole.

Object modeling experts and UML designers claim that there is no difference
between this composition and other weaker styles of association when it comes to
the actual Java implementation. But in the context of ORM, there is a big differ-
ence: A composed class is often a candidate value type.

User

firsthname : String home P> Address
lastname : String e street : String
username : String billing _ | zipcode : String

assword : String [® city : Strin
2mai| : String ’ ! g Figure 4.2
ranking : int Relationships between User and
admin : boolean Address using composition

Fine-grained models and mappings 185

You map Address as a value type and User as an entity. Does this affect the
implementation of the POJO classes?

Java has no concept of composition—a class or attribute can’t be marked as a
component or composition. The only difference is the object identifier: A compo-
nent has no individual identity, hence the persistent component class requires no
identifier property or identifier mapping. It’s a simple POJO:

public class Address {

private String street;
private String zipcode;
private String city;

public Address() {}

public String getStreet() { return street; }
public void setStreet (String street) { this.street = street; }

public String getZipcode() { return zipcode; }
public void setZipcode(String zipcode) {
this.zipcode = zipcode; }

public String getCity () { return city; }
public void setCity(String city) { this.city = city; }

}

The composition between User and Address is a metadata-level notion; you only
have to tell Hibernate that the Address is a value type in the mapping document
or with annotations.

Component mapping in XML

Hibernate uses the term component for a user-defined class that is persisted to
the same table as the owning entity, an example of which is shown in listing 4.2.
(The use of the word component here has nothing to do with the architecture-
level concept, as in software component.)

Listing 4.2 Mapping of the User class with a component Address

<class name="User" table="USER">

<id name="id" column="USER_ID" type="long">
<generator class="native"/>
</id>

<property name="loginName" column="LOGIN" type="string"/>

<component name="homeAddress" class="Address">
<property name="street" type="string" <&ib
column="HOME_STREET" not-null="true"/>
<property name="city" type="string"
column="HOME_CITY" not-null="true"/>

186 CHAPTER 4
Mapping persistent classes

<property name="zipcode" type="string"
column="HOME_ZIPCODE" not-null="true"/>
</component>

<component name="billingAddress" class="Address"> 4!?
<property name="street" type="string"
column="BILLING_STREET" not-null="true"/>
<property name="city" type="string"
column="BILLING_CITY" not-null="true"/>
<property name="zipcode" type="string"
column="BILLING_ZIPCODE" not-null="true"/>

</component>
</class>
||
© Youdeclare the persistent attributes of Address <<Table >>
inside the <component> element. The property FIRSTIL\JIiII\E/IFéS
of the User class is named homeAddress. LASTNAME
0 Yo th t cl t USERNAME
ou reuse the same component class to map | passworp
another property of this type to the same table. |EMAIL
Figure 4.3 sh h h ri fthe F--------—---------
gure 4.3 shows OW the attributes of the HOME. STREET |
Address class are persisted to the same table as | HOME_zIPCODE Component
h . HOME_CITY Columns
the User entity. ~—~ PRMESRNY) T L
Notice that, in this example, you model the |BILLING_STREET c ; N
.. .. . g . omponen |
composition association as unidirectional. You |BILLING_ZIPCODE
p BILLING_CITY __ Columns |

can’t navigate from Address to User. Hibernate

supports both unidirectional and bidirectional Figure4.3 Table attributes of Usex with
.. .. . " Address component

compositions, but unidirectional composition

is far more common. An example of a bidirec-

tional mapping is shown in listing 4.3.

Listing 4.3 Adding a back-pointer to a composition

<component name="homeAddress" class="Address">
<parent name="user"/>
<property name="street" type="string"
column="HOME_STREET" not-null="true"/>
<property name="city" type="string"
column="HOME_CITY" not-null="true"/>
<property name="zipcode" type="stringshort"
column="HOME_ZIPCODE" not-null="true"/>
</component>

Fine-grained models and mappings 187

In listing 4.3, the <parent> element maps a property of type User to the owning
entity, which in this example is the property named user. You can then call
Address.getUser () to navigate in the other direction. This is really a simple
back-pointer.

A Hibernate component can own other components and even associations to
other entities. This flexibility is the foundation of Hibernate’s support for fine-
grained object models. For example, you can create a Location class with detailed
information about the home address of an Address owner:

<component name="homeAddress" class="Address">
<parent name="user"/>

<component name="location" class="Location">
<property name="streetname" column="HOME_STREETNAME"/>
<property name="streetside" column="HOME_STREETSIDE"/>
<property name="housenumber" column="HOME_HOUSENR"/>
<property name="floor" column="HOME_FLOOR"/>
</component>

<property name="city" type="string" column="HOME_CITY"/>
<property name="zipcode" type="string" column="HOME_ZIPCODE"/>

</component>

The design of the Location class is equivalent to the Address class. You now have
three classes, one entity, and two value types, all mapped to the same table.
Now let’s map components with JPA annotations.

Annotating embedded classes
The Java Persistence specification calls components embedded classes. To map an
embedded class with annotations, you can declare a particular property in the
owning entity class as @Embedded, in this case the homeAddress of User:

@Entity

@Table (name = "USERS")
public class User {

@Embedded
private Address homeAddress;

}

If you don’t declare a property as @Embedded, and it isn’t of a JDK type, Hibernate
looks into the associated class for the @Embeddable annotation. If it’s present, the
property is automatically mapped as a dependent component.

188

CHAPTER 4
Mapping persistent classes

This is what the embeddable class looks like:

@Embeddable
public class Address {

@Column (name = "ADDRESS_STREET", nullable = false)
private String street;

@Column (name = "ADDRESS_ZIPCODE", nullable = false)
private String zipcode;

@Column (name = "ADDRESS_CITY", nullable = false)
private String city;

}

You can further customize the individual property mappings in the embeddable
class, such as with the @Column annotation. The USERS table now contains, among
others, the columns ADDRESS_STREET, ADDRESS_ZIPCODE, and ADDRESS_CITY. Any
other entity table that contains component fields (say, an Order class that also has
an Address) uses the same column options. You can also add a back-pointer prop-
erty to the Address embeddable class and map it with @org.hibernate.annota-
tions.Parent.

Sometimes you’ll want to override the settings you made inside the
embeddable class from outside for a particular entity. For example, here is how
you can rename the columns:

@Entity

@Table (name = "USERS")
public class User {

@Embedded
@AttributeOverrides({
@AttributeOverride (name = "street",
column = @Column (name="HOME_STREET")),
@AttributeOverride (name = "zipcode",
column = @Column (name="HOME_ZIPCODE")),
@AttributeOverride (name = "city",

column = @Column (name="HOME_CITY"))
}

private Address homeAddress;

4.5

Summary 189

The new @Column declarations in the User class override the settings of the
embeddable class. Note that all attributes on the embedded @Column annotation
are replaced, so they’re no longer nullable = false.

In a JPA XML descriptor, a mapping of an embeddable class and a composition
looks like the following:

<embeddable class="auction.model.Address access-type="FIELD"/>

<entity class="auction.model.User" access="FIELD">
<attributes>

<embedded name="homeAddress">
<attribute-override name="street">
<column name="HOME_STREET"/>
</attribute-override>
<attribute-override name="zipcode">
<column name="HOME_ZIPCODE"/>
</attribute-override>
<attribute-override name="city">
<column name="HOME_CITY"/>
</attribute-override>
</embedded>
</attributes>
</entity>

There are two important limitations to classes mapped as components. First,
shared references, as for all value types, aren’t possible. The component homeAd-
dress doesn’t have its own database identity (primary key) and so can’t be
referred to by any object other than the containing instance of User.

Second, there is no elegant way to represent a null reference to an Address. In
lieu of any elegant approach, Hibernate represents a null component as null val-
ues in all mapped columns of the component. This means that if you store a com-
ponent object with all null property values, Hibernate returns a null component
when the owning entity object is retrieved from the database.

You’ll find many more component mappings (even collections of them)
throughout the book.

Summary

In this chapter, you learned the essential distinction between entities and value
types and how these concepts influence the implementation of your domain
model as persistent Java classes.

Entities are the coarser-grained classes of your system. Their instances have an
independent lifecycle and their own identity, and they can be referenced by many

190

CHAPTER 4
Mapping persistent classes

other instances. Value types, on the other hand, are dependent on a particular

entity class. An instance of a value type has a lifecycle bound by its owning entity

instance, and it can be referenced by only one entity—it has no individual identity.
We looked at Java identity, object equality, and database identity, and at what
makes good primary keys. You learned which generators for primary key values

are built into Hibernate, and how you can use and extend this identifier system.

You also learned various (mostly optional) class mapping options and, finally,

how basic properties and value-type components are mapped in XML mappings

and annotations.

For convenience, table 4.2 summarizes the differences between Hibernate and

Java Persistence related to concepts discussed in this chapter.

Table 4.2 Hibernate and JPA comparison chart for chapter 4

Hibernate Core

Java Persistence and EJB 3.0

Entity- and value-typed classes are the essential
concepts for the support of rich and fine-grained
domain models.

The JPA specification makes the same distinction,
but calls value types “embeddable classes.” How-
ever, nested embeddable classes are considered a
nonportable feature.

Hibernate supports 10 identifier generation strate-
gies out-of-the-box.

JPA standardizes a subset of 4 identifier genera-
tors, but allows vendor extension.

Hibernate can access properties through fields,
accessor methods, or with any custom
PropertyAccessor implementation. Strate-
gies can be mixed for a particular class.

JPA standardizes property access through fields or
access methods, and strategies can’t be mixed for
a particular class without Hibernate extension
annotations.

Hibernate supports formula properties and data-
base-generated values.

JPA doesn’t include these features, a Hibernate
extension is needed.

In the next chapter, we’ll attack inheritance and how hierarchies of entity classes
can be mapped with various strategies. We’ll also talk about the Hibernate map-

ping type system, the converters for value types we’ve shown in a few examples.

Inheritance and
custom types

This chapter covers

® |nheritance mapping strategies

m The Hibernate mapping type system
m Customization of mapping types

191

192

5.1

5.1.1

CHAPTER 5
Inheritance and custom types

We deliberately didn’t talk much about inheritance mapping so far. Mapping a
hierarchy of classes to tables can be a complex issue, and we’ll present various strat-
egies in this chapter. You’ll learn which strategy to choose in a particular scenario.
The Hibernate type system, with all its built-in converters and transformers for
Java value-typed properties to SQL datatypes, is the second big topic we discuss in
this chapter.
Let’s start with the mapping of entity inheritance.

Mapping class inheritance

A simple strategy for mapping classes to database tables might be “one table for
every entity persistent class.” This approach sounds simple enough and, indeed,
works well until we encounter inheritance.

Inheritance is such a visible structural mismatch between the object-oriented
and relational worlds because object-oriented systems model both is @ and has a
relationships. SQL-based models provide only has a relationships between entities;
SQL database management systems don’t support type inheritance—and even
when it’s available, it’s usually proprietary or incomplete.

There are four different approaches to representing an inheritance hierarchy:

= Table per concrete class with implicit polymorphism—Use no explicit
inheritance mapping, and default runtime polymorphic behavior.

= Table per concrete class—Discard polymorphism and inheritance relation-
ships completely from the SQL schema.

= Table per class hierarchy—Enable polymorphism by denormalizing the SQL
schema, and utilize a type discriminator column that holds type information.

= Table per subclass—Represent is @ (inheritance) relationships as Aas a (for-
eign key) relationships.

This section takes a top-down approach; it assumes that you're starting with a
domain model and trying to derive a new SQL schema. However, the mapping
strategies described are just as relevant if you’re working bottom up, starting with
existing database tables. We’ll show some tricks along the way that help you deal-
ing with nonperfect table layouts.

Table per concrete class with implicit polymorphism

Suppose we stick with the simplest approach suggested. You can use exactly one
table for each (nonabstract) class. All properties of a class, including inherited
properties, can be mapped to columns of this table, as shown in figure 5.1.

Mapping class inheritance 193

BillingDetails
owner : String
<< Table >> << Table >>
CREDIT_CARD BANK_ACCOUNT
CREDIT_CARD_ID BANK_ACCOUNT_ID
|:> OWNER OWNER
I I NUMBER ACCOUNT
CreditCard BankAccount EXP MONTH BANKNAME

number : String account : String EXP YEAR SWIFT

expMonth : String bankname : String =

expYear : String swift : String

Figure 5.1 Mapping all concrete classes to an independent table

You don’t have to do anything special in Hibernate to enable polymorphic behav-
ior. The mapping for CreditCard and BankAccount is straightforward, each in its
own entity <class> element, as we have done already for classes without a super-
class (or persistent interfaces). Hibernate still knows about the superclass (or any
interface) because it scans the persistent classes on startup.

The main problem with this approach is that it doesn’t support polymorphic
associations very well. In the database, associations are usually represented as
foreign key relationships. In figure 5.1, if the subclasses are all mapped to differ-
ent tables, a polymorphic association to their superclass (abstract BillingDe-
tails in this example) can’t be represented as a simple foreign key
relationship. This would be problematic in our domain model, because Bill-
ingDetails is associated with User; both subclass tables would need a foreign
key reference to the USERS table. Or, if User had a many-to-one relationship with
BillingDetails, the USERS table would need a single foreign key column,
which would have to refer both concrete subclass tables. This isn’t possible with
regular foreign key constraints.

Polymorphic queries (queries that return objects of all classes that match the
interface of the queried class) are also problematic. A query against the superclass
must be executed as several SQL SELECTSs, one for each concrete subclass. For a
query against the BillingDetails class Hibernate uses the following SQL.:

select CREDIT_CARD_ID, OWNER, NUMBER, EXP_MONTH, EXP_YEAR ...
from CREDIT_CARD

select BANK_ACCOUNT_ID, OWNER, ACCOUNT, BANKNAME,

from BANK_ACCOUNT
Notice that a separate query is needed for each concrete subclass. On the other
hand, queries against the concrete classes are trivial and perform well—only one
of the statements is needed.

194

CHAPTER 5
Inheritance and custom types

(Also note that here, and in other places in this book, we show SQL that is con-
ceptually identical to the SQL executed by Hibernate. The actual SQL may look
superficially different.)

A further conceptual problem with this mapping strategy is that several differ-
ent columns, of different tables, share exactly the same semantics. This makes
schema evolution more complex. For example, a change to a superclass property
results in changes to multiple columns. It also makes it much more difficult to
implement database integrity constraints that apply to all subclasses.

We recommend this approach (only) for the top level of your class hierarchy,
where polymorphism isn’t usually required, and when modification of the super-
class in the future is unlikely.

Also, the Java Persistence interfaces don’t support full polymorphic queries;
only mapped entities (@Entity) can be officially part of a Java Persistence query
(note that the Hibernate query interfaces are polymorphic, even if you map with
annotations).

If you’re relying on this implicit polymorphism, you map concrete classes with
@Entity, as usual. However, you also have to duplicate the properties of the super-
class to map them to all concrete class tables. By default, properties of the super-
class are ignored and not persistent! You need to annotate the superclass to
enable embedding of its properties in the concrete subclass tables:

@MappedSuperclass
public abstract class BillingDetails {

@Column (name = "OWNER", nullable = false)
private String owner;

}

Now map the concrete subclasses:

@Entity
@AttributeOverride (name = "owner", column =
@Column (name = "CC_OWNER", nullable = false)

)
public class CreditCard extends BillingDetails {

@Id @Generatedvalue
@Column (name = "CREDIT_CARD_ID")
private Long id = null;

@Column (name = "NUMBER", nullable = false)
private String number;

5.1.2

Mapping class inheritance 195

You can override column mappings from the superclass in a subclass with the
@AttributeOverride annotation. You rename the OWNER column to CC_OWNER in
the CREDIT_CARD table. The database identifier can also be declared in the super-
class, with a shared column name and generator strategy for all subclasses.

Let’s repeat the same mapping in a JPA XML descriptor:

<entity-mappings>

<mapped-superclass class="auction.model.BillingDetails"
access="FIELD">
<attributes>

</attributes>
</mapped-superclass>

<entity class="auction.model.CreditCard" access="FIELD">
<attribute-override name="owner">
<column name="CC_OWNER" nullable="false"/>
</attribute-override>
<attributes>

</attributes>
</entity>

</entity-mappings>

NOTE A component is a value type; hence, the normal entity inheritance rules
presented in this chapter don’t apply. However, you can map a subclass
as a component by including all the properties of the superclass (or
interface) in your component mapping. With annotations, you use the
@MappedSuperclass annotation on the superclass of the embeddable
component you’re mapping just like you would for an entity. Note that
this feature is available only in Hibernate Annotations and isn’t standard-
ized or portable.

With the help of the SQL UNION operation, you can eliminate most of the issues
with polymorphic queries and associations, which are present with this map-

ping strategy.

Table per concrete class with unions

First, let’s consider a union subclass mapping with BillingDetails as an abstract
class (or interface), as in the previous section. In this situation, we again have two
tables and duplicate superclass columns in both: CREDIT_CARD and BANK_ACCOUNT.
What’s new is a special Hibernate mapping that includes the superclass, as you
can see in listing 5.1.

196 CHAPTER 5
Inheritance and custom types

Listing 5.1 Using the <union-subclass> inheritance strategy

<hibernate-mapping>

<class
name="BillingDetails" q!?
abstract="true">

<id
name="1id"
column="BILLING_DETAILS_ID"
type="long">
<generator class="native"/>
</id>

<property 49

name="name"
column="OWNER"
type="string"/>

<union-subclass 49

name="CreditCard" table="CREDIT_CARD">

<property name="number" column="NUMBER”/>
<property name="expMonth" column="EXP_MONTH"/>
<property name="expYear" column="EXP_YEAR"/>

</union-subclass>

<union-subclass
name="BankAccount" table="BANK_ACCOUNT">

</class>
</hibernate-mapping>

@ An abstract superclass or an interface has to be declared as abstract="true"; oth-
erwise a separate table for instances of the superclass is needed.

@ The database identifier mapping is shared for all concrete classes in the hierarchy.
The CREDIT_CARD and the BANK_ACCOUNT tables both have a BILLING_DETAILS_ID
primary key column. The database identifier property now has to be shared for all
subclasses; hence you have to move it into BillingDetails and remove it from
CreditCard and BankAccount.

Properties of the superclass (or interface) are declared here and inherited by all
concrete class mappings. This avoids duplication of the same mapping.

O A concrete subclass is mapped to a table; the table inherits the superclass (or
interface) identifier and other property mappings.

Mapping class inheritance 197

The first advantage you may notice with this strategy is the shared declaration of
superclass (or interface) properties. No longer do you have to duplicate these
mappings for all concrete classes—Hibernate takes care of this. Keep in mind that
the SQL schema still isn’t aware of the inheritance; effectively, we’ve mapped two
unrelated tables to a more expressive class structure. Except for the different pri-
mary key column name, the tables look exactly alike, as shown in figure 5.1.

In JPA annotations, this strategy is known as TABLE_PER_CLASS:

@Entity

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class BillingDetails {

@Id @Generatedvalue
@Column (name = "BILLING_DETAILS_ID")
private Long id = null;

@Column (name = "OWNER", nullable = false)
private String owner;

}
The database identifier and its mapping have to be present in the superclass, to
be shared across all subclasses and their tables. An @Entity annotation on each
subclass is all that is required:

QEntity
@Table (name = "CREDIT_CARD")
public class CreditCard extends BillingDetails {

@Column (name = "NUMBER", nullable = false)
private String number;

}

Note that TABLE_PER_CLASS is specified in the JPA standard as optional, so not all
JPA implementations may support it. The actual implementation is also vendor
dependent—in Hibernate, it’s equivalent to a <union-subclass> mapping in
XML files.

The same mapping looks like this in a JPA XML descriptor:

<entity-mappings>

<entity class="auction.model.BillingDetails" access="FIELD">
<inheritance strategy="TABLE_PER_CLASS"/>

</entity>

<entity class="auction.model.CreditCard" access="FIELD"/>

198

CHAPTER 5
Inheritance and custom types

<entity class="auction.model.BankAccount" access="FIELD"/>

</entity-mappings>

If your superclass is concrete, then an additional table is needed to hold
instances of that class. We have to emphasize again that there is still no relation-
ship between the database tables, except for the fact that they share some similar
columns. The advantages of this mapping strategy are clearer if we examine poly-
morphic queries. For example, a query for BillingDetails executes the follow-
ing SQL statement:

select
BILLING_DETAILS_ID, OWNER,
NUMBER, EXP_MONTH, EXP_YEAR,
ACCOUNT, BANKNAME, SWIFT
CLAZZ_
from
(select
BILLING_DETAILS_ID, OWNER,
NUMBER, EXP_MONTH, EXP_YEAR,
null as ACCOUNT, null as BANKNAME, null as SWIFT,
1 as CLAZZ_
from
CREDIT_CARD

union

select
BILLING_DETAILS_ID, OWNER,
null as NUMBER, null as EXP_MONTH, null as EXP_YEAR,
ACCOUNT, BANKNAME, SWIFT,
2 as CLAZZ_
from
BANK_ACCOUNT
)
This SELECT uses a FROM-clause subquery to retrieve all instances of BillingDe-
tails from all concrete class tables. The tables are combined with a UNION opera-
tor, and a literal (in this case, 1 and 2) is inserted into the intermediate result;
Hibernate reads this to instantiate the correct class given the data from a particu-
lar row. A union requires that the queries that are combined project over the
same columns; hence, we have to pad and fill up nonexistent columns with NULL.
You may ask whether this query will really perform better than two separate state-
ments. Here we can let the database optimizer find the best execution plan to
combine rows from several tables, instead of merging two result sets in memory as
Hibernate’s polymorphic loader engine would do.

5.1.3

Mapping class inheritance 199

Another much more important advantage is the ability to handle polymorphic
associations; for example, an association mapping from User to BillingDetails
would now be possible. Hibernate can use a UNION query to simulate a single table
as the target of the association mapping. We cover this topic in detail in chapter 7,
section 7.3, “Polymorphic associations.”

So far, the inheritance mapping strategies we’ve discussed don’t require extra
consideration with regard to the SQL schema. No foreign keys are needed, and
relations are properly normalized. This situation changes with the next strategy.

Table per class hierarchy

An entire class hierarchy can be mapped to a single table. This table includes col-
umns for all properties of all classes in the hierarchy. The concrete subclass repre-
sented by a particular row is identified by the value of a type discriminator
column. This approach is shown in figure 5.2.

This mapping strategy is a winner in terms of both performance and simplicity.
It’s the best-performing way to represent polymorphism—both polymorphic and
nonpolymorphic queries perform well—and it’s even easy to implement by hand.
Ad-hoc reporting is possible without complex joins or unions. Schema evolution is
straightforward.

BillingDetails
owner : String

CreditCard BankAccount
number : String account : String
expMonth : String bankname : String
expYear : String swift : String

<< Table >>

BILLING_DETAILS
BILLING_DETAILS_ID
BILLING_DETAILS_TYPE << Discriminator >>
OWNER
CC_NUMBER
CC_EXP_MONTH
CC_EXP_YEAR
BA_ACCOUNT
BA_BANKNAME Figure 5.2
BA_SWIFT Mapping a whole class hierarchy to a single table

200

CHAPTER 5
Inheritance and custom types

There is one major problem: Columns for properties declared by subclasses
must be declared to be nullable. If your subclasses each define several nonnul-
lable properties, the loss of NOT NULL constraints may be a serious problem from
the point of view of data integrity. Another important issue is normalization.
We’ve created functional dependencies between nonkey columns, violating the
third normal form. As always, denormalization for performance can be mislead-
ing, because it sacrifices long-term stability, maintainability, and the integrity of
data for immediate gains that may be also achieved by proper optimization of the
SQL execution plans (in other words, ask your DBA).

In Hibernate, you use the <subclass> element to create a table per class hier-
archy mapping, as in listing 5.2.

Listing 5.2 Hibernate <subclass> mapping

<hibernate-mapping> 4!?
<class
name="BillingDetails"
table="BILLING_DETAILS">
<id
name="id"
column="BILLING_DETAILS_ID"
type="long">
<generator class="native"/>
</id>

<discriminator 49

column="BILLING_DETAILS_TYPE"
type="string"/>

<property 49

name="owner"
column="OWNER"
type="string"/>

<subclass 49
name="CreditCard"
discriminator-value="CC">

<property name="number" column="CC_NUMBER"/>
<property name="expMonth" column="CC_EXP_MONTH"/>
<property name="expYear" column="CC_EXP_YEAR"/>

</subclass>

<subclass
name="BankAccount”
discriminator-value="BA">

Mapping class inheritance 201

</class>
</hibernate-mapping>

@ The root class BillingDetails of the inheritance hierarchy is mapped to the
table BILLING_DETAILS.

@ You have to add a special column to distinguish between persistent classes: the dis-
criminator. This isn’t a property of the persistent class; it’s used internally by
Hibernate. The column name is BILLING_DETAILS_TYPE, and the values are
strings—in this case, “CC” or “BA”. Hibernate automatically sets and retrieves the
discriminator values.

Properties of the superclass are mapped as always, with a simple <property> ele-
ment.

Every subclass has its own <subclass> element. Properties of a subclass are
mapped to columns in the BILLING_DETAILS table. Remember that NOT NULL con-
straints aren’t allowed, because a BankAccount instance won’t have an expMonth
property, and the CC_EXP_MONTH field must be NULL for that row.

The <subclass> element can in turn contain other nested <subclass> elements,
until the whole hierarchy is mapped to the table.
Hibernate generates the following SQL when querying the BillingDetails

class:
select
BILLING_DETAILS_ID, BILLING_DETAILS_TYPE, OWNER,
CC_NUMBER, CC_EXP_MONTH, ..., BA_ACCOUNT, BA_BANKNAME,

from BILLING_DETAILS

To query the CreditCard subclass, Hibernate adds a restriction on the discrimina-
tor column:

select BILLING_DETAILS_ID, OWNER, CC_NUMBER, CC_EXP_MONTH,
from BILLING_DETAILS
where BILLING_DETAILS_TYPE='CC'

This mapping strategy is also available in JPA, as SINGLE_TABLE:

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn (

name = "BILLING_DETAILS_TYPE",

discriminatorType = DiscriminatorType.STRING

202

CHAPTER 5
Inheritance and custom types

public abstract class BillingDetails {

@Id @GeneratedvValue
@Column (name = "BILLING_DETAILS_ID")
private Long id = null;

@Column (name = "OWNER", nullable = false)
private String owner;

}

If you don’t specify a discriminator column in the superclass, its name defaults to
DTYPE and its type to string. All concrete classes in the inheritance hierarchy can
have a discriminator value; in this case, BillingDetails is abstract, and Credit-
Card is a concrete class:

@Entity

@DiscriminatorvValue ("CC")
public class CreditCard extends BillingDetails {

@Column (name = "CC_NUMBER")
private String number;

}

Without an explicit discriminator value, Hibernate defaults to the fully qualified
class name if you use Hibernate XML files and the entity name if you use annota-
tions or JPA XML files. Note that no default is specified in Java Persistence for non-
string discriminator types; each persistence provider can have different defaults.

This is the equivalent mapping in JPA XML descriptors:

<entity-mappings>

<entity class="auction.model.BillingDetails" access="FIELD">
<inheritance strategy="SINGLE_TABLE"/>

<discriminator-column name="BILLING_DETAILS_TYPE"
discriminator-type="STRING" />

</entity>

<entity class="auction.model.CreditCard" access="FIELD">
<discriminator-value>CC</discriminator-value>

</entity>
</entity-mappings>
Sometimes, especially in legacy schemas, you don’t have the freedom to include

an extra discriminator column in your entity tables. In this case, you can apply a
formula to calculate a discriminator value for each row:

5.14

Mapping class inheritance 203

<discriminator
formula="case when CC_NUMBER is not null then 'CC' else 'BA' end"
type="string"/>

<subclass
name="CreditCard"
discriminator-value="CC">

This mapping relies on an SQL CASE/WHEN expression to determine whether a par-
ticular row represents a credit card or a bank account (many developers never
used this kind of SQL expression; check the ANSI standard if you aren’t familiar
with it). The result of the expression is a literal, CC or BA, which in turn is declared
on the <subclass> mappings. Formulas for discrimination aren’t part of the JPA
specification. However, you can apply a Hibernate annotation:

@Entity

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

@org.hibernate.annotations.DiscriminatorFormula (

"case when CC_NUMBER is not null then 'CC' else 'BA' end"

)
public abstract class BillingDetails {

}

The disadvantages of the table per class hierarchy strategy may be too serious for
your design—after all, denormalized schemas can become a major burden in the
long run. Your DBA may not like it at all. The next inheritance mapping strategy
doesn’t expose you to this problem.

Table per subclass

The fourth option is to represent inheritance relationships as relational foreign
key associations. Every class/subclass that declares persistent properties—includ-
ing abstract classes and even interfaces—has its own table.

Unlike the table per concrete class strategy we mapped first, the table here
contains columns only for each noninherited property (each property declared
by the subclass itself) along with a primary key that is also a foreign key of the
superclass table. This approach is shown in figure 5.3.

If an instance of the CreditCard subclass is made persistent, the values of prop-
erties declared by the BillingDetails superclass are persisted to a new row of the
BILLING_DETAILS table. Only the values of properties declared by the subclass are
persisted to a new row of the CREDIT_CARD table. The two rows are linked together

204 CHAPTER 5
Inheritance and custom types

BillingDetails
owner : String

CreditCard BankAccount
number : String account : String
expMonth : String bankname : String
expYear : String swift : String

<< Table >>

BILLING_DETAILS
BILLING_DETAILS_ID << PK >>

1
OWNER '
<< Table >> << Table >>
CREDIT- CARD BANK_ACCOUNT

CREDIT_CARD_ID << PK >> << FK >> BANK_ACCOUNT_ID << PK >> << FK >>
NUMBER ACCOUNT
EXP_MONTH BANKNAME
EXP_YEAR SWIFT

Figure 5.3 Mapping all classes of the hierarchy to their own table

by their shared primary key value. Later, the subclass instance may be retrieved
from the database by joining the subclass table with the superclass table.

The primary advantage of this strategy is that the SQL schema is normalized.
Schema evolution and integrity constraint definition are straightforward. A poly-
morphic association to a particular subclass may be represented as a foreign key
referencing the table of that particular subclass.

In Hibernate, you use the <joined-subclass> element to create a table per
subclass mapping. See listing 5.3.

Listing 5.3 Hibernate <joined-subclass> mapping

<hibernate-mapping> qu
<class
name="BillingDetails"
table="BILLING_DETAILS">

<id
name="id"
column="BILLING_DETAILS_ID"
type="long">
<generator class="native"/>

Mapping class inheritance 205

</id>

<property
name="owner"
column="OWNER"
type="string"/>

<joined-subclass 49

name="CreditCard"
table="CREDIT_CARD">

<key column="CREDIT_CARD_ID"/> QP

<property name="number" column="NUMBER"/>
<property name="expMonth" column="EXP_MONTH"/>
<property name="expYear" column="EXP_YEAR"/>

</joined-subclass>

<joined-subclass
name="BankAccount"
table="BANK_ACCOUNT" >

</class>
</hibernate-mapping>

@ The root class BillingDetails is mapped to the table BILLING_DETAILS. Note
that no discriminator is required with this strategy.

® The new <joined-subclass> element maps a subclass to a new table—in this
example, CREDIT_CARD. All properties declared in the joined subclass are mapped
to this table.

O A primary key is required for the CREDIT_CARD table. This column also has a for-
eign key constraint to the primary key of the BILLING_DETAILS table. A Credit-
Card object lookup requires a join of both tables. A <joined-subclass> element
may contain other nested <joined-subclass> elements, until the whole hierar-
chy has been mapped.

Hibernate relies on an outer join when querying the BillingDetails class:

select BD.BILLING_DETAILS_ID, BD.OWNER,
CC.NUMBER, CC.EXP_MONTH, ..., BA.ACCOUNT, BA.BANKNAME,
case
when CC.CREDIT_CARD_ID is not null then 1
when BA.BANK_ACCOUNT_ID is not null then 2
when BD.BILLING_DETAILS_ID is not null then 0
end as CLAZZ_

206

CHAPTER 5
Inheritance and custom types

from BILLING_DETAILS BD
left join CREDIT_CARD CC
on BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
left join BANK_ACCOUNT BA
on BD.BILLING_DETAILS_ID = BA.BANK_ACCOUNT_ID
The SQL CASE statement detects the existence (or absence) of rows in the subclass
tables CREDIT_ CARD and BANK_ACCOUNT, so Hibernate can determine the concrete
subclass for a particular row of the BILLING_DETAILS table.
To narrow the query to the subclass, Hibernate uses an inner join:
select BD.BILLING_DETAILS_ID, BD.OWNER, CC.NUMBER,
from CREDIT_CARD CC
inner join BILLING_DETAILS BD
on BD.BILLING_DETAILS_ID = CC.CREDIT_CARD_ID
As you can see, this mapping strategy is more difficult to implement by hand—
even ad-hoc reporting is more complex. This is an important consideration if you
plan to mix Hibernate code with handwritten SQL.

Furthermore, even though this mapping strategy is deceptively simple, our
experience is that performance can be unacceptable for complex class hierarchies.
Queries always require either a join across many tables or many sequential reads.

Let’s map the hierarchy with the same strategy and annotations, here called
the JOINED strategy:

@Entity

@Inheritance(strategy = InheritanceType.JOINED)
public abstract class BillingDetails {

@Id @Generatedvalue
@Column (name = "BILLING_DETAILS_ID")
private Long id = null;

}

In subclasses, you don’t need to specify the join column if the primary key column
of the subclass table has (or is supposed to have) the same name as the primary
key column of the superclass table:

@Entity
public class BankAccount {

}

This entity has no identifier property; it automatically inherits the BILLING_
DETAILS_ID property and column from the superclass, and Hibernate knows how

Mapping class inheritance

to join the tables together if you want to retrieve instances of BankAccount.

course, you can specify the column name explicitly:

@Entity
@PrimaryKeyJoinColumn (name = "CREDIT_ CARD_ID")
public class CreditCard ({

}
Finally, this is the equivalent mapping in JPA XML descriptors:
<entity-mappings>

<entity class="auction.model.BillingDetails" access="FIELD">
<inheritance strategy="JOINED"/>

</entity>
<entity class="auction.model.BankAccount" access="FIELD"/>
<entity class="auction.model.CreditCard" access="FIELD">

<primary-key-join-column name="CREDIT_CARD_ID"/>
</entity>

</entity-mappings>

207

Of

Before we show you when to choose which strategy, let’s consider mixing inherit-

ance mapping strategies in a single class hierarchy.

5.1.5 Mixing inheritance strategies

You can map whole inheritance hierarchies by nesting <union-subclass>, <sub-

class>, and <joined-subclass> mapping elements. You can’t mix them—for

example, to switch from a table-per-class hierarchy with a discriminator to a nor-

malized table-per-subclass strategy. Once you've made a decision for an inherit-

ance strategy, you have to stick to it.

This isn’t completely true, however. With some Hibernate tricks, you can
switch the mapping strategy for a particular subclass. For example, you can map a
class hierarchy to a single table, but for a particular subclass, switch to a separate

table with a foreign key mapping strategy, just as with table per subclass. This is

possible with the <join> mapping element:

<hibernate-mapping>
<class name="BillingDetails"
table="BILLING_DETAILS">

<id>...</id>

<discriminator
column="BILLING_DETAILS_TYPE"
type="string"/>

208 CHAPTER 5
Inheritance and custom types

<subclass
name="CreditCard"
discriminator-value="CC">

<join table="CREDIT_CARD">
<key column="CREDIT_CARD_ID"/>

<property name="number" column="CC_NUMBER"/>
<property name="expMonth" column="CC_EXP_MONTH" />
<property name="expYear" column="CC_EXP_YEAR"/>

</join>
</subclass>

<subclass
name="BankAccount"
discriminator-value="BA">

<property name=account" column="BA_ACCOUNT"/>

</subclass>

</class>
</hibernate-mapping>

The <join> element groups some properties and tells Hibernate to get them from

a secondary table. This mapping element has many uses, and you’ll see it again

later in the book. In this example, it separates the CreditCard properties from the
table per hierarchy into the CREDIT_CARD table. The CREDIT_CARD_ID column of
this table is at the same time the primary key, and it has a foreign key constraint
referencing the BILLING_DETAILS_ID of the hierarchy table. The BankAccount
subclass is mapped to the hierarchy table. Look at the schema in figure 5.4.

At runtime, Hibernate executes an outer join to fetch BillingDetails and all

subclass instances polymorphically:

select
BILLING_DETAILS_ID, BILLING_DETAILS_TYPE, OWNER,
CC.CC_NUMBER, CC.CC_EXP_MONTH, CC.CC_EXP_YEAR,
BA_ACCOUNT, BA_BANKNAME, BA_SWIFT

from
BILLING_DETAILS
left outer join
CREDIT_CARD CC
on BILLING_DETAILS_ID = CC.CREDIT_CARD_ID

Mapping class inheritance 209

BillingDetails
owner : String

CreditCard BankAccount

number : String account : String

expMonth : String bankname : String

expYear : String swift : String

<< Table >> << Table >>
BILLING_DETAILS f f CREDIT_CARD

BILLING_DETAILS_ID CREDIT_CARD_ID << PK >>
BILLING_DETAILS_TYPE << Discriminator >> CC_NUMBER
OWNER CC_EXP_MONTH
BA_ACCOUNT CC_EXP_YEAR
BA_BANKNAME
BA_SWIFT

Figure 5.4 Breaking out a subclass to its own secondary table

You can also use the <join> trick for other subclasses in your class hierarchy. How-
ever, if you have an exceptionally wide class hierarchy, the outer join can become
a problem. Some database systems (Oracle, for example) limit the number of
tables in an outer join operation. For a wide hierarchy, you may want to switch to a
different fetching strategy that executes an immediate second select instead of an
outer join:

<subclass

name="CreditCard"
discriminator-value="CC">

<join table="CREDIT_CARD" fetch="select">
<key column="CREDIT_CARD_ID"/>
</join>
</subclass>

Java Persistence also supports this mixed inheritance mapping strategy with anno-
tations. Map the superclass BillingDetails with InheritanceType.SINGLE_
TABLE, as you did before. Now map the subclass you want to break out of the sin-
gle table to a secondary table.

@Entity
@Discriminatorvalue ("CC")
@SecondaryTable (

210

5.1.6

CHAPTER 5
Inheritance and custom types

name = "CREDIT_CARD",

pkJoinColumns = @PrimaryKeyJoinColumn (name = "CREDIT_CARD_ID")
)
public class CreditCard extends BillingDetails {

@Column (table = "CREDIT_CARD",
name = "CC_NUMBER",
nullable = false)

private String number;

}

If you don’t specify a primary key join column for the secondary table, the name
of the primary key of the single inheritance table is used—in this case,
BILLING_DETAILS_ID. Also note that you need to map all properties that are
moved into the secondary table with the name of that secondary table.

You also want more tips about how to choose an appropriate combination of
mapping strategies for your application’s class hierarchies.

Choosing a strategy

You can apply all mapping strategies to abstract classes and interfaces. Interfaces
may have no state but may contain accessor method declarations, so they can be
treated like abstract classes. You can map an interface with <class>, <union-sub-
class>, <subclass>, or <joined-subclass>, and you can map any declared or
inherited property with <property>. Hibernate won’t try to instantiate an abstract
class, even if you query or load it.

NOTE Note that the JPA specification doesn’t support any mapping annotation
on an interface! This will be resolved in a future version of the specifica-
tion; when you read this book, it will probably be possible with Hibernate
Annotations.

Here are some rules of thumb:

= Ifyou don’t require polymorphic associations or queries, lean toward table-
per-concrete-class—in other words, if you never or rarely query for Bill-
ingDetails and you have no class that has an association to BillingDe-
tails (our model has). An explicit UNION-based mapping should be
preferred, because (optimized) polymorphic queries and associations will
then be possible later. Implicit polymorphism is mostly useful for queries
utilizing non-persistence-related interfaces.

= If you do require polymorphic associations (an association to a superclass,
hence to all classes in the hierarchy with dynamic resolution of the concrete

Mapping class inheritance 211

class at runtime) or queries, and subclasses declare relatively few properties
(particularly if the main difference between subclasses is in their behavior),
lean toward table-per-class-hierarchy. Your goal is to minimize the number
of nullable columns and to convince yourself (and your DBA) that a denor-
malized schema won’t create problems in the long run.

= If you do require polymorphic associations or queries, and subclasses
declare many properties (subclasses differ mainly by the data they hold),
lean toward table-per-subclass. Or, depending on the width and depth of
your inheritance hierarchy and the possible cost of joins versus unions, use
table-per-concrete-class.

By default, choose table-per-class-hierarchy only for simple problems. For more
complex cases (or when you’'re overruled by a data modeler insisting on the
importance of nullability constraints and normalization), you should consider the
table-persubclass strategy. But at that point, ask yourself whether it may not be
better to remodel inheritance as delegation in the object model. Complex inherit-
ance is often best avoided for all sorts of reasons unrelated to persistence or ORM.
Hibernate acts as a buffer between the domain and relational models, but that
doesn’t mean you can ignore persistence concerns when designing your classes.

When you start thinking about mixing inheritance strategies, remember that
implicit polymorphism in Hibernate is smart enough to handle more exotic cases.
For example, consider an additional interface in our application, Electronic-
PaymentOption. This is a business interface that doesn’t have a persistence
aspect—except that in our application, a persistent class such as CreditCard will
likely implement this interface. No matter how you map the BillingDetails
hierarchy, Hibernate can answer a query from ElectronicPaymentOption cor-
rectly. This even works if other classes, which aren’t part of the BillingDetails
hierarchy, are mapped persistent and implement this interface. Hibernate always
know what tables to query, which instances to construct, and how to return a poly-
morphic result.

Finally, you can also use <union-subclass>, <subclass>, and <joined-sub-
class> mapping elements in a separate mapping file (as a top-level element
instead of <class>). You then have to declare the class that is extended, such as
<subclass name="CreditCard" extends="BillingDetails">, and the super-
class mapping must be loaded programmatically before the subclass mapping file
(you don’t have to worry about this order when you list mapping resources in the
XML configuration file). This technique allows you to extend a class hierarchy
without modifying the mapping file of the superclass.

212

5.2

5.21

CHAPTER 5
Inheritance and custom types

You now know everything you need to know about the mapping of entities,
properties, and inheritance hierarchies. You can already map complex domain
models. In the second half of this chapter, we discuss another important fea-
ture that you should know by heart as a Hibernate user: the Hibernate map-
ping type system.

The Hibernate type system

In chapter 4, we first distinguished between entity and value types—a central
concept of ORM in Java. We must elaborate on that distinction in order for you
to fully understand the Hibernate type system of entities, value types, and map-

ping types.

