
TEAMFL
Y

Team-Fly®

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:i

Java™ 2:
A Beginner’s Guide

Second Edition

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:iii

Java™ 2:
A Beginner’s Guide

Second Edition

Herbert Schildt

McGraw-Hill/Osborne

New York Chicago San Francisco

Lisbon London Madrid Mexico City

Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2003 by The McGraw-Hill Companies, Inc.]. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-223041-X

The material in this eBook also appears in the print version of this title: 0-07-222588-2

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007223041X

ebook_copyright 7.5x9.qxd 7/8/03 8:46 AM Page 1

About the Author
Herbert Schildt is the world’s leading programming author.

He is an authority on the C, C++, Java, and C# languages, and is a

master Windows programmer. His programming books have sold

more than 3 million copies worldwide and have been translated

into all major foreign languages. He is the author of numerous

bestsellers, including Java 2: The Complete Reference, Java 2:

A Beginner’s Guide, Java 2 Programmer’s Reference, C++: The

Complete Reference, C: The Complete Reference, and C#: The

Complete Reference. Schildt holds a master’s degree in computer

science from the University of Illinois. He can be reached at his

consulting office at (217) 586-4683.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:v

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio FM:vii

vii

Contents at a Glance

1 Java Fundamentals . 1

2 Introducing Data Types and Operators . 35

3 Program Control Statements . 71

4 Introducing Classes, Objects, and Methods . 115

5 More Data Types and Operators . 151

6 A Closer Look at Methods and Classes . 195

7 Inheritance . 239

8 Packages and Interfaces . 289

9 Exception Handling . 321

10 Using I/O . 353

11 Multithreaded Programming . 395

12 Applets, Events, and Miscellaneous Topics . 435

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:viii

A Answers to Mastery Checks . 467

B Using Java’s Documentation Comments . 503

Index . 511

viii Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio FM:ix

ix

Contents

PREFACE . xix

1 Java Fundamentals . 1

The Origins of Java . 2

How Java Relates to C and C++ . 3

How Java Relates to C# . 4

Java’s Contribution to the Internet . 5

Java Applets and Applications . 5

Security . 5

Portability . 6

Java’s Magic: The Bytecode . 6

The Java Buzzwords . 7

Object-Oriented Programming . 8

Encapsulation . 9

Polymorphism . 10

Inheritance . 10

Obtaining the Java Software Developer’s Kit . 12

A First Simple Program . 12

Entering the Program . 13

Compiling the Program . 13

The First Sample Program Line by Line . 14

Handling Syntax Errors . 17

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:x

x Java 2: A Beginner’s Guide

A Second Simple Program . 17

Another Data Type . 20

Project 1-1 Converting Gallons to Liters . 22

Two Control Statements . 23

The if Statement . 23

The for Loop . 25

Create Blocks of Code . 27

Semicolons and Positioning . 29

Indentation Practices . 29

Project 1-2 Improving the Gallons-to-Liters Converter . 30

The Java Keywords . 32

Identifiers in Java . 32

The Java Class Libraries . 33

Module 1 Mastery Check . 34

2 Introducing Data Types and Operators . 35

Why Data Types Are Important . 36

Java’s Simple Types . 36

Integers . 37

Floating-Point Types . 38

Characters . 40

The Boolean Type . 41

Project 2-1 How Far Away Is the Lightning? . 43

Literals . 44

Hexadecimal and Octal Constants . 44

Character Escape Sequences . 45

String Literals . 45

A Closer Look at Variables . 47

Initializing a Variable . 47

Dynamic Initialization . 48

The Scope and Lifetime of Variables . 49

Operators . 52

Arithmetic Operators . 52

Increment and Decrement . 54

Relational and Logical Operators . 55

Short-Circuit Logical Operators . 57

The Assignment Operator . 58

Shorthand Assignments . 60

Type Conversion in Assignments . 61

Casting Incompatible Types . 62

Operator Precedence . 64

Project 2-2 Display a Truth Table for the Logical Operators . 65

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Contents xi

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xi

Expressions . 66

Type Conversion in Expressions . 66

Spacing and Parentheses . 68

Module 2 Mastery Check . 69

3 Program Control Statements . 71

Input Characters from the Keyboard . 72

The if Statement . 74

Nested ifs . 75

The if-else-if Ladder . 76

The switch Statement . 78

Nested switch Statements . 82

Project 3-1 Start Building a Java Help System . 83

The for Loop . 86

Some Variations on the for Loop . 87

Missing Pieces . 88

Loops with No Body . 90

Declaring Loop Control Variables Inside the for Loop . 91

The while Loop . 92

The do-while Loop . 94

Project 3-2 Improve the Java Help System . 97

Use break to Exit a Loop . 100

Use break as a Form of goto . 102

Use continue . 106

Project 3-3 Finish the Java Help System . 109

Nested Loops . 112

Module 3 Mastery Check . 113

4 Introducing Classes, Objects, and Methods . 115

Class Fundamentals . 116

The General Form of a Class . 116

Defining a Class . 117

How Objects Are Created . 121

Reference Variables and Assignment . 121

Methods . 122

Adding a Method to the Vehicle Class . 123

Returning from a Method . 125

Returning a Value . 126

Using Parameters . 129

Adding a Parameterized Method to Vehicle . 130

Project 4-1 Creating a Help Class . 133

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xii

xii Java 2: A Beginner’s Guide

Constructors . 139

Parameterized Constructors . 140

Adding a Constructor to the Vehicle Class . 141

The new Operator Revisited . 142

Garbage Collection and Finalizers . 143

The finalize() Method . 144

Project 4-2 Demonstrate Finalization . 145

The this Keyword . 147

Module 4 Mastery Check . 149

5 More Data Types and Operators . 151

Arrays . 152

One-Dimensional Arrays . 152

Project 5-1 Sorting an Array . 156

Multidimensional Arrays . 158

Two-Dimensional Arrays . 158

Irregular Arrays . 160

Arrays of Three or More Dimensions . 161

Initializing Multidimensional Arrays . 161

Alternative Array Declaration Syntax . 163

Assigning Array References . 164

Using the length Member . 165

Project 5-2 A Queue Class . 168

Strings . 172

Constructing Strings . 172

Operating on Strings . 173

Arrays of Strings . 176

Strings Are Immutable . 176

Using Command-Line Arguments . 178

The Bitwise Operators . 180

The Bitwise AND, OR, XOR, and NOT Operators . 180

The Shift Operators . 185

Bitwise Shorthand Assignments . 187

Project 5-3 A ShowBits Class . 188

The ? Operator . 191

Module 5 Mastery Check . 193

6 A Closer Look at Methods and Classes . 195

Controlling Access to Class Members . 196

Java’s Access Specifiers . 196

Project 6-1 Improving the Queue Class . 202

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents xiii

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xiii

Pass Objects to Methods . 203

How Arguments Are Passed . 205

Returning Objects . 208

Method Overloading . 210

Overloading Constructors . 216

Project 6-2 Overloading the Queue Constructor . 219

Recursion . 222

Understanding static . 224

Static Blocks . 227

Project 6-3 The Quicksort . 229

Introducing Nested and Inner Classes . 232

Module 6 Mastery Check . 236

7 Inheritance . 239

Inheritance Basics . 240

Member Access and Inheritance . 243

Constructors and Inheritance . 246

Using super to Call Superclass Constructors . 248

Using super to Access Superclass Members . 254

Project 7-1 Extending the Vehicle Class . 255

Creating a Multilevel Hierarchy . 258

When Are Constructors Called? . 261

Superclass References and Subclass Objects . 262

Method Overriding . 268

Overridden Methods Support Polymorphism . 271

Why Overridden Methods? . 273

Applying Method Overriding to TwoDShape . 273

Using Abstract Classes . 278

Using final . 283

final Prevents Overriding . 283

final Prevents Inheritance . 283

Using final with Data Members . 284

The Object Class . 286

Module 7 Mastery Check . 287

8 Packages and Interfaces . 289

Packages . 290

Defining a Package . 290

Finding Packages and CLASSPATH . 292

A Short Package Example . 292

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xiv

xiv Java 2: A Beginner’s Guide

Packages and Member Access . 294

A Package Access Example . 295

Understanding Protected Members . 297

Importing Packages . 299

Java’s Class Library Is Contained in Packages . 302

Interfaces . 303

Implementing Interfaces . 304

Using Interface References . 308

Project 8-1 Creating a Queue Interface . 310

Variables in Interfaces . 316

Interfaces Can Be Extended . 317

Module 8 Mastery Check . 318

9 Exception Handling . 321

The Exception Hierarchy . 322

Exception Handling Fundamentals . 322

Using try and catch . 323

A Simple Exception Example . 324

The Consequences of an Uncaught Exception . 327

Exceptions Enable You to Handle Errors Gracefully . 328

Using Multiple catch Statements . 330

Catching Subclass Exceptions . 331

Try Blocks Can Be Nested . 332

Throwing an Exception . 334

Rethrowing an Exception . 334

A Closer Look at Throwable . 336

Using finally . 338

Using throws . 340

Java’s Built-in Exceptions . 342

Creating Exception Subclasses . 344

Project 9-1 Adding Exceptions to the Queue Class . 347

Module 9 Mastery Check . 350

10 Using I/O . 353

Java’s I/O Is Built upon Streams . 354

Byte Streams and Character Streams . 354

The Byte Stream Classes . 355

The Character Stream Classes . 355

The Predefined Streams . 355

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents xv

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xv

Using the Byte Streams . 358

Reading Console Input . 358

Writing Console Output . 360

Reading and Writing Files Using Byte Streams . 361

Inputting from a File . 362

Writing to a File . 364

Reading and Writing Binary Data . 366

Project 10-1 A File Comparison Utility . 370

Random Access Files . 372

Using Java’s Character-Based Streams . 375

Console Input Using Character Streams . 376

Console Output Using Character Streams . 379

File I/O Using Character Streams . 381

Using a FileWriter . 381

Using a FileReader . 382

Using Java’s Type Wrappers to Convert Numeric Strings . 384

Project 10-2 Creating a Disk-Based Help System . 387

Module 10 Mastery Check . 394

11 Multithreaded Programming . 395

Multithreading Fundamentals . 396

The Thread Class and Runnable Interface . 397

Creating a Thread . 398

Some Simple Improvements . 401

Project 11-1 Extending Thread . 403

Creating Multiple Threads . 406

Determining When a Thread Ends . 409

Thread Priorities . 412

Synchronization . 416

Using Synchronized Methods . 416

The synchronized Statement . 419

Thread Communication Using notify(), wait(), and notifyAll() 422

An Example That Uses wait() and notify() . 423

Suspending, Resuming, and Stopping Threads . 428

Project 11-2 Using the Main Thread . 432

Module 11 Mastery Check . 434

12 Applets, Events, and Miscellaneous Topics . 435

Applet Basics . 436

Applet Organization and Essential Elements . 440

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xvi

xvi Java 2: A Beginner’s Guide

The Applet Architecture . 440

A Complete Applet Skeleton . 441

Applet Initialization and Termination . 442

Requesting Repainting . 443

The update() Method . 444

Project 12-1 A Simple Banner Applet . 445

Using the Status Window . 449

Passing Parameters to Applets . 450

The Applet Class . 452

Event Handling . 454

The Delegation Event Model . 454

Events . 454

Event Sources . 455

Event Listeners . 455

Event Classes . 455

Event Listener Interfaces . 456

Using the Delegation Event Model . 458

Handling Mouse Events . 458

A Simple Mouse Event Applet . 459

More Java Keywords . 462

The transient and volatile Modifiers . 462

instanceof . 463

strictfp . 463

assert . 463

Native Methods . 465

What Next? . 465

Module 12 Mastery Check . 466

A Answers to Mastery Checks . 467

Module 1: Java Fundamentals . 468

Module 2: Introducing Data Types and Operators. 470

Module 3: Program Control Statements. 472

Module 4: Introducing Classes, Objects, and Methods . 475

Module 5: More Data Types and Operators. 476

Module 6: A Closer Look at Methods and Classes . 479

Module 7: Inheritance . 484

Module 8: Packages and Interfaces . 486

Module 9: Exception Handling . 487

Module 10: Using I/O . 490

Module 11: Multithreaded Programming . 494

Module 12: Applets, Events, and Miscellaneous Topics . 496

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

B Using Java’s Documentation Comments . 503

The javadoc Tags . 504

@author . 505

@deprecated . 505

{@docRoot} . 505

@exception . 506

{@inheritDoc} . 506

{@link} . 506

{@linkplain} . 506

@param . 506

@return . 507

@see . 507

@serial . 507

@serialData . 507

@serialField . 508

@since . 508

@throws . 508

{@value} . 508

@version . 508

The General Form of a Documentation Comment . 509

What javadoc Outputs . 509

An Example that Uses Documentation Comments . 509

Index . 511

Contents xvii

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xvii

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xix

Preface

In the space of a few short years, Java went from relative obscurity to being the most important

language of the Internet. The impact of Java cannot be understated. It transformed the Web into

a highly interactive environment, setting a new standard in computer language design in the

process. The innovative aspects of Java have already changed the course of programming well

into the foreseeable future. Therefore, if Internet-based programming is in your future, you have

chosen the right language to learn—and this book will help you learn it.

The purpose of this book is to teach you the fundamentals of Java programming. It uses a

step-by-step approach complete with numerous examples, self-tests, and projects. It assumes no

previous programming experience. The book starts with the basics, such as how to compile and

run a Java program. It then discusses every keyword in the Java language. It concludes with

some of Java’s most advanced features, such as multithreaded programming and creating applets.

By the time you finish, you will have a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is more than

just the elements that define the language. Java also includes extensive libraries and tools that

aid in the development of programs. Furthermore, Java provides a sophisticated set of libraries

that handle the browser user interface. To be a top-notch Java programmer implies mastery of

these areas, too. After completing this book you will have the knowledge to pursue any and all

other aspects of Java.

xix

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xx

How This Book Is Organized
This book presents an evenly paced tutorial in which each section builds upon the previous

one. It contains 12 modules, each discussing an aspect of Java. This book is unique because it

includes several special elements that reinforce what you are learning.

Critical Skills
Each module begins with a set of critical skills that you will be learning. The location of each

skill is indicated within the module.

Mastery Check
Each module concludes with a Mastery Check, a list of questions that lets you test your

knowledge. The answers are in Appendix A.

Progress Checks
At the end of each major section is a “Progress Check” that tests your understanding of the key

points that were presented. The answers to these questions are at the bottom of the page.

Ask the Expert
Sprinkled throughout the book are “Ask the Expert” boxes. These contain additional

information or interesting commentary about a topic. They use a question-and-answer format.

Projects
Each module contains one or more projects that show you how to apply what you are learning.

These are real-world examples that you can use as starting points for your own programs.

No Previous Programming
Experience Required

This book assumes no previous programming experience. Thus, if you have never programmed

before, you can use this book. Of course, in this day and age, most readers will have at least a

little prior programming experience. For many, this previous experience will be in C++. As you

will learn, C++ and Java are related. Therefore, if you already know C++, then you will be able

xx Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

to learn Java very easily. Since many readers will have some C++ experience, similarities

between C++ and Java are pointed out from time to time throughout the book.

Required Software
To compile and run the programs in this book you will need the latest Java Software

Developers Kit (SDK) from Sun, which at the time of this writing is Java 2, version 1.4.

Instructions for obtaining the Java SDK are given in Module 1.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples and projects in this book is available free

of charge on the Web at www.osborne.com.

Preface xxi

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xxi

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / Front Matter
Blind Folio FM:xxii

For Further Study
Java 2: A Beginner’s Guide is your gateway to the Herb Schildt series of programming books.

Here are some others that you will find of interest.

To learn more about Java programming, we recommend the following:

● Java 2: The Complete Reference

● Java 2 Programmer’s Reference

To learn about C++, you will find these books especially helpful.

● C++: The Complete Reference

● Teach Yourself C++

● C++ from the Ground Up

● STL Programming from the Ground Up

● C/C++ Annotated Archives

To learn about C#, we suggest the following Schildt books:

● C#: A Beginner’s Guide

● C#: The Complete Reference

If you want to learn more about the C language, then the following titles will be of interest.

● C: The Complete Reference

● Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt, the

recognized authority on programming.

xxii Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\fm.vp
Wednesday, October 16, 2002 11:51:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:1

Module1
Java Fundamentals

CRITICAL SKILLS
1.1 Know the history and philosophy of Java

1.2 Understand Java’s contribution to the Internet

Understand the importance of bytecode

Know the Java buzzwords

1.5 Understand the foundational principles of object-oriented programming

1.6 Create, compile, and run a simple Java program

1.7 Use variables

1.8 Use the if and for control statements

1.9 Create blocks of code

1.10 Understand how statements are positioned, indented, and terminated

1.11 Know the Java keywords

1.12 Understand the rules for Java identifiers

1

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:2

2 Module 1: Java Fundamentals

The rise of the Internet and the World Wide Web have fundamentally reshaped computing.

Only a few short years ago, the cyber landscape was dominated by stand-alone PCs. Today,

nearly all PCs are connected to the Internet. The Internet, itself, was transformed—originally

offering a convenient way to share files and information, today it is a vast, distributed computing

universe. These changes have been as rapid as they have been profound, and in their wake,

they gave rise to a new way to program: Java.

Java is the preeminent language of the Internet, but it is more than that. Java has

revolutionized programming, changing the way that we think about both the form and

the function of a program. To be a professional programmer today implies the ability to

program in Java—it has become that important. In the course of this book, you will learn

the skills needed to master it.

The purpose of this module is to introduce you to Java, including its history, its design

philosophy, and several of its most important features. By far, the hardest thing about learning a

programming language is the fact that no element exists in isolation. Instead, the components of

the language work in conjunction with each other. This interrelatedness is especially pronounced

in Java. In fact, it is difficult to discuss one aspect of Java without involving others. To help

overcome this problem, this module provides a brief overview of several Java features,

including the general form of a Java program, some basic control structures, and operators.

It does not go into too many details but, rather, concentrates on the general concepts common

to any Java program.

CRITICAL SKILL

1.1 The Origins of Java
Computer language innovation is driven forward by two factors: improvements in the art of

programming and changes in the computing environment. Java is no exception. Building upon

the rich legacy inherited from C and C++, Java adds refinements and features that reflect the

current state of the art in programming. Responding to the rise of the online environment, Java

offers features that streamline programming for a highly distributed architecture.

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and

Mike Sheridan at Sun Microsystems in 1991. This language was initially called “Oak” but

was renamed “Java” in 1995. Somewhat surprisingly, the original impetus for Java was not

the Internet! Instead, the primary motivation was the need for a platform-independent language

that could be used to create software to be embedded in various consumer electronic devices,

such as toasters, microwave ovens, and remote controls. As you can probably guess, many

different types of CPUs are used as controllers. The trouble was that most computer languages

are designed to be compiled for a specific target. For example, consider C++.

Although it is possible to compile a C++ program for just about any type of CPU, to do so

requires a full C++ compiler targeted for that CPU. The problem, however, is that compilers

are expensive and time-consuming to create. In an attempt to find a better solution, Gosling

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 3

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:3

1

Ja
va

Fu
nd

am
en

ta
ls

and others worked on a portable, cross-platform language that could produce code that would

run on a variety of CPUs under differing environments. This effort ultimately led to the creation

of Java.

About the time that the details of Java were being worked out, a second, and ultimately

more important, factor emerged that would play a crucial role in the future of Java. This

second force was, of course, the World Wide Web. Had the Web not taken shape at about the

same time that Java was being implemented, Java might have remained a useful but obscure

language for programming consumer electronics. However, with the emergence of the Web,

Java was propelled to the forefront of computer language design, because the Web, too,

demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they

are desirable. While the quest for a way to create efficient, portable (platform-independent)

programs is nearly as old as the discipline of programming itself, it had taken a back seat to

other, more pressing problems. However, with the advent of the Internet and the Web, the old

problem of portability returned with a vengeance. After all, the Internet consists of a diverse,

distributed universe populated with many types of computers, operating systems, and CPUs.

What was once an irritating but a low-priority problem had become a high-profile necessity.

By 1993 it became obvious to members of the Java design team that the problems of

portability frequently encountered when creating code for embedded controllers are also found

when attempting to create code for the Internet. This realization caused the focus of Java to

switch from consumer electronics to Internet programming. So, while it was the desire for an

architecture-neutral programming language that provided the initial spark, it was the Internet

that ultimately led to Java’s large-scale success.

How Java Relates to C and C++
Java is directly related to both C and C++. Java inherits its syntax from C. Its object model is

adapted from C++. Java’s relationship with C and C++ is important for several reasons. First,

many programmers are familiar with the C/C++ syntax. This makes it easy for a C/C++

programmer to learn Java and, conversely, for a Java programmer to learn C/C++.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further refined an

already highly successful programming paradigm. The modern age of programming began

with C. It moved to C++, and now to Java. By inheriting and building upon that rich heritage,

Java provides a powerful, logically consistent programming environment that takes the best of

the past and adds new features required by the online environment. Perhaps most important,

because of their similarities, C, C++, and Java define a common, conceptual framework for

the professional programmer. Programmers do not face major rifts when switching from one

language to another.

One of the central design philosophies of both C and C++ is that the programmer is in

charge! Java also inherits this philosophy. Except for those constraints imposed by the Internet

environment, Java gives you, the programmer, full control. If you program well, your programs

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:4

reflect it. If you program poorly, your programs reflect that, too. Put differently, Java is not a

language with training wheels. It is a language for professional programmers.

Java has one other attribute in common with C and C++: it was designed, tested, and refined

by real, working programmers. It is a language grounded in the needs and experiences of the

people who devised it. There is no better way to produce a top-flight professional programming

language.

Because of the similarities between Java and C++, especially their support for object-

oriented programming, it is tempting to think of Java as simply the “Internet version of C++.”

However, to do so would be a mistake. Java has significant practical and philosophical differences.

Although Java was influenced by C++, it is not an enhanced version of C++. For example, it is

neither upwardly nor downwardly compatible with C++. Of course, the similarities with C++

are significant, and if you are a C++ programmer, you will feel right at home with Java.

Another point: Java was not designed to replace C++. Java was designed to solve a certain set

of problems. C++ was designed to solve a different set of problems. Both will coexist for

many years to come.

How Java Relates to C#
Recently a new language called C# has come on the scene. Created by Microsoft to support

its .NET Framework, C# is closely reated to Java. In fact, many of C#’s features were directly

adapted from Java. Both Java and C# share the same general C++-style syntax, support

distributed programming, and utilize the same object model. There are, of course, differences

between Java and C#, but the overall “look and feel” of these languages is very similar. This

means that if you already know C#, then learning Java will be especially easy. Conversely, if

C# is in your future, then your knowledge of Java will come in handy.

Given the similarity between Java and C#, one might naturally ask, “Will C# replace

Java?” The answer is No. Java and C# are optimized for two different types of computing

environments. Just as C++ and Java will co-exist for a long time to come, so will C# and Java.

Progress Check
1. Java is useful for the Internet because it can produce _____________ programs.

2. Java is the direct descendent of what languages?

4 Module 1: Java Fundamentals

1. Portable

2. C and C++

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 5

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:5

1

Ja
va

Fu
nd

am
en

ta
ls

CRITICAL SKILL

1.2 Java’s Contribution to the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn, has had a

profound effect on the Internet. The reason for this is quite simple: Java expands the universe

of objects that can move about freely in cyberspace. In a network, there are two very broad

categories of objects that are transmitted between the server and your personal computer:

passive information and dynamic, active programs. For example, when you read your e-mail,

you are viewing passive data. Even when you download a program, the program’s code is still

only passive data until you execute it. However, a second type of object can be transmitted to

your computer: a dynamic, self-executing program. Such a program is an active agent on the

client computer, yet it is initiated by the server. For example, a program might be provided by

the server to properly display the data that it is sending.

As desirable as dynamic, networked programs are, they also present serious problems in

the areas of security and portability. Prior to Java, cyberspace was effectively closed to half

of the entities that now live there. As you will see, Java addresses those concerns and, in doing

so, has defined a new form of program: the applet.

Java Applets and Applications
Java can be used to create two types of programs: applications and applets. An application is

a program that runs on your computer, under the operating system of that computer. An application

created by Java is more or less like one created using any other type of computer language,

such as Visual Basic or C++. When used to create applications, Java is not much different

from any other computer language. Rather, it is Java’s ability to create applets that makes it

important. An applet is an application designed to be transmitted over the Internet and executed

by a Java-compatible Web browser. Although any computer language can be used to create an

application, only Java can be used to create an applet. The reason is that Java solves two of the

thorniest problems associated with applets: security and portability. Before continuing, let’s

define what these two terms mean relative to the Internet.

Security
As you are almost certainly aware, every time you download a “normal” program, you are

risking a viral infection. Prior to Java, most users did not download executable programs

frequently, and those that did, scanned them for viruses prior to execution. Even so, most users

still worried about the possibility of infecting their systems with a virus or allowing a malicious

program to run wild in their systems. (A malicious program might gather private information,

such as credit card numbers, bank account balances, and passwords by searching the contents

of your computer’s local file system.) Java answers these concerns by providing a firewall

between a networked application and your computer.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:6

6 Module 1: Java Fundamentals

When using a Java-compatible web browser, it is possible to safely download Java applets

without fear of viral infection. The way that Java achieves this is by confining a Java program

to the Java execution environment and not allowing it access to other parts of the computer.

(You will see how this is accomplished, shortly.) Frankly, the ability to download applets with

confidence that no harm will be done to the client computer is the single most important aspect

of Java.

Portability
As discussed earlier, many types of computers and operating systems are connected to the

Internet. For programs to be dynamically downloaded to all of the various types of platforms,

some means of generating portable executable code is needed. As you will soon see, the same

mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to

these two problems is both elegant and efficient.

CRITICAL SKILL

1.3 Java’s Magic: The Bytecode
The key that allows Java to solve both the security and the portability problems just described

is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is

a highly optimized set of instructions designed to be executed by the Java run-time system,

which is called the Java Virtual Machine (JVM). That is, in its standard form, the Java Virtual

Machine is an interpreter for bytecode. This may come as a bit of a surprise. As you know,

most modern languages, such as C++, are designed to be compiled, not interpreted—mostly

because of performance concerns. However, the fact that a Java program is executed by the

JVM helps solve the major problems associated with downloading programs over the Internet.

Here is why.

Translating a Java program into bytecode makes it much easier to run a program in a wide

variety of environments. The reason is straightforward: only the Java Virtual Machine needs to

be implemented for each platform. Once the run-time package exists for a given system, any

Java program can run on it. Remember that although the details of the JVM will differ from

platform to platform, all interpret the same Java bytecode. If a Java program were compiled to

native code, then different versions of the same program would have to exist for each type of

CPU connected to the Internet. This is, of course, not a feasible solution. Thus, the interpretation

of bytecode is the easiest way to create truly portable programs.

The fact that a Java program is interpreted also helps make it secure. Because the execution

of every Java program is under the control of the JVM, the JVM can contain the program and

prevent it from generating side effects outside the system. Safety is also enhanced by certain

restrictions that exist in the Java language.

When a program is interpreted, it generally runs substantially slower than the same program

would run if compiled to executable code. However, with Java, the differential between the

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 7

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:7

1

Ja
va

Fu
nd

am
en

ta
ls

two is not so great. The use of bytecode makes it possible for the Java run-time system to

execute programs much faster than you might expect.

Although Java was designed for interpretation, there is technically nothing about Java that

prevents on-the-fly compilation of bytecode into native code. Along these lines, Sun supplies a

JIT (Just In Time) compiler for bytecode. When the JIT compiler is part of the JVM, it compiles

bytecode into executable code in real time, on a piece-by-piece, demand basis. It is important

to understand that it is not possible to compile an entire Java program into executable code all

at once because Java performs various checks that can be performed only at run time. Instead,

the JIT compiles code as it is needed, during execution. The just-in-time approach still yields a

significant performance boost, though. Even when dynamic compilation is applied to bytecode,

the portability and safety features will still apply, because the run-time system (which performs

the compilation) will still be in charge of the execution environment. Whether your Java

program is actually interpreted in the traditional way, or compiled on-the-fly, its functionality

is the same.

CRITICAL SKILL

1.4 The Java Buzzwords
No overview of Java is complete without a look at the Java buzzwords. Although the

fundamental forces that necessitated the invention of Java are portability and security, other

factors played an important role in molding the final form of the language. The key

considerations were summed up by the Java design team in the following list of buzzwords.

Simple Java has a concise, cohesive set of features that makes it easy to learn
and use.

Secure Java provides a secure means of creating Internet applications.

Portable Java programs can execute in any environment for which there is a Java
run-time system.

Object-oriented Java embodies the modern, object-oriented programming philosophy.

Robust Java encourages error-free programming by being strictly typed and
performing run-time checks.

Multithreaded Java provides integrated support for multithreaded programming.

Architecture-neutral Java is not tied to a specific machine or operating system architecture.

Interpreted Java supports cross-platform code through the use of Java bytecode.

High performance The Java bytecode is highly optimized for speed of execution.

Distributed Java was designed with the distributed environment of the Internet in mind.

Dynamic Java programs carry with them substantial amounts of run-time type
information that is used to verify and resolve accesses to objects at run time.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:8

Progress Check
1. What is an applet?

2. What is Java bytecode?

3. The use of bytecode helps solve what two Internet programming problems?

CRITICAL SKILL

1.5 Object-Oriented Programming
At the center of Java is object-oriented programming (OOP). The object-oriented methodology

is inseparable from Java, and all Java programs are, to at least some extent, object-oriented.

Because of OOP’s importance to Java, it is useful to understand OOP’s basic principles before

you write even a simple Java program.

OOP is a powerful way to approach the job of programming. Programming methodologies

have changed dramatically since the invention of the computer, primarily to accommodate

the increasing complexity of programs. For example, when computers were first invented,

programming was done by toggling in the binary machine instructions using the computer’s

front panel. As long as programs were just a few hundred instructions long, this approach

worked. As programs grew, assembly language was invented so that a programmer could deal

8 Module 1: Java Fundamentals

1. An applet is a small program that is dynamically downloaded over the Web.

2. A highly optimized set of instructions that can be interpreted by the Java Interpreter.

3. Portability and security.

Ask the Expert
Q: To address the issues of portability and security, why was it necessary to create a

new computer language such as Java; couldn’t a language like C++ be adapted? In

other words, couldn’t a C++ compiler that outputs bytecode be created?

A: While it would be possible for a C++ compiler to generate bytecode rather than

executable code, C++ has features that discourage its use for the creation of

applets—the most important feature being C++’s support for pointers. A pointer is the

address of some object stored in memory. Using a pointer, it would be possible to access

resources outside the program itself, resulting in a security breach. Java does not support

pointers, thus eliminating this problem.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 9

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:9

1

Ja
va

Fu
nd

am
en

ta
ls

with larger, increasingly complex programs, using symbolic representations of the machine

instructions. As programs continued to grow, high-level languages were introduced that gave

the programmer more tools with which to handle complexity. The first widespread language

was, of course, FORTRAN. Although FORTRAN was a very impressive first step, it is hardly

a language that encourages clear, easy-to-understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by

languages such as C and Pascal. The use of structured languages made it possible to write

moderately complex programs fairly easily. Structured languages are characterized by their

support for stand-alone subroutines, local variables, rich control constructs, and their lack of

reliance upon the GOTO. Although structured languages are a powerful tool, even they reach

their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques and tools

were created to allow the programmer to deal with increasingly greater complexity. Each step

of the way, the new approach took the best elements of the previous methods and moved

forward. Prior to the invention of OOP, many projects were nearing (or exceeding) the point

where the structured approach no longer works. Object-oriented methods were created to help

programmers break through these barriers.

Object-oriented programming took the best ideas of structured programming and combined

them with several new concepts. The result was a different way of organizing a program. In

the most general sense, a program can be organized in one of two ways: around its code (what

is happening) or around its data (who is being affected). Using only structured programming

techniques, programs are typically organized around code. This approach can be thought of as

“code acting on data.”

Object-oriented programs work the other way around. They are organized around data,

with the key principle being “data controlling access to code.” In an object-oriented language,

you define the data and the routines that are permitted to act on that data. Thus, a data type

defines precisely what sort of operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including

Java, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s

examine each.

Encapsulation
Encapsulation is a programming mechanism that binds together code and the data it manipulates,

and that keeps both safe from outside interference and misuse. In an object-oriented language,

code and data can be bound together in such a way that a self-contained black box is created.

Within the box are all necessary data and code. When code and data are linked together in this

fashion, an object is created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private code

or data is known to and accessible by only another part of the object. That is, private code or

data cannot be accessed by a piece of the program that exists outside the object. When code

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:10

10 Module 1: Java Fundamentals

or data is public, other parts of your program can access it even though it is defined within an

object. Typically, the public parts of an object are used to provide a controlled interface to the

private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined in great

detail later in this book, the following brief discussion will be helpful now. A class defines the

form of an object. It specifies both the data and the code that will operate on that data. Java

uses a class specification to construct objects. Objects are instances of a class. Thus, a class is

essentially a set of plans that specify how to build an object.

The code and data that constitute a class are called members of the class. Specifically, the

data defined by the class are referred to as member variables or instance variables. The code

that operates on that data is referred to as member methods or just methods. Method is Java’s

term for a subroutine. If you are familiar with C/C++, it may help to know that what a Java

programmer calls a method, a C/C++ programmer calls a function.

Polymorphism
Polymorphism (from the Greek, meaning “many forms”) is the quality that allows one interface

to access a general class of actions. The specific action is determined by the exact nature of the

situation. A simple example of polymorphism is found in the steering wheel of an automobile.

The steering wheel (i.e., the interface) is the same no matter what type of actual steering

mechanism is used. That is, the steering wheel works the same whether your car has manual

steering, power steering, or rack-and-pinion steering. Therefore, once you know how to

operate the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a stack

(which is a first-in, last-out list). You might have a program that requires three different

types of stacks. One stack is used for integer values, one for floating-point values, and one for

characters. In this case, the algorithm that implements each stack is the same, even though the

data being stored differs. In a non-object-oriented language, you would be required to create

three different sets of stack routines, with each set using different names. However, because of

polymorphism, in Java you can create one general set of stack routines that works for all three

specific situations. This way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase “one

interface, multiple methods.” This means that it is possible to design a generic interface to

a group of related activities. Polymorphism helps reduce complexity by allowing the same

interface to be used to specify a general class of action. It is the compiler’s job to select the

specific action (i.e., method) as it applies to each situation. You, the programmer, don’t need

to do this selection manually. You need only remember and utilize the general interface.

Inheritance
Inheritance is the process by which one object can acquire the properties of another object.

This is important because it supports the concept of hierarchical classification. If you think

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 11

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:11

1

Ja
va

Fu
nd

am
en

ta
ls

about it, most knowledge is made manageable by hierarchical (i.e., top-down) classifications.

For example, a Red Delicious apple is part of the classification apple, which in turn is part of

the fruit class, which is under the larger class food. That is, the food class possesses certain

qualities (edible, nutritious, etc.) which also, logically, apply to its subclass, fruit. In addition

to these qualities, the fruit class has specific characteristics (juicy, sweet, etc.) that distinguish

it from other food. The apple class defines those qualities specific to an apple (grows on trees,

not tropical, etc.). A Red Delicious apple would, in turn, inherit all the qualities of all

preceding classes, and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of its

characteristics. Using inheritance, an object need only define those qualities that make it unique

within its class. It can inherit its general attributes from its parent. Thus, it is the inheritance

mechanism that makes it possible for one object to be a specific instance of a more general case.

Progress Check
1. Name the principles of OOP.

2. What is the basic unit of encapsulation in Java?

1. Encapsulation, polymorphism, and inheritance.

2. The class.

Ask the Expert
Q: You state that object-oriented programming is an effective way to manage large

programs. However, it seems that it might add substantial overhead to relatively

small ones. Since you say that all Java programs are, to some extent, object-oriented,

does this impose a penalty for smaller programs?

A: No. As you will see, for small programs, Java’s object-oriented features are nearly

transparent. Although it is true that Java follows a strict object model, you have

wide latitude as to the degree to which you employ it. For smaller programs, their

“object-orientedness” is barely perceptible. As your programs grow, you will integrate

more object-oriented features effortlessly.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:12

12 Module 1: Java Fundamentals

Obtaining the Java Software Developer’s Kit
Now that the theoretical underpinning of Java has been explained, it is time to start writing Java

programs. Before you can compile and run those programs, however, you must have a Java

development system installed on your computer. The one used by this book is the standard Java

SDK (Java Software Developer’s Kit), which is available from Sun Microsystems. Several other

Java development packages are available from other companies, but we will be using the SDK

because it is available to all readers. It also constitutes the final authority on what is and isn’t

proper Java. At the time of this writing, the current release of the Java SDK is the Java 2

Platform Standard Edition version 1.4 (J2SE v1.4). However, most of the material in this book

will work with any modern version of Java.

The SDK can be downloaded free of charge from www.java.sun.com. Just go to the

download page and follow the instructions for the type of computer that you have. After you

have installed the SDK, you will be ready to compile and run programs. The SDK supplies

two primary programs. The first is javac.exe, which is the Java compiler. The second is

java.exe, which is the standard Java interpreter, and is also referred to as the application

launcher.

One other point: the Java SDK runs in the command prompt environment. It is not a

windowed application.

CRITICAL SKILL

1.6 A First Simple Program
Let’s start by compiling and running the short sample program shown here.

/*
This is a simple Java program.

Call this file Example.java.
*/
class Example {
// A Java program begins with a call to main().
public static void main(String args[]) {
System.out.println("Java drives the Web.");

}
}

You will follow these three steps:

1. Enter the program.

2. Compile the program.

3. Run the program.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 13

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:13

1

Ja
va

Fu
nd

am
en

ta
ls

Entering the Program
The programs shown in this book are available from Osborne’s Web site: www.osborne.com.

However, if you want to enter the programs by hand, you are free to do so. In this case, you

must enter the program into your computer using a text editor, not a word processor. Word

processors typically store format information along with text. This format information will

confuse the Java compiler. If you are using a Windows platform, you can use WordPad or any

other programming editor that you like.

For most computer languages, the name of the file that holds the source code to a program

is arbitrary. However, this is not the case with Java. The first thing that you must learn about

Java is that the name you give to a source file is very important. For this example, the name of

the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains one

or more class definitions. The Java compiler requires that a source file use the .java filename

extension. Notice that the file extension is four characters long. As you might guess, your

operating system must be capable of supporting long filenames. This means that Windows 95,

98, NT, XP, and 2000 work just fine, but Windows 3.1 doesn’t.

As you can see by looking at the program, the name of the class defined by the program

is also Example. This is not a coincidence. In Java, all code must reside inside a class. By

convention, the name of that class should match the name of the file that holds the program.

You should also make sure that the capitalization of the filename matches the class name.

The reason for this is that Java is case sensitive. At this point, the convention that filenames

correspond to class names may seem arbitrary. However, this convention makes it easier to

maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of the

source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of

the program. Remember, bytecode is not executable code. Bytecode must be executed by a

Java Virtual Machine. Thus, the output of javac is not code that can be directly executed.

To actually run the program, you must use the Java interpreter, java. To do so, pass the

class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

Java drives the Web.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:14

14 Module 1: Java Fundamentals

When Java source code is compiled, each individual class is put into its own output file

named after the class and using the .class extension. This is why it is a good idea to give your

Java source files the same name as the class they contain—the name of the source file will

match the name of the .class file. When you execute the Java interpreter as just shown, you

are actually specifying the name of the class that you want the interpreter to execute. It will

automatically search for a file by that name that has the .class extension. If it finds the file, it

will execute the code contained in the specified class.

The First Sample Program Line by Line
Although Example.java is quite short, it includes several key features that are common to all

Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
This is a simple Java program.

Call this file Example.java.
*/

This is a comment. Like most other programming languages, Java lets you enter a remark into

a program’s source file. The contents of a comment are ignored by the compiler. Instead, a

comment describes or explains the operation of the program to anyone who is reading its source

code. In this case, the comment describes the program and reminds you that the source file

should be called Example.java. Of course, in real applications, comments generally explain

how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is called

a multiline comment. This type of comment must begin with /* and end with */. Anything

between these two comment symbols is ignored by the compiler. As the name suggests, a

multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As mentioned,

the class is Java’s basic unit of encapsulation. Example is the name of the class. The class

definition begins with the opening curly brace ({) and ends with the closing curly brace (}).

The elements between the two braces are members of the class. For the moment, don’t worry

too much about the details of a class except to note that in Java, all program activity occurs

within one. This is one reason why all Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// A Java program begins with a call to main().

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1This is the second type of comment supported by Java. A single-line comment begins with a //

and ends at the end of the line. As a general rule, programmers use multiline comments for

longer remarks and single-line comments for brief, line-by-line descriptions.

The next line of code is shown here:

public static void main (String args[]) {

This line begins the main() method. As mentioned earlier, in Java, a subroutine is called a

method. As the comment preceding it suggests, this is the line at which the program will begin

executing. All Java applications begin execution by calling main(). (This is just like C/C++/C#.)

The exact meaning of each part of this line cannot be given now, since it involves a detailed

understanding of several other of Java’s features. However, since many of the examples in this

book will use this line of code, let’s take a brief look at each part now.

The public keyword is an access specifier. An access specifier determines how other parts

of the program can access the members of the class. When a class member is preceded by

public, then that member can be accessed by code outside the class in which it is declared.

(The opposite of public is private, which prevents a member from being used by code defined

outside of its class.) In this case, main() must be declared as public, since it must be called by

code outside of its class when the program is started. The keyword static allows main() to be

called before an object of the class has been created. This is necessary since main() is called

by the Java interpreter before any objects are made. The keyword void simply tells the compiler

that main() does not return a value. As you will see, methods may also return values. If all

this seems a bit confusing, don’t worry. All of these concepts will be discussed in detail in

subsequent modules.

As stated, main() is the method called when a Java application begins. Any information

that you need to pass to a method is received by variables specified within the set of parentheses

that follow the name of the method. These variables are called parameters. If no parameters

are required for a given method, you still need to include the empty parentheses. In main()

there is only one parameter, String args[], which declares a parameter named args. This is

an array of objects of type String. (Arrays are collections of similar objects.) Objects of type

String store sequences of characters. In this case, args receives any command-line arguments

present when the program is executed. This program does not make use of this information,

but other programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the

code included in a method will occur between the method’s opening curly brace and its closing

curly brace.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("Java drives the Web.");

This line outputs the string "Java drives the Web." followed by a new line on the screen.

Output is actually accomplished by the built-in println() method. In this case, println()

Java 2: A Beginner’s Guide 15

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:15

1

Ja
va

Fu
nd

am
en

ta
ls

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

displays the string which is passed to it. As you will see, println() can be used to display

other types of information, too. The line begins with System.out. While too complicated to

explain in detail at this time, briefly, System is a predefined class that provides access to the

system, and out is the output stream that is connected to the console. Thus, System.out is an

object that encapsulates console output. The fact that Java uses an object to define console

output is further evidence of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently in

real-world Java programs and applets. Since most modern computing environments are

windowed and graphical in nature, console I/O is used mostly for simple utility programs

and for demonstration programs. Later in this book, you will learn other ways to generate

output using Java, but for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end with

a semicolon. The reason that the other lines in the program do not end in a semicolon is that

they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

One last point: Java is case sensitive. Forgetting this can cause you serious problems. For

example, if you accidentally type Main instead of main, or PrintLn instead of println, the

preceding program will be incorrect. Furthermore, although the Java compiler will compile

classes that do not contain a main() method, it has no way to execute them. So, if you had

mistyped main, the compiler would still compile your program. However, the Java interpreter

would report an error because it would be unable to find the main() method.

Progress Check
1. Where does a Java program begin execution?

2. What does System.out.println() do?

3. What is the name of the SDK Java compiler? Of the Java interpreter?

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:16

16 Module 1: Java Fundamentals

1. main()

2. Outputs information to the console

3. The standard Java compiler is javac.exe; the interpreter is java.exe

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:17

1

Ja
va

Fu
nd

am
en

ta
ls

Handling Syntax Errors
If you have not yet done so, enter, compile, and run the preceding program. As you may know

from your previous programming experience, it is quite easy to accidentally type something

incorrectly when entering code into your computer. Fortunately, if you enter something

incorrectly into your program, the compiler will report a syntax error message when it tries to

compile it. The Java compiler attempts to make sense out of your source code no matter what

you have written. For this reason, the error that is reported may not always reflect the actual

cause of the problem. In the preceding program, for example, an accidental omission of the

opening curly brace after the main() method causes the compiler to report the following

sequence of errors.

Example.java:8: ';' expected
Public static void main(String args[])

^
Example.java:11 'class' or 'interface' expected
}
^
Example.java:13: 'class' or 'interface' expected
^
Example.java:8: missing method body, or declare abstract
Public static void main(String args[])

^

Clearly, the first error message is completely wrong because what is missing is not a

semicolon, but a curly brace.

The point of this discussion is that when your program contains a syntax error, you

shouldn’t necessarily take the compiler’s messages at face value. The messages may be

misleading. You may need to “second-guess” an error message in order to find the real

problem. Also, look at the last few lines of code in your program that precede the line being

flagged. Sometimes an error will not be reported until several lines after the point at which the

error actually occurred.

CRITICAL SKILL

1.7 A Second Simple Program
Perhaps no other construct is as important to a programming language as the assignment of

a value to a variable. A variable is a named memory location that can be assigned a value.

Further, the value of a variable can be changed during the execution of a program. That is,

the content of a variable is changeable, not fixed.

Java 2: A Beginner’s Guide 17

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:18

18 Module 1: Java Fundamentals

The following program creates two variables called var1 and var2.

/*
This demonstrates a variable.

Call this file Example2.java.
*/
class Example2 {
public static void main(String args[]) {
int var1; // this declares a variable
int var2; // this declares another variable

var1 = 1024; // this assigns 1024 to var1

System.out.println("var1 contains " + var1);

var2 = var1 / 2;

System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

}
}

When you run this program, you will see the following output:

var1 contains 1024
var2 contains var1 / 2: 512

This program introduces several new concepts. First, the statement

int var1; // this declares a variable

declares a variable called var1 of type integer. In Java, all variables must be declared before

they are used. Further, the type of values that the variable can hold must also be specified. This

is called the type of the variable. In this case, var1 can hold integer values. These are whole

number values. In Java, to declare a variable to be of type integer, precede its name with the

keyword int. Thus, the preceding statement declares a variable called var1 of type int.

The next line declares a second variable called var2.

int var2; // this declares another variable

Notice that this line uses the same format as the first line except that the name of the variable

is different.

Declare variables.

Assign a variable a value.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 19

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:19

1

Ja
va

Fu
nd

am
en

ta
ls

In general, to declare a variable you will use a statement like this:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the

variable. In addition to int, Java supports several other data types.

The following line of code assigns var1 the value 1024:

var1 = 1024; // this assigns 1024 to var1

In Java, the assignment operator is the single equal sign. It copies the value on its right side

into the variable on its left.

The next line of code outputs the value of var1 preceded by the string "var1 contains ":

System.out.println("var1 contains " + var1);

In this statement, the plus sign causes the value of var1 to be displayed after the string that

precedes it. This approach can be generalized. Using the + operator, you can chain together as

many items as you want within a single println() statement.

The next line of code assigns var2 the value of var1 divided by 2:

var2 = var1 / 2;

This line divides the value in var1 by 2 and then stores that result in var2. Thus, after the line

executes, var2 will contain the value 512. The value of var1 will be unchanged. Like most

other computer languages, Java supports a full range of arithmetic operators, including those

shown here:

+ Addition

– Subtraction

* Multiplication

/ Division

Here are the next two lines in the program:

System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

Two new things are occurring here. First, the built-in method print() is used to display the

string "var2 contains var1 / 2: ". This string is not followed by a new line. This means that

when the next output is generated, it will start on the same line. The print() method is just like

println(), except that it does not output a new line after each call. Second, in the call to println(),

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:20

20 Module 1: Java Fundamentals

notice that var2 is used by itself. Both print() and println() can be used to output values of

any of Java’s built-in types.

One more point about declaring variables before we move on: It is possible to declare two

or more variables using the same declaration statement. Just separate their names by commas.

For example, var1 and var2 could have been declared like this:

int var1, var2; // both declared using one statement

Another Data Type
In the preceding program, a variable of type int was used. However, a variable of type int can

hold only whole numbers. Thus, it cannot be used when a fractional component is required.

For example, an int variable can hold the value 18, but not the value 18.3. Fortunately, int is

only one of several data types defined by Java. To allow numbers with fractional components,

Java defines two floating-point types: float and double, which represent single- and

double-precision values, respectively. Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double x;

Here, x is the name of the variable, which is of type double. Because x has a floating-point

type, it can hold values such as 122.23, 0.034, or –19.0.

To better understand the difference between int and double, try the following program:

/*
This program illustrates the differences
between int and double.

Call this file Example3.java.
*/
class Example3 {
public static void main(String args[]) {
int var; // this declares an int variable
double x; // this declares a floating-point variable

var = 10; // assign var the value 10

x = 10.0; // assign x the value 10.0

System.out.println("Original value of var: " + var);
System.out.println("Original value of x: " + x);

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 21

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:21

1

Ja
va

Fu
nd

am
en

ta
ls

System.out.println(); // print a blank line

// now, divide both by 4
var = var / 4;
x = x / 4;

System.out.println("var after division: " + var);
System.out.println("x after division: " + x);

}
}

The output from this program is shown here:

Original value of var: 10
Original value of x: 10.0

var after division: 2
x after division: 2.5

As you can see, when var is divided by 4, a whole-number division is performed, and the

outcome is 2—the fractional component is lost. However, when x is divided by 4, the fractional

component is preserved, and the proper answer is displayed.

There is one other new thing to notice in the program. To print a blank line, simply call

println() without any arguments.

Fractional component lost

Fractional component preserved

Ask the Expert
Q: Why does Java have different data types for integers and floating-point values?

That is, why aren’t all numeric values just the same type?

A: Java supplies different data types so that you can write efficient programs. For example,

integer arithmetic is faster than floating-point calculations. Thus, if you don’t need

fractional values, then you don’t need to incur the overhead associated with types float

or double. Second, the amount of memory required for one type of data might be less

than that required for another. By supplying different types, Java enables you to make

best use of system resources. Finally, some algorithms require (or at least benefit from)

the use of a specific type of data. In general, Java supplies a number of built-in types to

give you the greatest flexibility.

Output a blank line.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:22

Project 1-1 Converting Gallons to Liters
Although the preceding sample programs illustrate several important features

of the Java language, they are not very useful. Even though you do not know

much about Java at this point, you can still put what you have learned to work to create a

practical program. In this project, we will create a program that converts gallons to liters.

The program will work by declaring two double variables. One will hold the number

of the gallons, and the second will hold the number of liters after the conversion. There are

3.7854 liters in a gallon. Thus, to convert gallons to liters, the gallon value is multiplied by

3.7854. The program displays both the number of gallons and the equivalent number of liters.

Step by Step
1. Create a new file called GalToLit.java.

2. Enter the following program into the file:

/*
Project 1-1

This program converts gallons to liters.

Call this program GalToLit.java.
*/
class GalToLit {
public static void main(String args[]) {
double gallons; // holds the number of gallons
double liters; // holds conversion to liters

gallons = 10; // start with 10 gallons

liters = gallons * 3.7854; // convert to liters

System.out.println(gallons + " gallons is " + liters + " liters.");
}

}

3. Compile the program using the following command line:

C>javac GalToLit.java

4. Run the program using this command:

C>java GalToLit

You will see this output:

10.0 gallons is 37.854 liters.

22 Module 1: Java Fundamentals

GalToLit.java

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 23

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:23

1

Ja
va

Fu
nd

am
en

ta
ls

Project
1-1

5. As it stands, this program converts 10 gallons to liters. However, by changing the value

assigned to gallons, you can have the program convert a different number of gallons into

its equivalent number of liters.

Progress Check
1. What is Java’s keyword for the integer data type?

2. What is double?

CRITICAL SKILL

1.8 Two Control Statements
Inside a method, execution proceeds from one statement to the next, top to bottom. However,

it is possible to alter this flow through the use of the various program control statements

supported by Java. Although we will look closely at control statements later, two are briefly

introduced here because we will be using them to write sample programs.

The if Statement
You can selectively execute part of a program through the use of Java’s conditional statement:

the if. The Java if statement works much like the IF statement in any other language. For

example, it is syntactically identical to the if statements in C, C++, and C#. Its simplest form

is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.

If condition is false, then the statement is bypassed. Here is an example:

if(10 < 11) System.out.println("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and println() will

execute. However, consider the following:

if(10 < 9) System.out.println("this won't be displayed");

In this case, 10 is not less than 9. Thus, the call to println() will not take place.

1. int

2. The keyword for the double floating-point data type.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:24

24 Module 1: Java Fundamentals

Java defines a full complement of relational operators that may be used in a conditional

expression. They are shown here:

Operator Meaning

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

= = Equal to

!= Not equal

Notice that the test for equality is the double equal sign.

Here is a program that illustrates the if statement:

/*
Demonstrate the if.

Call this file IfDemo.java.
*/
class IfDemo {
public static void main(String args[]) {
int a, b, c;

a = 2;
b = 3;

if(a < b) System.out.println("a is less than b");

// this won't display anything
if(a == b) System.out.println("you won't see this");

System.out.println();

c = a - b; // c contains -1

System.out.println("c contains -1");
if(c >= 0) System.out.println("c is non-negative");
if(c < 0) System.out.println("c is negative");

System.out.println();

c = b - a; // c now contains 1
System.out.println("c contains 1");

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 25

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:25

1

Ja
va

Fu
nd

am
en

ta
ls

if(c >= 0) System.out.println("c is non-negative");
if(c < 0) System.out.println("c is negative");

}
}

The output generated by this program is shown here:

a is less than b

c contains -1
c is negative

c contains 1
c is non-negative

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and c, by use of a comma-separated list. As mentioned earlier,

when you need two or more variables of the same type, they can be declared in one statement.

Just separate the variable names by commas.

The for Loop
You can repeatedly execute a sequence of code by creating a loop. Java supplies a powerful

assortment of loop constructs. The one we will look at here is the for loop. If you are familiar

with C, C++, or C#, then you will be pleased to know that the for loop in Java works the same

way it does in those languages. If you don’t know any of those languages, the for loop is still

easy to use. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control variable to

an initial value. The condition is a Boolean expression that tests the loop control variable. If the

outcome of that test is true, the for loop continues to iterate. If it is false, the loop terminates. The

iteration expression determines how the loop control variable is changed each time the loop

iterates. Here is a short program that illustrates the for loop:

/*
Demonstrate the for loop.

Call this file ForDemo.java.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:26

26 Module 1: Java Fundamentals

*/
class ForDemo {
public static void main(String args[]) {
int count;

for(count = 0; count < 5; count = count+1)
System.out.println("This is count: " + count);

System.out.println("Done!");
}

}

The output generated by the program is shown here:

This is count: 0
This is count: 1
This is count: 2
This is count: 3
This is count: 4
Done!

In this example, count is the loop control variable. It is set to zero in the initialization portion

of the for. At the start of each iteration (including the first one), the conditional test count < 5

is performed. If the outcome of this test is true, the println() statement is executed, and then

the iteration portion of the loop is executed. This process continues until the conditional test is

false, at which point execution picks up at the bottom of the loop.

As a point of interest, in professionally written Java programs, you will almost never see

the iteration portion of the loop written as shown in the preceding program. That is, you will

seldom see statements like this:

count = count + 1;

The reason is that Java includes a special increment operator that performs this operation more

efficiently. The increment operator is ++ (that is, two plus signs back to back). The increment

operator increases its operand by one. By use of the increment operator, the preceding

statement can be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for(count = 0; count < 5; count++)

This loop iterates five times.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You might want to try this. As you will see, the loop still runs exactly the same as it did

before.

Java also provides a decrement operator, which is specified as – –. This operator decreases

its operand by one.

Progress Check
1. What does the if statement do?

2. What does the for statement do?

3. What are Java’s relational operators?

CRITICAL SKILL

1.9 Create Blocks of Code
Another key element of Java is the code block. A code block is a grouping of two or more

statements. This is done by enclosing the statements between opening and closing curly

braces. Once a block of code has been created, it becomes a logical unit that can be used any

place that a single statement can. For example, a block can be a target for Java’s if and for

statements. Consider this if statement:

if(w < h) {
v = w * h;
w = 0;

}

Here, if w is less than h, both statements inside the block will be executed. Thus, the two

statements inside the block form a logical unit, and one statement cannot execute without the

other also executing. The key point here is that whenever you need to logically link two or

more statements, you do so by creating a block. Code blocks allow many algorithms to be

implemented with greater clarity and efficiency.

Java 2: A Beginner’s Guide 27

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:27

1

Ja
va

Fu
nd

am
en

ta
ls

Start of block

End of block

1. The if is Java’s conditional statement.

2. The for is one of Java’s loop statements.

3. The relational operators are = =, !=, <, >, <=, and >=.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:28

28 Module 1: Java Fundamentals

Here is a program that uses a block of code to prevent a division by zero:

/*
Demonstrate a block of code.

Call this file BlockDemo.java.
*/
class BlockDemo {
public static void main(String args[]) {
double i, j, d;

i = 5;
j = 10;

// the target of this if is a block
if(i != 0) {
System.out.println("i does not equal zero");
d = j / i;
System.out.print("j / i is " + d);

}
}

}

The output generated by this program is shown here:

i does not equal zero
j / i is 2.0

In this case, the target of the if statement is a block of code and not just a single statement. If

the condition controlling the if is true (as it is in this case), the three statements inside the

block will be executed. Try setting i to zero and observe the result.

As you will see later in this book, blocks of code have additional properties and uses.

However, the main reason for their existence is to create logically inseparable units of code.

The target of the if
is this entire block.

Ask the Expert
Q: Does the use of a code block introduce any run-time inefficiencies? In other words,

does Java actually execute the { and }?

A: No. Code blocks do not add any overhead whatsoever. In fact, because of their ability

to simplify the coding of certain algorithms, their use generally increases speed and

efficiency. Also, the { and } exist only in your program’s source code. Java does not,

per se, execute the { or }.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

CRITICAL SKILL

1.10 Semicolons and Positioning
In Java, the semicolon is a statement terminator. That is, each individual statement must be

ended with a semicolon. It indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are surrounded by

opening and closing braces. A block is not terminated with a semicolon. Since a block is a

group of statements, with a semicolon after each statement, it makes sense that a block is not

terminated by a semicolon; instead, the end of the block is indicated by the closing brace.

Java does not recognize the end of the line as a terminator. For this reason, it does not

matter where on a line you put a statement. For example,

x = y;
y = y + 1;
System.out.println(x + " " + y);

is the same as the following, to Java.

x = y; y = y + 1; System.out.println(x + " " + y);

Furthermore, the individual elements of a statement can also be put on separate lines. For

example, the following is perfectly acceptable:

System.out.println("This is a long line of output" +
x + y + z +
"more output");

Breaking long lines in this fashion is often used to make programs more readable. It can also

help prevent excessively long lines from wrapping.

Indentation Practices
You may have noticed in the previous examples that certain statements were indented. Java is

a free-form language, meaning that it does not matter where you place statements relative to

each other on a line. However, over the years, a common and accepted indentation style has

developed that allows for very readable programs. This book follows that style, and it is

recommended that you do so as well. Using this style, you indent one level after each opening

brace, and move back out one level after each closing brace. Certain statements encourage

some additional indenting; these will be covered later.

1

Java 2: A Beginner’s Guide 29

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:29

1

Ja
va

Fu
nd

am
en

ta
ls

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:30

30 Module 1: Java Fundamentals

Progress Check
1. How is a block of code created? What does it do?

2. In Java, statements are terminated by a ____________.

3. All Java statements must start and end on one line. True or False?

Project 1-2 Improving the Gallons-to-Liters
Converter

You can use the for loop, the if statement, and code blocks to create an

improved version of the gallons-to-liters converter that you developed

in the first project. This new version will print a table of conversions, beginning with 1 gallon

and ending at 100 gallons. After every 10 gallons, a blank line will be output. This is accomplished

through the use of a variable called counter that counts the number of lines that have been

output. Pay special attention to its use.

Step by Step
1. Create a new file called GalToLitTable.java.

2. Enter the following program into the file.

/*
Project 1-2

This program displays a conversion
table of gallons to liters.

Call this program "GalToLitTable.java".
*/
class GalToLitTable {
public static void main(String args[]) {
double gallons, liters;
int counter;

counter = 0;
for(gallons = 1; gallons <= 100; gallons++) {
liters = gallons * 3.7854; // convert to liters

1. A block is started by a {. It is ended by a }. A block creates a logical unit of code.

2. Semicolon.

3. False.

GalToLitTable.java

Line counter is initally set to zero.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 31

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:31

1

Ja
va

Fu
nd

am
en

ta
ls

Project
1-2

System.out.println(gallons + " gallons is " +
liters + " liters.");

counter++;
// every 10th line, print a blank line
if(counter == 10) {
System.out.println();
counter = 0; // reset the line counter

}
}

}
}

3. Compile the program using the following command line:

C>javac GalToLitTable.java

4. Run the program using this command:

C>java GalToLitTable

Here is a portion of the output that you will see:

1.0 gallons is 3.7854 liters.
2.0 gallons is 7.5708 liters.
3.0 gallons is 11.356200000000001 liters.
4.0 gallons is 15.1416 liters.
5.0 gallons is 18.927 liters.
6.0 gallons is 22.712400000000002 liters.
7.0 gallons is 26.4978 liters.
8.0 gallons is 30.2832 liters.
9.0 gallons is 34.0686 liters.
10.0 gallons is 37.854 liters.

11.0 gallons is 41.6394 liters.
12.0 gallons is 45.424800000000005 liters.
13.0 gallons is 49.2102 liters.
14.0 gallons is 52.9956 liters.
15.0 gallons is 56.781 liters.
16.0 gallons is 60.5664 liters.
17.0 gallons is 64.3518 liters.
18.0 gallons is 68.1372 liters.
19.0 gallons is 71.9226 liters.
20.0 gallons is 75.708 liters.

21.0 gallons is 79.49340000000001 liters.
22.0 gallons is 83.2788 liters.
23.0 gallons is 87.0642 liters.

Increment the line counter
with each loop iteration.

If counter is 10,
output a blank line.

(continued)

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:32

24.0 gallons is 90.84960000000001 liters.
25.0 gallons is 94.635 liters.
26.0 gallons is 98.4204 liters.
27.0 gallons is 102.2058 liters.
28.0 gallons is 105.9912 liters.
29.0 gallons is 109.7766 liters.
30.0 gallons is 113.562 liters.

CRITICAL SKILL

1.11 The Java Keywords
Forty-nine keywords are currently defined in the Java language (see Table 1-1). These keywords,

combined with the syntax of the operators and separators, form the definition of the Java

language. These keywords cannot be used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several

other keywords were reserved for possible future use. However, the current specification for

Java defines only the keywords shown in Table 1-1.

The assert keyword is quite new. It was added in 2002 when Java 2, version 1.4 was released.

In addition to the keywords, Java reserves the following: true, false, and null. These are values

defined by Java. You may not use these words for the names of variables, classes, and so on.

CRITICAL SKILL

1.12 Identifiers in Java
In Java an identifier is a name given to a method, a variable, or any other user-defined item.

Identifiers can be from one to several characters long. Variable names may start with any letter

of the alphabet, an underscore, or a dollar sign. Next may be either a letter, a digit, a dollar

sign, or an underscore. The underscore can be used to enhance the readability of a variable

32 Module 1: Java Fundamentals

abstract assert boolean break byte case

catch char class const continue default

do double else extends final finally

float for goto if implements import

instanceof int interface long native new

package private protected public return short

static strictfp super switch synchronized this

throw throws transient try void volatile

while

Table 1-1 The Java Keywords

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

name, as in line_count. Uppercase and lowercase are different; that is, to Java, myvar and

MyVar are separate names. Here are some examples of acceptable identifiers:

Test x y2 MaxLoad

$up _top my_var sample23

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for example.

You cannot use any of the Java keywords as identifier names. Also, you should not assign

the name of any standard method, such as println, to an identifier. Beyond these two restrictions,

good programming practice dictates that you use identifier names that reflect the meaning or

usage of the items being named.

Progress Check
1. Which is the keyword: for, For, or FOR?

2. A Java identifier can contain what type of characters?

3. Are index21 and Index21 the same identifier?

The Java Class Libraries
The sample programs shown in this module make use of two of Java’s built-in methods:

println() and print(). These methods are members of the System class, which is a class

predefined by Java that is automatically included in your programs. In the larger view, the Java

environment relies on several built-in class libraries that contain many built-in methods that

provide support for such things as I/O, string handling, networking, and graphics. The standard

classes also provide support for windowed output. Thus, Java as a totality is a combination of

the Java language itself, plus its standard classes. As you will see, the class libraries provide

much of the functionality that comes with Java. Indeed, part of becoming a Java programmer

is learning to use the standard Java classes. Throughout this book, various elements of the

standard library classes and methods are described. However, the Java library is something

that you will also want to explore more on your own.

Java 2: A Beginner’s Guide 33

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:33

1

Ja
va

Fu
nd

am
en

ta
ls

1. The keyword is for. In Java, all keywords are in lowercase.

2. Letters, digits, the underscore, and the $.

3. No; Java is case sensitive.

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:34

Module 1 Mastery Check
1. What is bytecode and why is it important to Java’s use for Internet programming?

2. What are the three main principles of object-oriented programming?

3. Where do Java programs begin execution?

4. What is a variable?

5. Which of the following variable names is invalid?

A. count

B. $count

C. count27

D. 67count

6. How do you create a single-line comment? How do you create a multiline comment?

7. Show the general form of the if statement. Show the general form of the for loop.

8. How do you create a block of code?

9. The moon’s gravity is about 17 percent that of earth’s. Write a program that computes your

effective weight on the moon.

10. Adapt Project 1-2 so that it prints a conversion table of inches to meters. Display 12 feet

of conversions, inch by inch. Output a blank line every 12 inches. (One meter equals

approximately 39.37 inches.)

11. If you make a typing mistake when entering your program, what sort of error will result?

12. Does it matter where on a line you put a statement?

34 Module 1: Java Fundamentals

P:\010Comp\Begin8\588-2\ch01.vp
Tuesday, November 05, 2002 9:35:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:35

Module2
Introducing Data Types
and Operators

CRITICAL SKILLS
2.1 Know Java’s simple types

2.2 Use literals

2.3 Initialize variables

2.4 Know the scope rules of variables within a method

2.5 Use the arithmetic operators

2.6 Use the relational and logical operators

2.7 Understand the assignment operators

2.8 Use shorthand assignments

2.9 Understand type conversion in assignments

2.10 Cast incompatible types

2.11 Understand type conversion in expressions 35

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:36

36 Module 2: Introducing Data Types and Operators

A t the foundation of any programming language are its data types and operators, and Java

is no exception. These elements define the limits of a language and determine the kind of

tasks to which it can be applied. Fortunately, Java supports a rich assortment of both data types

and operators, making it suitable for any type of programming.

Data types and operators are a large subject. We will begin here with an examination

of Java’s foundational data types and its most commonly used operators. We will also take

a closer look at variables and examine the expression.

Why Data Types Are Important
Data types are especially important in Java because it is a strongly typed language. This means

that all operations are type checked by the compiler for type compatibility. Illegal operations

will not be compiled. Thus, strong type checking helps prevent errors and enhances reliability.

To enable strong type checking, all variables, expressions, and values have a type. There is no

concept of a “type-less” variable, for example. Furthermore, the type of a value determines

what operations are allowed on it. An operation allowed on one type might not be allowed

on another.

CRITICAL SKILL

2.1 Java’s Simple Types
Java contains two general categories of built-in data types: object-oriented and non-object-

oriented. Java’s object-oriented types are defined by classes, and a discussion of classes is

deferred until later. However, at the core of Java are eight simple (also called elemental or

primitive) types of data, which are shown in Table 2-1. The term simple is used here to indicate

that these types are not objects in an object-oriented sense, but rather, normal binary values.

These simple types are not objects because of efficiency concerns. All of Java’s other data

types are constructed from these simple types.

Java strictly specifies a range and behavior for each simple type, which all implementations

of the Java Virtual Machine must support. Because of Java’s portability requirement, Java is

uncompromising on this account. For example, an int is the same in all execution environments.

This allows programs to be fully portable. There is no need to rewrite code to fit a specific

platform. Although strictly specifying the size of the simple types may cause a small loss of

performance in some environments, it is necessary in order to achieve portability.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 37

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:37

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Integers
Java defines four integer types: byte, short, int, and long, which are shown here:

Type Width in Bits Range

byte 8 –128 to 127

short 16 –32,768 to 32,767

int 32 –2,147,483,648 to 2,147,483,647

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

As the table shows, all of the integer types are signed positive and negative values. Java does

not support unsigned (positive-only) integers. Many other computer languages support both

signed and unsigned integers. However, Java’s designers felt that unsigned integers were

unnecessary.

NOTE`
Technically, the Java run-time system can use any size it wants to store a simple type.
However, in all cases, types must act as specified.

Type Meaning

boolean Represents true/false values

byte 8-bit integer

char Character

double Double-precision floating point

float Single-precision floating point

int Integer

long Long integer

short Short integer

Table 2-1 Java’s Built-in Simple Data Types

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:38

38 Module 2: Introducing Data Types and Operators

The most commonly used integer type is int. Variables of type int are often employed to

control loops, to index arrays, and to perform general-purpose integer math.

When you need an integer that has a range greater than int, use long. For example, here is

a program that computes the number of cubic inches contained in a cube that is one mile by

one mile, by one mile:

/*
Compute the number of cubic inches
in 1 cubic mile.

*/
class Inches {
public static void main(String args[]) {
long ci;
long im;

im = 5280 * 12;

ci = im * im * im;

System.out.println("There are " + ci +
" cubic inches in cubic mile.");

}
}

Here is the output from the program:

There are 254358061056000 cubic inches in cubic mile.

Clearly, the result could not have been held in an int variable.

The smallest integer type is byte. Variables of type byte are especially useful when working

with raw binary data that may not be directly compatible with Java’s other built-in types.

The short type creates a short integer that has its high-order byte first (called big-endian

format). This type is mostly applicable to 16-bit computers, which are becoming

increasingly scarce.

Floating-Point Types
As explained in Module 1, the floating-point types can represent numbers that have fractional

components. There are two kinds of floating-point types, float and double, which represent

single- and double-precision numbers, respectively. The type float is 32 bits wide and has a

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

range of approximately 1.4e–045 to 3.4e+038. The double type is 64 bits wide and has a range

of approximately 4.9e–324 to 1.8e+308.

Of the two, double is the most commonly used because all of the math functions in Java’s

class library use double values. For example, the sqrt() method (which is defined by the

standard Math class) returns a double value that is the square root of its double argument.

Here, sqrt() is used to compute the length of the hypotenuse, given the lengths of the two

opposing sides:

/*
Use the Pythagorean theorem to
find the length of the hypotenuse
given the lengths of the two opposing
sides.

*/
class Hypot {
public static void main(String args[]) {
double x, y, z;

x = 3;
y = 4;

z = Math.sqrt(x*x + y*y);

System.out.println("Hypotenuse is " +z);
}

}

The output from the program is shown here:

Hypotenuse is 5.0

Java 2: A Beginner’s Guide 39

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:39

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Notice how sqrt() is called. It is preceded by
the name of the class of which it is a member.

Ask the Expert
Q: What is endianness?

A: Endianness describes how an integer is stored in memory. There are two possible ways

to approach storage. The first way stores the most significant byte first. This is called

big-endian. The other stores the least significant byte first, which is little-endian. Little-

endian is the most common method because it is used by the Intel Pentium processor.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:40

One other point about the preceding example: As mentioned, sqrt() is a member of the

standard Math class. Notice how sqrt() is called; it is preceded by the name Math. This is

similar to the way System.out precedes println(). Although not all standard methods are

called by specifying their class name first, several are.

Characters
In Java, characters are not 8-bit quantities like they are in most other computer languages. Instead,

Java uses Unicode. Unicode defines a character set that can represent all of the characters

found in all human languages. Thus, in Java, char is an unsigned 16-bit type having a range

of 0 to 65,536. The standard 8-bit ASCII character set is a subset of Unicode and ranges

from 0 to 127. Thus, the ASCII characters are still valid Java characters.

A character variable can be assigned a value by enclosing the character in single quotes.

For example, this assigns the variable ch the letter X:

char ch;
ch = 'X';

You can output a char value using a println() statement. For example, this line outputs

the value in ch:

System.out.println("This is ch: " + ch);

Since char is an unsigned 16-bit type, it is possible to perform various arithmetic

manipulations on a char variable. For example, consider the following program:

// Character variables can be handled like integers.
class CharArithDemo {
public static void main(String args[]) {
char ch;

ch = 'X';
System.out.println("ch contains " + ch);

ch++; // increment ch
System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z
System.out.println("ch is now " + ch);

}
}

40 Module 2: Introducing Data Types and Operators

A char can be incremented.

A char can be assigned an integer value.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 41

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:41

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

The output generated by this program is shown here:

ch contains X
ch is now Y
ch is now Z

In the program, ch is first given the value X. Next, ch is incremented. This results in ch

containing Y, the next character in the ASCII (and Unicode) sequence. Although char is not

an integer type, in some cases it can be handled as if it were. Next, ch is assigned the value 90,

which is the ASCII (and Unicode) value that corresponds to the letter Z. Since the ASCII character

set occupies the first 127 values in the Unicode character set, all the “old tricks” that you have

used with characters in the past will work in Java, too.

The Boolean Type
The boolean type represents true/false values. Java defines the values true and false using the

reserved words true and false. Thus, a variable or expression of type boolean will be one of

these two values.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolDemo {
public static void main(String args[]) {
boolean b;

b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);

Ask the Expert
Q: Why does Java use Unicode?

A: Java was designed to allow applets to be written for worldwide use. Thus, it needs to use

a character set that can represent all the world’s languages. Unicode is the standard character

set designed expressly for this purpose. Of course, the use of Unicode is inefficient for

languages such as English, German, Spanish, or French, whose characters can be contained

within 8 bits. But such is the price that must be paid for global portability.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:42

// a boolean value can control the if statement
if(b) System.out.println("This is executed.");

b = false;
if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

}
}

The output generated by this program is shown here:

b is false
b is true
This is executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can see, when

a boolean value is output by println(), “true” or “false” is displayed. Second, the value of a

boolean variable is sufficient, by itself, to control the if statement. There is no need to write an

if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the

expression 10 > 9 displays the value “true.” Further, the extra set of parentheses around 10 > 9

is necessary because the + operator has a higher precedence than the >.

Progress Check
1. What are Java’s integer types?

2. What is Unicode?

3. What values can a boolean variable have?

42 Module 2: Introducing Data Types and Operators

1. Java’s integer types are byte, short, int, and long.

2. Unicode is a 16-bit fully international character set.

3. Variables of type boolean can be either true or false.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 2-1 How Far Away Is the Lightning?
In this project you will create a program that computes how far away, in feet, a

listener is from a lightning strike. Sound travels approximately 1,100 feet per second

through air. Thus, knowing the interval between the time you see a lightning bolt and the time

the sound reaches you enables you to compute the distance to the lightning. For this project,

assume that the time interval is 7.2 seconds.

Step by Step
1. Create a new file called Sound.java.

2. To compute the distance, you will need to use floating-point values. Why? Because the time

interval, 7.2, has a fractional component. Although it would be permissible to use a value of

type float, we will use double in the example.

3. To compute the distance, you will multiply 7.2 by 1,100. You will then assign this value to

a variable.

4. Finally, you will display the result.

Here is the entire Sound.java program listing:

/*
Project 2-1
Compute the distance to a lightning
strike whose sound takes 7.2 seconds
to reach you.

*/
class Sound {
public static void main(String args[]) {
double dist;

dist = 7.2 * 1100;

System.out.println("The lightning is " + dist +
" feet away.");

}
}

5. Compile and run the program. The following result is displayed:

The lightning is 7920.0 feet away.

Java 2: A Beginner’s Guide 43

2

Project
2-1

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:43

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Sound.java

(continued)

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:44

44 Module 2: Introducing Data Types and Operators

6. Extra challenge: You can compute the distance to a large object, such as a rock wall, by

timing the echo. For example, if you clap your hands and time how long it takes for you to

hear the echo, then you know the total round-trip time. Dividing this value by two yields the

time it takes the sound to go one way. You can then use this value to compute the distance

to the object. Modify the preceding program so that it computes the distance, assuming that

the time interval is that of an echo.

CRITICAL SKILL

2.2 Literals
In Java, literals refer to fixed values that are represented in their human-readable form. For

example, the number 100 is a literal. Literals are also commonly called constants. For the most

part, literals, and their usage, are so intuitive that they have been used in one form or another

by all the preceding sample programs. Now the time has come to explain them formally.

Java literals can be of any of the simple data types. The way each literal is represented

depends upon its type. As explained earlier, character constants are enclosed in single quotes.

For example, 'a' and ' %' are both character constants.

Integer constants are specified as numbers without fractional components. For example,

10 and –100 are integer constants. Floating-point constants require the use of the decimal point

followed by the number’s fractional component. For example, 11.123 is a floating-point constant.

Java also allows you to use scientific notation for floating-point numbers.

