JAVA™ STUDIO

CREATOR
FIELD GUIDE

SECOND EDITION

e I 7

JAVA TECHNOLOGY
OVERVIEW

7 Topics in This Chapter

+ The Java Programming Language
+ JavaBeans Components

* NetBeans Software

+ The XML Language

* The J2EE Architecture

» JavaServer Faces Technology

+ JDBC and Databases

» Ant Build Tool

+ Web Services

+ EJBs and Portlets

Chapter

elcome to Creator! Creator is an IDE (Integrated Development

Environment) that helps you build web applications. While many

IDEs out in the world do that, Creator is unique in that it is built on

a layered technology anchored in Java. At the core of this technol-
ogy is the Java programming language. Java includes a compiler that produces
portable bytecode and a Java Virtual Machine (JVM) that runs this byte code on
any processor. Java is an important part of Creator because it makes your web
applications portable.

But Java is more than just a programming language. It is also a fechnology
platform. Many large systems have been developed that use Java as their core.
These systems are highly scalable and provide services and structure that
address some of the high-volume, distributed computing environments of
today.

1.1 Introduction

Creator depends on multiple technologies, so it’s worthwhile touching on them
in this chapter. If you're new to Java, many of its parts and acronyms can be
daunting. Java technologies are divided into related packages containing
classes and interfaces. To build an application, you might need parts of one sys-
tem and parts of another. This chapter provides you with a road map of Java

Chapter 1 Java Technology Overview

technologies and documentation sources to help you design your web applica-
tions with Creator.

We'll begin with an overview of the Java programming language. This will
help you get comfortable writing Java code to customize your Creator applica-
tions. But before we do that, we show you how to find the documentation for
Java classes and methods. This will help you use them with confidence in your
programs.

Most of the documentation for a Java Application Program Interface (API)
can be accessed through Creator’s Help System, located under Help in the
main menu. Sometimes all you need is the name of the package or the system
to find out what API a class, interface, or method belongs to. Java consists of
the basic language (all packages under java) and Java extensions (all packages
under javax). Once you locate a package, you can explore the interfaces and
classes and learn about the methods they implement.

You can also access the Java documentation online. Here’s a good starting
point for the Java API documentation.

http://java.sun.com/docs/
This page contains links to the Java 2 Platform Standard Edition, which con-
tains the core APIs. It also has a link to all of the other Java APIs and technolo-
gies, found at

http://java.sun.com/reference/docs/index.html

Creator is also built on the technology of JavaServer Faces (JSF). You can
find the current JSF API documentation at

http://java.sun.com/j2ee/javaserverfaces/1.0/docs/api/
index.html

JSE is described as part of the J2EE Tutorial, which can be found at
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

These are all important references for you. We’'ve included them at the
beginning of this book so it’s easy to find them later (when you're deep in the
challenges of web application development). For now, let’s begin with Java as a
programming language. Then we'll look at some of the other supporting tech-
nologies on which Creator is built.

1.2 The Java Programming Language

1.2 The Java Programming Language

This cursory overview of the Java programming language is for readers who
come from a non-Java programming environment. It’s not meant to be an in-
depth reference, but a starting point. Much of Creator involves manipulating
components through the design canvas and the components” property sheets.
However, there are times when you must add code to a Java page bean (the
supporting Java code for your web application’s page) or use a JavaBeans com-
ponent in your application. You'll want a basic understanding of Java to more
easily use Creator.

Object-Oriented Programming

Languages like C and Basic are procedure-oriented languages, which means
data and functions are separated. To write programs, you either pass data as
arguments to functions or make your data global to functions. This arrange-
ment can be problematic when you need to hide data like passwords, customer
identification codes, and network addresses. Procedure-oriented designs work
fine when you write simple programs but are often not suitable to more com-
plex tasks like distributed programming and web applications. Function librar-
ies help, but error handling can be difficult and global variables may introduce
side effects during program maintenance.

Object-oriented programming, on the other hand, combines data and func-
tions into units called objects. Languages like Java hide private data (fields) from
user programs and expose only functions (methods) as a public interface. This
concept of encapsulation allows you to control how callers access your objects. It
allows you to break up applications into groups of objects that behave in a sim-
ilar way, a concept called abstraction. In Java, you implement an object with a
Java class and your object’s public interface becomes its outside view. Java has
inheritance to create new data types as extensions of existing types. Java also
has interfaces, which allow objects to implement required behaviors of certain
classes of objects. All of these concepts help separate an object’s implementa-
tion (inside view) from its interface (outside view).

All objects created from the same class have the same data type. Java is a
strongly typed language, and all objects are implicitly derived from type
Object (except the built-in primitive types of int, boolean, char, double,
long, etc.). You can convert an object from one type to another with a converter.
Casting to a different type is only allowed if the conversion is known by the
compiler. Creator’s Java editor helps you create well-formed statements with
dynamic syntax analysis and code completion choices. You'll see how this
works in Chapter 2.

Error handling has always been a tough problem to solve, but with web
applications error handling is even more difficult. Processing errors can occur

Chapter 1 Java Technology Overview

on the server but need to propagate in a well-behaved way back to the user.
Java implements exception handling to handle errors as objects and recover
gracefully. The Java compiler forces programmers to use the built-in exception
handling mechanism.

And, Java forbids global variables, a restriction that helps program mainte-
nance.

Creating Objects

Operator new creates objects in Java. You don’t have to worry about destroying
them, because Java uses a garbage collection mechanism to automatically
destroy objects which are no longer used by your program.

Point p = new Point(); // create a Point at (0, 0)
Point g new Point (10, 20); // create a Point at (10, 20)

Operator new creates an object at run time and returns its address in memory to
the caller. In Java, you use references (p and g) to store the addresses of objects so
that you can refer to them later. Every reference has a type (Point), and objects
can be built with arguments to initialize their data. In this example, we create
two Point objects with x and y coordinates, one with a default of (0, 0) and the
other one with (10, 20).

Once you create an object, you can call its methods with a reference.

p.move (30, 30); // move object p to (30, 30)

g.up(); // move object g up in y direction
p.right(); // move object p right in x direction
int xp = p.getX(); // get x coordinate of object p

int yp = p.getY(); // get y coordinate of object p
g.setX (5); // change x coordinate in object g
p.setY (25); // change y coordinate in object p

As you can see, you can do a lot of things with Point objects. It's possible to
move a Point object to a new location, or make it go up or to the right, all of
which affect one or more of a Point object’s coordinates. We also have getter
methods to return the x and y coordinates separately and setter methods to
change them.

Why is this all this worthwhile? Because a Point object’s data (x and y coor-
dinates) are hidden. The only way you can manipulate a Point object is through
its public methods. This makes it easier to maintain the integrity of Point
objects.

1.2 The Java Programming Language

Classes

Java already has a Point class in its API, but for the purposes of this discussion,
let’s roll our own. Here’s our Java Point class, which describes the functionality
we’ve shown you.

Listing 1.1 Point class

// Point.java - Point class
class Point {
// Fields
private double x, y; // x and y coordinates

// Constructors
public Point (double x, double y) { move(x, y); }
public Point () { move (0, 0); }

// Instance Methods

public void move (double x, double y) {
this.x = x; this.y = y;

}

public void up() { y++; }

public void down() { y--; }

public void right () { x++; }

public void left () { x--; }

// getters
public double getX () { return x; }
public double getY() { return y; }

// setters
public void setX(double x) { this.x = x; }
public void setY(double y) { this.y

Il
w

The Point class is divided into three sections: Fields, Constructors, and
Instance Methods. Fields hold internal data, constructors initialize the fields,
and instance methods are called by you with references. Note that the fields for
x and y are private. This enforces data encapsulation in object-oriented pro-
gramming, since users may not access these values directly. Everything else,
however, is declared public, making it accessible to all clients.

The Point class has two constructors to build Point objects. The first con-
structor accepts two double arguments, and the second one is a default con-
structor with no arguments. Note that both constructors call the move ()
method to initialize the x and y fields. Method move () uses the Java this key-

Chapter 1 Java Technology Overview

word to distinguish local variable names in the method from class field names
in the object. The setX () and setY () methods use the same technique.1

Most of the Point methods use void for their return type, which means the
method does not return anything. The ++ and -- operators increment or decre-
ment their values by one, respectively. Each method has a signature, which is
another name for a function’s argument list. Note that a signature may be
empty.

Packages

The Point class definition lives in a file called Point.java. In Java, you must
name a file with the same name as your class name. This makes it convenient
for the Java run-time interpreter to find class definitions when it’s time to
instantiate (create) objects. When all classes live in the same directory, it’s easy
to compile and run Java programs.

In the real world, however, classes have to live in different places, so Java
has packages that allow you to group related classes. A package in Java is both a
directory and a library. This means a one-to-one correspondence exists between
a package hierarchy name and a file’s pathname in a directory structure.
Unique package names are typically formed by reversing Internet domain
names (com.mycompany). Java also provides access to packages from class paths
and JAR (Java Archive) files.

Suppose you want to store the Point class in a package called MyPack-
age.examples. Here’s how you do it.

package MyPackage.examples;
class Point {

}

Package names with dot (.) delimiters map directly to path names, so
Point.java lives in the examples directory under the MyPackage directory. A
Java import statement makes it easy to use class names without fully qualifying
their package names. Import statements are also applicable to class names from
any Java APL

// Another Java program

import java.util.Date;

import javax.faces.context.*;
import MyPackage.examples.Point;

1. The this reference is not necessary if you use different names for the argu-
ments.

1.2 The Java Programming Language

The first import statement provides the Date class name to our Java program
from the java.util package. The second import uses a wildcard (*) to make
all class definitions available from javax.faces.context. The last import
brings our Point class into scope from package MyPackage . examples.

Exceptions

We mentioned earlier that one of the downfalls of procedure-oriented lan-
guages is that subroutine libraries don't handle errors well. This is because
libraries can only detect problems, not fix them. Even with libraries that sup-
port elaborate error mechanisms, you cannot force someone to check a func-
tion’s return value or peek at a global error flag. For these and other reasons, it
has been difficult to write distributed software that gracefully recovers from
errors.

Object-oriented languages like Java have a built-in exception handling
mechanism that lets you handle error conditions as objects. When an error
occurs inside a try block of critical code, an exception object can be thrown
from a library method back to a catch handler. Inside user code, these catch
handlers may call methods in the exception object to do a range of different
things, like display error messages, retry, or take other actions.

The exception handling mechanism is built around three Java keywords:
throw, catch, and try Here’s a simple example to show you how it works.

class SomeClass {

public void doSomething (String input) {

int number;

try {
number = Integer.parselnt (input);

}

catch (NumberFormatException e) {
String msg = e.getMessage() ;
// do something with msg

Suppose a method called doSomething () needs to convert a string of char-
acters (input) to an integer value in memory (number). In Java, the call to Inte-
ger.parselnt () performs the necessary conversion for you, but what about
malformed string arguments? Fortunately, the parseInt () method throws a
NumberFormatException if the input string has illegal characters. All we do is
place this call in a try block and use a catch handler to generate an error mes-
sage when the exception is caught.

10

Chapter 1 Java Technology Overview

All that’s left is to show you how the exception gets thrown. This is often
called a throw point.

class Integer {
public static int parselnt (String input)
throws NumberFormatException {
// input string has bad chars
throw new NumberFormatException("illegal chars");
}

The static parseInt () method? illustrates two important points about
exceptions. First, the throws clause in the method signature announces that
parseInt () throws an exception object of type NumberFormatException. The
throws clause allows the Java compiler to enforce error handling. To call the
parselnt () method, you must put the call inside a try block or in a method
that also has the same throws clause. Second, operator new calls the Number-
FormatException constructor to build an exception object. This exception
object is built with an error string argument and thrown to a catch handler
whose signature matches the type of the exception object (NumberFormat Excep-
tion).3 As you have seen, a catch handler calls getMessage () with the excep-
tion object to access the error message.

Why are Java exceptions important? As you develop web applications with
Creator, you'll have to deal with thrown exceptions. Fortunately, Creator has a
built-in debugger that helps you monitor exceptions. In the Chapter 14, we
show you how to set breakpoints to track exceptions in your web application
(see “Detecting Exceptions” on page 521).

Inheritance

The concept of code reuse is a major goal of object-oriented programming.
When designing a new class, you may derive it from an existing one. Inherit-
ance, therefore, implements an “is a” relationship between classes. Inheritance
also makes it easy to hook into existing frameworks so that you can take on

2. Inside class Integer, the static keyword means you don’t have to instan-
tiate an Integer object to call parseInt (). Instead, you call the static
method with a class name rather than a reference.

3. The match doesn’t have to be exact. The exception thrown can match the
catch handler’s object exactly or any exception object derived from it by
inheritance. To catch any possible exception, you can use the superclass
Exception. We discuss inheritance in the next section.

1.2 The Java Programming Language

new functionalities. With inheritance, you can retain the existing structure and
behavior of an existing class and specialize certain aspects of it to suit your
needs.

In Java, inheritance is implemented by extending classes. When you extend
one class from another, the public methods of the “parent” class become part of
the public interface of the “child class.” The parent class is called a superclass
and the child class is called a subclass. Here are some examples.

class Pixel extends Point {

}

class NumberFormatException extends IllegalArgumentException ({

}

In the first example, Point is a superclass and Pixel is a subclass. A Pixel
“is a” Point with, say, color. Inside the Pixel class, a color field with setter and
getter methods can assist in manipulating colors. Pixel objects, however, are
Point objects, so you can move them up, down, left or right, and you can get or
set their x and y coordinates. (You can also invoke any of Point’s public meth-
ods with a reference to a Pixel object.) Note that you don’t have to write any
code in the Pixel class to do these things because they have been inherited
from the Point class. Likewise, in NumberFormatException, you may intro-
duce new methods but inherit the functionality of I1legalArgumentExcep-
tion.

Another point about inheritance. You can write your own version of a
method in a subclass that has the same name and signature as the method in
the superclass. Suppose, for instance, we add a clear () method in our Point
class to reset Point objects back to (0, 0). In the Pixel class that extends from
Point, we may override the clear () method.* This new version could move a
Pixel object to (0, 0) and reset its color. Note that clear () in class Point is
called for Point objects, but clear () in class Pixel will be called for pPixel
objects. With a Point reference set to either type of object, different behaviors
happen when you call this method.

It's important to understand that these kinds of method calls in Java are
resolved at run time. This is called dynamic binding. In the object-oriented para-
digm, dynamic binding means that the resolution of method calls with objects

4. Creator uses this same feature by providing methods that are called at dif-
ferent points in the JSF page request life cycle. You can override any of these
methods and thus provide your own code, “hooking” into the page request
life cycle. We show you how to do this in Chapter 6 (see “The Creator-JSF
Life Cycle” on page 151).

11

12

Chapter 1 Java Technology Overview

is delayed until you run a program. In web applications and other types of dis-
tributed software, dynamic binding plays a key role in how objects call meth-
ods from different machines across a network or from different processes in a
multitasking system.

Interfaces

In Java, a method with a signature and no code body is called an abstract
method. Abstract methods must be overridden in subclasses and help define
interfaces. A Java interface is like a class but has no fields and only abstract pub-
lic methods. Interfaces are important because they specify a contract. Any new
class that implements an interface must provide code for the interface’s meth-
ods.

Here’s an example of an interface.

interface Encryptable {
void encode (String key);
String decode() ;

}

class Password implements Encryptable {

void encode (String key) { . . . }
String decode() { . . . }

The Encryptable interface contains only the abstract public methods
encode () and decode (). Class Password implements the Encryptable inter-
face and must provide implementations for these methods. Remember, inter-
faces are types, just like classes. This means you can implement the same
interface with other classes and treat them all as Encryptable types.

Java prohibits a class from inheriting from more than one superclass, but it
does allow classes to implement multiple interfaces. Interfaces, therefore, allow
arbitrary classes to “take on” the characteristics of any given interface.

One of the most common interfaces implemented by classes in Java is the
Serializable interface. When an object implements Serializable, you can
use it in a networked environment or make it persistent (this means the state of
an object can be saved and restored by different clients). There are methods to
serialize the object (before sending it over the network or storing it) and to
deserialize it (after retrieving it from the network or reading it from storage).

1.3 JavaBeans Components

1.3 JavaBeans Components

A JavaBeans component is a Java class with certain structure requirements. Jav-
abeans components define and manipulate properties, which are objects of a
certain type. A JavaBeans component must have a default constructor so that it
can be instantiated when needed. Beans also have getter and setter methods
that manipulate a bean property and conform to a specific naming convention.
These structural requirements make it possible for development tools and
other programs to create JavaBeans components and manipulate their proper-
ties.
Here’s a simple example of a JavaBeans component.

public class Book {
private String title;
private String author;
public Book () { setTitle(""); setAuthor(""); }
public void setTitle(String t) { title = t; }
public String getTitle() { return title; }
public void setAuthor (String a) { author = a; }
public String getAuthor () { return author; }

Why are JavaBeans components important? First and most important, they
are accessible to Creator. When you write a JavaBeans component that con-
forms to the specified design convention, you may use it with Creator and bind
JSF components to bean properties. Second, JavaBeans components can encap-
sulate business logic. This helps separate your design presentation (GUI com-
ponents) from the business data model.

In subsequent chapters, we show you several examples of JavaBeans compo-
nents. We’ll use a LoginBean to handle users that login with names and pass-
words and show you a LoanBean that calculates mortgage payments for loans.
The Point class in Listing 1.1 on page 7 is another example of a JavaBeans com-
ponent.

1.4 NetBeans Software

NetBeans software is an open source IDE written in the Java programming lan-
guage. It also includes an API that supports building any type of application.
The IDE has support for Java, but its architecture is flexible and extensible,
making support for other languages possible.

13

14

Chapter 1 Java Technology Overview

NetBeans is an Open Source project. You can view more information on its
history, structure, and relationship with Sun Microsystems at its web site

http://www.netbeans.org/

NetBeans and Creator are related because Creator is based on the NetBeans
platform. In building Creator, Sun is offering an IDE aimed specifically at cre-
ating web-based applications. Thus, the IDE integrates page design with gener-
ated JSP source and page bean components. NetBeans provides features such
as source code completion, workspace manipulation of windows, expandable
tree views of files and components, and debugging facilities. Because NetBeans
is extensible, the Creator architects included Java language features such as
inheritance to adapt components from NetBeans into Creator applications with
the necessary IDE functions.

1.5 The XML Language

XML is a metalanguage that dictates how to define custom languages and
describe data. The name is an acronym for Extensible Markup Language. XML
is not a programming language, however. In fact, it’s based on simple character
text in which the data are surrounded by text markup that documents data.
This means you can use XML to describe almost anything. Since XML is self-
describing, it's easy to read with tools and other programs to decide what
actions to take. You can transport XML documents easily between systems or
across the Internet, and virtually any type of data can be expressed and vali-
dated in an XML document. Furthermore, XML is portable because it’s lan-
guage and system independent.

Creator uses XML to define several configuration files as well as the source
for the JSP web pages. Here’s an example XML file (managed-beans.xml) that
Creator generates for managing a JavaBeans component in a web application.

<faces-config>
<managed-bean>
<managed-bean-name>LoanBean</managed-bean-name>
<managed-bean-class>asg.bean examples.LoanBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
</faces-config>

Every XML file has opening tags (<tag>) and closing tags (</tag>) that
define self-describing information. Here, we specify a managed-bean element

1.6 The J2EE Architecture

to tell Creator what it needs to know about the LoanBean component. This
includes its name (LoanBean), class name and package (asg.bean-
_examples. LoanBean), and the scope of the bean (session). When you add your
own JavaBeans components to Creator as managed beans, Creator generates
this configuration information for you.

Creator maintains and updates its XML files for you, but it’s a good idea to
be familiar with XML syntax. This will allow you to customize the Creator
XML files if necessary.

1.6 The J2EE Architecture

The J2EE platform gives you a multitiered application model to develop dis-
tributed components. Although any number of tiers is possible, we'll use a
three-tier architecture for the applications in this book. Figure 1-1 shows the
approach.

The client machine supports web browsers, applets, and stand-alone appli-
cations. A client application may be as simple as a command-line program run-
ning as an administrator client or a graphical user interface created from Java
Swing or Abstract Window Toolkit (AWT) components. Regardless, the J2EE
specification encourages thin clients in the presentation tier. A thin client is a
lightweight interface that does not perform database queries, implement busi-
ness logic, or connect to legacy code. These types of “heavyweight” operations
preferably belong to other tiers.

Web
Presentation Tier Database
Tier % ™ Tier
Business
Tier
Client J2EE Server Database
Machine Machine Server Machine

Figure 1-1 Three-tier J2EE architecture

15

16

Chapter 1 Java Technology Overview

The J2EE server machine is the center of the architecture. This middle tier
contains web components and business objects managed by the application
server. The web components dynamically process user requests and construct
responses to client applications. The business objects implement the logic of a
business domain. Both components are managed by a J2EE application server
that provides these components with important system services, such as secu-
rity, transaction management, naming and directory lookups, and remote con-
nectivity. By placing these services under control of the J2EE application server,
client components focus on either presentation logic or business logic. And,
business objects are easier for developers to write. Furthermore, the architec-
ture encourages the separation of business logic from presentation logic (or
model from view).

The database server machine handles the database back end. This includes
mainframe transactions, databases, Enterprise Resource Planning (ERP) sys-
tems, and legacy code. Another advantage of the three-tier architecture is that
older systems can take on a whole new “look” by using the J2EE platform. This
is the approach many businesses are taking as they integrate legacy systems
into a modern distributed computing environment and expose application ser-
vices and data to the web.

1.7 Java Servlet Technology

The Java Servlet component technology presents a request-response program-
ming model in the middle tier. Servlets let you define HTTP-specific servlet
classes that accept data from clients and pass them on to business objects for
processing. Servlets run under the control of the J2EE application server and
often extend applications hosted by web servers. Servlet code is written in Java
and compiled. It is particularly suited to server-side processing for web appli-
cations since each Servlet session is handled in its own thread.

1.8 JavaServer Pages Technology

A JavaServer Pages (JSP) page is a text-based document interspersed with Java
code. A JSP engine translates JSP text into Java Servlet code. It is then dynami-
cally compiled and executed. This component technology lets you create
dynamic web pages in the middle tier. JSP pages contain static template data
(HTML, WML, and XML) and JSP elements that determine how a page con-
structs dynamic content. The JSP API provides an efficient, thread-based mech-
anism to create dynamic page content.

1.9 JDBC API and Database Access

Creator uses JavaServer Faces (JSF), which is built on both the servlet and
JSP technologies. However, by using Creator, you are shielded from much of
the details of not only JSP and servlet programming, but JSF details as well.

1.9 JDBC API and Database Access

Java Data Base Connectivity (JDBC) is an API that lets you invoke SQL com-
mands from Java methods in the middle tier. Typically, you use the JDBC API
to access a database from servlets or JSP pages. The JDBC API has an applica-
tion-level interface for database access and a service provider interface to
attach JDBC drivers to the J2EE platform. In support of JDBC, J2EE application
servers manage a pool of database connections. This pool provides business
objects efficient access to database servers.

The JDBC cachedRowSet API is a newer technology that makes database
access more flexible. Creator accesses configured data sources using a Cached-
RowSet object, a JavaBeans component that is scrollable, updatable, and serial-
izable. These components are disconnected from the database, caching its rows
into memory. When web applications modify data in the cached rowset object,
the result propagates back to the data source through a subsequent connection.
By default, Creator instantiates a cached rowset object in session scope.

The concept of data providers is also important because it produces a level of
abstraction for data flow within Creator’s application environment. Creator’s
data providers allow you to change the source of data (say, from a database
table to a web services call or an EJB method) by hooking the data provider to a
different data source.

We introduce data providers in Chapter 8 and show how to use them with
databases in Chapter 9.

1.10 JavaServer Faces Technology

The JavaServer Faces (JSF) technology helps you develop web applications
using a server-side user interface (UI) component framework. The JSF API
gives you a rich set of Ul components and lets you handle events, validate and
convert user input, define page navigation, and support internationalization.
JSF has custom tag libraries for connecting components to server-side objects.
We show you these components and tag libraries in Chapter 3.

JSF incorporates many of the lower level tasks that JSP developers are used
to doing. Unlike JSP applications, however, applications developed with JSF
can map HTTP requests to component-specific event handlers and manage Ul
elements as stateful objects on the server. This means JSF offers a better separa-

17

18

Chapter 1 Java Technology Overview

tion of model and presentation. The JSF API is also layered directly on top of
the Servlet APL

1.11 Ant Build Tool

Ant is a tool from the Apache Software Foundation (www.apache.org) that
helps you manage the “build” of a software application. The name is an acro-
nym for “Another Neat Tool” and is similar in concept to older build tools like
make under Unix and gmake under Linux. However, Ant is XML-based, it’s eas-
ier to use, and it’s platform independent.

Ant is written in Java and accepts instructions from XML documents. Ant is
well suited for performing complicated and repetitive tasks. Creator uses Ant
to compile and deploy your web applications. Ant gets its instructions for
building a system from the configuration file, build.xml. You won't have to
know too much about Ant to use Creator, but you should be aware that it’s
behind the scenes doing a lot of work for you.

1.12 Web Services

Web services are software APIs that are accessible over a network in a hetero-
geneous environment. Network accessibility is achieved by means of a set of
XML-based open standards such as the Web Services Description Language
(WSDL), the Simple Object Access Protocol (SOAP), and Universal Description,
Discovery, and Integration (UDDI). Web service providers and clients use these
standards to define, publish, and access web services.

Creator’s application server (J2EE 1.4) provides support for web services. In
Creator, you can access methods of a web service by dragging its node onto the
design canvas. We show you web services with Creator in Chapter 10.

1.13 Enterprise JavaBeans (EJB)

EJB is a component technology that helps developers create business objects in
the middle tier. These business objects (enterprise beans) consist of fields and
methods that implement business logic. E]Bs are server-side components writ-
ten in Java that serve as building blocks for enterprise systems. They perform
specific tasks by themselves, or forward operations to other enterprise beans.
EJBs are under control of the J2EE application server. We show you how to
access an EJB from a Creator application in Chapter 11.

1.14 Portlets

1.14 Portlets

A portlet is an application that runs on a web site managed by a server called a
portal. A portal server manages multiple portlet applications, displaying them
on the web page together. Each portlet consumes a fragment of the page and
manages its own information and user interaction. Portlet application develop-
ers will typically target portlets to run under portals provided by various por-
tal vendors.

You can use Creator to develop portlets. Creator builds JSF portlets. This
means your design-time experience in building portlet web application using
the visual, drag-and-drop features of Creator will be familiar. Most of the inter-
action with the IDE is exactly the same as it is for non-portlet JSF projects. We
show you how to create portlets in Chapter 12.

1.15 Key Point Summary

¢ Creator is an IDE built on layered Java technologies that helps you build
web applications.

* Procedure-oriented languages separate data and functions, whereas object-
oriented languages combine them.

* Encapsulation enforces data hiding and allows you to control access to your
objects.

* Javais a strongly typed object-oriented language with a large set of APIs
that help you develop portable web applications.

* InJava, operator new returns a reference to a newly created object so that
you can call methods with the reference.

¢ Java classes have fields, constructors, and instance methods. The private
keyword is used for encapsulation, and the public keyword grants access to
clients.

* Java packages allow you to store class files and retrieve them with import
statements in Java programs.

e Java uses try, catch, and throw to handle error conditions with a built-in
exception handling mechanism.

¢ Inheritance is a code reuse mechanism that implements an “is a”
relationship between classes.

* Dynamically bound method calls are resolved at run time in Java. Dynamic
binding is essential with distributed web applications.

* An interface has no fields and only abstract public methods. A class that
implements an interface must provide code for the interface’s methods.

¢ The J2EE architecture is a multitiered application model to develop
distributed components.

19

20

Chapter 1 Java Technology Overview

Java Servlets let you define HTTP-specific servlet classes that accept data
from clients and pass them on to business objects for processing.

A JSP page is a text-based document interspersed with Java code that allows
you to create dynamic web pages.

JDBC is an API for database access from servlets, JSP pages, or JSE. Creator
uses data providers to introduce a level of abstraction between Creator Ul
components and sources of data.

JavaServer Faces (JSF) helps you develop web applications using a server-
side user interface component framework. Creator generates and manages
all of the configuration files required by JSF.

A JavaBeans component is a Java class with a default constructor and setter
and getter methods to manipulate its properties.

NetBeans is a standards-based IDE and platform written in the Java
programming language. Java Studio Creator is based on the NetBeans
platform.

XML is a self-describing, text-based language that documents data and
makes it easy to transport between systems.

Ant is a Java build tool that helps you compile and deploy web applications.
Web services are software APIs that are accessible over a network in a
heterogeneous environment.

EJBs are server-side components written in Java that implement business
logic and serve as building blocks for enterprise systems.

Portlets are applications that consume a portion of a web page. They run on
web sites managed by a portal server and execute along with other portlets
on the page.

Portlets help divide web pages into smaller, more manageable fragments.

CREATOR BASICS

7 Topics in This Chapter

» Creator Window Layout

» Visual Design Editor

+ Components and Clips Palette

» Source Editors/Code Completion
+ Page Navigation Editor

* Outline Window

* Projects Window

+ Servers and Resources

» Creator Help System

« Basic Project Building

Chapter

from multiple points of view. This chapter explores some of Creator’s

basic capabilities, the different windows (views) and the way in which

you use them to build your application. We show you how to manipu-
late your application through the drag-and-drop mechanism for placing com-
ponents, configuring components in the Properties window, controlling page
flow with the Page Navigation editor, and selecting services from the Servers
window.

S un Java Studio Creator makes it easy to work with web applications

2.1 Examples Installation

We assume that you've successfully installed Creator. The best source of infor-

mation for installing Creator is Sun’s product information page at the following
URL.

http://developers.sun.com/prodtech/javatools/jscreator/

Creator runs on a variety of platforms and can be configured with different
application servers and JDBC database drivers. However, to run all our exam-
ples we’ve used the bundled application server (Sun Java System Application
Server 8.2) and the bundled database server (Derby). Once you've configured

23

24

&

Y

Chapter 2 Creator Basics

Creator for your system, the examples you build here should run the same on
your system.

Download Examples

You can download the examples for this book at the Sun Creator web site. The
examples are packed in a zip file. When you unzip the file, you'll see the
FieldGuide2/Examples directory and subdirectories for the various chapters
and projects. As each chapter references the examples, you will be instructed
on how to access the files.

You're now ready to start the tour of Creator.

2.2 Creator Views

Figure 2-1 shows Creator’s initial window layout in its default configuration.
When you first bring it up, no projects are open and Creator displays its Wel-
come window.

There are other windows besides those shown in the initial window layout.
As you’ll see, you can hide and display windows, as well as move them
around. As we begin this tour of Creator, you'll probably want to run Creator
while reading the text.

Welcome Window

The Welcome window lets you create new projects or work on existing ones.
Figure 2-2 shows the Welcome window in more detail. It lists the projects
you’'ve worked on recently and offers selection buttons for opening existing
projects or creating new projects. If you hover with the mouse over a recently
opened project name, Creator displays the full pathname of the project in a
tooltip.

To demonstrate Creator, let’s open a project that we’ve already built. The
project is included in the book’s download bundle, in directory FieldGuide2/
Examples/Navigation/Projects/Loginl.

Creator Tip

We show you how to build this project from scratch in Chapter 5 (see
“Dynamic Navigation” on page 206). For our tour of the IDE, however, we’ll
use the pre-built project from the examples download.

2.2 Creator Views

Main Menu Servers View Properties Window

Palette
Tool Icons

Files View

Properties

-) I=IEJE g Infarmation -~
-] JumpStartCycle Clisrit 3 St)
=] order ¢ Application Servir]
™ A = = EJB Deployment: 3]
Java™ Studio Creator 2 r-_, et b | Ed
javar
=@ Enterprise lava Beans Marne: Currency|... [J
& [t 2 Server Host localho: (mEd
-5 Wl 5 [Create New Project I [Open Existing Project] —— .
& Helloworld Application iProje.. [¥ |‘Files

B8 Jump Start Cycles [0 Recent Projects Last Modified B @ Loginl b
@ B8 LoanEB o dpen O[3 ‘WebPages
- Travel Center 43 resources
& web Services BN Documents and Settings/GailfMy Dacuments/Creator(ProjectsiLogin 8] LoginBad.jsp
- igPeployment Server EJBConverter2 Today 11:04 am H Bl LoginGood.jsp
9 ! L i
[Deployed Companents EJBLoanTest Yesterday 10:39 am f Rl Pagel.jsp
- Resources $ £ Themes
SR - Payment1 Saturday 11:55.am L8 Page Navigation
{B3gbundied Database Server Payment2-test Thursday 5:01 pm 1@, Managed Beans
s —_— — y 3 (#-[EH] Request Bean v
e ‘Navigator 4 x EJBGreeting2 Thursday 1:50 pm @ %) Reg i
A EJBGreeting A Thursday 1:49 pm T
~+i] Enterprise JavaBeans N
[] Tuterials and Sample Applications -2 warking With Diats Sour
Tutorials on the Web Samples on the Web b0 Impart EJB Sets Dialog B
H \ﬁ Export Data Sources Dia
14 Introducing the IDE
=-f5 Javador APT References —
@ Java Reference
[What's New] l Get Support] [Setup /] s?,—_| JawaSepver Faces (2
v -] 5un Wik UI Compor
A Sun 5 A ;s
& ApplicMBn Model Re
I = o BB
< | >

/
Outline View \ Welcome Window Projects View

Status Bar

Navigator View)
Dynamic Help

Figure 2-1 Creator’s initial window layout

1. Select the Open Existing Project button and browse to the FieldGuide2/
Examples/Navigation/Projects directory.

2. Select Login1 (look for the projects icon) and click Open Project Folder. This
opens the Login1 project in the Creator IDE.

3. Pagel should display in the visual editor, as shown in Figure 2-3. If Pagel
does not open in the design editor, find the Projects view (its default posi-
tion is on the right, under the Properties view).

4. In the Projects view, expand node Loginl, then Web Pages. Double-click
Pagel.jsp. Pagel should now appear in the design editor.

26

Chapter 2 Creator Basics

i Welcome]Iﬁ Pagel xl [A]l(=]

Java™ Studio Creator 2 l:a%.é

1 Create New Project J I DOpen Existing Project

ﬁ Recent Projects Last Modified

Loginl Dpen

Today 11:11 am

EJBPaymentl

EJBConverter? Today 11:04 am

EJBLoanTest Yesterday 10:39 am

Saturday 11:55 am

Payment1

Thursday 5:01 pm

PaymentZ-test

Thursday 1:50 pm

EJBGreeting2

Thursday 1:49 pm

EJBGreeting

i Tutorials and Sample Applications

Tutorials on the Web Samples on the Web

I What's New J [Get Support] [Setup]

: S Sun
"H\\._\.\-\Y_ﬂ'i'\?\l\\‘!}

Figure 2-2 Creator’s Welcome window

Design Editor

Figure 2-3 shows a close-up of the design canvas (the visual design editor) of
Pagel. You see the design grid and the components we’ve placed on the can-
vas. The design editor lets you visually populate the page with components.

Pagel contains a “virtual form.” Virtual forms are accessible on a page by
selecting the Show Virtual Forms icon on the editing toolbar, as shown in
Figure 2-3. Virtual forms let you assign different components to different
actions on the page. We show you how to use virtual forms in “Configure Vir-
tual Forms” on page 216 (for project Loginl in Chapter 5) and in “Virtual
Forms” on page 419 (for project MusicAdd in Chapter 9).

Select the text field component. The design canvas marks the component
with selection and resizing handles. Now move the text field component
around on the grid. You'll note that it snaps to the gird marks automatically
when you release the mouse. You can temporarily disable the snap to grid fea-
ture by moving the component and pressing the <Shift> key at the same time.
You can also select more than one component at a time (use <Shift-Click>) and

2.2 Creator Views

Editing Toolbar File Tab i i
Show Virtual Design Grid

Forms Toggle

:'@j'Wéiéome '@ilii‘a 1

|Desn;n| JSP Java & A |

ot o L o T o e e passunnl---------:

W resetForm

Design Canvas

Figure 2-3 Creator’s design canvas showing project Login1

Creator provides options to align components. We cover the mechanics of page
design in Chapter 7 (see “Using the Visual Design Editor” on page 273).

Note that when you make modifications to a page, Creator indicates that
changes have been made to the project by appending an asterisk to the file
name tab. Once you save your project by clicking the Save All icon in the tool-
bar (or selecting File > Save All from the main menu), the Save All icon is dis-
abled and the asterisk is cleared from the file name tab.

Typically applications consist of more than one page. You can have more
than one of your project’s pages open at a time (currently, there’s just one page
open). When you open other files, a file tab appears at the top of the editor
pane. The file tab lets you select other files to display in the editor pane.

Creator lets you configure your display’s workspace to suit the tasks you're
working on. All the windows can be hidden when not needed (click the small x
in a window’s title bar to close it) and moved (grab the window’s title bar and
move it to a new location). To view a hidden window, select View from the
menu bar and then the window name. Figure 2-4 shows the View menu with
the various windows you can open, along with a key stroke shortcut for open-
ing each window.

You can also dock Creator windows by selecting the pushpin in the window
title bar. This action minimizes the window along the left or right side of the

27

28 Chapter 2 Creator Basics

Build Rum Refackor Wersioning

[=] outline Chel+al+T
7| Dynamic Help Crrl+alk+H
3= servers Chrl+alt+35
)] Palette Chrl-+Alt+
@} welcome Chrl+al+i
= Properties Crrl+-alt+p
Mavigator Chrl+7

2 cutput Chrl+4

E2 Rruntime Chrl+5

<! Zearch Results Chrl4+-Shift+0

@,, Find Usages Resulks Chrl+al+F

2 Refactaring Preview

L& Projects Chrl+1
[Files Chrl+z
bkd TaDo Chrl+6
Debugging]
Yersioning 3
Toolbars »
W
W

Figure 2—4 Creator’s View Menu allows you to select specific views of your project

workspace. Make it visible again by moving the cursor over its docked posi-
tion. Toggling the pushpin icon undocks the window. Figure 2-5 shows the
Properties view with both the Projects and Files windows docked.

Properties

As you select individual components, their properties appear in the Properties
window. Select the text field component on the design canvas. This brings up
its Properties window, as shown in Figure 2-5.

Creator lets you configure the components you use by manipulating their
properties. When you change a component’s properties, Creator automatically
updates the underlying JSP source for you. Let’s look at several properties of
the text field component. If you hold the cursor over any property value, Cre-
ator displays its setting in a tooltip.

Components have many properties in common; other properties are unique
to the specific component type. The id property uniquely identifies the compo-
nent on the page. Creator generates the name for you, but you can change it (as
we have in this example) to more easily work with generated code. The label
property enables you to specify a textual label associated with the text field.
The red asterisk next to the label in the design view indicates that input is

2.2 Creator Views

Component label text

Identifier (id)
:Properties b ox | [y
SiGeneral P i&' \) .
id userhlame - ?-3- Files and Projects
I=JAppearance 74 views docked
columns 20 [J = /
label User Mame: = 153;
|labelLevel Mediurn (2] ~|[J) T
|style left: 48px; top: 72px; posit... [Jef—F——————— Style Attributes
jileclas [Property Customizer
;text E]<_ Box——
=IDaka
|converter b
|required [) --— input is required
walidator i
=IEvents
::::j:é:ange E]Q < Event Handler
=1 Behavior Method
| disabled il Ed
|maxLength E]
ool U L toolTip text
toolTip Please type in your username [<@—————
krimm [J
| visible)
=l Accessibility
tabInde:x .
= Javascript U - Jave}Scrlpt
| arBlur O Settings
onizhange [;]
|anclick (L)

Figure 2-5 Properties window for text field component “userName”

required for this component. Property text holds the text that the user sub-
mits. You can use the style property to change a component’s appearance. The
style property’s position tag reflects the component’s position on the page.
When you move the component in the design view, Creator updates this for
you.

Property styleClass takes previously defined CSS style classes (you can
apply more than one). File stylesheet.css (under Web Pages > resources in the
Projects window) is the default style sheet for your projects. We cover style,
styleClass and using Creator’s preconfigured Themes in Chapter 7.

Text field components can take a converter (specified in property con-
verter) and a validator (property validator). The validate and valueChange
properties (under Events) expect method names and are used to provide cus-
tom validation or to process input when the component’s text value changes.

29

30

Chapter 2 Creator Basics

Click on the text field component (again) in the design canvas until Creator
displays a gray outline around the component. Now type in some text and fin-
ish editing with <Enter>. The text you type appears opposite property text in
the Properties window. To reset the property, click the customizer box opposite
property text. Creator pops up a Property Customizer dialog, as shown in
Figure 2-6. Select Unset Property. This is a handy way to return a property
value to its unset state.

= userName - text

() Use binding (%) Use value

This is some text |

[Ok] [Unset Propertyl\g l Cancel
b

Figure 2—-6 Property customizer dialog for property text

Each property’s customizer is tailored to the specific property. For example,
select the Login button on the design canvas. In the Properties window, click
the property customizer box opposite property style. Creator pops up an
elaborate style editor. Experiment with some of the settings (change the font
style or color, for example) and see how the button changes in the design view.
You can also preview the look. Right-click inside the design view and select
Preview in Browser. Figure 2-7 shows a preview of Loginl with a different
appearance for the Login button.

Palette

Creator provides a rich set of basic components, as well as special-function
components such as Calendar, File Upload, Tab Set, and Tree. The palette is
divided into sections that can be expanded or collapsed. Figure 2-8 shows the
Basic Components palette, which includes all of the components on Pagel of
project Loginl. In Figure 2-8 you also see the Layout and Composite Compo-
nents palette.

The palette lets you drag and drop components on the page of your applica-
tion. Once a component is on a page, you can reposition it with the mouse or
configure it with the Properties window.

Figure 2-9 shows the Validators and Converters palette. Creator’s converters
and validators let you specify how to convert and validate input. Because con-

2.2 Creator Views

»gin 1 - Netscape Browser

File Edit WView Go Bookmarks Tools Help

B * ||_| Login 1 '@| i

Members Login

* User Hame: | | Message summary for
userlame

* password: | | Message summary for
password

(o],

Figure 2-7 Preview in Browser for Loginl

|:Palette @ ® :palette a x|
1= Basic s Basic
Label T I=) Layout
Static Text [Grid Panel
Texk Field |4 Group Panel
Texk Area EI Layout Panel
Buktaon {EI Page Separator
Hyperlink -5 Tabset
Image Hypetlink "= Page Fragment Box
Drop Down Lisk :Sl Page Alert
...... =T Listbox #-{Z] Property Sheet
------ [¥] checkbox e Form
----- {#H Checkbox Group =) Compasite
------ (#) Radio Button e] Alert
----- @) Radio Button Group] Add Remove List
..... |74 Image @ Breadcrumbs
+-E5 Table |£| Inline Help
.....) Password Field Yalidators
Hidden Field Lhonyer el
3 Calendar b 1+ Standard
1+ Advanced
FieUpload 1+ Daka Providers
Jree 1+| Advanced Data Providers
Anchar k —
Message ([P Code Clis |) Components
Message Group e
|_?_;'| Code C'?!gl ()] Compaonents

Figure 2-8 Basic, Layout and Composite Components palette

32

Chapter 2 Creator Basics

version and validation are built into the JSF application model, developers can
concentrate on providing event handling code for valid input.

‘Palette 4 %
| [+ Basic A
I+ Lavout
I+ Composite
1= Walidators

+-of Double Range Validatar
wwioff Length validakar

e Long Range Yalidator
=l Converters

w4 Big Decimal Corverter

it A Boolean Corverter
------ 4 Byte Converker

------ 4 Calendar Converter
------ %J' Character Converker
------ % Date Time Corverker
------ ¥ Double Converter
------ 4 Float Conwerter

------ ¥ Integer Converter
...... < Long Converter

...... ¥ Number Converter
------ + short Conwerter

...... %4 Sql Timestamp Conwerter Bt

(%] Code Clips | @3] Components

Figure 2-9 Creator Validators and Converters Components palette

You select converters and validators just like the UI components. When you
drag one to the canvas and drop it on top of a component, the validator or con-
verter binds to that component. To test this, select the Length Validator and
drop it on top of the userName text field component. You'll see a length valida-
tor lengthvalidatorl defined for the text field’s validator property in the
Properties window.

Note that components, validators, and converters all have associated icons
in the palette. Creator uses these icons consistently so you can easily spot what
kind of component you're working with. For example, select the Login button
component on the design canvas and examine the Outline view. You'll see that
the icon next to the button components (Login and Reset) matches component
Button in the Basic Components palette.

Outline

Figure 2-10 is the Pagel Outline view for project Loginl. (Its default placement
is in the lower-left portion of the display.) The Outline window is handy for
showing both visual and nonvisual components for the page that’s currently

2.2 Creator Views

displayed in the design canvas. You can select the preconfigured managed
beans, RequestBeanl, SessionBeanl and ApplicationBeanl. These JavaBeans
components hold your project’s data that belong in either request (page), ses-
sion or application scope, respectively. (We discuss scope issues for web appli-
cation objects in “Scope of Web Applications” on page 224.)

: Dutline a0 x
= Pagel

. —I(j pagel

=-fe3] htmi

@ headl: Login 1

3 label1: Members Login Text Field Component “userName”
1 -
(1) messagel
[+ password
\JD Messages
-4 login: Login
“-i &) resst: Reset Length Validator “lengthValidator1”
o lengthvalidator -
+ RequestBeanl Managed Bean RequestBean1
[+ SessionBeani Managed Bean SessionBean1
[+ ApplicationBeanl < Managed Bean ApplicationBean1

Figure 2-10 Creator’s Outline window for project Login1

Some components are composite components (they contain nested ele-
ments). The Outline window shows composite components as nodes that you
can expand and compress with ‘+" and ’-" as needed. Suppose, for example, you
select grid panel for layout. When you add components to this grid panel, they
appear nested underneath the panel component in the Outline view.

The length validator component on the userName text field appears as com-
ponent lengthvalidatorl in the Outline view. Select the length validator and
examine it in the Properties view. Specify values for properties maximum (use
10) and minimum (use 3). This limits input for the userName text field compo-
nent to a string that is between 3 and 10 characters long.

Now let’s look at the Projects window.

Projects

Figure 2-11 shows the Projects window for project Loginl. Its default location
is in the lower-right corner. Whereas the Outline view displays components for
individual pages and managed beans, the Projects window displays your
entire project, organized in a logical hierarchy. (Since Creator lets you open
more than one project at a time, the Projects window displays all currently
opened projects.) Project Loginl contains three JSP pages under the Web Pages
node: Pagel.jsp, LoginGood.jsp, and LoginBad.jsp. Double-click any one of

33

34

Chapter 2 Creator Basics

them to bring it up in the design canvas. When the page opens, Creator dis-
plays a file name tab so you can easily switch among different open files in the
design canvas.

‘Projects I x
':_'—_'. 5 I..uginl
Web Pages
1) resources
. LTy shyleshest.ess
L | LoginBad.jsp
-(Jp| LoginGood. jsp
: gahl Pagel. jsp
:'-i_-‘:---ﬁ Themes
------ T.a Page Mavigation
@, Managed Beans
{EH] Request Bean
[@ Application Bean
{EH] Session Bean
Source Packages
= lnginl
e @ ApplicationBeanl.java
-@ Bundlz.properties
| LoginBad.java
] LoginGood.java
i Pagel.java
@ RequestBeanl.java
[-{EH] SessionBeani.java
[+ Libraries
& Data Source References

Figure 2-11 Creator’s Project Navigator window for project Loginl

When you create your own projects, each page has its own Java component
“page bean.” These are Java classes that conform to the JavaBeans structure we
mention in Chapter 1 (see “JavaBeans Components” on page 13). To see the
Java files in this project, expand the Source Packages node (click on the ‘+'),
then the login1 folder. When you double-click on any of the Java files, Creator
brings it up in the Java source editor. (We’ll examine the Java source editor
shortly.) Without going to the editor, you can also see Java classes, fields, con-
structors, and methods by expanding the ‘+' next to each level of the Java file.

The Projects view displays Creator’s “scoped beans.” These are pre-config-
ured JavaBeans components that store data for your project in different scopes.
You can use request scope (Request Bean), application scope (Application
Bean), or session scope (Session Bean). Many of the projects in this text add
properties to these beans. We discuss JSF scoping issues in Chapter 6 (see “Pre-
defined Creator Java Objects” on page 226).

2.2 Creator Views

The Projects view also lists the resources node, which lives under the Web
Pages node. The resources node typically holds file stylesheet.css and any
image files. Creator uses the libraries listed in the Libraries node to display,
build, and deploy your application. These class files (compiled Java classes) are
stored in special archive files called JAR (Java Archive) files. You can see the
name, as well as the contents (down to the field and method names) of any JAR
file by expanding the nodes under Libraries. We show you how to add a JAR
file to your project in Chapter 13 (see “Add the asg.jar Jar File” on page 595).

Files

The Projects window shows you a logical view of your project. Sometimes you
may need to access a configuration file that is not included in the Projects view.
In such a case, use the Files view, as shown in Figure 2-12.

:Files

=+ Loginl
#-2) buid

Figure 2-12 Files view for project Loginl

) nbproject

conf
lib

)| Faces-canfig.xml
managed-beans,xml
navigation, xml
sun-web,xml

-1 resources
-] LoginBadjsp
-] LoginGood. jsp
- p|pPagel.jsp

I x

The Files view shows all of the files in your project. For example, expand
node web > WEB-INF and double-click file web.xml. Creator brings up file
web.xml in a specialized Creator-configuration XML editor, as shown in

Figure 2-13.

35

36

Chapter 2 Creator Basics

@].Wélcome * I_.-Ei-Pagel * |i;|‘web.xml * -
| General | Serviets Filkers Pages #ML | @ General M &
B General

Display Mame;

Description:

[] Cistritwt able

Sessian Timeout: | min.

H

Context Parameters

El Web Application Listeners
Listener Class Description

Figure 2-13 Editing file web.xml

File web.xml lets you set various project-level configuration parameters,
such as Session Timeout, Filters, or special error pages. Close this file by click-
ing the small x in the web.xml file tab.

JSP Editor

As you drop components on the page and configure them with the Properties
window, Creator generates JSP source code for your application. You can view
the JSP representation of a page by clicking the JSP button in the editing tool-
bar, as shown in Figure 2-14.

Normally, you will not need to edit this page directly, but studying it is a
good way to understand how Creator Ul components work and how to man-
age their properties. You'll see a close correspondence between the JSP tags
and the components’ properties as shown in the Properties window. If you do
edit the JSP source directly, you can easily return to the design view. Creator
always keeps the design view synchronized with the JSP source.

Tags in the JSP source use a JSF Expression Language (EL) to refer to meth-
ods and properties in the Java page bean. For example, the login button’s
action property is set to #{Pagel.login action}, which references method
login action() in class Pagel.java.

Creator also generates and maintains code for the “page bean,” the Java
backing code generated for each page. Let’s look at the Java source for
Pagel.java now.

Iz

2.2 Creator Views

[t welcome x|) Pagel x| Rk
Design |F| Java | R (B EE R P By | T | £ 2
j e = encoding="_U:[-'%:-8-"?> :\
/ = X1 F= S
JSP ve.page contentType="text/html;charset=UTF-3" pageEncoding="UTF-£
button =

[y binding="#{Pagel.pagel!” id="pagel™-

[l html binding="#{Pagel.htmll}” id="htmll™>

-] <wicthead binding="#{Pagel.headl}”™ id="headl”™ title="Login 17>
“ui:link binding="#!{Pagel.linkl!"™ id="1inkl™ url="/resources,
- <fui:head>-

E < thody binding="#{Fagel.bodyl}"™ id="bodyl™ style="-rave-layout:
E =wi: form binding="#{Pagel.forml}” id="forml™ wirtualFormsCont
:label binding="#{Pagel.labell}™ id="labell™ lahelLewe
stextField binding="#{Pagel.userName!" id="userlame"]
style="left: 48px; top: TiZpx; position: absolute™ toc
message binding="#{Pagel.messagel}” for="userName™ ic
passwordField binding="#{Pagel.password}”™ id="passwor
style="left: 54dpx; top: ll9x; position: absolute"”
:message binding="#{FPagel.nessage2}” for="password” ic
hutton action="#{Pagel.login action}”™ binding="#{Paqe
style="color: gray:; font-family: Georgia, 'Times New |
:hutton action="#{Pagel.reset_action}” binding="#{Page
- <fui : form> 3
F<fui thody-

.= html -

Creator
ul
Components

2 48 B AR

Figure 2-14 Pagel.jsp XML Editor

Java Source Editor

Click the Design button and return to the Pagel design view. As you build your
application, not only does Creator generate JSP source that defines and config-
ures your component, but it also maintains the page bean. For example, Cre-
ator makes it easy for you to code event handlers (methods that perform
customized tasks when the user selects an option from a drop down list or
clicks a button). Double-click button Login in the design view. Creator gener-
ates a default event handler for this button and puts the cursor at the method in
the Java source editor. If this method was previously generated (as it was here),
Creator brings up the editor and puts the cursor at the method, as shown in
Figure 2-15. Here you see method login action() in file Pagel.java.

You can always bring up a page’s Java code by selecting the Java button in
the editing toolbar. This Java file is a bean (conforming to a JavaBeans struc-
ture) and its properties consist of the components you place on the page. Each

37

38 Chapter 2 Creator Basics

ﬁWélcome % | Pagel x -
Design J3° | Java | H=5 & | 9] 3& 2 27 Ly Tk | #E 2| 4
: private woid _init() throws Exception { o
J lengthWalidatorl.setMaxdmum(10) ;
Bl.zlat\tloan length¥alidatorl.setMinimum(3) ;
+
LOgIn private String wylUserName = "ravedu™;
BEL\l/t;?]? \private String myPassword = "ravedua”:
Handler))))
public String login actiom(] |
i.f [mylTserlane . equals (userlane . getText ()] s&
wyPassword.egquals (password.getText (1)) !
return "loginfuccess”:
Reset ! else return "loginFail™:
Button '
Event
Handler
public String reset actiomn(] |
/ fornl.discardSubmittedyalue (userlame)
forml.discardSubmittedfalue (passvord) ;
Fcﬁjqe uzserNane.setText (") ;
H(;ng;g password.setText (") ;
return null;
}
}
w
£ >

289:9 |3

Figure 2-15 Pagel.java in Java source editor

component corresponds to a private variable and has a getter and setter. This
allows the JSF EL expression to access properties of the page bean.

All of Creator’s editors are based on NetBeans. The Editor Module is a full-
featured source editor and provides code completion (we show an example
shortly), a set of abbreviations, and fast import with <Alt-Shift-I>. The editor
also has several useful commands: Reformat Code (handy when pasting code
from an external source), Fix Imports (adds needed import statements as well
as removes unused ones), and Show Javadoc (displays documentation for
classes and methods). There are more selections in the context menu (right-
click inside the editor to see the menu). Sections of the Creator-generated code
are folded by default to help keep the editing pane uncluttered. You can unfold
(select “+") or fold (select ’-") sections as you work with the source code.

To see the set of abbreviations for the Java editor, select Tools > Options from
the main menu bar. The Options dialog pops up. Under Options, select Editing
> Editor Settings > Java Editor. On the right side of the display, click the small

2.2 Creator Views

editing box next to Abbreviations. Creator pops up the window shown in
Figure 2-16.

¥. Java Editor - Abbreviations

| Abbreviation Expanded String |
|:|ut|Ii|: static final

Psfb public static Final boolean

|Psfi public skatic Final ink

!F‘st public skatic Final String
[Fora Far (ink i = 0; i < | length; i++) 4+

[Fari for (Tkeratar i = |.iteratar; i.hasMext();) 4 Object o = (Objec...
lpsF private static final

|psfb private static final boolean

|psFi private static final ink

Ipst private static final String

|pst printStackTrace();

lserr Systern, et printnd|™);

|sout Systern, out, prinkln™|");

ks Thread.dunpStack();

ke try 4 |} cakch (Exception ex) { log{"Errar Description”, ex);t
!trcF try 4 |} cakch (Exception ex) { log{"Error Description”, ex);...
|brF try 4 ¥ Fimally 43

L] throw new

Ibrarie: thraw new Error();

!twni throw new InkernalErrar);

EWh while ([{F

I O J}‘” Cancel][Help

Figure 2-16 Java source editor list of abbreviations

The window lists the abbreviations in effect for your Java editor. (You can
edit, add, or remove any item.) For example, to place a for loop in your Java
source file, type the sequence fora (for array) followed by <Space>. The editor
generates

for (int 1 = 0; 1 < .length; i++) {
}

and places the cursor in front of .length so that you can add an array name.
(.length refers to the length of the array object. This code snippet lets you eas-
ily loop through the elements of the array.)

The Java source editor also helps you with Java syntax and code completion.
All Java keywords are bold, and variables and literal Strings have unique col-
ors.

39

40

Chapter 2 Creator Basics

When you add statements to your Java source code, the editor dynamically
marks syntax errors (in red, of course). The editor also pops up windows to
help with code completion and package location for classes you need to refer-
ence (press <Ctrl-Space> to activate the code completion window). If available,
code completion includes Javadoc help. For example, Figure 2-17 shows the
code completion mechanism as you highlight method equals() and press
<Ctrl-Space>.

'@}Wel'come x 'I;-El'F‘agel x -
Design 1P | Java || i 22 | [B] & Y0 27 B ol e
' [TR 2|
|4 T ::;] ava.lang.String |

1 public final bhoolean equalsiObject anObject)

Compates this skring to the specified object. The result is true if and anly if the

argument is not mull and is a 3tring object that represents the same sequence of
characters as this object.

= Fal
*
| parameters:

: anlbject - the ohject ko compare this 3tring against,
= pr; Returns:

true if the String are equal; £alse otherwise,

|See Also:

= H Java.lang. 3tring. conpareTo{java. lang. String)
Java.lang.dtring. equalslgqnoreCaze (java. lang. String

pri
private String myPasswordjja\.-aJaﬁg,
@ boolean equal ject anCbject)
public 3tring login actio| @ baoalean equalsIgnoreCase]String anokherSkring)
if (wyUserName. [userName.getText ()] &&
wyPassword. equals (password.getText())) !
return "loginSuccess™;
! elge return "loginFail™;
+ |
£ >
SEBEAY IR,

Figure 2-17 Java source editor code completion

When you use the down-arrow to select the second method, equalsIgnore-
Case (), the help mechanism displays its Javadoc documentation. (To retrieve
Javadoc documentation on any class in your source file, select it and press
<Ctrl-Shift-Space>.) The Java Source editor is discussed in more detail in Chap-
ter 4 (see “Using the Java Source Editor” on page 136).

When the Java source editor is active, Creator also activates the Navigator
window, as shown in Figure 2-18. The Navigator window lets you go to a
method or field within the Java source editor by clicking its name in the win-
dow. In Figure 2-18, the cursor hovers over method destroy (), displaying
help in a tooltip.

2.2 Creator Views

_ = 5 | T
% Sun Java(T M) Studio Creator 2 - Login1 I._|[E|E|
File Edit Wiew BEuld Run Refactor Wersioning Data Tools ‘Window Help

‘EE‘:?'.""es BEACL P 2@

'ENavigatDr P @l Welcome x| Ill Pagel * 4 "T_

£

||E!\:13mbers Wity |D35|gn 1P | S st 2 [0]) & 2 27 ,;. \:: £ e
g init)) f_.! r s Sl SR e .
@ destyoy() | ublic void destroy {) -l
@ getinglicationBeanl
@ getBody1()

@ getFarmi()

@ getHead1()

@ getHEml1()

@ getlabell()

o ot | penides destroy i com s ave et spphese AoshactageBean
@ getLogin) 1

@ getMessagel()
@ getMessagez()

| @ astPagell)

| Icallback methiod that is called after rendering is completed For this request, if
init() was caled (regardless of whether or nok this was the page that was

| fackually rendered), Customize this method to release resources acquired in the
|liniti(), preprocesa(), or prerender) methods {or

| lrcquired during execution of an event handler),

LI:_| public 3tring reset action() !

» v

(o | —=& 8 |
I| % |D_||®|I_&}_| || 29-:,! 5 [INS o o - _|I

LIV R IRy TS RSN R, || B ISP | R

Figure 2-18 Navigator view and help for method destroy() displayed

Code Clips Palette

When the Java Source editor is displayed, Creator replaces the Components
palette with the Code Clips palette, as shown in Figure 2-19. Here we show
several sections, including the code clips for Application Data. Highlight clip
Store Value in Session in this section. If you hold the cursor over the clip name,
Creator displays a snippet window. You can drag and drop the clip directly
into your Java source file.

To view or edit a clip, select it, right-click, and choose Edit Code Clip.
Figure 2-20 shows the Store Value in Session code clip.

The Code Clips palette is divided into categories to show sample code for
different programming tasks. For example, if you click Application Data, you'll
see a listing of clips that let you access application data from different scopes in
your web application.

41

42 Chapter 2 Creator Basics

: Palette Qx|

Samples

Database and Web Services

[=! Application Data

----- [=5 Retrieve Yalue from Session

-9 n

7 Retrieve value from Application
77 Store Value in Application

|57 Retrieve Walue from Request
57 Store Value in Request

[= Web App Functions

7 send Email

=3 Log Messages

|=| Java Basics
----- 5 Get JavaBean Property

----- 53 1f-Then-Else

----- 57 Switch Statement

----- [For Loop

..... [while Loop

----- =B array Irerator

----- [Try Catch Exception

----- [Concatenate Strings

----- 53 Compare Substrings

----- 3 Convert Integer ka String

----- 53 Convert String ko Integer
Enterprise Java Beans
Jawa Script

[+ Code Clips | ()] Campoanents|

Figure 2-19 Java Clips Palette

®: Code Clips Editor - Store Value in Session

44 Gtore Value in Session

A4 An example of storing an obhject walue in the Session scope

44 This stores the String "walue™ with the key "name™ in the 3ession
getValue ("#{sessionicope.nane ™, "walue™) ;

Save Changes l l Cancel

Figure 2-20 Code Clips Editor

2.2 Creator Views

Page Navigation Editor

Return to the Java Source window and examine method login action().
You'll see that 1ogin_action () returns one of two Strings (either "loginFail"
or "loginSuccess") to the action event handler. The action event handler then
passes the String on to the navigation handler to determine page flow. Let’s
look at the Page Navigation editor now.

1. From the top of the Java source window, select the Design button. This
returns you to the design canvas for this page.

2. Now right-click in the design canvas and select Page Navigation from the
context menu. Creator brings up the Page Navigation editor for project
Login1, as shown in Figure 2-21.

-@]Wélcnme % | | Pagel x| T.oPage Mavigation x -

|Mavigation | Source

laginSuccess

LoginBad.jsp LoginGood.jsp Pagel.jsp

laginP age

loginF ail

’

Figure 2-21 Page navigation editor for project Login1

There are three pages in this project. The Page Navigation editor displays
each page and indicates page flow logic with labeled arrows. The two labels
originating from page Pagel.jsp correspond to the return Strings in action
method login action() .

Chapter 5 shows you how to specify navigation in your applications (see
“Page Navigation” on page 188). The Page Navigation editor is also a handy
way to bring up any of the project’s pages: just double-click inside the page.
Once you've visited the Page Navigation editor, Creator displays a file tab
called Page Navigation so you can easily return to it.

43

44

Chapter 2 Creator Basics

Before we explore our project any further, let’s have you deploy and run the
application. From the menu bar, select Run > Run Main Project. (Or, click the
green Run arrow on the icon toolbar, which also builds and runs your project.)

Output Window

Figure 2-22 shows the output window after building and deploying project
Loginl. Creator uses the Ant build tool to control project builds. This Ant build
process requires compiling Java source files and assembling resources used by
the project into an archive file called a WAR (Web Archive) file. Ant reads its
instructions from a Creator-generated XML configuration file, called
build.xml, in the project’s directory structure.

: Output - Loginl {run} L
compile: .
compile-jsps:

pluto-hack-web-xml-rumn:

portlet-container-deploy:

jsCreatorDist:

run-deploy:

Incrementally deploying Loginl_ localhost: 24848 serwver

Completed incremental distribution of Loginl

Incrementally redeploying Loginl_ localhost: 24848 server

Start registering the project's sSerwer resources

Finished registering sSerwver resources

TMhile redeploying, trying to stop the application in target serwver complete
Deployment of application Loginl completed successfully

run-display-browser:

Browsing: http: fflocalhost: 28080/ Loginl /

rumn:

BUILD STUTCCESSFUL (total time: 5 seconds) o
< >

Figure 2-22 Output window after building and deploying project Login1

If problems occur during the build process, Creator displays messages in the
Output window. A compilation error with the Java source is the type of error
that causes the build to fail. When a build succeeds (the window shows BUILD
SUCCESSFUL, as you see Figure 2-22), Creator tells the application server to
deploy the application. If the application server is not running, Creator starts it
for you. If errors occur in this step, messages appear in the Outline window
from the application server.

Finally, it’s possible that the deployment is successful but a runtime error
occurs. In this situation, the system throws an exception and displays a stack
trace on the browser’s web page. Likely sources for these errors are problems
with JSF tags on the JSP page, resources that are not available for the runtime
class loader, or objects that have not been properly initialized.

2.2 Creator Views

When the build/deployment process is complete, Creator brings up your
browser with the correct URL. (Here the status window displays “Browsing:
http://localhost:28080/Loginl/.”) To run project Loginl with the Sun
bundled Application Server, Creator generates this web address.

http://localhost:28080/Loginl/

You use localhost if you're running the application server on your own
machine; otherwise, use the Internet address or host name where the server is
running. The port number 28080 is unique to Sun’s bundled J2EE application
server. Other servers will use a different port number here.

Note that the Context Root is /Login1 for this application. The application
server builds a directory structure for each deployed application; the context
root is the “base address” for all the resources that your application uses.

Figure 2-23 shows the Loginl project deployed and running in a browser.
The Password field’s tooltip is displayed. Both the User Name and Password
input fields have asterisks, indicating required input. Type in some values for
User Name and Password. If you leave the User Name field empty or type less
than 3 characters or more than 10, you'll get a validation error. (The minimum
and maximum number of characters only apply if you added a length validator
earlier.) The correct User Name and Password is “rave4u” for both fields.

#) Login 1 - Netscape Browser |ZJ|E]B|
File Edit View Go Bookmarks Tools Help

Ms) [0 togini C .
Members Login

* User Hame: |ravedu

| e ras :[

* password:

|Please type in your password |

Figure 2-23 Project Loginl running in a browser

If you supply the correct values and click the Login button, the program dis-
plays page LoginGood.jsp. Incorrect values display LoginBad.jsp.

45

46

Chapter 2 Creator Basics

It’s time now to explore the Servers window, located in the upper-left por-
tion of your Creator display. Click the tab labeled Servers to see this window.

Servers

Figure 2-24 shows the Servers window after you've deployed project Loginl.
Various categories of servers are listed here, including Data Sources, Enterprise
JavaBeans, Web Services, Deployment Server, Remote Deployment Servers,
and Bundled Database Server.

:Servers a0 X
=- L‘ﬂ Data Sources
- 1_—| JurmpStartCycles

FE-{E] WIR

=88 Enterprise Java Beans

% Currency Conwverter
[Helloworld Application
[Jump Start Cycles
[LoanEls

- Travel Center

------ -3 Web Services

[EE Samples

EF Jump Start Cycles
pPeployment Server

: {; Deploved Components

E |_§ [DictionaryService

%] jlagni <& Deployed project Login1
"QE Ihello-jaxrpe

’@ avaTravellerservice

& Resources

------ EEl Remate Deployment Servers

----- {Bgfundled Database Server

+

Figure 2-24 Servers window

The Data Sources node is a JDBC database connection. Creator bundles a
database server and the Data Sources node connects to the bundled database
by default. You can configure a different database. Creator comes configured
with several sample databases, which are visible if you expand the Data
Sources node.

2.2 Creator Views

Creator Tip

The Database Server must be running to inspect the sample database tables.
If the Bundled Database Server is not running, right-click node Bundled
Database Server and select Start Bundled Database.

Let’s expand the Travel > Tables node and view the database tables. As you
select different tables, Creator displays their properties in the Properties win-
dow. Expand a table further to examine its database table field names, as
shown in Figure 2-25. Here, we expand table PERSON, displaying field names
PERSONID, NAME, JOBTITLE, and FREQUENTFLYER.

. Servers a1 x|
:':;---C@ Daka Sources a_xi
-] JumpStartCycles

3] order

-0 name

~E J0BTITLE

#-Ef TRIPTVPE
f-FR wallDATION_TABLE v |

Figure 2-25 Inspecting the Travel Database tables (Person)

When you double-click a table name, Creator displays the data in the editor
pane with a default query, as shown in Figure 2-26. You can close the table
view by clicking the small x on the Query 1 tab. We discuss creating web appli-
cations that access databases in Chapter 9 (see “Accessing Databases” on
page 374).