Recapitulating entity and value types

Entities are the coarse-grained classes in your system. You usually define the fea-
tures of a system in terms of the entities involved. The user places a bid for an item is
a typical feature definition; it mentions three entities. Classes of value types often
don’t even appear in the business requirements—they’re usually the fine-grained
classes representing strings, numbers, and monetary amounts. Occasionally, value
types do appear in feature definitions: the user changes billing address is one exam-
ple, assuming that Address is a value type.

More formally, an entity is any class whose instances have their own persistent
identity. A value type is a class that doesn’t define some kind of persistent identity.
In practice, this means that entity types are classes with identifier properties, and
value type classes depend on an entity.

At runtime, you have a network of entity instances interleaved with value type
instances. The entity instances may be in any of the three persistent lifecycle
states: transient, detached, or persistent. We don’t consider these lifecycle states to
apply to the value type instances. (We’ll come back to this discussion of object
states in chapter 9.)

Therefore, entities have their own lifecycle. The save () and delete () methods
of the Hibernate Session interface apply to instances of entity classes, never to
value type instances. The persistence lifecycle of a value type instance is completely
tied to the lifecycle of the owning entity instance. For example, the username
becomes persistent when the user is saved; it never becomes persistent indepen-
dently of the user.

The Hibernate type system 213

In Hibernate, a value type may define associations; it’s possible to navigate
from a value type instance to some other entity. However, it’s never possible to
navigate from the other entity back to the value type instance. Associations always
point to entities. This means that a value type instance is owned by exactly one
entity when it’s retrieved from the database; it’s never shared.

At the level of the database, any table is considered an entity. However, Hiber-
nate provides certain constructs to hide the existence of a database-level entity
from the Java code. For example, a many-to-many association mapping hides the
intermediate association table from the application. A collection of strings (more
accurately, a collection of value-typed instances) behaves like a value type from
the point of view of the application; however, it’s mapped to its own table.
Although these features seem nice at first (they simplify the Java code), we have
over time become suspicious of them. Inevitably, these hidden entities end up
needing to be exposed to the application as business requirements evolve. The
many-to-many association table, for example, often has additional columns added
as the application matures. We're almost prepared to recommend that every data-
base-level entity be exposed to the application as an entity class. For example, we
would be inclined to model the many-to-many association as two one-to-many
associations to an intervening entity class. We’ll leave the final decision to you,
however, and come back to the topic of many-to-many entity associations in the
future chapters.

Entity classes are always mapped to the database using <class>, <union-sub-
class>, <subclass>, and <joined-subclass> mapping elements. How are value
types mapped?

You've already met two different kinds of value type mappings: <property>
and <component>. The value type of a component is obvious: It’s the class that is
mapped as embeddable. However, the type of a property is a more generic notion.
Consider this mapping of the CaveatEmptor User and email address:

<property name="email"

column="EMAIL"

type="string"/>
Let’s focus on that type="string" attribute. You know that in ORM you have to
deal with Java types and SQL datatypes. The two different type systems must be
bridged. This is the job of the Hibernate mapping types, and string is the name
of a built-in Hibernate mapping type.

214

5.2.2

CHAPTER 5
Inheritance and custom types

The string mapping type isn’t the only one built into Hibernate. Hibernate
comes with various mapping types that define default persistence strategies for
primitive Java types and certain JDK classes.

Built-in mapping types

Hibernate’s builtin mapping types usually share the name of the Java type they
map. However, there may be more than one Hibernate mapping type for a partic-
ular Java type.

The built-in types may not be used to perform arbitrary conversions, such as
mapping a VARCHAR database value to a Java Integer property value. You may
define your own custom value types for this kind of conversation, as shown later in
this chapter.

We now discuss the basic, date and time, locator object, and various other
built-in mapping types and show you what Java and SQL datatype they handle.

Java primitive mapping types
The basic mapping types in table 5.1 map Java primitive types (or their wrapper
types) to appropriate built-in SQL standard types.

Table 5.1 Primitive types

Mapping type Java type Standard SQL built-in type
integer int or java.lang.Integer INTEGER
long long or java.lang.Long BIGINT
short short or java.lang.Short SMALLINT
float float or java.lang.Float FLOAT
double double or java.lang.Double DOUBLE
big_decimal java.math.BigDecimal NUMERIC
character java.lang.String CHAR (1)
string java.lang.String VARCHAR
byte byte or java.lang.Byte TINYINT
boolean boolean or java.lang.Boolean BIT
yes_no boolean or java.lang.Boolean CHAR(1l) ('Y' or 'N')
true_false boolean or java.lang.Boolean CHAR(1) ('T'" or 'F')

The Hibernate type system 215

You’ve probably noticed that your database doesn’t support some of the SQL
types mentioned in table 5.1. The listed type names are names of ANSI-standard
datatypes. Most database vendors ignore this part of the SQL standard (because
their legacy type systems often predate the standard). However, the JDBC driver
provides a partial abstraction of vendorspecific SQL datatypes, allowing Hiber-
nate to work with ANSI-standard types when executing DML. For database-specific
DDL generation, Hibernate translates from the ANSI-standard type to an appropri-
ate vendor-specific type, using the built-in support for specific SQL dialects. (This
means you usually don’t have to worry about SQL datatypes if you’'re using Hiber-
nate for data access and SQL schema definition.)

Furthermore, the Hibernate type system is smart and can switch SQL datatypes
depending on the defined length of a value. The most obvious case is string: If
you declare a string property mapping with a length attribute, Hibernate picks
the correct SQL datatype depending on the selected dialect. For MySQL, for
example, a length of up to 65535 results in a regular VARCHAR (length) column
when Hibernate exports the schema. For a length of up to 16777215, a MEDIUM-
TEXT datatype is used. Larger string mappings result in a LONGTEXT. Check your
SQL dialect (the source code comes with Hibernate) if you want to know the
ranges for this and other mapping types. You can customize this behavior by sub-
classing your dialect and overriding these settings.

Most dialects also support setting the scale and precision of decimal SQL
datatypes. For example, a precision or scale setting in your mapping of a Big-
Decimal creates a NUMERIC (precision, scale) datatype for MySQL.

Finally, the yes_no and true_false mapping types are converters that are
mostly useful for legacy schemas and Oracle users; Oracle DBMS products don’t
have a builtin boolean or truth-valued type (the only built-in datatype actually
required by the relational data model).

Date and time mapping types
Table 5.2 lists Hibernate types associated with dates, times, and timestamps. In
your domain model, you may choose to represent date and time data using
java.util.Date, java.util.Calendar, or the subclasses of java.util.Date
defined in the java.sqgl package. This is a matter of taste, and we leave the deci-
sion to you—make sure you’re consistent, however. (In practice, binding your
domain model to types from the JDBC package isn’t the best idea.)

A caveat: If you map a java.util.Date property with timestamp (the most
common case), Hibernate returns a java.sgl.Timestamp when loading the prop-
erty from the database. Hibernate has to use the JDBC subclass because it includes

216

CHAPTER 5
Inheritance and custom types

Table 5.2 Date and time types

Mapping type Java type s;z::z:‘:;g‘
date java.util.Date or java.sgl.Date DATE
time java.util.Date or java.sgl.Time TIME
timestamp java.util.Date or java.sgl.Timestamp TIMESTAMP
calendar java.util.Calendar TIMESTAMP
calendar_date java.util.Calendar DATE

nanosecond information that may be present in the database. Hibernate can’t just
cut off this information. This can lead to problems if you try to compare your
java.util.Date properties with the equals () method, because it isn’t symmetric
with the java.sqgl.Timestamp subclass equals () method. First, the right way (in
any case) to compare two java.util.Date objects, which also works for any sub-
class, is aDate.getTime() > bDate.getTime() (for a greater-than comparison).
Second, you can write a custom mapping type that cuts off the database nanosec-
ond information and returns a java.util.Date in all cases. Currently (although
this may change in the future), no such mapping type is built into Hibernate.

Binary and large value mapping types
Table 5.3 lists Hibernate types for handling binary data and large values. Note that
only binary is supported as the type of an identifier property.

If a property in your persistent Java class is of type byte[], Hibernate can map
it to a VARBINARY column with the binary mapping type. (Note that the real SQL

Table 5.3 Binary and large value types

Mapping type Java type s;z:::'?:l;?'
binary bytel] VARBINARY
text java.lang.String CLOB
clob java.sgl.Clob CLOB
blob java.sgl.Blob BLOB
serializable Any Java class that implements VARBINARY

java.io.Serializable

The Hibernate type system 217

type depends on the dialect; for example, in PostgreSQL, the SQL type is BYTEA,
and in Oracle it’s RAW.) If a property in your persistent Java class is of type
java.lang.String, Hibernate can map it to an SQL CLOB column, with the text
mapping type.

Note that in both cases, Hibernate initializes the property value right away,
when the entity instance that holds the property variable is loaded. This is incon-
venient when you have to deal with potentially large values.

One solution is lazy loading through interception of field access, on demand.
However, this approach requires bytecode instrumentation of your persistent
classes for the injection of extra code. We’ll discuss lazy loading through bytecode
instrumentation and interception in chapter 13, section 13.1.6, “Lazy loading
with interception.”

A second solution is a different kind of property in your Java class. JDBC sup-
ports locator objects (LOBs) directly.! If your Java property is of type
java.sqgl.Clob or java.sqgl.Blob, you can map it with the clob or blob mapping
type to get lazy loading of large values without bytecode instrumentation. When
the owner of the property is loaded, the property value is a locator object—effec-
tively, a pointer to the real value that isn’t yet materialized. Once you access the
property, the value is materialized. This on-demand loading works only as long as
the database transaction is open, so you need to access any property of such a type
when the owning entity instance is in a persistent and transactional state, not in
detached state. Your domain model is now also bound to JDBC, because the
import of the java.sgl package is required. Although domain model classes are
executable in isolated unit tests, you can’t access LOB properties without a data-
base connection.

Mapping properties with potentially large values is slightly different if you rely
on Java Persistence annotations. By default, a property of type java.lang.String
is mapped to an SQL VARCHAR column (or equivalent, depending on the SQL dia-
lect). If you want to map a java.lang.String, char[], Character[], or even a
java.sgl.Clob typed property to a CLOB column, you need to map it with the
@Lob annotation:

@Lob

@Column (name = "ITEM_DESCRIPTION")
private String description;

I Jim Starkey, who came up with the idea of LOBs, says that the terms BLOB and CLOB don’t mean any-
thing but were created by the marketing department. You can interpret them any way you like. We pre-
fer locator objects, as a hint that they work like pointers.

218

CHAPTER 5
Inheritance and custom types

@Lob
@Column (name = "ITEM_IMAGE")
private bytel[] image;

The same is true for any property that is of type bytel], Byte[], or java.
sgl.Blob. Note that for all cases, except properties that are of java.sgl.Clob or
java.sqgl.Blob type, the values are again loaded immediately by Hibernate, and
not lazily on demand. Instrumenting bytecode with interception code is again an
option to enable lazy loading of individual properties transparently.

To create and set a java.sgl.Blob or java.sqgl.Clob value, if you have these
property types in your domain model, use the static Hibernate.createBlob ()
and Hibernate.createClob() methods and provide a byte array, an input stream,
or a string.

Finally, note that both Hibernate and JPA provide a serialization fallback for
any property type that is Serializable. This mapping type converts the value of a
property to a byte stream that is then stored in a VARBINARY (or equivalent) col-
umn. When the owner of the property is loaded, the property value is deserial-
ized. Naturally, you should use this strategy with extreme caution (data lives
longer than an application), and it may be useful only for temporary data (user
preferences, login session data, and so on).

JDK mapping types
Table 5.4 lists Hibernate types for various other Java types of the JDK that may be
represented as a VARCHAR in the database.

You may have noticed that <property> isn’t the only Hibernate mapping ele-
ment that has a type attribute.

Table 5.4 Other JDK-related types

Mapping type Java type s;z:::?:i;g“
class java.lang.Class VARCHAR
locale java.util.Locale VARCHAR
timezone java.util.TimeZone VARCHAR
currency java.util.Currency VARCHAR

5.23

The Hibernate type system 219

Using mapping types

All of the basic mapping types may appear almost anywhere in the Hibernate
mapping document, on normal property, identifier property, and other mapping
elements. The <id>, <property>, <version>, <discriminator>, <index> and
<element> elements all define an attribute named type.
You can see how useful the built-in mapping types are in this mapping for the
BillingDetails class:
<class name="BillingDetails" table="BILLING_DETAILS">
<id name="id" type="long" column="BILLING_DETAILS_ID">
<generator class="native"/>
</id>

<discriminator type="character" column="BILLING_DETAILS_TYPE"/>
<property name="number" type="string"/>

</class>
The BillingDetails class is mapped as an entity. Its discriminator, identifier,
and name properties are value typed, and we use the built-in Hibernate mapping
types to specify the conversion strategy.

It isn’t often necessary to explicitly specify a built-in mapping type in the XML
mapping document. For instance, if you have a property of Java type
java.lang.String, Hibernate discovers this using reflection and selects string
by default. We can easily simplify the previous mapping example:

<class name="BillingDetails" table="BILLING_DETAILS">
<id name="id" column="BILLING_DETAILS_ID">
<generator class="native"/>
</id>

<discriminator type="character" column="BILLING_DETAILS_TYPE"/>
<property name="number"/>

</class>

Hibernate also understands type="java.lang.String"; it doesn’t have to use
reflection then. The most important case where this approach doesn’t work well is
a java.util.Date property. By default, Hibernate interprets a java.util.Date as
a timestamp mapping. You need to explicitly specify type="time" or type="date"
if you don’t wish to persist both date and time information.

With JPA annotations, the mapping type of a property is automatically
detected, just like in Hibernate. For a java.util.Date or java.util.Calendar

property, the Java Persistence standard requires that you select the precision with
a @Temporal annotation:

220

5.3

CHAPTER 5
Inheritance and custom types

@Temporal (TemporalType.TIMESTAMP)

@Column (nullable = false, updatable = false)

private Date startDate;
On the other hand, Hibernate Annotations, relaxing the rules of the standard,
defaults to TemporalType.TIMESTAMP—options are TemporalType.TIME and Tem-
poralType.DATE.

In other rare cases, you may want to add the @org.hibernate.annota-
tions.Type annotation to a property and declare the name of a built-in or custom
Hibernate mapping type explicitly. This is a much more common extension as
soon as you start writing your own custom mapping types, which you’ll do later in
this chapter.

The equivalent JPA XML descriptor is as follows:

<entity class="auction.model.Item" access="FIELD">
<attributes>

<basic name="startDate">
<column nullable="false" updatable="false"/>
<temporal>TIMESTAMP</temporal>
</basic>
</attributes>
</entity>
For each of the builtin mapping types, a constant is defined by the class
org.hibernate.Hibernate. For example, Hibernate.STRING represents the
string mapping type. These constants are useful for query parameter binding, as
discussed in more detail in chapters 14 and 15:
session.createQuery ("from Item i where i.description like :desc")
.setParameter ("desc", d, Hibernate.STRING)
.list () ;
Note that you may as well use the setString() argument binding method in this
case. Type constants are also useful for programmatic manipulation of the Hiber-
nate mapping metamodel, as discussed in chapter 3.
Hibernate isn’t limited to the built-in mapping types. We consider the extensi-
ble mapping-type system one of the core features and an important aspect that
makes Hibernate so flexible.

Creating custom mapping types

Object-oriented languages like Java make it easy to define new types by writing
new classes. This is a fundamental part of the definition of object-orientation. If
we were then limited to the predefined built-in Hibernate mapping types when

531

Creating custom mapping types 221

declaring properties of our persistent classes, we would lose much of Java’s
expressiveness. Furthermore, our domain model implementation would be
tightly coupled to the physical data model, because new type conversions would
be impossible.

Most ORM solutions that we have seen provide support for user-defined strate-
gies for performing type conversions. These are often called converters. For
example, the user can create a new strategy for persisting a property of JDK type
Integer to a VARCHAR column. Hibernate provides a similar, much more power-
ful, feature called custom mapping types.

First you need to understand when it’s appropriate to write your own custom
mapping type, and which Hibernate extension point is relevant for you. We’ll
then write some custom mapping types and explore the options.

Considering custom mapping types

As an example, take the mapping of the Address class from previous chapters, as a
component:

<component name="homeAddress" class="Address">

<property name="street" type="string" column="HOME_STREET"/>
<property name="city" type="string" column="HOME_CITY"/>
<property name="zipcode" type="string" column="HOME_ZIPCODE"/>

</component>

This value type mapping is straightforward; all properties of the new user-defined
Java type are mapped to individual columns of a built-in SQL datatype. However,
you can alternatively map it as a simple property, with a custom mapping type:

<property name="homeAddress"
type="auction.persistence.CustomAddressType">

<column name="HOME_STREET"/>
<column name="HOME_CITY"/>
<column name="HOME_ZIPCODE"/>

</property>

This is also probably the first time you’ve seen a single <property> element with
several <column> elements nested inside. We’re moving the responsibility for
translating and converting between an Address value type (it isn’t even named
anywhere) and the named three columns to a separate class: auction.persis-
tence.CustomAddressType. This class is now responsible for loading and saving
this property. Note that no Java code changes in the domain model implementa-
tion—the homeAddress property is of type Address.

222

5.3.2

CHAPTER 5
Inheritance and custom types

Granted, the benefit of replacing a component mapping with a custom map-
ping type is dubious in this case. As long as you require no special conversion
when loading and saving this object, the CustomAddressType you now have to
write is just additional work. However, you can already see that custom mapping
types provide an additional buffer—something that may come in handy in the
long run when extra conversion is required. Of course, there are better use cases
for custom mapping types, as you’ll soon see. (Many examples of useful Hibernate
mapping types can be found on the Hibernate community website.)

Let’s look at the Hibernate extension points for the creation of custom map-

ping types.

The extension points

Hibernate provides several interfaces that applications may use when defining
custom mapping types. These interfaces reduce the work involved in creating new
mapping types and insulate the custom type from changes to the Hibernate core.
This allows you to easily upgrade Hibernate and keep your existing custom map-
ping types.
The extension points are as follows:
m org.hibernate.usertype.UserType—The basic extension point, which is
useful in many situations. It provides the basic methods for custom loading
and storing of value type instances.

®» org.hibernate.usertype.CompositeUserType—An interface with more
methods than the basic UserType, used to expose internals about your value
type class to Hibernate, such as the individual properties. You can then
refer to these properties in Hibernate queries.

m org.hibernate.usertype.UserCollectionType—A rarely needed inter-
face that’s used to implement custom collections. A custom mapping type
implementing this interface isn’t declared on a property mapping but is
useful only for custom collection mappings. You have to implement this
type if you want to persist a nonJDK collection and preserve additional
semantics persistently. We discuss collection mappings and this extension
point in the next chapter.

m org.hibernate.usertype.EnhancedUserType—An interface that extends
UserType and provides additional methods for marshalling value types to
and from XML representations, or enables a custom mapping type for use
in identifier and discriminator mappings.

5.3.3

Creating custom mapping types 223

m org.hibernate.usertype.UserVersionType—An interface that extends
UserType and provides additional methods enabling the custom mapping
type for usage in entity version mappings.

®» org.hibernate.usertype.ParameterizedType—A useful interface that
can be combined with all others to provide configuration settings—that is,
parameters defined in metadata. For example, you can write a single Money-
Converter that knows how to translate values into Euro or US dollars,
depending on a parameter in the mapping.

We’ll now create some custom mapping types. You shouldn’t consider this an
unnecessary exercise, even if you’re happy with the builtin Hibernate mapping
types. In our experience, every sophisticated application has many good use cases
for custom mapping types.

The case for custom mapping types

The Bid class defines an amount property, and the Item class defines an ini-
tialPrice property; both are monetary values. So far, we've used only a simple
BigDecimal to represent the value, mapped with big decimal to a single
NUMERIC column.

Suppose you want to support multiple currencies in the auction application
and that you have to refactor the existing domain model for this (customer-
driven) change. One way to implement this change would be to add new proper-
ties to Bid and Item: amountCurrency and initialPriceCurrency. You could
then map these new properties to additional VARCHAR columns with the built-in
currency mapping type. We hope you never use this approach!

Instead, you should create a new MonetaryAmount class that encapsulates both
currency and amount. Note that this is a class of your domain model; it doesn’t
have any dependency on Hibernate interfaces:

public class MonetaryAmount implements Serializable {

private final BigDecimal amount;
private final Currency currency;

public MonetaryAmount (BigDecimal amount, Currency currency) {
this.amount = amount;
this.currency = currency;

}
public BigDecimal getAmount () { return amount; }

public Currency getCurrency() { return currency; }

224

5.3.4

CHAPTER 5
Inheritance and custom types

public boolean equals(Object o) { ... }
public int hashCode() { ...}

}

We have made MonetaryAmount an immutable class. This is a good practice in Java
because it simplifies coding. Note that you have to implement equals() and
hashCode () to finish the class (there is nothing special to consider here). You use
this new MonetaryAmount to replace the BigDecimal of the initialPrice prop-
erty in Item. You can and should use it for all other BigDecimal prices in any per-
sistent classes, such as the Bid.amount, and in business logic—for example, in the
billing system.

Let’s map the refactored initialPrice property of Item, with its new Mone-
taryAmount type to the database.

Creating a UserType

Imagine that you’re working with a legacy database that represents all monetary
amounts in USD. The application is no longer restricted to a single currency (that
was the point of the refactoring), but it takes some time for the database team to
make the changes. You need to convert the amount to USD when persisting Mone-
taryAmount objects. When you load from the database, you convert it back to the
currency the user selected in his or her preferences.

Create a new MonetaryAmountUserType class that implements the Hibernate
interface UserType. This is your custom mapping type, shown in listing 5.4.

public class MonetaryAmountUserType
implements UserType {

public int[] sqglTypes() { GSP
return new int[]{ Hibernate.BIG_DECIMAL.sqglType() };
}

public Class returnedClass() { return MonetaryAmount.class; } GSP
public boolean isMutable() { return false; } <%—€’
public Object deepCopy (Object value) { return value; } 45,

public Serializable disassemble (Object value) <}4‘D
{ return (Serializable) value; }

public Object assemble(Serializable cached, Object owner) 4!?
{ return cached; }

public Object replace(Object original, GSP
Object target,

Creating custom mapping types 225

Object owner)
{ return original; }

public boolean equals (Object x, Object y) { 4!?
if (x == y) return true;
if (x == null || y == null) return false;
return x.equals(y);

}

public int hashCode (Object x) {
return x.hashCode() ;

}

public Object nullSafeGet (ResultSet resultSet, 4!?
String[] names,
Object owner)

throws SQLException {

BigDecimal valueInUSD = resultSet.getBigDecimal (names[0]) ;

// Deferred check after first read

if (resultSet.wasNull()) return null;

Currency userCurrency = User.getPreferences().getCurrency() ;
MonetaryAmount amount = new MonetaryAmount (valueInUSD, "USD");
return amount.convertTo (userCurrency) ;

}

public void nullSafeSet (PreparedStatement statement, ajp
Object value,
int index)

throws HibernateException, SQLException {

if (value == null) {
statement.setNull (index, Hibernate.BIG_DECIMAL.sglType());
} else {
MonetaryAmount anyCurrency = (MonetaryAmount)value;

MonetaryAmount amountInUSD
MonetaryAmount.convert (anyCurrency,
Currency.getInstance ("USD"));
statement.setBigDecimal (index, amountInUSD.getAmount ());

@ The sqlTypes() method tells Hibernate what SQL column types to use for
DDL schema generation. Notice that this method returns an array of type
codes. A UserType may map a single property to multiple columns, but this
legacy data model has only a single numeric column. By using the Hiber-
nate.BIG_DECIMAL.sqlType () method, you let Hibernate decide the exact SQL

226

CHAPTER 5
Inheritance and custom types

datatype for the given database dialect. Alternatively, return a constant from
java.sql.Types.

The returnedClass() method tells Hibernate what Java value type class is
mapped by this UserType.

Hibernate can make some minor performance optimizations for immutable types
like this one, for example, when comparing snapshots during dirty checking. The
isMutable () method tells Hibernate that this type is immutable.

The UserType is also partially responsible for creating a snapshot of a value in the
first place. Because MonetaryAmount is an immutable class, the deepCopy ()
method returns its argument. In the case of a mutable type, it would need to
return a copy of the argument to be used as the snapshot value.

The disassemble() method is called when Hibernate puts a MonetaryAmount
into the second-level cache. As you'll learn later, this is a cache of data that stores
information in a serialized form.

The assemble() method does the opposite of disassembly: It can transform
cached data into an instance of MonetaryAmount. As you can see, implementation
of both routines is easy for immutable types.

Implement replace() to handle merging of detached object state. As you’ll see
later in the book, the process of merging involves an original and a target object,
whose state must be combined. Again, for immutable value types, return the first
argument. For mutable types, at least return a deep copy of the first argument.
For mutable types that have component fields, you probably want to apply a recur-
sive merging routine.

The UserType is responsible for dirty checking property values. The equals ()
method compares the current property value to a previous snapshot and deter-
mines whether the property is dirty and must by saved to the database. The hash-
Code () of two equal value typed instances has to be the same. We usually delegate
this method to the actual value type class—in this case, the hashCode () method of
the given MonetaryAmount object.

The nullsafeGet () method retrieves the property value from the JDBC Result-
Set. You can also access the owner of the component if you need it for the conver-
sion. All database values are in USD, so you convert it to the currency the user has
currently set in his preferences. (Note that it’s up to you to implement this con-
version and preference handling.)

Creating custom mapping types 227

@ The nullSafeSet() method writes the property value to the JDBC Prepared-
Statement. This method takes whatever currency is set and converts it to a simple
BigDecimal USD amount before saving.

You now map the initialPrice property of Item as follows:

<property name="initialPrice"
column="INITIAL_PRICE"
type="persistence.MonetaryAmountUserType" />
Note that you place the custom user type into the persistence package; it’s part
of the persistence layer of the application, not the domain model or business layer.

To use a custom type in annotations, you have to add a Hibernate extension:

@org.hibernate.annotations.Type (

type = " persistence.MonetaryAmountUserType"

éColumn(name = "INITIAL_PRICE")

private MonetaryAmount initialPrice;
This is the simplest kind of transformation that a UserType can perform. Much
more sophisticated things are possible. A custom mapping type can perform vali-
dation; it can read and write data to and from an LDAP directory; it can even
retrieve persistent objects from a different database. You’re limited mainly by
your imagination.

In reality, we’d prefer to represent both the amount and currency of mone-
tary amounts in the database, especially if the schema isn’t legacy but can be
defined (or updated quickly). Let’s assume you now have two columns available
and can store the MonetaryAmount without much conversion. A first option may
again be a simple <component> mapping. However, let’s try to solve it with a cus-
tom mapping type.

(Instead of writing a new custom type, try to adapt the previous example for
two columns. You can do this without changing the Java domain model classes—
only the converter needs to be updated for this new requirement and the addi-
tional column named in the mapping.)

The disadvantage of a simple UserType implementation is that Hibernate
doesn’t know anything about the individual properties inside a MonetaryAmount.
All it knows is the custom type class and the column names. The Hibernate query
engine (discussed in more detail later) doesn’t know how to query for amount or a
particular currency.

228

5.3.5

CHAPTER 5
Inheritance and custom types

You write a CompositeUserType if you need the full power of Hibernate que-
ries. This (slightly more complex) interface exposes the properties of the
MonetaryAmount to Hibernate queries. We’ll now map it again with this more flex-
ible customization interface to two columns, effectively producing an equivalent
to a component mapping.

Creating a CompositeUserType

To demonstrate the flexibility of custom mappings types, you don’t change the
MonetaryAmount class (and other persistent classes) at all—you change only the
custom mapping type, as shown in listing 5.5.

Listing 5.5 Custom mapping type for monetary amounts in new database schemas

public class MonetaryAmountCompositeUserType
implements CompositeUserType {

// public int[] sglTypes()... 4!?
public Class returnedClass...

public boolean isMutable...

public Object deepCopy...

public Serializable disassemble...
public Object assemble...

public Object replace...

public boolean equals...

public int hashCode...

public Object nullSafeGet (ResultSet resultSet, <4!P
String[] names,
SessionImplementor session,
Object owner)
throws SQLException {

BigDecimal value = resultSet.getBigDecimal(names[0]);
if (resultSet.wasNull()) return null;
Currency currency =
Currency.getInstance (resultSet.getString(names[1l]));
return new MonetaryAmount (value, currency) ;

}

public void nullSafeSet (PreparedStatement statement, 4!?
Object value,
int index,
SessionImplementor session)
throws SQLException {

if (value==null) {
statement.setNull (index, Hibernate.BIG_DECIMAL.sglType());
statement.setNull (index+1, Hibernate.CURRENCY.sglType());
} else {

©@ ®© 0o ©

Creating custom mapping types 229

MonetaryAmount amount = (MonetaryAmount) value;
String currencyCode =
amount.getCurrency () .getCurrencyCode() ;
statement.setBigDecimal (index, amount.getAmount ());
statement.setString(index+1, currencyCode);
}
}

public String[] getPropertyNames () { <GSP
return new String[] { "amount", "currency" };

}

public Typel[] getPropertyTypes() { 4!?
return new Type[] { Hibernate.BIG_DECIMAL,
Hibernate.CURRENCY };
}

public Object getPropertyValue (Object component, int property) { GS?

MonetaryAmount monetaryAmount = (MonetaryAmount) component;
if (property == 0)

return monetaryAmount.getAmount () ;
else

return monetaryAmount.getCurrency() ;
}

public void setPropertyValue (Object component, GSP
int property,
Object value) {
throw new
UnsupportedOperationException ("Immutable MonetaryAmount!") ;

The CompositeUserType interface requires the same housekeeping methods as
the UserType you created earlier. However, the sqlTypes () method is no longer
needed.

Loading a value now is straightforward: You transform two column values in the
result set to two property values in a new MonetaryAmount instance.

Saving a value involves setting two parameters on the prepared statement.

A CompositeUserType exposes the properties of the value type through getProp-
ertyNames ().

The properties each have their own type, as defined by getPropertyTypes (). The
types of the SQL columns are now implicit from this method.

The getPropertyValue () method returns the value of an individual property of
the MonetaryAmount.

230

CHAPTER 5
Inheritance and custom types

© The setPropertyvValue () method sets the value of an individual property of the

5.3.6

MonetaryAmount.

The initialPrice property now maps to two columns, so you need to declare
both in the mapping file. The first column stores the value; the second stores the
currency of the MonetaryAmount:
<property name="initialPrice"
type="persistence.MonetaryAmountCompositeUserType">
<column name="INITIAL_PRICE"/>
<column name="INITIAL_PRICE_CURRENCY"/>
</property>
If Ttem is mapped with annotations, you have to declare several columns for this
property. You can’t use the javax.persistence.Column annotation several times,
so a new, Hibernate-specific annotation is needed:
@org.hibernate.annotations. Type (

type = "persistence.MonetaryAmountUserType"
)
@Qorg.hibernate.annotations.Columns (columns = {
@Column (name="INITIAL_PRICE"),
@Column (name="INITIAL_PRICE_CURRENCY", length = 2)

}

private MonetaryAmount initialPrice;
In a Hibernate query, you can now refer to the amount and currency properties of
the custom type, even though they don’t appear anywhere in the mapping docu-
ment as individual properties:

from Item i

where i.initialPrice.amount > 100.0

and i.initialPrice.currency = 'AUD'

You have extended the buffer between the Java object model and the SQL data-
base schema with the new custom composite type. Both representations are now
more robust to changes. Note that the number of columns isn’t relevant for your
choice of UserType versus CompositeUserType—only your desire to expose value
type properties for Hibernate queries.

Parameterization is a helpful feature for all custom mapping types.

Parameterizing custom types

Let’s assume that you face the initial problem again: conversion of money to a dif-
ferent currency when storing it to the database. Often, problems are more subtle
than a generic conversion; for example, you may store US dollars in some tables

Creating custom mapping types 231

and Euros in others. You still want to write a single custom mapping type for this,
which can do arbitrary conversions. This is possible if you add the Parameter-
izedType interface to your UserType or CompositeUserType classes:

public class MonetaryAmountConversionType
implements UserType, ParameterizedType {

// Configuration parameter
private Currency convertTo;

public void setParameterValues (Properties parameters) ({
this.convertTo = Currency.getInstance (
parameters.getProperty ("convertTo")
)i
}

// ... Housekeeping methods

public Object nullSafeGet (ResultSet resultSet,
String[] names,
SessionImplementor session,
Object owner)
throws SQLException {

BigDecimal value = resultSet.getBigDecimal (names[0]);
if (resultSet.wasNull()) return null;
// When loading, take the currency from the database
Currency currency = Currency.getInstance (
resultSet.getString(names[1l])
)
return new MonetaryAmount (value, currency) ;

}

public void nullSafeSet (PreparedStatement statement,
Object value,
int index,
SessionImplementor session)
throws SQLException {

if (value==null) {
statement.setNull (index, Types.NUMERIC) ;
} else {
MonetaryAmount amount = (MonetaryAmount) value;
// When storing, convert the amount to the
// currency this converter was parameterized with
MonetaryAmount dbAmount =
MonetaryAmount.convert (amount, convertTo) ;
statement.setBigDecimal (index, dbAmount.getAmount ());
statement.setString(index+1,
dbAmount .getCurrencyCode ()) ;

232

CHAPTER 5
Inheritance and custom types

We left out the usual mandatory housekeeping methods in this example. The
important additional method is setParametervValues() of the Parameterized-
Type interface. Hibernate calls this method on startup to initialize this class with a
convertTo parameter. The nullSafeSet () methods uses this setting to convert to
the target currency when saving a MonetaryAmount. The nullSafeGet () method
takes the currency that is present in the database and leaves it to the client to deal
with the currency of a loaded MonetaryAmount (this asymmetric implementation
isn’t the best idea, naturally).

You now have to set the configuration parameters in your mapping file when
you apply the custom mapping type. A simple solution is the nested <type> map-
ping on a property:

<property name="initialPrice">

<column name="INITIAL_PRICE"/>

<column name="INITIAL_PRICE_CUR"/>

<type name="persistence.MonetaryAmountConversionType">
<param name="convertTo">USD</param>

</type>

</property>
However, this is inconvenient and requires duplication if you have many monetary
amounts in your domain model. A better strategy uses a separate definition of the
type, including all parameters, under a unique name that you can then reuse
across all your mappings. You do this with a separate <typedef>, an element (you
can also use it without parameters):

<typedef class="persistence.MonetaryAmountConversionType"

name="monetary_amount_usd">

<param name="convertTo">USD</param>
</typedef>

<typedef class="persistence.MonetaryAmountConversionType"
name="monetary_amount_eur">
<param name="convertTo">EUR</param>

</typedef>
What we show here is a binding of a custom mapping type with some arguments
to the names monetary_amount_usd and monetary_amount_eur. This definition
can be placed anywhere in your mapping files; it’s a child element of <hibernate-
mapping> (as mentioned earlier in the book, larger applications have often one or
several MyCustomTypes.hbm.xml files with no class mappings). With Hibernate
extensions, you can define named custom types with parameters in annotations:

Creating custom mapping types 233

@Qorg.hibernate.annotations.TypeDefs ({
@org.hibernate.annotations.TypeDef (
name="monetary_amount_usd",
typeClass = persistence.MonetaryAmountConversionType.class,
parameters = { @Parameter (name="convertTo", value="USD") }
)
@Qorg.hibernate.annotations.TypeDef (
name="monetary_amount_eur",
typeClass = persistence.MonetaryAmountConversionType.class,
parameters = { @Parameter (name="convertTo", value="EUR") }

1)

This annotation metadata is global as well, so it can be placed outside any Java
class declaration (right after the import statements) or in a separate file, pack-
age-info.java, as discussed in chapter 2, section 2.2.1, “Using Hibernate Anno-
tations.” A good location in this system is in a package-info.java file in the
persistence package.

In XML mapping files and annotation mappings, you now refer to the defined
type name instead of the fully qualified class name of your custom type:

<property name="initialPrice"

type="monetary_amount_usd">
<column name="INITIAL_PRICE"/>

<column name="INITIAL_PRICE_CUR"/>
</property>

@org.hibernate.annotations.Type (type = "monetary_ amount_eur")
@Qorg.hibernate.annotations.Columns ({
@Column (name = "BID_AMOUNT"),
@Column (name = "BID_AMOUNT_CUR")
1)
private MonetaryAmount bidAmount;
Let’s look at a different, extremely important, application of custom mapping
types. The type-safe enumeration design pattern can be found in almost all appli-

cations.

5.3.7 Mapping enumerations

An enumeration type is a common Java idiom where a class has a constant (small)
number of immutable instances. In CaveatEmptor, this can be applied to credit
cards: for example, to express the possible types a user can enter and the applica-
tion offers (Mastercard, Visa, and so on). Or, you can enumerate the possible rat-
ings a user can submit in a Comment, about a particular auction.

234

CHAPTER 5
Inheritance and custom types

In older JDKs, you had to implement such classes (let’s call them CreditCard-
Type and Rating) yourself, following the type-safe enumeration pattern. This is
still the right way to do it if you don’t have JDK 5.0; the pattern and compatible
custom mapping types can be found on the Hibernate community website.

Using enumerations in JDK 5.0
If you use JDK 5.0, you can use the built-in language support for type-safe enumer-
ations. For example, a Rating class looks as follows:

package auction.model;

public enum Rating {
EXCELLENT, OK, BAD
}

The Comment class has a property of this type:

public class Comment {

private Rating rating;
private Item auction;

}
This is how you use the enumeration in the application code:

Comment goodComment =
new Comment (Rating.EXCELLENT, thisAuction) ;

You now have to persist this Comment instance and its Rating. One approach is to
use the actual name of the enumeration and save it to a VARCHAR column in the
COMMENTS table. This RATING column will then contain EXCELLENT, OK, or BAD,
depending on the Rating given.

Let’s write a Hibernate UserType that can load and store VARCHAR-backed enu-
merations, such as the Rating.

Writing a custom enumeration handler

Instead of the most basic UserType interface, we now want to show you the
EnhancedUserType interface. This interface allows you to work with the Comment
entity in XML representation mode, not only as a POJO (see the discussion of
data representations in chapter 3, section 3.4, “Alternative entity representa-
tion”). Furthermore, the implementation you’ll write can support any VARCHAR-
backed enumeration, not only Rating, thanks to the additional Parameterized-
Type interface.

Look at the code in listing 5.6.

Creating custom mapping types 235

Listing 5.6 Custom mapping type for string-backed enumerations

public class StringEnumUserType
implements EnhancedUserType, ParameterizedType {

private Class<Enum> enumClass;

public void setParameterValues (Properties parameters) { 4!P
String enumClassName =
parameters.getProperty ("enumClassname") ;
try {
enumClass = ReflectHelper.classForName (enumClassName) ;
} catch (ClassNotFoundException cnfe) {
throw new
HibernateException ("Enum class not found", cnfe);
}
}

public Class returnedClass() { 49
return enumClass;

}

public int[] sglTypes() { 49
return new int[] { Hibernate.STRING.sqglType() 1};
}

public boolean isMutable... 49
public Object deepCopy...

public Serializable disassemble...
public Object replace...

public Object assemble...

public boolean equals...

public int hashCode...

public Object fromXMLString (String xmlValue) { 4!?
return Enum.valueOf (enumClass, xmlValue) ;

}

public String objectToSQLString (Object value) {
return '\'' + ((Enum) value).name() + '\'"';

}

public String toXMLString(Object value) {
return ((Enum) value) .name();

}

public Object nullSafeGet (ResultSet rs, QS?
String[] names,
Object owner)
throws SQLException ({
String name = rs.getString(names[0]); 49
return rs.wasNull() ? null : Enum.valueOf (enumClass, name) ;

}

public void nullSafeSet (PreparedStatement st,

236

© 6 060 oo

CHAPTER 5
Inheritance and custom types

Object value,
int index)
throws SQLException {

if (value == null) {

st.setNull (index, Hibernate.STRING.sglType());
} else {

st.setString(index, ((Enum) value).name());

}

The configuration parameter for this custom mapping type is the name of the
enumeration class it’s used for, such as Rating.

It’s also the class that is returned from this method.

A single VARCHAR column is needed in the database table. You keep it portable by
letting Hibernate decide the SQL datatype.

These are the usual housekeeping methods for an immutable type.

The following three methods are part of the EnhancedUserType and are used for
XML marshalling.

When you’re loading an enumeration, you get its name from the database and
create an instance.

When you’re saving an enumeration, you store its name.

Next, you’ll map the rating property with this new custom type.

Mapping enumerations with XML and annotations
In the XML mapping, first create a custom type definition:

<typedef class="persistence.StringEnumUserType"
name="rating">
<param name="enumClassname">auction.model.Rating</param>
</typedef>

You can now use the type named rating in the Comment class mapping:

<property name="rating"
column="RATING"
type="rating"
not-null="true"
update="false"
access="field"/>

Creating custom mapping types 237

Because ratings are immutable, you map it as update="false" and enable direct
field access (no setter method for immutable properties). If other classes besides
Comment have a Rating property, use the defined custom mapping type again.

The definition and declaration of this custom mapping type in annotations
looks the same as the one you did in the previous section.

On the other hand, you can rely on the Java Persistence provider to persist
enumerations. If you have a property in one of your annotated entity classes of
type java.lang.Enum (such as the rating in your Comment), and it isn’t marked as
@Transient or transient (the Java keyword), the Hibernate JPA implementation
must persist this property out of the box without complaining; it has a built-in
type that handles this. This built-in mapping type has to default to a representa-
tion of an enumeration in the database. The two common choices are string rep-
resentation, as you implemented for native Hibernate with a custom type, or
ordinal representation. An ordinal representation saves the position of the
selected enumeration option: for example, 1 for EXCELLENT, 2 for OK, and 3 for
BAD. The database column also defaults to a numeric column. You can change this
default enumeration mapping with the Enumerated annotation on your property:

public class Comment {

@Enumerated (EnumType.STRING)
@Column (name = "RATING", nullable = false, updatable = false)
private Rating rating;

}

You’ve now switched to a string-based representation, effectively the same repre-
sentation your custom type can read and write. You can also use a JPA XML
descriptor:

<entity class="auction.model.Item" access="PROPERTY">
<attributes>

<basic name="rating">
<column name="RATING" nullable="false" updatable="false"/>
<enumerated>STRING</enumerated>
</basic>
</attributes>
</entity>

You may (rightfully) ask why you have to write your own custom mapping type for
enumerations when obviously Hibernate, as a Java Persistence provider, can per-
sist and load enumerations out of the box. The secret is that Hibernate Annota-
tions includes several custom mapping types that implement the behavior defined

238

CHAPTER 5
Inheritance and custom types

by Java Persistence. You could use these custom types in XML mappings; however,
they aren’t user friendly (they need many parameters) and weren’t written for
that purpose. You can check the source (such as org.hibernate.type.EnumType
in Hibernate Annotations) to learn their parameters and decide if you want to use
them directly in XML.

