

MySQL and Java
Developer’s Guide

Mark Matthews
Jim Cole

Joseph D. Gradecki

Publisher: Robert Ipsen Copyeditor: Elizabeth Welch
Editor: Robert M. Elliott Proofreader: Nancy Sixsmith
Managing Editor: Vincent Kunkemueller Compositor: Gina Rexrode
Book Producer: Ryan Publishing Group, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances
where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL

LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper. ∞

Copyright © 2003 by Wiley Publishing, Inc. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for
permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the
contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particu-
lar purpose. No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult with a profes-
sional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trademarks
of Wiley Publishing, Inc., in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Matthews, Mark.
MySQL and Java developer’s guide / Mark Matthews.

p. cm.
ISBN 0-471-26923-9 (PAPER/WEBSITE)
1. SQL (Computer program language) 2. Java (Computer program
language) I. Title.
A76.3.S67M38 2003
005.75’65—dc21

2002155887

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Acknowledgments xi

About the Authors xiii

Introduction xv

Chapter 1 An Overview of MySQL 1
Why Use an RDBMS? 2

Multiuser Access 2
Storage Transparency 2
Transactions 3
Searching, Modifying, and Analyzing Data 4
Ad Hoc Queries 5

Why Choose MySQL? 5
MySQL and JDBC 7
What’s Next 8

Chapter 2 JDBC and Connector/J 9
What Is JDBC? 9

What about ODBC? 10
Modeling Database Applications with JDBC 11

JDBC Versions 13
JDBC Driver Types 13
SQL Standards 14
Examining the JDBC Interface 15

The java.sql Package 15
The javax.sql Package 18

Understanding Connector/J 21
JDBC Support within 3.0.1 22

Obtaining JDBC Drivers 24
What’s Next 24

Chapter 3 Working with MySQL SQL 25
What Is a Database? 25

Database Models 27
Data Types 29
Designing a Database 29

Introducing MySQL SQL 32
Overview of MySQL 33
Creating Databases 34
Creating Tables 35
Inserts 39
Selects 40
SELECT Statement Extensions 42

iii

C O N T E N TS

Updates 47
Deletes 50
Using SHOW 51
More on Tables 53
Transactions 55
Functions/Operators 56
Joins 56
NULL 59

What’s Next 59

Chapter 4 Installing MySQL, Java, and Connector/J 61
Installing MySQL 61

Linux Installation 62
Windows Installation 63
All Other Installations 63

Installing Java 64
Testing the Java Installation 64

Installing Connector/J 65
Testing the Connector/J Installation 66

What’s Next 66

Chapter 5 Using JDBC with Java Applications and Applets 67
Hello World 67

Loading the Connector/J Driver 69
Using DriverManager to Connect to a Database 69
Executing Queries Through Statement Objects 75

Using the ResultSet Object 78
Determining the Cursor Position 79
Moving the Cursor 79
Getter Methods 80
Primitive Getters 82
Closing the Objects 85

Making It Real 85
Our Main Function 88
The init() Method 89
The buildGUI() Method 89

Executing a Query with No Results 91
Deleting Database Rows 97
Updating Database Rows 99
CREATE TABLE 101
DROP TABLE 101
Disconnecting from the Database 103

Advanced ResultSet Manipulation 104
One Step Forward 113
One Step Back 114
Fast-Forward to the End 114

C o n t e n t siv

Rewind to the Beginning 114
Goto Record 114
Freehand Query 115

Batches 115
Limiting Results 116
Database Warnings and Exceptions 117
What’s Next 118

Chapter 6 Achieving Advanced Connector/J Functionality with Servlets 119
Servlets 119
DataSource Connections 122

Execution Environment 123
Databases 123
PreparedStatements 124

Connecting to the Database 129
Determining the Submit Type 129
Displaying Data 130
Updating Data 132
Using Placeholders in a Loop 133
Using Placeholders in PreparedStatement 134

Using setObject/setBytes 136
Getting BLOBs 139
Joins 141
Updatable ResultSets 142

The Update Button Code 149
The Insert Button Code 150
Update Methods 152

Manipulating Date/Time Types 154
Methods for Retrieving a Value as a Date Type 155
Methods for Retrieving a Value as a Time Type 155
Methods for Retrieving a Value as a Timestamp Type 155

Handling BLOB and CLOB 156
Using Streams to Pull Data 158
Handling ENUM 159
Using Connector/J with JavaScript 161
What’s Next 163

Chapter 7 MySQL Type Mapping 165
Character Column Types 166

CHAR 166
VARCHAR 167
TINYTEXT 167
TEXT 167
MEDIUMTEXT 167
LONGTEXT 168
TINYBLOB 168

Contents v

C o n t e n t svi

BLOB 168
MEDIUMBLOB 168
LONGBLOB 169
SET 169
ENUM 169

Using Character Types 169
Date and Time Column Types 171

DATE 172
TIME 172
DATETIME 172
YEAR 173
TIMESTAMP 173

Using Date and Time Types 173
Numeric Column Types 175

TINYINT 176
SMALLINT 176
MEDIUMINT 176
INT 177
BIGINT 177
FLOAT 177
DOUBLE 177
DECIMAL 178

Using Numeric Types 178
What’s Next 180

Chapter 8 Transactions and Table Locking with Connector/J 181
Understanding the Problem 181
MySQL's Transaction Table Types 182

The InnoDB Table Type 182
The BDB Table Type 184
Converting to Transactional from Nontransactional 184

Performing Transactions in MySQL 185
Using the autocommit Variable 185
Update Transactions 187
The SELECT/INSERT Transaction 190
Multiple Table Transactions 191
Foreign Key Integrity on Deletes 192
Ending a Transaction 192

Transaction Isolation 192
Dirty Reads 193
Phantom Reads 194
Nonrepeatable Reads 194

Table Locking 195
What’s Next 196

Chapter 9 Using Metadata 197
Using Database Metadata 197

Getting the Object 200
General Source Information 202
Feature Support 203
Data Source Limits 204
SQL Object Available 204
Transaction Support 204

The ResultSet Metadata 205
Getting Column Information 205
Other ResultSet Metadata 208

What’s Next 210

Chapter 10 Connection Pooling with Connector/J 211
What Is a Connection Pool? 212
Pooling with DataSource 213
Pooling with the DriverManager 218

DDConnectionBroker 219
What’s Next 221

Chapter 11 EJBs with MySQL 223
Multi-tier Architecture 223
Using Beans 225

EJB Types 225
The EJB Environment 226

Application Server Configuration 229
The Role of the Servlet 230
Entity Beans 230
Session Beans 234

Using the Beans 236
Adding a Query 238

Bean-Managed Persistence 240
ejbCreate() 241
ejbLoad() 242
ejbStore() 243
ejbRemove() 243
ejbFindByPrimaryKey() 244
Setter/Getter Methods 245

What’s Next 245

Chapter 12 Building a General Interface for MySQL 247
Tasks 248
SQL Exceptions 252
MySQL Connections 253
The Task Delegate 255

Contents vii

The Task Manager 255
Task Results 264
The Database Information Task 268
User Input for Tasks 270
The SQL Query Task 272
The Show Columns Task 275
The Insert Row Task 280
What’s Next 286

Chapter 13 Database Administration 287
Using the mysql Administration Application 287
Managing Users and Permissions 289

Changing Root 289
Adding Users 290
Limiting Resources 292

Configuring the Query Cache 293
Forcing a Cache 294

Understanding Log Files 294
Error Logs 295
General Logs 295
Binary Logs 296
Slow Query Logs 296

Maintaining Your Tables 296
Repairing Tables 297

Backing Up and Restoring Your Database 298
Restoring Data 301
InnoDB Table Types 302
DBD Table Types 302

What’s Next 303

Chapter 14 Performance and Tuning 305
Connector/J 3.0 Performance 305
Database Tuning 308

Server Options 308
Using RAID 309
Optimizing Tables 309
The MySQL Query Optimizer 310
Table Indexes 312

JDBC Tuning 313
Minimizing Data Requests 313
Keeping Consistent Connections 314
Handling Statements 315
Batching 316
Using Transactions and Locking 316
Defining the Architecture 317
Getting Data 317

Conclusion 318

C o n t e n t sviii

Appendix A MySQL Development and Test Environments 319
Test Architecture #1 319
Test Architecture #2 320
Servlet Architecture 321
The EJB Architecture 323

Appendix B Databases and Tables 325
The accounts Database and Tables 325
The identification Database and Tables 326
Test Databases 327

Database Products 327
The Database Test 327

Appendix C The JDBC API and Connector/J 329
The java.sql Package 330

Array 331
BatchUpdateException 332
Blob 332
CallableStatement 333
Clob 335
Connection 335
DataTruncation 337
DatabaseMetaData 337
Date 343
Driver 343
DriverManager 343
DriverPropertyInfo 344
ParameterMetaData 344
PreparedStatement 345
Ref 346
ResultSet 347
ResultSetMetaData 350
Savepoint 351
SQLData 351
SQLException 352
SQLInput 352
SQLOutput 353
SQLPermission 353
SQLWarning 354
Statement 354
Struct 355
Time 356
Timestamp 356
Types 357

Contents ix

The javax.sql Package 358
ConnectionEvent 359
ConnectionEventListener 359
ConnectionPoolDataSource 359
DataSource 360
PooledConnection 360
RowSet 360
RowSetEvent 362
RowSetInternal 362
RowSetListener 363
RowSetMetaData 363
RowSetReader 363
RowSetWriter 364
XAConnection 364
XADataSource 364

Appendix D MySQL Functions and Operators 367
Arithmetic Functions/Operators 369
Comparison Functions/Operators 372
Logical Operators 375
Control Functions 377
String Functions/Operators 379
Grouping Functions 384
Date and Time Functions 386
Other Functions 394

Appendix E Connector/J Late-Breaking Additions 397
Failover Support 397
Windows Named Pipes 398
Batch Processing Error Continuation 398
Strict Updates 399
Profile SQL 399
SSL 399

Index 401

C o n t e n t sx

xixi

Dedication

To my wife Diane, for all her support in my "geeky" endeavors, and to our
new daughter Lauren.

I would also like to dedicate this work to Monty, David, and the rest of the
fine group of developers at MySQL AB. Without their contribution to the
software community and dedication to free software and open source ideals,
this book would not have been possible.

--Mark Matthews

I would like to dedicate this book to my parents. Their ever-present love and
encouragement have made so many things possible.

—Jim Cole

This book is dedicated to the trinity: God, Jesus Christ, and the Holy Spirit.

—Joseph D. Gradecki

Acknowledgments

I need to acknowledge the patience and support of my beautiful and loving wife
and our boys. Thank you for the opportunity to be your husband and father.
Tim, thank you for the opportunities. Jim, welcome to this new adventure and I
look forward to many more in the future. Thank you to Liz Welch for the excel-
lent review.

A C K N O W L E D G M E N TS

xiii

C O N T E N TS

Mark Matthews is the creator of Connector/J and its predecessor MM.MySQL,
the Java JDBC driver for MySQL. Last year, he joined MySQL AB to further
develop Java support in MySQL. Mark specializes in Java, MySQL, XML, and
DHTML solutions and has architected major Web applications projects, includ-
ing a GIS-based retail analytics package. Mark has also taught classes in both
Java and UML.

Jim Cole is a senior software engineer specializing in Internet and knowledge
management systems. He is an active developer working in Java, C++, Perl, and
PHP. He also serves as a system administrator for several Web-based projects,
where his duties include custom software development, database management,
and security maintenance.

Joseph D. Gradecki is a software engineer at Comprehensive Software Solu-
tions, where he works on their SABIL product, an enterprise-level securities
processing system. He has built numerous dynamic, enterprise applications
using Java, AspectJ, servlets, JSPs, Resin, MySQL, BroadVision, XML, and
more. He has also built P2P distributed computing systems in a variety of lan-
guages including Java/JXTA, C/C++, and Linda. He holds Bachelors and Mas-
ters degrees in Computer Science and is currently obtaining his PhD.

xiii

A B O U T T H E A U T H O R S

Have you ever been assigned a project and realized that you had no idea
how you were going to accomplish it? Many developers have experi-
enced this feeling when asked to interface their code with a database.

With a few exceptions, most developers were busy learning Lisp, linked lists,
and big-O notation during their formal education instead of learning the funda-
mentals of relationship database management systems. When the time comes
to interface their code with a database, they turn to a book like the one you are
holding.

Your challenge might be to write a Web-based system using servlets and Enter-
prise JavaBeans (EJBs) to transfer shipping records from the home office in
Bend, Oregon, to a satellite shipper in New Jersey. Or perhaps your father just
opened his new medical office and you volunteered to create a scheduling sys-
tem over the weekend.

Whatever the situation, interfacing an application to a database is one of the
most fundamental tasks a developer is required to perform. This book is
designed for developers who either have a pressing task ahead of them or who
are curious about how to read database information into their application.

By combining MySQL, the number-one open source database available, with
Java, the most portable language ever developed, you can create an undis-
putable champion. So, sit back in your desk chair with a hot chocolate and get
ready to supercharge your coding.

Introduction

What’s in This Book

The primary goal of MySQL and Java Developer’s Guide is to provide a com-
prehensive approach to writing code from a Java application to a MySQL data-
base using the industry standard: JDBC. As you will see later in this
Introduction, the chapter titles indicate what area of database connectivity and
manipulation they cover. The chapters are ordered to reflect the JDBC specifi-
cation, but we aren’t here to simply describe the specification.

We wrote all of the material in the book to highlight how MySQL’s Connector/J
JDBC driver achieves the interfacing of MySQL with Java while maintaining the
spirit of the specification. With this in mind, we provide example code using all
major forms of Java development, including

■■ Applications

■■ Applets

■■ Servlets

■■ JSPs

■■ EJBs

As you work in Java and JDBC, you will see the true power of the specification.
You can write database access code in a Java application and move the code to
a servlet with little if any changes. In the case of EJBs and container-managed
persistence, we devoted a full chapter to dealing with database access without
the cumbersome details of SQL.

We designed the layout of the book to move you through the entire process of
writing Java code needed to access a back-end database. Developing the data-
base is one of the first things that you must accomplish in this process. While
we don’t delve deeply into the theory of database development, you learn how
to create databases in MySQL, administer those databases, and handle such
details as granting access permissions. From there, we take you into an exami-
nation of the MySQL Connector/J driver and how it accomplishes its goal of
portable database access. The remainder of the book steps you through Java
code that highlights how to accomplish database tasks such as the following:

■■ Querying and updating

■■ Handling ResultSets

■■ Using transactions

■■ Handling typing issues between JDBC and MySQL

■■ Working with metadata

■■ Addressing efficiency issues

I N T R O D U CT I O Nxvi

Once you’re familiar with these concepts, we present a complete application
that pulls it all together. Our application illustrates how you can create to a sim-
ple authorization service. Using a combination of JSP, servlets, and EJBs, the
service allows new users to create accounts, recall the account, and verify a
username/password combination. The system is designed to be interactive
using JSP pages, which are handled on the server using servlets. The JSPs can
be bypassed using the servlets directly. All of the critical information is kept on
the database for persistence and management needs.

After reading this book, you should know how to interface Java to MySQL and
be able to use the many examples for reference.

NOTE
All the code and examples in this book can be found on the the support Web site at
www.wiley.com/compbooks/matthews.

Who Should Read This Book

This book is written for Java developers who need to interface their code to a
back-end database. The book’s specifics deal with MySQL and Connector/J, but
this doesn’t limit the information because JDBC is designed to be portable
against many databases. If you aren’t using MySQL, you still find valuable infor-
mation.

You don’t need to know much about databases—we have included several
chapters that provide all of the basics necessary to create databases and make
sure they are operational. Keep in mind that we didn’t intend these chapters to
replace a good reference on MySQL, though.

We do expect that you are an experienced Java developer who is comfortable
with the language. This book explains a combination of Java delivery methods,
including applications, applets, beans, and EJBs; you may want to begin with
what you know best and expand from there.

The Technology Used

In this book, we use the latest Java Developments Kits (JDK) available from
Sun at the time of writing. The JDKs we used include J2SE 1.4.0 and J2EE 1.3.1.
The Java examples are used in a mixed environment, including Windows
2000/XP, Linux Mandrake, and Linux Slackware. For the most part, we devel-
oped the examples using simple text editors and compiled them using the Java
command-line compiler. However, all the examples should work just fine in an
IDE such as JBuilder.

MySQL and Java Developer’s Guide xvii

Two different versions of MySQL are used throughout this book: 4.0.4 and
3.23.52. JDBC connectivity is handled using MySQL’s Connector/J driver, and
we cover both versions 2.0.14 and development 3.0.1.

Book Organization

The first four chapters of this book provide an overview of databases, JDBC,
and installation of the tools you will be using. The remainder of the book is an
in-depth guide to building database applications with MySQL, Connector/J,
JDBC, and Java.

Chapter 1: An Overview of MySQL
MySQL is one of the most popular open source database systems available
today, and it is used as the back-end data storage device for many personal
and corporate Web sites. Java is the most portable language in use today and
continues to be improved with each new release. In this chapter, we provide
a brief overview of each product and begin the discussion of how to interface
the two and thus allow Java applications to have access to a vast array of
information.

Chapter 2: JDBC and Connector/J
As shown in Chapter 1, JDBC facilitates the interface between Java and
MySQL. The JDBC specification defines the interfaces and classes necessary
for any Java application, applet, servlet, and so forth to make calls to an under-
lying database. Because the JDBC specification isn’t specific to any one data-
base system, manufacturers create JDBC drivers for their specific database. In
this chapter, we discuss the history of JDBC, how it started, and its progress
into a version 3.0 specification. We examine in depth the MySQL JDBC driver
called Connector/J, and look at its history as the MM.MySQL JDBC driver as
well as its future.

Chapter 3: Working with MySQL SQL
Before we delve into the concepts surrounding the interface between Java
and MySQL, this chapter provides a basic overview of databases and SQL.
Topics include basic concepts behind databases, simple database design,
database normalization, and data manipulation.

Chapter 4: Installing MySQL, Java, and Connector/J

INTRODUCTIONxviii

All of the coding examples in this book are built using MySQL as the primary
database, Java as our coding language, and Connector/J, MySQL’s JDBC dri-
ver. Although the installation of these components isn’t overly difficult, this
chapter provides comprehensive instructions for obtaining all of the neces-
sary components and performing a step-by-step installation. We also provide
simple examples for testing the installation.

Chapter 5: Using JDBC with Java Applications and
Applets

This chapter is the first in a series on the use of Java to access a MySQL data-
base using JDBC. Some of the basic functionality discussed includes loading
the JDBC driver, connecting to a local or remote database, building JDBC
statements in preparation for queries, executing queries against the MySQL
database, working with ResultSets, and accessing MySQL-specific functional-
ity through JDBC.

Chapter 6: Achieving Advanced Connector/J Functionality
with Servlets

At this point, you’ve learned the basics, and it’s time to expand into the more
advanced topics. This chapter is designed to expand your understanding of
SQL, MySQL, and JDBC. The topics include updatable ResultSets, Prepared-
Statements, date/time types, BLOBs and CLOBs, and joins.

Chapter 7: MySQL Type Mapping
One of the fundamental issues associated with databases and programming
language is determining the correct mapping from one to the other. While
programming languages have a large variety of types, including simple ones
like integer, they also allow more complex ones, like classes. Databases, on
the other hand, are limited in their choices for the types of data that can be
stored. In the middle of this situation is the JDBC driver. This chapter dis-
cusses the types available on the MySQL database, how JDBC interprets
those types, and the resulting Java type produced by the mapping.

Chapter 8: Transactions and Table Locking with Connector/J
In a simple world, information is stored in a single table of a database. When
you have to update information or insert a new row, you can use a single
query. However, most modern databases store information across several dif-
ferent tables to increase the normalization of the tables. In this situation,
when you have to update information or insert new rows, you must write two

MySQL and Java Developer’s Guide xix

queries instead of one. This chapter looks at inserting multiple pieces of infor-
mation into multiple tables, what problems can arise, and how transactions can
be used to solve these problems.

Chapter 9: Using Metadata
After a query is performed against a MySQL database, the information is
returned in a ResultSet object. This object includes all of the rows and columns
specific to the query performed. In many cases, additional information is
needed about the data, including the name of the columns in the result, the pre-
cision of the data in a float column, the maximum length of a column, and
maybe even information about the server from which the data was returned. In
this chapter, we discuss pulling metadata about both the database and a Result-
Set that contains information from a query.

Chapter 10: Connection Pooling with Connector/J
In many cases, a JDBC driver requires between 4 and 10 different communica-
tions with a database application before a connection can be established and
returned to the requesting application. If an application is constantly creating
connections, doing its business, and then closing the connection, the applica-
tion suffers in its potential performance. To overcome the connection perfor-
mance problem, you can use a connection pool. This chapter provides a
comprehensive introduction to connection pools, presents valuable statistics
for creating database connections, and demonstrates how to use the connec-
tion pooling mechanisms within JDBC.

Chapter 11: EJBs with MySQL
Enterprise JavaBeans (EJBs) provide the framework for building applications
that can handle the rigors of enterprise-level applications. In addition, EJBs can
be distributed across a network or a farm of servers. In this chapter, we cover
the basic EJB programming model, using DataSources and JNDI, and building
session beans to access MySQL. We also discuss container-managed persis-
tence and bean-managed entity beans.

Chapter 12: Building a General Interface for MySQL
All of the chapters to this point have featured relatively simple examples using
Java applications, applets, servlets, and JSP to illustrate the finer points of
accessing a MySQL database using Java and Connector/J. This chapter pulls it

INTRODUCTIONxx

all together using a Certificate Authority application. Using JSP, servlets, and
EJB, the application shows how to create new accounts, request certificates,
and enable the verification of certificates. All of the information, including
the binary certificate, is stored in a MySQL database with multiple tables.

Chapter 13: Database
Administration

Once you have a good knowledge of the MySQL database system as well as
the fundamentals described in the previous chapters for accessing the data
from Java, you must learn some database administration basics. In this chap-
ter, we examine many of the functions within MySQL that benefit administra-
tors, such as granting/revoking permissions, providing security within the
server, and recovering from disasters.

Chapter 14: Performance and Tuning
Once the application is written and the information is safely sitting in a data-
base, the users get the final say on whether or not the application meets their
performance requirements. If the application isn’t running at an appropriate
level, you have a couple of options. First, you can profile the Java code to
determine where the application is spending the most time and then rework
the code associated with the problem areas. Second, you can tune the MySQL
server and create indexes for the database tables. In this chapter, we provide
the necessary information on performing these two options.

Appendix A: MySQL Development and Test Environments
We developed and tested all of the code in this book on several different test
architectures in order to provide a representative reference. This appendix
briefly describes those environments and lists the installed software. In addi-
tion, we offer some notes for reproducing the configuration.

Appendix B: Databases and Tables
In this appendix, we list all databases and tables used in the examples
throughout this book.

Appendix C: The JDBC API and Connector/J
This appendix is a comprehensive review of the entire JDBC API, with anno-
tations for Connector/J. Code snippets are provided to show at a quick glance
how to use the various interfaces, classes, and methods.

MySQL and Java Developer’s Guide xxi

Appendix D: MySQL Functions and Operators
The list of MySQL functions and operators in this appendix will help you deter-
mine when the database should handle computations versus the application.
Each function and operator is described, and an example of its use is given.

Appendix E: Connector/J Late-Breaking Additions
The most current, up-to-date additions to Connector/J as it moves from gamma
to production version.

INTRODUCTIONxxii

In this chapter, we explain why you might choose to use a database system
with your software. We also provide an overview of the MySQL database
server and the Connector/J JDBC driver.

For many years, large corporations have enjoyed the ability to deploy relational
database management systems (RDBMSs) across their enterprise. Companies
have used these systems to collect vast amounts of data that serve as the “fuel”
for numerous applications that create useful business information.

Until recently, RDBMS technology has been out of reach for small businesses
and individuals. Widely used RDBMS systems such as Oracle and DB2 require
complex, expensive hardware. License fees for these systems are in the tens to
hundreds of thousands of dollars for each installation. Businesses must also
hire and retain staff with specialized skill sets to maintain and develop these
systems. Smaller enterprises have relied on systems like Microsoft Access and
FoxPro to maintain their corporate data.

Early on, during the explosive growth of the Internet, open source database
systems like mSQL, Postgres (now PostgreSQL), and MySQL became available
for use. Over a relatively short amount of time, the developers of these systems
have provided a large subset of the functionality provided by the expensive
commercial database systems. These open source database systems also run
on less-expensive commodity hardware, and have proven in many cases to be
easier to develop for and maintain than their commercial counterparts.

An Overview of MySQL

C H A P T E R 1

1

Finally, smaller businesses and individuals have access to the same powerful
level of software tools that large corporations have had access to for over a
decade.

Why Use an RDBMS?

Almost every piece of software that has been developed needs to persist or
store data. Once data has been persisted, it is natural to assume that this data
needs to be retrieved, changed, searched, and analyzed.

You have many options for data persistence in your software, from rolling your
own code, to creating libraries that access flat files, to using full-blown RDBMS
systems. Factors to consider when choosing a persistence strategy include
whether you need multiuser access, how you will manage storage require-
ments, whether you need transactional integrity, and whether the users of your
software need ad hoc query capability. RDBMSs offer all of this functionality.

Multiuser Access
Many programs use flat files to store data. Flat files are simple to create and
change. The files can be used by many tools, especially if they are in comma- or
tab-delimited formats. A large selection of built-in and third-party libraries is
available for dealing with flat files in Java. The java.util.Properties class
included with the Java Development Kit is one example.

Flat file systems can quickly become untenable when multiple users require
simultaneous access to the data. To prevent corrupting the data in your file, you
must lock the file during changes, and perhaps even during reads. While a file is
locked, it cannot be accessed by other users. When the file becomes larger and
the number of users increases, this leads to a large bottleneck because the file
remains locked most of the time—your users are forced to wait until they can
have exclusive access to the data.

RDBMSs avoid this situation by employing a number of locking strategies at
varying granularities. Rather than using a single lock, the database system can
lock an individual table, an individual page (a unit of storage in the database,
usually covering more than one row), or an individual row. This increases
throughput when multiple users are attempting to access your data, which is a
common requirement in Web-based or enterprise-wide applications.

Storage Transparency
If you use flat files in your software, you are also responsible for managing their
storage on disk. You have to figure out where and how to store the data, and

A n O v e r v i e w o f M y S Q L2

every time the location or layout of the files changes, you are required to
change your software. Once the datasets your software is storing become
numerous or large, the storage management process becomes cumbersome.

Using a database system gives you “storage transparency.” Your software does
not care where and how the data is stored. The data can even be stored on some
other computer and accessed via networking protocols.

Transactions
When you have more than one user accessing and changing your data, you want
to make these changes transactional. Transactions group operations on your
data into units of work that meet the ACID test. The ACID test concept is best
illustrated with a commonly used example from the banking industry.

Jack and Jill share a joint checking account with a balance of $1000. They
are both performing various operations, such as deposits, withdrawals, and
transfers, on the account. Let’s see how the four aspects of the ACID test come
into play:

■■ Atomicity: All changes made during a transaction are made successfully,
or in the case of failure, none are made. If any operation fails during the
transaction, then the entire transaction is rolled back, leaving your data in
the state it was before the transaction was started. For example, suppose
Jack is making a transfer of $500 from his checking account to a savings
account. Sometime between the withdrawal of the $500 from the checking
account and the deposit of $500 to the savings account, the software run-
ning the banking system crashes. Jack’s $500 has disappeared! With atom-
icity, either the entire transfer would have happened, or none of it would
have happened, leaving Jack a much happier customer than he is now.

■■ Consistency: All operations transform the database from one consistent
state to another consistent state. Consistency is defined by how the data-
base schema is designed and whether integrity constraints such as foreign
keys are used. The database management system is responsible for ensur-
ing that transactions do not violate the database schema or integrity con-
straints. For example, the bank’s database developers have declared in the
database schema that the balance of an account cannot be empty, or “null.”
If any transaction attempts to set the balance to an empty value, the trans-
action will be aborted and any changes rolled back.

■■ Isolation: A transaction’s changes are not made visible to other transac-
tions until they are committed under the atomicity rule described earlier.
This is best demonstrated by what happens when month-end reports are
generated. Let’s say that Jack is performing the transfer transaction out-
lined in the atomicity example, and at the same time you are generating his

Why Use an RDBMS? 3

monthly statement. Without isolation, the monthly statement might show
the withdrawal from the checking account but not the deposit into the sav-
ings account. This discrepancy would make it impossible for Jack or the
bank to balance their books.