The second resource in the Servers window is the Enterprise JavaBeans
node. Creator has a few sample E]Bs deployed on the bundled Application
Server, which you can access within your projects. Expand node Enterprise Jav-
aBeans > Travel Center > TravelE]B, as shown in Figure 2-27. The TravelEJB
provides some of the same data as the Travel database. With Creator, you can
bind data to components exactly the same with EJBs as you can with data
source tables. We show you how to use E]Bs in Chapter 11.

47

48 Chapter 2 Creator Basics

i@y Welcome x | g Pagel x| 2. Page Mavigation x |’@Que_ry1_x][]
Query: ‘EE'L_EE':'TTFROM TRAMEL . FERSORN 1
Daka Source: Trawel, Last Run Feb 9, 2006 3:15:30 PM PST ffﬁ [} |E E E_T Rows: !L25 VJ

A
PERSCNID MAME JOETITLE FREQLEN. ..
1 Able, Tony CEC true
z Elack, John CTO true
3 Kent, Richard WP true
4 Chen, Larry [WPJCHO - 5G.., False
5 Donaldson, ... (WP Falsz
&} Murrell, Tony (WP - SFE Falsz L
& Rowis), v
Figure 2-26 Display data from the Person table
| Servers @ x| | Servers a x|
l‘—j@ Enterprise Java Beans & E—_'I_iﬂ wieh Services
EIE Currency Conwerter ‘—JE" Samples
&1% Hella'World Application i wiorldTime
Eﬂ% Jurp Start Cycles i signiteMews
E;_,@ LoanE I8 #-- @ wigniteStatistics
EIE; Travel Center o @ Usweather
E-d# TravelE1R @ signiteQuotes
...... &y getCarRental GoogleSearch
...... @ getDepartureFlight - @y doGetCachedPage
------ @ getHotelReservation @ doSpelingSuggestion
...... @ getPersonyld & @3 doGoogleSearch
...... @y getPersons &"2 AmazonECommerce
...... @ getReturnFlight @-EF Jump Start Cycles
...... @ 0etTripFlights —}-@di)eplnyment Server
...... @) getTripsEyPerson " &lgf Deploved Components
B, Resources
------ Remote Deplovment Servers
----- [Egpundled Database Server v

Figure 2-27 EJB and Web Services resources shown in the Servers window

Another server resource is Web Services, which provides access to remote
APIs from Creator applications. This requires the cooperation of several Java
technologies, which we discussed in Chapter 1. The Creator installation

2.2 Creator Views 49

includes a client to access the Google Web Services. In Chapter 10 we show you
how to create an application with the Google web service API. The Google
Search web service methods are shown in Figure 2-27.

The bundled Deployment Server allows you to deploy and run Creator
applications on your machine. The Deployed Components node shows you the
currently deployed components (including the Loginl application you just
deployed). From the Deployment Server node, you can start and stop the
server, access the Administrative Console, or view the server’s log (right-click
Deployment Server to view the context menu with these options).

Creator Tip

The application server must be running for access to the administration
console. Use user name admin and password adminadmin.

Debugging Windows

Creator has a debugger that lets you perform typical debugging tasks, such as
setting breakpoints, tracing the call stack, tracking local variables, and setting
watches. Use the View > Debugging menu to choose which debugging win-
dows to enable, as shown in Figure 2-28.

| < Local variables Alt+Shift+1

& watches Alt+shife+2 -
[Call Stack Alt+shife+s |
i Classes alt+5hift+4
[Breakpoints Al+Shift+5
HB sessions Alt+5hift+6
13 Threads Ale+shift+7
[sources alt+5hift+6

[2] HTTP Monitor — Chrl+5hift+5 N

Figure 2-28 View > Debugging Menu Choices

To run your application in “debug mode,” click on Run > Debug Main
Project from the menu bar. The application server has to stop and restart if it’s
not already in debug mode. In Chapter 14 we walk you through the debugger
options, setting breakpoints, stepping through code, and other debugging
activities.

50

Chapter 2 Creator Basics

Creator Help System

The Creator Help System is probably the most useful window for readers new
to Creator. This help system includes a Dynamic Help display, search capabil-
ity, contents, and an index. The easiest way to access the help system is to select
Help > Dynamic Help from the main menu. The selections displayed are con-
text sensitive.

As an example, in the Pagel design view, select one of the Message compo-
nents and choose Help > Dynamic Help. Creator displays a help window with
topics relating to the message component as shown in Figure 2-29.

: Dynamic Help I x

----- 1]] Message Group Component

----- 11J_] Message Component Properties Window
----- gl Binding Component Properties

-] Working With Components

----- 1] Component Tasks: Quick Reference

----- {77 Component Web Tukorials

----- 1] About the Palette

-] Introducing the IDE

—-F= lavadoc API References

------ _,;] Java Reference

------ 5] Javaserver Faces (15F) Reference

------ p:| Application Model Reference
------ .;| J5F Component Library (J5FCL) Reference
------ 7 Data Provider Reference

Javaserver Faces Technology
------ A J5F Central
Java Tutarial

Figure 2-29 Dynamic Help window

When you double-click a selection, Creator displays the help information (see
Figure 2-30).

2.3 Sample Application 51

¥ Sun Java Studio Creator Help

<> u 8
Conkents | N ~
~| | Message Component
=¥ Reference | g
{25 Welcome Window See Also | Tiorials
1 | Autoupate Wizard Yau can drag the Message component & from the Palette's Basic
2] Outline Window category o the Visual Designer to create a message related to a
2] Properties Window single compaonent. The twa message components, Message and
{3 Edicors Message Group, display error messages for component rendering
{5 Java Ediing and Coding and validation. Messaoe displays error messages for a specific
& Projects and Files Wind: component,
= Palette
{#1] About the Palstte || = Dragoing a message component from the palette to the page
=¥ Basic Components results in a message item with the sunnwary propery setto true
Ll_ﬂ Anchor Compon and the detail property setto false.
-+ Button Compar & You can press Cirl-Shift and drag the Message component to
‘-ﬂ alendar Compe anather componentto link the for property ta the other
] Checkbox Come component and display messages for that component,
Checkbox Groug
File: Upload Com ® Messages are autormatically shown as the result of a validation or
‘ Hidden Field Con | other component related errar.
LQ '-—Wperlujk Sl ¥ ¥ou can send vour own error text to a Message cormponent by calling
i | e - L& I the corresponding Java object's info, error, fatal, Ofwarn b

Figure 2-30 Creator Help system

2.3 Sample Application

Now that you're comfortable with Creator, let’s create a simple web applica-
tion. Even though this application is simplistic, it shows some of the power in
Creator. Figure 2-31 provides a preview of this web application.

Create a Project
Close project Loginl1 if it’s open.

1. From the Projects window, right-click the project node Login1 and select
Close Project from the context menu.
2. From Creator’s Welcome Page, select Create New Project. From the New

Project dialog, under Categories select Web and under Projects select JSF
Web Application. Click Next.

52 Chapter 2 Creator Basics

#) Echo - Netscape Browser

File Edit View Go Bookmarks Tools Help

I\ & L] Echo '@ -

Type in some text. You may use <i> for formatting.

(b= <i> World Wide Wet]

|The text you enter here will be echoed below.

Hello, World Wide Web

Figure 2-31 Web application Echo running in a browser

3. In the New Web Application dialog, specify Echo for Project Name and click
Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

4. Select Title in the Properties window and type in the text Echo. Finish by
pressing <Enter>.

Add Components to the Page

Creator makes the Components palette visible after you create a project. Using
the design editor, you'll add three components to the page: a label, a text field,
and a static text component. Figure 2-32 shows the design view with all the
components added to the page.

1. From the Basic Components palette, select Label and drag it over to the
design canvas. Drop it on the page, near the top on the left side.

2. The label remains selected after you drop it on the page. Supply the text
Type in some text. You may use <i> for formatting. Finish by pressing
<Enter>. Creator sets the text property to this text (verify this in the Proper-
ties view) and displays the text on the page. The default font setting (prop-
erty labelLevel) for a label’s text is Medium(2), which can be changed in
the Properties window.

2.3 Sample Application

ﬂwélcome »® L—éF‘agel » -

|Design| JsP Java | Gl g I |any Size v

Figure 2-32 Project Echo in the design view

3.

4.

From the Basic Components palette, select component Text Field and place it
on the design canvas underneath the label you just added.

Make sure the text field is selected. In the Properties window under Behav-
ior, change its toolTip property to The text you enter here will be echoed
below. Finish with <Enter>. This will appear as a tooltip when the user hov-
ers the mouse over the text field in the browser.

. From the Basic Components palette, select Static Text component and place

it under the text field. Resize it so that it is approximately 11 grids wide, as
shown in Figure 2-32.

. Select the static text component. In the Properties window under Data,

uncheck property escape. This allows HTML formatting tags to pass through
unaltered to the browser.

You've finished adding the components. Now you will use property binding

to bind the text field component text property to the static text component
text property. Here’s how.

1.

Select the static text component (staticTextl), right-click, and choose
Property Bindings from the context menu. Creator brings up the Property
Bindings dialog as shown in Figure 2-33.

. Under Select bindable property, choose text Object.
. Under Select binding target, expand Pagel > pagel > html1 > body1 > form1 by

clicking the ‘+ at each level.

. Select component textFieldl (the text field component you added). Expand

the component by clicking ‘+' on textFieldl and select text Object. (The
properties are listed in alphabetical order, so text is near the end.)

53

54

Chapter 2 Creator Basics

¥ Property Bindings for staticText1

Select hindable property Select blndlng target:
T st et e ko b B e R o sl b i | 1

; - property: rendererType 5070
® converter Cmvertar & property: rendersChildren
escape boolean & property: required Boolear
® onClick Sfring . property: style Siring
onDbiClick String #-§ property: styleClass Strine |
onMouseDown Strng - property: submitted¥alue |
onMouseMove String = property: Integ&
onMouseQut Shring -4 |
#® onMouseCver Shing ~§ property: toolTip 55’*’7‘9‘
® onMouselp String & property: trim Boolean
® syl Shing =] propetty: validator lMethD
#® shyleclass Shing =] property: value Ob}ect_
® toolTip Sting =] property: valueChangeListe
ovishl breb & property: visible Boolsan |
e e — 1_—|stat|cTe:-:tl StaticText w |
() Default () Advanced (O Al | | 5|

Current blnd|ng for kext property:

#{Pagel tewtFicldL, text}- |

New blndmg expressu:un

#{Pagel bextFigldl ket Apply L\\g

Figure 2-33 Property Bindings dialog

5. Click the Apply button. (If you don’t click the Apply button, Creator doesn’t
set the property binding.) Under Current binding for text property, you
should see the following JSF EL expression

#{Pagel.textFieldl.text}

6. Click Close to finish

So, what did all this accomplish? You've just configured property binding on
the static text component (id staticText1). This means JSF gets the text prop-
erty (the text that is displayed on the page) for staticTextl from the text field’s
text property (component textFieldl). This, in turn, means that whatever
you type in for input will be echoed in the static text’s display when you press
<Enter>. Note that Creator and JSF made all this possible without you writing
any Java code!

Is a button necessary to submit the page? As it turns out, when you hit
<Enter> after entering text in the text field, the default action is to submit the

2.4 Key Point Summary

page. This puts the JSF life cycle events in motion and the page is rendered
with the new text displayed in the static text component. We discuss the JSF life
cycle events in detail in Chapter 6 (see “The Creator-JSF Life Cycle” on
page 259). Because you unchecked the escape property, any formatting tags
are unaltered by the component and passed directly through to the browser.

Deploy and Run

You've finished creating the application. Now it’s time to build, deploy, and
run it. From the menu bar, select Run > Run Main Project (or select the Run
Main Project green arrow icon on the toolbar). Creator builds the application,
deploys it, and brings up a browser with the Echo web application running.

Figure 2-31 on page 52 shows what the browser window displays after you
type Hello, <i>World Wide Web inside the text field followed by <Enter>.
Note that bold tags mark the word Hello and italic marks the phrase World
Wide Web. The text field tooltip appears as the user hovers the mouse over the
text field component.

This completes our tour of Creator. The next chapter provides a detailed
description of the Creator Ul components, validators, and converters.

2.4 Key Point Summary

¢ Creator has multiple windows to give you different views of the project that
you're working on. The windows can be sized, docked and undocked, or
hidden.

¢ From the main menu, select View and the desired window name to enable
viewing.

¢ Use the Welcome Window to select a Project to open or to create a new
project.

¢ The design canvas allows you to manipulate components on a page and
control their size and placement. Grid lines provide an easy way to align
components.

¢ Use the Components palette to drag and drop a component on the design
canvas.

¢ Use the Converters and Validators sections in the palette to select data
converters and input validators for your project.

¢ The Properties window allows you to inspect and edit a component’s
properties. Each component type displays a different list of properties.

* A component’s text attribute typically contains text that is rendered on the
page (such as labels on buttons, input text fields, and static text fields). Use
the toolTip property to create a tooltip for the component and the style

55

56

Chapter 2 Creator Basics

property to change font characteristics. Property styleClass lets you apply
previously defined style definitions.

You can apply Property Binding and “connect” the value of one component
to another or to a data object in request, session, or application scope.

The Outline window shows all of the elements on a page, including
nonvisual components such as converters, validators, or EJB or Web Services
clients.

The Projects view gives you a logical view of your project, including Web
Pages, Source Packages, Libraries, the pre-configured beans, and Page
Navigation.

The Files view lets you see all the files in your project.

The JSP Source editor displays a page’s source. Most of the page includes JSF
tags for components and their properties. As you make changes to your
pages in the design canvas, Creator synchronizes the JSP and Java source.
Creator’s editors are based on NetBeans and reflect a rich functionality for
editing Java source, JSP source, and XML files.

The Java Source editor displays the Java source for each “page bean,” a
JavaBeans component that manipulates each page’s elements. You typically
place event handler code or custom initialization code in the Java page bean.
The Java Source editor includes a code completion mechanism that provides
pop-up windows with possible method names (use <Ctrl-Space> to invoke)
and Javadoc documentation for classes and objects in your program (use
<Ctrl-Shift-Space> to invoke). The Java editor also includes a dynamic syntax
analyzer to warn you about compilation errors before you compile.

The Code Clips palette provides sample Java code to accomplish common
programming tasks. The Clips are organized into categories based on
function. You can select a clip and drop the code into your Java source.

The Page Navigation editor lets you specify page flow. This editor generates
a navigation configuration file, navigation.xml.

When you build your project, the Output window provides diagnostic
feedback and completion status.

The Servers window displays Data Sources, Enterprise JavaBeans, Web
Services, Deployment Server, and Database Server nodes.

The Deployment Server node lets you start and stop the application server
and undeploy running web applications.

You can view database table data by expanding the Data Sources node and
selecting individual tables. Creator displays the data in the editor pane
when you right-click a table name and select View Data.

The Debugger Window displays several views that are helpful when you are
debugging your project. You can set breakpoints and monitor the call stack,
local variables, and watches with the debugger.

The Creator Help system provides a table of contents, index, and search
mechanism to help you use Creator effectively. The help system is dynamic

2.4 Key Point Summary 57

and displays help information based on how you're currently interacting
with Creator.

CREATOR
COMPONENTS

Topics in This Chapter

JSF Overview

Component Categories

Basic Components

Layout Components
Composite Components
Converters and Validators
Component Library Manager
Importing a Component Library

Chapter

un Java Studio Creator’s design palette presents a wide variety of com-

ponents to choose from. These components include buttons, text fields,

checkboxes, listboxes, radio buttons, hyperlinks, images, tables, tree

nodes, grid panels, and so on—in short, anything you need to design a
web page. You can select a component, drag it to the design canvas, and drop it
at the location of your choice. In addition, you can choose validator compo-
nents to verify user input and converter components for data conversions. Cre-
ator maintains a design canvas with your web page layout and generates Java
code for you, along with JSP and XML statements to configure and deploy your
application.

In this chapter we present a catalog of Creator User Interface (UI) compo-
nents, validators, and converters. We also provide references to examples in
this book where they are used. The examples will help you understand how to
use the Creator Ul components in your projects.

3.1 JSF Overview

The Creator Ul components work within a JSF web application environment.
With the JSF framework, these components let you handle events, validate and
convert user input, define page navigation, and support internationalization.
JSF also connects components to server side objects. Let’s start with the archi-
tecture of JSF to give you the “big picture” of what’s going on.

59

60

Chapter 3 Creator Components

JSF Architecture

Figure 3-1 shows the architecture used with JSF.

Web Container

Browser HTTP Request Page1 jsp
Access Page
Page2.jsp

HTTP Response
Render HTML

Page1.java

Figure 3-1 JSF architecture

Your browser interacts with the web container through one or more JSP
pages (Pagel.jsp and Page2.jsp). These are JSP pages containing JSF tags. The
supporting page bean (Pagel.java) manages the objects referenced by the JSP
pages. Note that the JSP pages handle HTTP requests when a page is accessed,
whereas the Java files render HTML for the HTTP response.

The JSP Page

Suppose a web page has a static text component (staticTextl) that displays
“In what year were you born?”, a button to click (buttonl), and a text field
(textFieldl) for the year (restricted to the range 1900 to 1999). When these
components are moved from the palette to the design canvas, Creator gener-
ates the component tags in the JSP file. Each Creator Ul component also
becomes a property in the generated Java page bean. To understand how this
all works, let’s start with how the static text component is defined in Pagel.jsp.

<ui:staticText id="staticTextl"
binding="#{Pagel.staticTextl}"
style="font-size: 18pt; left: 96px; top: 96px;
position: absolute"
text="In what year were you born?"/>

3.1 JSF Overview

The JSP file is expressed in XML. Creator generates this file for you and
keeps it synchronized with your page design. As you modify components with
the Properties window, Creator updates the JSP code as well as the Java code as
necessary. Creator generates the required tags for your components in the JSP
page. You can always access the JSP page by selecting the JSP label in the edit-
ing toolbar above the design canvas.

In this example, the static text component displays “In what year were you
born” on the page. Its id property (unique page identification) is staticTextl
and its binding property (the corresponding property in the Pagel page bean)
is also staticTextl. The style property specifies its location on the page with
the left and top settings in pixels. This property also makes the text appear in
18-point font size.

JSF Expression Language (EL)

JSF uses a specialized syntax to access JavaBeans components with its tags. For
example, the notation

#{Pagel.staticTextl}

references the staticTextl property in JavaBeans component Pagel. In the
JSP file (Pagel.jsp), the generated component tags reference properties in the
supporting page bean, as follows.

binding="#{Pagel.staticTextl}"
Now let’s look at the generated tags for a button component in Pagel.jsp.

<ui:button id="buttonl"
binding="#{Pagel.buttonl}"
action="#{Pagel.buttonl action}"
style="left: 72px; top: 168px; position: absolute"
text="Click for your age"/>

Elements binding and action are UI component tag library properties whose
values are set with JSF EL. Element binding is the button component’s page
bean reference, and action references a special action event method
buttonl action(), also in Pagel. Here, method buttonl action() is called
when the users clicks the button controlled by component buttonl.

61

62

Chapter 3 Creator Components

Converters and Validators

What about the text field component? Recall that this component must read a
year (in the range 1900 to 1999) from the user. Here’s how the input text field
component is configured in Pagel.jsp.

<ui:textfield id="textFieldl"
binding="#{Pagel.textFieldl}"
converter="#{Pagel.integerConverterl}"
style="left: 192px; top: 168px; position: absolute"
validator="#{Pagel.longRangeValidatorl.validate}"/>

Text field components display and accept text, but textFieldl must work with
integer numbers in this example. Consequently, a JSF conversion component
(integerConverterl) is necessary to convert String input to integer values.
Input is restricted to a specific range of numbers (1900 to 1999), so we'll need a
JSF validator (longRangevalidatorl) for the input, too.

converter="#{Pagel.integerConverterl}"
validator="#{Pagel.longRangeValidatorl.validate}"

In both cases, JSF EL references the components that perform the conversion
and validation.

Event Handling

JSF uses a delegation event model to handle events generated by user actions
(clicking a button, changing a selection in a drop down list, pressing <Enter>
after editing a text field, for example). It’s helpful to have an understanding of
the pieces that work together to make responding to events a well-behaved sys-
tem.

The Event Source is a component that is capable of generating an event. Dif-
ferent components generate different event types. Button components and
hyperlink components (for example) generate action events. Drop down list
components generate value change events.

Event Objects are generated by components (the Event Source). An Event
Object is basically a message that is passed from the Event Source to an Event
Listener. The Event Object contains information about the Event.

Event Listeners are specialized objects created by JSF that know what to do
when an event is generated. Different types of listeners can respond to differ-
ent types of events. For example, ActionEventListeners respond to action
events and ValueChangeListeners respond to value change events.

Using the “Publish-Subscribe” design pattern, Event Listener Registration
keeps track of which objects “care about” an event occurring. Objects that

3.1 JSF Overview

“care” are those that register themselves through the Event Listener Registra-
tion. After registering with the Event Source, Event Listeners are notified when
an action occurs. Notification means their special event method is called with
the event object as a parameter. Fortunately, Creator generates all the method
stubs, event listeners, and event registration for you. Here is an example of the
default value change method that JSF calls when a value change event is gener-
ated from a drop down list component.

public void dropDownl processValueChange (
ValueChangeEvent event) {
// TODO: Replace with your code

Web application developers provide the specialized event-processing code
(whatever actions your web application must perform in responding to the
value change event).

Action events are common with most applications and Creator generates the
action event handlers for you. Action events can be used to write processing
code in response to a button click. In addition, action events return String val-
ues to a navigation handler, which allow you to invoke a different web page.
Here is the default event handler Creator generates for a button (with property
id set to buttonl).

public String buttonl action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.

return null;

Note that action events implement navigation by returning String values. A
null string means you stay on the same page. A different String ("Button-
Click", for example) instructs the navigation handler to go to a different page.

Java Page Bean

Now let’s show you the Java page bean file, Pagel.java. Creator generates Java
code in the Java page bean for the components you select from the design pal-
ette. Each component becomes a property of the supporting page bean, and the
component instance is bound to that property.

63

64 Chapter 3 Creator Components

Here’s the Pagel.java file for our simple web application with two text fields
and a button. Again, Creator generates this file for you.

public class Pagel extends AbstractPageBean {

private Button buttonl = new Button();
private TextField textFieldl = new TextField();
private TextField textField2 = new TextField();

private LongRangeValidator longRangeValidatorl =
new LongRangeValidator () ;

private IntegerConverter integerConverterl =
new IntegerConverter();

// getters and setters for components

public Pagel () {
}

// Creator—-generated life cycle code omitted

public String buttonl action() {
// TODO: Process the button click action.
// Return value is a navigation
// case name where null will return to the same page.
return null;

Note that Pagel extends AbstractPageBean. The private fields are generated
for each UI component you place on the page and the getter and setter methods
make them accessible as properties. Here are the getters and setters for the
static text component.

public TextField getTextFieldl () {
return textFieldl;

public void setTextFieldl (TextField tf) {
this.textFieldl = tf;

In our example a public init () method calls a private _init () method in
the Java page bean to set the minimum and maximum ranges for the JSF vali-
dator component (longRangevValidatorl). When you set these values for the
validator by using Creator’s Properties window, Creator generates the state-

3.2 Components

ments in the private _init () method to configure the validator for you. This is
done before the managed components are initialized.

private void init() throws Exception {
longRangeValidatorl.setMaximum (1999L) ;
longRangeValidatorl.setMinimum (1900L) ;
}

public void init () {
super.init () ;
try {
_init ()
}
catch (Exception e) {
log ("Pagel Initialization Failure", e);
throw e instanceof FacesException ?
(FacesException)e : new FacesException (e);
}
// Perform application initialization that must complete
// *after* managed components are initialized
// TODO - add your own initialization code here

3.2 Components

Creator allows you to select Ul components from a design palette for your
application. These components are implemented with a JSP custom tag library
for rendering components in HTML.

When you select a component and drag it to the design canvas, Creator gen-
erates code in the page’s JSP source as well as support code in the associated
Java page bean. Furthermore, Creator displays each component in the Outline
view, including any support components that may not be visible. Once you
place a component on the design canvas, you can modify its properties and
behavior through the Properties window, through the JSP code, or through
modifications to the Java page bean. In general, it’s preferable to edit properties
of a component with Creator’s Properties window. However, writing code to
handle action and value change events must be done in the Java page bean file.

Components Palette

The Components Palette is divided into three groups: Basic, Layout, and Com-
posite. Each component includes the component name and an icon that you

65

66 Chapter 3 Creator Components

can drag and drop on the design canvas. Figure 3-2 shows you the component
groups and all of their components.

[= Basic [= Layouk

| v d Labal |- [arid Panel
------ |A] Static Text w1 Group Panel
.....] Test Field [Layout Panel
..... L_'_f. Text Area |E| Page Separator
..... &) Eutton F-£ Tab et
...... &3 Hypetlink = Page Fragment Box
----- (%] tmage Hyperlink] Page Alert
----- E7 brop Down List -5 Property Shest
------ 3] Listbox | “E] Form
------] Checkbox | [z Composite
----- #1 Checkbox Group i .| Alert
,,,,,, () Radio Button Jﬁ’] Add Remaove Lisk
----- {#)) Radio Button Group @ Breadcrumbs
..... 73] Tmage _] Inline Help

| E-EH Table

[0s| Password Fisld

Hidden Field
5 Calendar

------ |g. File Upload

|12 Tree
------ s Anchor
----- 1) Message

------ 43 Message Group

Figure 3-2 Component palette

Creator Tip

The Components palette also includes the Standard Components, the |SE
Reference Implementation components bundled with the first version of
Creator. These are included for backward compatibility with imported
Creator1 projects only. For newly created projects, use the components in the
Basic, Layout, and Composite sections.

Component Properties

This chapter presents a catalog of Creator components so that you can easily
look up their behavior and use them in your applications. Many components
share common properties and code generation features, however. Let’s start
with the definitions of these properties so that you can see how they're used.

3.2 Components

text

The text property stores a component’s main textual characteristics. Its mean-
ing depends on the component. For example, text stores the text of a button
label, the display text of a static text component, or the input for a text field.
The text property can also store the text for a password field and hidden field
components.

The text property is a Java Object type. Creator allows you to bind a com-
ponent’s text property to a JavaBeans property, a data source, or even a local-
ized message in a properties file.

label

The label property is a text string that provides text labeling for a component
on a web page. Examples of components that have label properties are text
fields, checkboxes, radio buttons, and drop down lists.

The label property is a Java Object type. Creator allows you to bind a com-
ponent’s label property to a JavaBeans property, a data source, or a localized
message in a properties file.

toolTip

The toolTip property is a text string for a component’s tooltip.

style

The style property holds Cascading Style Sheet (CSS) strings for properties
such as font family, font size, and position parameters. These determine the
type of font used, its point size, and placement on the design canvas. Creator
provides a sophisticated CSS style editor that helps you configure a compo-
nent’s style property. (For a detailed discussion of the style editor, see “Using
the Style Editor” on page 282.)

styleClass

The styleClass property allows you to specify predefined CSS style classes.
You can place CSS style class definitions in the default style sheet,
stylesheet.css (found in the Projects window under Web Pages > resources).
We show you examples of property styleClass in Chapter 7 (see “Using Prop-
erty styleClass” on page 284).

id
The id property is a page-unique string that identifies a component on the web

page. Creator generates the component’s id for you, but you can use the Prop-
erties window to change it.

67

68

Chapter 3 Creator Components

Creator Tip

We recommend renaming the default id when you have components on the
page with event handling methods (action or value change methods).
Providing meaningful names for the id property makes Creator generate
methods with meaningful names. This makes your Java code easier to read.

rendered

The rendered boolean property controls whether a component will be ren-
dered during the Render Response Phase of the JSF life cycle.

visible

The visible boolean property controls whether a rendered component will be
visible on the page.

action

The action property is important for Action and Link components, such as
buttons and hyperlinks. This property references a method in the page bean
that returns a String for JSF’s navigation handler. Chapter 5 discusses page nav-
igation in detail. The application writer may provide application-specific state-
ments in the action method, process information to determine page flow, or
both. To generate an action event handler, double-click the component in the
design canvas. Creator brings up the Java source editor and puts the cursor at
the first line of the action event handler.

binding
Creator sets the binding property for all components you place on the page. A
binding property binds the component instance to a property in the page bean.
Since Creator maintains this property for you, there is no reason for you to
change it. For example, if you add a button component to a web application’s

initial page (Pagel.jsp), the default binding property for the button compo-
nent is

binding="#{Pagel.buttonl}"

This JSF EL expression references the buttonl property of managed bean
Pagel and binds the component instance to the bean property. Now you can
write code in the Pagel.java page bean to access the button component and
dynamically control its properties.

3.2 Components

JavaScript

JavaScript allows client side processing activated with mouse events (for exam-
ple, clicking a component, giving focus to a component, or moving the mouse
over a component). The browser executes the JavaScript on the client machine
without any server involvement. You can attach a mouse event to a component
by specifying a JavaScript element in the component’s Properties window for
that event. Not all Creator Ul components detect the same mouse events.

For example, suppose you want to obtain a confirmation from the user
before activating a button’s Delete operation. In the design view, select the but-
ton. In the Properties view under JavaScript, specify the following JavaScript
for property onClick.

return confirm('Are You Sure You Want To Delete?');
When the user clicks the button, a confirmation window appears, as shown

in Figure 3-3. If the user selects OK, the button’s action event handler method
is invoked. Otherwise, the button click is ignored.

Microsoft Internet Explorer EJ

? Are You Sure You Want To Delete?

|_ OK [%J[Cancel]

Figure 3-3 JavaScript confirmation dialog defined for property onClick

Input Components

Components that collect input (text field, password field, text area, drop down
list, listbox, for example) share common properties to control and validate
input. Let’s look at some of these properties now.

validator

The validator property references a method that performs validation on its value.
JSF provides three standard validators: a length validator for strings, a long range
validator for integral types, and a double range validator for floating types. You can
also write your own custom validation method. See “Add a Validation Method”
on page 617 (Chapter 13).

69

70

Chapter 3 Creator Components

converter

The converter property references a converter component that builds the correct
type of object. Once the conversion has taken place, you can retrieve the object by
casting it to the desired type.

maxlength

The maxlength property limits input to a specified number of characters. (This is
not the same as length validation.) Setting maxlength causes a component to stop
accepting input after the user has typed in the maximum characters allowed. No
error messages are produced.

required

The boolean required property specifies whether or not input is necessary for
the component. If the user leaves an input component’s field empty and
required is set, an error message is produced during the validation phase.

valueChangeListener

A value change event occurs when an input component’s selection changes or
its text changes. If you want to perform processing based on input change,
double-click the component in the design view. Creator generates a process-
ValueChange () event method for you in the Java page bean. You can add your
own processing code to this method.

Auto-Submit on Change

The Auto-Submit on Change feature submits the page for processing when an
input component generates a value change event. To enable Auto-Submit on
Change, select the component in the design canvas, right-click, and choose
Auto-Submit on Change. This sets the onChange property to the following Java-
Script element, shown here for a Text Area component.

common_timeoutSubmitForm(this.form, 'textAreal');

The input component has id property textAreal. When the input value of the
text area changes, the page is submitted, allowing immediate processing
(instead of waiting for a button click or hyperlink selection).

Virtual Forms

Virtual Forms allow the application developer to build web pages that provide
more than one function (or use case). For example, a single web page might

3.2 Components

allow a user to either login or create a new username. The login use case
requires a username and password before clicking the “Login” button. The cre-
ate new username use case requires additional fields (perhaps a new password
that must be entered twice, as well as a username). By grouping input compo-
nents into separate virtual forms, you avoid interference when a validator
requires input for a component that is not needed to fulfill another use case.
Here are several examples of virtual forms use shown in the text.

Book Examples

* “Configure Virtual Forms” on page 216 (Chapter 5). Uses virtual forms
allow a Reset button to clear input fields.

¢ “Virtual Forms” on page 418 and “Configure Virtual Forms” on page 422
(Chapter 9). Uses virtual forms to provide add, update, and cancel use cases
on the same page.

Data-Aware Components

Creator offers a selection of data-aware components that can bind a data pro-
vider to a database table, a web services method, an EJB method, or a Java-
Beans component. The table component is particularly suited for displaying
data, but you can also choose from among the drop down list, checkbox, list-
box, or radio button components.

Creator automatically supplies a converter for non-String data fields when
you bind to a data provider with known data types. If there are any conversion
errors, you will only see error messages if you have placed message compo-
nents on the page.

Creator Tip

We recommend placing a message group component on the page when you're
using the data-aware components (see “Message Group” on page 89).

Data Providers

A data provider is an abstraction for a data source. Creator has data providers
for database tables, web services, E]Bs, maps, arrays, and lists. Data providers
are useful because they offer a common interface for accessing different
sources of data.

When you drop a database table on a data-aware component, Creator con-
figures the appropriate data provider for you. Similarly, if you drop a web ser-
vices method or EJB method on a component, Creator configures a data
provider. You can also explicitly select data providers for arbitrary objects,
such as arrays or lists. Chapter 8 introduces data providers and Chapter 9 uses

71

Chapter 3 Creator Components

data providers with database accesses. Chapter 10 shows you data providers
with web services and Chapter 11 shows you data providers with EJB methods.

3.3 Basic Components

The following catalog of basic components describes each component and
gives you common usage scenarios. To show you how a basic component can
be useful in a Creator project, we also point you to relevant examples in other
chapters of this book. The basic components are listed alphabetically for easy
lookup.

&b ancher - Anchor

The anchor component helps position link targets within a page. Anchor com-
ponents are non-visual and often used with hyperlinks to scroll pages. By
default, an anchor is rendered in HTML as .

Figure 3—4 shows an anchor component dropped on the design canvas.

&
Figure 3-4 Anchor component

Suppose, for example, you place a hyperlink at the bottom of a page and
drop an anchor component called anchorTop at the top of the page. To jump to
the top of the page, set the url property of the hyperlink to the following.

/faces/Pagel.jsp#anchorTop

It’s also possible to link to anchor components in other pages.
Book Examples

¢ “Add Components to the Page” on page 299 (Chapter 7). Uses anchor
components with hyperlinks to control page scrolling.

@ uten - Btton

The button component is an example of a “command component.” Buttons
perform an action when they are activated (clicked). This can happen during
server-side processing (a method that processes an action event) or with a nav-
igational action that determines page flow. The button component is one of the

3.3 Basic Components

most-often-used components in web design. By default, buttons are rendered
as HTML <input type=button> tags.

Figure 3-5 shows a button component and tooltip in a web page with a
browser. The message shown was set in the button’s toolTip property.

2l Button - Microsoft Internet Explorer H@”g]
File Edit Wew Favorites Tools Help ;'f

x>

JE 3 ¥ [@ O search 57 Favorites 2

Install:

|Make sure the CD is in the drive|

&] Done %) Local intranet

Figure 3-5 Button component

Buttons can be used for “simple” or dynamic navigation between web
pages. With simple navigation, a button’s action method returns a String that
matches a case label in the navigation rules generated for the application. We
show you how to create this type of navigation in “Add Page Navigation” on
page 195. Dynamic navigation is useful when you need to figure out the next
page based on some sort of processing. In this case, the action method returns
a String based on the processing. See “Create New Web Pages” on page 212 for
an example of dynamic navigation.

In Creator, you connect the a button click (an action event) to an event pro-
cessing method by double-clicking the button component in the Creator design
canvas. This brings up the matching button action () method (where button
is the component’s id property) in the Java page bean so that you can add your
processing code.

The button’s text property is its label. You can bind this value to a property
or to a value in a properties file.

Book Examples

¢ “Add Button Components” on page 193 (Chapter 5). Uses a button to initiate
navigation.

¢ “Place Button, Label and Static Text Components” on page 256 (Chapter 6).
Uses a button to submit a page for processing.

73

74

Chapter 3 Creator Components

¢ “Add a Button Component” on page 454 (Chapter 10). Uses a button to
invoke an action event method.

* “Modify the Components for Localized Text” on page 599 (Chapter 13).
Configures a button for internationalization.

B Calendar Calendar

The calendar component lets users enter dates on a page, either by typing in a
specific date or by selecting a date from a pop-up calendar. Figure 3-6 is an
example of a calendar component in the visual editor with a Enter Date label.

-@jlwélcome % ip| Pagel % -

|Design| JsP Java | Gl g I |any Size v

Figure 3-6 Calendar component

When you click the calendar icon, a pop-up window lets you select a date
from a drop down list of months and years. Otherwise, just type a specific date
into the component’s text field.

The calendar component automatically validates the input date. You control
the range by setting properties minDate and maxDate. The minimum date
defaults to the current date and the maximum defaults to today’s date four
years from now. Most applications will need to customize these values. Here is
an example that sets the minimum date to January 1, 1975 and the maximum to
December 31, 2020. You typically add this initialization code to the page bean’s
init () method.

// Set minimum date to January 1, 1975
// Method getTime () returns java.util.Date
calendarl.setMinDate (

new GregorianCalendar (1975, 0, 1).getTime());
// Set maximum date to December 31, 2020
calendarl.setMaxDate (

new GregorianCalendar (2020, 11, 31).getTime());

3.3 Basic Components 75

Creator Tip

You cannot supply String values for these properties in the Properties
window, but you can provide property binding expressions (to objects of type
Date) or you can set the minimum and maximum values as shown in the
page bean. Use a message group or message component to display validation
error messages on the page.

The date format defaults to the default format for the locale, but you can use
the dateFormatPattern property to select different date format patterns.

Property selectDate holds the user-supplied date, which you can bind to
an object or a data provider. You can also right-click the calendar component
and select Edit Event Handler from the pop-up menu. The validate option
lets you insert Java code that validates user input, and the processval-
ueChange option lets you insert Java code that executes when a component’s
value has changed.

Book Examples

* “Configure the Calendar Component” on page 357 (Chapter 8). Uses a
calendar component and shows you how to configure its settings.

CheCkbOX] Checkbox

The checkbox component uses a boolean on/off setting as a choice for a user.
Checkboxes are often used as standalone components (that is, not part of a
checkbox group) on a page. Figure 3-7 shows part of a page with a checkbox
component. Here we set the label property to the text string shown and the
selected property to true, which displays a check mark.

Check here for email confirmation

Figure 3—-7 Checkbox component

There are two important properties with checkboxes. The selected prop-
erty indicates whether or not a checkbox is selected and checked on the page.
The selectedvalue property allows you to store and retrieve an arbitrary data
value associated with the checkbox. A check box is considered to be selected
when the value of the selected property is equal to the value of the selected-
Value property. You can bind the selected property of a checkbox to an object,
such as a JavaBeans property or a data source object.

Use method isChecked () to determine if the component is selected.

76 Chapter 3 Creator Components

Book Examples

¢ “Configure Checkbox Components” on page 433 (Chapter 9). Uses
checkboxes in columns with table components.

* “Specify Property Bindings” on page 583 (Chapter 12). Uses standalone
checkbox components and binds them to SessionBean properties.

¥H Checkbox Group Checkbox Group

The checkbox group component groups a set of checkboxes. You can specify
their items with a dialog accessed from the Properties window or dynamically
fill them from a database or JavaBeans component. When you use a checkbox
group, users may select any number of checkbox options (including none
unless the required property is checked). Checkboxes are rendered as an
HTML <table> element with rows and columns. Figure 3-8 shows a checkbox
group component when you drop it on the design canvas.

Figure 3-8 Checkbox group component

A checkbox group component is appropriate when you want to give the
user a list of choices with the phrasing “please check all that apply.”! The selec-
tion items may be hardcoded with the Properties window or generated
dynamically at run time. Creator automatically supplies a converter for non-
String data fields when you fill the list from a database source. The checkbox
group component also accepts data binding. The selected property of the
checkbox group returns an array of Objects consisting of the checked selec-
tions.

Adding a checkbox group component to your web page creates three ele-
ments: the checkbox group component, an embedded selection list, and a
“default items” list used for initializing the selection choices. To specify the
choices, select checkboxGrouplDefaultOptions in the Outline view. In the
Properties window, click the editing box opposite property options. Creator
pops-up a dialog so that you can add, edit, or remove items. (This is the same

1. If you'd like to limit the choice to only one from a list, use the radio button
group component (see “Radio Button Group” on page 93).

3.3 Basic Components

dialog used to specify Display/Value pairs for the Listbox component. See
Figure 3-20 on page 87.)

Example
Figure 3-9 shows a checkbox group component on a web page. The default lay-
out for a checkbox group is a single vertical column, so we set the columns
property to the number of checkboxes (4) to get a horizontal layout. Note that a
user may select more than one choice (including none or all).

Select one or more side dishes Toast Bacon | Iuffin I Ham

Figure 3-9 Checkbox group component

Here is the Java code to display choices selected from the checkbox group
(whose id property is checkboxGroupl) in a static text component. Note that
we assign the selected values to a sides String array. Casting is necessary since
the getSelected () method returns an Object array. The for loop concate-
nates selected values with space delimiters. This code is placed in the button
event handler method.

public String buttonl action() {
String choices = "";

String[] sides = (Stringl])checkboxGroupl.getSelected();
for (int 1 = 0; i < sides.length; i++) {
choices = choices + " " + sides[i];

}
staticTextl.setValue (choices);
return null;

Drop Down List

The drop down list component is an extremely versatile component, rendered
as an HTML <select> element (a drop down list). A drop down list allows a
user to select one item from a set of items, as shown in Figure 3-10.

The selection items may be hardcoded with a dialog accessed from the Prop-
erties window or generated dynamically at run time. Creator automatically
supplies a converter for non-String data fields when you fill the list from a

77

Drop Daven List

78

Chapter 3 Creator Components

Figure 3-10 Checkbox group component

database source. This component also accepts data binding. The selected
property determines the value of the currently selected item.

When a drop down list component is used with a data provider that wrap-
pers a database data source, you typically bind the database table’s primary
key field with the Value field. You select an appropriate field from the data
table for the dropdown component’s Display field. Figure 3-11 shows the Bind
to Data dialog that lets you configure the drop down list and the data provider.
Here the Value field is the RECORDINGID field (the primary key) and the Dis-
play field is RECORDINGTITLE. Thus, the dropdown component’s getSe-
lected () method will return the primary key. This is useful for setting SQL
query parameters from a drop down list component’s selection value (see
Chapter 9, “Connect Dropdown List to Query” on page 408).

% Bind to Data - dropDown1

Current Items property setking

[#{Pagel.recordingsDataProvider. options| RECORDINGS. RECORDINGID, RECCRDINGS RECORDINGTITLE'T] |

["ind to Data Provider | Bind ko an o.b]:ecf

ider to bind o dropDowni:

dln_li;D aPlIdeEr_(Pagel) v | Add Data Provider. .]

Yalue Field: Display field:
|<none

I::use walue figld>
RECORDINGS.RECORDINGID Intsger !REI:DRDINES.REEI]RDINGID Irkeger

|RECORDINGS.RECORDINGTITLE Siving RECORDINGS.RECORDINGTITLE Siring
RECORDINGS.RECORDINGARTISTID Integer RECORDINGS.RECORDINGARTISTID Integer
RECORDINGS.MUSICCATEGORYID Intagsr RECORDINGS.MUSICCATEGORYID Integsr
RECORDINGS.RECORDINGLABEL String RECORDINGS.RECORDINGLABEL String
RECORDINGS.FORMAT Sking RECORDINGS.FORMAT Sking
RECORDINGS.NUMBEROFTRACKS Short RECORDINGS.NUMBEROFTRACKS Short
RECORDINGS.NOTES String RECORDINGS.NOTES String

Figure 3—-11 Bind to Data dialog with a drop down list

The nonvisual component dropDownlDefaultOptions supplies text for the
selections. To input text items, select the dropDownlDefaultOptions element in

3.3 Basic Components

the Outline view and click the options property in the Properties window. A
dialog pops up that lets you type in Display/Value pairs for each selection item
(see Figure 3-20 on page 87).

When the user selects a different item from a drop down list component, the
system generates a value change event. To submit the page for immediate pro-
cessing on a value change event, set the Auto-Submit on Change feature. To
provide event handling code for a value change event, double-click the drop
down list component on the design canvas. Creator generates a default pro-
cessValueChange () method and brings up the Java source editor for you.

Book Examples

¢ “Add a Drop Down List” on page 202 (Chapter 5). Uses a drop down list
with navigation.

¢ “Add a Data Source” on page 402 (Chapter 9). Fills the selection list from a
database data source.

* “Specify Property Bindings” on page 583 (Chapter 12). Uses a drop down
list to bind a SessionBean property.

¢ “Add Components to Pagel” on page 607 (Chapter 13). Uses a drop down
list to specify locale.

File Upload @ File Upload

The file upload component lets users locate a file on their system and upload it
to a server. You can upload text files, images, and other types of data files (. zip
or .jar files, even executables). This component is similar to an HTML <input
type="file"> element. Figure 3-12 shows a file upload component on the
design canvas.

| Browse, ..

Figure 3—12 File upload component

For security reasons, file upload components are not supported in portlet
projects. You can upload files up to one megabyte in size by default. To upload
larger files, modify the maxsize parameter for the UploadFilter entry in the
web application’s web.xml file.

The read-only uploadedFile property provides a UploadedFile interface
with methods that let you read the file and write it to disk. There are also meth-
ods to access the file’s name, size in bytes, and type (text/plain or image/

jpeqg).

79

80 Chapter 3 Creator Components

Creator Tip

Be careful with file names that have spaces, they are not supported. It is also
not possible to nest a file upload component within a tab set component.

Example

Figure 3-13 shows you a web page with a file upload component. Note that the
file upload component has a built-in Browse button to let users locate a file on
their system. When the “Get File Now” button is clicked, the file contents are
written to the server and displayed in the scrollable text area on the page. A
message group component displays status.

ng:TI'_emp'icorﬁ'éx-t.-xrﬁ 5 | Browse...
Get File Mow

|=%xml version="1.0" encoding="UTF-3"%=
|=roptContext=
=context name="java.comp™=
=context name="eny"=
=context name="jdbc™=
=ghject name="Crder”
|class="com.sun.rave.sql.0esignTimeDataSource™
| =arg class="java.lang.Boolean™ value="true"/=
=arg class="java.lang.5tring” value="PBPUBLIC"/=
=arg class="java.lang.Boolean™ value="true"/=
=arg class="java.lang.String”
§vaIue="com.p0intbase.jclbc.jdchniversalDriverT}
=arg class="java.lang.String”
EvaIue="jdbc:p0intba5e:sewer:ﬁlocaIhost:29092fsample"!} v

£

System Messages

» Uploaded file from C:\Templcontextxml, size is 3279 bytes

m Saved file to CASavedicontext xml

Figure 3-13 File upload component

3.3 Basic Components

Here is the Java code for the button handler that uploads the file, displays
the file in the text area, and writes the data to the server.

public String filer action() {
// read file from client
UploadedFile uploadedFile =
(UploadedFile) fileUploadl.getUploadedFile() ;
String uploadedFileName = uploadedFile.getOriginalName () ;
String FileName = uploadedFileName.substring
(uploadedFileName.lastIndexOf (File.separatorChar) + 1);
info ("Uploaded file from " + uploadedFileName +
", size is " + uploadedFile.getSize() + " bytes");

// write data to text area component
textAreal.setText (uploadedFile.getAsString()) ;

// save file contents to server on C:
try {
File file = new File("C:" + File.separatorChar + "Saved" +
File.separatorChar + FileName) ;
info ("Saved file to " + file) ;
uploadedFile.write(file);

} catch (Exception ex) {
error ("Cannot upload file: " + FileName);
}

return null;

81

Hidden Field £731 Hidden Field

The hidden field component is a non-visual form field that is not displayed on
the design canvas or in a browser window. The hidden field component is gen-
erated as an HTML <input type="hidden"> element. Hidden field compo-
nents do not appear in the design view, but you can access their properties
from the Outline window.

Web developers typically use hidden field components to store data used by
Javascript on the page. Hidden field components are also handy for storing
page data, as an alternative to saving and restoring in session scope. The text
property of a hidden field component holds the data that is sent to the server.

Note that anyone can examine an HTML document's source to locate a “hid-
den” field. Hidden fields, like password fields, are extended from the same
component classes as text field and therefore have the same configurable prop-
erties.

82 Chapter 3 Creator Components

&5 Hypetlink Hyperlink

Hyperlink components are action components that provide navigation to other
pages as well as to a location on a page (with the anchor component). A hyper-
link component is also useful when a page’s URL information is data driven
and no processing is necessary (you set property url). Figure 3-14 shows a
hyperlink for a home page in a browser window.

& | Hyperlink - Microsoft Internet Explo... [__T'HEI[E|
File Edit Wew Favorites Tools Help o

3 b e |ﬂ &'] o) search

Home Page

I@:l http: /i % Local intranet

Figure 3-14 Hyperlink component

To add event handling code, select the hyperlink component in the design
canvas and double-click. This brings up the hyperlinkl action() method
(where hyperlinkl is the component’s id property) in the Java source editor.

Creator Tip

If you want the hyperlink to show an image rather than text, use the image
hyperlink component (see “Image Hyperlink” on page 84).

Book Examples

¢ “Add Components to Page LoginBad” on page 213 (Chapter 5). Uses a
hyperlink component with navigation.

¢ “Using Hyperlink with a Nested Static Text” on page 461 (Chapter 10). Uses
a hyperlink and a nested static text component (for formatting) to provide a
link to URLSs returned from a Google web services search.

* “Modify the Components for Localized Text” on page 599 (Chapter 13).
Configures a hyperlink component for localization.

3.3 Basic Components 83

Image]EI Image

Image components display graphics from a file or a URL. The image compo-
nent is rendered as an HTML element. Figure 3-15 shows an image com-
ponent after dropping it on the design canvas.

Figure 3-15 Image component

Once you place an image component on the design canvas, there are several
ways to set its image. The image may be a file (JPEG, GIF, PNG), a URL web
location, or a built-in theme. To set the image, right-click on the image compo-
nent and choose Set Image. The Image Customizer dialog appears with radio
buttons Choose File, Enter URL, and Set Theme Icon. Figure 3-16 shows the
Image Customizer dialog with the Set Theme Icon selected and
ALARM CRITICAL MEDIUM set for the image.

Selecting Choose File in this dialog lets you navigate to an image file in your
file system and copy it to the resources node in your project. When you choose
this option, the image component’s url property is set to resources/
image_filename, where image_filename is the image file.

Creator Tip

You can also add an image by dragging its file node from the file explorer
dialog to your page.

The dialog also lets you enter a URL to a web location for the file. As before,
the url property of the image component will be set to the URL you enter.
Alternatively, you can select the url property in the Properties window and
select the Use Binding radio button. This allows you to bind the property to a
data object.

Book Examples

¢ “Add the Google Logo” on page 453 (Chapter 10). Puts an image on the
page.

84 Chapter 3 Creator Components

¥ Image Customizer - mylmage

() Choose File () Enter LURL (%) Set Theme Ican

Choose an icon From a list included in the theme. The theme icon may change depending
on what theme is selected For the page.

RIS | AR M CRITICAL MEDILM
|ALARM_CRITICAL_SMALL
|ALARM_DOWN_MEDILM
[BLARM_DOWN_SMALL
|ALARM_MAIOR_MEDIUM
|ALARM_MAJOR_SMALL
|ALARM_MASTHEAD_CRITICAL DIMMED
|ALARM_MASTHEAD_CRITICAL MEDIUM
|ALARM_MASTHEAD_DOWM_DIMMED
|ALARM_MASTHEAD _DOWN_MEDILM
|ALARM_MASTHEAD_MAJOR_DIMMED
|ALARM_MASTHEAD_MAJOR_MEDIUM
|ALARM_MASTHEAD_MINGR_DIMMED
|ALARM_MASTHEAD_MINGR_MEDIUM |

a ~|
ALARM_CRITICAL_MEDILIM i

l QK %Jl Cancel ” Apply H Help

Figure 3-16 Image customizer dialog

&l 1mage Hyperlink Image Hyperlink

The image hyperlink component is similar to a hyperlink, except that it sup-
ports images in addition to text. When you right-click an image hyperlink com-
ponent, the Image Customizer dialog lets you set the image to a file (JPEG, GIF,
PNG), a URL web location, or a built-in theme (see Figure 3-16).

The imageURL property specifies an image file or a URL on the web. The
icon property holds the theme. Figure 3-17 shows an image hyperlink in a
browser window.

As with hyperlinks, you can specify an action event handler. To add event
handling code, select the image hyperlink component in the design canvas and
double-click. Creator generates a default action event method and brings up
the page bean in the Java source editor. The cursor is set to the
imageHyperlinkl action() method (where imageHyperlinkl is the compo-
nent’s id property).

3.3 Basic Components 85

-2 Image Hyperlink - Microsoft Internet Bx... [__T'HEI[E|
File Edit Wew Favorites Tools Help ;1-'

JE & - [¥] [2] o O search <7 Favorites

»

{‘.ﬁ Imag%yperlink

IEI http: ffwww, "—J Local intranet

Figure 3—-17 Image hyperlink component

Book Examples

¢ “Banner Page Fragment” on page 310 (Chapter 7). Uses an image hyperlink
with a page fragment.

¢ “Add an Image Hyperlink Component” on page 484 (Chapter 10). Uses
image hyperlinks to page through Google search results.

¢ “Add Components to the Page” on page 566 (Chapter 12). Uses image
hyperlinks to page through Google search results.

Label 4 Label

The label component is typically used to associate text with input components,
such as text fields and checkboxes. Labels are rendered as HTML <label> ele-
ments when they are associated with components and as elements
when they are not. Figure 3-18 shows a label on the design canvas.

Figure 3—-18 Label component

A label’s for property associates the label with another component. When
you bind the for property of a label to a text field, for instance, the label com-

86

Zl] Listhe

Chapter 3 Creator Components

ponent displays an asterisk if the text field’s required property is set to true.
Furthermore, if invalid input is supplied to the server, the page will highlight
the label component’s text in red. These behaviors make labels highly useful in
pages where input components are heavily used.

Label components also have data binding. You can bind a label’s text prop-
erty to a data source, a JavaBeans property, or text from a resource bundle.

Creator Tip

Input components have a dedicated 1abel property that you can
alternatively use for label text, but these labels cannot be easily resized or
aligned. Instead, use the label component for more flexibility with component
placement and style control.

Book Examples

* “Add a Label Component” on page 207 (Chapter 5). Uses a label to place a
heading on a page.

* “Modify the Components for Localized Text” on page 599 (Chapter 13). Sets
the label’s text from a localized .properties file.

¢ “Add Components for Input” on page 620 (Chapter 13). Sets the label’s for
property to a text field component and sets the label’s text property from a
localized .properties file.

Listbox

The listbox component allows users to select items from a list of items. The
selection items may be hardcoded with a dialog accessed from the Properties
window or generated dynamically at run time. Figure 3-19 shows a listbox
component on the design canvas after configuring the options list.

Creator automatically supplies a converter for non-String data fields when
you fill the list from a data provider source. The multiple property determines
whether the user may select one item or multiple items in the listbox. (With
multiple set, press <Ctrl-Click> to select more than one item.) The rows prop-
erty controls the number of items to display.

When a listbox component’s data provider wraps a database data source,
you typically bind the database table’s primary key field with the Value field.
You select an appropriate field from the data table for the listbox component’s
Display field. Figure 3-11 on page 78 shows the (equivalent) Bind to Data dia-
log for a drop down list that lets you configure the data provider.

The nonvisual component listboxlDefaultOptions supplies text for the
selections. To specify selection items, select the 1istbox1DefaultOptions ele-
ment in the Outline view and click the options property in the Properties win-

3.3 Basic Components 87

[Titanic L
© 0 |Hard Dav's Might |
.. ... |Office Space LT

|Bestin Show

Figure 3—-19 Listbox component

dow. A dialog pops up that lets you type in Display/Value pairs for each
selection item, as shown in Figure 3-20. Text in the Display column appears on
the page. The selected property (or method getSelected()) returns the cor-
responding text of the selected item from the Value column.

¥ listbox1DefaultOptions - options

Display Walue | Mew

TikaniC e b e
Hard Diay's Might

Office Space

EBest in Show

Delete

ENERIESY —

u

Craneiry

iE

Click New b create a new entry, Edit a value by clicking in the table cell,

[Ok k‘” Unset Property ” Cancel

Figure 3-20 Dialog to select text items for listbox component

When the user selects a different item from a listbox component, the system
generates a value change event. To submit the page for immediate processing
on a value change event, set the Auto-Submit on Change feature. To provide
event handling code for a value change event, double-click the listbox compo-
nent on the design canvas. Creator generates a default processvalueChange ()
method and brings up the Java source editor for you.

88

{1} Message

Chapter 3 Creator Components

Book Examples

¢ “Add a Listbox Component” on page 402 (Chapter 9). Fills the selection list
from a database data source. Uses listbox for a master-detail database read.

¢ “Add Components to the Page” on page 520 (Chapter 11). Fills the selection
list from an EJB data source.

Message

The message component displays error messages generated by other compo-
nents. Typically, these messages are data conversion or input validation errors.
When the validator or converter detects errors, it sends a message to the JSF
context on behalf of the component. Message components can retrieve and dis-
play these messages. Message components are particularly useful on a web
page that contains multiple input components. When you associate a unique
message component with each input component, validation or conversion
error messages clearly indicate the source of the input error. By default, a mes-
sage component has its ShowSummary property set to true and its ShowDetail
property set to false. Figure 3-21 shows a message component initially
dropped on the design canvas.

Figure 3-21 Message component

To associate a message component to an input component, select the mes-
sage component, press <Ctrl-Shift>, and drag the arrow generated by Creator to
the target component. This sets the for property to the id property of the input
component. Figure 3-22 is an example page with a submit button and two mes-
sage components associated with input text fields. Note that the names of the
text fields (textfieldl and textfield2) appear in the message text, indicating
that the for property has been set for each message component.

You can also use the message component’s style property to format the
appearance of your error messages.

You can also send your own message to a message component with the
info (), error (), fatal (), or warn () methods. These methods are all rendered
using distinct styles. You must include the message component’s target compo-
nent id with the call, however. The following code shows the approach. Here,
inside the listbox’s value change event handler, we send a warning that the list-

3.3 Basic Components 89

Figure 3-22 Message components with for property set

box component’s value has changed. Note that component id listbox1 is the
first parameter for method warn ().

public void listboxl processValueChange (
ValueChangeEvent event) {
warn (listboxl, "Value changed!");

Creator Tip

The message component displays a single message only. If you need to display
multiple messages, or you don’t want to specify a particular component, use
component Message Group instead.

Book Examples

¢ “Use Validators and Converters” on page 252 (Chapter 6). Uses a message
component to report data conversion errors for a text field component.

¢ “Add a Message Component” on page 477 (Chapter 10). Uses a message
component to report validation errors for a text field component.

¢ “Add Components to the Page” on page 566 (Chapter 12). Uses a message
component to report validation errors.

¢ “Add Components for Input” on page 620 (Chapter 13). Uses a message
component to report validation errors from a custom validator method.

22 Message Group

Message Group

Message group components display run-time errors for page-level messages
originating from multiple components or for system (global) messages. With

90

Chapter 3 Creator Components

message group components, you can limit the message group to display global
errors only (that is, exclude component errors), or display errors for all compo-
nents on the page, including errors with the page itself.

Figure 3-23 is a page with a submit button, input text fields with associated
message components, and a message group component to report global errors.
The message group component’s showGlobalOnly property is set to true.

System Messages

= | ist of global message sUmMMmaries

Figure 3-23 Message group components

Set property showGlobalOnly when one or more message components
appear on the page with a message group component. This prevents a compo-
nent’s validation or conversion error message from appearing twice.

You can also use the message group style property to format the appear-
ance of your error messages in the System Messages box.

Creator Tip

It’s a good idea to routinely place a message group component on your pages,
especially when accessing a database, web service, or EJB. Recall that [SF

writes FacesException messages to the JSF context. You will only see these
messages if a message group or message component is on the page.

Book Examples

* “Add a Message Group Component” on page 388 (Chapter 9). Uses a
message group component to report database access errors.

* “Message and Message Group Components” on page 477 (Chapter 10). Uses
a message group component to report system (global) errors.

3.3 Basic Components 91

¢ “Add Components to the Page” on page 506 (Chapter 11). Uses a message
group component to show all error messages when there is only one input
component.

¢ “Add the Google Web Service Client” on page 569 (Chapter 12). Uses a
message group component to report system (global) errors.

[Password Field

Password Field

The password field component allows users to input a single line of text. Ech-
oed text is replaced by a single character, such as a black dot or an asterisk.
Password field components are useful for handling sensitive data input, like
passwords and PIN numbers. The password field component is rendered as an
HTML <input type=password> element. When a password field is rendered,
its previous value is always cleared. Figure 3-24 shows a password field
dropped on the design canvas.

o o

Figure 3-24 Password field component

In all other respects, a password field component behaves just like a text
field. The input string is stored in the component’s password property. When
you change the text, a value change event is generated. The password field’s
getPassword () method reads the text and setPassword () sets it. You can also
bind the password property to an object or data provider.

Password field components can have validators. Length validators, required
validators, and range validators are all possible to check input text. Note that
value change events occur only if no validation errors are detected.

When a password field component generates a value change event, the JSF
implementation invokes the value change event handler for that component.
You can use the password field’s 1abel property to set the label text on a page.
It’s a good idea have message components associated with password fields to
report validation or conversion errors. To create a tooltip, set the password
field’s toolTip property.

Book Examples

* “Create the Form’s Input Components” on page 208 (Chapter 5). Uses a
password field to gather input for a password field.

92 Chapter 3 Creator Components

¢ “Bind Input Components” on page 237 (Chapter 6). Shows property binding
with the password field component.

* “Modify the Components for Localized Text” on page 599 (Chapter 13).
Shows how to localize an application that contains a password field (the
password component’s toolTip is bound to the properties file).

(%) Radio Button Radio Button

The radio button component uses a boolean on/off setting as a choice for a user.
Radio buttons can appear as standalone components on a page (not part of a
radio button group). Figure 3-25 shows part of a page with two radio button
components. Here we set the 1abel property to the text strings shown. You can
treat two or more radio buttons as a group by setting each radio button’s name
property to the same value. When radio buttons are part of the same group,
only one radio button can be selected (set to true).

Figure 3-25 Radio button component

There are two important properties with radio buttons. The selected prop-
erty indicates that a radio button is selected and clicked on the page. The
selectedValue property allows you to pass data values for the radio button.
It’s also possible to bind the selected property of a radio button to an object,
such as a JavaBeans or a data source. A radio button is considered to be
selected when the value of the selected property is equal to the value of the
selectedValue property.

Use the isChecked () method to determine if the component is selected. To
use radio buttons in table component columns, set the name property to the
same value to group all the radio buttons in the column.

Creator Tip

Radio buttons by themselves (not in a group) are used sparingly in web pages
because users cannot deselect a single radio button once it is selected. If you
want users to select and deselect their choices, use checkboxes (see
“Checkbox” on page 75).

3.3 Basic Components

Radio Button Group &

The radio button group component lets you group radio buttons on a page.
When a user selects a choice from a radio button group, each choice deselects
the previous one. This means only one button within the group is “on” at a
time.? Radio button groups are rendered as an HTML <table> element with
rows and columns. Figure 3-26 shows a radio button group component after
you drop it on to the design canvas.

Figure 3-26 Radio button group component

The selection items can be hardcoded with the Properties window or
dynamically generated at run time. Creator automatically supplies a converter
for non-String data fields when you fill the list from a database source. This
component also accepts data binding. The selected property of the radio but-
ton group returns the selected item.

To specify the choices, select radioButtonGrouplDefaultItems in the Out-
line view. In the Properties window, click the editing box opposite property
options. Creator pops up a dialog so that you can add, edit, or remove items.
(This is the same dialog box used to specify Display/Value fields for the Listbox
component. See Figure 3-20 on page 87.)

Example
Figure 3-27 shows a radio button group component on a web page. The default
layout for a radio button group is a single vertical column, so we set the col-
umns property to the number of radio buttons (3) to get a horizontal layout.
Note that a user may select only one choice.

2. If you need to select more than one item at a time, use the checkbox group
component (see “Checkbox Group” on page 76.)

93

| Radio Butkon Group

94

[A] sStatic Text

Chapter 3 Creator Components

Age Bracket () 21-34 (& 3549 O over 50
Your age is 35-49

Figure 3-27 Radio button group component

Here is the code in the button’s event handler that displays the user’s selec-
tion in a static text component. The code that accesses the radio button group
component is bold.

public String buttonl action() {
String choice = (String)ageBracket.getSelected() ;
staticTextl.setText ("Your age is " + choice);
return null;

Static Text

Of all the components, static text is probably used the most often in web pages.
A static text component lets you display any kind of textual information, like
instructions, titles, and headings. Static text components typically display
String data, but you can bind them to objects, JavaBeans properties, and data
providers. Figure 3-28 shows a static text component after dropping it on the
design canvas.

Figure 3-28 Static text component

With data converters and formatters, static text components can display
almost any type of data. An embedded static text component is the default for a
table component. Static text components may be embedded in hyperlink com-
ponents to allow embedded HTML in the hyperlink’s text display.

The text property of a static text component stores the text that is dis-
played. From a user’s point of view, static text components are read-only. The
setText () method sets its text and getText () reads it. You can resize static

3.3 Basic Components 95

text components on the design page, but Creator expands them if you leave
them unsized.

Static text components are rendered as plain text, which may include HTML
formatting tags. This means you can build entire HTML pages by concatenat-
ing a string of HTML tags with text and assigning it to the component’s text

property.

Creator Tip

To enable correct rendering of HTML tags, make sure you set the escape
property to false in the Properties window. Also, avoid using static text as
labels for other components. Use either a separate label component or the label
property of the component.

Book Examples

¢ “Place Button, Label and Static Text Components” on page 256 (Chapter 6).
Binds an output component to a JavaBeans property and applies a number
converter.

¢ “Add Components to the Page” on page 299 (Chapter 7). Uses an embedded
static text component in a grid panel. Builds the static text component’s text
by concatenating HTML tags and unchecking the escape property.

¢ “Using Hyperlink with a Nested Static Text” on page 461 (Chapter 10). Uses
an embedded static text component in a hyperlink to store HTML text.

¢ “Configure the Table” on page 480 (Chapter 10). Uses an embedded static
text component to improve HTML formatting.

¢ “Add Static Text Component to the Page” on page 587 (Chapter 12). Uses a
static text component for formatting text using HTML tags in a portlet.

Table & Tatle

The table component is a composite component with rows and columns. Tables
typically have nested columns, which in turn contain other display compo-
nents (such as static text components, buttons, or text fields). Table components
render as HTML <table> elements.

A table node in the design palette has nested column and row group compo-
nents (see Figure 3-29). Dragging these components to a table in the design
canvas adds columns and row groups to the table. Figure 3-29 also shows a
table component initially dropped on the design canvas with the default of five
rows by three columns.

Figure 3-30 shows the Outline view for the default table component. Note
that each column in a table has a static text field to display data, but you can
replace it with other components (checkboxes, hyperlinks, for instance). Every

96 Chapter 3 Creator Components

:Palette T R T R Rt R R
— -l »
=1 - Table
EH Row Group - | columni +, | column2 4+, | column3 4
row1_column row1_columnz row1_column3
row?_columni row?_columnz rowZ_column3
row3_column row3_columnz row3_column3
rowd_columni rowd_columnz rowd_column3
rows_column rows_columnz rows_column3d

Figure 3-29 Table component

table component also has a default data provider (defaultTableDataPro-
vider, a non-visual component).

: Dutline Kl
=l Pagel
=] pagel
E-fe3] htmlt
F#-Je3] headi
E-fe2] body1
=-{1] Farmi
=-EH tableRowGEroupl
-5 tableCalumni
¢ L A] staticTaxt]
[H] tableCalumnz
L Lo A] staticText2
=-LH] tableCalumna
Lo A staticTexts
------ & defaultTableDataProvider

Figure 3-30 Table component Outline view

3.3 Basic Components

Creator Tip

Creator provides an enhanced selection mechanism for composite
components, such as the table component. In the design canvas, click on any
row in a table column and look in the Outline view and Properties window to
see which component is selected. Now click again and you'll see the outer
nested component’s properties. Successive clicks let you cycle through each
nesting level of a component.

Table components are typically filled dynamically with data from a data
provider attached to a data source (database table), web services method, EJB
method, or JavaBeans property. When you fill a table component with data
from a data provider, Creator lets you control the layout, including the col-
umns to display, the number of headers and footers, and the component you
use in each column. You can also apply data converters to any field (column).