By default, integer literals are of type int. If you want to specify a long literal, append

an l or an L. For example, 12 is an int, but 12L is a long.

By default, floating-point literals are of type double. To specify a float literal, append

an F or f to the constant. For example, 10.19F is of type float.

Although integer literals create an int value by default, they can still be assigned to variables

of type char, byte, or short as long as the value being assigned can be represented by the

target type. An integer literal can always be assigned to a long variable.

Hexadecimal and Octal Constants
As you probably know, in programming it is sometimes easier to use a number system based

on 8 or 16 instead of 10. The number system based on 8 is called octal, and it uses the digits 0

through 7. In octal the number 10 is the same as 8 in decimal. The base 16 number system is

called hexadecimal and uses the digits 0 through 9 plus the letters A through F, which stand

for 10, 11, 12, 13, 14, and 15. For example, the hexadecimal number 10 is 16 in decimal. Because

of the frequency with which these two number systems are used, Java allows you to specify

integer constants in hexadecimal or octal instead of decimal. A hexadecimal constant must

begin with 0x (a zero followed by an x). An octal constant begins with a zero. Here are some

examples:

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

Character Escape Sequences
Enclosing character constants in single quotes works for most printing characters, but a few

characters, such as the carriage return, pose a special problem when a text editor is used. In

addition, certain other characters, such as the single and double quotes, have special meaning

in Java, so you cannot use them directly. For these reasons, Java provides special escape sequences,

sometimes referred to as backslash character constants, shown in Table 2-2. These sequences

are used in place of the characters that they represent.

For example, this assigns ch the tab character:

ch = '\t';

The next example assigns a single quote to ch:

ch = '\'';

String Literals
Java supports one other type of literal: the string. A string is a set of characters enclosed by

double quotes. For example,

"this is a test"

2

Java 2: A Beginner’s Guide 45

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:45

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Escape Sequence Description

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line

\f Form feed

\t Horizontal tab

\b Backspace

\ddd Octal constant (where ddd is an octal constant)

\uxxxx Hexadecimal constant (where xxxx is a hexadecimal constant)

Table 2-2 Character Escape Sequences

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

is a string. You have seen examples of strings in many of the println() statements in the

preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the escape

sequences just described. For example, consider the following program. It uses the \n and

\t escape sequences.

// Demonstrate escape sequences in strings.
class StrDemo {
public static void main(String args[]) {
System.out.println("First line\nSecond line");
System.out.println("A\tB\tC");
System.out.println("D\tE\tF") ;

}
}

The output is shown here:

First line
Second line
A B C
D E F

Notice how the \n escape sequence is used to generate a new line. You don’t need to use

multiple println() statements to get multiline output. Just embed \n within a longer string at

the points where you want the new lines to occur.

Progress Check
1. What is the type of the literal 10? What is the type of the literal 10.0?

2. How do you specify a long literal?

3. Is "x" a string or a character literal?

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:46

46 Module 2: Introducing Data Types and Operators

Use \n to generate a new line.

Use tabs to align output.

1. The literal 10 is an int, and 10.0 is a double.

2. A long literal is specified by adding the L or l suffix. For example, 100L.

3. The literal "x" is a string.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 47

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:47

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

CRITICAL SKILL

2.3 A Closer Look at Variables
Variables were introduced in Module 1. Here, we will take a closer look at them. As you

learned earlier, variables are declared using this form of statement,

type var-name;

where type is the data type of the variable, and var-name is its name. You can declare a variable

of any valid type, including the simple types just described. When you create a variable, you

are creating an instance of its type. Thus, the capabilities of a variable are determined by its

type. For example, a variable of type boolean cannot be used to store floating-point values.

Furthermore, the type of a variable cannot change during its lifetime. An int variable cannot

turn into a char variable, for example.

All variables in Java must be declared prior to their use. This is necessary because the

compiler must know what type of data a variable contains before it can properly compile any

statement that uses the variable. It also enables Java to perform strict type checking.

Initializing a Variable
In general, you must give a variable a value prior to using it. One way to give a variable a

value is through an assignment statement, as you have already seen. Another way is by giving

it an initial value when it is declared. To do this, follow the variable’s name with an equal sign

and the value being assigned. The general form of initialization is shown here:

type var = value;

Ask the Expert
Q: Is a string consisting of a single character the same as a character literal? For

example, is "k" the same as 'k'?

A: No. You must not confuse strings with characters. A character literal represents a single

letter of type char. A string containing only one letter is still a string. Although strings

consist of characters, they are not the same type.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:48

Here, value is the value that is given to var when var is created. The value must be compatible

with the specified type. Here are some examples:

int count = 10; // give count an initial value of 10
char ch = 'X'; // initialize ch with the letter X
float f = 1.2F; // f is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated list, you

can give one or more of those variables an initial value. For example:

int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows variables

to be initialized dynamically, using any expression valid at the time the variable is declared.

For example, here is a short program that computes the volume of a cylinder given the radius

of its base and its height:

// Demonstrate dynamic initialization.
class DynInit {

public static void main(String args[]) {
double radius = 4, height = 5;

// dynamically initialize volume
double volume = 3.1416 * radius * radius * height;

System.out.println("Volume is " + volume);
}

}

Here, three local variables—radius, height, and volume—are declared. The first two, radius

and height, are initialized by constants. However, volume is initialized dynamically to the

volume of the cylinder. The key point here is that the initialization expression can use any

element valid at the time of the initialization, including calls to methods, other variables,

or literals.

48 Module 2: Introducing Data Types and Operators

volume is dynamically initialized at run time.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 49

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:49

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

CRITICAL SKILL

2.4 The Scope and Lifetime of Variables
So far, all of the variables that we have been using were declared at the start of the main()

method. However, Java allows variables to be declared within any block. As explained in

Module 1, a block is begun with an opening curly brace and ended by a closing curly brace.

A block defines a scope. Thus, each time you start a new block, you are creating a new

scope. A scope determines what objects are visible to other parts of your program. It also

determines the lifetime of those objects.

Most other computer languages define two general categories of scopes: global and local.

Although supported by Java, these are not the best ways to categorize Java’s scopes. The most

important scopes in Java are those defined by a class and those defined by a method. A discussion

of class scope (and variables declared within it) is deferred until later in this book, when classes

are described. For now, we will examine only the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that

method has parameters, they too are included within the method’s scope.

As a general rule, variables declared inside a scope are not visible (that is, accessible) to

code that is defined outside that scope. Thus, when you declare a variable within a scope, you

are localizing that variable and protecting it from unauthorized access and/or modification.

Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are creating

a new, nested scope. When this occurs, the outer scope encloses the inner scope. This means

that objects declared in the outer scope will be visible to code within the inner scope. However,

the reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class ScopeDemo {
public static void main(String args[]) {
int x; // known to all code within main

x = 10;
if(x == 10) { // start new scope

int y = 20; // known only to this block

// x and y both known here.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:50

System.out.println("x and y: " + x + " " + y);
x = y * 2;

}
// y = 100; // Error! y not known here

// x is still known here.
System.out.println("x is " + x);

}
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is

accessible to all subsequent code within main(). Within the if block, y is declared. Since a

block defines a scope, y is visible only to other code within its block. This is why outside of

its block, the line y = 100; is commented out. If you remove the leading comment symbol, a

compile-time error will occur, because y is not visible outside of its block. Within the if block,

x can be used because code within a block (that is, a nested scope) has access to variables

declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they are

declared. Thus, if you define a variable at the start of a method, it is available to all of the code

within that method. Conversely, if you declare a variable at the end of a block, it is effectively

useless, because no code will have access to it.

Here is another important point to remember: variables are created when their scope is

entered, and destroyed when their scope is left. This means that a variable will not hold its

value once it has gone out of scope. Therefore, variables declared within a method will not

hold their values between calls to that method. Also, a variable declared within a block will

lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, that variable will be reinitialized each time

the block in which it is declared is entered. For example, consider this program:

// Demonstrate lifetime of a variable.
class VarInitDemo {
public static void main(String args[]) {
int x;

for(x = 0; x < 3; x++) {
int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}

50 Module 2: Introducing Data Types and Operators

Here, y is outside of its scope.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The output generated by this program is shown here:

y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100

As you can see, y is always reinitialized to –1 each time the inner for loop is entered. Even

though it is subsequently assigned the value 100, this value is lost.

There is one quirk to Java’s scope rules that may surprise you: although blocks can be

nested, no variable declared within an inner scope can have the same name as a variable

declared by an enclosing scope. For example, the following program, which tries to declare

two separate variables with the same name, will not compile.

/*
This program attempts to declare a variable
in an inner scope with the same name as one
defined in an outer scope.

*** This program will not compile. ***
*/
class NestVar {
public static void main(String args[]) {
int count;

for(count = 0; count < 10; count = count+1) {
System.out.println("This is count: " + count);

int count; // illegal!!!
for(count = 0; count < 2; count++)
System.out.println("This program is in error!");

}
}

}

If you come from a C/C++ background, you know that there is no restriction on the names

that you give variables declared in an inner scope. Thus, in C/C++ the declaration of count

within the block of the outer for loop is completely valid, and such a declaration hides the outer

variable. The designers of Java felt that this name hiding could easily lead to programming

errors and disallowed it.

Java 2: A Beginner’s Guide 51

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:51

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Can’t declare count again because
it’s already declared by main().

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:52

Progress Check
1. What is a scope? How can one be created?

2. Where in a block can variables be declared?

3. In a block, when is a variable created? When is it destroyed?

Operators
Java provides a rich operator environment. An operator is a symbol that tells the compiler to

perform a specific mathematical or logical manipulation. Java has four general classes of operators:

arithmetic, bitwise, relational, and logical. Java also defines some additional operators that

handle certain special situations. This module will examine the arithmetic, relational, and

logical operators. We will also examine the assignment operator. The bitwise and other special

operators are examined later.

CRITICAL SKILL

2.5 Arithmetic Operators
Java defines the following arithmetic operators:

Operator Meaning

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

– – Decrement

52 Module 2: Introducing Data Types and Operators

1. A scope defines the visibility and lifetime of an object. A block defines a scope.

2. A variable can be defined at any point within a block.

3. Inside a block, a variable is created when its declaration is encountered. It is destroyed when the block exits.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 53

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:53

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

The operators +, –, *, and / all work the same way in Java as they do in any other computer

language (or algebra, for that matter). These can be applied to any built-in numeric data type.

They can also be used on objects of type char.

Although the actions of arithmetic operators are well known to all readers, a few special

situations warrant some explanation. First, remember that when / is applied to an integer, any

remainder will be truncated; for example, 10/3 will equal 3 in integer division. You can obtain

the remainder of this division by using the modulus operator %. It works in Java the way it does

in other languages: it yields the remainder of an integer division. For example, 10 % 3 is 1. In

Java, the % can be applied to both integer and floating-point types. Thus, 10.0 % 3.0 is also 1.

The following program demonstrates the modulus operator.

// Demonstrate the % operator.
class ModDemo {
public static void main(String args[]) {
int iresult, irem;
double dresult, drem;

iresult = 10 / 3;
irem = 10 % 3;

dresult = 10.0 / 3.0;
drem = 10.0 % 3.0;

System.out.println("Result and remainder of 10 / 3: " +
iresult + " " + irem);

System.out.println("Result and remainder of 10.0 / 3.0: " +
dresult + " " + drem);

}
}

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

As you can see, the % yields a remainder of 1 for both integer and floating-point operations.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:54

54 Module 2: Introducing Data Types and Operators

Increment and Decrement
Introduced in Module 1, the ++ and the – – are Java’s increment and decrement operators. As

you will see, they have some special properties that make them quite interesting. Let’s begin

by reviewing precisely what the increment and decrement operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts 1.

Therefore,

x = x + 1;

is the same as

x++;

and

x = x - 1;

is the same as

--x;

Both the increment and decrement operators can either precede (prefix) or follow (postfix)

the operand. For example,

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as a prefix

or a postfix. However, when an increment or decrement is used as part of a larger expression,

there is an important difference. When an increment or decrement operator precedes its operand,

Java will perform the corresponding operation prior to obtaining the operand’s value for use

by the rest of the expression. If the operator follows its operand, Java will obtain the operand’s

value before incrementing or decrementing it. Consider the following:

x = 10;
y = ++x;

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this case, y will be set to 11. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it happens.

There are significant advantages in being able to control when the increment or decrement

operation takes place.

CRITICAL SKILL

2.6 Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the relationships that

values can have with one another, and logical refers to the ways in which true and false values

can be connected together. Since the relational operators produce true or false results, they

often work with the logical operators. For this reason they will be discussed together here.

The relational operators are shown here:

Operator Meaning

= = Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The logical operators are shown next:

Operator Meaning

& AND

| OR

^ XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! NOT

The outcome of the relational and logical operators is a boolean value.

Java 2: A Beginner’s Guide 55

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:55

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:56

56 Module 2: Introducing Data Types and Operators

In Java, all objects can be compared for equality or inequality using = = and !=. However,

the comparison operators, <, >, <=, or >=, can be applied only to those types that support an

ordering relationship. Therefore, all of the relational operators can be applied to all numeric

types and to type char. However, values of type boolean can only be compared for equality

or inequality, since the true and false values are not ordered. For example, true > false has

no meaning in Java.

For the logical operators, the operands must be of type boolean, and the result of

a logical operation is of type boolean. The logical operators, &, |, ^, and !, support the

basic logical operations AND, OR, XOR, and NOT, according to the following truth table.

p q p & q p | q p ^ q !p

False False False False False True

True False False True True False

False True False True True True

True True True True False False

As the table shows, the outcome of an exclusive OR operation is true when exactly one

and only one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.
class RelLogOps {
public static void main(String args[]) {
int i, j;
boolean b1, b2;

i = 10;
j = 11;
if(i < j) System.out.println("i < j");
if(i <= j) System.out.println("i <= j");
if(i != j) System.out.println("i != j");
if(i == j) System.out.println("this won't execute");
if(i >= j) System.out.println("this won't execute");
if(i > j) System.out.println("this won't execute");

b1 = true;
b2 = false;
if(b1 & b2) System.out.println("this won't execute");
if(!(b1 & b2)) System.out.println("!(b1 & b2) is true");
if(b1 | b2) System.out.println("b1 | b2 is true");
if(b1 ^ b2) System.out.println("b1 ^ b2 is true");

}
}

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 57

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:57

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

The output from the program is shown here:

i < j
i <= j
i != j
!(b1 & b2) is true
b1 | b2 is true
b1 ^ b2 is true

Short-Circuit Logical Operators
Java supplies special short-circuit versions of its AND and OR logical operators that can be

used to produce more efficient code. To understand why, consider the following. In an AND

operation, if the first operand is false, the outcome is false no matter what value the second

operand has. In an OR operation, if the first operand is true, the outcome of the operation is

true no matter what the value of the second operand. Thus, in these two cases there is no need

to evaluate the second operand. By not evaluating the second operand, time is saved and more

efficient code is produced.

The short-circuit AND operator is &&, and the short-circuit OR operator is ||. Their normal

counterparts are & and |. The only difference between the normal and short- circuit versions is

that the normal operands will always evaluate each operand, but short-circuit versions will

evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program determines

whether the value in d is a factor of n. It does this by performing a modulus operation. If the

remainder of n / d is zero, then d is a factor. However, since the modulus operation involves

a division, the short-circuit form of the AND is used to prevent a divide-by-zero error.

// Demonstrate the short-circuit operators.
class SCops {
public static void main(String args[]) {
int n, d, q;

n = 10;
d = 2;
if(d != 0 && (n % d) == 0)
System.out.println(d + " is a factor of " + n);

d = 0; // now, set d to zero

// Since d is zero, the second operand is not evaluated.
if(d != 0 && (n % d) == 0)
System.out.println(d + " is a factor of " + n);

/* Now, try same thing without short-circuit operator.

The short-circuit
operator prevents
a division by zero.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:58

This will cause a divide-by-zero error.
*/
if(d != 0 & (n % d) == 0)
System.out.println(d + " is a factor of " + n);

}
}

To prevent a divide-by-zero, the if statement first checks to see if d is equal to zero. If it is,

the short-circuit AND stops at that point and does not perform the modulus division. Thus, in the

first test, d is 2 and the modulus operation is performed. The second test fails because d is set

to zero, and the modulus operation is skipped, avoiding a divide-by-zero error. Finally, the normal

AND operator is tried. This causes both operands to be evaluated, which leads to a run-time

error when the division by zero occurs.

Progress Check
1. What does the % operator do? To what types can it be applied?

2. What type of values can be used as operands of the logical operators?

3. Does a short-circuit operator always evaluate both of its operands?

CRITICAL SKILL

2.7 The Assignment Operator
You have been using the assignment operator since Module 1. Now it is time to take a formal

look at it. The assignment operator is the single equal sign, =. This operator works in Java

much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.

58 Module 2: Introducing Data Types and Operators

Now both
expressions
are evaluated,
allowing a division
by zero to occur.

1. The % is the modulus operator, which returns the remainder of an integer division. It can be applied to all of the

numeric types.

2. The logical operators must have operands of type boolean.

3. No, a short-circuit operator evaluates its second operand only if the outcome of the operation cannot be determined

solely by its first operand.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 59

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:59

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

The assignment operator does have one interesting attribute that you may not be familiar

with: it allows you to create a chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

Ask the Expert
Q: Since the short-circuit operators are, in some cases, more efficient than their

normal counterparts, why does Java still offer the normal AND and OR operators?

A: In some cases you will want both operands of an AND or OR operation to be evaluated

because of the side effects produced. Consider the following:

// Side effects can be important.
class SideEffects {
public static void main(String args[]) {
int i;

i = 0;

/* Here, i is still incremented even though
the if statement fails. */

if(false & (++i < 100))
System.out.println("this won't be displayed");

System.out.println("if statements executed: " + i); // displays 1

/* In this case, i is not incremented because
the short-circuit operator skips the increment. */

if(false && (++i < 100))
System.out.println("this won't be displayed");

System.out.println("if statements executed: " + i); // still 1 !!
}

}

As the comments indicate, in the first if statement, i is incremented whether the if

succeeds or not. However, when the short-circuit operator is used, the variable i is not

incremented when the first operand is false. The lesson here is that if your code expects

the right-hand operand of an AND or OR operation to be evaluated, you must use Java’s

non-short-circuit forms of these operations.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:60

This fragment sets the variables x, y, and z to 100 using a single statement. This works because

the = is an operator that yields the value of the right-hand expression. Thus, the value of z = 100

is 100, which is then assigned to y, which in turn is assigned to x. Using a “chain of assignment”

is an easy way to set a group of variables to a common value.

CRITICAL SKILL

2.8 Shorthand Assignments
Java provides special shorthand assignment operators that simplify the coding of certain

assignment statements. Let’s begin with an example. The assignment statement shown here

x = x + 10;

can be written, using Java shorthand, as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10.

Here is another example. The statement

x = x - 100;

is the same as

x -= 100;

Both statements assign to x the value of x minus 100.

This shorthand will work for all the binary operators in Java (that is, those that require two

operands). The general form of the shorthand is

var op = expression;

Thus, the arithmetic and logical assignment operators are the following:

+= –= *= /=

%= &= |= ^=

The assignment operators provide two benefits. First, they are more compact than their

“longhand” equivalents. Second, they are implemented more efficiently by the Java run-time

system. For these reasons, you will often see the assignment operators used in professionally

written Java programs.

60 Module 2: Introducing Data Types and Operators

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 61

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:61

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

CRITICAL SKILL

2.9 Type Conversion in Assignments
In programming, it is common to assign one type of variable to another. For example, you

might want to assign an int value to a float variable, as shown here:

int i;
float f;

i = 10;
f = i; // assign an int to a float

When compatible types are mixed in an assignment, the value of the right side is automatically

converted to the type of the left side. Thus, in the preceding fragment, the value in i is converted

into a float and then assigned to f. However, because of Java’s strict type checking, not all

types are compatible, and thus, not all type conversions are implicitly allowed. For example,

boolean and int are not compatible.

When one type of data is assigned to another type of variable, an automatic type

conversion will take place if

● The two types are compatible.

● The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int

type is always large enough to hold all valid byte values, and both int and byte are integer types,

so an automatic conversion from byte to int can be applied.

For widening conversions, the numeric types, including integer and floating-point types,

are compatible with each other. For example, the following program is perfectly valid since

long to double is a widening conversion that is automatically performed.

// Demonstrate automatic conversion from long to double.
class LtoD {
public static void main(String args[]) {
long L;
double D;

L = 100123285L;
D = L;

System.out.println("L and D: " + L + " " + D);

}
}

Automatic conversion from long to double

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:62

62 Module 2: Introducing Data Types and Operators

Although there is an automatic conversion from long to double, there is no automatic

conversion from double to long since this is not a widening conversion. Thus, the following

version of the preceding program is invalid.

// *** This program will not compile. ***
class LtoD {
public static void main(String args[]) {
long L;
double D;

D = 100123285.0;
L = D; // Illegal!!!

System.out.println("L and D: " + L + " " + D);

}
}

There are no automatic conversions from the numeric types to char or boolean. Also,

char and boolean are not compatible with each other. However, an integer literal can be

assigned to char.

CRITICAL SKILL

2.10 Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all programming needs

because they apply only to widening conversions between compatible types. For all other cases

you must employ a cast. A cast is an instruction to the compiler to convert one type into another.

Thus, it requests an explicit type conversion. A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to. For

example, if you want to convert the type of the expression x/y to int, you can write

double x, y;
// ...
(int) (x / y)

Here, even though x and y are of type double, the cast converts the outcome of the expression

to int. The parentheses surrounding x / y are necessary. Otherwise, the cast to int would apply

only to the x and not to the outcome of the division. The cast is necessary here because there is

no automatic conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For example,

when casting a long into a short, information will be lost if the long’s value is greater than

No automatic conversion from double to long

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 63

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:63

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

the range of a short because its high-order bits are removed. When a floating-point value

is cast to an integer type, the fractional component will also be lost due to truncation. For

example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.

The 0.23 is lost.

The following program demonstrates some type conversions that require casts:

// Demonstrate casting.
class CastDemo {
public static void main(String args[]) {
double x, y;
byte b;
int i;
char ch;

x = 10.0;
y = 3.0;

i = (int) (x / y); // cast double to int
System.out.println("Integer outcome of x / y: " + i);

i = 100;
b = (byte) i;
System.out.println("Value of b: " + b);

i = 257;
b = (byte) i;
System.out.println("Value of b: " + b);

b = 88; // ASCII code for X
ch = (char) b;
System.out.println("ch: " + ch);

}
}

The output from the program is shown here:

Integer outcome of x / y: 3
Value of b: 100
Value of b: 1
ch: X

In the program, the cast of (x / y) to int results in the truncation of the fractional component,

and information is lost. Next, no loss of information occurs when b is assigned the value 100

because a byte can hold the value 100. However, when the attempt is made to assign b the

value 257, information loss occurs because 257 exceeds a byte’s maximum value. Finally,

no information is lost, but a cast is needed when assigning a byte value to a char.

No loss of info here. A byte can hold the value 100.

Truncation will occur in this conversion.

Information loss this time. A byte cannot hold the value 257.

Cast between incompatible types

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:64

Progress Check
1. What is a cast?

2. Can a short be assigned to an int without a cast? Can a byte be assigned

to a char without a cast?

3. How can the following statement be rewritten?

x = x + 23;

Operator Precedence
The following table shows the order of precedence for all Java operators, from highest to

lowest. This table includes several operators that will be discussed later in this book.

highest

() [] .

++ – – ~ !

* / %

+ –

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

lowest

64 Module 2: Introducing Data Types and Operators

1. A cast is an explicit conversion.

2. Yes. No.

3. x += 23;

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 65

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:65

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Project
2-2

Project 2-2 Display a Truth Table for the
Logical Operators

In this project you will create a program that displays the truth table

for Java’s logical operators. You must make the columns in the table

line up. This project makes use of several features covered in this module, including one of

Java’s escape sequences and the logical operators. It also illustrates the differences in the

precedence between the arithmetic + operator and the logical operators.

Step by Step
1. Create a new file called LogicalOpTable.java.

2. To ensure that the columns line up, you will use the \t escape sequence to embed tabs into

each output string. For example, this println() statement displays the header for the table:

System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

3. Each subsequent line in the table will use tabs to position the outcome of each operation

under its proper heading.

4. Here is the entire LogicalOpTable.java program listing. Enter it at this time.

// Project 2-2: a truth table for the logical operators.
class LogicalOpTable {
public static void main(String args[]) {

boolean p, q;

System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

p = true; q = true;
System.out.print(p + "\t" + q +"\t");
System.out.print((p&q) + "\t" + (p|q) + "\t");
System.out.println((p^q) + "\t" + (!p));

p = true; q = false;
System.out.print(p + "\t" + q +"\t");
System.out.print((p&q) + "\t" + (p|q) + "\t");
System.out.println((p^q) + "\t" + (!p));

p = false; q = true;
System.out.print(p + "\t" + q +"\t");
System.out.print((p&q) + "\t" + (p|q) + "\t");
System.out.println((p^q) + "\t" + (!p));

LogicalOpTable.java

(continued)

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:66

66 Module 2: Introducing Data Types and Operators

p = false; q = false;
System.out.print(p + "\t" + q +"\t");
System.out.print((p&q) + "\t" + (p|q) + "\t");
System.out.println((p^q) + "\t" + (!p));

}
}

Notice the parentheses surrounding the logical operations inside the println() statements.

They are necessary because of the precedence of Java’s operators. The + operator is higher

than the logical operators.

5. Compile and run the program. The following table is displayed.

P Q AND OR XOR NOT
true true true true false false
true false false true true false
false true false true true true
false false false false false true

6. On your own, try modifying the program so that it uses and displays 1’s and 0’s, rather than

true and false. This may involve a bit more effort than you might at first think!

CRITICAL SKILL

2.11 Expressions
Operators, variables, and literals are the constituents of expressions. An expression in Java

is any valid combination of those pieces. You probably already know the general form of an

expression from your other programming experience, or from algebra. However, a few aspects

of expressions will be discussed now.

Type Conversion in Expressions
Within an expression, it is possible to mix two or more different types of data as long as they

are compatible with each other. For example, you can mix short and long within an expression

because they are both numeric types. When different types of data are mixed within an

expression, they are all converted to the same type. This is accomplished through the use

of Java’s type promotion rules.

First, all char, byte, and short values are promoted to int. Then, if one operand is a long,

the whole expression is promoted to long. If one operand is a float operand, the entire expression

is promoted to float. If any of the operands is double, the result is double.

It is important to understand that type promotions apply only to the values operated upon

when an expression is evaluated. For example, if the value of a byte variable is promoted to

int inside an expression, outside the expression, the variable is still a byte. Type promotion

only affects the evaluation of an expression.

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 67

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:67

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Type promotion can, however, lead to somewhat unexpected results. For example, when

an arithmetic operation involves two byte values, the following sequence occurs: First, the

byte operands are promoted to int. Then the operation takes place, yielding an int result. Thus,

the outcome of an operation involving two byte values will be an int. This is not what you might

intuitively expect. Consider the following program:

// A promotion surprise!
class PromDemo {
public static void main(String args[]) {
byte b;
int i;

b = 10;
i = b * b; // OK, no cast needed

b = 10;
b = (byte) (b * b); // cast needed!!

System.out.println("i and b: " + i + " " + b);
}

}

Somewhat counterintuitively, no cast is needed when assigning b * b to i, because b is

promoted to int when the expression is evaluated. However, when you try to assign b * b to b,

you do need a cast—back to byte! Keep this in mind if you get unexpected type-incompatibility

error messages on expressions that would otherwise seem perfectly OK.

This same sort of situation also occurs when performing operations on chars. For example,

in the following fragment, the cast back to char is needed because of the promotion of ch1 and

ch2 to int within the expression.

char ch1 = 'a', ch2 = 'b';

ch1 = (char) (ch1 + ch2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be assigned

to a char.

Casts are not only useful when converting between types in an assignment. For example,

consider the following program. It uses a cast to double to obtain a fractional component from

an otherwise integer division.

// Using a cast.
class UseCast {
public static void main(String args[]) {
int i;

No cast needed because result is already elevated to int.

Cast is needed here to assign an int to a byte!

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:68

for(i = 0; i < 5; i++) {
System.out.println(i + " / 3: " + i / 3);
System.out.println(i + " / 3 with fractions: "

+ (double) i / 3);
System.out.println();

}
}

}

The output from the program is shown here:

0 / 3: 0
0 / 3 with fractions: 0.0

1 / 3: 0
1 / 3 with fractions: 0.3333333333333333

2 / 3: 0
2 / 3 with fractions: 0.6666666666666666

3 / 3: 1
3 / 3 with fractions: 1.0

4 / 3: 1
4 / 3 with fractions: 1.3333333333333333

Spacing and Parentheses
An expression in Java may have tabs and spaces in it to make it more readable. For example,

the following two expressions are the same, but the second is easier to read:

x=10/y*(127/x);

x = 10 / y * (127/x);

Parentheses increase the precedence of the operations contained within them, just like in

algebra. Use of redundant or additional parentheses will not cause errors or slow down the

execution of the expression. You are encouraged to use parentheses to make clear the exact

order of evaluation, both for yourself and for others who may have to figure out your program

later. For example, which of the following two expressions is easier to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

68 Module 2: Introducing Data Types and Operators

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Module 2 Mastery Check
1. Why does Java strictly specify the range and behavior of its simple types?

2. What is Java’s character type, and how does it differ from the character type used by many

other programming languages?

3. A boolean value can have any value you like because any non-zero value is true.

True or False?

4. Given this output,

One
Two
Three

using a single string, show the println() statement that produced it.

5. What is wrong with this fragment?

for(i = 0; i < 10; i++) {
int sum;

sum = sum + i;
}
System.out.println("Sum is: " + sum);

6. Explain the difference between the prefix and postfix forms of the increment operator.

7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

8. In an expression, what type are byte and short promoted to?

9. In general, when is a cast needed?

10. Write a program that finds all of the prime numbers between 1 and 100.

11. Does the use of redundant parentheses affect program performance?

12. Does a block define a scope?

Java 2: A Beginner’s Guide 69

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 2
Blind Folio 2:69

2

In
tro

du
ci

ng
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

P:\010Comp\Begin8\588-2\ch02.vp
Tuesday, November 05, 2002 9:40:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Module3
Program Control
Statements

CRITICAL SKILLS
3.1 Input characters from the keyboard

3.2 Know the complete form of the if statement

3.3 Use the switch statement

3.4 Know the complete form of the for loop

3.5 Use the while loop

3.6 Use the do-while loop

3.7 Use break to exit a loop

3.8 Use break as a form of goto

3.9 Apply continue

3.10 Nest loops

7171

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:71

71

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:72

72 Module 3: Program Control Statements

In this module you will learn about the statements that control a program’s flow of execution.

There are three categories of program control statements: selection statements, which include

the if and the switch; iteration statements, which include the for, while, and do-while loops;

and jump statements, which include break, continue, and return. Except for return, which is

discussed later in this book, the remaining control statements, including the if and for statements

to which you have already had a brief introduction, are examined in detail here. The module

begins by explaining how to perform some simple keyboard input.

CRITICAL SKILL

3.1 Input Characters from the Keyboard
Before examining Java’s control statements, we will make a short digression that will allow

you to begin writing interactive programs. Up to this point, the sample programs in this book

have displayed information to the user, but they have not received information from the user.

Thus, you have been using console output, but not console (keyboard) input. The main reason

for this is that Java’s input system relies upon a rather complex system of classes, the use of

which requires an understanding of various features, such as exception handling and classes,

that are not discussed until later in this book. There is no direct parallel to the very convenient

println() method, for example, that allows you to read various types of data entered by the

user. Frankly, Java’s approach to console input is not as easy to use as one might like. Also,

most real-world Java programs and applets will be graphical and window based, not console

based. For these reasons, not much use of console input is found in this book. However, there

is one type of console input that is easy to use: reading a character from the keyboard. Since

several of the examples in this module will make use of this feature, it is discussed here.

The easiest way to read a character from the keyboard is to call System.in.read().

System.in is the complement to System.out. It is the input object attached to the keyboard.

The read() method waits until the user presses a key and then returns the result. The character

is returned as an integer, so it must be cast into a char to assign it to a char variable. By default,

console input is line buffered, so you must press ENTER before any character that you type will

be sent to your program. Here is a program that reads a character from the keyboard:

// Read a character from the keyboard.
class KbIn {
public static void main(String args[])
throws java.io.IOException {

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 73

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:73

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

char ch;

System.out.print("Press a key followed by ENTER: ");

ch = (char) System.in.read(); // get a char

System.out.println("Your key is: " + ch);
}

}

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

In the program, notice that main() begins like this:

public static void main(String args[])
throws java.io.IOException {

Because System.in.read() is being used, the program must specify the throws

java.io.IOException clause. This line is necessary to handle input errors. It is part of Java’s

exception handling mechanism, which is discussed in Module 9. For now, don’t worry about

its precise meaning.

The fact that System.in is line buffered is a source of annoyance at times. When you press

ENTER, a carriage return, line feed sequence is entered into the input stream. Furthermore, these

characters are left pending in the input buffer until you read them. Thus, for some applications,

you may need to remove them (by reading them) before the next input operation. You will see an

example of this later in this module.

Progress Check
1. What is System.in?

2. How can you read a character typed at the keyboard?

Read a character
from the keyboard.

1. System.in is the input object linked to standard input, which is usually the keyboard.

2. To read a character, call System.in.read().

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:74

74 Module 3: Program Control Statements

CRITICAL SKILL

3.2 The if Statement
Module 1 introduced the if statement. It is examined in detail here. The complete form of the if

statement is

if(condition) statement;

else statement;

where the targets of the if and else are single statements. The else clause is optional. The

targets of both the if and else can be blocks of statements. The general form of the if, using

blocks of statements, is

if(condition)

{

statement sequence

}

else

{

statement sequence

}

If the conditional expression is true, the target of the if will be executed; otherwise, if it exists,

the target of the else will be executed. At no time will both of them be executed. The conditional

expression controlling the if must produce a boolean result.

To demonstrate the if (and several other control statements), we will create and develop

a simple computerized guessing game that would be suitable for small children. In the first

version of the game, the program asks the player for a letter between A and Z. If the player

presses the correct letter on the keyboard, the program responds by printing the message **

Right **. The program is shown here:

// Guess the letter game.
class Guess {
public static void main(String args[])
throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // read a char from the keyboard

if(ch == answer) System.out.println("** Right **");
}

}

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This program prompts the player and then reads a character from the keyboard. Using an

if statement, it then checks that character against the answer, which is K in this case. If K was

entered, the message is displayed. When you try this program, remember that the K must be

entered in uppercase.

Taking the guessing game further, the next version uses the else to print a message when

the wrong letter is picked.

// Guess the letter game, 2nd version.
class Guess2 {
public static void main(String args[])
throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");
else System.out.println("...Sorry, you're wrong.");

}
}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very common

in programming. The main thing to remember about nested ifs in Java is that an else statement

always refers to the nearest if statement that is within the same block as the else and not already

associated with an else. Here is an example:

if(i == 10) {
if(j < 20) a = b;
if(k > 100) c = d;
else a = c; // this else refers to if(k > 100)

}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j < 20), because it is not in

the same block (even though it is the nearest if without an else). Rather, the final else is

associated with if(i == 10). The inner else refers to if(k > 100), because it is the closest if

within the same block.

Java 2: A Beginner’s Guide 75

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:75

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:76

76 Module 3: Program Control Statements

You can use a nested if to add a further improvement to the guessing game. This addition

provides the player with feedback about a wrong guess.

// Guess the letter game, 3rd version.
class Guess3 {
public static void main(String args[])
throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print("Can you guess it: ");

ch = (char) System.in.read(); // get a char

if(ch == answer) System.out.println("** Right **");
else {
System.out.print("...Sorry, you're ");

// a nested if
if(ch < answer) System.out.println("too low");
else System.out.println("too high");

}
}

}

A sample run is shown here:

I'm thinking of a letter between A and Z.
Can you guess it: Z
...Sorry, you're too high

The if-else-if Ladder
A common programming construct that is based upon the nested if is the if-else-if ladder.

It looks like this:

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 77

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:77

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

.

.

.

else

statement;

The conditional expressions are evaluated from the top downward. As soon as a true condition

is found, the statement associated with it is executed, and the rest of the ladder is bypassed. If

none of the conditions is true, the final else statement will be executed. The final else often

acts as a default condition; that is, if all other conditional tests fail, the last else statement is

performed. If there is no final else and all other conditions are false, no action will take place.

The following program demonstrates the if-else-if ladder:

// Demonstrate an if-else-if ladder.
class Ladder {
public static void main(String args[]) {
int x;

for(x=0; x<6; x++) {
if(x==1)
System.out.println("x is one");

else if(x==2)
System.out.println("x is two");

else if(x==3)
System.out.println("x is three");

else if(x==4)
System.out.println("x is four");

else
System.out.println("x is not between 1 and 4");

}
}

}

The program produces the following output:

x is not between 1 and 4
x is one
x is two
x is three
x is four
x is not between 1 and 4

As you can see, the default else is executed only if none of the preceding if statements

succeeds.

This is the
default statement.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:78

Progress Check
1. The condition controlling the if must be of what type?

2. To what if does an else always associate?

3. What is an if-else-if ladder?

CRITICAL SKILL

3.3 The switch Statement
The second of Java’s selection statements is the switch. The switch provides for a multiway

branch. Thus, it enables a program to select among several alternatives. Although a series of

nested if statements can perform multiway tests, for many situations the switch is a more

efficient approach. It works like this: the value of an expression is successively tested against

a list of constants. When a match is found, the statement sequence associated with that match

is executed. The general form of the switch statement is

switch(expression) {

case constant1:

statement sequence

break;

case constant2:

statement sequence

break;

case constant3:

statement sequence

break;

.

.

.

default:

statement sequence

}

78 Module 3: Program Control Statements

1. The condition controlling an if must be of type boolean.

2. An else always associates with the nearest if in the same block that is not already associated with an else.

3. An if-else-if ladder is a sequence of nested if-else statements.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 79

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:79

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

The switch expression must be of type char, byte, short, or int. (Floating-point expressions,

for example, are not allowed.) Frequently, the expression controlling the switch is simply a

variable. The case constants must be literals of a type compatible with the expression. No two

case constants in the same switch can have identical values.

The default statement sequence is executed if no case constant matches the expression.

The default is optional; if it is not present, no action takes place if all matches fail. When a

match is found, the statements associated with that case are executed until the break is

encountered or, in the case of default or the last case, until the end of the switch is reached.

The following program demonstrates the switch.

// Demonstrate the switch.
class SwitchDemo {
public static void main(String args[]) {
int i;

for(i=0; i<10; i++)
switch(i) {
case 0:
System.out.println("i is zero");
break;

case 1:
System.out.println("i is one");
break;

case 2:
System.out.println("i is two");
break;

case 3:
System.out.println("i is three");
break;

case 4:
System.out.println("i is four");
break;

default:
System.out.println("i is five or more");

}

}
}

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:80

80 Module 3: Program Control Statements

The output produced by this program is shown here:

i is zero
i is one
i is two
i is three
i is four
i is five or more
i is five or more
i is five or more
i is five or more
i is five or more

As you can see, each time through the loop, the statements associated with the case constant

that matches i are executed. All others are bypassed. When i is five or greater, no case

statements match, so the default statement is executed.

Technically, the break statement is optional, although most applications of the switch will

use it. When encountered within the statement sequence of a case, the break statement causes

program flow to exit from the entire switch statement and resume at the next statement outside

the switch. However, if a break statement does not end the statement sequence associated

with a case, then all the statements at and following the matching case will be executed until

a break (or the end of the switch) is encountered.

For example, study the following program carefully. Before looking at the output, can you

figure out what it will display on the screen?

// Demonstrate the switch without break statements.
class NoBreak {
public static void main(String args[]) {
int i;

for(i=0; i<=5; i++) {
switch(i) {
case 0:
System.out.println("i is less than one");

case 1:
System.out.println("i is less than two");

case 2:
System.out.println("i is less than three");

case 3:
System.out.println("i is less than four");

case 4:
System.out.println("i is less than five");

The case statements
fall through here.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 81

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:81

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

}
System.out.println();

}
}

}

This program displays the following output:

i is less than one
i is less than two
i is less than three
i is less than four
i is less than five

i is less than two
i is less than three
i is less than four
i is less than five

i is less than three
i is less than four
i is less than five

i is less than four
i is less than five

i is less than five

As this program illustrates, execution will continue into the next case if no break statement is

present.

You can have empty cases, as shown in this example:

switch(i) {
case 1:
case 2:
case 3: System.out.println("i is 1, 2 or 3");
break;

case 4: System.out.println("i is 4");
break;

}

In this fragment, if i has the value 1, 2, or 3, the first println() statement executes. If it is 4,

the second println() statement executes. The “stacking” of cases, as shown in this example,

is common when several cases share common code.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:82

82 Module 3: Program Control Statements

Nested switch Statements
It is possible to have a switch as part of the statement sequence of an outer switch. This

is called a nested switch. Even if the case constants of the inner and outer switch contain

common values, no conflicts will arise. For example, the following code fragment is perfectly

acceptable.

switch(ch1) {
case 'A': System.out.println("This A is part of outer switch.");
switch(ch2) {
case 'A':
System.out.println("This A is part of inner switch");
break;

case 'B': // ...
} // end of inner switch
break;

case 'B': // ...

Progress Check
1. The expression controlling the switch must be of what type?

2. When the switch expression matches a case constant, what happens?

3. If a case sequence does not end in break, what happens?

1. The switch expression must evaluate to char, short, int, or byte.

2. When a matching case constant is found, the statement sequence assoicated with that case is executed.

3. If a case sequence does not end with break, execution continues into the next case sequence, if one exists.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 3-1 Start Building a Java Help System
This project builds a simple help system that displays the syntax for the Java control

statements. The program displays a menu containing the control statements and then

waits for you to choose one. After one is chosen, the syntax of the statement is displayed. In

this first version of the program, help is available for only the if and switch statements. The

other control statements are added in subsequent projects.

Step by Step
1. Create a file called Help.java.

2. The program begins by displaying the following menu:

Help on:
1. if
2. switch

Choose one:

To accomplish this, you will use the statement sequence shown here:

System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.print("Choose one: ");

3. Next, the program obtains the user’s selection by calling System.in.read(), as shown here:

choice = (char) System.in.read();

4. Once the selection has been obtained, the program uses the switch statement shown here to

display the syntax for the selected statement.

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");

Java 2: A Beginner’s Guide 83

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:83

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-1

(continued)

Help.java

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:84

84 Module 3: Program Control Statements

break;
default:
System.out.print("Selection not found.");

}

Notice how the default clause catches invalid choices. For example, if the user enters 3, no

case constants will match, causing the default sequence to execute.

5. Here is the entire Help.java program listing:

/*
Project 3-1

A simple help system.
*/
class Help {
public static void main(String args[])
throws java.io.IOException {
char choice;

System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.print("Choose one: ");
choice = (char) System.in.read();

System.out.println("\n");

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 85

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:85

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-1

break;
default:
System.out.print("Selection not found.");

}
}

}

6. Here is a sample run.

Help on:
1. if
2. switch

Choose one: 1

The if:

if(condition) statement;
else statement;

Ask the Expert
Q: Under what conditions should I use an if-else-if ladder rather than a switch when

coding a multiway branch?

A: In general, use an if-else-if ladder when the conditions controlling the selection process

do not rely upon a single value. For example, consider the following if-else-if sequence:

if(x < 10) // ...
else if(y != 0) // ...
else if(!done) // ...

This sequence cannot be recoded into a switch because all three conditions involve

different variables—and differing types. What variable would control the switch? Also,

you will need to use an if-else-if ladder when testing floating-point values or other

objects that are not of types valid for use in a switch expression.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:86

CRITICAL SKILL

3.4 The for Loop
You have been using a simple form of the for loop since Module 1. You might be surprised

at just how powerful and flexible the for loop is. Let’s begin by reviewing the basics, starting

with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; condition; iteration) statement;

For repeating a block, the general form is

for(initialization; condition; iteration)

{

statement sequence

}

The initialization is usually an assignment statement that sets the initial value of the loop

control variable, which acts as the counter that controls the loop. The condition is a Boolean

expression that determines whether or not the loop will repeat. The iteration expression

defines the amount by which the loop control variable will change each time the loop is

repeated. Notice that these three major sections of the loop must be separated by semicolons.

The for loop will continue to execute as long as the condition tests true. Once the condition

becomes false, the loop will exit, and program execution will resume on the statement

following the for.

The following program uses a for loop to print the square roots of the numbers between

1 and 99. It also displays the rounding error present for each square root.

// Show square roots of 1 to 99 and the rounding error.
class SqrRoot {
public static void main(String args[]) {
double num, sroot, rerr;

for(num = 1.0; num < 100.0; num++) {
sroot = Math.sqrt(num);
System.out.println("Square root of " + num +

" is " + sroot);

// compute rounding error
rerr = num - (sroot * sroot);
System.out.println("Rounding error is " + rerr);
System.out.println();

}
}

}

86 Module 3: Program Control Statements

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3Notice that the rounding error is computed by squaring the square root of each number.

This result is then subtracted from the original number, thus yielding the rounding error.

The for loop can proceed in a positive or negative fashion, and it can change the loop

control variable by any amount. For example, the following program prints the numbers 100

to –95, in decrements of 5.

// A negatively running for loop.
class DecrFor {
public static void main(String args[]) {
int x;

for(x = 100; x > -100; x -= 5)
System.out.println(x);

}
}

An important point about for loops is that the conditional expression is always tested at

the top of the loop. This means that the code inside the loop may not be executed at all if the

condition is false to begin with. Here is an example:

for(count=10; count < 5; count++)
x += count; // this statement will not execute

This loop will never execute because its control variable, count, is greater than 5 when the

loop is first entered. This makes the conditional expression, count < 5, false from the outset;

thus, not even one iteration of the loop will occur.

Some Variations on the for Loop
The for is one of the most versatile statements in the Java language because it allows a wide

range of variations. For example, multiple loop control variables can be used. Consider the

following program:

// Use commas in a for statement.
class Comma {
public static void main(String args[]) {
int i, j;

for(i=0, j=10; i < j; i++, j--)
System.out.println("i and j: " + i + " " + j);

}
}

Java 2: A Beginner’s Guide 87

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:87

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Loop control variable is
decremented by 5 each time.

Notice the two loop
control variables.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:88

The output from the program is shown here:

i and j: 0 10
i and j: 1 9
i and j: 2 8
i and j: 3 7
i and j: 4 6

Here, commas separate the two initialization statements and the two iteration expressions.

When the loop begins, both i and j are initialized. Each time the loop repeats, i is incremented

and j is decremented. Multiple loop control variables are often convenient and can simplify

certain algorithms. You can have any number of initialization and iteration statements, but in

practice, more than two or three make the for loop unwieldy.

The condition controlling the loop can be any valid Boolean expression. It does not need to

involve the loop control variable. In the next example, the loop continues to execute until the

user types the letter S at the keyboard.

// Loop until an S is typed.
class ForTest {
public static void main(String args[])
throws java.io.IOException {

int i;

System.out.println("Press S to stop.");

for(i = 0; (char) System.in.read() != 'S'; i++)
System.out.println("Pass #" + i);

}
}

Missing Pieces
Some interesting for loop variations are created by leaving pieces of the loop definition empty.

In Java, it is possible for any or all of the initialization, condition, or iteration portions of the

for loop to be blank. For example, consider the following program.

// Parts of the for can be empty.
class Empty {
public static void main(String args[]) {
int i;

for(i = 0; i < 10;) {
System.out.println("Pass #" + i);

88 Module 3: Program Control Statements

The iteration expression is missing.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

i++; // increment loop control var
}

}
}

Here, the iteration expression of the for is empty. Instead, the loop control variable i is

incremented inside the body of the loop. This means that each time the loop repeats, i is

tested to see whether it equals 10, but no further action takes place. Of course, since i is still

incremented within the body of the loop, the loop runs normally, displaying the following

output:

Pass #0
Pass #1
Pass #2
Pass #3
Pass #4
Pass #5
Pass #6
Pass #7
Pass #8
Pass #9

In the next example, the initialization portion is also moved out of the for.

// Move more out of the for loop.
class Empty2 {
public static void main(String args[]) {
int i;

i = 0; // move initialization out of loop
for(; i < 10;) {
System.out.println("Pass #" + i);
i++; // increment loop control var

}
}

}

In this version, i is initialized before the loop begins, rather than as part of the for. Normally,

you will want to initialize the loop control variable inside the for. Placing the initialization

outside of the loop is generally done only when the initial value is derived through a complex

process that does not lend itself to containment inside the for statement.

Java 2: A Beginner’s Guide 89

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:89

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

The initialization expression
is moved out of the loop.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:90

The Infinite Loop
You can create an infinite loop (a loop that never terminates) using the for by leaving the

conditional expression empty. For example, the following fragment shows the way most

Java programmers create an infinite loop.

for(;;) // intentionally infinite loop
{
//...

}

This loop will run forever. Although there are some programming tasks, such as operating

system command processors, that require an infinite loop, most “infinite loops” are really

just loops with special termination requirements. Near the end of this module you will see

how to halt a loop of this type. (Hint: it’s done using the break statement.)

Loops with No Body
In Java, the body associated with a for loop (or any other loop) can be empty. This is because

a null statement is syntactically valid. Body-less loops are often useful. For example, the

following program uses one to sum the numbers 1 through 5.

// The body of a loop can be empty.
class Empty3 {
public static void main(String args[]) {
int i;
int sum = 0;

// sum the numbers through 5
for(i = 1; i <= 5; sum += i++) ;

System.out.println("Sum is " + sum);
}

}

The output from the program is shown here:

Sum is 15

Notice that the summation process is handled entirely within the for statement, and no body is

needed. Pay special attention to the iteration expression:

sum += i++

90 Module 3: Program Control Statements

No body in this loop!

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Don’t be intimidated by statements like this. They are common in professionally written Java

programs and are easy to understand if you break them down into their parts. In words, this

statement says “add to sum the value of sum plus i, then increment i.” Thus, it is the same as

this sequence of statements:

sum = sum + i;
i++;

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and is

not used elsewhere. When this is the case, it is possible to declare the variable inside the

initialization portion of the for. For example, the following program computes both the

summation and the factorial of the numbers 1 through 5. It declares its loop control variable

i inside the for.

// Declare loop control variable inside the for.
class ForVar {
public static void main(String args[]) {
int sum = 0;
int fact = 1;

// compute the factorial of the numbers through 5
for(int i = 1; i <= 5; i++) {
sum += i; // i is known throughout the loop
fact *= i;

}

// but, i is not known here.

System.out.println("Sum is " + sum);
System.out.println("Factorial is " + fact);

}
}

When you declare a variable inside a for loop, there is one important point to remember:

the scope of that variable ends when the for statement does. (That is, the scope of the variable

is limited to the for loop.) Outside the for loop, the variable will cease to exist. Thus, in the

preceding example, i is not accessible outside the for loop. If you need to use the loop control

variable elsewhere in your program, you will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the for

loop. As you will find, it is a fascinating loop.

Java 2: A Beginner’s Guide 91

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:91

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

The variable i is declared inside
the for statement.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:92

Progress Check
1. Can portions of a for statement be empty?

2. Show how to create an infinite loop using for.

3. What is the scope of a variable declared within a for statement?

CRITICAL SKILL

3.5 The while Loop
Another of Java’s loops is the while. The general form of the while loop is

while(condition) statement;

where statement may be a single statement or a block of statements, and condition defines the

condition that controls the loop, and it may be any valid Boolean expression. The loop repeats

while the condition is true. When the condition becomes false, program control passes to the

line immediately following the loop.

Here is a simple example in which a while is used to print the alphabet:

// Demonstrate the while loop.
class WhileDemo {
public static void main(String args[]) {
char ch;

// print the alphabet using a while loop
ch = 'a';
while(ch <= 'z') {
System.out.print(ch);
ch++;

}
}

}

Here, ch is initialized to the letter a. Each time through the loop, ch is output and then

incremented. This process continues until ch is greater than z.

92 Module 3: Program Control Statements

1. Yes. All three parts of the for—initialization, condition, and iteration—can be empty.

2. for(;;)

3. The scope of a variable declared within a for is limited to the loop. Outside the loop, it is unknown.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As with the for loop, the while checks the conditional expression at the top of the loop,

which means that the loop code may not execute at all. This eliminates the need for performing

a separate test before the loop. The following program illustrates this characteristic of the

while loop. It computes the integer powers of 2, from 0 to 9.

// Compute integer powers of 2.
class Power {
public static void main(String args[]) {
int e;
int result;

for(int i=0; i < 10; i++) {
result = 1;
e = i;
while(e > 0) {
result *= 2;
e--;

}

System.out.println("2 to the " + i +
" power is " + result);

}
}

}

The output from the program is shown here:

2 to the 0 power is 1
2 to the 1 power is 2
2 to the 2 power is 4
2 to the 3 power is 8
2 to the 4 power is 16
2 to the 5 power is 32
2 to the 6 power is 64
2 to the 7 power is 128
2 to the 8 power is 256
2 to the 9 power is 512

Notice that the while loop executes only when e is greater than 0. Thus, when e is zero, as it is

in the first iteration of the for loop, the while loop is skipped.

Java 2: A Beginner’s Guide 93

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:93

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:94

94 Module 3: Program Control Statements

CRITICAL SKILL

3.6 The do-while Loop
The last of Java’s loops is the do-while. Unlike the for and the while loops, in which the

condition is tested at the top of the loop, the do-while loop checks its condition at the bottom

of the loop. This means that a do-while loop will always execute at least once. The general

form of the do-while loop is

do {

statements;

} while(condition);

Although the braces are not necessary when only one statement is present, they are often used

to improve readability of the do-while construct, thus preventing confusion with the while. The

do-while loop executes as long as the conditional expression is true.

The following program loops until the user enters the letter q.

// Demonstrate the do-while loop.
class DWDemo {
public static void main(String args[])
throws java.io.IOException {

char ch;

do {
System.out.print("Press a key followed by ENTER: ");
ch = (char) System.in.read(); // get a char

Ask the Expert
Q: Given the flexibility inherent in all of Java’s loops, what criteria should I use when

selecting a loop? That is, how do I choose the right loop for a specific job?

A: Use a for loop when performing a known number of iterations. Use the do-while when

you need a loop that will always perform at least one iteration. The while is best used

when the loop will repeat an unknown number of times.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 95

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:95

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

} while(ch != 'q');
}

}

Using a do-while loop, we can further improve the guessing game program from earlier in

this module. This time, the program loops until you guess the letter.

// Guess the letter game, 4th version.
class Guess4 {
public static void main(String args[])
throws java.io.IOException {

char ch, answer = 'K';

do {
System.out.println("I'm thinking of a letter between A and Z.");
System.out.print("Can you guess it: ");

// read a letter, but skip cr/lf
do {
ch = (char) System.in.read(); // get a char

} while(ch == '\n' | ch == '\r');

if(ch == answer) System.out.println("** Right **");
else {
System.out.print("...Sorry, you're ");
if(ch < answer) System.out.println("too low");
else System.out.println("too high");
System.out.println("Try again!\n");

}
} while(answer != ch);

}
}

Here is a sample run:

I'm thinking of a letter between A and Z.
Can you guess it: A
...Sorry, you're too low
Try again!

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:96

96 Module 3: Program Control Statements

I'm thinking of a letter between A and Z.
Can you guess it: Z
...Sorry, you're too high
Try again!

I'm thinking of a letter between A and Z.
Can you guess it: K
** Right **

Notice one other thing of interest in this program. The do-while loop shown here obtains

the next character, skipping over any carriage return and line feed characters that might be in

the input stream:

// read a letter, but skip cr/lf
do {
ch = (char) System.in.read(); // get a char

} while(ch == '\n' | ch == '\r');

Here is why this loop is needed: As explained earlier, System.in is line buffered—you have to

press ENTER before characters are sent. Pressing ENTER causes a carriage return and a line feed

character to be generated. These characters are left pending in the input buffer. This loop

discards those characters by continuing to read input until neither is present.

Progress Check
1. What is the main difference between the while and the do-while loops?

2. The condition controlling the while can be of any type. True or False?

1. The while checks its condition at the top of the loop. The do-while checks its condition at the bottom of the loop.

Thus, a do-while will always execute at least once.

2. False. The condition must be of type boolean.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 97

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:97

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-2

Project 3-2 Improve the Java Help System
This project expands on the Java help system that was created in Project 3-1. This

version adds the syntax for the for, while, and do-while loops. It also checks the

user’s menu selection, looping until a valid response is entered.

Step by Step
1. Copy Help.java to a new file called Help2.java.

2. Change the portion of the program that displays the choices so that it uses the loop shown

here:

do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while\n");
System.out.print("Choose one: ");
do {
choice = (char) System.in.read();

} while(choice == '\n' | choice == '\r');
} while(choice < '1' | choice > '5');

Notice that a nested do-while loop is used to discard any spurious carriage return or line

feed characters that may be present in the input stream. After making this change, the

program will loop, displaying the menu until the user enters a response that is between

1 and 5.

3. Expand the switch statement to include the for, while, and do-while loops, as shown here:

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

Help2.java

(continued)

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:98

98 Module 3: Program Control Statements

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

}

Notice that no default statement is present in this version of the switch. Since the menu

loop ensures that a valid response will be entered, it is no longer necessary to include a

default statement to handle an invalid choice.

4. Here is the entire Help2.java program listing:

/*
Project 3-2

An improved Help system that uses a
do-while to process a menu selection.

*/
class Help2 {
public static void main(String args[])
throws java.io.IOException {
char choice;

do {
System.out.println("Help on:");

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while\n");
System.out.print("Choose one: ");
do {
choice = (char) System.in.read();

} while(choice == '\n' | choice == '\r');
} while(choice < '1' | choice > '5');

System.out.println("\n");

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

}
}

}

Java 2: A Beginner’s Guide 99

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:99

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-2

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:100

100 Module 3: Program Control Statements

CRITICAL SKILL

3.7 Use break to Exit a Loop
It is possible to force an immediate exit from a loop, bypassing any remaining code in the

body of the loop and the loop’s conditional test, by using the break statement. When a break

statement is encountered inside a loop, the loop is terminated and program control resumes at

the next statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakDemo {
public static void main(String args[]) {
int num;

num = 100;

// loop while i-squared is less than num
for(int i=0; i < num; i++) {
if(i*i >= num) break; // terminate loop if i*i >= 100
System.out.print(i + " ");

}
System.out.println("Loop complete.");

}
}

This program generates the following output:

0 1 2 3 4 5 6 7 8 9 Loop complete.

As you can see, although the for loop is designed to run from 0 to num (which in this case is

100), the break statement causes it to terminate early, when i squared is greater than or equal

to num.

The break statement can be used with any of Java’s loops, including intentionally infinite

loops. For example, the following program simply reads input until the user types the letter q.

// Read input until a q is received.
class Break2 {
public static void main(String args[])
throws java.io.IOException {

char ch;

for(; ;) {
ch = (char) System.in.read(); // get a char
if(ch == 'q') break;

This “infinite” loop is
terminated by the break.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
System.out.println("You pressed q!");

}
}

When used inside a set of nested loops, the break statement will break out of only the

innermost loop. For example:

// Using break with nested loops.
class Break3 {
public static void main(String args[]) {

for(int i=0; i<3; i++) {
System.out.println("Outer loop count: " + i);
System.out.print(" Inner loop count: ");

int t = 0;
while(t < 100) {
if(t == 10) break; // terminate loop if t is 10
System.out.print(t + " ");
t++;

}
System.out.println();

}
System.out.println("Loops complete.");

}
}

This program generates the following output:

Outer loop count: 0
Inner loop count: 0 1 2 3 4 5 6 7 8 9

Outer loop count: 1
Inner loop count: 0 1 2 3 4 5 6 7 8 9

Outer loop count: 2
Inner loop count: 0 1 2 3 4 5 6 7 8 9

Loops complete.

As you can see, the break statement in the inner loop causes the termination of only that loop.

The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement

may appear in a loop. However, be careful. Too many break statements have the tendency to

destructure your code. Second, the break that terminates a switch statement affects only that

switch statement and not any enclosing loops.

Java 2: A Beginner’s Guide 101

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:101

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:102

102 Module 3: Program Control Statements

CRITICAL SKILL

3.8 Use break as a Form of goto
In addition to its uses with the switch statement and loops, the break statement can be

employed by itself to provide a “civilized” form of the goto statement. Java does not

have a goto statement, because it provides an unstructured way to alter the flow of program

execution. Programs that make extensive use of the goto are usually hard to understand and

hard to maintain. There are, however, a few places where the goto is a useful and legitimate

device. For example, the goto can be helpful when exiting from a deeply nested set of loops.

To handle such situations, Java defines an expanded form of the break statement. By using

this form of break, you can break out of one or more blocks of code. These blocks need not

be part of a loop or a switch. They can be any block. Further, you can specify precisely where

execution will resume, because this form of break works with a label. As you will see, break

gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Here, label is the name of a label that identifies a block of code. When this form of break

executes, control is transferred out of the named block of code. The labeled block of code

must enclose the break statement, but it does not need to be the immediately enclosing block.

This means that you can use a labeled break statement to exit from a set of nested blocks.

But you cannot use break to transfer control to a block of code that does not enclose the

break statement.

To name a block, put a label at the start of it. The block being labeled can be a stand-alone

block, or a statement that has a block as its target. A label is any valid Java identifier followed

by a colon. Once you have labeled a block, you can then use this label as the target of a break

statement. Doing so causes execution to resume at the end of the labeled block. For example,

the following program shows three nested blocks.

// Using break with a label.
class Break4 {
public static void main(String args[]) {
int i;

for(i=1; i<4; i++) {
one: {
two: {
three: {

System.out.println("\ni is " + i);

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 103

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:103

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

if(i==1) break one;
if(i==2) break two;
if(i==3) break three;

// this is never reached
System.out.println("won't print");

}
System.out.println("After block three.");

}
System.out.println("After block two.");

}
System.out.println("After block one.");

}
System.out.println("After for.");

}
}

The output from the program is shown here:

i is 1
After block one.

i is 2
After block two.
After block one.

i is 3
After block three.
After block two.
After block one.
After for.

Let’s look closely at the program to understand precisely why this output is produced. When i

is 1, the first if statement succeeds, causing a break to the end of the block of code defined by

label one. This causes After block one. to print. When i is 2, the second if succeeds, causing

control to be transferred to the end of the block labeled by two. This causes the messages

After block two. and After block one. to be printed, in that order. When i is 3, the third if

succeeds, and control is transferred to the end of the block labeled by three. Now, all three

messages are displayed.

Here is another example. This time, break is being used to jump outside of a series of

nested for loops. When the break statement in the inner loop is executed, program control

Break to a label.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:104

104 Module 3: Program Control Statements

jumps to the end of the block defined by the outer for loop, which is labeled by done.

This causes the remainder of all three loops to be bypassed.

// Another example of using break with a label.
class Break5 {
public static void main(String args[]) {

done:
for(int i=0; i<10; i++) {
for(int j=0; j<10; j++) {
for(int k=0; k<10; k++) {
System.out.println(k + " ");
if(k == 5) break done; // jump to done

}
System.out.println("After k loop"); // won't execute

}
System.out.println("After j loop"); // won't execute

}
System.out.println("After i loop");

}
}

The output from the program is shown here:

0
1
2
3
4
5
After i loop

Precisely where you put a label is very important—especially when working with loops.

For example, consider the following program:

// Where you put a label is important.
class Break6 {
public static void main(String args[]) {
int x=0, y=0;

// here, put label before for statement.
stop1: for(x=0; x < 5; x++) {

for(y = 0; y < 5; y++) {

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3

Java 2: A Beginner’s Guide 105

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:105

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

if(y == 2) break stop1;
System.out.println("x and y: " + x + " " + y);

}
}

System.out.println();

// now, put label immediately before {
for(x=0; x < 5; x++)

stop2: {
for(y = 0; y < 5; y++) {
if(y == 2) break stop2;
System.out.println("x and y: " + x + " " + y);

}
}

}
}

The output from this program is shown here:

x and y: 0 0
x and y: 0 1

x and y: 0 0
x and y: 0 1
x and y: 1 0
x and y: 1 1
x and y: 2 0
x and y: 2 1
x and y: 3 0
x and y: 3 1
x and y: 4 0
x and y: 4 1

In the program, both sets of nested loops are the same except for one point. In the first set, the

label precedes the outer for loop. In this case, when the break executes, it transfers control to

the end of the entire for block, skipping the rest of the outer loop’s iterations. In the second

set, the label precedes the outer for’s opening curly brace. Thus, when break stop2 executes,

control is transferred to the end of the outer for’s block, causing the next iteration to occur.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:106

Keep in mind that you cannot break to any label that is not defined for an enclosing block.

For example, the following program is invalid and will not compile.

// This program contains an error.
class BreakErr {
public static void main(String args[]) {

one: for(int i=0; i<3; i++) {
System.out.print("Pass " + i + ": ");

}

for(int j=0; j<100; j++) {
if(j == 10) break one; // WRONG
System.out.print(j + " ");

}
}

}

Since the loop labeled one does not enclose the break statement, it is not possible to transfer

control to that block.

CRITICAL SKILL

3.9 Use continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control

structure. This is accomplished using continue. The continue statement forces the next

iteration of the loop to take place, skipping any code between itself and the conditional

expression that controls the loop. Thus, continue is essentially the complement of break.

For example, the following program uses continue to help print the even numbers between

0 and 100.

106 Module 3: Program Control Statements

Ask the Expert
Q: You say that the goto is unstructured and that the break with a label offers a better

alternative. But really, doesn’t breaking to a label, which might be many lines of

code and levels of nesting removed from the break, also destructure code?

A: The short answer is yes! However, in those cases in which a jarring change in program

flow is required, breaking to a label still retains some structure. A goto has none!

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 107

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:107

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

// Use continue.
class ContDemo {
public static void main(String args[]) {
int i;

// print even numbers between 0 and 100
for(i = 0; i<=100; i++) {
if((i%2) != 0) continue; // iterate
System.out.println(i);

}
}

}

Only even numbers are printed, because an odd one will cause the loop to iterate early,

bypassing the call to println().

In while and do-while loops, a continue statement will cause control to go directly to

the conditional expression and then continue the looping process. In the case of the for, the

iteration expression of the loop is evaluated, then the conditional expression is executed, and

then the loop continues.

As with the break statement, continue may specify a label to describe which enclosing

loop to continue. Here is an example program that uses continue with a label:

// Use continue with a label.
class ContToLabel {
public static void main(String args[]) {

outerloop:
for(int i=1; i < 10; i++) {
System.out.print("\nOuter loop pass " + i +

", Inner loop: ");
for(int j = 1; j < 10; j++) {
if(j == 5) continue outerloop; // continue outer loop
System.out.print(j);

}
}

}
}

The output from the program is shown here:

Outer loop pass 1, Inner loop: 1234
Outer loop pass 2, Inner loop: 1234

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:40:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:108

108 Module 3: Program Control Statements

Outer loop pass 3, Inner loop: 1234
Outer loop pass 4, Inner loop: 1234
Outer loop pass 5, Inner loop: 1234
Outer loop pass 6, Inner loop: 1234
Outer loop pass 7, Inner loop: 1234
Outer loop pass 8, Inner loop: 1234
Outer loop pass 9, Inner loop: 1234

As the output shows, when the continue executes, control passes to the outer loop, skipping

the remainder of the inner loop.

Good uses of continue are rare. One reason is that Java provides a rich set of loop

statements that fit most applications. However, for those special circumstances in which

early iteration is needed, the continue statement provides a structured way to accomplish it.

Progress Check
1. Within a loop, what happens when a break (with no label) is executed?

2. What happens when a break with a label is executed?

3. What does continue do?

1. Within a loop, a break without a label causes immediate termination of the loop. Execution resumes at the first line of

code after the loop.

2. When a labeled break is executed, execution resumes at the end of the labeled block.

3. The continue statement causes a loop to iterate immediately, bypassing any remaining code. If the continue includes a

label, the labeled loop is continued.

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Project 3-3 Finish the Java Help System
This project puts the finishing touches on the Java help system that was created in

the previous projects. This version adds the syntax for break and continue. It also

allows the user to request the syntax for more than one statement. It does this by adding an

outer loop that runs until the user enters q as a menu selection.

Step by Step
1. Copy Help2.java to a new file called Help3.java.

2. Surround all of the program code with an infinite for loop. Break out of this loop, using

break, when a letter q is entered. Since this loop surrounds all of the program code,

breaking out of this loop causes the program to terminate.

3. Change the menu loop as shown here:

do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print("Choose one (q to quit): ");
do {
choice = (char) System.in.read();

} while(choice == '\n' | choice == '\r');
} while(choice < '1' | choice > '7' & choice != 'q');

Notice that this loop now includes the break and continue statements. It also accepts the

letter q as a valid choice.

4. Expand the switch statement to include the break and continue statements, as shown here:

case '6':
System.out.println("The break:\n");
System.out.println("break; or break label;");
break;

case '7':
System.out.println("The continue:\n");
System.out.println("continue; or continue label;");
break;

Java 2: A Beginner’s Guide 109

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:109

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-3

Help3.java

(continued)

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:110

110 Module 3: Program Control Statements

5. Here is the entire Help3.java program listing:

/*
Project 3-3

The finished Java statement Help system
that processes multiple requests.

*/
class Help3 {
public static void main(String args[])
throws java.io.IOException {
char choice;

for(;;) {
do {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print("Choose one (q to quit): ");
do {
choice = (char) System.in.read();

} while(choice == '\n' | choice == '\r');
} while(choice < '1' | choice > '7' & choice != 'q');

if(choice == 'q') break;

System.out.println("\n");

switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 111

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:111

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

Project
3-3

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '6':
System.out.println("The break:\n");
System.out.println("break; or break label;");
break;

case '7':
System.out.println("The continue:\n");
System.out.println("continue; or continue label;");
break;

}
System.out.println();

}
}

}

6. Here is a sample run:

Help on:
1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue

Choose one (q to quit): 1

The if:

if(condition) statement;
else statement;

Help on:

(continued)

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:112

112 Module 3: Program Control Statements

1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue

Choose one (q to quit): 6

The break:

break; or break label;

Help on:
1. if
2. switch
3. for
4. while
5. do-while
6. break
7. continue

Choose one (q to quit): q

CRITICAL SKILL

3.10 Nested Loops
As you have seen in some of the preceding examples, one loop can be nested inside of another.

Nested loops are used to solve a wide variety of programming problems and are an essential

part of programming. So, before leaving the topic of Java’s loop statements, let’s look at one

more nested loop example. The following program uses a nested for loop to find the factors of

the numbers from 2 to 100.

/*
Use nested loops to find factors of numbers
between 2 and 100.

*/
class FindFac {
public static void main(String args[]) {

for(int i=2; i <= 100; i++) {
System.out.print("Factors of " + i + ": ");
for(int j = 2; j < i; j++)
if((i%j) == 0) System.out.print(j + " ");

System.out.println();
}

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 113

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:113

3

Pr
og

ra
m

C
on

tro
lS

ta
te

m
en

ts

}
}

Here is a portion of the output produced by the program:

Factors of 2:
Factors of 3:
Factors of 4: 2
Factors of 5:
Factors of 6: 2 3
Factors of 7:
Factors of 8: 2 4
Factors of 9: 3
Factors of 10: 2 5
Factors of 11:
Factors of 12: 2 3 4 6
Factors of 13:
Factors of 14: 2 7
Factors of 15: 3 5
Factors of 16: 2 4 8
Factors of 17:
Factors of 18: 2 3 6 9
Factors of 19:
Factors of 20: 2 4 5 10

In the program, the outer loop runs i from 2 through 100. The inner loop successively tests all

numbers from 2 up to i, printing those that evenly divide i. Extra challenge: The preceding

program can be made more efficient. Can you see how? (Hint: the number of iterations in the

inner loop can be reduced.)

Module 3 Mastery Check
1. Write a program that reads characters from the keyboard until a period is received. Have the

program count the number of spaces. Report the total at the end of the program.

2. Show the general form of the if-else-if ladder.

3. Given

if(x < 10)
if(y > 100) {
if(!done) x = z;
else y = z;

}
else System.out.println("error"); // what if?

to what if does the last else associate?

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 3
Blind Folio 3:114

114 Module 3: Program Control Statements

4. Show the for statement for a loop that counts from 1000 to 0 by −2.

5. Is the following fragment valid?

for(int i = 0; i < num; i++)
sum += i;

count = i;

6. Explain what break does. Be sure to explain both of its forms.

7. In the following fragment, after the break statement executes, what is displayed?

for(i = 0; i < 10; i++) {
while(running) {
if(x<y) break;
// ...

}
System.out.println("after while");

}
System.out.println("After for");

8. What does the following fragment print?

for(int i = 0; i<10; i++) {
System.out.print(i + " ");
if((i%2) == 0) continue;
System.out.println();

}

9. The iteration expression in a for loop need not always alter the loop control variable by a

fixed amount. Instead, the loop control variable can change in any arbitrary way. Using this

concept, write a program that uses a for loop to generate and display the progression 1, 2, 4,

8, 16, 32, and so on.

10. The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to

convert a lowercase letter to uppercase, subtract 32 from it. Use this information to write

a program that reads characters from the keyboard. Have it convert all lowercase letters to

uppercase, and all uppercase letters to lowercase, displaying the result. Make no changes

to any other character. Have the program stop when the user presses period. At the end,

have the program display the number of case changes that have taken place.

11. What is an infinite loop?

12. When using break with a label, must the label be on a block that contains the break?

P:\010Comp\Begin8\588-2\ch03.vp
Tuesday, November 05, 2002 9:41:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:115

Module4
Introducing Classes,
Objects, and Methods

CRITICAL SKILLS
4.1 Know the fundamentals of the class

4.2 Understand how objects are created

4.3 Understand how reference variables are assigned

4.4 Create methods, return values, and use parameters

4.5 Use the return keyword

4.6 Return a value from a method

4.7 Add parameters to a method

4.8 Utilize constructors

4.9 Create parameterized constructors

4.10 Understand new

4.11 Understand garbage collection and finalizers

4.12 Use the this keyword

115

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:116

116 Module 4: Introducing Classes, Objects, and Methods

Before you can go much further in your study of Java, you need to learn about the class. The

class is the essence of Java. It is the foundation upon which the entire Java language is built

because the class defines the nature of an object. As such, the class forms the basis for object-

oriented programming in Java. Within a class are defined data and code that acts upon that

data. The code is contained in methods. Because classes, objects, and methods are fundamental

to Java, they are introduced in this module. Having a basic understanding of these features will

allow you to write more sophisticated programs and better understand certain key Java elements

described in the following module.

CRITICAL SKILL

4.1 Class Fundamentals
Since all Java program activity occurs within a class, we have been using classes since the

start of this book. Of course, only extremely simple classes have been used, and we have not

taken advantage of the majority of their features. As you will see, classes are substantially

more powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of an object.

It specifies both the data and the code that will operate on that data. Java uses a class specification

to construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans

that specify how to build an object. It is important to be clear on one issue: a class is a logical

abstraction. It is not until an object of that class has been created that a physical representation

of that class exists in memory.

One other point: recall that the methods and variables that constitute a class are called

members of the class. The data members are also referred to as instance variables.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying the

instance variables that it contains and the methods that operate on them. Although very simple

classes might contain only methods or only instance variables, most real-world classes contain both.

A class is created by using the keyword class. The general form of a class definition is

shown here:

class classname {

// declare instance variables

type var1;

type var2;

// ...

type varN;

// declare methods

type method1(parameters) {

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 117

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:117

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

// body of method

}

type method2(parameters) {

// body of method

}

// ...

type methodN(parameters) {

// body of method

}

}

Although there is no syntactic rule that enforces it, a well-designed class should define

one and only one logical entity. For example, a class that stores names and telephone numbers

will not normally also store information about the stock market, average rainfall, sunspot

cycles, or other unrelated information. The point here is that a well-designed class groups logically

connected information. Putting unrelated information into the same class will quickly

destructure your code!

Up to this point, the classes that we have been using have only had one method: main().

Soon you will see how to create others. However, notice that the general form of a class does

not specify a main() method. A main() method is required only if that class is the starting

point for your program. Also, applets don’t require a main().

Defining a Class
To illustrate classes we will develop a class that encapsulates information about vehicles, such

as cars, vans, and trucks. This class is called Vehicle, and it will store three items of information

about a vehicle: the number of passengers that it can carry, its fuel capacity, and its average

fuel consumption (in miles per gallon).

The first version of Vehicle is shown next. It defines three instance variables: passengers,

fuelcap, and mpg. Notice that Vehicle does not contain any methods. Thus, it is currently a

data-only class. (Subsequent sections will add methods to it.)

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

A class definition creates a new data type. In this case, the new data type is called Vehicle.

You will use this name to declare objects of type Vehicle. Remember that a class declaration

is only a type description; it does not create an actual object. Thus, the preceding code does not

cause any objects of type Vehicle to come into existence.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:118

118 Module 4: Introducing Classes, Objects, and Methods

To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called minivan

After this statement executes, minivan will be an instance of Vehicle. Thus, it will have “physical”

reality. For the moment, don’t worry about the details of this statement.