■■ Durability: Once completed, a transaction’s changes are never lost
through system or hardware crashes. If Jill has paid for $50 worth of gro-
ceries with her debit card at the grocery store and the transaction suc-
ceeds, even if the database software crashes immediately after the
transaction competes, it won’t forget that her checking account balance is
$50 lower.

Until recently, MySQL did not comply with all components of the ACID test.
However, with the new BDB and InnoDB table types (supported in MySQL 3.23
and MySQL 4.0), MySQL can now pass the ACID test.

Not all software requires the robustness (or the associated overhead) of trans-
action semantics. MySQL is one of the only databases that enable you to decide
what level of robustness you need on a table-by-table basis. This becomes
important when you are trying to maximize performance, especially when
much of the data is read-only (such as in a product catalog).

Searching, Modifying, and Analyzing Data
Any time you store a significant amount of data with your software, your users
want to search, modify, and analyze the data you have stored. If you are using
flat files, you most likely have to develop this functionality yourself.

As your data stored in flat files takes up more and more space, it takes longer
and longer to search. A common solution to this problem is to create an index
for your data. Indexes are basically shortcuts to finding a particular piece of
data, usually using some sort of key. If you need to develop indexing function-
ality yourself, you have to learn about data structures, such as hashes and B-
trees, and how to store these indexes alongside your data. In addition, you must
learn how to implement the index in your software. If you use an RDBMS, you
can tell the database system what data you think people will search on, and it
does all of the fancy indexing for you.

Users of your software also want to retrieve, modify, and analyze the data you
have stored. They expect that your system knows how to compute such values
as sums, averages, minimums, and maximums to be used for updating related
data or analyzing existing data. They expect that your software will be able to
sort the data or group the data by similar attributes. All of this functionality
requires you to implement numerous functions and algorithms. If you use an
RDMBS, all of these features are built in.

A n O v e r v i e w o f M y S Q L4

Ad Hoc Queries
It is likely that your software will need to retrieve stored data using arbitrary
parameters, otherwise known as ad hoc queries. This becomes difficult with
flat files because they are not self-describing, and every file layout is different.
You also need to consider how you are going to read the data for these queries
from your persistent storage mechanism.

Many RDBMSs use SQL (Structured Query Language) for manipulating data.
SQL is a declarative language in that you declare what data you want, not the
procedure for how to get it. SQL is also an accepted and widely used standard,
so a large set of tools are available (JDBC and Enterprise Java Beans, among
them) to help you work with it.

After outlining all of the benefits of an RDBMS, I hope you are ready to consider
using one for your software projects. The next question to ask is “Why choose
MySQL?”

Why Choose MySQL?

As was the case with many other open source projects, MySQL was first cre-
ated by someone who needed a better tool to get a specific job done. Monty
Widenius and David Axmark started out with another open source project
(MSQL), but found that it lacked some features that they needed. They decided
to develop their own database system that met their specific requirements.
They started building MySQL by using some low-level database storage code
they had already developed for other projects and layered a multithreaded
server, SQL parser, and client-server protocol on top. They also structured the
API for MySQL to appear very similar to MSQL in order to make it easier for
developers to port their MSQL-based software to MySQL.

MySQL was eventually released in source-code form, under a proprietary license.
Eventually, this license was changed to the GNU General Public License (GPL),
which in most cases allows the software to be used without license cost. How-
ever, in certain situations you must purchase a commercial license. The exact
terms of the license are available in the documentation that ships with MySQL or
on the Web at www.mysql.com. Commercial support is also available for those
who need it from MySQL-AB, the company that was created by Monty and David
to support the continued development of the MySQL software.

The requirements that Monty and David originally had for MySQL were that it
be as fast as possible, while still being stable, simple to use, and able to meet the
needs of the majority of database developers. Even today, feature requests for
future MySQL development are weighed carefully against these original

Why Choose MySQL? 5

requirements, and are implemented only when and if the original requirements
can be met as much as possible.

Over the years, MySQL has evolved into an RDBMS that has the following core
features:

■■ Portability: MySQL runs on almost every flavor of Unix, as well as Win-
dows and MacOS X. You can obtain binaries or source code for the MySQL
server as well as the tools that access it. More ports of the software
become available every day. It is almost a given that MySQL will run on
whatever operating system you have available.

■■ Speed: Using techniques such as efficient indexing mechanisms, in-
memory temporary tables, and highly optimized join algorithms, MySQL
executes most queries much faster than most other database systems.

■■ Scalability: Because of its modularity and its flexibility in configuration,
MySQL can run in systems varying in size from embedded systems to large
multiprocessor Unix servers hosting databases with tens of millions of
records. This scalability also allows you to run a copy of MySQL on a
developer-class machine, and later use the same database system on a
larger machine in production. Because it is multithreaded, MySQL effi-
ciently utilizes resources for multiple users, compared to other database
servers that start full-fledged processes for each user. It is not uncommon
to hear of MySQL installations supporting thousands of concurrent users.

■■ Flexibility: MySQL lets you choose the table types you need to meet your
software’s requirements, ranging from in-memory heap tables, fast on-disk
MyISAM tables, merge tables that group together other sets of tables to
form larger “virtual” tables, and transaction-safe tables such as InnoDB.
MySQL is also very tunable and includes many parameters that can be
changed to increase performance for a given solution. However, MySQL
comes with sensible defaults for these parameters, and many users never
have to tune MySQL to reach a performance they are happy with.

■■ Ease of use: MySQL is easy to install and administer. While other data-
base systems require special knowledge and training, not to mention spe-
cial operating system configurations, MySQL can be installed in less than
10 minutes if you’ve done it before. Even if you are a newcomer, you
should be able to install MySQL in under an hour. Once it’s installed,
MySQL requires little maintenance and administration other than adding or
changing user permissions and creating or removing databases.

■■ Fine-grained security model: You can restrict users’ rights from an entire
database down to the column level based on login name, password, and the
hostname that users are connecting from. This allows you to create secure
systems by partitioning responsibilities and capabilities of different users
and applications to prevent unauthorized modification or retrieval of data.

A n O v e r v i e w o f M y S Q L6

■■ Access from other languages/systems: There are libraries and APIs for
connecting to MySQL from Java (the focus of this book), C/C++, Perl, PHP,
ODBC (Microsoft Windows applications), TCL, Eiffel, and Lisp. Because of
this, a whole set of tools has appeared surrounding the use of MySQL from
these languages and systems.

As you can see, MySQL is a flexible and capable RDBMS that has a rich feature
set, performs well on the majority of queries, and has a large support base for
access from many different languages. This book focuses on using MySQL with
JDBC, which is what we talk about next.

MySQL and JDBC

Many developers choose to implement software using Sun’s Java technology
because of the support Java has for standard Internet concepts such as Web
sites, e-mail, and networking. This is the very reason I started to investigate
using Java with MySQL in 1994.

Sun created a standardized interface to databases from Java called Java Data-
base Connectivity (JDBC). Early in 1994, I was interested in connecting a Java
application I was about to develop with the then-new MySQL database system
using JDBC.

At the time, a rudimentary JDBC driver developed by GWE Technologies
existed for MySQL. However, it was missing many features that I required for
my project. Because many of the features that I needed would have been diffi-
cult to implement in the original MySQL driver, I decided to see if I could imple-
ment one myself, more as a tutorial than anything else.

After a few weeks of work, I had something that met most of my needs. Through
correspondence with other Java developers on the MySQL mailing list, I found
that others had a need for a JDBC driver to use with MySQL, and that they
required many of the features I had just implemented. Not knowing what would
happen, I wrote about the driver I had developed and allowed people to use it.
From that small project, the JDBC driver known as MM.MySQL was born.

Over the years, through many hundreds of e-mails from users around the world,
chronicling bugs and interoperability issues with development tools and appli-
cation servers, MM.MySQL was fixed and tuned and eventually stabilized to
become a successful open source project with a life all of its own. Downloaded
by developers from around the world on average close to a thousand times a
day, it is one of the most popular JDBC drivers, commercial or open source.

MySQL and JDBC 7

Monty and David of MySQL AB eventually became aware of the size of the Java
developer community wanting to use MySQL, and extended an offer for me to
join their team. In June 2002, I did just that, and MM.MySQL became the official
JDBC driver for MySQL. It was subsequently renamed Connector/J.

What’s Next

Now you understand the need for using a database in many of the applications
written today. In this chapter, we explained why MySQL is a logical choice.
Using the Connector/J JDBC driver, all sorts of Java applications can access a
database and its data. In the next chapter, we provide a comprehensive
overview of the JDBC specification and how it has been implemented in the
Connector/J driver.

A n O v e r v i e w o f M y S Q L8

In the previous chapter, we discussed how a database can aid in the devel-
opment of both Web sites and applications. One of the most popular data-
bases is MySQL. Of course, a language is also needed, and our choice for

this book is Java. By itself, Java doesn’t have any way of directly accessing a
database. To allow us to achieve the necessary interface between Java and a
database, the developers at Sun created a specification called JDBC. In this
chapter, we take a comprehensive look at the following:

■■ The history of JDBC

■■ JDBC driver types

■■ Standards and how they affect JDBC

■■ The JDBC class

■■ MySQL’s Connector/J driver

What Is JDBC?

In this section, we provide a brief overview of what JDBC is and how it came
about. Although many believe that JDBC is an acronym for Java Database Con-
nectivity, the JDBC documentation itself states that JDBC isn’t an acronym but
actually a trademarked name (you can find more information about JDBC at
Sun’s Web site: http://java.sun.com/products/jdbc/).

With that said, JDBC is simply an application programming interface (API)
for manipulating a database. The manipulation includes everything from

JDBC and Connector/J

C H A P T E R 2

9

connecting to the database, to executing SQL statements, to returning results.
JDBC is middleware, or an intermediary between the Java language and a data-
base. Fundamentally, JDBC is a specification that provides a complete set of
interfaces that allows for portable access to an underlying database. The issue
of portability is one of the key aspects of JDBC. Can you imagine using a lan-
guage like Java—which provides the absolute best mechanism for writing an
application once and executing it on a large number of platforms—and then
having to change the code when your organization switches from Microsoft
SQL Server to MySQL? That wouldn’t be a very portable language in the area of
database manipulation.

Fortunately, JDBC provides the standard API, and individual database vendors
produce the drivers necessary to perform the actual interface between your
Java application and the database. This means that Oracle, MySQL, Microsoft,
and many other database vendors have taken the time to write all of the code
behind the scenes. Since all of the vendors are writing to a common API, you
can be relatively certain that the idea of write once, execute often and any-
where is still intact. Because most of the vendor JDBC drivers are also written
in Java (more on this in the next section), the drivers can be used on different
platforms as well. Not only can you change the platform on which your appli-
cation runs or where the database itself resides, but you can also change the
platform where the database executes. In the case of MySQL, the database sys-
tem executes on most flavors of Unix and Linux, Windows, and the Macintosh
platforms.

As you know, Java can be used to write different types of executables, such as

■■ Applications

■■ Applets

■■ Servlets

■■ Java ServerPages (JSPs)

■■ Enterprise JavaBeans (EJBs)

All of these different executables are able to use a JDBC driver to access a data-
base and take advantage of the stored data. Throughout this book, we use a
combination of these applications to illustrate using the MySQL JDBC driver to
extract data from a database. For the most part, we use the term Java applica-

tion to refer to any of the executable types we’ve listed, with the possible
exception of EJBs.

What about ODBC?
One of the reasons developers thought JDBC stood for Java Database
Connectivity relates to the acronym ODBC (used by Microsoft). ODBC, or Open

J D B C a n d C o n n e c t o r / J10

Database Connectivity, is an API developed by Microsoft to allow access to
databases. The API and subsequent interface code allow access to a wide range
of databases on many platforms using a variety of languages. This all sounds
wonderful for a middleware product. Surely we could use ODBC as an interface
between Java and MySQL. Why don’t we?

The answer isn’t as simple as not wanting to use a Microsoft product in
our development. It is possible to use ODBC from Java using a product
called the JDBC-ODBC Bridge, supplied by Sun. This bridge takes Java com-
mands based on the JDBC API and sends them to an installed ODBC driver,
which subsequently accesses the database. Any results work through the soft-
ware in reverse. The bridge was supplied with Java 1.2 and 2.0 as a stopgap for
developers who needed quick access to a database from their Java code. At the
time, the JDBC specification wasn’t mature; there weren’t many vendor drivers
available that used JDBC, but many were available for ODBC. Now that all
major database vendors have pure Java solutions, use of the bridge isn’t
encouraged.

There are drawbacks to using ODBC in the process of accessing a database
through Java. The primary drawback is that the code that implements ODBC is
based on the C language and uses a large number of generic pointers. A number
of problems occur with interfacing Java to C code, not to mention performance
issues. It is much better to have a Java solution to database interfacing in order
to provide a seamless solution.

Modeling Database Applications with JDBC
Before we start to look at the specifics of JDBC, let’s take a moment and con-
sider how it is used to interface a Java application with MySQL. Figure 2.1
shows a simple two-tier deployment model.

What Is JDBC? 11

Client
Java Applet

Java Application

JDBC

Server
MySQL Database

Figure 2.1 A two-tier deployment model.

In the two-tier deployment model, commonly called client/server, the client
application communicates directly to the database through a JDBC driver. The
JDBC API supports both two-tier and three-tier models for database access.
The model supports the database being on the same machine as the client appli-
cation or on a remote machine, with all communication being handled by
JDBC. While the two-tier model is effective and has been in use for many years,
there are problems with it, including a lack of security for updates occurring on
the database, performance issues, and a lack of scalability.

Modern systems use a three-tier deployment model, as shown in Figure 2.2.

J D B C a n d C o n n e c t o r / J12

Business
Servlet

Other business app

Client
Java Applet

Java Application
Java JSP

JDBC

Server
MySQL Database

Figure 2.2 A three-tier deployment model.

As shown in the three-tier model, the client doesn’t have direct access to the
database. Instead, the client sends all its requests to a middle, or business, tier.
This tier is responsible for implementing all business rules relating to the appli-
cation and the data that is received from both the client and the database. Using
a third tier has many advantages, the least of which is the ability of the business
tier to handle security issues with the client application. The business tier is
able to determine what a client is allowed to request and to filter data as needed
when it is returned from the database.

Within the Java arena, three-tier models are commonly created using a JSP page
communicated to the client via a Web browser. The JSP triggers a servlet on the
business, or middle, tier, where rules and logic are applied to the client’s
request. The middle tier servlet contacts the database, or third, tier either
directly or through EJBs.

JDBC Versions

Throughout the history of JDBC, Sun has introduced several different versions,
beginning with version 1.0 in January of 1997. This initial specification defined
the interfaces necessary to create an instance of the driver in a Java applica-
tion, building SQL statements to execute against the underlying database,
return results through a ResultSet object, and obtain various pieces of metadata
about the database as well as the ResultSet.

Next, the 2.0/2.1 specification was released; this broke the original 1.0 specifi-
cation into two parts. The Core API for 2.0 didn’t add much to the original 1.0
specification but instead concentrated on performance and SQL 99 data types.
The added functionality included programmatic SQL statements, scrollable
ResultSets, streams, and other small updates. The second part of the 2.0/2.1
specification is called the JDBC 2.0 Optional Package. This package includes
interfaces for data source interfaces, connection pooling, distributed transac-
tions, and RowSets.

Recently, version 3.0 of the JDBC specification was released. Supported in the
1.4.x version of Java, the new specification includes many enhancements to
ResultSets, data types, connection pools, and basic SQL statements. New func-
tionality includes savepoint support (for checkpointing within transactions)
and support for ParameterMetaData. You can find a complete discussion of the
3.0 specification at http://java.sun.com/products/jdbc/download.html#core-
spec30.

In the section “JDBC Support within 3.0.1” later in this chapter, we provide a
complete overview of MySQL Connector/J’s support of the functionality found
in the specification. Appendix C, “JDBC API and Connector/J” also contains
a detailed review of the complete specification and Connector/J support.

JDBC Driver Types

This section discusses the basic programming model of the JDBC driver itself.
There are four different ways a JDBC driver can be created by vendors to sup-
port their database:

■■ Type 1: JDBC-ODBC Bridge

■■ Type 2: Native-API partly Java

■■ Type 3: JDBC-Net pure Java

■■ Type 4: Native-protocol pure Java

JDBC Versions 13

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on
each client machine. (This is the JDBC-ODBC Bridge we discussed earlier.)
From the standpoint of Java, this is merely a stopgap solution until a Java-based
JDBC driver can be obtained.

In a Type 2 driver, JDBC API calls are converted and supplied to a vendor-
specific driver. Used in the same manner as the JDBC-ODBC Bridge, the
vendor-specific driver must be installed on each client machine. These drivers
suffer the same problems found in a bridge situation.

In a Type 3 driver, a pure Java-based driver translates API calls into a DBMS-
independent network protocol, which is further translated by a server to a
vendor-specific protocol.

In a Type 4 driver, a pure Java-based driver translates API calls directly into the
protocol needed by a vendor’s database. This is the highest performance driver
available for the database and is usually provided by the vendor itself. MySQL’s
Connector/J driver is a Type 4 driver.

SQL Standards

The standardization of access to a database has been a hot topic in recent years.
The standard is called Structured Query Language, or SQL. Although the idea of
a standard is appealing, not all database vendors follow the standard, and some
cannot because of the feature set of the database itself. SQL92 used to be the
defining specification for SQL, but recently a new standard called SQL99 has
been adopted. The JDBC version 3.0 specification is designed to support SQL99.

When working with different database systems through JDBC, you can be rela-
tively sure that basic functionality like SELECT, INSERT, UPDATE, and
DELETE will work without much change. Beyond the basics, though, getting
SQL working from one database to another requires some effort on your part.

By far the most important issue facing standardization is data typing. As you
have probably already experienced in your development history, data types
between C, C++, Java, PHP, and others can be quite different, especially in the
area of data and time. Combine these differences with the various data types
that can be stored in a database and you have the makings of a problem. In
Chapter 7, “MySQL Type Mapping,” we cover the JDBC data types and how they
are represented in MySQL and subsequently with a Java application.

Another issue facing standardization is the use of quotes within SQL state-
ments. JDBC attempts to handle this by using escaping and by requiring ven-
dors to implement the escaping as appropriate for their databases.

J D B C a n d C o n n e c t o r / J14

A developer can also work with standardization by using metadata supplied
from the database. Many times, a database will return information in the form
of metadata, indicating whether it supports specific features.

Examining the JDBC Interface

Now that we know what JDBC is, where it came from, and its place in a typical
system, let’s turn our attention to the interfaces used to create the driver. Figure
2.3 shows how all of the core interfaces in the specification are designed to
work together.

Examining the JDBC Interface 15

Statement
Prepared
Statement

Callable
Statement

ResultSet ResultSetResultSet

Connection

DriverManager

Connector/J

MySQL

Figure 2.3 The Core JDBC API structure.

As we mentioned earlier, the specification is broken up into two different pack-
ages: the Core API and the Optional API. The Core API is implemented in the
java.sql package. In this section, we look at the interfaces available in the spec-
ification (although we don’t indicate here whether Connector/J supports the
functionality—that can be found in Appendix C).

The java.sql Package
You can find this information both in Appendix C and in the section “Under-
standing Connector/J” later in this chapter. The interfaces specifically defined

in version 3.0 of the specification are shown in italics. The full Javadoc can be
found at http://java.sun.com/j2se/1.4/docs/api/java/sql/package-summary.html.

java.sql.Array: The Array interface is a mapping between the Java lan-
guage and the SQL ARRAY type. The interface includes methods for bring-
ing an ARRAY value to a client as a Java array or in a ResultSet.

java.sql.BatchUpdateException: The BatchUpdateException is thrown
when a batch update operation has failed. The exception includes all of the
successful update commands that executed before the failure.

java.sql.Blob: The Blob Java interface is a mapping to the SQL BLOB
value.

java.sql.CallableStatement: The CallableStatement interface is used to
execute stored procedures if supported on the database. Parameters are
allowed with the interface as well as escape syntax.

java.sql.Clob: Clob is a mapping from the Java programming language to
the SQL CLOB type. A CLOB is a Character Large Object.

java.sql.Connection: The Connection interface provides a method for cre-
ating a connection to a specific database. All SQL is executed in the context
of a Connection object.

java.sql.DataTruncation: The DataTruncaction exception is thrown
when data will be truncated. On a write, the exception is an error, but on a
read, the exception is a warning.

java.sql.DatabaseMetaData: The DatabaseMetaData interface is designed
to provide information about the remote database that a connection has
been made to previously. The information available to the DatabaseMeta-
Data object will be different based on the database vendor and the informa-
tion it wants to provide.

java.sql.Date: The Date class is a wrapper for JDBC to use as a map to the
SQL DATE value. The value of Date is the number of milliseconds since Jan-
uary 1, 1970, 00:00:00:000 GMT.

A thin wrapper around a millisecond value that allows JDBC to identify this
as an SQL DATE value. A milliseconds value represents the number of mil-
liseconds that have passed since January 1, 1970, 00:00:00.000 GMT.

java.sql.Driver: The Driver interface is implemented by all vendor drivers
so that they can be loaded by a static class called DriverManager. The Dri-
ver object will automatically create an instance of itself and register with
DriverManager.

java.sql.DriverManager: The DriverManager class is used to manage all
Driver objects.

J D B C a n d C o n n e c t o r / J16

java.sql.DriverPropertyInfo: The DriverPropertyInfo class provides
information for advanced developers who need to set specific properties for
loading a Driver object.

java.sql.ParameterMetaData: The ParameterMetaData interface provides
information about the parameters in a PreparedStatement object.

java.sql.PreparedStatement: The PreparedStatement interface provides
an object for executing precompiled SQL statements against the connected
database.

java.sql.Ref: The Ref interface is a mapping between Java and an SQL REF
value. A REF value is a reference to an SQL structured type value.

java.sql.ResultSet: A ResultSet interface is designed to represent a Result-
Set produced from a query of the database. An internal cursor points to the
current row of data, and it can be pointed before and after the data. Meth-
ods are used to move the cursor to different rows in the ResultSet. By
default, the ResultSet isn't updatable, but can be made both scrollable and
updatable.

java.sql.ResultSetMetaData: The ResultSetMetaData interface is used to
return specific information about the data within a ResultSet object. The
information could include the number of columns, column names, float col-
umn precision, and total column size, among other data.

java.sql.Savepoint: The Savepoint interface is used along with transac-
tions to provide rollback points. This allows for the completion of large
transactions even when an error occurs.

java.sql.SQLData: The SQLData interface is used to map the SQL user-
defined type to the Java language.

java.sql.SQLException: The SQLException exception will be thrown
when an error occurs during an attempt to access a database or when the
database itself returns an error.

java.sql.SQLInput: The SQLInput interface is used by the developer of a
JDBC driver to stream values from the database results. The interface isn’t
designed to be instantiated by the application developer.

java.sql.SQLOutput: The SQLOutput interface is used by the developer of
a JDBC driver to stream data to the database. The interface isn’t designed to
be instantiated by the application developer.

java.sql.SQLPermission: The SQLPermission interface is designed to
allow the driver to determine its permission when an applet calls the Driver-
Manager.setLogWriter or setLogStream methods.

java.sql.SQLWarning: The SQLWarning interface is used to return any
database access warnings from the database. Warnings are available in the
Connection, Statement, and ResultSet objects.

Examining the JDBC Interface 17

java.sql.Statement: The Statement interface is probably one of the most
important interfaces in the JDBC specification. All SQL statements are exe-
cuted through a Statement object. Each Statement object returns single
ResultSet objects.

java.sql.Struct: The Struct interface is a mapping from a SQL structured
type to the Java language.

java.sql.Time: The Time class is a wrapper around java.util.Date to sup-
port the mapping from SQL TIME to Java.

java.sql.Timestamp: The Timestamp class is a wrapper around
java.util.Date to support the mapping from SQL TIMESTAMP to Java.

java.sql.Types: The Types class is an internal class used to identify
generic SQL types or JDBC types.

The classes and interfaces within the Core API are linked together, as shown in
Figure 2.4. There is a natural progression from a Connection object to a Result-
Set. The path from one to the other occurs using a Statement, PreparedState-
ment, or CallableStatement; and the Statement class is a parent to both of the
others. All of the Statement classes will eventually execute SQL to produce a
ResultSet.

J D B C a n d C o n n e c t o r / J18

ResultSet

Connection

DataTypes

Statement
Prepared Statement
Callable Statement

createStatement

executeQuery

Figure 2.4 JDBC Core API class/interface links.

The javax.sql Package
The Optional API within the JDBC specification is implemented within the
javax.sql package. The classes and interfaces are as follows:

javax.sql.ConnectionEvent: The ConnectionEvent class is used to signal
a closed pooled connection and an error.

javax.sql.ConnectionEventListener: The ConnectionEventListener
interface is used by applications that want to be notified when a Pooled-
Connection object generates an event.

javax.sql.ConnectionPoolDataSource: The ConnectionPoolDataSource
is a factor for PooledConnection objects. The object implementing the
interface can be registered using Java Naming and Directory Interface
(JNDI).

javax.sql.DataSource: The DataSource is a factory for connections. The
object implementing the interface can be registered using JNDI.

javax.sql.PooledConnection: The PooledConnection interface provides a
connection to the database, but is part of a larger pool. The application
developer doesn’t use the interface directly.

javax.sql.RowSet: The RowSet is a JavaBeans component that is created
and configured at design time and executed at runtime. The RowSet can be
configured to connect to a JDBC source and to read data.

javax.sql.RowSetEvent: The RowSetEvent is created when a single row
in a RowSet is changed, the internal cursor moves to a different location, or
the entire RowSet has changed.

javax.sql.RowSetInternal: The RowSetInternal interface is implemented
to allow the RowSetReader and RowSetWriter objects access to the inter-
nals of a RowSet.

javax.sql.RowSetListener: The RowSetListener interface is implemented
by a component that wants to be notified when an event occurs in a RowSet
object. The component calls the addRowSetListener() method of the
RowSet in which it is interested.

javax.sql.RowSetMetaData: The RowSetMetaData interface provides
information about a RowSet. The information centers around the columns
returned from a result.

javax.sql.RowSetReader: The RowSetReader interface is used by a
RowSet to obtain results from the database.

javax.sql.RowSetWriter: The RowSetWriter interface is used to write
changed data back to the database.

javax.sql.XAConnection: The XAConnection interface allows a connec-
tion to handle distributed transactions.

Examining the JDBC Interface 19

J D B C a n d C o n n e c t o r / J20

java.sql.Connection

javax.sql.DataSource

Instantiates a

Figure 2.5 DataSource/Connection classes.

Figure 2.6 shows how a PooledConnection class will also use the Connection
class to obtain a link to the database. Note the ConnectionEventListener asso-
ciated with PooledConnection. Any events created by PooledConnection will
be sent to those objects that register with the ConnectionEventListener.

javax.sql.Connection

ConnectionEvent

javax.sql.PooledConnection ConnectionEventListener

ConnectionPoolDataSource

Instantiates 1+

throws

getConnection

Figure 2.6 PooledConnection/Connection classes.

javax.sql.XADataSource: The XADataSource interface is an internal fac-
tory for DataSource connections using JNDI.

The classes and interfaces within the Optional API are linked together, as
shown in Figures 2.5, 2.6, 2.7, and 2.8, which are referenced within the version
3.0 specification.

Figure 2.5 shows the relationship between the DataSource and Connection
classes. The DataSource doesn’t act on its own, but instead must obtain a con-
nection to the database through the Connection class.

Figure 2.7 RowSet classes.

Understanding Connector/J

Up to this point, our discussion has centered on the general JDBC specification
and its related interfaces and classes. In this section, we turn our attention to
MySQL’s JDBC driver, Connector/J. At the time of this writing, there are two
versions of the driver: 2.0.14 and 3.0.1. The drivers can be found at
www.mysql.com/downloads/api-jdbc-stable.html and www.mysql.com/down-
loads/api-jdbc-dev.html, respectively.

The Connector/J driver started as MM.MySQL (written by Mark Matthews) and
has been the primary JDBC driver for MySQL. During 2002, Mark joined the
MySQL team and subsequently updated the driver and renamed it to Connec-
tor/J. The 2.0.14 version is basically the last MM.MySQL version made available
on the mmmysql.sourceforge.net Web site. The 3.0.1 version contains numer-
ous changes to the original code. These features will be discussed shortly.