Querying with custom mapping types
One further problem you may run into is using enumerated types in Hibernate
queries. For example, consider the following query in HQL that retrieves all com-
ments that are rated “bad”:
Query q =
session.createQuery (
"from Comment ¢ where c.rating = auction.model.Rating.BAD"

)i
Although this query works if you persist your enumeration as a string (the query
parser uses the enumeration value as a constant), it doesn’t work if you selected
ordinal representation. You have to use a bind parameter and set the rating value
for the comparison programmatically:

Query q =
session.createQuery ("from Comment ¢ where c.rating = :rating");

Properties params = new Properties();
params.put ("enumClassname",
"auction.model .Rating") ;

g.setParameter ("rating", Rating.BAD,
Hibernate.custom(StringEnumUserType.class, params)

)i
The last line in this example uses the static helper method Hibernate.custom()
to convert the custom mapping type to a Hibernate Type; this is a simple way to
tell Hibernate about your enumeration mapping and how to deal with the
Rating.BAD value. Note that you also have to tell Hibernate about any initializa-
tion properties the parameterized type may need.

Unfortunately, there is no API in Java Persistence for arbitrary and custom
query parameters, so you have to fall back to the Hibernate Session API and cre-
ate a Hibernate Query object.

We recommend that you become intimately familiar with the Hibernate type
system and that you consider the creation of custom mapping types an essential
skill—it will be useful in every application you develop with Hibernate or JPA.

5.4

Summary 239

Summary

In this chapter, you learned how inheritance hierarchies of entities can be
mapped to the database with the four basic inheritance mapping strategies: table
per concrete class with implicit polymorphism, table per concrete class with
unions, table per class hierarchy, and the normalized table per subclass strategy.
You've seen how these strategies can be mixed for a particular hierarchy and
when each strategy is most appropriate.

We also elaborated on the Hibernate entity and value type distinction, and
how the Hibernate mapping type system works. You used various built-in types
and wrote your own custom types by utilizing the Hibernate extension points such
as UserType and ParameterizedType.

Table 5.5 shows a summary you can use to compare native Hibernate features
and Java Persistence.

Table 5.5 Hibernate and JPA comparison chart for chapter 5

Hibernate Core Java Persistence and EJB 3.0

Supports four inheritance mapping Four inheritance mapping strategies are standardized; mixing
strategies. Mixing of inheritance strategies in one hierarchy isn’t considered portable. Only table
strategies is possible. per class hierarchy and table per subclass are required for JPA-
compliant providers.

A persistent supertype can be an A persistent supertype can be an abstract class; mapped inter-
abstract class or an interface (with faces aren’t considered portable.
property accessor methods only).

Provides flexible built-in mapping There is automatic detection of mapping types, with standard-

types and converters for value typed | ized override for temporal and enum mapping types. Hibernate

properties. extension annotation is used for any custom mapping type dec-
laration.

Powerful extendable type system. The standard requires built-in types for enumerations, LOBs, and

many other value types for which you'd have to write or apply a
custom mapping type in native Hibernate.

The next chapter introduces collection mappings and discusses how you can han-
dle collections of value typed objects (for example, a collection of Strings) and
collections that contain references to entity instances.

Mapping collections
and entity assoctations

This chapter covers

®m Basic collection mapping strategies
® Mapping collections of value types
® Mapping a parent/children entity relationship

240

6.1

6.1.1

Sets, bags, lists, and maps of value types 241

Two important (and sometimes difficult to understand) topics didn’t appear in
the previous chapters: the mapping of collections, and the mapping of associa-
tions between entity classes.

Most developers new to Hibernate are dealing with collections and entity asso-
ciations for the first time when they try to map a typical parent/child relationship.
But instead of jumping right into the middle, we start this chapter with basic col-
lection mapping concepts and simple examples. After that, you’ll be prepared for
the first collection in an entity association—although we’ll come back to more
complicated entity association mappings in the next chapter. To get the full pic-
ture, we recommend you read both chapters.

Sets, bags, lists, and maps of value types

An object of value type has no database identity; it belongs to an entity instance,
and its persistent state is embedded in the table row of the owning entity—at least,
if an entity has a reference to a single instance of a valuetype. If an entity class has
a collection of value types (or a collection of references to value-typed instances),
you need an additional table, the so-called collection table.

Before you map collections of value types to collection tables, remember that
value-typed classes don’t have identifiers or identifier properties. The lifespan of a
value-type instance is bounded by the lifespan of the owning entity instance. A
value type doesn’t support shared references.

Java has a rich collection API, so you can choose the collection interface and
implementation that best fits your domain model design. Let’s walk through the
most common collection mappings.

Suppose that sellers in CaveatEmptor are able to attach images to Items. An
image is accessible only via the containing item; it doesn’t need to support associ-
ations from any other entity in your system. The application manages the collec-
tion of images through the Item class, adding and removing elements. An image
object has no life outside of the collection; it’s dependent on an Item entity.

In this case, it isn’t unreasonable to model the image class as a value type.
Next. you need to decide what collection to use.

Selecting a collection interface
The idiom for a collection property in the Java domain model is always the same:

private <<Interface>> images = new <<Implementation>> () ;

// Getter and setter methods

242

CHAPTER 6
Mapping collections and entity associations

Use an interface to declare the type of the property, not an implementation. Pick
a matching implementation, and initialize the collection right away; doing so
avoids uninitialized collections (we don’t recommend initializing collections late,
in constructors or setter methods).

If you work with JDK 5.0, you’ll likely code with the generic versions of the JDK
collections. Note that this isn’t a requirement; you can also specify the contents of
the collection explicitly in mapping metadata. Here’s a typical generic Set with a
type parameter:

private Set<String> images = new HashSet<String> () ;

// Getter and setter methods

Out of the box, Hibernate supports the most important JDK collection interfaces.
In other words, it knows how to preserve the semantics of JDK collections, maps,
and arrays in a persistent fashion. Each interface has a matching implementation
supported by Hibernate, and it’s important that you use the right combination.
Hibernate only wraps the collection object you've already initialized on declara-
tion of the field (or sometimes replaces it, if it’s not the right one).

Without extending Hibernate, you can choose from the following collections:

= A java.util.Set is mapped with a <set> element. Initialize the collection
with a java.util.HashSet. The order of its elements isn’t preserved, and
duplicate elements aren’t allowed. This is the most common persistent col-
lection in a typical Hibernate application.

= A java.util.SortedSet can be mapped with <set>, and the sort attribute
can be set to either a comparator or natural ordering for in-memory sort-
ing. Initialize the collection with a java.util.TreeSet instance.

= A java.util.List can be mapped with <list>, preserving the position of
each element with an additional index column in the collection table. Ini-
tialize with a java.util.ArrayList.

= A java.util.Collection can be mapped with <bag> or <idbag>. Java
doesn’t have a Bag interface or an implementation; however, java.util.
Collection allows bag semantics (possible duplicates, no element order is
preserved). Hibernate supports persistent bags (it uses lists internally but
ignores the index of the elements). Use a java.util.ArrayList to initial-
ize a bag collection.

= A java.util.Map can be mapped with <map>, preserving key and value
pairs. Use a java.util.HashMap to initialize a property.

6.1.2

Sets, bags, lists, and maps of value types 243

= A java.util.SortedMap can be mapped with <map> element, and the sort
attribute can be set to either a comparator or natural ordering for in-mem-
ory sorting. Initialize the collection with a java.util.TreeMap instance.

= Arrays are supported by Hibernate with <primitive-array> (for Java prim-
itive value types) and <array> (for everything else). However, they’re rarely
used in domain models, because Hibernate can’t wrap array properties.
You lose lazy loading without bytecode instrumentation, and optimized
dirty checking, essential convenience and performance features for persis-
tent collections.

The JPA standard doesn’t name all these options. The possible standard collection
property types are Set, List, Collection, and Map. Arrays aren’t considered.

Furthermore, the JPA specification only specifies that collection properties
hold references to entity objects. Collections of value types, such as simple String
instances, aren’t standardized. However, the specification document already men-
tions that future versions of JPA will support collection elements of embeddable
classes (in other words, value types). You’ll need vendor-specific support if you
want to map collections of value types with annotations. Hibernate Annotations
include that support, and we’d expect many other JPA vendors support the same.

If you want to map collection interfaces and implementations not directly sup-
ported by Hibernate, you need to tell Hibernate about the semantics of your cus-
tom collections. The extension point in Hibernate is called Persistent-
Collection; usually you extend one of the existing PersistentSet, Persistent-
Bag, or PersistentList classes. Custom persistent collections are not very easy to
write and we don’t recommend doing this if you aren’t an experienced Hibernate
user. An example can be found in the Hibernate test suite source code, as part of
your Hibernate download package.

We now go through several scenarios, always implementing the collection of
item images. You map it first in XML and then with Hibernate’s support for collec-
tion annotations. For now, assume that the image is stored somewhere on the file-
system and that you keep just the filename in the database. How images are stored
and loaded with this approach isn’t discussed; we focus on the mapping.

Mapping a set

The simplest implementation is a Set of String image filenames. First, add a col-
lection property to the Item class:

244

6.1.3

CHAPTER 6
Mapping collections and entity associations

private Set images = new HashSet();

public Set getImages() {
return this.images;

}

public void setImages (Set images) {
this.images = images;

}
Now, create the following mapping in the Item’s XML metadata:

<set name="images" table="ITEM_ IMAGE">
<key column="ITEM_ID"/>

<element type="string" column="FILENAME" not-null="true"/>

</set>
The image filenames are stored in a table named ITEM_IMAGE, the collection
table. From the point of view of the database, this table is a separate entity, a sepa-
rate table, but Hibernate hides this for you. The <key> element declares the for-
eign key column in the collection table that references the primary key ITEM_ID
of the owning entity. The <element> tag declares this collection as a collection of
value type instances—in this case, of strings.

A set can’t contain duplicate elements, so the primary key of the ITEM IMAGE
collection table is a composite of both columns in the <set> declaration: ITEM_ID
and FILENAME. You can see the schema in figure 6.1.

ITEM ITEM_IMAGE
ITEM_ID | NAME ITEM_ID | FILENAME
1 Foo 1 foo?mage1 .J:pg Figure 6.1
Bar 1 focimage2.jpg Table structure and example data for a
Baz 2 barimage1.jpg collection of strings

It doesn’t seem likely that you would allow the user to attach the same image more
than once, but let’s suppose you did. What kind of mapping would be appropriate
in that case?

Mapping an identifier bag

An unordered collection that permits duplicate elements is called a bag. Curi-
ously, the Java Collections framework doesn’t include a bag implementation.
However, the java.util.Collection interface has bag semantics, so you only
need a matching implementation. You have two choices:

Sets, bags, lists, and maps of value types 245

= Write the collection property with the java.util.Collection interface,
and, on declaration, initialize it with an ArrayList of the JDK. Map the
collection in Hibernate with a standard <bag> or <idbag> element. Hiber-
nate has a built-in PersistentBag that can deal with lists; however, consis-
tent with the contract of a bag, it ignores the position of elements in the
ArrayList. In other words, you get a persistent Collection.

= Write the collection property with the java.util.List interface, and, on
declaration, initialize it with an ArrayList of the JDK. Map it like the previ-
ous option, but expose a different collection interface in the domain model
class. This approach works but isn’t recommended, because clients using
this collection property may think the order of elements is always preserved,
which isn’t the case if it’s mapped as a <bag> or <idbag>.

We recommend the first option. Change the type of images in the Item class from
Set to Collection, and initialize it with an ArrayList:

private Collection images = new ArrayList();

public Collection getImages() {
return this.images;

}

public void setImages (Collection images) {

this.images = images;

}

Note that the setter method accepts a Collection, which can be anything in the
JDK collection interface hierarchy. However, Hibernate is smart enough to replace
this when persisting the collection. (It also relies on an ArrayList internally, like
you did in the declaration of the field.)

You also have to modify the collection table to permit duplicate FILENAMEs;
the table needs a different primary key. An <idbag> mapping adds a surrogate
key column to the collection table, much like the synthetic identifiers you use for
entity classes:

<idbag name="images" table="ITEM_IMAGE">

<collection-id type="long" column="ITEM IMAGE_ID">
<generator class="sequence"/>
</collection-id>

<key column="ITEM_ID"/>

<element type="string" column="FILENAME" not-null="true"/>
</idbag>

246

6.14

CHAPTER 6
Mapping collections and entity associations

ITEM
ITEM_ID | NAME
1 Foo
2 Bar
Baz

ITEM_IMAGE
ITEM_IMAGE_ID | ITEM_ID | FILENAME
1 1 fooimage1.jpg
1 fooimage1.jpg
3 barimage1.jpg

Figure 6.2 A surrogate primary key allows duplicate bag elements.

In this case, the primary key is the generated ITEM_IMAGE_ID, as you can see in fig-
ure 6.2. Note that the native generator for primary keys isn’t supported for
<idbag> mappings; you have to name a concrete strategy. This usually isn’t a
problem, because real-world applications often use a customized identifier gener-
ator anyway. You can also isolate your identifier generation strategy with place-

holders; see chapter 3, section 3.3.4.3, “Using placeholders.”

Also note that the ITEM_IMAGE_ID column isn’t exposed to the application in
any way. Hibernate manages it internally.

A more likely scenario is one in which you wish to preserve the order in which
images are attached to the Item. There are a number of good ways to do this; one

way is to use a real list, instead of a bag.

Mapping a list

First, let’s update the Item class:

private List images

public List getImages() {

return this.images;

}

public void setImages (List images)

this.images

}

A <list> mapping requires the addition of an index column to the collection table.
The index column defines the position of the element in the collection. Thus,
Hibernate is able to preserve the ordering of the collection elements. Map the
collection as a <1ist>:

images;

new ArrayList();

<list name="images" table="ITEM_IMAGE">

<key column="ITEM_ID"/>

<list-index column="POSITION"/>

6.1.5

Sets, bags, lists, and maps of value types 247

<element type="string" column="FILENAME" not-null="true"/>

</list>
(There is also an index element in the XML DTD, for compatibility with Hiber-
nate 2.x. The new list-index is recommended; it’s less confusing and does the
same thing.)

The primary key of the collection table is a composite of ITEM_ID and POSI-
TION. Notice that duplicate elements (FILENAME) are now allowed, which is consis-
tent with the semantics of a list, see figure 6.3.

ITEM ITEM_IMAGE
ITEM_ID | NAME ITEM_ID | POSITION | FILENAME
1 Foo 1 0 fooimage1.jpg
Bar 1 1 fooimage2.jpg
Baz 1 2 foomage3.jpg

Figure 6.3 The collection table preserves the position of each element.

The index of the persistent list starts at zero. You could change this, for example,
with <list-index base="1".../>inyour mapping. Note that Hibernate adds null
elements to your Java list if the index numbers in the database aren’t continuous.

Alternatively, you could map a Java array instead of a list. Hibernate supports
this; an array mapping is virtually identical to the previous example, except with
different element and attribute names (<array> and <array-index>). However,
for reasons explained earlier, Hibernate applications rarely use arrays.

Now, suppose that the images for an item have user-supplied names in addi-
tion to the filename. One way to model this in Java is a map, with names as keys
and filenames as values of the map.

Mapping a map
Again, make a small change to the Java class:

private Map images = new HashMap () ;

public Map getImages() {
return this.images;

}

public void setImages (Map images) {
this.images = images;

}

Mapping a <map> (pardon us) is similar to mapping a list.

248

6.1.6

CHAPTER 6
Mapping collections and entity associations

ITEM ITEM_IMAGE
ITEM_ID | NAME ITEM_ID | IMAGENAME FILENAME
1 Foo 1 Image One fooimage1.jpg
2 Bar 1 Image Two fooimage2.jpg
Baz 1 Image Three foomage3.jpg

Figure 6.4 Tables for a map, using strings as indexes and elements

<map name="images" table="ITEM_ IMAGE">
<key column="ITEM_ID"/>
<map-key column="IMAGENAME" type="string"/>

<element type="string" column="FILENAME" not-null="true"/>
</map>
The primary key of the collection table is a composite of ITEM_ID and IMAGENAME.
The IMAGENAME column holds the keys of the map. Again, duplicate elements are
allowed; see figure 6.4 for a graphical view of the tables.
This map is unordered. What if you want to always sort your map by the name
of the image?

Sorted and ordered collections

In a startling abuse of the English language, the words sorted and ordered mean dif-
ferent things when it comes to Hibernate persistent collections. A sorted collection is
sorted in memory using a Java comparator. An ordered collection is ordered at the
database level using an SQL query with an order by clause.

Let’s make the map of images a sorted map. First, you need to change the ini-
tialization of the Java property to a java.util.TreeMap and switch to the
java.util.SortedMap interface:

private SortedMap images = new TreeMap/() ;

public SortedMap getImages () {
return this.images;

}

public void setImages (SortedMap images) {
this.images = images;
}

Hibernate handles this collection accordingly, if you map it as sorted:

Sets, bags, lists, and maps of value types 249

<map name="images"
table="ITEM_IMAGE"
sort="natural">

<key column="ITEM_ID"/>
<map-key column="IMAGENAME" type="string"/>

<element type="string" column="FILENAME" not-null="true"/>

</map>
By specifying sort="natural", you tell Hibernate to use a SortedMap and to sort
the image names according to the compareTo () method of java.lang.String. If
you need some other sort algorithm (for example, reverse alphabetical order),
you may specify the name of a class that implements java.util.Comparator in
the sort attribute. For example:

<map name="images"

table="ITEM_ IMAGE"
sort="auction.util.comparator.ReverseStringComparator">

<key column="ITEM_ ID"/>
<map-key column="IMAGENAME" type="string"/>

<element type="string" column="FILENAME" not-null="true"/>
</map>

A java.util.SortedSet (with a java.util.TreeSet implementation) is mapped
like this:

<set name="images"
table="ITEM_IMAGE"
sort="natural">

<key column="ITEM_ID"/>

<element type="string" column="FILENAME" not-null="true"/>
</set>
Bags may not be sorted (there is no TreeBag, unfortunately), nor may lists; the
order of list elements is defined by the list index.

Alternatively, instead of switching to the Sorted* interfaces and the (Tree*
implementations), you may want to work with a linked map and to sort elements
on the database side, not in memory. Keep the Map/HashMap declaration in the
Java class, and create the following mapping:

<map name="images"

table="ITEM IMAGE"
order-by="IMAGENAME asc">

250

CHAPTER 6
Mapping collections and entity associations

<key column="ITEM_ID"/>
<map-key column="IMAGENAME" type="string"/>

<element type="string" column="FILENAME" not-null="true"/>
</map>
The expression in the order-by attribute is a fragment of an SQL order by
clause. In this case, Hibernate orders the collection elements by the IMAGENAME
column in ascending order during loading of the collection. You can even include
an SQL function call in the order-by attribute:
<map name="images"

table="ITEM_IMAGE"
order-by="1lower (FILENAME) asc">

<key column="ITEM_ID"/>
<map-key column="IMAGENAME" type="string"/>

<element type="string" column="FILENAME" not-null="true"/>

</map>
You can order by any column of the collection table. Internally, Hibernate uses a
LinkedHashMap, a variation of a map that preserves the insertion order of key ele-
ments. In other words, the order that Hibernate uses to add the elements to the
collection, during loading of the collection, is the iteration order you see in your
application. The same can be done with a set: Hibernate internally uses a
LinkedHashSet. In your Java class, the property is a regular Set/HashSet, but
Hibernate’s internal wrapping with a LinkedHashSet is again enabled with the
order-by attribute:

<set name="images"

table="ITEM_IMAGE"
order-by="FILENAME asc">

<key column="ITEM_ID"/>

<element type="string" column="FILENAME" not-null="true"/>
</set>
You can also let Hibernate order the elements of a bag for you during collection
loading. Your Java collection property is either Collection/ArrayList or List/
ArrayList. Internally, Hibernate uses an ArrayList to implement a bag that pre-
serves insertion-iteration order:
<idbag name="images"

table="ITEM_IMAGE"
order-by="ITEM_ IMAGE_ID desc">

6.2

Collections of components 251

<collection-id type="long" column="ITEM IMAGE_ID">
<generator class="sequence"/>
</collection-id>

<key column="ITEM_ID"/>

<element type="string" column="FILENAME" not-null="true"/>

</idbag>
The linked collections Hibernate uses internally for sets and maps are available
only in JDK 1.4 or later; older JDKs don’t come with a LinkedHashMap and
LinkedHashSet. Ordered bags are available in all JDK versions; internally, an
ArrayList is used.

In a real system, it’s likely that you’ll need to keep more than just the image
name and filename. You’ll probably need to create an Image class for this extra
information. This is the perfect use case for a collection of components.

Collections of components

You could map Image as an entity class and create a one-to-many relationship
from Item to Image. However, this isn’t necessary, because Image can be modeled
as a value type: Instances of this class have a dependent lifecycle, don’t need their
own identity, and don’t have to support shared references.

As a value type, the Image class defines the properties name, filename, sizeX,
and sizeY. It has a single association with its owner, the Item entity class, as shown
in figure 6.5.

As you can see from the composition association style (the black diamond),
Image is a component of Item, and Item is the entity that is responsible for the
lifecycle of Image instances. The multiplicity of the association further declares
this association as many-valued—that is, many (or zero) Image instances for the
same Item instance.

Let’s walk through the implementation of this in Java and through a mapping
in XML.

Item
name : String
description : String Image
initialPrice : BigDecimal 0.* | hame : String
reservePrice : BigDecimal |& filename : String
startDate : Date sizeX : int
endDate : Date sizeY : int Figure 6.5
state : ItemState Collection of Image components
approvalDatetime : Date in Item

252

6.2.1

6.2.2

CHAPTER 6
Mapping collections and entity associations

Writing the component class

First, implement the Image class as a regular POJO. As you know from chapter 4,
component classes don’t have an identifier property. You must implement
equals () (and hashCode()) and compare the name, filename, sizeX, and sizeY
properties. Hibernate relies on this equality routine to check instances for
modifications. A custom implementation of equals() and hashCode() isn’t
required for all component classes (we would have mentioned this earlier). How-
ever, we recommend it for any component class because the implementation is
straightforward, and “better safe than sorry” is a good motto.

The Item class may have a Set of images, with no duplicates allowed. Let’s map
this to the database.

Mapping the collection

Collections of components are mapped similarly to collections of JDK value type.
The only difference is the use of <composite-element> instead of an <element>
tag. An ordered set of images (internally, a LinkedHashSet) can be mapped like
this:

<set name="images"

table="ITEM_IMAGE"
order-by="IMAGENAME asc">

<key column="ITEM_ID"/>

<composite-element class="Image">
<property name="name" column="IMAGENAME" not-null="true"/>
<property name="filename" column="FILENAME" not-null="true"/>
<property name="sizeX" column="SIZEX" not-null="true"/>
<property name="sizeY" column="SIZEY" not-null="true"/>

</composite-element>

</set>
The tables with example data are shown in figure 6.6.

This is a set, so the primary key of the collection table is a composite of the
key column and all element columns: ITEM_ID, IMAGENAME, FILENAME, SIZEX, and
SIZEY. Because these columns all appear in the primary key, you needed to
declare them with not-null="true" (or make sure they’re NOT NULL in any exist-
ing schema). No column in a composite primary key can be nullable—you can’t
identify what you don’t know. This is probably a disadvantage of this particular
mapping. Before you improve this (as you may guess, with an identifier bag), let’s
enable bidirectional navigation.

6.2.3

Collections of components 253

ITEM
ITEM_ID | ITEM_NAME

1 Foo
2 Bar
3 Baz

ITEM_IMAGE

ITEM_ID | IMAGENAME | FILENAME| SIZEX | SIZEY

1 Foo Foo.jpg 123 123

- Figure 6.6
Bar Bar.jpg 420 | 80 Example data tables for a collection
2 Baz Baz.jpg 50 60 of components mapping

Enabling bidirectional navigation

The association from Item to Image is unidirectional. You can navigate to the
images by accessing the collection through an Item instance and iterating:
anItem.getImages () .iterator (). This is the only way you can get these image
objects; no other entity holds a reference to them (value type again).

On the other hand, navigating from an image back to an item doesn’t make
much sense. However, it may be convenient to access a back pointer like anIm-
age.getItem() in some cases. Hibernate can fill in this property for you if you
add a <parent> element to the mapping:

<set name="images"

table="ITEM_ IMAGE"
order-by="IMAGE_NAME asc">

<key column="ITEM_ID"/>

<composite-element class="Image">
<parent name="item"/>
<property name="name" column="IMAGENAME" not-null="true"/>
<property name="filename" column="FILENAME" not-null="true"/>
<property name="sizeX" column="SIZEX" not-null="true"/>
<property name="sizeY" column="SIZEY" not-null="true"/>

</composite-element>

</set>

True bidirectional navigation is impossible, however. You can’t retrieve an Image
independently and then navigate back to its parent Item. This is an important
issue: You can load Image instances by querying for them. But these Image objects
won’t have a reference to their owner (the property is null) when you query in
HQL or with a Criteria. They’re retrieved as scalar values.

254

6.24

CHAPTER 6
Mapping collections and entity associations

Finally, declaring all properties as not-null is something you may not want.
You need a different primary key for the IMAGE collection table, if any of the prop-
erty columns are nullable.

Avoiding not-null columns

Analogous to the additional surrogate identifier property an <idbag> offers, a
surrogate key column would come in handy now. As a side effect, an <idset>
would also allow duplicates—a clear conflict with the notion of a set. For this and
other reasons (including the fact that nobody ever asked for this feature), Hiber-
nate doesn’t offer an <idset> or any surrogate identifier collection other than
an <idbag>. Hence, you need to change the Java property to a Collection with
bag semantics:

private Collection images = new ArrayList();

public Collection getImages() {
return this.images;

}

public void setImages(Collection images) {
this.images = images;

}

This collection now also allows duplicate Image elements—it’s the responsibility of
your user interface, or any other application code, to avoid these duplicate ele-
ments if you require set semantics. The mapping adds the surrogate identifier col-
umn to the collection table:

<idbag name="images"
table="ITEM_IMAGE"
order-by="IMAGE_NAME asc">

<collection-id type="long" column="ITEM_IMAGE_ID">
<generator class="sequence"/>

</collection-id>

<key column="ITEM_ID"/>

<composite-element class="Image">
<property name="name" column="IMAGENAME"/>
<property name="filename" column="FILENAME" not-null="true"/>
<property name="sizeX" column="SIZEX"/>
<property name="sizeY" column="SIZEY"/>
</composite-element>
</idbag>

The primary key of the collection table is now the ITEM_IMAGE_ID column, and it
isn’t important that you implement equals () and hashCode () on the Image class

Collections of components 255

ITEM_IMAGE
ITEM_IMAGE_ID ITEM_ID | IMAGENAME| FILENAME | SIZEX | SIZEY

1 1 Foo Foo.jpg 123 123
1 Bar Bar.jpg 420 80
2 Baz Baz.jpg NULL | NULL

Figure 6.7 Collection of Image components using a bag with surrogate key

(at least, Hibernate doesn’t require it). Nor do you have to declare the properties
with not-null="true". They may be nullable, as can be seen in figure 6.7.

We should point out that there isn’t a great deal of difference between this bag
mapping and a standard parent/child entity relationship like the one you map
later in this chapter. The tables are identical. The choice is mainly a matter of
taste. A parent/child relationship supports shared references to the child entity
and true bidirectional navigation. The price you’d pay is more complex lifecycles
of objects. Value-typed instances can be created and associated with the persistent
Item by adding a new element to the collection. They can be disassociated and
permanently deleted by removing an element from the collection. If Image would
be an entity class that supports shared references, you’d need more code in your
application for the same operations, as you'll see later.

Another way to switch to a different primary key is a map. You can remove the
name property from the Image class and use the image name as the key of a map:

<map name="images"

table="ITEM_IMAGE"
order-by="IMAGENAME asc">

<key column="ITEM_ ID"/>
<map-key type="string" column="IMAGENAME"/>

<composite-element class="Image">
<property name="filename" column="FILENAME" not-null="true"/>
<property name="sizeX" column="SIZEX"/>
<property name="sizeY" column="SIZEY"/>
</composite-element>
</map>
The primary key of the collection table is now a composite of ITEM_ID and IMAGE-
NAME.
A composite element class like Image isn’t limited to simple properties of basic
type like filename. It may contain other components, mapped with <nested-

composite-element>, and even <many-to-one> associations to entities. It can’t

256

6.3

6.3.1

CHAPTER 6
Mapping collections and entity associations

own collections, however. A composite element with a many-to-one association is
useful, and we come back to this kind of mapping in the next chapter.

This wraps up our discussion of basic collection mappings in XML. As we men-
tioned at the beginning of this section, mapping collections of value types with
annotations is different compared with mappings in XML; at the time of writing, it
isn’t part of the Java Persistence standard but is available in Hibernate.

Mapping collections with annotations

The Hibernate Annotations package supports nonstandard annotations for the
mapping of collections that contain value-typed elements, mainly org.hiber-
nate.annotations.CollectionOfElements. Let’s walk through some of the most
common scenarios again.

Basic collection mapping
The following maps a simple collection of String elements:

@Qorg.hibernate.annotations.CollectionOfElements (

targetElement = java.lang.String.class
)
@JoinTable (
name = "ITEM_ IMAGE",
joinColumns = @JoinColumn (name = "ITEM_ID")
)
@Column (name = "FILENAME", nullable = false)

private Set<String> images = new HashSet<String>();

The collection table ITEM_IMAGE has two columns; together, they form the com-
posite primary key. Hibernate can automatically detect the type of the element if
you use generic collections. If you don’t code with generic collections, you need
to specify the element type with the targetElement attribute—in the previous
example it’s therefore optional.

To map a persistent List, add @org.hibernate.annotations.IndexColumn
with an optional base for the index (default is zero):

Qorg.hibernate.annotations.CollectionOfElements

@JoinTable (
name = "ITEM_TMAGE",
joinColumns = @JoinColumn (name = "ITEM_ID")

)
@org.hibernate.annotations.IndexColumn (
name="POSITION", base =1

6.3.2

Mapping collections with annotations 257

éColumn(name = "FILENAME")

private List<String> images = new ArrayList<String>();
If you forget the index column, this list would be treated as a bag collection,
equivalent to a <bag> in XML.

For collections of value types, you'd usually use <idbag> to get a surrogate pri-
mary key on the collection table. A <bag> of value typed elements doesn’t really
work; duplicates would be allowed at the Java level, but not in the database. On
the other hand, pure bags are great for one-to-many entity associations, as you’ll
see in chapter 7.

To map a persistent map, use @org.hibernate.annotations.MapKey:

@org.hibernate.annotations.CollectionOfElements

@JoinTable (
name = "ITEM_TIMAGE",
joinColumns = @JoinColumn (name = "ITEM_ID")

)
@org.hibernate.annotations.MapKey (
columns = @Column (name="IMAGENAME")

éColumn(name = "FILENAME")

private Map<String, String> images = new HashMap<String, String>();
If you forget the map key, the keys of this map would be automatically mapped to
the column MAPKEY.

If the keys of the map are not simple strings but of an embeddable class, you
can specify multiple map key columns that hold the individual properties of the
embeddable component. Note that @org.hibernate.annotations.MapKey is a
more powerful replacement for @javax.persistence.MapKey, which isn’t very
useful (see chapter 7, section 7.2.4 “Mapping maps”).

Sorted and ordered collections

A collection can also be sorted or ordered with Hibernate annotations:

@org.hibernate.annotations.CollectionOfElements

@JoinTable (

name = "ITEM_IMAGE",

joinColumns = @JoinColumn (name = "ITEM_ID")
)
@Column (name = "FILENAME", nullable = false)

@org.hibernate.annotations. Sort (
type = org.hibernate.annotations.SortType.NATURAL
)

private SortedSet<String> images = new TreeSet<String>();

258

6.3.3

CHAPTER 6
Mapping collections and entity associations

(Note that without the @JoinColumn and/or @Column, Hibernate applies the
usual naming conventions and defaults for the schema.) The @Sort annotation
supports various SortType attributes, with the same semantics as the XML map-
ping options. The shown mapping uses a java.util.SortedSet (with a java.
util.TreeSet implementation) and natural sort order. If you enable SortType.
COMPARATOR, you also need to set the comparator attribute to a class that imple-
ments your comparison routine. Maps can also be sorted; however, as in XML
mappings, there is no sorted Java bag or a sorted list (which has a persistent
ordering of elements, by definition).
Maps, sets, and even bags, can be ordered on load, by the database, through an
SQL fragment in the ORDER BY clause:
@org.hibernate.annotations.CollectionOfElements
@JoinTable(
name = "ITEM_IMAGE",
joinColumns = @JoinColumn (name = "ITEM_ID")
éColumn(name = "FILENAME", nullable = false)
@Qorg.hibernate.annotations.OrderBy (
clause = "FILENAME asc"
érivate Set<String> images = new HashSet<String> () ;
The clause attribute of the Hibernate-specific @0rderBy annotation is an SQL
fragment that is passed on directly to the database; it can even contain function
calls or any other native SQL keyword. See our explanation earlier for details
about the internal implementation of sorting and ordering; the annotations are
equivalent to the XML mappings.

Mapping a collection of embedded objects

Finally, you can map a collection of components, of user-defined value-typed ele-
ments. Let’s assume that you want to map the same Image component class you’ve
seen earlier in this chapter, with image names, sizes, and so on.

You need to add the @Embeddable component annotation on that class to
enable embedding:

@Embeddable
public class Image {

Qorg.hibernate.annotations.Parent

Item item;

@Column (length = 255, nullable = false)
private String name;

Mapping collections with annotations

@Column (length = 255, nullable = false)
private String filename;

@Column (nullable = false)
private int sizeX;

@Column (nullable = false)
private int sizeyY;

// Constructor, accessor methods, equals()/hashCode()

}

259

Note that you again map a back pointer with a Hibernate annotation; anIm-
age.getItem() can be useful. You can leave out this property if you don’t need
this reference. Because the collection table needs all the component columns as

the composite primary key, it’s important that you map these columns as NOT
NULL. You can now embed this component in a collection mapping and even over-
ride column definitions (in the following example you override the name of a sin-
gle column of the component collection table; all others are named with the

default strategy):

@org.hibernate.annotations.CollectionOfElements
@JoinTable (

name = "ITEM_IMAGE",

joinColumns = @JoinColumn (name = "ITEM_ ID")
)
@AttributeOverride (

name = "element.name",

column = @Column (name = "IMAGENAME",

length = 255,
nullable = false)
)

private Set<Image> images = new HashSet<Image> () ;

To avoid the non-nullable component columns you need a surrogate primary key
on the collection table, like <idbag> provides in XML mappings. With annota-

tions, use the @CollectionId Hibernate extension:

@org.hibernate.annotations.CollectionOfElements
@JoinTable (

name = "ITEM_TMAGE",
joinColumns = @JoinColumn (name = "ITEM ID")
)
@CollectionId(
columns = @Column (name = "ITEM_IMAGE_ID"),
type = @org.hibernate.annotations.Type(type = "long"),
generator = "sequence"

)
private Collection<Image> images = new ArrayList<Image> () ;

260

6.4

CHAPTER 6
Mapping collections and entity associations

You’ve now mapped all the basic and some more complex collections with XML
mapping metadata, and annotations. Switching focus, we now consider collec-
tions with elements that aren’t value types, but references to other entity
instances. Many Hibernate users try to map a typical parent/children entity rela-
tionship, which involves a collection of entity references.

Mapping a parent/children relationship

From our experience with the Hibernate user community, we know that the first
thing many developers try to do when they begin using Hibernate is a mapping of
a parent/children relationship. This is usually the first time you encounter
collections. It’s also the first time you have to think about the differences between
entities and value types, or get lost in the complexity of ORM.

Managing the associations between classes and the relationships between
tables is at the heart of ORM. Most of the difficult problems involved in imple-
menting an ORM solution relate to association management.

You mapped relationships between classes of value type in the previous section
and earlier in the book, with varying multiplicity of the relationship ends. You
map a one multiplicity with a simple <property> or as a <component>. The many
association multiplicity requires a collection of value types, with <element> or
<composite-element> mappings.

Now you want to map one- and many-valued relationships between entity
classes. Clearly, entity aspects such as shared references and independent lifecycle com-
plicate this relationship mapping. We’ll approach these issues step by step; and, in
case you aren’t familiar with the term multiplicity, we’ll also discuss that.

The relationship we show in the following sections is always the same, between
the Item and Bid entity classes, as can be seen in figure 6.8.

Memorize this class diagram. But first, there’s something we need to explain
up front.

If you've used EJB CMP 2.0, you're familiar with the concept of a managed
association (or managed relationship). CMP associations are called container
managed relationships (CMRs) for a reason. Associations in CMP are inherently
bidirectional. A change made to one side of an association is instantly reflected at
the other side. For example, if you call aBid.setItem(anItem), the container
automatically calls anItem.getBids () .add(aBid).

0.* .
ltem ° Bid Figure 6.8

Relationship between Item and Bid

6.4.1

6.4.2

Mapping a parent/children relationship 261

POJO-oriented persistence engines such as Hibernate don’t implement man-
aged associations, and POJO standards such as EJB 3.0 and Java Persistence don’t
require managed associations. Contrary to EJB 2.0 CMR, Hibernate and JPA associ-
ations are all inherently unidirectional. As far as Hibernate is concerned, the associ-
ation from Bid to Item is a different association than the association from Item to
Bid! This is a good thing—otherwise your entity classes wouldn’t be usable outside
of a runtime container (CMR was a major reason why EJB 2.1 entities were consid-
ered problematic).

Because associations are so important, you need a precise language for classify-
ing them.

Multiplicity

In describing and classifying associations, we’ll almost always use the term multi-
plicity. In our example, the multiplicity is just two bits of information:

= Can there be more than one Bid for a particular Item?

= Can there be more than one Item for a particular Bid?

After glancing at the domain model (see figure 6.8), you can conclude that the
association from Bid to Item is a many-to-one association. Recalling that associa-
tions are directional, you classify the inverse association from Item to Bid as a one-
to-many association.

There are only two more possibilities: many-to-many and one-to-one. We’ll get
back to these in the next chapter.

In the context of object persistence, we aren’t interested in whether many
means two or a maximum of five or unrestricted. And we’re only barely inter-
ested in optionality of most associations; we don’t especially care whether an asso-
ciated instance is required or if the other end in an association can be NULL
(meaning zero-to-many and to-zero association) However, these are important
aspects in your relational data schema that influence your choice of integrity
rules and the constraints you define in SQL DDL (see chapter 8, section 8.3,
“Improving schema DDL”).

The simplest possible association

The association from Bid to Item (and vice versa) is an example of the simplest
possible kind of entity association. You have two properties in two classes. One is a
collection of references, and the other a single reference.

First, here’s the Java class implementation of Bid:

262 CHAPTER 6
Mapping collections and entity associations

public class Bid {

private Item item;

public void setItem(Item item) {
this.item = item;

}

public Item getItem() {
return item;

}

}
Next, this is the Hibernate mapping for this association:

<class
name="Bid"
table="BID">

<many-to-one
name="item"
column="ITEM_ID"
class="Item"
not-null="true"/>

</class>

This mapping is called a unidirectional many-to-one association. (Actually, because it’s
unidirectional, you don’t know what is on the other side, and you could just as
well call this mapping a unidirectional to-one association mapping.) The column
ITEM_ID in the BID table is a foreign key to the primary key of the ITEM table.

You name the class Item, which is the target of this association, explicitly. This
is usually optional, because Hibernate can determine the target type with reflec-
tion on the Java property.

You added the not-null attribute because you can’t have a bid without an
item—a constraint is generated in the SQL DDL to reflect this. The foreign key
column ITEM ID in the BID can never be NULL, the association is not to-zero-or-
one. The table structure for this association mapping is shown in figure 6.9.

<< Table >>
ITEM

<< Table >>
BID

ITEM_ID << PK >>
SELLER_ID << FK >>
NAME

DESCRIPTION
INITIAL_PRICE

BID_ID << PK >>
ITEM_ID << FK >>
BIDDER_ID << FK >>
AMOUNT

Figure 6.9

Table relationships and keys for a

one-to-many mapping

Mapping a parent/children relationship 263

In JPA, you map this association with the @anyToOne annotation, either on the
field or getter method, depending on the access strategy for the entity (deter-
mined by the position of the @Id annotation):

public class Bid {

@ManyToOne (targetEntity = auction.model.Item.class)
@JoinColumn (name = "ITEM_ID", nullable = false)
private Item item;

}

There are two optional elements in this mapping. First, you don’t have to include
the targetEntity of the association; it’s implicit from the type of the field. An
explicit targetEntity attribute is useful in more complex domain models—for
example, when you map a @ManyToOne on a getter method that returns a delegate
class, which mimics a particular target entity interface.

The second optional element is the @JoinColumn. If you don’t declare the
name of the foreign key column, Hibernate automatically uses a combination of
the target entity name and the database identifier property name of the target
entity. In other words, if you don’t add a @JoinColumn annotation, the default
name for the foreign key column is item plus id, separated with an underscore.
However, because you want to make the foreign key column NOT NULL, you need
the annotation anyway to set nullable = false. If you generate the schema with
the Hibernate Tools, the optional="false" attribute on the @ManyToOne would
also result in a NOT NULL constraint on the generated column.

This was easy. It’s critically important to realize that you can write a complete
application without using anything else. (Well, maybe a shared primary key one-
to-one mapping from time to time, as shown in the next chapter.) You don’t
need to map the other side of this class association, and you’ve already mapped
everything present in the SQL schema (the foreign key column). If you need the
Item instance for which a particular Bid was made, call aBid.getItem(), utiliz-
ing the entity association you created. On the other hand, if you need all bids
that have been made for an item, you can write a query (in whatever language
Hibernate supports).

One of the reasons you use a full object/relational mapping tool like Hiber-
nate is, of course, that you don’t want to write that query.

264 CHAPTER 6
Mapping collections and entity associations

6.4.3 Making the association bidirectional

You want to be able to easily fetch all the bids for a particular item without an
explicit query, by navigating and iterating through the network of persistent
objects. The most convenient way to do this is with a collection property on Item:
anItem.getBids () .iterator (). (Note that there are other good reasons to map
a collection of entity references, but not many. Always try to think of these kinds
of collection mappings as a feature, not a requirement. If it gets too difficult,
don’t do it.)

You now map a collection of entity references by making the relationship
between Itemand Bid bidirectional.

First add the property and scaffolding code to the Item class:

public class Item {

private Set bids = new HashSet () ;

public void setBids(Set bids) {
this.bids = bids;
}

public Set getBids () {
return bids;

}

public void addBid(Bid bid) {
bid.setItem(this) ;
bids.add(bid) ;

}

You can think of the code in addBid() (a convenience method) as implementing
a managed association in the object model! (We had more to say about these
methods in chapter 3, section 3.2, “Implementing the domain model.” You may
want to review the code examples there.)