When you bind a data provider to a table component in the design canvas,
Creator automatically fills the table with the data and generates the needed col-
umns. Creator also generates headers from the field names and applies the nec-
essary converters.

Example
Figure 3-31 shows Creator’s design canvas with a table component bound to
the TRACKS table from the Music Database in Chapter 9. This table has three
columns (with headings from the database metadata). Creator shows the col-
umn’s data type as “123” for numeric data and “abc” for String data. For data
that is not text, Creator applies a converter for you.? In this table, an embedded
static text component is used for the display.

TRACKNUMBER * TRACKTITLE *+ | TRACKLENGTH *

123 | abe | abe
123 abe | abe
_123 ! abc | abc

Figure 3-31 Binding table component with an external database table

3. For example, if a primary key field is integer data, Creator applies an Inte-
ger converter to the component. Creator performs this action for all the
data-aware components.

97

98

Chapter 3 Creator Components

Creator automatically sizes the columns and dynamically generates the cor-
rect number of rows. When you bind a table component to a database table,
Creator generates a default query for you. You can modify this query by select-
ing the associated rowset from the nonvisual display. We show you how to
work with database queries in Chapter 9 (see “Modify the SQL Query” on
page 405.)

Figure 3-32 shows Creator’s dialog for manipulating a table component’s
layout. Select the table component in the Design or Outline view, right-click,
and choose Table Layout. Here, the dialog shows the columns from the
TRACKS database table. You can choose which columns to display, the header
and footer text, and the underlying component that holds the data.

able Layout - table1

| options|

5ek Data From: |kracksDataProvider “ ! [Add Data Provider .,]

Available Selected

TRACKS, TRACKID
[TRACKS.RECORDINGID

WACES, TRACKNUMEER.

U
TRACKS. TRACKTITLE

TRACKS, TRACKLENGTH Chaneiny

II

Mew

Column Details

Header Text: | TRACKNUM_BER

Footer Text: |

<.

Component Type: |5tatic Texk

Value Expression: | #{currentRow, value[TRACKS, TRACKNUMEER T}

Width: | 108 |

T “mma | T
Harizantal Align: | Left w | Wertical Align: Iq:nu:ut sek v|
Sartable

[QK !%_H Cancel ” Apply ” Help

Figure 3-32 Table Layout dialog: specifying columns

3.3 Basic Components

Figure 3-33 shows Creator’s dialog for specifying options for the table. Here
you can set the table’s title, description (summary), footer, and a message to
display if the table is submitted without data. The checkboxes let you enable
various options for the table component, including buttons to select all rows,
clear sorting, open or close the table’s sort panel, and enable pagination and a
page size number. After making your selections, click Apply, then OK.

¥: Table Layout - table1

Calumns |;

Title:
Summary':
Footer:

Empty Data Message: |

[]5hav Select All Rows Buttan
[] shaw Deselect All Rows Buttan
[]shaw Clear Sort Buttan
[]show Sort Panel Toggle Button

[]Enable Pagination

I O %J[Cancel][Apply][Help

Figure 3-33 Table Layout dialog: specifying options

Book Examples

* “Configure the Table” on page 362 (Chapter 8). Uses a table component with
an object list data provider. Enables table pagination.

* “Configure Table Component” on page 398 (Chapter 9). Uses a table
component with an SQL query parameter.

¢ “Add a Table Component” on page 404 (Chapter 9). Builds a master-detail
relationship using data binding with a table component.

* “Modify the Table Layout” on page 414 (Chapter 9). Uses a table component
with text field components for updating data.

¢ “Add Components” on page 431 (Chapter 9). Uses a table component with
checkboxes.

99

100

=] Text frea

Chapter 3 Creator Components

¢ “Add a Table Component” on page 480 (Chapter 10). Uses a table
component with an object array data provider and web services.

¢ “Configure Table Component” on page 560 (Chapter 12). Uses a table
component with portlets and database access.

Text Area

Text area components gather textual information for multiple lines. This com-
ponent is similar to a text field, but you build it with rows and columns (see
Figure 3-34). Its standard look displays several lines, and a vertical scrollbar
appears if the number of lines exceeds the number of rows. Text area compo-
nents let you specify their size, provide text for a tooltip, and bind their text
property to objects or data providers. Text area components are rendered as an
HTML <textarea> element.

Please provide any additional information in the box below:

When you select components,
Creator generates code in the
page’s J3P source as well as
support code in the associated
Java page bean. Furthermare,

it places the component in the
Cutline Window where you can
|editits properties and change » |

| Confirm Information

Figure 3-34 Text area component on a web page

Text area components are common with web applications that solicit free-
form text. Examples are composing letters, listing comments, sending email,
posting to guest books, filing bug reports, or reviewing products.

The getText () method retrieves the text and setText () sets it. The text is
sent to the server when the page is submitted. Like the listbox component, text
areas work with value change events and the processvalueChange () event
handler. To configure this method, double-click the text area component in the

design view. Creator generates the event handler method in the Java page bean
for you.

Example

You can bind the text property to a session bean property to automatically
save submitted text in session scope. For example, here is the generated JSP

3.3 Basic Components

code for a text area component that binds its text property to session bean
property userInfo (shown in bold).

<ui:textArea binding="#{Pagel.textAreal}" id="textAreal"
style="height: 120px; left: 48px; top: 72px;
position: absolute"
text="#{SessionBeanl.userInfo}"/>

101

Text Field [Text Field

The text field component enables users to input a single line of text. The input
string is stored in the component’s text property, and a value change event is
generated when you change the text. The component’s getText () method
reads the text and setText () sets it. The text is sent to the server when the
page is submitted. Text field components are rendered as an HTML <input
type="text"> element.

Figure 3-35 shows a text field in a browser window that prompts for a per-
son’s first name. The text field’s 1abel and toolTip properties are set to the
strings shown. The boolean required property makes a red asterisk appear
with the label and alerts the user that input is mandatory.

<A TextField - Microsoft Internet Explorer Q@@
File Edit Wew Favorites Tools Help -;,'

»»

3 B > | = & o) Search 57 Favorites

* First Name II

Please enter your first name |

&] Done % | ocal intranet

Figure 3-35 Text field component on a web page

With text fields, you can attach a length validator, a required validator, or
range validators (with converted numerical values). Value change events occur
only if no validation errors are detected. When a text field component gener-
ates a value change event, the JSF implementation invokes the value change
event handler for that component. Message components are handy for report-
ing validation or conversion errors with text fields. (See “Message” on
page 88.)

You can also attach a data converter to a text field. To do this, select the con-
vertor you want from the converter property in the Properties window under

102

Chapter 3 Creator Components

Data. When you apply a data converter, the type of the text property changes
from String (the default) to the converted type. If you don’t want all input com-
ponents on the page to be validated, use virtual forms (see “Configure Virtual

Forms” on page 216).

Text fields may be embedded in table components and you can bind them to
data or other objects. Figure 3-36 shows the Property Bindings dialog box for
binding a text field component to a JavaBeans property. Here, we bind text
field username with the username property in the JavaBeans component login-

Bean.

¥- Property Bindings for userName

Select bindable property

Select binding target:

] text Al . (P}'uﬁe-l:t; not bound) ~
columns iRt /4 LoginBad
#® converter Converier H-j2] pagel
disabled boolean “_4 LoginGood
label String #-{¢3] page1
labelLevel int ‘cA Pagel
maxlength int |+.@ pagel
® orBlur String 8 Requestiivant
onchange Shring 4 SessionBeanl _
!] é loginBean | oginB=san
 anchee Str.'.".\g. : ‘ property: loginGood Boolean
¥-.opbhiCick ‘ property: password String
onFocus Sthing e [
& orkewDiown Strinen ol] J ApplicationBeanl d
(Esestt NI haianesd IO Al -4 localeCharacterEncoding |
Current binding for bext property:
| #{sessionBeant.loginBean, username} [Clear |
Mews binding expression:
[-ﬁ:[::.;é;s-ial:uﬁé:a_n_l.IoginBean.username}- H Apply]

Figure 3-36 Property Bindings dialog with text field component

Book Examples

* “Configure Virtual Forms” on page 216 (Chapter 5). Excludes validation of

text field components with virtual forms.
¢ “Bind Input Components” on page 237 (Chapter 6). Shows binding

properties with a text field.

3.3 Basic Components

* “Create the Form’s Input Components” on page 250 (Chapter 6). Shows text
fields with converters and validators.

¢ “Add Components to the Page” on page 299 (Chapter 7). Uses a text field in
a nested grid panel.

* “Modify the Table Layout” on page 414 (Chapter 9). Uses text fields with a
table component.

¢ “Add Components” on page 419 (Chapter 9). Uses text fields to gather input
for database row insert operations. Uses virtual forms.

¢ “Add a Text Field Component” on page 454 (Chapter 10). Shows validators.

¢ “Add Components for Input” on page 620 (Chapter 13). Uses text fields with
a custom validator method.

Tree i

The tree component lets you render data in an expandable list with a hierarchi-
cal tree structure. In web applications, trees are useful for navigating through
nested data, like file systems and categories. A tree component contains tree
nodes, which act like hyperlinks. In the design palette, a nested tree node com-
ponent appears when you expand a tree node, as shown in Figure 3-37.

: Outline a x
| =l Pagel |
=3 pagel
=-f&3] htmi1

Tree

El Tree Mode 1

Figure 3-37 Tree component

Figure 3-37 also shows you the design canvas for a tree component and its
Outline view. Note that a tree node has an embedded image component. Once
you expand a tree component and drop it on the design page, you can drop
tree node components to build nested structures.

Initially, when you drop a tree component on a page, the root node is labeled
Tree and the subnode is labeled Tree Node 1. The text property lets you set the
strings to be rendered for these nodes, and the toolTip property gives users
more information about the node.

Tree

103

104

Chapter 3 Creator Components

Creator Tip

When you drop tree node components on tree components, pay attention to
what Creator outlines in blue. If the entire tree component is blue, the tree
node will render as a sibling of the tree component. Otherwise, the tree node
will render as a nested node underneath the node outlined in blue.

There are several important properties with tree components. The url prop-
erty lets you navigate to another page or display data like a PDF or JPEG file.
Binding the action property to an action event handler makes the tree node
automatically submit the current page. The clientSide boolean property con-
trols whether a request to the server is made each time a user expands or col-
lapses a node.

Example

Figure 3-38 shows a tree component called Download Site with tree nodes
Home Page and Music. Underneath the Music node are the nested tree nodes
Jazz, Rock, and Country.

Download Site

[} Home Page
v Music
[Jaz
[} Rock

[} Country

Figure 3-38 Example tree component

Note that the image for a tree node is a page icon if it is not nested. Other-
wise, a folder icon appears with an arrow if the node has children (nested
nodes). On a web page, users may expand or collapse the folder to see the
nested nodes by clicking the arrow icon.

Suppose a web application displays PDF files for the Jazz, Rock, and Coun-
try music categories. When you select a tree node on the design page and click
the url property customizer box, a dialog appears to set the property. Clicking
the Add File button lets you browse for the location of the PDF file you want to
display. Figure 3-39 shows this dialog for the Jazz tree node.

3.4 Layout Components 105

¥ treeNode3 - url

(D Usebinding (%) Use value

LRL: f,—f.resourcesll'Jazz.de v !

- (B Pagel Add File

= 1_"| resources
----- B country.pdf
..... B rock.pdf
Lo shylashest,css

[[w]'d M [Unset Property] [Cancel] [Help

Figure 3-39 Url dialog for tree node component

Creator Tip

At the time of this writing, tree node selection events do not work in portlet
projects.

3.4 Layout Components

The following catalog of layout components describes each component and
gives you common usage scenarios. To show you how layout components can
be useful in a Creator project, we also point you to relevant examples in other
chapters of this book. The layout components are listed alphabetically for easy
lookup.

Form B foem

The IDE makes sure that every new page that you create already has one form
component. If you want to add more forms, drag the form component from the
design palette and drop it on the page. This is usually not necessary in most
applications, but you may want to manage certain components in their own
forms. If you add a new form component to a page, it appears in the Outline

106

[arid Panel

Chapter 3 Creator Components

view along with forml, the default form (see Figure 3—40). New form compo-
nents render as selected boxes in the design canvas.

: Qutline 0%

| = Page1

| =-[€3] paget

| =3l b

#- €3] head:

'—.@ body1
#-] Farml

- |{| Forme

Figure 340 Form component Outline view

Creator Tip

If you need nested forms, use a virtual form (see “Virtual Forms” on

page 70). Although you can always delete form components that you add to a
page, it is not possible to delete the default form component, since every page
must have one.

Grid Panel

A grid panel component is a general-purpose container that groups other com-
ponents and controls their layout. When you drop a grid panel on the design
canvas, you can place other components inside of the grid panel. Creator fills
the grid panel with your components in a grid (rows and columns) layout. The
components appear on the grid panel in the order that you drop them. (You
can rearrange components later by “re-dropping” them on the grid panel.)
Grid panels render as HTML <table> elements.

By default, grid panels have one column but you can modify the columns
property to add more columns. The grid panel displays its components left to
right to fit the number of columns you specify. It also resizes the number of
rows based on how many components you have in the grid panel. Figure 341
shows a grid panel (box of dashed lines) in the design canvas containing a but-
ton, checkbox, and radio button. The grid panel on the left is a vertical layout
(one column, the default). Next to it is a grid panel with columns set to 3.

The grid panel is particularly useful when you don’t know how much space
a component will take up on the page. For example, if a static text component is
built dynamically and you want to place another component after it on the

3.4 Layout Components 107

Figure 3—41 Grid panel components

page, you can nest both components in a grid panel. The layout mechanism
adjusts the relative position of each component appropriately.

The grid panel component has other properties that control its appearance.
These properties include bgcolor for background color, cellspacing and
cellpadding for cell width spacing, and border for the width of the grid
panel’s border lines.

Creator Tip

Use the Outline view rather than the design canvas to work with nested
components. It’s much easier to place components on top of a desired target
with the Outline view. Rendering in the design view often obscures the
specific target component that you're trying to drop onto.

Y

&

Book Examples

¢ “Add a Grid Panel Component” on page 193 (Chapter 5). Uses a grid panel
to hold button components.

¢ “Add Components to the Page” on page 299 (Chapter 7). Uses nested grid
panels to help with component layout.

¢ “Layout and Grouping with Grid Panel” on page 459 (Chapter 10). Uses a
grid panel to group different components and control their rendering.

¢ “Add Components to the Page” on page 506 (Chapter 11). Uses a grid panel
and nested grid panel to help with layout. Uses static text components as
placeholders in grid panels.

¢ “Add Components to the Page” on page 525 (Chapter 11). Uses a grid panel
with table components to help with layout.

¢ “Using Grid Panel to Improve Page Layout” on page 597 (Chapter 13). Uses
a grid panel to handle layout for components rendered with text read from
properties files.

¢ “Adding Components to the Page” on page 619 (Chapter 13). Uses a grid
panel to help with layout.

108

Chapter 3 Creator Components

14 Group Panel GI’OUp Panel

Y

A group panel is a general-purpose container that groups components and
controls their layout. Whereas grid panels place components in a grid configu-
ration (you specify the number of columns), a group panel component uses a
flow layout. Depending on the width of the panel, group panels arrange com-
ponents one after the other in a flow. When there’s not enough room in the first
row, Creator continues with placement in a second row. Like grid panels, the
order in which you drop components on a group panel is the same order that
they appear on the page.

A group panel component renders as an HTML element and the
page bean implements a group panel as a PanelGroup object. (If you set prop-
erty block to true, a group panel renders as an HTML <div> element.)
Figure 3-42 shows a group panel (box of dashed lines) in the design canvas
containing a button, checkbox, and radio button.

Munder 21 ®Female

Figure 3—42 Group panel component

example, to place a group panel inside cells of a grid panel. This technique lets
you create interesting web pages by placing groups of components in each cell
of a grid panel. From the grid panel’s perspective, these nested components
are treated as a single cell.

. 4 Creator Tip
" Group panels are handy for grouping nested components. It’s possible, for

[Layout Panel Layout Panel

The layout panel component is a container that groups components and lets
you choose a layout mode. When you drag a layout panel component from the
component palette and drop it on the design canvas, the IDE gives you a Flow
Layout by default. As you drop components in the layout panel, the IDE aligns
them from left to right on the top line, moving them to the next line if there is
not enough room. This makes layout panels behave like group panels as you
add components.

If, on the other hand, you'd like to use the design canvas to position compo-
nents at arbitrary (absolute) places in the panel, change the panelLayout prop-

3.4 Layout Components 109

erty to Grid Layout (use the drop down list in the Properties window). Now
each component will be positioned relative to the nearest grid lines. This makes
layout panels behave like Creator’s design canvas (the default grid layout).

Figure 3-43 shows a layout panel (box of dashed lines) in flow layout mode
containing a drop down list, a listbox, and a button.

Coffer

Tes
Eqos e Order
g [Lorder]

Figure 3-43 Layout panel component

Layout panel components are also the default for tab set components (see
“Tab Set” on page 114).

Book Examples

* “Add Components to the Page” on page 289 (Chapter 7). Uses a layout panel
in Grid Layout mode to position components.

¢ See TabSet3 project in the Creator download file (FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3). Uses a tab set component with
embedded layout panels for each tab selection.

Page Alert) page dlert

The page alert component displays messages on a separate page. If you don’t
want to use a separate page, use an alert component from the Composite pal-
ette (see “Alert” on page 118). Page alerts are useful because they have recog-
nizable icons and configurable messages. Figure 3-44 shows the page alert
component after you drop it on the design canvas.

Page ,q.rm Summary

Figure 3—44 Page alert component

110 Chapter 3 Creator Components

The type property in the Properties view contains a drop down list of icons
and alert types. There are four types of alerts: error, warning, information, or
question. The summary property displays a brief text message for the alert, and
the detail property lets you display a longer, more detailed message. You can
also right-click a page alert component and bind its properties to a Javabeans
property or another object.

Figure 3-45 shows two page alerts in a browser window. The left alert dis-
plays a brief information message. The right alert shows an error alert with a
brief reason for the alert followed by a detailed suggestion.

Not allowed to access

Follow the Directions Below contact website administrator

Figure 3—45 Page alert components

= Refsgrentioc - Page Fragment Box

Page fragments are separate, reusable components that you include in multiple
web pages. The Page Fragment Box component generates a JSP directive that
includes a JSP file fragment in your page. Page fragments let you build web
pages that have consistent form. You may, for instance, use page fragments to
include the same graphic header in all pages of an application.

When you select a page fragment component and drop it on the design can-
vas, Creator pops up a dialog that lets you create a new page fragment or select
an existing one. Figure 3-46 shows the Select Page Fragment dialog.

Page fragment files show up in the Projects view Web Pages > resources
node as a .jspf file. In the Outline view, a page fragment box appears as a node
underneath an HTML <div> element. The name of this node has the format
directive.include:fragment._file.jspf, where fragment_file is the name of your
page fragment file. Figure 3-47 shows the Outline view for the Fragment1.jspf
page fragment.

Once you have a page fragment box, you can add visual elements to it as
needed. A typical example is a page fragment consisting of a banner with a
company’s logo (an image component). As you create pages in your web appli-
cation, drag a page fragment box component to the page, position it, and spec-
ify the page fragment name.

3.4 Layout Components 111

®: Select Page Fragment @

Select a page fragment to include on the page.

Page Fragment: %ragmentl .jspf b |

Create Mew Page Fragment...]

Figure 3—46 Select Page Fragment dialog

: Qutline X
=l Pagel
=-4e3] paget
=-fe3] htmit
- fe3] headi
=-fe2] body1
=] Formi
S-fe3] div
I directive includs: Fragment1 jspf

Figure 3—47 Page fragment Outline view

Creator Tip

When adding components to page fragments, make sure the id of any new
component does not conflict with any component id names on the including
page. Also, virtual forms are not allowed within page fragments.

Book Examples

“Banner Page Fragment” on page 310 (Chapter 7). Uses page fragment box
components to create uniform looking pages.

“Using Tab Sets and Page Fragments” on page 329 (Chapter 7). Uses a page
fragment box with tab set components.

112 Chapter 3 Creator Components

= rae s PAQE Separator

The page separator component creates a horizontal line on your page. This lets
you separate other components for a better visual layout. Page separator com-
ponents are rendered as HTML <hr> elements. You can change a page separa-
tor’s width and appearance in the Properties view. In the page bean, a page
separator component is a PageSeparator object.

Figure 3-48 shows a page separator with a drop-down list, text field, and
submit button.

Select Player
Page Separator

.E-Iasehal.l v /

Figure 348 Page separator component

{E] Property sheet Property Sheet

The property sheet component is a layout composite component. In the design
palette, property sheets contain nodes for nested property sheet section com-
ponents and property components (see Figure 3—-49).

‘Palette 4 x

[2157 Property Shest ~ I %]
g : 1~
] Property Sheet Section

FProperty Sheet Section 1
- Property 1

Figure 3—49 Property sheet component

When you drag a property sheet component to the design canvas, the initial
layout is one sheet section containing one property, as shown in Figure 3—49.
It’s possible to have multiple sheet sections on a page with header strings ini-

3.4 Layout Components

tialized with the sheet section’s label property. You can also have multiple
property components within each sheet section.

Property components are containers with labels, optional help text, and
default formatting. By default, the property component displays read-only
data, but you can attach input components, such as calendars, drop-down lists,
or text fields. To add new properties, drop a property component on a property
sheet section, or right-click the property sheet section component and select
Add Property. After creating property components, the Outline view is helpful
for dropping input components on a selected property. Figure 3-50 shows a
layout with one sheet section (sectionl) and four properties. Each property
has its own input component.

: Qutline a0 X
=/ Pagel ~
| 2-fe3] page1 |

=-fe3] htmit
+ fe3] headt
=-fe2] body1
=] Formi

BBl opertySheat]
sectionl
=] property1
© L textFieldl
=[] propertyz
: b E calendar1
=[] property3
o E calendarz
=[] property4
bt =] dropDowinl
...... & dropDownlDefaultOptions i

Figure 3-50 Property sheet Outline view

There are several important properties for property sheet components. The
requiredFields property displays a required fields message (and red asterisk)
when set to true. A property sheet component also contains an anchor compo-
nent by default (see “Anchor” on page 72). If you set the jumpLinks property,
the property sheet displays links to its sections at the top of the property sheet.
If a property has an input component, you can set the optional required prop-
erty for that component to force data entry on the page.

Example
Property sheets are handy for creating data entry forms. Figure 3-51 shows an
entry form for a rental car reservation in a browser window.

Here, we have one property sheet set up with properties and input compo-
nents. Note that this property sheet has required fields for most of the input

113

114

59 Tab set

Chapter 3 Creator Components

* Indicates required field

Rental Car Reservation
s :
Pickup City
* pickup Date B ._
mmiddiyyyy
* Return Date _

mm/ddiyyyy
Car Type . Sub Compact v-

Figure 3-51 Property sheet example

components. The drop-down selection is not required for input and defaults to
the initial string Sub Compact. The requiredFields property is set here to dis-
play the required fields message.

Tab Set

The tab set is a layout composite component. In the design palette, tab sets con-
tain a nested tab component node (see Figure 3-52). Tab set components let
you click tabs to view alternate sets of components or navigate to different
pages. Each tab in a tab set is a tab component with configurable properties. To
add a new tab, right-click the tab set component and choose Add Tab or drop a
new tab component on a tab set (or another tab component for nested tabs).

In the Outline view, tab components provide a default layout panel (see
Figure 3-52) to hold components that become visible when a user clicks a tab.
Each layout panel’s panelLayout property is set to Grid Layout by default, but
you can change it to Flow Layout in the Properties view. If you use tab sets to
navigate between pages, be sure to delete each tab component’s layout panel.
The selected property of a tab set component determines which tab is initially
selected. Tab selections also change color when you select them.

You can create an event handler by double clicking any tab component of a
tab set in the design view. It’s also possible to bind a tab component’s text prop-
erty to an object or data provider.

I.:"glell:l.:e a x ; ; ; ; : :
f A £ ot S iy o1 . k
=5 Tabset i]
el Tah 1z Tah 1 oo
. .'_ajmutPaneI el
u| .o
S —— P -

Figure 3-52 Tab set component

Creator Tip

3.4 Layout Components

| Outline

115

4 =

=l Pagel
=-[¢3] page1
=-fe2] htmi
#-[£3] headi
= fe3] body1
=] Formi
=9
=4 tabl
il [layoutPanelt

When you drop a tab component to the left or right of an existing tab in a tab
set, the tab component appears in the same row of tabs. Otherwise, the tab
component will be a child of the tab component that you drop it on. You can
have at most three levels of tabs in any tab set.

k‘

Figure 3-53 shows the design canvas for a tab set with three tab compo-

nents. In the Outline view, each tab component has its own layout panel.

|: Dutline A0
J Music Film | Video | = Pagel
.f_ayoutPane.l'_' R e Ellcj Pagel
=3 heml1
............................. -IG3] headt
............................. E-fe3] body1
Elﬂ farm1

............................. -

-4 music
[layoutPanell
21472 film
:] [layoutPanelz
-4 yideo

] [layoutPanels

Figure 3-53 Design canvas and Outline view of tab set

116 Chapter 3 Creator Components

Book Examples

* “Using Separate Tab Sets” on page 324 (Chapter 7). Uses separate tab set
components to navigate among pages.

e “Add Tab Set and Tabs to CactusBanner” on page 329 (Chapter 7). Uses a tab
set component with a page fragment for navigation.

¢ See TabSet3 project in the Creator download file (FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3). Uses a tab set component on one page
to display different sets of components.

3.5 Composite Components

The following catalog of composite components describes each component and
gives you common usage scenarios. The composite components are listed
alphabetically for easy lookup.

[Add Remove List Add Remove List

The add remove list component lets users select items from one list and add or
remove them from another list. The component displays two listboxes and two
buttons. One listbox displays available options and the other displays selected
options. The buttons let you add or remove options from the two listboxes.

Figure 3-54 shows the layout after you drop the add remove list component
on the design canvas and fill in the selection items in the available listbox.

s Airailable: R R e e D . Selected:
 [First Marme | Add = | _

Last Mame |
Email
| |Phane Number
- |Address
|| City
|Lipcode
~|Country

= Remove | |

Figure 3-54 Add remove list component

3.5 Composite Components

The selection items can be set through the Properties window or dynami-
cally generated at run time. Creator automatically supplies a converter for non-
String data fields when you fill the list from a data provider. The selected
property of the add remove list returns the selected items. The items property
associates the component with a data provider.

To specify the choices, select the non-visual addRemoveList1lDefaultItems
component in the Outline view. In the Properties window, click the editing box
opposite property options. Creator pops up a dialog so that you can add, edit,
or remove items. (This is the same dialog box used to specify Display/Value
fields with the Listbox component. See Figure 3-20 on page 87.)

You can also right-click the add remove list component and select Edit Event
Handler from the pop-up menu. The validate option lets you insert Java code
that validates user input, and the processvalueChange option lets you insert
Java code that executes when a component’s value has changed.

Example

Let’s add a submit button and a static text field to the sample page shown in
Figure 3-54. In a browser window, the submit button determines which selec-
tions were made and the static text field displays them. Figure 3-55 shows the
results of clicking the Submit button after adding an email, city, and country to
the selected listbox. The static text field displays the selected string items.

_Available: : Selected:
[First Name i ad [[Email
|Last Mame — - |lcity
|Phone Number L. | [Country
|Address
||[Zipcode

|dilbert@yahoo.com|Anywhere|USA|

Figure 3-55 Add remove list component with selections

117

118

|=r—| Alert

Chapter 3 Creator Components

Here is the Java code for the Submit button event handler method that reads
the selections from the add remove list component and displays the strings in
the static text component.

public String submit action() {
String selections = addRemovelistl.getSelectedValues();
staticTextl.setText (selections);
return null;

Alert

The alert component lets you display messages on a page. Alerts have recog-
nizable icons and configurable messages. When you drag an alert component
from the palette and drop it on to the design canvas, the default is an error
alert, as shown in Figure 3-56.

@ Avort summary

Figure 3-56 Alert component

The type property in the Property view contains a drop down list of icons
and alert types. The are four types of alerts: success, error, warning, and infor-
mation. The summary property displays a brief text message for the alert, and
the detail property lets you display a longer, more detailed message. If the
summary property is empty, the component won't display on the page. You can
also right-click a page alert component and bind its properties to a Javabeans
property or another object.

Component alert includes an embedded hyperlink component, which you
access by setting property 1inkText. To specify an action event handler for the
hyperlink component, right-click the alert component and select Edit action
Event handler.

Example 1

Figure 3-57 shows a page with a success alert directing users to a second page.
To show the check mark icon, we set the alert component’s type property to
success. The summary and detail properties are set to “Item in Stock” and “To
Process Your Order”, respectively. Users are directed to another page via the
linkText property, set to the string “Click Here”.

3.5 Composite Components

<3 Page Alert - Microsoft Internet ... [Z|@g|

File Edit Wew Favorites Tools Help :,'

& item in stock

To Process Your Order
» Click Here

Figure 3-57 Success alert with page navigation

To implement page navigation, we use Creator’s page navigation editor to
specify navigation. Figure 3-58 shows the page navigation editor connecting
the two JSP pages with string “alertOutcome”.

Pagel.jsp Page.jsp

alertCutcome

Figure 3-58 Page navigation editor

The IDE generates an event handler when you double-click the alert compo-
nent. Here is the Java code for the alert event handler method, which simply
returns the same string used by the page navigator.

public String alertl action() {
return "alertOutcome";

}

Example 2
You can use alert components in place of message or message group compo-
nents. Figure 3-59 shows project Colorl (see “Creating Custom Validation” on
page 611) running in a browser. We replaced the three message components

119

120

Chapter 3 Creator Components

with alert components (with property id of redalert, greenAlert, and blue-
Alert).

3 Color 1 - Microsoft Internet Explorer

File Edit WView Favorites Tools Help

Color Fun

@ validation Error: @ ki Hex @ 5 Hex
Value is required. characters must be numbers must be
b [0-9](A-F][a-f] only. two digits exactly.

Update Color

a8 il

Figure 3-59 Using alert instead of message to display validation errors

In the page bean method prerender (), we invoke helper method set-
AlertMessage () to set the alert’s summary property with a component-specific
message from the FacesContext.

public void prerender () {
setAlertMessage (alertRed, redInput);
setAlertMessage (alertGreen, greenlnput);
setAlertMessage (alertBlue, bluelnput);

Method setAlertMessage () obtains the FacesContext and any messages
associated with inComp, its argument’s component. FacesContext method get-
Messages () returns an Iterator of FacesMessages for the component’s
clientId passed as an argument. Conveniently, the alert component does not
display if its summary property is empty.

private void setAlertMessage (Alert ac, UIComponent inComp) {
FacesContext context = FacesContext.getCurrentInstance();
Iterator mi = context.getMessages (
inComp.getClientId (context));

3.5 Composite Components 121

String newMessage = "";

while (mi.hasNext()) {

newMessage += ((FacesMessage)mi.next ()) .getSummary ()+"";
}
ac.setSummary (newMessage) ;
}

Breadcrumbs 1@ ereaderumbs

The breadcrumbs component is a default layout for hyperlinks. The name
comes from an old hiker’s trick where you drop breadcrumbs on a trail to find
your way back and not get lost. With applications having many different web
pages, breadcrumbs typically show a user’s location by displaying the path
through the page hierarchy to the current page.

When you drag a breadcrumbs component from the palette and drop it on
the design canvas, the IDE includes a nested hyperlink component for every
page in the application. Figure 3-60 shows the Design view and Outline view
for a breadcrumbs component with two pages.

: Outline 4 x
2 =l Pagel '
| B-je3] paget

=-fe3] htmlt
#-fe3] head1
=-fe3] by
_ I{I Farml
BRI fbreadcrumbs1
i hyperlinkl: Page 1
- hyperlinkz: Page 2

Figure 3-60 Breadcrumbs component

In the Design view, the breadcrumbs component separates hyperlinks by
right angle brackets (>). By default, the initial component has a single hyper-
link that points to the current page.

The url and action properties of each hyperlink are set the same way for
breadcrumb components (see “Hyperlink” on page 82). You populate a list of
hyperlinks by setting the pages property of a breadcrumb component to point
to any array or list of HyperLink objects. You can also bind the pages property
to a JavaBeans component or data provider.

122 Chapter 3 Creator Components

Creator Tip

With portlets, the IDE does not provide a default hyperlink for breadcrumb
components. You must add the hyperlinks yourself.

Example

Suppose an application has separate web pages to help users edit, compile,
debug, and test a program. On the test page, it may be important to refer to the
previous pages for information that relate to testing. Figure 3-61 shows a
breadcrumbs component in a browser with links to the previous pages visited
by the user.

2N BreadCrumbs - Microsoft Internet Explorer

File Edit View Favorites Tools Help "f

Test Page

Edit = Ci.%gile = Debug > Test

Figure 3-61 Breadcrumbs Example

Property url of each hyperlink in the breadcrumbs component is set to the
page that was previously visited.

23] 1nline Help Inline Help

The inline help component is similar to a label. However, inline help compo-
nents are restricted to displaying short help information for users on web
pages. Once you drop an inline help component on the design canvas, you can
type text directly in the component box. You may resize the box and the text
wraps automatically. Figure 3-62 shows an inline help component on the
design canvas.

3.5 Composite Components

Figure 3—-62 Inline help component

The inline help component has a type property which may be set to page
(the default) or field in the Properties view. Page view is a larger font that
applies to a page, whereas field view is a smaller font to help describe individ-
ual components. You can set the style property of an inline component using
the Style Editor and the styleClass property using the styleClass Property
editor. The text property can also be bound to an object or data provider.

Example

Figure 3-63 shows a page in a web browser with an inline help component at
the top with type property set to page. Below the Confirm Selection button, a
second inline help component appears with its type property set to field.

A Inline Help Example - Microsoft Internet Explorer [Z||E]rg|
File —Edit Wew Favorites Tools Help |',"

Inline Help
Step 2: Choose a recording ~<@———— (page)

Select a recording Confirm ection

IEENE « | Click Confirm Selection ~—

Sgi. Pepper's Lonely Hearts Cl

Inline Help
L (field)

Figure 3-63 Inline help example

123

124

Chapter 3 Creator Components

3.6 Validators

Creator provides a set of standard objects that validate user input gathered
through UI components. The JSF architecture builds validation into the page
request life cycle process, making validation an easy task for the developer to
specify. Figure 3-64 shows the available validators in the Creator Components
palette.

Palette A
+| Basic

+| Layout

+| Composite

(=) Yalidators

4 Double Range Yalidator

------ « Length Validator

“inf Long Range Validator

Figure 3—64 Validators

Validation Model

In Creator, you attach a validator object to a component by selecting a validator
from the design palette and dropping it onto the component in the design can-
vas. You can also select a validator from the drop down list opposite property
validator in an input component’s Properties view. Validators have properties
that you can manipulate to specify range limits (for example).

The JSF life cycle (see Figure 6-16 on page 261) includes a Process Validation
phase. For components that have registered validators, JSF will validate the
component’s data. When validation errors occur, the affected component is
marked “invalid” and an error message is sent to the JSF context.

Validation errors affect the life cycle process. Validation errors cause the
page to proceed directly to the Render Response phase, skipping the Update
Model Values phase and Invoke Application phase. This means events such as
button clicks are not processed. When a page has multiple components with
registered validators, all input is validated. This is helpful to the user since
feedback (error messages) for the entire page can be displayed. Table 3.1
describes the validators in more detail.

There are three standard validators: a Double Range Validator for floating
types, a Length Validator for strings, and a Long Range Validator for integral
values. You can also write your own custom validation method. Note that each
standard validator has properties for minimum and maximum values. The
Length validator works with String data, and the Double Range and Long

3.7 Converters

Table 3.1 JSF Validators

Name Description Example
Double Range Validator ~ Specify minimum and “Use Validators and Converters” on
maximum values. page 252 (Chapter 6). Uses a Double

Range Validator with a text field to
check the range of a double.

Length Validator Specify minimum and “Add a Validator” on page 475
maximum values. Does (Chapter 10). Uses a Length
not detect empty input Validator with a text field.
fields (you use required
property of component).

Long Range Validator Specify minimum and “Place Interest Rate and Term
maximum values. Components” on page 255 (Chapter
6). Uses a Long Range Validator
with a text field to check the range of
an Integer value.

Custom Validate Method validate- “Add a Validation Method” on
HexString () method page 617 (Chapter 13). Shows how
checks for a 2-digit hex to implement your own validation
string method.

Range validators are typically used with converters to convert a component’s
data to the correct type.

Table 3.1 also points you to examples in the book that show you how to use
the validators. This includes an example of a custom Validate Method called
validateHexString() that checks for a 2-digit hexadecimal string in a web
application.

3.7 Converters

JSF strives to separate presentation data (the data that users read and possibly
modify) from internal data or model data. To accomplish this, you should use
JavaBeans components, EJB components, JDBC cached rowsets, and other
application-specific structures to represent model data and behaviors. JSF also
makes sure that any data conversions between the two views are consistent
and well-defined.

Figure 3-65 shows the available converters in the Creator design palette.

125

126 Chapter 3 Creator Components

: Palette A x
i+ Basic -
+| Layout
+| Composite
1+ Yalidators
I=I Conwverters
g # Big Decimal Converter
> ------ 4 Boolean Converter

i A Calendar Conwverter

------ _-:Jr Character Converter

B + Date Time Conwerter

o Double Converter

i 4 Float Conwerter

------ 4 Integer Converter

B + Long Converker

i Number Converter

i Short Converker

------ _-:Jr aql Timestamp Converker bt

Figure 3-65 Converters

Conversion Model

A UI component (components for input such as text fields or components for
output such as labels and static text components) can take a data converter to
convert its data to a specific type. Typically (but not always), the component
may be bound to a JavaBeans property of that type. For example, in project
Paymentl (see “LoanBean” on page 242), we bind a text field component
(LoanAmount) to the amount property of LoanBean. Property amount is a Dou-
ble, so we apply a Double converter to the text field component.

Like the validation process, JSF sets aside specific times to perform conver-
sions. For an input component, conversion applies to the submitted input
before validation. When errors occur, the affected component is marked
“invalid” and conversion error messages are sent to the JSF context. JSF pro-
ceeds to the Render Response phase in this case.

Creator applies converters automatically to data-aware components when
the source data type is not a String. Table 3.2 describes the converters available
on Creator’s palette.

Most of the converters are straightforward and provide a conversion that’s
obvious from their name. Note that all converters use wrapper classes (sub-
classed from Object) instead of the primitive types. This allows the text prop-
erty (type Object) to accept all of these types.

3.7 Converters

Table 3.2 JSF Converters

Name Description/Example

Big Decimal Converter Converts between String and java.math.BigDecimal.
Boolean Converter Converts between String and Boolean.

Byte Converter Converts between String and Byte.

Calendar Converter Converts between String and java.util.Calendar.
Character Converter Converts between String and Character.

Date Time Converter “Configure the Table” on page 362 (Chapter 8). Converts

between String and java.util.Date.

Double Converter “Use Validators and Converters” on page 252 (Chapter 6).
Shows a double converter with an interest rate value and a
loan amount value.

Float Converter Converts between String and Float.

Integer Converter “Place Interest Rate and Term Components” on page 255
(Chapter 6). Shows an integer converter with a loan term
value.

Long Converter Converts between String and Long.

Number Converter “Place Button, Label and Static Text Components” on

page 256 (Chapter 6). Shows a number converter with a
currency value.

Short Converter Converts between String and Short.

Sql Timestamp Converter ~ Converts between String and java.sql.Timestamp.

The Date time converter, Number converter, and Sql Timestamp converter
require a bit more explanation, however, so let’s do that now.

Date Time Converter

The Date Time Converter converts a component’s data to a java.util.Date.
When you apply a Date Time Converter to a text field, the textual input is con-
verted. The field on the page is updated with a standard format during the
Render Response phase. You can always configure a Date Time Converter’s
format if you need to. If you don’t specify a locale, the Date Time Converter
uses the default locale (see “A Word About Locales” on page 593).

The Date Time Converter uses the format rules and patterns of the Date-
Format class. See the tutorial at http://java.sun.com/docs/books/
tutorial/il8n/format/dateFormat.html for more information on format-
ting; see also the Javadoc for the DateFormat class at http://java.sun.com/
j2se/1.4.2/docs/api/java/text/DateFormat.html.

The Date Time Converter uses a default pattern if you don’t configure it dif-
ferently. The data are assumed to be a date (as opposed to time) using the pat-

127

128

Chapter 3 Creator Components

tern MMM d, yyyy. Although full names for the month are accepted, the Date
Time Converter shortens it to three letters and rejects numerical values. On
input, you must supply a comma. See “Configure the Table” on page 362 for an
example of applying the Date Time Converter to a table column.

Of course, your choices for other formats are more flexible. Table 3.3 shows
the results of applying the Date Time Converter to a specific date (April 5,
1985) in String format. The table shows several formatting patterns and the
effect of setting the dateStyle property to medium, long, and full.

Table 3.3 Date Time Converter

Property/Pattern Result

medium Apr 5, 1985

long April 5, 1985

full Friday April 5, 1985
MM-dd-yy 04-05-85

EEE, MMM d, "yy Fri, Apr 5, ‘85

Number Converter

A Number Converter lets you manipulate numerical data using either a pat-
tern, or specifying minimum and maximum digits and fraction digits. Since
numbers are sensitive to language and locale, a Number Converter can use
locale.

The Number Converter uses a pattern with separate properties for manipu-
lating a format (such as currency symbol, integer digits, fraction digits, and
locale). We use a Number Converter to convert a double to a dollar (String)
value here (see “Place Button, Label and Static Text Components” on page 256).
Also see Figure 11-8 on page 509, which shows the Number Format dialog. We
use it in Figure 11-8 to convert a BigDecimal value to String for output, using
pattern “USD #,###.00” for a currency amount in U.S. dollars.

Sql Timestamp Converter

The Sql timestamp converter converts data between String values and
java.sqgl.Timestamp data types. It is also useful for binding a component to a
database column of type TIMESTAMP. You can use to convert input data to
type TIMESTAMP or display TIMESTAMP values on the web page.

3.8 AJAX Components 129

3.8 AJAX Components

Asynchronous JavaScript Technology and XML (AJAX) is a web development
technique for building interactive web applications. Its main purpose is to
allow asynchronous updates on a web page without refreshing the whole page
and without performing a submit and postback. Creator provides a component
library that includes experimental-technology AJAX components. To use these
components, install the Update Center’s most recent AJAX component library
and add it to the Components palette. Figure 3-66 shows the BluePrints AJAX
Components and Support Beans installed in the Components palette.

:Palette a X

| = BluePrints AJAY Components ~
----- Auto Complete Text Field |
------ 2 Map viewer

----- = Progress Bar

------ E_]" Select Value TextField

[=) BluePrints AJAX Support Beans
----- ¥ Geocoding Service Object

|| 17 Code Clips |)] Components

Figure 3—66 BluePrints AJAX Components and Support Beans

In this section, we’ll show you how to use the Component Library Manager
to add the AJAX component library to the palette. We show you how to use the
AJAX-enabled Auto Complete Text Field component in Chapter 13 (see “Using
AJAX-Enabled Components” on page 629 and “Using AJAX-Enabled Compo-
nents with Web Services” on page 642).

Creator Tip

Since the AJAX-enabled components are under development, you should
make sure you have installed the most recent component library from the
Update Center.

&

Y

Importing a Component Library

The first step in using one of the AJAX-enabled components is to import the
target component library into Creator.

130

Chapter 3 Creator Components

1. From the Creator main menu, select Tools > Component Library Manager.

Creator brings up the Component Library Manager dialog, as shown in
Figure 3-67. (Alternatively, right-click on one of the Component sections in
the Components palette and select Manage Component Libraries.)

& Component Library Manager

Component Libraries: Library Mame: |Sun Java Studio Creator Built-in Components i
Identification URI: | http: fiwiee, sun, comfweb i I
Version: | 1.0 |
3 Component Lisk: Defaul: Palette Settings
ol Java Sources
5 Web Resources On Palette Marne Cateqaries |
------) Help Sources
[] Add Remove List Composite |
2] Alert Composite =
ot Anchor Basic
< | > |E¥ Basic Table Data Filker Advanced Data Providers
|E#” Basic Table Data So... Advanced Data Providers v i
Impart, .. k [z | 3 |

Figure 3-67 Component Library Manager Dialog

Q1 W N

. Click Import. Creator brings up the Import Component Library dialog.

. Click Browse and navigate to the directory samples/complib.

. Select ui.complib and click Open.

. You'll see BluePrints AJAX Components and Support Beans in the text field

under radio button Import into Palette Categories defined by Library, as
shown in Figure 3-68. Click OK.

. The Component Library Manager dialog now shows the BluePrints AJAX

Components listed under the Component Libraries. The Component List
includes the Auto Complete Text Field, Map Viewer, Progress Bar, and
Select Value TextField (and support beans) as shown in Figure 3—-69. Click
Close to close the Component Library Manager dialog.

. From the Components palette, open the BluePrints AJAX Components sec-

tion to see these components added to the palette (as shown in Figure 3-66).

Creator Tip

More components will be included in the BluePrints AJAX Components
Library as they are developed.

3.8 AJAX Components 131

% Import Component Library

Camponent Library (¥, complib);

| DehSumCreatarzinb4, 11 samples) complibtui, complib | [_Browse...]

{7 Import into Single Palette Categary:
f = AJAY CAmpoRents |

(#) Impart into Palette Categaries defined by Component Library

L| BluePrinks AJA% Compaonents
!;| BluePrinks 4JAx Support Beans

L OKP\N\J[Cancel][Help

Figure 3-68 Import Component Library Dialog

%: Component Library Manager

Component Libraries: Libraty Marne: | BluePrinks A38% Components |

1= Sun Java Studio Creator Built-ir *~ Identification LRI | hittp:{ finsasun, comblueprints/ajax |

----- ‘= Design Time
..... = Run Time Wersion: | 0.1 |
B8 1avadac
Tavh Sonreal Component List: [Default Palette Settings]
iz Web R
g H:Ip S:jrocir:es On Palette Mame Cateqaries
; Auto Complete Tex... BluePrints AJAX Components
..... = Design Time Q Geocoding Service .., BluePrints AJAY Support Bean
""" ‘& Run Time |E¥ Gengraphic Paint BluePrints AJ4% Support Bean
----- 52 1avadoc |E¥ Map Marker BluePrints A2 Support Bean
Java Sources Q" Map Paoink BluePrints 434 Support Bean
g :;'elb SResources — '@' Map Viewer BluePrints AJAx Camponents
----- elp Sources v
€ R i & & Progress Bar BluePrints A28 Components
: [T select Value TextField EluePrints A14% Compaonents
I Import... l ’ Remove ¢ 1 3

Figure 3-69 After importing the BluePrints AJAX component library

132

Chapter 3 Creator Components

3.9 Key Point Summary

* Creator’s design palette contains components, validators, converters, and
data providers.

* Creator’s components are rendered in HTML.

¢ Creator components share many properties in common, such as text,
toolTip, style, id, and binding.

¢ Creator components that manipulate data can accept converters to convert
data to an from String form. You can also use converters to format data on
output.

¢ Input components share common properties, such as validator,
maxlength, required, valueChangeListener, and onChange.

* A value change event occurs when an input component’s selection changes
or its text changes.

¢ Creator generates a processValueChange () method when you double-click
an input component.

* The Auto-Submit on Change feature submits a page when an input
component fires a value change event. Creator generates a JavaScript
element and configures the component’s onChange property to implement
this feature.

* Table components (table and grid panel) have properties to control
appearance, such as bgcolor, border, cellspacing, cellpadding, and
columns.

* Creator provides component binding with data providers that wrap data
sources, JavaBeans components, web services return objects, and E]B return
objects. You can also apply property binding to arbitrary application data.
This simplifies transferring data between the presentation view and the
model view.

¢ A table component is data aware and offers sophisticated layout choices. By
specifying headers, footers, and embedded component types for its
columns, the page designer can build a custom page for displaying data.

* You can enable paging controls with table components. This is useful for
database queries or other data that produce more than a single page of data.

* JSF has data converters that encourage the separation of model and
presentation data. The Creator converters seamlessly convert presentation
data to and from model data.

* The Creator validators validate user input before events are processed.
Validation and conversion errors short-circuit the normal life cycle request
mechanism and re-render the page with error messages.

* Use a message or message group component to display validation or
conversion errors on a web page.

¢ Use message group components to display system or global errors.

3.9 Key Point Summary 133

* You can write your own custom validation method and hook it into the JSF
validation cycle.

¢ Use the Component Library Manager to import component libraries to
Creator’s Components palette, as well as to configure the palette.

¢ Creator includes a bundled BluePrints AJAX Components library, an
experimental technology set of components that use AJAX.

SOFTWARE
DEVELOPMENT

7 Topics in This Chapter

» Editing Java Code
+ Refactoring

g « Source Code Control with CVS
» Creating Non-Web Projects

Chapter

(IDE) that greatly simplifies the “edit-compile-deploy” cycle of complex

web applications. Based on NetBeans, the IDE has code generation and

navigation features that make it easy and pleasurable to edit and com-
pile programs. In addition to keyboard shortcuts and code completion, the IDE
also provides code refactoring and CVS source code control. All of these fea-
tures make up a development environment that helps you create, manage, and
maintain your web applications.

This chapter shows you how to use the Source Editor to write Java code
effectively. You will learn how to customize the IDE to your tastes and create a
comfortable environment to develop applications. We'll also show you how to
refactor your code when it becomes necessary to make large changes, like
changing the name of a method or a heavily-used class. Because source code
maintainability is so vital today with complex web projects, we’ll show you
how to put your code under CVS source code control. Along the way, there will
be plenty of examples to help you understand how to use these features' in
Creator projects.

S un Java Studio Creator has an integrated development environment

1. This chapter focuses only on editing, refactoring, and versioning in
the IDE. To learn more about Creator’s software development fea-
tures beyond these topics, consult the NetBeans documentation.

27

28

Chapter 4 Software Development

4.1 Using the Java Source Editor

The Java source editor is where you’ll spend a lot of your time in Creator. This
section shows you useful features that make it easier to develop your applica-
tions.

Finding What You Need

Creator allows you to customize the Java editor to suit your individual tastes. If
you select Tools > Options from the Creator toolbar and select Java Editor
under the Editing > Editor Settings node, you will see General and Expert set-
tings for the editor, as shown in Figure 4-1.

(®) Basic () Advanced

e | [Figeneral ~
-3 General Settings Code Formatting Rule Java Indentation Engine]
) Abbreviations Abbreviations [
' System Settings Auto Popup Completion Window
I Web Browsers Delay of Completion Window Auto Popup 500
& <Default System Browser> Case Sensitive Code Completion O
Loog® Inkernet Explorer Auto Popup Javadoc Window
2103 Editing Code Folding Code Folding [
g % - = Expert
el il Settu.ﬂgs Code Completion Instant Substitution
3 TEEERE [Insertion Point Blink Rate 300
[& HTML Editar Insertion Point Color W [0,0,0]]
[& Plain Editor Owerwrite Caret Calor W [0.0.0] E]
wa Editor Inserkion Paoink ‘Wertical Bar b
& 5P Editor Orverwrite Caret Solid Block. v
: : Fonts and Colors Fonts & Colors [
I Pt iy Code Completion Matural Sort E
B L Edior Highlight: Matching Bracket
DTD Editor Background Color of Javadoc Popup Window [[247,247,255] [
----- @ Wisual Designer Javadoc Preferred Size [s00, 300] E]
...... & Project Settings Key Bindings Key Bindings [
Line Height Correction 1.0
Macros Macros E]
Margin [0, 0,0, 0] [
|Pair Character Completion | |

Figure 4-1 Java Editor Basic Options

Note that you can do basic things like change code formatting rules, add
new editor abbreviations, or modify code folding for imports and methods. If
you are feeling like an expert, you can change fonts and colors, key bindings,
and even the insertion blink rate (to save on your eyes). Take a few moments to
click on the customizer boxes with several of the features here, and you will
learn a lot about what you can do to customize the editor.

4.1 Using the Java Source Editor

If you click the Advanced radio button in the Options dialog, you will see
the Java Code Formatting Rule settings under the Editing > Code Formatting
Rules node. Figure 4-2 shows the list of configurable rules that affect code for-
matting.

(O Basic (&
. Options =l zeneral
£ Euiding | |Expand Tabs ko Spaces

" |Mumber of Spaces per Indent 4

5 ant Setti
& Ank Settings Add Leading Star in Comment

=3 Edting Add Mewline Before Brace |
ML Add Space Before Parenthesis [
E’}, General Settings Statement Continuation Indent 3

| Annotation Types

[& Editor Settings

Code Formatting Rules

[58 <55 Indentation Engine
Simple Code Farmatting Rule
HTML Indentation Engine
Line Wrapping Code Formatting Rule
Java Code Formatting Rule
J3P Code Formatting Rule

#E| #ML Code Formatting Rule
------ @@ Beans Propetty

H Java Sources

------ Q Source Synchronization

--[ed, To Do Settings ¥

Figure 4-2 Java Editor Advanced Options

Formatting Code

Java code is automatically formatted in Creator according to default rules.
Members of classes, for example, are indented four spaces, continued state-
ments are indented eight spaces, and any tabs that you enter are converted to
spaces. No spaces are placed before an opening parenthesis, and an opening
curly brace is put on the same line as a class or method declaration.

To reformat all the code in any file in Creator, type <Ctrl-Shift-F>. This is very
handy right after you paste a code fragment from another file into your source
code. To indent blocks of code manually, type <Tab> or <Ctrl-T>. Typing <Shift-
Tab> or <Ctrl-D> reverses indents.

29

30

Chapter 4 Software Development

You can change any of Creator’s default settings for code formatting by
accessing the Java Indentation Engine. This can be done directly with the Java
Code Formatting Rule in the Advanced Options dialog (see Figure 4-2), or by
clicking on the customizer box for Code Formatting Rule in the Basic Options

dialog (see Figure 4-1).

Fonts and Colors

The Basic Options dialog (Figure 4-1) lets you configure font size and style, as
well as the foreground and background colors of the editor. Under Expert, click
the customizer box for Fonts and Colors. Figure 4-3 shows the settings for Java

Method calls.

¥ Java Editor - Fonts and Colors E|

Synkax;:

Def ault

[Elack. Comment
|Character Literal
|Cade Falding

§CDE|B Folding Bar
gError In Sources
EGIyph and Line Mumber Margin |
EGuarded Black,
;Highlight Insertion Point Rove
;Highlighted by Search
EIncrementaI Search
|3ava Annotation
|3ava Identifier

1Java Keyword

1ava Method Call
;Java Jperataor
;Matching Bracket
[Mumeric Literal
;Search Selection
ESearch Wrapped
ESeIected Texk
ESingIe-Iine Comment
EStatus Bar

String Literal
§Whitespace

Font

| Monospaced 12 Bold
] Inherit

Foreground Color

| W o0
Inherit

Background Color

| O [255.255,255]
Inherit

Preview

method()

U

Ok

H Cancel ” Help

Figure 4-3 Fonts and Colors Dialog

Clicking the customizer box for a Foreground or Background Color brings
up a color palette to choose a different RGB value. Likewise, clicking the cus-
tomizer box for a Font allows you to change its style and point size. The Inherit

4.1 Using the Java Source Editor

checkbox indicates whether or not a font or color should be inherited from the
Default syntax category.

Code Completion

One of the handier features of the IDE is code completion, which lets you type
part of a Java identifier and let the IDE finish the expression for you. To use this
feature, activate a code completion box with one of the following:

* Type a few characters in an expression, then press <Ctrl-Space>or <Ctrl-\>.

* Pause after you type a period (.) in an expression (this gives you a choice of
method names).

* Type the import keyword followed by a space.

A code completion box contains a list of choices to select from. After you
choose what you want, just press <Enter> to finish. To close the code completion
box without choosing anything, press the <Esc> key.

Figure 4-4 shows a code completion box and associated Javadoc popup win-
dow. Here we typed new List followed by <Ctil-\> and selected ListDataPro-
vider in the code completion box. Note that the Javadoc window provides the
documentation for this class. After you press <Enter>, the IDE completes the
class name and adds the import statement for the class to your code.

e | 6] R 0T | B4R
Tl ol @ -
* iz

S com.sun.data.provider.impl.ListDataProvider |

Design ISP |Java

14
b
i

Il

15

T public class ListDataProvider
A T public |extends AbstrackTableDataProvider

|
|
}
=] Vi
* «px0 This TableDataProvider implementation wraps the contents of a List, This DataProvider

Thi = ignores Fieldkeys entirely, and maintains a single list of objects.
will""'e[é'tﬁ'ei’f].'?"TList* o 1 i

*
*
* handled a posteo ListCelRenderer (javasx, swing, ListCelRenderer) ~|
:]
*

this method to| & ListDY (com.sun.org.apache, xerces.internalimpl.dy,xs ListDY) =|
thiz page.</p=| @ ListDataEvent (javax.swing.event, ListDataEvent)
L L o0 ListDatalistener {javax. swing.event. ListDatalistener)
=] public woid prere & ListDataModel (javax . faces.maodel ListDataMadel)
IR LT ete] ©o ListDataProvider {com.sun.data.provider.impl ListDataProvider)

" | ip = newm Listll

167:22 |INS|

Figure 44 Code Completion and Javadoc popup

31

32

Chapter 4 Software Development

Disabling Code Completion

You can disable the code completion box and Javadoc popups if you don’t want
them active. To do this, choose Tools > Options from the Creator menu, expand
the Editing > Editor Settings node, and select Java Editor. Under General, select
from any of the following.

* To disable the code completion box - uncheck the checkbox for Auto Popup
Completion Window.

* To disable Javadoc popups - uncheck the checkbox for Auto Popup Javadoc
Window.

* To change the code completion box display delay time - modify the default
of 500 milliseconds for the Delay of Completion Window Auto Popup.

Note that changing these options disables only the automatic appearance of
what the IDE does. Once disabled, you can still manually activate code comple-
tion with <Ctrl-Space> (or <Ctrl-\>). Likewise, typing <Ctrl-Shift-Space> manu-
ally activates Javadoc popups.

Code Folding

The Editor lets you collapse (or fold) certain sections of code to make room for
other lines. You may fold methods, inner classes, import blocks, and Javadoc
comments. Clicking a box icon in the left margin allows you to fold/unfold
code that is bracketed by a vertical line extending down from the icon.

It’s also possible to configure the IDE to fold code for you automatically. To
do this, click Tools > Options from the toolbar and select Editing > Editor Set-
tings > Java Editor. In the property window for Code Folding, click the custom-
izer box (see Figure 4-1) and select the checkbox for any code element that you
would like folded by default.

To access the code folding commands, right-click in the editor window and
select Code Folds from the context menu. Or, select Window > Code Folds from
the toolbar. Figure 4-5 shows the context menu for Code Folding and its short-
cuts.

Handling Imports

There are several ways to manage import statements in Creator. Here are the
choices:

¢ Fast Import (<Alt-Shift-I>) - lets you add an import statement to your code
for the currently selected identifier. Figure 4-6, for example, shows an
Import Class dialog for the selected identifier, ListDataProvider. Although

GoTo 3

Select in »
Find lUsages Alk+F7

Show Javadoc Al+F1

Refactor]

Reformat Code Ctr+-shift-+F

Fix Imports Alk-+3Shift+F
Run File shift+Fa
Mew Wakch. .. Chrl-+Shifk-+a

Toggle Breakpoint F9

Copy

Paste Chrl+Y

Code

Figure 4-5 Code Folds

4.1 Using the Java Source Editor

Collapse Fold
Expand Fold

Collapse al
Expand Al

Collapse all Javadoc

Expand All Javadoc

Collapse all Java Code

Expand All Java Code

Chr+-MumPad -
ChrH-MumPad +
Cr+-Shifk+MurnPad -
Chrl+shift+MumPad +

only one import shows up here, this technique lets you choose the import

statement you want from a list in the dialog.

Design JSP |Java | e e | (O] 2= P 0T Tk 4

#5 95 | v B

I

|

g ?

=] Fi Matching Classes:
* prfallback method that *a ListDataProvider (com.sun.data,provider impl. ListDakaProvide
* Thiz method will <strom
* will actually be rendeq
* handled a postback and 173 |
* thiz method to allocateg l
* this page.</p> (%) Import Class
L *’,n'
5 A= public wvoid prerender () { © Import Package
g8 ListDataProvider 1p;: () Fully Qualified Mame
= '
(04] [Cancel] [Help
o= | bk

¥ 1s processing a form submit.

Customize this method to allocate

¥ resources that will be required in your event handlers.</p>

L
public woid preprocess|()
}

{

% Import Class

X)

Figure 4-6 Fast Import using <Alt-Shift-I>

* Fix Imports (<Alt-Shift-F>) - lets you insert any missing import statements
for the entire file. Figure 4-7 shows the context menu when you right-click
in the editor window and move the cursor to the Fix Imports selection.

33

34 Chapter 4 Software Development

@

| Design 15P |Java el (g | R LT gF | €2 BE | Ao B
TN + restored, But BefOfe any event pProcessing takes place. This method =
F owill <strone=only/strong> be called on a posthack request that 1
% iz processing a form submit. Customize this method to allocate
% regources that will be required in wg : o e

Go To]

iy
B T public woid preprocessi) { electn ’
| } Find Usages Alt+F7
Show Javadoc Alk+F1
= A Refactar 4
* «<pxCallback method that iz called Jus peformat Code Crrl4shift4F |BCE.
* This method will <strongsonly</stromg Fix Imports AELShifter o
* will actually be rendered (and not, f FU Bl ——
* handled a postback and then navigated tomize
* thiz method to allocate resources thy Mew Watch. . Ctrh-Shift-+i lerite
* this page.</p> [Toggle Break!:oint Fa
= 1?1.-’ -
| = public woid prerender() ! “opy
fﬂ ListDataProvider lp: Paste Chrl+y
L Code Folds b
| ; Bl

Figure 4-7 Fix Imports using <Alt-Shift-F>

¢ Code Completion - you can also generate import statements with code
completion. Just type part of the class name with an open code completion
box and an import statement will be added to your code automatically.

Using Javadoc

A Javadoc popup window appears for any selected class when you type <Ctrl-
Shift-Space>. Press <Esc> to remove it. Additionally, you may open a web
browser for a selected class within the IDE. Just right-click the class and choose
Show Javadoc (or <Alt-F1>) from the context menu. You may close the internal
browser window by clicking the x in the Javadoc tab.

Abbreviations

The editor has an internal list of abbreviations that generate commonly used
keywords, identifiers, and code idioms. Just click on the Abbreviations custom-
izer box in the Basic Options dialog under General (see Figure 4-1). Figure 4-8
shows the default list of abbreviations. Type the abbreviation, press the
<Space>, and the editor fills in the expanded keywords or expressions for you.
If an abbreviation is the same as the text you want to type, press <Shift-Space>
to keep it from expanding.

The fora and fori abbreviations are very handy for generating for loops
and the trc, trcf, and trf abbreviations for try/catch/finally can save a lot

4.1 Using the Java Source Editor

of typing time. Note that the Abbreviations dialog allows you to edit or remove
an abbreviation or add your own.

% Java Editor - Abbreviations

| &bbreviation Expanded String
public static Final |
EPst public skatic final boclzan
|Psfi public skatic Final ink
Psfs public skatic Final String
[Fora Far (int i = 0; i < |length; i+ 4
Fiti for {Irerator i = |.iterator; i.hashexti)y { Object o = (Objec...
|psf private static final
ipsfb private static final boolean
\psfi private static Final ink
psfs private skatic final String
|pst prinkStackTracel);
serr System.err, printind"|"Y;
|sout System,out.printing”|"};
lkds Thread.dumpStack);
krc try { |} catch (Exception ex) { log{"Error Description”, ex);}
krcf try { |} catch (Exception ex) { log{"Error Description”, ex);...
=13 try £ |+ Finally {4
by thirow news
b throw new Error();
v throw new InternalErrar);
wh while]} {+
l ok] [Cancel] [Help

Figure 4-8 Abbreviations Dialog

Generating Methods

The IDE helps you generate code when extending a class or implementing an
interface. Let’s show you how to do this now.

Overriding Methods

When you extend a class, overriding multiple methods and getting everything
right can be a tedious process. Creator’s IDE has an Override and Implement
Methods dialog to help you generate the code from a list of allowable methods
for an extended class. Here are the steps.

1. Define your class and type extends ClassName.
2. Select Tools > Override Methods from the toolbar (or press <Ctrl-I>).
3. Select the method(s) you want the IDE to override for your extended class.

Figure 4-9 shows the Override and Implements Methods dialog for a class
extended from ListProvider. Here we override the appendRow() and can-
InsertRow () methods. The Generate Super Calls checkbox makes the IDE
include calls to the super implementation of the method. Uncheck this box if
you don’t want this behavior.

35

36

Chapter 4 Software Development

¥ Override and Implement Methods

Select the methods ko override or implement. Far multiple selection use CTRL key,

[] Shows Superdlasses and Interfaces [| Show Abstract Methads Only

Available Superdlass and Interface Methods:

------ appendRow() | com.sun.data. provider . Rowkey #
---- @ canfppendrow() : boolean

------ caninsertRowRomwkey) | boolean

------ @ canRemoveRow(Fowkey) | boolean
------ "2@ clonel) © java.lang. Object

---- @ equals{Object) @ boolean

------ Fa finalize() : vaid

----- @ getCursorndex() @ ink

------ @ getLisk() : java.util List b

Generate Super Calls [] opy Javadac

[[w]'d H Cancel H Help

Figure 4-9 Override and Implement Methods Dialog

Implementing Interfaces

When you create a class that implements an interface, there can be many meth-
ods to implement. The IDE’s Synchronize feature helps you generate the neces-
sary methods. Here are the steps.

1. Define your class and type implements InterfaceName.
2. Select Tools > Synchronize from the toolbar.
3. Select the method(s) you want the IDE to implement.

You can also have the IDE automatically prompt you to generate methods
when you create a class that implements an interface. Here are the steps.

1. Select Tools > Options from the toolbar and click the Advanced radio button.
2. Expand the Editing > Java Sources node and select Source Synchronization.

Under General in the properties window, select the Synchronization
Enabled checkbox.

Figure 4-10 shows a Confirm Changes dialog when creating a class that imple-
ments the DataProvider interface.

4.1 Using the Java Source Editor 37

¥ Confirm Changes

Changes recommended in mytest2, AnotherClass

Changes List Process all

\&dd method public abstract com,sun.data, provider, Datalistener[] getDataliskeners() »

\add method public abstract com, sun.data. provider . Fieldkey getFieldkey{String) [From

&dd method public abstract com.sun.data. provider Fieldkey[] getFieldkeys{) [From cor
\08dd method public abstract java.lang. Class get Type(Fieldikey) [From com.sun.data.pro
\&dd method public abstract java.lang, Object getValuelFieldkey) [From com.sun.data.p
\&dd method public abstract boolean isReadOnly(Fieldkey) [From com.sun.data.provide —
\Add method public abstract void removeDatalistener(Datalistener) [from com.sun,dat &
£ | >

Synchronization Mode
() Do not synchronize this abject now (to do so explicitly, use Taols | Synchronize)

(=) Confirm all changes during synchranization

1 Perform synchronization without confirmation

Close

Figure 4-10 Confirm Changes Dialog for Implementing Interfaces

Generating Properties

With the IDE, it’s easy to generate properties that conform to the JavaBeans
component model. Here are the steps.

. In the Projects window, expand your project node.

. Right-click on a bean pattern node (Session Bean, Application Bean, etc.)

. Choose Add > Property.

. In the New Property Pattern dialog, type in the name of your property and
select its type (String is the default). Under Mode, select Read/Write
(default), Read Only, or Write Only.

Choose the options you want for code generation of the property.

6. When you click OK, the IDE will generate a field for the property and the
getter and setter methods for the field.

= W N -

o

Figure 4-11 shows a New Property Pattern dialog for the status property.

Searching and Replacing

The IDE has several find commands that help you search and replace in your
code. These commands work with the current open file or with other project
files. Let’s show you how to use these different find commands.

38

Chapter 4 Software Development

¥ New Property Pattern
-Property

Mamne: status

Type: Strlng V
Maode: é.Read | Wrike V
[] Bound
[] Canstrained
-Cptions

Generate Return Statement

Generate Set Statement

| QK %Il Cancel ” Help l

Figure 4-11 New Property Pattern Dialog

Find Command

Selecting Edit > Find from the toolbar (or typing <Ctrl-F>) lets you find specific
character combinations in your current open file. You can match case, look for
whole words, search backwards, and use regular expressions in your search.
After you close a Find dialog, you can move to the next occurrence with <F3> or
move to the previous occurrence with <Shift-F3>.