Each time you create an instance of a class, you are creating an object that contains its own

copy of each instance variable defined by the class. Thus, every Vehicle object will contain its

own copies of the instance variables passengers, fuelcap, and mpg. To access these variables,

you will use the dot (.) operator. The dot operator links the name of an object with the name of

a member. The general form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to

assign the fuelcap variable of minivan the value 16, use the following statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and methods.

Here is a complete program that uses the Vehicle class:

/* A program that uses the Vehicle class.

Call this file VehicleDemo.java
*/
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class VehicleDemo {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
int range;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// compute the range assuming a full tank of gas
range = minivan.fuelcap * minivan.mpg;

Notice the use of the dot
operator to access a member.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 119

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:119

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

System.out.println("Minivan can carry " + minivan.passengers +
" with a range of " + range);

}
}

You should call the file that contains this program VehicleDemo.java because the main()

method is in the class called VehicleDemo, not the class called Vehicle. When you compile

this program, you will find that two .class files have been created, one for Vehicle and one for

VehicleDemo. The Java compiler automatically puts each class into its own .class file. It is not

necessary for both the Vehicle and the VehicleDemo class to be in the same source file. You

could put each class in its own file, called Vehicle.java and VehicleDemo.java, respectively.

To run this program, you must execute VehicleDemo.class. The following output is displayed:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own copies

of the instance variables defined by its class. Thus, the contents of the variables in one object

can differ from the contents of the variables in another. There is no connection between the

two objects except for the fact that they are both objects of the same type. For example, if you

have two Vehicle objects, each has its own copy of passengers, fuelcap, and mpg, and the

contents of these can differ between the two objects. The following program demonstrates this

fact. (Notice that the class with main() is now called TwoVehicles.)

// This program creates two Vehicle objects.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class TwoVehicles {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

Remember,
minivan and
sportscar refer
to separate
objects.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas
range1 = minivan.fuelcap * minivan.mpg;
range2 = sportscar.fuelcap * sportscar.mpg;

System.out.println("Minivan can carry " + minivan.passengers +
" with a range of " + range1);

System.out.println("Sportscar can carry " + sportscar.passengers +
" with a range of " + range2);

}
}

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in sportscar.

The following illustration depicts this situation.

Progress Check
1. A class contains what two things?

2. What operator is used to access the members of a class through an object?

3. Each object has its own copies of the class’s _____________.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:120

120 Module 4: Introducing Classes, Objects, and Methods

1. Code and data. In Java, this means methods and instance variables.

2. The dot operator.

3. instance variables

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4
CRITICAL SKILL

4.2 How Objects Are Created
In the preceding programs, the following line was used to declare an object of type Vehicle:

Vehicle minivan = new Vehicle();

This declaration performs two functions. First, it declares a variable called minivan of the

class type Vehicle. This variable does not define an object. Instead, it is simply a variable that

can refer to an object. Second, the declaration creates a physical copy of the object and assigns

to minivan a reference to that object. This is done by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for an

object and returns a reference to it. This reference is, more or less, the address in memory

of the object allocated by new. This reference is then stored in a variable. Thus, in Java, all

class objects must be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to show each

step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle(); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus, minivan is a

variable that can refer to an object, but it is not an object, itself. At this point, minivan contains

the value null, which means that it does not refer to an object. The next line creates a new

Vehicle object and assigns a reference to it to minivan. Now, minivan is linked with an object.

CRITICAL SKILL

4.3 Reference Variables and Assignment
In an assignment operation, object reference variables act differently than do variables of a

simple type, such as int. When you assign one simple-type variable to another, the situation

is straightforward. The variable on the left receives a copy of the value of the variable on

the right. When you assign an object reference variable to another, the situation is a bit more

complicated because you are changing the object that the reference variable refers to. The

effect of this difference can cause some counterintuitive results. For example, consider the

following fragment:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;

At first glance, it is easy to think that car1 and car2 refer to different objects, but this is not

the case. Instead, car1 and car2 will both refer to the same object. The assignment of car1 to

Java 2: A Beginner’s Guide 121

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:121

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:122

car2 simply makes car2 refer to the same object as does car1. Thus, the object can be acted

upon by either car1 or car2. For example, after the assignment

car1.mpg = 26;

executes, both of these println() statements

System.out.println(car1.mpg);
System.out.println(car2.mpg);

display the same value: 26.

Although car1 and car2 both refer to the same object, they are not linked in any other

way. For example, a subsequent assignment to car2 simply changes the object to which car2

refers. For example:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;
Vehicle car3 = new Vehicle();

car2 = car3; // now car2 and car3 refer to the same object.

After this sequence executes, car2 refers to the same object as car3. The object referred to by

car1 is unchanged.

Progress Check
1. Explain what occurs when one object reference variable is assigned to another.

2. Assuming a class called MyClass, show how an object called ob is created.

CRITICAL SKILL

4.4 Methods
As explained, instance variables and methods are the constituents of classes. So far, the

Vehicle class contains data, but no methods. Although data-only classes are perfectly

valid, most classes will have methods. Methods are subroutines that manipulate the data

defined by the class and, in many cases, provide access to that data. In most cases, other parts

of your program will interact with a class through its methods.

122 Module 4: Introducing Classes, Objects, and Methods

1. When one object reference variable is assigned to another object reference variable, both variables will refer to the same

object. A copy of the object is not made.

2. Myclass ob = new MyClass();

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 123

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:123

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

A method contains one or more statements. In well-written Java code, each method performs

only one task. Each method has a name, and it is this name that is used to call the method. In

general, you can give a method whatever name you please. However, remember that main() is

reserved for the method that begins execution of your program. Also, don’t use Java’s keywords

for method names.

When denoting methods in text, this book has used and will continue to use a convention

that has become common when writing about Java. A method will have parentheses after its

name. For example, if a method’s name is getval, it will be written getval() when its name is

used in a sentence. This notation will help you distinguish variable names from method names

in this book.

The general form of a method is shown here:

ret-type name(parameter-list) {

// body of method

}

Here, ret-type specifies the type of data returned by the method. This can be any valid type,

including class types that you create. If the method does not return a value, its return type

must be void. The name of the method is specified by name. This can be any legal identifier

other than those already used by other items within the current scope. The parameter-list

is a sequence of type and identifier pairs separated by commas. Parameters are essentially

variables that receive the value of the arguments passed to the method when it is called.

If the method has no parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class
As just explained, the methods of a class typically manipulate and provide access to the data

of the class. With this in mind, recall that main() in the preceding examples computed the

range of a vehicle by multiplying its fuel consumption rate by its fuel capacity. While technically

correct, this is not the best way to handle this computation. The calculation of a vehicle’s range

is something that is best handled by the Vehicle class itself. The reason for this conclusion is

easy to understand: the range of a vehicle is dependent upon the capacity of the fuel tank and

the rate of fuel consumption, and both of these quantities are encapsulated by Vehicle. By adding

a method to Vehicle that computes the range, you are enhancing its object-oriented structure.

To add a method to Vehicle, specify it within Vehicle’s declaration. For example,

the following version of Vehicle contains a method called range() that displays the range

of the vehicle.

// Add range to Vehicle.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:124

124 Module 4: Introducing Classes, Objects, and Methods

int mpg; // fuel consumption in miles per gallon

// Display the range.
void range() {
System.out.println("Range is " + fuelcap * mpg);

}
}

class AddMeth {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

System.out.print("Minivan can carry " + minivan.passengers +
". ");

minivan.range(); // display range of minivan

System.out.print("Sportscar can carry " + sportscar.passengers +
". ");

sportscar.range(); // display range of sportscar.
}

}

This program generates the following output:

Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168

Let’s look at the key elements of this program, beginning with the range() method itself.

The first line of range() is

void range() {

The range() method is contained within the Vehicle class.

Notice that fuelcap and mpg are used directly, without the dot operator.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This line declares a method called range that has no parameters. Its return type is void. Thus,

range() does not return a value to the caller. The line ends with the opening curly brace of the

method body.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpg);

This statement displays the range of the vehicle by multiplying fuelcap by mpg. Since each

object of type Vehicle has its own copy of fuelcap and mpg, when range() is called, the range

computation uses the calling object’s copies of those variables.

The range() method ends when its closing curly brace is encountered. This causes program

control to transfer back to the caller.

Next, look closely at this line of code from inside main():

minivan.range();

This statement invokes the range() method on minivan. That is, it calls range() relative to

the minivan object, using the object’s name followed by the dot operator. When a method is

called, program control is transferred to the method. When the method terminates, control is

transferred back to the caller, and execution resumes with the line of code following the call.

In this case, the call to minivan.range() displays the range of the vehicle defined by minivan.

In similar fashion, the call to sportscar.range() displays the range of the vehicle defined by

sportscar. Each time range() is invoked, it displays the range for the specified object.

There is something very important to notice inside the range() method: the instance variables

fuelcap and mpg are referred to directly, without preceding them with an object name or the

dot operator. When a method uses an instance variable that is defined by its class, it does so

directly, without explicit reference to an object and without use of the dot operator. This is

easy to understand if you think about it. A method is always invoked relative to some object of

its class. Once this invocation has occurred, the object is known. Thus, within a method, there

is no need to specify the object a second time. This means that fuelcap and mpg inside range()

implicitly refer to the copies of those variables found in the object that invokes range().

CRITICAL SKILL

4.5 Returning from a Method
In general, there are two conditions that cause a method to return—first, as the range() method

in the preceding example shows, when the method’s closing curly brace is encountered. The

second is when a return statement is executed. There are two forms of return—one for use in

void methods (those that do not return a value) and one for returning values. The first form is

examined here. The next section explains how to return values.

4

Java 2: A Beginner’s Guide 125

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:125

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In a void method, you can cause the immediate termination of a method by using this form

of return:

return ;

When this statement executes, program control returns to the caller, skipping any remaining

code in the method. For example, consider this method:

void myMeth() {
int i;

for(i=0; i<10; i++) {
if(i == 5) return; // stop at 5
System.out.println();

}
}

Here, the for loop will only run from 0 to 5, because once i equals 5, the method returns.

It is permissible to have multiple return statements in a method, especially when there

are two or more routes out of it. For example:

void myMeth() {
// ...
if(done) return;
// ...
if(error) return;

}

Here, the method returns if it is done or if an error occurs. Be careful, however, because

having too many exit points in a method can destructure your code; so avoid using them

casually. A well-designed method has well-defined exit points.

To review: a void method can return in one of two ways—its closing curly brace is

reached, or a return statement is executed.

CRITICAL SKILL

4.6 Returning a Value
Although methods with a return type of void are not rare, most methods will return a value.

In fact, the ability to return a value is one of the most useful features of a method. You have

already seen one example of a return value: when we used the sqrt() function to obtain a

square root.

126 Module 4: Introducing Classes, Objects, and Methods

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:126

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Return values are used for a variety of purposes in programming. In some cases, such as

with sqrt(), the return value contains the outcome of some calculation. In other cases, the

return value may simply indicate success or failure. In still others, it may contain a status code.

Whatever the purpose, using method return values is an integral part of Java programming.

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned.

You can use a return value to improve the implementation of range(). Instead of displaying

the range, a better approach is to have range() compute the range and return this value. Among

the advantages to this approach is that you can use the value for other calculations. The following

example modifies range() to return the range rather than displaying it.

// Use a return value.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.
int range() {
return mpg * fuelcap;

}
}

class RetMeth {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();

int range1, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

Java 2: A Beginner’s Guide 127

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:127

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Return the range for a given vehicle.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:128

128 Module 4: Introducing Classes, Objects, and Methods

// get the ranges
range1 = minivan.range();
range2 = sportscar.range();

System.out.println("Minivan can carry " + minivan.passengers +
" with range of " + range1 + " Miles");

System.out.println("Sportscar can carry " + sportscar.passengers +
" with range of " + range2 + " miles");

}
}

The output is shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an

assignment statement. On the left is a variable that will receive the value returned by range().

Thus, after

range1 = minivan.range();

executes, the range of the minivan object is stored in range1.

Notice that range() now has a return type of int. This means that it will return an integer

value to the caller. The return type of a method is important because the type of data returned

by a method must be compatible with the return type specified by the method. Thus, if you

want a method to return data of type double, its return type must be type double.

Although the preceding program is correct, it is not written as efficiently as it could be.

Specifically, there is no need for the range1 or range2 variables. A call to range() can be used

in the println() statement directly, as shown here:

System.out.println("Minivan can carry " + minivan.passengers +
" with range of " + minivan.range() + " Miles");

In this case, when println() is executed, minivan.range() is called automatically and its value

will be passed to println(). Furthermore, you can use a call to range() whenever the range of

a Vehicle object is needed. For example, this statement compares the ranges of two vehicles:

if(v1.range() > v2.range()) System.out.println("v1 has greater range");

Assign the value
returned to a variable.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 129

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:129

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

CRITICAL SKILL

4.7 Using Parameters
It is possible to pass one or more values to a method when the method is called. As explained,

a value passed to a method is called an argument. Inside the method, the variable that receives

the argument is called a parameter. Parameters are declared inside the parentheses that follow

the method’s name. The parameter declaration syntax is the same as that used for variables.

A parameter is within the scope of its method, and aside from its special task of receiving an

argument, it acts like any other local variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the

method isEven() returns true if the value that it is passed is even. It returns false otherwise.

Therefore, isEven() has a return type of boolean.

// A simple example that uses a parameter.

class ChkNum {
// return true if x is even
boolean isEven(int x) {
if((x%2) == 0) return true;
else return false;

}
}

class ParmDemo {
public static void main(String args[]) {
ChkNum e = new ChkNum();

if(e.isEven(10)) System.out.println("10 is even.");

if(e.isEven(9)) System.out.println("9 is even.");

if(e.isEven(8)) System.out.println("8 is even.");

}
}

Here is the output produced by the program:

10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is passed.

Let’s look at this process closely. First, notice how isEven() is called. The argument is

Here, x is an integer parameter of isEven().

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:130

130 Module 4: Introducing Classes, Objects, and Methods

specified between the parentheses. When isEven() is called the first time, it is passed the

value 10. Thus, when isEven() begins executing, the parameter x receives the value 10. In the

second call, 9 is the argument, and x, then, has the value 9. In the third call, the argument is 8,

which is the value that x receives. The point is that the value passed as an argument when

isEven() is called is the value received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter, separating

one from the next with a comma. For example, the Factor class defines a method called

isFactor() that determines whether the first parameter is a factor of the second.

class Factor {
boolean isFactor(int a, int b) {
if((b % a) == 0) return true;
else return false;

}
}
class IsFact {
public static void main(String args[]) {
Factor x = new Factor();

if(x.isFactor(2, 20)) System.out.println("2 is factor");
if(x.isFactor(3, 20)) System.out.println("this won't be displayed");

}
}

Notice that when isFactor() is called, the arguments are also separated by commas.

When using multiple parameters, each parameter specifies its own type, which can differ

from the others. For example, this is perfectly valid:

int myMeth(int a, double b, float c) {
// ...

Adding a Parameterized Method to Vehicle
You can use a parameterized method to add a new feature to the Vehicle class: the ability

to compute the amount of fuel needed for a given distance. This new method is called

fuelneeded(). This method takes the number of miles that you want to drive and returns

the number of gallons of gas required. The fuelneeded() method is defined like this:

double fuelneeded(int miles) {
return (double) miles / mpg;

}

This method has two parameters.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 131

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:131

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Notice that this method returns a value of type double. This is useful since the amount of fuel

needed for a given distance might not be an even number.

The entire Vehicle class that includes fuelneeded() is shown here:

/*
Add a parameterized method that computes the
fuel required for a given distance.

*/

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.
int range() {
return mpg * fuelcap;

}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}
}

class CompFuel {
public static void main(String args[]) {
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
double gallons;
int dist = 252;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;
sportscar.mpg = 12;

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:132

132 Module 4: Introducing Classes, Objects, and Methods

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan needs " +
gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded(dist);

System.out.println("To go " + dist + " miles sportscar needs " +
gallons + " gallons of fuel.");

}
}

The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

Progress Check
1. When must an instance variable or method be accessed through an object reference using

the dot operator? When can a variable or method be used directly?

2. Explain the difference between an argument and a parameter.

3. Explain the two ways that a method can return to its caller.

1. When an instance variable is accessed by code that is not part of the class in which that instance variable is defined, it

must be done through an object, by use of the dot operator. However, when an instance variable is accessed by code that is

part of the same class as the instance variable, that variable can be referred to directly. The same thing applies to methods.

2. An argument is a value that is passed to a method when it is invoked. A parameter is a variable defined by a method that

receives the value of the argument.

3. A method can be made to return through the use of the return statement. If the method has a void return type, it will also

return when its closing curly brace is reached. Non-void methods must return a value, so returning by reaching the closing

curly brace is not an option.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 133

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:133

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Project
4-1

Project 4-1 Creating a Help Class
If one were to try to summarize the essence of the class in one sentence,

it might be this: a class encapsulates functionality. Of course, sometimes

the trick is knowing where one “functionality” ends and another begins. As a general rule, you

will want your classes to be the building blocks of your larger application. In order to do this,

each class must represent a single functional unit that performs clearly delineated actions.

Thus, you will want your classes to be as small as possible—but no smaller! That is, classes

that contain extraneous functionality confuse and destructure code, but classes that contain too

little functionality are fragmented. What is the balance? It is at this point that the science of

programming becomes the art of programming. Fortunately, most programmers find that this

balancing act becomes easier with experience.

To begin to gain that experience you will convert the help system from Project 3-3 in

the preceding module into a Help class. Let’s examine why this is a good idea. First, the help

system defines one logical unit. It simply displays the syntax for Java’s control statements.

Thus, its functionality is compact and well defined. Second, putting help in a class is an esthetically

pleasing approach. Whenever you want to offer the help system to a user, simply instantiate

a help-system object. Finally, because help is encapsulated, it can be upgraded or changed

without causing unwanted side effects in the programs that use it.

Step by Step
1. Create a new file called HelpClassDemo.java. To save you some typing, you might want

to copy the file from Project 3-3, Help3.java, into HelpClassDemo.java.

2. To convert the help system into a class, you must first determine precisely what constitutes

the help system. For example, in Help3.java, there is code to display a menu, input the

user’s choice, check for a valid response, and display information about the item selected.

The program also loops until the letter q is pressed. If you think about it, it is clear that the

menu, the check for a valid response, and the display of the information are integral to the

help system. How user input is obtained, and whether repeated requests should be processed,

are not. Thus, you will create a class that displays the help information, the help menu, and

checks for a valid selection. These methods will be called helpon(), showmenu(), and

isvalid(), respectively.

HelpClassDemo.java

(continued)

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:134

134 Module 4: Introducing Classes, Objects, and Methods

3. Create the helpon() method as shown here:

void helpon(int what) {
switch(what) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '6':
System.out.println("The break:\n");
System.out.println("break; or break label;");
break;

case '7':
System.out.println("The continue:\n");
System.out.println("continue; or continue label;");
break;

}
System.out.println();

}

4. Next, create the showmenu() method:

void showmenu() {
System.out.println("Help on:");

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print("Choose one (q to quit): ");

}

5. Create the isvalid() method, shown here:

boolean isvalid(int ch) {
if(ch < '1' | ch > '7' & ch != 'q') return false;
else return true;

}

6. Assemble the foregoing methods into the Help class, shown here:

class Help {
void helpon(int what) {
switch(what) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");

Java 2: A Beginner’s Guide 135

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:135

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Project
4-1

(continued)

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:136

System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '6':
System.out.println("The break:\n");
System.out.println("break; or break label;");
break;

case '7':
System.out.println("The continue:\n");
System.out.println("continue; or continue label;");
break;

}
System.out.println();

}

void showmenu() {
System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print("Choose one (q to quit): ");

}

boolean isvalid(int ch) {
if(ch < '1' | ch > '7' & ch != 'q') return false;
else return true;

}

}

7. Finally, rewrite the main() method from Project 3-3 so that it uses the new Help class. Call

this class HelpClassDemo.java. The entire listing for HelpClassDemo.java is shown here:

/*
Project 4-1

Convert the help system from Project 3-3 into
a Help class.

*/

class Help {

136 Module 4: Introducing Classes, Objects, and Methods

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

void helpon(int what) {
switch(what) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;

case '3':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n");
System.out.println("while(condition) statement;");
break;

case '5':
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '6':
System.out.println("The break:\n");
System.out.println("break; or break label;");
break;

case '7':
System.out.println("The continue:\n");
System.out.println("continue; or continue label;");
break;

}
System.out.println();

}

void showmenu() {
System.out.println("Help on:");

Java 2: A Beginner’s Guide 137

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:137

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Project
4-1

(continued)

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:138

138 Module 4: Introducing Classes, Objects, and Methods

System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n");
System.out.print("Choose one (q to quit): ");

}

boolean isvalid(int ch) {
if(ch < '1' | ch > '7' & ch != 'q') return false;
else return true;

}

}

class HelpClassDemo {
public static void main(String args[])
throws java.io.IOException {
char choice;
Help hlpobj = new Help();

for(;;) {
do {
hlpobj.showmenu();
do {
choice = (char) System.in.read();

} while(choice == '\n' | choice == '\r');

} while(!hlpobj.isvalid(choice));

if(choice == 'q') break;

System.out.println("\n");

hlpobj.helpon(choice);
}

}
}

When you try the program, you will find that it is functionally the same as before. The

advantage to this approach is that you now have a help system component that can be reused

whenever it is needed.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 139

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:139

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

CRITICAL SKILL

4.8 Constructors
In the preceding examples, the instance variables of each Vehicle object had to be set

manually using a sequence of statements, such as:

minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

An approach like this would never be used in professionally written Java code. Aside from

being error prone (you might forget to set one of the fields), there is simply a better way to

accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its class

and is syntactically similar to a method. However, constructors have no explicit return type.

Typically, you will use a constructor to give initial values to the instance variables defined by

the class, or to perform any other startup procedures required to create a fully formed object.

All classes have constructors, whether you define one or not, because Java automatically

provides a default constructor that initializes all member variables to zero. However, once you

define your own constructor, the default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass {
int x;

MyClass() {
x = 10;

}
}

class ConsDemo {
public static void main(String args[]) {
MyClass t1 = new MyClass();
MyClass t2 = new MyClass();

System.out.println(t1.x + " " + t2.x);
}

}

In this example, the constructor for MyClass is

MyClass() {
x = 10;

}

The constructor for MyClass

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:140

140 Module 4: Introducing Classes, Objects, and Methods

This constructor assigns the instance variable x of MyClass the value 10. This constructor is

called by new when an object is created. For example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The same is true

for t2. After construction, t2.x has the value 10. Thus, the output from the program is

10 10

CRITICAL SKILL

4.9 Parameterized Constructors
In the preceding example, a parameter-less constructor was used. Although this is fine for

some situations, most often you will need a constructor that accepts one or more parameters.

Parameters are added to a constructor in the same way that they are added to a method: just

declare them inside the parentheses after the constructor’s name. For example, here, MyClass

is given a parameterized constructor:

// A parameterized constructor.

class MyClass {
int x;

MyClass(int i) {
x = i;

}
}

class ParmConsDemo {
public static void main(String args[]) {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);

System.out.println(t1.x + " " + t2.x);
}

}

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter called i,

which is used to initialize the instance variable, x. Thus, when the line

MyClass t1 = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 141

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:141

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Adding a Constructor to the Vehicle Class
We can improve the Vehicle class by adding a constructor that automatically initializes the

passengers, fuelcap, and mpg fields when an object is constructed. Pay special attention to

how Vehicle objects are created.

// Add a constructor.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.
Vehicle(int p, int f, int m) {
passengers = p;
fuelcap = f;
mpg = m;

}

// Return the range.
int range() {
return mpg * fuelcap;

}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}
}

class VehConsDemo {
public static void main(String args[]) {

// construct complete vehicles
Vehicle minivan = new Vehicle(7, 16, 21);
Vehicle sportscar = new Vehicle(2, 14, 12);
double gallons;
int dist = 252;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan needs " +
gallons + " gallons of fuel.");

Constructor for Vehicle

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:142

142 Module 4: Introducing Classes, Objects, and Methods

gallons = sportscar.fuelneeded(dist);

System.out.println("To go " + dist + " miles sportscar needs " +
gallons + " gallons of fuel.");

}
}

Both minivan and sportscar are initialized by the Vehicle() constructor when they are

created. Each object is initialized as specified in the parameters to its constructor. For example,

in the following line,

Vehicle minivan = new Vehicle(7, 16, 21);

the values 7, 16, and 21 are passed to the Vehicle() constructor when new creates the object.

Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the values 7, 16, and 21,

respectively. The output from this program is the same as the previous version.

Progress Check
1. What is a constructor, and when is it executed?

2. Does a constructor have a return type?

CRITICAL SKILL

4.10 The new Operator Revisited
Now that you know more about classes and their constructors, let’s take a closer look at the

new operator. The new operator has this general form:

class-var = new class-name();

Here, class-var is a variable of the class type being created. The class-name is the name

of the class that is being instantiated. The class name followed by parentheses specifies the

constructor for the class. If a class does not define its own constructor, new will use the default

constructor supplied by Java. Thus, new can be used to create an object of any class type.

1. A constructor is a method that is executed when an object of its class is instantiated. A constructor is used to initialize the

object being created.

2. No.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Since memory is finite, it is possible that new will not be able to allocate memory for an

object because insufficient memory exists. If this happens, a run-time exception will occur.

(You will learn how to handle this and other exceptions in Module 9.) For the sample

programs in this book, you won’t need to worry about running out of memory, but you will

need to consider this possibility in real-world programs that you write.

CRITICAL SKILL

4.11 Garbage Collection and Finalizers
As you have seen, objects are dynamically allocated from a pool of free memory by using the

new operator. As explained, memory is not infinite, and the free memory can be exhausted.

Thus, it is possible for new to fail because there is insufficient free memory to create the

desired object. For this reason, a key component of any dynamic allocation scheme is the

recovery of free memory from unused objects, making that memory available for subsequent

reallocation. In many programming languages, the release of previously allocated memory is

handled manually. For example, in C++, you use the delete operator to free memory that was

allocated. However, Java uses a different, more trouble-free approach: garbage collection.

Java’s garbage collection system reclaims objects automatically—occurring transparently,

behind the scenes, without any programmer intervention. It works like this: when no references

to an object exist, that object is assumed to be no longer needed, and the memory occupied by

the object is released. This recycled memory can then be used for a subsequent allocation.

Garbage collection occurs only sporadically during the execution of your program. It will

not occur simply because one or more objects exist that are no longer used. For efficiency, the

garbage collector will usually run only when two conditions are met: there are objects to recycle,

and there is a need to recycle them. Remember, garbage collection takes time, so the Java

run-time system does it only when necessary. Thus, you can’t know precisely when garbage

collection will take place.

4

Java 2: A Beginner’s Guide 143

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:143

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Ask the Expert
Q: Why don’t I need to use new for variables of the simple types, such as int or float?

A: Java’s simple types are not implemented as objects. Rather, because of efficiency

concerns, they are implemented as “normal” variables. A variable of a simple type

actually contains the value that you have given it. As explained, object variables are

references to the object. This layer of indirection (and other object features) adds

overhead to an object that is avoided by a simple type.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:144

144 Module 4: Introducing Classes, Objects, and Methods

The finalize() Method
It is possible to define a method that will be called just before an object’s final destruction by

the garbage collector. This method is called finalize(), and it can be used to ensure that an

object terminates cleanly. For example, you might use finalize() to make sure that an open file

owned by that object is closed.

To add a finalizer to a class, you simply define the finalize() method. The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the finalize()

method you will specify those actions that must be performed before an object is destroyed.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class. This and the other access specifiers are explained in Module 6.

It is important to understand that finalize() is called just before garbage collection. It is

not called when an object goes out of scope, for example. This means that you cannot know

when—or even if—finalize() will be executed. For example, if your program ends before

garbage collection occurs, finalize() will not execute. Therefore, it should be used as a “backup”

procedure to ensure the proper handling of some resource, or for special-use applications,

not as the means that your program uses in its normal operation.

Ask the Expert
Q: I know that C++ defines things called destructors, which are automatically executed

when an object is destroyed. Is finalize() similar to a destructor?

A: Java does not have destructors. Although it is true that the finalize() method approximates

the function of a destructor, it is not the same. For example, a C++ destructor is always

called just before an object goes out of scope, but you can’t know when finalize() will

be called for any specific object. Frankly, because of Java’s use of garbage collection,

there is little need for a destructor.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 145

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:145

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Project
4-2

Project 4-2 Demonstrate Finalization
Because garbage collection runs sporadically, in the background, it is not

trivial to demonstrate the finalize() method. Recall that finalize() is called

when an object is about to be recycled. As explained, objects are not necessarily recycled

as soon as they are no longer needed. Instead, the garbage collector waits until it can perform

its collection efficiently, usually when there are many unused objects. Thus, to demonstrate the

finalize() method, you often need to create and destroy a large number of objects—and this is

precisely what you will do in this project.

Step by Step
1. Create a new file called Finalize.java.

2. Create the FDemo class shown here:

class FDemo {
int x;

FDemo(int i) {
x = i;

}

// called when object is recycled
protected void finalize() {
System.out.println("Finalizing " + x);

}

// generates an object that is immediately destroyed
void generator(int i) {
FDemo o = new FDemo(i);

}

}

The constructor sets the instance variable x to a known value. In this example, x is used as

an object ID. The finalize() method displays the value of x when an object is recycled. Of

special interest is generator(). This method creates and then promptly destroys an FDemo

object. You will see how this is used in the next step.

Finalize.java

(continued)

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:146

146 Module 4: Introducing Classes, Objects, and Methods

3. Create the Finalize class, shown here:

class Finalize {
public static void main(String args[]) {
int count;

FDemo ob = new FDemo(0);

/* Now, generate a large number of objects. At
some point, garbage collection will occur.
Note: you might need to increase the number
of objects generated in order to force
garbage collection. */

for(count=1; count < 100000; count++)
ob.generator(count);

}
}

This class creates an initial FDemo object called ob. Then, using ob, it creates 100,000 objects

by calling generator() on ob. This has the net effect of creating and destroying 100,000

objects. At various points in the middle of this process, garbage collection will take place.

Precisely how often or when depends upon several factors, such as the initial amount of

free memory and the operating system. However, at some point, you will start to see the

messages generated by finalize(). If you don’t see the messages, try increasing the number

of objects being generated by raising the count in the for loop.

4. Here is the entire Finalize.java program:

/*
Project 4-2

Demonstrate the finalize() method.
*/

class FDemo {
int x;

FDemo(int i) {
x = i;

}

// called when object is recycled
protected void finalize() {
System.out.println("Finalizing " + x);

}

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// generates an object that is immediately destroyed
void generator(int i) {
FDemo o = new FDemo(i);

}

}

class Finalize {
public static void main(String args[]) {
int count;

FDemo ob = new FDemo(0);

/* Now, generate a large number of objects. At
some point, garbage collection will occur.
Note: you might need to increase the number
of objects generated in order to force
garbage collection. */

for(count=1; count < 100000; count++)
ob.generator(count);

}
}

CRITICAL SKILL

4.12 The this Keyword
Before concluding this module it is necessary to introduce this. When a method is called, it is

automatically passed an implicit argument that is a reference to the invoking object (that is, the

object on which the method is called). This reference is called this. To understand this, first

consider a program that creates a class called Pwr that computes the result of a number raised

to some integer power:

class Pwr {
double b;
int e;
double val;

Pwr(double base, int exp) {
b = base;
e = exp;

val = 1;
if(exp==0) return;
for(; exp>0; exp--) val = val * base;

Java 2: A Beginner’s Guide 147

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:147

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

Project
4-2

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:148

}

double get_pwr() {
return val;

}
}

class DemoPwr {
public static void main(String args[]) {
Pwr x = new Pwr(4.0, 2);
Pwr y = new Pwr(2.5, 1);
Pwr z = new Pwr(5.7, 0);

System.out.println(x.b + " raised to the " + x.e +
" power is " + x.get_pwr());

System.out.println(y.b + " raised to the " + y.e +
" power is " + y.get_pwr());

System.out.println(z.b + " raised to the " + z.e +
" power is " + z.get_pwr());

}
}

As you know, within a method, the other members of a class can be accessed directly,

without any object or class qualification. Thus, inside get_pwr(), the statement

return val;

means that the copy of val associated with the invoking object will be returned. However, the

same statement can also be written like this:

return this.val;

Here, this refers to the object on which get_pwr() was called. Thus, this.val refers to that

object’s copy of val. For example, if get_pwr() had been invoked on x, then this in the

preceding statement would have been referring to x. Writing the statement without using this

is really just shorthand.

Here is the entire Pwr class written using the this reference:

class Pwr {
double b;
int e;
double val;

Pwr(double base, int exp) {
this.b = base;

148 Module 4: Introducing Classes, Objects, and Methods

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

this.e = exp;

this.val = 1;
if(exp==0) return;
for(; exp>0; exp--) this.val = this.val * base;

}

double get_pwr() {
return this.val;

}
}

Actually, no Java programmer would write Pwr as just shown because nothing is gained,

and the standard form is easier. However, this has some important uses. For example, the Java

syntax permits the name of a parameter or a local variable to be the same as the name of an

instance variable. When this happens, the local name hides the instance variable. You can gain

access to the hidden instance variable by referring to it through this. For example, although not

recommended style, the following is a syntactically valid way to write the Pwr() constructor.

Pwr(double b, int e) {
this.b = b;
this.e = e;

val = 1;
if(e==0) return;
for(; e>0; e--) val = val * b;

}

In this version, the names of the parameters are the same as the names of the instance

variables, thus hiding them. However, this is used to “uncover” the instance variables.

Module 4 Mastery Check
1. What is the difference between a class and an object?

2. How is a class defined?

3. What does each object have its own copy of?

4. Using two separate statements, show how to declare an object called counter of a class

called MyCounter.

Java 2: A Beginner’s Guide 149

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:149

4

In
tro

du
ci

ng
C

la
ss

es
,O

bj
ec

ts
,a

nd
M

et
ho

ds

This refers to the b instance
variable, not the parameter.

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 4
Blind Folio 4:150

5. Show how a method called myMeth() is declared if it has a return type of double and has

two int parameters called a and b.

6. How must a method return if it returns a value?

7. What name does a constructor have?

8. What does new do?

9. What is garbage collection, and how does it work? What is finalize()?

10. What is this?

11. Can a constructor have one or more parameters?

12. If a method returns no value, what must its return type be?

150 Module 4: Introducing Classes, Objects, and Methods

P:\010Comp\Begin8\588-2\ch04.vp
Tuesday, November 05, 2002 9:41:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

151151

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:151

151

Module5
More Data Types
and Operators

CRITICAL SKILLS
5.1 Understand and create arrays

5.2 Create multidimensional arrays

5.3 Create irregular arrays

5.4 Know the alternative array declaration syntax

5.5 Assign array references

5.6 Use the length array member

5.7 Work with strings

5.8 Apply command-line arguments

5.9 Use the bitwise operators

5.10 Apply the ? operator

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:152

152 Module 5: More Data Types and Operators

This module returns to the subject of Java’s data types and operators. It discusses arrays, the

String type, the bitwise operators, and the ? ternary operator. Along the way, command-line

arguments are described.

CRITICAL SKILL

5.1 Arrays
An array is a collection of variables of the same type, referred to by a common name. In Java,

arrays can have one or more dimensions, although the one-dimensional array is the most

common. Arrays are used for a variety of purposes because they offer a convenient means of

grouping together related variables. For example, you might use an array to hold a record

of the daily high temperature for a month, a list of stock price averages, or a list of your

collection of programming books.

The principal advantage of an array is that it organizes data in such a way that it can be

easily manipulated. For example, if you have an array containing the incomes for a selected

group of households, it is easy to compute the average income by cycling through the array.

Also, arrays organize data in such a way that it can be easily sorted.

Although arrays in Java can be used just like arrays in other programming languages,

they have one special attribute: they are implemented as objects. This fact is one reason that a

discussion of arrays was deferred until objects had been introduced. By implementing arrays

as objects, several important advantages are gained, not the least of which is that unused arrays

can be garbage collected.

One-Dimensional Arrays
A one-dimensional array is a list of related variables. Such lists are common in programming.

For example, you might use a one-dimensional array to store the account numbers of the active

users on a network. Another array might be used to store the current batting averages for a

baseball team.

To declare a one-dimensional array, you will use this general form:

type array-name[] = new type[size];

Here, type declares the base type of the array. The base type determines the data type of each

element contained in the array. The number of elements that the array will hold is determined

by size. Since arrays are implemented as objects, the creation of an array is a two-step process.

First, you declare an array reference variable. Second, you allocate memory for the array, assigning

a reference to that memory to the array variable. Thus, all arrays in Java are dynamically

allocated using the new operator.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 153

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:153

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Here is an example. The following creates an int array of 10 elements and links it to an

array reference variable named sample.

int sample[] = new int[10];

This declaration works just like an object declaration. The sample variable holds a reference to

the memory allocated by new. This memory is large enough to hold 10 elements of type int.

As with objects, it is possible to break the preceding declaration in two. For example:

int sample[];
sample = new int[10];

In this case, when sample is first created, it is null, because it refers to no physical object. It is

only after the second statement executes that sample is linked with an array.

An individual element within an array is accessed by use of an index. An index describes

the position of an element within an array. In Java, all arrays have zero as the index of their

first element. Because sample has 10 elements, it has index values of 0 through 9. To index an

array, specify the number of the element you want, surrounded by square brackets. Thus, the

first element in sample is sample[0], and the last element is sample[9]. For example, the

following program loads sample with the numbers 0 through 9.

// Demonstrate a one-dimensional array.
class ArrayDemo {
public static void main(String args[]) {
int sample[] = new int[10];
int i;

for(i = 0; i < 10; i = i+1)
sample[i] = i;

for(i = 0; i < 10; i = i+1)
System.out.println("This is sample[" + i + "]: " +

sample[i]);
}

}

The output from the program is shown here:

This is sample[0]: 0
This is sample[1]: 1
This is sample[2]: 2
This is sample[3]: 3

Arrays are indexed from zero.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:154

154 Module 5: More Data Types and Operators

This is sample[4]: 4
This is sample[5]: 5
This is sample[6]: 6
This is sample[7]: 7
This is sample[8]: 8
This is sample[9]: 9

Conceptually, the sample array looks like this:

Arrays are common in programming because they let you deal easily with large numbers

of related variables. For example, the following program finds the minimum and maximum

values stored in the nums array by cycling through the array using a for loop.

// Find the minimum and maximum values in an array.
class MinMax {
public static void main(String args[]) {
int nums[] = new int[10];
int min, max;

nums[0] = 99;
nums[1] = -10;
nums[2] = 100123;
nums[3] = 18;
nums[4] = -978;
nums[5] = 5623;
nums[6] = 463;
nums[7] = -9;
nums[8] = 287;
nums[9] = 49;

min = max = nums[0];
for(int i=1; i < 10; i++) {
if(nums[i] < min) min = nums[i];
if(nums[i] > max) max = nums[i];

}
System.out.println("min and max: " + min + " " + max);

}
}

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 155

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:155

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

The output from the program is shown here:

min and max: -978 100123

In the preceding program, the nums array was given values by hand, using 10 separate

assignment statements. Although perfectly correct, there is an easier way to accomplish this.

Arrays can be initialized when they are created. The general form for initializing a

one-dimensional array is shown here:

type array-name[] = { val1, val2, val3, ... , valN };

Here, the initial values are specified by val1 through valN. They are assigned in sequence, left to

right, in index order. Java automatically allocates an array large enough to hold the initializers

that you specify. There is no need to explicitly use the new operator. For example, here is a better

way to write the MinMax program:

// Use array initializers.
class MinMax2 {
public static void main(String args[]) {
int nums[] = { 99, -10, 100123, 18, -978,

5623, 463, -9, 287, 49 };
int min, max;

min = max = nums[0];
for(int i=1; i < 10; i++) {
if(nums[i] < min) min = nums[i];
if(nums[i] > max) max = nums[i];

}
System.out.println("Min and max: " + min + " " + max);

}
}

Array boundaries are strictly enforced in Java; it is a run-time error to overrun or underrun

the end of an array. If you want to confirm this for yourself, try the following program that

purposely overruns an array.

// Demonstrate an array overrun.
class ArrayErr {
public static void main(String args[]) {
int sample[] = new int[10];
int i;

// generate an array overrun
for(i = 0; i < 100; i = i+1)
sample[i] = i;

}
}

Array
initializers

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

156 Module 5: More Data Types and Operators

As soon as i reaches 10, an ArrayIndexOutOfBoundsException is generated and the

program is terminated.

Progress Check
1. Arrays are accessed via an _______.

2. How is a 10-element char array declared?

3. Java does not check for array overruns at run time. True or False?

Project 5-1 Sorting an Array
Because a one-dimensional array organizes data into an indexable linear list, it

is the perfect data structure for sorting. In this project you will learn a simple

way to sort an array. As you may know, there are a number of different sorting algorithms. There

are the quick sort, the shaker sort, and the shell sort, to name just three. However, the best

known, simplest, and easiest to understand is called the Bubble sort. Although the Bubble sort

is not very efficient—in fact, its performance is unacceptable for sorting large arrays—it may

be used effectively for sorting small arrays.

Step by Step
1. Create a file called Bubble.java.

2. The Bubble sort gets its name from the way it performs the sorting operation. It uses the

repeated comparison and, if necessary, exchange of adjacent elements in the array. In this

process, small values move toward one end and large ones toward the other end. The process

is conceptually similar to bubbles finding their own level in a tank of water. The Bubble

sort operates by making several passes through the array, exchanging out-of-place elements

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:156

1. index

2. char a[] = new char[10];

3. False. Java does not allow array overruns at run time.

Bubble.java

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 157

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:157

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Project
5-1

when necessary. The number of passes required to ensure that the array is sorted is equal to

one less than the number of elements in the array.

Here is the code that forms the core of the Bubble sort. The array being sorted is

called nums.

// This is the Bubble sort.
for(a=1; a < size; a++)
for(b=size-1; b >= a; b--) {
if(nums[b-1] > nums[b]) { // if out of order
// exchange elements
t = nums[b-1];
nums[b-1] = nums[b];
nums[b] = t;

}
}

Notice that sort relies on two for loops. The inner loop checks adjacent elements in the

array, looking for out-of-order elements. When an out-of-order element pair is found,

the two elements are exchanged. With each pass, the smallest of the remaining elements

moves into its proper location. The outer loop causes this process to repeat until the entire

array has been sorted.

3. Here is the entire Bubble program:

/*
Project 5-1

Demonstrate the Bubble sort.
*/

class Bubble {
public static void main(String args[]) {
int nums[] = { 99, -10, 100123, 18, -978,

5623, 463, -9, 287, 49 };
int a, b, t;
int size;

size = 10; // number of elements to sort

// display original array
System.out.print("Original array is:");
for(int i=0; i < size; i++)

(continued)

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:158

System.out.print(" " + nums[i]);
System.out.println();

// This is the Bubble sort.
for(a=1; a < size; a++)
for(b=size-1; b >= a; b--) {
if(nums[b-1] > nums[b]) { // if out of order
// exchange elements
t = nums[b-1];
nums[b-1] = nums[b];
nums[b] = t;

}
}

// display sorted array
System.out.print("Sorted array is:");
for(int i=0; i < size; i++)
System.out.print(" " + nums[i]);

System.out.println();
}

}

The output from the program is shown here:

Original array is: 99 -10 100123 18 -978 5623 463 -9 287 49
Sorted array is: -978 -10 -9 18 49 99 287 463 5623 100123

4. Although the Bubble sort is good for small arrays, it is not efficient when used on larger

ones. The best general-purpose sorting algorithm is the quick sort. The quick sort, however,

relies on features of Java that you have not yet learned about.

CRITICAL SKILL

5.2 Multidimensional Arrays
Although the one-dimensional array is the most commonly used array in programming,

multidimensional arrays (arrays of two or more dimensions) are certainly not rare. In Java, a

multidimensional array is an array of arrays.

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional

array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array

table of size 10, 20 you would write

int table[][] = new int[10][20];

158 Module 5: More Data Types and Operators

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Pay careful attention to the declaration. Unlike some other computer languages, which use

commas to separate the array dimensions, Java places each dimension in its own set of

brackets. Similarly, to access point 3, 5 of array table, you would use table[3][5].

In the next example, a two-dimensional array is loaded with the numbers 1 through 12.

// Demonstrate a two-dimensional array.
class TwoD {
public static void main(String args[]) {
int t, i;
int table[][] = new int[3][4];

for(t=0; t < 3; ++t) {
for(i=0; i < 4; ++i) {
table[t][i] = (t*4)+i+1;
System.out.print(table[t][i] + " ");

}
System.out.println();

}
}

}

In this example, table[0][0] will have the value 1, table[0][1] the value 2, table[0][2] the

value 3, and so on. The value of table[2][3] will be 12. Conceptually, the array will look like

that shown in Figure 5-1.

Java 2: A Beginner’s Guide 159

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:159

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Figure 5-1 Conceptual view of the table array created by the TwoD program

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:160

CRITICAL SKILL

5.3 Irregular Arrays
When you allocate memory for a multidimensional array, you need to specify only the memory for

the first (leftmost) dimension. You can allocate the remaining dimensions separately. For example,

the following code allocates memory for the first dimension of table when it is declared. It allocates

the second dimension manually.

int table[][] = new int[3][];
table[0] = new int[4];
table[1] = new int[4];
table[2] = new int[4];

Although there is no advantage to individually allocating the second dimension arrays in this

situation, there may be in others. For example, when you allocate dimensions manually, you do not

need to allocate the same number of elements for each dimension. Since multidimensional arrays

are implemented as arrays of arrays, the length of each array is under your control. For example,

assume you are writing a program that stores the number of passengers that ride an airport shuttle.

If the shuttle runs 10 times a day during the week and twice a day on Saturday and Sunday, you

could use the riders array shown in the following program to store the information. Notice that the

length of the second dimension for the first five dimensions is 10 and the length of the second

dimension for the last two dimensions is 2.

// Manually allocate differing size second dimensions.
class Ragged {
public static void main(String args[]) {
int riders[][] = new int[7][];
riders[0] = new int[10];
riders[1] = new int[10];
riders[2] = new int[10];
riders[3] = new int[10];
riders[4] = new int[10];
riders[5] = new int[2];
riders[6] = new int[2];

int i, j;

// fabricate some fake data
for(i=0; i < 5; i++)
for(j=0; j < 10; j++)
riders[i][j] = i + j + 10;

for(i=5; i < 7; i++)
for(j=0; j < 2; j++)

160 Module 5: More Data Types and Operators

Here, the second dimensions
are 10 elements long.

But here, they are
2 elements long.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 161

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:161

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

riders[i][j] = i + j + 10;

System.out.println("Riders per trip during the week:");
for(i=0; i < 5; i++) {
for(j=0; j < 10; j++)
System.out.print(riders[i][j] + " ");

System.out.println();
}
System.out.println();

System.out.println("Riders per trip on the weekend:");
for(i=5; i < 7; i++) {
for(j=0; j < 2; j++)
System.out.print(riders[i][j] + " ");

System.out.println();
}

}
}

The use of irregular (or ragged) multidimensional arrays is not recommended for most

applications, because it runs contrary to what people expect to find when a multidimensional

array is encountered. However, irregular arrays can be used effectively in some situations. For

example, if you need a very large two-dimensional array that is sparsely populated (that is, one

in which not all of the elements will be used), an irregular array might be a perfect solution.

Arrays of Three or More Dimensions
Java allows arrays with more than two dimensions. Here is the general form of a

multidimensional array declaration:

type name[][]...[] = new type[size1][size2]...[sizeN];

For example, the following declaration creates a 4 x 10 x 3 three-dimensional integer array.

int multidim[][][] = new int[4][10][3];

Initializing Multidimensional Arrays
A multidimensional array can be initialized by enclosing each dimension’s initializer list

within its own set of curly braces. For example, the general form of array initialization for a

two-dimensional array is shown here:

type-specifier array_name[] [] = {

{ val, val, val, ..., val },

{ val, val, val, ..., val },

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:162

162 Module 5: More Data Types and Operators

.

.

.

{ val, val, val, ..., val }

};

Here, val indicates an initialization value. Each inner block designates a row. Within each row,

the first value will be stored in the first position of the array, the second value in the second

position, and so on. Notice that commas separate the initializer blocks and that a semicolon

follows the closing }.

For example, the following program initializes an array called sqrs with the numbers 1

through 10 and their squares.

// Initialize a two-dimensional array.
class Squares {
public static void main(String args[]) {
int sqrs[][] = {
{ 1, 1 },
{ 2, 4 },
{ 3, 9 },
{ 4, 16 },
{ 5, 25 },
{ 6, 36 },
{ 7, 49 },
{ 8, 64 },
{ 9, 81 },
{ 10, 100 }

};
int i, j;

for(i=0; i < 10; i++) {
for(j=0; j < 2; j++)
System.out.print(sqrs[i][j] + " ");

System.out.println();
}

}
}

Here is the output from the program:

1 1
2 4
3 9
4 16
5 25
6 36

Notice how each row has
its own set of initializers.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

7 49
8 64
9 81
10 100

Progress Check
1. For multidimensional arrays, each dimension is specified how?

2. In a two-dimensional array, which is an array of arrays, can the length of each array differ?

3. How are multidimensional arrays initialized?

CRITICAL SKILL

5.4 Alternative Array Declaration Syntax
There is a second form that can be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, not the name of the array variable. For

example, the following two declarations are equivalent:

int counter[] = new int[3];
int[] counter = new int[3];

The following declarations are also equivalent:

char table[][] = new char[3][4];
char[][] table = new char[3][4];

This alternative declaration form is used by many Java programmers, and you should become

familiar with it.

Java 2: A Beginner’s Guide 163

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:163

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

1. Each dimension is specified within its own set of square brackets.

2. Yes.

3. Multidimensional arrays are initialized by putting each subarray’s initializers inside their own set of curly braces.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:164

164 Module 5: More Data Types and Operators

CRITICAL SKILL

5.5 Assigning Array References
Like other objects, when you assign one array reference variable to another, you are simply

changing what object that variable refers to. You are not causing a copy of the array to be

made, nor are you causing the contents of one array to be copied to the other. For example,

consider this program:

// Assigning array reference variables.
class AssignARef {
public static void main(String args[]) {
int i;

int nums1[] = new int[10];
int nums2[] = new int[10];

for(i=0; i < 10; i++)
nums1[i] = i;

for(i=0; i < 10; i++)
nums2[i] = -i;

System.out.print("Here is nums1: ");
for(i=0; i < 10; i++)
System.out.print(nums1[i] + " ");

System.out.println();

System.out.print("Here is nums2: ");
for(i=0; i < 10; i++)
System.out.print(nums2[i] + " ");

System.out.println();

nums2 = nums1; // now nums2 refers to nums1

System.out.print("Here is nums2 after assignment: ");
for(i=0; i < 10; i++)
System.out.print(nums2[i] + " ");

System.out.println();

// now operate on nums1 array through nums2
nums2[3] = 99;

System.out.print("Here is nums1 after change through nums2: ");

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 165

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:165

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

for(i=0; i < 10; i++)
System.out.print(nums1[i] + " ");

System.out.println();
}

}

The output from the program is shown here:

Here is nums1: 0 1 2 3 4 5 6 7 8 9
Here is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
Here is nums2 after assignment: 0 1 2 3 4 5 6 7 8 9
Here is nums1 after change through nums2: 0 1 2 99 4 5 6 7 8 9

As the output shows, after the assignment of nums1 to nums2, both array reference variables

refer to the same object.

CRITICAL SKILL

5.6 Using the length Member
Because arrays are implemented as objects, each array has associated with it a length instance

variable that contains the number of elements that the array can hold. Here is a program that

demonstrates this property:

// Use the length array member.
class LengthDemo {
public static void main(String args[]) {
int list[] = new int[10];
int nums[] = { 1, 2, 3 };
int table[][] = { // a variable-length table
{1, 2, 3},
{4, 5},
{6, 7, 8, 9}

};

System.out.println("length of list is " + list.length);
System.out.println("length of nums is " + nums.length);
System.out.println("length of table is " + table.length);
System.out.println("length of table[0] is " + table[0].length);
System.out.println("length of table[1] is " + table[1].length);
System.out.println("length of table[2] is " + table[2].length);
System.out.println();

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:166

166 Module 5: More Data Types and Operators

// use length to initialize list
for(int i=0; i < list.length; i++)
list[i] = i * i;

System.out.print("Here is list: ");
// now use length to display list
for(int i=0; i < list.length; i++)
System.out.print(list[i] + " ");

System.out.println();
}

}

This program displays the following output:

length of list is 10
length of nums is 3
length of table is 3
length of table[0] is 3
length of table[1] is 2
length of table[2] is 4

Here is list: 0 1 4 9 16 25 36 49 64 81

Pay special attention to the way length is used with the two-dimensional array table. As

explained, a two-dimensional array is an array of arrays. Thus, when the expression

table.length

is used, it obtains the number of arrays stored in table, which is 3 in this case. To obtain the

length of any individual array in table, you will use an expression such as this,

table[0].length

which, in this case, obtains the length of the first array.

One other thing to notice in LengthDemo is the way that list.length is used by the for

loops to govern the number of iterations that take place. Since each array carries with it its

own length, you can use this information rather than manually keeping track of an array’s size.

Keep in mind that the value of length has nothing to do with the number of elements that are

actually in use. It contains the number of elements that the array is capable of holding.

The inclusion of the length member simplifies many algorithms by making certain types

of array operations easier—and safer—to perform. For example, the following program uses

length to copy one array to another while preventing an array overrun and its attendant

run-time exception.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Use length variable to help copy an array.
class ACopy {
public static void main(String args[]) {
int i;
int nums1[] = new int[10];
int nums2[] = new int[10];

for(i=0; i < nums1.length; i++)
nums1[i] = i;

// copy nums1 to nums2
if(nums2.length >= nums1.length)
for(i = 0; i < nums2.length; i++)
nums2[i] = nums1[i];

for(i=0; i < nums2.length; i++)
System.out.print(nums2[i] + " ");

}
}

Here, length helps perform two important functions. First, it is used to confirm that the target

array is large enough to hold the contents of the source array. Second, it provides the termination

condition of the for loop that performs the copy. Of course, in this simple example, the sizes of

the arrays are easily known, but this same approach can be applied to a wide range of more

challenging situations.

Progress Check
1. How can the following be rewritten?

int x[] = new int[10];

2. When one array reference is assigned to another, the elements of the first array are copied

to the second. True or False?

3. As it pertains to arrays, what is length?

Java 2: A Beginner’s Guide 167

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:167

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

1. int[] x = new int[10]

2. False. Only the reference is changed.

3. length is an instance variable that all arrays have. It contains the number of elements that the array can hold.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:168

Project 5-2 A Queue Class
As you may know, a data structure is a means of organizing data. The simplest

data structure is the array, which is a linear list that supports random access to its

elements. Arrays are often used as the underpinning for more sophisticated data structures,

such as stacks and queues. A stack is a list in which elements can be accessed in first-in,

last-out (FILO) order only. A queue is a list in which elements can be accessed in first-in,

first-out (FIFO) order only. Thus, a stack is like a stack of plates on a table—the first down

is the last to be used. A queue is like a line at a bank—the first in line is the first served.

What makes data structures such as stacks and queues interesting is that they combine

storage for information with the methods that access that information. Thus, stacks and queues

are data engines in which storage and retrieval are provided by the data structure itself, not

manually by your program. Such a combination is, obviously, an excellent choice for a class,

and in this project you will create a simple queue class.

In general, queues support two basic operations: put and get. Each put operation places a

new element on the end of the queue. Each get operation retrieves the next element from the

front of the queue. Queue operations are consumptive: once an element has been retrieved, it

cannot be retrieved again. The queue can also become full, if there is no space available to

store an item, and it can become empty, if all of the elements have been removed.

One last point: there are two basic types of queues—circular and noncircular. A circular

queue reuses locations in the underlying array when elements are removed. A noncircular queue

does not reuse locations and eventually becomes exhausted. For the sake of simplicity, this

example creates a noncircular queue, but with a little thought and effort, you can easily

transform it into a circular queue.

Step by Step
1. Create a file called QDemo.java.

2. Although there are other ways to support a queue, the method we will use is based upon an

array. That is, an array will provide the storage for the items put into the queue. This array

will be accessed through two indices. The put index determines where the next element of

data will be stored. The get index indicates at what location the next element of data will be

obtained. Keep in mind that the get operation is consumptive, and it is not possible to

retrieve the same element twice. Although the queue that we will be creating stores

characters, the same logic can be used to store any type of object. Begin creating the Queue

class with these lines:

class Queue {
char q[]; // this array holds the queue
int putloc, getloc; // the put and get indices

168 Module 5: More Data Types and Operators

QDemo.java

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

3. The constructor for the Queue class creates a queue of a given size. Here is the Queue

constructor:

Queue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

Notice that the queue is created one larger than the size specified in size. Because of the way the

queue algorithm will be implemented, one array location will be unused, so the array must be

created one larger than the requested queue size. The put and get indices are initially set to zero.

4. The put() method, which stores elements, is shown next:

// put a character into the queue
void put(char ch) {
if(putloc==q.length-1) {
System.out.println(" -- Queue is full.");
return;

}

putloc++;
q[putloc] = ch;

}

The method begins by checking for a queue-full condition. If putloc is equal to the last

location in the q array, there is no more room in which to store elements. Otherwise, putloc

is incremented and the new element is stored at that location. Thus, putloc is always the

index of the last element stored.

5. To retrieve elements, use the get() method, shown next:

// get a character from the queue
char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
return q[getloc];

}

Notice first the check for queue-empty. If getloc and putloc both index the same element,

the queue is assumed to be empty. This is why getloc and putloc were both initialized to

zero by the Queue constructor. Next, getloc is incremented and the next element is

returned. Thus, getloc always indicates the location of the last element retrieved.

Java 2: A Beginner’s Guide 169

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:169

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Project
5-2

(continued)

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:170

170 Module 5: More Data Types and Operators

6. Here is the entire QDemo.java program:

/*
Project 5-2

A queue class for characters.
*/

class Queue {
char q[]; // this array holds the queue
int putloc, getloc; // the put and get indices

Queue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// put a character into the queue
void put(char ch) {
if(putloc==q.length-1) {
System.out.println(" -- Queue is full.");
return;

}

putloc++;
q[putloc] = ch;

}

// get a character from the queue
char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
return q[getloc];

}
}

// Demonstrate the Queue class.
class QDemo {
public static void main(String args[]) {
Queue bigQ = new Queue(100);
Queue smallQ = new Queue(4);

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 171

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:171

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Project
5-2

char ch;
int i;

System.out.println("Using bigQ to store the alphabet.");
// put some numbers into bigQ
for(i=0; i < 26; i++)
bigQ.put((char) ('A' + i));

// retrieve and display elements from bigQ
System.out.print("Contents of bigQ: ");
for(i=0; i < 26; i++) {
ch = bigQ.get();
if(ch != (char) 0) System.out.print(ch);

}

System.out.println("\n");

System.out.println("Using smallQ to generate errors.");
// Now, use smallQ to generate some errors
for(i=0; i < 5; i++) {
System.out.print("Attempting to store " +

(char) ('Z' - i));

smallQ.put((char) ('Z' - i));

System.out.println();
}
System.out.println();

// more errors on smallQ
System.out.print("Contents of smallQ: ");
for(i=0; i < 5; i++) {
ch = smallQ.get();

if(ch != (char) 0) System.out.print(ch);
}

}
}

7. The output produced by the program is shown here:

Using bigQ to store the alphabet.
Contents of bigQ: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using smallQ to generate errors.

(continued)

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:172

Attempting to store Z
Attempting to store Y
Attempting to store X
Attempting to store W
Attempting to store V -- Queue is full.

Contents of smallQ: ZYXW -- Queue is empty.

8. On your own, try modifying Queue so that it stores other types of objects. For example,

have it store ints or doubles.

CRITICAL SKILL

5.7 Strings
From a day-to-day programming standpoint, one of the most important of Java’s data types is

String. String defines and supports character strings. In many other programming languages a

string is an array of characters. This is not the case with Java. In Java, strings are objects.

Actually, you have been using the String class since Module 1, but you did not know it.

When you create a string literal, you are actually creating a String object. For example, in

the statement

System.out.println("In Java, strings are objects.");

the string "In Java, strings are objects." is automatically made into a String object by Java.

Thus, the use of the String class has been “below the surface” in the preceding programs. In

the following sections you will learn to handle it explicitly. Be aware, however, that the String

class is quite large, and we will only scratch its surface here. It is a class that you will want to

explore on its own.

Constructing Strings
You can construct a String just like you construct any other type of object: by using new and

calling the String constructor. For example:

String str = new String("Hello");

This creates a String object called str that contains the character string "Hello". You can also

construct a String from another String. For example:

172 Module 5: More Data Types and Operators

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 173

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:173

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

String str = new String("Hello");
String str2 = new String(str);

After this sequence executes, str2 will also contain the character string "Hello".

Another easy way to create a String is shown here:

String str = "Java strings are powerful.";

In this case, str is initialized to the character sequence "Java strings are powerful."

Once you have created a String object, you can use it anywhere that a quoted string is

allowed. For example, you can use a String object as an argument to println(), as shown in

this example:

// Introduce String.
class StringDemo {
public static void main(String args[]) {
// declare strings in various ways
String str1 = new String("Java strings are objects.");
String str2 = "They are constructed various ways.";
String str3 = new String(str2);

System.out.println(str1);
System.out.println(str2);
System.out.println(str3);

}
}

The output from the program is shown here:

Java strings are objects.
They are constructed various ways.
They are constructed various ways.

Operating on Strings
The String class contains several methods that operate on strings. Here are a few:

boolean equals(String str) Returns true if the invoking string contains the same character
sequence as str.

int length() Obtains the length of a string.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:174

174 Module 5: More Data Types and Operators

char charAt(int index) Obtains the character at the index specified by index.

int compareTo(String str) Returns less than zero if the invoking string is less than str, greater
than zero if the invoking string is greater than str, and zero if the
strings are equal.

int indexOf(String str) Searches the invoking string for the substring specified by str. Returns
the index of the first match or −1 on failure.

int lastIndexOf(String str) Searches the invoking string for the substring specified by str. Returns
the index of the last match or −1 on failure.

Here is a program that demonstrates these methods:

// Some String operations.
class StrOps {
public static void main(String args[]) {
String str1 =
"When it comes to Web programming, Java is #1.";

String str2 = new String(str1);
String str3 = "Java strings are powerful.";
int result, idx;
char ch;

System.out.println("Length of str1: " +
str1.length());

// display str1, one char at a time.
for(int i=0; i < str1.length(); i++)
System.out.print(str1.charAt(i));

System.out.println();

if(str1.equals(str2))
System.out.println("str1 == str2");

else
System.out.println("str1 != str2");

if(str1.equals(str3))
System.out.println("str1 == str3");

else
System.out.println("str1 != str3");

result = str1.compareTo(str3);
if(result == 0)
System.out.println("str1 and str3 are equal");

else if(result < 0)
System.out.println("str1 is less than str3");

else

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5System.out.println("str1 is greater than str3");

// assign a new string to str2
str2 = "One Two Three One";

idx = str2.indexOf("One");
System.out.println("Index of first occurrence of One: " + idx);
idx = str2.lastIndexOf("One");
System.out.println("Index of last occurrence of One: " + idx);

}
}

This program generates the following output:

Length of str1: 45
When it comes to Web programming, Java is #1.
str1 == str2
str1 != str3
str1 is greater than str3
Index of first occurrence of One: 0
Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For example,

this statement

String str1 = "One";
String str2 = "Two";
String str3 = "Three";
String str4 = str1 + str2 + str3;

initializes str4 with the string "OneTwoThree".

Java 2: A Beginner’s Guide 175

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:175

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Ask the Expert
Q: Why does String define the equals() method? Can’t I just use ==?

A: The equals() method compares the character sequences of two String objects for

equality. Applying the == to two String references simply determines whether the two

references refer to the same object.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:176

176 Module 5: More Data Types and Operators

Arrays of Strings
Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate String arrays.
class StringArrays {
public static void main(String args[]) {
String str[] = { "This", "is", "a", "test." };

System.out.println("Original array: ");
for(int i=0; i < str.length; i++)
System.out.print(str[i] + " ");

System.out.println("\n");

// change a string
str[1] = "was";
str[3] = "test, too!";

System.out.println("Modified array: ");
for(int i=0; i < str.length; i++)
System.out.print(str[i] + " ");

}
}

Here is the output from this program:

Original array:
This is a test.

Modified array:
This was a test, too!

Strings Are Immutable
The contents of a String object are immutable. That is, once created, the character sequence

that makes up the string cannot be altered. This restriction allows Java to implement strings

more efficiently. Even though this probably sounds like a serious drawback, it isn’t. When

you need a string that is a variation on one that already exists, simply create a new string that

contains the desired changes. Since unused String objects are automatically garbage collected,

you don’t even need to worry about what happens to the discarded strings.

It must be made clear, however, that String reference variables may, of course, change

the object to which they refer. It is just that the contents of a specific String object cannot be

changed after it is created.

To fully understand why immutable strings are not a hindrance, we will use another of

String’s methods: substring(). The substring() method returns a new string that contains a

An array of strings

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

specified portion of the invoking string. Because a new String object is manufactured that

contains the substring, the original string is unaltered, and the rule of immutability remains

intact. The form of substring() that we will be using is shown here:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.

Here is a program that demonstrates substring() and the principle of immutable strings:

// Use substring().
class SubStr {
public static void main(String args[]) {
String orgstr = "Java makes the Web move.";

// construct a substring
String substr = orgstr.substring(5, 18);

System.out.println("orgstr: " + orgstr);
System.out.println("substr: " + substr);

}
}

Here is the output from the program:

orgstr: Java makes the Web move.
substr: makes the Web

As you can see, the original string orgstr is unchanged, and substr contains the substring.

Java 2: A Beginner’s Guide 177

5

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:177

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

This creates a
new string that
contains the
desired substring.

Ask the Expert
Q: You say that once created, String objects are immutable. I understand that, from a

practical point of view, this is not a serious restriction, but what if I want to create

a string that can be changed?

A: You’re in luck. Java offers a class called StringBuffer, which creates string objects

that can be changed. For example, in addition to the charAt() method, which obtains

the character at a specific location, StringBuffer defines setCharAt(), which sets a

character within the string. However, for most purposes you will want to use String,

not StringBuffer.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:178

178 Module 5: More Data Types and Operators

CRITICAL SKILL

5.8 Using Command-Line Arguments
Now that you know about the String class, you can understand the args parameter to

main() that has been in every program shown so far. Many programs accept what are called

command-line arguments. A command-line argument is the information that directly follows

the program’s name on the command line when it is executed. To access the command-line

arguments inside a Java program is quite easy—they are stored as strings in the String array

passed to main(). For example, the following program displays all of the command-line

arguments that it is called with:

// Display all command-line information.
class CLDemo {
public static void main(String args[]) {
System.out.println("There are " + args.length +

" command-line arguments.");

System.out.println("They are: ");
for(int i=0; i<args.length; i++)
System.out.println(args[i]);

}
}

If CLDemo is executed like this,

java CLDemo one two three

you will see the following output:

There are 3 command-line arguments.
They are:
one
two
three

To get a taste of the way command-line arguments can be used, consider the next program.

It takes one command-line argument that specifies a person’s name. It then searches through a

two-dimensional array of strings for that name. If it finds a match, it displays that person’s

telephone number.

// A simple automated telephone directory.
class Phone {
public static void main(String args[]) {

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

String numbers[][] = {
{ "Tom", "555-3322" },
{ "Mary", "555-8976" },
{ "Jon", "555-1037" },
{ "Rachel", "555-1400" }

};
int i;

if(args.length != 1)
System.out.println("Usage: java Phone <name>");

else {
for(i=0; i<numbers.length; i++) {
if(numbers[i][0].equals(args[0])) {
System.out.println(numbers[i][0] + ": " +

numbers[i][1]);
break;

}
}
if(i == numbers.length)
System.out.println("Name not found.");

}
}

}

Here is a sample run:

C>java Phone Mary
Mary: 555-8976

Progress Check
1. In Java, all strings are objects. True or False?

2. How can you obtain the length of a string?

3. What are command-line arguments?

Java 2: A Beginner’s Guide 179

55

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:179

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

1. True.

2. The length of a string can be obtained by calling the length() method.

3. Command-line arguments are specified on the command line when a program is executed. They are passed as strings to

the args parameter of main().

To use the program, one
command-line argument
must be present.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:180

CRITICAL SKILL

5.9 The Bitwise Operators
In Module 2 you learned about Java’s arithmetic, relational, and logical operators. Although these

are the most commonly used, Java provides additional operators that expand the set of problems to

which Java can be applied: the bitwise operators. The bitwise operators act directly upon the bits

within the integer types, long, int, short, char, and byte. Bitwise operations cannot be used on

boolean, float, or double, or class types. They are called the bitwise operators because they are

used to test, set, or shift the bits that make up an integer value. Bitwise operations are important to a

wide variety of systems-level programming tasks in which status information from a device must

be interrogated or constructed. Table 5-1 lists the bitwise operators.

The Bitwise AND, OR, XOR, and NOT Operators
The bitwise operators AND, OR, XOR, and NOT are &, |, ^, and ~. They perform the same

operations as their Boolean logic equivalents described in Module 2. The difference is that the

bitwise operators work on a bit-by-bit basis. The following table shows the outcome of each

operation using 1’s and 0’s.

p q p & q p | q p ^ q ~p

0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1 1 1

1 1 1 1 0 0

180 Module 5: More Data Types and Operators

Operator Result

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Unsigned shift right

<< Shift left

~ One’s complement (unary NOT)

Table 5-1 The Bitwise Operators

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:42:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 181

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:181

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

In terms of its most common usage, you can think of the bitwise AND as a way to turn bits

off. That is, any bit that is 0 in either operand will cause the corresponding bit in the outcome

to be set to 0. For example:

1 1 0 1 0 0 1 1

& 1 0 1 0 1 0 1 0

1 0 0 0 0 0 1 0

The following program demonstrates the & by turning any lowercase letter into uppercase

by resetting the 6th bit to 0. As the Unicode/ASCII character set is defined, the lowercase

letters are the same as the uppercase ones except that the lowercase ones are greater in value

by exactly 32. Therefore, to transform a lowercase letter to uppercase, just turn off the 6th bit,

as this program illustrates.

// Uppercase letters.
class UpCase {
public static void main(String args[]) {
char ch;

for(int i=0; i < 10; i++) {
ch = (char) ('a' + i);
System.out.print(ch);

// This statement turns off the 6th bit.
ch = (char) ((int) ch & 65503); // ch is now uppercase

System.out.print(ch + " ");
}

}
}

The output from this program is shown here:

aA bB cC dD eE fF gG hH iI jJ

The value 65,503 used in the AND statement is the decimal representation of 1111 1111 1101

1111. Thus, the AND operation leaves all bits in ch unchanged except for the 6th one, which is

set to 0.

The AND operator is also useful when you want to determine whether a bit is on or off.

For example, this statement determines whether bit 4 in status is set:

if(status & 8) System.out.println("bit 4 is on");

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:182

182 Module 5: More Data Types and Operators

The number 8 is used because it translates into a binary value that has only the 4th bit set.

Therefore, the if statement can succeed only when bit 4 of status is also on. An interesting use

of this concept is to show the bits of a byte value in binary format.

// Display the bits within a byte.
class ShowBits {
public static void main(String args[]) {
int t;
byte val;

val = 123;
for(t=128; t > 0; t = t/2) {
if((val & t) != 0) System.out.print("1 ");
else System.out.print("0 ");

}
}

}

The output is shown here:

0 1 1 1 1 0 1 1

The for loop successively tests each bit in val, using the bitwise AND, to determine whether it

is on or off. If the bit is on, the digit 1 is displayed; otherwise 0 is displayed. In Project 5-3,

you will see how this basic concept can be expanded to create a class that will display the bits

in any type of integer.

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is set to 1

in either operand will cause the corresponding bit in the variable to be set to 1. For example:

1 1 0 1 0 0 1 1

| 1 0 1 0 1 0 1 0

1 1 1 1 1 0 1 1

We can make use of the OR to change the uppercasing program into a lowercasing

program, as shown here:

// Lowercase letters.
class LowCase {
public static void main(String args[]) {
char ch;

for(int i=0; i < 10; i++) {
ch = (char) ('A' + i);
System.out.print(ch);

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 183

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:183

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

// This statement turns on the 6th bit.
ch = (char) ((int) ch | 32); // ch is now lowercase

System.out.print(ch + " ");
}

}
}

The output from this program is shown here:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The program works by ORing each character with the value 32, which is 0000 0000 0010 0000

in binary. Thus, 32 is the value that produces a value in binary in which only the 6th bit is set.

When this value is ORed with any other value, it produces a result in which the 6th bit is set

and all other bits remain unchanged. As explained, for characters this means that each

uppercase letter is transformed into its lowercase equivalent.

An exclusive OR, usually abbreviated XOR, will set a bit on if, and only if, the bits being

compared are different, as illustrated here:

0 1 1 1 1 1 1 1

^ 1 0 1 1 1 0 0 1

1 1 0 0 0 1 1 0

The XOR operator has an interesting property that makes it a simple way to encode a

message. When some value X is XORed with another value Y, and then that result is XORed

with Y again, X is produced. That is, given the sequence

R1 = X ^ Y;

R2 = R1 ^ Y;

then R2 is the same value as X. Thus, the outcome of a sequence of two XORs using the same

value produces the original value.

You can use this principle to create a simple cipher program in which some integer is

the key that is used to both encode and decode a message by XORing the characters in that

message. To encode, the XOR operation is applied the first time, yielding the cipher text. To

decode, the XOR is applied a second time, yielding the plain text. Here is a simple example

that uses this approach to encode and decode a short message:

// Use XOR to encode and decode a message.
class Encode {
public static void main(String args[]) {
String msg = "This is a test";
String encmsg = "";
String decmsg = "";
int key = 88;

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:184

184 Module 5: More Data Types and Operators

System.out.print("Original message: ");
System.out.println(msg);

// encode the message
for(int i=0; i < msg.length(); i++)
encmsg = encmsg + (char) (msg.charAt(i) ^ key);

System.out.print("Encoded message: ");
System.out.println(encmsg);

// decode the message
for(int i=0; i < msg.length(); i++)
decmsg = decmsg + (char) (encmsg.charAt(i) ^ key);

System.out.print("Decoded message: ");
System.out.println(decmsg);

}
}

Here is the output:

Original message: This is a test
Encoded message: 01+x1+x9x,=+,
Decoded message: This is a test

As you can see, the result of two XORs using the same key produces the decoded message.

The unary one’s complement (NOT) operator reverses the state of all the bits of the

operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A

produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and its

complement in binary.

// Demonstrate the bitwise NOT.
class NotDemo {
public static void main(String args[]) {
byte b = -34;

for(int t=128; t > 0; t = t/2) {
if((b & t) != 0) System.out.print("1 ");
else System.out.print("0 ");

}
System.out.println();

// reverse all bits
b = (byte) ~b;

This constructs the decoded string.

This constructs the encoded string.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 185

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:185

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

for(int t=128; t > 0; t = t/2) {
if((b & t) != 0) System.out.print("1 ");
else System.out.print("0 ");

}
}

}

Here is the output:

1 1 0 1 1 1 1 0
0 0 1 0 0 0 0 1

The Shift Operators
In Java it is possible to shift the bits that make up a value to the left or to the right by a

specified amount. Java defines the three bit-shift operators shown here:

<< Left shift

>> Right shift

>>> Unsigned right shift

The general forms for these operators are shown here:

value << num-bits

value >> num-bits

value >>> num-bits

Here, value is the value being shifted by the number of bit positions specified by num-bits.

Each left shift causes all bits within the specified value to be shifted left one position and

a 0 bit to be brought in on the right. Each right shift shifts all bits to the right one position and

preserves the sign bit. As you may know, negative numbers are usually represented by setting

the high-order bit of an integer value to 1. Thus, if the value being shifted is negative, each right

shift brings in a 1 on the left. If the value is positive, each right shift brings in a 0 on the left.

In addition to the sign bit, there is something else to be aware of when right shifting. Today,

most computers use the two’s complement approach to negative values. In this approach

negative values are stored by first reversing the bits in the value and then adding 1. Thus, the

byte value for -1 in binary is 1111 1111. Right shifting this value will always produce -1!

If you don’t want to preserve the sign bit when shifting right, you can use an unsigned

right shift (>>>), which always brings in a 0 on the left. For this reason, the >>> is also called

the zero-fill right shift. You will use the unsigned right shift when shifting bit patterns, such as

status codes, that do not represent integers.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:186

186 Module 5: More Data Types and Operators

For all of the shifts, the bits shifted out are lost. Thus, a shift is not a rotate, and there is no

way to retrieve a bit that has been shifted out.

Shown next is a program that graphically illustrates the effect of a left and right shift. Here,

an integer is given an initial value of 1, which means that its low-order bit is set. Then, a series

of eight shifts are performed on the integer. After each shift, the lower 8 bits of the value are

shown. The process is then repeated, except that a 1 is put in the 8th bit position, and right

shifts are performed.