A basic mapping for this one-to-many association looks like this:

<class

name="Item"
table="ITEM">

<set name="bids">
<key column="ITEM_ ID"/>

Mapping a parent/children relationship 265

<one-to-many class="Bid"/>
</set>

</class>

If you compare this with the collection mappings earlier in this chapter, you see
that you map the content of the collection with a different element, <one-to-
many>. This indicates that the collection contains not value type instances, but ref-
erences to entity instances. Hibernate now knows how to treat shared references
and the lifecycle of the associated objects (it disables all the implicit dependent
lifecycle of value type instances). Hibernate also knows that the table used for the
collection is the same table the target entity class is mapped to—the <set> map-
ping needs no table attribute.

The column mapping defined by the <key> element is the foreign key column
ITEM_ID of the BID table, the same column you already mapped on the other side
of the relationship.

Note that the table schema didn’t change; it’s the same as it was before you
mapped the many side of the association. There is, however, one difference: The
not null="true" attribute is missing. The problem is that you now have two dif-
ferent unidirectional associations mapped to the same foreign key column. What
side controls that column?

At runtime, there are two different in-memory representations of the same for-
eign key value: the item property of Bid and an element of the bids collection
held by an Item. Suppose the application modifies the association, by, for exam-
ple, adding a bid to an item in this fragment of the addBid () method:

bid.setItem(item) ;

bids.add(bid);
This code is fine, but in this situation, Hibernate detects two changes to the in-
memory persistent instances. From the point of view of the database, only one
value has to be updated to reflect these changes: the ITEM ID column of the
BID table.

Hibernate doesn’t transparently detect the fact that the two changes refer to
the same database column, because at this point you’ve done nothing to indicate
that this is a bidirectional association. In other words, you’ve mapped the same
column twice (it doesn’t matter that you did this in two mapping files), and Hiber-
nate always needs to know about this because it can’t detect this duplicate auto-
matically (there is no reasonable default way it could be handled).

266

CHAPTER 6
Mapping collections and entity associations

You need one more thing in the association mapping to make this a real bidi-
rectional association mapping. The inverse attribute tells Hibernate that the col-
lection is a mirror image of the <many-to-one> association on the other side:

<class

name="Item"
table="ITEM">

<set name="bids"
inverse="true">

<key column="ITEM_ID"/>
<one-to-many class="Bid"/>

</set>

</class>

Without the inverse attribute, Hibernate tries to execute two different SQL state-
ments, both updating the same foreign key column, when you manipulate the
link between two instances. By specifying inverse="true", you explicitly tell
Hibernate which end of the link it should not synchronize with the database. In
this example, you tell Hibernate that it should propagate changes made at the
Bid end of the association to the database, ignoring changes made only to the
bids collection.

If you only call anItem.getBids () .add(bid), no changes are made persistent!
You get what you want only if the other side, aBid.setItem(anItem), is set cor-
rectly. This is consistent with the behavior in Java without Hibernate: If an associa-
tion is bidirectional, you have to create the link with pointers on two sides, not just
one. It’s the primary reason why we recommend convenience methods such as
addBid () —they take care of the bidirectional references in a system without con-
tainer-managed relationships.

Note that an inverse side of an association mapping is always ignored for the
generation of SQL DDL by the Hibernate schema export tools. In this case, the
ITEM_ID foreign key column in the BID table gets a NOT NULL constraint, because
you’ve declared it as such in the noninverse <many-to-one> mapping.

(Can you switch the inverse side? The <many-to-one> element doesn’t have an
inverse attribute, but you can map it with update="false" and insert="false"
to effectively ignore it for any UPDATE or INSERT statements. The collection side is
then noninverse and considered for insertion or updating of the foreign key col-
umn. We’ll do this in the next chapter.)

6.4.4

Mapping a parent/children relationship 267

Let’s map this inverse collection side again, with JPA annotations:

public class Item {

@OneToMany (mappedBy = "item")
private Set<Bid> bids = new HashSet<Bid> () ;

}

The mappedBy attribute is the equivalent of the inverse attribute in XML map-
pings; however, it has to name the inverse property of the target entity. Note that
you don’t specify the foreign key column again here (it’s mapped by the other
side), so this isn’t as verbose as the XML.

You now have a working bidirectional many-to-one association (which could also
be called a bidirectional one-to-many association). One final option is missing if
you want to make it a true parent/children relationship.

Cascading object state

The notion of a parent and a child implies that one takes care of the other. In
practice, this means you need fewer lines of code to manage a relationship
between a parent and a child, because some things can be taken care of automati-
cally. Let’s explore the options.

The following code creates a new Item (which we consider the parent) and a
new Bid instance (the child):

Item newItem = new Item();
Bid newBid = new Bid();

newItem.addBid (newBid); // Set both sides of the association

session.save (newltem) ;

session.save (newBid) ;
The second call to session.save () seems redundant, if we’re talking about a true
parent/children relationship. Hold that thought, and think about entities and
value types again: If both classes are entities, their instances have a completely
independent lifecycle. New objects are transient and have to be made persistent if
you want to store them in the database. Their relationship doesn’t influence their
lifecycle, if they’re entities. If Bid would be a value type, the state of a Bid instance
is the same as the state of its owning entity. In this case, however, Bid is a separate
entity with its own completely independent state. You have three choices:

268

CHAPTER 6
Mapping collections and entity associations

= Take care of the independent instances yourself, and execute additional
save () and delete() calls on the Bid objects when needed—in addition to
the Java code needed to manage the relationship (adding and removing ref-
erences from collections, and so on).

= Make the Bid class a value type (a component). You can map the collec-
tion with a <composite-element> and get the implicit lifecycle. However,
you lose other aspects of an entity, such as possible shared references to
an instance.

= Do you need shared references to Bid objects? Currently, a particular Bid
instance isn’t referenced by more than one Item. However, imagine that a
User entity also has a collection of bids, made by the user. To support
shared references, you have to map Bid as an entity. Another reason you
need shared references is the successfulBid association from Item in the
full CaveatEmptor model. In this case, Hibernate offers transitive persistence,
a feature you can enable to save lines of code and to let Hibernate manage
the lifecycle of associated entity instances automatically.

You don’t want to execute more persistence operations than absolutely necessary,
and you don’t want to change your domain model—you need shared references
to Bid instances. The third option is what you'll use to simplify this parent/chil-
dren example.

Transitive persistence
When you instantiate a new Bid and add it to an Item, the bid should become per-
sistent automatically. You’d like to avoid making the Bid persistent explicitly with
an extra save () operation.

To enable this transitive state across the association, add a cascade option to
the XML mapping:

<class

name="Item"
table="ITEM">

<set name="bids"
inverse="true"
cascade="save-update">

<key column="ITEM_ID"/>
<one-to-many class="Bid"/>

</set>

</class>

Mapping a parent/children relationship 269

The cascade="save-update" attribute enables transitive persistence for Bid
instances, if a particular Bid is referenced by a persistent Item, in the collection.
The cascade attribute is directional: It applies to only one end of the associa-
tion. You could also add cascade="save-update" to the <many-to-one> associa-
tion in the mapping of Bid, but because bids are created after items, doing so
doesn’t make sense.
JPA also supports cascading entity instance state on associations:

public class Item {

@OneToMany (cascade = { CascadeType.PERSIST, CascadeType.MERGE },
mappedBy = "item")
private Set<Bid> bids = new HashSet<Bid> () ;

}
Cascading options are per operation you’d like to be transitive. For native Hiber-
nate, you cascade the save and update operations to associated entities with
cascade="save-update". Hibernate’s object state management always bundles
these two things together, as you’ll learn in future chapters. In JPA, the (almost)
equivalent operations are persist and merge.

You can now simplify the code that links and saves an Item and a Bid, in native
Hibernate:

Item newItem = new Item();

Bid newBid = new Bid();

newltem.addBid(newBid); // Set both sides of the association

session.save (newltem) ;

All entities in the bids collection are now persistent as well, just as they would be
if you called save () on each Bid manually. With the JPA EntityManager API, the
equivalent to a Session, the code is as follows:

Item newltem = new Item();
Bid newBid = new Bid();

newItem.addBid (newBid); // Set both sides of the association
entityManager.persist (newlItem) ;

Don’t worry about the update and merge operations for now; we’ll come back to
them later in the book.

270

CHAPTER 6
Mapping collections and entity associations

FAQ What is the effect of cascade on inverse? Many new Hibernate users ask
this question. The answer is simple: The cascade attribute has nothing to
do with the inverse attribute. They often appear on the same collection
mapping. If you map a collection of entities as inverse="true", you're
controlling the generation of SQL for a bidirectional association map-
ping. It’s a hint that tells Hibernate you mapped the same foreign key
column twice. On the other hand, cascading is used as a convenience fea-
ture. If you decide to cascade operations from one side of an entity rela-
tionship to associated entities, you save the lines of code needed to
manage the state of the other side manually. We say that object state
becomes transitive. You can cascade state not only on collections of enti-
ties, but on all entity association mappings. cascade and inverse have in
common the fact that they don’t appear on collections of value types or
on any other value-type mappings. The rules for these are implied by the
nature of value types.

Are you finished now? Well, perhaps not quite.

Cascading deletion

With the previous mapping, the association between Bid and Item is fairly loose.
So far, we have only considered making things persistent as a transitive state. What
about deletion?

It seems reasonable that deletion of an item implies deletion of all bids for the
item. In fact, this is what the composition (the filled out diamond) in the UML
diagram means. With the current cascading operations, you have to write the fol-
lowing code to make that happen:

Item anItem = // Load an item

// Delete all the referenced bids
for (Iterator<Bid> it = anItem.getBids().iterator();
it.hasNext ();) {

Bid bid = it.next();

it.remove () ; // Remove reference from collection
session.delete(bid) ; // Delete it from the database

}

session.delete(anItem) ; // Finally, delete the item

First you remove the references to the bids by iterating the collection. You delete
each Bid instance in the database. Finally, the Item is deleted. Iterating and
removing the references in the collection seems unnecessary; after all, you’ll
delete the Item at the end anyway. If you can guarantee that no other object (or

Mapping a parent/children relationship 271

row in any other table) holds a reference to these bids, you can make the dele-
tion transitive.

Hibernate (and JPA) offer a cascading option for this purpose. You can enable
cascading for the delete operation:

<set name="bids"

inverse="true"
cascade="save-update, delete">

The operation you cascade in JPA is called remove:

public class Item {

@OneToMany (cascade = { CascadeType.PERSIST,
CascadeType .MERGE,
CascadeType.REMOVE 1},
mappedBy = "item")
private Set<Bid> bids = new HashSet<Bid> () ;

}

The same code to delete an item and all its bids is reduced to the following, in
Hibernate or with JPA:

Item anItem = // Load an item

session.delete(anItem) ;

entityManager.remove (anItem) ;
The delete operation is now cascaded to all entities referenced in the collection.
You no longer have to worry about removal from the collection and manually
deleting those entities one by one.

Let’s consider one further complication. You may have shared references to
the Bid objects. As suggested earlier, a User may have a collection of references to
the Bid instances they made. You can’t delete an item and all its bids without
removing these references first. You may get an exception if you try to commit this
transaction, because a foreign key constraint may be violated.

You have to chase the pointers. This process can get ugly, as you can see in the fol-
lowing code, which removes all references from all users who have references
before deleting the bids and finally the item:

Item anItem = // Load an item

// Delete all the referenced bids
for (Iterator<Bid> it = anItem.getBids().iterator();
it.hasNext();) {

272

CHAPTER 6
Mapping collections and entity associations

Bid bid = it.next();

// Remove references from users who have made this bid
Query g = session.createQuery(
"from User u where :bid in elements(u.bids)"
) ;
g.setParameter ("bid", bid);
Collection usersWithThisBid = g.list();

for (Iterator itUsers = usersWithThisBid.iterator();

itUsers.hasNext ();) {
User user = (User) itUsers.next();
user.getBids () .remove (bid) ;

}

session.delete (anlItem) ;

// Finally, delete the item and the associated bids
Obviously, the additional query (in fact, many queries) isn’t what you want. How-
ever, in a network object model, you don’t have any choice other than executing
code like this if you want to correctly set pointers and references—there is no
persistent garbage collector or other automatic mechanism. No Hibernate cascad-
ing option helps you; you have to chase all references to an entity before you
finally delete it.

(This isn’t the whole truth: Because the BIDDER_ID foreign key column that
represents the association from User to Bid is in the BID table, these references
are automatically removed at the database level if a row in the BID table is deleted.
This doesn’t affect any objects that are already present in memory in the current
unit of work, and it also doesn’t work if BIDDER_ID is mapped to a different (inter-
mediate) table. To make sure all references and foreign key columns are nulled
out, you need to chase pointers in Java.)

On the other hand, if you don’t have shared references to an entity, you
should rethink your mapping and map the bids as a collection components (with
the Bid as a <composite-element>). With an <idbag> mapping, even the tables
look the same:

<class

name="Item"
table="ITEM">

<idbag name="bids" table="BID">

<collection-id type="long" column="BID_ID">
<generator class="sequence"/>
</collection-id>

Mapping a parent/children relationship 273

<key column="ITEM_ID" not-null="true"/>

<composite-element class="Bid">
<parent name="item"/>
<property .../>

</composite-element>
</idbag>

</class>

The separate mapping for Bid is no longer needed.
If you really want to make this a one-to-many entity association, Hibernate
offers another convenience option you may be interested in.

Enabling orphan deletion
The cascading option we explain now is somewhat difficult to understand. If you
followed the discussion in the previous section, you should be prepared.

Imagine you want to delete a Bid from the database. Note that you aren’t delet-
ing the parent (the Item) in this case. The goal is to remove a row in the BID
table. Look at this code:

anItem.getBids () .remove (aBid) ;

If the collection has the Bid mapped as a collection of components, as in the pre-
vious section, this code triggers several operations:

» The aBid instance is removed from the collection Item.bids.

= Because Bid is mapped as a value type, and no other object can hold a refer-
ence to the aBid instance, the row representing this bid is deleted from the
BID table by Hibernate.

In other words, Hibernate assumes that aBid is an orphan if it’s removed from its
owning entity’s collection. No other in-memory persistent object is holding a ref-
erence to it. No foreign key value that references this row can be present in the
database. Obviously, you designed your object model and mapping this way by
making the Bid class an embeddable component.

However, what if Bid is mapped as an entity and the collection is a <one-to-
many>? The code changes to

anItem.getBids () .remove (aBid) ;

session.delete(aBid) ;
The aBid instance has its own lifecycle, so it can exist outside of the collection. By
deleting it manually, you guarantee that nobody else will hold a reference to it,

274

CHAPTER 6
Mapping collections and entity associations

and the row can be removed safely. You may have removed all other references
manually. Or, if you didn’t, the database constraints prevent any inconsistency,
and you see a foreign key constraint exception.

Hibernate offers you a way to declare this guarantee for collections of entity
references. You can tell Hibernate, “If I remove an element from this collection, it
will be an entity reference, and it’s going to be the only reference to that entity
instance. You can safely delete it.” The code that worked for deletion with a collec-
tion of components works with collections of entity references.

This option is called cascade orphan delete. You can enable it on a collection
mapping in XML as follows:

<set name="bids"

inverse="true"
cascade="save-update, delete, delete-orphan">

With annotations, this feature is available only as a Hibernate extension:

public class Item {

@OneToMany (cascade = { CascadeType.PERSIST,
CascadeType.MERGE,
CascadeType.REMOVE 1},
mappedBy = "item")
@Qorg.hibernate.annotations.Cascade (
value = org.hibernate.annotations.CascadeType.DELETE_ORPHAN
)
private Set<Bid> bids = new HashSet<Bid> () ;

}

Also note that this trick works only for collections of entity references in a one-to-
many association; conceptually, no other entity association mapping supports it.
You should ask yourself at this point, with so many cascading options set on your
collection, whether a simple collection of components may be easier to handle.
After all, you’ve enabled a dependent lifecycle for objects referenced in this col-
lection, so you may as well switch to the implicit and fully dependent lifecycle of
components.
Finally, let’s look at the mapping in a JPA XML descriptor:

<entity-mappings>

<entity class="auction.model.Item" access="FIELD">

<one-to-many name="bids" mapped-by="item">

6.5

Summary 275

<cascade>
<cascade-persist/>
<cascade-merge/>
<cascade-remove/>
</cascade>
</one-to-many>
</entity>

<entity class="auction.model.Bid" access="FIELD">

<many-to-one name="item">
<join-column name="ITEM_ID"/>
</many-to-one>
</entity>

</entity-mappings>

Note that the Hibernate extension for cascade orphan deletion isn’t available in
this case.

Summary

You’re probably a little overwhelmed by all the new concepts we introduced in
this chapter. You may have to read it a few times, and we encourage you to try the
code (and watch the SQL log). Many of the strategies and techniques we’ve shown
in this chapter are key concepts of object/relational mapping. If you master col-
lection mappings, and once you’ve mapped your first parent/children entity asso-
ciation, you’ll have the worst behind you. You’ll already be able to build entire
applications!

Table 6.1 summarizes the differences between Hibernate and Java Persistence
related to concepts discussed in this chapter.

Table 6.1 Hibernate and JPA comparison chart for chapter 6

Hibernate Core

Java Persistence and EJB 3.0

Hibernate provides mapping support for sets, lists,
maps, bags, identifier bags, and arrays. All JDK collec-
tion interfaces are supported, and extension points for
custom persistent collections are available.

Standardized persistent sets, lists, maps,
and bags are supported.

Collections of value types and components are
supported.

Hibernate Annotations is required for collec-
tions of value types and embeddable
objects.

Parent/children entity relationships are supported,
with transitive state cascading on associations per
operation.

You can map entity associations and enable
transitive state cascading on associations
per operation.

276

CHAPTER 6
Mapping collections and entity associations

Table 6.1 Hibernate and JPA comparison chart for chapter 6 (continued)

Hibernate Core Java Persistence and EJB 3.0
Automatic deletion of orphaned entity instances is Hibernate Annotations is required for auto-
built in. matic deletion of orphaned entity instances.

We’ve covered only a tiny subset of the entity association options in this chapter.
The remaining options we explore in detail in the next chapter are either rare or
variations of the techniques we’ve just described.

Advanced entity
association mappings

This chapter covers

® Mapping one-to-one and many-to-one entity
associations

® Mapping one-to-many and many-to-many
entity associations

® Polymorphic entity associations

277

278

7.1

CHAPTER 7
Advanced entity association mappings

When we use the word associations, we always refer to relationships between enti-
ties. In the previous chapter, we demonstrated a unidirectional many-to-one asso-
ciation, made it bidirectional, and finally turned it into a parent/children
relationship (one-to-many and many-to-one with cascading options).

One reason we discuss more advanced entity mappings in a separate chapter is
that quite a few of them are considered rare, or at least optional.

It’s absolutely possible to only use component mappings and many-to-one
(occasionally one-to-one) entity associations. You can write a sophisticated appli-
cation without ever mapping a collection! Of course, efficient and easy access to
persistent data, by iterating a collection for example, is one of the reasons why you
use full object/relational mapping and not a simple JDBC query service. However,
some exotic mapping features should be used with care and even avoided most of
the time.

We’ll point out recommended and optional mapping techniques in this chap-
ter, as we show you how to map entity associations with all kinds of multiplicity,
with and without collections.

Single-valued entity associations

Let’s start with one-to-one entity associations.

We argued in chapter 4 that the relationships between User and Address (the
user has a billingAddress, homeAddress, and shippingAddress) are best repre-
sented with a <component> mapping. This is usually the simplest way to represent
one-to-one relationships, because the lifecycle is almost always dependent in such
a case, it’s either an aggregation or a composition in UML.

But what if you want a dedicated table for Address, and you map both User
and Address as entities? One benefit of this model is the possibility for shared ref-
erences—another entity class (let’s say Shipment) can also have a reference to a
particular Address instance. If a User has a reference to this instance, as their
shippingAddress, the Address instance has to support shared references and
needs its own identity.

In this case, User and Address classes have a true one-to-one association. Look at
the revised class diagram in figure 7.1.

The first change is a mapping of the Address class as a stand-alone entity:

<class name="Address" table="ADDRESS">

<id name="id" column="ADDRESS_ID">
<generator .../>

</id>
<property name="street" column="STREET"/>

711

Single-valued entity associations 279

<property name="city" column="CITY"/>
<property name="zipcode" column="ZIPCODE"/>
</class>
We assume you won'’t have any difficulty creating the same mapping with annota-
tions or changing the Java class to an entity, with an identifier property—this is
the only change you have to make.
Now let’s create the association mappings from other entities to that class.
There are several choices, the first being a primary key one-to-one association.

User
firstname : String shipping p» Address o delivery Shipment
lastname : String —>f street : String — inspectionPeriodDays : int
username : String zipcode : String 0.7 state : ShipmentState
password : String city : String created : Date
email : String
ranking : int
admin : boolean

Figure 7.1 Address as an entity with two associations referencing the same instance

Shared primary key associations

Rows in two tables related by a primary key association share the same primary key
values. The main difficulty with this approach is ensuring that associated instances
are assigned the same primary key value when the objects are saved. Before we try
to solve this problem, let’s see how you map the primary key association.

Mapping a primary key association with XML
The XML mapping element that maps an entity association to a shared primary
key entity is <one-to-one>. First you need a new property in the User class:

public class User {

private Address shippingAddress;
// Getters and setters

}
Next, map the association in User.hbm.xml:

<one-to-one name="shippingAddress"
class="Address"
cascade="save-update" />
You add a cascading option that is natural for this model: If a User instance is
made persistent, you usually also want its shippingAddress to become persistent.
Hence, the following code is all that is needed to save both objects:

280

CHAPTER 7
Advanced entity association mappings

User newUser = new User();
Address shippingAddress = new Address();

newUser.setShippingAddress (shippingAddress) ;

session.save (newUser) ;

Hibernate inserts a row into the USERS table and a row into the ADDRESS table. But
wait, this doesn’t work! How can Hibernate possibly know that the record in the
ADDRESS table needs to get the same primary key value as the USERS row? At the
beginning of this section, we intentionally didn’t show you any primary-key gener-
ator in the mapping of Address.

You need to enable a special identifier generator.

The foreign identifier generator
If an Address instance is saved, it needs to get the primary key value of a User
object. You can’t enable a regular identifier generator, let’s say a database
sequence. The special foreign identifier generator for Address has to know
where to get the right primary key value.

The first step to create this identifier binding between Address and User is a
bidirectional association. Add a new user property to the Address entity:

public class Address {

private User user;
// Getters and setters

}
Map the new user property of an Address in Address.hbm.xml:

<one-to-one name="user"
class="User"
constrained="true"/>
This mapping not only makes the association bidirectional, but also, with con-
strained="true", adds a foreign key constraint linking the primary key of the
ADDRESS table to the primary key of the USERS table. In other words, the database
guarantees that an ADDRESS row’s primary key references a valid USERS primary
key. (As a side effect, Hibernate can now also enable lazy loading of users when a
shipping address is loaded. The foreign key constraint means that a user has to
exist for a particular shipping address, so a proxy can be enabled without hitting
the database. Without this constraint, Hibernate has to hit the database to find
out if there is a user for the address; the proxy would then be redundant. We’ll
come back to this in later chapters.)
You can now use the special foreign identifier generator for Address objects:

Single-valued entity associations 281

<class name="Address" table="ADDRESS">

<id name="id" column="ADDRESS_ID">
<generator class="foreign">
<param name="property">user</param>
</generator>
</id>

<one-to-one name="user"
class="User"
constrained="true"/>

</class>

This mapping seems strange at first. Read it as follows: When an Address is saved,
the primary key value is taken from the user property. The user property is a ref-
erence to a User object; hence, the primary key value that is inserted is the same
as the primary key value of that instance. Look at the table structure in figure 7.2.

<< Table >>
<< Table >>

USERS
USER_ID << PK>> ADDRESS

= ADDRESS_ID << PK >> << FK >>
FIRSTNAME STREET .
LASTNAME co Figure 7.2
USERNAME ZIPCODE The USERS and ADDRESS tables

CITY L

have the same primary keys.

The code to save both objects now has to consider the bidirectional relationship,
and it finally works:

User newUser = new User();
Address shippingAddress = new Address();

newUser.setShippingAddress (shippingAddress) ;
shippingAddress.setUser (newUser) ; // Bidirectional

session.save (newUser) ;

Let’s do the same with annotations.

Shared primary key with annotations
JPA supports one-to-one entity associations with the @0neToOne annotation. To
map the association of shippingAddress in the User class as a shared primary key
association, you also need the @PrimaryKeyJoinColumn annotation:

@OneToOne

@PrimaryKeyJoinColumn

private Address shippingAddress;
This is all that is needed to create a unidirectional one-to-one association on a
shared primary key. Note that you need @PrimaryKeyJoinColumns (plural)

282

7.1.2

CHAPTER 7
Advanced entity association mappings

instead if you map with composite primary keys. In a JPA XML descriptor, a one-to-
one mapping looks like this:

<entity-mappings>

<entity class="auction.model.User" access="FIELD">

<one-to-one name="shippingAddress">
<primary-key-join-column/>
</one-to-one>
</entity>

</entity-mappings>

The JPA specification doesn’t include a standardized method to deal with the
problem of shared primary key generation, which means you’re responsible for
setting the identifier value of an Address instance correctly before you save it (to
the identifier value of the linked User instance). Hibernate has an extension
annotation for custom identifier generators which you can use with the Address
entity (just like in XML):

@Entity

@Table (name = "ADDRESS")
public class Address {

@Id @GeneratedvValue (generator = "myForeignGenerator")
@org.hibernate.annotations.GenericGenerator (

name = "myForeignGenerator",

strategy = "foreign",

parameters = @Parameter (name = "property", value = "user")
)
@Column (name = "ADDRESS_ID")

private Long id;

private User user;
}
Shared primary key one-to-one associations aren’t uncommon but are relatively
rare. In many schemas, a to-one association is represented with a foreign key field
and a unique constraint.

One-to-one foreign key associations

Instead of sharing a primary key, two rows can have a foreign key relationship.
One table has a foreign key column that references the primary key of the
associated table. (The source and target of this foreign key constraint can even be
the same table: This is called a self-referencing relationship.)

Single-valued entity associations 283

Let’s change the mapping from a User to an Address. Instead of the shared
primary key, you now add a SHIPPING_ADDRESS_ID column in the USERS table:

<class name="User" table="USERS">

<many-to-one name="shippingAddress"
class="Address"
column="SHIPPING_ADDRESS_ID"
cascade="save-update"
unique="true"/>

</class>

The mapping element in XML for this association is <many-to-one>—not <one-
to-one>, as you might have expected. The reason is simple: You don’t care what’s
on the target side of the association, so you can treat it like a fo-one association
without the many part. All you want is to express “This entity has a property that is
a reference to an instance of another entity” and use a foreign key field to repre-
sent that relationship. The database schema for this mapping is shown in

figure 7.3.
<< Table >>

USERS << Table >>
USER_ID << PK >> ADDRESS
SHIPPING_ADDRESS_ID << FK >> << UNIQUE >> ADDRESS_ID << PK >>
FIRSTNAME STREET
LASTNAME ZIPCODE
USERNAME CITY

Figure 7.3 A one-to-one foreign key association between USERS and ADDRESS

An additional constraint enforces this relationship as a real one to one. By making
the SHIPPING_ADDRESS_ID column unigque, you declare that a particular address
can be referenced by at most one user, as a shipping address. This isn’t as strong as
the guarantee from a shared primary key association, which allows a particular
address to be referenced by at most one user, period. With several foreign key col-
umns (let’s say you also have unique HOME_ADDRESS_ID and BILLING_ADDRESS_ID),
you can reference the same address target row several times. But in any case, two
users can’t share the same address for the same purpose.
Let’s make the association from User to Address bidirectional.

Inverse property reference
The last foreign key association was mapped from User to Address with <many-to-
one> and a unique constraint to guarantee the desired multiplicity. What mapping

284

CHAPTER 7
Advanced entity association mappings

element can you add on the Address side to make this association bidirectional, so
that access from Address to User is possible in the Java domain model?

In XML, you create a <one-to-one> mapping with a property reference
attribute:

<one-to-one name="user"

class="User"

property-ref="shippingAddress" />
You tell Hibernate that the user property of the Address class is the inverse of a
property on the other side of the association. You can now call anAd-
dress.getUser () to access the user who’s shipping address you’ve given. There is
no additional column or foreign key constraint; Hibernate manages this pointer
for you.

Should you make this association bidirectional? As always, the decision is up to
you and depends on whether you need to navigate through your objects in that
direction in your application code. In this case, we’d probably conclude that the
bidirectional association doesn’t make much sense. If you call anaAd-
dress.getUser (), you are saying “give me the user who has this address has its
shipping address,” not a very reasonable request. We recommend that a foreign
key-based one-to-one association, with a unique constraint on the foreign key col-
umn—is almost always best represented without a mapping on the other side.

Let’s repeat the same mapping with annotations.

Mapping a foreign key with annotations
The JPA mapping annotations also support a one-to-one relationship between
entities based on a foreign key column. The main difference compared to the
mappings earlier in this chapter is the use of @JoinColumn instead of @Prima-
ryKeyJoinColumn.

First, here’s the to-one mapping from User to Address with the unique con-
straint on the SHIPPING_ADDRESS_ID foreign key column. However, instead of a
@ManyToOne annotation, this requires a @neToOne annotation:

public class User {
@0OneToOne

@JoinColumn (name="SHIPPING_ADDRESS_ID")
private Address shippingAddress;

713

Single-valued entity associations 285

Hibernate will now enforce the multiplicity with the unique constraint. If you
want to make this association bidirectional, you need another @0neToOne map-
ping in the Address class:

public class Address {

@OneToOne (mappedBy = "shippingAddress")
private User user;

}

The effect of the mappedBy attribute is the same as the property-ref in XML map-
ping: a simple inverse declaration of an association, naming a property on the tar-
get entity side.

The equivalent mapping in JPA XML descriptors is as follows:

<entity-mappings>

<entity class="auction.model.User" access="FIELD">
<one-to-one name="shippingAddress">
<join-column name="SHIPPING_ADDRESS_ID"/>

</one-to-one>
</entity>

<entity class="auction.model.Address" access="FIELD">

<one-to-one name="user" mapped-by="shippingAddress"/>
</entity>

</entity-mappings>

You’ve now completed two basic single-ended association mappings: the first with
a shared primary key, the second with a foreign key reference. The last option we
want to discuss is a bit more exotic: mapping a one-to-one association with the
help of an additional table.

Mapping with a join table

Let’s take a break from the complex CaveatEmptor model and consider a differ-
ent scenario. Imagine you have to model a data schema that represents an office
allocation plan in a company. Common entities include people working at desks.
It seems reasonable that a desk may be vacant and have no person assigned to it.
On the other hand, an employee may work at home, with the same result. You’re
dealing with an optional one-to-one association between Person and Desk.

286

CHAPTER 7
Advanced entity association mappings

If you apply the mapping techniques we discussed in the previous sections, you
may come to the following conclusions: Person and Desk are mapped to two
tables, with one of them (let’s say the PERSON table) having a foreign key column
that references the other table (such as ASSIGNED_DESK_ID) with an additional
unique constraint (so two people can’t be assigned the same desk). The relation-
ship is optional if the foreign key column is nullable.

On second thought, you realize that the assignment between persons and
desks calls for another table that represents ASSIGNMENT. In the current design,
this table has only two columns: PERSON_ID and DESK_ID. The multiplicity of
these foreign key columns is enforced with a unique constraint on both—a partic-
ular person and desk can only be assigned once, and only one such an assign-
ment can exist.

It also seems likely that one day you’ll need to extend this schema and add col-
umns to the ASSIGNMENT table, such as the date when a person was assigned to a
desk. As long as this isn’t the case, however, you can use object/relational map-
ping to hide the intermediate table and create a one-to-one Java entity association
between only two classes. (This situation changes completely once additional col-
umns are introduced to ASSIGNMENT.)

Where does such an optional one-to-one relationship exist in CaveatEmptor?

The CaveatEmptor use case

Let’s consider the Shipment entity in CaveatEmptor again and discuss its purpose.
Sellers and buyers interact in CaveatEmptor by starting and bidding on auctions.
The shipment of the goods seems to be outside the scope of the application; the
seller and the buyer agree on a method of shipment and payment after the auc-
tion ends. They can do this offline, outside of CaveatEmptor. On the other hand,
you could offer an extra escrow service in CaveatEmptor. Sellers would use this ser-
vice to create a trackable shipment once the auction completed. The buyer would
pay the price of the auction item to a trustee (you), and you’d inform the seller
that the money was available. Once the shipment arrived and the buyer accepted
it, you’d transfer the money to the seller.

If you’ve ever participated in an online auction of significant value, you’ve
probably used such an escrow service. But you want more service in CaveatEmp-
tor. Not only will you provide trust services for completed auctions, but you’ll also
allow users to create a trackable and trusted shipment for any deal they make out-
side an auction, outside CaveatEmptor.

This scenario calls for a Shipment entity with an optional one-to-one associa-
tion to an Item. Look at the class diagram for this domain model in figure 7.4.

Single-valued entity associations 287

Item
name : String
description : String
initialPrice : BigDecimal 0..1 <« shipping
reservePrice : BigDecimal
startDate : Date
endDate : Date
state : ItemState
approvalDatetime : Date

Shipment
inspectionPeriodDays : int
state : ShipmentState
created : Date

Figure 7.4 A shipment has an optional link with a single auction item.

In the database schema, you add an intermediate link table called ITEM SHIPMENT.
A row in this table represents a Shipment made in the context of an auction. The
tables are shown in figure 7.5.

You now map two classes to three tables: firstin XML, and then with annotations.

Mapping a join table in XML
The property that represents the association from Shipment to Item is called
auction:

public class Shipment {

private Item auction;

}}‘Getter/setter methods
}
Because you have to map this association with a foreign key column, you need the
<many-to-one> mapping element in XML. However, the foreign key column isn’t
in the SHIPMENT table, it’s in the ITEM_SHIPMENT join table. With the help of the
<join> mapping element, you move it there.

<< Table >> << Table >>
ITEM SHIPMENT
ITEM_ID << PK >> SHIPMENT_ID << PK >>
SELLER_ID << FK >> DELIVER_ADDRESS_ID << FK >>
NAME STATE
DESCRIPTION CREATED_ON
INITIAL_PRICE
<< Table >>
ITEM_SHIPMENT

ITEM_ID << FK >> << UNIQUE >>
SHIPMENT_ID << PK >> << FK >>

Figure 7.5 An optional one-to-many relationship mapped to a join table

288

CHAPTER 7
Advanced entity association mappings

<class name="Shipment" table="SHIPMENT">

<id name="id" column="SHIPMENT ID">...</id>

<join table="ITEM_SHIPMENT" optional="true">
<key column="SHIPMENT_ID"/>
<many-to-one name="auction"
column="ITEM_ID"
not-null="true"
unique="true"/>
</join>

</class>

The join table has two foreign key columns: SHIPMENT ID, referencing the pri-
mary key of the SHIPMENT table; and ITEM_ID, referencing the ITEM table. The
ITEM_ID column is unique; a particular item can be assigned to exactly one ship-
ment. Because the primary key of the join table is SHIPMENT_ID, which makes this
column also unique, you have a guaranteed one-to-one multiplicity between
Shipment and Item.

By setting optional="true" on the <join> mapping, you tell Hibernate that
it should insert a row into the join table only if the properties grouped by this
mapping are non-null. But if a row needs to be inserted (because you called
aShipment.setAuction(anItem)), the NOT NULL constraint on the ITEM_ID col-
umn applies.

You could map this association bidirectional, with the same technique on the
other side. However, optional one-to-one associations are unidirectional most of
the time.

JPA also supports association join tables as secondary tables for an entity.

Mapping secondary join tables with annotations
You can map an optional one-to-one association to an intermediate join table with
annotations:

public class Shipment {

@0OneToOne

@JoinTable (
name="ITEM_SHIPMENT",
joinColumns = @JoinColumn (name = "SHIPMENT_ID"),
inverseJoinColumns = @JoinColumn (name = "ITEM_ID")

)

private Item auction;

// Getter/setter methods

Single-valued entity associations 289

You don’t have to specify the SHIPMENT_ID column because it’s automatically con-
sidered to be the join column; it’s the primary key column of the SHIPMENT table.

Alternatively, you can map properties of a JPA entity to more than one table,
as demonstrated in “Moving properties into a secondary table” in chapter 8,
section 8.1.3. First, you need to declare the secondary table for the entity:

QEntity
@Table (name = "SHIPMENT")
@SecondaryTable (name = "ITEM_SHIPMENT")

public class Shipment {

@Id @Generatedvalue
@Column (name = "SHIPMENT_ID")
private Long id;

}

Note that the @SecondaryTable annotation also supports attributes to declare the
foreign-key column name—the equivalent of the <key column="..."/> you saw
earlier in XML and the joinColumn (s) in a @JoinTable. If you don’t specify it, the
primary-key column name of the entity is used—in this case, again SHIPMENT_ID.
The auction property mapping is a @0neToOne; and as before, the foreign key
column referencing the ITEM table is moved to the intermediate secondary table:

ﬁﬁglic class Shipment {
éc‘)ljleTOOI’le
@JoinColumn(table = "ITEM_SHIPMENT", name = "ITEM_ID")
private Item auction;

}

The table for the target @JoinColumn is named explicitly. Why would you use this
approach instead of the (simpler) @JoinTable strategy? Declaring a secondary
table for an entity is useful if not only one property (the many-to-one in this case)
but several properties must be moved into the secondary table. We don’t have a
great example with Shipment and Item, but if your ITEM_SHIPMENT table would
have additional columns, mapping these columns to properties of the Shipment
entity might be useful.

This completes our discussion of one-to-one association mappings. To summa-
rize, use a shared primary key association if one of the two entities seems more
important and can act as the primary key source. Use a foreign key association in
all other cases, and a hidden intermediate join table when your one-to-one associ-
ation is optional.

290

7.2

7.2.1

CHAPTER 7
Advanced entity association mappings

We now focus on many-valued entity associations, including more options for
one-to-many, and finally, many-to-many mappings.

Many-valued entity associations

A many-valued entity association is by definition a collection of entity references.
You mapped one of these in the previous chapter, section 6.4, “Mapping a par-
ent/children relationship.” A parent entity instance has a collection of references
to many child objects—hence, one-to-many.

One-to-many associations are the most important kind of entity association
that involves a collection. We go so far as to discourage the use of more exotic
association styles when a simple bidirectional many-to-one/one-to-many will do
the job. A many-to-many association may always be represented as two many-to-
one associations to an intervening class. This model is usually more easily extensi-
ble, so we tend not to use many-to-many associations in applications. Also remem-
ber that you don’t have to map any collection of entities, if you don’t want to; you
can always write an explicit query instead of direct access through iteration.

If you decide to map collections of entity references, there are a few options
and more complex situations that we discuss now, including a many-to-many rela-
tionship.

One-to-many associations

The parent/children relationship you mapped earlier was a bidirectional associa-
tion, with a <one-to-many> and a <many-to-one> mapping. The many end of this
association was implemented in Java with a Set; you had a collection of bids in
the Item class.

Let’s reconsider this mapping and focus on some special cases.

Considering bags
It’s possible to use a <bag> mapping instead of a set for a bidirectional one-to-many
association. Why would you do this?

Bags have the most efficient performance characteristics of all the collections
you can use for a bidirectional one-to-many entity association (in other words, if
the collection side is inverse="true"). By default, collections in Hibernate are
loaded only when they’re accessed for the first time in the application. Because a
bag doesn’t have to maintain the index of its elements (like a list) or check for
duplicate elements (like a set), you can add new elements to the bag without trig-
gering the loading. This is an important feature if you’re going to map a possibly

Many-valued entity associations 291

large collection of entity references. On the other hand, you can’t eager-fetch two
collections of bag type simultaneously (for example, if bids and images of an
Item were one-to-many bags). We’ll come back to fetching strategies in
chapter 13, section 13.1, “Defining the global fetch plan.” In general we would say
that a bag is the best inverse collection for a one-to-many association.

To map a bidirectional one-to-many association as a bag, you have to replace
the type of the bids collection in the Item persistent class with a Collection and
an ArrayList implementation. The mapping for the association between Item
and Bid is left essentially unchanged:

<class name="Bid"
table="BID">

<many-to-one name="item"
column="ITEM_ID"
class="Item"
not-null="true"/>

</class>
<class name="Item"
table="ITEM">

<bag name="bids"
inverse="true">
<key column="ITEM_ID"/>
<one-to-many class="Bid"/>
</bag>

</class>
You rename the <set> element to <bag>, making no other changes. Even the
tables are the same: The BID table has the ITEM_ID foreign key column. In JPA, all

Collection and List properties are considered to have bag semantics, so the fol-
lowing is equivalent to the XML mapping:

public class Item {

@OneToMany (mappedBy = "item")
private Collection<Bid> bids = new ArrayList<Bid>();

}

A bag also allows duplicate elements, which the set you mapped earlier didn’t. It
turns out that this isn’t relevant in this case, because duplicate means you’ve added
a particular reference to the same Bid instance several times. You wouldn’t do this

292

CHAPTER 7
Advanced entity association mappings

in your application code. But even if you add the same reference several times to
this collection, Hibernate ignores it—it’s mapped inverse.

Unidirectional and bidirectional lists
If you need a real list to hold the position of the elements in a collection, you have
to store that position in an additional column. For the one-to-many mapping, this
also means you should change the bids property in the Item class to List and ini-
tialize the variable with an ArrayList (or keep the Collection interface from the
previous section, if you don’t want to expose this behavior to a client of the class).
The additional column that holds the position of a reference to a Bid instance
is the BID_POSITION, in the mapping of Item:

<class name="Item"
table="ITEM">

<list name="bids">
<key column="ITEM_ID"/>
<list-index column="BID_POSITION"/>
<one-to-many class="Bid"/>

</list>

</class>

So far this seems straightforward; you’ve changed the collection mapping to
<list> and added the <list-index> column BID_POSITION to the collection
table (which in this case is the BID table). Verify this with the table shown in
figure 7.6.