To search and replace, select Edit > Replace from the toolbar (or type <Ctrl-
H>) and fill in the fields for Find What and Replace With. Figure 4-12 shows a
Find command that searches for isRowAvailable in the current open file.

Find Usages Command

The Find Usages command displays lines in your project according to what
you specify. Just select Edit > Find Usages from the toolbar (or type <AIt-F7>).
You may also bring up this command by right-clicking on a class, method, or
field name and selecting Find Usages from the context menu. The Find Usages
command is case-insensitive and doesn’t match parts of words, but you can
have it look for a variety of different things, such as:

e (lass, interface, method, or field declarations

4.1 Using the Java Source Editor

¥ Find
Fid Whet: jsRonAvaisbie v| [
[] Match Case Wrap Around
whole Word Seatch Selection
% RegDuTar ED;p:essions [] search Backwards

Highlight Results Incremental Search

Figure 4-12 Find command

¢ Method declarations or variables of classes and interfaces

Specific occurrences, like new instances, imports, extending classes,
implementing interfaces, casts, and throwing exceptions

Methods or fields of a specific type

Getters and setters of a field

Method invocation

Overriding methods

Comments that refer to an identifier

The results of the Find Usages command appear in a separate Usages window
at the bottom of your screen (like the Output window). Figure 4-13 shows an
example of a Usages window. Here we show the results of a Find Usages com-
mand for the variable retvalue. Double-clicking on any of the retvalue
occurrences takes you to the spot in the file where it’s used.

:Usages =R

es of ret¥alue [occurrences]
yTest2

| Source Packages
i| B || =[] mykest?
feemet) iy MyClass
%E ------ @ isRowavailablze) ... ret¥alue = super.isRowdvailable(row);

o @ isRowavalablel) ... return ret¥alue;

Figure 4-13 Find Usages command

Find in Projects Command

The Find in Projects command lets you search project files for characters in a
file, filename characters, file type, file modification dates, and version control
status. Just select Edit > Find in Projects (or type <Ctrl-Shift-F>) from the toolbar,

39

40

Chapter 4 Software Development

or right-click a folder in the Files window and select Find from the context
menu. Figure 4-14 shows the Find in Projects dialog for the text SessionBean.

¥ Find in Projects

Full Text * E.O.'.J_jECtINal'ﬂB_ Type | Date|

Search for Text Containing:

[] Match Whole Words Only
[] Match Case
|:| Regular Expression

Use This Criterion for Search

Sawe Settings as... l

I Search][Close

Figure 4-14 Find in Projects command

The results of a Find in Projects command appear in a Search Results win-
dow at the bottom of your screen. With full-text searches, you can expand
nodes to see which files contain your patterns. Double-clicking on any of the
occurrences takes you to the spot in the file where it is used. Figure 4-15 shows
the Search Results window for the text SessionBean.

Navigating Files

When you right-click in the editor window and select Go To, a context menu
lists ways to navigate from your current file to other places. You may navigate
to the super implementation of a class, a specific line number, a declaration, or
to the source code for a class, method, or field. Figure 4-16 shows the context
menu for Go To and its shortcuts.

If you right-click in the editor window and choose Select in, you can navi-
gate to other project files or to other files in the same package. These options
are also available from the toolbar by clicking Window > Select Document in.
Figure 4-17 shows the context menu for Select In and its shortcuts.

4.1 Using the Java Source Editor

:search Results

4l
x

.‘;-* Found 4 matching nodes,

@] Pagel java

protected SessionBean] getSessionBeanii) {
protected SessionBeanl getSessionBeani() {
return (SessionBean] JgetBean"SessionBeanl™);

]

return (SessionBeani)getBean('SessionBeanl™);
RequestBeanl java
SessionBeanl . java
1@ managed-beans.zml

D <managed-bean-name =SessionBean </managed-bean-name =
e D <managed-bean-class =mytest? SessionBeani </managed-bean-class =
< >
() Sort by Mame (%) Do Nat Sort l Show &l Details l l Madify Search

Figure 4-15 Search Results window

Seleck in p| Declaration Alk+3
Find Usages alk+F7 Super Implementation Ckrl+E
Shaw Javados Alt+F1 Line. .. Chrl+G
Refactor p Cass.

Reformat Code Ctrl+5Shift+F

Fix Imporks Alt+Shift+F

Run File Shift+F6

Mew Wiatch, ., CErlH-Shift4+wy

Toggle Breakpoint F2

Paste Chrl+
Zode Folds »

Figure 4-16 Navigation with Go To

Task Lists

During a hectic software development project, who wants to write notes on
post-its to remind themselves to do something important? To help with this,
the IDE supports task lists. Task lists provide a way to document and clean up
any loose ends in your code.

42

Chapter 4 Software Development

Select in Projects Chrl4-Shift+-1
Find Usages ale+F7 Files Chrl+Shifk+2

Show Javadoc Al+F1

Refackor b
Reformat Code Crl+-Shift+F
Fix Imports Alk-+3Shift+F
Run |.=i|.e Shi.Ft+F.6

Mew \Wakch... Crl+-Shift+w

Toggle Breakpoint F9

Paste Chrl+Y
Code Folds »

Figure 4-17 Navigation with Select in

Task lists manage special “tag” words that you mark in your code. These tag
words typically appear in comments, such as

// TODO: add your event handler here..
// PENDING: Gail will write this code

To see what tag words are available for your task list, click Tools > Options
from the toolbar, click the Advanced radio button, and select the Editing > To
Do Settings node. Click the Task tags customizer box to see the list of tags and
their priorities. Figure 4-18 shows the Task Tags dialog.

% To Do Settings - Task Tags

Tag Lisk:

Pattern Pricrity ‘ Add
iokodo IMedium ~|

=5
Tob0 fedium
|FLXME IMedium
I Delek
R IMedium
|PENDING Medium |
[gzaeaax High v

I oK %” Cancel

Figure 4-18 Task Tags dialog

4.2 Refactoring

Note that it’s possible to change or delete the default list of tags, and you can
add you own tag to the task list. You can also change a tag’s priority. The avail-
able priorities are High, Medium-High, Medium, Medium-Low, and Low. By
default, all tags have Medium priority, except the <<<<<<< tag, which has High
priority.

To view the task list, select View > To Do (or type <Ctrl-6>) from the toolbar.
This brings up the To Do window, which appears at the bottom of your screen
(like the Output window). Inside the To Do window, you can view tasks for the
current file, all open files, or for a specific folder. If you right-click in the win-
dow and select List Options, you can sort the task list by task, location, or pri-
ority. If you double-click any tag line in the task list, the editor highlights the
source code line in the file where the tag appears. Figure 4-19 shows an exam-
ple of a task list in the To Do window for opened files.

:To Do = x
Current File |Opened Files | Selected Folder - # T [ho Filter v|

Task Location
o {11 TODO: Add your own initislization code here (optional) Fagel.java:103 {C:/Documents and Settings(F »
..... J* }} FIXME: Figure this out later... Pagel.java:; 183 {C:/Documents and Settings/P

%11 TODO: Add your own initislization code here (optional) SessionBeanl.javai40 (C:/Documents and Sett

----- f* 1} TODO: Add your own initislization code here (optional) RedquestBeanl.javaitl (C:/Documents and Set
B /11 PENDING - Gail will wirite this code RequestBeanl.java:sl (C:/Documents and Setw

Figure 4-19 To Do window

The To Do window also supports a handy feature called filters, which allow
you to limit what you see in this window. If you click on the filter icon (to the
left of the combo box on the toolbar), the IDE brings up an Edit Filters dialog.
To create a new filter, click on the New button and type a filter name in the
Name field. Below this, you may specify more than one criteria and match any
or all of the criteria. When you're done, your newly defined filter will appear in
the combo box on the toolbar of the To Do window.

Figure 4-20 shows you how to create a filter for the PENDING tag. This
makes the To Do window display only the PENDING tag lines when you select
PENDING in the Combo box.

4.2 Refactoring

Sometimes you need to make “global” changes to your project, like renaming a
heavily-used class, field, or method. You might also have to add a new param-
eter to a method or move a class to a different package. You could do these
things manually, but it would be tedious, error-prone, and well, a lot of work.
A better approach is to have the IDE help you. Making these kinds of modifica-

43

44

Chapter 4 Software Development

% Edit Filters

Filtgrs:
(PEMDING A IE
I ¢ | PEMDIMG
ToDo Hallc |
(%) Match all of the Fallowing () Match any of the Follawing
|Task % |Contains v| |PERDING .
L — Ak ! Y 2c) ||
| [Mare] [Feswer
v
[Mew] l Delete l
[oK %J [Cancel] [Preview

Figure 4-20 Task Edit Filters dialog

tions is called refactoring. In this section we’ll show you how to use the refactor-
ing features of the IDE. This knowledge can save you a lot of time, especially in
large projects with many files.

What is Refactoring?

Refactoring is transforming and restructuring source code so that the refac-

tored code behaves the same as the original source. In an object-oriented devel-

opment environment like Java, refactoring must apply to classes, fields, and

methods. Some examples of refactoring are relatively simple, like renaming a

class, field, or a method. Other types of refactoring are more complicated, like

changing the signature of a method or moving a class to a different package.
Here are several reasons why you would refactor your source code.

* You want to add a new feature to your code.

You need to remove unnecessary repetitions.

* You want to reduce complexity for better understanding.

* You want to make your code more maintainable for others.

Let’s explore how Creator’s IDE helps you refactor. We’ll show you how to use
the refactoring features in the IDE and explain how to use them with existing
projects. As you will see, the IDE not only lets you preview the changes before
you make them, but the IDE also gives you a chance to undo your refactoring
changes if you make a mistake.

Here are the refactoring features in the IDE.

4.2 Refactoring 45

Find Usages - determine where classes, fields, and methods are used in your
source code.

Renaming - change the name of a class, field, or method. Automatically
updates all the references to these elements in your source code.
Encapsulating Fields - generates getter and setter methods for fields.
Optionally updates all references to a field using the getters and setters.
Change Method Signatures - add parameters to methods and change the
method’s visibility.

Mowve Classes - move a class to another package or inside another class.
Automatically updates your source code to reference the class from its new
location.

Refactoring Window

All the refactoring commands make use of a refactoring window, which
appears at the bottom of your screen in the IDE (in the same place as the output
window). This window is created when you execute a refactoring command.
The window provides a preview of files and class elements that are affected by
each refactoring command.

Here’s what you can do in the Refactoring window.

Allow or disallow a refactoring change.

Open the file in the editor for the line(s) to be refactored.
Refresh the refactoring preview.

Exit without making any changes.

Apply the refactoring changes.

We'll show you how to use the refactoring window in the forthcoming exam-
ples.

Payment Project

Let’s begin with an existing Creator project called Payment1, a monthly pay-

ment calculator. (Project Paymentl is in the download for this book under
FieldGuide2/Examples/JavaBeans/Projects.) Open Project Paymentl and
deploy it by selecting Run Main Project on the Creator toolbar (or click the Run
icon). When the web page comes up in your browser, you will see the payment
for a default loan amount, interest rate, and loan term. Try different values for
each parameter and click the Calculate button to see the recalculated loan pay-
ment.

We'll actually have you build this project from scratch in a later chapter, but

let’s use it now to demonstrate refactoring.

46

Chapter 4 Software Development

Copy Project

This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and make modifications to the Payment1 project.

1. Bring up project Payment1 in Creator, if it’s not already opened.

2. From the Projects window, right-click node Payment1 and select Save
Project As. Provide the new name PaymentRF.

3. Close project Paymentl. Right-click PaymentRF and select Set Main Project.
You’'ll make changes to the PaymentRF project.

4. Expand PaymentRF > Web Pages and open Pagel.jsp in the design view.

5. Click anywhere in the background of the design canvas of the PaymentRF
project. In the Properties window, change the page’s Title property to Pay-
ment Calculator - Refactor.

Find Usages

When it’s time to refactor, the first thing you’ll want to do is issue a Find
Usages command. You already know how to determine where classes, fields,
and methods are used in your source code (see “Find Usages Command” on
page 38), but let’s look at this technique again as it relates to refactoring.

The Payment Calculator project uses a LoanBean class to calculate payments
from the input parameters supplied on the web page. Let’s use the Find Usages
command to determine where this LoanBean class is used in our source code.

. Bring up the Projects view, if it is not already opened.

. Expand the Source Packages > asg.bean_examples node.

. Right-click LoanBean.java and select Find Usages in the context menu.

. In the Find Usages dialog, click the Search in Comments checkbox, then

click the Next button.

5. The IDE displays a Usages window. Click the Show Physical View icon in
the bottom left margin of the window. The Usages window shows you all
the occurrences of the LoanBean class in the project (see Figure 4-21).

6. Double-click any of the LoanBean references in the window. This takes you

to the appropriate line in LoanBean.java or SessionBeanl.java where these

statements appear.

= W N =

Renaming Classes

Let’s change the name of the LoanBean class in this project. The Find Usages
command shows the LoanBean object is instantiated in SessionBeanl.java. It
also lists the other places in this file where the LoanBean class is referenced.

Here are the refactoring steps to change the name of the LoanBean class and
all its references in the project.

4.2 Refactoring

40
*®

EUsages

** Creabes 3 mew instance of LoanBean

/! ¥ LganBean.java

essionBeanl . java

nanBean = nevw asg.bean_examples.LoanBean);

rivate asg.bean_examples.LoanBean loanEean;

+public asg.bean_examples.LoanBean getLoanBean()

‘..public void setLoanBean{asg.bean_examples.LoanBean loanBean)

.5%:’5?4*%

Figure 4-21 Find Usages for LoanBean

1. Double-click LoanBean.java in the Projects view. This brings up this file in
the editor window.

2. Find the LoanBean class declaration in LoanBean.java and right-click the
LoanBean name. Select Refactor > Rename from the context menu.

3. In the Rename dialog, type MyLoanBean in the New Name field and click
the Apply Rename on Comments checkbox.

4. Make sure the Preview All Changes checkbox is checked in the Rename dia-

log.

. Click the Next button.

6. The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window. Figure 4-22 shows seven occur-
rences (including comments) of the LoanBean class in the project.

Q1

‘Usages |:Refactoring =R |
[IEE' g‘J Rename LoanBean to MyLoanBean [7 occurreﬁces]
3 [#] @ PaymenthF
[#] [LoanBean.java
: Il"“"‘ Creates 7 new instance of LoanBean
Il * LoanBean. java
e Rename file, class, and constructors bo MyLoanBean
=[] [B SessionBeant.java
----- |oanBean = new asg.bean_examples.LoanBean!);
----- private asg.bean_examples.LoanBean loanBean;
public asg.bean_examples.LoanBean getloanBeani)
public void setLoanBeantasg.bean_examples. LoanBean loanBean)

,. :'-'E
| @

[Do Refackaring H Cancel]

Figure 4-22 Refactoring window

The Refactoring window lists all the occurrences of LoanBean in two files,
LoanBean.java and SessionBeanl.java. The checkboxes next to each refactor-
ing line let you allow (checked) or disallow (unchecked) the refactoring. There
are buttons in the left margin of the window to refresh the refactoring data, col-

47

48

Chapter 4 Software Development

lapse the nodes in the tree, and show the logical and physical views of the
refactoring lines.
Let’s finish the class name refactoring now.

—_

. Leave all the checkboxes checked in the Refactoring window.

. Click the Do Refactoring button.

3. Click the x in the top right corner of the Usages window to remove this win-
dow from the display.

4. Verify that the file name MyLoanBean.java now appears in the Projects
view.

5. Right-click the MyLoanBean class name in MyLoanBean.java and select
Find Usages in the context menu. In the Find Usages dialog, make sure the
Search in Comments checkbox is still checked.

6. Click the Next button. In the Usages window, click the Show Physical View
icon in the bottom left margin of the window. You should see the newly
applied changes from the refactoring, including MyLoanBean as the new
class name (Figure 4-23).

7. Right-click the PaymentRF project in the Projects window and select Clean

and Build Project (this may take a few moments). Verify that your project

compiles without errors.

N

:Usages f_

. b0} @ UUsages of asg.bean_examples.MyLoanBean [6 occurrences] |
= () PaymentRF
=--[& MyloanBean.java
¥ Croabes 3 new instance of MyloanBean
-J ¥ MyleganBean. java
SessionBeanl java
-InanBean = new asg.bean_examples.MyLoanBean!);
--privake asg.bean_examples.MyLoanBean loanBean;
------ public asg.bean_examples MyLoanBean getloanBeant)
‘..public void setLoanBean{asg.bean_examples.MyLoanBean lnanBean)

o8] & v¢]

Figure 4-23 Find Usages for MyLoanBean

Undo and Redo

Everything should have worked fine here, but let’s show you the Undo and
Redo commands anyway. Select Refactor > Undo [Rename] from the Creator
toolbar (you can also right-click in the editor and select this from the context
menu). You'll see all your refactoring changes restored back to their original
values. This can be very valuable when you realize that a refactoring did not do
exactly what you wanted.

After an undo command, it’s possible to redo refactoring changes by select-
ing Refactor > Redo [Rename] from the toolbar or from the context menu. Let’s

4.2 Refactoring 49

leave our changes undone for now and show you another way to refactor
classes.

Refactoring for Renamed Files

Refactoring is also done when you rename class files in the Projects or Files
window. This brings up the Refactor Code for Renamed File(s) dialog. Let’s
show you how to rename your LoanBean class with this technique.

Switch from the Projects view to the Files view.

Under PaymentRF, open the src > asg > bean_examples node.

Right-click LoanBean.java and select Rename.

In the Rename dialog, type MyLoanBean in the New Name field. Click OK.
The Refactor Code for Renamed File(s) dialog appears (see Figure 4-24).
Click Next.

The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window. The refactoring changes should be
the same as what you did before (see Figure 4-22 on page 47).

Click Do Refactoring.

Verify that the file name MyLoanBean.java now appears in the Files view.
9. Right-click the PaymentRF project in the Projects window and select Clean
and Build Project (this may take a few moments). Verify that your project
compiles without errors.

ISRl e

o

® N

¥ Refactor Code for Renamed File(s)

Mew Marne: I_ Myl oanBean

Apply Rename on Comments

Initializing data. ..

[¥] Preview &l | Mek = Dé[Cancel] [Help]

Figure 4-24 Refactor code for renamed file

Creator Tip

Make sure you use the IDE to rename class files. If you rename your files with
Windows explorer or other file system utilities, Creator won't be able to track
your changes.

50

Chapter 4 Software Development

Renaming Fields and Methods

Renaming a class field or method is done the same way as renaming a class.
Here are the steps.

1. Find the field or method you want to rename in the editor. In the Projects
view, expand the source file nodes until you find the field or method you
want.

2. Right-click the field or method and select Refactor > Rename from the con-

text menu.

. In the Rename dialog, type the New Name for the field or method.

. Click the Next button.

5. In the Refactoring window, review the lines of code that will be refactored.
Clear any checkboxes for code that you do not want changed.

6. Click the Do Refactoring button to make the changes.

7. Right-click on your project name in the Projects view and select Clean and
Build Project. Verify that your project compiles without errors.

> W

Creator Tip

=
- Be careful with refactoring fields and methods of JavaBeans components.
\ % With JavaBeans, the setters and getters use naming conventions which could

be disrupted by an improper refactoring. Refactoring JavaBeans could also
adversely affect bindings and other assumptions made by the IDE.

Encapsulating Fields

Refactoring lets you encapsulate fields, which insures that class fields can only
be accessed by getter and setter methods. This type of encapsulation enforces
data hiding and improves maintainability. Typically, a class field’s visibility is
restricted to private, whereas the getter and setters for the field are marked as
public. Other visibility choices are possible (protected with inheritance access,
for instance).

The IDE supports the following refactoring features for Encapsulating
Fields.

* Generate getter and setter methods for fields.
* Modify the visibility modifier for the fields and the getters and setters.
* Replace references to field names with calls to the getters or setters.

Let’s modify our Payment Calculator project and show you how to encapsu-
late a field and generate setters and getters for the field. Here are the steps.

1. Open MyLoanBean.java in the editor if it is not already open.

4.2 Refactoring 51

2. Add the following field declaration to your code, right below the MyLoan-
Bean constructor.

private String version = "Version 1.0";

3. Select the version field. Choose Refactor > Encapsulate Fields from the tool-
bar (or right-click the version field and select this option from the context
menu).

4. In the Encapsulate Fields dialog, make sure the version field’s checkbox is
checked. Select protected in the combo boxes for both the Fields” Visibility
and the Accessors’ Visibility (see Figure 4-25). Click Next.

¥ Encapsulate Fields

List of Fields To Encapsulate:

[. Field B Getter Setter
[+#] |wersion getVersion setiersion |
[]|amount getAmount setAmount i
[]|rate getRate setRate
: vears getYears setears
[payment_ getPayment [setPayment 16}

Fields' visibility: protec... |

Accessors visibiliby: [orot: T ' %

Lse Accessors Even When Field Is Accessible
[] Preview All Changes I Mext = l [Cancel l [Help

Figure 4-25 Encapsulate Fields dialog

5. The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window. The Refactoring window shows the
changes that will be made to encapsulate the version field (Figure 4-26).

6. Click Do Refactoring. Verify that the code for setter method setVersion ()
and getter method getVersion () now appear in MyLoanBean.java with
protected visibility. The version field should be protected as well.

7. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

Changing Method Signatures

The design of class methods is crucial to the behaviors of object-oriented
designs and reusable classes. During the early stages of development, it’s easy

52

Chapter 4 Software Development

Output-PaymentRF (dist) ___[‘Refactoring .. R
[;‘;':g Encapsﬁiate fields in class asg.iJean_exampies.MyLnanBean'[3 nccurrencesflv |
PaymentRF

MyLoanBean.java

Change modifier of field wersion to protected

Create method getversion

S Create method setVersion

JEERE

| I Do Refactoring l l Cancel l
Figure 4-26 Refactoring window for Encapsulate Fields

to develop methods with several parameters and change them when you need
to. But near the end of a large development cycle, changing the signature of a
heavily used class method can be a time-sink, because the change often propa-
gates to a large number of invocations in source code. Refactoring can be a big
help here, because the IDE can update all the method calls for you.

The IDE supports the following refactoring features for Changing Method
Signatures.

* Add parameters to a method’s signature.
* Reorder the parameters in a method’s signature.
e Change the visibility for a method.

Creator Tip

Refactoring does not allow you to remove a parameter from a method’s
signature. You can’t refactor a method’s return type, either. If you need to do
these things in your project, you'll have to do it manually.

Generate New Method

Before we show you how to refactor a method’s signature, let's add a new
method to the MyLoanBean class and call it from the Payment Calculator. Here
are the steps.

1. Open MyLoanBean.java in the editor if it is not already open.

2. Add the following method to your code, right below the setVersion () and
getVersion () methods.

public String getInfo() { return version; }

3. Return to Pagel.java in the editor and click the Design button to bring up
the design view.

4.2 Refactoring

4. Double-click the Calculate button. This generates a calculate action/()
method in Pagel.java. Add the following code before the return statement

(new code is in bold).

public String calculate action() {
// TODO: Process the button click action...
log (getSessionBeanl () .getLoanBean () .getInfo()) ;
return null;

5. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.
6. In the Servers window, right-click Deployment Server and select View

Server Log.
7. In the Output window, you should see the string “Version 1.0” appear in the

server log.

Add Method Parameter

Now let’s add a new parameter to our getInfo () method and refactor it in our
project. Here are the steps.

1. Select the getInfo () method in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the getInfo () method and select
this option from the context menu).

2. In the Change Method Parameters dialog, type who for Name, String for
Type, and “paul” for Default Value. To edit these, you'll need to double-
click each cell.

3. Leave the Access Modifier public and make sure the Preview All Changes
checkbox is checked (see Figure 4-27). Click Next.

4. The IDE displays a Refactoring window. Click the Show Physical View icon
in the bottom left margin of the window.The Refactoring window shows the
changes that will be made to refactor the getInfo () method (see Figure 4-
28).

|* Output - I_l_Jl:thust:24348) ._ERefacturing)) o
i g:ﬁ’ Change parameters of getInfo method to public javaJdang.String getInfo{String who) [2 occurrences)

: ¢ = () PaymentRF
'g' E MylLoanBean. java
lﬁ] - [] Change method parameters of public String getInfo()
o g Pagel.java
| 8| to [w] loglgetsessionBean1().getloanBean().getInfol));
I Do Refactoring] [Cancel]

Figure 4-28 Refactoring window for Changing a Method’s signature

53

54 Chapter 4 Software Development

®- Change Method Parameters

Parameters:

I Mame Type Default Yalue

Remowve

Access Modifier: | public b

Method Signature Preview:
public java.lang. String getInfolString who)

[#] Preview All Changes [Mext = N [Cancel] [Help]

Figure 4-27 Change Method Parameters dialog

5. Click Do Refactoring. Verify that a new parameter was added to the get-
Info () method in MyLoanBean.java. Modify this code as follows (new
code is bold).

public String getInfo (String who) {
return version + "-" + who;
}

6. Verify that the call to getInfo () in Pagel.java was modified, too. Here’s
what it should look like (new code is bold).

public String calculate action() {
// TODO: Process the button click action...
log(getSessionBeanl () .getLoanBean () .getInfo ("paul™)) ;
return null;

Now deploy, run, and test the project.

1. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

2. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.

3. In the Servers window, right-click Deployment Server and select View
Server Log.

4.2 Refactoring 55

4. In the Output window, you should see the string “Version 1.0-paul” appear
in the server log.

Reordering Parameters

Reordering parameters in a method’s signature is done the same way as adding
a parameter. Here are the steps.

1. Select the method you want in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the method and select this option
from the context menu).

2. Select the parameter you want to move and click Move Up or Move Down.
This changes its position in the list. Click Next.

3. In the Refactoring window, review the lines of code that will be refactored.

Clear any checkboxes for code that you do not want changed.

. Click Do Refactoring to make the changes.

5. Right-click your project name in the Projects view and select Clean and
Build Project. Verify that your project compiles without errors.

Changing a Method’s Visibility

The refactoring commands for a method’s visibility are very similar to the oth-
ers. Here are the steps.

S

1. Select the method you want in the editor. Select Refactor > Change Method
Parameters from the toolbar (or right-click the method and select this option
from the context menu).

2. Select an Access Modifier for the method’s visibility from the combo box
(options are public, protected, private, or default). Click Next.

3. In the Refactoring window, review the lines of code that will be refactored.
Clear any checkboxes for code that you do not want changed.

4. Click the Do Refactoring button to make the changes.

5. Right-click your project name in the Projects view and select Clean and
Build Project. Verify that your project compiles without errors.

Creator Tip

Note that the code for the getInfo () method refers to the version field
directly. By refactoring, you can make this method use the getter method for
the field instead. To do this, select the version field and choose Refactor >
Encapsulate Fields. Make sure the checkbox is checked for Use Accessors
Even When Field is Accessible. Click Do Refactoring. You will see code in
getInfo () that now calls getVersion () to get the version field’s value.

56

Chapter 4 Software Development

Moving Classes to Different Packages

Another important refactoring feature is moving a class from one package to a
another. This kind of code change can certainly be a hassle to do manually, so
refactoring is a big help here.

There are two approaches for moving a class between packages, so let’s

show you how to do both. Here are the steps for the first approach.

1.
2.

Moving Classes

Bring up the Projects view, if it is not already opened.
Under PaymentRF, expand the Source Packages > asg.bean_examples node.
Note that MyLoanBean.java is contained in this package (Figure 4-29).

: Projects o =
i='§= D PaymentRF

: L3 ‘Web Pages

% Themes

1@ Managed Beans

~-La Page Navigation

I {E5) Application Bean
@H"Session Bean

{EH) Request Bean

L@ Source Packages

-7 asq.bean_examnples
£ @H MyLoanBean. java
-] paymentl

-2 Libraries

3-5@ Data Source References

Figure 4-29 Projects window before refactoring

3.

Q1

Right-click MyLoanBean.java and select Refactor > Move Class from the
context menu.

. In the Move Class dialog, select payment1 from the combo box for To Pack-

age (see Figure 4-30).

. Make sure the Preview All Changes checkbox is checked. Click Next.
. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window.The Refactoring window shows the
refactoring statements that move the MyLoanBean class to the payment1
package (Figure 4-31).

. Click Do Refactoring to make the changes. Verify that MyLoanBean.java

has been moved to the payment1 package in the Projects View (see
Figure 4-32).

4.2 Refactoring 57

¥ Move Class

Move class asg.bean_examples. MyLoanBean

Project: ! @ PaymenkRF A |
Lacation: ESnurce Packages W |
To Package: la';.-'rnentl Vi

Initializing data...

[#] Preview Al Changes |_ Next = N [Cancel] [Help]

Figure 4-30 Move Class dialog

I-lél.'.;:.lc-l-:l.:ri.ng

40
*®

by g‘ﬁ Move class asg.bean_examples.MyLoanBean to payment1 package [S occurrences)
— =~ PaymentRF
|§| = SessionBeanl.java

% loanBean = new asg.bean_examples.MyLoanBean();
— private asg.bean_examples.MyLoanBean loanBean;
|E| public asg.bean_examples.MylLoanBean getloanBean()

public void setloanBeaniasg.bean_examples.MyLoanBean loanBean)
MyLoanBean.java
v| Mave source to package "payment1”

[Do Refactaring][Cancel]

Figure 4-31 Refactoring window for Move Class

8. Right-click your project name in the Projects view and select Clean and
Build Project (this may take a few moments). Verify that your project com-
piles without errors.

9. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Verify that everything works.

Refactoring for Moved Files

The IDE has other ways to move class files between packages. The Refactor
Code for Moved Class dialog opens whenever you perform the following
actions:

¢ Cut and paste files in the Projects or Files window.
* Drag and drop files in the Projects or Files window.

58

Chapter 4 Software Development

:Projects
ffE“ PaymentRF ~
[Web Pages

4% Themes

@] Managed Beans

Er‘:' Page Mavigation

: @ Application Bean

[#-JEH] Session Bean

+ lﬁ Request Bean

=+ILF) Source Packages

: <[asg.bean_sxamples

- [T payment1

#-{EH] ApplicationBeant java

- @ Bundle. properties
@ MyLoanBean.java
| Pagel.java
#-{EH] RequestBean.java

'+ ﬂ SessionBeanl . java v

0

Figure 4-32 Projects window after refactoring

Type a new package name in the Projects window for a package node.
Type a new folder name in the Files window for a folder node.

Let’s show you how to use this technique. Here are the steps.

1.

=~ W

Select Refactor > Undo [Move class] to put the MyLoanBean class back in the
original package.

. In the Projects view under PaymentRF, open the Source Packages >

asg.bean_examples node.

. Right-click LoanBean.java and select Cut.
. Right-click package paymentl and select Paste.
. The Refactor Code for Moved Class dialog appears (Figure 4-33). Click

Next.

. The IDE displays a Refactoring window. Click the Show Physical View icon

in the bottom left margin of the window. The refactoring changes should be
the same as what you did before (see Figure 4-31 on page 57).

. Click Do Refactoring.
. Verify that MyLoanBean.java has been moved to the payment1 package in

the Projects View (see Figure 4-32 on page 58).

. Right-click the PaymentRF project in the Projects window and select Clean

and Build Project (this may take a few moments). Verify that your project
compiles without errors.

4.3 Source Code Control with CVS

¥ Refactor Code for Moved Class @

Class was moved inko another package and refactoring is necessary.

Project: : @

Lacation: | Sure ckan i

To Package: bavi

This Class: !_asg.bean_examples.MyLoanBean |

Initializing data...

[¥] Preview all Changes [Mext = N [Zancel] [Help]

Figure 4-33 Refactor Code for Moved Class dialog

4.3 Source Code Control with CVS

Version control allows developers to track the changes they make to their
source code. With version control, you can determine when a change was made
and by whom. You can also use version control to track bugs and generate spe-
cific builds that might customize certain parts of your system. All this works
for a single developer working on a project as well as a group working on the
same project code.

Creator supports several Version Control Systems (VCS), but we’ll show you
CVS (Concurrent Versioning System) which is very popular with developers.
You'll learn how to create CVS working directories and repositories, import
source code into CVS, and check out modules. You'll also see how to commit
editing changes to CVS, compare revisions, and examine log histories of code
changes. As before, we'll use our Payment Calculator project to show you how
to use CVS with Creator.

Copy Project

This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and make modifications to the Payment1 project.

1. Bring up project Paymentl1 in Creator, if it’s not already opened.
2. From the Projects window, right-click node Payment1 and select Save
Project As. Provide the new name PaymentCVS.

59

60

Chapter 4 Software Development

3. Close project Paymentl. Right-click PaymentCVS and select Set Main
Project. You'll make changes to the PaymentCVS project.

4. Expand PaymentCVS > Web Pages and open Pagel.jsp in the design view.

5. Click anywhere in the background of the design canvas of the PaymentCVS
project. In the Properties window, change the page’s Title property to Pay-
ment Calculator - CVS.

Setting up CVS

The IDE provides two ways to work with CVS in Creator. You can use the built-
in CVS client in Creator (written in Java) that helps you connect to CVS reposi-
tories on remote machines. Or, you can install CVS locally and have the IDE
work with CVS directly on your machine. This is the approach we’ll show you
here.

Installing CVS

If you don’t have CVS installed on your system already;, it’s fairly easy to find
an open source version on the web for CVS. Download the appropriate version
for your machine and install it. Make sure you can run the cvs command from
a command prompt window.

Create CVS Profile

In CVS, you will need to setup two directories: a repository directory, which
stores a project’s full revision history, and a working directory to store the files
in your project. Here are the steps.

1. Outside the IDE, create a directory or folder for your CVS repository. Make
sure this is a safe place where accidental deletions are unlikely (a temp
directory, for instance, would be a poor choice).

2. Outside the IDE, create a directory or folder for your CVS working directory.
(You can skip this step if you already have a directory with source files and
you're willing to use this directory for version control.)

3. From the Creator toolbar, select Versioning > Versioning Manager. In the
dialog box, click the Add button.

4. In the Add Versioned Directory dialog, select CVS for the System Profile.

5. Fill in the location of the CVS working directory you created in Step 2.

6. Set the Repository Path to the name of the CVS repository you created in
Step 1.

7. Click the Use Command-Line CVS Client radio button and make sure cvs is
set for your CVS executable.

8. Uncheck the Perform Checkout checkbox and Click Finish (see Figure 4-34).

9. When you return to the Add Versioned Directory dialog, you should see
your working directory appear. Click Close to exit this dialog.

4.3 Source Code Control with CVS

% Add Versioned Directory
Steps Add Profile
1. Choose Template ~ Wersion Contral Syskem Prafile
2. Profile :
| TV v| [Save As..,]
‘iorking Directory: | Ct\Documents and Settingsicyws | [Browse. ..]
VS Server Type: !oc_al v i
[z4 |
L |
T 1
| |
Repository Path: | C\Documents and SettingsiCYSRepositary | [Browse. ..

ys Client

(%) Use Command-Line CYS Client

V5 Executable: Ecvs | [Browse...

O

To get: additional profiles, visit: http:/fvcsgeneric. netbeans orgfprofiles/index. html

L Finish w [Cancel

Figure 4-34 CVS Profile Dialog

Initialize CVS Repository

Now that the CVS repository directory has been created, you need to initialize
it. Here are the steps.

1. From the Creator toolbar, select Versioning > CVS > Init Local Repository.
This brings up the CVS Init dialog.

2. Select your Repository Path in this dialog, click the Set As Default button to
remember these values, then click OK (see Figure 4-35).

62

Chapter 4 Software Development

% CVS Init

[Set As Default l [Get Default Yalues]
Repositary Path: E_C:\,DocumentsandSEttings'l,CVSRepository H Browse. ,, l
V5 Executable: ;-cvs |[Browse, ..]

l oK lg’ Cancel l

Figure 4-35 Initialize CVS Repository

Importing Files

Now that you've setup and initialized your CVS directories, the next step is to
import source files into the CVS repository. This is very straightforward, the
only thing you have to watch are your own binary file types, like images and
jar files.

Creator Tip

Version control works by storing your changes as textual diff statements. You
don’t want to import your own binary files (images, jar files, etc.) into the
repository, because textual diffs won’t work. The easiest thing to do is to
remove binary files from your project directory before you import. After you
checkout the files into your working directory, you can use the CVS > Add
command to put the binary files back in your project. (See “Creator Tip” on
page 72.)

Here are the steps to import the Payment source files into the CVS reposi-

tory.

1.

N

N U1 = W

From the Creator toolbar, select Versioning > CVS > Import. This brings up
the CVS Import dialog.

. In this dialog, set Directory to Import to the location of your source files to

import.

. Choose local for the CVS Server Type.

. Set the Repository Path to your CVS repository directory.

. Type PaymentCVS for your Repository directory.

. Click the Use Command-Line CVS Client radio button and make sure cvs is

set for your CVS executable.

4.3 Source Code Control with CVS

7. Fill in Logging Message, Vendor Tag, and Release Tag as shown, and
uncheck the Perform Checkout After Import checkbox.

8. Click the Set As Default button to store these values.

9. Click OK (see Figure 4-36). In the VCS Output window under Standard
Output, you should see a list of imported files in your repository.

%= CVS Import

’ Set As Default][Get Default Yalues]

Directary Ta Import: | My DocumentsiCreator\Prajects\PaymentCYs | [Browse.. |
Y3 Server Type: hocal v

I |

B]

| |
Repasitary Path: IL_(;:_'l,_Egocurnents: and Settings'l,C:-{'_SEip_ository | ’ Browse. ..
Repository Directory: | PaymentCys |

VS Executable; | cvs | ’ Browse. .,
1
|:ssh |
Logging Message: i_i_n_itial |
Vendaor Tag; | vendor |
Release Tag: | release |

[iPerform Checkout After Import

Figure 4-36 CVS Import Dialog

Checking Out Files

Now that the files are residing in the CVS repository, you must check them out
into your CVS working directory. This directory is where you will make your
changes under version control. Here are the steps.

63

64

Chapter 4 Software Development

= W

[e)}

. From the Creator toolbar, select Versioning > CVS > Check Out. This brings

up the CVS Checkout dialog.

. In this dialog, set the Working Directory to the name of your CVS working

directory.

. Choose local for the CVS Server Type.
. Set the Repository Path to your CVS repository directory.
. Click the Use Command-Line CVS Client radio button and make sure cvs is

set for your CVS executable.

. Click the Module(s) radio button and type in PaymentCVS.
. Click OK (see Figure 4-37). In the VCS Output window under Standard

Output, you should see a list of checked-out files in your working directory.

¥ CVS Checkout X]

[Set As Default l ’ Get Default Yalues]
working Directory: | CiiDocuments and Sektingsicys | [Browse.. |
W3 Server Type: local » |
I 1
| |
[Za01 I
llsa |
Repositary Path: ! Ci\Documents and SettingsiCYSRepository | [Browse. ..
(%) Use Command-Line CYS Clignt
CWS Executable: i ovs | [Browse. ..
| i
| |
Al
(%) Modulais): | FaymentCys | [Select...
Revision or Tag: | |
Date: | |
[] Faorce a Head Revision Match if Tag/Date nok Found

Figure 4-37 CVS Checkout Dialog

Updating Source Files

4.3 Source Code Control with CVS

In this section we’ll show you how to access files in your working directory,
edit their contents, then update them under CVS version control.

Versioning Window

Before you make a change to your code, let’s open the Versioning window and
see what the PaymentCVS project looks like. Here are the steps.

1. From the Creator toolbar, Select View > Versioning > Versioning (or type

<Ctrl+8>).

2. The Versioning window appears in the top left portion of the screen. Expand
the source nodes for src > asg > bean_examples > LoanBean.java, src >
paymentl > Pagel.java, and web > Pagel.jsp (see Figure 4-38).

: Yersioning
:{--- g C¥3 CiiDocuments and SetkingsiCys
—_‘l PavmentChs
-1 build
conf
12 lib

nbproject

SFC

asg
13 bean_examples
'E—-----j/LoanBean.java
: 3 ~£F 1.1 Initial revision
—._"l payment1

[--D,ApplicatinnBeanl.java

[--D/Bundle.prnperties

[--B/Pagel Jjawa

-2 1.1 Inikial revision
[--ij,/RequestBeanl Jjawa
--D/SessinnBeanl Jjawa

+-7) resources

'E—-----j/Pagel.jsp
H-EF 1.1 Initial revision
[bl el

£

Figure 4-38 CVS Versioning Window

il =

65

66

Chapter 4 Software Development

Note that all .java and .jsp files are listed as Up-to-date with 1.1.1.1 being the
Initial revision.

Editing Source Files

Let’s modify our project code and test it. Here are the steps.

1. Bring up Pagel.jsp in the Design view. On the page for the Payment Calcu-
lator, double click the Calculate button. This generates a
calculate_action() button handler code in Pagel.java.

2. Let’s write to the log file for a button push. Add the following code before
the return statement (new code is in bold).

public String calculate action() {
// TODO: Process the button click action...
log("Version 1.1");
return null;

3. Save your changes. Note that Pagel.java and Pagel.jsp are marked as
Locally Modified in the Versioning window.

4. Click the Run icon on the toolbar to deploy the Payment Calculator applica-
tion. Type input values on the page and click the Calculate button.

5. In the Servers window, right-click Deployment Server and select View
Server Log.

6. In the Output window, you should see the string “Version 1.1” appear in the
server log.

Committing Source Files

Now that you've tested the code to make sure it works, let’s store your changes
under version control. Here are the steps.

1. In the Versioning window, right-click Pagel.java and select CVS > Update.
This ensures that your local copies of the files are up-to-date. You should see
a successful update appear in the VCS Output window under the Standard
Output tab.

2. Right-click Pagel.java again and choose CVS > Commit. This brings up a
CVS Commit dialog for Pagel.java.

3. In the window for Enter Reason, type log button push.

4. Follow these same steps for Pagel.jsp. Provide the same input log button
push for Enter Reason when you commit.

5. The Versioning window should now mark the Pagel.java and Pagel.jsp
files Up-to-date as revision 1.2 (see Figure 4-39).

4.3 Source Code Control with CVS

: ¥ersioning i x|
-g WS C\Documents and SettingsiCys A
| &3 Pavmentcys

) build

| conf
4 lib
nbproject
) sre

2 asq
. B3 bear_examples
!:=----D,LnanBean.java
: -2 1.1 Initial revision
203 paymentl
[--D,ApplicationBeanl Java

--D,Bundle.properties
--D,Pagel.java
: g 1.2 lng button push
£ 1.1 Initial revision
[D wRequestBeanl . java

'é?"--D./SessionBeanl.java
=) web

#-C) WEB-INF

#-{J) resources
J,Pagel.jsp

> ------ % 1.2 log butkon push
©-4F 1.1 Initial revision |
| -] ubuild, zml ats ~|

Figure 4-39 Commit CVS files

Comparing File Revisions

During a hectic software development cycle, it’s often necessary to compare file
revisions and track down what happens as code evolves. This helps everyone
understand what changes were made, by whom, and when.

At this point, you have revision 1.1 (initial) and revision 1.2 (log button
push) for both the Pagel.java and Pagel.jsp files. Let’s look at Pagel.java and
show you how to see the changes you just made to the project for that file. Here
are the steps.

1. In the Versioning window, right-click on the 1.1 Initial revision under
Pagel.java and select Diff Graphical.

67

68 Chapter 4 Software Development

2. A Pagel.java [VCS Diff] graphical visualizer window appears, showing
you the changes between revision 1.1 on the left and your working file (revi-
sion 1.2) on the right (see Figure 4-40).

@ Welcome = | 5| Pagel x| [§§), LoanBean.jova x | 3 Pagel java [VC3 DIFF] x -

‘Wisualizer: | Graphical Diff Yiewer v:

a0 a0F) ¥
410 private wvoid _init() throws Exception { 410 private woid _imit() throws Exception {]
411 mimberconverterl. setMinIntegerDigits (1) ||411 numberConverterl. setMinIntegerDigits (1) 7
412 mimberConverterl. setMaxIntegerDigits (40) ; |41z numberConverterl. setMaxIntegerDigits (40) ;
413 nunherConverterl.setMaxFractionDigits (2); [413 mumherConverterl. setMaxFractionDigits (2) ;
414) 414)
ul 415+
4l6
417 public String calculate action() {
418 A4 TODO: Process the button click actiom.]
413 /f case name where null will return to the
420 logi"Version 1.17):
421 return null;
Aol i -
o | | 3|]
Feevision 1.1 ‘wiorking File

Figure 440 CVS Graphical Visualizer

The Graphical Visualizer gives you a side-by-side view of the changes in the
main window. You'll see changed lines highlighted in blue, lines added since
an earlier revision highlighted in green, and lines removed highlighted in red.
Try the Graphical Visualizer with Pagel.jsp to see the differences between its
two revisions. You can also <Shift-Click> revision nodes in the Versioning win-
dow and right-click either of the nodes to select Diff Graphical.

Creator Tip

The Visualizer also lets you see the differences between revisions as text
differences. To see your changes in this format, click the Visualizer combo box
and select Textual Diff Viewer.

Viewing History

During software development, it’s important to track the changes that have
made to a module and by whom. This sections shows you how to use the CVS
History command to get this information.

4.3 Source Code Control with CVS

History Log

The CVS History Log command gives you a full list of a file’s revisions, tags,
and commit history. Let’s show you what this looks like for the changes we
made to Pagel.java. Here are the steps.

1. Right-click Pagel.java in the Versioning window.

2. Select CVS > History > Log.

3. A history log should appear in the IDE main window displaying the com-
plete revision history of Pagel.java (see Figure 4-41).

(@} Welcome x| 5 Paget x [[G5), LoanBean java x | 28 Pagel javallog] x -
Filename: i.Page-ln.]:ava ' Locks: strlct

Repository Fils: | C-i'l,Documen-fs anﬁl--Sé-tEiﬁg;'l-,c-\l;gl':‘\épos;itory.,l'ﬁ‘éymeﬁEd-;é,i'sré;l'-paymerl-fi-,l'-li‘age-l- i java,v

Head Revision: 12 Branch: Selected Revisions: | 3 1 outof: 3
Description:
Symbaolic Mames and Revision List:

Symbol... Revision Rewvision | Author | Log Message Diate State | Lines ...
release (1111 |11 [Paul &... [nitial revision [2005/12/14 19:3... Exp |v A|
wvendor 1.1.1 [1.1.1.1 [Paul A... finitial Z005/12/14 1%:3.., [Exp +0 -0 |

| Paul &... log button push I

Log Message:
log button push
4 | >

Figure 4-41 CVS History Log

History Annotation

Another useful CVS history command is annotation. The CVS History Annota-
tion command displays information about each line in source file, including
when a line was changed and by whom. Let’s try this out with our Pagel.java
file. Here are the steps.

1. Right-click Pagel.java in the Versioning window.

2. Select CVS > History > Annotate.

3. A history annotation should appear in the IDE main window displaying the
revision history of Pagel.java line-by-line. In Figure 4-42, we show you
which lines in the file were introduced for revision 1.2 and by whom.

69

70 Chapter 4 Software Development

me | I_EI Pagel x I_Fé-,j , LoarBean java x g Fagel.java[Annotate] x 1 -
Filename:; | C:ibncumeﬁEs and Settlngs'l,C'u'S'l,PaymentC\-'Sll'src:fpaymentlll'Pagel .]:éva
Filker Rewvision: E_Elf!u;als v [<Ma Revision Select.., [
Filker by Suthor: <Ho Author selected> |
Line ... Fewvi.. Author Date Ling
1415 1.2 Paul And 15-Dec-05 Eadl|
1415 1.z Paul and 15-Dec-05
m! aul And 15-Dec-05 public String calculate_action() §
418 1.2 Paul And 15-Dec-05 1f TODO: Process the button click. ...
1419 1.2 Paul And 15-Dec-05 1 case name where null will return...
1420 1.2 Paul And 15-Dec-05 log("version 1.1");
1421 1.2 Paul And 15-Dec-05 return null;
422 1.2 Paul And 15-Dec-05 H
1423 1.1 Paul And 14-Dec-05 H |
424 1.1 Paul and 14-Dec-05 bl

Figure 442 CVS History Annotation

Adding and Removing Files

After you import your source files and check them out, CVS allows you to add
and remove source files from your CVS working directory. This section shows
you how to use these commands.

Add Command

The CVS Add command lets you schedule a new file to be added to your work-
ing directory. The CVS status of a file must be set to Local, or the CVS Add
command is not available for that file.

Let’s create a new java file in our working directory and add it to the reposi-
tory. We'll also commit this file and put it under version control. Here are the
steps.

1. In the Files window, right-click src > asg > bean_examples and select New >
Java Class.

2. Type DemoBean for the New Class Name in the New Java Class dialog.
Click the Finish button.

3. In the Versioning window, the DemoBean.java file should appear under the
bean_examples node, marked as Local.

4. Right-click DemoBean.java and select CVS > Add. This brings up the CVS
Add dialog.

5. Type Demo Bean for the File Description and click the Textual radio button.

4.3 Source Code Control with CVS

6. Check the Proceed with Commit If Add Succeeds checkbox. Click OK (see

Figure 4-43).

®. CVS Add - DemoBean.java

File Description: | Demo Bean

Proceed With Cormit IF Add Succeeds

File Twpe Flag:

() Autadetect (extensions configured at server)

() Binary (no text diffs)

(%) Texckual tharms binary filesk

l oK %J l Cancel

Figure 443 CVS Add Dialog

7. In the VCS Output window, an Update tab will open and display status.
Since you clicked the commit radio button in the CVS Add dialog, CVS will

commit the file after the Add succeeds. In

the CVS Commit dialog, type Ini-

tial revision in the window for Enter Reason.
8. The Versioning window should now reflect the CVS status change of Demo-
Bean.java to Up-to-date with revision 1.1 (see Figure 4-44).

: ¥ersioning

4 x|

£-13) buid

£ nbproject
. 3 src

asg
|10 bean_examples

E—:D DemoBean. java [Lp-to-date; 1.1]
- &F 1.1 Initial revision
léi----D/LnanBean.java]

ﬂﬁ 1.1 Initial revision

| £

~|

Figure 444 CVS Add New File

71

72

Chapter 4 Software Development

Creator Tip

Check the Textual radio button for text files and the Binary radio button for
binary files. Use the CVS > Add command to restore binary files (images and
jar files) that you removed during a CVS import. (See “Creator Tip” on
page 62.) If you do not check the commit checkbox in the Add dialog, your file
will not be added to CVS until you run the CVS > Commit command.

Remove Command

The CVS Remove command deletes your local copy and schedules the file for
removal from the CVS repository. To show you how this works, let’s delete the
DemoBean.java file you just added. Here are the steps.

1. In the Versioning window, right-click DemoBean.java and select CVS >
Remove.

2. Click Yes in the Question dialog. The CVS Remove dialog will appear.

3. Check the Proceed with Commit If Remove Succeeds checkbox. Click OK
(see Figure 4-45).

¥ CVS Remove - DemoBean.java

Set As Defaulk l l Gek Default Walues l

iProceed With Commit IF Remove Succeeds

l oK %‘H Cancel

Figure 4-45 CVS Remove File

4. In the VCS Output window, an Update tab will open and display status.
Since you clicked the commit radio button in the CVS Remove dialog, CVS
will commit the file after the Remove succeeds. In the CVS Commit dialog,
type Not necessary in the window for Enter Reason.

5. In the Versioning and Projects windows, the DemoBean.java will not
appear.

Configuring CVS Settings

The IDE lets you configure CVS with settings that apply to a single local work-
ing directory or globally for all projects under version control. Let’s show you
how to access these settings for CVS management.

4.3 Source Code Control with CVS

Local Settings

The IDE lets you view or change settings for your working directory. Here are
the steps for the PaymentCVS project.

1. From the Creator toolbar, select Versioning > Versioning Manager. In the
Versioning Manager dialog, select the working directory and click Edit. (Or,
right-click the working directory in the Versioning window and select Cus-
tomize.)

2. The Customizer dialog has four tabs: Profile, Advanced, Environment, and
Properties. Figure 4-46 shows the settings under the Properties tab. Note
that changes made in the Customizer apply only to the working directory
you select.

Prouf.iié 1 '.C\.dvanced I Envir.'onment

[=IGeneral

Annokation Pattern $4filerame}$[7 skatus] [[${statustE[7 revision, ., [:]
Auko Refresh For Mewly Opened Folders w |
Command Motification [
Profile E]

Print Command Output Fl |
Advanced Options F] |
Hidden] [
CFfling Made Fl [
Read Only] |
working Direckary ~:\Documents and S 15)
= Expert |
Cache 1D 05351 |
Cammands Commands [:]
Create Backup Files |
Hide Shadow Files] [
Process All Files Fl [
Refresh Time For Local Files [ms] 0 |
Remermber Password El |
Wariables Variables Ll

Close Help

Figure 4-46 CVS Customizer for Working Directory

Global Settings

It’s also possible to view or modify global settings that apply to all CVS work-
ing directories and repositories. Here are the steps.

73

74

Chapter 4 Software Development

—_

. From the Creator toolbar, select Tools > Options.

. Click the Advanced radio button.

3. Expand the Source Creation and Management node and Version Control
Settings node.

4. Click CVS. Figure 4-47 shows the General Properties window. Clicking any

customizer box here grants you access to a wide variety of different configu-

ration parameters that you can view or modify.

¥ Options

(") Basic (%) Advanced

N

Options o i=lGeneral
f—_a Source Creation and Management 25 Copted Commshds Gotmands)
Conditions Conditions &l
; Global Commands Commands Bl
B2, Wersion Control Settings - ;
= 3 Yariables Variables [

l—ng Generic Y5 Profiles

Close Help

Figure 447 CVS Global Options

Advanced CVS Features

The IDE also implements more advanced features of CVS, such as branches
and merging. A branch allows you to maintain different versions of a code base.
This can be handy when a customer requires a different version of your code or
you need to build a demo program. After creating a branch, any committed
changes that you make apply only to that branch.

CVS also supports code merging. This can be useful when it’s time to incor-
porate branch code back into a code “trunk” or to merge file revisions. Merging
in CVS can be a bit tricky because merge conflicts are possible. This can happen
when more than one developer changes the same line of source code. The IDE
helps you graphically resolve merge conflicts before committing the code to
version control.

Branches and merging are beyond the scope of this book, but you should
know enough about CVS now to apply these advanced features if you need
them.

4.4 Creating Non-Web Projects 75

4.4 Creating Non-Web Projects

While Creator is a great IDE for creating and managing web applications, you
might also want to create non-web projects, such as stand-alone Java programs.
With general projects, the IDE generates an Ant script to build, run, and debug
your project. You can also add testing. In this section, you'll step through build-
ing a general project with a very useful goal: the project creates a sample data-
base that you’ll use later on in this book to explore Creator’s database access
facilities.

The MusicBuild project consists of a single Java class, a library that you'll

add through the Library Manager, and the default JDK that comes installed
with Creator. When you run the project, it generates sample database tables,
table constraints, and records for a Music Library.

This project is included in the book’s download. If you don’t want to step

through the building process, you can bring up the project in the IDE. The
project is located at FieldGuide2/Examples/Projects/MusicBuild.

Create a General Project

Here are the steps to create the MusicBuild project.

1.

Close any projects that are open. From the Creator Welcome page, click the
Create New Project button.

. In the New Project dialog, select General under Categories and Java Class

Library under Projects. Click Next.

. In the New Java Class Library dialog, specify project name as MusicBuild.
. Click Finish.

After creating the project, Creator builds the structure for your project,

which you can inspect through the Projects window.

Add a Java Package

Here are the steps to add a Java package under the Source Packages node.

1.

2.

In the Projects window, expand the Source Packages node. You'll see that
Creator generates a default package node for you.

Right-click the Source Packages node and select New > Java Package. Cre-
ator displays the New Java Package dialog.

. For Package Name, specify asg. Click Finish. Creator replaces the default

package node with package asg.

. Right-click package asg and select New > Java Package to add a second

package.

76

Chapter 4 Software Development

5.
6.

In the New Java Package dialog, specify Package Name databuild.
Click Finish.

Add a Java Class File

Here are the steps to add the PBCreateMusicDB.java file to this project.

1.

2.

In the Projects window, select package asg.databuild. Right-click and select
New > Java Class.

In the New Java Class dialog, specify class name PBCreateMusicDB. Creator
generates class file PBCreateMusicDB.java.

. Copy and paste the contents of PBCreateMusicDB.java found in your Cre-

ator book download at FieldGuide2/Examples/Database/utils.

. Go ahead and build the project (don’t run it yet, though). From the main

menu, select Build > Build Main Project. Creator asks you to set the project as
the Main Project. Select OK. There should be no build errors in the Output
window.

Add a Library

The PBCreateMusicDB program uses Java’s JDBC package to connect to the
bundled PointBase database. In order for this program to work, you must make
the database driver class available at runtime. You must also make sure that
PointBase is running,.

N o U1

Here are the steps to add the PBClient library to the project.

. From the Projects window, select Libraries, right-click, and select Add

Library from the context menu. Creator displays the Add Library dialog.

. Select Manage Libraries. Creator displays the Library Manager dialog.
. Select Add JAR/Folder button on the right of the dialog. Creator displays a

file chooser dialog.

. Browse to the Creator2 installation directory under Sun and locate the PB Jar

file, <Creator2 Installation Directory > /rave2.0/core/pbclient.jar. Click Add
JAR/Folder, as shown in Figure 4-48.

. Make sure that pbclient.jar is selected and click New Library.

. In the New Library dialog, specify Library Name as PBClient. Click OK.
. Creator adds PBClient to the list of managed libraries. Click OK.

. Creator returns to the Add Library dialog. Select library PBClient.

After adding the PBClient library to your project, the Projects window

should display its name under Libraries, as shown in Figure 4—49.

4.4 Creating Non-Web Projects 77

% Browse JAR/Folder @

Lok i: |@ care vi 5. .-’|_|E
E () locale smresaurce, jar

com-sun-rave-extension-ide-launcher-upagrade. jar smspy . jar

My Recent jgraph.jar smsqlserver, jar
Documents naming. jar smsyhase.jar
Fr ‘5 pbclient.jar sl jar
. phbtoals. jar sgl.jar
Deskiop rowset, jar B sqix.jar

i smbase, jar
___J' smdbz, jar

My Documents sminfarmix. jar

== smaracle. jar
"_’ilrg < i »
My Computer
i 75 2 File: narme: | pbclisnt.jar | Add JARIFDId%

Files of bype: éCIasspathEntry(Fnlder; ZIF or JAR fils) w | [Cancel]

o

Figure 448 Library Manager Browse JAR/Folder dialog

:Projects T X |-1.Files
_Iél & MusicBuild
= 0@ Source Packages
= @ asq.databuid
PECreateMusicDE. java
[0 Test Packages
= & Libraries
= PEClient - pbelient. jar
0 1oK 1.4 (Default)
(& Test Libraries

Figure 449 Projects view for project MusicBuild

Build and Run Project

Now you are ready to build and run project MusicBuild. Click the green Run
Main Project icon from the icon toolbar or select Run > Run Main Project from
the main menu.

78

Chapter 4 Software Development

After running the program, the Output window should tell you the Music
database was created. Once you add the Music schema as a data source to Cre-
ator’s IDE, you can build web applications with design-time support for data-
aware components. We show you how to do this in Chapter 9. See “Configur-
ing for the PointBase Database” on page 270.

4.5 Key Point Summary

* The IDE greatly simplifies the “edit-compile-deploy” cycle of complex web
applications.

¢ Keyboard shortcuts and code completion help make coding easier.

* The IDE lets you format your code, change fonts and colors, collapse (fold)
sections of code, generate import statements, and use abbreviations for
heavily used Java keywords and expressions.

¢ Javadoc popup windows make it easy to locate documentation for Java
classes.

¢ The IDE helps you generate code when extending a Java class or
implementing a Java interface.

* The IDE generates properties that conform to the JavaBeans component
model.

¢ Task lists provide a way to document and clean up loose ends in your code.

¢ Refactoring is transforming and restructuring source code so that the
refactored code behaves the same as the original source.

e With refactoring, you may rename a class, field, or method, generate getter
and setter methods for fields, change method signatures, and move classes
to another package.

* The IDE supports Undo/Redo for refactoring commands.

¢ Creator supports CVS (Concurrent Version System), one of several Version
Control Systems (VCS).

¢ With CVS, you may place source code under version control, generate
revisions, compare revisions, and examine log histories of code changes.

* A CVSrepository is a directory that stores a project’s full revision history.

* A CVS working directory stores the source code of your project.

* The IDE lets you setup CVS profiles and configure the CVS environment
when you work with project code under version control.

e Importing files in CVS is placing project source code under version control.

e Committing source files is storing your edited changes in CVS.

* The IDE has a Graphical Visualizer to help you compare different revisions
in CVS.

¢ History logs in CVS help you document what source code lines were
changed in each revision and by whom.

4.5 Key Point Summary 79

* After importing source code files into the repository and checking them out
to your working directory, you may add new files to your project or remove
them.

* The IDE also lets you create non-web projects, such as stand-alone Java
programs.

PAGE NAVIGATION

7 Topics in This Chapter

« JSF Navigation Model

+ Page Navigation Editor

* Navigation Rules

+ Command Components and Navigation
+ Static Navigation

» Simple Navigation

* Noncommand Components

+ Dynamic Navigation

» Action Event Handlers

* Virtual Forms

Chapter

ost web applications consist of multiple pages. A significant design

task in building web applications is deciding page flow: that is, how

you get from one page to another. Many commercial web sites con-

sist of a “main” (or home) web page with links to other pages. These
are frequently static links that simply bring up the requested page without any
processing or decision making. Other web sites require more flexibility in their
page navigation. Even if the next page is known, the web application may per-
form bookkeeping tasks or other processing before launching the next page.
Finally, clicking a button may involve dynamic processing whose outcome
determines the next page. For example, a login sequence results in either a suc-
cessful login (and you go to the Welcome page) or a failed login (where you are
rebuffed or are invited to try again).

Fortunately, Creator excels at page navigation. It uses the JavaServer Faces
navigation model in concert with an easy-to-use Page Navigation editor that
lets you draw page flow arrows to define navigation rules. Creator generates
the underlying configuration files for you. You retain the needed flexibility
through coding the action methods that return outcome Strings to the naviga-
tion handler. Let’s see how this works.

81

82

Chapter 5 Page Navigation

5.1 Navigation Model

JSF navigation is a rule-based system. Each application contains a navigation
configuration file, navigation.xml, that has rules for choosing the next page to
display after a user clicks a button or a hyperlink component. Like the other
configuration files, navigation.xml consists of XML elements. Here is a sample
rule for changing pages from Pagel to MusicBrowser.

<navigation-rule>
<from-view-id>/Pagel.jsp</from-view-id>
<navigation-case>
<from-outcome>musicBrowse</from-outcome>
<to-view-id>/MusicBrowser.jsp</to-view-id>
</navigation-case>
</navigation-rule>

Element from-view-id identifies the origination page and to-view-id
identifies the target page. Element from-outcome specifies the String value that
is returned from an action method or action label associated with a command
component. Clicking that component generates the String which is passed to
the navigation handler. With these rules, the navigational handler can then
identify the target page.

In Creator, you specify the navigation rules by connecting your web pages
with labeled page flow arrows in the Page Navigation editor. For each rule you
construct, Creator generates an origin page, a destination page, and the out-
come label that identifies it. Creator assumes that your origin page contains
either a hyperlink component or a button component that generates an action
event when the user clicks it. The action event implements the navigation. That
is, it returns the string that matches the label associated with that navigation
rule.

Figure 5-1 is a UML activity diagram summarizing the steps in the naviga-
tion system.

Creator implements both static and dynamic navigation. With static naviga-
tion, a command component specifies an action label that matches the from-
outcome property value from the navigation rules. Often, however, you need to
process information before you can determine which page to invoke (for exam-
ple, a login scenario can succeed or fail). To do this, the component’s action
property specifies an action method. The action method returns a navigation
label that depends on the results of its processing.

By the way, the navigation model understands a default rule. If the action
method returns null or a string that isn’t defined in the navigation rules, the
navigation model renders the same page. You'll see this behavior if you add a
button to your page but do not define an action method. Or, if you don't

5.2 Simple Navigation

User Command Event Navigation

Component Listener Handler
Click _|
Button

Handle
Action Event

Generate
Action Event

static
navigation

dynamic
navigation

Execute Invoke
Action Method 4 Action Method

Select Next
Page, Using

Get Action
Result String

String and
Navigation Rules

Figure 5-1 JSF Navigation Model: Page Navigation UML activity diagram

change the default return value of null. When you click the button, it appears
as if nothing happens. However, JSF invokes the page request process and the
current page is redisplayed.

5.2 Simple Navigation

The first example we work through illustrates simple navigation. That is, each
button component (or you could just as easily use a hyperlink component)
takes the user to one page. No processing is involved after the user clicks the
button. For simple navigation you can either use action labels or action event
handlers. We'll show you both here.

83

84

Chapter 5 Page Navigation

Create a New Project

—

. In the Welcome Page, select button Create New Project.

2. In the New Project dialog, select Web under Categories and JSF Web Applica-
tion under Project. Click Next.

3. In the New JSF Web Application dialog, specify project name as Navigatel.

Click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

4. Select property Title in the Properties window and type the text Navigate 1.
Finish by pressing <Enter>. (Alternatively, if you click in the small square
opposite the property name, a pop-up dialog lets you edit the title. Click OK
to complete editing.) Figure 5-2 shows the components you'll add to the
project’s initial page.

-@"]'Wélcnme » ﬂi"Pagel.jsp »

[Design| 35 Java Sl g T [any Size ~

Figure 5-2 Design view for project Navigatel

Add a Label Component
First, use a label component to place a heading on the page.

1. From the Basic Components palette, select Label. Drag it over to the design
canvas and place it near the top of the page. Don't resize it.

5.2 Simple Navigation 85

2. Make sure that it’s selected and type in Welcome to the Music Store, ending
with <Enter>. This changes the text property. The component should now
display these words.

3. In the Properties window under Appearance, edit the labelLevel property.
Select Strong (1) from the drop down menu.The output text should now
appear with its new style characteristics (bold and larger).

Add a Grid Panel Component

A grid panel component is a container that holds nested components, orga-
nized as a grid. You'll use it to hold two button components in a single row.
(Adding a grid panel component for this project is optional.)

1. Expand the Layout section of the components palette, if it’s not already.
Select Grid Panel from the Layout Components palette and drag it to the
design canvas. Place it underneath the label component. Creator builds a
grid panel component with id property set to gridpPanell.

2. Make sure the grid panel is selected. In the Properties window under Gen-
eral, specify lightyellow for property bgcolor.

3. Still in the Properties window, change border to 3, cellpadding to 3, cell-
spacing to 3, and columns to 2.

=
Creator Tip 4
Grid panel is a container component that uses a grid layout. It places the ‘?

components in the container in the order that you drop them on the panel. A ’
grid panel dynamically creates rows to hold the components according to how

many columns you've specified. (If you don't specify the number of columns,

it defaults to 1.) After you add the button components, you'll see them nested

beneath the grid panel node in the page’s Outline view.

Add Button Components
Now add two button components to the grid panel.

1. From the Basic Components palette, select Button and drag the component
to the design canvas. Drop it directly on top of the grid panel you added
previously. Change its id property to browseMusic and its text property to
Browse Music Titles. Note that the grid panel automatically resizes itself as
you add components to it.

86 Chapter 5 Page Navigation

Creator Tip

Changing the id property is important here because you want more
meaningful names than those generated by Creator. When you have multiple
components that generate action events, it is much easier to work with
meaningful method and property names in the Java page bean.

2. Select a second Button and drop it onto the grid panel. Creator will place the
second button to the right of the first.

3. Change the button’s id property to loginButton and its text property to
Members Login.

Besides buttons, you can also use hyperlink components. These components
have action methods and can be used with the JSF navigation model, too.

Deploy and Test Run

Your web application is only partially done, but this is a good point to deploy
and run it. Click the green arrow on the Creator toolbar. Note that the page is
redisplayed when you click the buttons; that’s because there are no navigation
rules yet. Figure 5-3 shows what the initial page looks like.

) = e |
0 Navigate 1 - Netscape |._|@|[g]
. File Edit Wiew Go Bookmarks Tools Window Help

@ Q @ Q @Whtmmucalhost |[Qm] Ea{‘

E. \ @Mall ‘_h Home E-"' Radio @Netsmpe @LSearch EjBookmarks

Welcome to the Music Store

@ =] @' E | Decument: Done {0,125 secs) |:m:li =] |d:h!