// Demonstrate the shift << and >> operators.
class ShiftDemo {
public static void main(String args[]) {
int val = 1;

for(int i = 0; i < 8; i++) {
for(int t=128; t > 0; t = t/2) {
if((val & t) != 0) System.out.print("1 ");
else System.out.print("0 ");

}
System.out.println();
val = val << 1; // left shift

}
System.out.println();

val = 128;
for(int i = 0; i < 8; i++) {
for(int t=128; t > 0; t = t/2) {
if((val & t) != 0) System.out.print("1 ");
else System.out.print("0 ");

}
System.out.println();
val = val >> 1; // right shift

}
}

}

The output from the program is shown here:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

You need to be careful when shifting byte and short values because Java will automatically

promote these types to int when evaluating an expression. For example, if you right shift a

byte value, it will first be promoted to int and then shifted. The result of the shift will also be

of type int. Often this conversion is of no consequence. However, if you shift a negative byte

or short value, it will be sign-extended when it is promoted to int. Thus, the high-order bits of

the resulting integer value will be filled with ones. This is fine when performing a normal right

shift. But when you perform a zero-fill right shift, there are 24 ones to be shifted before the

byte value begins to see zeros.

Bitwise Shorthand Assignments
All of the binary bitwise operators have a shorthand form that combines an assignment with

the bitwise operation. For example, the following two statements both assign to x the outcome

of an XOR of x with the value 127.

x = x ^ 127;
x ^= 127;

Java 2: A Beginner’s Guide 187

5

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:187

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Ask the Expert
Q: Since binary is based on powers of two, can the shift operators be used as a

shortcut for multiplying or dividing an integer by two?

A: Yes. The bitwise shift operators can be used to perform very fast multiplication or

division by two. A shift left doubles a value. A shift right halves it. Of course, this only

works as long as you are not shifting bits off one end or the other.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:188

188 Module 5: More Data Types and Operators

Project 5-3 A ShowBits Class
This project creates a class called ShowBits that enables you to display in

binary the bit pattern for any integer value. Such a class can be quite

useful in programming. For example, if you are debugging device-driver code, then being able

to monitor the data stream in binary is often a benefit.

Step by Step
1. Create a file called ShowBitsDemo.java.

2. Begin the ShowBits class as shown here:

class ShowBits {
int numbits;

ShowBits(int n) {
numbits = n;

}

ShowBits creates objects that display a specified number of bits. For example, to create an

object that will display the low-order 8 bits of some value, use

ShowBits byteval = new ShowBits(8)

The number of bits to display is stored in numbits.

3. To actually display the bit pattern, ShowBits provides the method show(), which is

shown here:

void show(long val) {
long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;
for(; mask != 0; mask >>>= 1) {
if((val & mask) != 0) System.out.print("1");
else System.out.print("0");
spacer++;
if((spacer % 8) == 0) {
System.out.print(" ");
spacer = 0;

}
}
System.out.println();

}

ShowBitsDemo.java

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Notice that show() specifies one long parameter. This does not mean that you always have

to pass show() a long value, however. Because of Java’s automatic type promotions, any

integer type can be passed to show(). The number of bits displayed is determined by the

value stored in numbits. After each group of 8 bits, show() outputs a space. This makes it

easier to read the binary values of long bit patterns.

4. The ShowBitsDemo program is shown here:

/*
Project 5-3

A class that displays the binary representation of a value.
*/

class ShowBits {
int numbits;

ShowBits(int n) {
numbits = n;

}

void show(long val) {
long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;
for(; mask != 0; mask >>>= 1) {
if((val & mask) != 0) System.out.print("1");
else System.out.print("0");
spacer++;
if((spacer % 8) == 0) {
System.out.print(" ");
spacer = 0;

}
}
System.out.println();

}
}

// Demonstrate ShowBits.
class ShowBitsDemo {
public static void main(String args[]) {
ShowBits b = new ShowBits(8);
ShowBits i = new ShowBits(32);

Java 2: A Beginner’s Guide 189

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:189

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

Project
5-3

(continued)

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:190

ShowBits li = new ShowBits(64);

System.out.println("123 in binary: ");
b.show(123);

System.out.println("\n87987 in binary: ");
i.show(87987);

System.out.println("\n237658768 in binary: ");
li.show(237658768);

// you can also show low-order bits of any integer
System.out.println("\nLow order 8 bits of 87987 in binary: ");
b.show(87987);

}
}

5. The output from ShowBitsDemo is shown here:

123 in binary:

01111011

87987 in binary:

00000000 00000001 01010111 10110011

237658768 in binary:

00000000 00000000 00000000 00000000 00001110 00101010 01100010 10010000

Low order 8 bits of 87987 in binary:

10110011

Progress Check
1. To what types can the bitwise operators be applied?

2. What is >>>?

190 Module 5: More Data Types and Operators

1. byte, short, int, long, and char.

2. >>> performs an unsigned right shift. This causes a zero to be shifted into the leftmost bit position. It differs from >>,

which preserves the sign bit.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 191

5
CRITICAL SKILL

5.10 The ? Operator
One of Java’s most fascinating operators is the ?. The ? operator is often used to replace if-else

statements of this general form:

if (condition)

var = expression1;

else

var = expression2;

Here, the value assigned to var depends upon the outcome of the condition controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1 is a boolean expression, and Exp2 and Exp3 are expressions of any type other

than void. The type of Exp2 and Exp3 must be the same, though. Notice the use and placement

of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then

Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3

is evaluated and its value becomes the value of the expression. Consider this example, which

assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is negative, then

absval will be assigned the negative of that value (which yields a positive value). The same

code written using the if-else structure would look like this:

if(val < 0) absval = -val;
else absval = val;

Here is another example of the ? operator. This program divides two numbers, but will not

allow a division by zero.

// Prevent a division by zero using the ?.
class NoZeroDiv {
public static void main(String args[]) {
int result;

for(int i = -5; i < 6; i++) {
result = i != 0 ? 100 / i : 0;
if(i != 0)

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:191

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

This prevents a divide-by-zero.

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:192

System.out.println("100 / " + i + " is " + result);
}

}
}

The output from the program is shown here:

100 / -5 is -20
100 / -4 is -25
100 / -3 is -33
100 / -2 is -50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20

Pay special attention to this line from the program:

result = i != 0 ? 100 / i : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this division takes

place only if i is not zero. When i is zero, a placeholder value of zero is assigned to result.

You don’t actually have to assign the value produced by the ? to some variable. For example,

you could use the value as an argument in a call to a method. Or, if the expressions are all of

type boolean, the ? can be used as the conditional expression in a loop or if statement. For

example, here is the preceding program rewritten a bit more efficiently. It produces the same

output as before.

// Prevent a division by zero using the ?.
class NoZeroDiv2 {
public static void main(String args[]) {

for(int i = -5; i < 6; i++)
if(i != 0 ? true : false)
System.out.println("100 / " + i +

" is " + 100 / i);
}

}

Notice the if statement. If i is zero, then the outcome of the if is false, the division by zero is

prevented, and no result is displayed. Otherwise the division takes place.

192 Module 5: More Data Types and Operators

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Module 5 Mastery Check
1. Show two ways to declare a one-dimensional array of 12 doubles.

2. Show how to initialize a one-dimensional array of integers to the value 1 through 5.

3. Write a program that uses an array to find the average of 10 double values. Use any 10

values you like.

4. Change the sort in Project 5-1 so that it sorts an array of strings. Demonstrate that it works.

5. What is the difference between the String methods indexOf() and lastIndexOf()?

6. Since all strings are objects of type String, show how you can call the length() and

charAt() methods on this string literal: "I like Java".

7. Expanding on the Encode cipher class, modify it so that it uses an eight-character string

as the key.

8. Can the bitwise operators be applied to the double type?

9. Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

10. In the following fragment, is the & a bitwise or logical operator? Why?

boolean a, b;
// ...
if(a & b) ...

11. Is it an error to overrun the end of an array? Is it an error to index an array with a

negative value?

12. What is the unsigned right-shift operator?

5

Java 2: A Beginner’s Guide 193

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 5
Blind Folio 5:193

5

M
or

e
D

at
a

Ty
pe

s
an

d
O

pe
ra

to
rs

P:\010Comp\Begin8\588-2\ch05.vp
Tuesday, November 05, 2002 9:43:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Module6
A Closer Look at
Methods and Classes

CRITICAL SKILLS
6.1 Control access to members

6.2 Pass objects to a method

6.3 Return objects from a method

6.4 Overload methods

6.5 Overload constructors

6.6 Use recursion

6.7 Apply static

6.8 Use inner classes

195

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:195

195

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:196

This module resumes our examination of classes and methods. It begins by explaining how

to control access to the members of a class. It then discusses the passing and returning of

objects, method overloading, recursion, and the use of the keyword static. Also described is

one of Java’s newer features: nested classes.

CRITICAL SKILL

6.1 Controlling Access to Class Members
In its support for encapsulation, the class provides two major benefits. First, it links data with

the code that manipulates it. You have been taking advantage of this aspect of the class since

Module 4. Second, it provides the means by which access to members can be controlled. It is

this feature that is examined here.

Although Java’s approach is a bit more sophisticated, in essence, there are two basic types

of class members: public and private. A public member can be freely accessed by code defined

outside of its class. This is the type of class member that we have been using up to this point.

A private member can be accessed only by other methods defined by its class. It is through the

use of private members that access is controlled.

Restricting access to a class’s members is a fundamental part of object-oriented

programming because it helps prevent the misuse of an object. By allowing access to private

data only through a well-defined set of methods, you can prevent improper values from being

assigned to that data—by performing a range check, for example. It is not possible for code

outside the class to set the value of a private member directly. You can also control precisely

how and when the data within an object is used. Thus, when correctly implemented, a class

creates a “black box” that can be used, but the inner workings of which are not open to

tampering.

Up to this point, you haven’t had to worry about access control because Java provides a

default access setting in which the members of a class are freely available to the other code

in your program. (Thus, the default access setting is essentially public.) Although convenient

for simple classes (and example programs in books such as this one), this default setting is

inadequate for many real-world situations. Here you will see how to use Java’s other access

control features.

Java’s Access Specifiers
Member access control is achieved through the use of three access specifiers: public, private,

and protected. As explained, if no access specifier is used, the default access setting is

assumed. In this module we will be concerned with public and private. The protected

specifier applies only when inheritance is involved and is described in Module 8.

196 Module 6: A Closer Look at Methods and Classes

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When a member of a class is modified by the public specifier, that member can be

accessed by any other code in your program. This includes methods defined inside other

classes.

When a member of a class is specified as private, that member can be accessed only by

other members of its class. Thus, methods in other classes cannot access a private member

of another class.

The default access setting (in which no access specifier is used) is the same as public

unless your program is broken down into packages. A package is, essentially, a grouping of

classes. Packages are both an organizational and an access control feature, but a discussion of

packages must wait until Module 8. For the types of programs shown in this and the preceding

modules, public access is the same as default access.

An access specifier precedes the rest of a member’s type specification. That is, it must

begin a member’s declaration statement. Here are some examples:

public String errMsg;
private accountBalance bal;

private boolean isError(byte status) { // ...

To understand the effects of public and private, consider the following program:

// Public vs private access.
class MyClass {
private int alpha; // private access
public int beta; // public access
int gamma; // default access (essentially public)

/* Methods to access alpha. It is OK for a
member of a class to access a private member
of the same class.

*/
void setAlpha(int a) {
alpha = a;

}

int getAlpha() {
return alpha;

}
}

class AccessDemo {
public static void main(String args[]) {
MyClass ob = new MyClass();

Java 2: A Beginner’s Guide 197

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:197

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:198

198 Module 6: A Closer Look at Methods and Classes

/* Access to alpha is allowed only through
its accessor methods. */

ob.setAlpha(-99);
System.out.println("ob.alpha is " + ob.getAlpha());

// You cannot access alpha like this:
// ob.alpha = 10; // Wrong! alpha is private!

// These are OK because beta and gamma are public.
ob.beta = 88;
ob.gamma = 99;
}

}

As you can see, inside the MyClass class, alpha is specified as private, beta is explicitly

specified as public, and gamma uses the default access, which for this example is the same as

specifying public. Because alpha is private, it cannot be accessed by code outside of its class.

Therefore, inside the AccessDemo class, alpha cannot be used directly. It must be accessed

through its public accessor methods: setAlpha() and getAlpha(). If you were to remove the

comment symbol from the beginning of the following line,

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation. Although

access to alpha by code outside of MyClass is not allowed, methods defined within MyClass

can freely access it, as the setAlpha() and getAlpha() methods show.

The key point is this: a private member can be used freely by other members of its class,

but it cannot be accessed by code outside its class.

To see how access control can be applied to a more practical example, consider the

following program that implements a “fail-soft” int array, in which boundary errors are

prevented, thus avoiding a run-time exception from being generated. This is accomplished

by encapsulating the array as a private member of a class, allowing access to the array only

through member methods. With this approach, any attempt to access the array beyond its

boundaries can be prevented, with such an attempt failing gracefully (resulting in a “soft”

landing rather than a “crash”). The fail-soft array is implemented by the FailSoftArray class,

shown here:

/* This class implements a "fail-soft" array which prevents
runtime errors.

*/
class FailSoftArray {
private int a[]; // reference to array
private int errval; // value to return if get() fails

Wrong—alpha is private!

OK because these are public.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 199

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:199

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

public int length; // length is public

/* Construct array given its size and the value to
return if get() fails. */

public FailSoftArray(int size, int errv) {
a = new int[size];
errval = errv;
length = size;

}

// Return value at given index.
public int get(int index) {
if(ok(index)) return a[index];
return errval;

}

// Put a value at an index. Return false on failure.
public boolean put(int index, int val) {
if(ok(index)) {
a[index] = val;
return true;

}
return false;

}

// Return true if index is within bounds.
private boolean ok(int index) {
if(index >= 0 & index < length) return true;
return false;

}
}

// Demonstrate the fail-soft array.
class FSDemo {
public static void main(String args[]) {
FailSoftArray fs = new FailSoftArray(5, -1);
int x;

// show quiet failures
System.out.println("Fail quietly.");
for(int i=0; i < (fs.length * 2); i++)
fs.put(i, i*10);

for(int i=0; i < (fs.length * 2); i++) {
x = fs.get(i);

Trap an out-of-bounds index.

Access to array must be through its accessor methods.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:200

200 Module 6: A Closer Look at Methods and Classes

if(x != -1) System.out.print(x + " ");
}
System.out.println("");

// now, handle failures
System.out.println("\nFail with error reports.");
for(int i=0; i < (fs.length * 2); i++)
if(!fs.put(i, i*10))
System.out.println("Index " + i + " out-of-bounds");

for(int i=0; i < (fs.length * 2); i++) {
x = fs.get(i);
if(x != -1) System.out.print(x + " ");
else
System.out.println("Index " + i + " out-of-bounds");

}
}

}

The output from the program is shown here:

Fail quietly.
0 10 20 30 40

Fail with error reports.
Index 5 out-of-bounds
Index 6 out-of-bounds
Index 7 out-of-bounds
Index 8 out-of-bounds
Index 9 out-of-bounds
0 10 20 30 40 Index 5 out-of-bounds
Index 6 out-of-bounds
Index 7 out-of-bounds
Index 8 out-of-bounds
Index 9 out-of-bounds

Let’s look closely at this example. Inside FailSoftArray are defined three private

members. The first is a, which stores a reference to the array that will actually hold

information. The second is errval, which is the value that will be returned when a call to

get() fails. The third is the private method ok(), which determines whether an index is within

bounds. Thus, these three members can be used only by other members of the FailSoftArray

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 201

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:201

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

class. Specifically, a and errval can be used only by other methods in the class, and ok() can

be called only by other members of FailSoftArray. The rest of the class members are public

and can be called by any other code in a program that uses FailSoftArray.

When a FailSoftArray object is constructed, you must specify the size of the array and

the value that you want to return if a call to get() fails. The error value must be a value that

would otherwise not be stored in the array. Once constructed, the actual array referred to by

a and the error value stored in errval cannot be accessed by users of the FailSoftArray object.

Thus, they are not open to misuse. For example, the user cannot try to index a directly, possibly

exceeding its bounds. Access is available only through the get() and put() methods.

The ok() method is private mostly for the sake of illustration. It would be harmless to

make it public because it does not modify the object. However, since it is used internally by

the FailSoftArray class, it can be private.

Notice that the length instance variable is public. This is in keeping with the way Java

implements arrays. To obtain the length of a FailSoftArray, simply use its length member.

To use a FailSoftArray array, call put() to store a value at the specified index. Call get()

to retrieve a value from a specified index. If the index is out-of-bounds, put() returns false

and get() returns errval.

For the sake of convenience, the majority of the examples in this book will continue to

use default access for most members. Remember, however, that in the real world, restricting

access to members—especially instance variables—is an important part of successful object-

oriented programming. As you will see in Module 7, access control is even more vital when

inheritance is involved.

Progress Check
1. Name Java’s access specifiers.

2. Explain what private does.

1. private, public, and protected. A default access is also available.

2. When a member is specified as private, it can be accessed only by other members of its class.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:202

202 Module 6: A Closer Look at Methods and Classes

Project 6-1 Improving the Queue Class
You can use the private specifier to make a rather important improvement

to the Queue class developed in Module 5, Project 5-2. In that version, all

members of the Queue class use the default access, which is essentially public. This means

that it would be possible for a program that uses a Queue to directly access the underlying

array, possibly accessing its elements out of turn. Since the entire point of a queue is to provide

a first-in, first-out list, allowing out-of-order access is not desirable. It would also be possible

for a malicious programmer to alter the values stored in the putloc and getloc indices, thus

corrupting the queue. Fortunately, these types of problems are easy to prevent by applying the

private specifier.

Step by Step
1. Copy the original Queue class in Project 5-2 to a new file called Queue.java.

2. In the Queue class, add the private specifier to the q array, and the indices putloc

and getloc, as shown here:

// An improved queue class for characters.
class Queue {
// these members are now private
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

Queue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
void put(char ch) {
if(putloc==q.length-1) {
System.out.println(" -- Queue is full.");
return;

}

putloc++;
q[putloc] = ch;

}

// Get a character from the queue.

Queue.java

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 203

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:203

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Project
6-1

char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
return q[getloc];

}
}

3. Changing q, putloc, and getloc from default access to private access has no effect on a

program that properly uses Queue. For example, it still works fine with the QDemo class

from Project 5-2. However, it prevents the improper use of a Queue. For example, the

following types of statements are illegal:

Queue test = new Queue(10);

test.q[0] = 99; // wrong!
test.putloc = -100; // won't work!

4. Now that q, putloc, and getloc are private, the Queue class strictly enforces the first-in,

first-out attribute of a queue.

CRITICAL SKILL

6.2 Pass Objects to Methods
Up to this point, the examples in this book have been using simple types as parameters to

methods. However, it is both correct and common to pass objects to methods. For example,

consider the following simple program that stores the dimensions of a three-dimensional block:

// Objects can be passed to methods.
class Block {
int a, b, c;
int volume;

Block(int i, int j, int k) {
a = i;
b = j;
c = k;
volume = a * b * c;

}

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:204

204 Module 6: A Closer Look at Methods and Classes

// Return true if ob defines same block.
boolean sameBlock(Block ob) {
if((ob.a == a) & (ob.b == b) & (ob.c == c)) return true;
else return false;

}

// Return true if ob has same volume.
boolean sameVolume(Block ob) {
if(ob.volume == volume) return true;
else return false;

}
}

class PassOb {
public static void main(String args[]) {
Block ob1 = new Block(10, 2, 5);
Block ob2 = new Block(10, 2, 5);
Block ob3 = new Block(4, 5, 5);

System.out.println("ob1 same dimensions as ob2: " +
ob1.sameBlock(ob2));

System.out.println("ob1 same dimensions as ob3: " +
ob1.sameBlock(ob3));

System.out.println("ob1 same volume as ob3: " +
ob1.sameVolume(ob3));

}
}

This program generates the following output:

ob1 same dimensions as ob2: true
ob1 same dimensions as ob3: false
ob1 same volume as ob3: true

The sameBlock() and sameVolume() methods compare the object passed as a parameter

to the invoking object. For sameBlock(), the dimensions of the objects are compared and

true is returned only if the two blocks are the same. For sameVolume(), the two blocks are

compared only to determine whether they have the same volume. In both cases, notice that

the parameter ob specifies Block as its type. Although Block is a class type created by the

program, it is used in the same way as Java’s built-in types.

Use object type for parameter.

Pass an object.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:43:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 205

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:205

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

How Arguments Are Passed
As the preceding example demonstrated, passing an object to a method is a straightforward

task. However, there are some nuances of passing an object that are not shown in the example.

In certain cases, the effects of passing an object will be different from those experienced when

passing non-object arguments. To see why, you need to understand the two ways in which an

argument can be passed to a subroutine.

The first way is call-by-value. This method copies the value of an argument into the formal

parameter of the subroutine. Therefore, changes made to the parameter of the subroutine have

no effect on the argument in the call. The second way an argument can be passed is call-

by-reference. In this method, a reference to an argument (not the value of the argument)

is passed to the parameter. Inside the subroutine, this reference is used to access the actual

argument specified in the call. This means that changes made to the parameter will affect the

argument used to call the subroutine. As you will see, Java uses both methods, depending upon

what is passed.

In Java, when you pass a simple type, such as int or double, to a method, it is passed by

value. Thus, what occurs to the parameter that receives the argument has no effect outside the

method. For example, consider the following program:

// Simple types are passed by value.
class Test {
/* This method causes no change to the arguments

used in the call. */
void noChange(int i, int j) {
i = i + j;
j = -j;

}
}

class CallByValue {
public static void main(String args[]) {
Test ob = new Test();

int a = 15, b = 20;

System.out.println("a and b before call: " +
a + " " + b);

ob.noChange(a, b);

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:206

206 Module 6: A Closer Look at Methods and Classes

System.out.println("a and b after call: " +
a + " " + b);

}
}

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside noChange() have no effect on the values of a

and b used in the call.

When you pass an object to a method, the situation changes dramatically, because objects

are passed by reference. Keep in mind that when you create a variable of a class type, you are

only creating a reference to an object. Thus, when you pass this reference to a method, the

parameter that receives it will refer to the same object as that referred to by the argument. This

effectively means that objects are passed to methods by use of call-by-reference. Changes to

the object inside the method do affect the object used as an argument. For example, consider

the following program:

// Objects are passed by reference.
class Test {
int a, b;

Test(int i, int j) {
a = i;
b = j;

}
/* Pass an object. Now, ob.a and ob.b in object

used in the call will be changed. */
void change(Test ob) {
ob.a = ob.a + ob.b;
ob.b = -ob.b;

}
}

class CallByRef {
public static void main(String args[]) {
Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +
ob.a + " " + ob.b);

ob.change(ob);

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("ob.a and ob.b after call: " +
ob.a + " " + ob.b);

}
}

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside change() have affected the object used as an

argument.

As a point of interest, when an object reference is passed to a method, the reference itself

is passed by use of call-by-value. However, since the value being passed refers to an object,

the copy of that value will still refer to the same object referred to by its corresponding argument.

Progress Check
1. What is the difference between call-by-value and call-by-reference?

2. How does Java pass simple types? How does it pass objects?

6

Java 2: A Beginner’s Guide 207

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:207

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

1. In call-by-value, a copy of the argument is passed to a subroutine. In call-by-reference, a reference to the argument

is passed.

2. Java passes simple types by value and object types by reference.

Ask the Expert
Q: Is there any way that I can pass a simple type by reference?

A: Not directly. However, Java defines a set of classes that wrap the simple types in

objects. These are Double, Float, Byte, Short, Integer, Long, and Character. In

addition to allowing a simple type to be passed by reference, these wrapper classes

define several methods that enable you to manipulate their values. For example, the

numeric type wrappers include methods that convert a numeric value from its binary

form into its human-readable String form, and vice versa.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:208

208 Module 6: A Closer Look at Methods and Classes

CRITICAL SKILL

6.3 Returning Objects
A method can return any type of data, including class types. For example, the class ErrorMsg

shown here could be used to report errors. Its method, getErrorMsg(), returns a String object

that contains a description of an error based upon the error code that it is passed.

// Return a String object.
class ErrorMsg {
String msgs[] = {
"Output Error",
"Input Error",
"Disk Full",
"Index Out-Of-Bounds"

};

// Return the error message.
String getErrorMsg(int i) {
if(i >=0 & i < msgs.length)
return msgs[i];

else
return "Invalid Error Code";

}
}

class ErrMsg {
public static void main(String args[]) {
ErrorMsg err = new ErrorMsg();

System.out.println(err.getErrorMsg(2));
System.out.println(err.getErrorMsg(19));

}
}

Its output is shown here:

Disk Full
Invalid Error Code

You can, of course, also return objects of classes that you create. For example, here is a

reworked version of the preceding program that creates two error classes. One is called Err, and

it encapsulates an error message along with a severity code. The second is called ErrorInfo. It

defines a method called getErrorInfo(), which returns an Err object.

Return an object of type String.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 209

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:209

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

// Return a programmer-defined object.
class Err {
String msg; // error message
int severity; // code indicating severity of error

Err(String m, int s) {
msg = m;
severity = s;

}
}

class ErrorInfo {
String msgs[] = {
"Output Error",
"Input Error",
"Disk Full",
"Index Out-Of-Bounds"

};
int howbad[] = { 3, 3, 2, 4 };

Err getErrorInfo(int i) {
if(i >=0 & i < msgs.length)
return new Err(msgs[i], howbad[i]);

else
return new Err("Invalid Error Code", 0);

}
}

class ErrInfo {
public static void main(String args[]) {
ErrorInfo err = new ErrorInfo();
Err e;

e = err.getErrorInfo(2);
System.out.println(e.msg + " severity: " + e.severity);

e = err.getErrorInfo(19);
System.out.println(e.msg + " severity: " + e.severity);

}
}

Here is the output:

Disk Full severity: 2
Invalid Error Code severity: 0

Return an object of type Err.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:210

210 Module 6: A Closer Look at Methods and Classes

Each time getErrorInfo() is invoked, a new Err object is created, and a reference to it is

returned to the calling routine. This object is then used within main() to display the error

message and severity code.

When an object is returned by a method, it remains in existence until there are no more

references to it. At that point it is subject to garbage collection. Thus, an object won’t be

destroyed just because the method that created it terminates.

CRITICAL SKILL

6.4 Method Overloading
In this section, you will learn about one of Java’s most exciting features: method overloading.

In Java, two or more methods within the same class can share the same name, as long as

their parameter declarations are different. When this is the case, the methods are said to be

overloaded, and the process is referred to as method overloading. Method overloading is one

of the ways that Java implements polymorphism.

In general, to overload a method, simply declare different versions of it. The compiler

takes care of the rest. You must observe one important restriction: the type and/or number of

the parameters of each overloaded method must differ. It is not sufficient for two methods to

differ only in their return types. (Return types do not provide sufficient information in all cases

for Java to decide which method to use.) Of course, overloaded methods may differ in their

return types, too. When an overloaded method is called, the version of the method whose

parameters match the arguments is executed.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class Overload {
void ovlDemo() {
System.out.println("No parameters");

}

// Overload ovlDemo for one integer parameter.
void ovlDemo(int a) {
System.out.println("One parameter: " + a);

}

// Overload ovlDemo for two integer parameters.
int ovlDemo(int a, int b) {
System.out.println("Two parameters: " + a + " " + b);
return a + b;

}

// Overload ovlDemo for two double parameters.
double ovlDemo(double a, double b) {

First version

Second version

Third version

Fourth version

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 211

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:211

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

System.out.println("Two double parameters: " +
a + " "+ b);

return a + b;
}

}

class OverloadDemo {
public static void main(String args[]) {
Overload ob = new Overload();
int resI;
double resD;

// call all versions of ovlDemo()
ob.ovlDemo();
System.out.println();

ob.ovlDemo(2);
System.out.println();

resI = ob.ovlDemo(4, 6);
System.out.println("Result of ob.ovlDemo(4, 6): " +

resI);
System.out.println();

resD = ob.ovlDemo(1.1, 2.32);
System.out.println("Result of ob.ovlDemo(1.1, 2.2): " +

resD);
}

}

This program generates the following output:

No parameters

One parameter: 2

Two parameters: 4 6
Result of ob.ovlDemo(4, 6): 10

Two double parameters: 1.1 2.32
Result of ob.ovlDemo(1.1, 2.2): 3.42

As you can see, ovlDemo() is overloaded four times. The first version takes no parameters,

the second takes one integer parameter, the third takes two integer parameters, and the fourth

takes two double parameters. Notice that the first two versions of ovlDemo() return void, and

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:212

212 Module 6: A Closer Look at Methods and Classes

the second two return a value. This is perfectly valid, but as explained, overloading is not

affected one way or the other by the return type of a method. Thus, attempting to use these

two versions of ovlDemo() will cause an error.

// One ovlDemo(int) is OK.
void ovlDemo(int a) {
System.out.println("One parameter: " + a);

}

/* Error! Two ovlDemo(int)s are not OK even though
return types differ.

*/
int ovlDemo(int a) {
System.out.println("One parameter: " + a);
return a * a;

}

As the comments suggest, the difference in their return types is insufficient for the purposes of

overloading.

As you will recall from Module 2, Java provides certain automatic type conversions.

These conversions also apply to parameters of overloaded methods. For example, consider

the following:

/* Automatic type conversions can affect
overloaded method resolution.

*/
class Overload2 {
void f(int x) {
System.out.println("Inside f(int): " + x);

}

void f(double x) {
System.out.println("Inside f(double): " + x);

}
}

class TypeConv {
public static void main(String args[]) {
Overload2 ob = new Overload2();

int i = 10;
double d = 10.1;

Return types cannot be used to
differentiate overloaded methods.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 213

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:213

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

byte b = 99;
short s = 10;
float f = 11.5F;

ob.f(i); // calls ob.f(int)
ob.f(d); // calls ob.f(double)

ob.f(b); // calls ob.f(int) -- type conversion
ob.f(s); // calls ob.f(int) -- type conversion
ob.f(f); // calls ob.f(double) -- type conversion

}
}

The output from the program is shown here:

Inside f(int): 10
Inside f(double): 10.1
Inside f(int): 99
Inside f(int): 10
Inside f(double): 11.5

In this example, only two versions of f() are defined: one that has an int parameter and one

that has a double parameter. However, it is possible to pass f() a byte, short, or float value.

In the case of byte and short, Java automatically converts them to int. Thus, f(int) is invoked.

In the case of float, the value is converted to double and f(double) is called.

It is important to understand, however, that the automatic conversions apply only if there

is no direct match between a parameter and an argument. For example, here is the preceding

program with the addition of a version of f() that specifies a byte parameter:

// Add f(byte).
class Overload2 {
void f(byte x) {
System.out.println("Inside f(byte): " + x);

}

void f(int x) {
System.out.println("Inside f(int): " + x);

}

void f(double x) {
System.out.println("Inside f(double): " + x);

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:214

214 Module 6: A Closer Look at Methods and Classes

}
}

class TypeConv {
public static void main(String args[]) {
Overload2 ob = new Overload2();

int i = 10;
double d = 10.1;

byte b = 99;
short s = 10;
float f = 11.5F;

ob.f(i); // calls ob.f(int)
ob.f(d); // calls ob.f(double)

ob.f(b); // calls ob.f(byte) -- now, no type conversion

ob.f(s); // calls ob.f(int) -- type conversion
ob.f(f); // calls ob.f(double) -- type conversion

}
}

Now when the program is run, the following output is produced:

Inside f(int): 10
Inside f(double): 10.1
Inside f(byte): 99
Inside f(int): 10
Inside f(double): 11.5

In this version, since there is a version of f() that takes a byte argument, when f() is called

with a byte argument, f(byte) is invoked and the automatic conversion to int does not occur.

Method overloading supports polymorphism because it is one way that Java implements

the “one interface, multiple methods” paradigm. To understand how, consider the following:

In languages that do not support method overloading, each method must be given a unique

name. However, frequently you will want to implement essentially the same method for

different types of data. Consider the absolute value function. In languages that do not support

overloading, there are usually three or more versions of this function, each with a slightly

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6different name. For instance, in C, the function abs() returns the absolute value of an integer,

labs() returns the absolute value of a long integer, and fabs() returns the absolute value of a

floating-point value. Since C does not support overloading, each function has to have its own

name, even though all three functions do essentially the same thing. This makes the situation

more complex, conceptually, than it actually is. Although the underlying concept of each

function is the same, you still have three names to remember. This situation does not occur in

Java, because each absolute value method can use the same name. Indeed, Java’s standard

class library includes an absolute value method, called abs(). This method is overloaded by

Java’s Math class to handle the numeric types. Java determines which version of abs() to

call based upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of a

common name. Thus, the name abs represents the general action that is being performed.

It is left to the compiler to choose the correct specific version for a particular circumstance.

You, the programmer, need only remember the general operation being performed. Through

the application of polymorphism, several names have been reduced to one. Although this

example is fairly simple, if you expand the concept, you can see how overloading can help

manage greater complexity.

When you overload a method, each version of that method can perform any activity you

desire. There is no rule stating that overloaded methods must relate to one another. However,

from a stylistic point of view, method overloading implies a relationship. Thus, while you can

use the same name to overload unrelated methods, you should not. For example, you could use

the name sqr to create methods that return the square of an integer and the square root of a

floating-point value. But these two operations are fundamentally different. Applying method

overloading in this manner defeats its original purpose. In practice, you should only overload

closely related operations.

Java 2: A Beginner’s Guide 215

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:215

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Ask the Expert
Q: I’ve heard the term signature used by Java programmers. What is it?

A: As it applies to Java, a signature is the name of a method plus its parameter list. Thus,

for the purposes of overloading, no two methods within the same class can have the

same signature. Notice that a signature does not include the return type since it is not

used by Java for overload resolution.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:216

216 Module 6: A Closer Look at Methods and Classes

Progress Check
1. In order for a method to be overloaded, what condition must be met?

2. Does the return type play a role in method overloading?

3. How does Java’s automatic type conversion affect overloading?

CRITICAL SKILL

6.5 Overloading Constructors
Like methods, constructors can also be overloaded. Doing so allows you to construct objects in

a variety of ways. For example, consider the following program:

// Demonstrate an overloaded constructor.
class MyClass {
int x;

MyClass() {
System.out.println("Inside MyClass().");
x = 0;

}

MyClass(int i) {
System.out.println("Inside MyClass(int).");
x = i;

}

MyClass(double d) {
System.out.println("Inside MyClass(double).");
x = (int) d;

}

MyClass(int i, int j) {
System.out.println("Inside MyClass(int, int).");

1. For one method to overload another, the type and/or number of parameters must differ.

2. No. The return type can differ between overloaded methods, but it does not affect method overloading one way or another.

3. When there is no direct match between a set of arguments and a set of parameters, the method with the closest matching

set of parameters is used if the arguments can be automatically converted to the type of the parameters.

Construct objects in a variety of ways.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 217

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:217

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

x = i * j;
}

}

class OverloadConsDemo {
public static void main(String args[]) {
MyClass t1 = new MyClass();
MyClass t2 = new MyClass(88);
MyClass t3 = new MyClass(17.23);
MyClass t4 = new MyClass(2, 4);

System.out.println("t1.x: " + t1.x);
System.out.println("t2.x: " + t2.x);
System.out.println("t3.x: " + t3.x);
System.out.println("t4.x: " + t4.x);

}
}

The output from the program is shown here:

Inside MyClass().
Inside MyClass(int).
Inside MyClass(double).
Inside MyClass(int, int).
t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8

MyClass() is overloaded four ways, each constructing an object differently. The proper

constructor is called based upon the parameters specified when new is executed. By over-

loading a class’s constructor, you give the user of your class flexibility in the way objects

are constructed.

One of the most common reasons that constructors are overloaded is to allow one object

to initialize another. For example, consider this program that uses the Summation class to

compute the summation of an integer value.

// Initialize one object with another.
class Summation {
int sum;

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:218

218 Module 6: A Closer Look at Methods and Classes

// Construct from an int.
Summation(int num) {
sum = 0;
for(int i=1; i <= num; i++)
sum += i;

}

// Construct from another object.
Summation(Summation ob) {
sum = ob.sum;

}
}

class SumDemo {
public static void main(String args[]) {
Summation s1 = new Summation(5);
Summation s2 = new Summation(s1);

System.out.println("s1.sum: " + s1.sum);
System.out.println("s2.sum: " + s2.sum);

}
}

The output is shown here:

s1.sum: 15
s2.sum: 15

Often, as this example shows, an advantage of providing a constructor that uses one object

to initialize another is efficiency. In this case, when s2 is constructed, it is not necessary to

recompute the summation. Of course, even in cases when efficiency is not an issue, it is often

useful to provide a constructor that makes a copy of an object.

Progress Check
1. Can a constructor take an object of its own class as a parameter?

2. Why might you want to provide overloaded constructors?

1. Yes.

2. To provide convenience and flexibility to the user of your class.

Construct one object from another.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Project 6-2 Overloading the Queue Constructor
In this project you will enhance the Queue class by giving it two additional

constructors. The first will construct a new queue from another queue. The second

will construct a queue, giving it initial values. As you will see, adding these constructors

enhances the usability of Queue substantially.

Step by Step
1. Create a file called QDemo2.java and copy the updated Queue class from Project 6-1 into it.

2. First, add the following constructor, which constructs a queue from a queue.

// Construct a Queue from a Queue.
Queue(Queue ob) {
putloc = ob.putloc;
getloc = ob.getloc;
q = new char[ob.q.length];

// copy elements
for(int i=getloc+1; i <= putloc; i++)
q[i] = ob.q[i];

}

Look closely at this constructor. It initializes putloc and getloc to the values contained

in the ob parameter. It then allocates a new array to hold the queue and then copies the

elements from ob into that array. Once constructed, the new queue will be an identical copy

of the original, but both will be completely separate objects.

3. Now add the constructor that initializes the queue from a character array, as shown here:

// Construct a Queue with initial values.
Queue(char a[]) {
putloc = 0;
getloc = 0;
q = new char[a.length+1];

for(int i = 0; i < a.length; i++) put(a[i]);
}

This constructor creates a queue large enough to hold the characters in a and then stores

those characters in the queue. Because of the way the queue algorithm works, the length of

the queue must be 1 greater than the array.

Java 2: A Beginner’s Guide 219

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:219

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Project
6-2

QDemo2.java

(continued)

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:220

4. Here is the complete updated Queue class along with the QDemo2 class, which

demonstrates it:

// A queue class for characters.
class Queue {
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty Queue given its size.
Queue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Construct a Queue from a Queue.
Queue(Queue ob) {
putloc = ob.putloc;
getloc = ob.getloc;
q = new char[ob.q.length];

// copy elements
for(int i=getloc+1; i <= putloc; i++)
q[i] = ob.q[i];

}

// Construct a Queue with initial values.
Queue(char a[]) {
putloc = 0;
getloc = 0;
q = new char[a.length+1];

for(int i = 0; i < a.length; i++) put(a[i]);
}

// Put a character into the queue.
void put(char ch) {
if(putloc==q.length-1) {
System.out.println(" -- Queue is full.");
return;

}

putloc++;
q[putloc] = ch;

}

// Get a character from the queue.

220 Module 6: A Closer Look at Methods and Classes

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 221

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:221

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Project
6-2

char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
return q[getloc];

}
}

// Demonstrate the Queue class.
class QDemo2 {
public static void main(String args[]) {
// construct 10-element empty queue
Queue q1 = new Queue(10);

char name[] = {'T', 'o', 'm'};
// construct queue from array
Queue q2 = new Queue(name);

char ch;
int i;

// put some characters into q1
for(i=0; i < 10; i++)
q1.put((char) ('A' + i));

// construct queue from another queue
Queue q3 = new Queue(q1);

// Show the queues.
System.out.print("Contents of q1: ");
for(i=0; i < 10; i++) {
ch = q1.get();
System.out.print(ch);

}

System.out.println("\n");

System.out.print("Contents of q2: ");
for(i=0; i < 3; i++) {
ch = q2.get();
System.out.print(ch);

}

(continued)

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:222

System.out.println("\n");

System.out.print("Contents of q3: ");
for(i=0; i < 10; i++) {
ch = q3.get();
System.out.print(ch);

}
}

}

The output from the program is shown here:

Contents of q1: ABCDEFGHIJ

Contents of q2: Tom

Contents of q3: ABCDEFGHIJ

CRITICAL SKILL

6.6 Recursion
In Java, a method can call itself. This process is called recursion, and a method that calls itself

is said to be recursive. In general, recursion is the process of defining something in terms of

itself and is somewhat similar to a circular definition. The key component of a recursive

method is a statement that executes a call to itself. Recursion is a powerful control mechanism.

The classic example of recursion is the computation of the factorial of a number. The

factorial of a number N is the product of all the whole numbers between 1 and N. For example,

3 factorial is 1 x 2 x 3, or 6. The following program shows a recursive way to compute the

factorial of a number. For comparison purposes, a nonrecursive equivalent is also included.

// A simple example of recursion.
class Factorial {
// This is a recursive function.
int factR(int n) {
int result;

if(n==1) return 1;
result = factR(n-1) * n;
return result;

}

// This is an iterative equivalent.
int factI(int n) {
int t, result;

222 Module 6: A Closer Look at Methods and Classes

Execute the recursive call to factR().

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 223

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:223

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

result = 1;
for(t=1; t <= n; t++) result *= t;
return result;

}
}

class Recursion {
public static void main(String args[]) {
Factorial f = new Factorial();

System.out.println("Factorials using recursive method.");
System.out.println("Factorial of 3 is " + f.factR(3));
System.out.println("Factorial of 4 is " + f.factR(4));
System.out.println("Factorial of 5 is " + f.factR(5));
System.out.println();

System.out.println("Factorials using iterative method.");
System.out.println("Factorial of 3 is " + f.factI(3));
System.out.println("Factorial of 4 is " + f.factI(4));
System.out.println("Factorial of 5 is " + f.factI(5));

}
}

The output from this program is shown here:

Factorials using recursive method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

Factorials using iterative method.
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

The operation of the nonrecursive method factI() should be clear. It uses a loop starting at

1 and progressively multiplies each number by the moving product.

The operation of the recursive factR() is a bit more complex. When factR() is called with

an argument of 1, the method returns 1; otherwise it returns the product of factR(n–1)*n. To

evaluate this expression, factR() is called with n–1. This process repeats until n equals 1 and

the calls to the method begin returning. For example, when the factorial of 2 is calculated, the

first call to factR() will cause a second call to be made with an argument of 1. This call will

return 1, which is then multiplied by 2 (the original value of n). The answer is then 2. You might

find it interesting to insert println() statements into factR() that show at what level each call

is, and what the intermediate results are.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:224

224 Module 6: A Closer Look at Methods and Classes

When a method calls itself, new local variables and parameters are allocated storage on

the stack, and the method code is executed with these new variables from the start. A recursive

call does not make a new copy of the method. Only the arguments are new. As each recursive

call returns, the old local variables and parameters are removed from the stack, and execution

resumes at the point of the call inside the method. Recursive methods could be said to “telescope”

out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative

equivalent because of the added overhead of the additional method calls. Too many recursive

calls to a method could cause a stack overrun. Because storage for parameters and local

variables is on the stack and each new call creates a new copy of these variables, it is possible

that the stack could be exhausted. If this occurs, the Java run-time system will cause an

exception. However, you probably will not have to worry about this unless a recursive

routine runs wild.

The main advantage to recursion is that some types of algorithms can be implemented

more clearly and simply recursively than they can be iteratively. For example, the Quicksort

sorting algorithm is quite difficult to implement in an iterative way. Also, some problems,

especially AI-related ones, seem to lend themselves to recursive solutions.

When writing recursive methods, you must have a conditional statement, such as an if,

somewhere to force the method to return without the recursive call being executed. If you

don’t do this, once you call the method, it will never return. This type of error is very common

when working with recursion. Use println() statements liberally so that you can watch what

is going on and abort execution if you see that you have made a mistake.

CRITICAL SKILL

6.7 Understanding static
There will be times when you will want to define a class member that will be used independently

of any object of that class. Normally a class member must be accessed through an object of its

class, but it is possible to create a member that can be used by itself, without reference to a

specific instance. To create such a member, precede its declaration with the keyword static.

When a member is declared static, it can be accessed before any objects of its class are

created, and without reference to any object. You can declare both methods and variables to

be static. The most common example of a static member is main(). main() is declared as

static because it must be called by the operating system when your program begins.

Outside the class, to use a static member, you need only specify the name of its class

followed by the dot operator. No object needs to be created. For example, if you want to assign

the value 10 to a static variable called count that is part of the Timer class, use this line:

Timer.count = 10;

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 225

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:225

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

This format is similar to that used to access normal instance variables through an object,

except that the class name is used. A static method can be called in the same way—by use

of the dot operator on the name of the class.

Variables declared as static are, essentially, global variables. When an object is declared,

no copy of a static variable is made. Instead, all instances of the class share the same static

variable. Here is an example that shows the differences between a static variable and an

instance variable:

// Use a static variable.
class StaticDemo {
int x; // a normal instance variable
static int y; // a static variable

}

class SDemo {
public static void main(String args[]) {
StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

/* Each object has its own copy of
an instance variable. */

ob1.x = 10;
ob2.x = 20;
System.out.println("Of course, ob1.x and ob2.x " +

"are independent.");
System.out.println("ob1.x: " + ob1.x +

"\nob2.x: " + ob2.x);
System.out.println();

/* Each object shares one copy of
a static variable. */

System.out.println("The static variable y is shared.");
ob1.y = 19;
System.out.println("ob1.y: " + ob1.y +

"\nob2.y: " + ob2.y);
System.out.println();

System.out.println("The static variable y can be" +
" accessed through its class.");

StaticDemo.y = 11; // Can refer to y through class name
System.out.println("StaticDemo.y: " + StaticDemo.y +

"\nob1.y: " + ob1.y +
"\nob2.y: " + ob2.y);

}
}

There is one copy of y
for all objects to share.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:226

226 Module 6: A Closer Look at Methods and Classes

The output from the program is shown here:

Of course, ob1.x and ob2.x are independent.
ob1.x: 10
ob2.x: 20

The static variable y is shared.
ob1.y: 19
ob2.y: 19

The static variable y can be accessed through its class.
StaticDemo.y: 11
ob1.y: 11
ob2.y: 11

As you can see, the static variable y is shared by both ob1 and ob2. Changing it through one

instance implies that it is changed for all instances. Furthermore, y can be accessed either

through an object name, as in ob2.y, or through its class name, as in StaticDemo.y.

The difference between a static method and a normal method is that the static method can

be called through its class name, without any object of that class being created. You have seen

an example of this already: the sqrt() method, which is a static method within Java’s standard

Math class. Here is an example that creates a static method:

// Use a static method.
class StaticMeth {
static int val = 1024; // a static variable

// a static method
static int valDiv2() {
return val/2;

}
}

class SDemo2 {
public static void main(String args[]) {

System.out.println("val is " + StaticMeth.val);
System.out.println("StaticMeth.valDiv2(): " +

StaticMeth.valDiv2());

StaticMeth.val = 4;
System.out.println("val is " + StaticMeth.val);
System.out.println("StaticMeth.valDiv2(): " +

StaticMeth.valDiv2());

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 227

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:227

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

}
}

The output is shown here:

val is 1024
StaticMeth.valDiv2(): 512
val is 4
StaticMeth.valDiv2(): 2

Methods declared as static have several restrictions:

● They can call only other static methods.

● They must access only static data.

● They do not have a this reference.

For example, in the following class, the static method valDivDenom() is illegal.

class StaticError {
int denom = 3; // a normal instance variable
static int val = 1024; // a static variable

/* Error! Can't access a non-static variable
from within a static method. */

static int valDivDenom() {
return val/denom; // won't compile!

}
}

Here, denom is a normal instance variable that cannot be accessed within a static method.

Static Blocks
Sometimes a class will require some type of initialization before it is ready to create objects.

For example, it might need to establish a connection to a remote site. It also might need to

initialize certain static variables before any of the class’s static methods are used. To handle

these types of situations Java allows you to declare a static block. A static block is executed

when the class is first loaded. Thus, it is executed before the class can be used for any other

purpose. Here is an example of a static block:

// Use a static block
class StaticBlock {
static double rootOf2;
static double rootOf3;

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:228

228 Module 6: A Closer Look at Methods and Classes

static {
System.out.println("Inside static block.");
rootOf2 = Math.sqrt(2.0);
rootOf3 = Math.sqrt(3.0);

}

StaticBlock(String msg) {
System.out.println(msg);

}
}

class SDemo3 {
public static void main(String args[]) {
StaticBlock ob = new StaticBlock("Inside Constructor");

System.out.println("Square root of 2 is " +
StaticBlock.rootOf2);

System.out.println("Square root of 3 is " +
StaticBlock.rootOf3);

}
}

The output is shown here:

Inside static block.
Inside Constructor
Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508075688772

As you can see, the static block is executed before any objects are constructed.

Progress Check
1. Define recursion.

2. Explain the difference between static variables and instance variables.

3. When is a static block executed?

This block is executed
when the class is loaded.

1. Recursion is the process of a method calling itself.

2. Each object of a class has its own copy of the instance variables defined by the class. Each object of a class shares one

copy of a static variable.

3. A static block is executed when its class is first loaded, before its first use.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 229

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:229

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Project
6-2

Project 6-3 The Quicksort
In Module 5 you were shown a simple sorting method called the Bubble sort.

It was mentioned at the time that substantially better sorts exist. Here you will

develop a version of one of the best: the Quicksort. The Quicksort, invented and named by

C.A.R. Hoare, is the best general-purpose sorting algorithm currently available. The reason

it could not be shown in Module 5 is that the best implementations of the Quicksort rely on

recursion. The version we will develop sorts a character array, but the logic can be adapted to

sort any type of object you like.

The Quicksort is built on the idea of partitions. The general procedure is to select a value,

called the comparand, and then to partition the array into two sections. All elements greater

than or equal to the partition value are put on one side, and those less than the value are put on

the other. This process is then repeated for each remaining section until the array is sorted. For

example, given the array fedacb and using the value d as the comparand, the first pass of the

Quicksort would rearrange the array as follows:

Initial f e d a c b

Pass1 b c a d e f

This process is then repeated for each section—that is, bca and def. As you can see, the

process is essentially recursive in nature, and indeed, the cleanest implementation of Quicksort

is as a recursive function.

You can select the comparand value in two ways. You can either choose it at random, or

you can select it by averaging a small set of values taken from the array. For optimal sorting,

you should select a value that is precisely in the middle of the range of values. However, this

is not easy to do for most sets of data. In the worst case, the value chosen is at one extremity.

Even in this case, however, Quicksort still performs correctly. The version of Quicksort that

we will develop selects the middle element of the array as the comparand.

Step by Step
1. Create a file called QSDemo.java.

2. First, create the Quicksort class shown here:

// Project 6-3: A simple version of the Quicksort.
class Quicksort {

// Set up a call to the actual Quicksort method.
static void qsort(char items[]) {
qs(items, 0, items.length-1);

}

QSDemo.java

(continued)

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:230

230 Module 6: A Closer Look at Methods and Classes

// A recursive version of Quicksort for characters.
private static void qs(char items[], int left, int right)
{
int i, j;
char x, y;

i = left; j = right;
x = items[(left+right)/2];

do {
while((items[i] < x) && (i < right)) i++;
while((x < items[j]) && (j > left)) j--;

if(i <= j) {
y = items[i];
items[i] = items[j];
items[j] = y;
i++; j--;

}
} while(i <= j);

if(left < j) qs(items, left, j);
if(i < right) qs(items, i, right);

}
}

To keep the interface to the Quicksort simple, the Quicksort class provides the qsort()

method, which sets up a call to the actual Quicksort method, qs(). This enables the

Quicksort to be called with just the name of the array to be sorted, without having to

provide an initial partition. Since qs() is only used internally, it is specified as private.

3. To use the Quicksort, simply call Quicksort.qsort(). Since qsort() is specified as

static, it can be called through its class rather than on an object. Thus, there is no need to

create a Quicksort object. After the call returns, the array will be sorted. Remember, this

version works only for character arrays, but you can adapt the logic to sort any type of

arrays you want.

4. Here is a program that demonstrates Quicksort:

// Project 6-3: A simple version of the Quicksort.
class Quicksort {

// Set up a call to the actual Quicksort method.
static void qsort(char items[]) {
qs(items, 0, items.length-1);

}

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// A recursive version of Quicksort for characters.
private static void qs(char items[], int left, int right)
{
int i, j;
char x, y;

i = left; j = right;
x = items[(left+right)/2];

do {
while((items[i] < x) && (i < right)) i++;
while((x < items[j]) && (j > left)) j--;

if(i <= j) {
y = items[i];
items[i] = items[j];
items[j] = y;
i++; j--;

}
} while(i <= j);

if(left < j) qs(items, left, j);
if(i < right) qs(items, i, right);

}
}

class QSDemo {
public static void main(String args[]) {
char a[] = { 'd', 'x', 'a', 'r', 'p', 'j', 'i' };
int i;

System.out.print("Original array: ");
for(i=0; i < a.length; i++)
System.out.print(a[i]);

System.out.println();

// now, sort the array
Quicksort.qsort(a);

System.out.print("Sorted array: ");
for(i=0; i < a.length; i++)
System.out.print(a[i]);

}
}

Java 2: A Beginner’s Guide 231

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:231

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

Project
6-3

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:232

232 Module 6: A Closer Look at Methods and Classes

CRITICAL SKILL

6.8 Introducing Nested and Inner Classes
In Java you can define a nested class. This is a class that is declared within another class.

Frankly, the nested class is a somewhat advanced topic. In fact, nested classes were not even

allowed in the first version of Java. It was not until Java 1.1 that they were added. However, it

is important that you know what they are and the mechanics of how they are used because they

can be effectively employed by some types of applets.

A nested class is known only to its enclosing class. Thus, the scope of a nested class is

limited to that of its outer class. A nested class has access to the members, including private

members, of the class in which it is nested. However, the enclosing class does not have access

to the members of the nested class.

There are two general types of nested classes: those that are preceded by the static

modifier and those that are not. The only type that we are concerned about in this book is the

non-static variety. This type of nested class is also called an inner class. It has access to all of

the variables and methods of its outer class and may refer to them directly in the same way that

other non-static members of the outer class do.

Sometimes an inner class is used to provide a set of services that is used only by its

enclosing class. Here is an example that uses an inner class to compute various values for its

enclosing class:

// Use an inner class.
class Outer {
int nums[];

Outer(int n[]) {
nums = n;

}

void Analyze() {
Inner inOb = new Inner();

System.out.println("Minimum: " + inOb.min());
System.out.println("Maximum: " + inOb.max());
System.out.println("Average: " + inOb.avg());

}

// This is an inner class.
class Inner {
int min() {
int m = nums[0];

An inner class

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 233

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:233

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

for(int i=1; i < nums.length; i++)
if(nums[i] < m) m = nums[i];

return m;
}

int max() {
int m = nums[0];
for(int i=1; i < nums.length; i++)
if(nums[i] > m) m = nums[i];

return m;
}

int avg() {
int a = 0;
for(int i=0; i < nums.length; i++)
a += nums[i];

return a / nums.length;
}

}
}

class NestedClassDemo {
public static void main(String args[]) {
int x[] = { 3, 2, 1, 5, 6, 9, 7, 8 };
Outer outOb = new Outer(x);

outOb.Analyze();
}

}

The output from the program is shown here:

Minimum: 1
Maximum: 9
Average: 5

In this example, the inner class Inner computes various values from the array nums,

which is a member of Outer. As explained, a nested class has access to the members of its

enclosing class, so it is perfectly acceptable for Inner to access the nums array directly. Of

course, the opposite is not true. For example, it would not be possible for analyze() to invoke

the min() method directly, without creating an Inner object.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:234

234 Module 6: A Closer Look at Methods and Classes

It is possible to nest a class within any block scope. Doing so simply creates a localized

class that is not known outside its block. The following example adapts the ShowBits class

developed in Project 5-2 for use as a local class.

// Use ShowBits as a local class.
class LocalClassDemo {
public static void main(String args[]) {

// An inner class version of ShowBits.
class ShowBits {
int numbits;

ShowBits(int n) {
numbits = n;

}

void show(long val) {
long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;
for(; mask != 0; mask >>>= 1) {
if((val & mask) != 0) System.out.print("1");
else System.out.print("0");
spacer++;
if((spacer % 8) == 0) {
System.out.print(" ");
spacer = 0;

}
}
System.out.println();

}
}

for(byte b = 0; b < 10; b++) {
ShowBits byteval = new ShowBits(8);

A local class nested within a method

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 235

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:235

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

System.out.print(b + " in binary: ");
byteval.show(b);

}
}

}

The output from this version of the program is shown here:

0 in binary: 00000000
1 in binary: 00000001
2 in binary: 00000010
3 in binary: 00000011
4 in binary: 00000100
5 in binary: 00000101
6 in binary: 00000110
7 in binary: 00000111
8 in binary: 00001000
9 in binary: 00001001

In this example, the ShowBits class is not known outside of main(), and any attempt to access

it by any method other than main() will result in an error.

One last point: you can create an inner class that does not have a name. This is called an

anonymous inner class. An object of an anonymous inner class is instantiated when the class

is declared, using new.

Ask the Expert
Q: What makes a static nested class different from a non-static one?

A: A static nested class is one that has the static modifier applied. Because it is static, it

can access only other static members of the enclosing class directly. It must access other

members of its outer class through an object reference.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:236

236 Module 6: A Closer Look at Methods and Classes

Module 6 Mastery Check
1. Given this fragment,

class X {
private int count;

is the following fragment correct?

class Y {
public static void main(String args[]) {
X ob = new X();

ob.count = 10;

2. An access specifier must __________ a member’s declaration.

3. The complement of a queue is a stack. It uses first-in, last-out accessing and is often likened

to a stack of plates. The first plate put on the table is the last plate used. Create a stack class

called Stack that can hold characters. Call the methods that access the stack push() and

pop(). Allow the user to specify the size of the stack when it is created. Keep all other

members of the Stack class private. (Hint: you can use the Queue class as a model; just

change the way the data is accessed.)

4. Given this class,

class Test {
int a;
Test(int i) { a = i; }

}

write a method called swap() that exchanges the contents of the objects referred to by

two Test object references.

5. Is the following fragment correct?

class X {
int meth(int a, int b) { ... }
String meth(int a, int b) { ... }

6. Write a recursive method that displays the contents of a string backwards.

7. If all objects of a class need to share the same variable, how must you declare that variable?

8. Why might you need to use a static block?

9. What is an inner class?

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 237

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 6
Blind Folio 6:237

6

A
C

lo
se

r
Lo

ok
at

M
et

ho
ds

an
d

C
la

ss
es

10. To make a member accessible by only other members of its class, what access specifier

must be used?

11. The name of a method plus its parameter list constitutes the method’s _______________.

12. An int argument is passed to a method by using call-by-_______________.

P:\010Comp\Begin8\588-2\ch06.vp
Tuesday, November 05, 2002 9:44:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

TEAMFL
Y

Team-Fly®

Module7
Inheritance

CRITICAL SKILLS
7.1 Understand inheritance basics

7.2 Call superclass constructors

7.3 Use super to access superclass members

7.4 Create a multilevel class hierarchy

7.5 Know when constructors are called

7.6 Understand superclass references to subclass objects

7.7 Override methods

7.8 Use overridden methods to achieve dynamic method dispatch

7.9 Use abstract classes

7.10 Use final

7.11 Know the Object class 239

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:239

239

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Inheritance is one of the three foundation principles of object-oriented programming because it

allows the creation of hierarchical classifications. Using inheritance, you can create a general

class that defines traits common to a set of related items. This class can then be inherited by

other, more specific classes, each adding those things that are unique to it.

In the language of Java, a class that is inherited is called a superclass. The class that

does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a

superclass. It inherits all of the variables and methods defined by the superclass and adds its

own, unique elements.

CRITICAL SKILL

7.1 Inheritance Basics
Java supports inheritance by allowing one class to incorporate another class into its

declaration. This is done by using the extends keyword. Thus, the subclass adds to (extends)

the superclass.

Let’s begin with a short example that illustrates several of the key features of inheritance.

The following program creates a superclass called TwoDShape, which stores the width and

height of a two-dimensional object, and a subclass called Triangle. Notice how the keyword

extends is used to create a subclass.

// A simple class hierarchy.

// A class for two-dimensional objects.
class TwoDShape {
double width;
double height;

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

double area() {
return width * height / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:240

240 Module 7: Inheritance

Triangle inherits TwoDShape.

Triangle can refer to the members of TwoDShape
as if they were part of Triangle.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
}

class Shapes {
public static void main(String args[]) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle();

t1.width = 4.0;
t1.height = 4.0;
t1.style = "isosceles";

t2.width = 8.0;
t2.height = 12.0;
t2.style = "right";

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

The output from this program is shown here:

Info for t1:
Triangle is isosceles
Width and height are 4.0 and 4.0
Area is 8.0

Info for t2:
Triangle is right
Width and height are 8.0 and 12.0
Area is 48.0

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape, such as a

square, rectangle, triangle, and so on. The Triangle class creates a specific type of TwoDShape,

in this case, a triangle. The Triangle class includes all of TwoDObject and adds the field style,

Java 2: A Beginner’s Guide 241

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:241

7

In
he

rit
an

ce

All members of Triangle are available to Triangle objects,
even those inherited from TwoDShape.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:242

the method area(), and the method showStyle(). A description of the type of triangle is stored

in style, area() computes and returns the area of the triangle, and showStyle() displays the

triangle style.

Because Triangle includes all of the members of its superclass, TwoDShape, it can

access width and height inside area(). Also, inside main(), objects t1 and t2 can refer to

width and height directly, as if they were part of Triangle. Figure 7-1 depicts conceptually

how TwoDShape is incorporated into Triangle.

Even though TwoDShape is a superclass for Triangle, it is also a completely independent,

stand-alone class. Being a superclass for a subclass does not mean that the superclass cannot

be used by itself. For example, the following is perfectly valid.

TwoDShape shape = new TwoDShape();

shape.width = 10;
shape.height = 20;

shape.showDim();

Of course, an object of TwoDShape has no knowledge of or access to any subclasses

of TwoDShape.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {

// body of class

}

You can specify only one superclass for any subclass that you create. Java does not support the

inheritance of multiple superclasses into a single subclass. (This differs from C++, in which

you can inherit multiple base classes. Be aware of this when converting C++ code to Java.)

You can, however, create a hierarchy of inheritance in which a subclass becomes a superclass

of another subclass. Of course, no class can be a superclass of itself.

242 Module 7: Inheritance

Figure 7-1 A conceptual depiction of the Triangle class

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A major advantage of inheritance is that once you have created a superclass that defines

the attributes common to a set of objects, it can be used to create any number of more specific

subclasses. Each subclass can precisely tailor its own classification. For example, here is

another subclass of TwoDShape that encapsulates rectangles.

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
boolean isSquare() {
if(width == height) return true;
return false;

}

double area() {
return width * height;

}
}

The Rectangle class includes TwoDShape and adds the methods isSquare(), which

determines if the rectangle is square, and area(), which computes the area of a rectangle.

Member Access and Inheritance
As you learned in Module 6, often an instance variable of a class will be declared private to

prevent its unauthorized use or tampering. Inheriting a class does not overrule the private

access restriction. Thus, even though a subclass includes all of the members of its superclass, it

cannot access those members of the superclass that have been declared private. For example,

if, as shown here, width and height are made private in TwoDShape, then Triangle will not

be able to access them.

// Private members are not inherited.

// This example will not compile.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

Java 2: A Beginner’s Guide 243

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:243

7

In
he

rit
an

ce

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:244

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

double area() {
return width * height / 2; // Error! can't access

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

The Triangle class will not compile because the reference to width and height inside the

area() method causes an access violation. Since width and height are declared private, they

are accessible only by other members of their own class. Subclasses have no access to them.

Remember that a class member that has been declared private will remain private to its

class. It is not accessible by any code outside its class, including subclasses.

At first, you might think that the fact that subclasses do not have access to the private

members of superclasses is a serious restriction that would prevent the use of private members

in many situations. However this is not true. As explained in Module 6, Java programmers

typically grant access to the private members of a class through accessor methods. Here is a

rewrite of the TwoDShape and Triangle classes that uses methods to access the private

instance variables width and height.

// Use accessor methods to set and get private members.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

244 Module 7: Inheritance

Can’t access a private member
of a superclass.

Accessor methods for
width and height

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

class Shapes2 {
public static void main(String args[]) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle();

t1.setWidth(4.0);
t1.setHeight(4.0);
t1.style = "isosceles";

t2.setWidth(8.0);
t2.setHeight(12.0);
t2.style = "right";

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

Java 2: A Beginner’s Guide 245

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:245

7

In
he

rit
an

ce

Use accessor methods
provided by superclass.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:246

Progress Check
1. When creating a subclass, what keyword is used to include a superclass?

2. Does a subclass include the members of its superclass?

3. Does a subclass have access to the private members of its superclass?

CRITICAL SKILL

7.2 Constructors and Inheritance
In a hierarchy, it is possible for both superclasses and subclasses to have their own constructors.

This raises an important question: what constructor is responsible for building an object of the

subclass—the one in the superclass, the one in the subclass, or both? The answer is this: the

constructor for the superclass constructs the superclass portion of the object, and the constructor

for the subclass constructs the subclass part. This makes sense because the superclass has no

knowledge of or access to any element in a subclass. Thus, their construction must be separate.

The preceding examples have relied upon the default constructors created automatically by

Java, so this was not an issue. However, in practice, most classes will have explicit constructors.

Here you will see how to handle this situation.

246 Module 7: Inheritance

1. extends

2. Yes

3. No

Ask the Expert
Q: When should I make an instance variable private?

A: There are no hard and fast rules, but here are two general principles. If an instance

variable is to be used only by methods defined within its class, then it should be made

private. If an instance variable must be within certain bounds, then it should be private

and made available only through accessor methods. This way, you can prevent invalid

values from being assigned.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When only the subclass defines a constructor, the process is straightforward: simply

construct the subclass object. The superclass portion of the object is constructed automatically

using its default constructor. For example, here is a reworked version of Triangle that defines

a constructor. It also makes style private since it is now set by the constructor.

// Add a constructor to Triangle.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// Constructor
Triangle(String s, double w, double h) {
setWidth(w);
setHeight(h);

style = s;
}

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

Java 2: A Beginner’s Guide 247

7

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:247

7

In
he

rit
an

ce

Initialize TwoDShape
portion of object.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:248

248 Module 7: Inheritance

class Shapes3 {
public static void main(String args[]) {
Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle("right", 8.0, 12.0);

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

Here, Triangle’s constructor initializes the members of TwoDClass that it inherits along with

its own style field.

When both the superclass and the subclass define constructors, the process is a bit more

complicated because both the superclass and subclass constructors must be executed. In this

case you must use another of Java’s keywords, super, which has two general forms. The first

calls a superclass constructor. The second is used to access a member of the superclass that has

been hidden by a member of a subclass. Here, we will look at its first use.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass.

super() must always be the first statement executed inside a subclass constructor.

To see how super() is used, consider the version of TwoDShape in the following

program. It defines a constructor that initializes width and height.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 249

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:249

7

In
he

rit
an

ce

// Add constructors to TwoDShape.
class TwoDShape {
private double width;
private double height;

// Parameterized constructor.
TwoDShape(double w, double h) {
width = w;
height = h;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor

style = s;
}

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

Use super() to execute the
TwoDShape constructor.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:250

250 Module 7: Inheritance

class Shapes4 {
public static void main(String args[]) {
Triangle t1 = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle("right", 8.0, 12.0);

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

Here, Triangle() calls super() with the parameters w and h. This causes the TwoDShape()

constructor to be called, which initializes width and height using these values. Triangle no

longer initializes these values itself. It need only initialize the value unique to it: style. This

leaves TwoDShape free to construct its subobject in any manner that it so chooses. Furthermore,

TwoDShape can add functionality about which existing subclasses have no knowledge, thus

preventing existing code from breaking.

Any form of constructor defined by the superclass can be called by super(). The

constructor executed will be the one that matches the arguments. For example, here are

expanded versions of both TwoDShape and Triangle that include default constructors and

constructors that take one argument.

// Add more constructors to TwoDShape.
class TwoDShape {
private double width;
private double height;

// A default constructor.
TwoDShape() {
width = height = 0.0;

}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 251

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:251

7

In
he

rit
an

ce

// Parameterized constructor.
TwoDShape(double w, double h) {
width = w;
height = h;

}

// Construct object with equal width and height.
TwoDShape(double x) {
width = height = x;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super();
style = "null";

}

// Constructor
Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor

style = s;
}

// Construct an isosceles triangle.
Triangle(double x) {
super(x); // call superclass constructor

Use super() to call the
various forms of the
TwoDShape constructor.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:252

252 Module 7: Inheritance

style = "isosceles";
}

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

class Shapes5 {
public static void main(String args[]) {
Triangle t1 = new Triangle();
Triangle t2 = new Triangle("right", 8.0, 12.0);
Triangle t3 = new Triangle(4.0);

t1 = t2;

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

System.out.println();

System.out.println("Info for t3: ");
t3.showStyle();
t3.showDim();
System.out.println("Area is " + t3.area());

System.out.println();
}

}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is the output from this version.

Info for t1:
Triangle is right
Width and height are 8.0 and 12.0
Area is 48.0

Info for t2:
Triangle is right
Width and height are 8.0 and 12.0
Area is 48.0

Info for t3:
Triangle is isosceles
Width and height are 4.0 and 4.0
Area is 8.0

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling

the constructor of its immediate superclass. Thus, super() always refers to the superclass

immediately above the calling class. This is true even in a multilevel hierarchy. Also, super()

must always be the first statement executed inside a subclass constructor.

Progress Check
1. How does a subclass execute its superclass’ constructor?

2. Can parameters be passed via super()?

3. Can super() go anywhere within a subclass’ constructor?

Java 2: A Beginner’s Guide 253

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:253

7

In
he

rit
an

ce

1. It calls super().

2. Yes.

3. No, it must be the first statement executed.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:254

CRITICAL SKILL

7.3 Using super to Access Superclass Members
There is a second form of super that acts somewhat like this, except that it always refers to the

superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This form of super is most applicable to situations in which member names of a subclass

hide members by the same name in the superclass. Consider this simple class hierarchy:

// Using super to overcome name hiding.
class A {
int i;

}

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A
i = b; // i in B

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + i);

}
}

class UseSuper {
public static void main(String args[]) {
B subOb = new B(1, 2);

subOb.show();
}

}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined

in the superclass. super can also be used to call methods that are hidden by a subclass.

254 Module 7: Inheritance

Here, super.i refers
to the i in A.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 7-1 Extending the Vehicle Class
To illustrate the power of inheritance, we will extend the Vehicle class

first developed in Module 4. As you should recall, Vehicle encapsulates

information about vehicles, including the number of passengers they can carry, their fuel

capacity, and fuel consumption rate. We can use the Vehicle class as a starting point from

which more specialized classes are developed. For example, one type of vehicle is a truck.

An important attribute of a truck is its cargo capacity. Thus, to create a Truck class, you can

extend Vehicle, adding an instance variable that stores the carrying capacity. Here is a version

of Vehicle that does this. In the process, the instance variables in Vehicle will be made private,

and accessor methods are provided to get and set their values.

Step by Step
1. Create a file called TruckDemo.java and copy the last implementation of Vehicle from

Module 4 into the file.

2. Create the Truck class as shown here.

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck(int p, int f, int m, int c) {
/* Initialize Vehicle members using

Vehicle's constructor. */
super(p, f, m);

cargocap = c;
}

// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo(int c) { cargocap = c; }

}

Here, Truck inherits Vehicle, adding cargocap, getCargo(), and putCargo(). Thus,

Truck includes all of the general vehicle attributes defined by Vehicle. It need add only

those items that are unique to its own class.

Java 2: A Beginner’s Guide 255

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:255

7

In
he

rit
an

ce

Project
7-1

(continued)

TruckDemo.java

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:256

3. Next, make the instance variables of Vehicle private, as shown here.

private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

4. Here is an entire program that demonstrates the Truck class.

// Build a subclass of Vehicle for trucks.
class Vehicle {
private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.
Vehicle(int p, int f, int m) {
passengers = p;
fuelcap = f;
mpg = m;

}

// Return the range.
int range() {
return mpg * fuelcap;

}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}

// Access methods for instance variables.
int getPassengers() { return passengers; }
void setPassengers(int p) { passengers = p; }
int getFuelcap() { return fuelcap; }
void setFuelcap(int f) { fuelcap = f; }
int getMpg() { return mpg; }
void setMpg(int m) { mpg = m; }

}

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck(int p, int f, int m, int c) {

256 Module 7: Inheritance

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

/* Initialize Vehicle members using
Vehicle's constructor. */

super(p, f, m);

cargocap = c;
}

// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo(int c) { cargocap = c; }

}

class TruckDemo {
public static void main(String args[]) {

// construct some trucks
Truck semi = new Truck(2, 200, 7, 44000);
Truck pickup = new Truck(3, 28, 15, 2000);
double gallons;
int dist = 252;

gallons = semi.fuelneeded(dist);

System.out.println("Semi can carry " + semi.getCargo() +
" pounds.");

System.out.println("To go " + dist + " miles semi needs " +
gallons + " gallons of fuel.\n");

gallons = pickup.fuelneeded(dist);

System.out.println("Pickup can carry " + pickup.getCargo() +
" pounds.");

System.out.println("To go " + dist + " miles pickup needs " +
gallons + " gallons of fuel.");

}
}

5. The output from this program is shown here:

Semi can carry 44000 pounds.
To go 252 miles semi needs 36.0 gallons of fuel.

Pickup can carry 2000 pounds.
To go 252 miles pickup needs 16.8 gallons of fuel.

Java 2: A Beginner’s Guide 257

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:257

7

In
he

rit
an

ce

Project
7-1

(continued)

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:258

6. Many other types of classes can be derived from Vehicle. For example, the following

skeleton creates an off-road class that stores the ground clearance of the vehicle.

// Create an off-road vehicle class
class OffRoad extends Vehicle {
private int groundClearance; // ground clearance in inches

// ...
}

The key point is that once you have created a superclass that defines the general aspects of

an object, that superclass can be inherited to form specialized classes. Each subclass simply

adds its own, unique attributes. This is the essence of inheritance.

CRITICAL SKILL

7.4 Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass

and a subclass. However, you can build hierarchies that contain as many layers of inheritance

as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.

For example, given three classes called A, B, and C, C can be a subclass of B, which is a

subclass of A. When this type of situation occurs, each subclass inherits all of the traits found

in all of its superclasses. In this case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program. In it,

the subclass Triangle is used as a superclass to create the subclass called ColorTriangle.

ColorTriangle inherits all of the traits of Triangle and TwoDShape and adds a field called

color, which holds the color of the triangle.

// A multilevel hierarchy.
class TwoDShape {
private double width;
private double height;

// A default constructor.
TwoDShape() {
width = height = 0.0;

}

// Parameterized constructor.
TwoDShape(double w, double h) {
width = w;
height = h;

}

258 Module 7: Inheritance

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 259

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:259

7

In
he

rit
an

ce

// Construct object with equal width and height.
TwoDShape(double x) {
width = height = x;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// Extend TwoDShape.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super();
style = "null";

}

Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor

style = s;
}

// Construct an isosceles triangle.
Triangle(double x) {
super(x); // call superclass constructor

style = "isosceles";
}

double area() {
return getWidth() * getHeight() / 2;

}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:260

void showStyle() {
System.out.println("Triangle is " + style);

}
}

// Extend Triangle.
class ColorTriangle extends Triangle {
private String color;

ColorTriangle(String c, String s,
double w, double h) {

super(s, w, h);

color = c;
}

String getColor() { return color; }

void showColor() {
System.out.println("Color is " + color);

}
}

class Shapes6 {
public static void main(String args[]) {
ColorTriangle t1 =

new ColorTriangle("Blue", "right", 8.0, 12.0);
ColorTriangle t2 =

new ColorTriangle("Red", "isosceles", 2.0, 2.0);

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
t1.showColor();
System.out.println("Area is " + t1.area());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
t2.showColor();
System.out.println("Area is " + t2.area());

}
}

260 Module 7: Inheritance

A ColorTriangle object can call methods
defined by itself and its superclasses.

ColorTriangle inherits Triangle, which
is descended from TwoDShape, so
ColorTriangle includes all members
of Triangle and TwoDShape.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 261

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:261

7

In
he

rit
an

ce

The output of this program is shown here:

Info for t1:
Triangle is right
Width and height are 8.0 and 12.0
Color is Blue
Area is 48.0

Info for t2:
Triangle is isosceles
Width and height are 2.0 and 2.0
Color is Red
Area is 2.0

Because of inheritance, ColorTriangle can make use of the previously defined classes of

Triangle and TwoDShape, adding only the extra information it needs for its own, specific

application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor

in the closest superclass. The super() in ColorTriangle calls the constructor in Triangle. The

super() in Triangle calls the constructor in TwoDShape. In a class hierarchy, if a superclass

constructor requires parameters, then all subclasses must pass those parameters “up the line.”

This is true whether or not a subclass needs parameters of its own.