This mapping isn’t really complete. Consider the ITEM_ID foreign key column:
It’s NOT NULL (a bid has to reference an item). The first problem is that you don’t
specify this constraint in the mapping. Also, because this mapping is
unidirectional (the collection is noninverse), you have to assume that there is no
opposite side mapped to the same foreign key column (where this constraint
could be declared). You need to add a not-null="true" attribute to the <key>
element of the collection mapping:

BID

BID_ID | ITEM_ID | BID_POSITION | AMOUNT | CREATED_ON

1 0 99.00 19.04.08 23:11 .
Figure 7.6

! ! 123.00 19.04.08 23:12 Storing the position of each bid in
2 0 433.00 20.04.08 09:30 the list collection

Many-valued entity associations 293

<class name="Item"
table="ITEM">

<list name="bids">
<key column="ITEM_ID" not-null="true"/>
<list-index column="BID_POSITION"/>
<one-to-many class="Bid"/>

</list>

</class>

Note that the attribute has to be on the <key> mapping, not on a possible nested
<column> element. Whenever you have a noninverse collection of entity refer-
ences (most of the time a one-to-many with a list, map, or array) and the foreign
key join column in the target table is not nullable, you need to tell Hibernate
about this. Hibernate needs the hint to order INSERT and UPDATE statements cor-
rectly, to avoid a constraint violation.

Let’s make this bidirectional with an item property of the Bid. If you follow the
examples from earlier chapters, you might want to add a <many-to-one> on the
ITEM_ID foreign key column to make this association bidirectional, and enable
inverse="true" on the collection. Remember that Hibernate ignores the state of
an inverse collection! This time, however, the collection contains information that
is needed to update the database correctly: the position of its elements. If only the
state of each Bid instance is considered for synchronization, and the collection is
inverse and ignored, Hibernate has no value for the BID_POSITION column.

If you map a bidirectional one-to-many entity association with an indexed col-
lection (this is also true for maps and arrays), you have to switch the inverse sides.
You can’t make an indexed collection inverse="true". The collection becomes
responsible for state synchronization, and the one side, the Bid, has to be made
inverse. However, there is no inverse="true" for a many-to-one mapping so you
need to simulate this attribute on a <many-to-one>:

<class name="Bid"
table="BID">

<many-to-one name="item"
column="ITEM_ID"
class="Item"
not-null="true"
insert="false"
update="false"/>

</class>

294

CHAPTER 7
Advanced entity association mappings

Setting insert and update to false has the desired effect. As we discussed earlier,
these two attributes used together make a property effectively read-only. This side
of the association is therefore ignored for any write operations, and the state of
the collection (including the index of the elements) is the relevant state when the
in-memory state is synchronized with the database. You’ve switched the inverse/
noninverse sides of the association, a requirement if you switch from a set or bag
to a list (or any other indexed collection).

The equivalent in JPA, an indexed collection in a bidirectional one-to-many
mapping, is as follows:

public class Item {

@OneToMany
@JoinColumn (name = "ITEM_ID", nullable = false)
@org.hibernate.annotations.IndexColumn (name = "BID_POSITION")

private List<Bid> bids = new ArrayList<Bid>();

}

This mapping is noninverse because no mappedBy attribute is present. Because JPA
doesn’t support persistent indexed lists (only ordered with an @0rderBy at load
time), you need to add a Hibernate extension annotation for index support.
Here’s the other side of the association in Bid:

public class Bid {

@ManyToOne

@JoinColumn (name = "ITEM_ID", nullable = false,
updatable = false, insertable = false)

private Item item;

}

We now discuss one more scenario with a one-to-many relationship: an association
mapped to an intermediate join table.

Optional one-to-many association with a join table

A useful addition to the Item class is a buyer property. You can then call
anItem.getBuyer () to access the User who made the winning bid. (Of course,
anItem.getSuccessfulBid().getBidder() can provide the same access with a

Many-valued entity associations 295

Item
name : String
description : String
initialPrice : BigDecimal 0..* <« bought
reservePrice : BigDecimal o
startDate : Date passyvprd N String

. email : String
endDate : Date King - int
state : ltemState i Figure 7.7
approvalDatetime : Date admin : boolean Items may be bought by users.

User
firstname : String
lastname : String
username : String

different path.) If made bidirectional, this association will also help to render a
screen that shows all auctions a particular user has won: You call aUser.get-
BoughtItems () instead of writing a query.

From the point of view of the User class, the association is one-to-many. The
classes and their relationship are shown in figure 7.7.

Why is this association different than the one between Itemand Bid? The mul-
tiplicity 0..* in UML indicates that the reference is optional. This doesn’t influ-
ence the Java domain model much, but it has consequences for the underlying
tables. You expect a BUYER_ID foreign key column in the ITEM table. The column
has to be nullable—a particular Item may not have been bought (as long as the
auction is still running).

You can accept that the foreign key column can be NULL and apply additional
constraints (“allowed to be NULL only if the auction end time hasn’t been
reached or if no bid has been made”). We always try to avoid nullable columns in
a relational database schema. Information that is unknown degrades the quality
of the data you store. Tuples represent propositions that are ¢rue; you can’t assert
something you don’t know. And, in practice, many developers and DBAs don’t
create the right constraint and rely on (often buggy) application code to pro-
vide data integrity.

An optional entity association, be it one-to-one or one-to-many, is best repre-
sented in an SQL database with a join table. See figure 7.8 for an example schema.

You added a join table earlier in this chapter, for a one-to-one association. To
guarantee the multiplicity of one-to-one, you applied unique constraints on both
foreign key columns of the join table. In the current case, you have a one-to-many
multiplicity, so only the ITEM_ID column of the ITEM_BUYER table is unique. A par-
ticular item can be bought only once.

Let’s map this in XML. First, here’s the boughtItems collection of the User
class.

296

CHAPTER 7
Advanced entity association mappings
<< Table >> << Table >>
ITEM USERS
ITEM_ID << PK >> USER_ID << PK >>
SELLER_ID << FK >> FIRSTNAME
NAME LASTNAME
DESCRIPTION USERNAME
INITIAL_PRICE EMAIL
<< Table >>
ITEM_BUYER

ITEM_ID << PK >> << FK >> << UNIQUE >>
USER_ID << PK >> << FK >>

Figure 7.8 An optional relationship with a join table avoids nullable foreign key columns.

<set name="boughtItems" table="ITEM_BUYER">

<key column="USER_ID"/>

<many-to-many class="Item"
column="ITEM ID"
unique="true"/>

</set>
You use a Set as the collection type. The collection table is the join table,
ITEM_BUYER; its primary key is a composite of USER_ID and ITEM_ID. The new
mapping element you haven’t seen before is <many-to-many>; it’s required
because the regular <one-to-many> doesn’t know anything about join tables. By
forcing a unique constraint on the foreign key column that references the target
entity table, you effectively force a one-to-many multiplicity.

You can map this association bidirectional with the buyer property of Item.
Without the join table, you’d add a <many-to-one> with a BUYER_ID foreign key
column in the ITEM table. With the join table, you have to move this foreign key
column into the join table. This is possible with a <join> mapping:

<join table="ITEM BUYER"

optional="true"

inverse="true">
<key column="ITEM_ID” unique="true” not-null="true"/>
<many-to-one name="buyer" column="USER_ID"/>

</join>
Two important details: First, the association is optional, and you tell Hibernate
not to insert a row into the join table if the grouped properties (only one here,
buyer) are null. Second, this is a bidirectional entity association. As always, one
side has to be the inverse end. You’ve chosen the <join> to be inverse; Hibernate
now uses the collection state to synchronize the database and ignores the state of

7.2.2

Many-valued entity associations 297

the Item.buyer property. As long as your collection is not an indexed variation (a
list, map, or array), you can reverse this by declaring the collection
inverse="true". The Java code to create a link between a bought item and a user
object is the same in both cases:

aUser.getBoughtItems () .add(anItem) ;

anItem.setBuyer (aUser) ;
You can map secondary tables in JPA to create a one-to-many association with a
join table. First, map a @ManyToOne to a join table:

@Entity
public class Item {
@ManyToOne
@JoinTable (
name = "ITEM_BUYER",
joinColumns = {@JoinColumn (name = "ITEM_ID")},
inverseJoinColumns = {@JoinColumn (name = "USER_ID")}

)

private User buyer;

}

At the time of writing, this mapping has the limitation that you can’t set it to
optional="true"; hence, the USER_ID column is nullable. If you try to add a nul-
lable="false" attribute on the @JoinColumn, Hibernate Annotations thinks that
you want the whole buyer property to never be null. Furthermore, the primary
key of the join table is now the ITEM_ID column only. This is fine, because you
don’t want duplicate items in this table—they can be bought only once.

To make this mapping bidirectional, add a collection on the User class and
make it inverse with mappedBy:

@OneToMany (mappedBy = "buyer")

private Set<Item> boughtItems = new HashSet<Item> () ;
We showed a <many-to-many> XML mapping element in the previous section for a
one-to-many association on a join table. The @JoinTable annotation is the equiva-
lent in annotations. Let’s map a real many-to-many association.

Many-to-many associations

The association between Category and Item is a many-to-many association, as can
be seen in figure 7.9.

In a real system, you may not have a many-to-many association. Our experience
is that there is almost always other information that must be attached to each link
between associated instances (such as the date and time when an item was added

298

CHAPTER 7
Advanced entity association mappings

Category Item
name : String name : String
1> description : String

initialPrice : BigDecimal
reservePrice : BigDecimal

0.. startDate : Date
endDate : Date Figure 7.9
state : ItemState A many-to-many valued association between
approvalDatetime : Date Category and Item

to a category) and that the best way to represent this information is via an inter-
mediate association class. In Hibernate, you can map the association class as an
entity and map two one-to-many associations for either side. Perhaps more conve-
niently, you can also map a composite element class, a technique we show later.
It’s the purpose of this section to implement a real many-to-many entity associa-
tion. Let’s start with a unidirectional example.

A simple unidirectional many-to-many association
If you require only unidirectional navigation, the mapping is straightforward.
Unidirectional many-to-many associations are essentially no more difficult than
the collections of value-type instances we discussed earlier. For example, if the
Category has a set of Items, you can create this mapping:
<set name="items"
table="CATEGORY_ITEM"
cascade="save-update">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
</set>
The join table (or link table, as some developers call it) has two columns: the for-
eign keys of the CATEGORY and ITEM tables. The primary key is a composite of both
columns. The full table structure is shown in figure 7.10.
In JPA annotations, many-to-many associations are mapped with the @ManyTo-
Many attribute:

@ManyToMany

@JoinTable (
name = "CATEGORY_ITEM",
joinColumns = {@JoinColumn (name = "CATEGORY_ID")},
inverseJoinColumns = {@JoinColumn (name = "ITEM_ID")}

)

private Set<Item> items = new HashSet<Item> () ;

<< Table >>
CATEGORY

NAME

CATEGORY_ID << PK >>

Many-valued entity associations

<< Table >>
ITEM

ITEM_ID << PK >>
SELLER_ID << FK >>
NAME
DESCRIPTION
INITIAL_PRICE

<< Table >>
CATEGORY_ITEM

CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>

Figure 7.10 Many-to-many entity association mapped to an association table

299

In Hibernate XML you can also switch to an <idbag> with a separate primary key
column on the join table:

<idbag name="items"
table="CATEGORY_ITEM”
cascade="save-update">

<collection-id type="long"

column="CATEGORY_ITEM ID">

<generator class="sequence"/>
</collection-id>
<key column="CATEGORY_ID"/>

<many-to-many class="Item"

</idbag>

column="ITEM_ID"/>

As usual with an <idbag> mapping, the primary key is a surrogate key column,
CATEGORY_ITEM_ID. Duplicate links are therefore allowed; the same Item can be
added twice to a Category. (This doesn’t seem to be a useful feature.) With anno-

tations, you can switch to an identifier bag with the Hibernate @CollectionId:

@ManyToMany

@CollectionId(
columns = @Column (name = "CATEGORY_ITEM_ID"),
type = @org.hibernate.annotations.Type(type = "long"),
generator "sequence"

)

@JoinTable (
name = "CATEGORY_ITEM",
joinColumns {@JoinColumn (name = "CATEGORY_ID")},
inverseJoinColumns = {@JoinColumn (name = "ITEM_ID")}

)

private Collection<Item> items

new ArrayList<Item> () ;

A JPA XML descriptor for a regular many-to-many mapping with a set (you can’t
use a Hibernate extension for identifier bags) looks like this:

300

CHAPTER 7
Advanced entity association mappings

<entity class="auction.model.Category" access="FIELD">

<many-to-many name="items">
<join-table name="CATEGORY_ITEM">
<join-column name="CATEGORY_ID"/>
<inverse-join-column name="ITEM_ID"/>
</join-table>
</many-to-many>

</entity>

You may even switch to an indexed collection (a map or list) in a many-to-many
association. The following example maps a list in Hibernate XML:

<list name="items"
table="CATEGORY_ITEM"
cascade="save-update">
<key column="CATEGORY_ID"/>
<list-index column="DISPLAY_ POSITION"/>
<many-to-many class="Item" column="ITEM_ID"/>
</list>

The primary key of the link table is a composite of the CATEGORY_ID and
DISPLAY_POSITION columns; this mapping guarantees that the position of each
Itemin a Category is persistent. Or, with annotations:

@ManyToMany

@JoinTable (
name = "CATEGORY_ITEM",
joinColumns = {@JoinColumn (name = "CATEGORY_ID")},
inversedJoinColumns = {@JoinColumn (name = "ITEM ID")}

)

@org.hibernate.annotations.IndexColumn (name = "DISPLAY POSITION")

private List<Item> items = new ArrayList<Item>();

As discussed earlier, JPA only supports ordered collections (with an optional
@OrderBy annotation or ordered by primary key), so you again have to use a
Hibernate extension for indexed collection support. If you don’t add an @Index-
Column, the List is stored with bag semantics (no guaranteed persistent order of
elements).

Creating a link between a Category and an Itemis easy:

aCategory.getItems () .add(anItem) ;
Bidirectional many-to-many associations are slightly more difficult.
A bidirectional many-to-many association

You know that one side in a bidirectional association has to be mapped as inverse
because you have named the foreign key column(s) twice. The same principle

Many-valued entity associations 301

applies to bidirectional many-to-many associations: Each row of the link table is
represented by two collection elements, one element at each end of the associa-
tion. An association between an Itemand a Category is represented in memory by
the Item instance in the items collection of the Category, but also by the Cate-
gory instance in the categories collection of the Item.

Before we discuss the mapping of this bidirectional case, you have to be aware
that the code to create the object association also changes:

aCategory.getItems () .add(anltem) ;

anItem.getCategories () .add(aCategory) ;

As always, a bidirectional association (no matter of what multiplicity) requires that
you set both ends of the association.

When you map a bidirectional many-to-many association, you must declare
one end of the association using inverse="true" to define which side’s state is
used to update the join table. You can choose which side should be inverse.

Recall this mapping of the items collection from the previous section:

<class name="Category" table="CATEGORY">

<set name="items"
table="CATEGORY_ITEM"
cascade="save-update">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
</set>

You may reuse this mapping for the Category end of the bidirectional association
and map the other side as follows:

<class name="Item" table="ITEM">

<set name="categories"
table="CATEGORY_ITEM”
inverse="true"
cascade="save-update">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>
</set>
</class>

Note the inverse="true". Again, this setting tells Hibernate to ignore changes
made to the categories collection and that the other end of the association, the

items collection, is the representation that should be synchronized with the data-
base if you link instances in Java code.

302

CHAPTER 7
Advanced entity association mappings

You have enabled cascade="save-update" for both ends of the collection.
This isn’t unreasonable, we suppose. On the other hand, the cascading options
all, delete, and delete-orphans aren’t meaningful for many-to-many associa-
tions. (This is good point to test if you understand entities and value types—try to
come up with reasonable answers why these cascading options don’t make sense
for a many-to-many association.)

In JPA and with annotations, making a many-to-many association bidirectional
is easy. First, the noninverse side:

@ManyToMany

@JoinTable (
name = "CATEGORY_ITEM",
joinColumns = {@JoinColumn (name = "CATEGORY_ID")},
inversedJoinColumns = {@JoinColumn (name = "ITEM ID")}

)

private Set<Item> items = new HashSet<Item>();
Now the opposite inverse side:

@ManyToMany (mappedBy = "items")

private Set<Category> categories = new HashSet<Category> () ;

As you can see, you don’t have to repeat the join-table declaration on the inverse
side.

What types of collections may be used for bidirectional many-to-many associa-
tions? Do you need the same type of collection at each end? It’s reasonable to
map, for example, a <1ist> for the noninverse side of the association and a <bag>
on the inverse side.

For the inverse end, <set> is acceptable, as is the following bag mapping:

<class name="Item" table="ITEM">

<bag name="categories"
table="CATEGORY_ITEM”
inverse="true"
cascade="save-update">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>
</bag>
</class>

In JPA, a bag is a collection without a persistent index:

@ManyToMany (mappedBy = "items")
private Collection<Category> categories = new ArrayList<Category>();

7.2.3

Many-valued entity associations 303

No other mappings can be used for the inverse end of a many-to-many association.
Indexed collections (lists and maps) don’t work, because Hibernate won’t initial-
ize or maintain the index column if the collection is inverse. In other words, a
many-to-many association can’t be mapped with indexed collections on both sides.

We already frowned at the use of many-to-many associations, because addi-
tional columns on the join table are almost always inevitable.

Adding columns to join tables

In this section, we discuss a question that is asked frequently by Hibernate users:
What do I do if my join table has additional columns, not only two foreign key col-
umns?

Imagine that you need to record some information each time you add an Item
to a Category. For example, you may need to store the date and the name of the
user who added the item to this category. This requires additional columns on the
join table, as you can see in figure 7.11.

<< Table >>
ITEM
<< Table >> ITEM_ID << PK >>
CATEGORY SELLER_ID << FK >>
CATEGORY_ID << PK >> NAME
NAME DESCRIPTION
INITIAL_PRICE
<< Table >>
CATEGORIZED _ITEM
CATEGORY_ID << PK >> << FK >> Figure 7.11
ITEM_ID << PK >> << FK >> Additional columns on the
ADDED_BY_USER join table in a many-to-many
ADDED_ON association

You can use two common strategies to map such a structure to Java classes. The
first strategy requires an intermediate entity class for the join table and is mapped
with one-to-many associations. The second strategy utilizes a collection of compo-
nents, with a value-type class for the join table.

Mapping the join table to an intermediate entity

The first option we discuss now resolves the many-to-many relationship between
Category and Item with an intermediate entity class, CategorizedItem.
Listing 7.1 shows this entity class, which represents the join table in Java, includ-
ing JPA annotations:

304 CHAPTER 7
Advanced entity association mappings

Listing 7.1 An entity class that represents a link table with additional columns

@Entity
@Table (name = "CATEGORIZED_ITEM")
public class CategorizedItem {

@Embeddable
public static class Id implements Serializable {

@Column (name = "CATEGORY_ID")
private Long categoryId;

@Column (name = "ITEM _ID")
private Long itemId;

public Id() {}

public Id(Long categoryId, Long itemId) {
this.categoryId = categoryId;
this.itemId = itemId;
}
public boolean equals (Object o) {
if (o != null && o instanceof Id) {
Id that = (Id)o;
return this.categoryId.equals (that.categoryId) &&
this.itemId.equals (that.itemId) ;
} else {
return false;

}

public int hashCode() {
return categoryId.hashCode() + itemId.hashCode() ;

}

@EmbeddedId
private Id id = new Id();

@Column (name = "ADDED_BY_ USER")
private String username;

@Column (name = "ADDED_ON")
private Date dateAdded = new Date();

@ManyToOne

@JoinColumn (name="ITEM_ID",
insertable = false,
updatable = false)

private Item item;

@ManyToOne

@JoinColumn (name="CATEGORY_ID",
insertable = false,
updatable = false)

private Category category;

Many-valued entity associations 305

public CategorizedItem() {}

public CategorizedItem(String username,
Category category,
Item item) {
// Set fields
this.username = username;

this.category = category;
this.item = item;

// Set identifier values
this.id.categoryId = category.getId();
this.id.itemId = item.getId() ;

// Guarantee referential integrity
category.getCategorizedItems () .add (this) ;
item.getCategorizedItems () .add(this);

}

// Getter and setter methods

An entity class needs an identifier property. The primary key of the join table is
CATEGORY_ID and ITEM_ID, a composite. Hence, the entity class also has a compos-
ite key, which you encapsulate in a static nested class for convenience. You can
also see that constructing a CategorizedItem involves setting the values of the
identifier—composite key values are assigned by the application. Pay extra atten-
tion to the constructor and how it sets the field values and guarantees referential
integrity by managing collections on either side of the association.

Let’s map this class to the join table in XML:

<class name="CategorizedItem"

table="CATEGORY_ITEM"
mutable="false">

<composite-id name="id" class="CategorizedItem$Id">
<key-property name="categoryId"
access="field"
column="CATEGORY_ID"/>

<key-property name="itemId"
access="field"
column="ITEM_ID"/>
</composite-id>

<property name="dateAdded"
column="ADDED_ON"
type="timestamp"

306

CHAPTER 7
Advanced entity association mappings

not-null="true"/>

<property name="username"
column="ADDED_BY_ USER"
type="string"
not-null="true"/>

<many-to-one name="category"
column="CATEGORY_ID"
not-null="true"
insert="false"
update="false"/>

<many-to-one name="item"
column="ITEM_ID"
not-null="true"
insert="false"
update="false"/>

</class>

The entity class is mapped as immutable—you’ll never update any properties after
creation. Hibernate accesses <composite-id> fields directly—you don’t need get-
ters and setters in this nested class. The two <many-to-one> mappings are effec-
tively read-only; insert and update are set to false. This is necessary because the
columns are mapped twice, once in the composite key (which is responsible for
insertion of the values) and again for the many-to-one associations.

The Category and Item entities (can) have a one-to-many association to the
CategorizedItem entity, a collection. For example, in Category:

<set name="categorizedItems"

inverse="true">
<key column="CATEGORY_ID"/>

<one-to-many class="CategorizedItem"/>
</set>

And here’s the annotation equivalent:

@OneToMany (mappedBy = "category")
private Set<CategorizedItem> categorizedItems =
new HashSet<CategorizedItem> () ;
There is nothing special to consider here; it’s a regular bidirectional one-to-many
association with an inverse collection. Add the same collection and mapping to
Item to complete the association. This code creates and stores a link between a
category and an item:

CategorizedItem newLink =
new CategorizedItem(aUser.getUsername (), aCategory, anlItem);

session.save (newLink) ;

Many-valued entity associations 307

The referential integrity of the Java objects is guaranteed by the constructor of
CategorizedItem, which manages the collection in aCategory and in anItem.
Remove and delete the link between a category and an item:

aCategory.getCategorizedItems () .remove(theLink);
anItem.getCategorizedItems () .remove(theLink);

session.delete (thelLink) ;

The primary advantage of this strategy is the possibility for bidirectional naviga-
tion: You can get all items in a category by calling aCategory.getCategor-
izedItems () and the also mnavigate from the opposite direction with
anItem.getCategorizedItems(). A disadvantage is the more complex code
needed to manage the CategorizedItem entity instances to create and remove
associations—they have to be saved and deleted independently, and you need
some infrastructure in the CategorizedItem class, such as the composite identi-
fier. However, you can enable transitive persistence with cascading options on the
collections from Category and Item to CategorizedItem, as explained in
chapter 12, section 12.1, “Transitive persistence.”

The second strategy for dealing with additional columns on the join table
doesn’t need an intermediate entity class; it’s simpler.

Mapping the join table to a collection of components
First, simplify the CategorizedItem class, and make it a value type, without an
identifier or any complex constructor:

public class CategorizedItem {
private String username;
private Date dateAdded = new Date();
private Item item;
private Category category;

public CategorizedItem(String username,
Category category,
Item item) {
this.username = username;
this.category = category;
this.item = item;

// Getter and setter methods
// Don't forget the equals/hashCode methods
}
As for all value types, this class has to be owned by an entity. The owner is the Cat-
egory, and it has a collection of these components:

308 CHAPTER 7
Advanced entity association mappings

<class name="Category" table="CATEGORY">

<set name="categorizedItems" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<composite-element class="CategorizedItem">
<parent name="category"/>

<many-to-one name="item"
column="ITEM_ID"
not-null="true"
class="Item"/>

<property name="username" column="ADDED_BY_ USER"/>
<property name="dateAdded" column="ADDED_ON" />

</composite-element>
</set>

</class>

This is the complete mapping for a many-to-many association with extra columns
on the join table. The <many-to-one> element represents the association to Item
the <property> mappings cover the extra columns on the join table. There is only
one change to the database tables: The CATEGORY_ITEM table now has a primary
key that is a composite of all columns, not only CATEGORY_ID and ITEM_ID, as in
the previous section. Hence, all properties should never be nullable—otherwise
you can’t identify a row in the join table. Except for this change, the tables still
look as shown in figure 7.11.

You can enhance this mapping with a reference to the User instead of just the
user’s name. This requires an additional USER_ID column on the join table, with a
foreign key to USERS. This is a ternary association mapping:

<set name="categorizedItems" table="CATEGORY_ITEM">

<key column="CATEGORY_ID"/>

<composite-element class="CategorizedItem">
<parent name="category"/>

<many-to-one name="item"
column="ITEM_ID"
not-null="true"
class="Item"/>

<many-to-one name="user"
column="USER_ID"
not-null="true"
class="User"/>

<property name="dateAdded" column="ADDED_ON" />

</composite-element>
</set>

Many-valued entity associations 309

This is a fairly exotic beast!

The advantage of a collection of components is clearly the implicit lifecycle of
the link objects. To create an association between a Category and an Item, add a
new CategorizedItem instance to the collection. To break the link, remove the
element from the collection. No extra cascading settings are required, and the
Java code is simplified:

CategorizedItem aLink =
new CategorizedItem(aUser.getUserName (), aCategory, anlItem);

aCategory.getCategorizedItems () .add(aLink);

aCategory.getCategorizedItems () .remove(aLink);

The downside of this approach is that there is no way to enable bidirectional navi-
gation: A component (such as CategorizedItem) can’t, by definition, have shared
references. You can’t navigate from Item to CategorizedItem. However, you can
write a query to retrieve the objects you need.

Let’s do the same mapping with annotations. First, make the component class
@Embeddable, and add the component column and association mappings:

@Embeddable
public class CategorizedItem {

Qorg.hibernate.annotations.Parent // Optional back-pointer
private Category category;

@anyToOne

@JoinColumn (name = "ITEM_ID",
nullable = false,
updatable = false)

private Item item;

@ManyToOne

@JoinColumn (name = "USER_ID",
nullable = false,
updatable = false)

private User user;

@Temporal (TemporalType.TIMESTAMP)
@Column (name = "ADDED_ON", nullable = false, updatable = false)
private Date dateAdded;

// Constructor

// Getter and setter methods

// Don't forget the equals/hashCode methods
}

Now map this as a collection of components in the Category class:

310

7.24

CHAPTER 7
Advanced entity association mappings

Qorg.hibernate.annotations.CollectionOfElements

@JoinTable (
name = "CATEGORY_ITEM",
joinColumns = @JoinColumn (name = "CATEGORY_ID")

grivate Set<CategorizedItem> categorizedItems =
new HashSet<CategorizedItem> () ;
That’s it: You've mapped a ternary association with annotations. What looked
incredibly complex at the beginning has been reduced to a few lines of annota-
tion metadata, most of it optional.
The last collection mapping we’ll explore are Maps of entity references.

Mapping maps

You mapped a Java Map in the last chapter—the keys and values of the Map were
value types, simple strings. You can create more complex maps; not only can the
keys be references to entities, but so can the values. The result can therefore be a
ternary association.

Values as references to entities

First, let’s assume that only the value of each map entry is a reference to another
entity. The key is a value type, a long. Imagine that the Item entity has a map of
Bid instances and that each map entry is a pair of Bid identifier and reference to a
Bid instance. If you iterate through anItem.getBidsByIdentifier (), you iterate
through map entries that look like (1, <reference to Bid with PK 1>), (2,
<reference to Bid with PK 2>), and so on.

The underlying tables for this mapping are nothing special; you again have an
ITEM and a BID table, with an ITEM_ID foreign key column in the BID table. Your
motivation here is a slightly different representation of the data in the applica-
tion, with a Map.

In the Item class, include a Map:

@MapKey (name="1id")

@OneToMany

private Map<Long,Bid> bidsByIdentifier = new HashMap<Long,Bid> () ;

New here is the @MapKey element of JPA—it maps a property of the target entity as
key of the map.The default if you omit the name attribute is the identifier property
of the target entity (so the name here is redundant). Because the keys of a map
form a set, values are expected to be unique for a particular map—this is the case
for Bid primary keys but likely not for any other property of Bid.

Many-valued entity associations 311

In Hibernate XML, this mapping is as follows:

<map name="bidsByIdentifier">
<key column="ITEM_ID"/>
<map-key type="long" formula="BID_ID"/>
<one-to-many class="Bid"/>
</map>
The formula key for a map makes this column read-only, so it’s never updated
when you modify the map. A more common situation is a map in the middle of a
ternary association.

Ternary associations

You may be a little bored by now, but we promise this is the last time we’ll show
another way to map the association between Category and Item. Let’s summarize
what you already know about this many-to-many association:

= It can be mapped with two collections on either side and a join table that
has only two foreign key columns. This is a regular many-to-many associa-
tion mapping.

= It can be mapped with an intermediate entity class that represents the join
table, and any additional columns therein. A one-to-many association is
mapped on either side (Category and Item), and a bidirectional many-to-
one equivalent is mapped in the intermediate entity class.

= It can be mapped unidirectional, with a join table represented as a value
type component. The Category entity has a collection of components. Each
component has a reference to its owning Category and a many-to-one
entity association to an Item. (You can also switch the words Category and
Item in this explanation.)

You previously turned the last scenario into a ternary association by adding
another many-to-one entity association to a User. Let’s do the same with a Map.

A Category has a Map of Item instances—the key of each map entry is a refer-
ence to an Item. The value of each map entry is the User who added the Item to
the Category. This strategy is appropriate if there are no additional columns on
the join table; see the schema in figure 7.12.

The advantage of this strategy is that you don’t need any intermediate class, no
entity or value type, to represent the ADDED_BY_USER_ID column of the join table
in your Java application.

First, here’s the Map property in Category with a Hibernate extension
annotation.

312 CHAPTER 7
Advanced entity association mappings

<< Table >>
ITEM
<< Table >> ITEM_ID << PK >>
CATEGORY SELLER_ID << FK >>
CATEGORY_ID << PK >> NAME
NAME DESCRIPTION
INITIAL_PRICE

<< Table >>
CATEGORY_ITEM
CATEGORY_ID << PK >> << FK >>
ITEM_ID << PK >> << FK >>
ADDED_BY_USER_ID << FK >>

<< Table >>
USERS
USER_ID << PK >>
FIRSTNAME
LASTNAME

Figure 7.12 A ternary association with a join table between three entities

@ManyToMany
@org.hibernate.annotations.MapKeyManyToMany (
joinColumns = @JoinColumn (name = "ITEM_ID")
)
@JoinTable (
name = "CATEGORY_ITEM",
joinColumns = @JoinColumn (name = "CATEGORY_ID"),
inverseJoinColumns = @JoinColumn (name = "USER_ID")

)
private Map<Item,User> itemsAndUser = new HashMap<Item, User>();

The Hibernate XML mapping includes a new element, <map-key-many-to-many>:

<map name="itemsAndUser" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<map-key-many-to-many column="ITEM_ID" class="Item"/>
<many-to-many column="ADDED_BY_ USER_ID" class="User"/>
</map>
To create a link between all three entities, if all your instances are already in per-
sistent state, add a new entry to the map:

aCategory.getItemsAndUser () .add(anItem, aUser);

To remove the link, remove the entry from the map. As an exercise, you can try to
make this mapping bidirectional, with a collection of categories in Item.

7.3

7.3.1

Polymorphic associations 313

Remember that this has to be an inverse collection mapping, so it doesn’t support
indexed collections.

Now that you know all the association mapping techniques for normal entities,
we still have to consider inheritance and associations to the various levels of an
inheritance hierarchy. What we really want is polymorphic behavior. Let’s see how
Hibernate deals with polymorphic entity associations.

Polymorphic associations

Polymorphism is a defining feature of object-oriented languages like Java. Sup-
port for polymorphic associations and polymorphic queries is an absolutely basic
feature of an ORM solution like Hibernate. Surprisingly, we’ve managed to get this
far without needing to talk much about polymorphism. Even more surprisingly,
there is not much to say on the topic—polymorphism is so easy to use in Hiber-
nate that we don’t need to spend a lot of effort explaining it.

To get an overview, we first consider a many-to-one association to a class that
may have subclasses. In this case, Hibernate guarantees that you can create links
to any subclass instance just like you would to instances of the superclass.

Polymorphic many-to-one associations

A polymorphic association is an association that may refer instances of a subclass of
the class that was explicitly specified in the mapping metadata. For this example,
consider the defaultBillingDetails property of User. It references one particu-
lar BillingDetails object, which at runtime can be any concrete instance of that
class. The classes are shown in figure 7.13.

You map this association to the abstract class BillingDetails as follows in
User.hbm.xml.

User
firstname : String 0.*
lastname : String B
username : String
password : String
email : String
ranking : int
admin : boolean

default p BillingDetails

owner : String

[|
CreditCard BankAccount

Figure 7.13 A user has either a credit card or a bank account as the default.

number : String
expMonth : String
expYear : String

account : String
bankname : String
swift : String

314

CHAPTER 7
Advanced entity association mappings

<many-to-one name="defaultBillingDetails"
class="BillingDetails"
column="DEFAULT BILLING_DETAILS_ID"/>
But because BillingDetails is abstract, the association must refer to an instance
of one of its subclasses—CreditCard or CheckingAccount—at runtime.
You don’t have to do anything special to enable polymorphic associations in
Hibernate; specify the name of any mapped persistent class in your association
mapping (or let Hibernate discover it using reflection), and then, if that class
declares any <union-subclass>, <subclass>, or <joined-subclass> elements,
the association is naturally polymorphic.
The following code demonstrates the creation of an association to an instance
of the CreditCard subclass:
CreditCard cc = new CreditCard() ;
cc.setNumber (ccNumber) ;

cc.setType (ccType) ;
cc.setExpiryDate (ccExpiryDate) ;

User user = (User) session.get(User.class, userId);
user.addBillingDetails(cc); // Add it to the one-to-many association

user.setDefaultBillingDetails (cc) ;

// Complete unit of work

Now, when you navigate the association in a second unit of work, Hibernate auto-
matically retrieves the CreditCard instance:

User user = (User) secondSession.get (User.class, userId);

// Invoke the pay() method on the actual subclass instance

user.getDefaultBillingDetails () .pay (amount) ;
There is just one thing to watch out for: If BillingDetails was mapped with
lazy="true" (which is the default), Hibernate would proxy the defaultBilling-
Details association target. In this case, you wouldn’t be able to perform a type-
cast to the concrete class CreditCard at runtime, and even the instanceof
operator would behave strangely:

User user = (User) session.get(User.class, userid);

BillingDetails bd = user.getDefaultBillingDetails() ;

System.out.println(bd instanceof CreditCard); // Prints "false"

CreditCard cc = (CreditCard) bd; // ClassCastException!
In this code, the typecast fails because bd is a proxy instance. When a method is
invoked on the proxy, the call is delegated to an instance of CreditCard that is
fetched lazily (it’s an instance of a runtime-generated subclass, so instanceof also
fails). Until this initialization occurs, Hibernate doesn’t know what the subtype of

7.3.2

Polymorphic associations 315

the given instance is—this would require a database hit, which you try to avoid
with lazy loading in the first place. To perform a proxy-safe typecast, use load():

User user = (User) session.get(User.class, userId);
BillingDetails bd = user.getDefaultBillingDetails();

// Narrow the proxy to the subclass, doesn't hit the database
CreditCard cc =
(CreditCard) session.load(CreditCard.class, bd.getId());
expiryDate = cc.getExpiryDate() ;
After the call to load(), bd and cc refer to two different proxy instances, which
both delegate to the same underlying CreditCard instance. However, the second
proxy has a different interface, and you can call methods (like getExpiryDate())
that apply only to this interface.
Note that you can avoid these issues by avoiding lazy fetching, as in the follow-
ing code, using an eager fetch query:
User user = (User)session.createCriteria(User.class)
.add (Restrictions.eqg("id", uid))

.setFetchMode ("defaultBillingDetails", FetchMode.JOIN)
.uniqueResult () ;

// The users defaultBillingDetails have been fetched eagerly

CreditCard cc = (CreditCard) user.getDefaultBillingDetails();

expiryDate = cc.getExpiryDate() ;
Truly object-oriented code shouldn’t use instanceof or numerous typecasts. If
you find yourself running into problems with proxies, you should question your
design, asking whether there is a more polymorphic approach. Hibernate also
offers bytecode instrumentation as an alternative to lazy loading through proxies;
we’ll get back to fetching strategies in chapter 13, section 13.1, “Defining the glo-
bal fetch plan.”

One-to-one associations are handled the same way. What about many-valued
associations—for example, the collection of billingDetails for each User?

Polymorphic collections

A User may have references to many BillingDetails, not only a single default
(one of the many ¢ the default). You map this with a bidirectional one-to-many
association.

In BillingDetails, you have the following:

<many-to-one name="user"

class="User"
column="USER_ID"/>

316

7.3.3

CHAPTER 7
Advanced entity association mappings

In the Users mapping you have:

<set name="billingDetails"
inverse="true">
<key column="USER_ID"/>
<one-to-many class="BillingDetails"/>
</set>

Adding a CreditCard is easy:

CreditCard cc = new CreditCard();
cc.setNumber (ccNumber) ;
cc.setType (ccType) ;
cc.setExpMonth(...);
cc.setExpYear(...);

User user = (User) session.get(User.class, userId);

// Call convenience method that sets both sides of the association
user.addBillingDetails(cc) ;

// Complete unit of work

Asusual, addBillingDetails () callsgetBillingDetails () .add(cc) and cc.set-
User (this) to guarantee the integrity of the relationship by setting both pointers.

You may iterate over the collection and handle instances of CreditCard and
CheckingAccount polymorphically (you probably don’t want to bill users several
times in the final system, though):

User user = (User) session.get(User.class, userId);

for(BillingDetails bd : user.getBillingDetails()) {
// Invoke CreditCard.pay() or BankAccount.pay ()
bd.pay (paymentAmount) ;
}
In the examples so far, we assumed that BillingDetails is a class mapped explic-
itly and that the inheritance mapping strategy is table per class hierarchy, or normal-
ized with table per subclass.
However, if the hierarchy is mapped with table per concrete class (implicit poly-
morphism) or explicitly with table per concrete class with union, this scenario requires
a more sophisticated solution.

Polymorphic associations to unions

Hibernate supports the polymorphic many-to-one and one-to-many associations
shown in the previous sections even if a class hierarchy is mapped with the table per
concrele class strategy. You may wonder how this works, because you may not have a
table for the superclass with this strategy; if so, you can’t reference or add a for-
eign key column to BILLING_DETAILS.

Polymorphic associations 317

Review our discussion of table per concrete class with union in chapter 5,
section 5.1.2, “Table per concrete class with unions.” Pay extra attention to the poly-
morphic query Hibernate executes when retrieving instances of BillingDetails.
Now, consider the following collection of BillingDetails mapped for User:

<set name="billingDetails"
inverse="true">
<key column="USER_ID"/>
<one-to-many class="BillingDetails"/>
</set>
If you want to enable the polymorphic union feature, a requirement for this poly-
morphic association is that it’s inverse; there must be a mapping on the opposite
side. In the mapping of BillingDetails, with <union-subclass>, you have to
include a <many-to-one> association:

<class name="BillingDetails" abstract="true">
<id name="id" column="BILLING_DETAILS_ID" .../>
<property .../>

<many-to-one name="user"
column="USER_ID"
class="User"/>

<union-subclass name="CreditCard" table="CREDIT_CARD">
<property .../>
</union-subclass>

<union-subclass name="BankAccount" table="BANK_ACCOUNT">
<property .../>
</union-subclass>

</class>
You have two tables for both concrete classes of the hierarchy. Each table has a for-
eign key column, USER_ID, referencing the USERS table. The schema is shown in

figure 7.14.
Now, consider the following data-access code:

aUser.getBillingDetails () .iterator () .next () ;
<< Table >> << Table >>
CREDIT_CARD BANK_ACCOUNT

BILLING_DETAILS_ID << PK >> BILLING_DETAILS_ID << PK >>
USER_ID << FK >> USER_ID << FK >>
OWNER OWNER
NUMBER ACCOUNT
EXP_MONTH BANKNAME
EXP_YEAR SWIFT

Figure 7.14 Two concrete classes mapped to two separate tables

318

CHAPTER 7
Advanced entity association mappings

Hibernate executes a UNION query to retrieve all instances that are referenced in
this collection:
select
BD.*
from
(select
BILLING_DETAILS_ID, USER_ID, OWNER,
NUMBER, EXP_MONTH, EXP_YEAR,
null as ACCOUNT, null as BANKNAME, null as SWIFT,
1 as CLAZZ
from
CREDIT_CARD

union

select
BILLING_DETAILS_ID, USER_ID, OWNER,
null as NUMBER, null as EXP_MONTH, null as EXP_YEAR
ACCOUNT, BANKNAME, SWIFT,
2 as CLAZZ
from
BANK_ACCOUNT
) BD
where
BD.USER_ID = ?
The FROM-clause subselect is a union of all concrete class tables, and it includes the
USER_ID foreign key values for all instances. The outer select now includes a
restriction in the WHERE clause to all rows referencing a particular user.

This magic works great for retrieval of data. If you manipulate the collection
and association, the noninverse side is used to update the USER_ID column(s) in
the concrete table. In other words, the modification of the inverse collection has
no effect: The value of the user property of a CreditCard or BankAccount
instance is taken.

Now consider the many-to-one association defaultBillingDetails again,
mapped with the DEFAULT_BILLING_DETAILS_ID column in the USERS table.
Hibernate executes a UNION query that looks similar to the previous query to
retrieve this instance, if you access the property. However, instead of a restriction
in the WHERE clause to a particular user, the restriction is made on a particular
BILLING_DETAILS_TID.

Important: Hibernate cannot and will not create a foreign key constraint for
DEFAULT BILLING_DETAILS_ID with this strategy. The target table of this reference
can be any of the concrete tables, which can’t be constrained easily. You should
consider writing a custom integrity rule for this column with a database trigger.

7.3.4

Polymorphic associations 319

One problematic inheritance strategy remains: table per concrete class with
implicit polymorphism.