Figure 5-3 Simple navigation web application

5.2 Simple Navigation

Add Page Navigation

Creator makes it particularly easy to add page navigation to your web applica-
tion. In this section, we show you how to do this with the Page Navigation edi-
tor. Let’s enhance your application to have a total of three web pages. The first
page, Pagel, contains all of the components you just added, which include two
buttons that take the user to separate pages in the application. Here are the
steps to create the new pages and add page flow definitions with Creator’s
Page Navigation editor.

1. From the design canvas view, place the mouse in the canvas (anywhere in
the background), right-click, and select Page Navigation. This brings up the
Page Navigation editor. You see the initial web page, Pagel.jsp, in the Page
Navigation editor pane.

2. Place the mouse anywhere in the editor pane (in the background area) and
right-click. From the context menu select New Page. Provide the name
MusicBrowser instead of the default (Page2). This creates a new page called
MusicBrowset.jsp.

3. Repeat this process to create another page called LoginStart.

The Page Navigation editor now displays the three pages of your applica-
tion in the editor pane: Pagel.jsp, MusicBrowser.jsp, and LoginStart.jsp. (You
can see the pages in the Projects view as well, under the Web Pages node.)

There is also a tab at the top of the editor pane labeled Page Navigation.
This refers to the XML-based configuration file (navigation.xml) that contains
your application’s navigation rules. As you define page flow cases, Creator
generates the navigation rules for you.

New Rules!

In this next step, you'll connect the pages and provide navigation case labels
that the navigation handler uses to control page flow.

1. Click the mouse inside page Pagel.jsp. The page changes color, enlarges,
and displays its buttons.

2. Inside page Pagel.jsp, select button browseMusic, click, and drag the arrow
to page MusicBrowser.jsp. When you unclick, you'll see an arrow with a
label. Change the label from casel to musicBrowse (finish by pressing
<Enter>). Be sure to select the button. When you enlarge the page, you'll see the nav-
igation arrow originates directly from the button.

3. For the second case, start once again inside Pagel.jsp, select button loginBut-
ton, click, and drag the arrow to page LoginStart.jsp. This time change the
label name to userLogin.

87

88 Chapter 5 Page Navigation

Figure 5-4 shows the Page Navigation editor pane with the web pages and
navigation labels you just created. Note that the page flow arrows originate
from the buttons in Pagel.jsp and point to the target pages.

Pagel.jsp B
(o) browseMusic
) loginButtan
L rmusicBrowse
LoginStart jsp MusicBrowser.jsp
- L userlogin L

Figure 5-4 Navigating from page Pagel.jsp

Creator Tip

As you create your navigation rules, Creator displays the property values in
the Properties window for that rule. For example, if you select the
musicBrowse arrow, you'll see the properties for that rule displayed (see
Figure 5-5). You can always use the Properties window to change a selected
page flow arrow or rename a label.

: Properties x|
{Cutcome musicBrawse L
fFrDm View Pagel.jsp w ,
iTo Vi MusicBrowser . jsp b ;
|

Figure 5-5 Properties window for a navigation rule

5.2 Simple Navigation

To view the navigation configuration file that Creator generates, select the
Source button at the top of the Page Navigation editor pane. Here is the file for
this application.

<faces-config>
<navigation-rule>
<from-view-id>/Pagel.jsp</from-view-id>
<navigation-case>
<from-outcome>musicBrowse</from-outcome>
<to-view-id>/MusicBrowser.jsp</to-view-id>
</navigation-case>

<navigation-case>
<from-outcome>userLogin</from-outcome>
<to-view-id>/LoginStart.jsp</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

This XML code defines one navigation rule with two separate navigation
cases. Creator can collapse both cases into a single rule since they share the
same origination page (Pagel.jsp, the value of property from-view-id). The
from-outcome property corresponds to the labels you supplied to the Page
Navigation editor. These are the labels that Creator uses to configure the but-
ton components” action properties. Let’s look at that now.

1. Click the tab labeled Pagel at the top of the editor to return to the design
view for this page.

2. Now click the JSP button in the editing toolbar. Creator displays the JSP
source for this page.

3. Scroll down to the JSP specification for the buttons as shown here.

<ui:button action="musicBrowse" binding="#{Pagel.browseMusic}"
id="browseMusic" text="Browse Music Titles"/>

<ui:button action="userLogin" binding="#{Pagel.loginButton}"
id="loginButton" text="Members Login"/>

When you configure the navigation rules, Creator updates the JSP source for
these components to specify an action label (static navigation). In the browser,
JSE sends the string to JSF’s Navigation Handler that corresponds to the but-
ton’s action label. Action labels provide a simple, straightforward way to spec-
ify navigation rules. However, they preclude using an action event handler to
provide additional processing. After you finish building the application, you'll
add action event handlers. This provides another way to use command compo-
nents with navigation.

89

90

&

Y

Chapter 5 Page Navigation

Add Label Components

Before testing the application, you’ll now add label components to both target
pages (MusicBrowser.jsp and LoginStart.jsp). You can access the design can-
vas of each page by double-clicking the page in the Page Navigation editor, by
selecting the page name in the tab at the top of the editor pane (if it has been
opened previously), or by double-clicking the page name in the Projects win-
dow.

1. For each page, select it and bring it up in the page design editor.

2. From the Basic Components palette, select Label and drag it to the design
canvas.

3. Modify its text attribute so that it displays a title that indicates which page
you navigated to.

4. Optionally, modify the labelLevel property to manipulate the text font and
size.

Deploy and Run

Go ahead and deploy the application. When you click a button, the system dis-
plays the appropriate page. You can use the browser’s back arrow to return to
the main page. If you'd prefer to have a button or hyperlink component to nav-
igate back, you can easily add these components to each of the target pages. Of
course, you'll need to define the additional navigational rules in the Page Nav-
igation editor. Figure 5-3 on page 86 shows the initial page in this web applica-
tion.

Creator Tip

When you navigate to one of the target pages, the page loads slowly the first
time. This is because the application server must generate Java source from
the JSP, compile, and execute the code. It is faster after the first time because
the code has already been generated and compiled.

Add Event Handler Code

Now let’s add event handler code for the two buttons you just added.

1. Bring up Pagel in the page design editor. Select the Browse Music Titles but-
ton (make sure the you select the button and not the grid panel). Double-
click the button. Creator generates the event handler method for you and
places the cursor inside the method in Pagel.java.

2. Return to the design view and double-click the second button. Creator gen-
erates the action method in Pagel.java for the loginButton component.

5.2 Simple Navigation

The action methods for both buttons follow. Note that the return values (in
bold) match the case labels you used in the Page Navigation editor. Creator
uses the action labels and automatically supplies these as the return String
value in the action event handler.

public String browseMusic action() {
// TODO: Replace with your code
return "musicBrowse'";

}

public String loginButton action() {
// TODO: Replace with your code
return "userLogin";

Action methods have a consistent format: they are always public methods
that return a String and take no parameters. A null return value is ignored by
the navigation handler (and therefore redisplays the same page).

Why use an action method instead of a simple action label? The action event
handler gives you the added flexibility to add processing code before you nav-
igate to a new page. It also allows you to set the value of the return string based
on the outcome of some processing—we’ll see this later in the chapter (see
“Dynamic Navigation” on page 98).

When you define action methods, Creator generates the necessary JSP
source for the button components. Click the JSP button in the editing toolbar.
Here are the tags. Note that now the action property references the event
method in the Java page bean.

<ui:button action="#{Pagel.browseMusic_action}"
binding="#{Pagel.browseMusic}" id="browseMusic"
text="Browse Music Titles"/>

<ui:button action="#{Pagel. loginButton_action}"
binding="#{Pagel.loginButton}" id="loginButton"
text="Members Login"/>

Return to the Page Navigation editor and select Pagel.jsp, as shown in
Figure 5-6. Note that now each button includes an event handler icon to show
that the component has an associated action method instead of an action label.

Deploy and Run

Deploy the application. The navigation will work the same as before.

91

92 Chapter 5 Page Navigation

Pagel.jsp B

() browseMusic =

9| loginButtan -_
musicErowse
L i

LoginStart jsp MusicBrowser.jsp

L userlogin L

Figure 5-6 Navigation using action event handlers

Draggable Mode

Before moving on to the next project, let’s take a closer look at the Navigation
Editor and some of its user interface options.

1. With Project Navigatel open in the IDE, return to the Navigation Editor
(right-click in the background of any page and select Navigation Editor
from the context menuy). Creator brings up the three pages and shows the
navigation cases linking the pages.

2. Right-click anywhere in the background and select Draggable from the con-
text menu. This puts the editor in draggable mode, as shown in Figure 5-7.

In draggable mode you can move the pages around. Move a page by hold-
ing down the Shift key while you select the page and move it. When a project
contains a large number of pages, it’s useful to move the pages to control how
the links are laid out.

You can also change the link style. Figure 5-7 shows the links in the stan-
dard style (links are drawn with direct lines). To change the link style, right-
click in the background and select Wired Link. Now the links are drawn with
line segments, as shown in Figure 5-8.

Creator Tip

You can only change the link style when the Navigation Editor is in
Draggable Mode.

5.3 Noncommand Components

Lo kark 5] MusicBrowser x 54 Pagel = ga Page Mavigation = 4 -
Mavigation| Source
MusicBrowserjsp
LoginStart.jsp
Figure 5-7 Draggable mode in the Navigation Editor
4 -

Lkart &MusicBrowser ® I_._-;iiF‘agel ® 'gr.:.F‘ageNavigatinn ®

Mavigation| Source

} musicBrowse
P

MusicBrowser.jsp

Pagal.jsp

LoginStart.jsp

Figure 5-8 Changing the link style to Wired Link

5.3 Noncommand Components

The JSF navigation model is set up to work with command components (those
components that generate action events). Action event handlers return a String
that the navigation handler uses to determine which page to launch next.

93

94

Chapter 5 Page Navigation

However, you can use other components to initiate navigation, although it’s

not quite as seamless. Basically, you need to provide a String directly to the
navigation handler that matches the navigation rules you defined. Let’s modify
the Navigatel project to use a drop down list component instead of buttons to
hold the navigation choices.

Copy the Project

To avoid starting from scratch, copy the Navigatel project to a new project.
This step is optional. If you don’t want to copy the project, simply skip this sec-
tion and continue making modifications to the Navigatel project.

1.
2.

3.

'S

Bring up project Navigatel in Creator, if it's not already opened.

From the Projects window, right-click node Navigatel and select Save
Project As. Provide the new name Navigate2.

Close project Navigatel. Right-click Navigate2 and select Set Main Project.
You’'ll make changes to the Navigate2 project.

. Expand Navigate2 > Web Pages and open Pagel.jsp in the design view.
. Click anywhere in the background of the Navigate2 project. In the Proper-

ties window, change the page’s Title property to Navigate 2.

Delete the Buttons

. From the design canvas of the first page Pagel.jsp, select and delete the two

button components. (Make sure you select the buttons and not the grid
panel. Use the page’s Outline view to select and delete them if you want.)

. In the editing toolbar, select the Java button to bring up the Java page bean.
. In the Java source (Pagel.java), remove the action methods associated with

the button components you just deleted. These are browseMusic_action()
and loginButton action().

Add a Drop Down List

. Return to the design canvas by selecting the Design button at the top of the

editor pane. From the Basic Components palette, select Drop Down List and
drop it on top of the grid panel component. (If you elected not to use the
grid panel component, just place the Drop Down List onto the page.)

. In the Pagel Outline view, select the dropDownlDefaultOptions element (at

the very bottom of the view).

. In its Properties window, click the small editing square opposite property

options. An options editing dialog box appears. Replace the default items
by double-clicking inside each table cell to edit. For the first entry, use Home
for Display and Value home. The second entry is Display Browse Music Titles
and Value musicBrowse. The third entry is Display Members Login and

5.3 Noncommand Components 95

Value userLogin. Figure 5-9 shows the drop down component options edit-
ing dialog. When you're done, click OK.

¥ dropDown1DefaultOptions - options

Display Value MNew
|Home
[Browse Music Titles |
rembers Login
]
Chaneiry

Click. Meva to create a new enkry, Edit a walue by clicking in the table cell,

|_ Ok %J[Unset Property][Zancel

Figure 5-9 Drop down options editing dialog

4. In the design canvas, select the drop down list component. Right-click and
check Auto-submit on change (it’s currently unchecked). This sets the Java-
Script property onChange to common_timeoutSubmitForm(this.form,
'gridPanell:dropDownl') ; which submits the page when the user
changes the drop down list component’s selection.

Value Change Event vs. Action Event

Before we go any further, an explanation is warranted for adding three naviga-
tion choices to the drop down menu component. Why is this necessary?
Remember, the event type is called value change. If we present the user with a
drop down menu item that contains navigation choices and one of the choices
is preselected, this preselection prohibits the user from selecting it with an
accompanying value change event. Simply, there is no change in value since it is
already selected. Therefore, we create an initial (preselected) choice, Home,
representing the current page.

A page designer has another choice. You can always place a button next to
the drop down menu. After the user makes a selection (whether it be a value
change or not), he or she clicks the button and the button’s action event handler
can return the drop down menu selection’s String value.

Creator Tip

When you key off a value change event, the event handler will only be called if
the selection component has actually changed. The event handler will not be
called when you select the displayed choice.

96

Chapter 5 Page Navigation

Match the Navigation Labels

The drop down list component’s default options includes both a label (which is
displayed in the drop down’s menu) and a value, which is returned by method
getSelected()). Therefore, the navigation labels you specified using the Page
Navigation editor work just fine with the matching values you supplied to the
drop down component’s options (musicBrowse and userLogin).

Add Event Handler Code

When the user changes the selection in a drop down list component, a value
change event is generated. A value change event is not hooked into the naviga-
tion system the way that an action event is. But in the event handler, we can
grab the new value and pass it directly to the navigation handler. You'll be add-
ing code to do this.

Creator Tip

The code you are about to add will cause the Java source editor to complain
because it doesn’t have all of the necessary import statements. After you add
the code, we’ll show you a shortcut for fixing the imports.

1. Make sure that Pagel is active in the page design editor.

2. Double-click on the drop down list. Creator brings up the Java page bean
and puts the cursor in the newly generated event handling method for the
drop down list component, dropDownl processValueChange ().

3. Add the code from the book’s download examples (copy and paste file
FieldGuide2/Examples/Navigation/snippets/Navigate2_valueChange.txt).
This code “gets at” the context and application objects associated with this
web application to access the navigation handler. The last statement sends
the navigation String (the selected value in the drop down list component)
to the navigation handler. The added code is bold.

public void dropDownl processValueChange (
ValueChangeEvent vce) {
// TODO: Replace with your code
FacesContext context = FacesContext.getCurrentInstance() ;

Application application = context.getApplication();

NavigationHandler navigator =
application.getNavigationHandler () ;

navigator.handleNavigation (context, null,
(String)dropDownl.getSelected()) ;

5.3 Noncommand Components

Your code will be underlined in red because the Java file is lacking import
statements. Here’s how to add the needed import statements.

. Click anywhere inside the word FacesContext and type <Alt-Shift-F>. Cre-

ator pops up the Fix Imports dialog and adds the following import state-
ments to the source at the top of Pagel.java:

import javax.faces.application.Application;
import javax.faces.application.NavigationHandler;
import javax.faces.context.FacesContext;

This procedure eliminates the red underlines in your code and any “unre-

solved symbol” errors in the event handler code. (You can add the import state-
ments individually using <Alt-Shift-I> but fixing them all at once is easier.)

Add Button Components

You'll now add button components to return to the Welcome (home) page of
the application.

1.

2.
3.
. Repeat these steps to add a button to page MusicBrowser.jsp. Make its label

In the Projects window, expand the Web Pages node and double-click Login-
Start.jsp. Creator brings up the page in the design view.

From the Basic Components palette, select Button and drop it onto the page.
The button label text will be selected. Type in Home followed by <Enter>.

Home as well.

You’'ll now add navigation rules for the button components you just added.

. Right-click in the background of the MusicBrowser page and select Page

Navigation. Creator brings up the Navigation editor.

. Click inside MusicBrowser.jsp. Creator enlarges the page. Click the button

component inside MusicBrowser.jsp, drag the cursor to Pagel.jsp, and
release the mouse. Creator draws a navigation arrow.

. Change the case label to home.
. Now click inside LoginStart.jsp. When the page enlarges, click the button

component inside LoginStart.jsp, drag the cursor to Pagel.jsp, and release
the mouse.

. Change the case label to home.

Deploy and Run

Deploy and run the application. Figure 5-10 shows the drop down list compo-
nent with the page navigation choices. You can see that command components

97

98

Chapter 5 Page Navigation

(button and hyperlink) are easier to use for navigation, but with a bit of extra
coding you can make other components work too.

@) Navigate 2 - Netscape |:| |E| Pg]
. File Edit View Go Bookmarks Tools Window Help

@ Q0O Q oEE=m <

E. \ @Mall ﬁ Home f‘ Radio ENetsmpe @LSearm EBookm:

Welcome to the Music Store

Members Login

Figure 5-10 Using a drop down list component for navigation

Creator Tip

If you use the browser’s back arrow to return to the home page, the drop down
component displays the page you came from. If you return using the Home
button, however, the drop down displays Home.

5.4 Dynamic Navigation

You've seen an example of simple navigation, in which each component’s
action event returns a label that corresponds to a navigation rule. Now you're
going to work through an example that shows dynamic navigation. Here, an
action method can return a different label depending on some processing it
performs. You'll see that dynamic navigation is also straightforward with Cre-
ator.

This example sets up a login sequence whereby the user is required to give a
username and password to gain access to the next page. We've simplified the

5.4 Dynamic Navigation 99

processing criteria to concentrate on the navigation issues, but in the next chap-
ter we expand this example for an improved architectural configuration (using
JavaBeans component architecture).

Create a New Project

=
Creator Tip 4
In this section, you will use the same name (Login1) as the project we showed -

you in Chapter 2 (“Creator Basics”). Howevet, this time you'll build the » ’
project from scratch. If project Login1 is already included in your default

Creator Projects directory, you may want to delete it or move it before

continuing.

—

. In the Welcome Page, select button Create New Project.
. In the New Project dialog, select Web under Categories and JSF Web Applica-

tion under Project. Click Next.

. In the New Web Application dialog, specify project name as Login1. Click

Finish.

After creating the project, Creator comes up in the design view of the editor

pane for Pagel.jsp. You can now set the title.

4.

Select Title in the Properties window and type in the text Login 1. Finish by
pressing <Enter>.

Add a Label Component

You’'ll use a label component to place a heading on the page.

1.

2.

From the Basic Components palette, select Label. Drag it over to the design
canvas and place it near the top of the page.

Make sure that it’s selected. Start typing Members Login and press <Enter>.
The text attribute in the Properties window will show these words and the
label component will display them.

. In the Properties window under Appearance, edit the 1abelLevel attribute.

Using the drop down menu, select option Strong (1) to alter the font style
and size of the text. The label’s text should now appear with its new style
characteristics.

100

Chapter 5 Page Navigation

Create the Form’s Input Components

The application uses the next set of components to gather input for the mem-
ber’s username and password. For the username, you'll add a a text field and a
message component. Figure 5-11 shows the design canvas with all the compo-
nents added to the page. Note that this project uses virtual forms, which you’ll
configure later.

welcame = .”Pagel isp X -
[}

'Design' 5P Jdava | G ’a?—,»‘ '_.-| |Arey Size ¥

Figure 5-11 Design canvas showing components for project Loginl

1. From the Basic palette, select Text Field and add it to the design canvas.
Change its id property to userName.

2. In the text field’s Properties window under Appearance, change the label
property to User Name: .

3. In the Properties window under Data, check the required property. This
automatically adds a red asterisk in front of its label, letting the user know
that input is required. Now when you process the input in the event han-
dler, you don’t have to worry about checking for null values or empty
strings.

4. In the Properties window under Behavior, change the toolTip property to
Please type in your username. When the application is running and the user
holds the mouse over the text field, this tooltip will appear.

5. From the Basic Components palette, select Message and add it to the design
canvas to the right of the userName text field.

6. Press and hold <Ctrl+Shift> while dragging the mouse (you'll see an arrow),
releasing the mouse when it is over the text field component. This step asso-

5.4 Dynamic Navigation

ciates the message component with the text field, making any conversion or
validation error messages associated with the userName text field appear in
this message component. This step sets the message component’s for prop-
erty (in the Properties window under Behavior) to the id of the text field
component (userName).

For the password field, you'll need a password field component and a mes-
sage component for error messages. The password field component performs
several functions that make it particularly suitable for gathering sensitive data.
First, it replaces the text that you enter with a constant character (the default is
a black dot or an asterisk). Second, when the page is refreshed or you return to
the page, the field is cleared. Thus, if you leave your workstation and someone
else uses your computer, the new user can’t “borrow” your password entry by
simply selecting the browser’s back button until the login page is reached.

Place the password components directly underneath the username compo-
nents added above. You will follow the same procedure.

1. From the Basic Components palette, select Password Field and add it to the
design canvas. Change its id property to password.

2. In the password field’s Properties window under Appearance, change the
label property to Password: .

3. In the Properties window under Data, check the required property.

4. Still in the Properties window under Behavior, change the toolTip property
to Please type in your password.

5. From the Basic Components palette, select Message and add it to the design
canvas to the right of the password field.

6. Press and hold <Ctrl+Shift> while dragging the mouse, releasing the mouse
when it is over the password field component. This sets the message compo-
nent’s for property to the id of the password field component (password).

Creator Tip

To align the password field on the right with the userName text field, select
the password field and hold the <Shift> key. Now you can use the mouse to
adjust its placement without having it snap to the grid lines.

To check the placement of the components on the page, right-click in the
design canvas and choose Preview in Browser. Creator renders the components
in a page in your browser.

Add Button Components

This application uses two button components: one to submit the form data to
be processed for logging in. The second button clears the two input fields so

101

102

Chapter 5 Page Navigation

that the user can start over. After adding the components, you'll add code for
the button event handlers.

1. From the Basic Components palette, select the Button component and drag
it to the design canvas. Position it under the two input components.

2. Make sure it’s selected and type the text Login followed by <Enter>. This sets
the button’s text property, which is displayed as its label.

3. In the Properties window under General, change its component name (id
property) to login.

4. Repeat these steps and add a second button to the design canvas.

. Make sure it’s selected and change its text property to Reset.

6. In the Properties window under General, change its 1d property to reset.

Q1

tabindex Property

Components that can be selected, such as input components like text fields or
command components such as buttons, have an inherent “tab order” on the
page. The default tab order is the order that you place them on the page. For
example, if you followed these instructions exactly, the tab order of this page is
the text field, the password field, the login button, and lastly, the reset button.
While the application is running, if you place the cursor in the text field and hit
the <Tab> key, you will select the components in the tab order.

To change the tab order, supply a value for property tabIndex (in the Prop-
erties window under Accessibility) beginning with 1 for the first component
that should be selected. You can skip numbers if you think you’ll add compo-
nents in the middle later.

Deploy and Test Run

Although you haven't yet added any functionality to the button components,
it's a good idea to deploy and run the application now. Go ahead and click the
green chevron in the toolbar. When the login page comes up, type in user-
names and passwords. Of course, clicking the buttons won’t do anything, but
you should see an error message if you leave an input field empty. Figure 5-12
shows the initial page of the Loginl web application. The user is holding the
cursor over the password field to display the tooltip.

Add Event Handler Code

Now let’s add event handler code to both of the buttons on Pagel.

1. Make sure that Pagel is in the design canvas. The button components
should be visible.

5.4 Dynamic Navigation 103

&) Login 1 - Netscape |ZI|E| E|
. File Edit View Go Bookmarks Tools Window Help

@ 6 @ Q @Nhtmmocalho | [Auscanch] Cfga @

ally E, | [Q |'"'|31| ‘h Home ﬂ Radio - Netscape @L Search | EjBoohﬂarks

Members Login

* User Name: Irave4u
F
* Password: I“““

|F‘|ease type in your password |

@ = & E1 | Document: Done (0,156 secs) i:q]; x| !@|

Figure 5-12 Login page web application

2. From the design view, double-click the Reset button. This takes you to the
Java page bean, Pagel.java. Creator generates the event handler method for
you and places the cursor inside the method.

3. Add following code to the Reset button event handler, reset action(),
which clears the input components. Copy and paste from the file
FieldGuide2/Examples/Navigation/snippets/Loginl_resetAction.txt. (The
added code is bold.)

public String reset action() {
// TODO: Replace with your code
userName.setText ("") ;
password.setText ("") ;
return null;

4. Return to the design view by clicking the Design button in the editing tool-
bar. Double-click the Login button component. Creator now generates the
event handler for the Login button.This takes you to the Java page bean,
Pagel.java.

104

Chapter 5 Page Navigation

5.

Add the following code to the Login button event handler, login action().
Copy and paste from file FieldGuide2/Examples/Navigation/snippets/
Loginl_loginAction.txt. The added code is bold. (Be sure to delete the
return null statement.)

public String login action() {

// TODO: Replace with your code

if (myUserName.equals (userName.getValue()) &&
myPassword.equals (password.getValue())) {

return "loginSuccess";

} else return "loginFail";

(Ignore the errors flagged in red for now.) The "loginSuccess" and "login-
Fail" String values correspond to the page’s navigation rules for going to page
LoginGood.jsp and LoginBad.jsp, respectively. This is called “dynamic” navi-
gation because the event handler dynamically figures out the outcome accord-
ing to the result of the if statement.

6.

Add the following two lines of code (place them above method

login action()). These statements define values for private variables
myUserName and myPassword. These are the “correct” values the user must
supply for a successful login. Choose whatever values you'd like for testing
the application (and they don’t have to be the same). Here’s the code. Copy
and paste from file FieldGuide2/Examples/Navigation/snippets/
Loginl_declareVars.txt. (After you add this code, the errors flagged in red
will disappear.)

private String myUserName = "rave4u";
private String myPassword = "rave4u";

Create New Web Pages

This application has a total of three web pages. The first page, Pagel, contains
all of the components you have just added, including a Login button that will
take the user to either a LoginGood page (if the login process succeeds) or Log-
inBad page (if the login process fails). First you'll create these new pages, add
components to them, and then specify the page navigation rules.

1.

2.

In the Projects view for project Loginl, expand node Web Pages. Right-click
Web Pages and select New >Page. Creator pops up the New Page dialog.
Specify LoginGood for File Name and click Finish. Creator brings up page
LoginGood.jsp in the design view and adds LoginGood.jsp to the Projects
view under Web Pages.

3.

5.4 Dynamic Navigation

Repeat these steps and add page LoginBad.jsp. Creator now displays page
LoginBad.jsp in the design view and adds LoginBad.jsp to the Projects
view.

Add Components to Page LoginBad

When the login process fails because the values typed into the input fields do
not match the Strings stored in the Java page bean, the system loads page Log-
inBad.jsp. Here you display a failure message to the user and include a hyper-
link component to return to the login page, Pagel.jsp.

1.
2.

3.

Make sure that LoginBad.jsp is active in the design view.

In the Properties window, supply the text Failed Login followed by <Enter>
for the page’s Title property.

From the Basic Components palette, select component Static Text and drag it
onto the design canvas. Position it at the top.

. Make sure the component is selected and type Invalid username or password.

To try again, click. Finish by pressing <Enter>. This changes the text property.

. Now select the Hyperlink component from the Basic Components palette

and drag it onto the design canvas. Position it to the right of the static text
component.

. Make sure that the hyperlink component is selected and type in the text

HERE followed by <Enter>. This changes its text property.

. In the Properties view, change the hyperlink’s id property to loginpage.

Add a Component to Page LoginGood

Now you’ll add a component to LoginGood.jsp.

1.

2.

Make sure that page LoginGood.jsp active in the design view by selecting
its tab from the top of the editor pane.

In the Properties window, supply the text Login Good followed by <Enter>
for the page’s Title property.

. From the Basic Components palette, select component Label and drag it

onto the design canvas. Position it at the top.

. Make sure the component is selected and type in Welcome to our Members-

Only Page. Finish by pressing <Enter>.

. In the Property window under Appearance, modify the labelLevel prop-

erty to Strong (1) using the drop down selection.

. Click the Save All icon to save all the project’s pages (or select File > Save All

from the main menu).

105

106

Chapter 5 Page Navigation

Specify Page Navigation

In the next steps, you’ll connect the pages and provide navigation case labels
that you use to control the page flow.

1.

Page LoginGood.jsp should be active in the design view. Right-click any-
where in the background of the page and select Page Navigation from the
context menu. Creator brings up the Page Navigation editor and displays
the project’s three pages.

. Place the mouse inside page Pagel.jsp and click. The page enlarges and the

navigation editor displays its two command components. Make sure that
you don't select the buttons (click anywhere in the blank page area) and
drag the arrow to page LoginGood.jsp. When you unclick, you'll see an
arrow with a label. Change the label from casel to loginSuccess.

. Once again, select Pagel.jsp (again, don'’t select any components) and drag

the arrow to page LoginBad.jsp. This time change the label name to login-
Fail.

. Finally, you'll add a third rule. Select page LoginBad.jsp. The navigation

editor enlarges the page and displays the hyperlink component (Loginpage)
you added previously. Select the hyperlink component and hold and drag
the mouse to page Pagel.jsp. Change its label to loginPage. This sets the
static navigation label for the hyperlink component.

Figure 5-13 shows the Page Navigation editor pane with the web pages and

navigation labels you just created.

[

LaginBad jsp B
loginSuccess
Bt LaginGead.jsp Pagel.jsp
gy loainPage
laginF ail

Figure 5-13 Page Navigation editor pane with three navigation rules

5.4 Dynamic Navigation

Behind the scenes Creator is generating code for its Navigation Rules in file
navigation.xml. To see what it generates, select the Source tab at the top of the
Page Navigation editor pane. Here is the file.

<faces-config>
<navigation-rule>
<from-view-id>/Pagel.jsp</from-view-id>
<navigation-case>
<from-outcome>loginSuccess</from-outcome>
<to-view-id>/LoginGood. jsp</to-view-id>
</navigation-case>

<navigation-case>
<from-outcome>loginFail</from-outcome>
<to-view-id>/LoginBad.jsp</to-view-id>
</navigation-case>
</navigation-rule>

<navigation-rule>

<from-view-id>/LoginBad.jsp</from-view-id>

<navigation-case>
<from-outcome>loginPage</from-outcome>
<to-view-id>/Pagel.jsp</to-view-id>

</navigation-case>

</navigation-rule>
</faces-config>

This XML file has two rules originating from Pagel.jsp and one rule from
page LoginBad.jsp. The from-outcome attribute corresponds to the labels you
supplied to the Page Navigation editor. Note that these labels match the strings
returned in the Login button’s action event handler on Pagel.jsp. What about
the hyperlink component?

1. Select the tab labeled LoginBad on top of the editor pane. Creator displays
the design view for this page.

2. Now select the JSP button in the editing toolbar to see the JSP source.

3. Scroll down to view the hyperlink component’s JSP, as follows.

<ui:hyperlink action="loginPage"
binding="#{LoginBad.loginpage}" id="loginpage"
style="1left: 336px; top: 48px; position: absolute"
text="HERE"/>

The action="loginPage" supplies the required navigation case label when
the user selects the hyperlink component making a specific action event han-
dler unnecessary.

107

108

Chapter 5 Page Navigation

Deploy and Test

Deploy and test the application by clicking the green chevron on the toolbar.
Go ahead and type in test usernames and passwords. Check both the failure
and success cases (type ravedu for both the username and password), as well as
leaving one or more of the input fields blank. You'll note that in order for the
Reset button to clear the fields, both fields must contain some text. Let’s remove
this constraint.

Configure Virtual Forms

This project is an excellent example illustrating virtual forms. Why do you
need virtual forms here? The page has two buttons, and each button performs a
distinct (and opposing) function. The login button submits the username and
password values to an event handler that determines whether or not the user
has supplied correct values. Before this processing takes place, component val-
idation makes sure there is input in each component. If validation fails, the JSF
life cycle process skips to the Render Response phase and displays the error
message. If validation succeeds, normal event processing occurs and the login
button’s event handler is invoked. (We delve into the JSF life cycle later. See
“JSF Life Cycle” on page 152.)

If the user selects the Reset button, its event handler clears the input for both
the text field and password field components. However, if one or more of these
components is already blank, component validation kicks in and once again
processing skips to the Render Response phase. The user becomes quickly
annoyed because he or she has to supply input before the Reset button’s event
handler can be invoked to clear the form!

The solution is to use virtual forms. Configure the Reset button in its own
virtual form (which excludes the input components). When the user selects the
Reset button, the input components are not included with the page submission
and validation is not performed. Here are the steps to do this.

1. Make sure that Pagel appears in the Design view. Select the Reset button
component, right-click, and select Configure Virtual Forms Creator pops
up the Configure Virtual Forms dialog for component reset.

2. Click the New button. Creator makes a new virtual form with color code
blue. Edit the virtual form’s Name to resetForm (double-click the field name
and it becomes editable) and change the Submit field to Yes using the drop
down selection. Figure 5-14 shows what the dialog looks like at this point.

3. Click Apply then OK. The Design view now shows the Reset button with a
blue-dotted line, indicating that it is the submit component for the blue vir-
tual form.

5.4 Dynamic Navigation 109

¥ Configure Virtual Forms

reset
These components participate in and submit virtual forms as Follows:
Color Mame Participate Submit; e
L] resetForm |ND |‘fes
Delete
oK] [Cancel Apply

Figure 5-14 Configure Virtual Forms dialog

If the Design view does not show the virtual form, toggle the Virtual Form
icon on the editing toolbar, as shown in Figure 5-15. The Virtual Form icon is
next to the Refresh icon above the editing pane.

¥ Sun Java(T M) Studio Creator 2 - Login1 |Z||E||E|

File Edit Wiew Buld Run Refactor ‘ersioning Data Tools Window Help
2

| @ wielcome % !-E-E‘gﬁel % | -l

Ibesign| P Java | G @ |E| |F\ny Size v| |

7 |ShowVirtual Forms |
Members Login i] 3] Mirtual Form Legend | e
e S e | |

| Save all finished.

Figure 5-15 Show Virtual Forms icon

Placing the Reset button in its own virtual form almost fixes the problem.
When the user clicks the Reset button, the input components are not included
in the page submission. Even though the required property for the input com-
ponents is checked, validation does not take place when user clicks the Reset
button. Since all of the input components go with the Login button, these do
not need to go into a separate virtual form. Therefore, a second virtual form for
the Login button, the text field, and the password field components is not nec-
essary.

110

Chapter 5 Page Navigation

However, if you deploy and run the project as is, you'll see that now the
Reset button does not clear the submitted input from the two text field compo-
nents. (Submitted values are the unconverted and unvalidated data in the
input fields.) When you use virtual forms, all submitted values of non-partici-
pating components are retained by default. This prevents the loss of any non-
participating input, saving the user from having to re-submit unprocessed
data. In this situation, however, we must override the default behavior and dis-
card the submitted values for the two input field components.

1. From the Pagel design view, double-click the Reset button. Creator brings
up Pagel.java and places the cursor at the first line of the reset action ()
event handler.

2. Add following code to the Reset button event handler, reset action().
Copy and paste from the file FieldGuide2/Examples/Navigation/snippets/
Loginl_discard.txt. (The added code is bold.)

public String reset action() {
// TODO: Replace with your code
forml .discardSubmittedValue (userName) ;
forml .discardSubmittedValue (password) ;
userName.setText ("") ;
password.setText ("");
return null;

The forml Form component includes method discardSubmittedvalue () to
discard submitted values of non-participating input fields. Its argument is the
component id of the input component (which must be non-participating). A
second form of the method (discardSubmittedvalues()) accepts a virtual
form name and discards the submitted values of all participating components
in the named virtual form. The virtual form specified cannot be the form sub-
mitted during the current request.

Deploy and Run

Deploy and run the application. Test using the Reset button with the input
components empty and not empty. You can see that using virtual forms has
made handling this web page much cleaner. Also, note that when you return to
the login page, the password input field is cleared. Figure 5-12 on page 103
shows the login page.

5.5 Key Point Summary 111

Design Tip

The login action() event handler performs a simple String comparison
between the input field values and the private variables in the Java page bean.
We elected to show you this code because it is simple and we really wanted to
emphasize page navigation. However, it is better to remove the computation
for determining the “success” of a login from the action method and
encapsulate it in a JavaBeans object. The changes are small, but the
architectural advantages are striking. In Chapter 6 (“Anatomy of a Creator
Project”), we show you how to encapsulate this computation.

5.5 Key Point Summary

* JSF navigation is a rule-based system. When you create page flow links,
Creator generates the rules for you and stores them in the XML
configuration file, navigation.xml.

* Creator supports static, simple, and dynamic navigation.

e In static navigation, the command component’s action property supplies a
string to the navigation handler.

* In simple navigation, the command component’s action event handler
returns a String that matches a navigation case label. You can optionally
specify processing code within the action method.

* In dynamic navigation, the command component’s action event handler
performs some processing that affects the String value that it returns.

* The action event listener passes the String associated with clicking a button
or hyperlink component to the navigation handler.

* You can use other components with navigation, but you have to manually
code their event handlers to pass an appropriate String to the navigation
handler.

* Dynamic navigation provides more flexibility than static navigation. With
dynamic navigation you can add processing in the event handler (to
determine the next page or just to perform some housekeeping updates).

e With Creator’s Page Navigation editor, you can create new web pages and
connect the pages in your application with page flow case labels. Creator
generates the navigation rules that the navigation handler uses to manage
your application’s page flow.

e Use Virtual Forms to control which input components are included in a
page submission. Virtual Forms make it easier to control when conversion
and validation take place for each component that supplies input.

ANATOMY OF A
CREATOR PROJECT

7 Topics in This Chapter

« JavaBeans Components and Properties
* Managed Beans

+ Object Scope

+ Value Binding

» Conversion and Validation

» Life Cycle Events

Chapter

explain what we mean by the anatomy of a Creator project. A Creator

project has a certain structure that is dictated by the JSF model, as well

as the structure imposed by the HTTP request-response protocol. Cre-
ator does a great job managing this structure for you, and you can build quite a
range of applications without having to delve into the various configuration
files that support the application. However, to best leverage both JSF and the
artifacts included with the Creator product, an understanding of what we call
the application model, that is, the structure of the application as well as its behav-
ior, will be helpful as you design and build your web application.

To that end, in this chapter we’ll introduce the concept of a JavaBeans object
and the JSF and Creator life cycle. JSF’s architecture includes the concept of
managed beans. A managed bean is a JavaBeans object whose life cycle and
scope is controlled by JSE. By carefully defining its public methods, you can
make your managed bean and all of its properties available to the pages of a
web application.

The JSF life cycle encompasses the steps that JSF performs to handle user
requests and program events. Creator projects let you hook into this life cycle
by providing methods that will be invoked at specific points in your applica-
tion. While you can access the full JSF life cycle phases if you want, Creator pre-
sents a simplified model. We’ll show you why this is useful.

JSF components support conversion, validation, and property binding. We’ll
give you project examples that use conversion, validation, and property bind-
ing and show how these fit into the life cycle phases.

B efore you wonder if we're trying to slip in a science class topic, let’s

113

114

Chapter 6 Anatomy of a Creator Project

The first step is to learn what a JavaBeans object is.

6.1 What Is a Bean?

A JavaBeans object or component (bean) is a Java class with certain structure
requirements. When a Java class conforms to this structure, other programs
(like Creator) can access the bean and inspect it intelligently. Furthermore, pro-
grams can inspect instances (objects) of the bean.

Because they follow certain design standards, beans can be reused in vari-
ous applications. The JSF architecture is set up to allow the JSF user interface
(UI) components to access JavaBeans objects.

Properties

One the most important characteristic of a bean is its ability to define and
manipulate properties. A JavaBeans property is a value of a certain type. With a
bean, you provide public methods to access a bean’s properties. A property is
frequently implemented by an instance variable, but not always. Sometimes
properties are derived from the values of other instance variables in the Java
class (especially with read-only properties). Properties can also be tied to
events and have listeners that detect a change to a property’s value.

Properties usually contain a single value. These are called simple properties.
They can also be represented by an array of values. These are called indexed
properties.

Setters and Getters

The public setters and getters define a bean’s properties. A setter provides
write access to a property and a getter provides read access. The names of these
access methods are set by standards and determine the name of the property.
A getter is a public method that returns a reference to an object of the prop-
erty’s type (or if the type is a built-in type, it returns a value). It combines the
word “get” with the property name, capitalizing its first letter. For example, if a
JavaBeans object implements a property called customer (a String), its getter is

public String getCustomer () {
return customer;

}

Similarly, a setter is a public method that takes an object of the property’s
type and returns void. Using the same convention, setters combine the word

6.1 What Is a Bean?

“set” with a property name whose initial letter is capitalized. A setter for the
above customer property is

public void setCustomer (String c) {
customer = c;

}

A boolean property’s getter may have one of two forms. Suppose a Java-
Beans object has a property called onMailingList (a boolean). Its getter can be
implemented as

public boolean isOnMailingList() { ... }
or the traditional

public boolean getOnMailingList() { . . . }

Creator Tip

When you create a boolean or Boolean property through the IDE, Creator uses
the isPropertyName () form for the getter.

Note that what determines a bean’s properties is the accessor methods you
provide. When you create a JavaBeans object through Creator’s IDE, Creator
supports these conventions.

Default Constructor

There is one important rule to remember with JavaBeans components. A bean
must define a public default constructor, that is, a constructor with no argu-
ments.! Typically, JavaBeans objects are instantiated by a mechanism that pre-
cludes passing arguments to the constructor. The constructor’s job is to provide
any necessary initialization steps for the bean, including default values for the
bean’s properties.

Property Binding

When you write a JavaBeans object that conforms to these design standards,
you can use them with Creator and bind JSF components to JavaBeans proper-

1. A public class with no constructor is also considered to have a public default
constructor.

115

116

Chapter 6 Anatomy of a Creator Project

ties. This provides a powerful link between a Ul component and the applica-
tion’s “model,” that is, the business data that the application manipulates.

The binding is specified by the JSF EL (Expression Language). Typically, you
bind the text property of a Creator component to a JavaBeans property. Creator
provides a Property Bindings dialog that allows you to select a component’s
bindable property (many properties are bindable) and a binding target (see
Figure 6-3, “Property Bindings dialog for component userName” on page 129).
After you've applied the binding, Creator generates the necessary code in the
page’s JSP source. Here is an example of a static text component called cost
bound to the payment property of LoanBean, which we show you later in this
chapter. The binding with the LoanBean component is in bold.

<ui:staticText binding="#{Pagel.cost}"
converter="#{Pagel.numberConverterl}" id="cost"
style="1left: 264px; top: 288px; position: absolute"
text="#{SessionBeanl.loanBean.payment}" />

This binding means that the static text’s text property is updated with the
LoanBean’s payment property during the page’s request cycle. When you use
binding in your application, JSF uses Property Resolvers to access the property.
This instantiates the referenced object as needed and invokes the property’s
getters and setters. In this example, the LoanBean object is a property of
SessionBeanl and has session scope. We explain later how this all works in
more detail. But first, let’s discuss object scope in web applications.

Scope of Web Applications

When a web application runs on the server, it consists of various programming
objects whose life cycles depend on their scope. For example, a page generally
lives in request scope and exists during the life cycle of a single request. Certain
data, however, are available throughout the entire session. When a user puts
items in a shopping cart, for example, the cart and all of its contents are gener-
ally in session scope. Each user running the application has his or her own ses-
sion objects.

Sometimes data need to be shared among all users of a web application. For
example, suppose a counter keeps track of how many users have accessed a
web application. Such a counter needs to be accessible throughout all sessions
and therefore must have application scope. Since it’s important to understand
object scope in your Creator projects, we define the different kinds for you.

Session scope means the object is available for one user throughout the entire
session. Each user of the web application is given his or her own instance of
any object with session scope. Objects in session scope exist until the session
terminates—either until the session times out or until the application calls

6.1 What Is a Bean?

invalidate () on the HttpSession object. Session tracking is supported by the
underlying Servlet technology in conjunction with the web application server.

Application scope means the object is available for all sessions within an
application. A component with application scope usually contains application-
wide data or processing, since all sessions share the same object.

Request scope means the object exists only for the duration of an HTTP
request. When the application transitions from one page to the next, items in
request scope are available until the response is sent back to the client making
them available for the next page. This makes request scope objects convenient
for passing temporary information from one page instance to the next. Data
that keeps track of state, however, needs to survive past a single request and
should be placed in session scope.

An object with scope none is instantiated each time it is referenced. This
means that the object is not saved in any scope. You would use scope none
when an object is closely tied to and dependent on another object. For example,
an AddressBean with scope none is instantiated when a CustomerBean refer-
ences it.

If one object references a second one, the allowable scope of the second
object depends on the scope of the first object. Table 6.1 lists the allowable bind-
ings in a JSF application.

Table 6.1 Well-behaved bindings between objects

Objectl’s Scope May Refer to Object2 in This Scope

none none

application none, application

session none, application, session

request none, application, session, request

In general, (except for scope none) an object with a longer-living scope
should not refer to an object with a shorter life span. For example, an object
with session scope should not reference an object with request scope. On the
other hand, an object of request scope may refer to an object stored in session
scope because session scope has a longer life span. Objects with scope none
may only reference other objects of the same scope (none).

Why is all this important? First of all, you need to understand scoping rules
to create your JavaBeans objects properly in a Creator project. Then you must
understand scoping rules to correctly instantiate and access your JavaBeans
objects in the correctly scoped managed bean. Later in this chapter, we show

117

118

Chapter 6 Anatomy of a Creator Project

you how to do this with the LoginBean in session scope (see “Modify Event
Handler” on page 130).

Predefined Creator Java Objects

If you open any Creator project (or create a new one) from Creator’s Projects
window, you'll see three predefined beans: Session Bean, Request Bean, and
Application Bean. These are all JavaBeans objects installed as managed beans
with application scope, request scope, and session scope, respectively. These
objects will be instantiated by the web server as needed by your application. That
is, these objects (beans) will only be created if there is some reference to them.
If you expand the Source Packages and the main project package nodes (in the
Projects window), you'll see the Java sources for these beans, as well as the
page beans for your web application’s pages.

Each page has its own page bean. By default, Pagel.java is the page bean for
the first page of your application. The page bean is a JavaBeans object consist-
ing of a property for each component you add to your page. Creator generates
the Java source for this file (including the components’ properties), and you
can add code to it (such as event handler methods or user-defined initialization
statements). Pagel, therefore, is a JSF managed bean with request scope.

RequestBeanl.java provides a place for you to store request scope data for
your application. This is where you store data that is available across different
pages in the same HTTP request. The RequestBeanl component is a better
alternative to SessionBeanl for passing transient user input from one page
request to the next. Object RequestBean1 scales well since it goes away at the
end of the request. See “Master Detail Application - Two Page” on page 283 for
an example of a project that uses RequestBean1 to pass data to a second page.
Here is its source.

package project name;
import com.sun.rave.web.uil.appbase.AbstractRequestBean;
import javax.faces.FacesException;

public class RequestBeanl extends AbstractRequestBean {
. Creator-managed Component Definition .

2. Creator hides (or “folds”) some of the Creator-managed code by default to
keep your editor pane uncluttered. To see this code, click the ‘+ in the editor
pane’s margin.

6.1 What Is a Bean?

public RequestBeanl () {
Creator-managed Component Initialization
// TODO: Add your own initialization code here (optional)

}

protected ApplicationBeanl getApplicationBeanl () {
return (ApplicationBeanl)getBean ("ApplicationBeanl");

}
protected SessionBeanl getSessionBeanl () {
return (SessionBeanl)getBean ("SessionBeanl");

SessionBeanl.java is where you place objects that you want to have session
scope. You place data here that keep track of the state of a user’s session. Exam-
ples include the contents of a shopping cart, login information about the user,
or the value of the current row’s primary key in a data table. Here is its source.

package project name;

import com.sun.rave.web.uil.appbase.AbstractSessionBean;
import javax.faces.FacesException;

public class SessionBeanl extends AbstractSessionBean {

Creator-managed Component Definition

public SessionBeanl () {
Creator-managed Component Initialization
// TODO: Add your own initialization code here (optional)

protected ApplicationBeanl getApplicationBeanl () {
return (ApplicationBeanl)getBean ("ApplicationBeanl");

}

public void init () {
}

public void passivate() {

}

public void activate() {

}
public void destroy () {

}

119

120

Chapter 6 Anatomy of a Creator Project

If you use SessionBeanl to store data as a property, you can configure it
using the Add Property context menu from the Projects window (we show you
how to do all this in our first example). Creator generates the appropriate get-
ter and setter methods for you. Since SessionBean1 has session scope, all of its
instance variables (including objects that are properties) will have session
scope as well.

You'll notice that SessionBean1 includes methods for manipulating its state.
An application that has many sessions active at one time may need to be
moved to secondary storage or to a different container if container resources
become scarce. Method passivate () is invoked by the application server
when a session object is about to be transferred. Method passivate () should
release any resources that cannot be serialized. Method activate () is invoked
after the session object is restored to the container. You can place one-time ini-
tialization or resource acquisition code in method init (), which is invoked
once when the object is initially created. Code to release resources or perform
any cleanup goes in method destroy (), which is invoked just before the ses-
sion object goes away.

ApplicationBeanl.java will have only one instance within an application
(and only if it is actually referenced) and the instance is shared among all ses-
sions (users). It has similar structure to component SessionBeanl but does not
require methods activate () and passivate (). You use ApplicationBeanl as a
container for objects with application scope. Here is its source.

package project name;

import com.sun.rave.web.uil.appbase.AbstractApplicationBean;
import javax.faces.FacesException;

public class ApplicationBeanl extends
AbstractApplicationBean {

Creator-managed Component Definition

public ApplicationBeanl () {
.Creator-managed Component Initialization
// TODO: Add your own initialization code here (optional)

}

public void init () {
}

public void destroy () {
}

6.2 LoginBean

public String getLocaleCharacterEncoding() {
return super.getLocaleCharacterEncoding() ;

}

There’s a lot more to tell you about leveraging managed beans, program
scope, and JavaBeans objects, so let’s get started. Once we’ve explored this
chapter’s two example projects, we'll return to examine the details of the life
cycle phases and how these interact with property binding, page initialization
and cleanup tasks, validation, and conversion issues.

6.2 LoginBean

In our first example using managed beans with Creator, you'll start with the
web application you built in Chapter 5 (project Loginl). You will add a reus-
able “component” (JavaBeans object) called LoginBean. LoginBean is a bean
with the structure described in the previous section. LoginBean’s purpose is
twofold: it holds user login information and it processes a login request. By
encapsulating both the login data and the processing procedure, the client
(which is the JSF web application you are building) is shielded from the imple-
mentation details. Furthermore, by making LoginBean a JavaBeans object with
session scope, any page you define in your project can access it throughout a
session.

LoginBean Outside View

Let’s begin by examining the LoginBean from its outside view, that is, the view
from your application. Then we’ll look at its source and show you how to
install it in your project.

A bean that represents a user logging in should store the user’s name and
password. Therefore, the LoginBean will have two properties, one for user-
name (a String) and another for password (also a String). To access these proper-
ties from JSF tags, use a JSF EL expression, as follows.

#{SessionBeanl.loginBean.username}

Note that username is a property of loginBean, which in turn is a property of
SessionBean1 (the default managed bean with session scope). Likewise, the
expression

#{SessionBeanl.loginBean.password}

121

122

Chapter 6 Anatomy of a Creator Project

references loginBean’s password property in SessionBeanl. In Java code, these
map to the property’s accessor methods: getUsername (), setUsername (), get-
Password (), and setPassword ().

Once a user of your web application types a username and password and
these values are stored in the LoginBean, the bean can tell you if that user’s
login information is valid. The LoginBean has a boolean property for that,
called loginGood. Since this is a read-only property, you'll need to provide get-
ter isLoginGood ().

Note that a client does not need to know how LoginBean determines
whether a login is valid, making it easier for bean providers to change how this
is done. For example, our initial implementation of LoginBean compares the
web application user’s login data with constants stored in the Java source.
Another implementation could access a database and look up the user’s name
and password. To the client, however, the calling method is unchanged. You
still invoke method isLoginGood ().

Advantages of JavaBeans Objects

In an earlier chapter (see “Design Tip” on page 111), we said that using a Java-
Beans object offers striking advantages over placing code in a Java page bean.
We were referring to the ability to change a JavaBeans object’s implementation
without affecting its clients, as well as the ability to encapsulate business logic
and data. For example, in project Loginl you placed the code for a valid login
sequence inside the action event handler of the Java page bean, Pagel.jsp. In
general, it’s not a good idea to put business logic in the Java page bean. Instead,
you should encapsulate all business logic inside business components imple-
mented as beans. This approach separates the presentation code (Ul compo-
nents and event handlers in the Java page bean) from the model code (business
logic).

Reusability is another big advantage of JavaBeans objects that implement
business logic. Because you don’t put any Ul-specific code (output formatting,
for example) in LoginBean, there’s no reason why another web application can-
not easily use it.

Property Binding with Creator Components

When objects are implemented as JavaBeans, it’s easy to use binding with the
JSF components you define on your page. This means you don’t need to write
explicit Java code to set the LoginBean properties using the component’s get-
Text () method. By binding the component’s text property to a property in
LoginBean, you're essentially performing the Java code implicitly. Suppose, for

6.2 LoginBean

example, the following code appears in an event handler that reads a text field
component called username.

loginBean.setUsername (userName.getText ());

Or, in the prerender () method, you might use the following code to display
the value that’s stored in the LoginBean instance.

userName.setText (loginBean.getUsername ()) ;

With object binding, however, all of this is accomplished behind the scenes
(we show you how to specify binding shortly). Creator generates the JSF tags
for you. For example, to bind the userName text field component’s text prop-
erty to the username property of LoginBean, Creator generates the following
JSFE tag (the relevant expression is bold).

<ui:textField binding="#{Pagel.userName}" id="userName"
label="User Name: " required="true"
style="1left: 48px; top: 72px; position: absolute"
text="#{SessionBeanl.loginBean.username}"
toolTip="Please type in your username"/>

Binding this JSF component to LoginBean means that JSF displays the text that
is in the username property of LoginBean in the JSF’s component’s input field.
And conversely, JSF puts the text that is in the text property of the text field
component in the username property of LoginBean.

Let’s use LoginBean to improve the Loginl project. Here’s a step-by-step
approach.

Copy the Project

To avoid starting from scratch, copy the Loginl project to a new project called
Login2. This step is optional. If you don’t want to copy the project, simply skip
this section and continue making modifications to the Login1 project.

1. Bring up project Login1 in Creator, if it’s not already opened.

2. From the Projects window, right-click node Loginl and select Save Project
As. Provide the new name Login2.

3. Close project Login1. Right-click Login2 and select Set Main Project. You'll
make changes to the Login2 project.

4. Expand Login2 > Web Pages and open Pagel.jsp in the design view.

123

124

Chapter 6 Anatomy of a Creator Project

5. Click anywhere in the background of the design canvas of the Login2
project. In the Properties window, change the page’s Title property to

Login 2.

Add LoginBean to Your Project

LoginBean is a reusable JavaBeans object that you will configure with session
scope. Session scope means that the object is available for the duration of one
user’s session. Each user of the web application is given his or her own instance
of the LoginBean object. To do this, you'll create the Java source file within the
Login2 project. Then you’ll add the code that provides the LoginBean behavior
we describe earlier. Finally, you'll add the newly created LoginBean compo-
nent to your project as a Session Bean property.

1. In the Projects window, expand node Source Packages.

2. Right-click Source Packages and select New > Java Package. Creator pops up
a New Java Package dialog.

3. Supply the name asg.bean_examples and click Finish.

4. Select package name asg.bean_examples and select New > Java Class. Cre-
ator pops up a New Java Class dialog as shown in Figure 6-1.

% New Java Class

Steps Name and Location

1. Choose File Type Class Mame: | LoginBiean
2. Name and Location T

Project: Log|n2
Location: Source .F".ac.kages |
Package: iasq.bean_swamplas L

Created File: E_P.roiéét-s-;l;L.og.i|-1-é'i,srcil,.asg.'i,.bean_emm|:_Iés'i,i;-:--g.il.ﬂ-Ble-an.j.a\fa |

Nexk = Finish H Cancel

Figure 6-1 New Java Class dialog

5. For Class Name, specify LoginBean and click Finish. Creator generates Java
source file LoginBean.java and puts it under the package name
asg.bean_examples. Creator writes the file to your project’s source code
directory Login2/src (which is visible in the Files view by expanding Login2
> src > asg > bean_examples).

6.2 LoginBean 125

After Creator generates the Java source file, it appears in the Java source edi-
tor so that you can modify it.

Configure LoginBean.java

First let’s add the data fields that maintain the state of the LoginBean compo-
nent, then you’ll add the initialization code to the constructor, and finally,
you’ll add the code that provides access to the component’s properties.

1. Make sure that LoginBean.java is active in the Java source editor.

2. Put the cursor in the file after the LoginBean class declaration (above the
constructor).

3. Copy and paste the following statements that generate data fields. Use file
FieldGuide2/Examples/JavaBeans/snippets/Login2_loginBean_fields.txt
from your Creator book download.

private String username;
private String password;

private String correctName;
private String correctPassword;

4. Find the LoginBean () constructor and place the cursor after the initial brace.

5. Copy and paste the following initialization code. Use file FieldGuide2/
Examples/JavaBeans/snippets/Login2_loginBean_init.txt. Reformat the
code using <Ctrl+Shift+F> if necessary.

username = "xxx";

password = "xxx";
correctName = "ravedu";
correctPassword = "ravedu";

6. Place the cursor after the constructor. The following code provides the set-
ters and getters for properties username and password and the getter for
property loginGood. Copy and paste from file FieldGuide2/Examples/Java-
Beans/snippets/Login2_loginBean_properties.txt.

public boolean isLoginGood() {
return (username.equals (correctName) &&
password.equals (correctPassword)) ;

126

Chapter 6 Anatomy of a Creator Project

public void setUsername (String name) {
username = name;

}

public void setPassword(String word) ({
password = word;

}

public String getUsername () {
return username;

}

public String getPassword() {
return password;

}

7. You're finished editing file LoginBean.java. Click the Save All icon on the
toolbar to save these changes.

LoginBean has three properties, username, password, and loginGood. It also
has two additional fields (correctName and correctPassword), but these
fields are not properties. LoginBean’s default constructor sets the four fields
with initial values. (Property loginGood is read-only and does not correspond
to an instance variable.)

Boolean method isLoginGood() returns true if the login information in
username and password is valid. Our implementation checks the property val-
ues against the internal fields correctName and correctPassword. Other
implementations of valid login information are possible.

The remaining methods implement the setters (setUsername () and set-
Password ()) and getters (getUsername () and getPassword()) for the bean’s
other properties.

Add a LoginBean Property to SessionBean1

You've added the LoginBean source, but now you need to make the component
accessible within your project. Since LoginBean should have session scope, let’s
add it to managed bean SessionBeanl as a property. This will enable JSF to
automatically instantiate LoginBean when it instantiates SessionBeanl. This
will also make LoginBean available to the UI components as a SessionBeanl

property.

1. In the Projects window, select component Session Bean, right-click, and
select Add > Property. This pops up the New Property Pattern dialog.

6.2 LoginBean 127

¥ New Property Pattern
Properky

Mame: i-Eg-ii'nBean |

Type: Iasg.bean_examples.LnginBean v!

Mode: ERead [write “ i

[Bound

[] Constrained

—Opkions
Generate Field
Generate Return Statement

Generate Set Statement

erake Property Change Support

I a4 l[Zancel][Help]

Figure 6-2 New Property Pattern dialog

2. Fill in the dialog as shown in Figure 6-2. Under Name specify loginBean,
under Type specify asg.bean_examples.LoginBean, and under Mode, select
Read/Write.

Creator Tip

Since Name and Type are case sensitive, make sure you copy the
capitalizations exactly. Also, note that we’re using the fully qualified
pathname for Type. This means you won’t have to provide an import
statement in the Session Bean source.

3. Make sure that options Generate Field, Generate Return Statement, and
Generate Set Statement are all checked. Click OK to add property loginBean
to SessionBean1.

4. Still in the Projects window, double-click the node Session Bean. This brings
up the file SessionBeanl.java in the Java source editor. Here are the getter /
setter methods Creator generated.

128

Chapter 6 Anatomy of a Creator Project

/**

* Holds value of property loginBean.

*/
private asg.bean examples.LoginBean loginBean;
Jxx

* Getter for property loginBean.
* @return Value of property loginBean.
*/
public asg.bean examples.LoginBean getLoginBean () {
return this.loginBean;

}

/**
* Setter for property loginBean.
* @param loginBean New value of property loginBean.
*/
public void setLoginBean (
asg.bean examples.LoginBean loginBean) {
this.loginBean = loginBean;

Now you’ll add Java code that instantiates (with operator new) the Login-
Bean object.

5. In the Java source editor (you're still editing file SessionBeanl.java), add
instantiation with operator new for property loginBean inside the
SessionBeanl init () method, as shown.

public void init () {
loginBean = new asg.bean_ examples.LoginBean() ;

Creator2 has simplified the event processing life cycle. All of the page beans,
SessionBeanl, and ApplicationBeanl include method init (). Customize
init () with code to initialize any required data.

The code that you added to SessionBeanl.java makes the loginBean object
a property of SessionBeanl. Thus, to access the username property of login-
Bean (for example), use the following JSF EL expression.

#{SessionBeanl.loginBean.username}

Creator Tip

6.2 LoginBean

Although you've added property loginBean to SessionBean1, it is not yet
visible within the IDE. To make it accessible, you’ll build the project, close it,
and then re-open it. From the main menu, select Build > Build Main Project.
Now close the project. When you re-open the project in the IDE, you should
see property loginBean in the SessionBeanl Outline view.

Bind Input Components

To implement binding for both the text field and the password field compo-
nents, return to the design canvas (select the Pagel tab at the top of the editor
pane). Click button Design to make the design view active.

1. From the design canvas, select text field userName.
2. Right-click and choose Property Bindings from the menu. Creator displays
the Property Bindings dialog as shown in Figure 6-3.

¥ Property Bindings for userName

L R

-
-
-

L g

Select bindable property Select binding target:

readOnly boclean b ® [pagel ”~

required boolean = 4 Pagel

style Shing [[pagel

stylsClass Shring ;‘lﬂequestBeanl

tabIndex int = _49essionBeanl

text Chyjsct = | loginBean | oginBean

toolTip String m property: class Class

bim Poolean m property: loginGood Boolean

validator MethooBinding |_ﬂ) property: password S."Jng

visibls Foolean . . # '.' |:-'-:-|:-E=rt';.-': username Sting

— | = 9 ApplicationBean1

@ Defaule (O Advanced (O Al # # localeCharacterEncoding b
Current binding For kext property:
I#{Se;sionBeanl.IoginBean.username} |[Clear]
Mew binding expression:
| #43essionBeanl.loginBean. username} | [Apply%

Figure 6-3 Property Bindings dialog for component userName

3. In the Select bindable property window, choose text Object.
4. In the Select binding target window, expand the SessionBeanl and login-
Bean nodes.

129

130

Chapter 6 Anatomy of a Creator Project

5. Select the username property under loginBean. Click Apply. The following
expression is displayed under Current binding for text property.

#{SessionBeanl.loginBean.username}

6. Click Close.
7. Repeat steps 1 through 6 to bind the password property of component pass-
word to #{SessionBeanl.loginBean.password}

Modify Event Handler

You also need to update the Pagel.java event handler to invoke the Login-
Bean'’s isLoginGood () method. To do that, you have to access the LoginBean
component.

1. From the Page design view, select the Login button and double-click. Cre-
ator brings up the page bean Pagel.java in the Java source editor and puts
the cursor at the first statement of the login action () method.

2. Remove the following private variables myUserName and myPassword from
the code. (This code is left over from project Loginl; you’ll find it just above
method login action().)

private String myUserName = "ravedu";
private String myPassword = "rave4u";

3. Move the cursor to the opening brace in method login action () and press
<Enter> to add a new line.

4. Add the following statement to obtain a reference to the LoginBean object
from SessionBean1.

LoginBean login = getSessionBeanl () .getLoginBean() ;

Method getSessionBeanl () returns a reference to the SessionBeanl object,
giving you access to SessionBean1’s loginBean property.

5. We’ve once again introduced syntax errors because of LoginBean. Use the
Fix Imports shortcut <Alt-Shift-F> to have Creator add the import class state-

ment for LoginBean to your source file.

import asg.bean examples.LoginBean;

6.2 LoginBean

6. Modify the if statement to call LoginBean’s getter, isLoginGood ().
if (login.isLoginGood()) {

At this point, no red underlines should appear in your source code. If you
still see them, check the syntax again before moving on.

Listing 6.1 shows the complete method.

Listing 6.1 Action event handler 1ogin action ()

public String login action() {
LoginBean login = getSessionBeanl () .getLoginBean() ;

if (login.isLoginGood()) {
return "loginSuccess";

}

else return "loginFail";

}

After calling getter isLoginGood (), the event handler returns either "login-
Success" or "loginFail". These are the labels you used when you specified
navigation page flow for the project in Chapter 5.

Modify Page LoginGood.jsp

Because the LoginBean has session scope, it’s available throughout the session.
The successful login page, LoginGood.jsp, will access LoginBean to personal-
ize the welcome greeting for the user. You can do this simply enough by bind-
ing the label component to the LoginBean’s username property. Here’s how.

1. In the Projects window, select LoginGood.jsp under the Web Pages node.

2. Double click page LoginGood.jsp. This brings up the design canvas for this
page.

3. Select the label component 1abell.

4. Right-click and select Property Bindings. The Property Bindings dialog pops
up. Under Select bindable property choose text Object. Under Select binding
target choose SessionBeanl > loginBean > username. Click Apply.

5. Now under New binding expression, edit the JSF EL expression to add the
text Welcome, in front of the binding expression, as shown in Figure 6—4.

131

132 Chapter 6 Anatomy of a Creator Project

¥ Property Bindings for label1

Select bindable property Select binding target:

orMouseOut String Al [2 Caprager ~
onMouseOver Shing (2] pagel

onMouselp String '_\|RequestBean1

requiredindicator Boolean = '_4 SessionBeanl

style Shring = % loginBean !ognBean

Y stvleclass St."m # & property: class Class

I ® € property: loginGood Bociean
S ses TG

> wablgﬁ:‘g.[ian hf = JAplecatlunBeanl !
() Default) Advanced O Al # % localeCharacterEncoding |

Current binding For te:-:t prnperty

Mevs binding expression;
| welcome, #{SessionBeanl loginBean, username} | |_ applhy %

Figure 64 Property Bindings dialog for component labell

The new binding expression should be set to:

Welcome, #{SessionBeanl.loginBean.username}

6. Click Apply then Close.

Note that you've concatenated a plain string with a property binding
expression. You can also concatenate one or more property binding expres-
sions together. The string and binding expression now appear inside the label
component in the design view.

7. Click the JSP button in the editing toolbar. Here is the updated JSP tag for
the label component you placed on the LoginGood.jsp page. The property
binding is in bold.

<ui:label binding="#{LoginGood.labell}" id="labell"
labellevel="1"
style="left: 72px; top: 24px; position: absolute"
text="Welcome, #{SessionBeanl.loginBean.username}" />

6.2 LoginBean

Deploy and Run

Deploy and run the application by clicking the green arrow in the toolbar.
Figure 6-5 shows the login page when the web application first comes up.

&) Login 2 - Netscape |Z”E|E]
=« File Edit Wiew Go Bookmarks Tools Window Help

OO0 Q ord@sm <

R B e = Mail 4% Home &9 Radio - Metscape Q.Search EﬁBookrn

Members Login
* User Name: IW
. * Passwaord: I“"
i =4 &F E) | bocument: Don... | == = &

Figure 6-5 Login web application that uses LoginBean

Note that the User Name text field component displays “xxx.” This is
because the LoginBean constructor initializes the username field with “xxx.”
When you specify binding, JSF automatically instantiates LoginBean and
updates the text field component’s text property with the initialized value in
LoginBean’s username property.

The same initialization occurs with the password component and Login-
Bean’s password property. However, because the rendering mechanism of the
password field component replaces the text with constant characters to hide
the password, you don’t see LoginBean’s default initialization here (you see
stars or dots).

Go ahead and type in various usernames and passwords. Again, check both
the failure and success cases, and leave one or more of the input fields blank.
Also, note that when you return to the login page, the password field is
cleared.

Figure 66 shows page LoginGood.jsp after a successful login scenario.
(Iype ravedu for both the username and password.) The page displays the

133

134

Chapter 6 Anatomy of a Creator Project

Username, thanks to the binding of the label component with the LoginBean’s
username property.