CRITICAL SKILL

7.5 When Are Constructors Called?
In the foregoing discussion of inheritance and class hierarchies, an important question may

have occurred to you: When a subclass object is created, whose constructor is executed first,

the one in the subclass or the one defined by the superclass? For example, given a subclass

called B and a superclass called A, is A’s constructor called before B’s, or vice versa? The

answer is that in a class hierarchy, constructors are called in order of derivation, from superclass

to subclass. Further, since super() must be the first statement executed in a subclass’ constructor,

this order is the same whether or not super() is used. If super() is not used, then the default

(parameterless) constructor of each superclass will be executed. The following program

illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
A() {
System.out.println("Constructing A.");

}
}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:262

262 Module 7: Inheritance

// Create a subclass by extending class A.
class B extends A {
B() {
System.out.println("Constructing B.");

}
}

// Create another subclass by extending B.
class C extends B {
C() {
System.out.println("Constructing C.");

}
}

class OrderOfConstruction {
public static void main(String args[]) {
C c = new C();

}
}

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructor functions are executed in order of

derivation. Because a superclass has no knowledge of any subclass, any initialization it needs

to perform is separate from and possibly prerequisite to any initialization performed by the

subclass. Therefore, it must be executed first.

CRITICAL SKILL

7.6 Superclass References and
Subclass Objects
As you know, Java is a strongly typed language. Aside from the standard conversions and

automatic promotions that apply to its simple types, type compatibility is strictly enforced.

Therefore, a reference variable for one class type cannot normally refer to an object of another

class type. For example, consider the following program.

// This will not compile.
class X {
int a;

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 263

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:263

7

In
he

rit
an

ce

X(int i) { a = i; }
}

class Y {
int a;

Y(int i) { a = i; }
}

class IncompatibleRef {
public static void main(String args[]) {
X x = new X(10);
X x2;
Y y = new Y(5);

x2 = x; // OK, both of same type

x2 = y; // Error, not of same type
}

}

Here, even though class X and class Y are physically the same, it is not possible to assign an

X reference to a Y object because they have different types. In general, an object reference

variable can refer only to objects of its type.

There is, however, an important exception to Java’s strict type enforcement. A reference

variable of a superclass can be assigned a reference to any subclass derived from that

superclass. Here is an example:

// A superclass reference can refer to a subclass object.
class X {
int a;

X(int i) { a = i; }
}

class Y extends X {
int b;

Y(int i, int j) {
super(j);
b = i;

}
}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:264

class SupSubRef {
public static void main(String args[]) {
X x = new X(10);
X x2;
Y y = new Y(5, 6);

x2 = x; // OK, both of same type
System.out.println("x2.a: " + x2.a);

x2 = y; // still Ok because Y is derived from X
System.out.println("x2.a: " + x2.a);

// X references know only about X members
x2.a = 19; // OK

// x2.b = 27; // Error, X doesn't have a b member
}

}

Here, Y is now derived from X; thus it is permissible for x2 to be assigned a reference to

a Y object.

It is important to understand that it is the type of the reference variable— not the type of the

object that it refers to—that determines what members can be accessed. That is, when a reference

to a subclass object is assigned to a superclass reference variable, you will have access only to

those parts of the object defined by the superclass. This is why x2 can’t access b even when it

refers to a Y object. If you think about it, this makes sense, because the superclass has no

knowledge of what a subclass adds to it. This is why the last line of code in the program is

commented out.

Although the preceding discussion may seem a bit esoteric, it has some important practical

applications. One is described here. The other is discussed later in this module, when method

overriding is covered.

An important place where subclass references are assigned to superclass variables is when

constructors are called in a class hierarchy. As you know, it is common for a class to define

a constructor that takes an object of the class as a parameter. This allows the class to construct a

copy of an object. Subclasses of such a class can take advantage of this feature. For example,

consider the following versions of TwoDShape and Triangle. Both add constructors that take

an object as a parameter.

class TwoDShape {
private double width;
private double height;

264 Module 7: Inheritance

OK because Y is a subclass of X;
thus x2 can refer to y.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 265

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:265

7

In
he

rit
an

ce

// A default constructor.
TwoDShape() {
width = height = 0.0;

}

// Parameterized constructor.
TwoDShape(double w, double h) {
width = w;
height = h;

}

// Construct object with equal width and height.
TwoDShape(double x) {
width = height = x;

}

// Construct an object from an object.
TwoDShape(TwoDShape ob) {
width = ob.width;
height = ob.height;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super();
style = "null";

}

Construct object from an object.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:266

266 Module 7: Inheritance

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super(w, h); // call superclass constructor

style = s;
}

// Construct an isosceles triangle.
Triangle(double x) {
super(x); // call superclass constructor

style = "isosceles";
}

// Construct an object from an object.
Triangle(Triangle ob) {
super(ob); // pass object to TwoDShape constructor
style = ob.style;

}

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

class Shapes7 {
public static void main(String args[]) {
Triangle t1 =

new Triangle("right", 8.0, 12.0);

// make a copy of t1
Triangle t2 = new Triangle(t1);

System.out.println("Info for t1: ");
t1.showStyle();
t1.showDim();
System.out.println("Area is " + t1.area());

System.out.println();

Pass a Triangle reference to
TwoDShape’s constructor.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Info for t2: ");
t2.showStyle();
t2.showDim();
System.out.println("Area is " + t2.area());

}
}

In this program, t2 is constructed from t1 and is, thus, identical. The output is shown here.

Info for t1:
Triangle is right
Width and height are 8.0 and 12.0
Area is 48.0

Info for t2:
Triangle is right
Width and height are 8.0 and 12.0
Area is 48.0

Pay special attention to this Triangle constructor:

// Construct an object from an object.
Triangle(Triangle ob) {
super(ob); // pass object to TwoDShape constructor
style = ob.style;

}

It receives an object of type Triangle and it passes that object (through super) to this

TwoDShape constructor:

// Construct an object from an object.
TwoDShape(TwoDShape ob) {
width = ob.width;
height = ob.height;

}

The key point is that TwoDshape() is expecting a TwoDShape object. However,

Triangle() passes it a Triangle object. The reason this works is because, as explained, a

superclass reference can refer to a subclass object. Thus it is perfectly acceptable to pass

TwoDShape() a reference to an object of a class derived from TwoDShape. Because the

TwoDShape() constructor is initializing only those portions of the subclass object that are

members of TwoDShape, it doesn’t matter that the object might also contain other members

added by derived classes.

Java 2: A Beginner’s Guide 267

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:267

7

In
he

rit
an

ce

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:268

268 Module 7: Inheritance

Progress Check
1. Can a subclass be used as a superclass for another subclass?

2. In a class hierarchy, in what order are the constructors called?

3. Given that Jet extends Airplane, can an Airplane reference refer to a Jet object?

CRITICAL SKILL

7.7 Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass is said to override the method in the

superclass. When an overridden method is called from within a subclass, it will always refer to

the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}

1. Yes.

2. Constructors are called in order of derivation.

3. Yes. In all cases, a superclass reference can refer to a subclass object, but not vice versa.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 269

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:269

7

In
he

rit
an

ce

// display k – this overrides show() in A
void show() {
System.out.println("k: " + k);

}
}

class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B
}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B is

used. That is, the version of show() inside B overrides the version declared in A.

If you want to access the superclass version of an overridden method, you can do so by

using super. For example, in this version of B, the superclass version of show() is invoked

within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c;

}
void show() {
super.show(); // this calls A's show()
System.out.println("k: " + k);

}
}

If you substitute this version of show() into the previous program, you will see the

following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

This show() in B overrides
the one defined by A.

Use super to call the version of
show() defined by superclass A.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:270

270 Module 7: Inheritance

Method overriding occurs only when the names and the type signatures of the two methods

are identical. If they are not, then the two methods are simply overloaded. For example,

consider this modified version of the preceding example:

/* Methods with differing type signatures are
overloaded and not overridden. */

class A {
int i, j;

A(int a, int b) {
i = a;
j = b;

}

// display i and j
void show() {
System.out.println("i and j: " + i + " " + j);

}
}

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c) {
super(a, b);
k = c; }

// overload show()
void show(String msg) {
System.out.println(msg + k);

}
}

class Overload {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

}
}

Because signatures differ, this
show() simply overloads show()
in superclass A.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 271

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:271

7

In
he

rit
an

ce

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature

different from the one in A, which takes no parameters. Therefore, no overriding (or name

hiding) takes place.

CRITICAL SKILL

7.8 Overridden Methods Support
Polymorphism
While the examples in the preceding section demonstrate the mechanics of method overriding,

they do not show its power. Indeed, if there were nothing more to method overriding than a name

space convention, then it would be, at best, an interesting curiosity but of little real value. However,

this is not the case. Method overriding forms the basis for one of Java’s most powerful concepts:

dynamic method dispatch. Dynamic method dispatch is the mechanism by which a call to an

overridden method is resolved at run time rather than compile time. Dynamic method dispatch

is important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer to

a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here’s

how. When an overridden method is called through a superclass reference, Java determines

which version of that method to execute based upon the type of the object being referred to at the

time the call occurs. Thus, this determination is made at run time. When different types of objects

are referred to, different versions of an overridden method will be called. In other words, it is the

type of the object being referred to (not the type of the reference variable) that determines which

version of an overridden method will be executed. Therefore, if a superclass contains a method

that is overridden by a subclass, then when different types of objects are referred to through a

superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Demonstrate dynamic method dispatch.

class Sup {
void who() {
System.out.println("who() in Sup");

}
}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:272

class Sub1 extends Sup {
void who() {
System.out.println("who() in Sub1");

}
}

class Sub2 extends Sup {
void who() {
System.out.println("who() in Sub2");

}
}

class DynDispDemo {
public static void main(String args[]) {
Sup superOb = new Sup();
Sub1 subOb1 = new Sub1();
Sub2 subOb2 = new Sub2();

Sup supRef;

supRef = superOb;
supRef.who();

supRef = subOb1;
supRef.who();

supRef = subOb2;
supRef.who();

}
}

The output from the program is shown here:

who() in Sup
who() in Sub1
who() in Sub2

This program creates a superclass called Sup and two subclasses of it, called Sub1 and

Sub2. Sup declares a method called who(), and the subclasses override it. Inside the main()

method, objects of type Sup, Sub1, and Sub2 are declared. Also, a reference of type Sup,

called supRef, is declared. The program then assigns a reference to each type of object to

supRef and uses that reference to call who(). As the output shows, the version of who()

executed is determined by the type of object being referred to at the time of the call, not by

the class type of supRef.

272 Module 7: Inheritance

In each case,
the version of
who() to call
is determined
at run time by
the type of
object being
referred to.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.

Polymorphism is essential to object-oriented programming for one reason: it allows a

general class to specify methods that will be common to all of its derivatives, while

allowing subclasses to define the specific implementation of some or all of those methods.

Overridden methods are another way that Java implements the “one interface, multiple

methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the

superclasses and subclasses form a hierarchy that moves from lesser to greater specialization.

Used correctly, the superclass provides all elements that a subclass can use directly. It also

defines those methods that the derived class must implement on its own. This allows the

subclass the flexibility to define its own methods, yet still enforces a consistent interface.

Thus, by combining inheritance with overridden methods, a superclass can define the general

form of the methods that will be used by all of its subclasses.

Applying Method Overriding to TwoDShape
To better understand the power of method overriding, we will apply it to the TwoDShape

class. In the preceding examples, each class derived from TwoDShape defines a method

called area(). This suggests that it might be better to make area() part of the TwoDShape

class, allowing each subclass to override it, defining how the area is calculated for the type of

shape that the class encapsulates. The following program does this. For convenience, it also

adds a name field to TwoDShape. (This makes it easier to write demonstration programs.)

// Use dynamic method dispatch.
class TwoDShape {
private double width;
private double height;
private String name;

Java 2: A Beginner’s Guide 273

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:273

7

In
he

rit
an

ce

Ask the Expert
Q: Overridden methods in Java look a lot like virtual functions in C++. Is there

a similarity?

A: Yes. Readers familiar with C++ will recognize that overridden methods in Java are

equivalent in purpose and similar in operation to virtual functions in C++.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:274

274 Module 7: Inheritance

// A default constructor.
TwoDShape() {
width = height = 0.0;
name = "null";

}

// Parameterized constructor.
TwoDShape(double w, double h, String n) {
width = w;
height = h;
name = n;

}

// Construct object with equal width and height.
TwoDShape(double x, String n) {
width = height = x;
name = n;

}

// Construct an object from an object.
TwoDShape(TwoDShape ob) {
width = ob.width;
height = ob.height;
name = ob.name;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

String getName() { return name; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

double area() {
System.out.println("area() must be overridden");
return 0.0;

}
}

The area() method defined by TwoDShape.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 275

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:275

7

In
he

rit
an

ce

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super();
style = "null";

}

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super(w, h, "triangle");

style = s;
}

// Construct an isosceles triangle.
Triangle(double x) {
super(x, "triangle"); // call superclass constructor

style = "isosceles";
}

// Construct an object from an object.
Triangle(Triangle ob) {
super(ob); // pass object to TwoDShape constructor
style = ob.style;

}

// Override area() for Triangle.
double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle() {
super();

}

Override area() for Triangle.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:276

276 Module 7: Inheritance

// Constructor for Rectangle.
Rectangle(double w, double h) {
super(w, h, "rectangle"); // call superclass constructor

}

// Construct a square.
Rectangle(double x) {
super(x, "rectangle"); // call superclass constructor

}

// Construct an object from an object.
Rectangle(Rectangle ob) {
super(ob); // pass object to TwoDShape constructor

}

boolean isSquare() {
if(getWidth() == getHeight()) return true;
return false;

}

// Override area() for Rectangle.
double area() {
return getWidth() * getHeight();

}
}

class DynShapes {
public static void main(String args[]) {
TwoDShape shapes[] = new TwoDShape[5];

shapes[0] = new Triangle("right", 8.0, 12.0);
shapes[1] = new Rectangle(10);
shapes[2] = new Rectangle(10, 4);
shapes[3] = new Triangle(7.0);
shapes[4] = new TwoDShape(10, 20, "generic");

for(int i=0; i < shapes.length; i++) {
System.out.println("object is " + shapes[i].getName());
System.out.println("Area is " + shapes[i].area());

Override area() for Rectangle.

The proper version of area()
is called for each shape.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 277

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:277

7

In
he

rit
an

ce

System.out.println();
}

}
}

The output from the program is shown here:

object is triangle
Area is 48.0

object is rectangle
Area is 100.0

object is rectangle
Area is 40.0

object is triangle
Area is 24.5

object is generic
area() must be overridden
Area is 0.0

Let’s examine this program closely. First, as explained, area() is now part of the

TwoDShape class and is overridden by Triangle and Rectangle. Inside TwoDShape, area()

is given a placeholder implementation that simply informs the user that this method must be

overridden by a subclass. Each override of area() supplies an implementation that is suitable

for the type of object encapsulated by the subclass. Thus, if you were to implement an ellipse

class, for example, then area() would need to compute the area() of an ellipse.

There is one other important feature in the preceding program. Notice in main() that

shapes is declared as an array of TwoDShape objects. However, the elements of this array are

assigned Triangle, Rectangle, and TwoDShape references. This is valid because, as explained,

a superclass reference can refer to a subclass object. The program then cycles through the array,

displaying information about each object. Although quite simple, this illustrates the power of

both inheritance and method overriding. The type of object referred to by a superclass reference

variable is determined at run time and acted on accordingly. If an object is derived from

TwoDShape, then its area can be obtained by calling area(). The interface to this operation

is the same no matter what type of shape is being used.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:278

Progress Check
1. What is method overriding?

2. Why is method overriding important?

3. When an overridden method is called through a superclass reference, which version of the

method is executed?

CRITICAL SKILL

7.9 Using Abstract Classes
Sometimes you will want to create a superclass that defines only a generalized form that will

be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class

determines the nature of the methods that the subclasses must implement but does not, itself,

provide an implementation of one or more of these methods. One way this situation can occur

is when a superclass is unable to create a meaningful implementation for a method. This is the

case with the version of TwoDShape used in the preceding example. The definition of area()

is simply a placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a method to

have no meaningful definition in the context of its superclass. You can handle this situation

two ways. One way, as shown in the previous example, is to simply have it report a warning

message. While this approach can be useful in certain situations—such as debugging—it is not

usually appropriate. You may have methods which must be overridden by the subclass in order

for the subclass to have any meaning. Consider the class Triangle. It has no meaning if area()

is not defined. In this case, you want some way to ensure that a subclass does, indeed, override

all necessary methods. Java’s solution to this problem is the abstract method.

An abstract method is created by specifying the abstract type modifier. An abstract

method contains no body and is, therefore, not implemented by the superclass. Thus, a

subclass must override it—it cannot simply use the version defined in the superclass. To

declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only on normal

methods. It cannot be applied to static methods or to constructors.

278 Module 7: Inheritance

1. Method overriding occurs when a subclass defines a method that has the same signature as a method in its superclass.

2. Overridden methods allow Java to support run-time polymorphism.

3. The version of an overridden method that is executed is determined by the type of the object being referred to at the time

of the call. Thus, this determination is made at run time.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 279

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:279

7

In
he

rit
an

ce

A class that contains one or more abstract methods must also be declared as abstract by

preceding its class declaration with the abstract specifier. Since an abstract class does not define

a complete implementation, there can be no objects of an abstract class. Thus, attempting to

create an object of an abstract class by using new will result in a compile-time error.

When a subclass inherits an abstract class, it must implement all of the abstract methods

in the superclass. If it doesn’t, then the subclass must also be specified as abstract. Thus, the

abstract attribute is inherited until such time as a complete implementation is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no

meaningful concept of area for an undefined two-dimensional figure, the following

version of the preceding program declares area() as abstract inside TwoDShape, and

TwoDShape as abstract. This, of course, means that all classes derived from TwoDShape

must override area().

// Create an abstract class.
abstract class TwoDShape {
private double width;
private double height;
private String name;

// A default constructor.
TwoDShape() {
width = height = 0.0;
name = "null";

}

// Parameterized constructor.
TwoDShape(double w, double h, String n) {
width = w;
height = h;
name = n;

}

// Construct object with equal width and height.
TwoDShape(double x, String n) {
width = height = x;
name = n;

}

// Construct an object from an object.
TwoDShape(TwoDShape ob) {
width = ob.width;
height = ob.height;
name = ob.name;

}

TwoDShape is now abstract.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:280

280 Module 7: Inheritance

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight() { return height; }
void setWidth(double w) { width = w; }
void setHeight(double h) { height = h; }

String getName() { return name; }

void showDim() {
System.out.println("Width and height are " +

width + " and " + height);
}

// Now, area() is abstract.
abstract double area();

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super();
style = "null";

}

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super(w, h, "triangle");

style = s;
}

// Construct an isosceles triangle.
Triangle(double x) {
super(x, "triangle"); // call superclass constructor

style = "isosceles";
}

// Construct an object from an object.
Triangle(Triangle ob) {
super(ob); // pass object to TwoDShape constructor
style = ob.style;

}

Make area() into an
abstract method.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 281

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:281

7

In
he

rit
an

ce

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle() {
super();

}

// Constructor for Rectangle.
Rectangle(double w, double h) {
super(w, h, "rectangle"); // call superclass constructor

}

// Construct a square.
Rectangle(double x) {
super(x, "rectangle"); // call superclass constructor

}

// Construct an object from an object.
Rectangle(Rectangle ob) {
super(ob); // pass object to TwoDShape constructor

}

boolean isSquare() {
if(getWidth() == getHeight()) return true;
return false;

}

double area() {
return getWidth() * getHeight();

}
}

class AbsShape {
public static void main(String args[]) {
TwoDShape shapes[] = new TwoDShape[4];

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:282

shapes[0] = new Triangle("right", 8.0, 12.0);
shapes[1] = new Rectangle(10);
shapes[2] = new Rectangle(10, 4);
shapes[3] = new Triangle(7.0);

for(int i=0; i < shapes.length; i++) {
System.out.println("object is " +

shapes[i].getName());
System.out.println("Area is " + shapes[i].area());

System.out.println();
}

}
}

As the program illustrates, all subclasses of TwoDShape must override area().

To prove this to yourself, try creating a subclass that does not override area(). You will

receive a compile-time error. Of course, it is still possible to create an object reference of type

TwoDShape, which the program does. However, it is no longer possible to declare objects of

type TwoDShape. Because of this, in main() the shapes array has been shortened to 4, and a

generic TwoDShape object is no longer created.

One last point: notice that TwoDShape still includes the showDim() and getName()

methods and that these are not modified by abstract. It is perfectly acceptable—indeed, quite

common—for an abstract class to contain concrete methods which a subclass is free to use as

is. Only those methods declared as abstract need be overridden by subclasses.

Progress Check
1. What is an abstract method? How is one created?

2. What is an abstract class?

3. Can an object of an abstract class be instantiated?

282 Module 7: Inheritance

1. An abstract method is a method without a body. Thus it consists of a return type, name, and parameter list and is preceded

by the keyword abstract.

2. An abstract class contains at least one abstract method.

3. No.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 283

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:283

7

In
he

rit
an

ce

CRITICAL SKILL

7.10 Using final
As powerful and useful as method overriding and inheritance are, sometimes you will want to

prevent them. For example, you might have a class that encapsulates control of some hardware

device. Further, this class might offer the user the ability to initialize the device, making use of

private, proprietary information. In this case, you don’t want users of your class to be able to

override the initialization method. Whatever the reason, in Java it is easy to prevent a method

from being overridden or a class from being inherited by using the keyword final.

final Prevents Overriding
To prevent a method from being overridden, specify final as a modifier at the start of its

declaration. Methods declared as final cannot be overridden. The following fragment

illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");

}
}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a

compile-time error will result.

final Prevents Inheritance
You can prevent a class from being inherited by preceding its declaration with final. Declaring

a class as final implicitly declares all of its methods as final, too. As you might expect, it is

illegal to declare a class as both abstract and final since an abstract class is incomplete by

itself and relies upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {
// ...

}

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:284

284 Module 7: Inheritance

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Using final with Data Members
In addition to the uses of final just shown, final can also be applied to variables to create what

amounts to named constants. If you precede a class variable’s name with final, its value cannot

be changed through the lifetime of your program. You can, of course, give that variable an

initial value. For example, in Module 6 a simple error-management class called ErrorMsg

was shown. That class mapped a human-readable string to an error code. Here, that original

class is improved by the addition of final constants which stand for the errors. Now, instead of

passing getErrorMsg() a number such as 2, you can pass the named integer constant

DISKERR.

// Return a String object.
class ErrorMsg {
// Error codes.
final int OUTERR = 0;
final int INERR = 1;
final int DISKERR = 2;
final int INDEXERR = 3;

String msgs[] = {
"Output Error",
"Input Error",
"Disk Full",
"Index Out-Of-Bounds"

};

// Return the error message.
String getErrorMsg(int i) {
if(i >=0 & i < msgs.length)
return msgs[i];

else
return "Invalid Error Code";

}
}

Declare final constants.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class FinalD {
public static void main(String args[]) {
ErrorMsg err = new ErrorMsg();

System.out.println(err.getErrorMsg(err.OUTERR));
System.out.println(err.getErrorMsg(err.DISKERR));

}
}

Notice how the final constants are used in main(). Since they are members of the ErrorMsg

class, they must be accessed via an object of that class. Of course, they can also be inherited by

subclasses and accessed directly inside those subclasses.

As a point of style, many Java programmers use uppercase identifiers for final constants,

as does the preceding example. But this is not a hard and fast rule.

Progress Check
1. How do you prevent a method from being overridden?

2. If a class is declared as final, can it be inherited?

Java 2: A Beginner’s Guide 285

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:285

7

In
he

rit
an

ceUse final constants.

1. Precede its declaration with the keyword final.

2. No.

Ask the Expert
Q: Can final variables be made static?

A: Yes. Doing so allows you to refer to the constant through its class name rather than

through an object. For example, if the constants in ErrorMsg were modified by static,

then the println() statements in main() could look like this:

System.out.println(err.getErrorMsg(ErrorMsg.OUTERR));
System.out.println(err.getErrorMsg(ErrorMsg.DISKERR));

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:286

286 Module 7: Inheritance

CRITICAL SKILL

7.11 The Object Class
Java defines one special class called Object that is an implicit superclass of all other classes.

In other words, all other classes are subclasses of Object. This means that a reference variable

of type Object can refer to an object of any other class. Also, since arrays are implemented as

classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose

Object clone() Creates a new object that is the same as the object being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking object.

void notify() Resumes execution of a thread waiting on the invoking object.

void notifyAll() Resumes execution of all threads waiting on the invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,

int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You can

override the others. Several of these methods are described later in this book. However, notice

two methods now: equals() and toString(). The equals() method compares the contents of

two objects. It returns true if the objects are equivalent, and false otherwise. The toString()

method returns a string that contains a description of the object on which it is called. Also,

this method is automatically called when an object is output using println(). Many classes

override this method. Doing so allows them to tailor a description specifically for the types of

objects that they create.

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Module 7 Mastery Check
1. Does a superclass have access to the members of a subclass? Does a subclass have access to

the members of a superclass?

2. Create a subclass of TwoDShape called Circle. Include an area() method that computes

the area of the circle and a constructor that uses super to initialize the TwoDShape portion.

3. How do you prevent a subclass from having access to a member of a superclass?

4. Describe the purpose and use of both versions of super.

5. Given the following hierarchy:

class Alpha { ...

class Beta extends Alpha { ...

Class Gamma extends Beta { ...

In what order are the constructors for these classes called when a Gamma object

is instantiated?

6. A superclass reference can refer to a subclass object. Explain why this is important as it

relates to method overriding.

7. What is an abstract class?

8. How do you prevent a method from being overridden? How do you prevent a class from

being inherited?

9. Explain how inheritance, method overriding, and abstract classes are used to support

polymorphism.

10. What class is a superclass of every other class?

11. A class that contains at least one abstract method must, itself, be declared abstract.

True or False?

12. What keyword is used to create a named constant?

Java 2: A Beginner’s Guide 287

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 7
Blind Folio 7:287

7

In
he

rit
an

ce

P:\010Comp\Begin8\588-2\ch07.vp
Tuesday, November 05, 2002 9:45:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

TEAMFL
Y

Team-Fly®

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:289

Module8
Packages
and Interfaces

CRITICAL SKILLS
8.1 Use packages

8.2 Understand how packages affect access

8.3 Apply the protected access specifier

8.4 Import packages

8.5 Know Java’s standard packages

8.6 Understand interface fundamentals

8.7 Implement an interface

8.8 Apply interface references

8.9 Understand interface variables

8.10 Extend interfaces

289

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:290

290 Module 8: Packages and Interfaces

This module examines two of Java’s most innovative features: packages and interfaces.

Packages are groups of related classes. Packages help organize your code and provide

another layer of encapsulation. An interface defines a set of methods that will be implemented

by a class. An interface does not, itself, implement any method. It is a purely logical construct.

Packages and interfaces give you greater control over the organization of your program.

CRITICAL SKILL

8.1 Packages
In programming, it is often helpful to group related pieces of a program together. In Java,

this is accomplished by using a package. A package serves two purposes. First, it provides a

mechanism by which related pieces of a program can be organized as a unit. Classes defined

within a package must be accessed through their package name. Thus, a package provides a

way to name a collection of classes. Second, a package participates in Java’s access control

mechanism. Classes defined within a package can be made private to that package and not

accessible by code outside the package. Thus, the package provides a means by which classes

can be encapsulated. Let’s examine each feature a bit more closely.

In general, when you name a class, you are allocating a name from the namespace. A

namespace defines a declarative region. In Java, no two classes can use the same name from

the same namespace. Thus, within a given namespace, each class name must be unique. The

examples shown in the preceding modules have all used the default or global namespace.

While this is fine for short sample programs, it becomes a problem as programs grow and the

default namespace becomes crowded. In large programs, finding unique names for each class

can be difficult. Furthermore, you must avoid name collisions with code created by other

programmers working on the same project, and with Java’s library. The solution to these

problems is the package because it gives you a way to partition the namespace. When a class

is defined within a package, the name of that package is attached to each class, thus avoiding

name collisions with other classes that have the same name, but are in other packages.

Since a package usually contains related classes, Java defines special access rights to code

within a package. In a package, you can define code that is accessible by other code within the

same package but not by code outside the package. This enables you to create self-contained

groups of related classes that keep their operation private.

Defining a Package
All classes in Java belong to some package. When no package statement is specified, the

default (or global) package is used. Furthermore, the default package has no name, which

makes the default package transparent. This is why you haven’t had to worry about packages

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

before now. While the default package is fine for short, sample programs, it is inadequate for

real applications. Most of the time, you will define one or more packages for your code.

To create a package, put a package command at the top of a Java source file. The classes

declared within that file will then belong to the specified package. Since a package defines

a namespace, the names of the classes that you put into the file become part of that package’s

namespace.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a package

called Project1.

package Project1;

Java uses the file system to manage packages, with each package stored in its own directory.

For example, the .class files for any classes you declare to be part of Project1 must be stored

in a directory called Project1.

Like the rest of Java, package names are case sensitive. This means that the directory in

which a package is stored must be precisely the same as the package name. If you have trouble

trying the examples in this module, remember to check your package and directory names

carefully.

More than one file can include the same package statement. The package statement

simply specifies to which package the classes defined in a file belong. It does not exclude

other classes in other files from being part of that same package. Most real-world packages

are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name

from the one above it by use of a period. The general form of a multileveled package statement

is shown here:

package pack1.pack2.pack3...packN;

Of course, you must create directories that support the package hierarchy that you create.

For example,

package X.Y.Z;

must be stored in .../X/Y/Z, where ... specifies the path to the specified directories.

Java 2: A Beginner’s Guide 291

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:291

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:292

292 Module 8: Packages and Interfaces

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important question:

How does the Java run-time system know where to look for packages that you create? The

answer has two parts. First, by default, the Java run-time system uses the current working

directory as its starting point. Thus, if your class files are in the current directory, or a subdirectory

of the current directory, they will be found. Second, you can specify a directory path or paths

by setting the CLASSPATH environmental variable.

For example, consider the following package specification.

package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the program

is executed from a directory immediately above MyPack, or CLASSPATH must be set to

include the path to MyPack. The first alternative is the easiest (and doesn’t require a change

to CLASSPATH), but the second alternative lets your program find MyPack no matter what

directory the program is in. Ultimately, the choice is yours.

The easiest way to try the examples shown in this book is to simply create the

package directories below your current development directory, put the .class files into

the appropriate directories and then execute the programs from the development directory.

This is the approach assumed by the examples.

One last point: To avoid confusion, it is best to keep all .java and .class files associated

with packages in their own package directories.

NOTE
The precise effect and setting of CLASSPATH has changed over time, with each revision
of Java. It is best to check Sun’s Web site java.sun.com for the latest information.

A Short Package Example
Keeping the preceding discussion in mind, try this short package example. It creates

a simple book database that is contained within a package called BookPack.

// A short package demonstration.
package BookPack;

class Book {
private String title;
private String author;
private int pubDate;

Book(String t, String a, int d) {

This file is part of the BookPack package.

Thus, Book is part of BookPack.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 293

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:293

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

title = t;
author = a;
pubDate = d;

}

void show() {
System.out.println(title);
System.out.println(author);
System.out.println(pubDate);
System.out.println();

}
}

class BookDemo {
public static void main(String args[]) {
Book books[] = new Book[5];

books[0] = new Book("Java 2: A Beginner's Guide",
"Schildt", 2002);

books[1] = new Book("Java 2 Programmers Reference",
"Schildt", 2000);

books[2] = new Book("HTML Programmers Reference",
"Powell and Whitworth", 1998);

books[3] = new Book("Red Storm Rising",
"Clancy", 1986);

books[4] = new Book("On the Road",
"Kerouac", 1955);

for(int i=0; i < books.length; i++) books[i].show();
}

}

Call this file BookDemo.java and put it in a directory called BookPack.

Next, compile the file. Make sure that the resulting .class file is also in the BookPack

directory. Then try executing the class, using the following command line:

java BookPack.BookDemo

Remember, you will need to be in the directory above BookPack when you execute this

command or have your CLASSPATH environmental variable set appropriately.

As explained, BookDemo and Book are now part of the package BookPack. This means

that BookDemo cannot be executed by itself. That is, you cannot use this command line:

java BookDemo

Instead, BookDemo must be qualified with its package name.

BookDemo is also part of BookPack.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:294

294 Module 8: Packages and Interfaces

Progress Check
1. What is a package?

2. Show how to declare a package called ToolPack.

3. What is CLASSPATH?

CRITICAL SKILL

8.2 Packages and Member Access
The preceding modules have introduced the fundamentals of access control, including the

private and public specifiers, but they have not told the entire story. The reason for this is that

packages also participate in Java’s access control mechanism, and a complete discussion had

to wait until packages were covered.

The visibility of an element is determined by its access specification—private, public,

protected, or default—and the package in which it resides. Thus, the visibility of an element is

determined by its visibility within a class and its visibility within a package. This multilayered

approach to access control supports a rich assortment of access privileges. Table 8-1 summarizes

the various access levels. Let’s examine each access option individually.

If a member of a class has no explicit access specifier, then it is visible within its package

but not outside its package. Therefore, you will use the default access specification for elements

that you want to keep private to a package but public within that package.

Members explicitly declared public are visible everywhere, including different classes and

different packages. There is no restriction on their use or access.

A private member is accessible only to the other members of its class. A private member

is unaffected by its membership in a package.

A member specified as protected is accessible within its package and to all subclasses,

including subclasses in other packages.

Table 8-1 applies only to members of classes. A class has only two possible access levels:

default and public. When a class is declared as public, it is accessible by any other code. If a

class has default access, it can be accessed only by other code within its same package. Also,

a class that is declared public must reside in a file by the same name.

1. A package is a container for classes. It performs both an organization and an encapsulation role.

2. package ToolPack;

3. CLASSPATH is the environmental variable that specifies the path to classes.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. If a class member has default access inside a package, is that member accessible by

other packages?

2. What does protected do?

3. A private member can be accessed by subclasses within its packages. True or False?

A Package Access Example
In the package example shown earlier, both Book and BookDemo were in the same package,

so there was no problem with BookDemo using Book because the default access privilege

grants all members of the same package access. However, if Book were in one package and

Java 2: A Beginner’s Guide 295

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:295

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

1. No.

2. It allows a member to be accessible by other code in its package and by all subclasses, no matter what package

the subclass is in.

3. False.

Private Member Default Member
Protected
Member Public Member

Visible within
same class

Yes Yes Yes Yes

Visible within
same package
by subclass

No Yes Yes Yes

Visible within
same package
by non-subclass

No Yes Yes Yes

Visible within
different package
by subclass

No No Yes Yes

Visible within
different package
by non-subclass

No No No Yes

Table 8-1 Class Member Access

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:296

BookDemo were in another, the situation would be different. In this case, access to Book

would be denied. To make Book available to other packages, you must make three changes.

First, Book needs to be declared public. This makes Book visible outside of BookPack.

Second, its constructor must be made public, and finally its show() method needs to be public.

This allows them to be visible outside of BookPack, too. Thus, to make Book usable by other

packages, it must be recoded as shown here.

// Book recoded for public access.
package BookPack;

public class Book {
private String title;
private String author;
private int pubDate;

// Now public.
public Book(String t, String a, int d) {
title = t;
author = a;
pubDate = d;

}

// Now public.
public void show() {
System.out.println(title);
System.out.println(author);
System.out.println(pubDate);
System.out.println();

}
}

To use Book from another package, either you must use the import statement described

in the next section, or you must fully qualify its name to include its full package specification.

For example, here is a class called UseBook, which is contained in the BookPackB package.

It fully qualifies Book in order to use it.

// This class is in package BookPackB.
package BookPackB;

// Use the Book Class from BookPack.
class UseBook {
public static void main(String args[]) {
BookPack.Book books[] = new BookPack.Book[5];

296 Module 8: Packages and Interfaces

Qualify Book with its
package name: BookPack.

Book and its members must be public
in order to be used by other packages.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 297

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:297

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

books[0] = new BookPack.Book("Java 2: A Beginner's Guide",
"Schildt", 2002);

books[1] = new BookPack.Book("Java 2 Programmers Reference",
"Schildt", 2000);

books[2] = new BookPack.Book("HTML Programmers Reference",
"Powell and Whitworth", 1998);

books[3] = new BookPack.Book("Red Storm Rising",
"Clancy", 1986);

books[4] = new BookPack.Book("On the Road",
"Kerouac", 1955);

for(int i=0; i < books.length; i++) books[i].show();
}

}

Notice how every use of Book is preceded with the BookPack qualifier. Without this

specification, Book would not be found when you tried to compile UseBook.

CRITICAL SKILL

8.3 Understanding Protected Members
Newcomers to Java are sometimes confused by the meaning and use of protected. As explained,

the protected specifier creates a member that is accessible within its package and to subclasses

in other packages. Thus, a protected member is available for all subclasses to use but is still

protected from arbitrary access by code outside its package.

To better understand the effects of protected, let’s work through an example. First, change

the Book class so that its instance variables are protected, as shown here.

// Make the instance variables in Book protected.
package BookPack;

public class Book {
// these are now protected
protected String title;
protected String author;
protected int pubDate;

public Book(String t, String a, int d) {
title = t;
author = a;
pubDate = d;

}

These are now protected.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:298

298 Module 8: Packages and Interfaces

public void show() {
System.out.println(title);
System.out.println(author);
System.out.println(pubDate);
System.out.println();

}
}

Next, create a subclass of Book, called ExtBook, and a class called ProtectDemo that

uses ExtBook. ExtBook adds a field that stores the name of the publisher and several accessor

methods. Both of these classes will be in their own package called BookPackB. They are

shown here.

// Demonstrate Protected.
package BookPackB;

class ExtBook extends BookPack.Book {
private String publisher;

public ExtBook(String t, String a, int d, String p) {
super(t, a, d);
publisher = p;

}

public void show() {
super.show();
System.out.println(publisher);
System.out.println();

}

public String getPublisher() { return publisher; }
public void setPublisher(String p) { publisher = p; }

/* These are OK because subclass can access
a protected member. */

public String getTitle() { return title; }
public void setTitle(String t) { title = t; }
public String getAuthor() { return author; }
public void setAuthor(String a) { author = a; }
public int getPubDate() { return pubDate; }
public void setPubDate(int d) { pubDate = d; }

}

Access to Book’s members
is allowed for subclasses.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 299

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:299

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

class ProtectDemo {
public static void main(String args[]) {
ExtBook books[] = new ExtBook[5];

books[0] = new ExtBook("Java 2: A Beginner's Guide",
"Schildt", 2002, "Osborne/McGraw-Hill");

books[1] = new ExtBook("Java 2 Programmers Reference",
"Schildt", 2000, "Osborne/McGraw-Hill");

books[2] = new ExtBook("HTML Programmers Reference",
"Powell and Whitworth", 1998,
"Osborne/McGraw-Hill");

books[3] = new ExtBook("Red Storm Rising",
"Clancy", 1986, "Putnam");

books[4] = new ExtBook("On the Road",
"Kerouac", 1955, "Viking");

for(int i=0; i < books.length; i++) books[i].show();

// Find books by author
System.out.println("Showing all books by Schildt.");
for(int i=0; i < books.length; i++)
if(books[i].getAuthor() == "Schildt")
System.out.println(books[i].getTitle());

// books[0].title = "test title"; // Error -- not accessible
}

}

Look first at the code inside ExtBook. Because ExtBook extends Book, it has access

to the protected members of Book even though ExtBook is in a different package. Thus, it

can access title, author, and pubDate directly, as it does in the accessor methods it creates

for those variables. However, in ProtectDemo, access to these variables is denied because

ProtectDemo is not a subclass of Book. For example, if you remove the comment symbol

from the following line, the program will not compile.

// books[0].title = "test title"; // Error -- not accessible

CRITICAL SKILL

8.4 Importing Packages
When you use a class from another package, you can fully qualify the name of the class with

the name of its package, as the preceding examples have done. However, such an approach

could easily become tiresome and awkward, especially if the classes you are qualifying are

Access to protected field not allowed by non-subclass.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:300

300 Module 8: Packages and Interfaces

deeply nested in a package hierarchy. Since Java was invented by programmers for

programmers—and programmers don’t like tedious constructs—it should come as no surprise

that a more convenient method exists for using the contents of packages: the import statement.

Using import you can bring one or more members of a package into view. This allows you to

use those members directly, without explicit package qualification.

Here is the general form of the import statement:

import pkg.classname;

Here, pkg is the name of the package, which can include its full path, and classname is the

name of the class being imported. If you want to import the entire contents of a package, use

an asterisk (*) for the class name. Here are examples of both forms:

import MyPack.MyClass
import MyPack.*;

In the first case, the MyClass class is imported from MyPack. In the second, all of the classes in

MyPack are imported. In a Java source file, import statements occur immediately following

the package statement (if it exists) and before any class definitions.

You can use import to bring the BookPack package into view so that the Book class can

be used without qualification. To do so, simply add this import statement to the top of any file

that uses Book.

import BookPack.*;

Ask the Expert
Q: I know that C++ also includes an access specifier called protected. Is it similar

to Java’s?

A: Similar, but not the same. In C++, protected creates a member that can be accessed by

subclasses but is otherwise private. In Java, protected creates a member that can be

accessed by any code within its package but only by subclasses outside of its package.

You need to be careful of this difference when porting code between C++ and Java.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 301

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:301

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

For example, here is the UseBook class recoded to use import.

// Demonstrate import.
package BookPackB;
import BookPack.*;

// Use the Book Class from BookPack.
class UseBook {
public static void main(String args[]) {
Book books[] = new Book[5];

books[0] = new Book("Java 2: A Beginner's Guide",
"Schildt", 2002);

books[1] = new Book("Java 2 Programmers Reference",
"Schildt", 2000);

books[2] = new Book("HTML Programmers Reference",
"Powell and Whitworth", 1998);

books[3] = new Book("Red Storm Rising",
"Clancy", 1986);

books[4] = new Book("On the Road",
"Kerouac", 1955);

for(int i=0; i < books.length; i++) books[i].show();
}

}

Notice that you no longer need to qualify Book with its package name.

Now, you can refer to Book
directly, without qualification.

Ask the Expert
Q: Does importing a package have an impact on the performance of my program?

A: Yes and no! Importing a package can create a small amount of overhead during

compilation, but it has no impact on performance at run time.

Import BookPack.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:302

CRITICAL SKILL

8.5 Java’s Class Library
Is Contained in Packages
As explained earlier in this book, Java defines a large number of standard classes that are

available to all programs. This class library is often referred to as the Java API (Application

Programming Interface). The Java API is stored in packages. At the top of the package

hierarchy is java. Descending from java are several subpackages, including these:

Subpackage Description

java.lang Contains a large number of general-purpose classes

java.io Contains the I/O classes

java.net Contains those classes that support networking

java.applet Contains classes for creating applets

java.awt Contains classes that support the Abstract Window Toolkit

Since the beginning of this book, you have been using java.lang. It contains, among

several others, the System class, which you have been using when performing output using

println(). The java.lang package is unique because it is imported automatically into every

Java program. This is why you did not have to import java.lang in the preceding sample

programs. However, you must explicitly import the other packages. We will be examining

several packages in subsequent modules.

Progress Check
1. How do you include another package in a source file?

2. Show how to include all of the classes in a package called ToolPack.

3. Do you need to include java.lang explicitly?

302 Module 8: Packages and Interfaces

1. Use the import statement.

2. import ToolPack.*;

3. No.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

8.6 Interfaces
In object-oriented programming, it is sometimes helpful to define what a class must do but not

how it will do it. You have already seen an example of this: the abstract method. An abstract

method defines the signature for a method but provides no implementation. A subclass must

provide its own implementation of each abstract method defined by its superclass. Thus, an

abstract method specifies the interface to the method but not the implementation. While abstract

classes and methods are useful, it is possible to take this concept a step further. In Java, you

can fully separate a class’s interface from its implementation by using the keyword interface.

Interfaces are syntactically similar to abstract classes. However, in an interface, no method

can include a body. That is, an interface provides no implementation whatsoever. It specifies

what must be done, but not how. Once an interface is defined, any number of classes can

implement it. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the methods

described by the interface. Each class is free to determine the details of its own implementation.

Thus, two classes might implement the same interface in different ways, but each class still

supports the same set of methods. Thus, code that has knowledge of the interface can use

objects of either class since the interface to those objects is the same. By providing the

interface keyword, Java allows you to fully utilize the “one interface, multiple methods”

aspect of polymorphism.

Here is the general form of an interface:

access interface name {

ret-type method-name1(param-list);

ret-type method-name2(param-list);

type var1 = value;

type var2 = value;

// ...

ret-type method-nameN(param-list);

type varN = value;

}

Here, access is either public or not used. When no access specifier is included, then default

access results, and the interface is available only to other members of its package. When it is

declared as public, the interface can be used by any other code. (When an interface is declared

public, it must be in a file of the same name.) name is the name of the interface and can be any

valid identifier.

Methods are declared using only their return type and signature. They are, essentially,

abstract methods. As explained, in an interface, no method can have an implementation.

Java 2: A Beginner’s Guide 303

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:303

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:304

Thus, each class that includes an interface must implement all of the methods. In an interface,

methods are implicitly public.

Variables declared in an interface are not instance variables. Instead, they are implicitly

public, final, and static and must be initialized. Thus, they are essentially constants.

Here is an example of an interface definition. It specifies the interface to a class that

generates a series of numbers.

public interface Series {
int getNext(); // return next number in series
void reset(); // restart
void setStart(int x); // set starting value

}

This interface is declared public so that it can be implemented by code in any package.

CRITICAL SKILL

8.7 Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, include the implements clause in a class definition and then create

the methods defined by the interface. The general form of a class that includes the implements

clause looks like this:

access class classname extends superclass implements interface {

// class-body

}

Here, access is either public or not used. The extends clause is, of course, optional. To implement

more than one interface, the interfaces are separated with a comma.

The methods that implement an interface must be declared public. Also, the type signature

of the implementing method must match exactly the type signature specified in the interface

definition.

Here is an example that implements the Series interface shown earlier. It creates a class

called ByTwos, which generates a series of numbers, each two greater than the previous one.

// Implement Series.
class ByTwos implements Series {
int start;
int val;

ByTwos() {
start = 0;

304 Module 8: Packages and Interfaces

Implement the Series interface.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

val = 0;
}

public int getNext() {
val += 2;
return val;

}

public void reset() {
start = 0;
val = 0;

}

public void setStart(int x) {
start = x;
val = x;

}
}

Notice that the methods getNext(), reset(), and setStart() are declared using the public

access specifier. This is necessary. Whenever you implement a method defined by an interface,

it must be implemented as public because all members of an interface are implicitly public.

Here is a class that demonstrates ByTwos.

class SeriesDemo {
public static void main(String args[]) {
ByTwos ob = new ByTwos();

for(int i=0; i < 5; i++)
System.out.println("Next value is " +

ob.getNext());

System.out.println("\nResetting");
ob.reset();
for(int i=0; i < 5; i++)
System.out.println("Next value is " +

ob.getNext());

System.out.println("\nStarting at 100");
ob.setStart(100);
for(int i=0; i < 5; i++)
System.out.println("Next value is " +

ob.getNext());
}

}

Java 2: A Beginner’s Guide 305

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:305

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:306

306 Module 8: Packages and Interfaces

The output from this program is shown here.

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Resetting
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of ByTwos adds

the method getPrevious(), which returns the previous value.

// Implement Series and add getPrevious().
class ByTwos implements Series {
int start;
int val;
int prev;

ByTwos() {
start = 0;
val = 0;
prev = -2;

}

public int getNext() {
prev = val;
val += 2;
return val;

}

public void reset() {
start = 0;

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 307

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:307

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

val = 0;
prev = -2;

}

public void setStart(int x) {
start = x;
val = x;
prev = x - 2;

}

int getPrevious() {
return prev;

}
}

Notice that the addition of getPrevious() required a change to the implementations of the methods

defined by Series. However, since the interface to those methods stays the same, the change is

seamless and does not break preexisting code. This is one of the advantages of interfaces.

As explained, any number of classes can implement an interface. For example, here is

a class called ByThrees that generates a series that consists of multiples of three.

// Implement Series.
class ByThrees implements Series {
int start;
int val;

ByThrees() {
start = 0;
val = 0;

}

public int getNext() {
val += 3;
return val;

}

public void reset() {
start = 0;
val = 0;

}

public void setStart(int x) {
start = x;
val = x;

}
}

Add a method not defined by Series.

Implement Series a different way.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:308

One more point: If a class includes an interface but does not fully implement the methods

defined by that interface, then that class must be declared as abstract. No objects of such a class

can be created, but it can be used as an abstract superclass, allowing subclasses to provide the

complete implementation.

CRITICAL SKILL

8.8 Using Interface References
You might be somewhat surprised to learn that you can declare a reference variable of an

interface type. In other words, you can create an interface reference variable. Such a variable

can refer to any object that implements its interface. When you call a method on an object

through an interface reference, it is the version of the method implemented by the object that

is executed. This process is similar to using a superclass reference to access a subclass object,

as described in Module 7.

The following example illustrates this process. It uses the same interface reference variable

to called methods on objects of both ByTwos and ByThrees.

// Demonstrate interface references.

class ByTwos implements Series {
int start;
int val;

ByTwos() {
start = 0;
val = 0;

}

public int getNext() {
val += 2;
return val;

}

public void reset() {
start = 0;
val = 0;

}

public void setStart(int x) {
start = x;
val = x;

}
}

308 Module 8: Packages and Interfaces

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

class ByThrees implements Series {
int start;
int val;

ByThrees() {
start = 0;
val = 0;

}

public int getNext() {
val += 3;
return val;

}

public void reset() {
start = 0;
val = 0;

}

public void setStart(int x) {
start = x;
val = x;

}
}

class SeriesDemo2 {
public static void main(String args[]) {
ByTwos twoOb = new ByTwos();
ByThrees threeOb = new ByThrees();
Series ob;

for(int i=0; i < 5; i++) {
ob = twoOb;
System.out.println("Next ByTwos value is " +

ob.getNext());
ob = threeOb;
System.out.println("Next ByThrees value is " +

ob.getNext());
}

}
}

In main(), ob is declared to be a reference to a Series interface. This means that it can be

used to store references to any object that implements Series. In this case, it is used to refer

to twoOb and threeOb, which are objects of type ByTwos and ByThrees, respectively,

Java 2: A Beginner’s Guide 309

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:309

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s
Access an object via
an interface reference.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:310

which both implement Series. An interface reference variable has knowledge only of the

methods declared by its interface declaration. Thus, ob could not be used to access any other

variables or methods that might be supported by the object.

Progress Check
1. What is an interface? What keyword is used to define one?

2. What is implements for?

3. Can an interface reference variable refer to an object that implements that interface?

Project 8-1 Creating a Queue Interface
To see the power of interfaces in action, we will look at a practical example.

In earlier modules, you developed a class called Queue that implemented a

simple fixed-size queue for characters. However, there are many ways to

implement a queue. For example, the queue can be of a fixed size or it can be “growable.”

The queue can be linear, in which case it can be used up, or it can be circular, in which case

elements can be put in as long as elements are being taken off. The queue can also be held in

an array, a linked list, a binary tree, and so on. No matter how the queue is implemented, the

interface to the queue remains the same, and the methods put() and get() define the interface

to the queue independently of the details of the implementation. Because the interface to a

queue is separate from its implementation, it is easy to define a queue interface, leaving it to

each implementation to define the specifics.

In this project, you will create an interface for a character queue and three implementations.

All three implementations will use an array to store the characters. One queue will be the

fixed-size, linear queue developed earlier. Another will be a circular queue. In a circular queue,

when the end of the underlying array is encountered, the get and put indices automatically loop

back to the start. Thus, any number of items can be stored in a circular queue as long as items

are also being taken out. The final implementation creates a dynamic queue, which grows as

necessary when its size is exceeded.

310 Module 8: Packages and Interfaces

1. An interface defines the methods that a class must implement but defines no implementation of its own.

It is defined by the keyword interface.

2. To implement an interface, include that interface in a class by using the implements keyword.

3. Yes.

ICharQ.java
IQDemo.java

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Step by Step
1. Create a file called ICharQ.java and put into that file the following interface definition.

// A character queue interface.
public interface ICharQ {
// Put a character into the queue.
void put(char ch);

// Get a character from the queue.
char get();

}

As you can see, this interface is very simple, consisting of only two methods. Each class

that implements ICharQ will need to implement these methods.

2. Create a file called IQDemo.java.

3. Begin creating IQDemo.java by adding the FixedQueue class shown here:

// A fixed-size queue class for characters.
class FixedQueue implements ICharQ {
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.
public FixedQueue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put(char ch) {
if(putloc==q.length-1) {
System.out.println(" -- Queue is full.");
return;

}

putloc++;
q[putloc] = ch;

}

// Get a character from the queue.
public char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

Java 2: A Beginner’s Guide 311

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:311

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

Project
8-1

(continued)

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:312

312 Module 8: Packages and Interfaces

}

getloc++;
return q[getloc];

}
}

This implementation of ICharQ is adapted from the Queue class shown in Module 5 and

should already be familiar to you.

4. To IQDemo.java add the CircularQueue class shown here. It implements a circular queue

for characters.

// A circular queue.
class CircularQueue implements ICharQ {
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.
public CircularQueue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put(char ch) {
/* Queue is full if either putloc is one less than

getloc, or if putloc is at the end of the array
and getloc is at the beginning. */

if(putloc+1==getloc |
((putloc==q.length-1) & (getloc==0))) {

System.out.println(" -- Queue is full.");
return;

}

putloc++;
if(putloc==q.length) putloc = 0; // loop back
q[putloc] = ch;

}

// Get a character from the queue.
public char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
if(getloc==q.length) getloc = 0; // loop back

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 313

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:313

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

Project
8-1

return q[getloc];
}

}

The circular queue works by reusing space in the array that is freed when elements are retrieved.

Thus, it can store an unlimited number of elements as long as elements are also being removed.

While conceptually simple—just reset the appropriate index to zero when the end of the array is

reached—the boundary conditions are a bit confusing at first. In a circular queue, the queue is

full not when the end of the underlying array is reached, but rather when storing an item would

cause an unretrieved item to be overwritten. Thus, put() must check several conditions in order

to determine if the queue is full. As the comments suggest, the queue is full when either putloc

is one less than getloc, or if putloc is at the end of the array and getloc is at the beginning. As

before, the queue is empty when getloc and putloc are equal.

5. Put into IQDemo.java the DynQueue class shown next. It implements a “growable” queue

that expands its size when space is exhausted.

// A dynamic queue.
class DynQueue implements ICharQ {
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.
public DynQueue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put(char ch) {
if(putloc==q.length-1) {
// increase queue size
char t[] = new char[q.length * 2];

// copy elements into new queue
for(int i=0; i < q.length; i++)
t[i] = q[i];

q = t;
}

putloc++;
q[putloc] = ch;

}

// Get a character from the queue.

(continued)

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:314

314 Module 8: Packages and Interfaces

public char get() {
if(getloc == putloc) {
System.out.println(" -- Queue is empty.");
return (char) 0;

}

getloc++;
return q[getloc];

}
}

In this queue implementation, when the queue is full, an attempt to store another element

causes a new underlying array to be allocated that is twice as large as the original, the

current contents of the queue are copied into this array, and a reference to the new array

is stored in q.

6. To demonstrate the three ICharQ implementations, enter the following class into

IQDemo.java. It uses an ICharQ reference to access all three queues.

// Demonstrate the ICharQ interface.

class IQDemo {

public static void main(String args[]) {

FixedQueue q1 = new FixedQueue(10);

DynQueue q2 = new DynQueue(5);

CircularQueue q3 = new CircularQueue(10);

ICharQ iQ;

char ch;

int i;

iQ = q1;

// Put some characters into fixed queue.

for(i=0; i < 10; i++)

iQ.put((char) ('A' + i));

// Show the queue.

System.out.print("Contents of fixed queue: ");

for(i=0; i < 10; i++) {

ch = iQ.get();

System.out.print(ch);

}

System.out.println();

iQ = q2;

// Put some characters into dynamic queue.

for(i=0; i < 10; i++)

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 315

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:315

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

Project
8-1

iQ.put((char) ('Z' - i));

// Show the queue.

System.out.print("Contents of dynamic queue: ");

for(i=0; i < 10; i++) {

ch = iQ.get();

System.out.print(ch);

}

System.out.println();

iQ = q3;

// Put some characters into circular queue.

for(i=0; i < 10; i++)

iQ.put((char) ('A' + i));

// Show the queue.

System.out.print("Contents of circular queue: ");

for(i=0; i < 10; i++) {

ch = iQ.get();

System.out.print(ch);

}

System.out.println();

// Put more characters into circular queue.

for(i=10; i < 20; i++)

iQ.put((char) ('A' + i));

// Show the queue.

System.out.print("Contents of circular queue: ");

for(i=0; i < 10; i++) {

ch = iQ.get();

System.out.print(ch);

}

System.out.println("\nStore and consume from" +

" circular queue.");

// Use and consume from circular queue.

for(i=0; i < 20; i++) {

iQ.put((char) ('A' + i));

ch = iQ.get();

System.out.print(ch);

}

}

}

(continued)

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:316

316 Module 8: Packages and Interfaces

7. The output from this program is shown here.

Contents of fixed queue: ABCDEFGHIJ
Contents of dynamic queue: ZYXWVUTSRQ
Contents of circular queue: ABCDEFGHIJ
Contents of circular queue: KLMNOPQRST
Store and consume from circular queue.
ABCDEFGHIJKLMNOPQRST

8. Here are some things to try on your own. Create a circular version of DynQueue. Add a

reset() method to ICharQ which resets the queue. Create a static method that copies the

contents of one type of queue into another.

CRITICAL SKILL

8.9 Variables in Interfaces
As mentioned, variables can be declared in an interface, but they are implicitly public, static,

and final. At first glance, you might think that there would be very limited use for such variables,

but the opposite is true. Large programs typically make use of several constant values that describe

such things as array size, various limits, special values, and the like. Since a large program is

typically held in a number of separate source files, there needs to be a convenient way to make

these constants available to each file. In Java, interface variables offer a solution.

To define a set of shared constants, simply create an interface that contains only these

constants, without any methods. Each file that needs access to the constants simply “implements”

the interface. This brings the constants into view. Here is a simple example.

// An interface that contains constants.
interface IConst {
int MIN = 0;
int MAX = 10;
String ERRORMSG = "Boundary Error";

}

class IConstD implements IConst {
public static void main(String args[]) {
int nums[] = new int[MAX];

for(int i=MIN; i < 11; i++) {
if(i >= MAX) System.out.println(ERRORMSG);
else {
nums[i] = i;
System.out.print(nums[i] + " ");

}
}

}
}

These are constants.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 317

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:317

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

CRITICAL SKILL

8.10 Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as for

inheriting classes. When a class implements an interface that inherits another interface, it must

provide implementations for all methods defined within the interface inheritance chain. Following

is an example:

// One interface can extend another.
interface A {
void meth1();
void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
void meth3();

}

// This class must implement all of A and B
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");

}

public void meth2() {
System.out.println("Implement meth2().");

}

public void meth3() {
System.out.println("Implement meth3().");

Ask the Expert
Q: When I convert a C++ program to Java, how do I handle #define statements in a

C++-style header file?

A: Java’s answer to the header files and #defines found in C++ is the interface and

interface variables. To port a header file, simply perform a one-to-one translation.

B inherits A.

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:318

}
}

class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();

ob.meth1();
ob.meth2();
ob.meth3();

}
}

As an experiment, you might try removing the implementation for meth1() in MyClass.

This will cause a compile-time error. As stated earlier, any class that implements an interface

must implement all methods defined by that interface, including any that are inherited from

other interfaces.

Although the examples we’ve included in this book do not make frequent use of packages

or interfaces, both of these tools are an important part of the Java programming environment.

Virtually all real programs and applets that you write in Java will be contained within packages.

A number will probably implement interfaces as well. It is important, therefore, that you be

comfortable with their usage.

Module 8 Mastery Check
1. Using the code from Project 8-1, put the ICharQ interface and its three implementations

into a package called QPack. Keeping the queue demonstration class IQDemo in the

default package, show how to import and use the classes in QPack.

2. What is a namespace? Why is it important that Java allows you to partition the namespace?

3. Packages are stored in ______________.

4. Explain the difference between protected and default access.

5. Explain the two ways that the members of a package can be used by other packages.

6. “One interface, multiple methods” is a key tenet of Java. What feature best exemplifies it?

7. How many classes can implement an interface? How many interfaces can a class implement?

8. Can interfaces be extended?

318 Module 8: Packages and Interfaces

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

9. Create an interface for the Vehicle class from Module 7. Call the interface IVehicle.

10. Variables declared in an interface are implicitly static and final. What good are they?

11. A package is, in essence, a container for classes. True or False?

12. What standard Java package is automatically imported into a program?

Java 2: A Beginner’s Guide 319

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 8
Blind Folio 8:319

8

Pa
ck

ag
es

an
d

In
te

rfa
ce

s

P:\010Comp\Begin8\588-2\ch08.vp
Tuesday, November 05, 2002 9:45:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Module9
Exception Handling

CRITICAL SKILLS
9.1 Know the exception hierarchy

9.2 Use try and catch

9.3 Understand the effects of an uncaught exception

9.4 Use multiple catch statements

9.5 Catch subclass exceptions

9.6 Nest try blocks

9.7 Throw an exception

9.8 Know the members of Throwable

9.9 Use finally

9.10 Use throws

9.11 Know Java’s built-in exceptions

9.12 Create custom exception classes

321

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:321

321

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:322

322 Module 9: Exception Handling

This module discusses exception handling. An exception is an error that occurs at run time.

Using Java’s exception handling subsystem you can, in a structured and controlled manner,

handle run-time errors. Although most modern programming languages offer some form of

exception handling, Java’s support for it is cleaner and more flexible than most others.

A principal advantage of exception handling is that it automates much of the error handling

code that previously had to be entered “by hand” into any large program. For example, in some

computer languages, error codes are returned when a method fails, and these values must be

checked manually, each time the method is called. This approach is both tedious and error-prone.

Exception handling streamlines error handling by allowing your program to define a block of code,

called an exception handler, that is executed automatically when an error occurs. It is not necessary

to manually check the success or failure of each specific operation or method call. If an error

occurs, it will be processed by the exception handler.

Another reason that exception handling is important is that Java defines standard

exceptions for common program errors, such as divide-by-zero or file-not-found. To respond

to these errors, your program must watch for and handle these exceptions. Also, Java’s API

library makes extensive use of exceptions.

In the final analysis, to be a successful Java programmer means that you are fully capable

of navigating Java’s exception handling subsystem.

CRITICAL SKILL

9.1 The Exception Hierarchy
In Java, all exceptions are represented by classes. All exception classes are derived from a class

called Throwable. Thus, when an exception occurs in a program, an object of some type of

exception class is generated. There are two direct subclasses of Throwable: Exception and

Error. Exceptions of type Error are related to errors that occur in the Java virtual machine itself,

and not in your program. These types of exceptions are beyond your control, and your program

will not usually deal with them. Thus, these types of exceptions are not described here.

Errors that result from program activity are represented by subclasses of Exception.

For example, divide-by-zero, array boundary, and file errors fall into this category. In general,

your program should handle exceptions of these types. An important subclass of Exception is

RuntimeException, which is used to represent various common types of run-time errors.

CRITICAL SKILL

9.2 Exception Handling Fundamentals
Java exception handling is managed via five keywords: try, catch, throw, throws, and

finally. They form an interrelated subsystem in which the use of one implies the use of another.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 323

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:323

9

Ex
ce

pt
io

n
H

an
dl

in
g

Throughout the course of this module, each keyword is examined in detail. However, it is useful

at the outset to have a general understanding of the role each plays in exception handling.

Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a try

block. If an exception occurs within the try block, it is thrown. Your code can catch this

exception using catch and handle it in some rational manner. System-generated exceptions are

automatically thrown by the Java run-time system. To manually throw an exception, use the

keyword throw. In some cases, an exception that is thrown out of a method must be specified

as such by a throws clause. Any code that absolutely must be executed upon exiting from a

try block is put in a finally block.

Using try and catch
At the core of exception handling are try and catch. These keywords work together; you can’t

have a try without a catch, or a catch without a try. Here is the general form of the try/catch

exception handling blocks:

try {

// block of code to monitor for errors

}

catch (ExcepType1 exOb) {

// handler for ExcepType1

}

Ask the Expert
Q: Just to be sure, could you review the conditions that cause an exception to be

generated?

A: Exceptions are generated in three different ways. First, the Java virtual machine can

generate an exception in response to some internal error which is beyond your control.

Normally, your program won’t handle these types of exceptions. Second, standard

exceptions, such as those corresponding to divide-by-zero or array index out-of-bounds,

are generated by errors in program code. You need to handle these exceptions. Third,

you can manually generate an exception by using the throw statement. No matter how

an exception is generated, it is handled in the same way.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

catch (ExcepType2 exOb) {

// handler for ExcepType2

}

.

.

.

Here, ExcepType is the type of exception that has occurred. When an exception is thrown, it is

caught by its corresponding catch statement, which then processes the exception. As the general

form shows, there can be more than one catch statement associated with a try. The type of the

exception determines which catch statement is executed. That is, if the exception type specified

by a catch statement matches that of the exception, then that catch statement is executed (and all

others are bypassed). When an exception is caught, exOb will receive its value.

Here is an important point: If no exception is thrown, then a try block ends normally, and

all of its catch statements are bypassed. Execution resumes with the first statement following

the last catch. Thus, catch statements are executed only if an exception is thrown.

A Simple Exception Example
Here is a simple example that illustrates how to watch for and catch an exception. As you

know, it is an error to attempt to index an array beyond its boundaries. When this occurs, the

JVM throws an ArrayIndexOutOfBoundsException. The following program purposely

generates such an exception and then catches it.

// Demonstrate exception handling.
class ExcDemo1 {
public static void main(String args[]) {
int nums[] = new int[4];

try {
System.out.println("Before exception is generated.");

// Generate an index out-of-bounds exception.
nums[7] = 10;
System.out.println("this won't be displayed");

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("Index out-of-bounds!");

}
System.out.println("After catch statement.");

}
}

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:324

324 Module 9: Exception Handling

Attempt to index past
nums boundary.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 325

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:325

9

Ex
ce

pt
io

n
H

an
dl

in
g

This program displays the following output:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Although quite short, the preceding program illustrates several key points about exception

handling. First, the code that you want to monitor for errors is contained within a try block.

Second, when an exception occurs (in this case, because of the attempt to index nums beyond its

bounds), the exception is thrown out of the try block and caught by the catch statement. At this

point, control passes to the catch, and the try block is terminated. That is, catch is not called.

Rather, program execution is transferred to it. Thus, the println() statement following the

out-of-bounds index will never execute. After the catch statement executes, program control

continues with the statements following the catch. Thus, it is the job of your exception handler to

remedy the problem that caused the exception so that program execution can continue normally.

Remember, if no exception is thrown by a try block, no catch statements will be executed

and program control resumes after the catch statement. To confirm this, in the preceding

program, change the line

nums[7] = 10;

to

nums[0] = 10;

Now, no exception is generated, and the catch block is not executed.

It is important to understand that all code within a try block is monitored for exceptions.

This includes exceptions that might be generated by a method called from within the try

block. An exception thrown by a method called from within a try block can be caught by that

try block—assuming, of course, that the method did not catch the exception itself. For

example, this is a valid program:

/* An exception can be generated by one
method and caught by another. */

class ExcTest {
// Generate an exception.
static void genException() {
int nums[] = new int[4];

System.out.println("Before exception is generated.");

// generate an index out-of-bounds exception

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

nums[7] = 10;
System.out.println("this won't be displayed");

}
}

class ExcDemo2 {
public static void main(String args[]) {

try {
ExcTest.genException();

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("Index out-of-bounds!");

}
System.out.println("After catch statement.");

}
}

This program produces the following output, which is the same as that produced by the

first version of the program shown earlier.

Before exception is generated.
Index out-of-bounds!
After catch statement.

Since genException() is called from within a try block, the exception that it generates (and does

not catch) is caught by the catch in main(). Understand, however, that if genException() had

caught the exception itself, it never would have been passed back to main().

Progress Check
1. What is an exception?

2. Code monitored for exceptions must be part of what statement?

3. What does catch do? After a catch executes, what happens to the flow of execution?

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:326

326 Module 9: Exception Handling

1. An exception is a run-time error.

2. To monitor code for exceptions, it must be part of a try block.

3. The catch statement receives exceptions. A catch statement is not called; thus execution does not return to the point at

which the exception was generated. Rather, execution continues on after the catch block.

Exception generated here.

Exception caught here.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 327

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:327

9

Ex
ce

pt
io

n
H

an
dl

in
g

CRITICAL SKILL

9.3 The Consequences of an Uncaught Exception
Catching one of Java’s standard exceptions, as the preceding program does, has a side benefit:

It prevents abnormal program termination. When an exception is thrown, it must be caught by

some piece of code, somewhere. In general, if your program does not catch an exception, then it

will be caught by the JVM. The trouble is that the JVM’s default exception handler terminates

execution and displays a stack trace and error message. For example, in this version of the

preceding example, the index out-of-bounds exception is not caught by the program.

// Let JVM handle the error.
class NotHandled {
public static void main(String args[]) {
int nums[] = new int[4];

System.out.println("Before exception is generated.");

// generate an index out-of-bounds exception
nums[7] = 10;

}
}

When the array index error occurs, execution is halted, and the following error message is

displayed.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
at NotHandled.main(NotHandled.java:9)

While such a message is useful for you while debugging, it would not be something that

you would want others to see, to say the least! This is why it is important for your program to

handle exceptions itself, rather than rely upon the JVM.

As mentioned earlier, the type of the exception must match the type specified

in a catch statement. If it doesn’t, the exception won’t be caught. For example, the

following program tries to catch an array boundary error with a catch statement for

an ArithmeticException (another of Java’s built-in exceptions). When the array boundary

is overrun, an ArrayIndexOutOfBoundsException is generated, but it won’t be caught

by the catch statement. This results in abnormal program termination.

// This won't work!
class ExcTypeMismatch {
public static void main(String args[]) {

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:328

328 Module 9: Exception Handling

int nums[] = new int[4];

try {
System.out.println("Before exception is generated.");

// generate an index out-of-bounds exception
nums[7] = 10;
System.out.println("this won't be displayed");

}

/* Can't catch an array boundary error with an
ArithmeticException. */

catch (ArithmeticException exc) {
// catch the exception
System.out.println("Index out-of-bounds!");

}
System.out.println("After catch statement.");

}
}

The output is shown here.

Before exception is generated.
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException

at ExcTypeMismatch.main(ExcTypeMismatch.java:10)

As the output demonstrates, a catch for ArithmeticException won’t catch an

ArrayIndexOutOfBoundsException.

Exceptions Enable You to Handle Errors Gracefully
One of the key benefits of exception handling is that it enables your program to respond to an error

and then continue running. For example, consider the following example that divides the elements

of one array by the elements of another. If a division by zero occurs, an ArithmeticException is

generated. In the program, this exception is handled by reporting the error and then continuing with

execution. Thus, attempting to divide by zero does not cause an abrupt run-time error resulting in

the termination of the program. Instead, it is handled gracefully, allowing program execution to

continue.

// Handle error gracefully and continue.
class ExcDemo3 {
public static void main(String args[]) {
int numer[] = { 4, 8, 16, 32, 64, 128 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

This throws an
ArrayIndexOutOfBoundsException.

This tries to catch it with an
ArithmeticException.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

for(int i=0; i<numer.length; i++) {
try {
System.out.println(numer[i] + " / " +

denom[i] + " is " +
numer[i]/denom[i]);

}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");

}
}

}
}

The output from the program is shown here.

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16

This example makes another important point: Once an exception has been handled, it is

removed from the system. Therefore, in the program, each pass through the loop enters the try

block anew; any prior exceptions have been handled. This enables your program to handle

repeated errors.

Progress Check
1. Does the exception type in a catch statement matter?

2. What happens if an exception is not caught?

3. When an exception occurs, what should your program do?

9

Java 2: A Beginner’s Guide 329

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:329

9

Ex
ce

pt
io

n
H

an
dl

in
g

1. The type of exception in a catch must match the type of exception that you want to catch.

2. An uncaught exception ultimately leads to abnormal program termination.

3. A program should handle exceptions in a rational, graceful manner, eliminating the cause of the exception if possible and

then continuing.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:330

330 Module 9: Exception Handling

CRITICAL SKILL

9.4 Using Multiple catch Statements
As stated earlier, you can associate more than one catch statement with a try. In fact, it is

common to do so. However, each catch must catch a different type of exception. For example,

the program shown here catches both array boundary and divide-by-zero errors.

// Use multiple catch statements.
class ExcDemo4 {
public static void main(String args[]) {
// Here, numer is longer than denom.
int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for(int i=0; i<numer.length; i++) {
try {
System.out.println(numer[i] + " / " +

denom[i] + " is " +
numer[i]/denom[i]);

}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");

}
}

}
}

This program produces the following output:

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16
No matching element found.
No matching element found.

As the output confirms, each catch statement responds only to its own type of exception.

In general, catch expressions are checked in the order in which they occur in a program.

Only a matching statement is executed. All other catch blocks are ignored.

Multiple catch statements

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 331

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:331

9

Ex
ce

pt
io

n
H

an
dl

in
g

CRITICAL SKILL

9.5 Catching Subclass Exceptions
There is one important point about multiple catch statements that relates to subclasses. A catch

clause for a superclass will also match any of its subclasses. For example, since the superclass of

all exceptions is Throwable, to catch all possible exceptions, catch Throwable. If you want to

catch exceptions of both a superclass type and a subclass type, put the subclass first in the catch

sequence. If you don’t, then the superclass catch will also catch all derived classes. This rule is

self-enforcing because putting the superclass first causes unreachable code to be created, since

the subclass catch clause can never execute. In Java, unreachable code is an error.

For example, consider the following program.

// Subclasses must precede superclasses in catch statements.
class ExcDemo5 {
public static void main(String args[]) {
// Here, numer is longer than denom.
int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for(int i=0; i<numer.length; i++) {
try {
System.out.println(numer[i] + " / " +

denom[i] + " is " +
numer[i]/denom[i]);

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");

}
catch (Throwable exc) {
System.out.println("Some exception occurred.");

}
}

}
}

The output from the program is shown here.

4 / 2 is 2
Some exception occurred.
16 / 4 is 4
32 / 4 is 8
Some exception occurred.
128 / 8 is 16
No matching element found.
No matching element found.

Catch subclass

Catch superclass

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:332

332 Module 9: Exception Handling

In this case, catch(Throwable) catches all exceptions except for ArrayIndexOutOfBounds-

Exception.

The issue of catching subclass exceptions becomes more important when you create

exceptions of your own.

CRITICAL SKILL

9.6 Try Blocks Can Be Nested
One try block can be nested within another. An exception generated within the inner try block

that is not caught by a catch associated with that try is propagated to the outer try block. For

example, here the ArrayIndexOutOfBoundsException is not caught by the inner try block,

but by the outer try.

// Use a nested try block.
class NestTrys {
public static void main(String args[]) {
// Here, numer is longer than denom.
int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

try { // outer try
for(int i=0; i<numer.length; i++) {
try { // nested try
System.out.println(numer[i] + " / " +

denom[i] + " is " +
numer[i]/denom[i]);

}
catch (ArithmeticException exc) {
// catch the exception

Ask the Expert
Q: Why would I want to catch superclass exceptions?

A: There are, of course, a variety of reasons. Here are a couple. First, if you add a catch

clause that catches exceptions of type Exception, then you have effectively added a “catch

all” clause to your exception handler that deals with all program-related exceptions. Such a

“catch all” clause might be useful in a situation in which abnormal program termination

must be avoided no matter what occurs. Second, in some situations, an entire category of

exceptions can be handled by the same clause. Catching the superclass of these exceptions

allows you to handle all without duplicated code.

Nested try blocks

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Can't divide by Zero!");
}

}
}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");
System.out.println("Fatal error -- program terminated.");

}
}

}

The output from the program is shown here.

4 / 2 is 2
Can't divide by Zero!
16 / 4 is 4
32 / 4 is 8
Can't divide by Zero!
128 / 8 is 16
No matching element found.
Fatal error -- program terminated.

In this example, an exception that can be handled by the inner try—in this case, a

divide-by-zero error—allows the program to continue. However, an array boundary error is

caught by the outer try, which causes the program to terminate.

Although certainly not the only reason for nested try statements, the preceding program makes

an important point that can be generalized. Often nested try blocks are used to allow different

categories of errors to be handled in different ways. Some types of errors are catastrophic and

cannot be fixed. Some are minor and can be handled immediately. Many programmers use an outer

try block to catch the most severe errors, allowing inner try blocks to handle less serious ones.

Progress Check
1. Can one try block be used to catch two or more different types of exceptions?

2. Can a catch statement for a superclass exception also catch subclasses of that superclass?

3. In nested try blocks, what happens to an exception that is not caught by the inner block?

Java 2: A Beginner’s Guide 333

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:333

9

Ex
ce

pt
io

n
H

an
dl

in
g

1. Yes.

2. Yes.

3. An exception not caught by an inner try/catch block moves outward to the enclosing try block.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:334

CRITICAL SKILL

9.7 Throwing an Exception
The preceding examples have been catching exceptions generated automatically by the JVM.

However, it is possible to manually throw an exception by using the throw statement. Its

general form is shown here.

throw exceptOb;

Here, exceptOb must be an object of an exception class derived from Throwable.