Polymorphic table per concrete class

In chapter 5, section 5.1.1, “Table per concrete class with implicit polymorphism,”
we defined the table per concrete class mapping strategy and observed that this map-
ping strategy makes it difficult to represent a polymorphic association, because
you can’t map a foreign key relationship to a table of the abstract superclass.
There is no table for the superclass with this strategy; you have tables only for con-
crete classes. You also can’t create a UNION, because Hibernate doesn’t know what
unifies the concrete classes; the superclass (or interface) isn’t mapped anywhere.
Hibernate doesn’t support a polymorphic billingDetails one-to-many collec-
tion in User, if this inheritance mapping strategy is applied on the BillingDe-
tails hierarchy. If you need polymorphic many-to-one associations with this
strategy, you’ll have to resort to a hack. The technique we’ll show you in this sec-
tion should be your last choice. Try to switch to a <union-subclass> mapping first.
Suppose that you want to represent a polymorphic many-to-one association
from User to BillingDetails, where the BillingDetails class hierarchy is
mapped with a table per concrete class strategy and implicit polymorphic behavior in
Hibernate. You have a CREDIT CARD table and a BANK_ACCOUNT table, but no
BILLING_DETAILS table. Hibernate needs two pieces of information in the USERS
table to uniquely identify the associated default CreditCard or BankAccount:

» The name of the table in which the associated instance resides

s The identifier of the associated instance

The USERS table requires a DEFAULT_BILLING_DETAILS_TYPE column in addition
to the DEFAULT BILLING_DETAILS_ID. This extra column works as an additional
discriminator and requires a Hibernate <any> mapping in User.hbm.xml:

<any name="defaultBillingDetails"
id-type="long"
meta-type="string">
<meta-value value="CREDIT_CARD" class="CreditCard"/>
<meta-value value="BANK_ACCOUNT" class="BankAccount"/>
<column name="DEFAULT_BILLING_DETAILS_TYPE"/>
<column name="DEFAULT_BILLING_DETAILS_ID"/>
</any>

The meta-type attribute specifies the Hibernate type of the DEFAULT_ BILLING_
DETAILS_TYPE column; the id-type attribute specifies the type of the DEFAULT_

320

CHAPTER 7
Advanced entity association mappings

BILLING_DETAILS_ID column (it’s necessary for CreditCard and BankAccount to
have the same identifier type).

The <meta-value> elements tell Hibernate how to interpret the value of the
DEFAULT BILLING_DETAILS_TYPE column. You don’t need to use the full table
name here—you can use any value you like as a type discriminator. For example,
you can encode the information in two characters:

<any name="defaultBillingDetails"
id-type="long"
meta-type="string">
<meta-value value="CC" class="CreditCard"/>
<meta-value value="CA" class="BankAccount"/>
<column name="DEFAULT_BILLING_DETAILS_TYPE"/>
<column name="DEFAULT_BILLING_DETAILS_ID"/>
</any>
An example of this table structure is shown in figure 7.15.

Here is the first major problem with this kind of association: You can’t add a
foreign key constraint to the DEFAULT_BILLING_DETAILS_ID column, because
some values refer to the BANK_ACCOUNT table and others to the CREDIT_CARD table.
Thus, you need to come up with some other way to ensure integrity (a trigger, for
example). This is the same issue you’d face with a <union-subclass> strategy.

Furthermore, it’s difficult to write SQL table joins for this association. In partic-
ular, the Hibernate query facilities don’t support this kind of association mapping,
nor may this association be fetched using an outer join. We discourage the use of
<any> associations for all but the most special cases. Also note that this mapping

<< Table >>
USERS
USER_ID << PK >>
FIRSTNAME
LASTNAME

BEFAULT_BILLING_DETAILS_TYPE << Discriminator >>
DEFAULT_BILLING_DETAILS_ID << Any >>

<< Table >> << Table >>

CREDIT_CARD BANK_ACCOUNT
BILLING_DETAILS_ID << PK >> BILLING_DETAILS_ID << PK >>
USER_ID << FK >> USER_ID << FK >>
OWNER OWNER
NUMBER ACCOUNT
EXP_MONTH BANKNAME
EXP_YEAR SWIFT

Figure 7.15 Using a discriminator column with an any association

74

Summary 321

technique isn’t available with annotations or in Java Persistence (this mapping is
so rare that nobody asked for annotation support so far).

As you can see, as long as you don’t plan to create an association to a class hier-
archy mapped with implicit polymorphism, associations are straightforward; you
don’t usually need to think about it. You may be surprised that we didn’t show any
JPA or annotation example in the previous sections—the runtime behavior is the
same, and you don’t need any extra mapping to get it.

Summary

In this chapter, you learned how to map more complex entity associations. Many
of the techniques we’ve shown are rarely needed and may be unnecessary if you
can simplify the relationships between your classes. In particular, many-to-many
entity associations are often best represented as two one-to-many associations to
an intermediate entity class, or with a collection of components.

Table 7.1 shows a summary you can use to compare native Hibernate features
and Java Persistence.

Table 7.1 Hibernate and JPA comparison chart for chapter 7

Hibernate Core Java Persistence and EJB 3.0
Hibernate supports key generation for shared Standardized one-to-one mapping is supported. Auto-
primary key one-to-one association mappings. matic shared primary key generation is possible

through a Hibernate extension.

Hibernate supports all entity association map- Standardized association mappings are available
pings across join tables. across secondary tables.

Hibernate supports mapping of lists with persis- | Persistent indexes require a Hibernate extension
tent indexes. annotation.

Hibernate supports fully polymorphic behavior. Fully polymorphic behavior is available, but there is
It provides extra support for any association no annotation support for any mappings.
mappings to an inheritance hierarchy mapped
with implicit polymorphism.

In the next chapter, we’ll focus on legacy database integration and how you can
customize the SQL that Hibernate generates automatically for you. This chapter is
interesting not only if you have to work with legacy schemas, but also if you want
to improve your new schema with custom DDL, for example.

Legacy databases
and custom SOL

This chapter covers

®m | egacy database integration and tricky mappings
m Customization of SQL statements
m |mproving the SQL schema with custom DDL

322

8.1

Integrating legacy databases 323

Many examples presented in this chapter are about “difficult” mappings. The first
time you’ll likely have problems creating a mapping is with a legacy database
schema that can’t be modified. We discuss typical issues you encounter in such a
scenario and how you can bend and twist your mapping metadata instead of
changing your application or database schema.

We also show you how you can override the SQL Hibernate generates auto-
matically. This includes SQL queries, DML (create, update, delete) operations, as
well as Hibernate’s automatic DDL-generation feature. You’ll see how to map
stored procedures and user-defined SQL functions, and how to apply the right
integrity rules in your database schema. This section will be especially useful if
your DBA needs full control (or if you’re a DBA and want to optimize Hibernate
at the SQL level).

As you can see, the topics in this chapter are diverse; you don’t have to read
them all at once. You can consider a large part of this chapter to be reference
material and come back when you face a particular issue.

Integrating legacy databases

In this section, we hope to cover all the things you may encounter when you have
to deal with an existing legacy database or (and this is often synonymous) a weird
or broken schema. If your development process is top-down, however, you may
want to skip this section. Furthermore, we recommend that you first read all chap-
ters about class, collection, and association mappings before you attempt to
reverse-engineer a complex legacy schema.

We have to warn you: When your application inherits an existing legacy data-
base schema, you should usually make as few changes to the existing schema as
possible. Every change that you make to the schema could break other existing
applications that access the database. Possibly expensive migration of existing
data is also something you need to evaluate. In general, it isn’t possible to build a
new application and make no changes to the existing data model—a new applica-
tion usually means additional business requirements that naturally require evolu-
tion of the database schema.

We’ll therefore consider two types of problems: problems that relate to the
changing business requirements (which generally can’t be solved without schema
changes) and problems that relate only to how you wish to represent the same
business problem in your new application (these can usually, but not always, be
solved without database schema changes). It should be clear that the first kind of
problem is usually visible by looking at just the logical data model. The second

324

811

CHAPTER 8
Legacy databases and custom SQL

more often relates to the implementation of the logical data model as a physical
database schema.

If you accept this observation, you’ll see that the kinds of problems that require
schema changes are those that necessitate addition of new entities, refactoring of
existing entities, addition of new attributes to existing entities, and modification
to the associations between entities. The problems that can be solved without
schema changes usually involve inconvenient table or column definitions for a
particular entity. In this section, we’ll concentrate on these kinds of problems.

We assume that you've tried to reverse-engineer your existing schema with the
Hibernate toolset, as described in chapter 2, section 2.3, “Reverse engineering a
legacy database.” The concepts and solutions discussed in the following sections
assume that you have basic object/relational mapping in place and that you need
to make additional changes to get it working. Alternatively, you can try to write the
mapping completely by hand without the reverse-engineering tools.

Let’s start with the most obvious problem: legacy primary keys.

Handling primary keys

We’ve already mentioned that we think natural primary keys can be a bad idea.
Natural keys often make it difficult to refactor the data model when business
requirements change. They may even, in extreme cases, impact performance.
Unfortunately, many legacy schemas use (natural) composite keys heavily and, for
the reason we discourage the use of composite keys, it may be difficult to change
the legacy schema to use noncomposite natural or surrogate keys.

Therefore, Hibernate supports the use of natural keys. If the natural key is a
composite key, support is via the <composite-id> mapping. Let’s map both a
composite and a noncomposite natural primary key.

Mapping a natural key
If you encountered a USERS table in a legacy schema, it’s likely that USERNAME is
the actual primary key. In this case, you have no surrogate identifier that is auto-
matically generated. Instead, you enable the assigned identifier generator strat-
egy to indicate to Hibernate that the identifier is a natural key assigned by the
application before the object is saved:

<class name="User" table="USERS">

<id name="username" column="USERNAME" length="16">

<generator class="assigned"/>
</id>

</class>

Integrating legacy databases 325

The code to save a new User is as follows:

User user = new User();

user.setUsername ("johndoe"); // Assign a primary key value

user.setFirstname ("John") ;

user.setLastname ("Doe") ;

session.saveOrUpdate (user); // Will result in an INSERT

// System.out.println(session.getIdentifier (user));

session.flush() ;
How does Hibernate know that saveOrUpdate () requires an INSERT and not an
UPDATE? It doesn’t, so a trick is needed: Hibernate queries the USERS table for the
given username, and if it’s found, Hibernate updates the row. If it isn’t found,
insertion of a new row is required and done. This is certainly not the best solution,
because it triggers an additional hit on the database.

Several strategies avoid the SELECT:

= Add a <version> or a <timestamp> mapping, and a property, to your entity.
Hibernate manages both values internally for optimistic concurrency con-
trol (discussed later in the book). As a side effect, an empty timestamp or a
0 or NULL version indicates that an instance is new and has to be inserted,
not updated.

= Implement a Hibernate Interceptor, and hook it into your Session. This
extension interface allows you to implement the method isTransient ()
with any custom procedure you may need to distinguish old and new
objects.

On the other hand, if you’re happy to use save () and update () explicitly instead
of saveOrUpdate (), Hibernate doesn’t have to distinguish between transient and
detached instances—you do this by selecting the right method to call. (This issue
is, in practice, the only reason to not use saveOrUpdate () all the time, by the way.)

Mapping natural primary keys with JPA annotations is straightforward:

eId

private String username;
If no identifier generator is declared, Hibernate assumes that it has to apply the
regular select-to-determine-state-unless-versioned strategy and expects the appli-
cation to take care of the primary key value assignment. You can again avoid the
SELECT by extending your application with an interceptor or by adding a version-
control property (version number or timestamp).

Composite natural keys extend on the same ideas.

326

CHAPTER 8
Legacy databases and custom SQL

Mapping a composite natural key

Suppose that the primary key of the USERS table consists of a USERNAME and
DEPARTMENT_NR. You can add a property named departmentNr to the User class

and create the following mapping:

<class name="User" table="USERS">

<composite-id>
<key-property name="username"
column="USERNAME" />

<key-property name="departmentNr"
column="DEPARTMENT NR"/>
</composite-id>

</class>
The code to save a new User looks like this:

User user = new User();

// Assign a primary key value
user.setUsername ("johndoe") ;
user.setDepartmentNr (42) ;

// Set property values
user.setFirstname ("John") ;
user.setLastname ("Doe") ;

session.saveOrUpdate (user) ;
session.flush() ;

Again, keep in mind that Hibernate executes a SELECT to determine what save-
OrUpdate () should do—unless you enable versioning control or a custom Inter-
ceptor. But what object can/should you use as the identifier when you call 1oad ()

or get ()? Well, it’s possible to use an instance of the User class, for example:
User user = new User();

// Assign a primary key value
user.setUsername ("johndoe") ;
user.setDepartmentNr (42) ;

// Load the persistent state into user
session.load(User.class, user);

In this code snippet, User acts as its own identifier class. It’s more elegant to
define a separate composite identifier class that declares just the key properties.

Call this class UserId:

public class UserId implements Serializable {
private String username;

Integrating legacy databases 327

private Integer departmentNr;

public UserId(String username, Integer departmentNr) {
this.username = username;
this.departmentNr = departmentNr;

}
// Getters...

public int hashCode() {
int result;
result = username.hashCode() ;
result = 29 * result + departmentNr.hashCode() ;
return result;

}

public boolean equals (Object other) {
if (other==null) return false;
if (! (other instanceof UserId)) return false;
UserId that = (UserId) other;
return this.username.equals (that.username) &&
this.departmentNr.equals (that.departmentNr) ;

}

It’s critical that you implement equals() and hashCode() correctly, because
Hibernate relies on these methods for cache lookups. Identifier classes are also
expected to implement Serializable.

You now remove the username and departmentNr properties from User and
add a userId property. Create the following mapping:

<class name="User" table="USERS">

<composite-id name="userId" class="UserId">
<key-property name="username"
column="USERNAME" />

<key-property name="departmentNr"
column="DEPARTMENT_ NR"/>
</composite-id>

</class>
Save a new instance of User with this code:
UserId id = new UserId("johndoe", 42);

User user = new User();

// Assign a primary key value
user.setUserId(id);

// Set property values

328

CHAPTER 8
Legacy databases and custom SQL

user.setFirstname ("John") ;
user.setLastname ("Doe") ;

session.saveOrUpdate (user) ;

session.flush();
Again, a SELECT is needed for saveOrUpdate () to work. The following code shows
how to load an instance:

UserId id = new UserId("johndoe", 42);

User user = (User) session.load(User.class, id);

Now, suppose that the DEPARTMENT_NR is a foreign key referencing the DEPART-
MENT table, and that you wish to represent this association in the Java domain
model as a many-to-one association.

Foreign keys in composite primary keys

We recommend that you map a foreign key column that is also part of a compos-
ite primary key with a regular <many-to-one> element, and disable any Hiber-
nate inserts or updates of this column with insert="false" update="false", as
follows:

<class name="User" table="USER">

<composite-id name="userId" class="UserId">
<key-property name="username"
column="USERNAME" />

<key-property name="departmentId"
column="DEPARTMENT ID"/>
</composite-id>

<many-to-one name="department"
class="Department"
column="DEPARTMENT_ID"
insert="false" update="false"/>

</class>
Hibernate now ignores the department property when updating or inserting a
User, but you can of course read it with johndoe.getDepartment (). The relation-
ship between a User and Department is now managed through the departmentId
property of the UserId composite key class:

UserId id = new UserId("johndoe", department.getId());

User user = new User();

// Assign a primary key value
user.setUserId(id) ;

Integrating legacy databases 329

// Set property values
user.setFirstname ("John") ;
user.setLastname ("Doe") ;
user.setDepartment (department) ;

session.saveOrUpdate (user) ;

session.flush();
Only the identifier value of the department has any effect on the persistent state;
the setDepartment (department) call is done for consistency: Otherwise, you’d
have to refresh the object from the database to get the department set after the
flush. (In practice you can move all these details into the constructor of your com-
posite identifier class.)

An alternative approach is a <key-many-to-one>:

<class name="User" table="USER">

<composite-id name="userId" class="UserId">
<key-property name="username"
column="USERNAME" />

<key-many-to-one name="department"
class="Department"
column="DEPARTMENT_ ID"/>
</composite-id>

</class>
However, it’s usually inconvenient to have an association in a composite identifier
class, so this approach isn’t recommended except in special circumstances. The
<key-many-to-one> construct also has limitations in queries: You can’t restrict a

query result in HQL or Criteria across a <key-many-to-one> join (although it’s
possible these features will be implemented in a later Hibernate version).

Foreign keys to composite primary keys
Because USERS has a composite primary key, any referencing foreign key is also
composite. For example, the association from Item to User (the seller) is now
mapped with a composite foreign key.

Hibernate can hide this detail from the Java code with the following associa-
tion mapping from Item to User:

<many-to-one name="seller" class="User">

<column name="USERNAME" />

<column name="DEPARTMENT ID"/>
</many-to-one>

330

CHAPTER 8
Legacy databases and custom SQL

Any collection owned by the User class also has a composite foreign key—for
example, the inverse association, items, sold by this user:
<set name="itemsForAuction" inverse="true">
<key>
<column name="USERNAME" />
<column name="DEPARTMENT_ID"/>
</key>
<one-to-many class="Item"/>
</set>
Note that the order in which columns are listed is important and should match
the order in which they appear in the <composite-id> element of the primary
key mapping of User.
This completes our discussion of the basic composite key mapping technique
in Hibernate. Mapping composite keys with annotations is almost the same, but as
always, small differences are important.

Composite keys with annotations
The JPA specification covers strategies for handling composite keys. You have
three options:

= Encapsulate the identifier properties in a separate class and mark it
@Embeddable, like a regular component. Include a property of this compo-
nent type in your entity class, and map it with @Id for an application-
assigned strategy.

= Encapsulate the identifier properties in a separate class without any annota-
tions on it. Include a property of this type in your entity class, and map it
with @EmbeddedId.

= Encapsulate the identifier properties in a separate class. Now—and this is
different that what you usually do in native Hibernate—duplicate all the
identifier properties in the entity class. Then, annotate the entity class with
@IdClass and specify the name of your encapsulated identifier class.

The first option is straightforward. You need to make the UserId class from the
previous section embeddable:

@Embeddable

public class UserId implements Serializable {
private String username;
private String departmentNr;

Integrating legacy databases 331

As for all component mappings, you can define extra mapping attributes on the
fields (or getter methods) of this class. To map the composite key of User, set the

generation strategy to application assigned by omitting the @Generatedvalue
annotation:

QId
@AttributeOverrides ({
@AttributeOverride (name = "username",
column = @Column (name="USERNAME")),
@AttributeOverride (name = "departmentNr",

column = @Column (name="DEP_NR"))

1)

private UserId userId;

Just as you did with regular component mappings earlier in the book, you can
override particular attribute mappings of the component class, if you like.

The second composite-key mapping strategy doesn’t require that you mark up
the UserId primary key class. Hence, no @Embeddable and no other annotation
on that class is needed. In the owning entity, you map the composite identifier
property with @EmbeddedId, again, with optional overrides:

@EmbeddedId
@AttributeOverrides ({
@AttributeOverride (name = "username",
column = @Column (name="USERNAME")),
@AttributeOverride (name = "departmentNr",

column = @Column (name="DEP_NR"))
1)

private UserId userId;
In a JPA XML descriptor, this mapping looks as follows:

<embeddable class="auction.model.UserId" access ="PROPERTY">
<attributes>
<basic name="username">
<column name="UNAME"/>
</basic>
<basic name="departmentNr">
<column name="DEPARTMENT_NR"/>
</basic>
</attributes>
</embeddable>

<entity class="auction.model.User" access="FIELD">
<attributes>
<embedded-id name="userId">
<attribute-override name="username">
<column name="USERNAME"/>
</attribute-override>

332

CHAPTER 8
Legacy databases and custom SQL

<attribute-override name="departmentNr">
<column name="DEP_NR"/>
</attribute-override>
</embedded-id>

</attributes>

</entity>
The third composite-key mapping strategy is a bit more difficult to understand,
especially for experienced Hibernate users. First, you encapsulate all identifier
attributes in a separate class—as in the previous strategy, no extra annotations
on that class are needed. Now you duplicate all the identifier properties in the
entity class:

@Entity

@Table (name = "USERS")

@IdClass (UserId.class)
public class User {

@Id
private String username;

@Id
private String departmentNr;

// Accessor methods, etc.

}

Hibernate inspects the @IdClass and singles out all the duplicate properties (by
comparing name and type) as identifier properties and as part of the primary
key. All primary key properties are annotated with @Id, and depending on the
position of these elements (field or getter method), the entity defaults to field or
property access.

Note that this last strategy is also available in Hibernate XML mappings; how-
ever, it’s somewhat obscure:

<composite-id class="UserId" mapped="true">

<key-property name="username"
column="USERNAME" />

<key-property name="departmentNr"
column="DEP_NR" />
</composite-id>
You omit the identifier property name of the entity (because there is none), so
Hibernate handles the identifier internally. With mapped="true", you enable the
last JPA mapping strategy, so all key properties are now expected to be present in
both the User and the UserId classes.

Integrating legacy databases 333

This composite identifier mapping strategy looks as follows if you use JPA XML
descriptors:
<entity class="auction.model.User" access="FIELD">
<id-class class="auction.model.UserId"/>
<attributes>
<id name="username"/>
<id name="departmentNr"/>
</attributes>
</entity>
Because we didn’t find a compelling case for this last strategy defined in Java Per-
sistence, we have to assume that it was added to the specification to support some
legacy behavior (EJB 2.x entity beans).
Composite foreign keys are also possible with annotations. Let’s first map the
association from Item to User:

@ManyToOne

@JoinColumns ({
@JoinColumn (name="USERNAME", referencedColumnName = "USERNAME"),
@JoinColumn (name="DEP_NR", referencedColumnName = "DEP_NR")

1)

private User seller;
The primary difference between a regular @ManyToOne and this mapping is the
number of columns involved—again, the order is important and should be the
same as the order of the primary key columns. However, if you declare the refer-
encedColumnName for each column, order isn’t important, and both the source
and target tables of the foreign key constraint can have different column names.

The inverse mapping from User to Item with a collection is even more straight-
forward:

@OneToMany (mappedBy = "seller")

private Set<Item> itemsForAuction = new HashSet<Item> () ;
This inverse side needs the mappedBy attribute, as usual for bidirectional associa-
tions. Because this is the inverse side, it doesn’t need any column declarations.

In legacy schemas, a foreign key often doesn’t reference a primary key.

Foreign key referencing nonprimary keys

Usually, a foreign key constraint references a primary key. A foreign key constraint
is an integrity rule that guarantees that the referenced table has one row with a key
value that matches the key value in the referencing table and given row. Note that
a foreign key constraint can be self-referencing; in other words, a column with a
foreign key constraint can reference the primary key column of the same table.
(The PARENT_CATEGORY_ID in the CaveatEmptor CATEGORY table is one example.)

334

CHAPTER 8
Legacy databases and custom SQL

Legacy schemas sometimes have foreign key constraints that don’t follow the
simple “FK references PK” rule. Sometimes a foreign key references a nonprimary
key: a simple unique column, a natural nonprimary key. Let’s assume that in Cave-
atEmptor, you need to handle a legacy natural key column called CUSTOMER_NR on
the USERS table:

<class name="User" table="USERS">
<id name="id" column="USER_ID">...</id>

<property name="customerNr"
column="CUSTOMER_NR"
not-null="true"
unique="true"/>

</class>

The only thing that is probably new to you in this mapping is the unique attribute.
This is one of the SQL customization options in Hibernate; it’s not used at run-
time (Hibernate doesn’t do any uniqueness validation) but to export the database
schema with hbm2ddl. If you have an existing schema with a natural key, you
assume that it’s unique. For completeness, you can and should repeat such impor-
tant constraints in your mapping metadata—maybe you’ll use it one day to export
a fresh schema.

Equivalent to the XML mapping, you can declare a column as unique in JPA
annotations:

@Column (name = "CUSTOMER_NR", nullable = false, unique=true)

private int customerNr;
The next issue you may discover in the legacy schema is that the ITEM table has a
foreign key column, SELLER_NR. In an ideal world, you would expect this foreign
key to reference the primary key, USER_ID, of the USERS table. However, in a legacy
schema, it may reference the natural unique key, CUSTOMER_NR. You need to map
it with a property reference:

<class name="Item" table="ITEM">
<id name="id" column="ITEM_ID">...</id>

<many-to-one name="seller" column="SELLER_NR"
property-ref="customerNr" />

</class>
You’ll encounter the property-ref attribute in more exotic Hibernate mappings.

It’s used to tell Hibernate that “this is a mirror of the named property.” In the pre-
vious example, Hibernate now knows the target of the foreign key reference. One

Integrating legacy databases 335

further thing to note is that property-ref requires the target property to be
unique, so unique="true", as shown earlier, is needed for this mapping.

If you try to map this association with JPA annotations, you may look for an
equivalent to the property-ref attribute. You map the association with an explicit
reference to the natural key column, CUSTOMER_NR:

@ManyToOne

@JoinColumn (name="SELLER_NR", referencedColumnName = "CUSTOMER_NR")

private User seller;
Hibernate now knows that the referenced target column is a natural key and man-
ages the foreign key relationship accordingly.

To complete this example, you make this association mapping between the two
classes bidirectional, with a mapping of an itemsForAuction collection on the
User class. First, here it is in XML:

<class name="User" table="USERS">
<id name="id" column="USER_ID">...</id>
<property name="customerNr" column="CUSTOMER_NR" unique="true"/>

<set name="itemsForAuction" inverse="true">
<key column="SELLER_NR” property-ref="customerNr"/>
<one-to-many class="Item"/>

</set>

</class>

Again the foreign key column in ITEM is mapped with a property reference to
customerNr. In annotations, this is a lot easier to map as an inverse side:

@OneToMany (mappedBy = "seller")
private Set<Item> itemsForAuction = new HashSet<Item>();

Composite foreign key referencing nonprimary keys

Some legacy schemas are even more complicated than the one discussed before:
A foreign key might be a composite key and, by design, reference a composite nat-
ural nonprimary key!

Let’s assume that USERS has a natural composite key that includes the FIRST-
NAME, LASTNAME, and BIRTHDAY columns. A foreign key may reference this natural
key, as shown in figure 8.1.

To map this, you need to group several properties under the same name—oth-
erwise you can’t name the composite in a property-ref. Apply the <properties>
element to group the mappings:

336 CHAPTER 8
Legacy databases and custom SQL

<< Table >>
ITEM
ITEM_ID << PK >>
SELLER_FIRSTNAME << FK >>
SELLER_LASTNAME << FK >>
SELLER_BIRTHDAY << FK >>
INITIAL_PRICE

<< Table >>
USERS
USER_ID << PK >>
FIRSTNAME << UNQ >>
LASTNAME << UNQ >>
BIRTHDAY << UNQ >>

RESERVE_PRICE gilsfgvl:llgl\gg
START_DATE pASSY
END_DATE

Figure 8.1 A composite foreign key references a composite primary key.

<class name="User" table="USERS">
<id name="id" column="USER_ID">...</id>

<properties name="nameAndBirthday" unique="true" update="false">
<property name="firstname" column="FIRSTNAME"/>
<property name="lastname" column="LASTNAME"/>
<property name="birthday" column="BIRTHDAY" type="date"/>
</properties>

<set name="itemsForAuction" inverse="true">
<key property-ref="nameAndBirthday">
<column name="SELLER_FIRSTNAME" />
<column name="SELLER_LASTNAME" />
<column name="SELLER_BIRTHDAY"/>
</key>
<one-to-many class="Item"/>
</set>

</class>
As you can see, the <properties> element is useful not only to give several prop-
erties a name, but also to define a multicolumn unique constraint or to make sev-
eral properties immutable. For the association mappings, the order of columns is
again important:
<class name="Item" table="ITEM">
<id name="id" column="ITEM_ID">...</id>

<many-to-one name="seller" property-ref="nameAndBirthday">
<column name="SELLER_FIRSTNAME" />
<column name="SELLER_LASTNAME" />
<column name="SELLER_BIRTHDAY" />

</many-to-one>

</class>

812

Integrating legacy databases 337

Fortunately, it’s often straightforward to clean up such a schema by refactoring
foreign keys to reference primary keys—if you can make changes to the database
that don’t disturb other applications sharing the data.

This completes our exploration of natural, composite, and foreign key-related
problems you may have to deal with when you try to map a legacy schema. Let’s
move on to other interesting special mapping strategies.

Sometimes you can’t make any changes to a legacy database—not even creat-
ing tables or views. Hibernate can map classes, properties, and even parts of asso-
ciations to a simple SQL statement or expression. We call these kinds of mappings
formula mappings.

Arbitrary join conditions with formulas

Mapping a Java artifact to an SQL expression is useful for more than integrating a
legacy schema. You created two formula mappings already: The first, “Using
derived properties,” in chapter 4, section 4.4.1, was a simple derived read-only
property mapping. The second formula calculated the discriminator in an inher-
itance mapping; see chapter 5, section 5.1.3, “Table per class hierarchy.”

You’ll now apply formulas for a more exotic purposes. Keep in mind that some
of the mappings you’ll see now are complex, and you may be better prepared to
understand them after reading all the chapters in part 2 of this book.

Understanding the use case
You now map a literal join condition between two entities. This sounds more com-
plex than it is in practice. Look at the two classes shown in figure 8.2.

A particular Item may have several Bids—this is a one-to-many association. But
it isn’t the only association between the two classes; the other, a unidirectional

successful p

Bid
0..* | amount : BigDecimal
created : Date

2

Item
name : String
description : String
initialPrice : BigDecimal
reservePrice : BigDecimal
startDate : Date

endDate : Date Fig9re 8.2 o
state : ltemState A single-association that references an

approvalDatetime : Date instance in a many-association

338

CHAPTER 8
Legacy databases and custom SQL

one-to-one, is needed to single out one particular Bid instance as the winning bid.
You map the first association because you’d like to be able to get all the bids for an
auctioned item by calling anItem.getBids (). The second association allows you
to call anItem.getSuccessfulBid(). Logically, one of the elements in the collec-
tion is also the successful bid object referenced by getSuccessfulBid().

The first association is clearly a bidirectional one-to-many/many-to-one associ-
ation, with a foreign key ITEM_ID in the BID table. (If you haven’t mapped this
before, look at chapter 6, section 6.4, “Mapping a parent/children relationship.”)

The one-to-one association is more difficult; you can map it several ways.
The most natural is a uniquely constrained foreign key in the ITEM table refer-
encing a row in the BID table—the winning row, for example a SUCCESSFUL_
BID _ID column.

Legacy schemas often need a mapping that isn’t a simple foreign key relation-
ship.

Mapping a formula join condition

Imagine that each row in the BID table has a flag column to mark the winning bid,
as shown in figure 8.3. One BID row has the flag set to true, and all other rows for
this auction item are naturally false. Chances are good that you won’t find a con-
straint or an integrity rule for this relationship in a legacy schema, but we ignore
this for now and focus on the mapping to Java classes.

To make this mapping even more interesting, assume that the legacy schema
didn’t use the SQL BOOLEAN datatype but a CHAR(1) field and the values T (for
true) and F (for false) to simulate the boolean switch. Your goal is to map this flag
column to a successfulBid property of the Item class. To map this as an object
reference, you need a literal join condition, because there is no foreign key Hiber-
nate can use for a join. In other words, for each ITEM row, you need to join a row
from the BID table that has the SUCCESSFUL flag set to T. If there is no such row,
the anItem.getSuccessfulBid () call returns null.

Let’s first map the Bid class and a successful boolean property to the Suc-
CESSFUL database column:

<< Table >> << Table >>
ITEM BID
ITEM_ID << PK >> BID_ID << PK >>
SELLER_ID << FK >> ITEM_ID << FK >>
INITIAL_PRICE AMOUNT Figure 8.3
RESERVE_PRICE CREATED_ON The winning bid is marked with the
SUCCESSFUL SUCCESSFUL column flag.

Integrating legacy databases

<class name="Bid" table="BID">
<id name="id" column="BID_ID"...

<property name="amount"

<properties name="successfulReference">

<property name="successful"
column="SUCCESSFUL"
type="true_false" />

<many-to-one name="item"
class="Item"
column="ITEM_ID"/>

</properties>

<many-to-one name="bidder"
class="User"
column="BIDDER_ID"/>

</class>

339

The type="true_false" attribute creates a mapping between a Java boolean
primitive (or its wrapper) property and a simple CHAR (1) column with T/F literal
values—it’s a built-in Hibernate mapping type. You again group several properties
with <properties> under a name that you can reference in other mappings. What

is new here is that you can group a <many-to-one>, not only basic properties.

The real trick is happening on the other side, for the mapping of the success-

fulBid property of the Item class:

<class name="Item" table="ITEM">
<id name="id" column="ITEM_ID"...

<property name="initialPrice"

<one-to-one name="successfulBid"
property-ref="successfulReference">
<formula>'T'</formula>
<formula>ITEM_ID</formula>
</one-to-one>

<set name="bids" inverse="true">
<key column="ITEM_ ID”/>
<one-to-many class="Bid"/>
</set>

</class>

340

CHAPTER 8
Legacy databases and custom SQL

Ignore the <set> association mapping in this example; this is the regular one-to-
many association between Item and Bid, bidirectional, on the ITEM_ID foreign
key column in BID.

NOTE Isn’t <one-to-one> used for primary key associations? Usually, a <one-to-
one> mapping is a primary key relationship between two entities, when
rows in both entity tables share the same primary key value. However, by
using a formula with a property-ref, you can apply it to a foreign key
relationship. In the example shown in this section, you could replace the
<one-to-one> element with <many-to-one>, and it would still work.

The interesting part is the <one-to-one> mapping and how it relies on a prop-
erty-ref and literal formula values as a join condition when you work with the
association.

Working with the association
The full SQL query for retrieval of an auction item and its successful bid looks like

this:

select
i.ITEM_ID,
i.INITIAL_PRICE,

.BID_ID,
.AMOUNT,
.SUCCESSFUL,
.BIDDER_ID,

o o o o -

from
ITEM i
left outer join
BID b
on 'T' = b.SUCCESSFUL
and i.ITEM_ID = b.ITEM_ID
where
i.ITEM_ID = ?
When you load an Item, Hibernate now joins a row from the BID table by applying
a join condition that involves the columns of the successfulReference property.
Because this is a grouped property, you can declare individual expressions for
each of the columns involved, in the right order. The first one, 'T', is a literal, as
you can see from the quotes. Hibernate now includes 'T' = SUCCESSFUL in the
join condition when it tries to find out whether there is a successful row in the BID

table. The second expression isn’t a literal but a column name (no quotes).

Integrating legacy databases 341

Hence, another join condition is appended: i.ITEM ID = b.ITEM_ID. You can
expand this and add more join conditions if you need additional restrictions.

Note that an outer join is generated because the item in question may not have
a successful bid, so NULL is returned for each b.* column. You can now call
anItem.getSuccessfulBid() to get a reference to the successful bid (or null if
none exists).

Finally, with or without database constraints, you can’t just implement an
item.setSuccessfulBid () method that only sets the value on a private field in
the Item instance. You have to implement a small procedure in this setter method
that takes care of this special relationship and the flag property on the bids:

public class Item {

private Bid successfulBid;
private Set<Bid> bids = new HashSet<Bid> () ;

public Bid getSuccessfulBid() {
return successfulBid;

}

public void setSuccessfulBid(Bid successfulBid) {
if (successfulBid != null) {

for (Bid bid : bids)
bid.setSuccessful (false) ;

successfulBid.setSuccessful (true) ;
this.successfulBid = successfulBid;

}

When setSuccessfulBid() is called, you set all bids to not successful. Doing so
may trigger the loading of the collection—a price you have to pay with this strat-
egy. Then, the new successful bid is marked and set as an instance variable. Setting
the flag updates the SUCCESSFUL column in the BID table when you save the
objects. To complete this (and to fix the legacy schema), your database-level con-
straints need to do the same as this method. (We’ll come back to constraints later
in this chapter.)

One of the things to remember about this literal join condition mapping is
that it can be applied in many other situations, not only for successful or default
relationships. Whenever you need some arbitrary join condition appended to
your queries, a formula is the right choice. For example, you could use it in a

342

8.13

CHAPTER 8
Legacy databases and custom SQL

<many-to-many> mapping to create a literal join condition from the association
table to the entity table(s).

Unfortunately, at the time of writing, Hibernate Annotations doesn’t support
arbitrary join conditions expressed with formulas. The grouping of properties
under a reference name also wasn’t possible. We expect that these features will
closely resemble the XML mapping, once they’re available.

Another issue you may encounter in a legacy schema is that it doesn’t integrate
nicely with your class granularity. Our usual recommendation to have more
classes than tables may not work, and you may have to do the opposite and join
arbitrary tables into one class.

Joining arbitrary tables

We’ve already shown the <join> mapping element in an inheritance mapping in
chapter 5; see section 5.1.5, “Mixing inheritance strategies.” It helped to break out
properties of a particular subclass into a separate table, out of the primary inherit-
ance hierarchy table. This generic functionality has more uses—however, we have
to warn you that <join> can also be a bad idea. Any properly designed system
should have more classes than tables. Splitting a single class into separate tables is
something you should do only when you need to merge several tables in a legacy
schema into a single class.

Moving properties into a secondary table
Suppose that in CaveatEmptor, you aren’t keeping a user’s address information
with the user’s main information in the USERS table, mapped as a component, but
in a separate table. This is shown in figure 8.4. Note that each BILLING_ADDRESS
has a foreign key USER_ID, which is in turn the primary key of the BILLING_
ADDRESS table.

To map this in XML, you need to group the properties of the Address in a
<join> element:

<< Table >>

USERS
USER_ID << PK >>
FIRSTNAME
LASTNAME
USERNAME
EﬁiﬂNORD ZIPCODE
HOME_STREET Ik :gur::_ o t the billing add
HOME_Z|PCODE reaking ou e billing address

HOME_CITY data into a secondary table

<< Table >>
BILLING_ADDRESS
USER_ID << PK >> << FK >>
STREET

Integrating legacy databases 343

<class name="User" table="USERS">
<id>...

<join table="BILLING_ADDRESS" optional="true">
<key column="USER_ID"/>
<component name="billingAddress" class="Address">
<property name="street"
type="string"
column="STREET"
length="255"/>
<property name="zipcode"
type="string"
column="ZIPCODE"
length="16"/>
<property name="city"
type="string"
column="CITY"
length="255"/>
</component>
</join>

</class>

You don’t have to join a component; you can as well join individual properties or
even a <many-to-one> (we did this in the previous chapter for optional entity
associations). By setting optional="true", you indicate that the component prop-
erty may also be null for a User with no billingAddress, and that no row should
then be inserted into the secondary table. Hibernate also executes an outer join
instead of an inner join to retrieve the row from the secondary table. If you
declared fetch="select" on the <join> mapping, a secondary select would be
used for that purpose.

The notion of a secondary table is also included in the Java Persistence specifi-
cation. First, you have to declare a secondary table (or several) for a particular
entity:

@Entity

@Table (name = "USERS")

@SecondaryTable (

name = "BILLING_ADDRESS",

pkJoinColumns = {
@PrimaryKeyJoinColumn (name="USER_ID")

)

public class User {

344 CHAPTER 8
Legacy databases and custom SQL

Each secondary table needs a name and a join condition. In this example, a for-
eign key column references the primary key column of the USERS table, just like
earlier in the XML mapping. (This is the default join condition, so you can only
declare the secondary table name, and nothing else). You can probably see that
the syntax of annotations is starting to become an issue and code is more difficult
to read. The good news is that you won’t have to use secondary tables often.

The actual component property, billingAddress, is mapped as a regular
@Embedded class, just like a regular component. However, you need to override
each component property column and assign it to the secondary table, in the

User class:
@Embedded
@AttributeOverrides ({
@AttributeOverride (
name = "street",
column = @Column (name="STREET",
table = "BILLING_ADDRESS")
)
@AttributeOverride (
name = "zipcode",
column = @Column (name="ZIPCODE",
table = "BILLING_ADDRESS")
)
@AttributeOverride (
name = "city",
column = @Column (name="CITY",
table = "BILLING_ADDRESS")

}
private Address billingAddress;

This is no longer easily readable, but it’s the price you pay for mapping flexibility
with declarative metadata in annotations. Or, you can use a JPA XML descriptor:

<entity class="auction.model.User" access="FIELD">
<table name="USERS"/>
<secondary-table name="BILLING_ADDRESS">
<primary-key-join-column
referenced-column-name="USER_ID" />
</secondary-table>
<attributes>

<embedded name="billingAddress">
<attribute-override name="street">
<column name="STREET" table="BILLING_ADDRESS"/>
</attribute-override>
<attribute-override name="zipcode">

Integrating legacy databases 345

<column name="ZIPCODE" table="BILLING_ADDRESS"/>

</attribute-override>

<attribute-override name="city">
<column name="CITY" table="BILLING_ADDRESS"/>

</attribute-override>

</embedded>
</attributes>
</entity>
Another, even more exotic use case for the <join> element is inverse joined prop-

erties or COIIlpOl’lel’ltS.

Inverse joined properties

Let’s assume that in CaveatEmptor you have a legacy table called DAILY_BILLING.
This table contains all the open payments, executed in a nightly batch, for any
auctions. The table has a foreign key column to ITEM, as you can see in figure 8.5.

Each payment includes a TOTAL column with the amount of money that will be
billed. In CaveatEmptor, it would be convenient if you could access the price of a
particular auction by calling anItem.getBillingTotal().

You can map the column from the DAILY_BILLING table into the Item class.
However, you never insert or update it from this side; it’s read-only. For that rea-
son, you map it inverse—a simple mirror of the (supposed, you don’t map it here)
other side that takes care of maintaining the column value:

<class name="Item" table="ITEM">
<id>...

<join table="DAILY_ _BILLING" optional="true" inverse="true">
<key column="ITEM_ ID"/>
<property name="billingTotal"
type="big_decimal"
column="TOTAL" />

</join>
</class>
<< Table >>
ITEM
ITEM_ID << PK >> << Table >>
SELLER_ID << FK >> DAILY_BILLING
INITIAL_PRICE BILLING_ID << PK >>
RESERVE_PRICE STATUS
START_DATE ITEM_ID << FK >>
END_DATE TOTAL

Figure 8.5 The daily billing summary references an item and contains the total sum.

346

8.14

CHAPTER 8
Legacy databases and custom SQL

Note that an alternative solution for this problem is a derived property using a for-
mula expression and a correlated subquery:
<property name="billingTotal"
type="big_decimal"
formula="(select db.TOTAL from DAILY_BILLING db
where db.ITEM_ID = ITEM_ID)"/>

The main difference is the SQL SELECT used to load an ITEM: The first solution
defaults to an outer join, with an optional second SELECT if you enable <join
fetch="select">. The derived property results in an embedded subselect in
the select clause of the original query. At the time of writing, inverse join map-
pings aren’t supported with annotations, but you can use a Hibernate annota-
tion for formulas.

As you can probably guess from the examples, <join> mappings come in
handy in many situations. They’re even more powerful if combined with formu-
las, but we hope you won’t have to use this combination often.

One further problem that often arises in the context of working with legacy
data are database triggers.

Working with triggers

There are some reasons for using triggers even in a brand-new database, so legacy
data isn’t the only scenerio in which they can cause problems. Triggers and object
state management with an ORM software are almost always an issue, because trig-
gers may run at inconvenient times or may modify data that isn’t synchronized
with the in-memory state.