&) Login Good - Netscape
» [k I |

Welcome, ravedu

& 2 &5 B [ooe] Sl] |

Figure 6-6 A successful login session

6.3 LoanBean

The project that you'll build in this section uses a JavaBeans business object
called LoanBean. The LoanBean JavaBeans object is interesting because we
accomplish the web application’s functionality completely through binding
properties with converters and validators to manage input and output. Once
you install LoanBean as a session bean property, there is no code to write! All
the hard work is accomplished by the architecture of the JSF components, the
functionality of the converters and validators, and the ability to plug in an
application-specific bean. Furthermore, the LoanBean code is compact and
straightforward. This is a poster-child example for using layered technologies
in an IDE environment.

LoanBean Outside View

The LoanBean JavaBeans object computes a monthly payment for a long-term,
fixed-rate loan based on a loan amount, annual interest rate, and term (the
length of the loan in years). The monthly payment is returned from getter get-
Payment (), making payment a property of LoanBean. Although payment is a
property of LoanBean, it is a derived property. This means its value is computed
from the values of the bean’s other properties. Since payment is a derived prop-
erty, LoanBean does not require a setter method for it.

6.3 LoanBean

LoanBean'’s other three properties are amount (the loan amount), rate (the
annual interest rate), and years (the loan’s term). Following the conventions of
building a conforming JavaBeans object, LoanBean contains setters and getters
for each of these three properties.

To build this application, you’ll be placing text field components on the
design canvas to allow the user to specify amounts for the LoanBean’s proper-
ties. You'll use converters to convert String input into the necessary data types
and validators to control the range of these values. You'll also bind Creator
components’ text properties to the LoanBean properties.

After supplying input parameters for the loan, the user clicks a Calculate
button to see the monthly payment. The application displays the payment
information in a static text component that is bound to the LoanBean’s payment
property. With the help of converters and formatters, JSF updates the page
automatically. Figure 6-7 shows what this web application looks like.

&0 Payment Calculator - Netscape |._]|-E|I'g|
. File Edit View Go Bookmarks Tools Window Help
[¥ |

Monthly Payment Calculator

* Loan Amount I'II:IDI:IDEI.EI
* Interest Rate IS.D
* Loan Term (Years) |15

Calculate Payment: 575079

@ = @’ £1 | Document: Done (0,188 secs) | I:m:i =] iﬂ:hi

Figure 6-7 Project Payment1 running in a browser

Create a New Project

To build this application, you create the project, place a title on the page, and
add the LoanBean managed bean to the project. After configuring the Loan-
Bean component, you add the other components to gather input and report a

135

136

Chapter 6 Anatomy of a Creator Project

monthly payment amount. This involves adding labels, specifying tooltips,
applying converters and validators, and specifying binding between the user
interface components (the “presentation” components) and the JavaBeans
objects (the “model”). Let’s begin.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays New Project dialog. Under Categories, select Web. Under Projects,
select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Paymentl.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. Click anywhere in the middle of the design canvas and select Title in the
Properties window. Change the title to Payment Calculator. Finish by press-
ing <Enter>.

4. Change the page’s background color. In the Properties window, select the
small editing square next to attribute Background. Creator pops up a color
selection dialog. Choose the yellow swatch in the top row. This corresponds
to RGB value 255, 255, 204 (a variation of yellow).

Add a Label Component
You’'ll add a label component to put a heading on the page.

1. From the Basic Component palette, select component Label and drag it to

the top of the page.

2. When you drop it onto the design canvas, it remains selected and you can
begin typing. Type in Monthly Payment Calculator. Finish with <Enter>.
(Don't resize the component; Creator will stretch it to fit the text.)

. In the Properties window, change property id to titleLabel.

. In the Properties window, select Strong(1) for the 1abelLevel property.

5. Save the changes by selecting File > Save All from the main menu bar.

=~ W

Add LoanBean to Your Project
These steps create the LoanBean Java source file and add it to your project.

1. Select the Projects window.

2. Under Paymentl, expand the Source Packages node.

3. Select the Source Packages node, right-click, and select New > Java Package
from the menu. Creator displays the New Java Package dialog.

4.

5.

6.3 LoanBean

Specify name asg.bean_examples and click Finish. This adds package
asg.bean_examples under node Java Sources.

Select package asg.bean_examples, right-click, and select New > Java Class
from the menu. Creator displays the Java Class dialog, as shown in
Figure 6-8.

¥ New Java Class
Steps Name and Location
1. Choose File Type Class Mame: | LoanBean

2. Mame and Location

Project: | Paymenkl

Location: |5 Packages v

Package: ‘asg.bean_examples w

Created File: !"Payment1'l,src'l,asg'l,bean_examples'l,LoanBean.java-

Figure 6-8 New Java Class dialog

. Specify name LoanBean and click Finish. You've just added a stub for class

LoanBean.java, which Creator brings up for you in the Java source editor.
Note that Creator generates standard Javadoc comments for you.

You now define LoanBean’s properties and specify custom code for its con-

structor and one of its getters.

1.

The first property you will add is property amount. In the Projects Window,
right-click node LoanBean.java and select Add > Property. Creator displays
the New Property Pattern dialog as shown in Figure 6-9.

. Fill in the dialog. For Name, specify amount’, for Type select Double*, and

for Mode select Read/Write. Verify that the default Options (Generate Field,
Generate Return Statement, and Generate Set Statement) are all checked.

. Click OK. You see that Creator has added the code to LoanBean.java for

property amount.

You will add three more properties to LoanBean. Table 6.2 displays the

property name, type, mode (read/write or read-only), and options for each

3. All property names should have an initial lowercase letter.
4. Note that you specify type Double (the wrapper class), not double (the primi-
tive type).

137

138

Chapter 6 Anatomy of a Creator Project

¥ New Property Pattern @

-Property

Mame: | amounk

Type: Double ot
Mode: Read | Write ~]
[] Bound
[] Constrained
-Cptions
Generate Field

Generate Return Statement

Generate Set Statement

I QK l[Cancel ” Help l

Figure 6-9 New Property Pattern dialog

property in LoanBean.java. Use the table as a guide to add the three remaining
properties using the New Property Pattern dialog. Note that property years is
type Integer and property payment is read only. Add these properties now.

Table 6.2 Properties for LoanBean component

Name Type Mode Options

amount Double Read/Write Generate Field
Generate Return Statement
Generate Set Statement

rate Double Read/Write Generate Field
Generate Return Statement
Generate Set Statement

years Integer Read/Write Generate Field
Generate Return Statement
Generate Set Statement

payment Double Read Only Generate Field
Generate Return Statement

6.3 LoanBean

You’'ll now supply initialization code for the constructor and payment calcu-
lation code for method getPayment ().

1. The Java source editor should still be active with file LoanBean.java.

2. In the code Navigator window (its default position is in the lower-left corner
of the IDE), find the LoanBean constructor and double-click (look for the
diamond icon that identifies the constructor). Creator highlights the con-
structor in the source code editor.

3. Add the constructor initialization code shown. Copy and paste from your
Creator book’s file FieldGuide2/Examples/JavaBeans/snippets/
Payment1_constructor.txt. The added code is bold.

/** Creates a new instance of LoanBean */
public LoanBean () {

amount = new Double (100000) ;

rate = new Double(5.0) ;

years = new Integer (15);

}

4. Add the getPayment () calculation code. In the code Navigator window,
double-click method getPayment (). Creator puts the cursor at method get-
Payment () in the editor pane.

5. Copy and paste from your Creator book’s file FieldGuide2/Examples/Java-
Beans/snippets/Paymentl_getPayment.txt. The added code is bold. Refor-
mat the code (right-click and select Reformat Code) if the indentations are
off.

public Double getPayment () {
double monthly interest = rate.doubleValue() / 1200;
int months = years.intValue() * 12;
payment = new Double (amount.doubleValue () *
(monthly interest/(1-Math.pow(l+monthly interest,
-1*months))));
return payment;
}

6. Compile the Java code to make sure that there are no errors. Select Build >
Build Main Project from the main menu bar and verify that the build is suc-
cessful in the Output window. If not, fix the error(s) and rebuild.

This completes the source for LoanBean.

139

140

Chapter 6 Anatomy of a Creator Project

Add a LoanBean Property to SessionBean1

The LoanBean JavaBeans object provides a way to calculate a monthly pay-
ment amount based on input provided by the user. Even though this data is
transient, you'll add it to session scope. (In this single-page example, adding
LoanBean to either request or session scope makes no practical difference.
However, in a later example, we add a second page and want to maintain the
state of the loan bean property across page requests. Therefore, you'll add
LoanBean as a property to the managed bean SessionBeanl.) By making Loan-
Bean a property of a managed bean, you make it available at design time,
enabling you to easily bind its properties to Ul components on the page.

1.

N

'S

In the Projects window, select node Session Bean, right-click, and select Add
> Property.

. Creator pops up the New Property Pattern dialog.
. For Name, specify loanBean, for Type specify asg.bean_examples.LoanBean,

and for Mode use the default Read/Write.

. Click OK to add property loanBean to SessionBean]1.
. In the Projects window, double-click node Session Bean. This brings up the

file SessionBean1.java in the Java source editor.

. Scroll down to the end of the file where you'll see the getter and setter meth-

ods Creator generated. Here are the getter / setter methods for property

loanBean.

/**

* Holds value of property loanBean.

*/
private asg.bean examples.LoanBean loanBean;
Jxx

* Getter for property loanBean.
* @return Value of property loanBean.
*/
public asg.bean examples.LoanBean getLoanBean() {
return this.loanBean;

}

/**
* Setter for property loanBean.
* @param loanBean New value of property loanBean.
*/
public void setLoanBean (asg.bean examples.LoanBean loanBean)
this.loanBean = loanBean;

}

Now you’ll add Java code that instantiates the LoanBean object.

6.3 LoanBean 141

1. In the Java source editor, add instantiation code with operator new for prop-
erty loanBean in the SessionBeanl init () method, as follows.

public void init () {
loanBean = new asg.bean examples.LoanBean () ;
}
2. Save these changes by selecting the Save All icon from the toolbar.

Creator Tip

Although you've added property loanBean to SessionBean1, it is not yet
visible within the IDE. To make it accessible, you’ll build the project, close it,
and then re-open it. From the main menu, select Build > Build Main Project.
Now close the project. When you re-open the project in the IDE, you should
see property loanBean in the SessionBeanl Outline view.

LoanBean.java Code

Listing 6.2 contains the source for LoanBean.java. You've already seen the
source in the Java source editor, but we show it here for completeness. We omit
the Creator-generated Javadoc comments.

Listing 6.2 LoanBean.java

package asg.bean examples;

public class LoanBean {
/** Creates a new instance of LoanBean */

public LoanBean() {
amount = new Double (100000) ;
rate = new Double (5.0);
years = new Integer (15);

}

private Double amount;

public Double getAmount () {
return this.amount;

}

public void setAmount (Double amount) {
this.amount = amount;

}

142 Chapter 6 Anatomy of a Creator Project

Listing 6.2 LoanBean.java (continued)

private Double rate;

public Double getRate () {
return this.rate;

}

public void setRate (Double rate) {
this.rate = rate;

}

private Integer years;

public Integer getYears () {
return this.years;

}

public void setYears (Integer years) {
this.years = years;

}

private Double payment;

public Double getPayment () {
double monthly interest = rate.doubleValue () / 1200;
int months = years.intValue() * 12;
payment = new Double (amount.doubleValue() *
(monthly interest/ (1-Math.pow (1+
monthly interest,l*months))));
return payment;

Create the Form'’s Input Components

The Monthly Payment Calculator web page requires a set of components to
gather input for the parameters of the loan. There are three parameters: the
loan amount, the interest rate, and the term. Each parameter has a label, a text
field to gather input, and a message component to report validation and con-
version errors. Figure 6-10 shows what the design canvas looks like with all of
the components added to the page (we’ve labeled most of them for you).

Here are the steps to create the components for the loan amount parameter:

1. Switch back to the design canvas by selecting the tab labeled Pagel at the
top of the editor pane. Click button Design to make the design view active.

6.3 LoanBean

@].Welcome * I_-EIPagel * -

[1P Java | & an e AnvSme v

Figure 6-10 Design canvas showing placement of components for project Paymentl

2. From the Basic Components palette, select Label and drag it onto the design
canvas.

3. Make sure that the component remains selected and type in the text Loan
Amount. Finish with <Enter>.

4. From the Basic Components palette, select Text Field and drop it onto the
design canvas. Position it to the right of the label component you just added.

5. In the Properties window, change its id attribute to loanAmount.

6. In the Properties window under Data, make sure the required attribute is
selected (checked). This ensures that the user supplies input for this field.

7. In the Properties window under Behavior, set the toolTip property to
Please supply the loan amount in dollars. Finish with <Enter>.

8. In the Design view, select the label. Press and hold <CTRL+ Shift>, left-click
the mouse, and drag the cursor to the loanAmount text field component to
set the label's for property.

Setting the label's for property to the text field defines an association
between the label and the loanAmount text field. When the application is
running, selecting the label as well as the text field places the cursor in the
text field. Furthermore, Creator automatically prepends an asterisk (*) to the
label's text indicating that its text field input is required. Validation and con-
version errors will also affect the label's appearance

143

144

Chapter 6 Anatomy of a Creator Project

Creator Tip

Here, you can use either a Label component (and have more control over the
placement of the label and its style characteristics) or you can supply label
text through the text field’s 1abel property. Both approaches allow the label
text to reflect required input (with an asterisk) and modify the label’s style
when conversion or validation errors occur.

Use Validators and Converters

The loanAmount text field collects a numerical string that represents the
amount of the loan. The string data is used with Ul components for the “pre-
sentation” part of the application. Internally, however, you'll store this infor-
mation as a Double. Therefore, you need to convert the String to a Double and
make sure its value is within a reasonable range with validation. To do this,
you’ll use a JSF DoubleRangevalidator for validation and a JSF DoubleCon-
verter for conversion. You can add these components to your project from the
Validators and Converters palettes. Here’s how.

1.

In the Palette window, expand the Converters node. Select Double Con-
verter, drag it to the design canvas, and drop it on top of the text field compo-
nent loanAmount. In the Properties window, Creator sets the converter
property under Data for loanAmount to doubleConverterl.

. To see this, select the loanAmount text field. In the Properties window, select

the small editing box opposite property converter under Data. Creator
pops up a dialog that shows the component's converter as shown in
Figure 6-11. Click OK to close the dialog. Note that component
doubleConverterl appears in the Outline view for Pagel.

. Repeat this step for the validator. In the Palette window, expand the Valida-

tors node. Select Double Range Validator, drag it to the design canvas, and
drop it on top of the loanAmount text field component. Creator sets the val-
idator property under Data for loanAmount to doubleRangevValidatorl in
the Properties window. Component doubleRangeValidatorl also appears
in the Pagel Outline view.

You've just applied a range validator for the loan amount. Now you specify

its range (maximum and minimum).

1.

In the Outline view, select the validator you just added for the 1oanAmount
component, doubleRangeValidatorl.

2. From the Properties window, set the minimum and maximum values to 1.0

and 1 million (1000000.0), respectively (or other values you deem reason-
able).

6.3 LoanBean 145

¥ loanAmount - converter

(o]l ng () Usewvalue

Current Conwerter property setting

i #{Pagel.doubleCnnverteﬁ}

Select binding target:

@ (Property not bound)
~/_{ Pagel

#- 3] page1 Page
RS ddoubleConverterl Doubletonvertey
| RequestBeanl

~_1 SessionBeanl

H-# loanBean LoanBean

J ApplicationBean1

H-4 localeCharackerEncoding Sting

I Ok l[Unset Property][Zancel]

Figure 6-11 Component loanAmount’s converter property set

Creator Tip

Creator displays properties in alphabetical order within each category,
making property maximum appear before property minimum. Make sure that
you supply the minimum and maximum values to the correct property name.
If you reverse them, validation will always fail!

You also need a message component to display error messages resulting
from conversion and validation errors.

1. Close the Validators and Converters nodes if they’re still expanded in the
Palette window. From the Basic Components palette, select component Mes-
sage. Drag it to the design canvas and position it to the right of the text field
component loanAmount.

2. Press and hold <CTRL+Shift>, left-click the mouse, and drag the cursor to the
loanAmount text field component to set the for property as shown in
Figure 6-12. This ties the message component to the loanAmount text field
component. Any error messages generated by the component’s validator or
converter will be displayed on the page by this message component. In the

146 Chapter 6 Anatomy of a Creator Project

design view, the message component now displays the text Message sum-
mary for loanAmount.

Figure 6-12 Setting a Message component’s for property

Specify Property Binding

Now let’s specify binding for the loanAmount text field’s text property.

—_

. Make sure that the loanAmount component is selected.

2. Right-click and select Property Bindings from the menu. A dialog entitled
Property Bindings for 1oanAmount pops up.

3. In the Select bindable property window, choose text Object.

4. In the Select binding target window, expand node SessionBean1 >loanBean,

select property amount, and click Apply. Figure 6-13 shows the Property

Bindings dialog.
€ Property Bindings for loanAmount
Select b|ndab|e prepertv Select b|nd|ng target
. converter Convartey Al A'
[i} doubleConverterl
| # validator MethodBinding #-4 doubleRange¥alidatorl |
columns it | | i+] RequestBean1
® disabled Boolean =4 SessionBean1
® label String - . loanBean LoanB=an
lshallevel it = W-roperty: amount
maxlength int property: class Class |
® onblr String property: payment Doubls |
® onChange String ¥ property: rate Doubls
o property: years Inieger
(%) Default () Advanced C’ ,q|| (=4 ApplicationBean1 v '
Current blndmg far text property:
| #{SessmnBeanl IoanBean, ameunt} i ’ Clear]
T blndmg expressn:-n
| #{Sessu:nBeanl IoanBean. ameunt} | Apply&

Figure 6-13 Property Bindings for loanAmount

6.3 LoanBean 147

5. In the Current binding for text property, Creator displays the expression
#{SessionBeanl.loanBean.amount}

6. Click Close. This binds the text property of the text field component loan-
Amount to the amount property of LoanBean.

7. The text field component now displays the LoanBean’s default value for the
amount property (100, 000). In the Properties view, property text displays
the binding icon. If you hold the cursor over this attribute, a tooltip displays
the above binding expression.

Place Interest Rate and Term Components

Ok, you've finished placing the components associated with gathering the loan
amount parameter. You'll need to repeat these steps for the interest rate (which
uses a Double converter and a Double range validator) and the loan term
(which uses an Integer converter and Long range validator). Follow the same
steps we showed you for the loan amount input.

1. First grab a label, then the text field, converter, and validator, and finally, the
message component.

2. To make this easier, we've created tables that help you create the compo-
nents and set their values. You may find it helpful to follow the instructions
and descriptions we gave you for the loan amount parameter.Table 6.3 lists
the components and their properties for the interest rate input.

3. Be sure to specify binding for interestRate’s value attribute with the
LoanBean’s rate property. Use the Property Binding dialog and select
SessionBean1 >loanBean > rate.

Creator Tip

You can use the same Double converter for text field interestRate that you
used with text field 1oanAmount. After placing the text field on the design
canvas, select the drop down opposite the converter property in the
Properties window and choose doubleConverterl.

Table 6.4 lists the components and their Properties settings for the loan term
parameter.

The text field component 1oanTerm requires an Integer converter and a Long
range validator to control the allowable range. Specify binding with
SessionBean1 > loanBean > years.

148

Chapter 6 Anatomy of a Creator Project

Table 6.3 Components for interest rate input

Component Property Setting
Label for interestRate
(label?2) (set this property after you place text
field interestRate on canvas)
text Interest Rate
Text Field id interestRate
toolTip Please specify the interest rate (APR)
converter doubleConverterl
(the same converter you used for
loanAmount; select the drop down
opposite the converter property
and choose doubleConverterl)
required true (checked)
validator doubleRangeValidator?2
(select Double Range Validator from
the Validators palette)
text #{SessionBeanl.
loanBean.rate}
Double Range Validator maximum 15.5
(doubleRangeValidator?2)
minimum 0.001
Message for interestRate

(message?2) (press and hold <CTRL+Shift>, left-

click the mouse, and drag the cursor
to the interestRate component)

Place Button, Label and Static Text
Components

On the last line of the web application page, you'll place a button, a label com-
ponent, and a static text component that binds to the payment property of the
LoanBean. Table 6.5 shows the components you need and their properties that
control the payment display. Specify SessionBean1 >loanBean > payment to bind
the static text’s text property with the LoanBean’s payment property.

Let’s see how the button and static text components work with the LoanBean
and the Number converter.

6.3 LoanBean

Table 6.4 Components for loan term input

Component Property
Label (1abel3) for

text

Text Field id
toolTip

converter

required

validator

text

Integer Converter
(integerConverterl)

Long Range Validator maximum
(LongRangeValidatorl)

minimum

Message (message3) for

Setting

loanTerm
(set this attribute after you place text
field loanTerm on canvas)

Loan Term (Years)

loanTerm
Please specify term of loan in years

integerConverterl

(select Integer Converter from the
Converters palette; will be set after
you drop the converter onto the
component)

true (checked)
longRangeValidatorl

(will be set after you drop the
validator onto the component)

#{SessionBeanl.
loanBean.years}

99

1

loanTerm

(press and hold <Ctrl+Shift>, left-
click the mouse, and drag the cursor
to the loanTerm component)

The button component does not have an action event handler defined in the
Java page bean. The default action submits the page. This begins the life cycle
process and updates the fields, including the static text component cost.

Static text component cost is bound to the payment property of the Loan-
Bean. Recall that method getPayment () returns a Double. When you define a
number converter for the static text component, the Double generated by the
LoanBean component is converted to a String. We want the payment displayed
in dollars and cents, however. Fortunately, the number converter has a pattern
property that manipulates the Double as a comma-separated number with two

149

150

Chapter 6 Anatomy of a Creator Project

Table 6.5 Components for monthly payment output

Component Property Setting
Button id calculate
text Calculate
Label (label4) text Payment:
Static Text id cost
converter numberConverterl

(this will be set after you drop the
Number Converter onto the
component)

text #{SessionBeanl.
loanBean.payment}

Number Converter pattern $## #4#4.00
(numberConverterl)

digits to the right of the decimal point and a dollar sign in front. The pattern
that accomplishes this is

SH##, #4#4.00

The number converter has additional properties to help you control the format
of the output String, but this pattern fully specifies the format we need.

Deploy and Run

Figure 6-14 shows the Outline view of the JSF components, converters, and
validators for project Paymentl. Before deploying, you may find it helpful to
compare your Outline view with the components shown here.

Deploy and run the application by clicking the green arrow on the toolbar.
Figure 6-15 shows the web application with new values for the loan amount,
interest rate, and loan term. Note how the tooltip provides context help as the
user holds the cursor over the interest rate text field component.

The payment amount is computed from the new values. When you change
any of the loan parameters and click the Calculate button, a new payment
appears. All this takes place because of the bindings between the text field
components and the LoanBean properties (including the LoanBean payment
property for output). Of course, the converters and validators play important
roles as well.

6.4 The Creator-JSF Life Cycle

: Outline 4 % | Navigator
-/ Pagel '
=-|£3] pagel
=-fe3] hitmlt
[#-fe3] head1: Payment Calculator
= &3] body1
=] Form1

+ 4 titleLabel: Monthly Payment Caloulator

(-4 label1 : Loan Amount

-] loanAmaunt

43D messagel

-3 label2: Interest Rate

+-[] interestR.ate

1) messageZ

-1 label3: Loan Term (Years)

#-[| lnanTerm

1) messaged

i) calculate: Caleulate

#-5 lahel4: Payment:
+ A] cost

----- 4 doubleConverter

------ & doubleRangevalidatorl

------ & doubleRangevalidator2

----- 4 integerConverterl

------ & longRangevalidatorl

----- 4 numberConverter

1+ RequestBeanl

1+ SessionBeanl

ApplicationBeanl

+

5

Figure 6-14 Outline view for project Payment1

6.4 The Creator-JSF Life Cycle

Now that you've built two projects in this chapter (Login2 and Payment1) that
involve page navigation, validation, conversion, JavaBeans objects, and saving
state across page requests, you're ready to delve into the JSF life cycle and
apply it to the Creator application model. We're going to present the JSF life
cycle phases and explore what sorts of processing occurs in each phase. When
viewed as a step-by-step sequence of events, the life cycle phases make sense
and explain how the framework invokes your application’s code.

What is not so straightforward, however, is how to consistently invoke ini-
tialization and cleanup code and have all scenarios handled. To that end, Cre-
ator provides a set of callback methods that allow you to control initialization

151

152

Chapter 6 Anatomy of a Creator Project

&) Payment Calculator - Netscape

» Fle Edit View Go Bookmarks Tools Window Help
b |k |

Monthly Payment Calculator

* Loan Amount |1EUDUD.D
* Interest Rate |4.5

|F‘Iease specify the interest rate (APR) |

* Loan Term (Years) IED

Payment: §759.18

S =207 O [oon RSy

Figure 6-15 Monthly payment calculator that uses LoanBean

code, cleanup code, and code that helps render your page. First, let’s take a
look at the JSF life cycle.

JSF Life Cycle

The JavaServer Faces framework provides a life cycle for a JSP request. The six
steps in this life cycle process are shown in Figure 6-16°. While the steps
always occur in the same order, it is important to note that not all six steps will
necessarily be processed for every page request. For example, validation rules
are applied to the request during Step 3 (Process Validations). If a component
fails a validation, the page is returned with an error message and the process
skips directly to Step 6 (Render Response). Furthermore, JSF (and indeed all
HTTP-based frameworks) make a distinction between an initial request (the first
page of a web application) and a postback (handling and processing a request
due to user input). It’s important to note that during an initial request, JSF exe-

5. This diagram is adapted from “JavaServer Faces Standard Request-
Response Life Cycle,” in the J2EE 1.4 Tutorial. See http://
java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html for
more information.

6.4 The Creator-JSF Life Cycle

Response
Faces Complete
Request r —
1 2 |
1
Restore Apply Request Process
' > pply Req > L |
View Values Events |
|
Render
Response
Response |
Complete
r— |
4 | 3 |
' |
Update Model Process Process
| e <« < | Proce |
Values Events Validations |
' |
| Validation / Conversion
_ _ Errors / Render Response |
Response Eespolnse | |
Complete omplete
rp— _ - — | |
| i ' y v
| |
Process Invoke Process Render
E— L | >
Events Application Events Response
T
| Conversion Errors / A
Render Response
Lo - T . _ |
Faces
Response

Figure 6-16 JSF Request-Response Life Cycle Process

cutes only the first (Restore View) and last (Render Response) phases. When
JSF handles a postback it potentially executes all six phases. Let’s describe these
phases.

153

154

Chapter 6 Anatomy of a Creator Project

Phase 1 - Restore View

This is a system-level phase, meaning that application code is not involved. JSF
builds the view of the page and saves it in the FacesContext instance. (You
accessed the FacesContext when you hooked into the navigation handler using
a noncommand component in project Navigate2. See “Noncommand Compo-
nents” on page 93.) The view consists of a tree of the Ul components for the
page. If this is an initial request, the view is empty and the system skips to the
Render Response phase. There is no processing, since there is not yet any input
supplied by the user. If this is a postback, the view already exists and the sys-
tem continues to the Apply Request Values phase.

Phase 2 - Apply Request Values

During the Apply Request Values phase, any new input values are extracted
and stored by the appropriate component. If the component’s local value is not
a String, it must be converted to the correct type. If the conversion fails, several
steps occur.

1. An error message is generated and associated with the component.

2. The error message is queued on the FacesContext (it will be displayed later
in the Render Response phase).

3. The life cycle skips to the Render Response phase when this phase has com-
pleted (all of the components will process their input values).

Skipping to the Render Response phase has several consequences.

* The same page will be rendered. This allows the user to see the input errors
for all of the fields that have errors.

* Since the Process Validations phase is skipped, the system won't try to
validate badly formed input.

* None of the business data will be updated (this happens in the Update
Model Values phase).

* None of the event handlers will be invoked (this happens in the Invoke
Applications phase).

Creator Tip

If any component on the page has its immediate property set to true, then
the validation, conversion, and events associated with this component take
place during the Apply Request Values phase. For most cases, however, using
virtual forms precludes the necessity of using the immediate attribute.

6.4 The Creator-JSF Life Cycle

As an example, in project Paymentl when the user types in new values for
the loan amount, interest rate, and loan term, these values are converted from
the character strings to Double and Integer values in this phase. If the user sup-
plies non-numeric input, the conversion fails. A standard conversion error
message is displayed during the Render Response phase in the relevant mes-
sage component. None of the LoanBean properties are updated with the new
values when the conversion error occurs, since processing skips to the Render
Response phase.

Phase 3 - Process Validations

After component input has been converted (successfully) it is validated during
the Process Validations phase. Validation is typically customized to the appli-
cation. All input that has validation is validated. If any input fails validation,
the same steps described above for failed conversion occur here. Thus, an error
message is queued, processing skips to the Render Response phase, and the
same page is rendered. The user thus receives feedback for all input that fails
validation.

In the Paymentl1 project, if the user supplies input that can be converted but
is outside the minimum and maximum limits you specify for the validator, the
component is marked invalid.

Phase 4 - Update Model Values

During the Update Model Values phase, all input has been properly converted
and validated. This is the phase which processes property bindings: the model
data is updated with the values from the components. Thus, the model data
has new values. For example, when the user submits a username and password
in project Login2, these values are stored in the LoginBean component during
this phase. Similarly, in project Paymentl, the values supplied for the loan
amount, interest rate, and term are stored in the LoanBean component. Because
JSF executes this phase only after successfully completing the Process Valida-
tions phase, you are guaranteed that the updated model values will be valid.
(Of course, the data may violate some business logic, but business logic valida-
tion usually occurs in the Invoke Application phase when event handler code
is executed.)

Phase 5 - Invoke Application

During the Invoke Application phase, JSF processes any application-level
events. Typical events include action events (for command components such as
buttons and hyperlinks) or process value change events (for input components
such as text fields or drop down lists). Action events return a String that is pro-
vided to the navigation handler which determines the next page to be dis-
played.

155

156

Chapter 6 Anatomy of a Creator Project

In project Login2, when you click the Login button, method
login action () processes the username and password you supply (this is the
business logic). Depending on the outcome, the method returns either “login-
Success” or “loginFail.” The navigation handler then determines that either the
LoginGood or LoginBad page should be displayed next.

In project Paymentl, there are no specified event handlers. The property
bindings mean that the model data (the LoanBean component) is updated with
the user submitted values during Phase 4. Then property bindings come into
play again when the components are rendered with the updated model data
during Phase 6.

Phase 6 - Render Response

During this final phase, the page is rendered. If this is an initial request for this
page, the components are added to the view at this time. If this is a postback,
the components have already been added to the view.

If there are messages queued (from conversion or validation errors) and the
page contains a message or message group component, these will be displayed.
Conversely, if the page does not contain a message or message group compo-
nent, no message will appear.

If there were no errors and if there are property bindings associated with
any of the components, the component values are updated from model proper-
ties. For example, in project Paymentl, the static text component that displays
the monthly payment value is updated with the payment property of the Loan-
Bean component at this time. Similarly, in project Login2, the label component
on page LoginGood is updated with the username property of the LoginBean
component.

If there were errors, the component values are not updated from the model
data. To see this behavior, deploy and run project Login2. You'll note that the
userName text field is initialized from the LoginBean username property (it is
“xxx’). Change the “xxx’ to something else (such as ‘newusername’). Now clear
the field for the password input and click Login. The password field fails vali-
dation, which means that the Process Validations phase skips to the Render
Response phase. Since JSF skips the Update Model Values phase, the username
and password properties in the LoginBean component are not updated. When
the page is re-rendered, the password field is still empty and a validation error
message appears. The username field contains the new input (‘newusername’)
which was left unaltered in the component.

Creator Life Cycle Callback Methods

The JSF life cycle is relatively straightforward. What is a bit tricky is under-
standing the sequence of events when page navigation occurs. Recall that in
the Creator model, each page bean has request scope. Therefore, for each

6.4 The Creator-JSF Life Cycle 157

request the page is created anew. When you navigate from one page to the
next, the second page is created for the Render Response phase. The first page
is not destroyed until after the Render Response phase.

Creator provides hooks into this life cycle process for the application devel-
oper. The initial release of Creator exposed methods that are invoked before
and after each of the JSF life cycle events. For example, method beforeRender-
Response () is invoked before the Render Response phase and afterRender-
Response () is invoked after this phase. The process is muddied, however, by
the following complications:

* Not all of the phases are always executed. If input fails to properly convert
or fails validation, the life cycle process skips from the Process Validations
phase to the Render Response phase.

* Because you may navigate to a new page, the beforeRenderResponse ()
method may not belong to the page that actually gets rendered.

e If this is the initial page (a Welcome page, for example) of the application,
JSF has not yet constructed the view (the components that comprise the state
of the application) when the page’s constructor is invoked. Therefore, there
wasn't a consistent place to put page initialization and cleanup code.

The current release of Creator addresses these issues by supplying callback
methods that are available in any page bean, that is, the Java backing code that
Creator generates for you whenever you create a web page through the IDE.
Table 6.6 lists these methods (and you'll note that Creator generates stubs for
them so that you can easily provide your own code).

Table 6.6 Creator Page Life Cycle Callback Methods

Method Description

init () Called after JSF either creates the Faces view or restores the Faces view,
depending on whether this is a postback or an initial page. When
navigation is involved, init () is called on the To Page after the
processing is complete but before prerender () is invoked. Place any
page or component initialization code here.

preprocess () Called before Apply Request Values phase for the page bean that is
processing this form submit. Since preprocess () is invoked before
conversion and validation, you are guaranteed that this method will be
called even if conversion or validation errors occur.

158 Chapter 6 Anatomy of a Creator Project

Table 6.6 Creator Page Life Cycle Callback Methods (continued)

prerender () Called before Render Response for the page bean that is about to be
rendered. When you navigate to a new page, prerender () is always
called on the To Page, not the From Page.

destroy () Called after Render Response for all page beans for which init () was
also called. When you navigate to a new page, destroy () will be
called for both the From Page and the To Page. The From Page’s
destroy () method will be invoked first. Put any page cleanup code
or state saving code here.

The best way to see how these methods work is to step through a few use
cases. Let’s use project Login2, since this is a multi-page project.

Use Case 1: Initial Request

When you navigate to the web application from a page outside application,
this is an initial request. That is, you supply the following URL to the browser:

http://hostname:port number/Login2

Here are the steps.

* JSF executes the Restore View phase for Pagel.

Pagel () constructor is invoked.
Pagel.init () is invoked.

* JSF executes the Render Response phase for Pagel. The text field
components are initialized from the values in the LoginBean’s properties.
Pagel.prerender () is invoked.

Pagel.destroy () is invoked.

Use Case 2: User Clicks Reset

Pagel of the Login2 project is rendered on the page and the user clicks the
Reset button. Because you use virtual forms with this project, the application
does not validate the input associated with the text fields. The text fields are
cleared when the page is re-rendered (no navigation occurs). Here are the
steps.

* JSF executes the Restore View phase for Pagel.
Pagel () constructor is invoked.
Pagel.init () is invoked.
Pagel.preprocess () is invoked.

6.4 The Creator-JSF Life Cycle

* JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Invoke Application phase, method Pagel.reset action() is
executed, clearing the text field values.

* JSF executes the Render Response phase for Pagel. The text field
components are not updated with the LoginBean’s property values.
Pagel.prerender () is invoked.

Pagel.destroy () is invoked.

Use Case 3: User Fails to Login

In this case, the user supplies new values for username and password. These
values don't flag validation errors, but the login sequence fails. Thus, the appli-
cation navigates to the LoginBad page.

* JSF executes the Restore View phase for Pagel.
Pagel () constructor is invoked.
Pagel.init () is invoked.
Pagel.preprocess () is invoked.

* JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Apply Request Values phase the user input is stored in its associ-
ated component. No conversion is necessary and no errors occur. During the
Process Validations phase, the input for username and password is vali-
dated and no validation errors occur. During Update Model Values, the
input for username and password is copied into the LoginBean’s corre-
sponding properties. During the Invoke Application phase, method
Pagel.login action() is executed. The submitted values stored in Login-
Bean are compared to LoginBean’s correctName and correctPassword
fields. The comparison fails and the String “loginFail” is passed to the navi-
gation handler. JSF navigates to page LoginBad.

* JSF executes the Render Response phase for LoginBad.
LoginBad () constructor is invoked.
LoginBad.init () is invoked.
LoginBad.prerender () is invoked.
Pagel.destroy () is invoked (From Page).
LoginBad.destroy () is invoked (To Page).

159

160

Chapter 6 Anatomy of a Creator Project

Use Case 4: User Login is Successful

From Pagel the user supplies new values for username and password. These
values don't flag validation errors and the login sequence is successful. Thus,
the application navigates to the LoginGood page.

* JSF executes the Restore View phase for Pagel.
Pagel () constructor is invoked.
Pagel.init () is invoked.
Pagel.preprocess () is invoked.

* JSF executes the Apply Request Values, Process Validations, Update Model
Values, and Invoke Application phase.

During the Apply Request Values phase the user input is stored in its associ-
ated component. No conversion is necessary and no errors occur. During the
Process Validations phase, the input for username and password is vali-
dated and no validation error occur. During Update Model Values, the input
for username and password is copied into the LoginBean’s corresponding
properties. During the Invoke Application phase, Pagel’s login action ()
is executed. The submitted values stored in LoginBean are compared to Log-
inBean’s correctName and correctPassword fields. The comparison suc-
ceeds and the String “loginSuccess” is passed to the navigation handler. JSF
navigates to page LoginGood

* JSF executes the Render Response phase for LoginGood. The label
component’s text property is set with the value of the LoginBean username
property which was updated with the submitted values during the Update
Model Values phase above.

LoginGood () constructor is invoked.
LoginGood.init () is invoked.
LoginGood.prerender () is invoked.
Pagel.destroy () is invoked (From Page).
LoginGood.destroy () is invoked (To Page).

6.5 Key Point Summary

The Login2 and Paymentl web applications illustrate the power of property
bindings with JavaBeans objects that are business components. Used in con-
junction with the appropriate converters (for non-String property values in the
business objects) and validators, you can see how easy it is to isolate business
logic from presentation code in your web applications.

6.5 Key Point Summary

Creator provides a set of life cycle call back methods that simplify the JSF
life cycle phases. Use these methods for initialization, cleanup, and page ren-
dering code.

* A JavaBeans object is a Java class that conforms to certain design standards.

* JavaBeans objects implement read-access properties with public getter
methods.

* JavaBeans objects implement write-access properties with public setter
methods.

* A JavaBeans object must have a public default constructor with no
arguments.

* A JavaBeans object is a reusable component and helps separate business
logic from presentation code.

* A JavaBeans object hides its implementation code by carefully defining its
public methods (outside view).

* You can install a JavaBeans object as a property in one of Creator’s default
managed beans. A JavaBeans object configured as a property of the
Requestl.java page bean has request scope. Configuring it in
SessionBeanl.java gives it session scope and configuring it in
ApplicationBeanl.java gives it application scope.

* You can also install a JavaBeans object in a Creator project as a managed
bean and specify its scope explicitly.

* The bean configuration file managed-beans.xml contains your JavaBeans
object’s name, class, and scope. It may also specify other properties of your
bean.

* A managed bean with session scope is available for the duration of the
session for one user.

* A managed bean with request scope is available for the duration of the
request. When the application transitions from one page to the next, items in
request scope are available for the next page.

* To specify a managed bean property within a JSF component tag, use the JSF
EL expression

{ManagedBeanName . propertyName}
For example, here loanBean is a property of SessionBeanl.
#{SessionBeanl.loanBean}

* To specify a JavaBeans object’s property that is itself a property of a
managed bean, use the JSF EL expression

{ManagedBeanName. javaBeanObjectName.propertyName}

161

162

Chapter 6 Anatomy of a Creator Project

For example, here amount is a property of loanBean.

#{SessionBeanl.loanBean.amount}

* To bind a JSF component’s property to a property in a JavaBeans object,

select the JSF component, right-click, and select Property Bindings. Creator
displays the Property Bindings dialog which lets you specify the JSF
component’s bindable property and the binding target. The binding target
can be a property of another JSF component.

Creator provides four page bean life cycle methods: init (), preprocess (),
prerender (), and destroy ().

Place any page or component initialization code in method init ().

Place any code that should be called before any of the JSF processing phases
in preprocess (). Since preprocess () is invoked before conversion and
validation, you are guaranteed that this method will be called even if
conversion or validation errors occur.

Place code that should be called before the page is rendered in prerender ().
Only the prerender () method of the page that will actually be rendered is
invoked.

Method destroy () is invoked after the page is rendered. Place any page
cleanup code or code that saves state here. When JSF navigates to a different
page, the destroy () method of the From Page is invoked before the
destroy () method of the To Page.

Conversion, validation, event handling code and page navigation can all
affect which methods are invoked throughout an application’s life cycle.

WEB PAGE DESIGN

7 Topics in This Chapter

* Component Style
+ Themes
4 + CSS Style Editor
+ Page Layout
+ Page Fragments
* Project Templates
» Navigation with Page Fragments
+ Tab Sets

Chapter

un Java Studio Creator provides layout components, visual design edi-

tors, and style sheet editors to help you design visually pleasing pages

for a coherent, unified-looking web application. In this chapter we

explore some of the Creator tools and components available to you for
page design.

Once you’'ve designed your pages, you'd like to reuse the components, style
settings, and logos and images on subsequent pages or in other projects. Cas-
cading style sheets, page fragments, and project templates help designers build
artifacts that can be reused. Although you will see some event handling code,
page initialization code, and property patterns in the upcoming examples, this
chapter concentrates on Creator’s visual page design.

7.1 Using the Visual Design Editor

Creator’s visual design editor runs in the main editor pane by default when
you create a new project. Its main purpose is to help you select components
and position them on the page using a page grid. You can also turn off the grid,
temporarily disable it, or change the grid size.

165

166

Chapter 7 Web Page Design

Create a Project

Let’s explore the main features of the design editor. To do this, you'll build a
simple project with three static text components. Figure 7-1 shows the project
in the design view with these components.

cmwélcome % | p| Pagel x -
Design| 5P Java & 4 il | Any Size v

Figure 7-1 Visual design editor in the editor pane

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Designl.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Designl.
Finish by pressing <Enter>.

Add Components to the Page

Now let’s add the static text components and specify the text for each one.

1. From the Basic Component palette, select component Static Text and drop it
on the page. Don’t worry about positioning yet.

2. The component is selected so that you can type in some text. Type in the text
The quick brown fox followed by <Enter>.

3. Select component Static Text again and add it to the page under the first
component.

4. Specity its text She sells sea shells.

7.1 Using the Visual Design Editor

5. Add a third static text component and specify its text Winter waves crashed
against the cliffs.

Working with Components on the Page

By default, a project’s layout is in grid mode. This allows you to position com-
ponents on the page at an absolute location. The grid helps you with compo-
nent alignment.

1. Select the first static text component. Creator marks the component selected
and displays component resizing handles for you. With the component
selected, you can move it to a different location. You'll note that it automati-
cally snaps to the grid.

2. Select the same component a second time. The text area is selected (Creator
displays a blue background) and the component is enabled for text editing.
In this mode you can now issue typical editing short cuts, such <Ctrl-C> for
copy or <Ctrl-V> for paste. You can also select a word, use the left and right
arrow keys, or type replacement text.

3. Sometimes you’ll want to move the component so that it doesn’t snap to the
grid lines. To temporarily turn off grid alignment, select the component,
hold the Shift key, and use the mouse to adjust the component on the page.

You can configure Creator to change the grid size or disable it using the
Tools menu.

1. In the main menu, select Tools > Options. In the Options dialog, select Visual
Designer. Creator displays the options for the Visual Design Editor, as
shown in Figure 7-2.

2. After making changes, click Close.

The Show Grid option controls whether or not the grid is visible in the edi-
tor. This is true by default. When the Snap to Grid option is set to true, the com-
ponents align with the grid lines in the designer. The Grid Height and Grid
Width values control the grid size and the Target Browser Window controls the
size of the application’s window in the browser.

Component Alignment

Each component has a context-sensitive menu that becomes visible when you
select a component and right-click the mouse. The Align menu option provides
component alignment criteria. While frequently you can align components by
simply using the default behavior of snapping to the grid lines, occasionally
you’ll want to align components using other criteria. For example, here’s how
to center the three static text components.

167

168 Chapter 7 Web Page Design

% Options
(&) Basic () Advanced
COptions : =l General
[HTML Editor A | |Shw Grid
13 Plain Edit | Snlsd bo Grid ¥l
Lar Plain dl o rilf True, arid is shawn in the Yisual Designer .,
1 Java Editar
Lar § Grid Height 24
'@ o Target Browser Window Anry Size bt
{ Properties Editor
B #MLEditar
D7D Editar
@ Praoject Settings o

Figure 7-2 Visual Designer Options dialog

1. Choose one static component and position it on the grid at the desired loca-
tion. Use the Shift Key if you'd like to disable the snap to grid lines option.

2. You can select multiple components by selecting one, then selecting others
while holding the Shift Key. Alternatively, you can draw a box around the
components you'd like to select, as shown in Figure 7-3. Click the mouse at a
spot above and to the left of all the components. Drag the mouse towards the
lower-right until all the components are enclosed in the selection box. When
you release the mouse, all three components are selected.

[Welcome x| 5 Pagel x
(]

|Design| ¢ Java S R | Ay ize

Figure 7-3 Selecting multiple components

7.2 Themes

3. Place the mouse over the component that you want to use as the alignment
reference, right-click, and select Align > Center. The three components will be
horizontally centered using the selected component as the alignment refer-
ence.

For horizontal alignment options, select Left, Center, or Right. For vertical
alignment options, select Top, Middle, or Bottom.

Deploy and Run

After aligning the components, deploy and run the application. Figure 7—4
shows project Designl running in the browser. The components were centered
horizontally using the third component as the reference for the alignment.

®) Design1 - Netscape I’:“E“zl
2 [» [» |

The quick brown fox.

She sells sea shells.

Winter waves crashed against the cliffs.

Er=EEE=1 == *E

Figure 7—4 Project Design1 running in a browser

7.2 Themes

Creator gives web page designers a number of choices for specifying the look
of a web page. The components from the Basic, Layout, and Composite sec-
tions of the palette are rendered using themes. A theme is a bundled set of cas-
cading style sheets, JavaScript files, and images that apply to the components
and the web page. Creator currently ships with four configured themes. The
available themes for a project are listed in the Projects window under node
Themes, as shown in Figure 7-5. The currently selected theme is marked with a
triangle badge. To change the current theme, right-click a new theme selection
and select Set As Current Theme.

169

170 Chapter 7 Web Page Design

Co

| Projects I x | “Files

P fi d Th
B-@ Layoutt reconfigure emes

- resources

------ 1| Pagel.jsp

!'—:i---‘ﬁ’

> ------ Q BikeTheme

> ------ (ﬁ Green Theme

; -@qDeFault Theme
------ @ aray Theme

------ \@, Managed Beans

------ E,a Page MNavigation

i+ @ Request Bean

@ Session Bean

B application Bean

I(@ Source Packages

= Libraries

[+ C@ Daka Source References

Figure 7-5 Creator Themes available for projects

Creator Tip

To make a new theme take effect for deployment, first stop the application
servet, then clean and rebuild the project.

The Default Theme provides a gradient blue color, giving the components a
unified look. The Gray and Green Themes provide color variations with the
same gradient appearance. The Gray Theme is useful when you want to give
the components a neutral look (for example, if your color scheme does not
mesh well with either blue or green). The Bike Theme is used with one of Sun’s
sample applications. (Access sample applications at the following url: http://
developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learn-
ing/tutorials/index.html#sampleapps.)

Changing the Look with Themes

Let’s create a simple application, deploy it, and change its current theme. This
application won’t do much, but you'll see how several components are affected
by theme selection. Figure 7-6 shows the project running in a browser. The
page contains a hyperlink component, text field, label, static text component,
and table. The application is built with the Default (blue) Theme.

http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps
http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps
http://developers.sun.com/prodtech/javatools/jscreator/ea/jsc2/learning/tutorials/index.html#sampleapps

7.2 Themes

) Theme1 - Netscape |:“E_|E|
b [» [|

Label The quick brown fox
Table
columni % | column2 % | column3 4

row1_column2 row1_column3

rowZz_column3

row3_column2 row3_column3
rowd_column? rowd_columnz rowd_column3
rows_column? | rows_column2 | rows_column3
@ (2 & F] | Transferring data .| - T R
e —

Figure 7-6 Project Themel running in a browser

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Themel.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Themel.
Finish by pressing <Enter>.

4. In the Projects window, expand the Themes node and make sure that the
Default Theme is selected as the current theme (it should display a triangle
badge).

Add Components to the Page

Using Figure 7-6 as a guide, add components to the page. Except for the static
text component, all will retain their default settings.

171

172

Chapter 7 Web Page Design

. From the Basic Component palette, select component Hyperlink and drag it

to the top-left portion of the page.

. Select component Button and place it to the right of the hyperlink compo-

nent.

. Select component Text Field and place it next to the button.
. Select component Label and place it under the hyperlink component.
. Select component Static Text and place it to the right of the label component.

When you drop it on the design canvas, it remains selected and you can
begin typing. Type in some text (The quick brown fox) and finish with
<Enter>.

. Finally, select component Table and place it on the page below the label com-

ponent. Creator generates a table with default rows, columns, and data. The
table component reflects the colors used by the different themes particularly
well.

. Deploy and run the application by clicking the Run arrow on the toolbar.

Change the Current Theme

Now let’s change the current theme for this project and redeploy the applica-
tion.

1.

In the Projects window, expand the Themes node. Right-click Green Theme
and select Set As Current Theme. Creator reminds you that you must stop the
application server, then clean and rebuild the project before redeploying.

. In the Projects window, expand the Libraries node and scroll down until you

find the JAR file associated with the Green Theme library.

. Expand the Green Theme library. You'll see the defaulttheme-green.css file

as well as the images, properties, and JavaScript files associated with this
theme. (You'll look at a cascading style sheet (.css) file shortly.)

. In the Servers window, right-click Deployment Server and select Start/ Stop

Server. Click the Stop Server button.

. Return to the Projects window, right-click the Themel project name, and

select Clean and Build Project. (This step is necessary to make the application
server use the correct JAR file for the selected theme.)

. Deploy and run the application by clicking the Run arrow on the toolbar.

The application should now display green-colored components.

. Repeat Steps 1-6 above to change the current theme to the Bike Theme.

Creator Tip

Instead of deploying the application each time, you can right-click inside the
visual design editor and select Preview in Browser for a quick look at a newly
selected theme.

7.3 About Style

Modifying the Default Theme

The Default, Gray, and Green Themes are variations of the same theme. Is it
possible to modify themes for different colors or use a different theme alto-
gether? The style sheets and images that apply to components can theoretically
be modified. The theme JAR files are installed in the Creator2 directory (cur-
rently at rave2.0/modules/ext). You can unpack the JAR file, edit the CSS file
and images, and repackage them. Until Creator includes a theme-based editor,
however, this remains a non-trivial task. Still, there’s much you can do to con-
trol the appearance of your application. Let’s continue to explore web page
design options beginning with style.

7.3 About Style

You've probably noticed by now that each component has a style property
that allows you to change the appearance of various features such as font (size,
color, family, style), position, height, width, etc. Some components also contain
“pass-through” HTML attributes, such as border and cellpadding that apply to
table-type components. You specify style attributes by modifying the compo-
nent’s property sheet directly. This gives you control over the look of a specific
component. It is also a handy way to experiment with different styles until you
decide on an overall style for your application.
Property style accepts style declarations in the form

propertyl: valuel; propertyZ2: valueZ; . . . propertyN: valueN

Let’s look at an example.

Copy the Project

You'll make a copy of project Themel (call it Theme?2) for this section. This step
is optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to the Themel project.

1. Bring up project Themel in Creator, if it’s not already opened.

2. From the Projects window, right-click node Themel and select Save Project
As. Provide the new name Theme2.

3. Close project Themel. Right-click Theme?2 and select Set Main Project. You'll
make changes to the Theme?2 project.

4. Expand Theme2 > Web Pages and open Pagel.jsp in the design view.

173

174

Chapter 7 Web Page Design

5. Click anywhere in the background of the design canvas of the Theme2
project. In the Properties window, change the pages’s Title property to
Theme2.

6. Select the table component, right-click, and select Delete from the context
menu to remove the component from the page (to simplify the page).

Using the Style Editor

Let’s use the style editor to manipulate a component’s look.

1. For project Theme2, restore the current theme to the Default Theme (blue-
toned). Remember to stop the application server and clean and rebuild the
project before proceeding.

2. In the Design View, select component staticTextl.

3. In the Properties view, click the small editing box opposite property style.
Creator pops up the Style Editor, as shown in Figure 7-7.

Creator provides a sophisticated Style Editor that lets you specify a compo-
nent’s style attributes. The Property Selection window lets you choose a prop-
erty to edit. Depending on this selection, the editor displays windows that let
you select values from a list or specify a custom value. When you change an
attribute, the Results Display Window applies the style to the component.

Use the Style Editor to modify the static text component’s style property.

—_

. Select Font in the Property Selection window.

2. In the Font-Family selection window, select the list of font-family values
beginning with Verdana.

3. In the Size window, select font size 18.

4. In the Style selection window, choose italic from the drop down menu. Note
that the text in the Results Display windows reflects your selections.

5. Now select Background in the Property Selection window. The editor dis-

plays a different set of selection windows.

. Select color yellow in the Background Color drop down menu.

. Choose Border in the Property Selection window.

8. In the All selection window for Style select solid, for Width select 1px, and

for Color select gray.

N S

Here is the new CSS Style setting for this component.

border: lpx solid gray; background-color: yellow;
font-family: Verdana,Arial,Helvetica,sans-serif;
font-size: 18px; font-style: italic; left: 120px; top: 72px;
position: absolute

7.3 About Style

% staticText1 - style

(JUsebindng (&) Usevalue Current Value Display Window Selection Window
Font Family: Size:
Background I
Text Black ih‘erdana,.D.rial,Helvetica,sans—serif ‘ /’ [Edit... l | <Mook Set | | |
Border : ==
Margin =Mok Set = s
Position Arial, Helvetica,sans-serif / E !8
‘Times Mew Roman', Times, serif ilD
"Courier New', Courier, monospace i12 1
Georgia, ' Times Mew Roman', times, serif o !14
- b o
Genewva,Arial, Helvetica, sans-setif |
serif o !36 B
Property
Selection Skyle: | <ot Set w | Decoration: [Underline
wigight: | <Nat Set > vl [overline
Yariank: | =Mok Set> w | D Strikethrough

Results Display Window

—_— The guick brown fox

font-Family: Verdana, Arial, Helvetica, sans-serif; left: 120psx; top: 72px; position: absolute

55 Styvle 4

Actual text of style property

[

K][Unset Property][Cancel

] [Help

Figure 7-7 Using the Style Editor

9. Click OK. The page in the design view reflects the new style characteristics.

Deploy and Run

Right-click in the visual design editor and choose Preview in Browser, or
deploy and run the application to check its appearance.

175

176

Chapter 7 Web Page Design

7.4 Cascading Style Sheets

Using a component’s style property to control its look can be tedious. You
must specify attributes for each component manually by editing its property
sheet. Furthermore, it’s difficult to employ a uniform look for a web page using
only style property settings.

Creator uses Cascading Style Sheets (CSS) to control the look of its compo-
nents and pages. CSS is a standard that allows a web designer to specify style
characteristics. The style characteristics apply to a document in a cascading
fashion: that is, a style applies to a given level and subsequent styles can in turn
apply on top of these “inherited” styles. If you don’t specify a property for an
element, it generally inherits the property from its “parent.” For example, you
can specify that all text in a document is (color) navy. You can then specify that
text in a footer is a smaller text size. The footer text will be both navy and the
smaller size since the footer-specific style inherits all properties specified for
the global style.

You can read more about Cascading Style Sheets at the Cascading Styles
Home Page: http://www.w3.0rg/Style/CSs/. The web site also includes
tutorials about how to use style sheets.

Using Attribute styleClass

All Creator components include attribute styleClass, which is a comma sepa-
rated list of style classes. You define and store a style class in a text file called a
style sheet. As stated earlier, using property styleClass helps web designers
create a uniform look to all pages in a project. Creator provides a default style
sheet, stylesheet.css, that is included in each project you create. When you add
style classes to the style sheet, you can then reference them in the component’s
styleClass attribute. (Note that the bundled themes include a set of style rules
that also apply to the components.)

A style sheet is a collection of style rules. Each rule consists of a selector and a
declarator. The selector identifies an HTML element(s) or style class name(s) to
which the rule applies. The curly braces encompass the declarator, which is the
semi-colon separated list of property-value pairs. While the component’s style
attribute lists the property-value pairs for a given component, a rule is a collec-
tion of property-value pairs that is named.

Let’s examine the default style sheet, stylesheet.css, in the Style Sheet Editor.
In the Projects window for project Theme2, select Web Pages > resources and
double-click file stylesheet.css. Creator brings up the style sheet in the Style
Sheet Editor and highlights the first rule, .1ist-header.

http://www.w3.org/Style/CSS/

7.4 Cascading Style Sheets

.list-header {
background-color: #eeeeee;
font-size: larger;
font-weight: bold;

}

There are three property-value pairs here: property background-color has
value #eeeeee, property font-size has value larger, and property font-
weight has value bold. Rules that contain an initial dot are style classes. Once
you define them in the style sheet for your project, you can specify the class
names in a component’s styleClass attribute.

You can also define rules that apply to HTML elements such as <body>, <th>
(table heading), <td> (table data). The body style rule is a good place to list glo-
bal settings for your web application, such as basic font characteristics, text
color, and background color. Let’s do this now.

1. Scroll to the top and add the following comment.
/* Custom style rules */
2. Now add a rule for body followed by opening and closing braces.

/* Custom style rules */

body {
}

3. Put the cursor after the open brace and hit <Enter>. You see that Creator pops
up a property selection dialog. Select background-color followed by <Enter>.

4. Creator now pops up a value selection dialog, as shown in Figure 7-8. Scroll
down to the bottom and choose more...and hit <Enter>.

5. Creator pops up a Choose Color dialog. Select tab RGB and specify values
230,230,200, as shown in Figure 7-9. Click OK. Creator fills in value #e6e6c8
for property background-color.

6. Continue editing style class body. You can also use the style selection win-
dows below the editing pane. Here is the style to use for body.

body {
background-color: #e6e6c8;
font-family: Verdana,Arial,Helvetica, sans-serif

177

178

Chapter 7 Web Page Design

@ welcome % | g Pagel x 1111 stylesheet, css * x]

H = H

bady A BN R

I
[

A% Custon style rules */

hody {
background-color:

}
#* Style rules to mal

.list-header {
background-color:
font-size: larger:
font-weight: bold;

Skandard Colors
A

B tlack
B tlus

B fuchsia .1

B gray
B areen

look better */

}
@ lime

L|:_| .list-paging-header | @ maroon A

>

Figure 7-8 Using the Style Sheet (CSS) Editor

% Choose Color

| Swatches | H5B | RGB |

Red ,J 230[8]
0 35 170 255
Green | o | |_2?£3_
0 a5 170 255
-
v

Prewview

O - Ll

I OKS[Cancel ” Reset l

Sample Text Sample Text

Figure 7-9 Choose Color dialog

7.5 Page Layout

7. Add a style class called .headingStyle, as follows. Use the style selection
windows to specify font-size and font-weight (or just type them in).

.headingStyle {
font-size: XX-large;
font-weight: bold

}

8. Select the Save All icon on the toolbar to save the changes and close the Style
Sheet Editor (click the small x in the stylesheet.css tab).

The body rule applies to all HTML <body> elements, as well as any elements
declared inside of <body>. Thus, nested (“children”) elements inherit the prop-
erty-value settings from their enclosing (“parent”) elements.

Return to the Pagel design view. You'll see that the background color and
the font-family setting reflect the body style rule you defined. Now you’ll
apply the .headingStyle style class to the static text component.

1. In the design view, select the static text component (its text is “The quick
brown fox”).

2. Select the editing box opposite the style property. When the style editor
pops up, select Unset Property. Creator clears its style setting (including its
position value). The component is now in the upper-left corner.

3. Select it and move to its previous location (restoring its position values).

4. Make sure the component is still selected and type in the text headingStyle
for property styleClass (do not use the initial dot from the style sheet file)
followed by <Enter>. The static text component now has the extra large font
size and is bold.

Deploy and Run

Deploy and run the project. Figure 7-10 shows the application running in a
browser.

7.5 Page Layout

Creator provides several components that help you manipulate the layout of
your web page. In this section, we’ll examine components layout panel, grid
panel, and anchor (paired with hyperlink). We’ll keep the projects simple in
order to concentrate on page layout issues.

179

180

Chapter 7 Web Page Design

) Theme2 - Netscape

b | ¥ | ¥ |
Label

The quick brown fox

@ B &F) | httpe/flocahost:zeoeo/Themey/ | - - <= =P

Figure 7-10 Project Theme2 running in a browser

Layout Panel

Creator’s palette includes several component containers that group or nest
embedded components. With containers, you can uniformly control the “chil-
dren” components’ appearance, including position, style, and rendering. The
layout panel component positions its components with either a flow layout,
placing each component directly after the previous one, or a grid layout, letting
you position components using the design editor. For this project, we’ll also
show you how to inspect the CSS style rules and HTML rendering that Creator
generates for you. Finally, we’ll show you how to center components on the
page, even when the user resizes the browser window.

Create a Project

In the following project, you'll control components by grouping them together,
allowing the components to share common style, position, and rendering
attributes. You'll see how the layout panel lets you position components using
the standard grid.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Layoutl.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

7.5 Page Layout

3. In the Properties window, select property Title and specify title Layout and
Style. Finish by pressing <Enter>.

Add Components to the Page

Figure 7-11 shows the design view of project Layoutl. Use this as a guide as
you add components to the page.

(@ welcome x| [Pagel x| (=
I___—.! L = ———
||Design! P Java | & o |F\ny Size v%

. Bution - g EEmm=:

; i :
.. . Layout Panel

Figure 7-11 Design view for project Layoutl

1. From the Layout section of the Component palette, select Layout Panel and
drop it on the page. Enlarge it so that it is approximately 20 grids wide and
10 grids high.

2. Make sure the layout panel component is selected. In the Properties window
opposite property panelLayout, select Grid Layout from the drop down list.
This lets you use the design view’s grid to position components that you'll
add to the panel.

3. Still in the Properties window for the layout panel, click the small editing
box opposite property style. Creator pops up the Style Editor.

As you’ve seen, there are several ways to modify a components’” style prop-
erty. We'll step you through using the editor, but you can also type in the style
attributes manually. Refer to Figure 7-7 on page 175 for the window labels
used here.

181

182

Chapter 7 Web Page Design

. In the Property Selection window, select Font. In the center Font Family

Selection Window, choose Georgia, Times New Roman' times,serif. In the Size
Selection Window, choose 12. In the Style window, select italic from the drop
down list. In the Weight window, select bold from the drop down list. In the
Color window, select gray from the drop down list.

. Now select Background in the Property Selection window. In the Back-

ground Color window, type the value rgb(255,255,204) followed by <Enter>.
The small color indicator on the right will change to a muted yellow.

. Select property Border. In the top row labeled All, for Style select solid and

for Width select 2px. Select OK to close the Style Editor. The layout panel
now has a border and a new background color.

By changing the layout panel’s style settings, you'll see how the children

components are affected by the layout panel’s style. Some style attributes are
inherited (such as font characteristics); others are not (such as border). And
some settings are overridden by more specific settings. We’ll examine this in
more detail after you add components to the layout panel.

1.

[6V]

From the Basic Components palette, select Static Text and drop it on the lay-
out panel component. The static text component appears in the Pagel Out-
line view nested under the layout panel.

. Type in the text The quick brown fox jumped over the lazy yellow dogs fol-

lowed by <Enter>.

. Change the static text id property to linel.
. Add two more static text components with text She sells sea shells and Peter

Piper picked a peck of pickled peppers. Change the id properties to 1ine2 and
line3. All three static text components will be nested under the layout panel
in the Pagel Outline view, as shown in Figure 7-12. (The screen shot also
shows two button components, which you’ll add later.)

Let’s position the three static text components so that they’re centered on the

layout panel.

1.

2.

First, use the grid lines to evenly space the static text components vertically.
Leave some room at the bottom of the panel for a button component.

Select the first static text component. Use <Shift-click> to select all three static
text components, as well as the layout panel.

. Position the cursor inside the layout panel (anywhere in the background)

and right-click. Select Align > Center from the context menu. Creator centers
all three text components horizontally, using the layout panel as the refer-
ence component. The components should now be centered, as shown in
Figure 7-11 on page 181.

7.5 Page Layout 183

EEDutIine ¥ % |‘Mavigator

ﬂ farm1
2[4 lavoutPanell
{A] line1: The quick brown Fox jumped ...

----- {A] linez: she sells sea shells
~|A] line3: Peter Piper picked a peck o,

------) disappearButton: Click the Button
------) restoreButton: Restore

: [+ RequestBeanl
| 1+ SessionBeanl
+ ApplicationBeani

Figure 7-12 Pagel Outline view for project Layoutl

Creator Tip

Note that the components are positioned relative to the layout panel
component. If you re-position the layout panel on the page, the nested
components retain their relative position inside the panel.

Now let’s add two button components: one inside the layout panel and one
outside.

1. From the Basic Component palette, select component Button and place it
inside the layout panel. Position it under the three text components off-cen-
ter to the right.

2. Change its text label to Click the Button (note that the button’s font inherits

the font style from the panel).

Change the button’s id property to disappearButton.

4. From the Basic Component palette, select component Button again and

place it on the page, centered above the layout panel (outside of the panel).

The button component is not nested inside the panel component in the

Pagel Outline view. Its font characteristics are therefore independent of the

layout panel’s settings.

Change its text label to Restore.

6. Change the button’s id property restoreButton.

@

o

184

Chapter 7 Web Page Design

The event handling code for the buttons will make the layout panel disap-
pear from the page (disappearButton) and then will restore it on the page
(restoreButton).

1. In the design view, double-click the first button (disappearButton). Creator
generates a default action event handler and brings up the Java source editor
so that you can add event handling code.

2. Add the following code to the disappearButton action() event handler
(the added code is shown in bold).

public String disappearButton action() {
layoutPanell. setRendered (false) ;
restoreButton. setRendered (true) ;
return null;

The event handler sets the rendered property of the layout panel to false,
causing it (and all of its nested components) to disappear from the page. It
makes the Restore button appear on the page.

1. Click label Design in the editing pane to return to the design view.

2. Double-click the Restore button, which brings up the action event handler in
the Java source editor.

3. Add the following code to the restoreButton action () event handler. The
added code is bold. When the user clicks the button, the layout panel and all
of its nested components will be rendered on the page. At the same time, the
Restore button will disappear.

public String restoreButton action() {
layoutPanell. setRendered (true) ;
restoreButton.setRendered (false) ;
return null;

4. Click label Design in the editing pane to return to the design view.

5. Select the Restore button. In the Properties view under Advanced (scroll
down to see it), uncheck property rendered. The button disappears from the
design view.

Creator Tip

Even though the component no longer appears on the design view, you can
still select it in the Pagel Outline view. If you want to adjust it visually, turn
the rendered property back on, make adjustments, and then turn it off again.

7.5 Page Layout

Deploy and Run

Deploy and run the application by selecting the green arrow in the icon toolbar.
Figure 7-13 shows project Layoutl running in a browser. When you click the
inside button, the layout panel disappears and the Restore button is rendered.
Clicking the Restore button makes the layout panel reappear.

@ Layout and Style - Netscape Browser IZ”EWEJ
File Edit View Go Bookmarks Tools Help

iFI +| ||| Layoutand Style @] -

The quick brown fox jumped over the lazy yellow dogs
She sells sea shells

Peter Piper picked a peck of pickled peppers

Click the: Burroné

Figure 7-13 Project Layoutl running in a browser

More CSS Style Issues

Although this project is very simple, there are subtle style issues illustrated
here. The style that a component finally acquires is an amalgamation from var-
ious sources, some of which may not be obvious. For example, the Creator
components acquire a basic style from the pre-configured Theme style sheets.
(This is why the button component has a gradient blue background image.)
When you nest components inside container components, the nested ones can
inherit styles from the enclosing component. (Thus, the button and the text
components have a bold, italic font.) To help you figure out where style defini-
tions originate, Creator has a hidden Document Object Model (DOM) inspector
(hidden because it is not a formal part of the product). Let’s examine several
components in this project with the DOM inspector.

You access the DOM inspector by selecting a component with <Ctrl-Alt-
click>. Creator displays a Layout Inspector window that contains a tree of the
page’s components. HTML components are shown in angle <> brackets and the

186

Chapter 7 Web Page Design

Creator component id appears (if there is one). The Properties window dis-
plays property values that can help you with various style attributes.