Here is an example that illustrates the throw statement by manually throwing an

ArithmeticException.

// Manually throw an exception.
class ThrowDemo {
public static void main(String args[]) {
try {
System.out.println("Before throw.");
throw new ArithmeticException();

}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Exception caught.");

}
System.out.println("After try/catch block.");

}
}

The output from the program is shown here.

Before throw.
Exception caught.
After try/catch block.

Notice how the ArithmeticException was created using new in the throw statement.

Remember, throw throws an object. Thus, you must create an object for it to throw. That is,

you can’t just throw a type.

Rethrowing an Exception
An exception caught by one catch statement can be rethrown so that it can be caught by an

outer catch. The most likely reason for rethrowing this way is to allow multiple handlers

access to the exception. For example, perhaps one exception handler manages one aspect of an

exception, and a second handler copes with another aspect. Remember, when you rethrow an

334 Module 9: Exception Handling

Throw an exception.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 335

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:335

9

Ex
ce

pt
io

n
H

an
dl

in
g

exception, it will not be recaught by the same catch statement. It will propagate to the next

catch statement.

The following program illustrates rethrowing an exception.

// Rethrow an exception.
class Rethrow {
public static void genException() {
// here, numer is longer than denom
int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for(int i=0; i<numer.length; i++) {
try {
System.out.println(numer[i] + " / " +

denom[i] + " is " +
numer[i]/denom[i]);

}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");
throw exc; // rethrow the exception

}
}

}
}

class RethrowDemo {
public static void main(String args[]) {
try {
Rethrow.genException();

Ask the Expert
Q: Why would I want to manually throw an exception?

A: Most often, the exceptions that you will throw will be instances of exception classes that

you created. As you will see later in this module, creating your own exception classes

allows you to handle errors in your code as part of your program’s overall exception

handling strategy.

Rethrow the exception.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:336

}
catch(ArrayIndexOutOfBoundsException exc) {
// recatch exception

System.out.println("Fatal error -- " +
"program terminated.");

}
}

}

In this program, divide-by-zero errors are handled locally, by genException(), but an

array boundary error is rethrown. In this case, it is caught by main().

Progress Check
1. What does throw do?

2. Does throw throw types or objects?

3. Can an exception be rethrown after it is caught?

CRITICAL SKILL

9.8 A Closer Look at Throwable
Up to this point, we have been catching exceptions, but we haven’t been doing anything with

the exception object itself. As the preceding examples all show, a catch clause specifies an

exception type and a parameter. The parameter receives the exception object. Since all

exceptions are subclasses of Throwable, all exceptions support the methods defined by

Throwable. Several commonly used ones are shown in Table 9-1.

Of the methods defined by Throwable, the three of greatest interest are printStackTrace(),

getMessage(), and toString(). You can display the standard error message plus a record of the

method calls that lead up to the exception by calling printStackTrace(). To obtain Java’s

standard error message for an exception, call getMessage(). Alternatively, you can use

toString() to retrieve the standard message. The toString() method is also called when an

exception is used as an argument to println(). The following program demonstrates these

methods.

336 Module 9: Exception Handling

Catch rethrown exception.

1. throw generates an exception.

2. throw throws objects. These objects must be instances of valid exception classes, of course.

3. Yes.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 337

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:337

9

Ex
ce

pt
io

n
H

an
dl

in
g

// Using the Throwable methods.

class ExcTest {
static void genException() {
int nums[] = new int[4];

System.out.println("Before exception is generated.");

// generate an index out-of-bounds exception
nums[7] = 10;
System.out.println("this won't be displayed");

}
}

class UseThrowableMethods {
public static void main(String args[]) {

try {
ExcTest.genException();

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("Standard message is: ");
System.out.println(exc);
System.out.println("\nStack trace: ");
exc.printStackTrace(); //"Index out-of-bounds!");

}

Method Description

Throwable fillInStackTrace() Returns a Throwable object that contains a completed
stack trace. This object can be rethrown.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream stream) Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter stream) Sends the stack trace to the specified stream.

String toString() Returns a String object containing a description of the
exception. This method is called by println() when
outputting a Throwable object.

Table 9-1 Commonly Used Methods Defined by Throwable

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:338

338 Module 9: Exception Handling

System.out.println("After catch statement.");
}

}

The output from this program is shown here.

Before exception is generated.
Standard message is:
java.lang.ArrayIndexOutOfBoundsException

Stack trace:
java.lang.ArrayIndexOutOfBoundsException

at ExcTest.genException(UseThrowableMethods.java:10)
at UseThrowableMethods.main(UseThrowableMethods.java:19)

After catch statement.

CRITICAL SKILL

9.9 Using finally
Sometimes you will want to define a block of code that will execute when a try/catch block is

left. For example, an exception might cause an error that terminates the current method, causing

its premature return. However, that method may have opened a file or a network connection that

needs to be closed. Such types of circumstances are common in programming, and Java provides

a convenient way to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a finally

block at the end of a try/catch sequence. The general form of a try/catch that includes finally

is shown here.

try {

// block of code to monitor for errors

}

catch (ExcepType1 exOb) {

// handler for ExcepType1

}

catch (ExcepType2 exOb) {

// handler for ExcepType2

}

//...

finally {

// finally code

}

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 339

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:339

9

Ex
ce

pt
io

n
H

an
dl

in
g

The finally block will be executed whenever execution leaves a try/catch block, no matter

what conditions cause it. That is, whether the try block ends normally, or because of an exception,

the last code executed is that defined by finally. The finally block is also executed if any code

within the try block or any of its catch statements return from the method.

Here is an example of finally.

// Use finally.
class UseFinally {
public static void genException(int what) {
int t;
int nums[] = new int[2];

System.out.println("Receiving " + what);
try {
switch(what) {
case 0:
t = 10 / what; // generate div-by-zero error
break;

case 1:
nums[4] = 4; // generate array index error.
break;

case 2:
return; // return from try block

}
}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");
return; // return from catch

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");

}
finally {
System.out.println("Leaving try.");

}
}

}

class FinallyDemo {
public static void main(String args[]) {

for(int i=0; i < 3; i++) {
UseFinally.genException(i);

This is executed on way out
of try/catch blocks.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:340

System.out.println();
}

}
}

Here is the output produced by the program.

Receiving 0
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.
Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block executed.

Progress Check
1. Exception classes are subclasses of what class?

2. When is the code within a finally block executed?

3. How can you display a stack trace of the events leading up to an exception?

CRITICAL SKILL

9.10 Using throws
In some cases, if a method generates an exception that it does not handle, it must declare that

exception in a throws clause. Here is the general form of a method that includes a throws clause.

ret-type methName(param-list) throws except-list {

// body

}

Here, except-list is a comma-separated list of exceptions that the method might throw outside

of itself.

340 Module 9: Exception Handling

1. Throwable.

2. A finally block is the last thing executed when a try block is exited.

3. To print a stack trace, call printStackTrace(), which is defined by Throwable.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 341

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:341

9

Ex
ce

pt
io

n
H

an
dl

in
g

You might be wondering why you did not need to specify a throws clause for some of the

preceding examples, which threw exceptions outside of methods. The answer is that exceptions

that are subclasses of Error or RuntimeException don’t need to be specified in a throws list.

Java simply assumes that a method may throw one. All other types of exceptions do need to be

declared. Failure to do so causes a compile-time error.

Actually, you saw an example of a throws clause earlier in this book. As you will recall,

when performing keyboard input, you needed to add the clause

throws java.io.IOException

to main(). Now you can understand why. An input statement might generate an IOException,

and at that time, we weren’t able to handle that exception. Thus, such an exception would be

thrown out of main() and needed to be specified as such. Now that you know about exceptions,

you can easily handle IOException.

Let’s look at an example that handles IOException. It creates a method called prompt(),

which displays a prompting message and then reads a character from the keyboard. Since input is

being performed, an IOException might occur. However, the prompt() method does not handle

IOException itself. Instead, it uses a throws clause, which means that the calling method must

handle it. In this example, the calling method is main(), and it deals with the error.

// Use throws.
class ThrowsDemo {
public static char prompt(String str)
throws java.io.IOException {

System.out.print(str + ": ");
return (char) System.in.read();

}

public static void main(String args[]) {
char ch;

try {
ch = prompt("Enter a letter");

}
catch(java.io.IOException exc) {
System.out.println("I/O exception occurred.");
ch = 'X';

}

System.out.println("You pressed " + ch);
}

}

On a related point, notice that IOException is fully qualified by its package name java.io.

As you will learn in Module 10, Java’s I/O system is contained in the java.io package. Thus,

Notice the throws clause.

Since prompt() might throw an
exception, a call to it must be
enclosed within a try block.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:342

the IOException is also contained there. It would also have been possible to import java.io

and then refer to IOException directly.

CRITICAL SKILL

9.11 Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have

been used by the preceding examples. The most general of these exceptions are subclasses of

the standard type RuntimeException. Since java.lang is implicitly imported into all Java

programs, most exceptions derived from RuntimeException are automatically available.

Furthermore, they need not be included in any method’s throws list. In the language of Java,

these are called unchecked exceptions because the compiler does not check to see if a method

handles or throws these exceptions. The unchecked exceptions defined in java.lang are listed

in Table 9-2. Table 9-3 lists those exceptions defined by java.lang that must be included in a

method’s throws list if that method can generate one of these exceptions and does not handle

it, itself. These are called checked exceptions. Java defines several other types of exceptions

that relate to its various class libraries, such as IOException mentioned earlier.

342 Module 9: Exception Handling

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

Table 9-2 The Unchecked Exceptions Defined in java.lang

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9

Java 2: A Beginner’s Guide 343

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:343

9

Ex
ce

pt
io

n
H

an
dl

in
g

Exception Meaning

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement
the Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or
interface.

InterruptedException One thread has been interrupted by another
thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Table 9-3 The Checked Exceptions Defined in java.lang

Ask the Expert
Q: I have heard that Java supports something called chained exceptions. What are they?

A: Chained exceptions are a very recent addition to Java, having been added in 2002 by

Java 2, version 1.4. The chained exception feature allows you to specify one exception

as the underlying cause of another. For example, imagine a situation in which a method

throws an ArithmeticException because of an attempt to divide by zero. However, the

actual cause of the problem was that an I/O error occurred, which caused the divisor to

be set improperly. Although the method must certainly throw an ArithmeticException,

since that is the error that occurred, you might also want to let the calling code know

that the underlying cause was an I/O error. Chained exceptions let you handle this, and

any other situation, in which layers of exceptions exist.

To allow chained exceptions, Java 2, version 1.4 added two constructors and two

methods to Throwable. The constructors are shown here:

Throwable(Throwable causeExc)

Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is,

causeExc is the underlying reason that an exception occurred. The second form allows

you to specify a description at the same time that you specify a cause exception. These

(continued)

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:344

Progress Check
1. What is throws used for?

2. What is the difference between checked and unchecked exceptions?

3. If a method generates an exception that it handles, must it include a throws clause for the

exception?

CRITICAL SKILL

9.12 Creating Exception Subclasses
Although Java’s built-in exceptions handle most common errors, Java’s exception handling

mechanism is not limited to these errors. In fact, part of the power of Java’s approach to

exceptions is its ability to handle exceptions that you create which correspond to errors in your

own code. Creating an exception is easy. Just define a subclass of Exception (which is, of

344 Module 9: Exception Handling

two constructors have also been added to the Error, Exception, and

RuntimeException classes.

The chained exception methods added to Throwable are getCause() and initCause().

These methods are shown here:

Throwable getCause()

Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception. If there

is no underlying exception, null is returned. The initCause() method associates causeExc

with the invoking exception and returns a reference to the exception. Thus, you can associate

a cause with an exception after the exception has been created. In general, initCause()

is used to set a cause for legacy exception classes that don’t support the two additional

constructors described earlier. At the time of this writing, most of Java’s built-in exceptions,

such as ArithmeticException, do not define additional cause-related constructors. Thus,

you will use initCause() if you need to add an exception chain to these exceptions.

Chained exceptions are not something that every program will need. However, in cases

in which knowledge of an underlying cause is useful, they offer an elegant solution.

1. When a method generates an exception that it does not handle, it must state this fact using a throws clause.

2. No throws clause is needed for unchecked exceptions.

3. No. A throws clause is needed only when the method does not handle the exception.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 345

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:345

9

Ex
ce

pt
io

n
H

an
dl

in
g

course, a subclass of Throwable). Your subclasses don’t need to actually implement

anything—it is their existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit

those methods provided by Throwable. Thus, all exceptions, including those that you create,

have the methods defined by Throwable available to them. Of course, you can override one or

more of these methods in exception subclasses that you create.

Here is an example that creates an exception called NonIntResultException, which is

generated when the result of dividing two integer values produces a result with a fractional

component. NonIntResultException has two fields which hold the integer values, a

constructor and an override of the toString() method, allowing the description of the

exception to be displayed using println().

// Use a custom exception.

// Create an exception.
class NonIntResultException extends Exception {
int n;
int d;

NonIntResultException(int i, int j) {
n = i;
d = j;

}

public String toString() {
return "Result of " + n + " / " + d +

" is non-integer.";
}

}

class CustomExceptDemo {
public static void main(String args[]) {

// Here, numer contains some odd values.
int numer[] = { 4, 8, 15, 32, 64, 127, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };
for(int i=0; i<numer.length; i++) {
try {
if((numer[i]%2) != 0)
throw new
NonIntResultException(numer[i], denom[i]);

System.out.println(numer[i] + " / " +
denom[i] + " is " +
numer[i]/denom[i]);

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:346

}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");

}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");

}
catch (NonIntResultException exc) {
System.out.println(exc);

}
}

}
}

The output from the program is shown here.

4 / 2 is 2
Can't divide by Zero!
Result of 15 / 4 is non-integer.
32 / 4 is 8
Can't divide by Zero!
Result of 127 / 8 is non-integer.
No matching element found.
No matching element found.

346 Module 9: Exception Handling

Ask the Expert
Q: When should I use exception handling in a program? When should I create my

own custom exception classes?

A: Since the Java API makes extensive use of exceptions to report errors, nearly all

real-world programs will make use of exception handling. This is the part of exception

handling that most new Java programmers find easy. It is harder to decide when and

how to use your own custom-made exceptions. In general, errors can be reported in two

ways: return values and exceptions. When is one approach better than the other? Simply

put, in Java, exception handling should be the norm. Certainly returning an error code is

a valid alternative in some cases, but exceptions provide a more powerful, structured

way to handle errors. They are the way professional Java programmers handle errors in

their code.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 9-1 Adding Exceptions to the Queue Class
In this project, you will create two exception classes that can be used by the

queue classes developed by Project 8-1. They will indicate the queue-full and

queue-empty error conditions. These exceptions can be thrown by the put() and get() methods,

respectively. For the sake of simplicity, this project will add these exceptions to the FixedQueue

class, but you can easily incorporate them into the other queue classes from Project 8-1.

Step by Step
1. Create a file called QExcDemo.java.

2. Into QExcDemo.java, define the following exceptions.

/*
Project 9-1

Add exception handling to the queue classes.
*/

// An exception for queue-full errors.
class QueueFullException extends Exception {
int size;

QueueFullException(int s) { size = s; }

public String toString() {
return "\nQueue is full. Maximum size is " +

size;
}

}

// An exception for queue-empty errors.
class QueueEmptyException extends Exception {

public String toString() {
return "\nQueue is empty.";

}
}

A QueueFullException is generated when an attempt is made to store an item in an already

full queue. A QueueEmptyException is generated when an attempt is made to remove an

element from an empty queue.

Java 2: A Beginner’s Guide 347

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:347

9

Ex
ce

pt
io

n
H

an
dl

in
g

Project
9-1

QExcDemo.java

(continued)

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:348

348 Module 9: Exception Handling

3. Modify the FixedQueue class so that it throws exceptions when an error occurs, as shown

here. Add it to QExcDemo.java.

// A fixed-size queue class for characters that uses exceptions.
class FixedQueue implements ICharQ {
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.
public FixedQueue(int size) {
q = new char[size+1]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put(char ch)
throws QueueFullException {

if(putloc==q.length-1)
throw new QueueFullException(q.length-1);

putloc++;
q[putloc] = ch;

}

// Get a character from the queue.
public char get()
throws QueueEmptyException {

if(getloc == putloc)
throw new QueueEmptyException();

getloc++;
return q[getloc];

}
}

Notice that two steps are required to add exceptions to FixedQueue. First, get() and put()

must have a throws clause added to their declarations. Second, when an error occurs, these

methods throw an exception. Using exceptions allows the calling code to handle the error in

a rational fashion. You might recall that the previous versions simply reported the error.

Throwing an exception is a much better approach.

4. To try the updated FixedQueue class, add the QExcDemo class shown here to

QExcDemo.java.

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

// Demonstrate the queue exceptions.
class QExcDemo {
public static void main(String args[]) {
FixedQueue q = new FixedQueue(10);
char ch;
int i;

try {
// overrun the queue
for(i=0; i < 11; i++) {
System.out.print("Attempting to store : " +

(char) ('A' + i));
q.put((char) ('A' + i));
System.out.println(" -- OK");

}
System.out.println();

}
catch (QueueFullException exc) {
System.out.println(exc);

}
System.out.println();

try {
// over-empty the queue
for(i=0; i < 11; i++) {
System.out.print("Getting next char: ");
ch = q.get();
System.out.println(ch);

}
}
catch (QueueEmptyException exc) {
System.out.println(exc);

}
}

}

5. Since FixedQueue implements the ICharQ interface, which defines the two queue

methods get() and put(), ICharQ will need to be changed to reflect the throws clause.

Here is the updated ICharQ interface. Remember, this must be in a file by itself called

ICharQ.java.

// A character queue interface that throws exceptions.
public interface ICharQ {
// Put a character into the queue.
void put(char ch) throws QueueFullException;

Java 2: A Beginner’s Guide 349

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:349

9

Ex
ce

pt
io

n
H

an
dl

in
g

Project
9-1

(continued)

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:350

350 Module 9: Exception Handling

// Get a character from the queue.
char get() throws QueueEmptyException;

}

6. Now, compile the updated IQChar.java file. Then, compile QExcDemo.java. Finally, run

QExcDemo. You will see the following output.

Attempting to store : A -- OK
Attempting to store : B -- OK
Attempting to store : C -- OK
Attempting to store : D -- OK
Attempting to store : E -- OK
Attempting to store : F -- OK
Attempting to store : G -- OK
Attempting to store : H -- OK
Attempting to store : I -- OK
Attempting to store : J -- OK
Attempting to store : K
Queue is full. Maximum size is 10

Getting next char: A
Getting next char: B
Getting next char: C
Getting next char: D
Getting next char: E
Getting next char: F
Getting next char: G
Getting next char: H
Getting next char: I
Getting next char: J
Getting next char:
Queue is empty.

Module 9 Mastery Check
1. What class is at the top of the exception hierarchy?

2. Briefly explain how to use try and catch.

3. What is wrong with this fragment?

// ...
vals[18] = 10;
catch (ArrayIndexOutOfBoundsException exc) {
// handle error

}

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4. What happens if an exception is not caught?

5. What is wrong with this fragment?

class A extends Exception { ...

class B extends A { ...

// ...

try {
// ...

}
catch (A exc) { ... }
catch (B exc) { ... }

6. Can an exception caught by an inner catch rethrow that exception to an outer catch?

7. The finally block is the last bit of code executed before your program ends. True or False?

Explain your answer.

8. What type of exceptions must be explicitly declared in a throws clause of a method?

9. What is wrong with this fragment?

class MyClass { // ... }
// ...
throw new MyClass();

10. In Exercise 3 of the Mastery Check in Module 6, you created a Stack class. Add custom

exceptions to your class that report stack full and stack empty conditions.

11. What are the three ways that an exception can be generated?

12. What are the two direct subclasses of Throwable?

Java 2: A Beginner’s Guide 351

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 9
Blind Folio 9:351

9

Ex
ce

pt
io

n
H

an
dl

in
g

P:\010Comp\Begin8\588-2\ch09.vp
Tuesday, November 05, 2002 9:47:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:353

Module10
Using I/O

CRITICAL SKILLS
10.1 Understand the stream

10.2 Know the difference between byte and character streams

10.3 Know Java’s byte stream classes

10.4 Know Java’s character stream classes

10.5 Know the predefined streams

10.6 Use byte streams

10.7 Use byte streams for file I/O

10.8 Read and write binary data

10.9 Use random access files

10.10 Use character streams

10.11 Use character streams for file I/O

10.12 Apply Java’s type wrappers to convert numeric strings

353

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:354

354 Module 10: Using I/O

Since the beginning of this book, you have been using parts of the Java I/O system, such

as println(). However, you have been doing so without much formal explanation. Because

the Java I/O system is based upon a hierarchy of classes, it was not possible to present its

theory and details without first discussing classes, inheritance, and exceptions. Now it is time

to examine Java’s approach to I/O in detail.

Be forewarned, Java’s I/O system is quite large, containing many classes, interfaces, and

methods. Part of the reason for its size is that Java defines two complete I/O systems: one for

byte I/O and the other for character I/O. It won’t be possible to discuss every aspect of Java’s

I/O here. (An entire book could easily be dedicated to Java’s I/O system!) This module will,

however, introduce you to the most important and commonly used features. Fortunately,

Java’s I/O system is cohesive and consistent; once you understand its fundamentals, the rest

of the I/O system is easy to master.

This module examines Java’s approach to both console I/O and file I/O. Before we begin,

however, it is important to emphasize a point made earlier in this book: most real applications

of Java will not be text-based, console programs. Rather, they will be graphically oriented

applets that rely upon a windowed interface for interaction with the user. Thus, the portion of

Java’s I/O system that relates to console input and output is not widely used in commercial

code. Although text-based programs are excellent as teaching examples, they do not constitute

an important use for Java in the real world. In Module 12 you will see how applets are created

and learn the basics of Java’s support of a graphical user interface.

CRITICAL SKILL

10.1 Java’s I/O Is Built upon Streams
Java programs perform I/O through streams. A stream is an abstraction that either produces or

consumes information. A stream is linked to a physical device by the Java I/O system. All

streams behave in the same manner, even if the actual physical devices they are linked to

differ. Thus, the same I/O classes and methods can be applied to any type of device. For

example, the same methods that you use to write to the console can also be used to write to a

disk file. Java implements streams within class hierarchies defined in the java.io package.

CRITICAL SKILL

10.2 Byte Streams and Character Streams
Modern versions of Java define two types of streams: byte and character. (The original version

of Java defined only the byte stream, but character streams were quickly added.) Byte streams

provide a convenient means for handling input and output of bytes. They are used, for example,

when reading or writing binary data. They are especially helpful when working with files.

Character streams are designed for handling the input and output of characters. They use

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 355

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:355

10

U
si

ng
I/

O

Unicode and, therefore, can be internationalized. Also, in some cases, character streams are

more efficient than byte streams.

The fact that Java defines two different types of streams makes the I/O system quite large

because two separate sets of class hierarchies (one for bytes, one for characters) is needed. The

sheer number of I/O classes can make the I/O system appear more intimidating that it actually

is. Just remember, for the most part, the functionality of byte streams is paralleled by that of

the character streams.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based

streams simply provide a convenient and efficient means for handling characters.

CRITICAL SKILL

10.3 The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top of these are two abstract

classes: InputStream and OutputStream. InputStream defines the characteristics common

to byte input streams and OutputStream describes the behavior of byte output streams.

From InputStream and OutputStream are created several concrete subclasses that offer

varying functionality and handle the details of reading and writing to various devices, such as

disk files. The byte stream classes are shown in Table 10-1. Don’t be overwhelmed by the

number of different classes. Once you can use one byte stream, the others are easy to master.

CRITICAL SKILL

10.4 The Character Stream Classes
Character streams are defined by using two class hierarchies topped by these two abstract

classes: Reader and Writer. Reader is used for input, and Writer is used for output.

Concrete classes derived from Reader and Writer operate on Unicode character streams.

From Reader and Writer are derived several concrete subclasses that handle various I/O

situations. In general, the character-based classes parallel the byte-based classes. The character

stream classes are shown in Table 10-2.

CRITICAL SKILL

10.5 The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This package

defines a class called System, which encapsulates several aspects of the run-time environment.

Among other things, it contains three predefined stream variables, called in, out, and err.

These fields are declared as public and static within System. This means that they can be used

by any other part of your program and without reference to a specific System object.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:356

System.out refers to the standard output stream. By default, this is the console. System.in

refers to standard input, which is by default the keyboard. System.err refers to the standard

error stream, which is also the console by default. However, these streams can be redirected to

any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are objects of

type PrintStream. These are byte streams, even though they are typically used to read and

write characters from and to the console. The reason they are byte and not character streams

is that the predefined streams were part of the original specification for Java, which did

not include the character streams. As you will see, it is possible to wrap these within

character-based streams if desired.

356 Module 10: Using I/O

Byte Stream Class Meaning

BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java
standard data types

DataOutputStream An output stream that contains methods for writing the Java
standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that allows bytes to be returned to the stream

RandomAccessFile Supports random access file I/O

SequenceInputStream Input stream that is a combination of two or more input streams
that will be read sequentially, one after the other

Table 10-1 The Byte Stream Classes

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. What is a stream?

2. What types of streams does Java define?

3. What are the built-in streams?

Java 2: A Beginner’s Guide 357

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:357

10

U
si

ng
I/

O

Character Stream Class Meaning
BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

Table 10-2 The Character Stream I/O Classes

1. A stream is an abstraction that either produces or consumes information.

2. Java defines both byte and character streams.

3. System.in, System.out, and System.err.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:358

CRITICAL SKILL

10.6 Using the Byte Streams
We will begin our examination of Java’s I/O with the byte streams. As explained, at the top

of the byte stream hierarchy are the InputStream and OutputStream classes. Table 10-3

shows the methods in InputStream, and Table 10-4 shows the methods in OutputStream.

In general, the methods in InputStream and OutputStream can throw an IOException on

error. The methods defined by these two abstract classes are available to all of their subclasses.

Thus, they form a minimal set of I/O functions that all byte streams will have.

Reading Console Input
Originally, the only way to perform console input was to use a byte stream, and much Java

code still uses the byte streams exclusively. Today, you can use byte or character streams. For

commercial code, the preferred method of reading console input is to use a character-oriented

358 Module 10: Using I/O

Method Description

int available() Returns the number of bytes of input currently available for reading.

void close() Closes the input source. Further read attempts will generate
an IOException.

void mark(int numBytes) Places a mark at the current point in the input stream that will remain
valid until numBytes bytes are read.

boolean markSupported() Returns true if mark()/reset() are supported by the invoking stream.

int read() Returns an integer representation of the next available byte of input.
–1 is returned when the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer and returns the
actual number of bytes that were successfully read. –1 is returned
when the end of the file is encountered.

int read(byte buffer[], int offset,
int numBytes)

Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read.
–1 is returned when the end of the file is encountered.

void reset() Resets the input pointer to the previously set mark.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes of input, returning the number
of bytes actually ignored.

Table 10-3 The Methods Defined by InputStream

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 359

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:359

10

U
si

ng
I/

O

stream. Doing so makes your program easier to internationalize and easier to maintain. It is

also more convenient to operate directly on characters rather than converting back and forth

between characters and bytes. However, for sample programs, simple utility programs for

your own use, and applications that deal with raw keyboard input, using the byte streams is

acceptable. For this reason, console I/O using byte streams is examined here.

Because System.in is an instance of InputStream, you automatically have access to

the methods defined by InputStream. Unfortunately, InputStream defines only one input

method, read(), which reads bytes. There are three versions of read(), which are shown here:

int read() throws IOException

int read(byte data[]) throws IOException

int read(byte data[], int start, int max) throws IOException

In Module 3 you saw how to use the first version of read() to read a single character from

the keyboard (from System.in). It returns –1 when the end of the stream is encountered. The

second version reads bytes from the input stream and puts them into data until either the array

is full, the end of stream is reached, or an error occurs. It returns the number of bytes read, or

–1 when the end of the stream is encountered. The third version reads input into data beginning

at the location specified by start. Up to max bytes are stored. It returns the number of bytes

read, or –1 when the end of the stream is reached. All throw an IOException when an error

occurs. When reading from System.in, pressing ENTER generates an end-of-stream condition.

Method Description

void close() Closes the output stream. Further write attempts will generate
an IOException.

void flush() Finalizes the output state so that any buffers are cleared. That is, it
flushes the output buffers.

void write(int b) Writes a single byte to an output stream. Note that the parameter
is an int, which allows you to call write with expressions without
having to cast them back to byte.

void write(byte buffer[]) Writes a complete array of bytes to an output stream.

void write(byte buffer[], int offset,
int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

Table 10-4 The Methods Defined by OutputStream

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:360

Here is a program that demonstrates reading an array of bytes from System.in.

// Read an array of bytes from the keyboard.

import java.io.*;

class ReadBytes {
public static void main(String args[])
throws IOException {
byte data[] = new byte[10];

System.out.println("Enter some characters.");
System.in.read(data);
System.out.print("You entered: ");
for(int i=0; i < data.length; i++)

System.out.print((char) data[i]);
}

}

Here is a sample run:

Enter some characters.
Read Bytes
You entered: Read Bytes

Writing Console Output
As is the case with console input, Java originally provided only byte streams for console

output. Java 1.1 added character streams. For the most portable code, character streams are

recommended. Because System.out is a byte stream, however, byte-based console output is

still widely used. In fact, all of the programs in this book up to this point have used it! Thus, it

is examined here.

Console output is most easily accomplished with print() and println(), with which you

are already familiar. These methods are defined by the class PrintStream (which is the type

of the object referenced by System.out). Even though System.out is a byte stream, it is still

acceptable to use this stream for simple console output.

Since PrintStream is an output stream derived from OutputStream, it also implements

the low-level method write(). Thus, it is possible to write to the console by using write().

The simplest form of write() defined by PrintStream is shown here:

void write(int byteval) throws IOException

360 Module 10: Using I/O

Read an array of bytes
from the keyboard.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This method writes the byte specified by byteval to the file. Although byteval is declared

as an integer, only the low-order 8 bits are written. Here is a short example that uses write() to

output the character “X” followed by a new line:

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args[]) {
int b;

b = 'X';
System.out.write(b);
System.out.write('\n');

}
}

You will not often use write() to perform console output (although it might be useful in

some situations), since print() and println() are substantially easier to use.

Progress Check
1. What method is used to read a byte from System.in?

2. Other than print() and println(), what method can be used to write to System.out?

CRITICAL SKILL

10.7 Reading and Writing Files
Using Byte Streams
Java provides a number of classes and methods that allow you to read and write files. Of

course, the most common types of files are disk files. In Java, all files are byte-oriented, and

Java provides methods to read and write bytes from and to a file. Thus, reading and writing

files using byte streams is very common. However, Java allows you to wrap a byte-oriented

file stream within a character-based object, which is shown later in this module.

To create a byte stream linked to a file, use FileInputStream or FileOutputStream.

To open a file, simply create an object of one of these classes, specifying the name of the file

as an argument to the constructor. Once the file is open, you can read from or write to it.

Java 2: A Beginner’s Guide 361

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:361

10

U
si

ng
I/

O

Write a byte to the screen.

1. To read a byte, call read().

2. You can write to System.out by calling write().

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:362

362 Module 10: Using I/O

Inputting from a File
A file is opened for input by creating a FileInputStream object. Here is its most commonly

used constructor.

FileInputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file you want to open. If the file does not exist, then

FileNotFoundException is thrown.

To read from a file, you can use read(). The version that we will use is shown here:

int read() throws IOException

Each time it is called, read() reads a single byte from the file and returns it as an integer

value. It returns –1 when the end of the file is encountered. It throws an IOException when an

error occurs. Thus, this version of read() is the same as the one used to read from the console.

When you are done with a file, you should close it by calling close(). Its general form is

shown here.

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used by

another file.

The following program uses read() to input and display the contents of a text file, the

name of which is specified as a command-line argument. Note the try/catch blocks that handle

the two errors that might occur when this program is used—the specified file not being found

or the user forgetting to include the name of the file. You can use this same approach any time

you use command-line arguments.

/* Display a text file.

To use this program, specify the name
of the file that you want to see.
For example, to see a file called TEST.TXT,
use the following command line.

java ShowFile TEST.TXT
*/

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 363

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:363

10

U
si

ng
I/

O

import java.io.*;

class ShowFile {
public static void main(String args[])
throws IOException

{
int i;
FileInputStream fin;

try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException exc) {
System.out.println("File Not Found");
return;

} catch(ArrayIndexOutOfBoundsException exc) {
System.out.println("Usage: ShowFile File");
return;

}

// read bytes until EOF is encountered
do {
i = fin.read();
if(i != -1) System.out.print((char) i);

} while(i != -1);

fin.close();
}

}

Read from the file.

When i equals −1, the end of
the file has been reached.

Ask the Expert
Q: I noticed that read() returns –1 when the end of the file has been reached, but that

it does not have a special return value for a file error. Why not?

A: In Java, errors are handled by exceptions. Thus, if read(), or any other I/O method,

returns a value, it means that no error has occurred. This is a much cleaner way than

handling I/O errors by using special error codes.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:364

364 Module 10: Using I/O

Writing to a File
To open a file for output, create a FileOutputStream object. Here are its two most commonly

used constructors.

FileOutputStream(String fileName) throws FileNotFoundException

FileOutputStream(String fileName, boolean append)

throws FileNotFoundException

If the file cannot be created, then FileNotFoundException is thrown. In the first form,

when an output file is opened, any preexisting file by the same name is destroyed. In the

second form, if append is true, then output is appended to the end of the file. Otherwise, the

file is overwritten.

To write to a file, you will use the write() method. Its simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as an

integer, only the low-order 8 bits are written to the file. If an error occurs during writing, an

IOException is thrown.

As you may know, when file output is performed, that output often is not immediately

written to the actual physical device. Instead, output is buffered until a sizable chunk of data

can be written all at once. This improves the efficiency of the system. For example, disk files

are organized by sectors, which might be anywhere from 128 bytes long on up. Output is

usually buffered until an entire sector can be written all at once. However, if you want to cause

data to be written to the physical device whether or not the buffer is full, you can call flush(),

shown here.

void flush() throws IOException

An exception is thrown on failure.

Once you are done with an output file, you must close it using close(), shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used by

another file. It also ensures that any output remaining in a disk buffer is actually written to

the disk.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 365

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:365

10

U
si

ng
I/

O

The following example copies a text file. The names of the source and destination files are

specified on the command line.

/* Copy a text file.

To use this program, specify the name
of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
public static void main(String args[])
throws IOException

{
int i;
FileInputStream fin;
FileOutputStream fout;

try {
// open input file
try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException exc) {
System.out.println("Input File Not Found");
return;

}

// open output file
try {
fout = new FileOutputStream(args[1]);

} catch(FileNotFoundException exc) {
System.out.println("Error Opening Output File");
return;

}
} catch(ArrayIndexOutOfBoundsException exc) {
System.out.println("Usage: CopyFile From To");
return;

}

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:366

// Copy File
try {
do {
i = fin.read();
if(i != -1) fout.write(i);

} while(i != -1);
} catch(IOException exc) {
System.out.println("File Error");

}

fin.close();
fout.close();

}
}

Progress Check
1. What does read() return when the end of the file is reached?

2. What does flush() do?

CRITICAL SKILL

10.8 Reading and Writing Binary Data
So far, we have just been reading and writing bytes containing ASCII characters, but it is

possible—indeed, common—to read and write other types of data. For example, you might

want to create a file that contains ints, doubles, or shorts. To read and write binary values of

the Java simple types, you will use DataInputStream and DataOutputStream.

DataOutputStream implements the DataOutput interface. This interface defines

methods that write all of Java’s simple types to a file. It is important to understand that this

data is written using its internal, binary format, not its human-readable text form. The most

commonly used output methods for Java’s simple types are shown in Table 10-5. Each throws

an IOException on failure.

Here is the constructor for DataOutputStream. Notice that it is built upon an instance

of OutputStream.

DataOutputStream(OutputStream outputStream)

366 Module 10: Using I/O

Read bytes from one file
and write them to another.

1. A −1 is returned by read() when the end of the file is encountered.

2. A call to flush() causes any buffered output to be physically written to the storage device.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here, outputStream is the stream to which data is written. To write output to a file, you can use

the object created by FileOutputStream for this parameter.

DataInputStream implements the DataInput interface, which provides methods for reading

all of Java’s simple types. These methods are shown in Table 10-6, and each can throw an

IOException. DataInputStream uses an InputStream instance as its foundation, overlaying it

with methods that read the various Java data types. Remember that DataInputStream reads data

in its binary format, not its human-readable form. The constructor for DataInputStream is

shown here.

DataInputStream(InputStream inputStream)

Java 2: A Beginner’s Guide 367

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:367

10

U
si

ng
I/

O

Output Method Purpose

void writeBoolean(boolean val) Writes the boolean specified by val.

void writeByte(int val) Writes the low-order byte specified by val.

void writeChar(int val) Writes the value specified by val as a character.

void writeDouble(double val) Writes the double specified by val.

void writeFloat(float val) Writes the float specified by val.

void writeInt(int val) Writes the int specified by val.

void writeLong(long val) Writes the long specified by val.

void writeShort(int val) Writes the value specified by val as a short.

Table 10-5 Commonly Used Output Methods Defined by DataOutputStream

Input Method Purpose

boolean readBoolean() Reads a boolean

byte readByte() Reads a byte

char readChar() Reads a char

double readDouble() Reads a double

float readFloat() Reads a float

int readInt() Reads an int

long readLong() Reads a long

short readShort() Reads a short

Table 10-6 Commonly Used Input Methods Defined by DataInputStream

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:368

368 Module 10: Using I/O

Here, inputStream is the stream that is linked to the instance of DataInputStream being

created. To read input from a file, you can use the object created by FileInputStream for

this parameter.

Here is a program that demonstrates DataOutputStream and DataInputStream. It writes

and then reads back various types of data to and from a file.

// Write and then read back binary data.
import java.io.*;

class RWData {
public static void main(String args[])
throws IOException {

DataOutputStream dataOut;
DataInputStream dataIn;

int i = 10;
double d = 1023.56;
boolean b = true;

try {
dataOut = new

DataOutputStream(new FileOutputStream("testdata"));
}
catch(IOException exc) {
System.out.println("Cannot open file.");
return;

}

try {
System.out.println("Writing " + i);
dataOut.writeInt(i);

System.out.println("Writing " + d);
dataOut.writeDouble(d);

System.out.println("Writing " + b);
dataOut.writeBoolean(b);

System.out.println("Writing " + 12.2 * 7.4);
dataOut.writeDouble(12.2 * 7.4);

}
catch(IOException exc) {
System.out.println("Write error.");

}

Write binary data.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 369

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:369

10

U
si

ng
I/

O

dataOut.close();

System.out.println();

// Now, read them back.
try {
dataIn = new

DataInputStream(new FileInputStream("testdata"));
}
catch(IOException exc) {
System.out.println("Cannot open file.");
return;

}

try {
i = dataIn.readInt();
System.out.println("Reading " + i);

d = dataIn.readDouble();
System.out.println("Reading " + d);

b = dataIn.readBoolean();
System.out.println("Reading " + b);

d = dataIn.readDouble();
System.out.println("Reading " + d);

}
catch(IOException exc) {
System.out.println("Read error.");

}

dataIn.close();
}

}

The output from the program is shown here.

Writing 10
Writing 1023.56
Writing true
Writing 90.28

Reading 10
Reading 1023.56
Reading true
Reading 90.28

Read binary data.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:370

Progress Check
1. To write binary data, what type of stream should you use?

2. What method do you call to write a double?

3. What method do you call to read a short?

Project 10-1 A File Comparison Utility
This project develops a simple, yet useful file comparison utility. It works

by opening both files to be compared and then reading and comparing

each corresponding set of bytes. If a mismatch is found, the files differ. If the end of each file

is reached at the same time and if no mismatches have been found, then the files are the same.

Step by Step
1. Create a file called CompFiles.java.

2. Into CompFiles.java, add the following program.

/*
Project 10-1

Compare two files.

To use this program, specify the names
of the files to be compared
on the command line.

java CompFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CompFiles {
public static void main(String args[])
throws IOException

{

370 Module 10: Using I/O

1. To write binary data, use DataOutputStream.

2. To write a double, call writeDouble().

3. To read a short, call readShort().

CompFiles.java

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int i=0, j=0;
FileInputStream f1;
FileInputStream f2;

try {
// open first file
try {
f1 = new FileInputStream(args[0]);

} catch(FileNotFoundException exc) {
System.out.println(args[0] + " File Not Found");
return;

}

// open second file
try {
f2 = new FileInputStream(args[1]);

} catch(FileNotFoundException exc) {
System.out.println(args[1] + " File Not Found");
return;

}
} catch(ArrayIndexOutOfBoundsException exc) {
System.out.println("Usage: CompFile f1 f2");
return;

}

// Compare files
try {
do {
i = f1.read();
j = f2.read();
if(i != j) break;

} while(i != -1 && j != -1);
} catch(IOException exc) {
System.out.println("File Error");

}
if(i != j)
System.out.println("Files differ.");

else
System.out.println("Files are the same.");

f1.close();
f2.close();

}
}

Java 2: A Beginner’s Guide 371

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:371

10

U
si

ng
I/

O

Project
10-1

(continued)

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:372

3. To try CompFiles, first copy CompFiles.java to a file called temp. Then, try this

command line

java CompFiles CompFiles.java temp

The program will report that the files are the same. Next, compare CompFiles.java to

CopyFile.java (shown earlier) using this command line:

java CompFiles CompFiles.java CopyFile.java

These files differ and CompFiles will report this fact.

4. On your own, try enhancing CompFiles with various options. For example, add an option

that ignores the case of letters. Another idea is to have CompFiles display the position

within the file where the files differ.

CRITICAL SKILL

10.9 Random Access Files
Up to this point, we have been using sequential files, which are files that are accessed in a

strictly linear fashion, one byte after another. However, Java also allows you to access the

contents of a file in random order. To do this you will use RandomAccessFile, which

encapsulates a random-access file. RandomAccessFile is not derived from InputStream or

OutputStream. Instead, it implements the interfaces DataInput and DataOutput, which

define the basic I/O methods. It also supports positioning requests—that is, you can position

the file pointer within the file. The constructor that we will be using is shown here.

RandomAccessFile(String fileName, String access)

throws FileNotFoundException

Here, the name of the file is passed in fileName and access determines what type of file access

is permitted. If it is “r”, the file can be read but not written. If it is “rw”, the file is opened in

read-write mode.

The method seek(), shown here, is used to set the current position of the file pointer

within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of the

file. After a call to seek(), the next read or write operation will occur at the new file position.

RandomAccessFile implements the read() and write() methods. It also implements the

DataInput and DataOuput interfaces, which means that methods to read and write the simple

types, such as readInt() and writeDouble(), are available.

372 Module 10: Using I/O

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 373

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:373

10

U
si

ng
I/

O

Here is an example that demonstrates random access I/O. It writes six doubles to a file and

then reads them back in nonsequential order.

// Demonstrate random access files.
import java.io.*;

class RandomAccessDemo {
public static void main(String args[])
throws IOException {

double data[] = { 19.4, 10.1, 123.54, 33.0, 87.9, 74.25 };
double d;
RandomAccessFile raf;

try {
raf = new RandomAccessFile("random.dat", "rw");

}
catch(FileNotFoundException exc) {
System.out.println("Cannot open file.");
return ;

}

// Write values to the file.
for(int i=0; i < data.length; i++) {
try {
raf.writeDouble(data[i]);

}
catch(IOException exc) {
System.out.println("Error writing to file.");
return ;

}
}

try {
// Now, read back specific values
raf.seek(0); // seek to first double
d = raf.readDouble();
System.out.println("First value is " + d);

raf.seek(8); // seek to second double
d = raf.readDouble();
System.out.println("Second value is " + d);

raf.seek(8 * 3); // seek to fourth double
d = raf.readDouble();
System.out.println("Fourth value is " + d);

Open random access file.

Use seek() to set file pointer.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:374

System.out.println();

// Now, read every other value.
System.out.println("Here is every other value: ");
for(int i=0; i < data.length; i+=2) {
raf.seek(8 * i); // seek to ith double
d = raf.readDouble();
System.out.print(d + " ");

}
}
catch(IOException exc) {
System.out.println("Error seeking or reading.");

}

raf.close();
}

}

The output from the program is shown here.

First value is 19.4
Second value is 10.1
Fourth value is 33.0

Here is every other value:
19.4 123.54 87.9

Notice how each value is located. Since each double value is 8 bytes long, each value starts on an

8-byte boundary. Thus, the first value is located at zero, the second begins at byte 8, the third

starts at byte 16, and so on. Thus, to read the fourth value, the program seeks to location 24.

Progress Check
1. What class do you use to create a random access file?

2. How do you position the file pointer?

374 Module 10: Using I/O

1. To create a random access file, use RandomAccessFile.

2. To position the file pointer, use seek().

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 375

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:375

10

U
si

ng
I/

O

CRITICAL SKILL

10.10 Using Java’s Character-Based Streams
As the preceding sections have shown, Java’s byte streams are both powerful and flexible.

However, they are not the ideal way to handle character-based I/O. For this purpose, Java

defines the character stream classes. At the top of the character stream hierarchy are the

abstract classes Reader and Writer. Table 10-7 shows the methods in Reader, and Table 10-8

shows the methods in Writer. All of the methods can throw an IOException on error. The

methods defined by these two abstract classes are available to all of their subclasses. Thus,

they form a minimal set of I/O functions that all character streams will have.

Method Description

abstract void close() Closes the input source. Further read attempts will generate
an IOException.

void mark(int numChars) Places a mark at the current point in the input stream that will
remain valid until numChars characters are read.

boolean markSupported() Returns true if mark()/reset() are supported on this stream.

int read() Returns an integer representation of the next available character
from the invoking input stream. –1 is returned when the end of the
file is encountered.

int read(char buffer[]) Attempts to read up to buffer.length characters into buffer and
returns the actual number of characters that were successfully read.
–1 is returned when the end of the file is encountered.

abstract int read(char buffer[],
int offset,
int numChars)

Attempts to read up to numChars characters into buffer starting at
buffer[offset], returning the number of characters successfully read.
–1 is returned when the end of the file is encountered.

boolean ready() Returns true if the next input request will not wait. Otherwise, it
returns false.

void reset() Resets the input pointer to the previously set mark.

long skip(long numChars) Skips over numChars characters of input, returning the number of
characters actually skipped.

Table 10-7 The Methods Defined by Reader

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:376

Console Input Using Character Streams
For code that will be internationalized, inputting from the console using Java’s character-based

streams is a better, more convenient way to read characters from the keyboard than is using the

byte streams. However, since System.in is a byte stream, you will need to wrap System.in

inside some type of Reader. The best class for reading console input is BufferedReader,

which supports a buffered input stream. However, you cannot construct a BufferedReader

directly from System.in. Instead, you must first convert it into a character stream. To do this,

you will use InputStreamReader, which converts bytes to characters. To obtain an

InputStreamReader object that is linked to System.in, use the constructor shown here:

InputStreamReader(InputStream inputStream)

Since System.in refers to an object of type InputStream, it can be used for inputStream.

Next, using the object produced by InputStreamReader, construct a BufferedReader

using the constructor shown here:

BufferedReader(Reader inputReader)

376 Module 10: Using I/O

Method Description

abstract void close() Closes the output stream. Further write attempts will generate
an IOException.

abstract void flush() Finalizes the output state so that any buffers are cleared. That is, it
flushes the output buffers.

void write(int ch) Writes a single character to the invoking output stream. Note that
the parameter is an int, which allows you to call write with
expressions without having to cast them back to char.

void write(char buffer[]) Writes a complete array of characters to the invoking output stream.

abstract void write(char buffer[],
int offset,
int numChars)

Writes a subrange of numChars characters from the array buffer,
beginning at buffer[offset] to the invoking output stream.

void write(String str) Writes str to the invoking output stream.

void write(String str, int offset,
int numChars)

Writes a subrange of numChars characters from the array str,
beginning at the specified offset.

Table 10-8 The Methods Defined by Writer

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here, inputReader is the stream that is linked to the instance of BufferedReader being

created. Putting it all together, the following line of code creates a BufferedReader that is

connected to the keyboard.

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

After this statement executes, br will be a character-based stream that is linked to the console

through System.in.

Reading Characters
Characters can be read from System.in using the read() method defined by BufferedReader

in much the same way as they were read using byte streams. BufferedReader defines the

following versions of read():

int read() throws IOException

int read(char data[]) throws IOException

int read(char data[], int start, int max) throws IOException

The first version of read() reads a single Unicode character. It returns –1 when the end of

the stream is reached. The second version reads characters from the input stream and puts

them into data until either the array is full, the end of file is reached, or an error occurs. It

returns the number of characters read or –1 at end of stream. The third version reads input into

data beginning at the location specified by start. Up to max characters are stored. It returns the

number of characters read or –1 when the end of the stream is encountered. All throw an

IOException on error. When reading from System.in, pressing ENTER generates an

end-of-stream condition.

The following program demonstrates read() by reading characters from the console until

the user types a period.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class ReadChars {
public static void main(String args[])
throws IOException

{
char c;
BufferedReader br = new

BufferedReader(new
InputStreamReader(System.in));

Java 2: A Beginner’s Guide 377

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:377

10

U
si

ng
I/

O

Create BufferedReader
linked to System.in.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:378

378 Module 10: Using I/O

System.out.println("Enter characters, period to quit.");

// read characters
do {
c = (char) br.read();
System.out.println(c);

} while(c != '.');
}

}

Here is a sample run.

Enter characters, period to quit.
One Two.
O
n
e

T
w
o
.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the

BufferedReader class. Its general form is shown here:

String readLine() throws IOException

It returns a String object that contains the characters read. It returns null if an attempt is made

to read when at the end of the stream.

The following program demonstrates BufferedReader and the readLine() method. The

program reads and displays lines of text until you enter the word “stop”.

// Read a string from console using a BufferedReader.
import java.io.*;

class ReadLines {
public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
String str;

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 379

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:379

10

U
si

ng
I/

O

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);

} while(!str.equals("stop"));
}

}

Console Output Using Character Streams
While it is still permissible to use System.out to write to the console under Java, its use is

recommended mostly for debugging purposes or for sample programs such as those found in

this book. For real-world programs, the preferred method of writing to the console when using

Java is through a PrintWriter stream. PrintWriter is one of the character-based classes. As

explained, using a character-based class for console output makes it easier to internationalize

your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

Here, outputStream is an object of type OutputStream and flushOnNewline controls whether

Java flushes the output stream every time a println() method is called. If flushOnNewline is

true, flushing automatically takes place. If false, flushing is not automatic.

PrintWriter supports the print() and println() methods for all types including Object.

Thus, you can use these methods in just the same way as they have been used with System.out.

If an argument is not a simple type, the PrintWriter methods will call the object’s toString()

method and then print out the result.

To write to the console using a PrintWriter, specify System.out for the output stream

and flush the stream after each call to println(). For example, this line of code creates a

PrintWriter that is connected to console output.

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output.

// Demonstrate PrintWriter.
import java.io.*;

public class PrintWriterDemo {
public static void main(String args[]) {
PrintWriter pw = new PrintWriter(System.out, true);
int i = 10;
double d = 123.67;

Use readLine() from BufferedReader
to read a line of text.

Create a PrintWriter linked
to System.out.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:380

pw.println("Using a PrintWriter.");
pw.println(i);
pw.println(d);

pw.println(i + " + " + d + " is " + i+d);
}

}

The output from this program is:

Using a PrintWriter.
10
123.67
10 + 123.67 is 10123.67

Remember that there is nothing wrong with using System.out to write simple text output

to the console when you are learning Java or debugging your programs. However, using a

PrintWriter will make your real-world applications easier to internationalize. Since no

advantage is to be gained by using a PrintWriter in the sample programs shown in this book,

for convenience we will continue to use System.out to write to the console.

Progress Check
1. What classes top the character-based stream classes?

2. To read from the console, you will open what type of reader?

3. To write to the console, you will open what type of writer?

380 Module 10: Using I/O

1. At the top of the character-based stream, classes are Reader and Writer.

2. To read from the console, open a BufferedReader.

3. To write to the console, open a PrintWriter.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 381

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:381

10

U
si

ng
I/

O

CRITICAL SKILL

10.11 File I/O Using Character Streams
Although byte-oriented file handling is the most common, it is possible to use character-based

streams for this purpose. The advantage to the character streams is that they operate directly on

Unicode characters. Thus, if you want to store Unicode text, the character streams are certainly

your best option. In general, to perform character-based file I/O, you will use the FileReader

and FileWriter classes.

Using a FileWriter
FileWriter creates a Writer that you can use to write to a file. Its most commonly used

constructors are shown here:

FileWriter(String fileName) throws IOException

FileWriter(String fileName, boolean append) throws IOException

Here, fileName is the full path name of a file. If append is true, then output is appended to the

end of the file. Otherwise, the file is overwritten. Either throws an IOException on failure.

FileWriter is derived from OutputStreamWriter and Writer. Thus, it has access to the

methods defined by these classes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard and

writes them to a file called “test.txt.” Text is read until the user enters the word “stop.” It uses

a FileWriter to output to the file.

/* A simple key-to-disk utility that
demonstrates a FileWriter. */

import java.io.*;

class KtoD {
public static void main(String args[])
throws IOException {

String str;
FileWriter fw;
BufferedReader br =

new BufferedReader(
new InputStreamReader(System.in));

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:382

try {
fw = new FileWriter("test.txt");

}
catch(IOException exc) {
System.out.println("Cannot open file.");
return ;

}

System.out.println("Enter text ('stop' to quit).");
do {
System.out.print(": ");
str = br.readLine();

if(str.compareTo("stop") == 0) break;

str = str + "\r\n"; // add newline
fw.write(str);

} while(str.compareTo("stop") != 0);

fw.close();
}

}

Using a FileReader
The FileReader class creates a Reader that you can use to read the contents of a file. Its most

commonly used constructor is shown here:

FileReader(String fileName) throws FileNotFoundException

Here, fileName is the full path name of a file. It throws a FileNotFoundException if the file

does not exist. FileReader is derived from InputStreamReader and Reader. Thus, it has

access to the methods defined by these classes.

The following program creates a simple disk-to-screen utility that reads a text file called

“test.txt” and displays its contents on the screen. Thus, it is the complement of the key-to-disk

utility shown in the previous section.

/* A simple disk-to-screen utility that
demonstrates a FileReader. */

import java.io.*;

class DtoS {
public static void main(String args[]) throws Exception {

382 Module 10: Using I/O

Write strings to the file.

Create a FileWriter.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

FileReader fr = new FileReader("test.txt");
BufferedReader br = new BufferedReader(fr);
String s;

while((s = br.readLine()) != null) {
System.out.println(s);

}

fr.close();
}

}

In this example, notice that the FileReader is wrapped in a BufferedReader. This gives it

access to readLine().

Java 2: A Beginner’s Guide 383

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:383

10

U
si

ng
I/

O

Read lines from the file and
display them on the screen.

Ask the Expert
Q: I have heard that a new I/O system was recently added to Java. Can you tell me

about it?

A: In 2002, Java 2, version 1.4 added a new way to handle I/O operations. Called the new

I/O APIs, it is one of the more interesting additions that Sun included in the 1.4 release

because it supports a channel-based approach to I/O operations. The new I/O classes are

contained in java.nio and its subordinate packages, such as java.nio.channels and

java.nio.charset.

The new I/O system (NIO) is built on two foundational items: buffers and channels.

A buffer holds data. A channel represents an open connection to an I/O device, such as a

file or a socket. In general, to use the new I/O system, you obtain a channel to an I/O

device and a buffer to hold data. You then operate on the buffer, inputting or outputting

data as needed.

Two other entities used by NIO are charsets and selectors. A charset defines the way

that bytes are mapped to characters. You can encode a sequence of characters into bytes

using an encoder. You can decode a sequence of bytes into characters using a decoder.

A selector supports key-based, non-blocking, multiplexed I/O. In other words, selectors

enable you to perform I/O through multiple channels. Selectors are most applicable to

socket-backed channels.

It is important to understand that the new I/O subsystem is not intended to replace

the I/O classes found in java.io, which are discussed in this module. Instead, the NIO

classes are designed to supplement the standard I/O system, offering an alternative

approach, which can be beneficial in some circumstances.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:384

Progress Check
1. What class is used to read characters from a file?

2. What class is used to write characters to a file?

CRITICAL SKILL

10.12 Using Java’s Type Wrappers
to Convert Numeric Strings
Before leaving the topic of I/O, we will examine a technique useful when reading numeric

strings. As you know, Java’s println() method provides a convenient way to output various

types of data to the console, including numeric values of the built-in types, such as int and

double. Thus, println() automatically converts numeric values into their human-readable

form. However, Java does not provide an input method that reads and converts strings

containing numeric values into their internal, binary format. For example, there is no input

method that lets you enter at the keyboard a string such as “100” and have it automatically

converted into its corresponding binary value that is able to be stored in an int variable. To

accomplish this task, you will need to use one of Java’s type wrappers.

Java’s type wrappers are classes that encapsulate, or wrap, the simple types. Type

wrappers are needed because the simple types are not objects. This limits their use to some

extent. For example, a simple type cannot be passed by reference. To address this kind of

need, Java provides classes that correspond to each of the simple types.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and

Boolean. These classes offer a wide array of methods that allow you to fully integrate the

simple types into Java’s object hierarchy. As a side benefit, the numeric wrappers also define

methods that convert a numeric string into its corresponding binary equivalent. These

conversion methods are shown here. Each returns a binary value that corresponds to the string.

Wrapper Conversion Method

Double static double parseDouble(String str) throws NumberFormatException

Float static float parseFloat(String str) throws NumberFormatException

384 Module 10: Using I/O

1. To read characters, use a FileReader.

2. To write characters, use a FileWriter.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 385

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:385

10

U
si

ng
I/

O

Wrapper Conversion Method

Long static long parseLong(String str) throws NumberFormatException

Integer static int parseInt(String str) throws NumberFormatException

Short static short parseShort(String str) throws NumberFormatException

Byte static byte parseByte(String str) throws NumberFormatException

The integer wrappers also offer a second parsing method that allows you to specify the radix.

The parsing methods give us an easy way to convert a numeric value, read as a string from

the keyboard or a text file, into its proper internal format. For example, the following program

demonstrates parseInt() and parseDouble(). It averages a list of numbers entered by the

user. It first asks the user for the number of values to be averaged. It then reads that number

using readLine() and uses parseInt() to convert the string into an integer. Next, it inputs the

values, using parseDouble() to convert the strings into their double equivalents.

/* This program averages a list of numbers entered
by the user. */

import java.io.*;

class AvgNums {
public static void main(String args[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new
BufferedReader(new InputStreamReader(System.in));

String str;
int n;
double sum = 0.0;
double avg, t;

System.out.print("How many numbers will you enter: ");
str = br.readLine();
try {
n = Integer.parseInt(str);

}
catch(NumberFormatException exc) {
System.out.println("Invalid format");
n = 0;

}

Convert string to int.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:386

System.out.println("Enter " + n + " values.");
for(int i=0; i < n ; i++) {
System.out.print(": ");
str = br.readLine();
try {
t = Double.parseDouble(str);

} catch(NumberFormatException exc) {
System.out.println("Invalid format");
t = 0.0;

}
sum += t;

}
avg = sum / n;
System.out.println("Average is " + avg);

}
}

Here is a sample run.

How many numbers will you enter: 5
Enter 5 values.
: 1.1
: 2.2
: 3.3
: 4.4
: 5.5
Average is 3.3

386 Module 10: Using I/O

Convert string to double.

Ask the Expert
Q: What else can the simple type wrapper classes do?

A: The simple type wrappers provide a number of methods that help integrate the simple

types into the object hierarchy. For example, various storage mechanisms provided by

the Java library, including maps, lists, and sets, work only with objects. Thus, to store an

int, for example, in a list, it must be wrapped in an object. Also, all type wrappers have

a method called compareTo(), which compares the value contained within the wrapper;

equals(), which tests two values for equality; and methods that return the simple-type

value of the object in various forms.

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 10-2 Creating a Disk-Based Help System
In Project 4-1 you created a Help class that displayed information about

Java’s control statements. In that implementation, the help information

was stored within the class itself, and the user selected help from a menu of numbered options.

Although this approach was fully functional, it is certainly not the ideal way of creating a Help

system. For example, to add to or change the help information, the source code of the program

needed to be modified. Also, the selection of the topic by number rather than by name is

tedious, and is not suitable for long lists of topics. Here, we will remedy this shortcoming by

creating a disk-based Help system.

The disk-based Help system stores help information in a help file. The help file is a

standard text file that can be changed or expanded at will, without changing the Help program.

The user obtains help about a topic by typing in its name. The Help system searches the help

file for the topic. If it is found, information about the topic is displayed.

Step by Step
1. Create the help file that will be used by the Help system. The help file is a standard text file

that is organized like this:

#topic-name1

topic info

#topic-name2

topic info

.

.

.

#topic-nameN

topic info

The name of each topic must be preceded by a #, and the topic name must be on a line of its

own. Preceding each topic name with a # allows the program to quickly find the start of

each topic. After the topic name are any number of information lines about the topic.

However, there must be a blank line between the end of one topic’s information and the

start of the next topic. Also, there must be no trailing spaces at the end of any lines.

Java 2: A Beginner’s Guide 387

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:387

10

U
si

ng
I/

O

Project
10-2

FileHelp.java

(continued)

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:388

388 Module 10: Using I/O

Here is a simple help file that you can use to try the disk-based Help system. It stores

information about Java’s control statements.

#if
if(condition) statement;
else statement;

#switch
switch(expression) {
case constant:
statement sequence
break;
// ...

}

#for
for(init; condition; iteration) statement;

#while
while(condition) statement;

#do
do {
statement;

} while (condition);

#break
break; or break label;

#continue
continue; or continue label;

Call this file helpfile.txt.

2. Create a file called FileHelp.java.

3. Begin creating the new Help class with these lines of code.

class Help {
String helpfile; // name of help file

Help(String fname) {
helpfile = fname;

}

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 389

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:389

10

U
si

ng
I/

O

Project
10-2

The name of the help file is passed to the Help constructor and stored in the instance

variable helpfile. Since each instance of Help will have its own copy of helpfile, each

instance can use a different file. Thus, you can create different sets of help files for different

sets of topics.

4. Add the helpon() method shown here to the Help class. This method retrieves help on the

specified topic.

// Display help on a topic.
boolean helpon(String what) {
FileReader fr;
BufferedReader helpRdr;
int ch;
String topic, info;

try {
fr = new FileReader(helpfile);
helpRdr = new BufferedReader(fr);

}
catch(FileNotFoundException exc) {
System.out.println("Help file not found.");
return false;

}
catch(IOException exc) {
System.out.println("Cannot open file.");
return false;

}

try {
do {
// read characters until a # is found
ch = helpRdr.read();

// now, see if topics match
if(ch == '#') {
topic = helpRdr.readLine();
if(what.compareTo(topic) == 0) { // found topic
do {
info = helpRdr.readLine();
if(info != null) System.out.println(info);

} while((info != null) &&
(info.compareTo("") != 0));

(continued)

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:390

390 Module 10: Using I/O

return true;
}

}
} while(ch != -1);

}
catch(IOException exc) {
System.out.println("File error.");
try {
helpRdr.close();

}
catch(IOException exc2) {
System.out.println("Error closing file.");

}
return false;

}
try {
helpRdr.close();

}
catch(IOException exc) {
System.out.println("Error closing file.");

}
return false; // topic not found

}

The first thing to notice is that helpon() handles all possible I/O exceptions itself. It does

not even include a throws clause. By handling its own exceptions, it prevents this burden

from being passed on to all code that uses it. Thus, other code can simply call helpon()

without having to wrap that call in a try/catch block.

The help file is opened using a FileReader that is wrapped in a BufferedReader. Since

the help file contains text, using a character stream allows the Help system to be more

efficiently internationalized.

The helpon() method works like this. A string containing the name of the topic is passed

in the what parameter. The help file is then opened. Then, the file is searched, looking for a

match between what and a topic in the file. Remember, in the file, each topic is preceded by a

#, so the search loop scans the file for #s. When it finds one, it then checks to see if the topic

following that # matches the one passed in what. If it does, the information associated with

that topic is displayed. If a match is found, helpon() returns true. Otherwise, it returns false.

5. The Help class also provides a method called getSelection(). It prompts the user for a topic

and returns the topic string entered by the user.

// Get a Help topic.
String getSelection() {
String topic = "";

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 391

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:391

10

U
si

ng
I/

O

Project
10-2

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Enter topic: ");
try {
topic = br.readLine();

}
catch(IOException exc) {
System.out.println("Error reading console.");

}
return topic;

}

This method creates a BufferedReader attached to System.in. It then prompts for the name

of a topic, reads the topic, and returns it to the caller.

6. The entire disk-based Help system is shown here.

/*
Project 10-2

A help program that uses a disk file
to store help information.

*/

import java.io.*;

/* The Help class opens a help file,
searches for a topic, and then displays
the information associated with that topic.
Notice that it handles all I/O exceptions
itself, avoiding the need for calling
code to do so. */

class Help {
String helpfile; // name of help file

Help(String fname) {
helpfile = fname;

}

// Display help on a topic.
boolean helpon(String what) {
FileReader fr;
BufferedReader helpRdr;
int ch;
String topic, info;

(continued)

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:392

392 Module 10: Using I/O

try {
fr = new FileReader(helpfile);
helpRdr = new BufferedReader(fr);

}
catch(FileNotFoundException exc) {
System.out.println("Help file not found.");
return false;

}
catch(IOException exc) {
System.out.println("Cannot open file.");
return false;

}

try {
do {
// read characters until a # is found
ch = helpRdr.read();

// now, see if topics match
if(ch == '#') {
topic = helpRdr.readLine();
if(what.compareTo(topic) == 0) { // found topic
do {
info = helpRdr.readLine();
if(info != null) System.out.println(info);

} while((info != null) &&
(info.compareTo("") != 0));

return true;
}

}
} while(ch != -1);

}
catch(IOException exc) {
System.out.println("File error.");
try {
helpRdr.close();

}
catch(IOException exc2) {
System.out.println("Error closing file.");

}
return false;

}
try {

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 393

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:393

10

U
si

ng
I/

O

Project
10-2

helpRdr.close();
}
catch(IOException exc) {
System.out.println("Error closing file.");

}
return false; // topic not found

}

// Get a Help topic.
String getSelection() {
String topic = "";

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Enter topic: ");
try {
topic = br.readLine();

}
catch(IOException exc) {
System.out.println("Error reading console.");

}
return topic;

}
}

// Demonstrate the file-based Help system.
class FileHelp {
public static void main(String args[]) {
Help hlpobj = new Help("helpfile.txt");
String topic;

System.out.println("Try the help system. " +
"Enter 'stop' to end.");

do {
topic = hlpobj.getSelection();

if(!hlpobj.helpon(topic))
System.out.println("Topic not found.\n");

} while(topic.compareTo("stop") != 0);
}

}

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 10
Blind Folio 10:394

Module 10 Mastery Check
1. Why does Java define both byte and character streams?

2. Even though console input and output is text-based, why does Java still use byte streams for

this purpose?

3. Show how to open a file for reading bytes.

4. Show how to open a file for reading characters.

5. Show how to open a file for random access I/O.

6. How do you convert a numeric string such as “123.23” into its binary equivalent?

7. Write a program that copies a text file. In the process, have it convert all spaces into

hyphens. Use the byte stream file classes.

8. Rewrite the program described in question 7 so that it uses the character stream classes.

9. What type of stream is System.in?

10. What does the read() method of InputStream return when the end of the stream is reached?

11. What type of stream is used to read binary data?

12. Reader and Writer are at the top of the ____________ class hierarchies.

394 Module 10: Using I/O

P:\010Comp\Begin8\588-2\ch10.vp
Tuesday, November 05, 2002 9:48:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:395

Module11
Multithreaded
Programming

CRITICAL SKILLS
11.1 Understand multithreading fundamentals

11.2 Know the Thread class and the Runnable interface

11.3 Create a thread

11.4 Create multiple threads

11.5 Determine when a thread ends

11.6 Use thread priorities

11.7 Understand thread synchronization

11.8 Use synchronized methods

11.9 Use synchronized blocks

11.10 Communicate between threads

11.11 Suspend, resume, and stop threads

395

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:396

396 Module 11: Multithreaded Programming

A lthough Java contains many innovative features, one of its most exciting is its built-in

support for multithreaded programming. A multithreaded program contains two or more

parts that can run concurrently. Each part of such a program is called a thread, and each thread

defines a separate path of execution. Thus, multithreading is a specialized form of multitasking.

CRITICAL SKILL

11.1 Multithreading Fundamentals
There are two distinct types of multitasking: process-based and thread-based. It is important to

understand the difference between the two. A process is, in essence, a program that is executing.

Thus, process-based multitasking is the feature that allows your computer to run two or more

programs concurrently. For example, it is process-based multitasking that allows you to run

the Java compiler at the same time you are using a text editor or browsing the Internet. In

process-based multitasking, a program is the smallest unit of code that can be dispatched by

the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable

code. This means that a single program can perform two or more tasks at once. For instance,

a text editor can be formatting text at the same time that it is printing, as long as these two

actions are being performed by two separate threads. Although Java programs make use of

process-based multitasking environments, process-based multitasking is not under the control

of Java. Multithreaded multitasking is.

The principal advantage of multithreading is that it enables you to write very efficient

programs because it lets you utilize the idle time that is present in most programs. As you

probably know, most I/O devices, whether they be network ports, disk drives, or the keyboard,

are much slower than the CPU. Thus, a program will often spend a majority of its execution

time waiting to send or receive information to or from a device. By using multithreading, your

program can execute another task during this idle time. For example, while one part of your

program is sending a file over the Internet, another part can be reading keyboard input, and

still another can be buffering the next block of data to send.

A thread can be in one of several states. It can be running. It can be ready to run as soon as

it gets CPU time. A running thread can be suspended, which is a temporary halt to its execution.

It can later be resumed. A thread can be blocked when waiting for a resource. A thread can be

terminated, in which case its execution ends and cannot be resumed.

Along with thread-based multitasking comes the need for a special type of feature called

synchronization, which allows the execution of threads to be coordinated in certain well-defined

ways. Java has a complete subsystem devoted to synchronization, and its key features are also

described here.

If you have programmed for operating systems such as Windows 98 or Windows 2000,

then you are already familiar with multithreaded programming. However, the fact that Java

manages threads through language elements makes multithreading especially convenient.

Many of the details are handled for you.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

11.2 The Thread Class and Runnable Interface
Java’s multithreading system is built upon the Thread class and its companion interface,

Runnable. Thread encapsulates a thread of execution. To create a new thread, your program

will either extend Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. Here are some of the

more commonly used ones (we will be looking at these more closely as they are used):

Method Meaning

final String getName() Obtains a thread’s name.

final int getPriority() Obtains a thread’s priority.

final boolean isAlive() Determines whether a thread is still running.

final void join() Waits for a thread to terminate.

void run() Entry point for the thread.

static void sleep(long milliseconds) Suspends a thread for a specified period of milliseconds.

void start() Starts a thread by calling its run() method.

All processes have at least one thread of execution, which is usually called the main

thread, because it is the one that is executed when your program begins. Thus, the main thread

is the thread that all of the preceding example programs in the book have been using. From the

main thread, you can create other threads.

Progress Check
1. What is the difference between process-based multitasking and thread-based multitasking?

2. In what states can a thread exist?

3. What class encapsulates a thread?

Java 2: A Beginner’s Guide 397

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:397

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

1. Process-based multitasking is used to run two or more programs concurrently. Thread-based multitasking, called

multithreading, is used to run pieces of one program concurrently.

2. The thread states are running, ready-to-run, suspended, blocked, and terminated. When a suspended thread is restarted, it

is said to be resumed.

3. Thread.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:398

398 Module 11: Multithreaded Programming

CRITICAL SKILL

11.3 Creating a Thread
You create a thread by instantiating an object of type Thread. The Thread class encapsulates

an object that is runnable. As mentioned, Java defines two ways in which you can create a

runnable object:

● You can implement the Runnable interface.

● You can extend the Thread class.

Most of the examples in this module will use the approach that implements Runnable.

However, Project 11-1 shows how to implement a thread by extending Thread. Remember:

Both approaches still use the Thread class to instantiate, access, and control the thread. The

only difference is how a thread-enabled class is created.

The Runnable interface abstracts a unit of executable code. You can construct a thread on

any object that implements the Runnable interface. Runnable defines only one method called

run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to understand

that run() can call other methods, use other classes, and declare variables just like the main thread.

The only difference is that run() establishes the entry point for another, concurrent thread of

execution within your program. This thread will end when run() returns.

After you have created a class that implements Runnable, you will instantiate an object of

type Thread on an object of that class. Thread defines several constructors. The one that we

will use first is shown here:

Thread(Runnable threadOb)

In this constructor, threadOb is an instance of a class that implements the Runnable interface.

This defines where execution of the thread will begin.

Once created, the new thread will not start running until you call its start() method, which

is declared within Thread. In essence, start() executes a call to run(). The start() method is

shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a thread by implementing Runnable.

class MyThread implements Runnable {

Objects of MyThread can be run
in their own threads because
MyThread implements Runnable.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

int count;
String thrdName;

MyThread(String name) {
count = 0;
thrdName = name;

}

// Entry point of thread.
public void run() {>>
System.out.println(thrdName + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + thrdName +

", count is " + count);
count++;

} while(count < 10);
}
catch(InterruptedException exc) {
System.out.println(thrdName + " interrupted.");

}
System.out.println(thrdName + " terminating.");

}
}

class UseThreads {
public static void main(String args[]) {
System.out.println("Main thread starting.");

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1");

// Next, construct a thread from that object.
Thread newThrd = new Thread(mt);

// Finally, start execution of the thread.
newThrd.start();

do {
System.out.print(".");
try {
Thread.sleep(100);

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

Java 2: A Beginner’s Guide 399

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:399

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Threads start executing here.

Create a runnable object.

Construct a thread on that object.

Start running the thread.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:400

400 Module 11: Multithreaded Programming

}
} while (mt.count != 10);

System.out.println("Main thread ending.");
}

}

Let’s look closely at this program. First, MyThread implements Runnable. This means

that an object of type MyThread is suitable for use as a thread and can be passed to the

Thread constructor.

Inside run(), a loop is established that counts from 0 to 9. Notice the call to sleep(). The

sleep() method causes the thread from which it is called to suspend execution for the specified

period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method can throw

an InterruptedException. Thus, calls to it must be wrapped in a try/catch block. The sleep()

method also has a second form, which allows you to specify the period in terms of milliseconds

and nanoseconds if you need that level of precision.

Inside main(), a new Thread object is created by the following sequence of statements:

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1");

// Next, construct a thread from that object.
Thread newThrd = new Thread(mt);

// Finally, start execution of the thread.
newThrd.start();

As the comments suggest, first an object of MyThread is created. This object is then used

to construct a Thread object. This is possible because MyThread implements Runnable.

Finally, execution of the new thread is started by calling start(). This causes the child thread’s

run() method to begin. After calling start(), execution returns to main(), and it enters

main()’s do loop. Both threads continue running, sharing the CPU, until their loops finish. The

output produced by this program is as follows. Because of differences between computing

environments, the precise output that you see may differ from that shown here.

Main thread starting.
.Child #1 starting.
....In Child #1, count is 0
.....In Child #1, count is 1
.....In Child #1, count is 2

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

.....In Child #1, count is 3

.....In Child #1, count is 4

.....In Child #1, count is 5

.....In Child #1, count is 6

.....In Child #1, count is 7

.....In Child #1, count is 8

.....In Child #1, count is 9
Child #1 terminating.
Main thread ending.

In a multithreaded program, you often will want the main thread to be the last thread to finish

running. Technically, a program continues to run until all of its threads have ended. Thus, having

the main thread finish last is not a requirement. It is, however, good practice to follow—especially

when you are first learning about multithreaded programs. The preceding program ensures that the

main thread will finish last, because the do loop stops when count equals 10. Since count will

equal 10 only after newThrd has terminated, the main thread finishes last. Later in this module,

you will see a better way for one thread to wait until another finishes.

Some Simple Improvements
While the preceding program is perfectly valid, some simple improvements can be made that

will make it more efficient and easier to use. First, it is possible to have a thread begin

execution as soon as it is created. In the case of MyThread, this is done by instantiating a

Thread object inside MyThread’s constructor. Second, there is no need for MyThread to

store the name of the thread since it is possible to give a name to a thread when it is created.

To do so, use this version of Thread’s constructor.

Thread(Runnable threadOb, String name)

Here, name becomes the name of the thread.

Java 2: A Beginner’s Guide 401

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:401

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Ask the Expert
Q: Why do you recommend that the main thread be the last to finish?