Triggers that run on INSERT
Suppose the ITEM table has a CREATED column, mapped to a created property of
type Date, that is initialized by a trigger that executes automatically on insertion.
The following mapping is appropriate:
<property name="created"
type="timestamp"
column="CREATED"
insert="false"
update="false" />
Notice that you map this property insert="false" update="false" to indicate
thatitisn’t to be included in SQL INSERTs or UPDATEs by Hibernate.
After saving a new Item, Hibernate isn’t aware of the value assigned to this col-
umn by the trigger, because it occurred after the INSERT of the item row. If you

Integrating legacy databases 347

need the generated value in the application, you must explicitly tell Hibernate to
reload the object with an SQL SELECT. For example:

Item item = new Item();

Session session = getSessionFactory () .openSession() ;
Transaction tx = session.beginTransaction() ;

session.save (item) ;
session.flush(); // Force the INSERT to occur
session.refresh(item); // Reload the object with a SELECT

System.out.println(item.getCreated());

tx.commit () ;

session.close();

Most problems involving triggers may be solved in this way, using an explicit
flush() to force immediate execution of the trigger, perhaps followed by a call to
refresh() to retrieve the result of the trigger.

Before you add refresh() calls to your application, we have to tell you that the
primary goal of the previous section was to show you when to use refresh().
Many Hibernate beginners don’t understand its real purpose and often use it
incorrectly. A more formal definition of refresh() is “refresh an in-memory
instance in persistent state with the current values present in the database.”

For the example shown, a database trigger filling a column value after inser-
tion, a much simpler technique can be used:

<property name="created"

type="timestamp"
column="CREATED"
generated="insert"

insert="false"
update="false"/>

With annotations, use a Hibernate extension:

@Temporal (TemporalType.TIMESTAMP)

@org.hibernate.annotations.Generated (
org.hibernate.annotations.GenerationTime.INSERT

)

@Column (name = "CREATED", insertable = false, updatable = false)

private Date created;

We have already discussed the generated attribute in detail in chapter 4,
section 4.4.1.3, “Generated and default property values.” With gener-

ated="insert", Hibernate automatically executes a SELECT after insertion, to
retrieve the updated state.

348 CHAPTER 8
Legacy databases and custom SQL

There is one further problem to be aware of when your database executes trig-
gers: reassociation of a detached object graph and triggers that run on each
UPDATE.

Triggers that run on UPDATE

Before we discuss the problem of ON UPDATE triggers in combination with reat-
tachment of objects, we need to point out an additional setting for the generated
attribute:

<version name="version"
column="0OBJ_VERSION"
generated="always"/>

<timestamp name="lastModified"
column="LAST MODIFIED"
generated="always" />

<property name="lastModified"
type="timestamp"
column="LAST MODIFIED"
generated="always"
insert="false"
update="false" />

With annotations, the equivalent mappings are as follows:

@Version

@Qorg.hibernate.annotations.Generated
org.hibernate.annotations.GenerationTime.ALWAYS

)

@Column (name = "OBJ_VERSION")

private int version;

@Version
@org.hibernate.annotations.Generated (
org.hibernate.annotations.GenerationTime.ALWAYS

)
@Column (name = "LAST_MODIFIED")
private Date lastModified;

@Temporal (TemporalType.TIMESTAMP)
@Qorg.hibernate.annotations.Generated (
org.hibernate.annotations.GenerationTime.ALWAYS

)

@Column (name = "LAST MODIFIED", insertable = false, updatable = false)

private Date lastModified;
With always, you enable Hibernate’s automatic refreshing not only for insertion
but also for updating of a row. In other words, whenever a version, timestamp, or
any property value is generated by a trigger that runs on UPDATE SQL statements,

Integrating legacy databases 349

you need to enable this option. Again, refer to our earlier discussion of generated
properties in section 4.4.1.

Let’s look at the second issue you may run into if you have triggers running on
updates. Because no snapshot is available when a detached object is reattached to
a new Session (with update() or saveOrUpdate()), Hibernate may execute
unnecessary SQL UPDATE statements to ensure that the database state is synchro-
nized with the persistence context state. This may cause an UPDATE trigger to fire
inconveniently. You avoid this behavior by enabling select-before-update in the
mapping for the class that is persisted to the table with the trigger. If the ITEM
table has an update trigger, add the following attribute to your mapping:

<class name="Item"

table="ITEM"
select-before-update="true">

</clééé>
This setting forces Hibernate to retrieve a snapshot of the current database state
using an SQL SELECT, enabling the subsequent UPDATE to be avoided if the state of
the in-memory Item is the same. You trade the inconvenient UPDATE for an addi-
tional SELECT.

A Hibernate annotation enables the same behavior:

QEntity

@org.hibernate.annotations.Entity(selectBeforeUpdate = true)

public class Item { ... }

Before you try to map a legacy scheme, note that the SELECT before an update
only retrieves the state of the entity instance in question. No collections or associ-
ated instances are eagerly fetched, and no prefetching optimization is active. If
you start enabling selectBeforeUpdate for many entities in your system, you’ll
probably find that the performance issues introduced by the nonoptimized
selects are problematic. A better strategy uses merging instead of reattachment.
Hibernate can then apply some optimizations (outer joins) when retrieving data-
base snapshots. We’ll talk about the differences between reattachment and merg-
ing later in the book in more detail.

Let’s summarize our discussion of legacy data models: Hibernate offers several
strategies to deal with (natural) composite keys and inconvenient columns easily.
Before you try to map a legacy schema, our recommendation is to carefully exam-
ine whether a schema change is possible. In our experience, many developers
immediately dismiss database schema changes as too complex and time-consum-
ing and look for a Hibernate solution. This sometimes isn’t justified, and you

350

8.2

CHAPTER 8
Legacy databases and custom SQL

should consider schema evolution a natural part of your schema’s lifecycle. If
tables change, then a data export, some transformation, and an import may solve
the problem. One day of work may save many days in the long run.

Legacy schemas often also require customization of the SQL generated by
Hibernate, be it for data manipulation (DML) or schema definition (DDL).

Customizing SQL

SQL started its life in the 1970s but wasn’t (ANSI) standardized untl 1986.
Although each update of the SQL standard has seen new (and many controver-
sial) features, every DBMS product that supports SQL does so in its own unique
way. The burden of portability is again on the database application developers.
This is where Hibernate helps: Its built-in query mechanisms, HQL and the Cri-
teria API, produce SQL that depends on the configured database dialect. All
other automatically generated SQL (for example, when a collection has to be
retrieved on demand) is also produced with the help of dialects. With a simple
switch of the dialect, you can run your application on a different DBMS.

To support this portability, Hibernate has to handle three kinds of operations:

= Every data-retrieval operation results in SELECT statements being executed.
Many variations are possible; for example, database products may use a dif-
ferent syntax for the join operation or how a result can be limited to a par-
ticular number of rows.

= Every data modification requires the execution of Data Manipulation Lan-
guage (DML) statements, such as UPDATE, INSERT, and DELETE. DML often
isn’t as complex as data retrieval, but it still has product-specific variations.

= A database schema must be created or altered before DML and data
retrieval can be executed. You use Data Definition Language (DDL) to work
on the database catalog; it includes statements such as CREATE, ALTER, and
DROP. DDL is almost completely vendor specific, but most products have at
least a similar syntax structure.

Another term we use often is CRUD, for create, read, update, and delete. Hiber-
nate generates all this SQL for you, for all CRUD operations and schema definition.
The translation is based on an org.hibernate.dialect.Dialect implementa-
tion—Hibernate comes bundled with dialects for all popular SQL database man-
agement systems. We encourage you to look at the source code of the dialect
you're using; it’s not difficult to read. Once you're more experienced with

821

Customizing SQL 351

Hibernate, you may even want to extend a dialect or write your own. For example,
to register a custom SQL function for use in HQL selects, you’d extend an existing
dialect with a new subclass and add the registration code—again, check the exist-
ing source code to find out more about the flexibility of the dialect system.

On the other hand, you sometimes need more control than Hibernate APIs (or
HQL) provide, when you need to work on a lower level of abstraction. With Hiber-
nate you can override or completely replace all CRUD SQL statements that will be
executed. You can customize and extend all DDL SQL statements that define your
schema, if you rely on Hibernate’s automatic schema-export tool (you don’t have
to).

Furthermore Hibernate allows you to get a plain JDBC Connection object at all
times through session.connection (). You should use this feature as a last resort,
when nothing else works or anything else would be more difficult than plain
JDBC. With the newest Hibernate versions, this is fortunately exceedingly rare,
because more and more features for typical stateless JDBC operations (bulk
updates and deletes, for example) are built-in, and many extension points for cus-
tom SQL already exist.

This custom SQL, both DML and DDL, is the topic of this section. We start with
custom DML for create, read, update, and delete operations. Later, we integrate
stored database procedures to do the same work. Finally, we look at DDL customi-
zation for the automatic generation of a database schema and how you can create
a schema that represents a good starting point for the optimization work of a DBA.

Note that at the time of writing this detailed customization of automatically
generated SQL isn’t available in annotations; hence, we use XML metadata exclu-
sively in the following examples. We expect that a future version of Hibernate
Annotations will include better support for SQL customization.

Writing custom CRUD statements

The first custom SQL you’ll write is used to load entities and collections. (Most of
the following code examples show almost the same SQL Hibernate executes by
default, without much customization—this helps you to understand the mapping
technique more quickly.)

Loading entities and collections with custom SQL
For each entity class that requires a custom SQL operation to load an instance, you
define a <loader> reference to a named query:

<class name="User" table="USERS">
<id name="id" column="USER_ID"...

352

CHAPTER 8
Legacy databases and custom SQL

<loader query-ref="loadUser"/>

</class>

The loadUser query can now be defined anywhere in your mapping metadata,
separate and encapsulated from its use. This is an example of a simple query that
retrieves the data for a User entity instance:

<sqgl-query name="loadUser">
<return alias="u" class="User"/>

select
us.USER_ID as {u.id},
us .FIRSTNAME as {u.firstname},
us .LASTNAME as {u.lastname},
us . USERNAME as {u.username},
us."PASSWORD" as {u.password},
us.EMAIL as {u.email},
us . RANKING as {u.ranking},
us.IS_ADMIN as {u.admin},
us.CREATED as {u.created},

us.HOME_STREET as {u.homeAddress.street},
us.HOME_ZIPCODE as {u.homeAddress.zipcode},

us.HOME_CITY as {u.homeAddress.city},

us .DEFAULT_BILLING_DETAILS_ID as {u.defaultBillingDetails}
from

USERS us
where

us.USER_ID = ?
</sqgl-query>

As you can see, the mapping from column names to entity properties uses a sim-

ple aliasing. In a named loader query for an entity, you have to SELECT the follow-

ing columns and properties:

= The primary key columns and primary key property or properties, if a com-
posite primary key is used.

= All scalar properties, which must be initialized from their respective col-
umn (s).

= All composite properties which must be initialized. You can address the
individual scalar elements with the following aliasing syntax: {entity-
alias.componentProperty.scalarProperty}.

= All foreign key columns, which must be retrieved and mapped to the
respective many-to-one property. See the DEFAULT BILLING_DETAILS_ID
example in the previous snippet.

Customizing SQL 353

= All scalar properties, composite properties, and many-to-one entity refer-
ences that are inside a <join> element. You use an inner join to the
secondary table if all the joined properties are never NULL; otherwise, an
outer join is appropriate. (Note that this isn’t shown in the example.)

= If you enable lazy loading for scalar properties, through bytecode instru-
mentation, you don’t need to load the lazy properties. See chapter 13, sec-
tion 13.1.6, “Lazy loading with interception.”

The {propertyName} aliases as shown in the previous example are not absolutely
necessary. If the name of a column in the result is the same as the name of a
mapped column, Hibernate can automatically bind them together.

You can even call a mapped query by name in your application with ses-
sion.getNamedQuery ("loadUser"). Many more things are possible with custom
SQL queries, but we’ll focus on basic SQL customization for CRUD in this section.
We come back to other relevant APIs in chapter 15, section 15.2, “Using native
SQL queries.”

Let’s assume that you also want to customize the SQL that is used to load a col-
lection—for example, the items sold by a User. First, declare a loader reference
in the collection mapping:

<set name="items" inverse="true">

<key column="SELLER_ID" not-null="true"/>
<one-to-many class="Item"/>

<loader query-ref="loadItemsForUser"/>
</set>

The named query loadItemsForUser looks almost the same as the entity loader:

<sgl-query name="loadItemsForUser">
<load-collection alias="i" role="User.items"/>
select
{i.*}
from
ITEM i
where
i.SELLER_ID = :id
</sql-query>

There are two major differences: One is the <load-collection> mapping from
an alias to a collection role; it should be self-explanatory. What is new in this query
is an automatic mapping from the SQL table alias ITEM i to the properties of all
items with {i.*}. You created a connection between the two by using the same
alias: the symbol i. Furthermore, you’re now using a named parameter, :id,

354

CHAPTER 8
Legacy databases and custom SQL

instead of a simple positional parameter with a question mark. You can use what-
ever syntax you prefer.

Sometimes, loading an entity instance and a collection is better done in a sin-
gle query, with an outer join (the entity may have an empty collection, so you can’t
use an inner join). If you want to apply this eager fetch, don’t declare a loader ref-
erences for the collection. The entity loader takes care of the collection retrieval:

<sql-query name="loadUser">
<return alias="u" class="User"/>
<return-join alias="i" property="u.items"/>
select
{fu.*}, {i.*}
from
USERS u
left outer join ITEM i
on u.USER_ID = i.SELLER_ID
where
U.USER_ID = ?
</sgl-query>
Note how you use the <return-join> element to bind an alias to a collection
property of the entity, effectively linking both aliases together. Further note that
this technique also works if you’d like to eager-fetch one-to-one and many-to-one
associated entities in the original query. In this case, you may want an inner join if
the associated entity is mandatory (the foreign key can’t be NULL) or an outer join
if the target is optional. You can retrieve many single-ended associations eagerly in
one query; however, if you (outer-) join more than one collection, you create a
Cartesian product, effectively multiplying all collection rows. This can generate
huge results that may be slower than two queries. You’ll meet this limitation again
when we discuss fetching strategies in chapter 13.

As mentioned earlier, you’ll see more SQL options for object loading later in
the book. We now discuss customization of insert, update, and delete operations,
to complete the CRUD basics.

Custom insert, update, and delete
Hibernate produces all trivial CRUD SQL at startup. It caches the SQL statements
internally for future use, thus avoiding any runtime cost of SQL generation for the
most common operations. You’ve seen how you can override the R of CRUD, so
let’s do the same for CUD.

For each entity or collection, you can define custom CUD SQL statements
inside the <sql-insert>, <sql-delete>, and <sql-update> element, respectively:

Customizing SQL 355

<class name="User" table="USERS">

<id name="id" column="USER_ID"...

<join table="BILLING_ADDRESS" optional="true">
<key column="USER_ID"/>
<component name="billingAddress" class="Address">
<property
</component>

<sgl-insert>
insert into BILLING_ADDRESS
(STREET, ZIPCODE, CITY, USER_ID)
values (?, 2, ?, ?)
</sqgl-insert>

<sgl-update>...</sgl-update>
<sgl-delete>...</sgl-delete>
</join>

<sgl-insert>
insert into USERS (FIRSTNAME, LASTNAME, USERNAME,
"PASSWORD", EMAIL, RANKING, IS_ADMIN,
CREATED, DEFAULT_BILLING_DETAILS_ID,
HOME_STREET, HOME_ZIPCODE, HOME_CITY,
USER_1ID)
values (? ? ? ? ? ? ? ? ? ? ? ? ?)

L A A A A A Y A A S A]

</sql-insert>
<sgl-update>...</sgl-update>
<sgl-delete>...</sgl-delete>

</class>

This mapping example may look complicated, but it’s really simple. You have two
tables in a single mapping: the primary table for the entity, USERS, and the second-
ary table BILLING_ADDRESS from your legacy mapping earlier in this chapter.
Whenever you have secondary tables for an entity, you have to include them in
any custom SQL—hence the <sgl-insert>, <sgl-delete>, and <sgl-update>
elements in both the <class> and the <join> sections of the mapping.

The next issue is the binding of arguments for the statements. For CUD SQL
customization, only positional parameters are supported at the time of writing.
But what is the right order for the parameters? There is an internal order to how
Hibernate binds arguments to SQL parameters. The easiest way to figure out the
right SQL statement and parameter order is to let Hibernate generate one for

356

8.2.2

CHAPTER 8
Legacy databases and custom SQL

you. Remove your custom SQL from the mapping file, enable DEBUG logging for
the org.hibernate.persister.entity package, and watch (or search) the
Hibernate startup log for lines similar to these:
AbstractEntityPersister - Insert 0: insert into USERS (FIRSTNAME,
LASTNAME, USERNAME, "PASSWORD", EMAIL, RANKING, IS_ADMIN,
CREATED, DEFAULT BILLING_DETAILS_ID, HOME_STREET, HOME_ZIPCODE,
HOME_CITY, USER_ID) values (?, 2, ?, 2, 2, 2, 2, 2, 2, 2, 2, 2, ?)
AbstractEntityPersister - Update 0: update USERS set
FIRSTNAME=?, LASTNAME=?, "PASSWORD"=?, EMAIL=?, RANKING=?,
IS_ADMIN=?, DEFAULT BILLING_DETAILS_ID=?, HOME_STREET=2,
HOME_ZIPCODE=?, HOME_CITY=? where USER_ID=?

You can now copy the statements you want to customize into your mapping file
and make the necessary changes. For more information on logging in Hibernate,
refer to “Enabling logging statistics” in chapter 2, in section 2.1.3.

You’ve now mapped CRUD operations to custom SQL statements. On the other
hand, dynamic SQL isn’t the only way how you can retrieve and manipulate data.
Predefined and compiled procedures stored in the database can also be mapped
to CRUD operations for entities and collections.

Integrating stored procedures and functions

Stored procedures are common in database application development. Moving
code closer to the data and executing it inside the database has distinct advantages.

First, you don’t have to duplicate functionality and logic in each program that
accesses the data. A different point of view is that a lot of business logic shouldn’t
be duplicated, so it can be applied all the time. This includes procedures that
guarantee the integrity of the data: for example, constraints that are too complex
to be implemented declaratively. You’ll usually also find triggers in a database that
has procedural integrity rules.

Stored procedures have advantages for all processing on large amounts of
data, such as reporting and statistical analysis. You should always try to avoid mov-
ing large data sets on your network and between your database and application
servers, so a stored procedure is a natural choice for mass data operations. Or, you
can implement a complex data-retrieval operation that assembles data with sev-
eral queries before it passes the final result to the application client.

On the other hand, you’ll often see (legacy) systems that implement even the
most basic CRUD operations with a stored procedure. As a variation of this, sys-
tems that don’t allow any direct SQL DML, but only stored procedure calls, also
had (and sometimes still have) their place.

Customizing SQL 357

You may start integrating existing stored procedures for CRUD or for mass data
operations, or you may begin writing your own stored procedure first.

Writing a procedure

Programming languages for stored procedures are usually proprietary. Oracle
PL/SQL, a procedural dialect of SQL, is very popular (and available with variations
in other database products). Some databases even support stored procedures writ-
ten in Java. Standardizing Java stored procedures was part of the SQLJ effort,
which, unfortunately, hasn’t been successful.

You’ll use the most common stored procedure systems in this section: Oracle
databases and PL/SQL. It turns out that stored procedures in Oracle, like so many
other things, are always different than you expect; we’ll tell you whenever some-
thing requires extra attention.

A stored procedure in PL/SQL has to be created in the database catalog as
source code and then compiled. Let’s first write a stored procedure that can load
all User entities that match a particular criterion:

<database-object>

<create>
create or replace procedure SELECT_USERS_BY_RANK

(
OUT_RESULT out SYS_REFCURSOR,

IN_RANK in int
) as
begin

open OUT_RESULT for

select
us.USER_ID as USER_ID,
us .FIRSTNAME as FIRSTNAME,
us .LASTNAME as LASTNAME,
us . USERNAME as USERNAME,
us."PASSWORD" as PASSWD,
us.EMAIL as EMATIL,
us . RANKING as RANKING,
us.IS_ADMIN as IS_ADMIN,
us .CREATED as CREATED,
us .HOME_STREET as HOME_STREET,
us.HOME_ZIPCODE as HOME_ZIPCODE,
us.HOME_CITY as HOME_CITY,
ba.STREET as BILLING_STREET,
ba.ZIPCODE as BILLING_ZIPCODE,
ba.CITY as BILLING_CITY,

us .DEFAULT_BILLING_DETAILS_ID
as DEFAULT_ BILLING_DETAILS_ID
from
USERS us

358

CHAPTER 8
Legacy databases and custom SQL

left outer join
BILLING_ADDRESS ba
on us.USER_ID = ba.USER_ID
where
us.RANKING >= IN_RANK;

end;
</create>
<drop>

drop procedure SELECT_USERS_BY_RANK
</drop>

</database-object>
You embed the DDL for the stored procedure in a <database-object> element
for creation and removal. That way, Hibernate automatically creates and drops
the procedure when the database schema is created and updated with the
hbm2ddl tool. You could also execute the DDL by hand on your database catalog.
Keeping it in your mapping files (in whatever location seems appropriate, such as
in MyStoredProcedures.hbm.xml) is a good choice if you’re working on a nonleg-
acy system with no existing stored procedures. We’ll come back to other options
for the <database-object> mapping later in this chapter.

As before, the stored procedure code in the example is straightforward: a join
query against the base tables (primary and secondary tables for the User class)
and a restriction by RANKING, an input argument to the procedure.

You must observe a few rules for stored procedures mapped in Hibernate.
Stored procedures support IN and OUT parameters. If you use stored procedures
with Oracle’s own JDBC drivers, Hibernate requires that the first parameter of the
stored procedure is an OUT; and for stored procedures that are supposed to be
used for queries, the query result is supposed to be returned in this parameter. In
Oracle 9 or newer, the type of the OUT parameter has to be a SYS_REFCURSOR. In
older versions of Oracle, you must define your own reference cursor type first,
called REF CURSOR—examples can be found in Oracle product documentation.
All other major database management systems (and drivers for the Oracle DBMS
not from Oracle) are JDBC-compliant, and you can return a result directly in the
stored procedure without using an OUT parameter. For example, a similar proce-
dure in Microsoft SQL Server would look as follows:

create procedure SELECT_USERS_BY_RANK

@IN_RANK int
as

select
us.USER_ID as USER_ID,
us . FIRSTNAME as FIRSTNAME,

us . LASTNAME as LASTNAME,

Customizing SQL 359

from
USERS us
where us.RANKING >= @IN_RANK

Let’s map this stored procedure to a named query in Hibernate.
Querying with a procedure

A stored procedure for querying is mapped as a regular named query, with some
minor differences:

<sgl-query name="loadUsersByRank" callable="true">
<return alias="u" class="User">

<return-property name="id" column="USER_ID"/>
<return-property name="firstname" column="FIRSTNAME" />
<return-property name="lastname" column="LASTNAME" />
<return-property name="username" column="USERNAME" />
<return-property name="password" column="PASSWD" />
<return-property name="email" column="EMAIL" />
<return-property name="ranking" column="RANKING" />
<return-property name="admin" column="IS_ADMIN"/>
<return-property name="created" column="CREATED" />

<return-property name="homeAddress">
<return-column name="HOME_STREET" />
<return-column name="HOME_ZIPCODE" />
<return-column name="HOME_CITY"/>
</return-property>
<return-property name="billingAddress">
<return-column name="BILLING_STREET"/>
<return-column name="BILLING_ZIPCODE"/>
<return-column name="BILLING_CITY"/>
</return-property>
<return-property name="defaultBillingDetails"
column="DEFAULT_BILLING_DETAILS_ID"/>
</return>
{ call SELECT_USERS_BY RANK(?, :rank) }
</sgl-query>

The first difference, compared to a regular SQL query mapping, is the call-
able="true" attribute. This enables support for callable statements in Hibernate
and correct handling of the output of the stored procedure. The following map-
pings bind the column names returned in the procedures result to the properties
of a User object. One special case needs extra consideration: If multicolumn
properties, including components (homeAddress), are present in the class, you
need to map their columns in the right order. For example, the homeAddress
property is mapped as a <component> with three properties, each to its own

360

CHAPTER 8
Legacy databases and custom SQL

column. Hence, the stored procedure mapping includes three columns bound to
the homeAddress property.

The call of the stored procedure prepares one OUT (the question mark) and a
named input parameter. If you aren’t using the Oracle JDBC drivers (other driv-
ers or a different DBMS), you don’t need to reserve the first OUT parameter; the
result can be returned directly from the stored procedure.

Look at the regular class mapping of the User class. Notice that the column
names returned by the procedure in this example are the same as the column
names you already mapped. You can omit the binding of each property and let
Hibernate take care of the mapping automatically:

<sqgl-query name="loadUsersByRank" callable="true">

<return class="User"/>
{ call SELECT_USERS_BY_RANK(?, :rank) }

</sgl-query>
The responsibility for returning the correct columns, for all properties and for-
eign key associations of the class with the same names as in the regular mappings,
is now moved into the stored procedure code. Because you have aliases in the
stored procedure already (select ... us.FIRSTNAME as FIRSTNAME...), thisis
straightforward. Or, if only some of the columns returned in the result of the pro-
cedure have different names than the ones you mapped already as your proper-
ties, you only need to declare these:

<sgl-query name="loadUsersByRank" callable="true">
<return class="User">

<return-property name="firstname" column="FNAME" />
<return-property name="lastname" column="LNAME" />
</return>

{ call SELECT _USERS_BY_RANK(?, :rank) }
</sqgl-query>

Finally, let’s look at the call of the stored procedure. The syntax you’re using
here, { call PROCEDURE () },is defined in the SQL standard and portable. A non-
portable syntax that works for Oracle is begin PROCEDURE(); end;. It’s recom-
mended that you always use the portable syntax. The procedure has two
parameters. As explained, the first is reserved as an output parameter, so you use a
positional parameter symbol (?). Hibernate takes care of this parameter if you
configured a dialect for an Oracle JDBC driver. The second is an input parameter
you have to supply when executing the call. You can either use only positional
parameters or mix named and positional parameters. We prefer named parame-
ters for readability.

Customizing SQL 361

Querying with this stored procedure in the application looks like any other
named query execution:

Query g = session.getNamedQuery ("loadUsersByRank") ;

g.setParameter ("rank", 12);

List result = g.list();

At the time of writing, mapped stored procedures can be enabled as named que-
ries, as you did in this section, or as loaders for an entity, similar to the loadUser
example you mapped earlier.

Stored procedures can not only query and load data, but also manipulate data.
The first use case for this is mass data operations, executed in the database tier.
You shouldn’t map this in Hibernate but should execute it with plain JDBC: ses-
sion.connection() .prepareCallableStatement (); and so on. The data-manip-
ulation operations you can map in Hibernate are the creation, deletion, and
update of an entity object.

Mapping CUD to a procedure

Earlier, you mapped <sgl-insert>, <sgl-delete>, and <sql-update> elements
for a class to custom SQL statements. If you'd like to use stored procedures for
these operations, change the mapping to callable statements:

<class name="User">

<sgl-update callable="true" check="none">
{ call UPDATE_USER(?, 2, ?, 2, ?, 2, ?, 2, 2?2, 2, 2, 2, 2?)}
</sgl-update>

</class>

With the current version of Hibernate, you have the same problem as before: the
binding of values to the positional parameters. First, the stored procedure must
have the same number of input parameters as expected by Hibernate (enable the
SQL log as shown earlier to get a generated statement you can copy and paste).
The parameters again must be in the same order as expected by Hibernate.

Consider the check="none" attribute. For correct (and, if you enabled it) opti-
mistic locking, Hibernate needs to know whether this custom update operation
was successful. Usually, for dynamically generated SQL, Hibernate looks at the
number of updated rows returned from an operation. If the operation didn’t or
couldn’t update any rows, an optimistic locking failure occurs. If you write your
own custom SQL operation, you can customize this behavior as well.

With check="none", Hibernate expects your custom procedure to deal inter-
nally with failed updates (for example, by doing a version check of the row that

362 CHAPTER 8
Legacy databases and custom SQL

needs to be updated) and expects your procedure to throw an exception if some-
thing goes wrong. In Oracle, such a procedure is as follows:

<database-object>
<create>
create or replace procedure UPDATE_USER
(IN_FIRSTNAME 1in varchar,
IN_LASTNAME in varchar,
IN_PASSWORD in varchar,

)
as

rowcount INTEGER;
begin

update USERS set

FIRSTNAME = IN_FIRSTNAME,

LASTNAME = IN_LASTNAME,

"PASSWORD" = IN_PASSWORD,
where

OBJ_VERSION = ...;

rowcount := SQL$ROWCOUNT;
if rowcount != 1 then

RAISE_APPLICATION_ERROR(-20001, 'Version check failed');
end if;

end;

</create>
<drop>
drop procedure UPDATE_USER
</drop>
</database-object>
The SQL error is caught by Hibernate and converted into an optimistic locking
exception you can then handle in application code. Other options for the check

attribute are as follows:

= If you enable check="count", Hibernate checks the number of modified
rows using the plain JDBC API. This is the default and used when you write
dynamic SQL without stored procedures.

= If you enable check="param", Hibernate reserves an OUT parameter to get
the return value of the stored procedure call. You need to add an additional
question mark to your call and, in your stored procedure, return the row
count of your DML operation on this (first) OUT parameter. Hibernate then
validates the number of modified rows for you.

Customizing SQL 363

Mappings for insertion and deletion are similar; all of these must declare how
optimistic lock checking is performed. You can copy a template from the Hiber-
nate startup log to get the correct order and number of parameters.

Finally, you can also map stored functions in Hibernate. They have slightly dif-
ferent semantics and use cases.

Mapping stored functions
A stored function only has input parameters—no output parameters. However, it
can return a value. For example, a stored function can return the rank of a user:

<database-object>
<create>
create or replace function GET_USER_RANK
(IN_USER_ID int)
return int is
RANK int;
begin
select
RANKING
into
RANK
from
USERS
where
USER_ID = IN_USER_ID;

return RANK;
end;
</create>
<drop>
drop function GET_USER_RANK
</drop>
</database-object>

This function returns a scalar number. The primary use case for stored functions
that return scalars is embedding a call in regular SQL or HQL queries. For exam-
ple, you can retrieve all users who have a higher rank than a given user:

String g = "from User u where u.ranking > get_user_rank(:userId)";
List result = session.createQuery(q)

.setParameter ("userId", 123)

list();

This query is in HQL; thanks to the pass-through functionality for function calls in
the WHERE clause (not in any other clause though), you can call any stored func-
tion in your database directly. The return type of the function should match the

364

CHAPTER 8
Legacy databases and custom SQL

operation: in this case, the greater-than comparison with the ranking property,
which is also numeric.

If your function returns a resultset cursor, as in previous sections, you can
even map it as a named query and let Hibernate marshal the resultset into an
object graph.

Finally, remember that stored procedures and functions, especially in legacy
databases, sometimes can’t be mapped in Hibernate; in such cases you have to fall
back to plain JDBC. Sometimes you can wrap a legacy stored procedure with
another stored procedure that has the parameter interface expected by Hiber-
nate. There are too many varieties and special cases to be covered in a generic
mapping tool. However, future versions of Hibernate will improve mapping capa-
bilities—we expect better handling of parameters (no more counting of question
marks) and support for arbitrary input and output arguments to be available in
the near future.

You’ve now completed customization of runtime SQL queries and DML. Let’s
switch perspective and customize the SQL used for the creation and modification
of the database schema, the DDL.

Improving schema DDL

Customizing the DDL in your Hibernate application is something you’ll usually
consider only when you generate the database schema with Hibernate’s toolset.
If a schema already exists, such customizations won’t affect the runtime behavior
of Hibernate.

You can export DDL to a text file or execute it directly on your database
whenever you run your integration tests. Because DDL is mostly vendor-specific,
every option you put in your mapping metadata has the potential to bind the
metadata to a particular database product—keep this in mind when applying the
following features.

We separate DDL customization into two categories:

= Naming automatically generated database objects, such as tables, columns,
and constraints explicitly in mapping metadata, instead of relying on the
automatic naming derived from the Java class and property names by Hiber-
nate. We already discussed the built-in mechanism and options for quoting
and extending names in chapter 4, section 4.3.5, “Quoting SQL identifiers.”
We next look at other options you can enable to beautify your generated
DDL scripts.

Improving schema DDL 365

= Handling additional database objects, such as indexes, constraints, and
stored procedures in your mapping metadata. Earlier in this chapter, you
added arbitrary CREATE and DROP statements to XML mapping files with the
<database-object> element. You can also enable the creation of indexes
and constraints with additional mapping elements inside the regular class
and property mappings.

8.3.1 Custom SQL names and datatypes

In listing 8.1, you add attributes and elements to the mapping of the Item class.

Listing 8.1 Additional elements in the Item mapping for hbm2dd1l

<class name="Item" table="ITEMS">

<id name="id" type="string"> 4!?
<column name="ITEM_ ID" sgl-type="char(32)"/>
<generator class="uuid"/>

</id>

<property name="initialPrice" type="big_decimal">
<column name="INIT_ PRICE"
not-null="true" qa
precision="10"
scale="2"/>

</property>
<property name="description" type="string" <}S’
column="ITM_DESCRIPTION" length="4000"/>

<set name="categories" table="CATEGORY_ITEM" cascade="none">
<key>
<column name="ITEM_ ID" sqgl-type="char(32)"/>
</key> 4&
<many-to-many class="Category">
<column name="CATEGORY_ID" sqgl-type="char(32)”/>
</many-to-many>
</set>

</class>

@ The hbm2ddl exporter generates a VARCHAR typed column if a property (even the
identifier property) is of mapping type string. You know that the identifier gen-
erator uuid always generates 32-character strings; therefore you switch to a CHAR
SQL type and also set its size fixed at 32 characters. The <column> element is

366

CHAPTER 8
Legacy databases and custom SQL

required for this declaration, because no attribute supports the SQL datatype on
the <id> element.

For decimal types, you can declare the precision and scale. This example creates
the column as INIT_PRICE number (10,2) on an Oracle dialect; however, for data-
bases that don’t support types with decimal precision, a simple INIT_PRICE
numeric (thisis in HSQL) is produced.

For the description field, you add DDL attributes on the <property> element
instead of a nested <column> element. The DESCRIPTION column is generated as
VARCHAR (4000) —a limitation of a variable character field in an Oracle database
(in Oracle, it would be VARCHAR2 (4000) in the DDL, but the dialect takes care
of this).

A <column> element can also be used to declare the foreign key fields in an associ-
ation mapping. Otherwise, the columns of your association table CATEGORY_ITEM
would be VARCHAR (32) instead of the more appropriate CHAR (32) type.

The same customization is possible in annotations, see listing 8.2.

Listing 8.2 Additional annotations for customization of DDL export

@Entity
@Table (name = "ITEMS")
public class Item {

@Id
@Column (name = "ITEM_ID", columnDefinition = "char(32)")
@GeneratedValue (generator = "hibernate-uuid.hex")
@Qorg.hibernate.annotations.GenericGenerator (

name = "hibernate-uuid.hex",

strategy = "uuid.hex"

)

Private String id;

@Column (name = "INIT PRICE", nullable = false,
precision = 10, scale = 2)
BigDecimal initialPrice;

@Column (name = "ITM_DESCRIPTION", length = 4000)
Private String description;

@ManyToMany
@JoinTable (
name = "CATEGORY_ITEM",
joinColumns =
{ @QJoinColumn (name = "ITEM_ID",

columnDefinition = "char(32)")

}
inversedJoinColumns =

832

Improving schema DDL 367

{ @JoinColumn (name = "CATEGORY_ID",
columnDefinition = "char(32)")
}
)

Private Set<Category> categories = new HashSet<Category> () ;

You have to use one Hibernate extension to name the nonstandard identifier gen-
erator. All other customizations of the generated SQL DDL are done with annota-
tions of the JPA specification. One attribute deserves special attention: The
columnDefinition isn’t the same as sql-type in a Hibernate mapping file. It’s
more flexible: The JPA persistence provider appends the whole string after the
column name in the CREATE TABLE statement, as in ITEM_ID char(32).

Customization of names and data types is the absolute minimum you should
consider. We recommend that you always improve the quality of your database
schema (and ultimately, the quality of the data that is stored) with the appropriate
integrity rules.

Ensuring data consistency

Integrity rules are an important part of your database schema. The most important
responsibility of your database is to protect your information and to guarantee that
it’s never in an inconsistent state. This is called consistency, and it’s part of the
ACID criteria commonly applied to transactional database management systems.

Rules are part of your business logic, so you usually have a mix of business-
related rules implemented in your application code and in your database. Your
application is written so as to avoid any violation of the database rules. However,
it’s the job of the database management system to never allow any false (in the
business logic sense) information to be stored permanently—for example, if one
of the applications accessing the database has bugs. Systems that ensure integrity
only in application code are prone to data corruption and often degrade the qual-
ity of the database over time. Keep in mind that the primary purpose of most busi-
ness applications is to produce valuable business data in the long run.

In contrast to ensuring data consistency in procedural (or object-oriented)
application code, database-management systems allow you to implement integrity
rules declaratively as part of your data schema. The advantages of declarative rules
include fewer possible errors in code and a chance for the database-management
system to optimize data access.

368

CHAPTER 8
Legacy databases and custom SQL

We identify four levels of rules:

= Domain constraint—A domain is (loosely speaking, and in the database
world) a datatype in a database. Hence, a domain constraint defines the
range of possible values a particular datatype can handle. For example, an
int datatype is usable for integer values. A char datatype can hold character
strings: for example, all characters defined in ASCIL. Because we mostly use
datatypes that are built in to the database management system, we rely on
the domain constraints as defined by the vendor. If you create user-defined
datatypes (UDT), you’ll have to define their constraints. If they’re sup-
ported by your SQL database, you can use the (limited) support for custom
domains to add additional constraints for particular datatypes.

= Column constraint—Restricting a column to hold values of a particular
domain is equivalent to adding a column constraint. For example, you
declare in DDL that the INITIAL_PRICE column holds values of the domain
MONEY, which internally uses the datatype number(10,2). You use the
datatype directly most of the time, without defining a domain first. A special
column constraint in an SQL database is NOT NULL.

» Table constraint—An integrity rule that applies to a single row or several rows
is a table constraint. A typical declarative table constraints is UNIQUE (all
rows are checked for duplicate values). A sample rule affecting only a single
row is “end date of an auction must be later than the start date.”

= Database constraint—If a rule applies to more than one table, it has database
scope. You should already be familiar with the most common database con-
straint, the foreign key. This rule guarantees the integrity of references
between rows, usually in separate tables, but not always (self-referencing for-
eign key constraints aren’t uncommon).

Most (if not all) SQL database-management systems support the mentioned levels
of constraints and the most important options in each. In addition to simple key-
words, such as NOT NULL and UNIQUE, you can usually also declare more complex
rules with the CHECK constraint that applies an arbitrary SQL expression. Still,
integrity constraints are one of the weak areas in the SQL standard, and solutions
from vendors can differ significantly.

Furthermore, nondeclarative and procedural constraints are possible with
database triggers that intercept data-modification operations. A trigger can then
implement the constraint procedure directly or call an existing stored procedure.

8.3.3

Improving schema DDL 369

Like DDL for stored procedures, you can add trigger declarations to your
Hibernate mapping metadata with the <database-object> element for inclusion
in the generated DDL.

Finally, integrity constraints can be checked immediately when a data-modifi-
cation statement is executed, or the check can be deferred until the end of a
transaction. The violation response in SQL databases is usually rejection, without
any possibility of customization.

We now have a closer look at the implementation of integrity constraints.

Adding domains and column constraints

The SQL standard includes domains, which, unfortunately, not only are rather
limited but also are often not supported by the DBMS. If your system supports SQL
domains, you can use them to add constraints to datatypes:

create domain EMAILADDRESS as varchar

constraint DOMAIN_EMAILADDRESS
check (IS_EMAILADDRESS (value));

You can now use this domain identifier as a column type when creating a table:

create table USERS (
USER_EMAIL EMAILADDRESS (255) not null,

)

The (relatively minor) advantage of domains in SQL is the abstraction of common
constraints into a single location. Domain constraints are always checked immedi-
ately when data is inserted and modified. To complete the previous example, you
also have to write the stored function IS_EMAILADDRESS (you can find many regu-
lar expressions to do this on the Web). Adding the new domain in a Hibernate
mapping is simple as an sgl-type:
<property name="email" type="string">
<column name="USER_EMAIL"
length="255"
not-null="true"

sqgl-type="EMAILADDRESS" />
</property>

With annotations, declare your own columnDefinition:

@Column (name = "USER_EMAIL", length = 255,
columnDefinition = "EMAILADDRESS(255) not null")
String email;

370

8.34

CHAPTER 8
Legacy databases and custom SQL

If you want to create and drop the domain declaration automatically with the rest
of your schema, put it into a <database-object> mapping.

SQL supports additional column constraints. For example, the business rules
allow only alphanumeric characters in user login names:

create table USERS (

USERNAME varchar(16) not null
check (regexp_like (USERNAME, '“[[:alpha:]1]+S$')),

)

You may not be able to use this expression in your DBMS unless it supports regular
expressions. Single-column check constraints are declared in Hibernate map-
pings on the <column> mapping element:

<property name="username" type="string">
<column name="USERNAME"
length="16"
not-null="true"
check="regexp_like (USERNAME, '~[[:alpha:]]+$"')"/>
</property>

Check constraints in annotations are available only as a Hibernate extension:

@Column (name = "USERNAME", length = 16,
nullable = false, unique = true)
@Qorg.hibernate.annotations.Check (
constraints = "regexp_like (USERNAME, '“[[:alpha:]]1+$')"

)

private String username;
Note that you have a choice: Creating and using a domain or adding a single-col-
umn constraint has the same effect. In the long run, domains are usually easier to
maintain and more likely to avoid duplication.

Let’s look at the next level of rules: single and multirow table constraints.