Connector/J is designed specifically for MySQL and attempts to adhere to the
JDBC API as much as possible. However, in order for a driver to adhere to the
full JDBC specification, the underlying database must support all of the fea-
tures supported in the latest 3.0 version. For MySQL and Connector/J, strict
adherence is impossible because MySQL currently doesn’t support stored pro-
cedures, savepoints, references, and various other small pieces of functionality.
These differences with the specification are noted in Appendix C. For the
remainder of this book, we use the latest 3.0 version of Connector/J.

Understanding Connector/ J 21

ResultSet

RowsetRowsetEvent

RowsetinternalRowsetMetaData

RowsetWriter

RowsetListener

RowsetReader

creates

Figure 2.7 shows how the RowSet classes are constructed from the base Result
and ResultSetMetaData classes.

JDBC Support within 3.0.1
As we mentioned earlier, the Connector/J JDBC driver is able to support only
those features of the specification that the underlying MySQL database
supports. Instead of explaining what is supported from the specification, we
document here what currently is not supported. From a class standpoint, the
following classes have some functionality not supported:

■■ Blob

■■ Clob

■■ Connection

■■ PreparedStatement

■■ ResultSet

■■ UpdatableResultSet

■■ CallableStatement

Next we list each of the major interfaces with the individual methods not sup-
ported in the current version. As the MySQL database begins to support the
underlying functionality needed for each of the classes and methods, the list
will get shorter. For example, stored procedures are planned for a future
release of the database and thus the CallableResultSet interface could then be
implemented.

Blob
Blob.setBinaryStream()

Blob.setBytes()

Blob.truncate()

Clob
setAsciiStream()

setCharacterStream()

setString()

truncate()

Connection
Connection.setSavePoint()

Connection.setTypeMap()

Connection.getTypeMap()

J D B C a n d C o n n e c t o r / J22

Connection.prepareCall()

Connection.releaseSavepoint()

Connection.rollback()

PreparedStatement
PreparedStatement.setArray()

PreparedStatement.setBlob()

PreparedStatement.getMetaData()

PreparedStatement.setRef()

PreparedStatement.getParameterMetaData()

ResultSet
ResultSet.getArray()

ResultSet.getObject()

ResultSet.getRef(int)

ResultSet.getRef(String)

ResultSet.rowDeleted()

ResultSet.rowInserted()

ResultSet.rowUpdated()

ResultSet.updateArray(,)

ResultSet.updateClob()

ResultSet.updateRef()

UpdatableResultSet
rowDeleted()

rowInserted()

rowUpdated()

updateBlob()

CallableStatement
All methods

The Connector/J driver does support the use of very large package sizes when
used against MySQL 4.0 or later. This means that applications will have quicker
and easier access to large data within Blob and Clob columns.

Understanding Connector/ J 23

Obtaining JDBC Drivers

While our book concentrates on MySQL’s JDBC Connector/J driver, numerous
drivers are available for all types of databases. One of the most comprehensive
collections can be found on Sun’s site at http://industry.java.sun.com/prod-
ucts/jdbc/drivers.

Figure 2.8 shows that there are currently 165 drivers available and growing.

J D B C a n d C o n n e c t o r / J24

Figure 2.8 The Sun JDBC driver search screen.

What’s Next

In this chapter, we provided a comprehensive overview of the JDBC specifica-
tion and interfaces associated with the spec. We also explored the MySQL Con-
nector/J driver and its support of the specification. In the next chapter, we look
at installing all the tools we need for the remainder of the book.

If you’ve used the MySQL database system or any other relational database
system, this section of the chapter will be a review for you. Our goal is to
present the very basics of database systems, tables, design, queries, and

other topics of importance to developers who want to start using a database
with their application code. It should be noted that we have space to cover only
the basics and not all of the details associated with a database system. We
present more advanced topics throughout the book as we discuss JDBC and
MySQL. For those who already know this information, skip to the section called
“Introduction to MySQL SQL,” where we cover some of the MySQL specifics.

What Is a Database?

As we discussed in the opening paragraphs, the most efficient way to store
large amounts of data is a database system. The term database is generally used
as a common identifier of the entire system that constitutes this particular type
of storage system. However, a database is actually part of the database man-
agement system. A database management system (DBMS) is the term given to
the entire application that supports a database and includes all server and
client components.

In a typical setup, a large machine with plenty of disk space is allocated as
a database server. The DBMS is installed on the machine, and a server applica-
tion executed to handle requests to store and retrieve information. In addition,
a database administrator uses the DBMS to administer the server and keep the
database stored on the server in order.

Working with MySQL SQL

C H A P T E R 3

25

The database administrator, who can also be the developer, creates databases by
using the DBMS to hold specific data. For instance, an application might include
general data such as accounts, addresses, and other forms of basic information. In
addition to the account information, the application scans documents into the
database from a scanner. This binary data has a much greater space need than the
account information, so it is given a separate database. By separating the data into
different databases, the DBMS generally allows them to be assigned different disk
drive locations. The image data might be stored on a large array of disks, while the
account information is stored on smaller disks but configured as a redundant
array of independent disks (RAID). Figure 3.1 shows how this might look.

Wo r k i n g w i t h M y S Q L S Q L26

Server running MySQL

Raid Level 1

Large image data

MySQL Database

Account Information

acc_account table

MySQL Account Database

acc_address table

Figure 3.1 A multiple-database system.

Once the databases for the application have been laid out, tables are introduced
to each of the databases. While all of the data could be thrown together into the
database, it is usually better to group the data into logical bunches. In an
account database, you might have a table for account numbers and some iden-
tifying information. Another table in the account database could contain
address information. Figure 3.2 shows an example.

Figure 3.2 Tables within the database.

Each of the tables is further broken down into columns where individual pieces
of information are stored. The address table has columns for information such
as city, state, and zip. As data is put into the table, it is organized as a series of
rows, with each row containing specific information in the various columns, as
shown in Figure 3.3.

What Is a Database? 27

ID fname Iname
0 Joe Smith
1 Jane Doe
2 James Shaw

acc_account table

MySQL Account Database

ID acc_ID State
0 0 CO
1 1 AZ
2 2 IL

acc_address table

Figure 3.3 Database rows/columns.

So in a nutshell, that is the definition of a database. In the remainder of this sec-
tion, we examine these concepts in more detail.

Database Models
All databases model data in different ways. A database model is just a descrip-
tion of a container and how data is stored and retrieved from that container.
Over the years, a few different models have been developed. Consider the
following data that needs to be stored in a database:

Name Username City

John Smith smith Denver

John Smith jsmith Denver

James Doe doej Chicago

James Smith jsmith Atlanta

The Hierarchy Model
The hierarchy model attempts to organize the data in a parent-child relation-
ship where there is always some root data. Our sample data is modeled as
shown in Figure 3.4.

The data is contained within the hierarchy, but getting to it could be a problem
since the data is found at different levels.

The Network Model
In the network model, the parent-child relationship is expanded so that chil-
dren can have multiple parents and a logical layer is applied to the data. Figure
3.5 shows how our sample data is modeled.

Figure 3.4 The hierarchy model.

Wo r k i n g w i t h M y S Q L S Q L28

username

smith jsmith

John Smith Denver

username

name city

Figure 3.5 The network model.

The Relational Model

In the late 1960s, the relational model was developed. A relational database uses
tables with rows and columns. The power of the relational model becomes clear
when multiple tables are linked using a relationship. Figure 3.6 shows how our
sample data might be put in separate tables and linked using the username.

username
smith
jsmith
doej

name
John Smith
John Smith
James Doe

username
smith
jsmith
doej

city
Denver
Denver
Chicago

Figure 3.6 The relational model.

The Object Model

In the past few years, the object model has emerged. In this model, a database
is created to hold the objects found in a common programming language like

Java. Instead of the data being broken up, the entire object is stored. Figure 3.7
shows how our sample data might look in an object model-based database.

What Is a Database? 29

Account table

smith
 John Smith
 Denver

doej
 James Doe
 Chicago

Figure 3.7 The object model.

For the remainder of this book, we assume the use of a relational database man-
agement system. MySQL just happens to be such a system.

Data Types
As we mentioned earlier, a database has tables consisting of columns. The
columns aren’t just names like city, state, and zip, but are created based on
a data type such as string, integer, or float. Some of the more common data or
column types available are

■■ int—Represents an integer

■■ char—Represents a string of a specific length

■■ varchar—Represents a string of varied length

■■ blob—Represents a large binary piece of data

When you use a type to define a column, the database expects that kind of data
when you place information into the table.

Designing a Database
Now let’s spend some time on the subject of database design. We know that
MySQL and many other databases are relational in nature and that we need
to build databases, tables, and columns. However, if we neglect to give some
initial thought to the layout or design of these components, the performance
and integrity of the database server and the data itself will be suspect. Before
diving into this subject, note that very large college textbooks have been writ-
ten on the subject of database design. This section is just a small glance at the
subject.

To illustrate simple design considerations, let’s attempt to build the tables
within a database to hold data for a simple telephone directory. The data we
want to store includes the following:

Name

City

State

Telephone number

First Normal Form

If we were to place our data into a table, we might come up with the following:

Name City State Telephone

John Doe Chicago IL 217-333-3333

Of course, we immediately realize that John Doe has more than just one tele-
phone number, so we expand the table to handle more numbers:

Name City State Telephone1 Telephone2 Telephone3

John Doe Chicago IL 217-333-3333 800-333-3333

Jani Smith Atlanta GA 403-222-2223

In our new table, we’ve added another entry. However, Jani Smith has only one
telephone number, so we leave the columns Telephone2 and Telephone3 empty.
Unfortunately, our friend Bill Simpson is one of those characters with a home
telephone, a business telephone, a cell phone, a pager, and a phone just for mes-
sages. Since our table handles only three telephone numbers, we need to add two
more columns just for Bill. Most people we add into the table won’t have more
than three telephone numbers, so the vast majority of Telephone4 and
Telephone5 columns will be empty. Of course, just when we limit the table to five
telephone numbers, Bill will get a summer cabin with a telephone in it as well. We
cannot continue to add columns just to accommodate Bill’s communication
needs, especially when all of the added telephone columns will generally be
empty.

To solve this problem of multiple columns in the database, we apply rules asso-
ciated with the First Normal Form. The First Normal Form is the first in a
series of optimizations that should be applied to a database to produce a highly
efficient system. The rules in First Normal Form are:

■■ Columns with similar content must be eliminated.

■■ A table must be created for each group of associated data.

■■ Each data record must be identifiable by means of a primary key.

Wo r k i n g w i t h M y S Q L S Q L30

It isn’t necessary to apply all of these rules to achieve First Normal Form, but they
should be attempted nevertheless. For our database, the first and third rules can
be applied. Rule two isn’t valid for our data because all of the pieces of data are
associated with each other. Rule number 1 is the one that will make the most
difference in the database. Here’s our data after we’ve applied rules 1 and 3:

ID Name City State Telephone

101 John Doe Chicago IL 217-333-3333

102 John Doe Chicago IL 800-333-3333

103 Jani Smith Atlanta GA 403-222-2223

We won’t include Bill in the example to keep it small. Notice how John Doe’s
information is being duplicated so we can handle additional telephone num-
bers. If John Doe gets another telephone number, we just add a new record to
the table with duplicate name, city, and state values. The third rule doesn’t
really help with our telephone number problem, but in order for our table to be
in First Normal Form, it needs to be applied.

Second Normal Form

Of course, all of this data duplication simply cannot be a good thing because it
is clearly wasting space in the database. We can get some help with the dupli-
cated data using Second Normal Form and its associated rules:

■■ If the contents of columns repeat, the table needs to be divided into
multiple tables.

■■ Multiple tables from rule 1 need to be linked by foreign keys or their
derivative.

Since we have repeating data in the sample table, we apply rules 1 and 2 to
create a second table just for the city, state, and telephone information. For
example, the following table might be called the name table:

ID Name

101 John Doe

102 Jani Smith

The telephone table would look like this:

ID telephone_id city state telephone

201 101 Chicago IL 217-333-3333

202 101 Chicago IL 800-333-3333

203 102 Atlanta GA 403-222-2223

What Is a Database? 31

We now have two tables for all of our sample data. The first table, called name,
holds just the name of our contact as well as an ID for each name in the table.
There won’t be any duplicate names in this table. The second table, called tele-
phone, holds all of the contact information for each name in the name table.

Of particular important in the telephone table is the use of the telephone_id col-
umn. This column is considered a foreign key and links the name table to the
telephone table. The ID column in the name table is copied to each of the tele-
phone table rows as appropriate. If we need to find each of the telephone num-
bers for John Doe, we look up the ID in the row associated with John Doe. This
ID is used as a reference value in the name_id columns of each row in the tele-
phone table. Those rows that have the same ID value are returned. The tele-
phone number value can be pulled from each row and displayed.

Third Normal Form

The last “normal form” we consider is called Third Formal Form and it is the
goal for most database designers. There is a single rule in this form:

■■ Columns that are not directly related to the primary key must be elimi-
nated (that is, transplanted into a table of their own).

In the table called telephone we created earlier, we have to examine the use of
the telephone_id column and the data within the table itself. The Third Normal
Form rule tells us that the city and state columns shouldn’t be part of the tele-
phone table because that data doesn’t relate to the primary key of the table.
This calls for a new table to hold the city and state information. For example,
we might create a table called address to hold this information:

ID address_id city state

301 101 Chicago IL

302 102 Atlanta GA

We’ve provided a brief introduction to database design and the use of Normal
Forms to achieve a good design. There is, of course, much more to consider
when designing databases, and we recommend you consult a good database
theory book for additional information.

Introducing MySQL SQL

The majority of this chapter concentrates on the specifics of the MySQL data-
base and its representation of SQL. In this section, we examine the basics you

Wo r k i n g w i t h M y S Q L S Q L32

need to build databases and tables, populate the databases with data, and
retrieve the data.

Overview of MySQL
MySQL is a DBMS designed as open source software. It is a relationship DBMS
because it supports the idea of building multiple tables and linking those tables
using columns within the tables. The application is considered open source
because you can download the binaries of the system or the source code.

The MySQL system is entry-level SQL92 compliant, and the developers are
constantly striving to expand their support of SQL92—as well as SQL99—while
maintaining speed and efficiency. Some of the featured highlights include the
following:

Speed and efficiency—MySQL is written in C/C++ using the latest compil-
ers on the various support platforms. The code is multithreaded and takes
advantage of kernel threads for extreme efficiency on systems with multiple
CPUs. All of the code is highly optimized and makes us of B-trees, in-
memory hash tables, and class libraries.

Column types—These include signed/unsigned integers 1, 2, 3, 4, and 8
bytes long; FLOAT; DOUBLE; CHAR; VARCHAR; TEXT; BLOB; DATE;
TIME; DATETIME; TIMESTAMP; YEAR; SET; and ENUM types. We demon-
strate many of these column types throughout the book in code examples.

A full-featured command set—All of the standard SQL commands, such
as SELECT, INSET, DELETE, as well as JOINs, are supported. Support
includes the SHOW command for obtaining information about the system.
Aliases on table and columns are supported per SQL92.

Functions—A wide range of functions are available, including AVG(),
SUM(), MAX(), and many others.

Security—A full privilege and password system gives the database unparal-
leled security.

Scalability—You can build databases with tens of thousands of tables.
Row counts can be in the millions and even billions. Indexes are supported
up to 32 per table.

Character sets—MySQL supports many different characters sets and can
output errors messages in appropriate languages.

Tools—A full complement of client tools is available for administrative and
other uses.

With that small introduction, let’s dive into the fundamentals of using MySQL to
build storage systems for our Java applications.

Introducing MySQL SQL 33

Creating Databases
As you learned earlier, a database is just a container for components called
tables. A DBMS can have as many databases as needed for a given application.
For the most part, you create a database when your application needs a place
to store data. In most cases, you need a single database with numerous tables
to hold the data. The MySQL server already has its own database, called mysql.
We want to create a new one instead of using the mysql database because we
plan to use ours for a different purpose.

In order to manipulate a MySQL system, you can use a client tool called mysql.
This client tool can be found in the /bin directory of an installation. You execute
the tool by entering mysql at a command prompt or terminal window. The
client tool contacts the local MySQL installation and returns a prompt as shown
here:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 139 to server version: 4.0.1-alpha

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Using the mysql client tool, you can determine what databases are currently
defined in the local MySQL system. This is accomplished with the following
command:

mysql> show databases;

+----------+

| Database |

+----------+

| mysql |

| files |

| products |

| test |

| users |

+----------+

5 rows in set (0.00 sec)

In the test database we used, there are currently five databases being managed
by MySQL. Two of the tables, mysql and test, are created by the MySQL system
when it is first installed. The other three have been added by users of the sys-
tem. In our example, we want to create a new database called accounts that will
hold numerous tables all related to accounts needed by some application. In the
most basic form, the database is created with the following command:

mysql> create database accounts;

Query OK, 1 row affected (0.00 sec)

Wo r k i n g w i t h M y S Q L S Q L34

The accounts database is now available on the MySQL system. Note that on a
Windows platform, the database name isn’t case-sensitive, but it is on Unix.
After a database is created, it will need to be used specifically. To use a data-
base, you execute the USE command:

mysql> use accounts;

Database changed

The USE command moves the focus of all commands entered into the client
tool to the specified database. We now have a database, and it is the focus of
our client tool. The next step is to add tables where we can store data.

Creating Tables
The table is where all of the data is stored in a particular database. Because we
are working with a relational database system, the data is stored in rows and
columns. Our goal in creating a table is to determine what will be stored in each
table column. Once this information has been established, we can decide on the
column types and potential sizes.

You can create a MySQL table based on a number of table types:

BDB—A table that supports transactions; includes crash recovery.

HEAP—A memory-based table that uses a hashed index.

ISAM—An original but deprecated MySQL table.

InnoDB—A table that supports transactions, row-level locking, foreign key
constraints, and multiversioning.

MERGE—A group of MyISAM tables used as one. Allows tables to be
stored in different locations.

MYISAM—A default nontransactional table type for MySQL.

Each table type has a specific characteristic that determines whether it is
appropriate for your application. Note that MySQL allows you to alter the table
type after you’ve created a table—even if you’ve populated it with data. A large
number of options are available, among them the maximum number of rows,
the physical location of the table, and the use of a password for the table. How-
ever, the most important options are the column type definitions.

First, you need to lay out the data to be stored in the table. In our example, we
want to create a table that will hold the username and password for an account
in our application. Associated with each username and account is an account
ID. The account ID will be used to access specific data within other tables by
creating a relationship with the ID. Each of these pieces of data will have a spe-
cific data type. The data types available in MySQL are as follows:

Introducing MySQL SQL 35

TINYINT—An 8-bit integer represented as one byte.

SMALLINT—A 16-bit integer represented as 2 bytes.

MEDIUMINT—A 24-bit integer represented as 3 bytes.

INT, INTEGER—A 32-bit integer represented as 4 bytes.

BIGINT—A 64-bit integer represented as 8 bytes.

FLOAT—A floating-point number; 8-digit precision represented as 4 bytes.

DOUBLE—A floating-point number; 16-digit precision represented as 8
bytes.

DECIMAL(p, s)—A fixed-point number, saved as a character string;
an arbitrary number of digits represented as 1 byte per digit + 2 bytes
overhead.

DATE—The date in the form 2001-12-31, in the range 1000-01-01 to
9999-12-31, represented as 3 bytes.

TIME—The time in the form 23:59:59, represented as 3 bytes.

DATETIME—A combination of DATE and TIME in the form 2002-10-05

23:59:59, represented as 8 bytes.

YEAR—The year (1900–2155), represented as 1 byte.

TIMESTAMP—The date and time in the form 20011231325959 for times
between 1970 and 2038, represented as 4 bytes.

CHAR(n)—A character string with a specified length; a maximum of 255
characters represented as n bytes.

VARCHAR(n)—A character string with variable length; a maximum of n
characters (n < 256), represented as 1 byte per character or (actual length)
+ 1.

TINYTEXT—A character string with variable length; a maximum of 255
characters, represented as n + 1 bytes.

TEXT—A character string with variable length; a maximum of 216 - 1 char-
acters represented as n + 2 bytes.

MEDIUMTEXT—A character string with variable length; a maximum of
224 - 1 characters, represented as n + 3 bytes.

LONGTEXT—A character string with variable length, maximum of 232 - 1
characters, represented as n + 4 bytes.

TINYBLOB—Binary data with variable length; a maximum of 255 bytes.

BLOB—Binary data with variable length; a maximum of 216 - 1 bytes.

MEDIUMBLOB—Binary data with variable length; a maximum of 224 - 1
bytes.

LONGBLOB—Binary data with variable length; a maximum of 232 - 1
bytes.

Wo r k i n g w i t h M y S Q L S Q L36

ENUM—Selects one from at most 65,535 character strings, represented as 1
or 2 bytes.

SET—Combines at most 255 character strings, represented as 1–8.

TINYINT 8-bit integer represented as 1 byte

SMALLINT 16-bit integer represented as 2 bytes

MEDIUMINT 24-bit integer represented as 3 bytes

INT, INTEGER 32-bit integer represented as 4 bytes

BIGINT 64-bit integer represented as 8 bytes

FLOAT floating-point number, 8-place precision represented as 4

bytes

DOUBLE floating-point number, 16-place precision represented as

8 bytes

DECIMAL(p, s) fixed-point number, saved as a character string;

arbitrary number of digits represented as one byte per digit +

2 bytes overhead

DATE date in the form '2001-12-31', range 1000-01-01

to 9999-12-31 represented as 3 bytes

TIME time in the form '23:59:59' represented as 3 bytes

DATETIME combination of DATE and TIME in the form

'2002-10-05 23:59:59' represented as 8 bytes

YEAR year 1900–2155 represented as 1 byte

TIMESTAMP date and time in the form 20011231325959 for

times between 1970 and 2038 represented as 4 bytes

CHAR(n) character string with specified length, maximum

255 characters represented as n bytes

VARCHAR(n) character string with variable length, maximum n

characters (n < 256) represented as one

byte per character (actual length) + 1

TINYTEXT character string with variable length, maximum

255 characters represented as n + 1bytes

TEXT character string with variable length, maximum

216 - 1 characters represented as n + 2bytes

MEDIUMTEXT character string with variable length, maximum

224 - 1 characters represented as n + 3bytes

LONGTEXT character string with variable length, maximum

232 - 1 characters represented as n + 4bytes

TINYBLOB binary data, variable length, max 255 bytes

BLOB binary data, variable length, max 216 - 1 bytes

MEDIUMBLOB binary data, variable length,max 224 - 1 bytes

LONGBLOB binary data, variable length,max 232 - 1 bytes

ENUM select one from at most 65,535 character strings

represented as 1 or 2 bytes

SET combine atmost 255 character strings represented as 1–8

bytes

Introducing MySQL SQL 37

We have to pick one of these data types for each of the pieces of data. Clearly,
the username and password will be some number of characters. The question is
whether we should use the CHAR or VARCHAR data type to represent the
characters. The CHAR data type should be used if the character string will be a
specific length and never change. In the case of a username and password, this
is not the case. The user will be allowed to pick his or her username and pass-
word. This means we should use the VARCHAR data type for our character
strings.

Next, we need to determine the total number of characters that will be allowed
in each of the strings. A value of 64 is more than likely enough.

Finally, our attention turns to the account ID. Should the account ID be saved as
an integer whole number or as a character string? If there is ever a chance the
account ID will include alpha characters, then the ID should be a character string.
With an integer, there are a few different types that can be used based on the
potential size of the ID. For our example, let’s use an INT data type for the field.

Another characteristic that we want to place on the account ID is a primary key.
A primary key basically states that the value in this column will be unique and
thus can be used to uniquely identify any specific row in the table.

Once we have identified all of the fields and assigned each a type, we can cre-
ate the table. To create a nontransactional table, use this command:

mysql> create table acc (

acc_id int primary key,

username varchar(64),

password varchar(64),

ts timestamp);

Query OK, 0 rows affected (0.00 sec)

To create a table that will handle transactions, use this command:

mysql> create table acc (

acc_id int primary key,

username varchar(64),

password varchar(64),

ts timestamp) type=bdb;

Query OK, 0 rows affected (0.01 sec)

We can see all of the tables in our database with the following command:

mysql> show tables;

+--------------------+

| Tables_in_accounts |

+--------------------+

| acc |

+--------------------+

1 row in set (0.00 sec)

Wo r k i n g w i t h M y S Q L S Q L38

The SHOW TABLES command lists all of the available tables within a given
database. To verify that the table was created successfully and to view the var-
ious columns, execute the following command:

mysql> describe acc;

+----------+---------------+------+-----+---------+-------+

| Field | Type | NULL | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| acc_id | int(11) | | PRI | 0 | |

| username | varchar(64) | YES | | NULL | |

| password | varchar(64) | YES | | NULL | |

| ts | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

You can view the columns and their definitions within a table by issuing the
DESCRIBE <table> command. If you discover a problem with any definition,
you can use the ALTER TABLE command. For our example, we are able to ver-
ify that the information was created successfully.

Inserts
With our database and table defined, we need to populate it with sample data.
Here’s the data that we would like to get into the table:

acc_id username password

1034033 jsmith smithy

1034055 jdoe doey

1034067 jthompson james2

1034089 sstanford stanford

1034123 blewis lewis

1034154 ysheets sheets

We can place the data in the database table by using the INSERT command. The
format of the MySQL INSERT command is:

INSERT INTO <table> VALUES(<columnValue>,<columnValue>, €)

We have to issue three INSERT commands to get all of the information into the
database. Here’s the output from one INSERT:

mysql> INSERT INTO acc VALUES(1034033, 'jsmith', 'smithy', now());

Query OK, 1 row affected (0.00 sec)

Two more INSERT commands and all of our sample data is in the table. MySQL
also includes a command called LOAD DATA, which populates a database table
from a properly formatted text file.

Introducing MySQL SQL 39

Let’s examine the INSERT command a little more closely. First consider the
order of the data. The order must match the columns defined in the table as
shown by the DESCRIBE command. The second important factor is the use of
single quotes to indicate a value is a string and should be treated as such by
MySQL. If you didn’t want to insert a password into a row, you could use a
NULL value. For example:

mysql> INSERT INTO acc VALUES(1034034, 'jime', NULL, now());

Query OK, 1 row affected (0.00 sec)

In this example, the NULL value is placed directly into the database in place of
a string value.

Selects
Once you’ve inserted your data into a database, you can extract that data to
make business decisions. You pull data from the database by using the SELECT
command, which has the following format:

SELECT <columns>

FROM <databaseTable>

WHERE <conditions for data>

The SELECT command has three different components at its core. The first is
the <columns> element, which tells the database the columns where values
should be returned. The element can be * (representing all columns) or a list of
columns separated by commas. The second component is the <databaseTable>
element, which represents the exact table from which the data should come.
The third component is the <conditions for data> element, which represents
under what conditions the data should be pulled from the database.

First, we pull data using the simplest SELECT:

mysql> select * from acc;

+---------+-----------+----------+----------------+

| acc_id | username | password | ts |

+---------+-----------+----------+----------------+

| 1034033 | jsmith | smithy | 20021014112438 |

| 1034055 | jdoe | doey | 20021014112501 |

| 1034067 | jthompson | james2 | 20021014113403 |

| 1034089 | sstanford | stanford | 20021014113407 |

| 1034123 | blewis | lewis | 20021014112252 |

| 1034154 | ysheets | sheets | 20021014113416 |

| 1034034 | jime | NULL | 20021014112415 |

| 1034546 | jjmyers | NULL | 20021014113422 |

+---------+-----------+----------+----------------+

8 rows in set (0.00 sec)

Wo r k i n g w i t h M y S Q L S Q L40

This SELECT command tells the database to pull all columns, using the * char-
acter, from the acc table. The database responds with a “table” using a heading
with the column names found in the database used when we first defined the
table. Next, all of the data from the table is placed in the output “table” and dis-
played accordingly.

Now we can limit the columns of data with our SELECT:

mysql> SELECT acc_id, username FROM acc;

+---------+-----------+

| acc_id | username |

+---------+-----------+

| 1034033 | jsmith |

| 1034055 | jdoe |

| 1034067 | jthompson |

| 1034089 | sstanford |

| 1034123 | blewis |

| 1034154 | ysheets |

| 1034034 | jime |

| 1034546 | jjmyers |

+---------+-----------+

8 rows in set (0.00 sec)

In this example, we have specifically listed the columns we wish to pull data
from and at the same time requested all of the data. The system will output the
data in the familiar table format. The same query will be used, but a condition
is placed on the data we wish to pull.

mysql> SELECT acc_id, username FROM acc WHERE username = 'jime';

+---------+----------+

| acc_id | username |

+---------+----------+

| 1034034 | jime |

+---------+----------+

1 row in set (0.00 sec)

The same query is used here, but a WHERE clause limits the data to be pulled
based on the actual value found in the username field. The condition with the
SELECT query can hold logical operators to further refine the selection criteria.
For example:

mysql> SELECT * FROM acc WHERE password IS NULL

AND username = 'jime';

+---------+----------+----------+----------------+

| acc_id | username | password | ts |

+---------+----------+----------+----------------+

| 1034034 | jime | NULL | 20021014112415 |

+---------+----------+----------+----------------+

1 row in set (0.00 sec)

Introducing MySQL SQL 41

In this query, the system selects all of the rows in the acc table where a value is
NULL, and the username value is jime.