A: In older Java run-time systems, if the main thread finished before a child thread had

completed, there was a possibility that the Java run-time system would “hang.” This

problem is not exhibited by the modern Java run-time systems to which this author has

access. However, since this behavior was exhibited by some older Java run-time

systems, it seems better to be safe rather than sorry since you don’t always know the

environment in which your program may run. Also, as you will see, it is trivially easy

for the main thread to wait until the child threads have completed.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:402

402 Module 11: Multithreaded Programming

You can obtain the name of a thread by calling getName() defined by Thread. Its general

form is shown here:

final String getName()

Although not needed by the following program, you can set the name of a thread after it is

created by using setName(), which is shown here:

final void setName(String threadName)

Here, threadName specifies the name of the thread.

Here is the improved version of the preceding program:

// Improved MyThread.

class MyThread implements Runnable {
int count;
Thread thrd;

// Construct a new thread.
MyThread(String name) {
thrd = new Thread(this, name);
count = 0;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + thrd.getName() +

", count is " + count);
count++;

} while(count < 10);
}
catch(InterruptedException exc) {
System.out.println(thrd.getName() + " interrupted.");

}
System.out.println(thrd.getName() + " terminating.");

}
}

class UseThreadsImproved {
public static void main(String args[]) {

A reference to the thread is stored in thrd.

The thread is named when it is created.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Main thread starting.");

MyThread mt = new MyThread("Child #1");

do {
System.out.print(".");
try {
Thread.sleep(100);

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
} while (mt.count != 10);

System.out.println("Main thread ending.");
}

}

This version produces the same output as before. Notice that the thread is stored in thrd inside

MyThread.

Progress Check
1. In what two ways can you create a class that can act as a thread?

2. What is the purpose of the run() method defined by Runnable?

3. What does the start() method defined by Thread do?

Project 11-1 Extending Thread
Implementing Runnable is one way to create a class that can

instantiate thread objects. Extending Thread is the other. In this

project, you will see how to extend Thread by creating a program functionally identical to

the UseThreadsImproved program.

Java 2: A Beginner’s Guide 403

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:403

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Project
11-1

Now the thread starts when it is created.

1. To create a thread, either implement Runnable or extend Thread.

2. The run() method is the entry point to a thread.

3. The start() method starts the execution of a thread.

ExtendThread.java

(continued)

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:404

When a class extends Thread, it must override the run() method, which is the entry point

for the new thread. It must also call start() to begin execution of the new thread. It is possible

to override other Thread methods, but doing so is not required.

Step by Step
1. Create a file called ExtendThread.java. Into this file, copy the code from the second

threading example (UseThreadsImproved.java).

2. Change the declaration of MyThread so that it extends Thread rather than implementing

Runnable, as shown here.

class MyThread extends Thread {

3. Remove this line:

Thread thrd;

The thrd variable is no longer needed since MyThread includes an instance of Thread and

can refer to itself.

4. Change the MyThread constructor so that it looks like this:

// Construct a new thread.
MyThread(String name) {
super(name); // name thread
count = 0;
start(); // start the thread

}

As you can see, first super is used to call this version of Thread’s constructor:

Thread(String name);

Here, name is the name of the thread. The object that will be run is the invoking thread,

which in this case is the thread that is being created.

5. Change run() so it calls getName() directly, without qualifying it with the thrd variable.

It should look like this:

// Begin execution of new thread.
public void run() {
System.out.println(getName() + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + getName() +

", count is " + count);

404 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 405

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:405

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Project
11-1

count++;
} while(count < 10);

}
catch(InterruptedException exc) {
System.out.println(getName() + " interrupted.");

}
System.out.println(getName() + " terminating.");

}

6. Here is the completed program that now extends Thread rather than implementing

Runnable. The output is the same as before.

/*
Project 11-1

Extend Thread.
*/
class MyThread extends Thread {
int count;

// Construct a new thread.
MyThread(String name) {
super(name); // name thread
count = 0;
start(); // start the thread

}

// Begin execution of new thread.
public void run() {
System.out.println(getName() + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + getName() +

", count is " + count);
count++;

} while(count < 10);
}
catch(InterruptedException exc) {
System.out.println(getName() + " interrupted.");

}
System.out.println(getName() + " terminating.");

}
}

class ExtendThread {

(continued)

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:406

public static void main(String args[]) {
System.out.println("Main thread starting.");

MyThread mt = new MyThread("Child #1");

do {
System.out.print(".");
try {
Thread.sleep(100);

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
} while (mt.count != 10);

System.out.println("Main thread ending.");
}

}

CRITICAL SKILL

11.4 Creating Multiple Threads
The preceding examples have created only one child thread. However, your program can spawn

as many threads as it needs. For example, the following program creates three child threads:

// Create multiple threads.

class MyThread implements Runnable {
int count;
Thread thrd;

// Construct a new thread.
MyThread(String name) {
thrd = new Thread(this, name);
count = 0;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + thrd.getName() +

", count is " + count);

406 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

count++;
} while(count < 10);

}
catch(InterruptedException exc) {
System.out.println(thrd.getName() + " interrupted.");

}
System.out.println(thrd.getName() + " terminating.");

}
}

class MoreThreads {
public static void main(String args[]) {
System.out.println("Main thread starting.");

MyThread mt1 = new MyThread("Child #1");
MyThread mt2 = new MyThread("Child #2");
MyThread mt3 = new MyThread("Child #3");

do {
System.out.print(".");
try {
Thread.sleep(100);

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
} while (mt1.count < 10 ||

mt2.count < 10 ||
mt3.count < 10);

System.out.println("Main thread ending.");
}

}

Java 2: A Beginner’s Guide 407

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:407

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Create and start executing
three threads.

Ask the Expert
Q: Why does Java have two ways to create child threads (by extending Thread or

implementing Runnable) and which approach is better?

A: The Thread class defines several methods that can be overridden by a derived class. Of

these methods, the only one that must be overridden is run(). This is, of course, the

same method required when you implement Runnable. Some Java programmers feel

that classes should be extended only when they are being enhanced or modified in some

way. So, if you will not be overriding any of Thread’s other methods, it is probably

best to simply implement Runnable. This is, of course, up to you.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:408

408 Module 11: Multithreaded Programming

Sample output from this program follows. (The output you see may differ slightly.)

Main thread starting.
.Child #1 starting.
Child #2 starting.
Child #3 starting.
.....In Child #1, count is 0
In Child #2, count is 0
In Child #3, count is 0
.....In Child #1, count is 1
In Child #2, count is 1
In Child #3, count is 1
.....In Child #1, count is 2
In Child #2, count is 2
In Child #3, count is 2
.....In Child #1, count is 3
In Child #2, count is 3
In Child #3, count is 3
.....In Child #1, count is 4
In Child #2, count is 4
In Child #3, count is 4
.....In Child #1, count is 5
In Child #2, count is 5
In Child #3, count is 5
.....In Child #1, count is 6
In Child #2, count is 6
In Child #3, count is 6
.....In Child #1, count is 7
In Child #2, count is 7
In Child #3, count is 7
.....In Child #1, count is 8
In Child #2, count is 8
In Child #3, count is 8
.....In Child #1, count is 9
Child #1 terminating.
In Child #2, count is 9
Child #2 terminating.
In Child #3, count is 9
Child #3 terminating.
Main thread ending.

As you can see, once started, all three child threads share the CPU. Notice that the threads

are started in the order in which they are created. However, this may not always be the case. Java

is free to schedule the execution of threads in its own way. Of course, because of differences in

timing or environment, the precise output from the program may differ, so don’t be surprised if

you see slightly different results when you try the program.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

CRITICAL SKILL

11.5 Determining When a Thread Ends
It is often useful to know when a thread has ended. In the preceding examples, we accomplished

this by watching the count variable, but this is, of course, hardly a satisfactory or generalizable

solution. Fortunately, Thread provides two means by which you can determine if a thread has

ended. First, you can call isAlive() on the thread. Its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It

returns false otherwise. To try isAlive(), substitute this version of MoreThreads for the one

shown in the preceding program.

// Use isAlive().
class MoreThreads {
public static void main(String args[]) {
System.out.println("Main thread starting.");

MyThread mt1 = new MyThread("Child #1");
MyThread mt2 = new MyThread("Child #2");
MyThread mt3 = new MyThread("Child #3");

do {
System.out.print(".");
try {
Thread.sleep(100);

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
} while (mt1.thrd.isAlive() ||

mt2.thrd.isAlive() ||
mt3.thrd.isAlive());

System.out.println("Main thread ending.");
}

}

This version produces the same output as before. The only difference is that it uses

isAlive() to wait for the child threads to terminate.

Another way to wait for a thread to finish is the call join(), shown here:

final void join() throws InterruptedException

Java 2: A Beginner’s Guide 409

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:409

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

This waits until all threads terminate.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:410

This method waits until the thread on which it is called terminates. Its name comes from the

concept of the calling thread waiting until the specified thread joins it. Additional forms of

join() allow you to specify a maximum amount of time that you want to wait for the specified

thread to terminate.

Here is a program that uses join() to ensure that the main thread is the last to stop.

// Use join().

class MyThread implements Runnable {
int count;
Thread thrd;

// Construct a new thread.
MyThread(String name) {
thrd = new Thread(this, name);
count = 0;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
try {
do {
Thread.sleep(500);
System.out.println("In " + thrd.getName() +

", count is " + count);
count++;

} while(count < 10);
}
catch(InterruptedException exc) {
System.out.println(thrd.getName() + " interrupted.");

}
System.out.println(thrd.getName() + " terminating.");

}
}

class JoinThreads {
public static void main(String args[]) {
System.out.println("Main thread starting.");

MyThread mt1 = new MyThread("Child #1");
MyThread mt2 = new MyThread("Child #2");
MyThread mt3 = new MyThread("Child #3");

410 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

try {
mt1.thrd.join();
System.out.println("Child #1 joined.");
mt2.thrd.join();
System.out.println("Child #2 joined.");
mt3.thrd.join();
System.out.println("Child #3 joined.");

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}

System.out.println("Main thread ending.");
}

}

Sample output from this program is shown here. Remember that when you try the

program, your precise output may vary slightly.

Main thread starting.
Child #1 starting.
Child #2 starting.
Child #3 starting.
In Child #2, count is 0
In Child #1, count is 0
In Child #3, count is 0
In Child #2, count is 1
In Child #3, count is 1
In Child #1, count is 1
In Child #2, count is 2
In Child #1, count is 2
In Child #3, count is 2
In Child #2, count is 3
In Child #3, count is 3
In Child #1, count is 3
In Child #3, count is 4
In Child #2, count is 4
In Child #1, count is 4
In Child #3, count is 5
In Child #1, count is 5
In Child #2, count is 5
In Child #3, count is 6
In Child #2, count is 6
In Child #1, count is 6
In Child #3, count is 7
In Child #1, count is 7

Java 2: A Beginner’s Guide 411

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:411

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Wait until the specified
thread ends.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In Child #2, count is 7
In Child #3, count is 8
In Child #2, count is 8
In Child #1, count is 8
In Child #3, count is 9
Child #3 terminating.
In Child #2, count is 9
Child #2 terminating.
In Child #1, count is 9
Child #1 terminating.
Child #1 joined.
Child #2 joined.
Child #3 joined.
Main thread ending.

As you can see, after the calls to join() return, the threads have stopped executing.

Progress Check
1. What are the two ways in which you can determine whether a thread has finished?

2. Explain join().

CRITICAL SKILL

11.6 Thread Priorities
Each thread has associated with it a priority setting. A thread’s priority determines, in part,

how much CPU time a thread receives. In general, low-priority threads receive little. High-

priority threads receive a lot. As you might expect, how much CPU time a thread receives has

profound impact on its execution characteristics and its interaction with other threads currently

executing in the system.

It is important to understand that factors other than a thread’s priority also affect how

much CPU time a thread receives. For example, if a high-priority thread is waiting on some

resource, perhaps for keyboard input, then it will be blocked, and a lower priority thread will

run. However, when that high-priority thread gains access to the resource, it can preempt the

low-priority thread and resume execution. Another factor that affects the scheduling of threads

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:412

412 Module 11: Multithreaded Programming

1. To determine whether a thread has ended, you can call isAlive() or use join() to wait for the thread to join the

calling thread.

2. The join() method suspends execution of the calling thread until the thread on which join() is called, ends.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

is the way the operating system implements multitasking. (See “Ask the Expert,” at the end of

this section.) Thus, just because you give one thread a high priority and another a low priority

does not necessarily mean that one thread will run faster or more often than the other. It’s just

that the high-priority thread has greater potential access to the CPU.

When a child thread is started, its priority setting is equal to that of its parent thread. You

can change a thread’s priority by calling setPriority(), which is a member of Thread. This is

its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be

within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and

10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is

currently 5. These priorities are defined as final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of Thread,

shown here:

final int getPriority()

The following example demonstrates two threads at different priorities. The threads are

created as instances of Priority. The run() method contains a loop that counts the number of

iterations. The loop stops when either the count reaches 10,000,000 or the static variable stop

is true. Initially, stop is set to false, but the first thread to finish counting sets stop to true.

This causes the second thread to terminate with its next time slice. Each time through the loop

the string in currentName is checked against the name of the executing thread. If they don’t

match, it means that a task-switch occurred. Each time a task-switch happens, the name of the

new thread is displayed, and currentName is given the name of the new thread. This allows

you to watch how often each thread has access to the CPU. After both threads stop, the number

of iterations for each loop is displayed.

// Demonstrate thread priorities.

class Priority implements Runnable {
int count;
Thread thrd;

static boolean stop = false;
static String currentName;

/* Construct a new thread. Notice that this
constructor does not actually start the
threads running. */

Java 2: A Beginner’s Guide 413

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:413

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:414

Priority(String name) {
thrd = new Thread(this, name);
count = 0;
currentName = name;

}

// Begin execution of new thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
do {
count++;

if(currentName.compareTo(thrd.getName()) != 0) {
currentName = thrd.getName();
System.out.println("In " + currentName);

}

} while(stop == false && count < 10000000);
stop = true;

System.out.println("\n" + thrd.getName() +
" terminating.");

}
}

class PriorityDemo {
public static void main(String args[]) {
Priority mt1 = new Priority("High Priority");
Priority mt2 = new Priority("Low Priority");

// set the priorities
mt1.thrd.setPriority(Thread.NORM_PRIORITY+2);
mt2.thrd.setPriority(Thread.NORM_PRIORITY-2);

// start the threads
mt1.thrd.start();
mt2.thrd.start();

try {
mt1.thrd.join();
mt2.thrd.join();

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}

414 Module 11: Multithreaded Programming

The first thread to 10,000,000
stops all threads.

Give mt1 a higher priority
than mt2.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("\nHigh priority thread counted to " +
mt1.count);

System.out.println("Low priority thread counted to " +
mt2.count);

}
}

Here is the output produced when the program was run on a 1 GHz Pentium-based

computer under Windows 2000.

High Priority starting.
In High Priority
Low Priority starting.
In Low Priority
In High Priority

High Priority terminating.

Low Priority terminating.

High priority thread counted to 10000000
Low priority thread counted to 8183

In this run, the high-priority thread got a vast majority of the CPU time. Of course, the

exact output produced by this program will depend upon the speed of your CPU, the operating

system you are using, and the number of other tasks running in the system.

Java 2: A Beginner’s Guide 415

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:415

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Ask the Expert
Q: Does the operating system’s implementation of multitasking affect how much CPU

time a thread receives?

A: Aside from a thread’s priority setting, the most important factor affecting thread

execution is the way the operating system implements multitasking and scheduling.

Some operating systems use preemptive multitasking in which each thread receives a

time slice, at least occasionally. Other systems use nonpreemptive scheduling in which

one thread must yield execution before another thread will execute. In nonpreemptive

systems, it is easy for one thread to dominate, preventing others from running.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:416

CRITICAL SKILL

11.7 Synchronization
When using multiple threads, it is sometimes necessary to coordinate the activities of two

or more. The process by which this is achieved is called synchronization. The most common

reason for synchronization is when two or more threads need access to a shared resource that

can be used by only one thread at a time. For example, when one thread is writing to a file,

a second thread must be prevented from doing so at the same time. Another reason for

synchronization is when one thread is waiting for an event that is caused by another thread.

In this case, there must be some means by which the first thread is held in a suspended state

until the event has occurred. Then, the waiting thread must resume execution.

Key to synchronization in Java is the concept of the monitor, which controls access to an

object. A monitor works by implementing the concept of a lock. When an object is locked by

one thread, no other thread can gain access to the object. When the thread exits, the object is

unlocked and is available for use by another thread.

All objects in Java have a monitor. This feature is built into the Java language, itself. Thus,

all objects can be synchronized. Synchronization is supported by the keyword synchronized

and a few well-defined methods that all objects have. Since synchronization was designed into

Java from the start, it is much easier to use than you might first expect. In fact, for many programs,

the synchronization of objects is almost transparent.

There are two ways that you can synchronize your code. Both involve the use of the

synchronized keyword, and both are examined here.

CRITICAL SKILL

11.8 Using Synchronized Methods
You can synchronize access to a method by modifying it with the synchronized keyword.

When that method is called, the calling thread enters the object’s monitor, which then locks the

object. While locked, no other thread can enter the method, or enter any other synchronized

method defined by the object. When the thread returns from the method, the monitor unlocks

the object, allowing it to be used by the next thread. Thus, synchronization is achieved with

virtually no programming effort on your part.

The following program demonstrates synchronization by controlling access to a method

called sumArray(), which sums the elements of an integer array.

// Use synchronize to control access.

class SumArray {
private int sum;

synchronized int sumArray(int nums[]) {

416 Module 11: Multithreaded Programming

sumArray() is synchronized.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

sum = 0; // reset sum

for(int i=0; i<nums.length; i++) {
sum += nums[i];
System.out.println("Running total for " +

Thread.currentThread().getName() +
" is " + sum);

try {
Thread.sleep(10); // allow task-switch

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
}
return sum;

}
}

class MyThread implements Runnable {
Thread thrd;
static SumArray sa = new SumArray();
int a[];
int answer;

// Construct a new thread.
MyThread(String name, int nums[]) {
thrd = new Thread(this, name);
a = nums;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
int sum;

System.out.println(thrd.getName() + " starting.");

answer = sa.sumArray(a);
System.out.println("Sum for " + thrd.getName() +

" is " + answer);

System.out.println(thrd.getName() + " terminating.");
}

}

class Sync {

Java 2: A Beginner’s Guide 417

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:417

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:418

public static void main(String args[]) {
int a[] = {1, 2, 3, 4, 5};

MyThread mt1 = new MyThread("Child #1", a);
MyThread mt2 = new MyThread("Child #2", a);

}
}

The output from the program is shown here.

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #1 is 3
Running total for Child #1 is 6
Running total for Child #1 is 10
Running total for Child #1 is 15
Sum for Child #1 is 15
Child #1 terminating.
Running total for Child #2 is 1
Running total for Child #2 is 3
Running total for Child #2 is 6
Running total for Child #2 is 10
Running total for Child #2 is 15
Sum for Child #2 is 15
Child #2 terminating.

Let’s examine this program in detail. The program creates three classes. The first is

SumArray. It contains the method sumArray(), which sums an integer array. The second class

is MyThread, which uses an object of type SumArray to obtain the sum of an integer array.

Finally, the class Sync creates two threads and has them compute the sum of an integer array.

Inside sumArray(), sleep() is called to purposely allow a task switch to occur, if one

can—but it can’t. Because sumArray() is synchronized, it can be used by only one thread at a

time. Thus, when the second child thread begins execution, it does not enter sumArray() until

after the first child thread is done with it. This ensures that the correct result is produced.

To fully understand the effects of synchronized, try removing it from the declaration of

sumArray(). After doing this, sumArray() is no longer synchronized, and any number of

threads may use it concurrently. The problem with this is that the running total is stored in

sum, which will be changed by each thread that calls sumArray(). Thus, when two threads

call sumArray() at the same time, incorrect results are produced because sum reflects the

summation of both threads, mixed together. For example, here is sample output from the

program after synchronized has been removed from sumArray()’s declaration. (The precise

output may differ on your computer.)

418 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 419

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:419

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Child #1 starting.
Running total for Child #1 is 1
Child #2 starting.
Running total for Child #2 is 1
Running total for Child #1 is 3
Running total for Child #2 is 5
Running total for Child #2 is 8
Running total for Child #1 is 11
Running total for Child #2 is 15
Running total for Child #1 is 19
Running total for Child #2 is 24
Sum for Child #2 is 24
Child #2 terminating.
Running total for Child #1 is 29
Sum for Child #1 is 29
Child #1 terminating.

As the output shows, both child threads are using sumArray() concurrently, and the value

of sum is corrupted.

Before moving on, let’s review the key points of a synchronized method:

● A synchronized method is created by preceding its declaration with synchronized.

● For any given object, once a synchronized method has been called, the object is locked

and no synchronized methods on the same object can be used by another thread of

execution.

● Other threads trying to call an in-use synchronized object will enter a wait state until the

object is unlocked.

● When a thread leaves the synchronized method, the object is unlocked.

CRITICAL SKILL

11.9 The synchronized Statement
Although creating synchronized methods within classes that you create is an easy and effective

means of achieving synchronization, it will not work in all cases. For example, you might want

to synchronize access to some method that is not modified by synchronized. This can occur

because you want to use a class that was not created by you but by a third party, and you do

not have access to the source code. Thus, it is not possible for you to add synchronized to the

appropriate methods within the class. How can access to an object of this class be synchronized?

Fortunately, the solution to this problem is quite easy: You simply put calls to the methods

defined by this class inside a synchronized block.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:420

420 Module 11: Multithreaded Programming

This is the general form of a synchronized block:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures that

a call to a method that is a member of object will take place only after the object’s monitor has

been entered by the calling thread.

For example, another way to synchronize calls to sumArray() is to call it from within a

synchronized block, as shown in this version of the program.

// Use a synchronized block to control access to SumArray.
class SumArray {
private int sum;

int sumArray(int nums[]) {
sum = 0; // reset sum

for(int i=0; i<nums.length; i++) {
sum += nums[i];
System.out.println("Running total for " +

Thread.currentThread().getName() +
" is " + sum);

try {
Thread.sleep(10); // allow task-switch

}
catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
}
return sum;

}
}

class MyThread implements Runnable {
Thread thrd;
static SumArray sa = new SumArray();
int a[];
int answer;

Here, sumArray() is
not synchronized.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 421

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:421

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

// Construct a new thread.
MyThread(String name, int nums[]) {
thrd = new Thread(this, name);
a = nums;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {
int sum;

System.out.println(thrd.getName() + " starting.");

// synchronize calls to sumArray()
synchronized(sa) {
answer = sa.sumArray(a);

}
System.out.println("Sum for " + thrd.getName() +

" is " + answer);

System.out.println(thrd.getName() + " terminating.");
}

}

class Sync {
public static void main(String args[]) {
int a[] = {1, 2, 3, 4, 5};

MyThread mt1 = new MyThread("Child #1", a);
MyThread mt2 = new MyThread("Child #2", a);

try {
mt1.thrd.join();
mt2.thrd.join();

} catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
}

}

This version produces the same, correct output as the one shown earlier that uses a

synchronized method.

Here, calls to sumArray() on
sa are synchronized.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:422

Progress Check
1. How do you set a thread’s priority?

2. How do you restrict access to an object to one thread at a time?

3. The synchronized keyword can be used to modify a method or to create

a __________ block.

CRITICAL SKILL

11.10 Thread Communication Using
notify(), wait(), and notifyAll()
Consider the following situation. A thread called T is executing inside a synchronized method

and needs access to a resource called R that is temporarily unavailable. What should T do? If T

enters some form of polling loop that waits for R, T ties up the object, preventing other threads’

access to it. This is a less than optimal solution because it partially defeats the advantages of

programming for a multithreaded environment. A better solution is to have T temporarily

relinquish control of the object, allowing another thread to run. When R becomes available, T

can be notified and resume execution. Such an approach relies upon some form of interthread

communication in which one thread can notify another that it is blocked, and be notified that it

can resume execution. Java supports interthread communication with the wait(), notify(), and

notifyAll() methods.

The wait(), notify(), and notifyAll() methods are part of all objects because they are

implemented by the Object class. These methods can only be called from within a synchronized

method. Here is how they are used. When a thread is temporarily blocked from running, it calls

wait(). This causes the thread to go to sleep and the monitor for that object to be released,

allowing another thread to use the object. At a later point, the sleeping thread is awakened when

some other thread enters the same monitor and calls notify(), or notifyAll(). A call to notify()

resumes one thread. A call to notifyAll() resumes all threads, with the highest priority thread

gaining access to the object.

Following are the various forms of wait() defined by Object.

422 Module 11: Multithreaded Programming

1. To set a thread’s priority, call setPriority().

2. To restrict access to an object to one thread at a time, use the synchronized keyword.

3. synchronized

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 423

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:423

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

final void wait() throws InterruptedException

final void wait(long millis) throws InterruptedException

final void wait(long millis, int nanos) throws InterruptedException

The first form waits until notified. The second form waits until notified or until the specified

period of milliseconds has expired. The third form allows you to specify the wait period in

terms of nanoseconds.

Here are the general forms for notify() and notifyAll().

final void notify()

final void notifyAll()

An Example That Uses wait() and notify()
To understand the need for and the application of wait() and notify(), we will create a

program that simulates the ticking of a clock by displaying the words “tick” and “tock” on the

screen. To accomplish this, we will create a class called TickTock that contains two methods:

tick() and tock(). The tick() method displays the word “Tick”, and tock() displays “Tock”.

To run the clock, two threads are created, one that calls tick() and one that calls tock(). The

goal is to make the two threads execute in a way that the output from the program displays a

consistent “Tick Tock”—that is, a repeated pattern of one tick followed by one tock.

// Use wait() and notify() to create a ticking clock.

class TickTock {

synchronized void tick(boolean running) {
if(!running) { // stop the clock
notify(); // notify any waiting threads
return;

}

System.out.print("Tick ");
notify(); // let tock() run
try {
wait(); // wait for tock() to complete

}
catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}
}

synchronized void tock(boolean running) {

tick() waits for tock().

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:424

424 Module 11: Multithreaded Programming

if(!running) { // stop the clock
notify(); // notify any waiting threads
return;

}

System.out.println("Tock");
notify(); // let tick() run
try {
wait(); // wait for tick to complete

}
catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}
}

}

class MyThread implements Runnable {
Thread thrd;
TickTock ttOb;

// Construct a new thread.
MyThread(String name, TickTock tt) {
thrd = new Thread(this, name);
ttOb = tt;
thrd.start(); // start the thread

}

// Begin execution of new thread.
public void run() {

if(thrd.getName().compareTo("Tick") == 0) {
for(int i=0; i<5; i++) ttOb.tick(true);
ttOb.tick(false);

}
else {
for(int i=0; i<5; i++) ttOb.tock(true);
ttOb.tock(false);

}
}

}

class ThreadCom {
public static void main(String args[]) {
TickTock tt = new TickTock();
MyThread mt1 = new MyThread("Tick", tt);
MyThread mt2 = new MyThread("Tock", tt);

Call tick() and tock() through
two different threads.

And, tock() waits for tick().

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

try {
mt1.thrd.join();
mt2.thrd.join();

} catch(InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
}

}

Here is the output produced by the program:

Tick Tock
Tick Tock
Tick Tock
Tick Tock
Tick Tock

Let’s take a close look at this program. In main(), a TickTock object called tt is created,

and this object is used to start two threads of execution. Inside the run() method of MyThread,

if the name of the thread is “Tick”, then calls to tick() are made. If the name of the thread is

“Tock”, then the tock() method is called. Five calls that pass true as an argument are made to

each method. The clock runs as long as true is passed. A final call that passes false to each

method stops the clock.

The most important part of the program is found in the tick() and tock() methods. We

will begin with the tick() method, which, for convenience, is shown here.

synchronized void tick(boolean running) {
if(!running) { // stop the clock
notify(); // notify any waiting threads
return;

}

System.out.print("Tick ");
notify(); // let tock() run
try {
wait(); // wait for tock() to complete

}
catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}
}

First, notice that tick() is modified by synchronized. Remember, wait() and notify() apply

only to synchronized methods. The method begins by checking the value of the running

Java 2: A Beginner’s Guide 425

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:425

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:426

parameter. This parameter is used to provide a clean shutdown of the clock. If it is false, then

the clock has been stopped. If this is the case, a call to notify() is made to enable any waiting

thread to run. We will return to this point in a moment. Assuming that the clock is running

when tick() executes, the word “Tick” is displayed, then a call to notify() takes place, followed

by a call to wait(). The call to notify() allows a thread waiting on the same object to run. The

call to wait() causes tick() to suspend until another thread calls notify(). Thus, when tick()

is called, it displays one “Tick”, lets another thread run, and then suspends.

The tock() method is an exact copy of tick() except that it displays “Tock”. Thus, when

entered, it displays “Tock”, calls notify(), and then waits. When viewed as a pair, a call to tick()

can only be followed by a call to tock(), which can only be followed by a call to tick(), and

so on. Therefore, the two methods are mutually synchronized.

The reason for the call to notify() when the clock is stopped is to allow a final call to

wait() to succeed. Remember, both tick() and tock() execute a call to wait() after displaying

their message. The problem is that when the clock is stopped, one of the methods will still be

waiting. Thus, a final call to notify() is required in order for the waiting method to run. As an

experiment, try removing this call to notify() and watch what happens. As you will see, the

program will “hang,” and you will need to press CONTROL-C to exit. The reason for this is that

when the final call to tock() calls wait(), there is no corresponding call to notify() that lets

tock() conclude. Thus, tock() just sits there, waiting forever.

Before moving on, if you have any doubt that the calls to wait() and notify() are actually

needed to make the “clock” run right, substitute this version of TickTock into the preceding

program. It has all calls to wait() and notify() removed.

// No calls to wait() or notify().
class TickTock {

synchronized void tick(boolean running) {
if(!running) { // stop the clock
return;

}

System.out.print("Tick ");
}

synchronized void tock(boolean running) {
if(!running) { // stop the clock
return;

}

System.out.println("Tock");
}

}

426 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

After the substitution, the output produced by the program will look like this:

Tick Tick Tick Tick Tick Tock
Tock
Tock
Tock
Tock

Clearly, the tick() and tock() methods are no longer synchronized!

Progress Check
1. What methods support interthread communication?

2. Do all objects support interthread communication?

3. What happens when wait() is called?

Java 2: A Beginner’s Guide 427

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:427

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Ask the Expert
Q: I have heard the term deadlock applied to misbehaving multithreaded programs.

What is it, and how can I avoid it?

A: Deadlock is, as the name implies, a situation in which one thread is waiting for another

thread to do something, but that other thread is waiting on the first. Thus, both threads

are suspended, waiting on each other, and neither executes. This situation is analogous

to two overly polite people, both insisting that the other step through a door first!

Avoiding deadlock seems easy, but it’s not. For example, deadlock can occur in

roundabout ways. The cause of the deadlock often is not readily understood just by

looking at the source code to the program because multiply-executing threads can

interact in complex ways at run time. To avoid deadlock, careful programming and

thorough testing is required. Remember, if a multithreaded program occasionally

“hangs,” deadlock is the likely cause.

1. The interthread communication methods are wait(), notify(), and notifyAll().

2. Yes, all objects support interthread communication because this support is part of Object.

3. When wait() is called, the calling thread relinquishes control of the object and suspends until it receives a notification.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:428

CRITICAL SKILL

11.11 Suspending, Resuming,
and Stopping Threads
It is sometimes useful to suspend execution of a thread. For example, a separate thread can

be used to display the time of day. If the user does not desire a clock, then its thread can be

suspended. Whatever the case, it is a simple matter to suspend a thread. Once suspended, it

is also a simple matter to restart the thread.

The mechanisms to suspend, stop, and resume threads differ between Java 2 and earlier

versions. Prior to Java 2, a program used suspend(), resume(), and stop(), which are

methods defined by Thread, to pause, restart, and stop the execution of a thread. They have

the following forms:

final void resume()

final void suspend()

final void stop()

While these methods seem to be a perfectly reasonable and convenient approach to

managing the execution of threads, they must not be used for new Java programs. Here’s why.

The suspend() method of the Thread class was deprecated by Java 2. This was done because

suspend() can sometimes cause serious system failures. Assume that a thread has obtained

locks on critical data structures. If that thread is suspended at that point, those locks are not

relinquished. Other threads that may be waiting for those resources can be deadlocked. The

resume() method is also deprecated. It does not cause problems but cannot be used without

the suspend() method as its counterpart. The stop() method of the Thread class was also

deprecated by Java 2. This was done because this method too can sometimes cause serious

system failures.

Since you cannot now use the suspend(), resume(), or stop() methods to control a

thread, you might at first be thinking that there is no way to pause, restart, or terminate a

thread. But, fortunately, this is not true. Instead, a thread must be designed so that the run()

method periodically checks to determine if that thread should suspend, resume, or stop its own

execution. Typically, this is accomplished by establishing two flag variables: one for suspend

and resume, and one for stop. For suspend and resume, as long as the flag is set to “running,” the

run() method must continue to let the thread execute. If this variable is set to “suspend,” the

thread must pause. For the stop flag, if it is set to “stop,” the thread must terminate.

The following example shows one way to implement your own versions of suspend(),

resume(), and stop().

428 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

// Suspending, resuming, and stopping a thread.

class MyThread implements Runnable {
Thread thrd;
volatile boolean suspended;
volatile boolean stopped;

MyThread(String name) {
thrd = new Thread(this, name);
suspended = false;
stopped = false;
thrd.start();

}

// This is the entry point for thread.
public void run() {
System.out.println(thrd.getName() + " starting.");
try {
for(int i = 1; i < 1000; i++) {
System.out.print(i + " ");
if((i%10)==0) {
System.out.println();
Thread.sleep(250);

}

// Use synchronized block to check suspended and stopped.
synchronized(this) {
while(suspended) {
wait();

}
if(stopped) break;

}
}

} catch (InterruptedException exc) {
System.out.println(thrd.getName() + " interrupted.");

}
System.out.println(thrd.getName() + " exiting.");

}

// Stop the thread.
synchronized void mystop() {
stopped = true;

// The following lets a suspended thread be stopped.
suspended = false;
notify();

Java 2: A Beginner’s Guide 429

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:429

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Suspends thread when true.

Stops thread when true.

This synchronized block checks
suspended and stopped.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:430

}

// Suspend the thread.
synchronized void mysuspend() {
suspended = true;

}

// Resume the thread.
synchronized void myresume() {
suspended = false;
notify();

}
}

class Suspend {
public static void main(String args[]) {
MyThread ob1 = new MyThread("My Thread");

try {
Thread.sleep(1000); // let ob1 thread start executing

ob1.mysuspend();
System.out.println("Suspending thread.");
Thread.sleep(1000);

ob1.myresume();
System.out.println("Resuming thread.");
Thread.sleep(1000);

ob1.mysuspend();
System.out.println("Suspending thread.");
Thread.sleep(1000);

ob1.myresume();
System.out.println("Resuming thread.");
Thread.sleep(1000);

ob1.mysuspend();
System.out.println("Stopping thread.");
ob1.mystop();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

// wait for thread to finish

430 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 431

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:431

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

try {
ob1.thrd.join();

} catch (InterruptedException e) {
System.out.println("Main thread Interrupted");

}

System.out.println("Main thread exiting.");
}

}

Sample output from this program is shown here. (Your output may differ slightly.)

My Thread starting.
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
Suspending thread.
Resuming thread.
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
Suspending thread.
Resuming thread.
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120
Stopping thread.
My Thread exiting.
Main thread exiting.

Here is how the program works. The thread class MyThread defines two Boolean

variables, suspended and stopped, which govern the suspension and termination of a thread.

Both are initialized to false by the constructor. The run() method contains a synchronized

statement block that checks suspended. If that variable is true, the wait() method is invoked

to suspend the execution of the thread. To suspend execution of the thread, call mysuspend(),

which sets suspended to true. To resume execution, call myresume(), which sets suspended

to false and invokes notify() to restart the thread.

To stop the thread, call mystop(), which sets stopped to true. In addition, mystop() sets

suspended to false and then calls notify(). These steps are necessary to stop a suspended thread.

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

One other note about the preceding program. Notice that suspended and stopped are

preceded by the keyword volatile. The volatile modifier is another of Java’s keywords, and is

discussed in Module 12. Briefly, it tells the compiler that a variable can be changed

unexpectedly by other parts of your program, such as another thread.

Project 11-2 Using the Main Thread
All Java programs have at least one thread of execution, called the main thread,

which is given to the program automatically when it begins running. So far, we

have been taking the main thread for granted. In this project, you will see that the main thread

can be handled just like all other threads.

Step by Step
1. Create a file called UseMain.java.

2. To access the main thread, you must obtain a Thread object that refers to it. You do this

by calling the currentThread() method, which is a static member of Thread. Its general

form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Therefore, if you call

currentThread() while execution is inside the main thread, you will obtain a reference

to the main thread. Once you have this reference, you can control the main thread just like

any other thread.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:432

432 Module 11: Multithreaded Programming

Ask the Expert
Q: Multithreading seems like a great way to improve the efficiency of my programs.

Can you give me any tips on effectively using it?

A: The key to effectively utilizing multithreading is to think concurrently rather than

serially. For example, when you have two subsystems within a program that are fully

independent of each other, consider making them into individual threads. A word of

caution is in order, however. If you create too many threads, you can actually degrade

the performance of your program rather than enhance it. Remember, overhead is

associated with context switching. If you create too many threads, more CPU time

will be spent changing contexts than in executing your program!

UseMain.java

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. Enter the following program into the file. It obtains a reference to the main thread, and then

gets and sets the main thread’s name and priority.

/*
Project 11-2

Controlling the main thread.
*/

class UseMain {
public static void main(String args[]) {
Thread thrd;

// Get the main thread.
thrd = Thread.currentThread();

// Display main thread's name.
System.out.println("Main thread is called: " +

thrd.getName());

// Display main thread's priority.
System.out.println("Priority: " +

thrd.getPriority());

System.out.println();

// Set the name and priority.
System.out.println("Setting name and priority.\n");
thrd.setName("Thread #1");
thrd.setPriority(Thread.NORM_PRIORITY+3);

System.out.println("Main thread is now called: " +
thrd.getName());

System.out.println("Priority is now: " +
thrd.getPriority());

}
}

4. The output from the program is shown here.

Main thread is called: main
Priority: 5

Java 2: A Beginner’s Guide 433

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:433

11

M
ul

tit
hr

ea
de

d
Pr

og
ra

m
m

in
g

Project
11-2

(continued)

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 11
Blind Folio 11:434

Setting name and priority.

Main thread is now called: Thread #1
Priority is now: 8

5. You need to be careful about what operations you perform on the main thread. For

example, if you add the following code to the end of main(), the program will never

terminate because it will be waiting for the main thread to end!

try {
thrd.join();

} catch(InterruptedException exc) {
System.out.println("Interrupted");

}

Module 11 Mastery Check
1. Why does Java’s multithreading capability enable you to write more efficient programs?

2. Multithreading is supported by the _________ class and the ________ interface.

3. When creating a runnable object, why might you want to extend Thread rather than

implement Runnable?

4. Show how to use join() to wait for a thread object called MyThrd to end.

5. Show how to set a thread called MyThrd to three levels above normal priority.

6. What is the effect of adding the synchronized keyword to a method?

7. The wait() and notify() methods are used to perform _______________________.

8. Change the TickTock class so that it actually keeps time. That is, have each tick take one

half second, and each tock take one half second. Thus, each tick-tock will take one second.

(Don’t worry about the time it takes to switch tasks, etc.)

9. Why can’t you use suspend(), resume(), and stop() for new programs?

10. What method defined by Thread obtains the name of a thread?

11. What does isAlive() return?

12. On your own, try adding synchronization to the Queue class developed in previous

modules so that it is safe for multithreaded use.

434 Module 11: Multithreaded Programming

P:\010Comp\Begin8\588-2\ch11.vp
Tuesday, November 05, 2002 9:49:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:435

Module12
Applets, Events, and
Miscellaneous Topics

CRITICAL SKILLS
12.1 Understand applet basics

12.2 Know the applet architecture

12.3 Create an applet skeleton

12.4 Initialize and terminate applets

12.5 Repaint applets

12.6 Output to the status window

12.7 Pass parameters to an applet

12.8 Know the Applet class

12.9 Understand the delegation event model

12.10 Use the delegation event model

12.11 Know the remaining Java keywords

435

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:436

Teaching the elements of the Java language is the primary goal of this book, and in this

regard, we are nearly finished. The preceding 11 modules have focused on the features of

Java defined by the language, such as its keywords, syntax, block structure, type conversion

rules, and so on. At this point, you have enough knowledge to write sophisticated, useful Java

programs. However, there is an important part of Java programming that requires more than

just an understanding of the language itself: the applet. The applet is the single most important

type of Java application, and no book on Java would be complete without coverage of it.

Therefore, this module presents an overview of applet programming.

Applets use a unique architecture and require the use of several special programming

techniques. One of these techniques is event handling. Events are the way that an applet

receives input from the outside world. Since event handling is an important part of nearly all

applets, it is also introduced here.

Be forewarned: The topics of applets and event handling are very large. Full and detailed

coverage of them is well beyond the scope of this book. Here you will learn their fundamentals

and see several examples, but we will only scratch the surface. After finishing this module,

however, you will have a solid foundation upon which to begin an in-depth study of these

important topics.

This module ends with a description of a few of Java’s keywords, such as instanceof and

native, that have not been described elsewhere in this book. These keywords are used for more

advanced programming, but they are summarized here for completeness.

CRITICAL SKILL

12.1 Applet Basics
Applets differ from the type of programs shown in the preceding modules. As mentioned in

Module 1, applets are small programs that are designed for transmission over the Internet and run

within a browser. Because Java’s virtual machine is in charge of executing all Java programs,

including applets, applets offer a secure way to dynamically download and execute programs

over the Web. Before discussing any theory or details, let’s begin by examining a simple applet.

It performs one function: It displays the string “Java makes applets easy.” inside a window.

// A minimal applet.
import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("Java makes applets easy.", 20, 20);

}
}

436 Module 12: Applets, Events, and Miscellaneous Topics

Notice these import statements.
They are used by all applets.

This outputs to the
applet’s window.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 437

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:437

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

This applet begins with two import statements. The first imports the Abstract Window

Toolkit (AWT) classes. Applets interact with the user through the AWT, not through the

console-based I/O classes. The AWT contains support for a window-based, graphical

interface. As you might expect, it is quite large and sophisticated. A complete discussion of

it would require a book of its own. Fortunately, since we will be creating only very simple

applets, we will make only limited use of the AWT. The next import statement imports the

applet package. This package contains the class Applet. Every applet that you create must be

a subclass of Applet.

The next line in the program declares the class SimpleApplet. This class must be declared

as public because it will be accessed by outside code.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT Component

class (which is a superclass of Applet) and must be overridden by the applet. paint() is called

each time the applet must redisplay its output. This can occur for several reasons. For example,

the window in which the applet is running can be overwritten by another window and then

uncovered. Or the applet window can be minimized and then restored. paint() is also called

when the applet begins execution. Whatever the cause, whenever the applet must redraw its

output, paint() is called. The paint() method has one parameter of type Graphics. This

parameter will contain the graphics context, which describes the graphics environment in which

the applet is running. This context is used whenever output to the applet is required.

Inside paint(), there is a call to drawString(), which is a member of the Graphics class.

This method outputs a string beginning at the specified X,Y location. It has the following

general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left

corner is location 0,0. The call to drawString() in the applet causes the message to be

displayed beginning at location 20,20.

Notice that the applet does not have a main() method. Unlike the programs shown earlier

in this book, applets do not begin execution at main(). In fact, most applets don’t even have a

main() method. Instead, an applet begins execution when the name of its class is passed to a

browser or other applet-enabled program.

After you have entered the source code for SimpleApplet, you compile in the same way

that you have been compiling programs. However, running SimpleApplet involves a different

process. There are two ways in which you can run an applet: inside a browser or with a special

development tool that displays applets. The tool provided with the standard Java SDK is called

appletviewer, and we will use it to run the applets developed in this module. Of course, you can

also run them in your browser, but the appletviewer is much easier to use during development.

To execute an applet (in either a Web browser or the appletviewer), you need to write a

short HTML text file that contains the appropriate APPLET tag. (You can also use the newer

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:438

OBJECT tag, but this book will use APPLET because this is the traditional approach.) Here is

the HTML file that will execute SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>
</applet>

The width and height statements specify the dimensions of the display area used by the applet.

To execute SimpleApplet with an applet viewer, you will execute this HTML file. For

example, if the preceding HTML file is called StartApp.html, then the following command

line will run SimpleApplet:

C:\>appletviewer StartApp.html

Although there is nothing wrong with using a stand-alone HTML file to execute an applet,

there is an easier way. Simply include a comment near the top of your applet’s source code

file that contains the APPLET tag. If you use this method, the SimpleApplet source file looks

like this:

import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleApplet" width=200 height=60>
</applet>
*/

public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("Java makes applets easy.", 20, 20);

}
}

Now you can execute the applet by passing the name of its source file to appletviewer.

For example, this command line will now display SimpleApplet.

C:>appletviewer SimpleApplet.java

The window produced by SimpleApplet, as displayed by appletviewer, is shown in the

following illustration:

438 Module 12: Applets, Events, and Miscellaneous Topics

This HTML is used by appletviewer
to run the applet.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

When using appletviewer, keep in mind that it provides the window frame. Applets run in

a browser will not have a visible frame.

Let’s review an applet’s key points:

● All applets are subclasses of Applet.

● Applets do not need a main() method.

● Applets must be run under an applet viewer or a Java-compatible browser.

● User I/O is not accomplished with Java’s stream I/O classes. Instead, applets use the

interface provided by the AWT.

Progress Check
1. What is an applet?

2. What method outputs to the applet’s window?

3. What package must be included when creating an applet?

4. How are applets run?

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:439

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Java 2: A Beginner’s Guide 439

1. An applet is a special type of Java program that is designed for transmission over the Internet and that runs inside a browser.

2. The paint() method displays output in an applet’s window.

3. The package java.applet must be included when creating an applet.

4. Applets are executed by a browser or by special tools, such as appletviewer.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:440

Applet Organization and Essential Elements
Although the preceding applet is completely valid, such a simple applet is of little value.

Before you can create useful applets, however, you need to know more about how applets are

organized, what methods they use, and how they interact with the run-time system.

CRITICAL SKILL

12.2 The Applet Architecture
An applet is a window-based program. As such, its architecture is different from the

console-based programs shown in the first part of this book. If you are familiar with Windows

programming, you will be right at home writing applets. If not, then there are a few key

concepts you must understand.

First, applets are event driven, and an applet resembles a set of interrupt service routines.

Here is how the process works. An applet waits until an event occurs. The run-time system

notifies the applet about an event by calling an event handler that has been provided by the

applet. Once this happens, the applet must take appropriate action and then quickly return

control to the system. This is a crucial point. For the most part, your applet should not enter a

“mode” of operation, in which it maintains control for an extended period. Instead, it must

perform specific actions in response to events and then return control to the run-time system.

In those situations in which your applet needs to perform a repetitive task on its own (for

example, displaying a scrolling message across its window), you must start an additional

thread of execution.

Second, it is the user who initiates interaction with an applet—not the other way around. In

a console-based program, when the program needs input, it will prompt the user and then call

some input method. This is not the way it works in an applet. Instead, the user interacts with

the applet as he or she wants, when he or she wants. These interactions are sent to the applet as

events to which the applet must respond. For example, when the user clicks a mouse inside the

applet’s window, a mouse-clicked event is generated. If the user presses a key while the

applet’s window has input focus, a keypress event is generated. Applets can contain various

controls, such as push buttons and check boxes. When the user interacts with one of these

controls, an event is generated.

While the architecture of an applet is not as easy to understand as that of a console-based

program, Java makes it as simple as possible. If you have written programs for Windows, you

know how intimidating that environment can be. Fortunately, Java provides a much cleaner

approach that is more quickly mastered.

440 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 441

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:441

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

CRITICAL SKILL

12.3 A Complete Applet Skeleton
Although SimpleApplet shown earlier is a real applet, it does not contain all of the elements

required by most applets. Actually, all but the most trivial applets override a set of methods

that provide the basic mechanism by which the browser or applet viewer interfaces to the

applet and controls its execution. Four of these methods—init(), start(), stop(), and

destroy()—are defined by Applet. The fifth method, paint(), you have already seen

and is inherited from the AWT Component class. Since default implementations for all of

these methods are provided, applets do not need to override those methods they do not use.

These five methods can be assembled into the skeleton shown here:

// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/

public class AppletSkel extends Applet {
// Called first.
public void init() {
// initialization

}

/* Called second, after init(). Also called whenever
the applet is restarted. */

public void start() {
// start or resume execution

}

// Called when the applet is stopped.
public void stop() {
// suspends execution

}

/* Called when applet is terminated. This is the last
method executed. */

public void destroy() {
// perform shutdown activities

}

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:442

// Called when an applet's window must be restored.
public void paint(Graphics g) {
// redisplay contents of window

}
}

Although this skeleton does not do anything, it can be compiled and run. Thus, it can be

used as a starting point for applets that you create.

CRITICAL SKILL

12.4 Applet Initialization and Termination
It is important to understand the order in which the various methods shown in the skeleton are

executed. When an applet begins, the following methods are called in this sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

Let’s look more closely at these methods.

The init() method is the first method to be called. In init() your applet will initialize

variables and perform any other startup activities.

The start() method is called after init(). It is also called to restart an applet after it has

been stopped, such as when the user returns to a previously displayed Web page that contains

an applet. Thus, start() might be called more than once during the life cycle of an applet.

The paint() method is called each time your applet’s output must be redrawn and was

described earlier.

When the page containing your applet is left, the stop() method is called. You will use

stop() to suspend any child threads created by the applet and to perform any other activities

required to put the applet in a safe, idle state. Remember, a call to stop() does not mean that

the applet should be terminated because it might be restarted with a call to start() if the user

returns to the page.

The destroy() method is called when the applet is no longer needed. It is used to perform

any shutdown operations required of the applet.

442 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. What are the five methods that most applets will override?

2. What must your applet do when start() is called?

3. What must your applet do when stop() is called?

CRITICAL SKILL

12.5 Requesting Repainting
As a general rule, an applet writes to its window only when its paint() method is called by

the run-time system. This raises an interesting question: How can the applet itself cause its

window to be updated when its information changes? For example, if an applet is displaying

a moving banner, what mechanism does the applet use to update the window each time this

banner scrolls? Remember that one of the fundamental architectural constraints imposed on an

applet is that it must quickly return control to the Java run-time system. It cannot create a loop

inside paint() that repeatedly scrolls the banner, for example. This would prevent control

from passing back to the run-time system. Given this constraint, it may seem that output to

your applet’s window will be difficult at best. Fortunately, this is not the case. Whenever your

applet needs to update the information displayed in its window, it simply calls repaint().

The repaint() method is defined by the AWT’s Component class. It causes the

run-time system to execute a call to your applet’s update() method, which, in its default

implementation, calls paint(). Thus, for another part of your applet to output to its window,

simply store the output and then call repaint(). This causes a call to paint(), which can

display the stored information. For example, if part of your applet needs to output a string,

it can store this string in a String variable and then call repaint(). Inside paint(), you will

output the string using drawString().

The simplest version of repaint() is shown here:

void repaint()

This version causes the entire window to be repainted.

Java 2: A Beginner’s Guide 443

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:443

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

1. The five methods are init(), start(), stop(), destroy(), and paint().

2. When start() is called, the applet must be started, or restarted.

3. When stop() is called, the applet must be paused.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:444

Another version of repaint() specifies a region that will be repainted:

void repaint(int left, int top, int width, int height)

Here, the coordinates of the upper-left corner of the region are specified by left and top, and

the width and height of the region are passed in width and height. These dimensions are

specified in pixels. You save time by specifying a region to repaint because window updates

are costly in terms of time. If you only need to update a small portion of the window,

it is more efficient to repaint only that region.

An example that demonstrates repaint() is found in Project 12-1.

The update() Method
There is another method that relates to repainting called update() that your applet may want

to override. This method is defined by the Component class, and it is called when your applet

has requested that a portion of its window be redrawn. The default version of update() erases

the applet’s window using the background color, sets the foreground color, and then calls

paint(). An alternative approach is to override the update() method so that it performs all

necessary display activities. Then have paint() simply call update(). Thus, for some

applications, the applet skeleton will override paint() and update(), as shown here:

public void update(Graphics g) {
// redisplay your window, here.

}

public void paint(Graphics g) {
update(g);

}

For the examples in this book, we will not be overriding update(), but this might be a useful

technique in your own applets.

444 Module 12: Applets, Events, and Miscellaneous Topics

Ask the Expert
Q: Is it possible for a method other than paint() or update() to output to an

applet’s window?

A: Yes. To do so, you must obtain a graphics context by calling getGraphics() (defined by

Component) and then use this context to output to the window. However, for most

applications, it is better and easier to route window output through paint() and to call

repaint() when the contents of the window change.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Project 12-1 A Simple Banner Applet
To demonstrate repaint(), a simple banner applet is presented. This applet

scrolls a message, from right to left, across the applet’s window. Since the

scrolling of the message is a repetitive task, it is performed by a separate thread, created by the

applet when it is initialized. Banners are popular Web features, and this project shows how to

use a Java applet to create one.

Step by Step
1. Create a file called Banner.java.

2. Begin creating the banner applet with the following lines.

/*
Project 12-1

A simple banner applet.

This applet creates a thread that scrolls
the message contained in msg right to left
across the applet's window.

*/
import java.awt.*;
import java.applet.*;
/*
<applet code="Banner" width=300 height=50>
</applet>
*/

public class Banner extends Applet implements Runnable {
String msg = " Java Rules the Web ";
Thread t;
boolean stopFlag;

// Initialize t to null.
public void init() {
t = null;

}

Notice that Banner extends Applet, as expected, but it also implements Runnable. This is

necessary since the applet will be creating a second thread of execution that will be used to

scroll the banner. The message that will be scrolled in the banner is contained in the String

variable msg. A reference to the thread that runs the applet is stored in t. The Boolean variable

stopFlag is used to stop the applet. Inside init(), the thread reference variable t is set to null.

Java 2: A Beginner’s Guide 445

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:445

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Project
12-1

Banner.java

(continued)

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:446

446 Module 12: Applets, Events, and Miscellaneous Topics

3. Add the start() method shown next.

// Start thread
public void start() {
t = new Thread(this);
stopFlag = false;
t.start();

}

The run-time system calls start() to start the applet running. Inside start(), a new thread of

execution is created and assigned to the Thread variable t. Then, stopFlag is set to false.

Next, the thread is started by a call to t.start(). Remember that t.start() calls a method

defined by Thread, which causes run() to begin executing. It does not cause a call to the

version of start() defined by Applet. These are two separate methods.

4. Add the run() method, as shown here.

// Entry point for the thread that runs the banner.
public void run() {
char ch;

// Display banner
for(; ;) {
try {
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;

} catch(InterruptedException exc) {}
}

}

In run(), the characters in the string contained in msg are repeatedly rotated left. Between

each rotation, a call to repaint() is made. This eventually causes the paint() method to be

called, and the current contents of msg are displayed. Between each iteration, run() sleeps

for a quarter of a second. The net effect of run() is that the contents of msg are scrolled

right to left in a constantly moving display. The stopFlag variable is checked on each

iteration. When it is true, the run() method terminates.

5. Add the code for stop() and paint() as shown here.

// Pause the banner.
public void stop() {
stopFlag = true;

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

t = null;
}

// Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);

}

If a browser is displaying the applet when a new page is viewed, the stop() method is

called, which sets stopFlag to true, causing run() to terminate. It also sets t to null. Thus,

there is no longer a reference to the Thread object, and it can be recycled the next time the

garbage collector runs. This is the mechanism used to stop the thread when its page is no

longer in view. When the applet is brought back into view, start() is once again called,

which starts a new thread to execute the banner.

6. The entire banner applet is shown here:

/*
Project 12-1

A simple banner applet.

This applet creates a thread that scrolls
the message contained in msg right to left
across the applet's window.

*/
import java.awt.*;
import java.applet.*;
/*
<applet code="Banner" width=300 height=50>
</applet>
*/

public class Banner extends Applet implements Runnable {
String msg = " Java Rules the Web ";
Thread t;
boolean stopFlag;

// Initialize t to null.
public void init() {
t = null;

}

// Start thread
public void start() {
t = new Thread(this);

Java 2: A Beginner’s Guide 447

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:447

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Project
12-1

(continued)

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

stopFlag = false;
t.start();

}

// Entry point for the thread that runs the banner.
public void run() {
char ch;

// Display banner
for(; ;) {
try {
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;

} catch(InterruptedException exc) {}
}

}

// Pause the banner.
public void stop() {
stopFlag = true;
t = null;

}

// Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);

}
}

Sample output is shown here:

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:448

448 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

12
CRITICAL SKILL

12.6 Using the Status Window
In addition to displaying information in its window, an applet can also output a message

to the status window of the browser or applet viewer on which it is running. To do so, call

showStatus(), which is defined by Applet, with the string that you want displayed. The

general form of showStatus() is shown here:

void showStatus(String msg)

Here, msg is the string to be displayed.

The status window is a good place to give the user feedback about what is occurring in

the applet, suggest options, or possibly report some types of errors. The status window also

makes an excellent debugging aid, because it gives you an easy way to output information

about your applet.

The following applet demonstrates showStatus():

// Using the Status Window.
import java.awt.*;
import java.applet.*;
/*
<applet code="StatusWindow" width=300 height=50>
</applet>
*/

public class StatusWindow extends Applet{
// Display msg in applet window.
public void paint(Graphics g) {
g.drawString("This is in the applet window.", 10, 20);
showStatus("This is shown in the status window.");

}
}

Sample output from this program is shown here:

Java 2: A Beginner’s Guide 449

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:449

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CRITICAL SKILL

12.7 Passing Parameters to Applets
You can pass parameters to your applet. To do so, use the PARAM attribute of the APPLET tag,

specifying the parameter’s name and value. To retrieve a parameter, use the getParameter()

method, defined by Applet. Its general form is shown here:

String getParameter(String paramName)

Here, paramName is the name of the parameter. It returns the value of the specified parameter in

the form of a String object. Thus, for numeric and boolean values, you will need to convert their

string representations into their internal formats. If the specified parameter cannot be found, null

is returned. Therefore, be sure to confirm that the value returned by getParameter() is valid.

Also, check any parameter that is converted into a numeric value, confirming that a valid

conversion took place.

Here is an example that demonstrates passing parameters:

// Pass a parameter to an applet.
import java.awt.*;
import java.applet.*;

/*
<applet code="Param" width=300 height=80>
<param name=author value="Herb Schildt">
<param name=purpose value="Demonstrate Parameters">
<param name=version value=2>
</applet>
*/

public class Param extends Applet {
String author;
String purpose;
int ver;

public void start() {
String temp;

author = getParameter("author");
if(author == null) author = "not found";

purpose = getParameter("purpose");
if(purpose == null) purpose = "not found";

temp = getParameter("version");
try {

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:450

450 Module 12: Applets, Events, and Miscellaneous Topics

These HTML parameters are
passed to the applet.

It is important to check that
the parameter exists!

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if(temp != null)
ver = Integer.parseInt(temp);

else
ver = 0;

} catch(NumberFormatException exc) {
ver = -1; // error code

}
}

public void paint(Graphics g) {
g.drawString("Purpose: " + purpose, 10, 20);
g.drawString("By: " + author, 10, 40);
g.drawString("Version: " + ver, 10, 60);

}
}

Sample output from this program is shown here:

Progress Check
1. How do you cause an applet’s paint() method to be called?

2. Where does showStatus() display a string?

3. What method is used to obtain a parameter specified in the APPLET tag?

Java 2: A Beginner’s Guide 451

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:451

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

It is also important to make sure
that numeric conversions succeed.

1. To cause paint() to be called, call repaint().

2. showStatus() displays output in an applet’s status window.

3. To obtain a parameter, call getParameter().

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:452

CRITICAL SKILL

12.8 The Applet Class
As mentioned, all applets are subclasses of the Applet class. Applet inherits the following

superclasses defined by the AWT: Component, Container, and Panel. Thus, an applet has

access to the full functionality of the AWT.

In addition to the methods described in the preceding sections, Applet contains several

others that give you detailed control over the execution of your applet. All of the methods

defined by Applet are shown in Table 12-1.

452 Module 12: Applets, Events, and Miscellaneous Topics

Method Description

void destroy() Called by the browser just before an applet is terminated.
Your applet will override this method if it needs to perform
any cleanup prior to its destruction.

AccessibleContext getAccessibleContext() Returns the accessibility context for the invoking object.

AppletContext getAppletContext() Returns the context associated with the applet.

String getAppletInfo() Returns a string that describes the applet.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url.

AudioClip getAudioClip(URL url,
String clipName)

Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url and having
the name specified by clipName.

URL getCodeBase() Returns the URL associated with the invoking applet.

URL getDocumentBase() Returns the URL of the HTML document that invokes
the applet.

Image getImage(URL url) Returns an Image object that encapsulates the image
found at the location specified by url.

Image getImage(URL url,
String imageName)

Returns an Image object that encapsulates the image
found at the location specified by url and having the
name specified by imageName.

Locale getLocale() Returns a Locale object that is used by various
locale-sensitive classes and methods.

Table 12-1 The Methods Defined by Applet

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 453

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:453

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Method Description

String getParameter(String paramName) Returns the parameter associated with paramName. null
is returned if the specified parameter is not found.

String[] [] getParameterInfo() Returns a String table that describes the parameters
recognized by the applet. Each entry in the table must
consist of three strings that contain the name of the
parameter, a description of its type and/or range, and an
explanation of its purpose.

void init() This method is called when an applet begins execution.
It is the first method called for any applet.

boolean isActive() Returns true if the applet has been started. It returns false
if the applet has been stopped.

static final AudioClip
newAudioClip(URL url)

Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url. This method is
similar to getAudioClip() except that it is static and can
be executed without the need for an Applet object.

void play(URL url) If an audio clip is found at the location specified by url,
the clip is played.

void play(URL url, String clipName) If an audio clip is found at the location specified by url
with the name specified by clipName, the clip is played.

void resize(Dimension dim) Resizes the applet according to the dimensions specified
by dim. Dimension is a class stored inside java.awt. It
contains two integer fields: width and height.

void resize(int width, int height) Resizes the applet according to the dimensions specified
by width and height.

final void setStub(AppletStub stubObj) Makes stubObj the stub for the applet. This method is used
by the run-time system and is not usually called by your
applet. A stub is a small piece of code that provides the
linkage between your applet and the browser.

void showStatus(String str) Displays str in the status window of the browser or applet
viewer. If the browser does not support a status window,
then no action takes place.

void start() Called by the browser when an applet should start (or
resume) execution. It is automatically called after init()
when an applet first begins.

void stop() Called by the browser to suspend execution of the applet.
Once stopped, an applet is restarted when the browser
calls start().

Table 12-1 The Methods Defined by Applet (continued)

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:454

454 Module 12: Applets, Events, and Miscellaneous Topics

Event Handling
Applets are event-driven programs. Thus, event handling is at the core of successful applet

programming. Most events to which your applet will respond are generated by the user. These

events are passed to your applet in a variety of ways, with the specific method depending upon

the actual event. There are several types of events. The most commonly handled events are

those generated by the mouse, the keyboard, and various controls, such as a push button.

Events are supported by the java.awt.event package.

Before beginning our discussion of event handling, an important point must be made: The

way events are handled by an applet changed significantly between the original version of Java

(1.0) and modern versions of Java, beginning with version 1.1. The 1.0 method of event handling

is still supported, but it is not recommended for new programs. Also, many of the methods that

support the old 1.0 event model have been deprecated. The modern approach is the way that

events should be handled by all new programs, and it is the method described here.

Once again, it must be mentioned that it is not possible to fully discuss Java’s event

handling mechanism. Event handling is a large topic with many special features and attributes,

and a complete discussion is well beyond the scope of this book. However, the overview

presented here will help you get started.

CRITICAL SKILL

12.9 The Delegation Event Model
The modern approach to handling events is based on the delegation event model. The

delegation event model defines standard and consistent mechanisms to generate and process

events. Its concept is quite simple: a source generates an event and sends it to one or more

listeners. In this scheme, the listener simply waits until it receives an event. Once received, the

listener processes the event and then returns. The advantage of this design is that the logic that

processes events is cleanly separated from the user interface logic that generates those events.

A user interface element is able to “delegate” the processing of an event to a separate piece of

code. In the delegation event model, listeners must register with a source in order to receive an

event notification.

Events
In the delegation model, an event is an object that describes a state change in a source. It can

be generated as a consequence of a person interacting with the elements in a graphical user

interface, such as pressing a button, entering a character via the keyboard, selecting an item in

a list, and clicking the mouse.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 455

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:455

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Event Sources
An event source is an object that generates an event. A source must register listeners in order

for the listener to receive notifications about a specific type of event. Each type of event has its

own registration method. Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example, the

method that registers a keyboard event listener is called addKeyListener(). The method that

registers a mouse motion listener is called addMouseMotionListener(). When an event

occurs, all registered listeners are notified and receive a copy of the event object.

A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example, to

remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates events.

For example, the Component class provides methods to add and remove keyboard and mouse

event listeners.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major requirements. First,

it must have been registered with one or more sources to receive notifications about specific

types of events. Second, it must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines methods that

receive notifications when the mouse is dragged or moved. Any object may receive and

process one or both of these events if it provides an implementation of this interface.

Event Classes
The classes that represent events are at the core of Java’s event handling mechanism. At the

root of the Java event class hierarchy is EventObject, which is in java.util. It is the superclass

for all events. The class AWTEvent, defined within the java.awt package, is a subclass of

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:456

456 Module 12: Applets, Events, and Miscellaneous Topics

EventObject. It is the superclass (either directly or indirectly) for all AWT-based events used

by the delegation event model.

The package java.awt.event defines several types of events that are generated by various

user interface elements. Table 12-2 enumerates the most commonly used ones and provides a

brief description of when they are generated.

Event Listener Interfaces
Event listeners receive event notifications. Listeners are created by implementing one or more

of the interfaces defined by the java.awt.event package. When an event occurs, the event

source invokes the appropriate method defined by the listener and provides an event object as

its argument. Table 12-3 lists commonly used listener interfaces and provides a brief

description of the methods they define.

Event Class Description

ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu item
is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs when a choice
selection is made or a checkable menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged or moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

Table 12-2 The Main Event Classes in java.awt.event

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Progress Check
1. Briefly explain the significance of EventObject and AWTEvent.

2. What is an event source? What is an event listener?

3. Listeners must be registered with a source in order to receive event notifications.

True or False?

Java 2: A Beginner’s Guide 457

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:457

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Interface Description

ActionListener Defines one method to receive action events. Action events are generated
by such things as push buttons and menus.

AdjustmentListener Defines one method to receive adjustment events, such as those produced
by a scroll bar.

ComponentListener Defines four methods to recognize when a component is hidden, moved,
resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or
removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.
An item event is generated by a check box, for example.

KeyListener Defines three methods to recognize when a key is pressed, released,
or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a
component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or moved.

TextListener Defines one method to recognize when a text value changes.

WindowListener Defines seven methods to recognize when a window is activated, closed,
deactivated, deiconified, iconified, opened, or quit.

Table 12-3 Common Event Listener Interfaces

1. EventObject is a superclass of all events. AWTEvent is a superclass of all AWT events that are handled by the

delegation event model.

2. An event source generates events. An event listener recieves event notifications.

3. True.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:458

CRITICAL SKILL

12.10 Using the Delegation Event Model
Now that you have had an overview of the delegation event model and its various components,

it is time to see it in practice. Applet programming using the delegation event model is actually

quite easy. Just follow these two steps:

1. Implement the appropriate interface in the listener so that it will receive the type of

event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient for the

event notifications.

Remember that a source may generate several types of events. Each event must be

registered separately. Also, an object may register to receive several types of events, but it

must implement all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at an example that

handles one of the most commonly used event generators: the mouse.

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and the MouseMotionListener

interfaces. The MouseListener interface defines five methods. If a mouse button is clicked,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered() method

is called. When it leaves, mouseExited() is called. The mousePressed() and mouseReleased()

methods are invoked when a mouse button is pressed and released, respectively. The general forms

of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener interface defines two methods. The mouseDragged()

method is called multiple times as the mouse is dragged. The mouseMoved() method

is called multiple times as the mouse is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

458 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

12The MouseEvent object passed in me describes the event. MouseEvent defines a number

of methods that you can use to get information about what happened. Probably the most

commonly used methods in MouseEvent are getX() and getY(). These return the X and Y

coordinates of the mouse when the event occurred. Their forms are shown here:

int getX()

int getY()

The next example will use these methods to display the current location of the mouse.

A Simple Mouse Event Applet
The following applet demonstrates handling mouse events. It displays the current coordinates

of the mouse in the applet’s status window. Each time a button is pressed, the word “Down” is

displayed at the location of the mouse pointer. Each time the button is released, the word “Up”

is shown. If a button is clicked, the message “Mouse clicked” is displayed in the upper-left

corner of the applet display area.

As the mouse enters or exits the applet window, a message is displayed in the upper-left

corner of the applet display area. When dragging the mouse, a * is shown, which tracks with

the mouse pointer as it is dragged. Notice that the two variables, mouseX and mouseY, store the

location of the mouse when a mouse pressed, released, or dragged event occurs. These

coordinates are then used by paint() to display output at the point of these occurrences.

// Demonstrate the mouse event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="MouseEvents" width=300 height=100>
</applet>

*/

public class MouseEvents extends Applet
implements MouseListener, MouseMotionListener {

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init() {
addMouseListener(this);
addMouseMotionListener(this);

}

Java 2: A Beginner’s Guide 459

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:459

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Register this class as a listener for
mouse events.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:460

460 Module 12: Applets, Events, and Miscellaneous Topics

// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
mouseX = 0;
mouseY = 10;
msg = "Mouse clicked.";
repaint();

}

// Handle mouse entered.
public void mouseEntered(MouseEvent me) {
mouseX = 0;
mouseY = 10;
msg = "Mouse entered.";
repaint();

}

// Handle mouse exited.
public void mouseExited(MouseEvent me) {
mouseX = 0;
mouseY = 10;
msg = "Mouse exited.";
repaint();

}

// Handle button pressed.
public void mousePressed(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Down";
repaint();

}

// Handle button released.
public void mouseReleased(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Up";
repaint();

}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me) {
// save coordinates
mouseX = me.getX();
mouseY = me.getY();

This, and the other event handlers,
respond to mouse events.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 461

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:461

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

msg = "*";
showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
repaint();

}

// Handle mouse moved.
public void mouseMoved(MouseEvent me) {
// show status
showStatus("Moving mouse at " + me.getX() + ", " +

me.getY());
}

// Display msg in applet window at current X,Y location.
public void paint(Graphics g) {
g.drawString(msg, mouseX, mouseY);

}
}

Sample output from this program is shown here:

Let’s look closely at this example. The MouseEvents class extends Applet and

implements both the MouseListener and MouseMotionListener interfaces. These two

interfaces contain methods that receive and process the various types of mouse events. Notice

that the applet is both the source and the listener for these events. This works because

Component, which supplies the addMouseListener() and addMouseMotionListener()

methods, is a superclass of Applet. Being both the source and the listener for events is a

common situation for applets.

Inside init(), the applet registers itself as a listener for mouse events. This is done by using

addMouseListener() and addMouseMotionListener(), which are members of Component.

They are shown here:

void addMouseListener(MouseListener ml)

void addMouseMotionListener(MouseMotionListener mml)

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:462

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the

object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and

MouseMotionListener interfaces. These are the event handlers for the various mouse events.

Each method handles its event and then returns.

CRITICAL SKILL

12.11 More Java Keywords
Before concluding this book, a few more Java keywords need to be briefly discussed:

● transient

● volatile

● instanceof

● native

● strictfp

● assert

These keywords are used in programs more advanced than those found in this book. However,

an overview of each is presented so that you will know their purpose.

The transient and volatile Modifiers
The transient and volatile keywords are type modifiers that handle somewhat specialized

situations. When an instance variable is declared as transient, then its value need not persist

when an object is stored. Thus, a transient field is one that does not affect the state of an object.

The volatile modifier was mentioned briefly in Module 11 but warrants a closer look.

Modifying a variable with volatile tells the compiler that the variable can be changed

unexpectedly by other parts of your program. As you saw in Module 11, one of these

situations involves multithreaded programs. In a multithreaded program, sometimes two or

more threads will share the same instance variable. For efficiency considerations, each thread

can keep its own, private copy of such a shared variable. The real (or master) copy of the

variable is updated at various times, such as when a synchronized method is entered. While

this approach works fine, there may be times when it is inefficient. In some cases, all that

really matters is that the master copy of a variable always reflects its current state. To ensure

this, simply specify the variable as volatile. Doing so tells the compiler that it must always use

the master copy of a volatile variable (or, at least, always keep any private copies up to date

462 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 463

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:463

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

with the master copy and vice versa). Also, accesses to the master variable must be executed in

the precise order in which they are executed on any private copy.

instanceof
Sometimes it is useful to know the type of an object during run time. For example, you might

have one thread of execution that generates various types of objects and another thread that

processes these objects. In this situation, it might be useful for the processing thread to know

the type of each object when it receives it. Another situation in which knowledge of an

object’s type at run time is important involves casting. In Java, an invalid cast causes a

run-time error. Many invalid casts can be caught at compile time. However, casts involving

class hierarchies can produce invalid casts that can only be detected at run time. Because a

superclass reference can refer to subclass objects, it is not always possible to know at compile

time whether or not a cast involving a superclass reference is valid. The instanceof keyword

addresses these types of situations.

The instanceof operator has this general form:

object instanceof type

Here, object is an instance of a class, and type is a class type. If object is of the specified

type or can be cast into the specified type, then the instanceof operator evaluates to true.

Otherwise, its result is false. Thus, instanceof is the means by which your program can

obtain run-time type information about an object.

strictfp
Java 2 added a new keyword to the Java language called strictfp. With the creation of Java 2,

the floating-point computation model was relaxed slightly to make certain floating-point

computations faster for certain processors, such as the Pentium. Specifically, the new model

does not require the truncation of certain intermediate values that occur during a computation.

By modifying a class or a method with strictfp, you ensure that floating-point calculations

(and thus all truncations) take place precisely as they did in earlier versions of Java. The

truncation affects only the exponent of certain operations. When a class is modified by

strictfp, all of the methods in the class are also strictfp automatically.

assert
The assert keyword was added to the Java language in 2002 by Java 2, version 1.4, so it is a

very recent addition. It is used during program development to create an assertion, which is

a condition that is expected to be true during the execution of the program. For example, you

might have a method that should always return a positive integer value. You might test this by

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:464

asserting that the return value is greater than zero using an assert statement. At run time, if the

condition actually is true, no other action takes place. However, if the condition is false, then

an AssertionError is thrown. Assertions are often used during testing to verify that some

expected condition is actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result is true,

then the assertion is true and no other action takes place. If the condition is false, then the

assertion fails and a default AssertionError object is thrown. For example,

assert n > 0;

If n is less than or equal to zero, then an AssertionError is thrown. Otherwise, no action

takes place.

The second form of assert is shown here:

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This value is

converted to its string format and displayed if an assertion fails. Typically, you will specify

a string for expr, but any non-void expression is allowed as long as it defines a reasonable

string conversion.

Programs that use assert must be compiled using the -source 1.4 option. For example,

to compile a program called Sample.java that contains an assertion, use this line:

javac -source 1.4 Sample.java

To enable assertion checking at run time, you must specify the -ea option. For example,

to enable assertions for Sample, execute it using this line:

java -ea Sample

Assertions are a good addition to Java because they streamline the type of error checking that

is common during development. But be careful—you must not rely on an assertion to perform

any action actually required by the program. The reason is that normally, released code will be

run with assertions disabled and the expression in an assertion will not be evaluated.

464 Module 12: Applets, Events, and Miscellaneous Topics

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 465

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:465

12

Ap
pl

et
s,

Ev
en

ts
,a

nd
M

is
ce

lla
ne

ou
s

To
pi

cs

Native Methods
Although rare, there may occasionally be times when you will want to call a subroutine that is

written in a language other than Java. Typically, such a subroutine will exist as executable code

for the CPU and environment in which you are working—that is, native code. For example, you

may wish to call a native code subroutine in order to achieve faster execution time. Or you may

want to use a specialized, third-party library, such as a statistical package. However, since Java

programs are compiled to bytecode, which is then interpreted (or compiled on the fly) by the

Java run-time system, it would seem impossible to call a native code subroutine from within your

Java program. Fortunately, this conclusion is false. Java provides the native keyword, which is

used to declare native code methods. Once declared, these methods can be called from inside

your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not

define any body for the method. For example:

public native int meth() ;

Once you have declared a native method, you must write the native method and follow a rather

complex series of steps in order to link it with your Java code.

What Next?
Congratulations! If you have read and worked through the preceding 12 modules, then you can

call yourself a Java programmer. Of course, there are still many, many things to learn about

Java, its libraries, and its subsystems, but you now have a solid foundation upon which you

can build your knowledge and expertise.

Here are a few of the topics that you will want to learn more about:

● The Abstract Window Toolkit (AWT), including its various user interface elements, such

as push buttons, menus, lists, and scroll bars.

● Layout managers, which control how elements are displayed in an applet.

● Handling text and graphics output in a window.

● The event handling subsystem. Although introduced here, there is substantially more to it.

● Java’s networking classes.