Table-level constraints

Imagine that you want to guarantee that a CaveatEmptor auction can’t end before
it started. You write the application code to prevent users from setting the start-
Date and endDate properties on an Item to wrong values. You can do this in the
user interface or in the setter methods of the properties. In the database schema,
you add a single-row table constraint:

create table ITEM (

START_DATE timestamp not null,

Improving schema DDL 371

END_DATE timestamp not null,

check (START_DATE < END_DATE)
)i
Table constraints are appended in the CREATE TABLE DDL and can contain arbi-
trary SQL expressions. You include the constraint expression in your Hibernate
mapping file on the <class> mapping element:
<class name="Item"
table="ITEM"
check="START_DATE < END_DATE">
Note that the < character must be escaped as &1t; in XML. With annotations, you
need to add a Hibernate extension annotation to declare check constraints:
@Entity
@org.hibernate.annotations.Check (

constraints = "START DATE < END_DATE"
)

public class Item { ... }
Multirow table constraints can be implemented with more complex expressions.
You may need a subselect in the expression to do this, which may not be sup-
ported in your DBMS—check your product documentation first. However, there
are common multirow table constraints you can add directly as attributes in
Hibernate mappings. For example, you identify the login name of a User as
unique in the system:
<property name="username" type="string">
<column name="USERNAME"
length="16"
not-null="true"
check="regexp_like (USERNAME, '*“[[:alpha:]]+S$"')"

unique="true"/>
</property>

Unique constraint declaration is also possible in annotation metadata:

@Column (name = "USERNAME", length = 16, nullable = false,
unique = true)
@Qorg.hibernate.annotations.Check (
constraints = "regexp_like (USERNAME, '“[[:alpha:]]+$"')"

)

private String username;

And, of course, you can do this in JPA XML descriptors (there is no check con-
straint, however):

372 CHAPTER 8
Legacy databases and custom SQL

<entity class="auction.model.User" access="FIELD">
<attributes>

<basic name="username">
<column name="USERNAME"
length="16"
nullable="false"
unique="true"/>
</basic>
</attributes>
</entity>

The exported DDL includes the unique constraint:

create table USERS (

USERNAME varchar (16) not null unique
check (regexp_like (USERNAME, '~ [[:alpha:]]+$')),

)

A unique constraint can also span several columns. For example, CaveatEmptor
supports a tree of nested Category objects. One of the business rules says that a
particular category can’t have the same name as any of its siblings. Hence, you
need a multicolumn multirow constraint that guarantees this uniqueness:

<class name="Category" table="CATEGORY">

<property name="name">
<column name="CAT_ NAME"
unique-key="unique_siblings"/>
</property>

<many-to-one name="parent" class="Category">
<column name="PARENT_CATEGORY_ID"
unique-key="unique_siblings"/>
</many-to-one>
</class>

You assign an identifier to the constraint with the unique-key attribute so you can
refer to it several times in one class mapping and group columns for the same
constraint. However, the identifier isn’t used in the DDL to name the constraint:

create table CATEGORY (

CAT_NAME varchar (255) not null,
PARENT_CATEGORY_ID integer,

unigque (CAT_NAME, PARENT CATEGORY_ID)
)i

Improving schema DDL 373

If you want to create a unique constraint with annotations that spans several col-
umns, you need to declare it on the entity, not on a single column:

@Entity
@Table (name = "CATEGORY",
uniqueConstraints = {
@UniqueConstraint (columnNames =
{"CAT_NAME", "PARENT CATEGORY_ID"})
}
)
public class Category { ... }

With JPA XML descriptors, multicolumn constraints are as follows:

<entity class="Category" access="FIELD">
<table name="CATEGORY">
<unique-constraint>
<column-name>CAT_NAME</column-name>
<column-name>PARENT_CATEGORY_ID</column-name>
</unique-constraint>
</table>

Completely custom constraints, including an identifier for the database catalog,
can be added to your DDL with the <database-object> element:
<database-object>
<create>
alter table CATEGORY add constraint UNIQUE_SIBLINGS
unique (CAT_NAME, PARENT_CATEGORY_ID);
</create>
<drop>
drop constraint UNIQUE_SIBLINGS
</drop>
</database-object>
This functionality isn’t available in annotations. Note that you can add a Hiber-
nate XML metadata file with all your custom database DDL objects in your annota-
tion-based application.
Finally, the last category of constraints includes database-wide rules that span

several tables.

8.3.5 Database constraints

You can create a rule that spans several tables with a join in a subselect in any
check expression. Instead of referring only to the table on which the constraint is
declared, you may query (usually for the existence or nonexistence of a particular
piece of information) a different table.

374

CHAPTER 8
Legacy databases and custom SQL

Another technique to create a database-wide constraint uses custom triggers
that run on insertion or update of rows in particular tables. This is a procedural
approach that has the already-mentioned disadvantages but is inherently flexible.

By far the most common rules that span several tables are referential integrity
rules. They're widely known as foreign keys, which are a combination of two
things: a key value copy from a related row and a constraint that guarantees that
the referenced value exists. Hibernate creates foreign key constraints automati-
cally for all foreign key columns in association mappings. If you check the DDL
produced by Hibernate, you may notice that these constraints also have automati-
cally generated database identifiers—names that aren’t easy to read and that
make debugging more difficult:

alter table ITEM add constraint FKIFF7F1F09FA3CB90

foreign key (SELLER_ID) references USERS;

This DDL declares the foreign key constraint for the SELLER_ID column in the
ITEM table. It references the primary key column of the USERS table. You can cus-
tomize the name of the constraint in the <many-to-one> mapping of the Item
class with the foreign-key attribute:

<many-to-one name="seller"

class="User"

column="SELLER_ID"
foreign-key="FK_SELLER_ID"/>

With annotations, use a Hibernate extension:

@ManyToOne
@JoinColumn (name = "SELLER_ID")
@Qorg.hibernate.annotations.ForeignKey (name = "FK_SELLER_ID")

private User seller;

And a special syntax is required for foreign keys created for a many-to-many

association:
@ManyToMany
@JoinTable(...)
Qorg.hibernate.annotations.ForeignKey (
name = "FK_CATEGORY_ID",
inverseName = "FK_ITEM_ID"

)

private Set<Category> categories...
If you want to automatically generate DDL that isn’t distinguishable from what a
human DBA would write, customize all your foreign key constraints in all your
mapping metadata. Not only is this good practice, but it also helps significantly

8.3.6

Improving schema DDL 375

when you have to read exception messages. Note that the hbm2ddl exporter con-
siders constraint names only for foreign keys that have been set on the noninverse
side of a bidirectional association mapping.

Foreign key constraints also have features in SQL that your legacy schema may
already utilize. Instead of immediately rejecting a modification of data that would
violate a foreign key constraint, an SQL database can CASCADE the change to the
referencing rows. For example, if a row that is considered a parent is deleted, all
child rows with a foreign key constraint on the primary key of the parent row may
be deleted as well. If you have or want to use these database-level cascading
options, enable them in your foreign key mapping:

<class name="Item" table="ITEM">

<set name="bids" cascade="save-update, delete">
<key column="ITEM_ID" on-delete="cascade"/>
<one-to-many class="Bid"/>

</set>

</class>

Hibernate now creates and relies on a database-level ON CASCADE DELETE option
of the foreign key constraint, instead of executing many individual DELETE state-
ments when an Item instance is deleted and all bids have to be removed. Be
aware that this feature bypasses Hibernate’s usual optimistic locking strategy for
versioned data!

Finally, unrelated to integrity rules translated from business logic, database
performance optimization is also part of your typical DDL customization effort.

Creating indexes

Indexes are a key feature when optimizing the performance of a database applica-
tion. The query optimizer in a database-management system can use indexes to
avoid excessive scans of the data tables. Because they’re relevant only in the physi-
cal implementation of a database, indexes aren’t part of the SQL standard, and
the DDL and available indexing options are specific for a particular product. How-
ever, the most common DDL for typical indexes can be embedded in a Hibernate
mapping (thatis, without the generic <database-object> element).

Many queries in CaveatEmptor will probably involve the endDate property of
an auction Item. You can speed up these queries by creating an index for the col-
umn of this property:

<property name="endDate"
column="END_DATE"

376

8.3.7

CHAPTER 8
Legacy databases and custom SQL

type="timestamp"
index="IDX_END_DATE" />

The automatically produced DDL now includes an additional statement:
create index IDX_END_DATE on ITEM (END_DATE) ;
The same functionality is available with annotations, as a Hibernate extension:

@Column (name = "END_DATE", nullable = false, updatable = false)

@org.hibernate.annotations.Index (name = "IDX_ END_DATE")

private Date endDate;

You can create a multicolumn index by setting the same identifier on several
property (or column) mappings. Any other index option, such as UNIQUE INDEX
(which creates an additional multirow table-level constraint), the indexing
method (common are btree, hash, and binary), and any storage clause (for
example, to create the index in a separate tablespace) can be set only in com-
pletely custom DDL with <database-object>.

A multicolumn index with annotations is defined at the entity level, with a cus-
tom Hibernate annotation that applies additional attributes to table mapping:

@Entity

@Table (name="ITEMS")

Qorg.hibernate.annotations.Table (

appliesTo = "ITEMS", indexes =
@org.hibernate.annotations.Index (
name = "IDX_INITIAL_PRICE",
columnNames = { "INITIAL_PRICE", "INITIAL_PRICE_CURRENCY" }
)

)

public class Item { ... }

Note that @org.hibernate.annotations.Table isn’t a replacement for @javax.
perisistence.Table, so if you need to override the default table name, you still
need the regular @Table.

We recommend that you get the excellent book SQL Tuning by Dan Tow (Tow,
2003) if you want to learn efficient database-optimization techniques and espe-
cially how indexes can get you closer to the best-performing execution plan for
your queries.

One mapping we have shown a few times in this chapter is <database-
object>. It has some other options that we haven’t discussed yet.

Adding auxiliary DDL

Hibernate creates the basic DDL for your tables and constraints automatically; it
even creates sequences if you have a particular identifier generator. However,

Improving schema DDL 377

there is some DDL that Hibernate can’t create automatically. This includes all
kinds of highly vendor-specific performance options and any other DDL that is rel-
evant only for the physical storage of data (tablespaces, for example).

One reason this kind of DDL has no mapping elements or annotations is that
there are too many variations and possibilities—nobody can or wants to maintain
more than 25 database dialects with all the possible combinations of DDL. A sec-
ond, much more important reason, is that you should always ask your DBA to
finalize your database schema. For example, did you know that indexes on foreign
key columns can hurt performance in some situations and therefore aren’t auto-
matically generated by Hibernate? We recommend that DBAs get involved early
and verify the automatically generated DDL from Hibernate.

A common process, if you’re starting with a new application and new database,
is to generate DDL with Hibernate automatically during development; database
performance concerns shouldn’t and usually don’t play an important role at that
stage. At the same time (or later, during testing), a professional DBA verifies and
optimizes the SQL DDL and creates the final database schema. You can export the
DDL into a text file and hand it to your DBA.

Or—and this is the option you’ve seen a few times already—you can add cus-
tomized DDL statements to your mapping metadata:

<database-object>
<create>
[CREATE statement]
</create>
<drop>

[DROP statement]
</drop>

<dialect-scope name="org.hibernate.dialect.Oracle9Dialect"/>
<dialect-scope name="org.hibernate.dialect.OracleDialect"/>

</database-object>

The <dialect-scope> elements restrict the custom CREATE or DROP statements to
a particular set of configured database dialects, which is useful if you're deploying
on several systems and need different customizations.

If you need more programmatic control over the generated DDL, imple-
ment the AuxiliaryDatabaseObject interface. Hibernate comes bundled with a
convenience implementation that you can subclass; you can then override meth-
ods selectively:

package auction.persistence;

import org.hibernate.mapping.*;

378

8.4

CHAPTER 8
Legacy databases and custom SQL

import org.hibernate.dialect.Dialect;
import org.hibernate.engine.Mapping;

public class CustomDDLExXtension
extends AbstractAuxiliaryDatabaseObject {

public CustomDDLExtension() {
addDialectScope("org.hibernate.dialect.Oracle9Dialect");

}

public String sqglCreateString(Dialect dialect,
Mapping mapping,
String defaultCatalog,
String defaultSchema) {

return "[CREATE statement]";
}

public String sglDropString(Dialect dialect,
String defaultCatalog,
String defaultSchema) ({

return "[DROP statement]";

}

You can add dialect scopes programmatically and even access some mapping
information in the sglCreateString() and sqlDropString() methods. This
gives you a lot of flexibility regarding how you create and write your DDL state-
ments. You have to enable this custom class in your mapping metadata:
<database-object>
<definition class="auction.persistence.CustomDDLExtension"/>
<dialect-scope name="org.hibernate.dialect.OracleDialect"/>
</database-object>
Additional dialect scopes are cumulative; the previous examples all apply to two
dialects.

Summary

In this chapter, we looked at issues that you may run into when you have to deal
with a legacy database schema. Natural keys, composite keys, and foreign keys are
often inconvenient and need to be mapped with extra care. Hibernate also offers
formulas, little SQL expressions in your mapping file, that can help you to deal
with a legacy schema you can’t change.

Usually, you also rely on Hibernate’s automatically generated SQL for all cre-
ate, read, update, and delete operations in your application. In this chapter,

Summary 379

you’ve learned how to customize this SQL with your own statements and how to

integrate Hibernate with stored procedures and stored functions.

In the last section, we explored the generation of database schemas and how

you can customize and extend your mappings to include all kinds of constraints,

indexes, and arbitrary DDL that your DBA may recommend.

Table 8.1 shows a summary you can use to compare native Hibernate features

and Java Persistence.

Table 8.1 Hibernate and JPA comparison chart for chapter 8

Hibernate Core

Java Persistence and EJB 3.0

Hibernate supports any kind of natural and com-
posite primary key, including foreign keys to natu-
ral keys, composite primary keys, and foreign
keys in composite primary keys.

Standardized support is provided for natural and
composite keys, equivalent to Hibernate.

Hibernate supports arbitrary association join con-
ditions with formula mappings and property refer-
ences.

No standard or annotation support is provided for
grouped property references at the time of writing.

Hibernate supports basic joins of secondary
tables for a particular entity class.

Standardized support is provided for secondary
tables and basic joins.

Hibernate supports trigger integration and
generated property settings.

Hibernate Annotations supports generated proper-
ties and trigger integration.

Hibernate lets you customize all SQL DML state-
ments with options in XML mapping metadata.

At the time of writing, no support is provided for
SQL DML customization with annotations.

Hibernate lets you customize SQL DDL for auto-
matic schema generation. Arbitrary SQL DDL
statements can be included in XML mapping
metadata.

JPA standardizes basic DDL declarations, but not
all features of the XML mapping metadata are sup-
ported with annotations.

You now know everything (well, as much as we can show in a single book) there is
to know about mapping classes to schemas. In the next part of the book, we’ll dis-
cuss how to use the persistence manager APIs to load and store objects, how trans-
actions and conversations are implemented, and how to write queries.

Part 3

Conversational
object processing

In this part of the book, we explain how to work with persistent objects.
Chapter 9 shows you how to load and store objects with the Hibernate and
Java Persistence programming interfaces. Transactions and concurrency
control are another important topic, discussed in detail in chapter 10. We
then implement conversations in chapter 11 and show you how this con-
cept can improve the design of your system. Chapters 12 and 13 focus on
efficiency and how Hibernate features can make your life easier when you
have to load and modify large and complex datasets. Querying, query lan-
guages, and APIs are examined in detail in chapters 14 and 15. In
chapter 16, we bring it all together by designing and testing a layered appli-
cation with ORM persistence.

After reading this part, you’ll know how to work with Hibernate and Java
Persistence programming interfaces and how to load, modify, and store
objects efficiently. You’ll understand how transactions work and why conver-
sational processing can open up new ways for application design. You’ll be
ready to optimize any object modification scenario, write complex queries,
and apply the best fetching and caching strategy to increase performance
and scalability.

Working with objects

This chapter covers

m The lifecycle and states of objects

m Working with the Hibernate API

m Working with the Java Persistence API

383

384

9.1

CHAPTER 9
Working with objects

You now have an understanding of how Hibernate and ORM solve the static
aspects of the object/relational mismatch. With what you know so far, it’s possible
to solve the structural mismatch problem, but an ¢fficient solution to the problem
requires something more. You must investigate strategies for runtime data access,
because they’re crucial to the performance of your applications. You basically
have learn how to control the state of objects.

This and the following chapters cover the behavioral aspect of the object/rela-
tional mismatch. We consider these problems to be at least as important as the
structural problems discussed in previous chapters. In our experience, many
developers are only really aware of the structural mismatch and rarely pay atten-
tion to the more dynamic behavioral aspects of the mismatch.

In this chapter, we discuss the lifecycle of objects—how an object becomes per-
sistent, and how it stops being considered persistent—and the method calls and
other actions that trigger these transitions. The Hibernate persistence manager,
the Session, is responsible for managing object state, so we discuss how to use this
important API. The main Java Persistence interface in EJB 3.0 is called EntityMan-
ager, and thanks to its close resemblance with Hibernate APIs, it will be easy to
learn alongside. Of course, you can skip quickly through this material if you aren’t
working with Java Persistence or EJB 3.0—we encourage you to read about both
options and then decide what is better for your application.

Let’s start with persistent objects, their lifecycle, and the events which trigger a
change of persistent state. Although some of the material may be formal, a solid
understanding of the persistence lifecycle is essential.

The persistence lifecycle

Because Hibernate is a transparent persistence mechanism—classes are unaware
of their own persistence capability—it’s possible to write application logic that is
unaware whether the objects it operates on represent persistent state or tempo-
rary state that exists only in memory. The application shouldn’t necessarily need
to care that an object is persistent when invoking its methods. You can, for exam-
ple, invoke the calculateTotalPrice() business method on an instance of the
Item class without having to consider persistence at all; e.g., in a unit test.

Any application with persistent state must interact with the persistence service
whenever it needs to propagate state held in memory to the database (or vice
versa). In other words, you have to call Hibernate (or the Java Persistence) inter-
faces to store and load objects.

9.1.1

The persistence lifecycle 385

When interacting with the persistence mechanism in that way, it’s necessary for
the application to concern itself with the state and lifecycle of an object with
respect to persistence. We refer to this as the persistence lifecycle: the states an object
goes through during its life. We also use the term wunit of work: a set of operations
you consider one (usually atomic) group. Another piece of the puzzle is the persis-
tence context provided by the persistence service. Think of the persistence context
as a cache that remembers all the modifications and state changes you made to
objects in a particular unit of work (this is somewhat simplified, but it’s a good
starting point).

We now dissect all these terms: object and entity states, persistence contexts,
and managed scope. You're probably more accustomed to thinking about what
statements you have to manage to get stuff in and out of the database (via JDBC and
SQL). However, one of the key factors of your success with Hibernate (and Java
Persistence) is your understanding of state management, so stick with us through
this section.

Object states

Different ORM solutions use different terminology and define different states and
state transitions for the persistence lifecycle. Moreover, the object states used
internally may be different from those exposed to the client application. Hiber-
nate defines only four states, hiding the complexity of its internal implementation
from the client code.

The object states defined by Hibernate and their transitions in a state chart are
shown in figure 9.1. You can also see the method calls to the persistence manager
API that trigger transitions. This API in Hibernate is the Session. We discuss this
chart in this chapter; refer to it whenever you need an overview.

We’ve also included the states of Java Persistence entity instances in figure 9.1.
As you can see, they're almost equivalent to Hibernate’s, and most methods of the
Session have a counterpart on the EntityManager API (shown in italics). We say
that Hibernate is a superset of the functionality provided by the subset standardized
in Java Persistence.

Some methods are available on both APIs; for example, the Session has a per-
sist () operation with the same semantics as the EntityManager’s counterpart.
Others, like load() and getReference(), also share semantics, with a different
method name.

During its life, an object can transition from a transient object to a persistent
object to a detached object. Let’s explore the states and transitions in more detail.

386

CHAPTER 9
Working with objects

new ———————>| Transient garbage

save() Removed
saveOrUpdate()

10 persist() h

ge o arbage

load() merge() Golete) 000
Query.list() . remove()
Query.uniqueResult() Persistent @
Query.iterate()

Query.scroll()

find() evict() update()
close() * saveOrUpdate()

getReference() clear() * merge() **

Query.getResultList()

Query.getSingleResult()

Detached garbage

* Hibernate & JPA, affects all instances in the persistence context
** Merging returns a persistent instance, original doesn't change state

Figure 9.1 Object states and their transitions as triggered by persistence manager operations

Transient objects

Objects instantiated using the new operator aren’t immediately persistent. Their
state is {ransient, which means they aren’t associated with any database table row
and so their state is lost as soon as they’re no longer referenced by any other
object. These objects have a lifespan that effectively ends at that time, and they
become inaccessible and available for garbage collection. Java Persistence doesn’t
include a term for this state; entity objects you just instantiated are new. We’ll con-
tinue to refer to them as transient to emphasize the potential for these instances to
become managed by a persistence service.

Hibernate and Java Persistence consider all transient instances to be nontrans-
actional; any modification of a transient instance isn’t known to a persistence con-
text. This means that Hibernate doesn’t provide any roll-back functionality for
transient objects.

Objects that are referenced only by other transient instances are, by default,
also transient. For an instance to transition from transient to persistent state, to
become managed, requires either a call to the persistence manager or the cre-
ation of a reference from an already persistent instance.

Persistent objects
A persistent instance is an entity instance with a database identity, as defined in chap-
ter 4, section 4.2, “Mapping entities with identity.” That means a persistent and

The persistence lifecycle 387

managed instance has a primary key value set as its database identifier. (There are
some variations to when this identifier is assigned to a persistent instance.)

Persistent instances may be objects instantiated by the application and then
made persistent by calling one of the methods on the persistence manager. They
may even be objects that became persistent when a reference was created from
another persistent object that is already managed. Alternatively, a persistent
instance may be an instance retrieved from the database by execution of a query,
by an identifier lookup, or by navigating the object graph starting from another
persistent instance.

Persistent instances are always associated with a persistence context. Hibernate
caches them and can detect whether they have been modified by the application.

There is much more to be said about this state and how an instance is man-
aged in a persistence context. We’ll get back to this later in this chapter.

Removed objects
You can delete an entity instance in several ways: For example, you can remove it
with an explicit operation of the persistence manager. It may also become avail-
able for deletion if you remove all references to it, a feature available only in
Hibernate or in Java Persistence with a Hibernate extension setting (orphan dele-
tion for entities).

An object is in the removed state if it has been scheduled for deletion at the end
of a unit of work, but it’s still managed by the persistence context until the unit of
work completes. In other words, a removed object shouldn’t be reused because it
will be deleted from the database as soon as the unit of work completes. You
should also discard any references you may hold to it in the application (of
course, after you finish working with it—for example, after you’ve rendered the
removal-confirmation screen your users see).

Detached objects
To understand detached objects, you need to consider a typical transition of an
instance: First it’s transient, because it just has been created in the application.
Now you make it persistent by calling an operation on the persistence manager.
All of this happens in a single unit of work, and the persistence context for this
unit of work is synchronized with the database at some point (when an SQL
INSERT occurs).

The unit of work is now completed, and the persistence context is closed. But
the application still has a handle: a reference to the instance that was saved. As
long as the persistence context is active, the state of this instance is persistent. At

388

9.1.2

CHAPTER 9
Working with objects

the end of a unit of work, the persistence context closes. What is the state of the
object you’re holding a reference to now, and what can you do with it?

We refer to these objects as detached, indicating that their state is no longer
guaranteed to be synchronized with database state; they’re no longer attached to
a persistence context. They still contain persistent data (which may soon be stale).
You can continue working with a detached object and modify it. However, at some
point you probably want to make those changes persistent—in other words, bring
the detached instance back into persistent state.

Hibernate offers two operations, reattachment and merging, to deal with this situ-
ation. Java Persistence only standardizes merging. These features have a deep
impact on how multitiered applications may be designed. The ability to return
objects from one persistence context to the presentation layer and later reuse
them in a new persistence context is a main selling point of Hibernate and Java
Persistence. It enables you to create long units of work that span user think-time.
We call this kind of long-running unit of work a conversation. We’ll get back to
detached objects and conversations soon.

You should now have a basic understanding of object states and how transi-
tions occur. Our next topic is the persistence context and the management of
objects it provides.

The persistence context

You may consider the persistence context to be a cache of managed entity
instances. The persistence context isn’t something you see in your application; it
isn’t an API you can call. In a Hibernate application, we say that one Session has
one internal persistence context. In a Java Persistence application, an EntityMan-
ager has a persistence context. All entities in persistent state and managed in a
unit of work are cached in this context. We walk through the Session and
EntityManager APIs later in this chapter. Now you need to know what this (inter-
nal) persistence context is buying you.
The persistence context is useful for several reasons:

= Hibernate can do automatic dirty checking and transactional write-behind.
= Hibernate can use the persistence context as a first-level cache.

= Hibernate can guarantee a scope of Java object identity.

= Hibernate can extend the persistence context to span a whole conversation.

All these points are also valid for Java Persistence providers. Let’s look at each
feature.

The persistence lifecycle 389

Automatic dirty checking

Persistent instances are managed in a persistence context—their state is synchro-
nized with the database at the end of the unit of work. When a unit of work com-
pletes, state held in memory is propagated to the database by the execution of
SQL INSERT, UPDATE, and DELETE statements (DML). This procedure may also
occur at other times. For example, Hibernate may synchronize with the database
before execution of a query. This ensures that queries are aware of changes made
earlier during the unit of work.

Hibernate doesn’t update the database row of every single persistent object in
memory at the end of the unit of work. ORM software must have a strategy for
detecting which persistent objects have been modified by the application. We call
this automatic dirty checking. An object with modifications that have not yet been
propagated to the database is considered dirty. Again, this state isn’t visible to the
application. With transparent transaction-level write-behind, Hibernate propagates
state changes to the database as late as possible but hides this detail from the
application. By executing DML as late as possible (toward the end of the database
transaction), Hibernate tries to keep lock-times in the database as short as possi-
ble. (DML usually creates locks in the database that are held until the transac-
tion completes.)

Hibernate is able to detect exactly which properties have been modified so that
it’s possible to include only the columns that need updating in the SQL UPDATE
statement. This may bring some performance gains. However, it’s usually not a sig-
nificant difference and, in theory, could harm performance in some environ-
ments. By default, Hibernate includes all columns of a mapped table in the SQL
UPDATE statement (hence, Hibernate can generate this basic SQL at startup, not at
runtime). If you want to update only modified columns, you can enable dynamic
SQL generation by setting dynamic-update="true" in a class mapping. The same
mechanism is implemented for insertion of new records, and you can enable
runtime generation of INSERT statements with dynamic-insert="true". We rec-
ommend you consider this setting when you have an extraordinarily large num-
ber of columns in a table (say, more than 50); at some point, the overhead
network traffic for unchanged fields will be noticeable.

In rare cases, you may also want to supply your own dirty checking algorithm to
Hibernate. By default, Hibernate compares an old snapshot of an object with the
snapshot at synchronization time, and it detects any modifications that require an
update of the database state. You can implement your own routine by supplying a
custom findDirty() method with an org.hibernate.Interceptor for a Ses-
sion. We’ll show you an implementation of an interceptor later in the book.

390

CHAPTER 9
Working with objects

We’ll also get back to the synchronization process (known as flushing) and
when it occurs later in this chapter.

The persistence context cache

A persistence context is a cache of persistent entity instances. This means it
remembers all persistent entity instances you’ve handled in a particular unit of
work. Automatic dirty checking is one of the benefits of this caching. Another
benefit is repeatable read for entities and the performance advantage of a unit of
work-scoped cache.

For example, if Hibernate is told to load an object by primary key (a lookup by
identifier), it can first check the persistence context for the current unit of work.
If the entity is found there, no database hit occurs—this is a repeatable read for
an application. The same is true if a query is executed through one of the Hiber-
nate (or Java Persistence) interfaces. Hibernate reads the result set of the query
and marshals entity objects that are then returned to the application. During this
process, Hibernate interacts with the current persistence context. It tries to
resolve every entity instance in this cache (by identifier); only if the instance can’t
be found in the current persistence context does Hibernate read the rest of the
data from the result set.

The persistence context cache offers significant performance benefits and
improves the isolation guarantees in a unit of work (you get repeatable read of
entity instances for free). Because this cache only has the scope of a unit of work,
it has no real disadvantages, such as lock management for concurrent access—a
unit of work is processed in a single thread at a time.

The persistence context cache sometimes helps avoid unnecessary database
traffic; but, more important, it ensures that:

= The persistence layer isn’t vulnerable to stack overflows in the case of circu-
lar references in a graph of objects.

= There can never be conflicting representations of the same database row at
the end of a unit of work. In the persistence context, at most a single object
represents any database row. All changes made to that object may be safely
written to the database.

= Likewise, changes made in a particular persistence context are always imme-
diately visible to all other code executed inside that persistence context and
its unit of work (the repeatable read for entities guarantee).

You don’t have to do anything special to enable the persistence context cache. It’s
always on and, for the reasons shown, can’t be turned off.

9.2

9.2.1

Object identity and equality 391

Later in this chapter, we’ll show you how objects are added to this cache (basi-
cally, whenever they become persistent) and how you can manage this cache (by
detaching objects manually from the persistence context, or by clearing the per-
sistence context).

The last two items on our list of benefits of a persistence context, the guaran-
teed scope of identity and the possibility to extend the persistence context to span
a conversation, are closely related concepts. To understand them, you need to take
a step back and consider objects in detached state from a different perspective.

Object identity and equality

A basic Hibernate client/server application may be designed with serverside units
of work that span a single client request. When a request from the application
user requires data access, a new unit of work is started. The unit of work ends
when processing is complete and the response for the user is ready. This is also
called the session-per-request strategy (you can replace the word session with persis-
tence context whenever you read something like this, but it doesn’t roll off the
tongue as well).

We already mentioned that Hibernate can support an implementation of a
possibly long-running unit of work, called a conversation. We introduce the con-
cept of conversations in the following sections as well as the fundamentals of
object identity and when objects are considered equal—which can impact how
you think about and design conversations.

Why is the concept of a conversation useful?

Introducing conversations

For example, in web applications, you don’t usually maintain a database transac-
tion across a user interaction. Users take a long time to think about modifica-
tions, but, for scalability reasons, you must keep database transactions short and
release database resources as soon as possible. You’ll likely face this issue when-
ever you need to guide the user through several screens to complete a unit of
work (from the user’s perspective)—for example, to fill an online form. In this
common scenario, it’s extremely useful to have the support of the persistence ser-
vice, so you can implement such a conversation with a minimum of coding and
best scalability.

Two strategies are available to implement a conversation in a Hibernate or Java
Persistence application: with detached objects or by extending a persistence con-
text. Both have strength and weaknesses.

392

CHAPTER 9
Working with objects
) Conversation)
T 1
Request Response Request Response
f { f {
Persistence Context Detached . Persistence Context

L]

| | Instances [

I I N | merge @

! @ ! U 'reattach @
| [Ny N s

| i DDy

I I ~ ~ ~

|
Figure 9.2 Conversation implementation with detached object state

The detached object state and the already mentioned features of reattachment or
merging are ways to implement a conversation. Objects are held in detached state
during user think-time, and any modification of these objects is made persistent
manually through reattachment or merging. This strategy is also called session-per-
request-with-detached-objects. You can see a graphical illustration of this conversation
pattern in figure 9.2.

A persistence context only spans the processing of a particular request, and
the application manually reattaches and merges (and sometimes detaches) entity
instances during the conversation.

The alternative approach doesn’t require manual reattachment or merging:
With the session-per-conversation pattern, you extend a persistence context to span
the whole unit of work (see figure 9.3).

First we have a closer look at detached objects and the problem of identity
you’ll face when you implement a conversation with this strategy.

Conversation

Request Response Request Response

) Persistence Context .
[|
[|
| |
| |
[|
| |
| |

Figure 9.3 Conversation implementation with an extended persistence context

9.2.2

Object identity and equality 393

The scope of object identity

As application developers, we identify an object using Java object identity (a==b).
If an object changes state, is the Java identity guaranteed to be the same in the
new state? In a layered application, that may not be the case.

In order to explore this, it’s extremely important to understand the relation-
ship between Java identity, a==b, and database identity, x.getId().equals (
y.getId()). Sometimes they’re equivalent; sometimes they aren’t. We refer to
the conditions under which Java identity is equivalent to database identity as the
scope of object identity.

For this scope, there are three common choices:

= A primitive persistence layer with no identity scope makes no guarantees

that if a row is accessed twice the same Java object instance will be
returned to the application. This becomes problematic if the application
modifies two different instances that both represent the same row in a sin-
gle unit of work. (How should we decide which state should be propa-
gated to the database?)

= A persistence layer using persistence context-scoped identity guarantees that, in
the scope of a single persistence context, only one object instance repre-
sents a particular database row. This avoids the previous problem and also
allows for some caching at the context level.

» Process-scoped identity goes one step further and guarantees that only one
object instance represents the row in the whole process (JVM).

For a typical web or enterprise application, persistence context-scoped identity is
preferred. Process-scoped identity does offer some potential advantages in terms
of cache utilization and the programming model for reuse of instances across
multiple units of work. However, in a pervasively multithreaded application, the
cost of always synchronizing shared access to persistent objects in the global iden-
tity map is too high a price to pay. It’s simpler, and more scalable, to have each
thread work with a distinct set of persistent instances in each persistence context.

We would say that Hibernate implements persistence context-scoped iden-
tity. So, by nature, Hibernate is best suited for highly concurrent data access in
multiuser applications. However, we already mentioned some issues you’ll face
when objects aren’t associated with a persistence context. Let’s discuss this with
an example.

The Hibernate identity scope is the scope of a persistence context. Let’s see
how this works in code with Hibernate APIs—the Java Persistence code is the

394

9.2.3

CHAPTER 9
Working with objects

equivalent with EntityManager instead of Session. Even though we haven’t
shown you much about these interfaces, the following examples are simple, and
you should have no problems understanding the methods we call on the Session.

If you request two objects using the same database identifier value in the same
Session, the result is two references to the same in-memory instance. Listing 9.1
demonstrates this with several get () operations in two Sessions.

Session sessionl = sessionFactory.openSession() ;
Transaction txl = sessionl.beginTransaction() ;

// Load Item with identifier value "1234"
Object a = sessionl.get(Item.class, new Long(1234));
Object b = sessionl.get(Item.class, new Long(1234));

(a==b) // True, persistent a and b are identical

tx1l.commit () ;
sessionl.close();

// References a and b are now to an object in detached state

Session session2 = sessionFactory.openSession() ;
Transaction tx2 = session2.beginTransaction() ;

Object ¢ = session2.get(Item.class, new Long(1234));
(a==c) // False, detached a and persistent ¢ are not identical

tx2.commit () ;
session2.close();

Object references a and b have not only the same database identity, but also the
same Java identity, because they’re obtained in the same Session. They reference
the same persistent instance known to the persistence context for that unit of
work. Once you’re outside this boundary, however, Hibernate doesn’t guarantee
Java identity, so a and c aren’t identical. Of course, a test for database identity,
a.getId().equals(c.getId()), willstill return true.

If you work with objects in detached state, you’re dealing with objects that are
living outside of a guaranteed scope of object identity.

The identity of detached objects

If an object reference leaves the scope of guaranteed identity, we call it a reference
to a detached object. In listing 9.1, all three object references, a, b, and c, are equal if
we only consider database identity—their primary key value. However, they aren’t

Object identity and equality 395

identical in-memory object instances. This can lead to problems if you treat them
as equal in detached state. For example, consider the following extension of the
code, after session2 has ended:

session2.close();

Set allObjects = new HashSet () ;

allObjects.add(a) ;

allObjects.add(b) ;

allObjects.add(c) ;

All three references have been added to a Set. All are references to detached
objects. Now, if you check the size of the collection, the number of elements, what
result do you expect?

First you have to realize the contract of a Java Set: No duplicate elements are
allowed in such a collection. Duplicates are detected by the Set; whenever you
add an object, its equals() method is called automatically. The added object is
checked against all other elements already in the collection. If equals () returns
true for any object already in the collection, the addition doesn’t occur.

If you know the implementation of equals () for the objects, you can find out
the number of elements you can expect in the Set. By default, all Java classes
inherit the equals () method of java.lang.Object. This implementation uses a
double-equals (==) comparison; it checks whether two references refer to the
same in-memory instance on the Java heap.

You may guess that the number of elements in the collection is two. After all, a
and b are references to the same in-memory instance; they have been loaded in
the same persistence context. Reference c is obtained in a second Session; it
refers to a different instance on the heap. You have three references to two
instances. However, you know this only because you’ve seen the code that loaded
the objects. In a real application, you may not know that a and b are loaded in the
same Session and c in another.

Furthermore, you obviously expect that the collection has exactly one ele-
ment, because a, b, and ¢ represent the same database row.

Whenever you work with objects in detached state, and especially if you test
them for equality (usually in hash-based collections), you need to supply your
own implementation of the equals() and hashCode () methods for your persis-
tent classes.

396

CHAPTER 9
Working with objects

Understanding equals() and hashCode()

Before we show you how to implement your own equality routine. we have to
bring two important points to your attention. First, in our experience, many Java
developers never had to override the equals() and hashCode () methods before
using Hibernate (or Java Persistence). Traditionally, Java developers seem to be
unaware of the intricate details of such an implementation. The longest discus-
sion threads on the public Hibernate forum are about this equality problem, and
the “blame” is often put on Hibernate. You should be aware of the fundamental
issue: Every object-oriented programming language with hash-based collections
requires a custom equality routine if the default contract doesn’t offer the desired
semantics. The detached object state in a Hibernate application exposes you to
this problem, maybe for the first time.

On the other hand, you may not have to override equals () and hashCode ().
The identity scope guarantee provided by Hibernate is sufficient if you never com-
pare detached instances—that is, if you never put detached instances into the
same Set. You may decide to design an application that doesn’t use detached
objects. You can apply an extended persistence context strategy for your conversa-
tion implementation and eliminate the detached state from your application com-
pletely. This strategy also extends the scope of guaranteed object identity to span
the whole conversation. (Note that you still need the discipline to not compare
detached instances obtained in two conversations!)

Let’s assume that you want to use detached objects and that you have to test
them for equality with your own routine. You can implement equals () and hash-
Code () several ways. Keep in mind that when you override equals (), you always
need to also override hashCode () so the two methods are consistent. If two objects
are equal, they must have the same hashcode.

A clever approach is to implement equals() to compare just the database
identifier property (often a surrogate primary key) value:

public class User {

public boolean equals (Object other) {
if (this==other) return true;
if (id==null) return false;
if (! (other instanceof User)) return false;
final User that = (User) other;
return this.id.equals(that.getId());
}

public int hashCode() {
return id==null ?

Object identity and equality 397

System.identityHashCode (this)
id.hashCode () ;

}

Notice how this equals () method falls back to Java identity for transient instances
(if id==null) that don’t have a database identifier value assigned yet. This is rea-
sonable, because they can’t possibly be equal to a detached instance, which has an
identifier value.

Unfortunately, this solution has one huge problem: Identifier values aren’t
assigned by Hibernate until an object becomes persistent. If a transient object is
added to a Set before being saved, its hash value may change while it’s contained
by the Set, contrary to the contract of java.util.Set. In particular, this problem
makes cascade save (discussed later in the book) useless for sets. We strongly dis-
courage this solution (database identifier equality).

A better way is to include all persistent properties of the persistent class, apart
from any database identifier property, in the equals() comparison. This is how
most people perceive the meaning of equals (); we call it by value equality.

When we say all properties, we don’t mean to include collections. Collection state
is associated with a different table, so it seems wrong to include it. More important,
you don’t want to force the entire object graph to be retrieved just to perform
equals (). In the case of User, this means you shouldn’t include the boughtItems
collection in the comparison. This is the implementation you can write:

public class User {

public boolean equals (Object other) {
if (this==other) return true;

if (! (other instanceof User)) return false;

final User that = (User) other;

if (!this.getUsername () .equals(that.getUsername()))
return false;

if (!this.getPassword() .equals(that.getPassword()))

return false;
return true;

}

public int hashCode () {
int result = 14;
result = 29 * result + getUsername () .hashCode() ;
result = 29 * result + getPassword() .hashCode() ;
return result;

398

CHAPTER 9
Working with objects

However, there are again two problems with this approach. First, instances from
different Sessions are no longer equal if one is modified (for example, if the user
changes the password). Second, instances with different database identity
(instances that represent different rows of the database table) can be considered
equal unless some combination of properties is guaranteed to be unique (the
database columns have a unique constraint). In the case of user, there is a unique
property: username.

This leads us to the preferred (and semantically correct) implementation of an
equality check. You need a business key.

Implementing equality with a business key

To get to the solution that we recommend, you need to understand the notion of
a business key. A business key is a property, or some combination of properties, that
is unique for each instance with the same database identity. Essentially, it’s the nat-
ural key that you would use if you weren’t using a surrogate primary key instead.
Unlike a natural primary key, it isn’t an absolute requirement that the business
key never changes—as long as it changes rarely, that’s enough.

We argue that essentially every entity class should have some business key, even
if it includes all properties of the class (this would be appropriate for some
immutable classes). The business key is what the user thinks of as uniquely identi-
fying a particular record, whereas the surrogate key is what the application and
database use.

Business key equality means that the equals () method compares only the prop-
erties that form the business key. This is a perfect solution that avoids all the prob-
lems described earlier. The only downside is that it requires extra thought to
identify the correct business key in the first place. This effort is required anyway;
it’s important to identify any unique keys if your database must ensure data integ-
rity via constraint checking.

For the User class, username is a great candidate business key. It’s never null,
it’s unique with a database constraint, and it changes rarely, if ever:

public class User {

public boolean equals (Object other) {
if (this==other) return true;
if (! (other instanceof User)) return false;
final User that = (User) other;
return this.username.equals(that.getUsername());

}

public int hashCode() {

}

Object identity and equality 399

return username.hashCode() ;

For some other classes, the business key may be more complex, consisting of a
combination of properties. Here are some hints that should help you identify a
business key in your classes:

Consider what attributes users of your application will refer to when they
have to identify an object (in the real world). How do users tell the differ-
ence between one object and another if they’re displayed on the screen?
This is probably the business key you’re looking for.

Every attribute that is immutable is probably a good candidate for the busi-
ness key. Mutable attributes may be good candidates, if they’re updated
rarely or if you can control the situation when they’re updated.

Every attribute that has a UNIQUE database constraint is a good candidate for
the business key. Remember that the precision of the business key has to be
good enough to avoid overlaps.

Any date or time-based attribute, such as the creation time of the record, is
usually a good component of a business key. However, the accuracy of Sys-
tem.currentTimeMillis () depends on the virtual machine and operating
system. Our recommended safety buffer is 50 milliseconds, which may not
be accurate enough if the time-based property is the single attribute of a
business key.

You can use database identifiers as part of the business key. This seems to
contradict our previous statements, but we aren’t talking about the database
identifier of the given class. You may be able to use the database identifier
of an associated object. For example, a candidate business key for the Bid
class is the identifier of the Item it was made for together with the bid
amount. You may even have a unique constraint that represents this com-
posite business key in the database schema. You can use the identifier value
of the associated Item because it never changes during the lifecycle of a
Bid—setting an already persistent Item is required by the Bid constructor.

If you follow our advice, you shouldn’t have much difficulty finding a good busi-

ness key for all your business classes. If you have a difficult case, try to solve it with-
out considering Hibernate—after all, it’s purely an object-oriented problem.
Notice that it’s almost never correct to override equals() on a subclass and
include another property in the comparison. It’s a little tricky to satisfy the

400

9.2.4

CHAPTER 9
Working with objects

requirements that equality be both symmetric and transitive in