SELECT Statement Extensions
Up to this point, we have been showing simple SELECT commands both with
and without conditions. The SELECT command has a whole list of extensions
that can be used to further filter and manipulate the data received from the
database. MySQL’s SELECT includes the following extensions:

SELECT [STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

[HIGH_PRIORITY]
[DISTINCT | DISTINCTROW | ALL]

select_expression,...
[INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
[FROM table_references
[WHERE where_definition]
[GROUP BY {unsigned_integer | col_name | formula} [ASC |

DESC], ...
[HAVING where_definition]
[ORDER BY {unsigned_integer | col_name | formula} [ASC |

DESC] ,...]
[LIMIT [offset,] rows]
[PROCEDURE procedure_name]
[FOR UPDATE | LOCK IN SHARE MODE]]

Let’s look at a few of the additions to the SELECT command.

Order By
When we pulled data from the database table in the query examples earlier,
MySQL returned the data in the same order it was placed in the table. For the
most part, this works just fine because we just want to get the data out of the
database. At other times, it might be important that the data be ordered in some
specific fashion. For example, suppose you want to sort the data in ascending
order (the default) based on the username:

mysql> SELECT * FROM acc ORDER BY username;
+---------+-----------+----------+----------------+
| acc_id | username | password | ts |
+---------+-----------+----------+----------------+
1034123	blewis	lewis	20021014112252
1034055	jdoe	doey	20021014112501
1034034	jime	NULL	20021014112415
1034546	jjmyers	NULL	20021014113422
1034033	jsmith	smithy	20021014112438
1034067	jthompson	james2	20021014113403
1034089	sstanford	stanford	20021014113407
1034154	ysheets	sheets	20021014113416
+---------+-----------+----------+----------------+
8 rows in set (0.00 sec)

Wo r k i n g w i t h M y S Q L S Q L42

As you can see in the output from the query, the data is displayed in alphabeti-
cal order based on the username. You can also sort based on a numeric column:

mysql> SELECT * FROM acc ORDER BY acc_id;

+---------+-----------+----------+----------------+

| acc_id | username | password | ts |

+---------+-----------+----------+----------------+

| 1034033 | jsmith | smithy | 20021014112438 |

| 1034034 | jime | NULL | 20021014112415 |

| 1034055 | jdoe | doey | 20021014112501 |

| 1034067 | jthompson | james2 | 20021014113403 |

| 1034089 | sstanford | stanford | 20021014113407 |

| 1034123 | blewis | lewis | 20021014112252 |

| 1034154 | ysheets | sheets | 20021014113416 |

| 1034546 | jjmyers | NULL | 20021014113422 |

+---------+-----------+----------+----------------+

8 rows in set (0.00 sec)

Now the records are ordered based on the acc_id, which is an integer. The
ORDER BY clause can also be used with the WHERE clause. For example:

mysql> SELECT * FROM acc WHERE ts < now() ORDER BY ts;

+---------+-----------+----------+----------------+

| acc_id | username | password | ts |

+---------+-----------+----------+----------------+

| 1034123 | blewis | lewis | 20021014112252 |

| 1034034 | jime | NULL | 20021014112415 |

| 1034033 | jsmith | smithy | 20021014112438 |

| 1034055 | jdoe | doey | 20021014112501 |

| 1034067 | jthompson | james2 | 20021014113403 |

| 1034089 | sstanford | stanford | 20021014113407 |

| 1034154 | ysheets | sheets | 20021014113416 |

| 1034546 | jjmyers | NULL | 20021014113422 |

+---------+-----------+----------+----------------+

8 rows in set (0.00 sec)

As you might have noticed, the default ordering used by ORDER BY is ascend-
ing order. You can change this by adding the string desc to the end of the clause.
For example:

mysql> SELECT username, ts FROM acc WHERE ts < now() ORDER BY

ts desc;

+-----------+----------------+

| username | ts |

+-----------+----------------+

| jjmyers | 20021014113422 |

| ysheets | 20021014113416 |

| sstanford | 20021014113407 |

| jthompson | 20021014113403 |

| jdoe | 20021014112501 |

| jsmith | 20021014112438 |

| jime | 20021014112415 |

Introducing MySQL SQL 43

| blewis | 20021014112252 |

+-----------+----------------+

8 rows in set (0.00 sec)

This query returns the username and timestamp for all rows in the table in
descending order, thus displaying the accounts most recently entered.

Changing Column Names

If you look back at the previous query, you can see that the output table head-
ing displays the string values for the columns in the table as entered when the
table was first created. When we obtain the results of a query both in the client
tool and programmatically, the same column names are used. We have the
option of changing the displayed values. For example:

mysql> SELECT acc_id 'Account ID', username 'Username',

ts 'Timestamp'

FROM acc

WHERE ts < now()

ORDER BY ts desc;

+------------+-----------+----------------+

| Account ID | Username | Timestamp |

+------------+-----------+----------------+

| 1034546 | jjmyers | 20021014113422 |

| 1034154 | ysheets | 20021014113416 |

| 1034089 | sstanford | 20021014113407 |

| 1034067 | jthompson | 20021014113403 |

| 1034055 | jdoe | 20021014112501 |

| 1034033 | jsmith | 20021014112438 |

| 1034034 | jime | 20021014112415 |

| 1034123 | blewis | 20021014112252 |

+------------+-----------+----------------+

8 rows in set (0.00 sec)

In this sample query, the three columns pulled from the table aren’t displayed
with their table names of acc_id, username, and ts, but new names are listed in
the query. Although the column name change doesn’t have anything to do with
the data itself, it does provide a better presentation to the user.

Like

Another common problem with queries against a database is trying to find the
exact row you are interested in using. For example, suppose you know
that there is an account in the database table acc with a username ending
with smith, but you don’t know exactly what the full string is. If you attempt to
query just using smith, you might find rows with usernames of smith but
nothing else.

Wo r k i n g w i t h M y S Q L S Q L44

Fortunately, SQL has a SELECT clause called LIKE that lets you basically
search the database for a substring within a column. The LIKE clause requires
you to insert a wildcard character, %, into the string you are trying to locate. For
example:

mysql> SELECT acc_id 'Account ID', username

FROM acc

WHERE username

LIKE '%smith

';

+------------+----------+

| Account ID | username |

+------------+----------+

| 1034033 | jsmith |

+------------+----------+

1 row in set (0.00 sec)

In this query, we’ve asked for the account ID and username of all users with a
username that begins with any string and ends with smith. The wildcard can be
used in multiple places throughout the string. Let’s say you need to find all user-
names containing stan. Use the following query:

mysql> SELECT acc_id 'Account ID', username

FROM acc

WHERE username

LIKE '%stan%';

+------------+-----------+

| Account ID | username |

+------------+-----------+

| 1034089 | sstanford |

+------------+-----------+

1 row in set (0.00 sec)

To achieve your intended outcome, place the % wildcard at both the beginning
and end of the stan string. Note that the more wildcard-matching the database
system needs to do, the longer the system will take to return the result.

Group By

One of the things you should notice from the ORDER BY clause is it cannot be
used to sort by multiple columns. MySQL includes another clause, called
GROUP BY, that can be used to group together common values within multiple
columns. For example, suppose you want to group on both the account number
and username. The query is as follows:

SELECT * FROM acc GROUP BY acc_id, username;

MySQL has extended GROUP BY to allow the use of the ASC and DESC
descriptors for sorting in a particular order. For example:

SELECT * FROM acc GROUP BY acc_id DESC, username ASC;

Introducing MySQL SQL 45

Most dialects of GROUP BY require that the fields used in the clause be part of
the SELECT itself. MySQL allows columns to be in the SELECT that aren’t part
of the GROUP BY.

Limit

In all the queries so far, all of the rows in the result are returned. There are
times when you might want only a single row or a small set when there are
many possible result rows. In such cases, you can limit the row count by using
the LIMIT clause. For example:

mysql> SELECT * FROM acc LIMIT 3;

+---------+-----------+----------+----------------+

| acc_id | username | password | ts |

+---------+-----------+----------+----------------+

| 1034033 | jsmith | smithy | 20021014165845 |

| 1034034 | jime | NULL | 20021014165845 |

| 1034067 | jthompson | james2 | 20021014165845 |

+---------+-----------+----------+----------------+

3 rows in set (0.00 sec)

In this query example, the first three rows of the result are returned. We can
execute the query again and pull another three rows, but instead of starting at
the first row in the result, we use an offset value to get the next three rows. For
example:

mysql> SELECT * FROM acc LIMIT 3,3;

+---------+-----------+----------+----------------+

| acc_id | username | password | ts |

+---------+-----------+----------+----------------+

| 1034089 | sstanford | stanford | 20021014165845 |

| 1034123 | blewis | lewis | 20021014165845 |

| 1034154 | ysheets | sheets | 20021014165845 |

+---------+-----------+----------+----------------+

3 rows in set (0.00 sec)

In this query, the code offsets to the fourth row and displays three of the results.
If there aren’t enough rows remaining in the result set, the system returns as
many as it can.

Dump to File

Not all applications are able to use the output from a SQL query, but they are
able to handle input in the form of a text file. The SELECT command in MySQL
includes a clause called INTO [OUTFILE | DUMPFILE] that allows the result of
a query to be placed in a file. As listed, there are two options for the INTO
clause: OUTFILE and DUMPFILE. The OUTFILE option is used to dump all
rows returned in a query. For example:

Wo r k i n g w i t h M y S Q L S Q L46

mysql> SELECT * FROM acc INTO OUTFILE 'test.outfile';

Query OK, 8 rows affected (0.00 sec)

This query results in a text file with all of the rows, as shown here:

1034033 jsmith smithy 20021014165845

1034034 jime \N 20021014165845

1034067 jthompson james2 20021014165845

1034089 sstanford stanford 20021014165845

1034123 blewis lewis 20021014165845

1034154 ysheets sheets 20021014165845

1034546 jjmyers \N 20021014165845

1034055 jdoe doey 20021014165908

Notice that the NULL values are converted to \N and line terminations are pro-
vided. If you need the data sorted, you can add the appropriate clauses to the
query. MySQL also includes the clause INTO DUMPFILE, which basically
dumps a single row into a file without any sort of special processing. The
DUMPFILE is typically used to output a BLOB to a file. Our sample database
doesn’t include a BLOB, but the query might look like the following:

SELECT pic_blob FROM images INTO DUMPFILE 'world.jpg'

WHERE pic_name = 'World';

Counting

If you consider the various SELECT queries we’ve created in this section, you
will note that they all output some number of result rows. What if we want a
query that counts the total number of rows in a result? The total count can be
returned using the count(*) option. For example:

mysql> SELECT count(*) FROM acc;

+----------+

| count(*) |

+----------+

| 8 |

+----------+

1 row in set (0.00 sec)

Here we execute a SELECT to return the total number of rows in the acc table.
Notice that the count value is returned as a column in the result. The column
heading value can be changed, as we explained earlier in this section.

Updates
The first major SQL statement we covered was INSERT, which you use to place
data into your database. This was followed by the SELECT statement, which
you use to pull the data from your database. What do you do if you want to
change the data within a row? You have two options. The first is to just make
the change. You can do this with the UPDATE command:

Introducing MySQL SQL 47

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name

SET col_name1=expr1 [, col_name2=expr2, ...]

[WHERE where_definition]

[LIMIT #]

If you have a user who changes his or her password, you can use the UPDATE
command to make the change in the database. Consider the following SELECT,
UPDATE, SELECT combination:

mysql> SELECT * FROM acc WHERE username='jime';

+---------+----------+----------+----------------+

| acc_id | username | password | ts |

+---------+----------+----------+----------------+

| 1034034 | jime | NULL | 20021014165845 |

+---------+----------+----------+----------------+

1 row in set (0.00 sec)

mysql> UPDATE acc SET password='ime' WHERE username='jime';

Query OK, 1 rows affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM acc WHERE username='jime';

+---------+----------+----------+----------------+

| acc_id | username | password | ts |

+---------+----------+----------+----------------+

| 1034034 | jime | ime | 20021014204947 |

+---------+----------+----------+----------------+

1 row in set (0.00 sec)

In this combination of SQL commands, we display the row where the username
is jime. The password is shown to be NULL. We use the UPDATE command to
change the password to ime. Notice that the UPDATE command instructs a
specific table to be updated; then the column that needs to be changed is indi-
cated by SET. If we have to change numerous columns, we can use multiple
SETs and separate them by commas. Finally, we can use a condition to limit the
rows changed. The last SELECT command shows that the row was updated
correctly.

The second way to update a database is to never change a row in the database
but instead to inactivate one row and insert a new one. In order to do this type
of update, you must include two timestamp fields in each row. The first is called
an active timestamp, and the second is just the timestamp. The most active
row in the database for a particular key has a timestamp of 0. The active time-
stamp will be the time when the row was inserted. Once the row is inserted, the
active timestamp of the current row is copied to the timestamp (ts field) of the
inactive row.

Wo r k i n g w i t h M y S Q L S Q L48

To support this type of update, we’ve changed the table acc a bit. The new table
definition looks like this:

mysql> describe acc;

+----------+---------------+------+-----+---------+-------+

| Field | Type | NULL | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| acc_id | int(11) | | PRI | 0 | |

| username | varchar(64) | | PRI | | |

| password | varchar(64) | YES | | NULL | |

| ts | timestamp(14) | YES | PRI | NULL | |

| act_ts | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

As you can see, we’ve added an act_ts column defined as a timestamp; defined the
username, acc_id, and ts not to be NULL; and defined the primary key as a combi-
nation of acc_id, username, and ts. To show the process of doing the update, con-
sider the row with an acc_id of 1034055. When the initial row was placed in the
database, the ts column was set to 0, and the act_ts was set to the actual time the
row was inserted. Here’s the output of a SELECT showing the row:

mysql> SELECT * FROM acc WHERE acc_id = '1034055';

+------ +--------+----------+----------------+---------- --+

| acc_id |username| password | ts | act_ts |

+----- -+--------+----------+----------------+-- ----------+

|1034055 | jdoe | ime | 00000000000000 |20021014212444|

+--------+--------+----------+----------------+--------------+

1 row in set (0.00 sec)

Next, we need to insert a new row into the database. In order for the database
to remain consistent, we need to relate the old row to the new row using a time-
stamp. The timestamp needs to be the same, so the first step is to obtain the
current time and place it in a temporary variable. We accomplish this by using
a SET command and local system variable. For example:

mysql> set @time=now();

Query OK, 0 rows affected (0.03 sec)

The @time variable now holds a timestamp, and it can be used to insert the new
row and change the old row. First, the old row is updated and the ts column is
set to the current time:

mysql> UPDATE acc SET ts=@time WHERE acc_id = 1034055;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Here’s the query to show the new ts value in the old row:

Introducing MySQL SQL 49

mysql> SELECT * FROM acc WHERE acc_id = '1034055';

+--------+--------+----------+----------------+---------------+

|acc_id |username| password | ts | act_ts |

+--------+--------+----------+----------------+---------------+

|1034055 | jdoe | ime | 20021014212553 | 20021014212444|

+--------+--------+----------+----------------+---------------+

1 row in set (0.01 sec)

Now we can insert the new row:
mysql> INSERT INTO acc VALUES(1034055, 'jdoe', 'newpass', 0, @time);

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

A final SELECT will show both of the rows and how they relate through the
act_ts column of the new row and the ts of the old row:

mysql> SELECT * FROM acc WHERE acc_id = '1034055';

+-------+--------+----------+----------------+----------------+

|acc_id |username| password | ts | act_ts |

+-------+--------+----------+----------------+----------------+

|1034055| jdoe | newpass | 00000000000000 | 20021014212553 |

|1034055| jdoe | ime | 20021014212553 | 20021014212444 |

+-------+--------+----------+----------------+----------------+

2 rows in set (0.01 sec)

We can always know the active row by including ts=0 in our queries.

Deletes
When data is no longer needed in a database, you can use the DELETE com-
mand to remove a row. However, if you want to maintain the history of the rows
in the database, you should instead make the row inactive.

First, let’s show the removal of a row. The query looks like this:

DELETE FROM acc WHERE acc_id = '1034154';

The query will select the appropriate row based on the WHERE clause. Another
use of the DELETE command is:

DELETE FROM acc;

This query doesn’t include a WHERE clause and thus will remove all rows from
the specified database table. To maintain the history of the rows in the data-
base, you shouldn’t use the DELETE command because the row will be perma-
nently removed. In that case, the best way to “delete” the row is to make the
row inactive by setting the ts of the row to a timestamp other than 0. In most
cases, you want to update the current row to a current timestamp value so that
the row has a record of when it was made inactive.

Wo r k i n g w i t h M y S Q L S Q L50

Using SHOW
MySQL includes a command called SHOW, which allows a developer or admin-
istrator to see details about databases, tables, and the database system itself. In
this section, we look at the various SHOW commands and explain what infor-
mation they provide. Note that in some of the commands an optional LIKE can
be used to filter the information provided by the command. The % wildcard is
used just like as you do in the SELECT command use of LIKE. We cover the
most popular SHOW commands here and save some of them for Chapter 13,
“Database Administration.”

SHOW DATABASES
The SHOW DATABASES command shows all of the databases available on the
current database server. You use the LIKE command to limit the output. For
example:

mysql> show databases;
+----------+
| Database |
+----------+
| accounts |
| ca |
| mysql |
| test |
+----------+
4 rows in set (0.03 sec)

SHOW TABLES
The SHOW TABLES command displays all of the tables within a particular data-
base. The full format of the command is:

SHOW [OPEN] TABLES [FROM databaseName] [LIKE wildcardString]

Notice that there are a number of optional components to the command. The
[OPEN] option will show only those databases that are currently being
accessed by a client. If SHOW TABLES is executed, it requires that a database
currently be active by executing the USE <database> command. You can use
the FROM databaseName option to query the tables available in any database
on the system. For example:

mysql> SHOW TABLES FROM mysql;
+-----------------+
| Tables_in_mysql |
+-----------------+
| columns_priv |
| db |
| func |
| host |
| tables_priv |
| user |
+-----------------+
6 rows in set (0.03 sec)

Introducing MySQL SQL 51

SHOW COLUMNS

Once you create a table, you can obtain information about its columns, how
they are defined, and primary key information by using SHOW COLUMNS. The
full format of the command is

SHOW [FULL] COLUMNS

FROM <table> [FROM <database>] [LIKE <wildcard>]

If you use the basic format, SHOW COLUMNS FROM <table>, you see the
following:

mysql> show columns from acc;

+----------+---------------+------+-----+---------+-------+

| Field | Type | NULL | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| acc_id | int(11) | | PRI | 0 | |

| username | varchar(64) | YES | | NULL | |

| password | varchar(64) | YES | | NULL | |

| ts | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

MySQL provides a shortcut to the basic format by using the DESCRIBE
<tablename> command. The command assumes you have USEd a database. By
using the [FULL] option, you display the privileges the current logged-on user
has with the table columns as well.

SHOW STATUS

You can obtain a great deal more information about a table by using the SHOW
STATUS command. The format of the command is

SHOW TABLE STATUS [FROM <database>] [LIKE <wildcard>]

For example:

mysql> show table status;

This command works on all tables from the current database or from a speci-
fied database. If you want to limit the tables the command accesses, use the
LIKE option.

SHOW PROCESSLIST

The last command we cover in our introduction section is SHOW
PROCESSLIST. This command is useful for determining access to the database
server—both current access and access in the recent past. The format of the
command is

SHOW [FULL] PROCESSLIST

Wo r k i n g w i t h M y S Q L S Q L52

Using the basic command produces the following:

mysql> show processlist;

+--+----+---------+--------+-------+----+-----+---------------+

|Id|User|Host |db |Command|Time|State|Info |

+--+----+---------+--------+-------+----+-----+---------------+

|1 |joeg|localhost|NULL |Sleep |8900| |NULL |

|4 |ODBC|localhost|accounts|Query |0 | NULL|showprocesslist|

+--+----+---------+--------+-------+----+-----+---------------+

2 rows in set (0.00 sec)

As you can see, the command tells you a user’s name, the host the user is con-
necting from, what database the user is using, and even the command the user
is executing.

More on Tables
Let’s examine the natural progression of database creation and manipulation.
First, you design the database and tables; next you add them to the server, pop-
ulate the tables with data, and finally retrieve and manipulate the data. Now,
what happens when you have to change a table?

In this section, we look at the various commands available in MySQL for chang-
ing the definition of a table. Specifically, we consider renaming a table, altering
the columns and their definitions, placing tables, and deleting tables. As you’ll
see, for the first three tasks you use the ALTER TABLE command.

Renaming

You rename a table by using the ALTER TABLE command. For example:

mysql> ALTER TABLE acc RENAME account;

Query OK, 0 rows affected (0.03 sec)

mysql> show tables;

+--------------------+

| Tables_in_accounts |

+--------------------+

| account |

+--------------------+

1 row in set (0.00 sec)

Here you use the command to rename the acc table to the accounts table. You
can use the SHOW TABLES command to verify that the table name was accu-
rately changed.

Altering Column Definitions

One of the primary uses for the ALTER TABLE command is changing the
schema of a table. The change could be adding a new column, changing the

Introducing MySQL SQL 53

column name, increasing the field size of a particular column, or
dropping/adding primary keys. First, let’s add a new column to our acc table:

mysql> ALTER TABLE account ADD access int;

Query OK, 8 rows affected (0.11 sec)

Records: 8 Duplicates: 0 Warnings: 0

This query adds a new column called access to the account table and uses a col-
umn type of int. The ADD clause of ALTER TABLE has a few options. The full
definition is

ALTER TABLE <tablename>

ADD [COLUMN] <column specifics> [FIRST|AFTER <columnName>]

By using FIRST or AFTER, you ensure that the new column is specifically
placed within the table definition. The default placement is at the end of the
current table definition. What if you wanted to change a column’s data type?
For example:

mysql> ALTER TABLE account CHANGE access access varchar(15);

Query OK, 8 rows affected (0.11 sec)

Records: 8 Duplicates: 0 Warnings: 0

This query changes the access column to a varchar(15). Notice how the column
name had to be used twice. The CHANGE clause doesn’t know if you are chang-
ing the name of the column, the type, or both, so it requires that you specify the
column name. MySQL includes a clause called MODIFY that assumes the name
isn’t going to change:

mysql> ALTER TABLE account MODIFY access varchar(15);

Query OK, 8 rows affected (0.11 sec)

Records: 8 Duplicates: 0 Warnings: 0

If you want to remove a primary key currently defined on a table, use the fol-
lowing query:

mysql> ALTER TABLE account DROP PRIMARY KEY;

Query OK, 8 rows affected (0.11 sec)

Records: 8 Duplicates: 0 Warnings: 0

A new primary key can be added with the following query:

mysql> ALTER TABLE account ADD primary key(acc_id);

Query OK, 8 rows affected (0.11 sec)

Records: 8 Duplicates: 0 Warnings: 0

Placing Tables on Specific Drives

When you are building a large database system, you probably want to disperse
the actual tables across disk drives. This is possible using the DATA DIREC-
TORY clause of the ALTER TABLE command. For example:

ALTER TABLE account DATA DIRECTORY="/usr/local/databases/account"

Wo r k i n g w i t h M y S Q L S Q L54

Note that the DATA DIRECTORY option in the ALTER TABLE as well as in the
CREATE TABLE command is available only on MyISAM tables underMySQL 4.0.

Deleting Tables

If you are absolutely sure that you want to get rid of a table permanently, use
the command DROP TABLE <tableName>. Here is a simple example of using
DROP TABLE:

mysql> create table test (id int);

Query OK, 0 rows affected (0.05 sec)

mysql> insert into test values(1);

Query OK, 1 row affected (0.02 sec)

mysql> drop table test;

Query OK, 0 rows affected (0.03 sec)

Notice that the table will be dropped without any reservation by the database
server. It is vital that you type in the table name accurately because once a table
has been dropped, it is no longer available.

Transactions
One of the most powerful aspects of MySQL is its ability to use transactions. A
transaction is an atomic action that must either succeed or fail. This means
that in a transaction consisting of three different queries—a SELECT, an
INSERT, and an UPDATE—if any of these operations fail, the other commands
must be rolled back to their original state.

The current MySQL system includes two different table types that allow for
transactions: InnoDB and BDB. In order for a database table to use transac-
tions, the table must be created using a TYPE clause or the table must be
altered with an ALTER TABLE command also using the TYPE clause.

Once you create a table to handle transactions, you must inform the MySQL
system that you want to use transactions. You can accomplish this by using the
autocommit database server variable. By default, this variable is set to a value
of 1, meaning that the database server will automatically commit the query
once it executes. To start a transaction, the autocommit variable must be set to
0. For example:

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

Now you have the ability to execute SQL statements that will be either com-
mitted to the database or rolled back. Start with either the BEGIN or BEGIN
WORK statement:

Introducing MySQL SQL 55

mysql> begin;

Query OK, 0 rows affected (0.00 sec)

Now execute your SQL. Once you have finished, use the command COMMIT or
ROLLBACK, depending on your circumstances.

Functions/Operators
In several places throughout this chapter, we have used a MySQL function in a
query. A function is code written by MySQL that aids in the query being used.
For example, suppose you want to determine the largest account ID in the acc
table. To do this, use the max() function:

mysql> SELECT max(acc_id) FROM account;

+-------------+

| max(acc_id) |

+-------------+

| 1034546 |

+-------------+

1 row in set (0.00 sec)

In this query, the maximum value in the acc_id column is returned from the
database. MySQL includes a large number of functions—too many to list in this
chapter. Refer to the MySQL documentation for a listing of all available func-
tions and examples.

Joins
One of the harder concepts to grasp in the world of databases is the join. Let’s
begin our discussion by throwing another table into our current database. Right
now we have a database called acc that has the following fields:

acc_id int

username varchar

password varchar

ts timestamp

act_ts timestamp

This table doesn’t hold much information about the actual owner of the account
ID. We need to add another table called acc_add that will hold address infor-
mation for the account owner. Here’s the table definition:

mysql> create table acc_add (

add_id int not NULL,

acc_id int,

name varchar(64),

address1 varchar(64),

Wo r k i n g w i t h M y S Q L S Q L56

address2 varchar(64),

address3 varchar(64),

city varchar(64),

state varchar(64),

zip varchar(10),

ts timestamp not NULL,

act_ts timestamp,

primary key(add_id, ts));

Query OK, 0 rows affected (0.00 sec)

Let’s now add some data to the table for the account ID 1034055. Notice that the
acc_add table requires the acc_id of the account whose address is being added
to the table. This column value links the acc table with the acc_add table. The
full data added to the table can be found on the code download available at
www.wiley.com/compbooks/matthews. In this example, we’ve added two rows:

mysql> insert into acc_add

values(30004, 1034055, 'John Doe', '4565 Some St',

'Suite 4', NULL,'Chicago', 'IL', '21734', 0, now());

Query OK, 1 row affected (0.00 sec)

mysql> insert into acc_add values(

30003, 1034055, 'John Doe', '123 Any St', NULL,

NULL,'Atlanta', 'GA', '38394', 0, now());

Query OK, 1 row affected (0.00 sec)

Now we want to get data from both tables at the same time. For example:

mysql> SELECT acc.acc_id, name

FROM acc, acc_add

WHERE acc.acc_id = acc_add.acc_id and acc.ts = 0;

+---------+----------+

| acc_id | name |

+---------+----------+

| 1034055 | John Doe |

| 1034055 | John Doe |

+---------+----------+

2 rows in set (0.00 sec)

In this query, we asked for the values of acc_id (from the acc table) and name
(from the acc_add table), but only when the acc_id in both of the tables match
and the ts field in the acc table is 0. The result is two rows. Let’s look a little
more closely at what is occurring in this SQL. First, we are asking for data from
two tables at the same time, as seen in the FROM acc, acc_add clause. From
those two tables, we want two pieces of data: the acc_id and name. Notice how
the acc_id has a table name preceding it. This had to be done in order to tell the
database server which table we want the acc_id to be pulled from because it
can be found in both of them.