For example, select the third static component and type <Ctrl-Alt-click>.
Depending on where you actually place the cursor, a word is highlighted in red
on the design view. Figure 7-14 shows the Layout Inspector (on the left) and
the corresponding Properties window (on the right).

:Layout Inspector =5

£ :Properties I x
_j 1 =form: Fovml B “
__] <div i layoutPanall jilcst L
+_] <spanz linel letyie
+_] e _Background rull Q
Fi---;] <span lned Computed Styles [:]
—_j Lingbox Group _Local Skyles E]
;:_"_-_] Linbboe |Rules &)
i Peter Skyles Q
o SPACE =IBox Model
- |Barder Widths [J
-4 SPACE | Children
-4 picked |Positioning [J
-4 Space Containing Block &=
-4 a Content Size [J
By EZE s
| Inline
: sT-ace Margins [:]
e sopace |Padding [J
< pickled |Pasition . E]
e Pos Constraints E] b
i PEPPEFS
------ # <input> dissppaseButton

- i <input> restorsBotton

Figure 7-14 Creator DOM Inspector

Let’s say you want to determine exactly where the text is set to italic. In the
Properties window under Styles, there are several helpful windows. Com-
puted Styles tells you where a style setting originates. Local Styles are the style
rules set for this element (values not inherited), Rules are the CSS rules that
apply to this element, and Styles is the grand total of all the styles that apply to
this element.

In the Properties window, click the small box opposite property Local Styles.
In the property customizer, you'll see that this element contains only position-
ing styles. Click Close. Now select property Rules. These are the style rules that
apply to this element (found in file css_master.css). Click Close. Now select
property Computed Styles. Creator pops up the customizer shown in Figure 7-
15. Scroll up until you find the property setting for font-style (shown high-
lighted in the figure). You see that it’s set to italic and it references Line 12 in
Pagel.jsp. Click Close and select JSP in the editing pane to open Pagel in the

7.5 Page Layout

JSP editor. Line 12 contains the component definition for <ui:panellayout>,
the layout panel that contains the text components. Thus, the text component
inherited its font-style property value from the layout panel.

¥ Selected Box - Computed Styles

direction: It |
display: inline £55_master,css: Fa6 F
float: none Cs5_master.css 757

*Font-family: sans-serit Cs5_master,css:11

Hfont-size: 12px cs5_masker.css:12

Font-size-adjust: none Cs5_master.css 757

Font-stretch: normal cs5_master.css 701
o ikalic C:\Documents and SettingsiGailiMy Documents) CreatoriProjectstiLayvout4iwebiPagel jsp:12
Font-wariant: normal cs5_master.css 701

Pfont-weight: 700.0

height: auto stylesheet.css:5

Mline-height: 15.960001

§ist—style—image: none £55_masker.css: 757

list-style-type: disc

margin-left: 0

margin-right: 0

margin-top: 0

margin-bottom: 0

Heft: 102px C:\Documents and SettingsiGailiMy DocumentsiCreator|Projectsilavout4iwebiPagel jsp:14
:rig_ht: auko stylesheet.css:5 nd|

Close

Figure 7-15 Computed Styles property

Finally, return to the design view (click Design in the editing toolbar) and re-
select the text component with <Shift-Alt-click>. Now select Styles (under
Styles) in the Properties window. You'll see all of the styles that apply to the
static text component.

Centering Components on a Page

Let’s continue our exploration of manipulating style attributes to center the
components in your browser window. You can apply centering horizontally,
vertically, or both. To center a component horizontally, you must know the
width of the target component. Likewise, to center a component vertically, you
must know its height. The convenience of using containers is that you can cen-
ter the container on the page, and then all of its children components retain
their relative positions in the centered container.

We're going to center the components on the page both horizontally and
vertically. You center the layout panel and separately center the Restore button
(you might want to enable rendering for the Restore button until you're done
modifying its style).

1. From the Pagel design view, select the layout panel. In the Properties win-
dow, select property style and bring up the style editor.

187

188

Chapter 7 Web Page Design

2. At the bottom on the window, you'll see the style settings for the compo-
nent. Note the property settings for width and height. It will be something
similar to the following (depending on how you sized the layout panel).

height: 212px; width: 460px;

To center horizontally, use left: 50%. To center vertically, use top: 50%.
Unfortunately, these values will center the top-left corner of the layout panel.
To compensate for this calculation, you adjust using negative values for
margin-left and margin-top. The value should be half the size of the compo-
nent’s width (for margin-left) and half the size of its height (for margin-top).

Therefore, the new positioning values are as follows.

margin-left: -230px; margin-top: -106px; left: 50%; top: 50%;

3. Provide the above values for the layout panel’s positioning and Click OK.
Creator will center the layout panel in the design view.

4. In the Pagel Outline view select the Restore button. In the Properties win-
dow under Advanced, enable rendering (check property rendered). The
button will appear on the design canvas.

5. In the Properties window, select property style and bring up the style edi-
tor.

Creator Tip

Note that there are no set values for a button’s height and width, because the
component automatically sizes itself according to the text label. To find out its
approximate size, you can resize it slightly and Creator will then make its size
static. Use these values for the centering calculations and then return the
component to automatic sizing by removing the static values for width and
height.

6. The position values for the Restore button are as follows. Provide the values
for the button in the Style editor and click OK.

o)

margin-left: -33px; margin-top: -12px; left: 50%; top: 50%;

7. In the Restore button’s Properties window under Advanced, uncheck prop-
erty rendered

7.5 Page Layout 189

Creator Tip

Note that if you adjust the position of the layout component or the Restore
button in the design view, Creator replaces the percentage values you
supplied for left and top with absolute position values. You'll have to re-edit
the style property and supply the percentage settings.

Deploy and Run

Deploy and run project Layoutl. Resize the browser window and check that
the layout panel component remains centered. After you click the button, the
Restore button appears. It should also be centered on the page. Figure 7-16
shows the component centered in the browser window.

© Layout and Style - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

The guick brown fox jumped over the lazy yellow dogs
She selis sea shells

Peter Piper picked a peck of pickied peppers

Click the Bum:m@

Done

Figure 7-16 Project Layoutl with centered components

Grid Panel

Creator provides another container component called a grid panel. The grid
panel (as its name implies) provides a grid layout, whereby you specify the
number of columns if you require more than the default of one. Creator places
each component in the grid, positioning the component in the next available
cell. With a single column, a component goes into a cell in the next row.

The grid panel gives the page designer additional options for controlling the
page layout. For example, you can nest grid panels to achieve some advanced
layout designs. In this section, we’ll use the grid panel to control the page lay-

190

Chapter 7 Web Page Design

out. We’ll show you how to control component placement when you want to
position a component after a variable-sized component (such as a table that
contains an indeterminate number of rows).

Create a Project

In the following project, you’ll control page layout by nesting components
inside grid panels. Project LayoutMadness displays a table of numbers and
their squares. The user specifies how many numbers should be displayed. To
keep everything simple, the event handling code will generate HTML tags on
the fly to build the table. This is a handy technique when you want to generates
your own HTML tags.

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Layout-
Madness. Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Layout
Madness. Finish by pressing <Enter>.

Add a RequestBean Property

This web application requires a number from the user that is then stored in
request scope for later processing. Property myNumber is an Integer you'll add
to Request Bean.

1. In the Projects window, right-click Request Bean and select Add > Property.
Creator pops up the New Property Pattern dialog.

2. For Name specify myNumber. For Type specify Integer (upper case ‘I'). For
Mode leave the default of Read/Write. Click OK.

3. Creator generates the field, getter, and setter for property myNumber. In the
Projects window, double-click Request Bean to bring up file
RequestBeanl.java in the Java source code editor.

4. Scroll to the end of the file and find the field declaration for property myNum-
ber. Add initialization code for property myNumber. Modify the field declara-
tion to include initialization with operator new, as follows.

private Integer myNumber = new Integer (0);

7.5 Page Layout 191

5. Click the Save All icon on the toolbar to save these modifications. Close the
editor window for RequestBeanl.java by clicking the small ‘X" in the
RequestBeanl.java tab.

Add Components to the Page

You'll add a grid panel to help with page layout. Inside, you'll add a nested
grid panel that will hold a text field and button to gather and process the input.
A static text component will display (using generated HTML elements) the
table of squares and two hypertext/anchor component pairs will help with
page scrolling. Figure 7-17 shows the design view.

[@ welcome x| 5 Pagel x| -

i *Input a Number ~ Nested - -
" EllaRIE 0 TextField | Grid Panel

Message sumarny for textField1 Message

i JumpToEnd -<—— Hyperlink
i | Static Text < Static Text

Top < Hyperlink
ol bz Grid Panel
S -¢—— Anchor

Figure 7-17 Design view for project LayoutMadness

Creator Tip

Note that we assigned contrasting background colors to the grid panels. This
is helpful when you want to see how the grid panel is rendered and how it lays
out its nested components. When youre satisfied with the layout, you can
restore the grid panels’ default background colors.

Figure 7-18 shows the Pagel Outline view for this project. You might want
to consult it from time to time as you add the components to make sure that the
nesting levels for the components are correct.

192 Chapter 7 Web Page Design

jeiitine. bl
.'-_:: Pégel “ B B
| B3] pagel
=[] htmil

[#-[€3] head1: Layout Madness
E-[£3] body1

=] Forml
Q?p anchorTop

ii| gridPanel1
3| aridPanelz
-4 doTable: Get Table
o A bextField1
2D message]
&= jumpEnd: Jump To End
1| A] tableResult
&= jumpTop: Top
[#-<ifa anchorBottom
------ integerConverterl
------ & longRangevalidatorl
| = RequestBeani
| - myMumber
[+ SessionBeanl

(# ApplicationBeani

Figure 7-18 Pagel Outline view for project LayoutMadness

Creator Tip

Creator lists the components nested in the grid panel in the order that you
place them on the page. If you need to rearrange the order, you can select a
component, drag it up to its parent container, and re-drop it. This moves the
component to the end of the list for that container.

1. From the Basic Components palette, select Anchor and place it on the page
in the upper-left corner.

2. In the Properties window, change its id to anchorTop.

3. From the Layout Components palette, select Grid Panel and place it on the
page.

4. In the Properties window for the grid panel, select property style and bring
up the Style Editor.

5. In the Style Editor, select property Background. In the window for Back-
ground Color, provide the following RGB values.

rgb (255, 255, 215)

7.5 Page Layout

. Select property Text Block. For Horizontal Alignment, select center from the

drop down list.

. Select property Position. Under Size, set Width to 400px. Click OK to close

the Style Editor. The grid panel will have a muted yellow background in the
design view.

. In the Properties window, set property cellpadding to 3 and property

cellspacing to 3. This will create space around the nested components.

Now you’ll add a second grid panel and nest it inside the first one.

. In the Layout Components palette, select a Grid Panel component and drop

it on top of the previous grid panel.

. In its Properties window, set property columns to 2, property cellpadding

to 6, and property cellspacing to 2.

. Click the editing box opposite property style and bring up the Style Editor

for the nested grid panel.

. In the Style Editor, select property Background. In the window for Back-

ground Color, provide the following RGB values.

rgb (232, 245, 202)

5.

Select property Text Block. For Horizontal Alignment, select center from the
drop down list. Click OK to close the Style Editor.

You'll place a button and a text field component inside the nested grid panel

(component gridPanel?2).

1.

(O8]

Q1

From the Basic Components palette, select Button and drop it on the nested
grid panel. Make sure that the smaller, light-green panel is outlined in blue
before you release the mouse.

. The button’s label is selected. Change its label to Get Table.
. In the Properties window, change its id property to doTable.
. From the Basic Components palette, select Text Field and drop it on top of

the nested grid panel. Again, make sure that the panel is outlined in blue
before you release the cursor.

. In the Properties window for the text field, check property required.
. In the Properties window for the text field, set property label to Inputa

Number. Because the field is required, Creator prepends an asterisk to the
label.

The button and text fields components should be nested inside the second

grid panel. Since the nested grid panel has two columns, these components are
rendered side-by-side (each in its own cell in the same row). Let’s configure the
text field component now: you'll add an integer converter, a long range valida-

193

194

Chapter 7 Web Page Design

tor, and bind its text property to the RequestBean property myNumber you
added earlier.

1.

From the Converters Components palette, select Integer Converter and drop
it on top of the text field component. The converter property for the text
field is now set to integerConvertl.

. From the Validators Components palette, select Long Range Validator and

drop it on top of the text field component.

. In the Pagel Outline view, select longRangevalidatorl. In its Properties

window, set maximum to 200 and minimum to 1.

. Select the text field component, right-click, and select Property Bindings.

Creator pops up a dialog entitled Property Bindings for textFieldl. For
Select bindable property, choose Text Object. For Select binding target,
choose RequestBean1 > myNumber. Click Apply then Close. Creator gener-
ates the following binding expression for property text.

{RequestBeanl .myNumber}

Now you’ll add the rest of the components to the outer grid panel (compo-

nent gridPanell).

1.

Since you've attached a validator and converter to the text field, you'll need
a message component to display error messages. From the Basic Compo-
nents palette, select Message and drop it on top of the outer grid panel.
(Check component selection if you use the design view. Alternatively, you
can drop the component on gridPanell in the Pagel Outline view.)

. In the design view, place the cursor inside the message component. Type

<Ctrl-Shift>, hold, and left-click the mouse, releasing the cursor when it’s
over the text field component. The message component now displays “Mes-
sage summary for textField1” on the design view.

. From the Basic Components palette, select Hyperlink and drop the compo-

nent on the outer grid panel.

. Its text is selected. Change its text property to Jump to End followed by

<Enter>. Change its id property to jumpEnd. You'll set its url property later.

. From the Basic Components palette, select Static Text and drop it on the

outer grid panel. In the Properties window, change its id property to
tableResult. Under Data, uncheck property escape. This allows HTML tags to
be interpreted.

. From the Basic Components palette, select a second Hyperlink component.

Drop it on the outer grid panel.

. Change its text to Top followed by <Enter>. Change its id property to jump-

Top.

. From the Basic Components palette, select an Anchor component and drop

it on the outer grid panel. Change its id property to anchorBottom.

7.5 Page Layout

The Pagel Outline view should now match the one shown in Figure 7-18 on
page 192. Let’s configure the two hyperlinks and connect them to the anchor
components.

1. In the design view, select hyperlink component jumpEnd. In the Properties
window, click the editing box opposite property url. Creator pops up the
url property customizer, as shown in Figure 7-19.

% jumpEnd - url

() Usebinding (5 Use value

URL: [faces/Pagel jsp#anchorBottom v

Add File

=| [resources
et 1’!1 styleshest, css

l [8]'4 BJ [Unset Propetty] [Cancel] [Help

Figure 7-19 Customizer for property url

2. Select anchorBottom and click OK. This sets property url to
/faces/Pagel.jsp#anchorBottom

3. Repeat steps 1 and 2 for the jumpTop hyperlink component and set its url
property to anchorTop.

Let’s finally add the event handling code for the button component.

1. In the design view, double-click button Get Table. Creator generates the
default event handler and brings up Pagel.java in the Java source editor.

2. Supply the following code. Copy and paste from the Creator download file
FieldGuide2/Examples/WebPageDesign/snippets/
layout_doTable_action.txt. The added code is bold.

public String doTable action() {
String str = "<table border=\"2\"" +
" cellpadding=\"2\" width=\"400px\">";
int nrows = getRequestBeanl () .getMyNumber () .intValue() ;

195

196 Chapter 7 Web Page Design

str = str + "<tr><th>Number</th><th>Square</th></tr>";
for (int 1 = 1; i < nrows+l; i++) {
str = str + "<tr><td>" + (1) +
"</Ed><td>" + (i*i) + "</td></tr>";
}

str = str + "</table><p>";
if (nrows > 0)

tableResult. setValue (str) ;
else tableResult.setValue (null) ;
return null;

Method doTable action() reads the value from RequestBean property
myNumber and uses it to compute a table of squares for that many numbers. The
method generates the HTML code to dynamically build the table.

There’s a few layout and design decisions we made that affect this project.

¢ First, we used grid panel to hold the components because we can’t tell ahead
of time how much space the static text (that holds the table of squares) will
consume. By using a grid panel, Creator places all the components after each
other in the next cell. If you tried to use absolute positioning you would not
be able for format cleanly any component that came after the static text
component.

¢ Second, we used anchor components since there is a possibility that the table
won't fit on the page. This way, the user can easily jump to the end to view
the bottom of the table. For the same reason, we added an anchor
component so that the user can jump back to the top of the page.

* You configured the nested grid panel to have two columns, which holds
both the button and the text field component in a single row. Then, the
message component (which can display rather long messages) is in the outer
grid panel in its own row.

* You can optionally center the outer grid panel using the component
centering technique presented in the previous section. However, because the
height of the grid panel is unknown, you cannot center it vertically. To center
it horizontally, supply the following style positioning values for
gridPanell.

width: 400px; left: 50%; margin-left: -200px

7.6 Page Fragments 197

Deploy and Run

Deploy and run project LayoutMadness. Figure 7-20 shows the project run-
ning in a browser (centered). The cursor is about to click the hyperlink compo-
nent to jump to the end of the page.

%) Layout Madness - Mozilla Firefox [:”E]@
File Edit Wew Go Bookmarks Tools Help @

* Input a Number 15

Jum %TTD End

Number Square
1 1

16
25
36
49
64
a1

w | =~ o] |]

http: /localhost: 28080 Layout3/faces Page 1.jspFanchorBottom

Figure 7-20 Project LayoutMadness running in a browser

7.6 Page Fragments

Page fragment components can be valuable to web page designers because
they define building blocks for web pages. You can place components inside
page fragments and then use the fragments within subsequent pages. Typi-
cally, page fragments hold parts of a web page that are standardized for a uni-
form look, such as images used as page headers, standard menus or navigation
links, or even footers that contain copyright notices.

A page fragment is a helpful mechanism for reuse, but it does have some
caveats. For one, page fragments are inserted inline into their containing docu-
ment on the server. This means that a page fragment can only contain elements
that are valid at the point of inclusion. As you work through the example in
this section, note that page fragments are embedded in a <div> element (gener-

198

Chapter 7 Web Page Design

ated by Creator) and do not contain elements such as <head> or <body>, which
already exist in the containing page.

To use page fragments in Creator, you first create a page fragment and then
place it on the page. As an example, let’s build a project for the hypothetical
company called Cactus Consortium. This project has three pages: a Home
(login) page, a Courses page, and a Books page. Figure 7-21 shows the layout
of the Home page. The header is a page fragment that contains an image
hyperlink component, the footer is a page fragment that contains a static text
component, and the left menu is a page fragment that consists of a grid panel
component holding navigation links (hyperlink components).

g8 |) CactusBanner % Illj CactusFoaker x Iﬁm CoursesPage x Illj MavigationPanel = |) Pagel x| T styleshest.cs.. 1_[-:'

|Design| Jsp Java

B RO e e e S S

#SessionBeant firstname} :

i e e e e e T
: : : : : : : : : : essage summary for
b by T T e T R

o essage summany for
e e ; ; 7 lastname

Figure 7-21 Page layout using page fragments

This web application requires users to login with their first and last names.
The names are stored in session scope and adorn the navigation menu on the
left. The user must login before navigating to subsequent pages.

The Books and Courses pages are prototype pages containing titles (and the
page fragments for the uniform look).

7.6 Page Fragments

Create a New Project

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify Cactusl.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

3. In the Properties window, select property Title and specify title Cactus Con-
sulting. Finish by pressing <Enter>.

Modify Default Style Sheet
Now you’ll add some style rules to the default style sheet.

1. In the Project Navigator window, expand the resources node. You'll see the
default style sheet, stylesheet.css.

2. Double click the stylesheet.css file name. Creator brings up this file in the
editor pane.

3. Copy and paste the contents of file FieldGuide2/Examples/WebPageDe-
sign/snippets/stylerules.txt, adding the new style rules to the beginning of
the file. The new style rules are shown Listing 7.1.

Listing 7.1 New CSS Style Rules

/* Custom Style Rules for Cactus Consortium */

body {
background-color: rgb(230,230,200);
color: olive;

}

.headerStyle {
font-family: Georgia, 'Times New Roman', times,serif;
font-size: 200%

199

200 Chapter 7 Web Page Design

Listing 7.1 New CSS Style Rules (continued)

.footerStyle {
font-family: Georgia, 'Times New Roman',times,serif;

border-top-color: olive;
border-top-style: solid;
border-top-width: 1px;

font-size: 75%

}

.bannerStyle {
font-family: Georgia, 'Times New
font-size: 24pt;
font-style: italic;
font-weight: bold

Roman', times, serif;

}

td, th {

padding-left:
padding-top:
padding-bottom:
padding-right:

.5em;
lem;

lem;
lem;

}

.tableStyle {
font-family: Georgia, 'Times New Roman',times,serif;

width: 200px;
border-left-color: olive;
border-left-style: solid;
border-left-width: lpx;

You'll apply the style classes as you build the project. The body style rule
applies to the entire project, setting the background color and the font color.

4. Save the modified CSS file by selecting the Save All icon on the toolbar and
close file stylesheet.css (click the small x on the stylesheet.css tab). Note that
Pagel now has a new background color.

Use the Gray Theme

The image and background colors for this application look better with the
more neutral gray theme components.

1. In the Projects view, expand the Themes node, right-click Gray Theme and
select Set as Current Theme.

7.6 Page Fragments

2. After you restart the application server, Clean and Build the project to have
the new theme take effect.

Add SessionBean1 Properties

This application displays the user’s first and last names in different places
(both in the navigation panel and the home page display). It also keeps track of
whether the user is logged in or not. Since the application must save these val-
ues for each user session, you store all three variables in session scope. Pro-
gram data scope is covered in detail in Chapter 6 (see “Scope of Web
Applications” on page 116). Here’s how to add these three properties (first
name, last name, and login status) to SessionBean1, which puts the data in ses-
sion scope.

1. In the Projects window, right-click Session Bean and select Add > Property.
Creator pops up the New Property Pattern dialog.

2. For Name specify firstname, for Type specify String, and for Mode, specify
the default Read/Write, as shown in Figure 7-22.

¥ Mew Property Pattern @

—Property

Mame: | firstname

Type: Stlrinlg_ [l
Mode: iRead Ili_fu'u'rilze (|
[]Bound
[] Constrained
-Cpkions
Generate Field

Generate Return Statement

Generate Set Statement

|_ [0 4 %H Cancel][Help]

Figure 7-22 Select Page Fragment dialog

3. Click OK.

4. Repeat steps 1 through 3 and add property lastname to SessionBeanl.

5. Add property loggedIn to SessionBeanl. For this property, specify Name
loggedIn, Type is Boolean (with an uppercase ‘B’), and Mode is Read/Write.
Click OK.

201

202

Chapter 7 Web Page Design

When you add properties to SessionBeanl, Creator generates code for the
data field, as well as the getters and setters you need to access the data. Now
you'll supply initialization code that you'll add to the SessionBeanl () con-
structor.

1. In the Projects window, double-click Session Bean to bring
SessionBeanl.java up in the Java source editor.

2. Find the SessionBeanl () constructor and add the following code after the
comment, as shown. Copy and paste from the Creator download file
FieldGuide2/Examples/WebPageDesign/snippets/cactusl_session_init.txt.
The added code is bold.

public SessionBeanl () {

// Creator-managed Component Initialization (folded)

// TODO: Add your own initialization code here (optional)
firstname = "";
lastname ",
loggedIn

new Boolean (false) ;
}

Banner Page Fragment

Figure 7-21 on page 198 shows the general layout of the home page, Pagel.jsp.
The first step is to create the banner page fragment, CactusBanner.jspf, placed
across the top portion of the page.

1. Bring up Pagel in the design editor.

2. From the Layout Components palette, select Page Fragment Box and drag it
over to the top-left corner of the page. Creator pops up the Select Page Frag-
ment dialog.

3. Click Create New Page Fragment. Creator displays the Create Page Frag-
ment dialog.

4. Specify Name CactusBanner and click OK. When you return to the Select
Page Fragment dialog, CactusBanner.jspf appears in the selection window,
as shown in Figure 7-23.

5. Click Close. Creator displays the (empty) CactusBanner page fragment in
the design view and adds a <div> component and include directive to the
Pagel Outline view.

Now you’ll add components to the CactusBanner page fragment, as shown
in Figure 7-24.

1. In the Pagel design view, double-click the CactusBanner page fragment to
bring up the design view for editing the page fragment.

7.6 Page Fragments

% Select Page Fragment

Select a page fragment ko include on the page.

Page Fragrnent: kactusBanner JjspF ~ |

Create Mew Page Fragment. ..]

Figure 7-23 Select Page Fragment dialog

| g elcome x || Pagel x [IfEl CactusBarner x| [

|D95|gn| P Java | G @ |ﬂ1¥5i29
S - Py

Page Fragment Box Image Hyperlink

Figure 7-24 CactusBanner Page Fragment

2.

Creator sets a page fragment’s default size to 400px (width) by 200px
(height). The white area in the design view indicates the page fragment’s
boundary.

. In the Properties view, change the Height to 130px and the Width to 700px.

Place an image hyperlink on the page fragment.

. From the Basic Components palette, select Image Hyperlink and place it in

the top-left of the design view. Its top and left position parameters should
both be zero. (Hold the mouse cursor over the style property in the Proper-
ties view to check its value.)

. In the Properties window, click the editing box opposite property imageURL.

Creator pops up a custom property editor.

. Click Add File, navigate to your Creator download directory, and select file

FieldGuide2/Examples/WebPageDesign/images/cactus_banner.JPG.

203

204

Chapter 7 Web Page Design

. Select Add File. Creator copies the file to your project’s resources directory.

Make sure cactus_banner.JPG is selected and click OK. The image appears
in the design view.

. In the Properties window, click the editing box opposite property text.

Click Unset Property in the property editor dialog. This removes the image
hyperlink’s default text from the design view.

. In the Properties window under Behavior, set the toolTip to Return to Home

Page. (When the user clicks on the image, you'll navigate back to the home
page.)

Place a static text component on the page fragment.

. From the Basic Components palette, select Static Text and place it inside the

page fragment under the image on the design canvas.

. It will be selected. Type in the text Cactus Consortium followed by <Enter>.
. In the Properties window opposite property styleClass, specify banner-

Style. (This is one of the styles rules you added earlier to the project’s style
sheet.) The text now appears in a larger italic font and its color is olive.

. Select the Save All icon on the toolbar to save these changes to your project.

Navigation Page Fragment

This project uses a grid panel to hold hyperlink components for navigation.
You'll put this in a separate page fragment, NavigationPanel.jspf.

1.

2.

Return to the Pagel design view by selecting the Pagel tab above the editing
pane.

From the Layout Components palette, select Page Fragment Box and drag it
over to the left side of the page under the CactusBanner page fragment. Cre-
ator pops up the Select Page Fragment dialog.

. Click Create New Page Fragment. Creator displays the Create Page Frag-

ment dialog.

. Specify Name NavigationPanel and click OK. When you return to the Select

Page Fragment dialog, NavigationPanel.jspf appears in the selection win-
dow.

. Click Close. Creator displays the (empty) NavigationPanel page fragment in

the design view.

Now you’ll add components to the NavigationPanel page fragment, as
shown in Figure 7-25.

. In the Pagel design view, double-click the NavigationPanel page fragment

to bring it up in the design view.

. In the Properties view, change the Height to 250px and the Width to 200px.

7.6 Page Fragments

'@}Wel-come x-'l_.-El-NavigationPanel x| -

'Design J5F Java _;_S r@' 5"—.-| Any Size

.Menu fur. e
#{SessionBeani firsinarne} <_ Static Text

Page Fragment Box

Grid Panel

Figure 7-25 NavigationPanel Page Fragment

Place a grid panel to hold the navigation links.

1. From the Layout Components palette, select Grid Panel and place it on the
page fragment in the top-left corner.
2. In the Properties view for property styleClass, specify tableStyle.

Add components to the grid panel.

1. From the Basic Components palette, select Static Text and drop it on the grid
panel component. Make sure that the grid panel component is outlined in
blue before you release the mouse.

2. The static text component is selected. Specify Menu for #{SessionBeanl.first-
name} #{SessionBean1.lastname} for the component’s text property. This con-
catenates Session Bean property firstname and lastname with some text
for the menu’s heading.

As you add components to the grid panel, you'll see the effects of the style
class you applied to the grid panel. For example, Creator wraps the text onto
multiple lines instead of stretching the grid panel component because its width
is fixed at 200 pixels. Also, the grid panel’s cells have a generous margin
because of the style rules applied to HTML elements <th> and <td> (Creator’s
grid panel is rendered with an HTML <table> element). Finally, the grid panel
has a solid, 1px olive border on its left margin, which lengthens as you add
components.

205

206

Chapter 7 Web Page Design

1. In the Properties window for the static text component, change the id prop-
erty to leftHeader.

2. From the Basic Component palette, select Hyperlink and drop it on the grid
panel component. (Again, make sure the grid panel is outlined in blue.)

3. Specify Books for its text property.

4. In the Properties window, change its id property to booksPage.

5. Repeat steps 4 through 6 to add a hyperlink component with text Courses
and id coursesPage.

6. Repeat steps 4 through 6 to add a hyperlink component with text Home

and id homePage.
. Finally, add a hyperlink component with text Log Out and id logout.
8. Select the Save All icon on the toolbar to save these changes.

N

You'll specify the navigation for this project after you've added the Books
and Courses pages.

CactusFooter Page Fragment

Each page in this project has a footer with a copyright designation. This infor-
mation goes in its own page fragment, CactusFooter.jspf.

1. Return to the Pagel design view.

2. From the Layout Components palette, select Page Fragment Box and drag it
over to the bottom-left of the design view under the NavigationPanel page
fragment. Creator pops up the Select Page Fragment dialog.

3. Click Create New Page Fragment. Creator displays the Create Page Frag-
ment dialog.

4. Specify Name CactusFooter and click OK. When you return to the Select Page
Fragment dialog, CactusFooter.jspf appears in the selection window.

5. Click Close. Creator displays the (empty) CactusFooter page fragment in the
design view.

Now you’ll configure the CactusFooter page fragment, as shown in
Figure 7-26.

ﬂwélcome ® I_'En Fﬂagel % | 5] CactusFooter x -

:Design: 3P Java | Gl a0 Any Size L
o ~——— Page Fragment

[Foprright 20052006 Cactis Consulting Consertium ; ; ; ; ; ; Box

Static Tex

Figure 7-26 CactusFooter Page Fragment

7.6 Page Fragments

. In the Pagel design view, double-click the CactusFooter page fragment to

bring it up in the design view.

. In the Properties view, change the Height to 50px and leave the Width at the

default 400px.

. From the Basic Components palette, select Static Text and drop it on the

page fragment. Place it in the top-left corner.

. The static text component is selected. Specify Copyright 2005-2006 Cactus

Consulting Consortium for the component’s text property.

. In the Properties window, specify footerStyle for property styleClass.

You'll see the font size shrink and a top border appear above the text.

. Select the Save All icon on the toolbar to save the changes to your project

and select the Pagel tab to return to the Pagel design view.

Add Pages

You've finished creating the page fragments. Now you’ll create two more
pages and add the page fragments to these pages as well.

1.

2.

Close the page fragments to keep the editor pane uncluttered. For each page
fragment, click the small "x” on the tab.

In the Projects window, right-click the Web Pages node and select New >
Page. Creator displays the New Page dialog.

. For File Name specify BooksPage and click Finish. Creator creates the new

page and brings it up in the design view. Note that it has the new default
background color you configured for this project.

. Click anywhere in the background of the design view. In the Properties win-

dow for property Title, specify Cactus Consulting - Books.

. Repeat Steps 1 through 3 and add another page with file name CoursesPage

and page property Title Cactus Consulting - Courses.

. Select the Save All icon on the toolbar to save the changes to your project

and select the Pagel tab to return to the Pagel design view.

You have several ways to add the page fragments to CoursesPage and

BooksPage. The brute-force approach is to simply add the three page frag-
ments one at a time, positioning each one on the page at the same location. An
easier approach is to copy and paste the three page fragments as a group onto
the new pages. This second approach is more efficient and the one we’ll use
now.

1.

Bring up Pagel in the design view. In the Pagel Outline view, use <Shift-
Click> to select all three div elements and their nested page fragments, as
shown in Figure 7-27. All three page fragments will also be selected in the
design view.

. From the main menu, select Edit > Copy to copy the page fragments.

207

208 Chapter 7 Web Page Design

Use <Shift-Click>

' Dutline 4 XI'iNavigatnr
'S Pagel S to select all three
[ZoEs div elements
=-fe3] page1
= &3] hkenl

-[e3] head1: Cactus Consulting

sp:directive include: CactusEanner. jspf

sp:directive include: NavigatePanel. jspf

HE=ir: directive.include: CactusFooter.jspf
| = RequestBeanl
[+ SessionBeanl
| ApplicationBeani

Figure 7-27 Selecting all three div elements and the nested page fragments

3. Now select the BooksPage tab on top of the editing pane to bring up Books-
Page in the design view. In the BooksPage Outline view, expand nodes
pagel > htmll > bodyl and select node forml. Right-click and select Paste
from the context menu. Creator copies all three page fragments to the
BooksPage, placing them in the equivalent positions on the page.

4. Select the CoursesPage tab and repeat the Paste operation on the forml com-
ponent in the CoursesPage Outline view.

Page-Specific Content for Page1

You've created three pages that all share the same content. Now you’ll add the
page-specific components to each page. Let’s start with Pagel.

1. Select the Pagel tab above the editing panel to bring it up in the design view.
Figure 7-21 on page 198 shows the design view with the page fragment
boxes and the page-specific components. Note that the page has a heading
text component, a second static text component, text field components to
provide login information, message components, and a button.

2. From the Basic Components palette, select Static Text and drop it on the
page to the right of the navigation panel.

3. Specify the text Home Page.

4. In the Properties window, set the id property to pageHeader.

5. In the Properties window, set the styleClass property to headerStyle. The
font-size and font-family now reflect the headerStyle style rule.

6. From the Basic Components palette, select Static Text and drop it on the
page under static text component pageHeader.

7.6 Page Fragments

. In the Properties window, set its 1d property to instructText.

You'll now add two text field components and message components to go
with them.

. From the Basic Components palette, select Text Field and drop it on the page
under the static text components you added.

. In the Properties window, set the component’s properties as follows. Set
property id to firsthame, property label to First Name, property
labelLevel to Weak (3), and property required to true (it should be
checked). When you set the required property to true and provide label
text, Creator prepends an asterisk to the label text so that the user knows the
field is required.

. In the design view, select the text field component, right-click, and select
Property Bindings. Creator pops up the Property Bindings dialog. Under
Select bindable property, click text Object. Under Select binding target,
expand SessionBeanl and select firstname. Click Apply and Close. This
binds the text field to the SessionBean1 firstname property,
#{SessionBeanl.firstname}.

. From the Basic Components palette, select Text Field and drop it on the page
under the text field component you just added.

. In the Properties window, set the component’s properties as follows. Set
property id to lastname, property label to Last Name, property labellLevel
to Weak (3), and property required to true (it should be checked).

. In the design view, select the text field component, right-click, and select
Property Bindings. Creator pops up the Property Bindings dialog. Under
Select bindable property, click text Object. Under Select binding target,
expand SessionBean1 and select lastname. Click Apply and Close. This binds
the text field to the SessionBean1 lastname property,
#{SessionBeanl.lastname}.

You need a message component to display error messages if the user does
not provide input for the text components.

. From the Basic Components palette, select Message and place it on the page
to the right of the firstname text field component.

. Press and hold <Ctrl+Shift> and left-click the mouse inside the message com-
ponent. Drag the mouse and release it over the text field component. This
sets the message component’s for property to firstname, the id of the text
field component. This means that the message component will display mes-
sages from the Faces context that are designated for the text field compo-
nent. The message component’s display text now reads “Message summary
for firstname.”

209

210

Chapter 7 Web Page Design

3. Repeat Steps 1 and 2 and set the for property to the lastname text field
component.

You’'ll use a button component to submit the login information.

1. From the Basic Components palette, select Button and drop it on the page
below the text field components.
. Change the button’s text property to Login Now.
. Change the button’s id property to login.
4. In the design view, double-click the Login Now button. Creator generates a
default action handler and brings up Pagel.java in the Java source editor.
5. Add the following event handler code (add the code in bold).

W N

public String login action() {
getSessionBeanl () . setLoggedIn (new Boolean (true)) ;
return null;

This appears to be a rather terse event handler. The code sets the session
bean property loggedIn to true. No special code is needed to check whether or
not the user provided login information (validation does that for you) or spe-
cifically set the firstname and lastname session bean properties (the text field
components property bindings do that for you). The only task left, then, is to
set the loggedIn property.

When the page is rendered, it should display the logged in values stored in
properties firstname and lastname. And, if the user has not logged in, it
should display an instruction line requesting the user to log in. You'll put this
logic in the predefined prerender () method.

1. Pagel.java should still be active in the Java source editor. Locate method
prerender ().

2. Add the following code. Copy and paste from FieldGuide2/Examples/
WebPageDesign/snippets/cactusl_prerender.txt. The added code is bold.

public void prerender () {
// see if user is logged in
if (getSessionBeanl () .getLoggedIn() .booleanValue()) {
instructText. setValue (
"Welcome, " + getSessionBeanl () .getFirstname() + " "
+ getSessionBeanl () .getLastname()) ;

7.6 Page Fragments

} else
instructText.setValue (
"Please login using the form below.");

Page-Specific Content
Now let’s add the header text for the BooksPage and CoursesPage.

1. Select the BooksPage tab from the top of the editor pane to bring up Books-
Page in the design view.

2. From the Basic Components palette, select Static Text and place it on the
page at the same location as the Home Page static text component on Pagel.

3. Set its text property to Books Page, its id property to pageHeader, and its
styleClass property to headerStyle.

4. Repeat Steps 1 through 3 to add a static text component to CoursesPage. Use
the text Courses Page, 1d property pageHeader, and styleClass header-
Style.

5. Make sure that the pageHeader static text component is in the same location
for all three pages. You can check visually or hold the cursor over the style
property in the Properties window for the static text component and verify
that the position attributes for all three components are the same.

Page Fragments and Navigation

You'll now provide the navigation rules for this application. The page frag-
ment, NavigationPanel.jspf, contains the hyperlink components for naviga-
tion. Since this page fragment is on each page, you must specify navigation rules
for each page. You can certainly do this in the Navigation Editor. You'll need
six cases: two navigation arrows originate from each page to specify the other
two pages. However, just a slight increase in the number of pages results in a
messy graph using the Page Navigation visual editor. Therefore, you're going
to cheat! Basically, you want three navigation cases (both the hyperlink compo-
nents for Home and Log Out should navigate to Pagel; the hyperlink image
component also navigates to Pagel), as follows.

1. Navigation label Books specifies page BooksPage.jsp.
2. Navigation label Courses specifies page CoursesPage.jsp.
3. Navigation label Home specifies page Pagel.jsp.

As it turns out, JSF provides a sophisticated navigation handler that allows
wildcard expressions. You'll define some basic rules and then modify the navi-
gation configuration in the source editor to provide the wildcard expression.

211

212

Chapter 7 Web Page Design

. Bring up the Page Navigation. Right-click anywhere in the background of
any of the pages in the design editor and select Page Navigation from the
context menu. You'll see the three pages in the Page Navigation editor.

. Select Pagel.jsp and when it enlarges, select the booksPage hyperlink and
drag a navigation arrow to BooksPage.jsp.

. Creator displays a navigation arrow. Change the case label to Books.

. Select Pagel.jsp and draw a navigation arrow from the coursesPage hyper-
link to CoursesPage.jsp.

. Change the case label to Courses.

. Now select CoursesPage.jsp and when it enlarges, select the image hyper-
link component and drag a navigation arrow to Pagel.jsp. Change the case
label to Home.

7. Starting with CoursesPages.jsp again, repeat this two more times, selecting

the hyperlink components logout and homePage. For both of these naviga-
tion cases, change the case label to Home.

Using the navigation editor, you’ve configured all of the components so that

their action property contains the correct navigation case label. Now you just
have to generalize the cases so that the navigation handler goes to the correct
page from any starting page. You have one rule and three cases.

1.

Click the Source button in the navigation editor’s toolbar to bring up naviga-
tion.xml in the source editor.

2. Modify the configuration file so that you have only one navigation rule with

three navigation cases. Change the <from-view-id> element to /* (which
matches any page).

. Here is the modified file. (You can copy and paste from file FieldGuide2/
Examples/WebPageDesign/snippets/cactusl_navigation.txt or provide the
modifications by hand.)

<faces-config>
<navigation-rule>
<from-view-id>/*</from-view-id>
<navigation-case>
<from-outcome>Books</from-outcome>
<to-view-id>/BooksPage.jsp</to-view-id>
</navigation-case>

<navigation-case>
<from-outcome>Courses</from-outcome>
<to-view-id>/CoursesPage.jsp</to-view-id>
</navigation-case>

7.6 Page Fragments

<navigation-case>
<from-outcome>Home</from-outcome>
<to-view-id>/Pagel.jsp</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

4. Click the Save All icon on the toolbar and click the Navigation button to
return to the Navigation editor. Figure 7-28 shows the Navigation view
after you modify the navigation.xml source file.

el | (5] Pégél % | 8] Boo.k'sF;;age * | [CoursesPage x Erﬂ Page Navigation * 4 -

Mavigation| Source

O Books } BooksPage.jsp O Coul:es-i CoursesPage.jsp O Home ; Pagel.jsp

Figure 7-28 Navigation editor with source code wildcard expressions

Logout Event Handler

The last task is to add the logout event handler code, which will reset the ses-
sion bean properties. The hyperlink logout is in the NavigationPanel page
fragment.

1. Bring up NavigationPanel.jspf page fragment in the design editor.

2. Double-click hyperlink component 1logout. Creator generates the hyper-
link’s event handler, logout action (). Note that Creator transforms the
action property “Home” to the correct return String value in the event han-
dler.

213

214 Chapter 7 Web Page Design

3. The logout action () method will reset the values for the three session
bean properties. Copy and paste file FieldGuide2/Examples/WebPageDe-
sign/snippets/logout_action.txt. The added code is bold.

public String logout action() {
getSessionBeanl () .setFirstname ("") ;
getSessionBeanl () .setLastname ("") ;
getSessionBeanl () . setLoggedIn (new Boolean (false)) ;
return "Home";

Deploy and Run

Deploy and run project Cactusl. Figure 7-29 shows project Cactusl running in
the browser displaying CoursesPage. The image hyperlink’s tooltip is visible.

&) Cactus Consulting - Courses - Netscape

ol Return to the Home Page [y
& : . 3‘ w-.-'.""-‘f“ ;

¥,

Cactus Consorti'ﬁm

Menu for Suzy Q Courses Page

Log Out

Copyright 2005-2006 Cactus Consulting Consortium

_!J 111
M & &F E] | http:/flocalhost:28080.. ctust/faces/Pagel jsps |

Figure 7-29 Project Cactusl running in a browser

7.7 Introducing TabSets

Reuse with Project Templates

Once you have the look and feel of your application defined, Creator lets you
save the project as a template. Project templates promote reuse and uniformity
within an organization. When you create a new project, you can select a project
template as a starting point. Let’s create a template from project Cactusl.

1. In the Projects window, right-click the project node Cactusl and select Save
Project As. Creator pops up the Save Project As dialog.

2. For Project Name specify CactusTemplate. Click the Add Project to Template
List checkbox, as shown in Figure 7-30. Click OK.

¥ Save Project As

Project Name: | CactusTemplate

Project Location: | CreatoriProjectsiCactusTemplate |

dd Project ko Template Lisk

l 04 l[Zancel][Help

Figure 7-30 Adding a project to the Template List

Now when you create a project, you can select My Templates and view a list
of saved project templates for your new project. This is the approach we’ll take
with project Cactus2 (see “Using Tab Sets and Page Fragments” on page 221.)

7.7 Introducing TabSets

As we continue exploring Creator’s components and configuration options for
web applications, let’s show you another useful layout component, the tab set.
Many applications use tab set components for navigation and complex page
management. With tab sets, you can display only those components that are
relevant to the task at hand.

The tab set is a composite component. You place a tab set component on a
page and then add tab components to the tab set. You have more than one way
to manage an application with tab sets, however.

The simplest way places a separate tab set component on each page. If your
application consists of three pages, for example, each page will hold its own
distinct tab set and each tab set holds three tab components. Furthermore, each
tab set has one tab that is always selected. The other two non-selected tabs act

215

216

Chapter 7 Web Page Design

as hyperlink components and provide navigation to the other two pages where
a different tab is always selected. This method is straightforward because you
never have to manage the state of the tab sets. You place the components on
each page with the visual design editor. Furthermore, you don't have to nest
the page’s components under the tab set.

A second approach is to put the tab set and tabs in a page fragment and
include the page fragment on each page. Again, you place the components for
each page directly on the page (you don’t nest them under the tab set compo-
nent). Because there is only one tab set component, you must maintain the state
of its selected tab, however. Like the first approach, the tabs are used to navi-
gate to the other pages. The advantage of using a page fragment for the tab set
is that any customizing for the tab set must only be specified once.

A third approach uses a single page: the tab set and its tabs all go on one
page. In this approach, you use the nested layout panel to hold the components
corresponding to each tab. When the user selects a tab, the tab set renders only
those components under the selected tab. Furthermore, the tab set automati-
cally marks the selected tab, so you don’t need to do anything to maintain its
state. The disadvantage of this approach is that it is more difficult to design the
page and the page is more complex.

We'll take you through building a project using the first approach. Then,
you’ll implement a version of the Cactus project (Cactus2), incorporating both
a tab set and a navigation panel containing hyperlink components to perform
navigation. The Cactus2 project uses the page fragment method for the tab set
component. We illustrate the third approach in project TabSet3, which is
included in the Creator2 download directory under FieldGuide2/Examples/
WebPageDesign/Projects/TabSet3.

Using Separate Tab Sets

The first example uses a separate tab set on each page. For this project, you'll
create three pages. Each page contains a tab set component with three tabs. The
tabs enable users to navigate to the other pages.

Create a New Project

1. From Creator’s Welcome Page, select button Create New Project. Creator
displays the New Project dialog. Under Categories, select Web. Under
Projects, select JSF Web Application. Click Next.

2. In the New Web Application dialog under Project Name, specify TabSetl.
Click Finish.

After initializing the project, Creator comes up in the design view of the edi-
tor pane. You can now set the title.

7.7 Introducing TabSets

3. In the Properties window, select property Title and specify title TabSet1 -
Pagel. Finish by pressing <Enter>.

Add Components to Page1

Figure 7-31 shows the design view of Pagel.

Cars Welcame x I_EI Pagel = -
[Design| 1P dava 5 A 0 [any Sie v
J First Page Second Page Third Page

Figure 7-31 Pagel design view for project TabSet1

1. From the Layout Components palette, select Tab Set and drop it on the page.
Position it in the top-left corner.

2. When you add the tab set component, Creator preconfigures a single tab
nested in the tab set. Inside the tab component, Creator also preconfigures a
layout panel. The tab should be selected. Change its text property to First
Page, followed by <Enter>.

3. In the Pagel Outline view, select the nested layout panel, layoutPanell.
Right-click and select Delete from the context menu. Since you're placing a
separate tab set on each page, you don’t need the layout panel to hold the
page’s components.

4. In the Pagel Outline view, now select the tab set component. In the Proper-
ties window for the tab set component, add the property-value ; width: 100%
to the style property that is already configured. The background behind
the tabs will expand.

5. From the Layout Components palette, expand node Tab Set and select the
nested component Tab. Drop it on top of the tab set component that’s on the
page. Creator configures this as component tab2. In the Pagel Outline view,
make sure that component tab2 is at the same nesting level as tabl.

6. Component tab2 should be selected. Change its text property to Second
Page.

7. In the Pagel Outline view, delete the nested layout panel component (repeat
the step you followed to delete the nested layout panel in the first tab).

217

218

Chapter 7 Web Page Design

. From the Layout Components palette, select another Tab component and

drop it on top of the tab set component. This is component tab3. Change its
text property to Third Page and delete its nested layout panel component.

. In the design view, click on component tabl (First Page) to make it selected.

Creator Tip

As you configure the tab set on each page, you specify the selected tab for that
page. Each page has a different tab selected. Figure 7-31 shows tabl selected
(the Pagel configuration).

Now you’ll add a label component to the page to hold a page header.

. From the Basic Components palette, select component Label and drop it on

the page. (Drop it on the page, not on the tab set component.) In the Pagel
Outline view, the label component should be nested under forml, at the
same level as component tabSetl.

. Set its text property to Page 1.

You’'ll now create a second and third page and copy and paste these compo-
nents to the new pages.

. In the Projects view, right-click the Web Pages node and select New >Page.

Creator pops up the New Page dialog.

. Specify File Name Page2 and click Finish. Creator brings up Page2 in the

design view.

. Set the Title property to TabSetl - Page 2.
. Repeat steps 1 through 3 to add a third page with file name Page3 and Title

TabSet1 - Page 3.

Since each page holds the same components (the tab set, three tabs, and a

label) it’s easier to copy and paste these components from Pagel and reconfig-
ure them as needed for Page2 and Page3.

1.

2.

Select the Pagel tab above the editor pane to bring up Pagel in the design
view.

In the Pagel Outline view, select component tabSetl and labell (use
<Shift-click> for multiple selection). The nested tabs will also be selected.

. From the main menu bar, select Edit > Copy.
. Now select the Page2 tab above the editor pane. In the Page2 Outline view,

expand pagel > htmll > bodyl and select component forml.

. Right-click on forml and select Paste from the context menu. This copies the

Pagel components to Page2, maintaining the same position and other style
attributes.

@

7.7 Introducing TabSets

Repeat Steps 4 and 5 with Page3, pasting the components on this page.
Now you’ll configure the tab set and label components for Page2 and Page3.

Select the Page2 tab above the editor pane to bring up Page2 in the design
view.

In the design view, click on component tab2 (Second Page) to make it
selected. The tab will turn white and the other two tabs will be blue.
Select the label component and change its text property to Page 2.
Repeat Steps 1 through 3 for Page3. Make tab3 (Third Page) selected and
change the label’s text property to Page 3.

Configure Navigation

The tab components behave like hyperlink components because you can define
action event handlers or action labels for navigation. You'll define six naviga-
tion cases: each page will have two cases that originate from a tab component
and terminate in one of the other two pages.

1.

2.

In the design view, right-click anywhere in the background and select Page
Navigation from the context menu. Creator brings up the Navigation Editor.
You see the three pages that you defined for this project. Select Pagel.jsp.
When it enlarges, you'll see the three tab components.

. Select tab2, click, and drag an arrow to Page2.jsp. Change the case label to

second.

. Select Pagel.jsp again, click tab3, and drag an arrow to Page3.jsp. Change

the case label to third.

. Now repeat this sequence for Page2.jsp. Draw an arrow from component

tabl to Pagel.jsp. Use case label first. Draw a second arrow from compo-
nent tab3 to Page3.jsp. Use case label third.

. Finally, configure the navigation cases for Page3.jsp. Draw an arrow from

component tabl to Pagel.jsp. Use case label first. Draw the second arrow
from component tab2 to Page2.jsp. Use case label second. Figure 7-32
shows the Navigation Editor with all of the cases configured and Page2.jsp
enlarged.

Deploy and Run

Deploy and run project TabSetl. Figure 7-33 shows Page2 in the browser and
the cursor is over the third tab.

219

220 Chapter 7 Web Page Design

Q} Welcome x Ilﬁ Pagel x }M Pagez x E,a Page Navigation x h_*m Page3i x __c

|Navigati0n | Source

Page2 jsp B
11 tab2
-3 (Cltabz gfist
second ~
% Pagel.jsp o Page3.jsp
1 —>
z third ___%

Figure 7-32 Navigation Editor for project TabSet1

) TabSet1 - Page 2 - Netscape |Z|[E|E|
First Page Second Page Third Page rJ
3
Page 2
| (D D OF F]) | hitps/floc..agetisp# | == =] e

Figure 7-33 Page2 of project TabSet1 running in a browser

7.7 Introducing TabSets 221

Using Tab Sets and Page Fragments

You'll now add a tab set to the CactusBanner page fragment from project
Cactusl. Instead of copying project Cactusl, you'll create a new project and use
the project template you saved earlier.

1. From the Welcome page, click Create New Project.

2. Creator pops up the New Project dialog. In the Categories window, select
My Templates. Creator displays a list of available project templates.

3. Select CactusTemplate and click Next.

4. Creator displays the New JSF Web Application dialog. For Project Name
specify Cactus2 and click Finish.

5. Creator brings up Pagel of project Cactus2 in the design view. Click any-
where in the background of the design canvas of the Cactus2 project. In the
Properties window, change the page’s Title property to Cactus Consulting 2.

Let’s add another style rule to stylesheet.css to make the tab set blend with
the pages better.

1. In the Projects window, expand the Web Pages > resources node and double-
click stylesheet.css to bring it up in the Style Editor.
2. Add the following style rule for TabGrp.

.TabGrp {
background-color: rgb(230,230,200);
}

Creator Tip

The standard Themes uses style rule TabGrp to apply styles to tab sets. By
customizing this rule, you can change the background color of the page
behind the tabs. The default color is a gradient gray for the Gray Theme.

Add Tab Set and Tabs to CactusBanner

First, let’s add components to the CactusBanner page fragment. Figure 7-34
shows the design view for the CactusBanner page fragment with the tab set
component added.

1. In the Projects window, double-click CactusBanner.jspf to bring up the
CactusBanner page fragment in the design view.

2. Click in the blue area to select the page fragment.

3. In the Properties view, change the page fragment’s height to 150px.

222

Chapter 7 Web Page Design

[@ welcome x Iﬂﬂ Pagel x]m CactusBannat x} [41r[=]

‘Design| J5P - Java (;';g /% JT-' Any Size
: W 3 = :

‘ | | \ Static Text
Selected Unselected Tab Set Image
Tab Tabs Hyperlink

Figure 7-34 Design view for CactusBanner.jspf

4. Select the Cactus Consortium static text component and move it over to the
right to make room for the tab set component.

5. From the Layout Components palette, select Tab Set and drop it on the page
fragment below the image hyperlink component.

6. The first tab is selected. Change its text to Home.

7. In the Outline view, select the nested layout panel, layoutPanell, right-
click and select Delete from the context menu.

8. In the Outline view, select the nested tab component, tabl. In the Properties
window for the tab, change its id property to homeTab.

Creator Tip

The selected property of the tab set component takes the id (passed as a
String) of the tab that’s selected. Renaming the component’s id with
meaningful names makes your code more readable.

9. Now select component tabsetl in the Outline view. In the Properties win-
dow for the tab set, check the property mini. This changes the appearance of
the tab set and makes the tabs smaller.

Add two more tabs to the tab set.

1. From the Layout Components palette, expand the Tab Set component and
select the nested Tab component. Drop it on top of the tab set you added.
(Make sure that the new tab is at the same nesting level as component
homeTab.)

2. Change the tab’s text property to Books.

7.7 Introducing TabSets 223

. Change the tab’s id property to booksTab.

. Delete the nested layout panel under tab booksTab.

5. Repeat this and add another tab with text Courses and id coursesTab.
Delete the nested layout panel under tab coursesTab.

6. Reposition the tab set component so that it is within the page fragment
boundary (the white area) and that its left edge is flush with the fragment
boundary (the left style attribute should be 0).

7. In the CactusBanner Outline view, select the Cactus Consortium static text

component, drag it up to the £: subview component, and drop it on top of

the subview.

= W

The static text component is now listed after the tab set component in the
CactusBanner Outline view. This makes the static text component render on top
of the tab set component. When you moved the component in the Outline view,
its style property was cleared. The component now appears in the design
view in the upper-left corner (on top of the image).

8. In the design view, move the static text component back (next to) the tab set
component, placing it to the right of the third tab.

Add style and styleClass attributes to the tab set component.

1. Select the tab set component. In the Properties view for property style, add
attribute ; width: 696px to the end. This aligns the width of the tab set compo-
nent with the image hyperlink component.

. In the tab set Properties view for property styleClass, specify TabGrp.

3. In the tab set Properties view opposite property selected, click the check
mark for the drop down list corresponding to the tabs. Choose the first,
blank entry. Even though the property sheet will display Home (homeTab),
property selected should not appear in bold.

N

Creator Tip

If the tab set’s selected property is bold, then Creator has generated a tag in
the JSP file to set it. Because you’'ll set the tab set’s selected property in
each enclosing page’s prerender () method, you must not generate the
corresponding |SP tag. The JSP code executes after the prerender ()
method, rendering the method ineffective.

4. Select the Save All icon on the toolbar to save these changes.

224

Chapter 7 Web Page Design

Setting the Currently Selected Tab

As you've seen from working with the tab set component in the first tab set
example, the tab set displays tabs and renders them as either “selected” or “not
selected.” A selected tab (there can only be one selected tab) has a contrasting
color and its link is inactive. It is the current tab. A non-selected tab has an
active link. In this example, the action associated with clicking a non-selected
tab causes page navigation. When the new page is rendered, the tab set must
reflect the newly selected tab.

The most straightforward way to maintain the state of the currently selected
tab is to set it in the enclosing page’s prerender () method. Setting the selected
tab in each page ensures that the correct tab is selected even when navigation
to a new page happens through the hyperlink components in the Navigation-
Panel page fragment or the image hyperlink.

As mentioned in the previous page’s Creator Tip, the only caveat is you
must ensure that Creator does not generate JSP code to set the tab set’s
selected property, since this will take precedence over the prerender () code.

1. In the Projects window under Web Pages, double-click Pagel.jsp to bring it
up in the design view.

2. Select the Java button in the editing toolbar to edit the Java source.

3. Add the following code to method prerender (). Copy and paste from
FieldGuide2/Examples/WebPageDesign/snippets/
cactus2_pagel_tabset.txt. The added code is bold.

public void prerender () {
CactusBanner cactusBanner = (CactusBanner)getBean (
"CactusBanner") ;
cactusBanner.getTabSetl () . setSelected ("homeTab") ;
// see if user is logged in

You'll add the same code to the prerender () methods in Courses.java (with
String "coursesTab") and Books.java (with String "booksTab").

1. Bring up Courses.java in the Java source editor. Add the same code to the
prerender () method.

2. Change the tab set’s setSelected () argument to "coursesTab" .

3. Bring up Books.java in the Java source editor. Add the same code to the
prerender () method and change the tab set’s setSelected () argument to
"booksTab".

4. Select the Save All icon on the toolbar to save these changes.

7.7 Introducing TabSets

Configure Action Method for Tabs

The navigation rules have already been configured for this project. Because
you used navigation wildcard notation in project Cactusl, these rules will
apply to the tab set component as well. You do not need to make any adjust-
ments to the navigation rules. However, you do need to specify the return
string for each tab’s action method. To do this, you'll generate action methods
through the IDE and provide the code for the action event handler.

1. Bring up CactusBanner in the design view.

2. Double-click tab component homeTab. Creator generates the default
homeTab_action () event handler and brings up CactusBanner.java in the
Java source editor.

3. Replace the return null with return "Home" as shown.

public String homeTab action() {
// TODO: Replace with your code
return "Home";

4. Return to the design view (click Design in the editor toolbar) and repeat
steps 2 and 3 for tab component booksTab. Replace the return null with
return "Books".

public String booksTab_action () {
// TODO: Replace with your code
return "Books";

5. Return to the design view and repeat steps 2 and 3 for tab component
coursesTab. Replace the return null with return "Courses"

public String coursesTab_ action() {
// TODO: Replace with your code
return "Courses";

6. Make sure that the tab set’s selected property is not set in the Properties
view. If it’s bold, select the first (blank) entry in the drop down list for prop-
erty selected. The property name should no longer be bold.

7. Click the Save All icon on the toolbar to save these changes.

225

226 Chapter 7 Web Page Design

Check Pages with Modified CactusBanner

Check and adjust the placement of the page fragments on each page. Once
you’ve done this, deploy and run the application.

Creator Tip

Since the grid panel contains a vertical line on the left border, align this
border with the first tab’s left edge. This creates a pleasing visual connection
between the grid panel component and the tab set component. The easiest way
to adjust the page is to simultaneously select the NavigationPanel and
CactusFooter page fragments. Then, while holding down the Shift key, move
the fragments down and to the left to make the alignment with the tab set
component. By moving both fragments together, you keep their relative
position constant.

When you run the application, check to make sure the tab set component
reflects the correct page navigation, whether you use the hyperlink compo-
nents or the tab set component for navigation. Figure 7-35 shows project
Cactus2 running in a browser with page BooksPage rendered.

2 Cactus Consulting - Books - Microsoft Internet Explorer

Home Books Courses Cact],{s Consortium

BRI s Books Page

Books

Courses

Home

Logout

Copyright 2005-2006 Cactus Consulting Consortium -

&] http:/localhost: 28080/Cactus 1/faces/Page 1.jsp# % Local intranet =

Figure 7-35 Project Cactus2 running in a browser

7.8 Key Point Summary

7.8 Key Point Summary

This chapter explores some of Creator’s tools and components that web design-
ers use to compose web pages and visually organize their projects.

Creator’s visual editor helps you compose web pages by providing
component dragging, dropping, and page positioning.

By default the visual editor displays a grid that helps you align components.
You can turn off the grid or change its size using the Tools > Options > Visual
Designer menu. You can temporarily disable grid alignment by
repositioning the component while holding down the <Shift> key.

You can select multiple components by dragging a mouse around the target
components, enclosing them in a box. You can also use <Shift-Click> to add
components to those that are already selected.

To align components with one another, select the target components,
position the mouse over the reference component, right-click, and select
Align. This brings up the Align context menu with choices for alignment.
For horizontal alignment options, select Left, Center, or Right. For vertical
alignment options, select Top, Middle, Bottom.

Creator’s Basic, Layout, and Composite components are rendered using
themes. A theme is a bundled set of cascading style sheets, JavaScript files,
and images that apply to the components and page. The available themes
are listed in the Projects window under node Themes.

To change the current theme, right-click a new theme selection in the
Projects window and select Set As Current Theme. To make the new theme
take effect for deployment, stop the application server and clean and rebuild
the project.

You can control the look of a component by modifying its style property.
Property style accepts property-value pairs to control style attributes such
as color, background color, font characteristics and page position.

Creator provides a style editor to manipulate a component’s style property.
To use the style editor, click the editing box opposite property style.

In addition to the style property, Creator also uses Cascading Style Sheets
(CSS) to control the look of its components and pages. You can add style
classes to a project’s default style sheet, stylesheet.css. You can also provide
your own style sheet.

To edit the default style sheet, double-click file stylesheet.css in the Projects
window under Web Pages > resources. Creator brings up the style sheet in
the Style Sheet Editor.

Apply one or more style classes to a component by specifying them in a
comma separated list for the component’s styleClass property.

Using a style sheet with the styleClass property is easier than configuring
a component’s style property to achieve a uniform look.

227

228

Chapter 7 Web Page Design

Creator provides several components that provide grouping and layout
capabilities. The layout panel component provides the option of using a grid
layout which lets you use the design view to easily position nested
components.

The grid panel component provides a cell for each nested component.
Creator places each component in the next available cell. The default
number of columns is one, but you can change this value in the grid panel’s
Properties window. The grid panel is especially useful when you want to
include one or more components after a component with indeterminate
sizing (such as a table that can have any number of rows).

The anchor and hyperlink components control page scrolling. The hyperlink
component jumps to a spot on the page marked by the anchor component.
Jumping to an anchor does not perform a page request.

Page Fragments are page building blocks for web applications. Typically,
you use page fragments to hold parts of your web page that you'd like to
standardize for a uniform look, such as page headers, standard menus, or
footers.

You can save a project as a template. When you create a new project, you can
then select a saved template as a starting point.

You can use wildcards in page navigation rules. Select the Source button in
the Page Navigation editor and modify the navigation.xml source file
directly. Wildcards simplify navigation rules by reducing the number of
navigation cases you define.

The tab set is a composite component that contains nested tabs. Under each
nested tab is a layout panel component. Tabs are similar to hyperlinks in that
you can specify action event handling code as well as navigation strings.
You can use tab sets with page fragments or put a tab set and its nested tabs
all on one page. You may also put a separate tab set on its own page.

A tab set’s selected property holds the component id (as a String) of the tab
that is currently selected.

INTRODUCING DATA
PROVIDERS

7 Topics in This Chapter

» Data Providers Class Hierarchy

* Property Binding with Data Providers

+ Common Table Data Provider Methods
» Object Data Provider

» Object List Data Provider

» Cached RowSet Data Provider

Chapter

ew to Creator 2 is the standardization of a data layer in between a

web application’s components and its persistence tier, such as a data

base. This data layer allows the programmer to access data in a con-

sistent way, even though the data may come from different sources. In
this chapter, we’ll introduce the Creator data providers and show you how
they're used.

8.1 Data Provider Basics

Let’s begin by examining the components in the Data Provider section of the
Components Palette, as shown in Figure 8-1. All the data providers implement
the basic DataProvider interface, which provides a consistent way to access
data in an object using FieldKeys that correspond to property names. With the
TableDataProvider interface, you can also use the concept of cursor-based
access (using the “current” row) and random access (you specify both a Field-
Key and a RowKey). We’ll show you how to manipulate the data providers in
this chapter.

More elaborate data providers provide transactional behavior (Iransaction-
alDataProvider interface) and caching behavior (RefreshableDataProvider
interface). The CachedRowSetDataProvider implements both of these inter-
faces.

231

232 Chapter 8 Introducing Data Providers

‘Servers :Palette 4 x

[+ Basic

[+ Layouk

[+ Compaosite

[+ Validators

[+ Conwerkers

[+ Standard

[+ Advanced

|= Data Providers

|E¥ CachedRowset Table Data Provider
* Object Data Provider

* Obiject List Data Provider

Cibject Array Data Provider

74
>4
>4
i List Data Provider

L Map Data Provider

+l Adwvanced Data Providers

I*7 Code Clips @) Components

Figure 8-1 Data Providers Palette

The data provider you use depends on the source of the data and how you
want to manipulate the data. For example, if your data originates from a data
source, a cached row set table data provider, that is refreshable and transac-
tional is suitable. On the other hand, if your data comes from another persistent
source that is transactional but not a cached rowset, then you’ll use an object
list data provider that is transactional. Figure 8-2 depicts Creator’s data pro-
vider class hierarchy, which shows the different data provider interfaces and
their implementation classes.

Table 8.1 lists these data providers with descriptions of their use.

8.1 Data Provider Basics 233

DataProvider
|
|
I

AbstractDataProvider TableDataProvider

A / RefreshableDataProvider
/
f)

TransactionalDataProvider

'

AbstractTableDataProvider

ObjectListDataProvider
ListDataProvider

|
|
|
|
|
|
ObjectArrayDataProvider |
|

CachedRowSetDataProvider - — -

MapDataProvider

ObjectDataProvider
TableRowDataProvider

Supporting Classes:
ObjectFieldKeySupport

RowKey
IndexRowKey
ObjectArrayRowKey
ObjectRowKey

Interfaces

Implementation Class

FieldKey
MapDataProvider.MapFieldKey

Figure 8-2 Creator data provider class hierarchy

234 Chapter 8 Introducing Data Providers

Table 8.1 Creator Basic Data Providers

Data Provider

Object Data Provider

Object Array Data
Provider

Object List Data
Provider

List Data Provider
Map Data Provider
CachedRowSet Table

Data Provider

Table Row Data
Provider

Description

Wraps the contents of a single object. Key fields have id values
matching the properties of the object.

Wraps the contents of an array of objects. Key fields have id
values matching the properties of the object type. Since an array’s
size is fixed, canAppend (), canInsert (), and

canRemove () return false.

Wraps the contents of a list of objects. Key fields have id values
matching the properties of the object type. Objects can be added
and removed to and from the list.

Wraps the contents of a list. Key fields are ignored.

Wraps the contents of a map. Key fields have id values that
match the keys of the wrapped map.

Wraps a cached row set. This data provider is transactional and
refreshable (cached).

Wraps a single row from a table data provider.

Table Data Providers

The Table Data Provider interface provides access to a set of data through row
keys that identify a particular row and field keys that identify fields or col-
umns in the table data provider. Let’s examine some common tasks you’ll per-
form with table data providers. For these examples, assume that recordingsDP
is a CachedRowSetDataProvider that wraps a CachedRowSet. A Cached-
RowSetDataProvider is both transactional and refreshable. Unless otherwise
noted, however, all of these examples apply to any Table Data Providers.

Row Data

You can get a single row from a table data provider. For example, if you have a
Table component whose source variable is bound to a table data provider,
here’s how to obtain the current row of data getBean () helper function.