● Java’s utility classes, especially its Collections Framework, which simplifies a number of

common programming tasks.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 12
Blind Folio 12:466

466 Module 12: Applets, Events, and Miscellaneous Topics

● Swing, which is an alternative to the AWT.

● Java Beans, which supports the creation of software components in Java.

● Creating native methods.

To continue your study of Java, I recommend my book Java 2: The Complete Reference

(McGraw-Hill/Osborne), which covers all the topics just mentioned plus many more. In it you

will find complete coverage of the Java language, its libraries, subsystems, and application.

Module 12 Mastery Check
1. What method is called when an applet first begins running? What method is called when an

applet is removed from the system?

2. Explain why an applet must use multithreading if it needs to run continually.

3. Enhance Project 12-1 so that it displays the string passed to it as a parameter. Add a second

parameter that specifies the time delay (in milliseconds) between each rotation.

4. Extra challenge: Create an applet that displays the current time, updated once per second.

To accomplish this, you will need to do a little research. Here is a hint to help you get

started: The easiest way to obtain the current time is to use a Calendar object, which is part

of the java.util package. (Remember, Sun provides online documentation for all of Java’s

standard classes.) You should now be at the point where you can examine the Calendar

class on your own and use its methods to solve this problem.

5. Briefly explain Java’s delegation event model.

6. Must an event listener register itself with a source?

7. Extra challenge: Another of Java’s display methods is drawLine(). It draws a line in the

currently selected color between two points. It is part of the Graphics class. Using

drawLine(), write a program that tracks mouse movement. If the button is pressed, have

the program draw a continuous line until the mouse button is released.

8. Briefly describe the assert keyword.

9. Give one reason why a native method might be useful to some types of programs.

10. On your own, continue to learn about Java. A good place to start is by examining Java’s

standard packages, such as java.util, java.awt, and java.net. These contain many exciting

classes that enable you to create powerful, Internet-enabled applications.

P:\010Comp\Begin8\588-2\ch12.vp
Tuesday, November 05, 2002 9:51:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Blind Folio A:467

AppendixA
Answers to
Mastery Checks

467

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:468

468 Appendix A: Answers to Mastery Checks

Module 1: Java Fundamentals
1. What is bytecode and why is it important to Java’s use for Internet programming?

Bytecode is a highly optimized set of instructions that is executed by the Java run-time interpreter.

Bytecode helps Java achieve both portability and security.

2. What are the three main principles of object-oriented programming?

Encapsulation, polymorphism, and inheritance.

3. Where do Java programs begin execution?

Java programs begin execution at main().

4. What is a variable?

A variable is a named memory location. The contents of a variable can be changed during the

execution of a program.

5. Which of the following variable names is invalid?

The invalid variable is d. Variable names cannot begin with a digit.

6. How do you create a single-line comment? How do you create a multiline comment?

A single-line comment begins with // and ends at the end of the line. A multiline comment begins

with /* and ends with */.

7. Show the general form of the if statement. Show the general form of the for loop.

The general form of the if:

if(condition) statement;

The general form of the for:

for(initialization; condition; iteration) statement;

8. How do you create a block of code?

A block of code is started with a { and ended with a }.

9. The moon’s gravity is about 17 percent that of the earth’s. Write a program that computes

your effective weight on the moon.

/*
Compute your weight on the moon.

Call this file Moon.java.
*/

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

class Moon {
public static void main(String args[]) {
double earthweight; // weight on earth
double moonweight; // weight on moon

earthweight = 165;

moonweight = earthweight * 0.17;

System.out.println(earthweight +
" earth-pounds is equivalent to " +
moonweight + " moon-pounds.");

}
}

10. Adapt Project 1-2 so that it prints a conversion table of inches to meters. Display 12 feet

of conversions, inch by inch. Output a blank line every 12 inches. (One meter equals

approximately 39.37 inches.)

/*
This program displays a conversion
table of inches to meters.

Call this program InchToMeterTable.java.
*/
class InchToMeterTable {
public static void main(String args[]) {
double inches, meters;
int counter;

counter = 0;
for(inches = 1; inches <= 144; inches++) {
meters = inches / 39.37; // convert to meters
System.out.println(inches + " inches is " +

meters + " meters.");

counter++;
// every 12th line, print a blank line
if(counter == 12) {
System.out.println();
counter = 0; // reset the line counter

}
}

}
}

Java 2: A Beginner’s Guide 469

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:469

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:470

470 Appendix A: Answers to Mastery Checks

11. If you make a typing mistake when entering your program, what sort of error will result?

A syntax error.

12. Does it matter where on a line you put a statement?

No, Java is a free-form language.

Module 2: Introducing Data Types and Operators
1. Why does Java strictly specify the range and behavior of its simple types?

Java strictly specifies the range and behavior of its simple types to ensure portability across platforms.

2. What is Java’s character type, and how does it differ from the character type used by many

other programming languages?

Java’s character type is char. Java characters are Unicode rather than ASCII, which is used by most

other computer languages.

3. A boolean value can have any value you like because any non-zero value is true.

True or False?

False. A boolean value must be either true or false.

4. Given this output,

One
Two
Three

use a single string to show the println() statement that produced it.

System.out.println("One\nTwo\nThree");

5. What is wrong with this fragment?

for(i = 0; i < 10; i++) {
int sum;

sum = sum + i;
}
System.out.println("Sum is: " + sum);

There are two fundamental flaws in the fragment. First, sum is created each time the block created by the

for loop is entered and destroyed on exit. Thus, it will not hold its value between iterations. Attempting to

use sum to hold a running sum of the iterations is pointless. Second, sum will not be known outside of the

block in which it is declared. Thus, the reference to it in the println() statement is invalid.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Explain the difference between the prefix and postfix forms of the increment operator.

When the increment operator precedes its operand, Java will perform the corresponding operation

prior to obtaining the operand’s value for use by the rest of the expression. If the operator follows its

operand, then Java will obtain the operand’s value before incrementing.

7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

if((b != 0) && (val / b) ...

8. In an expression, what type are byte and short promoted to?

In an expression, byte and short are promoted to int.

9. In general, when is a cast needed?

A cast is needed when converting between incompatible types or when a narrowing conversion is

occurring.

10. Write a program that finds all of the prime numbers between 1 and 100.

// Find prime numbers between 1 and 100.
class Prime {
public static void main(String args[]) {
int i, j;
boolean isprime;

for(i=1; i < 100; i++) {
isprime = true;

// see if the number is evenly divisible
for(j=2; j < i/2; j++)
// if it is, then it's not prime
if((i%j) == 0) isprime = false;

if(isprime)
System.out.println(i + " is prime.");

}
}

}

11. Does the use of redundant parentheses affect program performance?

No.

12. Does a block define a scope?

Yes.

Java 2: A Beginner’s Guide 471

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:471

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:472

472 Appendix A: Answers to Mastery Checks

Module 3: Program Control Statements
1. Write a program that reads characters from the keyboard until a period is received. Have the

program count the number of spaces. Report the total at the end of the program.

// Count spaces.
class Spaces {
public static void main(String args[])
throws java.io.IOException {

char ch;
int spaces = 0;

System.out.println("Enter a period to stop.");

do {
ch = (char) System.in.read();
if(ch == ' ') spaces++;

} while(ch != '.');

System.out.println("Spaces: " + spaces);
}

}

2. Show the general form of the if-else-if ladder.

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

.

.

.

else

statement;

3. Given

if(x < 10)
if(y > 100) {
if(!done) x = z;
else y = z;

}
else System.out.println("error"); // what if?

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

to what if does the last else associate?

The last else associates with the outer if, which is the nearest if at the same level as the else.

4. Show the for statement for a loop that counts from 1000 to 0 by –2.

for(int i = 1000; i >= 0; i -= 2) // ...

5. Is the following fragment valid?

for(int i = 0; i < num; i++)
sum += i;

count = i;

No; i is not known outside of the for loop in which it is declared.

6. Explain what break does. Be sure to explain both of its forms.

A break without a label causes termination of its immediately enclosing loop or switch statement.

A break with a label causes control to transfer to the end of the labeled block.

7. In the following fragment, after the break statement executes, what is displayed?

for(i = 0; i < 10; i++) {
while(running) {
if(x<y) break;
// ...

}
System.out.println("after while");

}
System.out.println("After for");

After break executes, “after while” is displayed.

8. What does the following fragment print?

for(int i = 0; i<10; i++) {
System.out.print(i + " ");
if((i%2) == 0) continue;
System.out.println();

}

Here is the answer:

0 1
2 3
4 5
6 7
8 9

Java 2: A Beginner’s Guide 473

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:473

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:474

474 Appendix A: Answers to Mastery Checks

9. The iteration expression in a for loop need not always alter the loop control variable by a

fixed amount. Instead, the loop control variable can change in any arbitrary way. Using this

concept, write a program that uses a for loop to generate and display the progression 1, 2, 4,

8, 16, 32, and so on.

/* Use a for loop to generate the progression

1 2 4 8 16, ...
*/
class Progress {
public static void main(String args[]) {

for(int i = 1; i < 100; i += i)
System.out.print(i + " ");

}
}

10. The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to

convert a lowercase letter to uppercase, subtract 32 from it. Use this information to write

a program that reads characters from the keyboard. Have it convert all lowercase letters

to uppercase, and all uppercase letters to lowercase, displaying the result. Make no changes to

any other character. Have the program stop when the user presses period. At the end, have

the program display the number of case changes that have taken place.

// Change case.
class CaseChg {
public static void main(String args[])
throws java.io.IOException {
char ch;
int changes = 0;

System.out.println("Enter period to stop.");

do {
ch = (char) System.in.read();
if(ch >= 'a' & ch <= 'z') {
ch -= 32;
changes++;
System.out.println(ch);

}
else if(ch >= 'A' & ch <= 'Z') {
ch += 32;
changes++;
System.out.println(ch);

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
} while(ch != '.');
System.out.println("Case changes: " + changes);

}
}

11. What is an infinite loop?

An infinite loop is a loop that runs indefinitely.

12. When using break with a label, must the label be on a block that contains the break?

Yes.

Module 4: Introducing Classes, Objects, and Methods
1. What is the difference between a class and an object?

A class is a logical abstraction that describes the form and behavior of an object. An object is a

physical instance of the class.

2. How is a class defined?

A class is defined by using the keyword class. Inside the class statement, you specify the code and

data that comprise the class.

3. What does each object have its own copy of?

Each object of a class has its own copy of the class’s instance variables.

4. Using two separate statements, show how to declare an object called counter of a class

called MyCounter.

MyCounter counter;
counter = new MyCounter();

5. Show how a method called myMeth() is declared if it has a return type of double and has

two int parameters called a and b.

double myMeth(int a, int b) { // ...

6. How must a method return if it returns a value?

A method that returns a value must return via the return statement, passing back the return value in

the process.

7. What name does a constructor have?

A constructor has the same name as its class.

Java 2: A Beginner’s Guide 475

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:475

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:476

8. What does new do?

The new operator allocates memory for an object and initializes it using the object’s constructor.

9. What is garbage collection and how does it work? What is finalize()?

Garbage collection is the mechanism that recycles unused objects so that their memory can be reused.

An object’s finalize() method is called just prior to an object being recycled.

10. What is this?

The this keyword is a reference to the object on which a method is invoked. It is automatically passed

to a method.

11. Can a constructor have one or more parameters?

Yes.

12. If a method returns no value, what must its return type be?

void

Module 5: More Data Types and Operators
1. Show two ways to declare a one-dimensional array of 12 doubles.

double x[] = new double[12];
double[] x = new double[12];

2. Show how to initialize a one-dimensional array of integers to the value 1 through 5.

int x[] = { 1, 2, 3, 4, 5 };

3. Write a program that uses an array to find the average of ten double values. Use any

ten values you like.

// Average 10 double values.
class Avg {
public static void main(String args[]) {
double nums[] = { 1.1, 2.2, 3.3, 4.4, 5.5,

6.6, 7.7, 8.8, 9.9, 10.1 };
double sum = 0;

for(int i=0; i < nums.length; i++)
sum += nums[i];

System.out.println("Average: " + sum / nums.length);
}

}

476 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 477

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:477

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

4. Change the sort in Project 5-1 so that it sorts an array of strings. Demonstrate that it works.

// Demonstrate the Bubble sort with strings.
class StrBubble {
public static void main(String args[]) {
String strs[] = {

"this", "is", "a", "test",
"of", "a", "string", "sort"

};
int a, b;
String t;
int size;

size = strs.length; // number of elements to sort

// display original array
System.out.print("Original array is:");
for(int i=0; i < size; i++)
System.out.print(" " + strs[i]);

System.out.println();

// This is the bubble sort for strings.
for(a=1; a < size; a++)
for(b=size-1; b >= a; b--) {
if(strs[b-1].compareTo(strs[b]) > 0) { // if out of order
// exchange elements
t = strs[b-1];
strs[b-1] = strs[b];
strs[b] = t;

}
}

// display sorted array
System.out.print("Sorted array is:");
for(int i=0; i < size; i++)
System.out.print(" " + strs[i]);

System.out.println();
}

}

5. What is the difference between the String methods indexOf() and lastIndexOf()?

The indexOf() method finds the first occurrence of the specified substring. lastIndexOf() finds

the last occurrence.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:478

478 Appendix A: Answers to Mastery Checks

6. Since all strings are objects of type String, show how you can call the length() and

charAt() methods on this string literal: "I like Java".

As strange as it may look, this is a valid call to length():

System.out.println("I like Java".length());

The output displayed is 11. charAt() is called in a similar fashion.

7. Expanding on the Encode cipher class, modify it so that it uses an eight-character

string as the key.

// An improved XOR cipher.
class Encode {
public static void main(String args[]) {
String msg = "This is a test";
String encmsg = "";
String decmsg = "";
String key = "abcdefgi";
int j;

System.out.print("Original message: ");
System.out.println(msg);

// encode the message
j = 0;
for(int i=0; i < msg.length(); i++) {
encmsg = encmsg + (char) (msg.charAt(i) ^ key.charAt(j));
j++;
if(j==8) j = 0;

}

System.out.print("Encoded message: ");
System.out.println(encmsg);

// decode the message
j = 0;
for(int i=0; i < msg.length(); i++) {
decmsg = decmsg + (char) (encmsg.charAt(i) ^ key.charAt(j));
j++;
if(j==8) j = 0;

}

System.out.print("Decoded message: ");
System.out.println(decmsg);

}
}

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

A8. Can the bitwise operators be applied to the double type?

No.

9. Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

Here is the answer:

y = x < 0 ? 10 : 20;

10. In the following fragment, is the & a bitwise or logical operator? Why?

boolean a, b;
// ...
if(a & b) ...

It is a logical operator because the operands are of type boolean.

11. Is it an error to overrun the end of an array?

Yes.

Is it an error to index an array with a negative value?

Yes. All array indexes start at zero.

12. What is the unsigned right-shift operator?

>>>

Module 6: A Closer Look at Methods and Classes
1. Given this fragment,

class X {
private int count;

is the following fragment correct?

class Y {
public static void main(String args[]) {
X ob = new X();

ob.count = 10;

No; a private member cannot be accessed outside of its class.

2. An access specifier must __________ a member’s declaration.

precede

Java 2: A Beginner’s Guide 479

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:479

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:480

3. The complement of a queue is a stack. It uses first-in, last-out accessing and is often likened

to a stack of plates. The first plate put on the table is the last plate used. Create a stack class

called Stack that can hold characters. Call the methods that access the stack push() and

pop(). Allow the user to specify the size of the stack when it is created. Keep all other

members of the Stack class private. (Hint: You can use the Queue class as a model; just

change the way that the data is accessed.)

// A stack class for characters.
class Stack {
private char stck[]; // this array holds the stack
private int tos; // top of stack

// Construct an empty Stack given its size.
Stack(int size) {
stck = new char[size]; // allocate memory for stack
tos = 0;

}

// Construct a Stack from a Stack.
Stack(Stack ob) {
tos = ob.tos;
stck = new char[ob.stck.length];

// copy elements
for(int i=0; i < tos; i++)
stck[i] = ob.stck[i];

}

// Construct a stack with initial values.
Stack(char a[]) {
stck = new char[a.length];

for(int i = 0; i < a.length; i++) {
push(a[i]);

}
}

// Push characters onto the stack.
void push(char ch) {
if(tos==stck.length) {
System.out.println(" -- Stack is full.");
return;

}

480 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

stck[tos] = ch;
tos++;

}

// Pop a character from the stack.
char pop() {
if(tos==0) {
System.out.println(" -- Stack is empty.");
return (char) 0;

}

tos--;
return stck[tos];

}
}

// Demonstrate the Stack class.
class SDemo {
public static void main(String args[]) {
// construct 10-element empty stack
Stack stk1 = new Stack(10);

char name[] = {'T', 'o', 'm'};

// construct stack from array
Stack stk2 = new Stack(name);

char ch;
int i;

// put some characters into stk1
for(i=0; i < 10; i++)
stk1.push((char) ('A' + i));

// construct stack from another stack
Stack stk3 = new Stack(stk1);

//show the stacks.
System.out.print("Contents of stk1: ");
for(i=0; i < 10; i++) {
ch = stk1.pop();
System.out.print(ch);

}

System.out.println("\n");

Java 2: A Beginner’s Guide 481

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:481

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:482

482 Appendix A: Answers to Mastery Checks

System.out.print("Contents of stk2: ");
for(i=0; i < 3; i++) {
ch = stk2.pop();
System.out.print(ch);

}

System.out.println("\n");

System.out.print("Contents of stk3: ");
for(i=0; i < 10; i++) {
ch = stk3.pop();
System.out.print(ch);

}
}

}

Here is the output from the program.

Contents of stk1: JIHGFEDCBA

Contents of stk2: moT

Contents of stk3: JIHGFEDCBA

4. Given this class:

class Test {
int a;
Test(int i) { a = i; }

}

write a method called swap() that exchanges the contents of the objects referred to by two

Test object references.

void swap(Test ob1, Test ob2) {
int t;

t = ob1.a;
ob1.a = ob2.a;
ob2.a = t;

}

5. Is the following fragment correct?

class X {
int meth(int a, int b) { ... }
String meth(int a, int b) { ... }

No. Overloaded methods can have different return types, but they do not play a role in overload

resolution. Overloaded methods must have different parameter lists.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. Write a recursive method that displays the contents of a string backwards.

// Display a string backwards using recursion.
class Backwards {
String str;

Backwards(String s) {
str = s;

}

void backward(int idx) {
if(idx != str.length()-1) backward(idx+1);

System.out.print(str.charAt(idx));
}

}

class BWDemo {
public static void main(String args[]) {
Backwards s = new Backwards("This is a test");

s.backward(0);
}

}

7. If all objects of a class need to share the same variable, how must you declare that variable?

Shared variables are declared as static.

8. Why might you need to use a static block?

A static block is used to perform any initializations related to the class, before any objects are created.

9. What is an inner class?

An inner class is a nonstatic nested class.

10. To make a member accessible by only other members of its class, what access specifier

must be used?

private

11. The name of a method plus its parameter list constitutes the method’s __________.

signature

12. An int argument is passed to a method by using call-by-__________.

value

Java 2: A Beginner’s Guide 483

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:483

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:484

Module 7: Inheritance
1. Does a superclass have access to the members of a subclass? Does a subclass have access

to the members of a superclass?

No, a superclass has no knowledge of its subclasses. Yes, a subclass has access to all nonprivate

members of its superclass.

2. Create a subclass of TwoDShape called Circle. Include an area() method that computes

the area of the circle and a constructor that uses super to initialize the TwoDShape portion.

// A subclass of TwoDShape for circles.
class Circle extends TwoDShape {
// A default constructor.
Circle() {
super();

}

// Construct Circle
Circle(double x) {
super(x, "circle"); // call superclass constructor

}

// Construct an object from an object.
Circle(Circle ob) {
super(ob); // pass object to TwoDShape constructor

}

double area() {
return (getWidth() / 2) * (getWidth() / 2) * 4.1416;

}
}

3. How do you prevent a subclass from having access to a member of a superclass?

To prevent a subclass from having access to a superclass member, declare that member as private.

4. Describe the purpose and use of both versions of super.

The super keyword has two forms. The first is used to call a superclass constructor. The general form

of this usage is

super(param-list);

The second form of super is used to access a superclass member. It has this general form:

super.member

484 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. Given the following hierarchy, in what order are the constructors for these classes called

when a Gamma object is instantiated?

class Alpha { ...

class Beta extends Alpha { ...

Class Gamma extends Beta { ...

Constructors are always called in order of derivation. Thus, when a Gamma object is created, the

order is Alpha, Beta, Gamma.

6. A superclass reference can refer to a subclass object. Explain why this is important

as it is related to method overriding.

When an overridden method is called through a superclass reference, it is the type of the object

being referred to that determines which version of the method is called.

7. What is an abstract class?

An abstract class contains at least one abstract method.

8. How do you prevent a method from being overridden? How do you prevent a class

from being inherited?

To prevent a method from being overridden, declare it as final. To prevent a class from being

inherited, declare it as final.

9. Explain how inheritance, method overriding, and abstract classes are used to support

polymorphism?

Inheritance, method overriding, and abstract classes support polymorphism by enabling you to create

a generalized class structure that can be implemented by a variety of classes. Thus, the abstract class

defines a consistent interface which is shared by all implemented classes. This embodies the concept

of “one interface, multiple methods.”

10. What class is a superclass of every other class?

The Object class

11. A class that contains at least one abstract method must, itself, be declared abstract. True or

False?

True.

12. What keyword is used to create a named constant?

final

Java 2: A Beginner’s Guide 485

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:485

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:486

486 Appendix A: Answers to Mastery Checks

Module 8: Packages and Interfaces
1. Using the code from Project 8-1, put the ICharQ interface and its three implementations

into a package called QPack. Keeping the queue demonstration class IQDemo in the

default package, show how to import and use the classes in QPack.

To put ICharQ and its implementations into the QPack package, you must separate each into its own

file, make each implementation class public, and add this statement to the top of each file.

package QPack;

Once this has been done, you can use QPack by adding this import statement to IQDemo.

import QPack.*;

2. What is a namespace? Why is it important that Java allows you to partition the namespace?

A namespace is a declarative region. By partitioning the namespace, you can prevent name collisions.

3. Packages are stored in __________.

directories

4. Explain the difference between protected and default access.

A member with protected access can be used within its package and by a subclass in any package.

A member with default access can be used only within its package.

5. Explain the two ways that the members of a package can be used by other packages.

To use a member of a package, you can either fully qualify its name, or you can import it using

import.

6. “One interface, multiple methods” is a key tenet of Java. What feature best exemplifies it?

The interface best exemplifies the one interface, multiple methods principle of OOP.

7. How many classes can implement an interface? How many interfaces can a class

implement?

An interface can be implemented by an unlimited number of classes. A class can implement as many

interfaces as it chooses.

8. Can interfaces be extended?

Yes, interfaces can be extended.

9. Create an interface for the Vehicle class from Module 7. Call the interface IVehicle.

interface IVehicle {

// Return the range.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 487

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:487

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

int range();

// Compute fuel needed for a given distance.
double fuelneeded(int miles);

// Access methods for instance variables.
int getPassengers();
void setPassengers(int p);
int getFuelcap();
void setFuelcap(int f);
int getMpg();
void setMpg(int m);

}

10. Variables declared in an interface are implicitly static and final. What good are they?

Interface variables are valuable as named constants that are shared by all files in a program. They are

brought into view by importing their interface.

11. A package is, in essence, a container for classes. True or False?

True.

12. What standard Java package is automatically imported into a program?

java.lang

Module 9: Exception Handling
1. What class is at the top of the exception hierarchy?

Throwable is at the top of the exception hierarchy.

2. Briefly explain how to use try and catch.

The try and catch statements work together. Program statements that you want to monitor for

exceptions are contained within a try block. An exception is caught using catch.

3. What is wrong with this fragment?

// ...
vals[18] = 10;
catch (ArrayIndexOutOfBoundsException exc) {
// handle error

}

There is no try block preceding the catch statement.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:488

488 Appendix A: Answers to Mastery Checks

4. What happens if an exception is not caught?

If an exception is not caught, abnormal program termination results.

5. What is wrong with this fragment?

class A extends Exception { ...

class B extends A { ...

// ...

try {
// ...

}
catch (A exc) { ... }
catch (B exc) { ... }

In the fragment, a superclass catch precedes a subclass catch. Since the superclass catch will catch

all subclasses too, unreachable code is created.

6. Can an exception caught by an inner catch rethrow that exception to an outer catch?

Yes, an exception can be rethrown.

7. The finally block is the last bit of code executed before your program ends. True or false?

Explain your answer.

False. The finally block is the code executed when a try block ends.

8. What type of exceptions must be explicitly declared in a throws clause of a method?

All exceptions except those of type RuntimeException and Error must be declared in a throws clause.

9. What is wrong with this fragment?

class MyClass { // ... }
// ...
throw new MyClass();

MyClass does not extend Throwable. Only subclasses of Throwable can be thrown by throw.

10. In question 3 of the Mastery Check in Module 6, you created a Stack class. Add custom

exceptions to your class that report stack full and stack empty conditions.

// An exception for stack-full errors.
class StackFullException extends Exception {
int size;

StackFullException(int s) { size = s; }

public String toString() {
return "\nStack is full. Maximum size is " +

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

Java 2: A Beginner’s Guide 489

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:489

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

size;
}

}

// An exception for stack-empty errors.
class StackEmptyException extends Exception {

public String toString() {
return "\nStack is empty.";

}
}

// A stack class for characters.
class Stack {
private char stck[]; // this array holds the stack
private int tos; // top of stack

// Construct an empty Stack given its size.
Stack(int size) {
stck = new char[size]; // allocate memory for stack
tos = 0;

}

// Construct a Stack from a Stack.
Stack(Stack ob) {
tos = ob.tos;
stck = new char[ob.stck.length];

// copy elements
for(int i=0; i < tos; i++)
stck[i] = ob.stck[i];

}

// Construct a stack with initial values.
Stack(char a[]) {
stck = new char[a.length];

for(int i = 0; i < a.length; i++) {
try {
push(a[i]);

}
catch(StackFullException exc) {
System.out.println(exc);

}
}

}

// Push characters onto the stack.

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:490

490 Appendix A: Answers to Mastery Checks

void push(char ch) throws StackFullException {
if(tos==stck.length)
throw new StackFullException(stck.length);

stck[tos] = ch;
tos++;

}

// Pop a character from the stack.
char pop() throws StackEmptyException {
if(tos==0)
throw new StackEmptyException();

tos--;
return stck[tos];

}
}

11. What are the three ways that an exception can be generated?

An exception can be generated by an error in the JVM, an error in your program, or explicitly

via a throw statement.

12. What are the two direct subclasses of Throwable?

Error and Exception

Module 10: Using I/O
1. Why does Java define both byte and character streams?

The byte streams are the original streams defined by Java. They are especially useful for binary I/O,

and they support random access files. The character streams are optimized for Unicode.

2. Even though console input and output is text-based, why does Java still use byte streams

for this purpose?

The predefined streams, System.in, System.out, and System.err, were defined before Java added

the character streams.

3. Show how to open a file for reading bytes.

Here is one way to open a file for byte input:

FileInputStream fin = new FileInputStream("test");

4. Show how to open a file for reading characters.

Here is one way to open a file for reading characters:

FileReader fr = new FileReader("test");

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 491

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:491

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

5. Show how to open a file for random access I/O.

Here is one way to open a file for random access:

randfile = new RandomAccessFile("test", "rw");

6. How do you convert a numeric string such as "123.23" into its binary equivalent?

To convert numeric strings into their binary equivalents, use the parsing methods defined by the

type wrappers, such as Integer or Double.

7. Write a program that copies a text file. In the process, have it convert all spaces into

hyphens. Use the byte stream file classes.

/* Copy a text file, substituting hyphens for spaces.

This version uses byte streams.

To use this program, specify the name
of the source file and the destination file.
For example,

java Hyphen source target
*/

import java.io.*;

class Hyphen {
public static void main(String args[])
throws IOException

{
int i;
FileInputStream fin;
FileOutputStream fout;

try {
// open input file
try {
fin = new FileInputStream(args[0]);

} catch(FileNotFoundException exc) {
System.out.println("Input File Not Found");
return;

}

// open output file
try {
fout = new FileOutputStream(args[1]);

} catch(FileNotFoundException exc) {
System.out.println("Error Opening Output File");

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:492

492 Appendix A: Answers to Mastery Checks

return;
}

} catch(ArrayIndexOutOfBoundsException exc) {
System.out.println("Usage: Hyphen From To");
return;

}

// Copy File
try {
do {
i = fin.read();
if((char)i == ' ') i = '-';
if(i != -1) fout.write(i);

} while(i != -1);
} catch(IOException exc) {
System.out.println("File Error");

}

fin.close();
fout.close();

}
}

8. Rewrite the program in question 7 so that it uses the character stream classes.

/* Copy a text file, substituting hyphens for spaces.

This version uses character streams.

To use this program, specify the name
of the source file and the destination file.
For example,

java Hyphen2 source target
*/

import java.io.*;

class Hyphen2 {
public static void main(String args[])
throws IOException

{
int i;
FileReader fin;
FileWriter fout;

try {
// open input file

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java 2: A Beginner’s Guide 493

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:493

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

try {
fin = new FileReader(args[0]);

} catch(FileNotFoundException exc) {
System.out.println("Input File Not Found");
return;

}

// open output file
try {
fout = new FileWriter(args[1]);

} catch(IOException exc) {
System.out.println("Error Opening Output File");
return;

}
} catch(ArrayIndexOutOfBoundsException exc) {
System.out.println("Usage: Hyphen2 From To");
return;

}

// Copy File
try {
do {
i = fin.read();
if((char)i == ' ') i = '-';
if(i != -1) fout.write(i);

} while(i != -1);
} catch(IOException exc) {
System.out.println("File Error");

}

fin.close();
fout.close();

}
}

9. What type of stream is System.in?

InputStream

10. What does the read() method of InputStream return when the end of the stream is reached?

−1

11. What type of stream is used to read binary data?

DataInputStream

12. Reader and Writer are at the top of the ____________ class hierarchies.

character-based I/O

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:494

Module 11: Multithreaded Programming
1. Why does Java’s multithreading capability enable you to write more efficient programs?

Multithreading allows you to take advantage of the idle time that is present in nearly all programs.

The essence of multithreading is that when one thread can’t run, another can.

2. Multithreading is supported by the __________ class and the __________ interface.

Multithreading is supported by the Thread class and the Runnable interface.

3. When creating a runnable object, why might you want to extend Thread rather than

implement Runnable?

You will extend Thread when you want to override one or more of Thread’s methods other than run().

4. Show how to use join() to wait for a thread object called MyThrd to end.

MyThrd.join();

5. Show how to set a thread called MyThrd to three levels above normal priority.

MyThrd.setPriority(Thread.NORM_PRIORITY+3);

6. What is the effect of adding the synchronized keyword to a method?

Adding synchronized to a method allows only one thread at a time to use the method for any given

object of its class.

7. The wait() and notify() methods are used to perform ____________________.

The wait() and notify() methods are used to perform interthread communication.

8. Change the TickTock class so that it actually keeps time. That is, have each tick take one

half second, and each tock take one half second. Thus, each tick-tock will take one second.

(Don’t worry about the time it takes to switch tasks, etc.)

To make the TickTock class actually keep time, simply add calls to sleep(), as shown here.

// Make the TickTock class actually keep time.

class TickTock {

synchronized void tick(boolean running) {
if(!running) { // stop the clock
notify(); // notify any waiting threads
return;

}

System.out.print("Tick ");

494 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// wait 1/2 second
try {
Thread.sleep(500);

} catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}

notify(); // let tock() run
try {
wait(); // wait for tock() to complete

}
catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}
}

synchronized void tock(boolean running) {
if(!running) { // stop the clock
notify(); // notify any waiting threads
return;

}

System.out.println("Tock");

// wait 1/2 second
try {
Thread.sleep(500);

} catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}

notify(); // let tick() run
try {
wait(); // wait for tick to complete

}
catch(InterruptedException exc) {
System.out.println("Thread interrupted.");

}
}

}

9. Why can’t you use suspend(), resume(), and stop() for new programs?

The suspend(), resume(), and stop() methods have been deprecated because they can cause serious

run-time problems.

Java 2: A Beginner’s Guide 495

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:495

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:496

10. What method defined by Thread obtains the name of a thread?

getName()

11. What does isAlive() return?

It returns true if the invoking thread is still running, and false if it has been terminated.

Module 12: Applets, Events, and Miscellaneous Topics
1. What method is called when an applet first begins running? What method is called

when an applet is removed from the system?

When an applet begins, the first method called is init(). When an applet is removed, destroy() is called.

2. Explain why an applet must use multithreading if it needs to run continually.

An applet must use multithreading if it needs to run continually because applets are event-driven

programs which must not enter a “mode” of operation. For example, if start() never returns, then

paint() will never be called.

3. Enhance Project 12-1 so that it displays the string passed to it as a parameter. Add a second

parameter that specifies the time delay (in milliseconds) between each rotation.

/* A simple banner applet that uses parameters.

*/
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamBanner" width=300 height=50>
<param name=message value=" I like Java! ">
<param name=delay value=500>
</applet>
*/

public class ParamBanner extends Applet implements Runnable {
String msg;
int delay;
Thread t;
boolean stopFlag;

// Initialize t to null.
public void init() {
String temp;

msg = getParameter("message");

496 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if(msg == null) msg = " Java Rules the Web ";

temp = getParameter("delay");
try {
if(temp != null)
delay = Integer.parseInt(temp);

else
delay = 250; // default if not specified

} catch(NumberFormatException exc) {
delay = 250 ; // default on error

}

t = null;
}

// Start thread
public void start() {
t = new Thread(this);
stopFlag = false;
t.start();

}

// Entry point for the thread that runs the banner.
public void run() {
char ch;

// Display banner
for(; ;) {
try {
repaint();
Thread.sleep(delay);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;

} catch(InterruptedException exc) {}
}

}

// Pause the banner.
public void stop() {
stopFlag = true;
t = null;

}

Java 2: A Beginner’s Guide 497

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:497

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:498

// Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);

}
}

4. Extra challenge: Create an applet that displays the current time, updated once per second.

To accomplish this, you will need to do a little research. Here is a hint to help you get

started: The easiest way to obtain the current time is to use a Calendar object, which is part

of the java.util package. (Remember, Sun provides online documentation for all of Java’s

standard classes.) You should now be at the point where you can examine the Calendar

class on your own and use its methods to solve this problem.

// A simple clock applet.

import java.util.*;
import java.awt.*;
import java.applet.*;
/*
<object code="Clock" width=200 height=50>
</object>
*/

public class Clock extends Applet implements Runnable {
String msg;
Thread t;
Calendar clock;

boolean stopFlag;

// Initialize
public void init() {
t = null;
msg = "";

}

// Start thread
public void start() {
t = new Thread(this);
stopFlag = false;
t.start();

}

// Entry point for the clock.
public void run() {
// Display clock

498 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

for(; ;) {
try {
clock = Calendar.getInstance();
msg = "Current time is " +

Integer.toString(clock.get(Calendar.HOUR));
msg = msg + ":" +

Integer.toString(clock.get(Calendar.MINUTE));
msg = msg + ":" +

Integer.toString(clock.get(Calendar.SECOND));
repaint();
Thread.sleep(1000);
if(stopFlag)
break;

} catch(InterruptedException exc) {}
}

}

// Pause the clock.
public void stop() {
stopFlag = true;
t = null;

}

// Display the clock.
public void paint(Graphics g) {
g.drawString(msg, 30, 30);

}
}

5. Briefly explain Java’s delegation event model.

In the delegation event model, a source generates an event and sends it to one or more listeners.

A listener simply waits until it receives an event. Once received, the listener processes the event

and then returns.

6. Must an event listener register itself with a source?

Yes; a listener must register with a source to receive events.

7. Extra challenge: Another of Java’s display methods is drawLine(). It draws a line in

the currently selected color between two points. It is part of the Graphics class. Using

drawLine(), write a program that tracks mouse movement. If the button is pressed, have

the program draw a continuous line until the mouse button is released.

/* Track mouse motion by drawing a line
when a mouse button is pressed. */

Java 2: A Beginner’s Guide 499

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:499

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:500

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="TrackM" width=300 height=100>
</applet>

*/

public class TrackM extends Applet
implements MouseListener, MouseMotionListener {

int curX = 0, curY = 0; // current coordinates
int oldX = 0, oldY = 0; // previous coordinates
boolean draw;

public void init() {
addMouseListener(this);
addMouseMotionListener(this);
draw = false;

}

/* The next three methods are not used, but must
be null-implemented because they are defined
by MouseListener. */

// Handle mouse entered.
public void mouseEntered(MouseEvent me) {
}

// Handle mouse exited.
public void mouseExited(MouseEvent me) {
}

// Handle mouse click.
public void mouseClicked(MouseEvent me) {
}

// Handle button pressed.
public void mousePressed(MouseEvent me) {
// save coordinates
oldX = me.getX();
oldY = me.getY();
draw = true;

}

// Handle button released.

500 Appendix A: Answers to Mastery Checks

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

public void mouseReleased(MouseEvent me) {
draw = false;

}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me) {
// save coordinates
curX = me.getX();
curY = me.getY();
repaint();

}

// Handle mouse moved.
public void mouseMoved(MouseEvent me) {
// show status
showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display line in applet window.
public void paint(Graphics g) {
if(draw)
g.drawLine(oldX, oldY, curX, curY);

}
}

8. Briefly describe the assert keyword.

The assert keyword creates an assertion, which is a condition that should be true during program

execution. If the assertion is false, an AssertionError is thrown.

9. Give one reason why a native method might be useful to some types of programs.

A native method is useful when interfacing to routines written in languages other than Java, or when

optimizing code for a specific run-time environment.

Java 2: A Beginner’s Guide 501

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / A
Appendix A:501

A

An
sw

er
s

to
M

as
te

ry
C

he
ck

s

P:\010Comp\Begin8\588-2\appa.vp
Tuesday, November 05, 2002 9:32:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Blind Folio B:503

AppendixB
Using Java’s
Documentation
Comments

503

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:504

A s explained in Module 1, Java supports three types of comments. The first two are the //

and the /* */. The third type is called a documentation comment. It begins with the character

sequence /**. It ends with */. Documentation comments allow you to embed information about

your program into the program itself. You can then use the javadoc utility program to extract

the information and put it into an HTML file. Documentation comments make it convenient

to document your programs. You have almost certainly seen documentation generated with

javadoc, because that is the way the Java API library was documented by Sun.

The javadoc Tags
The javadoc utility recognizes the following tags:

Tag Meaning

@author Identifies the author of a class.

@deprecated Specifies that a class or member is deprecated.

{@docRoot} Specifies the path to the root directory of the current documentation. (Added by Java
2, version 1.3.)

@exception Identifies an exception thrown by a method.

{@inheritDoc} Inherits a comment from the immediate superclass. (Added by Java 2, version 1.4, but
not currently implemented.)

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed in a plain-text font.
(Added by Java 2, version 1.4.)

@param Documents a method’s parameter.

@return Documents a method’s return value.

@see Specifies a link to another topic.

@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject() or writeExternal() methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was introduced.

@throws Same as @exception.

{@value} Displays the value of a constant, which must be a static field. (Added by Java 2,
version 1.4.)

@version Specifies the version of a class.

504 Appendix B: Using Java’s Documentation Comments

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see, all document tags begin with an at sign (@). You may also use other,

standard HTML tags in a documentation comment. However, some tags, such as headings,

should not be used, because they disrupt the look of the HTML file produced by javadoc.

You can use documentation comments to document classes, interfaces, fields, constructors,

and methods. In all cases, the documentation comment must immediately precede the item

being documented. When you are documenting a variable, the documentation tags you can use

are @see, @since, @serial, @serialField, {@value}, and @deprecated. For classes, you can

use @see, @author, @since, @deprecated, and @version. Methods can be documented with

@see, @return, @param, @since, @deprecated, @throws, @serialData, {@inheritDoc},

and @exception. A {@link}, {@docRoot}, or {@linkplain} tag can be used anywhere. Each

tag is examined next.

@author
The @author tag documents the author of a class. It has the following syntax:

@author description

Here, description will usually be the name of the person who wrote the class. The @author tag

can be used only in documentation for a class. You may need to specify the -author option when

executing javadoc in order for the @author field to be included in the HTML documentation.

@deprecated
The @deprecated tag specifies that a class or a member is deprecated. It is recommended that

you include @see or {@link} tags to inform the programmer about available alternatives. The

syntax is the following:

@deprecated description

Here, description is the message that describes the deprecation. Information specified by

the @deprecated tag is recognized by the compiler and is included in the .class file that is

generated. Therefore, the programmer can be given this information when compiling Java

source files. The @deprecated tag can be used in documentation for variables, methods,

and classes.

{@docRoot}
{@docRoot} specifies the path to the root directory of the current documentation.

Java 2: A Beginner’s Guide 505

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:505

B

U
si

ng
Ja

va
’s

D
oc

um
en

ta
tio

n
C

om
m

en
ts

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:506

506 Appendix B: Using Java’s Documentation Comments

@exception
The @exception tag describes an exception to a method. It has the following syntax:

@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name; explanation is

a string that describes how the exception can occur. The @exception tag can only be used in

documentation for a method.

{@inheritDoc}
Inherits a comment from the immediate superclass. (Not currently implemented by Java 2,

version 1.4.)

{@link}
The {@link} tag provides an in-line link to additional information. It has the following syntax:

{@link name text}

Here, name is the name of a class or method to which a link is added, and text is the string that

is displayed.

{@linkplain}
Inserts an in-line link to another topic. The link is displayed in a plain-text font. Otherwise,

it is similar to {@link}.

@param
The @param tag documents a parameter to a method. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter to a method. The meaning of that

parameter is described by explanation. The @param tag can be used only in documentation

for a method.

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

@return
The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Here, explanation describes the type and meaning of the value returned by a method. The

@return tag can be used only in documentation for a method.

@see
The @see tag provides a reference to additional information. Its most commonly used forms

are shown here.

@see anchor

@see pkg.class#member text

In the first form, anchor is a link to an absolute or relative URL. In the second form,

pkg.class#member specifies the name of the item, and text is the text displayed for that item.

The text parameter is optional, and if not used, then the item specified by pkg.class#member is

displayed. The member name, too, is optional. Thus, you can specify a reference to a package,

class, or interface in addition to a reference to a specific method or field. The name can be fully

qualified or partially qualified. However, the dot that precedes the member name (if it exists)

must be replaced by a hash character.

@serial
The @serial tag defines the comment for a default serializable field. It has the following syntax:

@serial description

Here, description is the comment for that field.

@serialData
The @serialData tag documents the data written by the writeObject() and writeExternal()

methods. It has the following syntax:

@serialData description

Here, description is the comment for that data.

Java 2: A Beginner’s Guide 507

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:507

B

U
si

ng
Ja

va
’s

D
oc

um
en

ta
tio

n
C

om
m

en
ts

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:508

@serialField
The @serialField tag provides comments for an ObjectStreamField component. It has the

following syntax:

@serialField name type description

Here, name is the name of the field, type is its type, and description is the comment for

that field.

@since
The @since tag states that a class or member was introduced in a specific release. It has the

following syntax:

@since release

Here, release is a string that designates the release or version in which this feature became

available. The @since tag can be used in documentation for variables, methods, and classes.

@throws
The @throws tag has the same meaning as the @exception tag.

{@value}
Displays the value of a constant, which must be a static field.

@version
The @version tag specifies the version of a class. It has the following syntax:

@version info

Here, info is a string that contains version information, typically a version number, such as 2.2.

The @version tag can be used only in documentation for a class. You may need to specify the

-version option when executing javadoc in order for the @version field to be included in

the HTML documentation.

508 Appendix B: Using Java’s Documentation Comments

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

The General Form of a
Documentation Comment

After the beginning /**, the first line or lines become the main description of your class, variable,

or method. After that, you can include one or more of the various @ tags. Each @ tag must

start at the beginning of a new line or follow an asterisk (*) that is at the start of a line. Multiple

tags of the same type should be grouped together. For example, if you have three @see tags,

put them one after the other.

Here is an example of a documentation comment for a class:

/**
* This class draws a bar chart.
* @author Herbert Schildt
* @version 3.2

*/

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs several HTML

files that contain the program’s documentation. Information about each class will be in its own

HTML file. javadoc will also output an index and a hierarchy tree. Other HTML files can be

generated. Since different implementations of javadoc may work differently, you will need to

check the instructions that accompany your Java development system for details specific

to your version.

An Example that Uses
Documentation Comments

Following is a sample program that uses documentation comments. Notice the way each

comment immediately precedes the item that it describes. After being processed by javadoc,

the documentation about the SquareNum class will be found in SquareNum.html.

import java.io.*;

/**
* This class demonstrates documentation comments.
* @author Herbert Schildt
* @version 1.2

*/

Java 2: A Beginner’s Guide 509

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:509

B

U
si

ng
Ja

va
’s

D
oc

um
en

ta
tio

n
C

om
m

en
ts

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / B
Appendix B:510

510 Appendix B: Using Java’s Documentation Comments

public class SquareNum {
/**
* This method returns the square of num.
* This is a multiline description. You can use
* as many lines as you like.
* @param num The value to be squared.
* @return num squared.

*/
public double square(double num) {
return num * num;

}

/**
* This method inputs a number from the user.
* @return The value input as a double.
* @exception IOException On input error.
* @see IOException

*/
public double getNumber() throws IOException {
// create a BufferedReader using System.in
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader inData = new BufferedReader(isr);
String str;

str = inData.readLine();
return (new Double(str)).doubleValue();

}
/**
* This method demonstrates square().
* @param args Unused.
* @return Nothing.
* @exception IOException On input error.
* @see IOException

*/

public static void main(String args[])
throws IOException

{
SquareNum ob = new SquareNum();
double val;

System.out.println("Enter value to be squared: ");
val = ob.getNumber();
val = ob.square(val);

System.out.println("Squared value is " + val);
}

}

P:\010Comp\Begin8\588-2\appb.vp
Tuesday, November 05, 2002 9:34:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:511

Index
& (bitwise AND), 180-182

& (Boolean logical AND), 55, 56, 57, 59

&& (short-circuit AND), 55, 57-58, 59

*, 53, 300

@ tags (javadoc), 504-508

| (bitwise OR), 180, 182-183

| (Boolean logical OR), 55, 56, 57, 59

| | (short-circuit OR), 55, 57, 59

[], 153

^ (bitwise exclusive OR), 180, 183-184

^ (Boolean logical exclusive OR), 55, 56

: (colon), 102

{ }, 14, 15, 27, 28, 49, 125, 155

=, 19, 58-60

= = (relational operator), 55, 56

versus equals(), 175

!, 55, 56

!=, 55, 56

/, 53

/* */, 14

/** */, 504, 509

//, 14-15

<, 55, 56

<<, 180, 185-190

<=, 55, 56

–, 52, 53

– –, 27, 54-55

%, 53

(), 66, 68

. (dot operator), 118, 125, 224-225

+ (addition), 53

+ (concatenation operator), 19, 175

++, 26-27, 54-55

?:, 191-192

>, 55, 56

>>, 180, 185-187

>>>, 180, 185-186, 188-190

>=, 55, 56

; (semicolon), 16, 29

~, 180, 184-185

A
abs(), 215

abstract type modifier, 278, 279, 283

Abstract Window Toolkit (AWT), 437, 439,

452, 465

Access control, 196-201

and packages, 197, 290, 294-299

Access specifiers, 15, 196-197

Accessor methods, 198, 244-246

511

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:512

addKeyListener(), 455

addMouseListener(), 461-462

addMouseMotionListener(), 455, 461-462

addTypeListener(), 455

AND operator

bitwise (&), 180-182

Boolean logical (&), 55, 56, 57, 59

short-circuit (&&), 55, 57-58, 59

API (Application Programming Interface),

Java, 302

Applet, 436-453

architecture, 440-442

basics, 436-439

executing, 437-438

and the Internet, 5, 436

and main(), 117, 437, 439

output to status window, 449

passing parameters to, 450-451

request for repainting, 443-448

skeleton, 441-442

string output to, 437, 443

versus application, 5

viewer, 438, 439

Applet class, 437, 439, 441, 452-453, 461

methods, table of, 452-453

applet package, 437

APPLET tag, HTML, 437-438

appletviewer, 437-439

status window, using, 449

Application

launcher, 12

versus applet, 5

args parameter to main(), 178

Arguments, 123, 129-130

command-line, 15, 178-179

passing, 205-207

Arithmetic operators, 52-55

ArithmeticException, 327, 328, 342

Array(s), 15, 152-172

boundary checks, 155

declaration syntax, alternative, 163

initializing, 155, 161-163

length instance variable of, 165-167

multidimensional, 158-163

one-dimensional, 152-156

reference variables, assigning, 164-165

sorting, 156-158

of strings, 176

ArrayIndexOutOfBoundsException, 156, 324,

327, 328, 342

ASCII character set, 40, 41, 181

assert keyword, 32, 462, 463-464

AssertionError, 464

Assignment operator(s)

=, 19, 58-60

bitwise shorthand, 187

shorthand arithmetic and logical (op=), 60

AWT (Abstract Window Toolkit), 437, 439,

452, 465

AWTEvent class, 455-456

B
Backslash character constants, 45

Banner applet example program, 445-448

Bitwise operators, 180-190

Blocks, code, 27-28, 29, 49

static, 227-228

boolean data type, 37, 41-42

and relational operators, 56

break statement, 72, 78, 79, 80-81, 90, 100-106

as form of goto, 102-106

Bubble sort, 156-158

BufferedReader class, 357, 376-377, 378-379

Buzzwords, Java, 7

Byte class, 207, 384, 385

byte data type, 37, 38

Bytecode, 6-7, 13

C
C and Java, history of, 2, 3-4

C++ and Java, 2, 3-4

C# and Java, 4

Call-by-reference versus call-by-value, 205-207

Case sensitivity and Java, 13, 16, 291

case statement, 78-79, 80-81, 82

512 Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Casts, 62-63, 67

using instanceof with, 463

catch block(s), 322-326, 327-328, 334-335

using multiple, 330-332

Channels, 383

char data type, 40-41

Character(s), 40-41

constants (literals), 44, 45, 47

escape sequences, 45-46

from keyboard, inputting, 72-73, 359

Character class, 207

charAt(), 174, 177

Charsets, 383

Class(es), 116-120

abstract, 279-282, 308

constructor. See Constructor(s)

definition of, 10

final, 283-284

general form of, 116-117

inner, 232-235

and interfaces, 303-308

libraries, 33, 302

member. See Member, class

name and source file name, 13, 14

nested, 232-235

well-designed, 117, 133

.class file, 14, 119

class keyword, 14, 116

CLASSPATH, 292, 293

clone(), 286

close(), 359, 362, 364

Code blocks. See Blocks, code

Code, unreachable, 331

Collections Framework, 465

Comment, 14-15

documentation, 504-510

compareTo(), 174, 386

Compilation unit, 13

Compiler, Java, 12, 13

Component class, 437, 441, 443, 444, 452,

455, 461

const, 32

Constants, 44

final, 284-285

Constructor(s), 139-142, 246-253

in class hierarchy, order of calling, 261-262

overloading, 216-222

and super(), 248-253, 261

Container class, 452

continue statement, 72, 106-108

Control statements. See Statements, control

currentThread(), 432

D
Data engines, 168

Data type(s), 18-19, 21

casting, 62-63, 67

class as, 117

conversion, automatic, 61-62, 212-214

promotion of, 66-67

simple, 36-37, 143

wrappers for simple, 207, 384-386

DataInput interface, 367, 372

DataInputStream class, 356, 366, 367-368

methods defined by, table of, 367

DataOutput interface, 366, 372

DataOutputStream class, 356, 366-367, 368-369

methods defined by, table of, 367

Decrement operator (– –), 27, 54-55

default statement, 78, 79, 80

#define statements (C++), converting, 317

Delegation event model, 454-457

using, 458-462

destroy(), 441, 442, 452

Destructors, 144

do-while loop, 72, 94-96, 107

Dot operator (.), 118, 125, 224-225

Double class, 207, 384

double data type, 20-21, 38, 39

drawString(), 437, 443

Dynamic method dispatch, 271-277

E
–ea compiler option, 464

else, 74-77

Encapsulation, 9-10, 14, 49, 133, 196, 290

Index 513

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:513

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:514

Endian format, 38, 39

equals(), 173, 286, 386

versus = =, 175

err, 355

Error class, 322, 341, 344

Errors

run-time, 322

syntax, 17

Escape sequences, character, 45-46

Event handling, 436, 440, 454-462

See also Delegation event model

EventObject class, 455, 456

Exception class, 322, 332, 344-345

Exception handling, 322-350

block, general form of, 323-324, 338-339

and chained exceptions, 343-344

and creating custom exceptions, 344-350

and the default exception handler, 327

Exceptions, standard built-in, 322, 342-343

checked, table of, 343

unchecked, table of, 342

Expressions, 66-68

extends, 240, 242, 304, 317

F
false, 32, 41

File(s)

I/O, 361-374

pointer, 372

random access, 372-374

source, 13, 119

FileInputStream class, 356, 361, 362, 368

FileNotFoundException, 362, 364, 382

FileOutputStream, 356, 361, 364, 367

FileReader class, 357, 381, 382-383

FileWriter class, 357, 381-382

final

to prevent class inheritance, 283-284

to prevent method overriding, 283

variables, 284-285

finalize(), 144-147, 286

versus C++ destructors, 144

finally block, 322, 323, 338-340

Firewall, 5

Float class, 207, 384

float data type, 20, 21, 38-39

Floating-point(s), 20, 21, 38-40

literals, 44

and strictfp, 463

flush(), 359, 364

for loop, 25-27, 72, 86-91, 94, 107

variations, 87-91

FORTRAN, 9

Frank, Ed, 2

G
Garbage collection, 143-144

getCause(), 344

getClass(), 286

getGraphics(), 444

getMessage(), 336, 337-338

getName(), 397, 402

getParameter(), 450, 453

getPriority(), 397, 413

getX(), 459

getY(), 459

Gosling, James, 2

goto keyword, 32

goto statement, using labeled break as form of,

102-106

Graphics class, 437

H
hashCode(), 286

Hexadecimals, 44-45

Hierarchical classification, 10-11

and inheritance, 240

Hoare, C.A.R., 229

HTML (Hypertext Markup Language) file

and applets, 437-438

and javadoc, 504, 509

514 Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
Identifiers, 32-33

if statement, 23-25, 72, 74-77

nested, 75-76

if-else-if ladder, 76-77

switch statement versus, 85

implements clause, 304

import statement, 300-301

in, 355

Increment operator (++), 26-27, 54-55

Indentation style, 29

indexOf(), 174

Inheritance, 10-11, 240-286

basics of, 240-246

and constructors, 246-253, 261-262

final and, 283-284

and interfaces, 317-318

multilevel, 258-261

multiple superclass, 242

init(), 441, 442, 453

initCause(), 344

InputStream class, 355, 356, 358, 359, 367

methods, table of, 358

InputStreamReader class, 357, 376, 382

Instance of a class, 116

See also Object(s)

Instance variables

accessing, 118, 125, 246

definition of, 116

hiding, 149

as unique to their object, 118, 119-120

using super to access hidden, 254

instanceof operator, 463

int, 18, 20, 37, 38

Integer(s), 37-39

literals, 44

Integer class, 207, 384, 385

Interface(s), 290, 303-318

general form of, 303

implementing, 304-308

and inheritance, 317-318

reference variables, 308-310

variables, 304, 316-317

interface keyword, 303

Internet, 2, 3, 5, 436

and portability, 6

and security, 5-6

Interpreter, Java, 12, 13

InterruptedException, 400

I/O, 354-393

binary data, 366-369

channel-based, 383

console, 16, 72-73, 354, 358-361, 376-380

file, 361-374, 381-383

new (NIO), 383

random access, 372-374

streams. See Streams

io package. See java.io package

IOException, 341-342, 358, 375

isAlive(), 397, 409

Iteration statements, 72, 86-96

J
Java

API, 302

and C, 2, 3-4

and C++, 2, 3-4

and C#, 4

design features, 7

history of, 2-4

and the Internet, 2, 3, 5-6

as interpreted language, 6-7

interpreter, 12, 13

keywords, 32

as strongly typed language, 36, 262, 263

and the World Wide Web, 3

Java 2: The Complete Reference, 466

Java Software Developer’s Kit (SDK), 14

.java filename extension, 13

java (Java interpreter), 13

java package, 302

Index 515

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:515

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:516

Java Virtual Machine (JVM), 6-7, 13, 36

java.applet package, 302

java.awt package, 302, 455

java.awt.event package, 454, 455, 456

event classes, table of, 456

event listener interfaces, table of, 456

java.exe (Java interpreter), 12

java.io package, 302, 341-342, 354

java.io.IOException, 73

java.lang package, 302, 342, 355

java.net package, 302

java.nio package, 383

java.nio.channels package, 383

java.nio.charset package, 383

java.util package, 455

javac.exe (Java compiler), 12, 13

javadoc utility program, 504, 509

join(), 397, 409-412

Jump statements, 72, 100-108

Just In Time (JIT) compiler, 7

K
Keywords, Java, 32

L
Label, 102-106, 107

Layout managers, 465

lastIndexOf(), 174

length(), 173

length instance variable of arrays, 165-167

Libraries, class, 33, 302

Literals, 44-47

Lock, 416

Logical operators, 55-58

long, 37, 38

Long class, 207, 384, 385

Loops

do-while, 72, 94-96

for. See for loop

infinite, 90, 100

nested, 101, 102, 112-113

while, 72, 92-94

M
main(), 15, 16, 117, 119, 123, 224

and applets, 117, 437, 439

and command-line arguments, 15,

178-179

Math class, 39, 40, 215, 226

MAX_PRIORITY, 413

Member, class, 10, 116

controlling access to, 196-201, 290,

294-299

dot operator to access, 118

Memory allocation using new, 121, 143

Method(s), 10, 122-132

abstract, 278-282

accessor, 198, 244-246

calling, 125

dispatch, dynamic, 271-277

final, 283

general form of, 123

and interfaces, 303-304, 305, 307, 308

native, 465

overloading, 210-215, 270-271

overriding. See Overriding, method

and parameters, 123, 129-132

parsing, 384-385

passing object to, 203-207

recursive, 222-224

returning object from, 208-210

returning a value from, 126-128

scope defined by, 49-51

signature, 215

static, 224, 225, 226-227

using super to access hidden, 254, 269

synchronized, 416-419, 422, 462

and throws clause, 323, 340-341

MIN_PRIORITY, 413

516 Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Modulus operator (%), 53

Monitor, 416

Mouse events, handling, 458-462

mouseClicked(), 458

mouseDragged(), 458

mouseEntered(), 458

MouseEvent class, 456, 459, 461

mouseExited(), 458

MouseListener interface, 457, 458, 461, 462

MouseMotionListener interface, 455, 457, 458,

461, 462

mouseMoved(), 458

mousePressed(), 458

mouseReleased(), 458

Multitasking, 396

operating system implementation of,

412-413, 415

Multithreaded programming, 396-434

and synchronization. See Synchronization

and threads. See Thread(s)

effective use of, 432

N
Name hiding, 51

Namespace, packages and, 290, 291

Narrowing conversion, 62-63

native modifier, 465

Naughton, Patrick, 2

Negative numbers, representation of, 185

.NET Framework, 4

new, 121, 142-143, 152-153, 155, 334

NIO (New I/O) system, 383

NORM_PRIORITY, 413

NOT operator

bitwise unary (~), 180, 184-185

Boolean logical unary (!), 55, 56

notify(), 286, 422-427

notifyAll(), 286, 422

null, 32

O
Oak, 2

Object(s), 9-10, 116, 119-120

creating, 118, 121

to method, passing, 203-207

returning, 208-210

serialization of. See Serialization

Object class, 286

Object initialization

with another object, 217-218, 219

with constructor, 139-142

Object reference variables

and assignment, 121-122

declaring, 121

and dynamic method dispatch,

271-272, 277

to superclass reference variable, assigning

subclass, 262-267

OBJECT tag, HTML, 438

Object-oriented programming (OOP), 8-11

Octals, 44-45

One’s complement (unary NOT) operator, 180,

184-185

Operator(s)

arithmetic, 19, 52-55

assignment, 19, 58-60

bitwise, 180-190

logical, 55-58

parentheses and, 66, 68

precedence, table of, 64

relational, 24, 55-57

ternary, 191-192

OR operator (|)

bitwise, 180, 182-183

Boolean, 55, 56, 57, 59

OR operator, short-circuit (| |), 55, 57, 59

out output stream, 16, 355

OutputStream class, 355, 356, 358, 360,

366, 379

methods, table of, 360

OutputStreamWriter class, 357, 381

Index 517

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:517

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:518

Overloading

constructors, 216-222

methods, 210-215, 270-271

Overriding, method, 268-271

and dynamic method dispatch, 271-277

using final to prevent, 283

P
Package(s), 197, 290-302

and access control, 197, 290, 294-299

defining, 290-291

importing, 299-301

package command, 290, 291

paint(), 437, 441, 442, 443, 444

Panel class, 452

PARAM, 450

Parameters, 15, 123, 129-132

applets and, 450-451

and overloaded constructors, 217

and overloaded methods, 210, 212-213

Parentheses, use of, 66, 68

parseDouble(), 385

parseInt(), 385

Pascal, 9

Pointers, 8

Polymorphism, 10

and dynamic method dispatch, run-time,

271, 273

and interfaces, 303

and overloaded methods, 210, 214-215

Portability problem, 2-3, 5, 6, 7, 8, 9

print(), 19-20, 360, 361, 379

println(), 15-16, 19-20, 21, 286, 360, 361, 379

printStackTrace(), 336, 337-338

PrintStream class, 356, 360

PrintWriter class, 357, 379-380

private access specifier, 15, 196-201

and inheritance, 243-246

and packages, 294, 295

Programming

multithreaded. See Multithreaded

programming

object-oriented. See Object-oriented

programming

structured, 9

protected access specifier, 144, 196

in C++ vs. Java, 300

and packages, 294, 295, 297-299

public access specifier, 15, 196-201

and packages, 294, 295

Q
Queue(s), 168

interface, creating a, 310-316

Quicksort algorithm, 224, 229-231

R
RandomAccessFile class, 356, 372

read(), 72-73, 358, 359-360, 362, 375, 377-378

and end-of-file condition, 363

Reader class, 355, 357, 375, 382

methods defined by, table of, 375

readInt(), 367, 372

readLine(), 378-379

Recursion, 222-224

Relational operators, 24, 55-57

removeKeyListener(), 455

removeTypeListener(), 455

repaint(), 443-444

demonstration program, 445-448

resume(), 428

return statement, 72, 125-126, 127

run(), 397, 398

overriding, 404, 407

using flag variable with, 428-432

Runnable interface, 397

implementing, 398-403, 407

Run-time

system, Java, 6-7

type information, 463

RuntimeException class, 322, 341, 342, 344

518 Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TEAMFL
Y

Team-Fly®

S
Scopes, 49-51

SDK (Java Software Developer’s Kit), 12

Security problem, 5-6, 7, 8

seek(), 372

Selection statements, 72, 74-82

Selectors (NIO), 383

setCharAt(), 177

setName(), 402

setPriority(), 413

Sheridan, Mike, 2

Shift operators, bitwise, 180, 185-190

Short class, 207, 384, 385

short data type, 37, 38

showStatus(), 449, 453

Signature of a method, 215

sleep(), 397, 400

–source 1.4 compiler option, 464

Source file, 13, 119

sqrt(), 39-40, 226

Stack, definition of, 168

start(), 397, 398, 404, 441, 442, 453

Statements, 16, 29

null, 90

Statements, control, 23

iteration, 72, 86-96

jump, 72, 100-108

selection, 72, 74-82

static, 15, 224-228, 232, 235, 285

stop(), 428, 441, 442, 453

Stream(s)

classes, byte, 355, 356

classes, character, 355, 357, 375-383

definition of, 354-355

predefined, 355-356

strictfp, 463

String(s)

arrays of, 176

concatenating, 175

constructing, 172-173

immutability of, 176-177

length, obtaining, 173, 174-175

literals, 45-46, 47

as objects, 172

reading, 378-379

representations of numbers, converting,

384-386

searching, 174-175

String class, 15, 172-179

methods, 173-175

StringBuffer class, 177

Subclass, 240, 242, 243, 258

substring(), 176-177

Sun Microsystems, 2, 12

super

and superclass constructors, 248-253, 261

and superclass members, 254, 269

Superclass, 240, 242, 243, 258

suspend(), 428

switch statement, 72, 78-82, 85, 102

Synchronization, 396, 416-421

and deadlock, 427

via synchronized block, 419-421

via synchronized method, 416-419

synchronized modifier, 416

used with method, 416-419

used with object, 419-421

Syntax errors, 17

System class, 16, 302, 355

System.err standard error stream, 355, 356

System.in standard input stream, 72, 73, 96,

355, 356, 359, 376, 377

System.in.read(), 72-73, 359

System.out standard output stream, 16, 355,

356, 360, 379, 380

T
Ternary operator (?:), 191-192

this, 147-149, 227

Thread(s)

communication among, 422-427

creating, 398-408

and deadlock, 427

Index 519

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:519

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2
Blind Folio Index:520

definition of, 396

determining running state of, 409-412

main, 397, 401, 432-434

possible states of, 396

priorities, 412-415

suspending, resuming, and stopping,

428-432

synchronization. See Synchronization

Thread class, 397, 398

constructors, 398, 401, 404

extending, 403-406, 407

throw, 322, 323, 334-336

Throwable class, 322, 331-332, 334, 345

methods defined by, table of, 336-337, 344

throws, 322, 323, 340-342

toString(), 286, 336, 337-338

transient modifier, 462

true, 32, 41

True and false in Java, 41

try block(s), 322-326

nested, 332-333

Two’s complement, 185

Type

casting, 62-63, 67

checking, 36, 262

conversion, automatic, 61-62, 212-214

promotion, 66-67

wrappers, simple, 207, 384-386

Types, data. See Data types

U
Unicode, 40, 41, 181, 355, 381

update(), 443, 444

V
Variable(s)

character, 40

declaration, 18-19, 20, 25, 47-48

definition of, 17

dynamic initialization of, 48

final, 284-285

instance. See Instance variables

interface, 304, 316-317

interface reference, 308-310

object reference. See Object reference

variables

scope and lifetime of, 49-51

static, 224-226, 285

transient, 462

volatile, 432, 462-463

Virtual functions (C++), 273

void, 15, 123

methods, 125-126

volatile modifier, 432, 462-463

W
wait(), 286, 422-427

Warth, Chris, 2

Web browser

executing applet in, 437-438

using status window of, 449

while loop, 72, 92-94, 107

Widening conversion, 61-62

Window, using status, 449

World Wide Web, 3, 436, 445

Wrappers, simple type, 207, 384-386

write(), 359, 360-361, 364, 372, 376

Writer class, 355, 357, 375, 381

methods defined by, table of, 376

writeDouble(), 367, 372

X
XOR (exclusive OR) operator (^)

bitwise, 180, 183-184

Boolean, 55, 56

520 Java 2: A Beginner’s Guide

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:521

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-1-656-0990-3-4

FAX +30-1-654-5525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-863-1580

FAX +65-862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600

http://www.osborne.com

omg_international@mcgraw-hill.com

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Begin8 / Java 2: A Beginner’s Guide, 2nd Ed/ Schildt / 2588-2 / 1
Blind Folio 1:522

O s b o r n e d e l i v e r s r e s u lt s !]

Designed for people. Not clocks.

People learn at their own pace.
That’s why our Beginner’s Guides
provide a systematic pedagogy
using real-world examples from
seasoned trainers to teach the
critical skills needed to master a
tool or technology.

Osborne Beginner’s Guides:
Essential Skills—Made Easy

proven learning features:

1 Modules

2 Critical Skills

3 Step-by-step Tutorials

4 Ask the Experts

5 Progress Checks

6 Annotated Syntax

7 Mastery Checks

8 Projects

9 Network Blueprints

99

Solaris 9 Administration:
A Beginner’s Guide
Paul A. Watters, Ph.D.
ISBN: 0-07-222317-0

UNIX System Administration:
A Beginner’s Guide
Steve Maxwell
ISBN: 0-07-219486-3

Dreamweaver MX:
A Beginner’s Guide
Ray West & Tom Muck
ISBN: 0-07-222366-9

HTML: A Beginner’s Guide,
Second Edition
Wendy Willard
ISBN: 0-07-222644-7

Java 2: A Beginner’s Guide,
Second Edition
Herb Schildt
ISBN: 0-07-222588-2

UML: A Beginner’s Guide
Jason Roff
ISBN: 0-07-222460-6

Windows XP: A Beginner’s Guide
Marty Matthews
0-07-222608-0

Networking: A Beginner’s Guide,
Third Edition
Bruce Hallberg
ISBN: 0-07-222563-7

Linux Administration:
A Beginner’s Guide, Third Edition
Steve Graham
ISBN: 0-07-222562-9

Red Hat Linux Administration:
A Beginner’s Guide
Narender Muthyala
ISBN: 0-07-222631-5

Windows.NET Server:
A Beginner’s Guide
Marty Matthews
ISBN: 0-07-219309-3

P:\010Comp\Begin8\588-2\index.vp
Friday, November 01, 2002 3:01:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Cover
	Contents at a Glance
	Contents
	Preface
	Java Fundamentals
	The Origins of Java
	How Java Relates to C and C++
	How Java Relates to C#
	Progress Check
	Java Applets and Applications
	Security
	Portability

	Java’s Magic: The Bytecode
	The Java Buzzwords
	Ask the Expert
	Progress Check

	Object- Oriented Programming
	Encapsulation
	Polymorphism
	Inheritance
	Progress Check

	Ask the Expert
	Obtaining the Java Software Developer’s Kit
	A First Simple Program
	Entering the Program
	Compiling the Program
	The First Sample Program Line by Line
	Progress Check

	Handling Syntax Errors
	A Second Simple Program
	Another Data Type
	Ask the Expert
	Progress Check

	Two Control Statements
	The if Statement
	The for Loop
	Progress Check

	Create Blocks of Code
	Ask the Expert
	Indentation Practices
	Progress Check

	Identifiers in Java
	Progress Check

	The Java Class Libraries

	Introducing Data Types and Operators
	Why Data Types Are Important
	Java’s Simple Types
	Integers

	Floating- Point Types
	Ask the Expert
	Characters
	Ask the Expert
	The Boolean Type
	Progress Check

	Literals
	Hexadecimal and Octal Constants
	Character Escape Sequences
	String Literals
	Progress Check

	Ask the Expert
	A Closer Look at Variables
	Initializing a Variable
	Dynamic Initialization
	Progress Check

	Operators
	Arithmetic Operators
	Increment and Decrement

	Relational and Logical Operators
	Short- Circuit Logical Operators
	Progress Check

	The Assignment Operator
	Ask the Expert
	Casting Incompatible Types
	Progress Check

	Operator Precedence
	Expressions
	Type Conversion in Expressions
	Spacing and Parentheses

	Program Control Statements
	Input Characters from the Keyboard
	Progress Check

	The if Statement
	Nested ifs
	The if- else- if Ladder
	Progress Check

	The switch Statement
	Nested switch Statements
	Progress Check

	Ask the Expert
	The for Loop
	Some Variations on the for Loop
	Missing Pieces
	Loops with No Body
	Declaring Loop Control Variables Inside the for Loop
	Progress Check

	The while Loop
	Ask the Expert
	The do- while Loop
	Progress Check

	Use break to Exit a Loop
	Use break as a Form of goto
	Ask the Expert
	Use continue
	Progress Check

	Nested Loops

	Introducing Classes, Objects, and Methods
	Class Fundamentals
	The General Form of a Class
	Defining a Class
	Progress Check

	Reference Variables and Assignment
	Progress Check

	Methods
	Adding a Method to the Vehicle Class
	Adding a Parameterized Method to Vehicle
	Progress Check
	Adding a Constructor to the Vehicle Class
	Progress Check

	The new Operator Revisited
	Ask the Expert
	Garbage Collection and Finalizers
	The finalize() Method

	Ask the Expert
	The this Keyword

	More Data Types and Operators
	Arrays
	One- Dimensional Arrays
	Progress Check

	Multidimensional Arrays
	Two- Dimensional Arrays
	Arrays of Three or More Dimensions
	Initializing Multidimensional Arrays
	Progress Check

	Alternative Array Declaration Syntax
	Assigning Array References
	Using the length Member
	Progress Check

	Strings
	Constructing Strings
	Operating on Strings

	Ask the Expert
	Arrays of Strings
	Strings Are Immutable

	Ask the Expert
	Progress Check

	The Bitwise Operators
	The Bitwise AND, OR, XOR, and NOT Operators
	The Shift Operators
	Bitwise Shorthand Assignments

	Ask the Expert
	Progress Check

	A Closer Look at Methods and Classes
	Controlling Access to Class Members
	Java’s Access Specifiers
	Progress Check

	Pass Objects to Methods
	How Arguments Are Passed

	Ask the Expert
	Progress Check

	Returning Objects
	Method Overloading
	Ask the Expert
	Progress Check

	Overloading Constructors
	Progress Check

	Recursion
	Understanding static
	Static Blocks
	Progress Check

	Introducing Nested and Inner Classes
	Ask the Expert

	Inheritance
	Inheritance Basics
	Member Access and Inheritance

	Ask the Expert
	Progress Check

	Constructors and Inheritance
	Using super to Call Superclass Constructors
	Progress Check

	Using super to Access Superclass Members
	Creating a Multilevel Hierarchy
	When Are Constructors Called?
	Superclass References and
	Subclass Objects
	Progress Check

	Method Overriding
	Overridden Methods Support
	Polymorphism
	Ask the Expert
	Why Overridden Methods?
	Applying Method Overriding to TwoDShape
	Progress Check

	Using Abstract Classes
	Progress Check
	final Prevents Overriding
	final Prevents Inheritance
	Using final with Data Members

	Ask the Expert
	Progress Check

	The Object Class

	Packages and Interfaces
	Packages
	Defining a Package
	Finding Packages and CLASSPATH
	A Short Package Example
	Progress Check

	Packages and Member Access
	Progress Check
	A Package Access Example

	Importing Packages
	Ask the Expert
	Ask the Expert
	Java’s Class Library
	Is Contained in Packages
	Progress Check
	Progress Check

	Ask the Expert

	Exception Handling
	The Exception Hierarchy
	Exception Handling Fundamentals
	Ask the Expert
	Using try and catch
	A Simple Exception Example
	Progress Check
	Exceptions Enable You to Handle Errors Gracefully
	Progress Check

	Using Multiple catch Statements
	Ask the Expert
	Try Blocks Can Be Nested
	Progress Check

	Throwing an Exception
	Rethrowing an Exception

	Ask the Expert
	Progress Check

	A Closer Look at Throwable
	Using finally
	Progress Check

	Using throws
	Java’s Built- in Exceptions
	Ask the Expert
	Progress Check

	Creating Exception Subclasses
	Ask the Expert
	Step by Step

	Using I/ O
	Java’s I/ O Is Built upon Streams
	Progress Check

	Using the Byte Streams
	Reading Console Input
	Writing Console Output
	Progress Check

	Reading and Writing Files
	Using Byte Streams
	Inputting from a File

	Ask the Expert
	Writing to a File
	Progress Check
	Progress Check

	Random Access Files
	Progress Check
	Console Input Using Character Streams
	Console Output Using Character Streams
	Progress Check
	Using a FileWriter
	Using a FileReader

	Ask the Expert
	Progress Check

	Using Java’s Type Wrappers
	to Convert Numeric Strings
	Ask the Expert

	Multithreaded Programming
	Multithreading Fundamentals
	Progress Check

	Creating a Thread
	Some Simple Improvements

	Ask the Expert
	Progress Check

	Creating Multiple Threads
	Ask the Expert
	Progress Check

	Thread Priorities
	Ask the Expert
	Synchronization
	Progress Check

	Thread Communication Using
	notify(), wait(), and notifyAll()
	An Example That Uses wait() and notify()
	Progress Check

	Ask the Expert
	Suspending, Resuming,
	and Stopping Threads
	Ask the Expert

	Applets, Events, and Miscellaneous Topics
	Applet Basics
	Progress Check

	Applet Organization and Essential Elements
	Progress Check

	Requesting Repainting
	The update() Method

	Ask the Expert
	Passing Parameters to Applets
	Progress Check

	The Applet Class
	Event Handling
	The Delegation Event Model
	Events
	Event Sources
	Event Listeners
	Event Classes
	Event Listener Interfaces
	Progress Check

	Using the Delegation Event Model
	Handling Mouse Events
	A Simple Mouse Event Applet

	More Java Keywords
	The transient and volatile Modifiers
	instanceof
	strictfp
	assert
	Native Methods

	What Next?

	Answers to Mastery Checks
	Using Java’s Documentation Comments
	The javadoc Tags
	@author
	@deprecated
	{@ docRoot}
	@exception
	{@ inheritDoc}
	{@ link}
	{@ linkplain}
	@param
	@return
	@see
	@serial
	@serialData
	@serialField
	@since
	@throws
	{@ value}
	@version

	The General Form of a
	Documentation Comment
	What javadoc Outputs
	An Example that Uses
	Documentation Comments

	Index