Now we want to see data from the tables only when the acc_id is identical
between the two tables. At this time, the only data in the acc_add table has an

Introducing MySQL SQL 57

acc_id of 1034055. The database server will analyze the WHERE clause and
look for all of the acc_id values in the table acc that also appear in the acc_add
table. If you look back in our examples, you can see that there are two 1034055
values in the acc table. One of them is an active row, and one is an inactive row.
Both of these rows will be matched against the two rows in acc_add for a result
set having four rows. However, we also included a Logical AND in our WHERE
clause to return only those rows where acc_id is equal in both tables and the ts
field in acc is 0. This logical AND limits the total row output to two rows.

What we have accomplished in this example is a basic join. We have joined two
tables by requesting that information be pulled from multiple tables and a con-
dition placed on the values from the tables. Technically this is called an
equi-join.

Using a Join

When developers talk about a join, they typically use the term join without any
identifiers. Developers are really referring to a cross-join, a full join, or an
inner join. The idea is that all of the rows in one table are crossed with all of
the rows in another table. Currently, our acc table has nine rows, and the
acc_add table has two rows. If we were to execute a query like the one that fol-
lows, we would get a result with 18 rows and all of the columns from both
tables. Since this would create a massive table, we won’t reproduce it here.

MySQL allows the use of the inner join identified to let the reader of a SQL
statement know there is a join occurring. Consider the SQL we used earlier
with the acc and acc_add tables. To properly write this SQL using a join, we
would have

mysql> SELECT acc.acc_id, name

FROM acc

inner join acc_add

on acc.acc_id = acc_add.acc_id where acc.ts = 0;

+---------+----------+

| acc_id | name |

+---------+----------+

| 1034055 | John Doe |

| 1034055 | John Doe |

+---------+----------+

2 rows in set (0.00 sec)

This SQL has several aspects. The first is the use of the inner join clause. The
SQL says we want to pull data FROM one table and join that table with another
one called acc_add. The INNER JOIN causes a full join to occur with both
tables. After the join, there is an ON clause. The ON clause is used exclusively
with the join. This clause tells the system what criteria to use when relating the

Wo r k i n g w i t h M y S Q L S Q L58

two tables. Finally, our query uses a WHERE clause to further limit the results
from the query. In most cases, all of the conditions to use when relating the
tables should appear in the ON clause, and final criteria should appear in the
WHERE clause.

Outer Left/Right Join

Another common join is called the left join. In a left join, the first table listed in
the query returns all of its rows even if a match doesn’t occur within the ON
clause. The right join does just the opposite and returns all rows in the table
listed with the join.

NULL
One of the most interesting features of SQL is the notion that NULL is not 0 as
in most programming languages. The value NULL stands on its own in SQL and
for this reason, a special equality statement is needed to check whether a field
contains a NULL value. The statement is IS NULL and IS NOT NULL. We can
create SQL that will pull rows if a column’s value is NULL. For example:

mysql> SELECT acc_id, password FROM acc WHERE password IS NULL;

+---------+----------+

| acc_id | password |

+---------+----------+

| 1034067 | NULL |

+---------+----------+

1 row in set (0.00 sec)

mysql> SELECT acc_id, password FROM acc WHERE password = NULL;

Empty set (0.00 sec)

In the first SQL query, we are telling the database server to return all rows
where the password field value is NULL. There is one such row in the table, and
it is displayed. The second SQL query does nearly the same thing, but instead it
tries to match the password value equal to NULL—no results are found.

What’s Next

So where is MySQL going? Well, the current plan is to introduce new function-
ality under the 4.0 version in separate segments. Expect to see increments like
4.0.1, 4.0.2, and so forth. Several large additions are planned for 4.1, including
subselects and stored procedures.

This chapter has attempted to provide a brief but comprehensive introduction
to MySQL SQL for those who aren’t familiar with it. For more comprehensive

What’s Next 59

information on MySQL SQL, please refer to the extensive documentation avail-
able on www.mysql.com. In the next chapter, we take a complete look at the
installation of MySQL, Java, and Connector/J to build a development system to
be used throughout the remainder of this book.

Wo r k i n g w i t h M y S Q L S Q L60

If you’ve made it this far, you are ready to begin the process of integrating
MySQL, Java, and Connector/J to build applications and sites that provide
your users with a bounty of information. In this chapter, we explain how to

install MySQL, Java, and Connector/J on your system. We cover both Linux and
Windows, and for the most part, we show the basic installation that works on
99 percent of the environments out there. If these instructions don’t work, you
will need to turn to the product documentation.

Installing MySQL

You can find the MySQL database system at http://www.mysql.com under the
downloads section of the site. Several different downloads are available, as
shown in Figure 4.1.

On the right-hand side of the MySQL Web page, you can see two major sections:
Production and Development. The Production line of products has been thor-
oughly tested both within and outside MySQL. An organization can comfortably
use the Production products in such an environment and be assured of stability
and reliability. The Development line of products has been tested within MySQL
with MySQL’s own baseline tests but the products aren’t at the level of produc-
tion readiness. As you can see, the 4.0.x line of MySQL is currently in the Devel-
opment stage and isn’t recommended yet for production use.

Installing MySQL, Java, and
Connector/J

C H A P T E R 4

61

Figure 4.1 The available MySQL downloads.

Looking at the Production MySQL servers, you have two possibilities: MySQL
and MySQL-Max. The MySQL download is a basic MySQL server without trans-
action support table types compiled into the binary. The MySQL-Max download
includes support for the BDB table type in some platforms and the InnoDB
table type in all platforms. Depending on which Production system you decided
to download, you have the option of pulling the version for Windows, Linux,
Solaris, and a host of other platforms.

If you are downloading for Windows, you automatically get both the standard
MySQL distribution as well as MySQL-Max. If you are downloading the Linux ver-
sion, MySQL recommends using the RPM file for a clean installation. Note that you
will have to download a number of Linux files. You should download the server
and client programs files to have an operational development system. After you
click on the correct platform version, the installation instructions change.

Linux Installation
For the Linux version of MySQL, you have two different files on your system.
One has a name like MySQL-3.23/MySQL-3.23.52-1.i386.rpm, and the other has a
name like MySQL-3.23/MySQL-client-3.23.52-1.i386.rpm. Since these are RPM
files, they should install without much error on most recent Linux installations.
The steps are

1. Install the server: type rpm -i MySQL-VERSION.i386.rpm.

2. Install the client tools: type rpm -i MySQL-client-VERSION.i386.rpm.

The installation process places all of the code in /var/lib/mysql. In addition, the
process makes entries in rc.d/ to automatically start MySQL when the machine
boots.

I n s t a l l i n g M y S Q L , J av a , a n d C o n n e c t o r / J62

Windows Installation
The MySQL distribution for Windows comes as a zip file and will need to be
uncompressed before it can be used. Use WinZip or another tool of your choice
to perform the decompression. Once you do, follow these instructions to install
the server on a NT/2000/XP box:

1. Log on as the administrator user.

2. Stop the current MySQL if you’re performing an upgrade.

a. Open a command prompt.

b. If MySQL is running as a service, type net stop <mysql> where
<mysql> is the name of the MySQL server service name (normally
the value is mysql).

c. If MySQL is running as an application, change to the /bin directory of
the MySQL installation and type mysqladmin –u root shutdown.

3. If you are changing from the basic MySQL server to the Max version, you
need to remove the service.

4. Locate the setup.exe file of the new installation from the uncompressed
files.

5. After MySQL is installed, copy one of the configuration files in the installa-
tion directory to the root directory, c:/. If you are using the Max version of
MySQL, configure the appropriate InnoDB or BDB options in the configu-
ration file.

6. If you want to install the server as a service, type the command
-mysqld-max-nt- --install (or --install-manual if you don’t want
Windows to automatically start the service when the machine boots).

If you are installing MySQL on Windows 95, 98, or ME, the server cannot be
used as a service and thus you will need to start and stop the server manually.
Use the mysqladmin.exe application in the /bin directory to start MySQL.

All Other Installations
It is beyond the scope of this book to provide installation instructions
for every platform that MySQL supports. If you need to install MySQL
on another platform, download the appropriate distribution and refer to
http://www.mysql.com/documentation/mysql/bychapter/manual_Installing.html
#Installing for complete instructions.

Testing the MySQL Installation
To determine that MySQL has been installed and is executing correctly, browse
to the /bin directory of MySQL and execute the file mysql. You should see infor-
mation like that shown in Figure 4.2.

Installing MySQL 63

Figure 4.2 Testing MySQL.

Installing Java

Once the MySQL database server is installed, it’s time to install Java. You can
find the Java software development kit (SDK) at http://java.sun.com/
j2se/1.4.1/download.html. When you get to this page, you see downloads for
numerous platforms and options for either the Java Runtime Environment
(JRE) or SDK. Be sure to grab the SDK so you will be able to write code with
Java. For Windows, you will find an EXE file to download. When the file has fin-
ished downloading, double-click on it to launch the installation wizard. Just a
few clicks through the wizard is all it takes to install Java on Windows. When
the Java installation wizard has finished installing Java, add the path to the /bin
directory of the installation to the system PATH environment variable. That
way, you will have access to the Java tools from a Windows command prompt.

For Linux, you will find both an RPM and a self-extracting BIN file. If you down-
load the RPM file, it will initially include a BIN extension, which you need to
remove. Install the RPM with the rpm-I command. If you download the BIN self-
extracting file, you need to change the file to have execution permissions with
the chmod a+x command. Once permissions are set correctly, just execute the
file to install Java.

Full instructions for installing the Windows, Linux, and other environments can
be found at http://java.sun.com/j2se/1.4.1/install.html if you run into problems.

Testing the Java Installation
Once Java has been installed, you should test the installation. To do this, create
a file called hello.java and add the following code:

public class hello {

public static void main(String[] args) {

System.out.println("Hello World – It Works");

}

}

I n s t a l l i n g M y S Q L , J av a , a n d C o n n e c t o r / J64

Compile the code with the command

javac hello.java

If you get an error saying the javac command cannot be found, then you will
need to check the path to the /bin directory; this means that the system is
unable to find the Java compiler in the /bin directory. If things work out cor-
rectly, execute the Java with

java Hello

You should see the text “Hello World—It Works” on your screen. If you don’t
see this text, check Sun’s instructions to correct the installation.

Installing Connector/J

If you refer to Figure 4.1, you see that both the Production and Development
areas have downloads available for Connector/J. Clicking on either of the links
brings you to the respective page for that particular version of the code. In both
cases, two files are available for download: a zip and a tar.gz.

Most of the code in the remainder of this book executes under the Production
version of the code, but better performance and many small JDBC support
changes are available in the Development 3.0 version. Our test machines used
the 3.0 version of Connector/J.

If you download the zip version of the code, we assume you are installing
on a Windows box and that the tar/gz version for Linux or another Unix
flavor. In either case, you need to uncompress the file to expose both
the source code for the driver as well as a JAR file called (in 3.0) mysql-
connector-java-3.0.1-beta-bin.jar. This file contains all of the necessary class
files for the driver.

There are a few ways to install the driver. The first is to copy the /com and /org
files into another directory listed in your classpath. Another option is to add the
full path to the JAR file to your CLASSPATH variable. Finally, you can just copy
the JAR file to the $JAVA_HOME/jre/lib/ext directory.

On a Windows platform (if you installed SDK1.4.1), the directory is found at
/program files/java/j2re1.4.1/lib/ext. Just copy the JAR file to that directory, and
the library will be available for applications that execute within the Java Virtual
Machine.

On a Linux platform using SDK 1.4.1, the directory where you want to place the
JAR file is /usr/java/j2sdk1.4.0/jre/lib/ext.

Installing Connector/ J 65

Testing the Connector/J Installation
Once you’ve installed both Java and the Connector/J driver, create a test file
called test.java and enter the following code into the file:

public class test {
public static void main(String[] args) {
try {
Class.forName("com.mysql.jdbc.Driver").newInstance();
System.out.println("Good to go");

} catch (Exception E) {
System.out.println("JDBC Driver error");

}
}

}

Save and exit the test file and compile it with this command:
javac test.java

Now execute the code with this command:
java test

If the Java Virtual Machine was able to find your Connector/J JAR file, you will
see the text “Good to go” on the console; otherwise, you will see “JDBC Driver
Error”. If you get an error, check that the JAR file is in the correct directory
and/or check the CLASSPATH variable to be sure the full path to the JAR file
has been included. Figure 4.3 shows all of these steps.

I n s t a l l i n g M y S Q L , J av a , a n d C o n n e c t o r / J66

Figure 4.3 Testing the Connector/J driver.

What’s Next

Once you have installed all of the applications shown in this chapter, you are
ready to start writing all sorts of Java applications that can access a MySQL
database. In the next chapter, we begin looking at how to write applications and
applets to access MySQL. We explore some of the basic functionality provided
in the JDBC specification and implemented in Connector/J.

Now that we have a development environment put together, it’s time to
start writing Java code that will allow access to a MySQL database using
the Connector/J JDBC driver. In the remaining chapters of this book, it

is our goal to exercise as much of the functionality found in the driver as possi-
ble. This chapter covers the basics of instantiating the driver, connecting to the
database from Java, executing queries, and handling results. From a Java per-
spective, we look at doing all of these tasks from both applications and applets
utilizing various GUI components to deal with the information transfer from the
user to the database and from the database to the user.

Hello World

For the sake of tradition, the first application we build is Hello World. The code
in Listing 5.1 creates a Java application and pulls information from a MySQL
database.

Using JDBC with Java Applications
and Applets

C H A P T E R 5

67

package mysql;

import java.sql.*;

public class Hello {

Connection connection;

Listing 5.1 Hello World. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s68

private void displaySQLErrors(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

System.out.println("SQLState: " + e.getSQLState());

System.out.println("VendorError: " + e.getErrorCode());

}

public Hello() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

}

catch (SQLException e) {

System.err.println("Unable to find and load driver");

System.exit(1);

}

}

public void connectToDB() {

try {

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts?user=&password=");

}

catch(SQLException e) {

displaySQLErrors(e);

}

}

public void executeSQL() {

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(

"SELECT * FROM acc_acc");

while (rs.next()) {

System.out.println(rs.getString(1));

}

rs.close();

statement.close();

connection.close();

}

catch(SQLException e) {

displaySQLErrors(e);

}

}

public static void main(String[] args) {

Listing 5.1 Hello World. (continues)

Hello World 69

Hello hello = new Hello();

hello.connectToDB();

hello.executeSQL();

}

}

Listing 5.1 Hello World. (continued)

Since this is our first code for connecting Java to MySQL through Connector/J,
we want to spend a fair amount of time going through it. First, note that this is
a traditional Java application that instantiates an object and calls a few meth-
ods. When the Hello object is instantiated, the constructor is called to handle
any initialization that needs to take place.

Loading the Connector/J Driver
In the constructor, we have placed code that attempts to locate and instantiate
our Connector/J JDBC driver. The process begins with the Class.forName
method. This method is designed to dynamically load a Java class at runtime.
The Java Virtual Machine (JVM) uses the current system classpath (as well as
any additional paths defined when the JVM was executed) to find the class
passed to the method as a parameter. In our case, the system attempts to find
the Driver class found in the com.mysql.jdbc package. In Chapter 4, we placed
the Connector/J JAR file in the classpath of the JVM so it could be found. Once
it finds the file, the code executes the newInstance() method to instantiate a
new object from the Driver class. During the instantiation, the Driver will regis-
ter itself with a static class called DriverManager, which is responsible for man-
aging all JDBC drivers installed on the current system.

If the JVM is unable to locate the driver, it outputs a message to the console and
exits the application. Note that the DriverManager is designed to handle multi-
ple JDBC driver objects just as long as they register with the class. This means
that you can write a Java application that connects with more than one type of
database system through JDBC. Note that simply loading the JDBC driver for a
database doesn’t result in any type of connection with the database.

Using DriverManager to Connect to a
Database

Once our application object has been created and initialized, the code attempts
to build a connection to the database. This is an important step, and therefore
we’ll spend some time discussing the connection code. If you look in the

connectToDB() method in our Hello object, you see that the connection from
Java to the database is performed in a single line of code:

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts?user=&password=");

As you can see, the DriverManager is the catalyst used to create the connection
to the database. This is consistent with its job of managing all JDBC drivers.
When the getConnection() method is called, the DriverManager needs to decide
what JDBC driver to use to connect to the database. Figure 5.1 shows how the
DriverManager determines the proper JDBC driver to use with a given connec-
tion request.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s70

DriverManager
Connector/J

Oracle
SQLServer

MySQL

OracleApplication

SQLServer

Figure 5.1 Determining the proper driver.

Let’s begin our discussion of obtaining a connection to the database by exam-
ining the API for the DriverManager.

DriverManager API

DriverManager is a static class that exposes methods for handling connections
to a database as well as administrative methods for JDBC drivers. The follow-
ing methods are those we might be interested in using:

Connection getConnection(String URL)—The DriverManager uses a reg-
istered driver in an attempt to build a connection to a specified database.

Connection getConnection(String URL, Properties props)—The
DriverManager uses a registered driver in an attempt to build a connection
to the specified database using the properties provided in the Properties
object.

Connection getConnection(String URL, String username, String

password)—The DriverManager uses a registered driver in an attempt to
build a connection to the specified database using the provided username
and password.

Driver getDriver(String URL)—The method returns a registered driver
that will potentially be used to connect to a database with the provided URL.

Enumeration getDrivers()—The method returns all of the currently
registered drivers.

int getLoginTimeout()—The method returns the maximum time in
seconds that the current DriverManager will wait for a connection to a
database.

void setLoginTimeout(int secs)—The method sets the maximum time in
seconds that the current DriverManager will wait for a connection to the
database.

These methods can be characterized into three groups: driver management,
timeout management, and connection management.

Driver Management Methods

Once a driver (or set of drivers) has been registered with a DriverManager, you
usually don’t have to do anything further with the driver. However, a few methods
are available for obtaining and removing drivers from the DriverManager if you
need to. A current list of registered drivers can be obtained using code like this:

Enumeration e = DriverManager.getDrivers();

while (e.hasMoreElements()) {

Driver d = (Driver)e.nextElement();

System.out.println("Driver Major Version = " +

d.getMajorVersion());

}

Once a reference to a driver has been obtained, the deRegisterDriver() method
can be used to remove the driver. In almost all cases, you won’t need to use any
of this information unless you want to remove from the application all JDBC
access to a particular database.

Timeout Management Methods

When connecting to a database—whether local or remote to the Java applica-
tion—the application doesn’t know if the database system itself is currently
online. There can be situations where a database is down for maintenance or
the machine has crashed. A Java application has the option of setting a timeout
value for the maximum time that the DriverManager will wait as it attempts to
create a connection. The default timeout is 30 seconds before the driver throws
a java.net.ConnectException exception. For situations where the database is
on a remote machine, the timeout might need to be extended. The following
code shows an example of setting a timeout of 90 seconds:

DriverManager.setLoginTimeout(90);

Hello World 71

The setLoginTimeout() method accepts a single integer value representing the
maximum timeout in seconds for a connection attempt. If you need to obtain
the current timeout setting, use the getLoginTimeout() method. If you use this
method without setting the timeout, a value of 0 will be returned, indicating that
the system default timeout of 30 seconds should be used.

Connection Management Methods

The meat of the DriverManager object is found in the connection methods. A
method called getConnection() is overloaded three times to provide numerous
ways of supplying arguments to the DriverManager. The signatures for the
methods are as follows:

Connection getConnection(String URL);

Connection getConnection(String URL, Properties info);

Connection getConnection(String URL, String user, String password);

In all three methods, the primary connection information is found in the first
parameter of type URL (which we discuss in the next section). The first over-
loaded method assumes that all of the information for the connection will be
passed in the URL. The second method gets connection options from the Prop-
erties parameter. The third method obtains connection information from the
URL, but pulls the username and password for the database connection from
the method parameters.

Using URL Options in Connector/J

In all of the getConnection() methods, the URL parameter is responsible for
providing the DriverManager with information about the type and location of
the database with which a connection should be established. From a standards
perspective, a URL (Uniform Resource Locator) provides a common way of
locating resources found on the Internet. More than likely, you use HTTP URLs
every day. A lot of information is transferred in URLs, and that information can
be used for Web pages as well as database locations. The general format of a
URL is

<protocol>:<subprotocol>:<subname>

In a URL for a Web page, the protocol is HTTP and there is no subprotocol or
subname. In the JDBC world, the protocol is defined as jdbc. The <subproto-

col> is typically the name of the driver this particular connection URL needs to
use, and the <subname> is a string representing connection information, such
as the source of the database. The Connector/J driver requires that the <sub-

protocol> be defined as mysql. So our URL looks like this:

jdbc:mysql:<subname>

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s72

The <subname> is a little more complex because it consists of up to three dif-
ferent components. The general format of the <subname> is

//<host>[:<port>][/<databaseName>]

Notice the use of the double slashes just as with an HTTP URL. The <host>

component is the domain name or IP address of the server hosting the MySQL
database application. The <host> can be followed by a colon and a port number
where the database application accepts connections. The default port in
MySQL is 3306; the Connector/J driver will also default to port 3306 if one is not
found in the <subname>. Finally, the database the driver should begin using
when a connection is first made can be added to the <subname>. Here are a
few examples:

jdbc:mysql://localhost

jdbc:mysql://localhost/accounts

jdbc:mysql://192.156.44.3/db_dev

jdbc:mysql://database.company.com/prod

jdbc:mysql://database.company.com:4533/prod

In each of the sample URLs, the JDBC driver will be able to determine which
host currently is running a MySQL database application, what port to commu-
nicate through to the database system, and the initial database.

In addition to specifying the initial database that the application should use for
the current connection, the Connector/J driver allows properties to be
appended to the driver string. For example, we can specify the username and
password to be used with the connection:

jdbc:mysql://192.156.44.3/db_dev?user=newuser&password=newpassword

The properties are appended to the driver string using the ? and & delimiters.
The first property must use the ? delimiter, and all others must use &. Connec-
tor/J includes quite a few properties that can be specified on the connection
string, as shown in Table 5.1.

Table 5.1 Connection Properties

NAME DESCRIPTION DEFAULT

user The username for the connection. None

password The password for the user. None

autoReconnect Set to true if the connection
should automatically be reconnected. false

maxReconnects If autoReconnect=true, represents the 3
total reconnect attempts.

initialTimeout If autoReconnect=true, represents 2
the time to wait (in seconds)
between reconnect attempts.

Hello World 73

maxRows Limits the total number of rows
to be returned by a query. 0 (maximum)

useUnicode If true, the server will use Unicode true
when returning strings; otherwise,
the server attempts to use the
character set that is being used
on the server.

characterEncoding If useUnicode=true, specifies the None
encoding to be used.

relaxAutoCommit If relaxAutoCommit=true, then the false
server allows transaction calls even
if the server doesn't support transactions.

capitalizeTypeNames If set to true, type names will be false
capitalized in DatabaseMetaData results.

profileSql If set to true, queries and timings will false
be dumped to STDERR.

socketTimeout If > 0 in milliseconds, the driver will 0
drop the connection when the timeout
expires and return the SQLState
error of 08S01.

StrictFloatingPoint If set to true, the driver will compensate false
for floating float rounding errors in the server.

As you can see, there is quite a bit of information that can be conveyed to the
Driver and used for queries to the database.

Using Properties with the Connection

One of the getConnection() methods exposed by the DriverManager allows the
use of a Properties object to pass information to the DriverManager. All of the
connection parameters shown in Table 5.1 can be placed in a Java Properties
object. For example:

Properties prop = new Properties();

prop.setProperty("user", "newuser");

prop.setProperty("password", "newpass");

myConnection = getConnection(

"jdbc:mysql://localhost/accounts", prop);

In this code, a Properties object is instantiated and assigned to the prop vari-
able. Using the setProperty() method, the user and password properties are set

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s74

Table 5.1 Connection Properties (continued)

NAME DESCRIPTION DEFAULT

to values appropriate for the connection. After all of the properties are set, the
object is used in a call to create a connection to the database.

Handling Errors

When dealing with connections to external sources, you must know how to
handle errors that might occur. Both the JDBC driver and MySQL provide
numerous types of errors. As you will see throughout our example program,
try/catch blocks are provided to capture SQLException exceptions that are
thrown by the Connector/J driver. When a SQLException exception is thrown,
a call is made to the displaySQLErrors() method defined as a private method
within our object. That method is shown here:

private void displaySQLErrors(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

System.out.println("SQLState: " + e.getSQLState());

System.out.println("VendorError: " + e.getErrorCode());

}

Like Connector/J, JDBC drivers implement three different specification-
defined pieces of error information. These are the exception itself, the SQL-
State, and a vendor error code. Our method outputs the values of these three
components if an error occurs when we’re trying to accomplish some JDBC
task. For example, if we define a host address for our MySQL database system
that doesn’t exist, the following is displayed on the console:

Unable to connect to host

08S01

0

In a production system, we probably want to log the error to an error file and
attempt to recover from the error. This might include attempting to connect to
another database.

Executing Queries Through Statement Objects
At this point in our code, we have pulled the Connector/J JDBC driver into our
application and created a connection to the database. The example code in List-
ing 5.1 makes a call to an object method called executeSQL(), where the work
to pull results from the database occurs. Within this method, the code builds a
SQL statement object, executes the SQL, and displays the results.

Building a Statement Object

The first step in getting data from the MySQL database is to build a Statement
object. The Statement object is designed to be an intermediary between the
database connection and the results found from executing some SQL. When a

Hello World 75

Statement object executes a query, it returns a ResultSet object. The default
configuration for the Statement object is to return a single ResultSet. If the
application needs to work with two different results at the same time, multiple
Statement objects will need to be instantiated. As you can see from the API doc-
umentation in Appendix B “Databases and Tables”, the Statement object has
quite a few methods associated with it. Throughout this chapter, we cover most
of those methods and how they relate to the MySQL database.

The Statement object to be used in our example code is created from the Con-
nection object using the method createStatement(), as shown here:

Statement statement = connection.createStatement();

When calling the createStatement() object, you must enclose it within a
try/catch block and capture any SQLException exceptions. The Connection
object contains three different variations of the createStatement() method:

■■ Statement createStatement()—Instantiates a Statement object to be
used for sending queries to the database server.

■■ Statement createStatement(int resultSetType, int resultSet

Concurrency)—Instantiates a Statement object to be used for sending
queries to the database server using the provided type and concurrency.

■■ Statement createStatement(int resultSetType, int resultSetCon-

currency, int resultSetHoldabilitiy)—Instantiates a Statement object to
be used for sending queries to the database server using the provided type,
concurrency, and holdability.

Three parameters are set for ResultSets when a Statement object is created.
These are listed below, and we cover them in more detail when we discuss
ResultSet objects:

■■ ResultSetType—The default is TYPE_SCROLL_INSENSITIVE; the possible
values are

TYPE_FORWARD_ONLY—The ResultSet cursor moves forward.

TYPE_SCROLL_INSENSITIVE—The cursor may scroll in any direc-
tion and is not sensitive to changes.

TYPE_SCROLL_SENSITIVE—The cursor may scroll in any direction
and is sensitive to changes.

■■ ResultSetConcurrency—This parameter determines whether the ResultSet
may be updated in place and the updates automatically applied to the data-
base. The default is CONCUR_READ_ONLY; it is the only option supported
by Connector/J.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s76

■■ ResultSetHoldability—This parameter is not implemented in Connector/J’s
implementation of createStatement().

When you’re using the createStatement() methods, you include the parameters
when you’re creating a ResultSet or use the defaults as appropriate. In most
cases, you use createStatement() without any parameters.

Executing SQL

Now that we have a Statement object, it’s time to execute the SQL statements
designed to return results for use in our application. The Statement object
includes several types of query methods, as shown in Appendix B. In this sec-
tion, we cover the method executeQuery(), which is designed to execute SQL
that will return a result. This means the method expects to execute a SELECT
query.

In our example code, the following line sets off the process of retrieving results
from the database:

ResultSet rs = statement.executeQuery("SELECT * FROM acc_acc");

There are a few things you should note about this code. The first is that the SQL
query statement is provided to the executeQuery() method as a String. The
object passes the query to the database, which in turn executes it. Connector/J
doesn’t, and shouldn’t, make any type of determination on the validity of the
SQL being passed by the application. If the database is unable to execute the
SQL, a SQLException exception will be thrown. If the command is successful,
the executeQuery() method returns a ResultSet object containing the rows
from the database.

Ultimately, three outcomes can occur when the executeQuery() method exe-
cutes. The first is an exception. An exception can occur for many reasons,
among them are the following:

■■ The connection is no longer valid to the database server.

■■ The SQL has a syntax error in it.