TableRowDataProvider rowdata = (TableRowDataProvider)
getBean ("currentRow") ;

8.1 Data Provider Basics

Row Key

A row key is an index into a table row data provider. Many of the methods for
manipulating the table row data provider use a row key parameter to identify
the target row. Here’s how you get the row key from a table row data provider
(rowdata).

RowKey rowKey = rowdata.getTableRow () ;

The table data provider maintains a cursor marking the current row. Here’s
how to obtain the row key from the current row of a table data provider
(recordingsDP).

RowKey rowKey = recordingsDP.getCursorRow () ;

You can manipulate the current row (the row key cursor) using a set of
methods that change the cursor. The following methods, for example, set the
current row to the first, next, previous, and last row, respectively. These meth-
ods return a boolean that give you the option of checking the validity of the
cursor after calling the method.

boolean ok = recordingsDP.cursorFirst();
ok = recordingsDP.cursorNext () ;

ok = recordingsDP.cursorPrevious();

ok recordingsDP.cursorLast () ;

You can also set the cursor by searching the data for a value of a particular
field, as follows. The following example looks for the first occurrence of field
RECORDINGTITLE that matches string "xyz".

recordingsDP.setCursorRow (recordingsDP. findFirst (
"RECORDINGS.RECORDINGTITLE"), "xyz"));

Getting Data

You get data with the getvalue () method and a field key. A row key fetches
the data from the specified row. Otherwise, you get the data from the current
row.

// use row key
String t = recordingsDP.getValue ("RECORDINGS.RECORDINGTITLE",
rowKey) ;

235

236 Chapter 8 Introducing Data Providers

// use current row
String t = recordingsDP.getValue ("RECORDINGS.RECORDINGTITLE") ;

// access through row data object

TableRowDataProvider rowdata = (TableRowDataProvider)
getBean ("currentRow") ;

String t = rowdata.getValue ("RECORDINGS.RECORDINGTITLE") ;

Setting Data

You set data with the setValue () method and a field key. A row key sets the
data in the specified row. Otherwise, you set the data in the current row.

// use row key
String t = new String("title");
recordingsDP.setValue ("RECORDINGS.RECORDINGTITLE", rowKey, t);

// use current row
String t = new String("title");
recordingsDP.setValue ("RECORDINGS.RECORDINGTITLE", t);

// use row data object

TableRowDataProvider rowdata = (TableRowDataProvider)
getBean ("currentRow") ;

String t = new String("title");

rowdata.setValue ("RECORDINGS.RECORDINGTITLE", t);

Property Binding
You can bind a Ul component’s property to a field in a data provider. Here is a
binding expression to bind the value of a particular field (RECORDINGTITLE)
in the current row.

#{Pagel.recordingsDP.value [’ RECORDINGS.RECORDINGTITLE"]}

For a component that’s part of the Ul Table component, use variable
currentRow, as follows.

#{currentRow.value [’ RECORDINGS.RECORDINGTITLE’]}

Refreshable

A refreshable data provider is cached. To load (or reload) data into the table
data provider from the underlying data source, use method refresh (). (You

8.1 Data Provider Basics

only use refresh () with data providers that implement the RefreshableData-
Provider interface.)

recordingsDP.refresh () ;

Working With the Data Provider

Here’s how to loop through a table data provider and perform an action on
each row.

// only refresh if refreshable
if (recordingsDP instanceof RefreshableDataProvider)
recordingsDP.refresh () ;

if (recordingsDP.cursorFirst()) {
do {
RowKey rowkey = recordingsDP.getCursorRow () ;
try {
info ("Doing something to rowkey ", rowkey);

recordingsDP.doSomething (rowkey) ;
} catch (Exception e) {
error ("Failed for rowkey ", rowkey);
}
} while (recordingsDP.cursorNext());
} // end if

Removing a Row

Here’s how to remove row rowkey from a table row data provider. Note that
we check to see if the data provider can be resized before calling method
removeRow ().

boolean ok = true;
if (recordingsDP.canRemoveRow (rowkey) {
try {
recordingsDP.removeRow (rowkey) ;
} catch (Exception e) {
error ("Cannot remove row ", rowkey);
ok = false;

}
if (recordingsDP instanceof TransactionalDataProvider) {
// commit or roll back changes depending on boolean ok

237

238 Chapter 8 Introducing Data Providers

Appending a Row

Here’s how to append row rowkey to a table row data provider. Note that we
check to see if the data provider can be appended to before calling method
appendRow () .

if (recordingsDP.canAppendRow ()) {
try {
RowKey rowKey = recordingsDP.appendRow () ;
// do this for each field
recordingsDP.setValue ("tablename. fieldname", rowKey,
value);
// after all fields are set, commit changes
if (recordingsDP instanceof TransactionalDataProvider)
recordingsDP.commitChanges () ;
} catch (Exception e) {
error(" . . . "),

}

Working With Transactional Data
Providers

Here’s how to commit or rollback changes with a transactional data provider.
Use these to commit appends, removes, and insert operations. Methods com-
mitChanges () and revertChanges () are also used to commit (or not) data that
the user edits from within a Ul table component.

if (ok) {
try {
recordingsDP.commitChanges () ;
} catch (Exception e) {
error(" . . . "),
try {
recordingsDP.revertChanges () ;
} catch (Exception e2) {
error(" . . . "),

}

8.2 Object Data Provider

} else {
try {
recordingsDP.revertChanges () ;
} catch (Exception e) {
error(" . . . "),

}

Working With RowSets

When a data provider wraps a row set, you may need to access the row set
directly to set a query parameter. Here is an example of obtaining a query
parameter from a SessionBeanl property and using it to execute the query. The
refresh () method executes the underlying SQL query.

try {
getSessionBeanl () .getRecordingsRowSet () .setObject (1,
getSessionBeanl () .getValue of query parameter());
recordingsDP.refresh () ;
} catch (Exception e) {
error(" . . . "),

}

Chapter 9 (beginning on page 267) shows you projects that access a database
for reading, updating, inserting new data, and deleting data.

8.2 Object Data Provider

The object data provider component wraps an individual JavaBeans compo-
nent instance. This allows code in your web application to bind to the object
data provider, isolating the instantiation of the underlying JavaBeans compo-
nent. The client code (application code) accesses the properties of the Java-
Beans component using a data provider. The object data provider wraps the
JavaBeans component through its object property, which you can set in the
Properties window. Data providers let you access the JavaBeans component
both in the Java page bean code (such as event handlers) and in the property
binding dialogs of the IDE.

Object Data Provider Methods

You access individual properties of the JavaBeans component using FieldKey
objects. The data provider object provides the FieldKeys through method get-

239

240

Chapter 8 Introducing Data Providers

FieldKey (propertyName) where propertyName is the JavaBeans component
property.

Let’s see how all of this works using the JavaBeans component you've
already used in project Login2 (see “LoginBean” on page 121).

In project Login2, the JavaBeans component LoginBean is instantiated in ses-
sion scope in SessionBean1 as property loginBean. In both the Pagel and Log-
inGood web pages, property bindings provide direct access to the object. For
example,

#{SessionBeanl.loginBean.username}

binds the username property of the LoginBean object to the text property of
the userName text field. Similarly, in the Pagel login action () event handler,
you access the LoginBean object using

LoginBean login = getSessionBeanl () .getLoginBean() ;
if (login.isLoginGood() . . .)

Rather than access this SessionBeanl property directly, let’s use an object
data provider. All calls to the LoginBean component go through data provider
calls. This lets you change the underlying mechanism for instantiating and
maintaining this JavaBeans component without affecting your web application
access code. For example, the object data provider 1oginDP provides access to
the username property, as follows.

loginDP.setObject (
(java.lang.Object)getValue ("#{SessionBeanl.loginBean}"));

// display the user name in a message component
info (loginDP.getValue (loginDP.getFieldKey ("username"))) ;

Method getFieldKey () returns the data provider’s field key that correctly
accesses the corresponding property value.

Here’s how to bind the LoginBean username property to text field compo-
nent userName using the following expression.

#{Pagel.loginDP.value[’username’]}
Access to LoginBean boolean property loginGood is similar.

boolean loginOK = ((Boolean)loginDP.getValue (
loginDP.getFieldKey ("loginGood"))) .booleanValue() ;

8.2 Object Data Provider 241

Copy the Project

Let’s add the object data provider to project Login2. To avoid starting from
scratch, make a copy of the Login2 project and save it as Login3. This step is
optional. If you don’t want to copy the project, simply skip this section and
continue making modifications to the Login2 project.

1. Bring up project Login2 in Creator, if it’s not already opened.

2. From the Projects window, right-click node Login2 and select Save Project
As. Provide the new name Login3.

3. Close project Login2. Right-click Login3 and select Set Main Project. You'll
make changes to the Login3 project.

4. Bring up Pagel in the design view.

5. Click anywhere in the background of the Pagel design canvas. In the Prop-
erties window, change the page’s Title property to Login 3.

Add the Object Data Provider

Now you’ll add and configure the object data provider.

1. Make sure that Pagel is active in the design window.

2. From the Components palette, scroll down and expand the Data Providers
section.

3. Select component Object Data Provider and add it to the page (drop it on
top of the page background). Creator adds the data provider component.
Since the data provider is a non-visual component, it shows up in the Pagel
Outline view.

4. Select the data provider component in the Pagel Outline view and in the
Properties window, change its id to loginDP.

5. In the Properties window, select the editing box opposite property object.
Creator pops up the loginDP - object dialog.

6. From the list, select loginBean (SessionBean1) and click OK, as shown in
Figure 8-3. This is all you need to do to wrap the LoginBean JavaBeans com-
ponent in the object data provider. Creator generates the following Java
code in the Pagel () constructor.

loginDP.setObject (
(java.lang.Object)getValue ("#{SessionBeanl.loginBean}"));

Provide Binding to Components

The text field and password components on the page currently bind directly to
the SessionBeanl LoginBean component. You'll now update the binding on
these components.

242

Chapter 8 Introducing Data Providers

¥ loginDP - object

Select a value for this property

labell A
link1

localeCharackerEncoding (ApplicationBeanl)
login

ioginBean (SessionBeanl)
lloginCP

messagel

messages
Imessagedroupl |

I oK H Cancel]

Figure 8-3 Set property object for data provider loginDP

—_

. From the Pagel design canvas, select text field component userName.

2. Right-click and select Property Bindings. The Property Bindings dialog for
component userName pops up.

3. Property text Object should already be selected under Select bindable prop-
erty.

4. Under Select binding target, select loginDP > key username String, as shown
in Figure 8—4.

5. Click Apply then Close. Creator generates the following binding expression

for the text field’s text property.

#{Pagel.loginDP.value[’username’]}

6. Repeat steps 1-5 for component password. The binding expression for this
component is now

#{Pagel.loginDP.value[’password’]}

Modify Event Handler Code

Now you’ll modify the event handler code to use the object data provider.

1. From the Pagel design view, double-click the Login button. This brings up
Pagel.java and method login action () in the Java source editor.

8.2 Object Data Provider

% Property Bindings for userName
Select bindable property Select binding karget:
[= loginDP ChjectDataProvider Al
columns it | # key: class Class
converter Converter ® key: loginGood hoolaan
disabled Boolean # key: password Shring
label Shing L=y username Siring
& lsbelevel inf @ Options [items for 3 listhox or dropdown) E
maxength int # Select Items [items for 2 listbox or dropdown)
) & property: class Cl3ss
onBlur St |
arL g | t-% property: dataListeners Datalistener|]
() Defauk () Advanced (O Al #-§ property: fieldkeys Fisldkoy[] |
Current binding For text property:
|[Clear]

i_;{Pagel I_-:glnDP : value['username-;fl} i [Applyw

Figure 8—4 Use loginDP object data provider for property binding

This method currently queries property loginGood (a boolean) to see if the
login process is successful. Rather than access the SessionBeanl property

loginBean, you'll use the object data provider.

2. Provide the following code for method login action (). Copy and paste
from FieldGuide2/Examples/DataProviders/snippets/
login3_login_action.txt.

public String login action() {
boolean loginOK = ((Boolean)loginDP.getValue (
loginDP.getFieldKey ("loginGood"))) .booleanValue () ;

if (loginOK) {
return "loginSuccess";

} else
return "loginFail";

Modify LoginGood Page

Note that page LoginGood displays the username after the user has success-
fully logged in. You can't use the same object data provider from Pagel since it

243

244

Y

Chapter 8 Introducing Data Providers

has page (request) scope. Therefore, you'll use a second object data provider
for this page and bind to the same underlying session bean property, the Login-
Bean object.

&

Creator Tip

You could optionally add the object data provider directly to SessionBean1 by
dragging and dropping from the palette to SessionBean1 in the Outline view.
Then you can use the same data provider in Pagel and LoginGood.

Here are the steps that configures an object data provider and binds it with
the label component on the LoginGood page.

1. Double-click LoginGood.jsp under Web Pages in the Projects window to
bring up this page in the design view.

2. From the Data Providers Components palette, select Object Data Provider
and drop it on the page (anywhere on the background). Creator instantiates
an object data provider, which you see in the Outline view under Login-
Good.

3. Select the object data provider and in the Properties window, change its id
property to loginDP2. (The name does not have to be different than the
Pagel object data provider, but a different name helps reduce confusion.)

4. In the Properties window, select the small editing box opposite property
object. In the dialog, select loginBean (SessionBean1) from the list. Click OK.
This wraps SessionBean1 property loginBean with the data provider.

5. In the LoginGood design view, select the label component, right-click, and
select Property Bindings.

6. Under Select binding target, select loginDP2 > key username String and click
Apply.

7. In the New binding expression window, add the text Welcome, in front of the
generated binding expression. Click Apply then Close. The binding expres-
sion for property text should now be set to

Welcome, #{LoginGood.loginDP2.value['username']}

Deploy and Run

Deploy and run project Login3. Although using the data provider here makes
accessing the LoginBean component rather obtuse, you'll note that there are no
dependencies on LoginBean’s structure, as well as no dependencies on how it
is acquired. The advantage of using data providers is that accessing data is sim-
ilar regardless of the underlying structure. Later in this chapter we’ll enhance

8.3 Object List Data Provider

the LoginBean component itself to access a database (through a data provider)
to determine the success of the login process.

Other Singleton Object Data Providers

The Object Data Provider is meant to wrap a singleton data object. Creator also
provides the Map Data Provider and the Table Row Data Provider (under
Advanced Data Providers in the Palette window). The Map Data Provider
wraps a data object that is a map construct. The Table Row Data Provider gives
access to a structure that is a single row in a table.

8.3 Object List Data Provider

The Object List Data Provider is useful for wrapping an ArrayList (or other list-
type) of objects. To illustrate this data provider, we're going to enhance the
LoanBean component and add a property that provides an ArrayList of
objects. This list is a payment schedule (an amortization table) of the fixed rate
loan.

Because an array list is a dynamic array, the Object List Data Provider (poten-
tially) allows you to insert and remove items. Potentially means that the ability
to resize the list is dependent on several conditions.

¢ The underlying collection must be resizeable. An ArrayList is resizeable, an
array of Objects is not.

¢ The object type (in our case PaymentVO) must have a zero-argument public
constructor.

* The collection itself should be writable. In our case, property
monthlyAmortTable is a read-only property.

The Table Data Provider interface provides methods that allow you to check
the data provider to see if it can perform an insert, append, or remove opera-
tion (canInsertRow (), canAppendRow (), and canRemoveRow ()). You should
call these methods before attempting the resize operations. The Payment2
example does not perform any resizing.

Copy the Project

To avoid starting from scratch, make a copy of the Payment1 project and save it
as Payment2. This step is optional. If you don't want to copy the project, simply
skip this section and continue making modifications to the Payment1 project.

1. Bring up project Payment1 in Creator, if it’s not already opened.

245

246

Chapter 8 Introducing Data Providers

N

. From the Projects window, right-click node Payment1 and select Save

Project As. Provide the new name Payment2.

. Close project Payment1. Right-click Payment2 and select Set Main Project.

You’'ll make changes to the Payment2 project.

. Bring up Pagel in the design view.
. Click anywhere in the background of the Pagel design canvas. In the Prop-

erties window, change the page’s Title property to Payment Calculator 2.

Replace LoanBean.java

In project Paymentl, you added Source Packages asg.bean_examples and Java
class LoanBean.java. In this project you'll replace the LoanBean.java source
file with a version that includes additional properties. The new LoanBean.java
will include property startDate (the beginning point for a payment schedule)
and monthlyAmortTable (the loan’s complete payment schedule).

1.

2.
3.

In the Projects window, open the Source Packages > asg.bean_examples
nodes.

Double-click file LoanBean.java to bring up the file in the Java source editor.
Replace the entire file using copy/paste with the source found in the Creator
download at FieldGuide2/Examples/DataProviders/snippets/Loan-
Bean.java. (There will be some syntax errors flagged. You can ignore these
for now.)

Add PaymentVO.java

The enhanced LoanBean component uses a PaymentVO object to build the
amortization schedule. Let’s add this Java class to your project and then copy
the contents of the file from the Creator download. Here are the steps.

1.

2.
3.

In the Projects window;, select node Source Packages > asg.bean_examples,
right-click, and select New > Java Class.

Creator pops up the New Java Class dialog.

Provide Class Name PaymentVO (for Payment Value Object) and click Fin-
ish.

. Replace the entire file using copy/paste with the source found in the Creator

download at FieldGuide2/Examples/DataProviders/snippets/Pay-
mentVO.java.

. Build project Payment2, close it, and reopen it in the IDE. This ensures that

the new LoanBean properties are visible in the Property Bindings dialogs.
All of the files should now be free of syntax errors.

8.3 Object List Data Provider

Deploy and Run

Project Payment2 should run the same as Payment1 without any further modi-
fications. Test to make sure the application runs by deploying and running
Payment2 now.

LoanBean Bean Patterns

Look at component LoanBean’s bean patterns. From the Projects window,
expand node Source Packages > asg.bean_examples > LoanBean.java > LoanBean >
Bean Patterns, as shown in Figure 8-5. You'll see the properties you created ear-
lier (amount, payment, rate, and years), as well as two new properties (month-
lyAmortTable and startDate). Property monthlyAmortTable is a read-only
property that returns an array list of payment objects. Property startDate is a
read-write Calendar object that stores the beginning date of the loan. When
you select LoanBean.java you see the Members View simultaneously dis-
played in the Navigator window (also shown in Figure 8-5).

'EPrujects ¥ X ‘Files ‘ Outline :Navigator.. % X

{58 Request Bean i [Members Wiew w|

k& @ Session Bean © getAmount()
_"'@ ol Packans, @ getMonthlyamortTable()
= asq.bean_exarnples @ getPayment()
18 ar.java @ getRate()
S LoanBean @ getstartDate)
#-f% Fields @ gettears()

@ setAmount(Double amount)

-5 Constructors
: @ setRateiDouble rate)

: Methad
ﬂj S @ setStartDate(Calendar startDate)
= @ BeSp e @ set¥ears(Inteqer vears)

~§ amount ¢ LoanBean

& monthlyAmortTable 1B amount Double
; & payment B manthlyAamartTable Arraylist
ol rate B payment Double
______ & startDate |BE rate Double
£ & years 3 B startDate Calendar

,EE yeats Inbeger

Figure 8-5 Bean Patterns and Class Members for LoanBean

PaymentVO Bean Patterns

Method getMonthlyAmortTable () is the getter for property monthlyAmortTa-
ble. Let’s look at the data that this method returns. The data consists of the val-
ues that apply to each monthly payment for a fixed-rate loan: the payment

247

248

Chapter 8 Introducing Data Providers

number, date, interest amount, principal amount, accumulated interest and
principal, and loan balance. This information is encapsulated in the Pay-
mentVO component.

In the Projects window, scroll down a bit and select the PaymentVO.java
node. Expand the PaymentVO > Bean Patterns nodes. The Projects window
shows the bean patterns and the Navigator window shows the fields and prop-
erty getters and setters, as shown in Figure 8-6. When you add a table compo-
nent to the page, you'll access these properties through the table row data
provider.

‘Files ‘ Outline ‘Mavigator - Pa.. 40 X |
v 2 || Members Yiew v
B Paymentvo @ getaccumInterest()
@ Fields @ getaccumPrincipal()
@ Constructors @ getBalance()
21 Methods @ getCurrentInterest()
@ Bean Patterns @ getrurrentPrincipally
& accuminterest @ getPaymentDatel)
& accumPrincipal @ getPaymentiurmber()
@ sebAccumInterest(Double accumInterest)
4 balance @ setAccumPrincipaliCouble accumPrincipal)
@ currentinterest @ setBalance{Double balance)
- currentPrincipal | @ sekCurrentInterest{Double currentInterest)
-& pavmentDate @ setCurrentPrincipal{Double currentPrincipal)
Lo paymentMumber | @ setPaymentDate(Calendar paymentDate)
¢ > @ setPaymentMumber{int paymenthumber)

@ PaymentWOrint paymenthlumber, Calendar payvmentDate, |
'EE accumInkerest Double
'EE accuriPrincipal Diouble
|B@ balance Double
'EIE currentInterest Double
'EIE currentPrincipal Double
B paymentDate Calendar
[Bm paymentMurmber ink

I3 >

Figure 86 Bean Patterns and Class Members for PaymentVO

Add Components to Page1

You need a calendar component to obtain a starting date from the user and a
button to display the payment schedule. Virtual forms will separate the Calcu-
late use case from the Payment Schedule use case. The payment schedule will
be displayed on a separate page using a table component. Recall that the Loan-
Bean component is a property of SessionBeanl, so it is accessible from any
page throughout the session. Figure 8-7 shows the Pagel design view with the
new components added.

1. Make Pagel active in the design view.

8.3 Object List Data Provider

'@].Welcome x-:mPagel » -

'Deﬂgn 5P Java ‘g @

: : -*sﬁrt D:ate. ”1.2.,'03';20.0.5 s UMessage s.umma[yfu[(;a[enuan

2B | Get Payment Schedule | 4—— 'Buttb'n' e

Figure 8-7 Design view for Pagel of project Payment2

2. From the Basics Components palette, select component Calendar and drop it
on the page below the Calculate button.

3. From the Basic Component palette, select Button and drop it on the canvas
below the calendar component.

4. While it is still selected, type in the text Get Payment Schedule to set the label
text.

5. Change the button’s id property to schedule.

Since the calendar component input is required and it performs validation,
you’ll need a message component.

1. From the Basic Components palette, select Message and add it to the canvas
to the right of the calendar component.

2. Hold the <Shift+Ctrl> keys, left-click the mouse, drag the cursor over to the
calendar component, and release the mouse. This sets the message compo-
nent’s for property.

Configure the Calendar Component

You'll bind the calendar component’s selectedbDate property to the Loan-

Bean’s startDate (time) property as well as configure some of its other prop-
erties.

249

250

Chapter 8 Introducing Data Providers

1. Select the calendar component. In the Properties window, set the label prop-
erty to Start Date.

2. In the Properties window, check the required property.

3. Select the calendar component, right-click, and select Property Bindings.
Creator displays the now familiar Property Bindings dialog.

4. Under Select bindable property, select selectedDate Date.

5. Under Select binding target, select SessionBean1 >loanBean > startDate > time,
as shown in Figure 8-8. Click Apply then Close. Note that Creator displays
today’s date in the calendar component.

¥ Property Bindings for calendar1

Select hindable property Select binding target:
selectedDate [”~ lnanBean LoanBean ”~
columns iRt E-§ property: amount Double
dateFormatPattern String -8 property: dass Class
disabled Boolean ErJ. property: monthlyamortTable Arraylist
® label String ErJ. property: payment Doubls
® labellevel iRt ErJ. propertys rake Doubls
& bl Shing FJ. property: startDate GregorianCalandar
onchange String i (- property:c.lass (lass
& onclick Sting proparky: FlrstDayF)FWeek Integear
3 ; properky: gregorianChange Dt
& oDl S?FW property: lenient Boolean
onFacus Sting properky: minimalDaysInFirstWeek Integer
onkeyDown String
® onkeyPress Shing 3 property: timelnMilis Long
orkeylp String b E-4 property: timeZone Zonelnfo 3
(%) Default () Advanced () All @ property: years Irteger v
Current binding for selectedDate property:
| #{SessionBeanl JoanBean, startDate.time} |’ Clear]
Mew binding expression:
| #{3essionBeanl loanBean, startDake.time | Apply

Figure 8-8 Binding the selectedDate property to the LoanBean startDate.time
property

The Calendar component contains a built-in range validator for its select-
edDate property. If you don't specify the range, the default minimum is today’s
date and the default maximum is four years from today’s date. For Payment2,
there’s no reason to restrict the date to preclude specifying a date in the past or
limiting a date further into the future. We’ll use January 1, 1975 for the mini-
mum start date and December 31, 2020 for the maximum start date. You can’t
specify a literal date through the Properties window, but you can add code in
the page bean’s init () method to set properties minDate and maxDate.

8.3 Object List Data Provider

1. Click the Java button on the editing toolbar to bring up Pagel.java in the
source editor.

2. Find method init () and add the following code to the end. Copy and paste
from FieldGuide2/Examples/DataProviders/snippets/
payment2_calendar_init.txt. The added code is bold.

public void init () {

// set minimum date to January 1, 1975
calendarl.setMinDate (

new GregorianCalendar (1975, 0, 1).getTime());
// set maximum date to December 31, 2020
calendarl. setMaxDate (

new GregorianCalendar (2020, 11, 31) .getTime())

The calendar component method setMinDate () takes a java.util.Date
object, which you can construct using the GregorianCalendar class. To read the
corresponding Javadoc for this class, select it in the editor and press <Ctrl-
space>. Creator pops up a detailed description of the class with examples on its
use. The getTime () method returns the needed Date object.

Configure Virtual Forms

You can improve the user interaction with project Payment2 by using virtual
forms. If you put all of the input components for the LoanBean calculation in
one virtual form (excluding the calendar component) and make the Calculate
button the submitter, then the user is not required to provide valid calendar
input when requesting the payment calculation. However, because all fields
are submitted for the payment schedule (including the loan parameter fields
used for the payment calculation), the Get Payment Schedule button does not
require a separate virtual form. By default, user input for all components will
be converted and validated, which is the behavior we want.

1. From the Pagel design view, select text field components 1oanAmount,
interestRate, and loanTerm (use <Shift-click> to select all three compo-
nents).

2. Right-click and select Configure Virtual Forms from the context menu. Cre-
ator pops up the Configure Virtual Forms dialog.

3. Click button New. Creator makes a new virtual form with color code blue.
Edit the virtual form’s Name to calculateForm (double-click the field name
and it becomes editable) and change the Participate field to Yes using the
drop down selection.

251

252

Chapter 8 Introducing Data Providers

. Click Apply then OK. The three text field components are outlined in a solid

blue line indicating that they participate in the calculateForm virtual form.

. Now select the Calculate button, right-click, and select Configure Virtual

Forms.

. Creator displays the calculateForm virtual form in the dialog. Change the

Submit field to Yes using the drop down selection. Click Apply and OK. The
design view now shows the Calculate button with a blue-dotted border,
indicating that it is the submit component for the blue virtual form.

Add a New Page

The application displays the payment schedule on a separate page.

1.

2.

3.

In the Projects window, right-click Web Pages and select New > Page. Cre-
ator displays the New Page dialog.

Supply Name Schedule and click Finish. Creator generates page Sched-
ule.jsp and brings it up in the design view.

Click anywhere in the background and set the Title attribute to Payment
Schedule.

Add Components to Schedule Page

The Schedule page contains a label and a static text component for the heading,
a hyperlink to return to the loan parameters page, and a table component to
display the payment schedule.

1.

i~

From the Basic Components palette, select Label and place it near the top of
the page. Type in the text Monthly Payment Schedule for payment: followed
by <Enter>.

. Make sure the label is still selected. In the Properties window, change the

labelLevel to Strong(1).

. From the Basic Components palette, select Static Text and place it on the

page just to the right of the label.

. Right-click the static text component and select Property Bindings.
. In the Property Bindings dialog, under Select bindable property, select text

Object. Under Select binding target, select SessionBean1 >loanBean > pay-
ment. Click Apply, then Close.

Since the LoanBean’s payment property is a Double, you'll need a converter.

Use a number converter so that you can format the amount.

1.

From the Converters Components palette, select Number Converter and
drop it on the static text component. Creator pops up the Number Format
dialog so that you can configure the converter.

2.

8.3 Object List Data Provider

Select the Pattern radio button and provide pattern #,###.00, as shown in
Figure 8-9. This pattern supplies a comma separator if the value is greater
than 999 and supplies two digits to the right of the decimal point. (You can
test the pattern by providing a sample number in the Example field and
click Test. The resulting conversion appears in the Results window.) Click
Apply, then OK to close the dialog.

¥ Number Format

) Type:

(%) Pattern: 4,00 v

[] Integer Only {on coverting ta Number)

Choose an example or enter wour own ko see the resulting output String

Example: 33?90 793626 Rl Tesk [;

Results: [33,790.79

[[o]4][Cancel][Apply][Help]

Figure 8-9 Number Format dialog for number converter

3.

The number in the static text display should now read 790.70. (If the static
text displays 0, close Schedule.jsp and reopen it in the design view. If it is
not formatted correctly, in the Properties window opposite property con-
verter, select numberConverterl from the drop down list opposite prop-
erty converter.)

. From the Basic Components palette, select Hyperlink and place it on the

page below the label you added previously.

. Type in the text Return to Loan Parameters Page followed by <Enter>. This is

the hyperlink’s text. You'll set the navigation links later.

. From the Basic Components palette, select Table and drop it on the page

under the hyperlink component. Creator configures a standard table with a
default table data provider.

. The table’s title is selected for you. Type in the text Amortization Table fol-

lowed by <Enter> to set the title.

253

254

Chapter 8 Introducing Data Providers

Configure the Table

You'll provide a different data provider for the table and wrap the monthly-
AmortTable property of the LoanBean component.

1. Open the Data Providers section of the Components palette. Select Object
List Data Provider and drop it on the Table component. Make sure the entire
table is outlined in blue before you release the mouse. The table displays No
items found.

2. In the Outline view, select the object list data provider. In the Properties win-
dow, select the small editing box opposite property 1list.

3. In the pop up dialog, select SessionBean1 > loanBean > monthlyAmortTable
property. This wraps the ArrayList property of the LoanBean component.
Creator adds the following setList () call to the Schedule () constructor.

objectListDataProviderl.setlList ((java.util.List)getValue (
"#{SessionBeanl.loanBean.monthlyAmortTable}"));

Now you’ll configure the table layout.

1. In the design view, select the table component, right-click, and select Table
Layout. Creator brings up the Table Layout dialog.

2. In the dialog, select the Options tab.

3. In the Options settings, enable pagination and set the number of rows to 12.
Click Apply.

4. Now select the Columns tab. The PaymentVO component has seven fields
(columns), which you’ve seen already in the PaymentVO Bean Patterns dis-
play. Creator binds these fields to the table columns for you automatically.
Click the double arrow button (>>) to move all the PaymentVO fields from
the Available window to the Selected window. Click Apply. Creator displays
the columns in the table component in the design view.

5. Rearrange the columns to the following order by selecting the Up and Down
buttons as needed. Change the Header Text to the text opposite each column
name as shown here. Click Apply.

paymentDate Payment Date
paymentNumber Payment Number
currentPrincipal Current Principal
currentInterest Current Interest
balance Balance
accumPrincipal Accumulated Principal

accumInterest Accumulated Interest

8.3 Object List Data Provider

In order to apply a date time converter to the paymentDate column, you
must first access its time property. Select the paymentDate column. Change
its value expression from the default to the following (add the . time quali-
fier to the end of the expression). Click Apply then OK.

#{currentRow.value [’ paymentDate’].time}

7.

Apply the number converter (the one you already configured for the pay-
ment display) to the current principal, current interest, balance, accumu-
lated principal, and accumulated interest columns. For each of these
columns, select numberConvertl from the Outline view (the same compo-
nent you used for the static text component) and drag it over to the table to
the target column. When the entire column is outlined in blue, release the
mouse. The column will be reformatted with the number converter’s pat-
tern.

From the Converters palette, select Date Time Converter and drop it on the
table’s Payment Date column. Select the date time converter in the Outline
view, and specify MMM yyyy followed by <Enter> for its pattern. The table
will now display the date as a month and year only.

Figure 8-10 shows what the page looks like (running in a browser) after

you’ve configured the table component and applied the number and date time
converters to the appropriate columns.

Configure Page Navigation

You'll use simple navigation for this project. The Get Payment Schedule button
on Pagel takes you to the Schedule page and the hyperlink on the Schedule
page returns you to Pagel.

1.

2.

Right-click in the background of the Schedule design view and select Page
Navigation. Creator brings up the Navigation editor.

Click inside Pagel.jsp and draw a navigation arrow from the schedule but-
ton and release the mouse inside Schedule.jsp.

. Supply the navigation case label schedulePage on the navigation arrow and

hit <Enter>.

. Now click inside Schedule.jsp, select the hyperlink component, drag the

cursor and release the mouse inside Pagel.jsp.

. Supply the navigation case label loanPage on the navigation arrow and hit

<Enter>.

255

256

Chapter 8 Introducing Data Providers

Deploy and Run

Deploy and run project Payment2. Test the application by providing different
values for the loan parameters, as well as different start dates. Figure 8-10
shows the schedule page for the default values of the LoanBean component.
Note that the user is about to display the next page of the table data. The rele-
vant tooltip is configured for you.

) payment Schedule - Netscape

3 3 I |
Monthly Payment Schedule for payment: 79079
Return to Loan Parameters Page
Amortization Table
B0

Current Current Accum
Date Payment Principal Interest Balance Principal Accum Interest
Sep 2005 0 .00 .00 100,000.00 .00 .00
Oct 2005 1 | 37413 416.67 99,525.87 374,13 41667 |
Mov 2005 2 | 37580 415.11 99,250.19 749.81 83177 |
Dec 2005 3 | 377.25 41354 92,872.04 1,127.08 1,245.32 |
Jan 2008 4 | a7a82 411.97 98,494.11 1,505.89 1,657.29 |
Feb 2008 5 | 320.40 410.39 92,112.71 1,886.20 2,067 68 |
Mar 2006 i | 3a1.00 408.51 97,731.72 2,268.28 2,476.49 |
Apr 2006 7 | 32258 407.22 97,248.15 2,651.85 288370 |
May 2006] | 38518 405.62 96,962.97 3,037.03 3,280.32 |
Jun 2008 9 | 38678 404.01 95,576.19 3,423.81 1,602.32 |
Jul 2008 10 | 3@@.30 402.40 96,187.80 3,812.20 4,005.73 |
Aug 2008 11 | 390.01 400.78 95,797.79 4,302.91 4,496 52
Pi:ige:l1 of 16 [@ M| (G0
(T =) GFf [| https//locsihosti28080/Paymentt ffaces/Page . nid=T231e71 ab3cd HifffEadaciTfaT290ee s |z o e

Figure 8-10 Project Payment2 running in the browser

8.4 Cached RowSet Data Provider

When you drop a database table on your project, Creator generates a Cached
Rowset component, as well as a Cached Rowset Data Provider. This data pro-
vider wraps the CachedRowSet object. You manipulate the data in the same
way using row keys and field keys, although the CachedRowSetDataProvider

8.4 Cached RowSet Data Provider 257

provides additional methods, such as refresh(), that are specific to the
wrapped CachedRowSet.

Creator Tip

When you add a [DBC table to a page, by default Creator adds -
CachedRowSetDataProvider to the page and the wrapped CachedRowSet to &
SessionBean1. This enables you to reuse the CachedRowSet object in another E ’

data provider (as long as the SQL query is the same). To override the default
behavior and place the CachedRowSet object in request scope, uncheck option
Create RowSets in Session from Tools > Options > Advanced > Data Source
Drag and Drop.

In this example, you'll modify the LoginBean component to access the data-
base to determine whether or not the login parameters the user submits are
valid. This is a simple database access and it will get your feet wet for the more
involved database operations presented in the next chapter. First, you'll create
the data base table and populate it with data by running a stand-alone utility
program (provided with the book’s download) from the IDE.

Configuring the Database

For the Login example, you'll use the bundled PointBase database. Here are the
steps to configure the Login Data Source in Creator for PointBase.

1. Make sure that PointBase is running. If PointBase is running, the Bundled
Database Server node in the Servers window includes a green up-arrow
badge. To start the server, select the Bundled Database Server node, right-
click, and choose Start Bundled Database.

2. Open project UserBuild. Project UserBuild is included in the Creator book’s
download at FieldGuide2/Examples/Projects/UserBuild. When the project
comes up in the IDE, Creator displays a Reference Problems dialog. The
UserBuild program references class com.pointbase. jdb.jdbcUniversalD-
river to access the PointBase database server. You need to add the appropri-
ate JAR file to the project. Click Close to remove the dialog.

3. In the Projects window expand the UserBuild node and right-click Libraries.
Select Add JAR/Folder from the context menu. Creator pops up the Add
JAR/Folder dialog.

4. Browse to the <Creator2 installation directory>/SunAppServer8/pointbase/
lib and select file pbclient.jar. Click Open. Creator adds the JAR file to your
project.

258 Chapter 8 Introducing Data Providers

. The UserBuild project is a stand-alone program that generates the sample

Users database. You can inspect the code by expanding the UserBuild >
Source Packages > asg.databuild nodes. Double-click PBLoginDB.java.

. Run the project. Select the green arrow icon or select Run > Run Main Project

from the main menu. Make sure that you see the following diagnostic in the
Output window after running the application.

Login database was created.

7. When you're finished, close the Project. Right-click on the project name and

choose Close Project.

Creator Tip

You can run project UserBuild multiple times to re-generate the Login
database.

&

Add Data Source

Once you’ve generated the sample data, you'll add the Login schema as a data
source. You'll add it as a schema using the same URL (sample) as the pre-
installed database tables.

1.

2.

3.

In the Servers window, right-click Data Sources, and select Add Data
Source.

Creator displays the Add Data Source dialog. Supply the values shown in
Table 8.2. Click Select and set the Validation Table to VALIDATIONONLY.
When you're finished filling in the dialog, click Test Connection to verify
that all the values are correct. Click Add to finish.

Figure 8-11 shows the Add Data Source dialog filled in. Now when you

open the Login and Tables node, you'll see two tables in the Login database:
USERS and VALIDATIONONLY (used for testing the connection).

8.4 Cached RowSet Data Provider 259

Table 8.2 Add Data Source Dialog

Prompt Value
Data Source Name Login
Server Type Pointbase Bundled

Driver Class com.pointbase.jdbc.jdbcUniversalDriver

Database Name (blank)

Host Name (blank)
User ID login
Password login
Database URL jdoc:pointbase:server://localhost:29092/sample

Validation Table LOGIN.VALIDATIONONLY

¥. Add Data Source

Daka Source Marme: | Login |

Server Tvpe: |PnintBase Bundled vl [Edit. ..]

Driver Class: com, poinkbase, jdbe, jdbcUniversalDriver

Database Name: |

|
Host Mame: | |
User 10t | lagin |
Password: | ettt |
Dakabase LRL: | jdbc:pointbase:server:fflocalhost: 29092 sample |
Walidation Table: | LOGIM MALIDATIONOMLY | [select |

Tesk Connection

Add H Cancel ” Help l

Figure 8-11 Add Data Source dialog

260 Chapter 8 Introducing Data Providers

Inspect the Data Source

As you saw from Chapter 2, you can view the actual data from a database table
interactively from the IDE. This allows a web developer to inspect the data and
experiment with queries before building an application. Let’s do that now.

1. From the Servers window, select Data Sources > Login > Tables > USERS.
Open the USERS node (click on ‘+’) and Creator displays the field names.

2. Double-click the USERS node. Creator displays the table’s data in the editor
pane. We show this view in Figure 8-12.

@"]-Wélcome % |FRQuery 1l x -

¢ [BELECT * FROM LOGIM.USERS] |
Qary '

| DataSource: Login, Last RunOct 10, 20... < [Trj a [Rows: |25 %
| A~
USERID LSERMAME PASSWORD EMAIL
1 ravedu ravetu ravedu@as. .,
z morpheus neo morpheus, .,
3 hpotter wizard potter@hog...
4 capitola bilack, cap@south...
5 hurskon zoraneale zora@hurst. ..
& margarita master buglakow, .
7 mathilde manech rimm@great. ..
7 Rowis), B

Figure 8-12 USERS Query View

The display not only shows the data, but it also provides an interactive
query window at the top so that you can edit and run the query.

Copy the Project

Next, you'll modify the LoginBean component from projects Login2 and
Login3. In this new project (Login4), the LoanBean isLoginGood () method
will access the USERS data base table to determine valid login submissions.
First, let’s copy the project and save it as Login4. This step is optional. If you
don’t want to copy the project, simply skip this section and continue making
modifications to your Login3 project.

8.4 Cached RowSet Data Provider

—_

Bring up project Login3 in Creator, if it’s not already opened.

2. From the Projects window, right-click node Login3 and select Save Project
As. Provide the new name Login4.

3. Close project Login3. Right-click Login4 and select Set Main Project. You'll
make changes to the Login4 project.

4. Bring up Pagel in the design view.

5. Click anywhere in the background of the Pagel design canvas. In the Prop-

erties window, change the page’s Title property to Login 4.

Add the Data Source

Now add the Login data source (the USERS data table) to SessionBeanl of the
project. Creator will generate all the row set and data provider configuration
code for you.

1. In the Outline window, expand SessionBean1. You'll see loginBean listed as
a SessionBeanl property.

2. In the Servers window, expand Data Source > Login > Tables.

3. Select table USERS and drop it under the SessionBean1 section of the Out-
line window. (Move the mouse over to the left edge of the Outline window
and make sure that a rectangular, dotted icon is visible before you release
the cursor.) You'll see two new SessionBeanl1 properties: usersData-
Provider and usersRowSet. The LoginBean component will access these to
look up the user’s username and password.

Replace LoginBean.java

The majority of the changes you’ll make to the LoginBean object are the modifi-
cations to method isLoginGood (), which accesses the USERS table through the
data provider you added to SessionBeanl. However, because LoginBean
accesses the database, it is convenient to access some Creator/JSF structures
(SessionBean1) and services (methods error () and log()). This is easy if we
make LoginBean extend AbstractSessionBean. Here are the steps to replace
LoginBean.java.

1. In the Projects window, expand the Source Packages > asg.bean_examples
node.

2. Double-click file LoginBean.java. Creator brings up the file in the Java
source editor.

3. Replace file LoginBean.java with the file in your Creator’s download direc-
toy. Copy and paste file FieldGuide2/Examples/DataProviders/snippets/
LoginBean.java.

261

262 Chapter 8 Introducing Data Providers

Here’s the code for the updated isLoginGood() method. Note that we
obtain references the to data provider (usersDataProvider) and the row set
(usersRowSet) components you added to SessionBean1.

Listing 8.1 Method isLoginGood()

public boolean isLoginGood() {
boolean ok = true;
CachedRowSetDataProvider usersDataProvider =
getSessionBeanl () .getUsersDataProvider () ;

CachedRowSetXImpl usersRowSet =
getSessionBeanl () .getUsersRowSet () ;
try {
if (usersDataProvider instanceof
RefreshableDataProvider)
usersDataProvider.refresh () ;
usersDataProvider.setCursorRow (
usersDataProvider.findFirst (
"USERS.USERNAME", username)) ;

correctName =

(String)usersDataProvider.getValue ("USERS.USERNAME") ;
correctPassword =

(String)usersDataProvider.getValue ("USERS.PASSWORD") ;

usersRowSet.release () ;
usersRowSet.close();

} catch (Exception e) {
error ("Cannot read USERS database: " + e.getMessage());
log ("Cannot read USERS database: ", e);
usersRowSet.close();
ok = false;

}

return (ok && username.equals (correctName) &&

password.equals (correctPassword)) ;

The code in this method still compares the submitted values stored in the
LoginBean object to those in LoginBean’s correctName and correctPassword
fields. However, the method now sets these fields by searching through the
data provider for a matching USERNAME field using method findFirst (),
setting the row cursor with method setCursorRow (). The refresh () call exe-
cutes the underlying SQL query and the getValue () calls read the data. The

8.4 Cached RowSet Data Provider

release () and close () calls to the underlying rowset free up any data source
resources.

Method error () writes its error message to the FacesContext, which is dis-
played when the page is rendered. Therefore, you'll add a message group com-
ponent to page LoginBad next.

Add a Message Group

Examine the code in LoginBean.java’s isLoginGood () method. You'll see that
database access is inside a try block. If an exception is thrown (for whatever
reason), then method error () writes its arguments to the FacesContext. A
message group component on page LoginBad is necessary to display the error
message on the page.

1. In the Projects view, expand node Web Pages and double-click LoginBad.jsp
to display this page in the design view.

2. From the Basic Components palette, select Message Group and place it on
the page.

Now any error messages generated due to a thrown exception inside
isLoginGood () will be displayed on the LoginBad page.

Deploy and Run

Deploy and run project Login4. Test various valid and invalid username and
password combinations (you can determine valid login data by displaying the
USERS data table in the main editor pane.) Figure 8-13 shows a valid login sce-
nario for username “margarita” and password “master.”

@ Login Good - Netscape CEK
T

Welcome, margarita

EI=K=asil =

Figure 8-13 Successful login scenario

263

264

Chapter 8 Introducing Data Providers

8.5 Key Point Summary

Data providers supply a powerful link between UI components and a persis-
tence layer. With data providers, you isolate code that is dependent on the
source of data and implement a consistent interface where access to this data is
required.

e All data providers implement the basic DataProvider interface. This

provides a consistent way to access data in an object using field keys that

correspond to property names.

The TableDataProvider interface defines row keys that give you cursor-

based access as well as random access.

¢ Data providers that wrap an underlying database provide transactional

behavior and caching behavior.

Each data provider depends on the source of the data and how you want to

manipulate the data.

A row key is an index into a table data provider. You can manipulate the

current row with methods that change the cursor (the current row key).

A table data provider has methods to remove a row, append a row, and

insert a row. Not all table data providers are resizeable, however. Use

methods canRemoveRow (), canAppendRow (), and canInsertRow () to test

resizeability before invoking the table size modifying methods.

¢ Transactional data providers allow you to commit or revert changes made to
the data with methods commitChanges () and revertChanges (),
respectively. You can check whether a data provider is transactional with

if (myDataProvider instanceof TransactionalDataProvider)

¢ Use an object data provider to wrap an individual JavaBeans object instance.
Use an object list data provider to wrap an ArrayList of objects.

Use an object array data provider to wrap an array of JavaBeans objects. (We
show you how to use this data provider in the chapter on accessing web
services. See “Add a Data Provider” on page 351.)

Use a cached rowset data provider to wrap a CachedRowSet object. When
you drag and drop a JDBC database table onto a page, Creator configures a
cached row set data provider for you, as well as the wrapped
CachedRowSet object.

ACCESSING
DATABASES

Topics in This Chapter

Database Basics

JDBC Cached RowSet Technology

Using Data Providers

Master-Detail Relationship

SQL Query Editor

Converters

Database Operations: Update, Create, Delete
Cascading Deletes

Chapter

with databases. To that end, Creator lets you add data sources to your

projects and select them from the Servers window. Once you config-

ure a data source, you can view individual tables, field names and
data types, and actual data.

Creator also gives you components that are data aware. Using the design
canvas, you can select a number of different components and visually position
them on your web page. You can select data source tables and add them to
your application as cached rowsets, binding the components to the data using
intermediary data providers. You can visually select or deselect columns to dis-
play, add tables to create database queries with “join” commands, and modify
queries to include query parameters.

Creator relies on multiple technologies to make this all happen. Besides
using the UI components and event models that we’ve already shown you,
Creator makes use of JDBC and JDBC CachedRowSet technology to simplify
accessing the database. Furthermore, Creator adds a “data provider” layer
between the JDBC CachedRowSets and the data aware components. The data
provider layer gives you flexibility in configuring your application and lets you
isolate your client code from the persistence strategy that you choose. By using
the data provider in the web application, you can change the persistence layer
(say, use E]JBs) without changing the client code (your web application).

In this chapter, we use a Music Collection Database for the project examples.
Before we start, we review database and JDBC fundamentals and show you the
organization of our Music database.

O ne of Creator’s key goals is to simplify web application development

267

268

Chapter 9 Accessing Databases

9.1 Database Fundamentals

We begin with an overview of databases and JDBC, discussing database tables
and how to access data with JDBC. If you're already familiar with these sub-
jects, you can skip to the next section.

A relational database consists of one or more tables, where each row in a
table represents a database record and each column represents a field. Within
each table, a record must have a unique key. This key, called a primary key,
enables a database to distinguish one record from another. If a single field in a
database table does not uniquely identify a record, a composite primary key can
be used. A composite primary key combines more than one field to uniquely
identify records in a database table. Each field of a composite primary key
should be defined as a primary key.

A field within a table is either a primary key, a foreign key (used by the data-
base to reference another table), or just plain data. To set up a database table,
you must define fields so that the database software can maintain the integrity
of the database. If a field is not “just data,” then constraints are attached to the
field. The description of the table’s fields, data types, and constraints make up
the metadata associated with the table. Creator uses metadata to help you con-
figure your web application to access the database efficiently.

A very simple database consists of only a single table. However, many data-
base schemata require multiple tables to efficiently represent related data. For
example, our Music Collection database centralizes the information about each
recording artist in one table. This table also cross-references a
RecordingArtistID field in another table that stores data about a specific
recording. Thus, if a recording artist has more than one recording, you don’t
have to duplicate the recording artist information.

To achieve cross-referencing and to avoid data duplication, you can mark a
field in a database table as a foreign key. A foreign key in one table always
matches either a primary or foreign key in another table. This is what helps you
“relate” two or more tables.

Music Collection Database

The Music Collection database consists of four related tables. The database
stores information about music recordings, a generic term we apply to music
CDs and older LPs (long-playing records). Figure 9-1 shows the four tables,
the fields in each table, and how they relate to each other through the foreign
keys.

The Recordings table contains the bulk of the information about a recording.
Its primary key (denoted PK) is the field RecordingID. It has two foreign key

9.1 Database Fundamentals

Tracks Table

Music Cat . TrackID (PK)
USICT ?Olegorles . TrackNumber
able MusicCategorylD TrackTitle
MusicCategoryID (PK) | 4 TrackLength
MusicCategory RecordinglD (FK)
Many Many
Recordings Table
RecordinglID (PK)
RecordingTitle 1
Recording Artists RecorgingArtistlD ((FK))
Table MusicCategoryID (FK .
. . RecordingLabel RecordingID
RecordingArtistID (PK) Format
RecordingArtistName NumberofTracks
Notes Notes
1 Many

RecordingArtistiD

Figure 9-1 Music Collection Database Schema

fields (denoted FK): RecordingArtistID and MusicCategoryID. These foreign
key fields refer to records in the Recording Artists table and the Music Catego-
ries table, respectively. For each row in the Music Categories table, there may
be multiple rows in the Recordings table. (We indicate this relationship by
placing the word Many next to the Recordings table and the numeral 1 next to
the Music Categories table.) Similarly, for each row in the Recording Artists
table, there may be multiple rows in the Recordings table. In the diagram, we
show foreign key field names on the lines that relate two tables.

The Tracks table contains information about each track belonging to a
recording. To determine which recording a track belongs to, we include the
RecordingID as a foreign key in the Tracks table. Thus, for each row in the
Recordings table, there are multiple rows in the Tracks table.

269

270

Chapter 9 Accessing Databases

JDBC CachedRowSets

Java DataBase Connectivity (or JDBC) evolved as a standard way for Java pro-
grams to perform relational database operations. The JDBC API is database
independent and relies on a JDBC driver that translates standard JDBC calls
into specific calls required by the database it supports. Different drivers pro-
vide access to different database products.

Creator accesses the configured data sources using a CachedRowSet object, a
JavaBeans component that is scrollable, updatable, and serializable. It is gener-
ally disconnected from the database, caching its rows into memory. The web
application can modify the data in the cached rowset object. It then propagates
back to the data source through a subsequent connection. By default, Creator
instantiates a cached rowset object in session scope.

When you select a data source from Creator’s Servers window, Creator gen-
erates code in session scope to access the data source through CachedRowSet
objects. As you build the projects in this section, we’ll look at the code Creator
generates to access the data source, as well as connecting the data providers to
the cached rowset.

Now let’s build the sample data base and configure the data source.

9.2 Data Sources

The first step in our application is to create a Music database and make it avail-
able to Creator. Creator is bundled with the PointBase database server and its
JDBC driver for database access through Creator’s IDE. Creator requires JDBC
3.0-compliant drivers. As of this writing, the Creator IDE includes drivers for
DB2, Oracle, PointBase, SQLServer, and Sybase. If you are using any of these
database products, you should be able to configure Creator with the provided
drivers to access your database. You can also add drivers to the IDE.

Configuring for the PointBase Database

For our Music database example, we assume you're using the bundled Point-
Base database. Here are the steps to configure the Data Source in Creator for
PointBase.

1. Make sure that PointBase is running. If PointBase is running, the Bundled
Database Server node in the Servers window includes a green up-arrow
badge. To start the server, select the Bundled Database Server node, right-
click, and choose Start Bundled Database.

2. Open project MusicBuild. Project MusicBuild is included in the Creator
book’s download at Field Guide2/Examples/Projects/MusicBuild. When the

9.2 Data Sources 271

project comes up in the IDE, Creator displays a Reference Problems dialog.
The MusicBuild program references class com.pointbase. jdb. jdbcUni-
versalDriver to access the PointBase database server. You need to add the
appropriate JAR file to the project. Click Close to remove the dialog.

. In the Projects window expand the MusicBuild node and right-click Librar-

ies. Select Add JAR/Folder from the context menu. Creator pops up the Add
JAR/Folder dialog.

. Browse to the <Creator2 installation directory>/SunAppServer8/pointbase/

lib and select file pbclient.jar. Click Open. Creator adds the JAR file to your
project.

. The MusicBuild project is a stand-alone program that generates the sample

Music database. You can inspect the code by expanding the MusicBuild >
Source Packages > asg.databuild nodes. Double-click PBCreateMu-
sicDB.java.

. Run the project. Select the green arrow icon or select Run > Run Main Project

from the main menu. Make sure that you see the following diagnostic in the
Output window after running the application.

Music database was created.

7.

When you're finished, close the Project. Right-click on the project name and
choose Close Project.

Creator Tip —

You can run project MusicBuild multiple times to re-create the Music -
database. This is handy during testing of the projects that alter data in the &
database. ™ ’

Add Data Source

Once you've generated the sample data, you must add the Music tables as a
data source. You'll add it as a schema using the same URL (sample) as the pre-
installed database tables.

1.

2.

In the Servers window, right-click Data Sources, and select Add Data
Source.

Creator displays the Add Data Source dialog. Supply the values shown in
Table 9.1. Click Select and set the Validation Table to MUSIC.VALIDATION-
ONLY.

272 Chapter 9 Accessing Databases

Table 9.1 Add Data Source Dialog

Prompt Value
Data Source Name Music
Server Type Pointbase Bundled

Driver Class com.pointbase.jdbc.jdbcUniversalDriver

Database Name (blank)

Host Name (blank)
User ID music
Password music
Database URL jdoc:pointbase:server://localhost:29092/sample

Validation Table MUSIC.VALIDATIONONLY

3. When you're finished filling in the dialog, click Test Connection to verify
that all the values are correct. Click OK, then Add to finish.

Figure 9-2 shows the Add Data Source dialog filled in. Now when you open
the Music and Tables node, you'll see five tables in the Music database: MUS-
ICCATEGORIES, RECORDINGARTISTS, RECORDINGS, TRACKS, and VALI-
DATIONONLY (used for testing the connection).

Inspect the Data Source

As you saw from Chapter 2, you can view the actual data from a database table
interactively from the IDE. This allows a web developer to inspect the data and
experiment with queries before building an application. Let’s do that now.

1. From the Servers window, select Data Sources > Music > Tables > RECORD-
INGS. Open the RECORDINGS node (click on ‘+') and Creator displays the
field names.

2. Double-click the RECORDINGS node. Creator displays the table’s data in
the editor pane. We show this view in Figure 9-3.

The display not only shows the data, but provides an interactive query win-
dow so that you can edit and run the query. The data display provides controls
for perusing lengthy result sets. Let’s look at a second table from the Music
schema.

9.2 Data Sources 273

% Add Data Source

Drata Source Marme: | Music |

Server Tvpe: | PointBase Bundled w | [Edit...]

Driver Class: com, poinkbase, jdbe, jdbcUniversalDriver

Dakabase Name: |

|
Host Mame: | |
User I0: | music |
Password: | *ok ok |
Database LRL: | jdbc:pointbase:server:fflocalhost: 29092 sample |
Walidation Table: | MUSTC, YALIDATIONONLY | [Select]

Tesk Connection

| Add !%H Cancel H Help l

Figure 9-2 Add Data Source dialog

i} Welcome Tﬂﬂ Pagel.jsp x I@ Query 3 x [4r][=]

. *
Query: SELECT * FROM MUSIC RECORDINGS

Data Source: Music, Last Run Aug 12, 2005 115937, <] |[»= IID b‘: Rows: (25 W

RECORDIMGID RECORDIN... | RECORDIM.,. MUSICCATE.., RECORDIN... | FORMAT HLIME =
1 Orff: Carmin. .. |1 1 Sony Classical 11
z Rites of Pas... 2 z Epic 13
3 Irnagire: 3 2 “Warner Brak... 21
4 l.arla Bonoff |4 z Zolurnbia 10
5 iGraceland 5 z Warmer Brat... 11
& Congratulati... & z ARM Records 13
7 Sat. Peppet'... |7 z EMI Records 1z
o | &3 |
7 Rowis),
R

Figure 9-3 RECORDINGS Query View

1. From the Servers window, select Data Sources > Music > Table > TRACKS.

274 Chapter 9 Accessing Databases

2. Double-click the TRACKS node. Creator displays the tracks table and the
query used to read the data. It truncates the number of rows to 25. Note that
all the tracks are returned in the result set from all the recordings.

3. Add the following WHERE clause to the query (the query is case insensi-
tive).

where music.tracks.recordingid = 4

4. Click the Run Query button. Now you only see the tracks with RecordingID
equal to 4. Creator displays the new results in the data window as shown in
Figure 9-4.

[i@} Welcome % @ Query 2 x| | =]
Cuery: SELECT * FROM MUSIC TRACKS where music tracks recordingid = 4 1
Data Source: Music, Last Run Aug 18, 2005 &:49:0... <] [IE & & Rows: 525 w |
A
TRACKID TRACKNUM,,, TRACKTITLE = TRACKLENGTH RECORDINGID =
45 & Isn't It Alwa,.. |3:06 4
47 7 If He's Ever ... |3:15 4
43 & Flwing High 3T 4
49 el Falling Skar 4127 4
S0 10 Rose In My ... [4:44 4
51 1 Sormeons Ta,,, [4:03 4
52 2 ICan't Hold ... |3:42 4
53 k] Lose Again 540 4
54 5 Faces In Th... |3:04 4
55 4 Home 4:117 4
10 Rowis).
“

Figure 94 TRACKS Query View

5. Close the query windows by clicking the small ’x” on each Query tab above
the editor pane.

Creator Tip

A word about case sensitivity: database field names (RecordinglD) and table
names (RECORDINGS) are NOT generally case sensitive. Java code,
however, is. Thus, component id’s, property names, method names, variable
names, and data types are ALL case sensitive.

9.2 Data Sources

Loading Other Data Sources

If you configure Creator to use a Data Source other than PointBase, see the
sql_readme.txt file in your Creator book’s examples (FieldGuide2/Examples/
Database/utils). We also provide an SQL script (createMusicDB.sql) that you
can adapt to any SQL-compliant database. This script loads sample music data
into a Music database. After the database tables and data have been built, you
tell Creator how to access the database.

Here are the steps to configure a new (non-PointBase) Data Source in Cre-
ator.

1. In the Server Navigator window, right-click Data Sources and select Add
Data Source from the menu.

2. Under Server Type, select the database product from the dropdown list.

3. Creator supplies default values for the Host Name (localhost), Database
URL, and Driver Class. You'll need to supply values for the Data Source
Name, Database Name, User ID (if applicable), and Password (if applicable).
Figure 9-5 shows an example screen shot of the Add Data Source window.

¥ Add Data Source

[iata Source Mame: | datasourcel |

Server Type: DBz V] [Edit...]
Driver Class: Det
Cracle

Database Name: PointBase Bundled

Sybase

0N

User ID:
<Add Server Tvpe=
Password:
Database URL: I_]:dbc:sun:db2:,|',|'|oca-IHE|;E:SDDDD;Database.r_d‘.;ﬁ'.ug;databasel
‘alidation Table: | | [Select]

Test Conneckion

Add H Cancel][Help]

Figure 9-5 Add Data Source window

4. Use Test Connection to verify that Creator has all the information it needs to
establish a connection to the database.

5. If the Test Connection succeeds, click Add. You should see the newly added
Data Source under the Data Sources node in the Servers window.

275

276

Chapter 9 Accessing Databases

9.3 Accessing the Music Database

Now that you have a configured database, let’s use Creator’s data-aware com-
ponents to access it. You'll build several small projects that will help you learn
about the Creator cached row set data provider, the data base row sets, and the
data-aware components.

Create a New Project

In this section, you'll create a very simple project that reads the Music Collec-
tion database and displays the records in a table component. You'll see that
with minimum configuration of the table layout and the underlying SQL
query, you can get a nicely formatted display.

1. From Creator’s Welcome Page, select button Create New Project. From the
New Project dialog, under Categories select Web and under Projects select
JSF Web Application. Click Next.

2. In the New Web Application dialog, specify MusicRead1 for Project Name
and click Finish.

After creating the project, Creator comes up in the design view of the editor
pane. You can now set the title.

3. Select Title in the Properties window and type in the text Music Read 1. Fin-
ish by pressing <Enter>.

Add Components

Add a label component to place a title on the page and a table component to
hold the data.

1. From the Basic Components palette, select Label and drop it on the page
near the top.

2. Make sure that it is still selected and type in the text Music Collection Data-
base - Read followed by <Enter>.

3. In the Properties window opposite property labelLevel select option
Strong(1) from the drop down menu.

4. From the Basic Components palette, select component Table and drop it on
the page under the label component you just added. Creator builds a table
with default column and rows. Creator also adds a non-visual component, a
default table data provider, which you can see in the Pagel Outline view.

9.3 Accessing the Music Database 277

5. The table title is selected for you. Change the title to Recordings. Figure 9-6
shows the design view after adding the table component with its default
row and column configuration.

'-i@i-w'élcome x I_El Pagel x| -
|pesign| 1P 1ava &3 4 1 |Any Size v

Recordings

) | columni i | columnz2 +, | column3 i
) rowl_column? rowl_column rowi_column3 | - o
. E‘ row2_colurmni | row3_colurmn2 row2_columnd |70 o

: row3_columni - row3_column2 row3_column3

- rowd_columni ' rowd_column2 | rowd_column3
' ;r_uijculymm rowS_column2 :ruwﬁ_culumnS _' B B '
| g—————— L et IR

Figure 9—6 Default table component

Add a Database Table

Since you configured the Music Database source, you can now add it to your
project by dragging and dropping a table onto the page.

1. From Servers window, expand Data Sources > Music > Tables nodes.
2. Select table RECORDINGS and drop it on top of the table component.

Creator Tip

Make sure that the entire table component is selected (it should be outlined in
blue) before releasing the mouse. Otherwise Creator will display a Choose

Target dialog. If you see this, select radio button tablel (Render a table) and
click OK.

When you drop the database table onto the the table component, Creator
configures the table component to accommodate the RECORDINGS data and
generates supporting components and code for you as well.

278

Chapter 9 Accessing Databases

¢ The table component now contains a column for each field in the
RECORDINGS table and each column heading contains the name of the
field.

* The table row group component specifies the data provider for the table. To
see this, click on the tableRowGroupl component under tablel in the
Outline view. In the Properties window under Data, examine properties
sourceData (the data provider for this table) and sourcevar (how you
access the data).

* Creator generates static text components to display data for each column.
Select a static text component under one of the table column components in
the Pagel Outline view. In the Properties view, hold the cursor over the text
property. You see the following binding expression.

#{currentRow.value [’ RECORDINGS. fieldname’]}

Token fieldname is the matching field name in the RECORDINGS table
and currentRow specifies the current row of the data provider.

* Creator generates a cached row set data provider to wrap the row set object
that communicates directly to the database source. You can see the cached
row set data provider in the Outline view for Pagel (component
recordingsDataProvider).

* Creator generates a CachedRowSet object in session scope to communicate
directly with the database. In the Outline view under SessionBeanl you can
see component recordingsRowSet.

Creator Tip

If the cached row set already exists in session scope (from a previous Data
Source selection added to your project), Creator will ask you how to configure
the new cached row set object. For example, if you add the RECORDINGS
table to the page again, Creator pops up the Add New Data Provider with
RowSet for Table RECORDINGS dialog as shown in Figure 9—7. The default
selection uses the same RowSet object already configured in session scope.
The other choice is to create a new RowSet object in the Pagel, RequestBean1,
SessionBean1, or ApplicationBean1 bean. You can use the same RowSet
object if the SQL query is the the same and the scoping requirements are the
same. Otherwise, select the scope that matches the requirements of your
application and edit the SQL query as needed.

Before proceeding, let’s look at the Java code Creator generates for you.

9.3 Accessing the Music Database

% Add New Data Provider with RowSet for Table RECORDINGS g|

For this new Data Provider, vwou can reuse an exisitng rawset or create a new one.
If wou have already created a Data Provider For this table and desire ko bind a component, wou
should instead select the component and use its context menu to Bind to Data ...

[(@) Use SessionBean]

2 SELECT * FROM MUSIC.RECORDINGS
recordingsRowSet

(") Create Pagel

r - SELECT * FROM MUSIC.RECORDINGS
| recordingsRowSet

() Create RequestBeant

; -~ SELECT * FROM MUSIC.RECORDINGS
| recordingsRowSet

() Create SessionBeanl

- -~ SELECT * FROM MUSIC.RECCRDINGS
| recordingsRowSetl

() Create &pplicationBeanl

f - SELECT * FROM MUSIC.RECORDINGS
| recordingsRowSet

This check can be disabled by Tools-=0ptions, Advanced, Data Sources

[[a]4][Cancel][Help

Figure 9-7 Add New Data Provider with RowSet dialog

1. Select the Java button in the editing toolbar. Creator brings up Pagel.java in
the editor pane.

2. In the Navigator window, double-click the private method init (), which
takes you to the method in the editor pane. Here is the code that connects
the data provider, recordingsDataProvider, to the cached row set in ses-
sion scope (recordingsRowSet).

private void 1init() throws Exception {
recordingsDataProvider.setCachedRowSet (
(javax.sgl.rowset.CachedRowSet) getValue (
"#{SessionBeanl.recordingsRowSet}")) ;

3. Now examine the Java code for SessionBeanl. In the Projects view, expand
the MusicRead1 node.

4. Double-click the Session Bean node. Creator brings up SessionBeanl.java in
the editor pane.

279

280 Chapter 9 Accessing Databases

5. In the Navigator window, double-click the private method init (), which
takes you to the method in the editor pane. Here is the code that initializes
the cached row set. Method setCommand () configures the SQL query.

private void init() throws Exception {
recordingsRowSet.setDataSourceName (
"Java:comp/env/jdbc/Music") ;
recordingsRowSet.setCommand (
"SELECT * FROM MUSIC.RECORDINGS") ;
recordingsRowSet.setTableName ("RECORDINGS") ;
}

Add a Message Group Component

It’s a good idea to add a message group component to your web application to
display possible error messages.

1. Return to the Pagel.jsp design view. Click the Pagel tab above the editor
pane and then click the Design button in the editing toolbar.

2. From the Basic Components palette, select Message Group and place it on
the page to the right of the page’s title label. You may need to move the table
component down to make room.

Deploy and Run

Deploy and run project MusicReadl. You'll see the entire RECORDINGS table
displayed on the web page, including the primary key field and both foreign
key fields. You've done no configuration of the data displayed, and some of the
fields are more confusing than helpful. Let's modify the query, alter the table
layout, and see if we can improve this display.

Query and Table Configuration

Note that two columns display foreign keys: RecordingArtistID and MusicCat-
egorylD. Let’s show the actual recording artist name and the music category
label instead of numbers that represent foreign keys. To accomplish this, you
add two tables to the query, creating an inner join clause.

1. From the Outline view, expand SessionBean1 and double-click the cached
row set component, recordingsRowSet. This brings up Creator’s Query Edi-
tor in the editor pane, as shown in Figure 9-8. (Close the Output window to
make more room for the query editor.)

The Q