■■ The currently logged-in user doesn’t have permission to the database table
used in the SQL.

You need to wrap your executeQuery() in a try/catch block, but it will be a
design issue as to which errors you attempt to recover from and which allow
the application to fail. There are some database operation errors that you
recover from by changing the nature of the operation—you might be able to
connect to a secondary database, or limit the results. Other errors may be cata-
strophic, like being unable to update the database. The second outcome is a
ResultSet with results in it. This is the most favorable outcome. The third

Hello World 77

outcome also produces a ResultSet, but instead the set is empty, which indi-
cates that the query didn’t produce any rows from the database.

Displaying Results

The example code takes the ResultSet produced by the execution of our query
string and displays the first column of each row. As you see in the next section,
the ResultSet object includes a host of methods for manipulating the rows and
columns it currently stores.

Using the ResultSet Object

The ResultSet object is the primary storage mechanism for the rows returned
from a query on the MySQL database. It is imperative that you have a full under-
standing of how the object works and how you get our data out of it. Concep-
tually, the ResultSet object looks like an adjustable two-dimensional array, as
you can see in Figure 5.2.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s78

Internal pointer
acc_id

1034033
1034035

username

jimmy
jdoe

password

hispassw
does

Figure 5.2 The ResultSet object.

As shown in Figure 5.2, the ResultSet object consists of rows containing data
based on the information returned from the database query. The columns of the
object are the fields from the database as specified in the query. If the query
uses a * in the SELECT, then all of the columns from the database will be rep-
resented in the ResultSet. If only a few of the columns are listed in the SELECT,
then only those columns will appear in the set.

The ResultSet uses an internal cursor to keep track of what row data should be
returned when the application requests data. The default behavior for a Result-
Set is to maintain read-only data and allow the internal cursor to move forward
through the rows. If the data needs to be used a second time, the cursor will
need to be moved to the beginning. When a ResultSet object is first instantiated
and filled, the internal cursor is set to a position just before the first row.

A large number of getter methods are available for retrieving data from the
ResultSet object. These methods pull data from a specific row/column cell and
attempt to convert the data to a Java data type as defined by the getter method.
See Chapter 7, “MySQL Type Mapping,” for a full discussion on mapping
between MySQL, Connector/J, and Java.

Determining the Cursor Position
As we mentioned earlier, when a ResultSet is first instantiated, the internal cur-
sor is positioned just before the first row in the set. You have four methods for
monitoring where the cursor is in the set. To determine if it is sitting before the
first row, use the method isBeforeFirst(); for example:

ResultSet rs = statement.executeQuery("SELECT * FROM acc_acc");

boolean whereIsIt = rs.isBeforeFirst()

The isBeforeFirst() method returns a value of true if the internal cursor is sit-
ting before the first row. In our code example, the value returned will be true.
The complement to this method is isAfterLast(). When the cursor has been
moved beyond all of the rows in the set, the isAfterLast() method returns a
value of true.

We can also tell whether the internal cursor has been moved to either the first
or the last row of the object. The isFirst() method will return true if the cursor
is sitting at the first row, and isLast() returns true if the cursor is sitting on the
last row.

Finally, you can use the getRow() method to return the current row number
from the ResultSet. If you execute the getRow() method just after getting the
ResultSet from the executeQuery() method, the value returned will be 0. Thus,
the first actual data row in a ResultSet has a value of 1. This is something to
remember when using the methods in the next section to move around the
object.

Moving the Cursor
Once you know where the cursor is currently pointing within the set, you can
move it anywhere you like. First, let’s look at two methods that allow you to
move to a specific location within the ResultSet. The first method is based on
counting from an absolute position from either the beginning or the end of the
rows:

boolean absolute(int rows)

The absolute() method moves the internal cursor to a specific row in the
ResultSet. Thus, the method called rs.absolute(2) moves to the second row in
the object. If a value is entered that is outside the bounds of the row count in
the ResultSet, a SQLException exception will be thrown. To the method, a pos-
itive value indicates that it should count from the beginning of the rows; a neg-
ative value indicates that it should count from the end of the rows.

The second method counts based on the current cursor position:

boolean relative(int rows)

Using the ResultSet Object 79

With the relative() method, the system moves the cursor using the current row
as a pivot point. A positive parameter moves the internal cursor X number of
rows from the current position. A negative parameter moves the internal cursor
X number of rows back from the current position. If a value of 0 is passed to the
method, the cursor will not move.

As you might have guessed, using the method absolute(1) will move the cursor
to the first row and the method absolute(-1) will move the cursor to the last
row. Two methods for doing the same thing are first() and last(). These methods
will move the cursor to the first and last rows in the ResultSet, respectively.

It’s even possible to move the cursor before the first row as well as after the last
row. The beforeFirst() method moves the internal cursor to row 0, which is just
before the first row. The method afterLast() moves the cursor to a position just
after the last row.

In most cases, though, you probably want to move through the ResultSet one
row at a time. Just as we did in our example code in Listing 5.1, the next()
method moves the cursor one row ahead at a time. Since the internal cursor
starts before the first row, the next() method should be called before any
processor starts on the ResultSet. Note that a default ResultSet is a forward-
only data type; therefore, only the next() method should be valid. However,
Connector/J has implemented the previous() method to work on any ResultSet
object. In fact, there is even a prev() method defined in Connector/J for moving
the cursor backward.

In the cases of first(), last(), next(), and previous(), the methods all return a
Boolean value indicating whether the command was successful. For first() and
last(), the methods return false only when the ResultSet object is empty and
therefore no first or last row exists. The methods next(), previous(), and Con-
nector/J’s prev() return false when there are no longer any valid rows left in the
ResultSet. For example, next() returns true until the internal cursor points to
the position after the last row.

As you might have noticed, there is no method for determining the size of the
ResultSet. We must rely on the Boolean values returned by the methods that
move the internal cursor. There is a way to get the total size of a result from the
database using a query, but it’s a little more complex than the current topics we
are discussing. We tackle that one in the next chapter.

Getter Methods
Once the cursor has been set on a particular row, the contents of each column
can be obtained. In our example code, we pull the first column—the column
starting at 1—using the code

System.out.println(rs.getString(1));

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s80

This code tells the ResultSet to return (as a String) the value located in the first
column of the row the internal cursor is currently pointing to. Clearly, the cur-
sor must be pointing to a valid row; otherwise, the getter method will throw a
SQLException exception.

Looking at the ResultSet API, you will notice that there are quite a large number
of methods for obtaining values from the set. Each method is designed to pull a
specific type, such as integer or string. As an example, consider the getString()
methods:

String getString(int columnIndex);

String getString(String columnName);

Both of these methods pull a value from MySQL as a String. Even if the value in
MySQL is an integer, the integer will be coaxed into the String type. However,
what we really want to consider are the parameters to the method. Notice how
one of them is passing an integer and the other is a String. Let’s look at an exam-
ple of how the getters will work based on a real database. One of our sample
databases is called accounts, and it contains a table named acc_acc. This table
is defined as:

acc_id - int

username - varchar

acc_id – int

username – varchar

password – varchar

ts – timestamp

act_ts - timestamp

Using the getString() methods, we can pull the value contained in the username
column in two different ways. First, we pull the values using some example
SQL:

ResultSet rs = statement.executeQuery("SELECT * FROM acc_acc");

Now we know that the variable rs is a ResultSet and that its internal pointer is
set at a position before the first row. To start pulling the data from the set, we
need to move the internal pointer to the next row:

rs.next();

With the internal pointer at the first row in the object, we can output the values
in the username column by using the getString() method. Two different meth-
ods are available, as shown here:

System.out.println(rs.getString(1));

System.out.println(rs.getString("username"));

In the first output statement, the column number is used to let the ResultSet
object know which column the value should be pulled from. In the second

Using the ResultSet Object 81

output statement, we use the name of the column as defined in the query. There
is hidden meaning in that last sentence. In the query we used—SELECT *
FROM acc_acc—we asked for all of the columns from data in the acc_acc table
without any row restrictions. The * pulls all of the columns as well as the col-
umn names defined in the table. What this means to the ResultSet is that the val-
ues can be pulled using the names as declared in the table. Consider the
following code:

ResultSet rs = statement.executeQuery(

"SELECT acc_id, username FROM acc_acc");

rs.next();

System.out.println(rs.getString("username"));

System.out.println(rs.getString("password"));

The first output line pulls the username value from the ResultSet. We can again
use the name of the column as defined in the table since we’ve asked the data-
base to return both the acc_id and username from the table. The second output
line will produce a SQLException exception because no password column is
defined in the ResultSet. Finally, consider this code:

ResultSet rs = statement.executeQuery(

"SELECT acc_id, username "User" FROM acc_acc");

rs.next();

System.out.println(rs.getString("User"));

System.out.println(rs.getString("username"));

The first output line attempts to pull a column called User from the ResultSet.
It will be successful because our SELECT pulled the username column from the
table but renamed it as User (which is the column name used in the ResultSet).
The second output line in this code example produces a SQLException
exception.

Primitive Getters
Connector/J includes getter methods for all of the primitive types defined
within a MySQL table. In this section, we present examples for using each of the
methods.

Boolean

If you are interested in retrieving a column’s value as a Java Boolean value, two
methods are available:

Boolean getBoolean(int columnIndex)

Boolean getBoolean(String columnName);

As we’ve discussed, the task of the getter method is to pull the value from a table
column and attempt to convert it to the intended Java type. For the getBoolean()

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s82

methods, the outcome is a Boolean value. Consider a table defined as

mysql> describe bool;

+-------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------+------+-----+---------+-------+

| id | int(11) | YES | | NULL | |

| a | tinyint(1) | YES | | NULL | |

| b | int(11) | YES | | NULL | |

| c | varchar(4) | YES | | NULL | |

| d | varchar(5) | YES | | NULL | |

+-------+------------+------+-----+---------+-------+

5 rows in set (0.00 sec)

Now see what happens if we put the following data into the table:

mysql> select * from bool;

+------+------+------+------+------+

| id | a | b | c | d |

+------+------+------+------+------+

| 1 | 1 | 0 | true | f |

+------+------+------+------+------+

1 row in set (0.00 sec)

The data can be pulled with the following Java code:

ResultSet rs = statement.executeQuery(

"SELECT * FROM bool");

while (rs.next()) {

System.out.println(rs.getString("a") + " " +

rs.getBoolean("a"));

System.out.println(rs.getString("b") + " " +

rs.getBoolean("b"));

System.out.println(rs.getString("c") + " " + r

rs.getBoolean("c"));

System.out.println(rs.getString("d") + " " +

rs.getBoolean("d"));

}

Can you guess the output? Here it is:

1 true

0 false

true true

f false

As you can see, the values within the columns are properly translated into
Boolean values.

Byte
If the information in your database needs to be obtained as a raw byte or series
of bytes, then the following four methods will be helpful to you:

Using the ResultSet Object 83

Byte getByte(int columnIndex);

Byte getByte(String columnName);

byte[] getBytes(int columnIndex);

byte[] getBytes(String columnName);

In most cases, these methods will not throw an exception because nearly all
values in a MySQL column can be returned as bytes.

Double
If the value in a MySQL column is a double or a value that can be converted to
a double, then you can use the following two methods to pull that value:

double getDouble(int columnIndex);

double getDouble(String columnName);

If the value in the MySQL column cannot be converted to a double, a SQLEx-
ception exception will be thrown with an error value of S1009.

Float
Real or floating-point values can be returned from the MySQL database using
these methods:

float getFloat(int columnIndex);

float getFloat(String columnName);

If the value in the MySQL column cannot be converted to a float, a SQLExcep-
tion exception will be thrown with an error value of S1009. If the strictFloat-
ingPoint property supplied to the Connection object has a value of true, then
Connector/J attempts to compensate the returned value for rounding errors
that might have occurred in the server.

Int
The MySQL server can handle integer values, and you can use the following two
methods to pull their associated value from the database:

int getInt(int columnIndex);

int getInt(String columnName);

If the strictFloatingPoint property has been set to true in the Connection object,
the Connector/J driver attempts to handle rounding errors in the integer values
stored on the database. Values that cannot be converted to an integer will throw
the SQLException exception.

Long
Longs can be pulled from the database using these methods:

long getLong(int columnIndex);

long getLong(String columnName);

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s84

The Connector/J code attempts to build a long by reading the value from the
database as a double and applying a downcast to a long. If the value cannot be
converted to a long, the exception SQLException will be thrown.

Short

Since the MySQL database can store shorts, we need to be able to get them out
as well. The methods for doing this are

short getShort(int columnIndex);

short getShort(String columnName);

The short values will be obtained using a downcast from a double. The SQLEx-
ception exception will be thrown if the value returned cannot be converted to a
short.

Closing the Objects
In our example code, we have created many different objects, including Result-
Set, Statement, and Connection objects. When we have finished with each of
the pieces, they should be closed so that the JVM as well as the Connector/J dri-
ver knows that the memory the objects are occupying can be given back to the
system.

It is important that we close the objects in the reverse order in which they were
opened. This means the ResultSet objects should have their close() method
called before we call the Connection object’s close(). There will be times when
closing the objects in the wrong order can produce a SQLException exception.

With this in mind, a closed connection from Connector/J to the MySQL data-
base server can cause a SQLException to be thrown if any of the methods (such
as createStatement()) can be called against it. The Connection object includes
a method called isClosed(), which returns a value of true if the current Con-
nection object has lost its link to the database server. In these cases, the Con-
nection object needs to be reconnected with the database server before any
additional work can occur on the object.

Making It Real

Well, you may not have found our first example very exciting, so let’s expand
things a little and make them more useful and powerful, as well as add some
graphics. Next we create a GUI that will allow us to see all of the account num-
bers in our database table, select one, and then display the information associ-
ated with the account number on the same GUI. Later in the chapter, we expand

Making It Real 85

the GUI to insert, delete, and update the database information through the GUI.
First, we have our initial code, shown in Listing 5.2.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s86

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.util.*;

public class Accounts extends JFrame {

private JButton getAccountButton;

private JList accountNumberList;

private Connection connection;

private JTextField accountIDText,

usernameText,

passwordText,

tsText,

activeTSText;

public Accounts() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception e) {

System.err.println("Unable to find and load driver");

System.exit(1);

}

}

private void buildGUI() {

Container c = getContentPane();

c.setLayout(new FlowLayout());

//Do Account List

Vector v = new Vector();

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT acc_id FROM

acc_acc");

while(rs.next()) {

v.addElement(rs.getString("acc_id"));

}

rs.close();

} catch(SQLException e) { }

accountNumberList = new JList(v);

Listing 5.2 Our GUI application. (continues)

Making It Real 87

accountNumberList.setVisibleRowCount(2);

JScrollPane accountNumberListScrollPane =

new JScrollPane(accountNumberList);

//Do Get Account Button

getAccountButton = new JButton("Get Account");

getAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(

"SELECT * FROM acc_acc WHERE acc_id = "

+ accountNumberList.getSelectedValue());

if (rs.next()) {

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} catch(SQLException ee) {}

}

}

);

JPanel first = new JPanel();

first.add(accountNumberListScrollPane);

first.add(getAccountButton);

accountIDText = new JTextField(15);

usernameText = new JTextField(15);

passwordText = new JTextField(15);

tsText = new JTextField(15);

activeTSText = new JTextField(15);

JPanel second = new JPanel();

second.setLayout(new GridLayout(5,1));

second.add(accountIDText);

second.add(usernameText);

second.add(passwordText);

second.add(tsText);

second.add(activeTSText);

c.add(first);

c.add(second);

setSize(200,200);

Listing 5.2 Our GUI application. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s88

show();

}

public void connectToDB() {

try {

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts");

} catch(SQLException e) {

System.out.println("Unable to connect to database");

System.exit(1);

}

}

private void displaySQLErrors(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

System.out.println("SQLState: " + e.getSQLState());

System.out.println("VendorError: " + e.getErrorCode());

}

private void init() {

connectToDB();

}

public static void main(String[] args) {

Accounts accounts = new Accounts();

accounts.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

accounts.init();

accounts.buildGUI();

}

}

Listing 5.2 Our GUI application. (continued)

The code in Listing 5.2 is designed to illustrate using MySQL and a Java GUI
application. Figure 5.3 shows what the GUI looks like when it is first executed.
We’ve broken down the code into a series of methods, which we discuss next.

Our Main Function
Just as in any Java application, our main function instantiates an object of our
class type. Notice that our class extends JFrame because we need to provide a
GUI with the application. When the object’s constructor is called, the Connec-

tor/J driver will be located and pulled into the application. Once the object has
been created, a windowClosing event is attached to exit the application when
the user clicks the window’s close button. Two methods are called on the
object. The first is init(), which builds a connection to the database, and the sec-
ond is buildGUI(), which handles the construction of the GUI presentation.

Making It Real 89

Figure 5.3 Our GUI when first executed.

The init() Method
The init() method is quite simple: It creates a Connection object and attempts
to communicate with the MySQL database server. If a connection is successful,
an object variable is instantiated to hold the Connection. A try/catch block is
used to grab any errors in the connection attempt and to exit the application
appropriately.

The buildGUI() Method
The vast majority of the work for the application occurs in the buildGUI()
method. In Figure 5.3 you see that we have several GUI components to build
and place on the GUI frame. The most important is the list in the upper-left cor-
ner, which holds all of the account numbers from our acc_acc table on the
MySQL database. A user will click one of these account numbers and click on
the Get Account button to pull all of the information for the one account and
display it in the text boxes on the screen. Our goal in this discussion isn’t to pro-
vide details on the use of Java GUI components but to describe how those com-
ponents interact with Connector/J to pull information from the database.

Building a JList with Account Numbers

Our GUI will contain a JList component, a JButton, and five JTextFields. First,
we create the JList with all of the account numbers currently in the acc_acc
database table. A JList requires a Model; to populate it we’ve chosen to use a
vector. In the buildGUI() method, the code begins by instantiating a new Vector
object. A try/catch block is entered, and SQL code executes a SELECT of just
the acc_id column from the acc_acc table. Next, a loop is used to pull each of

the acc_id numbers from the ResultSet as a String object. The String is added to
the vector. The loop pulls each of the account numbers and places them in the
vector. Notice that the catch doesn’t do anything with a potential error. This will
be fixed in our next iteration of the code.

Once the vector has been populated, the JList component is created using the
vector. After the JList is created, the code puts a scroll pane around it so that
the user will be able to have scrollbars available to see all of the account num-
bers in the list.

The Get Account Button
After the JList component, the buildGUI() method creates the GUI’s only but-
ton, called Get Account. The user will click this button after clicking on an
appropriate account number. The code begins by instantiating the button and
labeling it, and then moves to the action associated with it. In our code exam-
ple, we build the event processing code right into the button itself instead of
having the application implement the ActionListener interface.

When the user clicks on the Get Account button, its ActionListener() will fire.
We want the code to pick up the account number currently selected on the JList
control and use the value to pull all of the account information from the MySQL
database and place that information in the five JTextField controls.

To accomplish this, a try/catch block is coded with the database control within it.
A Statement object is instantiated from the Connection object, and the execute-
Query() method is called. The parameter to the executeQuery() method is the
SQL string that we want executed against the MySQL database. The full string is

ResultSet rs = statement.executeQuery(

"SELECT * FROM acc_acc WHERE acc_id = "

+ accountNumberList.getSelectedValue());

As you can see from the string, we have a SELECT statement that will pull all
columns from the database where the acc_id is equal to the current selected
value on the JList control. If the query isn’t successful, the catch block is called,
but there is no error-handling at the moment. If the SQL was successful and
there is a result in the ResultSet object, each of the JTextField controls are pop-
ulated by pulling the database data as String objects using the getString() getter
methods.

Creating Text Fields with Account Information

Once the account list and Get Account button have been created, they are
added to a panel, which is added to the application frame. After that step, our
code creates five JTextField controls to hold the five column values from a row
in the acc_acc table. These controls are added to a second panel, which is also
added to the application frame.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s90

Once all of the controls have been created and attached to the application, the
frame is sized and displayed to the user. At this point, the user can select an
account number on the JList control and click on the Get Account button to dis-
play the information on the GUI. Figure 5.4 shows an example of what the out-
put will look like when this is performed.

Executing a Query with No Results 91

Figure 5.4 Displaying a full record.

Executing a Query with No Results

Up to now, we have been concentrating on pulling information from the data-
base using a SELECT command. Connector/J, SQL, and MySQL also allow
information to be inserted and updated as needed. The operations of insert,
delete, and update are considered no-result queries because they don’t return a
ResultSet object after being executed. For this reason, we don’t use the exe-
cuteQuery() method but instead use a method called executeUpdate(). The sig-
nature for the method is

int executeUpdate(String SQL);

The method accepts a single String parameter, which represents the query to be
executed. The query shouldn’t cause the database server to return a ResultSet,
so no SELECTs are allowed. As you can see, the method will return an integer
value after the query is performed. This integer represents the total number of
rows affected by the query.

The question arises, though, about the actual query statements that do not
return a ResultSet. There are quite a few; let’s look at the following ones:

■■ insert—Puts a new row into the database table.

■■ delete—Removes a row from the database table.

■■ update—Updates an existing row in the table.

■■ drop table—Removes a complete table from the database.

■■ create table—Builds a new table.

■■ alter table—Changes aspects of the table.

Let’s start with the insert query statement. As we already know, the insert com-
mand will allow a new row to be put into a database table. We want to expand
our GUI program to allow the user to place an account number, username, and
password in the appropriate text boxes and click a button to add the informa-
tion to the table. Listing 5.3 shows the new code. In addition to the insert but-
ton, we have expanded the code to put SQL errors into a JTextArea.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s92

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.util.*;

public class Accounts extends JFrame {

private JButton getAccountButton,

insertAccountButton;

private JList accountNumberList;

private Connection connection;

private JTextField accountIDText,

usernameText,

passwordText,

tsText,

activeTSText;

private JTextArea errorText;

public Accounts() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception e) {

System.err.println("Unable to find and load driver");

System.exit(1);

}

}

private void loadAccounts() {

Vector v = new Vector();

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(

"SELECT acc_id FROM acc_acc");

while(rs.next()) {

v.addElement(rs.getString("acc_id"));

}

Listing 5.3 Our application for inserting a new row. (continues)

Executing a Query with No Results 93

rs.close();

} catch(SQLException e) {

displaySQLErrors(e);

}

accountNumberList.setListData(v);

}

private void buildGUI() {

Container c = getContentPane();

c.setLayout(new FlowLayout());

accountNumberList = new JList();

loadAccounts();

accountNumberList.setVisibleRowCount(2);

JScrollPane accountNumberListScrollPane =

new JScrollPane(accountNumberList);

//Do Get Account Button

getAccountButton = new JButton("Get Account");

getAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(

"SELECT * FROM acc_acc WHERE acc_id = "

+ accountNumberList.getSelectedValue());

if (rs.next()) {

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} catch(SQLException selectException) {

displaySQLErrors(selectException);

}

}

}

);

//Do Insert Account Button

insertAccountButton = new JButton("Insert Account");

insertAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

Listing 5.3 Our application for inserting a new row. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s94

int i = statement.executeUpdate("INSERT INTO acc_acc VALUES(" +

accountIDText.getText() + ", " +

"'" + usernameText.getText() + "', " +

"'" + passwordText.getText() + "', " +

"0" + ", " +

"now())");

errorText.append("Inserted " + i + " rows successfully");

accountNumberList.removeAll();

loadAccounts();

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

JPanel first = new JPanel(new GridLayout(3,1));

first.add(accountNumberListScrollPane);

first.add(getAccountButton);

first.add(insertAccountButton);

accountIDText = new JTextField(15);

usernameText = new JTextField(15);

passwordText = new JTextField(15);

tsText = new JTextField(15);

activeTSText = new JTextField(15);

errorText = new JTextArea(5, 15);

errorText.setEditable(false);

JPanel second = new JPanel();

second.setLayout(new GridLayout(6,1));

second.add(accountIDText);

second.add(usernameText);

second.add(passwordText);

second.add(tsText);

second.add(activeTSText);

JPanel third = new JPanel();

third.add(new JScrollPane(errorText));

c.add(first);

c.add(second);

c.add(third);

setSize(500,500);

show();

}

Listing 5.3 Our application for inserting a new row. (continues)

Executing a Query with No Results 95

public void connectToDB() {

try {

connection = DriverManager.getConnection(

"jdbc:mysql://192.168.1.25/accounts

?user=spider&password=spider");

} catch(SQLException connectException) {

System.out.println("unable to connect to db");

System.exit(1);

}

}

private void displaySQLErrors(SQLException e) {

errorText.append("SQLException: " + e.getMessage() + "\n");

errorText.append("SQLState: " + e.getSQLState() + "\n");

errorText.append("VendorError: " + e.getErrorCode() + "\n");

}

private void init() {

connectToDB();

}

public static void main(String[] args) {

Accounts accounts = new Accounts();

accounts.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

accounts.init();

accounts.buildGUI();

}

}

Listing 5.3 Our application for inserting a new row. (continued)

Figure 5.5 shows how our GUI should look when it is finished. There are a few
differences between the code in Listing 5.2 and that in Listing 5.3. Let’s take a
look.

Figure 5.5 Inserting a new row.

The Insert Account Button

By far the largest change between the two applications is the addition of an
Insert Account button. First, notice that the format of the button code looks a
great deal like that used for the Get Account button. The primary difference is
the database code placed in the ActionListener().

The code for inserting a new row into the database requires that the actual val-
ues be pulled from each of the top three JTextFields defined to hold the account
number, username, and password. The code will first enter a try/catch block
and obtain a Statement object. Next, the executeUpdate() method is called
using a query string like

INSERT INTO acc_acc VALUES(account number, username, password, 0, now)

The account number, username, and password are pulled from the appropriate
JTextFields using the getText() method. The return value from the execution of
the executeUpdate() method is saved and appended to a JTextArea control for
error messages. A value of 1 indicates that the insert was successful.

With the new record in the database, the account number JList is out-of-date
because it doesn’t contain the new account number just inserted. This is where
a new method called loadAccounts() comes into play. Once the total number of
inserts to the database is put into the JTextArea, a call is made to the
removeAll() method of the account number JList control. This wipes out all of
the current account numbers. Next, a call is made to loadAccounts(), which
queries the database for all current account numbers, places them in a vector,
and updates the account number JList control with all of the new accounts. We
could have chosen to simply insert the new account number into the account
number list, but there might have been updates to the table that didn’t come
through the GUI. By doing the query again, we pick up all new accounts.
Clearly, this is a design decision. If this GUI application is the only way new
accounts will be put into the database, then we could just add the account num-
ber to the JList and not run another query of the database.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s96

Figure 5.6 Our insert was successful.

Error Notification
As we briefly mentioned in the previous section, this new version of the GUI
code includes a JTextArea designed to hold error or notification information
for the application. Figure 5.7 shows an example of how error information
might look like when placed in the text area. While any of the code can put text
into the text area using the append() method, all of the try/catch blocks will call
the displaySQLErrors() method to append the SQLException message, SQL-
State, and error code information:

private void displaySQLErrors(SQLException e) {
errorText.append("SQLException: " + e.getMessage() + "\n");
errorText.append("SQLState: " + e.getSQLState() + "\n");
errorText.append("VendorError: " + e.getErrorCode() + "\n");

}

Executing a Query with No Results 97

Figure 5.7 Error processing.

Deleting Database Rows
Another task that can be accomplished using the updateQuery() method is
removing rows from the database. We can add the code in Listing 5.4 to the code
in Listing 5.3 to produce an application that can delete rows in the database.

As Figure 5.6 shows, a new record was added to the database with an account
number of 1034997. The new account number now appears in the list because
of the re-query.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s98

//Do Delete Account Button

deleteAccountButton = new JButton("Delete Account");

deleteAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

int i = statement.executeUpdate(

"DELETE FROM acc_acc WHERE acc_id = "

+ accountNumberList.getSelectedValue());

errorText.append("Deleted " + i + "

rows successfully");

accountNumberList.removeAll();

loadAccounts();

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

Listing 5.4 Our Delete Account button code.

The code for the Delete Account button is similar to the code for the Get
Account and Insert Account buttons. Most of the work is performed in the
ActionListener(). To delete an account, the user selects a value from the
account number list control and clicks on the Delete Account button. When this
occurs, the ActionListener() is activated. The first step is to create a Statement
object and call the executeUpdate() with the query to be executed. The query
looks like this:

DELETE FROM acc_acc WHERE acc_id = " +

accountNumberList.getSelectedValue()

This query tells the database server to find the row or rows where the acc_id
column has a value selected from the account number list. The executeUp-
date() method executes the query and returns the total number of rows deleted
from the database. Figure 5.8 shows the output produced when a row is deleted
from the database. In addition to displaying the output, the code refreshes the
account number list from the database so that the deleted account number is no
longer shown. When the code in Listing 5.4 is added to the application, the first
JPanel’s GridLayout needs to be changed to 4,1 and the deleteAccountButton
needs to be added to the panel. Here’s the replacement code:

JPanel first = new JPanel(new GridLayout(4,1));

first.add(accountNumberListScrollPane);

first.add(getAccountButton);

first.add(insertAccountButton);

first.add(deleteAccountButton);

Executing a Query with No Results 99

Figure 5.8 We've deleted a row from the database.

Updating Database Rows
The last functionality that we want to add to our GUI application is the update.
Once data has been put into the database, it isn’t much use if it cannot be pulled
from the database or updated to reflect changes in the record. Listing 5.5 con-
tains the code for our update button; add it to the code in Listing 5.3.

//Do Update Account Button
updateAccountButton = new JButton("Update Account");
updateAccountButton.addActionListener (
new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {
Statement statement = connection.createStatement();
int i = statement.executeUpdate("UPDATE acc_acc " +
"SET username='" + usernameText.getText() + "', "
+ "password='" + passwordText.getText() + "', "

+ "act_ts = now() "
+ "WHERE acc_id = "
+ accountNumberList.getSelectedValue());

errorText.append("Updated " + i
+ " rows successfully");

accountNumberList.removeAll();
loadAccounts();

} catch(SQLException insertException) {
displaySQLErrors(insertException);

}
}

}
);

Listing 5.5 The code for updating a record.

As you can see in Listing 5.5, the code for the Delete Account button is similar
to the code for the other buttons. The real change is in the ActionListener().
The UPDATE query is a bit more complex from the standpoint of building the
actual query. Just as with the other buttons, the user clicks on an account num-
ber and clicks on the Get Account button to display the current record. Once
the current data has been displayed, the user can change the username and
password text. Although the user could change the account number, time-
stamp, and active timestamp, the code won’t pull the data for use in the
UPDATE statement.

The actual UPDATE statement is built as follows:
UPDATE acc_acc " +

"SET username='" + usernameText.getText() + "',"
+ "password='" + passwordText.getText() + "', "
+ "act_ts = now() "
+ "WHERE acc_id = "
+ accountNumberList.getSelectedValue());

There are a few things to note in the update. First, the username and password
are updated based on the values in the appropriate JtextFields. The new values
are pulled with the getText() methods. The active timestamp is updated using
the MySQL now() function. Finally, we cannot have the code update just any
row in the database table. We need to make sure that the update occurs on the
record selected by the user. We ensure this by limiting the UPDATE with a
WHERE condition on the query. Figure 5.9 shows the original value when the
Get Account button is clicked; Figure 5.10 shows the updated record as well as
the text indicating that the update was successful.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s100

Figure 5.9 Getting the current account.

Figure 5.10 Replacing the password text.

CREATE TABLE
If you need to programmatically build a new table for your database, you’ll
want to use the executeUpdate() method for the simple reason that a ResultSet
isn’t returned from the execution of the query. An example of using the method
to create a new table is

Statement statement = connection.createStatement();

int i = statement.executeUpdate(

"CREATE TABLE acc_new(new_id int, news varchar(64),

count int, primary key(new_id)");

As usual, the code will create a Statement object to execute the query. If the
query is successful in creating a new table, the value of i will be 1. If i isn’t 1,
then more than likely a SQLException exception was thrown, which means the
code will need to handle the exception.

DROP TABLE
Another query action that can be performed using the executeUpdate() method
is dropping a table. As we’ve seen, the data within a table can be removed using
the DELETE command. In fact, all the data can be removed using the following
command:

DELETE * FROM acc_acc;

This command removes all of the data in the specified table. However, the table
that once held the removed data still exists in the database. To remove a table
entirely from a database, you need to drop the table. The format of the com-
mand is

DROP TABLE <tablename>

Executing a Query with No Results 101

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s102

import java.awt.*;

import javax.swing.*;

import java.sql.*;

import java.awt.event.*;

import java.util.*;

public class Drop extends JApplet implements ActionListener{

private Connection connection;

private JList tableList;

private JButton dropButton;

public void init() {

Connection connection;

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

connection = DriverManager.getConnection(

"jdbc:mysql://192.168.1.25/accounts?user=spider&password=spider");

} catch(Exception connectException) {

connectException.printStackTrace();}

Container c = getContentPane();

tableList = new JList();

loadTables();

c.add(new JScrollPane(tableList), BorderLayout.NORTH);

dropButton = new JButton("Drop Table");

dropButton.addActionListener(this);

c.add(dropButton, BorderLayout.SOUTH);

}

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("DROP TABLE "

+ tableList.getSelectedValue());

} catch (SQLException actionException) {}

}

private void loadTables() {

Vector v = new Vector();

try {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SHOW TABLES");

Listing 5.6 shows an applet that will obtain all of the tables for the accounts
database, display them in a list, and allow a selected table to be removed.

Listing 5.6 An applet for dropping tables. (continues)

Executing a Query with No Results 103

while(rs.next()) {

v.addElement(rs.getString(1));

}

rs.close();

} catch(SQLException e) {}

tableList.setListData(v);

}

}

Listing 5.6 An applet for dropping tables. (continued)

As Figure 5.11 shows, the applet displays all of the tables in the current data-
base in a list and allows the user to select one of them. Once the user selects a
table, the user can click on the Drop Table button to remove the table from the
database entirely. Listing 5.6 illustrates how an applet can be used to
connect with a MySQL database and obtain information. Most of the code looks
just like what we used in the Java applications earlier in the chapter. An applet
doesn’t have a constructor but instead calls the init() method when it first gets
loaded.

One of the pitfalls of using an applet is the need for the Connector/J driver to be
installed and included in the classpath for the applet downloaded to the client.
Once the driver has been pulled into the JVM where the applet is executing, the
SHOW TABLES command is used to return a ResultSet to the applet. Each of
the values in the ResultSet are pulled and placed in a JList control.

Once the JList is filled with the tables in the current database, a Drop Table but-
ton is placed on the applet GUI as well. Notice that the applet class implements
the ActionListener interface. There is an actionPerformed() method in the
applet class for handling the click of the Drop Table button.

When the button is clicked, the currently selected table is obtained and added
to a DROP TABLE command, which is subsequently sent to the database server.

Disconnecting from the Database
Although not entirely necessary, it is a good idea to disconnect your application
from the database in order to allow MySQL to release a resource it is currently
using for its connection to your application.

When closing the database, ensure that all of the components currently using a
connection are closed first. This means that all ResultSet objects need to be
closed, then all Statement objects, and finally, you can close the connection to
the database with its close() method.

Figure 5.11 Our drop table applet.

Advanced ResultSet Manipulation

One of the most important capabilities we can give our users is the power to
move through the data in a database. Users might not know what data they
need, or perhaps they don’t remember the exact account number. The code in
Listing 5.7 adds quite a bit of ResultSet navigation to our original application, as
well as the ability to go to a specific record and execute a freehand query.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s104

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.util.*;

public class Accounts extends JFrame {

private JButton getAccountButton,

insertAccountButton,

deleteAccountButton,

updateAccountButton,

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 105

nextButton,

previousButton,

lastButton,

firstButton,

gotoButton,

freeQueryButton;

private JList accountNumberList;

private JTextField accountIDText,

usernameText,

passwordText,

tsText,

activeTSText,

gotoText,

freeQueryText;

private JTextArea errorText;

private Connection connection;

private Statement statement;

private ResultSet rs;

public Accounts() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception e) {

System.err.println("Unable to find and load driver");

System.exit(1);

}

}

private void loadAccounts() {

Vector v = new Vector();

try {

rs = statement.executeQuery("SELECT * FROM acc_acc");

while(rs.next()) {

v.addElement(rs.getString("acc_id"));

}

} catch(SQLException e) {

displaySQLErrors(e);

}

accountNumberList.setListData(v);

}

private void buildGUI() {

Container c = getContentPane();

c.setLayout(new FlowLayout());

Listing 5.7 Our navigatable ResultSet. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s106

accountNumberList = new JList();

loadAccounts();

accountNumberList.setVisibleRowCount(2);

JScrollPane accountNumberListScrollPane =

new JScrollPane(accountNumberList);

gotoText = new JTextField(3);

freeQueryText = new JTextField(40);

//Do Get Account Button

getAccountButton = new JButton("Get Account");

getAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

rs.first();

while (rs.next()) {

if (rs.getString("acc_id").equals(

accountNumberList.getSelectedValue()))

break;

}

if (!rs.isAfterLast()) {

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} catch(SQLException selectException) {

displaySQLErrors(selectException);

}

}

}

);

//Do Insert Account Button

insertAccountButton = new JButton("Insert Account");

insertAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

int i = statement.executeUpdate("INSERT INTO acc_acc

VALUES(" + accountIDText.getText() + ", " +

"'" + usernameText.getText() + "', " +

"'" + passwordText.getText() + "', " +

"0" + ", " + "now())");

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 107

errorText.append("Inserted " + i

+ " rows successfully");

accountNumberList.removeAll();

loadAccounts();

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do Delete Account Button

deleteAccountButton = new JButton("Delete Account");

deleteAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

int i = statement.executeUpdate(

"DELETE FROM acc_acc WHERE acc_id = " +

accountNumberList.getSelectedValue());

errorText.append("Deleted " + i

+ " rows successfully");

accountNumberList.removeAll();

loadAccounts();

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do Update Account Button

updateAccountButton = new JButton("Update Account");

updateAccountButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

Statement statement = connection.createStatement();

int i = statement.executeUpdate("UPDATE acc_acc " +

"SET username='" + usernameText.getText() + "', "

+ "password='" + passwordText.getText() + "', "

+ "act_ts = now() " + "WHERE acc_id = "

+ accountNumberList.getSelectedValue());

errorText.append("Updated " + i

+ " rows successfully");

accountNumberList.removeAll();

Listing 5.7 Our navigatable ResultSet. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s108

loadAccounts();

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do Next Button

nextButton = new JButton(">");

nextButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

if (!rs.isLast()) {

rs.next();

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do Next Button

previousButton = new JButton("<");

previousButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

if (!rs.isFirst()) {

rs.previous();

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 109

}

);

//Do last Button

lastButton = new JButton(">|");

lastButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

rs.last();

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do first Button

firstButton = new JButton("|<");

firstButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

rs.first();

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do gotoButton

gotoButton = new JButton("Goto");

gotoButton.addActionListener (

new ActionListener() {

Listing 5.7 Our navigatable ResultSet. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s110

public void actionPerformed(ActionEvent e) {

try {

rs.absolute(Integer.parseInt(gotoText.getText()));

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

//Do freeQueryButton

freeQueryButton = new JButton("Execute Query");

freeQueryButton.addActionListener (

new ActionListener() {

public void actionPerformed(ActionEvent e) {

try {

if (freeQueryText.getText().toUpperCase().

indexOf("SELECT") >= 0) {

rs = statement.executeQuery(

freeQueryText.getText());

if (rs.next()) {

accountIDText.setText(rs.getString("acc_id"));

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

} else {

int i = statement.executeUpdate(

freeQueryText.getText());

errorText.append("Rows affected = " + i);

loadAccounts();

}

} catch(SQLException insertException) {

displaySQLErrors(insertException);

}

}

}

);

JPanel first = new JPanel(new GridLayout(5,1));

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 111

first.add(accountNumberListScrollPane);

first.add(getAccountButton);

first.add(insertAccountButton);

first.add(deleteAccountButton);

first.add(updateAccountButton);

accountIDText = new JTextField(15);

usernameText = new JTextField(15);

passwordText = new JTextField(15);

tsText = new JTextField(15);

activeTSText = new JTextField(15);

errorText = new JTextArea(5, 15);

errorText.setEditable(false);

JPanel second = new JPanel();

second.setLayout(new GridLayout(6,1));

second.add(accountIDText);

second.add(usernameText);

second.add(passwordText);

second.add(tsText);

second.add(activeTSText);

JPanel third = new JPanel();

third.add(new JScrollPane(errorText));

JPanel fourth = new JPanel();

fourth.add(firstButton);

fourth.add(previousButton);

fourth.add(nextButton);

fourth.add(lastButton);

fourth.add(gotoText);

fourth.add(gotoButton);

JPanel fifth = new JPanel();

fifth.add(freeQueryText);

c.add(first);

c.add(second);

c.add(third);

c.add(fourth);

c.add(fifth);

c.add(freeQueryButton);

setSize(500,500);

show();

}

Listing 5.7 Our navigatable ResultSet. (continues)

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s112

public void connectToDB() {

try {

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts");

statement = connection.createStatement();

statement.setMaxRows(5);

statement.setFetchSize(2);

} catch(SQLException connectException) {

System.out.println(connectException.getMessage());

System.out.println(connectException.getSQLState());

System.out.println(connectException.getErrorCode());

System.exit(1);

}

}

private void displaySQLErrors(SQLException e) {

errorText.append("SQLException: " + e.getMessage() + "\n");

errorText.append("SQLState: " + e.getSQLState() + "\n");

errorText.append("VendorError: " + e.getErrorCode()

+ "\n");

}

private void init() {

connectToDB();

}

public static void main(String[] args) {

Accounts accounts = new Accounts();

accounts.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

accounts.init();

accounts.buildGUI();

}

}

Listing 5.7 Our navigatable ResultSet. (continued)

Figure 5.12 The new GUI for our application.

In order to implement this GUI, we changed the loadAccounts() method so that
a global Statement and ResultSet object is created. When the loadAccounts()
method is called, instead of just pulling the account number from the database
we pull all of the fields. That way, we have access to the entire result within the
application. By keeping the ResultSet local to the object, we ensure that all of
the buttons will have access to it.

All of the buttons and text fields are created and added to the GUI using two
additional panels. We explain the code for each button next.

One Step Forward
When the user clicks on the forward button on the GUI, the system executes the
following code:

if (!rs.isLast()) {

rs.next();

accountIDText.setText(rs.getString("acc_id"));

Advanced ResultSet Manipulation 113

Figure 5.12 shows an example of the new GUI for our application. At the bot-
tom of the GUI are four buttons for moving through records in the ResultSet
and displaying the appropriate text in the text fields. There is also a text
field/Goto button combination for entering an absolute row value and allowing
the user to click the Goto button and display the absolute row. Finally, there is
a text field for a freehand query and a related button to execute the query in the
line. Errors will be displayed in the error text area.

usernameText.setText(rs.getString("username"));

passwordText.setText(rs.getString("password"));

tsText.setText(rs.getString("ts"));

activeTSText.setText(rs.getString("act_ts"));

}

At this point, loadAccount() is called. This method obtains the next row in the
ResultSet and displays it in the text fields—we hope without any errors occur-
ring. To obtain the next row in the set, the next() method is called to move the
internal pointer forward. However, we don’t want to do this if the internal
pointer is currently sitting on the last row of the set. That is the reason we have
the if(!rs.isLast()) condition in the code. We can move the internal pointer for-
ward as long as we aren’t on the last row. After the internal pointer is moved
forward, the information in the current row is displayed.

One Step Back
The back button should move the internal pointer to the previous row in the
ResultSet and display the current information. Instead of using isLast(), the
code uses a condition like if (!isFirst()) to make sure that the pointer isn’t sit-
ting on the first row.

Fast-Forward to the End
If we want to move the end of the rows, we click on the >| button. There isn’t
any checking involved here—just a call to rs.last() and code that displays the
values in the row. In a production system, though, we would need to check
whether the ResultSet object was empty.

Rewind to the Beginning
We can easily move to the beginning of the ResultSet by clicking on the |< but-
ton. The code will execute a rs.first() method and display the current row val-
ues.

Goto Record
We might also want to provide our users with the ability to jump to a specific
record. This is done with the absolute() method associated with the ResultSet
object. When the user clicks on the Goto button, the code pulls the current text
in the text field next to the button. The String value from the text field is con-
verted to an integer and used in the rs.absolute() method call. If an error
doesn’t occur, the values in the current row are displayed. All sorts of error

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s114

detection must take place in the code for this type of functionality so that the
user enters a proper value.

Freehand Query
Finally, we’ve added a large JTextField control that allows the user to type in a
freehand query statement and execute it by clicking on the Execute Query but-
ton. The current code is actually somewhat smart in that will try to determine
whether the query is a SELECT command or some other type. If the command
is a SELECT, the String in the JTextField is used in an executeQuery() method
call and a ResultSet object is returned. Otherwise, an executeUpdate() method
call is made and the total number of rows affected is displayed in the error text
area.

Obviously, giving a user this kind of power could backfire. Users could execute
the DROP TABLE acc_acc command and wipe out all of the account number
records. Or they could build new tables and all sorts of other “bad” things.

Batches

A new feature in the JDBC specification is the use of batches. The idea is to pro-
vide a mechanism where a large number of updates can be performed in a
group with the hopes of better performance from the driver and database
server. The Statement class offers the following methods that support batches:

■■ oid clearBatch()—Clears the current batch queue.

■■ void addBatch(String SQL)—Adds the SQL string to the batch queue.

■■ int[] executeBatch()—Executes the batch queue.

Batching works by creating a Statement object and adding SQL to the batch
queue. In most cases, the batched queries will be inserts and updates. For
example:

Statement statement = connection.createStatement();

statement.addBatch("UPDATE acc_acc SET acc_id = 10394443

where acc_id = 1034034");

statement.addBatch("UPDATE acc_acc SET password = 'password'");

statement.addBatch("INSERT INTO acc_acc VALUES(1034009,

'newuser', 'password', 0, now()");

Once all of the updates have been batched together, they can be executed with
a single statement:

int[] results = statement.executeBatch()

Batches 115

The Connector/J driver will execute each of the updates in the batch regardless
of whether or not the previous update was successful. One of the keys to the
batch update is the integer array returned as a result. If all of the updates are
successful, the array will include the count of affected rows for each of the
updates in the same order they were added to the batch queue.

If the row value in the result array is 0 or greater, then the update was success-
fully executed. However, a value of 0 probably means the update didn’t do any-
thing to the database. A value of SUCCESS_NO_INFO means that the update
was successfully executed but that the server was unable to determine the
total number of rows affected. A value of EXECUTE_FAILED means that the
MySQL server rejected the query or that the query failed during execution.

In addition to the result array, the executeBatch() method will throw the
BatchUpdateException exception if any of the queries fail. The exception
won’t be thrown, though, until all of the batched queries have had a chance
to execute. Once the batch has been executed, it is a good idea to call state-
ment.clearBatch() before adding more updates to the queue.

Limiting Results

The Statement object contains several methods for controlling the total number of
results to be returned from a query against the database. Two of the methods are

setMaxRows()

setFetchSize()

The setMaxRows() method will specify the total number of rows that can be
returned from a single query against a database. The default value is 0, meaning
the driver should return as many rows as possible based on the supplied query.
If you don’t want the driver to return all of the possible rows at once, you might
use the setFetchSize() method to limit the number of rows the driver will pull
at a time. However, Connector/J doesn’t support the use of the setFetchSize()
method, nor does it support pulling subsets of data from the database. Connec-
tor/J will always retrieve all possible rows from the MySQL database when a
query is executed. This behavior is based on the mechanism of the MySQL data-
base server itself and isn’t limited by the driver.

The idea behind the fetch size is to allow an application to execute a query
against the database and process smaller subsets of data at a time. If there are
2 million rows in a result, the application might want to process only 1000 at a
time. The driver would theoretically pull the first 1000 rows and when the appli-
cation tried to access row 1001, the driver would automatically go back to the
database for the additional rows.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s116

When this feature of the specification comes up, the first question is usually
“Why would you be returning a 2 million row result in the first place?” At this
point, two options can be floated as alternatives. The first is to use the LIMIT
clause available in the SELECT command. Not only can you limit the number of
rows returned, but you can also specify an offset so you get rows 1 through
1000, then 1001 through 2000, and so on. The MySQL database server can opti-
mize the use of the LIMIT clause for better performance.

The second option is to build a small class that will keep track of the LIMIT
clause for you and just return ResultSets in the new ranges when a method like
getNextSet() is called.

Database Warnings and Exceptions

In all of the code we have created up to this point, we have included try/catch
blocks to handle any SQLException exceptions that are thrown by Connector/J
in response to a database error. When an exception is thrown, the developer
knows that a major error has occurred on the database, a connection, or a
resultset. Additional information can be gathered from the database and Connec-
tor/J components known as warnings. A warning is an error but is not substan-
tial enough to trigger an exception. An example would be the loss of precision
when pulling a value that is a MySQL type and converting it to a Java type.

Warnings are provided by the Connection, ResultSet, and Statement objects but
aren’t “thrown” automatically. The warnings are kept in a queue, and the queue
is cleared using this method:

void clearWarnings()

If your application wants to keep track of or deal with all exceptions and warn-
ings, the clearWarnings() method should be used before any work is done with
any of the three object types mentioned previously. After the operation
occurs—such as ResultSet rs = statement.executeQuery();—the getWarnings()
method is called on the Statement object to see if any warnings were pro-
duced when the executeQuery() method was executed. The format of the
getWarnings() method is as follows:

public SQLWarning getWarnings()

A return value of null indicates there are no more warnings. Once a SQLWarn-
ing method has been obtained, the following methods can be used to display its
contents. Notice that the methods are the same ones used in a SQLException.
The reason is the SQLWarning is a derived class from SQLException.

String getMessage();

String getSQLState();

int getErrorCode();

Database Warnings and Exceptions 117

Since SQLWarnings are chained together, use the following code to get the next
warning in the chain:

SQLWarning warning = statement.getWarnings();

SQLWarning nextWarning = warning.getNextWarning();

What’s Next

In this chapter, we covered the basic Connector/J functionality. We showed you
how to use the various Connector/J methods from both Java applications and
applets. In the next chapter, we expand our Connector/J coverage to the more
complex functionality, such as using PreparedStatements, manipulating
time/date data types, and creating updatable ResultSets.

U s i n g J D B C w i t h J av a A p p l i c a t i o n s a n d A p p l e t s118

In the previous chapter, we looked at using Connector/J, MySQL, and Java
applications to access data from a database. Users of these applications typ-
ically access the program from their desktop. If you are designing a Web-

based application with Java, either you are developing an Enterprise JavaBeans
(EJB) system (which we discuss in Chapter 11, “EJBs with MySQL”), or you are
using a servlet or a Java ServerPage (JSP). In this chapter, we explore how to
access the database from both a servlet and a JSP page. To demonstrate how to
use a servlet, we develop an application for including fingerprint images into
the account application from the previous chapter. We also create a servlet and
associated HTML for viewing the images from the Web.

Servlets

Building servlets is one of the most powerful uses of Java in the Internet arena.
Servlets are basically server-side components that can be executed by browsing
to them, calling them in an HTML form, or including them in a JSP page. Since
the components execute on the server and are written in Java, they make great
candidates for database access. Listing 6.1 shows a generic servlet that has the
ability to access a MySQL database using the Connector/J driver. Unlike with an
applet, we are able to produce HTML for clients without requiring them to have
the driver on their local machine.

Achieving Advanced Connector/J
Functionality with Servlets

C H A P T E R 6

119

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s120

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class JDBCServlet extends HttpServlet {

public void doGet(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;

Statement statement;

ResultSet rs;

outResponse.setContentType("text/html");

out = outResponse.getWriter();

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/acc_id");

statement = connection.createStatement();

rs = statement.executeQuery(

"SELECT acc_id FROM acc_acc");

out.println(

"<HTML><HEAD><TITLE>Account Numbers</TITLE></HEAD>");

out.println("<BODY>");

out.println("");

while (rs.next()) {

out.println("" + rs.getString("acc_id"));

}

out.println("");

out.println("</BODY></HTML>");

rs.close();

statement.close();

connection.close();

}

catch(ClassNotFoundException e) {

Listing 6.1 Our basic servlet/JDBC code. (continues)

Servlets 121

out.println("Driver Error"); }

catch(SQLException e) {

out.println("SQLException: " + e.getMessage());

}

}

public void doPost(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

doGet(inRequest, outResponse);

}

}

Listing 6.1 Our basic servlet/JDBC code. (continued)

When building servlets, you have to follow a specific format defined in the Java
specification. The servlet class will extend HTTPServlet and more than likely
will have two methods, called doGet() and doPost(). These methods handle the
GET and POST HTTP message types. It is common practice to implement the
doGet() method and have doPost() call doGet() so they will be handling the
same data.

The servlet code within doGet() begins by setting the response type to
text/html, which lets the client browser know that the information passed from
the servlet should be rendered using an HTML processor. The servlet could
return a different type of format if needed.

Next we enter a try/catch block and start the process of connecting to the data-
base and obtaining data to return to the user. Since a servlet is a Java process,
we need Connector/J loaded so that we have the driver necessary for accessing
MySQL. The servlet uses the Class.forName() method to load the driver (just as
all of the applications did in the previous chapter). Notice however, that the
NewInstance() method isn’t called on the driver once it’s loaded. The servlet
performs this operation itself.

After the driver is loaded, all of the code to obtain information from the data-
base is the same as we saw in the previous chapter. A Connection object is
instantiated from the DriverManager, a Statement object is created from the
Connection object, and finally, a ResultSet object is built when the execute-
Query() method is executed against the Statement object. When this process
completes, a loop is used to move through the ResultSet and builds an HTML
document for passing to the client browser. Lastly, all of the pieces in the
process are closed and the HTML is passed to the browser.

NOTE
The code used to obtain database results within the servlet is exactly the same as the
code used in a Java application or applet. Therefore, you'll find it easy to build Java
and MySQL applications.

DataSource Connections

When using Java servlets and eventually beans, you have an alternative way of
obtaining information about the connection to the MySQL database. The alter-
native is to use a DataSource and Java Naming and Directory Interface (JNDI).
JNDI provides a way to set specific physical database information on the appli-
cation server instead of placing the information directly in the application. The
application in Listing 6.1 obtains a connection to the database server with this
code:

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/acc_id");

statement = connection.createStatement();

As you can see, the application is very specific about the database to be
accessed. With JNDI, we place information about the database connection into
the application server’s configuration file. For example:

<resource-ref>

<res-ref-name>jdbc/AccountsDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<init-param driver-name="com.mysql.jdbc.Driver"/>

<init-param url="jdbc:mysql://192.168.1.25/accounts"/>

<init-param user="spider"/>

<init-param password="spider"/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

</resource-ref>

This information begins with the name of the resource, jdbc/AccountsDB; the
class to use when the resource is needed, DataSource; the driver name; the URL
for locating the database; and then some information about the parameters to
be passed to the driver when it is instantiated. To obtain this connection infor-
mation from an application, replace the previous connection statements with
the following:

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/AccountsDB");

connection = ds.getConnection();

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s122

This code begins by getting the configuration context surrounding this applica-
tion. Next, the resource reference name is looked up in the context. Finally, a
connection is instantiated from the DataSource object returned from the con-
text lookup. At this point, all the code to obtain Statement objects and execute
queries is the same.

Execution Environment
So how do you actually execute the servlet code? You will need to have an
application server available on which you will put the servlet source code.
Numerous servers are available, including Resin, Tomcat, and BOSS, among
others. In this chapter, we execute all of the examples using the Resin applica-
tion server.

Databases

This chapter goes beyond the basics of using Connector/J with MySQL. There-
fore, we need to add another database and table to our growing database sys-
tem. We assume that you have created the databases in the previous chapter.
Our new database is called identification, and you build it with this command:

create database identification;

The schema for a table called thumbnail is as follows:

thumb_id – int—A unique record indicator for the table.

acc_id – int—A foreign key for the acc_acc table.

pic – blob—Represents the binary data for a fingerprint.

sysobject – blob—A serialized Java object for a fingerprint.

ts – timestamp—The timestamp value; 0 indicates current.

acc_ts – timestamp—The last update time.

Build the table with this command:

create table thumbnail (

thumb_id int not null,

acc_id int not null,

pic blob,

sysobject blob,

ts timestamp,

act_ts timestamp,

primary key(thumb_id, acc_id, ts));

You can download the sample database code from the book’s Web site at
http://wiley.com/gradecki/mysqljava.

Databases 123

PreparedStatements

As you know from reading the chapter introduction, one of the applications we
want to build is a servlet/HTML combination that will allow a remote user to
obtain information from the database for each of the accounts in our database.
Our code should display all of the account information from the acc_acc table
as well as from the acc_add table. Eventually, we plan to tie in the new thumb-
nail table we just created. In order to use the new application, users will need
to use a browser and browse to an initial HTML page, where they will be
prompted to enter an account number and click on a submit button. Then, a
servlet will be contacted and used to obtain results from the database and will
return the results to the client browser. Figure 6.1 shows what we are talking
about. After looking at Figure 6.1, scan through the code in Listings 6.2 and 6.3
to see an example of what the code looks like.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s124

Client
browser

Database
Server

Application Server
Resin

Web server
seeaccounts.html

App server
Thumbnail.java

MySQL

Figure 6.1 Our servlet/HTML.

<HTML>

<BODY>

<TITLE>See Account Information</TITLE>

Enter account number to view:

<form

action="http://localhost:8080/ca/SeeAccount"

method="post">

<input name="account">

<input type="submit" name="submit" value="submit">

</form>

</BODY>

</HTML>

Listing 6.2 Our example HTML.

PreparedStatements 125

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SeeAccount extends HttpServlet {

public void doGet(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;

PreparedStatement statement = null;

ResultSet rs,

rs2;

try {

outResponse.setContentType("text/html");

out = outResponse.getWriter();

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts");

if (connection != null) {

if (inRequest.getParameter("submit").equals("submit")) {

statement = connection.prepareStatement(

"SELECT * FROM acc_acc " +

"LEFT JOIN acc_add " +

"on acc_acc.acc_id = acc_add.acc_id " +

"WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0");

if (statement != null) {

statement.setInt(1, Integer.parseInt(

inRequest.getParameter("account")));

rs = statement.executeQuery();

if (!rs.next()) {

out.println("<HTML>No Account Found for # " +

inRequest.getParameter("account") + "</HTML>");

} else {

out.println("<HTML><HEAD><TITLE>Thumbnail

Identification Record</TITLE></HEAD>");

out.println("<BODY>");

out.println("Account Information:
");

out.println("<table>");

out.println("<form method='UpdateAccount'

Listing 6.3 Our servlet example for PreparedStatements. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s126

method='post'>");

out.println("<tr><td>");

out.println("Account: <input name='acc_id'

value='" + rs.getString("acc_acc.acc_id") +

"'>
");

out.println("Name: <input name='username'

value='" + rs.getString("acc_acc.username") +

"'>
");

out.println("Address1: <input name='address1'

value='" + rs.getString("acc_add.address1") +

"'>
");

out.println("Address2: <input name='address2'

value='" + rs.getString("acc_add.address2") +

"'>
");

out.println("Address3: <input name='address3'

value='" + rs.getString("acc_add.address3") +

"'>
");

out.println("City: <input name='city' value='" +

rs.getString("acc_add.city") + "'>
");

out.println("State: <input name='state' value='"

+ rs.getString("acc_add.state") + "'>
");

out.println("Zip: <input name='zip' value='" +

rs.getString("acc_add.zip") + "'>
");

out.println("<input type='submit' value='update'

name='submit'>");

out.println("</form>");

out.println("</td>");

out.println("<td>thumbnail");

out.println("</td></tr>");

out.println("</table>");

out.println("</BODY></HTML>");

}

} else {

out.println("<HTML>Statement is NULL</HTML>");

}

} else {

//do update

statement = connection.prepareStatement(

"UPDATE accounts.acc_acc SET username = ?

WHERE accounts.acc_acc.acc_id = ?");

statement.setString(1, inRequest.getParameter(

"username"));

statement.setInt(2, Integer.parseInt(

inRequest.getParameter("acc_id")));

int i = statement.executeUpdate();

statement = connection.prepareStatement("UPDATE

accounts.acc_add SET address1=?, address2=?, " +

Listing 6.3 Our servlet example for PreparedStatements. (continues)

PreparedStatements 127

Listing 6.3 Our servlet example for PreparedStatements. (continued)

"address3=?, city=?, state=?, zip=? WHERE

accounts.acc_add.acc_id = ?");

statement.setString(1, inRequest.getParameter(

"address1"));

statement.setString(2, inRequest.getParameter(

"address2"));

statement.setString(3, inRequest.getParameter(

"address3"));

statement.setString(4, inRequest.getParameter(

"city"));

statement.setString(5, inRequest.getParameter(

"state"));

statement.setString(6, inRequest.getParameter(

"zip"));

statement.setInt(7, Integer.parseInt(

inRequest.getParameter("acc_id")));

int j = statement.executeUpdate();

out.println("<HTML>");

out.println("Update to acc_acc = " + i + "
");

out.println("Update to acc_add = " + j + "
");

out.println("</HTML>");

}

} else {

out.println("<HTML>Connection is NULL</HTML>");

}

}

catch(ClassNotFoundException e) {

out.println("Driver Error");

}

catch(SQLException e) {

out.println("<HTML>");

out.println("SQLException: " + e.getMessage());

out.println("</HTML>");

}

catch(Exception e) {

e.printStackTrace();

}

}

public void doPost(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

doGet(inRequest, outResponse);

}

}

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s128

Our example code in Listing 6.2 shows the HTML that the client browser will ini-
tially connect with to see an account. The result of the HTML on the client browser
is shown in Figure 6.2. When the user puts an account number in the form input
line and clicks on the submit button, the servlet in Listing 6.3 is activated and the
information shown in Figure 6.3 is returned to the user. In addition to allowing the
user to see the information in the database, the code lets the user change the infor-
mation. After putting in new information using the edit lines displayed in Figure
6.3, the user clicks on the update button. The same servlet in Listing 6.3 is called,
and the different code is executed to update both the acc_acc and acc_add tables.
Figure 6.4 shows the output when the tables are successfully updated.

Figure 6.2 Our initial HTML Web page.

Figure 6.3 Information is returned from our database.

Figure 6.4 The update was successful.

Connecting to the Database
Look at Figures 6.3 and 6.4 carefully, and you will notice that we need to get
information from both the acc_acc and acc_add tables in order to present the
necessary information on the return HTML page. Fortunately, both of those
tables are defined within the accounts database on our MySQL server. So we
will be connecting to the server and changing or USEing the accounts database.
The full connection code is found in two statements:

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/accounts");

Determining the Submit Type
After the connection to the database is made, we need to determine what the
user wants our servlet to be doing. As we mentioned previously, the servlet will
be able to display the information from a specific account as well as update the
information changed by the user. If users want to see account information, they
click on the submit button when the HTML from Listing 6.2 is displayed. Look-
ing back at that HTML, you see the following tag:

<input type="submit" name="submit" value="submit">

This tag will display the submit button, name it submit, and provide a value of
submit when it is clicked. Now let’s skip ahead in our servlet code and pull out
the following code:

out.println("<input type='submit' value='update' name='submit'>");

The servlet displays all of the account information within a form that allows the
user to change the information. At the bottom of the form is a submit button,
but this button displays a value of update when it is clicked. Our servlet can use
this information to determine what it is supposed to be doing.

The following line of code makes the determination:

if (inRequest.getParameter("submit").equals("submit")) {

PreparedStatements 129

After a connection to the database is made and the connection is valid, the
servlet executes this line of code. The parameter called submit relates to either
button displayed to the user: the first submit button for getting the account
information or the submit button for updating the information. The value of the
submit parameter is compared to the text “submit”. If a match is made, the code
after the IF statement is executed; otherwise, the code after an ELSE is
executed.

Displaying Data
The code just after the IF statement displayed in the previous section handles
all of the tasks necessary to display the account information to the user. The
code begins by creating a new type of statement called a PreparedStatement.
As you might have guessed, when we access the MySQL database for the
account information, we are going to limit the data returned using the account
number entered by the user. We need a WHERE clause like this:

WHERE acc_id = 1034055 and ts = 0

This WHERE clause will cause the database server to return information for
records only in which the acc_id is 1034055 and the ts field is 0. In the previous
chapter, we built this WHERE clause using code like this:

"WHERE acc_id = " + <somevariable> + " and ts = 0"

While this works, there will be cases later in this chapter where we want to
insert binary data into the query for updating. SQL, Connector/J, and MySQL all
support a Statement object called PreparedStatement. This statement gives us
the ability to use placeholders within the query and replace them with actual
values using statements that place the data into the query in the proper format.
For example, our WHERE clause could be written as follows:

"WHERE acc_id = ? and ts = 0"

The ? character is the placeholder and is counted as placeholder number 1.
Before showing you how to use the PreparedStatement, let’s create an object of
its type first. The code in our servlet is

statement = connection.prepareStatement(

"SELECT *

FROM acc_acc

LEFT JOIN acc_add

on acc_acc.acc_id = acc_add.acc_id

WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0");

Notice that there is a join in this code; we ignore that fact until the “Joins” sec-
tion later in this chapter. A PreparedStatement is created using the Connection
object and a call to the method prepareStatement(String). Unlike with the

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s130

Statement object, we place our query into the call to prepareStatement using
the ? placeholder in all of the places we need to fill with data at a later point.
The query can contain any number of placeholders, and they are counted with
the leftmost placeholder having a value of 1.

Once the PreparedStatement has been allocated, it’s time to fill in the accounts
number. We accomplish this with the following code:

statement.setInt(1,

Integer.parseInt(inRequest.getParameter("account")));

The JDBC specification defines a large set of set<type> methods against a Pre-
paredStatement object to fill all of the placeholders. In the statement above, the
method fills the first placeholder with the integer value associated with the
account parameter returned from the <form> HTML found in Listing 6.2. Using
the placeholders means that we needn’t concern ourselves with creating a large
query string using smaller strings. In addition, we don’t need to worry about for-
matting the actual value being passed to the database server.

Once all of the parameters have been filled, the query is executed with the code

rs = statement.executeQuery();

Once the query returns the ResultSet, we need to build the HTML that will be
passed back to the client browser as a result of its initial request. Earlier in the
servlet code, a call was made to obtain a PrintWriter object:

out = outResponse.getWriter();

The PrintWriter object is directly associated with the Response object passed
back to the client browser. Anything that we write in the PrintWriter object will
be passed back to the browser. Since we have already told the system that the
response will be HTML, we need to put HTML tags into the object.

The first code we encounter after the ResultSet is obtained from our query is a
check to ensure that there are results from the query. The code looks like this:

if (!rs.next()) {

out.println("<HTML>No Account Found for # " +

inRequest.getParameter("account") + "</HTML>");

} else {

Because we need to move to the next row in the ResultSet, we check the return
value of a call to rs.next(). If the command is successful, then we know there
was at least one result in the set (we don’t handle multiple rows in this example
code). Otherwise, the account wasn’t in the database, so we return a small
HTML page to the client to let them know the account wasn’t found.

If the account was found, we start the process of building the HTML page found
in Figure 6.3. The HTML page consists of a little text and a <FORM> with the

PreparedStatements 131

account information. Refer to Listing 6.3 for all of the HTML passed to the client
to build the page. All of the values returned from the ResultSet are obtained
with the familiar rs.getString() method and used to build the various tags nec-
essary for the client. Once the HTML is created, the page is automatically
returned to the client’s browser by the servlet. Once the page is displayed, the
user can review the information and possibly change it.

Updating Data
If the user finds information that is wrong for the displayed account, he or she
can make changes right in the Web form returned from the servlet. As Figure 6.3
shows, users can click on the update button when they have finished making
necessary changes. When the button is clicked, the action associated with the
form is triggered and our servlet is called again. This time, the condition that
determines which button was clicked evaluates to false and the ELSE code
executes.

The real power of PreparedStatement objects is found within the code that
updates the database. When you’re updating the database, your first step is to
build the UPDATE query using a PreparedStatement. In our code there are two
updates: one to the acc_acc table and another to the acc_add table. The code to
update acc_acc is as follows:

statement = connection.prepareStatement(

"UPDATE acc_acc

SET username = ?

WHERE acc_acc.acc_id = ?");

statement.setString(1, inRequest.getParameter("username"));

statement.setInt(2, Integer.parseInt(

inRequest.getParameter("acc_id")));

int i = statement.executeUpdate();

The code starts with building the actual PreparedStatement object and putting
the necessary placeholders into the query. As you can see, the UPDATE to
acc_acc includes two placeholders. The first is the username, and the second is
the account number we are updating. The setString(int, String) method pulls
the username value from the <form> parameter called username and replaces
the first placeholder with that value. The method replaces the second place-
holder with the account number passed from the form as well. Then, a call is
made to executeUpdate(). Our code records the return value from executeUp-
date() in a variable for display to the client browser.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s132

NOTE
Notice that our code calls executeQuery() when the PreparedStatement is using a
SELECT; executeUpdate() is called when the PreparedStatement is using INSERT,
UPDATE, or DELETE—just like when you're using a Statement object.

Here’s the code for updating acc_add:

statement = connection.prepareStatement(

"UPDATE acc_add

SET address1=?, address2=?, address3=?,

city=?, state=?, zip=? WHERE acc_add.acc_id = ?");

statement.setString(1, inRequest.getParameter("address1"));

statement.setString(2, inRequest.getParameter("address2"));

statement.setString(3, inRequest.getParameter("address3"));

statement.setString(4, inRequest.getParameter("city"));

statement.setString(5, inRequest.getParameter("state"));

statement.setString(6, inRequest.getParameter("zip"));

statement.setInt(7, Integer.parseInt(inRequest.getParameter("acc_id")));

int j = statement.executeUpdate();

As you can see, this code is quite complex. It contains a total of seven place-
holders. (See how much easier it is to include placeholders and to replace them
accordingly compared with building a large string with "" and +.) We use set-
String() and setInt() methods to replace each of the values in the query with the
actual values pulled from the <form> parameters.

Finally, the query is executed and the update count returned. Both of the update
counts are displayed to users, letting them know the appropriate tables have
been updated. Here’s the code that accomplishes this:

out.println("<HTML>");

out.println("Update to acc_acc = " + i + "
");

out.println("Update to acc_add = " + j + "
");

out.println("</HTML>");

Using Placeholders in a Loop
Another benefit of using placeholders and a PreparedStatement object is the abil-
ity to perform a large number of updates through a loop. For example, let’s
assume we have an array filled with the account numbers for a particular update.
Not all of the account numbers are represented in the array, so we cannot per-
form a mass update. Instead, we can use a loop and a PreparedStatement:

int updateCount = 0;

statement = connection.prepareStatement(

PreparedStatements 133

"UPDATE acc_acc

SET password='null'

WHERE ts = 0 and acc_id = ?");

for (int i=0;i<accounts.length;i++) {

statement.setInt(accounts[i]);

updateCount += statement.executeUpdate();

}

This code contains a PreparedStatement with an UPDATE statement that sets
the password field to null. The UPDATE query uses a placeholder for the
account number in the WHERE clause. If we have just three accounts to
update, we wouldn’t need a loop or even a PreparedStatement. However, if our
account array holds 15,000 accounts, we have the perfect solution. Our code
loops through all of the accounts in the array, places them in the statement, and
executes it. When we are all done with the code, the updateCount variable
should be the same as accounts.length.

Using Placeholders in
PreparedStatement

The JDBC specification defines setter functions for replacing a placeholder in a
PreparedStatement. It defines functions for all of the data types stored in data-
base fields. The following is a list of those methods. (We note when a method is
not implemented by Connector/J.)

void setArray(int i, java.sql.Array anArray)—Not implemented; sets an
Array parameter.

void setBlob(int i, java.sql.Blob aBlob)—Sets a BLOB parameter.

void setCharacterStream(int parameterIndex, java.io.Reader

reader, int length)—If the database type is a LONGVARCHAR and Data is
Unicode, the amount of data will be very large, and using setCharacter-
Stream() allows it to be stored properly.

void setClob(int i, java.sql.Clob aClob)—Sets a CLOB parameter.

void setDate(int parameterIndex, java.sql.Date ADate, java.util.

Calendar Cal)—Sets a parameter to a java.sql.Date value.

void setNull(int parameterIndex, int sqlType, java.lang.String

Arg)—Sets a parameter to SQL NULL.

void setRef(int i, java.sql.Ref aRef)—Not implemented; sets a REF
parameter.

void setTime(int parameterIndex, java.sql.Time aTime, java.util.Cal-

endar Cal)—Sets a parameter to a java.sql.Time value.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s134

void setAsciiStream(int parameterIndex, java.io.InputStream

aStream, int length)—If the database type is a LONGVARCHAR and the
data is ASCII, the amount of data will be very large, and using setCharacter-
Stream() allows it to be stored properly.

void setBigDecimal(int parameterIndex, java.math.BigDecimal

aBD)—Sets a parameter to a java.lang.BigDecimal.

void setBinaryStream(int parameterIndex, java.io.InputStream X,

int length)—If the database type is a LONGVARBINARY, the amount of
data will be very large, and using setBinaryStream() allows it to be stored
properly.

void setBoolean(int parameterIndex, boolean aBoolean)—Sets a
parameter to a Java Boolean value.

void setByte(int parameterIndex, byte aByte)—Sets a parameter to a
Java byte value.

void setBytes(int parameterIndex, byte[] aByteArray)—Sets a param-
eter to a Java array of bytes.

void setDate(int parameterIndex, java.sql.Date aDate)—Sets a
parameter to a java.sql.Date.

void setDouble(int parameterIndex, double aDouble)—Sets a param-
eter to a Java double value.

void setFloat(int parameterIndex, float aFloat)—Sets a parameter to
a Java float value.

void setInt(int parameterIndex, int anInt)—Sets a parameter to a Java
int value.

void setLong(int parameterIndex, long aLong)—Sets a parameter to a
Java long value.

void setNull(int parameterIndex, int sqlType)—Sets a parameter to
SQL NULL.

void setObject(int parameterIndex, java.lang.Object anObject, int

targetSqlType, int scale)—Sets the value of a parameter using an object.

void setObject(int parameterIndex, java.lang.Object anObject, int

targetSqlType)—Sets the value of a parameter using an object.

void setObject(int parameterIndex, java.lang.Object anObject)—

Sets the value of a parameter using an object.

void setShort(int parameterIndex, short aShort)—Sets a parameter to
a Java short value.

void setString(int parameterIndex, java.lang.String aString)—Sets a
parameter to a Java String value.

PreparedStatements 135

void setTime(int parameterIndex, java.sql.Time aTime)—Sets a
parameter to a java.sql.Time.

void setTimestamp(int parameterIndex, java.sql.Timestamp aTS)—

Sets a parameter to a java.sql.Timestamp.

void setTimestamp(int parameterIndex, java.sql.Timestamp aTS,

java.util.Calendar Cal)—Sets a parameter to a java.sql.Timestamp value.

void setUnicodeStream(int parameterIndex, java.io.InputStream

aStream, int length)—If the database type is a LONGVARVHAR, the
amount of data will be very large, and using setUnicodeStream() allows it to
be stored properly.

Using setObject/setBytes

Before we move away from the PreparedStatement object, let’s look at using
some of the getter methods with larger pieces of data than an integer. In this
section, we examine both the setBytes() and setObject() methods. The code in
Listing 6.4 implements a Java console application designed to import a finger-
print image into the identification.thumbnail database table. In addition, the
code builds an ID object for use by other applications. The code for the ID class
appears in Listing 6.5.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s136

import java.sql.*;
import java.io.*;

public class Thumbnail {
Connection connection;
PreparedStatement statement;

public Thumbnail() {
try {
Class.forName("com.mysql.jdbc.Driver").newInstance();
connection = DriverManager.getConnection(
"jdbc:mysql://localhost/identification");

}
catch (Exception e) {
System.err.println("Unable to find and load driver");
System.exit(1);

}
}

public void doWork(String[] args) {

Listing 6.4 Our update code with objects and bytes. (continues)

Using setObject/setBytes 137

try {
File f = new File(args[2]);
Byte[] bytes = new byte[(int)f.length()];

FileInputStream fs = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fs);
bis.read(bytes);

ID id = new ID();
id.nail_id = Integer.parseInt(args[0]);
id.acc_id = Integer.parseInt(args[1]);

statement = connection.prepareStatement(
"INSERT INTO thumbnail VALUES(?,?,?,?, 0, now())");

statement.setInt(1, id.nail_id);
statement.setInt(2, id.acc_id);
statement.setBytes(3, bytes);
statement.setObject(4, id);

int i = statement.executeUpdate();
System.out.println("Rows updated = " + i);

bis.close();
fs.close();
statement.close();
connection.close();
} catch(Exception e) {
e.printStackTrace();

}
}

public static void main(String[] args) {
Thumbnail nail = new Thumbnail();
nail.doWork(args);

}
}

Listing 6.4 Our update code with objects and bytes. (continued)

import java.io.Serializable;

public class ID implements Serializable {

public int nail_id;

public int acc_id;

Listing 6.5 Our ID class code. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s138

public byte[] bytes;

public ID() {

}

}

Listing 6.5 Our ID class code. (continued)

If you look back at some of the earlier figures in this chapter, you will find there
is a placeholder for a fingerprint graphic. In the servlet code, the text string
“thumbnail” is output in the rightmost part of a table because our identifica-
tion.thumbnail table didn’t have any graphic data in it. The code in Listing 6.4
allows us to put a .jpg file into the table.

NOTE
There is some debate about whether binary data such as images should be stored in a
database. Some believe that binary data should reside in a separate file and that the
database should include only a link to that file. As with most computer science topics,
it all depends on the application, so we won't get involved in the debate here.

Listing 6.4 is a command-line-based Java application that accepts three para-
meters, as in this example:

java Thumbnail 4001 1034033 nail1.jpg

The first parameter is the thumb_id value, the second is acc_id, and the third is
the name of a binary file in the JPEG format. The code takes that file and places
it in the thumbnail table using the associated thumb and account IDs. The heart
of our code is found in the doWork() method.

The code begins by creating a File object associated with the filename. If the
file isn’t found, an exception is thrown. Next, our code creates a byte array
based on the full size of the file found on the local hard drive. To bring in the
contents of the file, a FileInputStream is associated with a BufferedInput-
Stream. The read() method is called and the contents of the file are loaded into
the byte array.

In the same example, we illustrate how to use the setObject() method, so we
need to instantiate a new object based on the ID class found in Listing 6.5. The
nail_id and acc_id methods are populated with the thumb_id and acc_id values
passed in from the command line. A PreparedStatement object is created based

on the INSERT query statement needed to put data into the table. Here is the
statement:

statement = connection.prepareStatement(

"INSERT INTO thumbnail VALUES(?,?,?,?, 0, now())");

Notice there are four placeholders. The placeholders are replaced with our data
using these commands:

statement.setInt(1, id.nail_id);

statement.setInt(2, id.acc_id);

statement.setBytes(3, bytes);

statement.setObject(4, id);

You’ve already seen the first two commands, but setBytes() and setObject() are
new. You typically use the setBytes() method when you’ve defined a BLOB data
type for a table field. The code behind setBytes() properly prepares the bytes of
information for insertion into the table.

The goal of the setObject() method is the serialization of an object for insertion
into the database. In order for the method to work properly, the object to be
stored must be based on a class that implements serialization, as does the ID
class shown in Listing 6.5. An application that wants to use the object can
retrieve it using getObject() and cast it to the proper class type.

After all of the data has been inserted into the PreparedStatement object, the
executeUpdate() method is called, and the fingerprint and its associated object
are stored in the database for later retrieval.

Getting BLOBs

Now that we have a fingerprint in our database, we need to remove it and allow
the user to see it along with all of the account information. Add the following
code to the servlet just before the code that builds the reply HTML for a submit
request:

statement2 = connection.prepareStatement(

"SELECT pic

INTO DUMPFILE 'nail" + inRequest.getParameter("account")

+ ".jpg' FROM identification.thumbnail WHERE acc_id = "

+ inRequest.getParameter("account"));

This code will SELECT the pic columns from the identification.thumbnail
table and dump the contents to a file (with a name like nail1034033.jpg) on the

Getting BLOBs 139

database server. By adding the following code to the HTML, we ensure that the
user sees the contents of the file from the database rather than the work thumb-
nail:

out.println("<td><img src='../images/nail"

+ inRequest.getParameter("account") + ".jpg'>");

The HTML code uses the tag to locate the file and display its contents
on the client’s browser. However, if your database server isn’t on the same
machine as your Web or application server, this won’t work. This is because the
database server is typically hidden from the client, which means the client
won’t be able to “link” to the file dumped from the database.

The solution is to remove the earlier statement and replace it with this:

FileOutputStream fo = new FileOutputStream("./doc/images/nail"

+ inRequest.getParameter("account") + ".jpg");

BufferedOutputStream bos = new BufferedOutputStream(fo);

bos.write(rs.getBytes("thumbnail.pic"));

bos.close();

This code creates a FileOutputStream object and opens a file on the Web server
using the nail<account number>.jpg format. This file will be visible to the client
browser. Next, our code builds a BufferOutputStream to stream the bytes from
the code rs.getBytes(“thumbnail.pic”) to the file. The getBytes() method
pulls the fingerprint JPEG file from the database in the same manner that
setBytes() replaced the file in the database. If you look back at our original
query for the servlet, you can see that we don’t pull any data from the identifi-
cation.thumbnail database table, so we have to change the query. The new
query is as follows:

statement = connection.prepareStatement(

"SELECT *, thumbnail.pic

FROM accounts.acc_acc " + "LEFT JOIN accounts.acc_add

on accounts.acc_acc.acc_id = accounts.acc_add.acc_id "

+ "LEFT JOIN identification.thumbnail on

accounts.acc_acc.acc_id = identification.thumbnail.acc_id "

+ "WHERE accounts.acc_acc.acc_id = ?

AND accounts.acc_acc.ts = 0");

Our new query pulls data from the acc_acc, acc_add, and thumbnail tables
using a join (which we discuss in the next section). Once all of the data
is present, the code places a fingerprint file on the Web server and builds
an appropriate tag for viewing the file. We’ve shown the result in
Figure 6.5.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s140

Figure 6.5 Full Identification Information for an Account.

Joins

In our original servlet code earlier in this chapter, we included a SELECT query that
used a join to find data in both the acc_acc and acc_add tables. The query was:

SELECT * FROM acc_acc

LEFT JOIN acc_add on acc_acc.acc_id = acc_add.acc_id

WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0

To enable our users to view information from a specific account, we need to do
several things. First we must make sure that the account exists in acc_acc, the
primary account table. We accomplish this with the following query:

SELECT * FROM acc_acc

WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0

If the account exists, we want to pull in any information that might exist in the
acc_add table for this account. This can be accomplished using the query

Joins 141

SELECT * FROM acc_add

WHERE acc_add.acc_id = ?

If we execute the first query and an account exists, executing the second query
is probably safe to do. However, if the first query doesn’t return a result, we
don’t want to run the second query. We could use IF conditions to achieve this,
but a join will do it for us automatically. The initial join tells the system to return
a single result, which will have all of the fields from acc_acc and acc_add, and
rows only where the account number is found in the acc_id of the acc_acc
table. The result will be either a ResultSet object with no data rows or an object
with data from both tables.

In the previous section, we expanded our join to include a third table called
thumbnail. This table is unique because it isn’t found in the accounts database
but in the identification database.

SELECT *, thumbnail.pic FROM accounts.acc_acc

LEFT JOIN accounts.acc_add

on accounts.acc_acc.acc_id = accounts.acc_add.acc_id

LEFT JOIN identification.thumbnail

on accounts.acc_acc.acc_id = identification.thumbnail.acc_id

WHERE accounts.acc_acc.acc_id = ? AND accounts.acc_acc.ts = 0

In this new join, we take the previous join and add a left join on the identifica-
tion.thumbnail database table. We also specify that we want to pull the thumb-
nail.pic row along with the rows in acc_acc and acc_add. The join won’t occur
unless the account number exists in the acc_acc table. The result of the join
provides all the data needed to display the file to the user. These joins demon-
strate that Connector/J, Java, and MySQL can pull data in just about any fash-
ion for your application.

Updatable ResultSets

All of the applications we have written thus far have handled the issue of updat-
ing data within the database using the UPDATE query statement. In many cases,
this is the only option. However, suppose we have an application that first exe-
cutes a SELECT query that pulls data from the table, displays the information,
and then allows the user to make changes. In this case, we can use a feature of
the JDBC specification called updatable ResultSets. This feature allows us to
change the data within the ResultSet itself and execute a single method to
cause the new data to be sent to the database. We can also use these ResultSets
to insert new rows as well as delete rows we aren’t interested in.

The code in Listing 6.6 is a combination of code from Chapter 5 (that let us view
and modify the account information) and the code for handling a fingerprint.
What makes this application unique is the use of updatable ResultSets.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s142

Updatable ResultSets 143

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sql.*;
import java.util.*;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import java.io.*;

public class IDlook extends JFrame {

private JButton getAccountButton,
updateAccountButton,
insertAccountButton,
nextButton,
previousButton,
lastButton,
firstButton;

private JList accountNumberList;
private JTextField accountIDText,

nailFileText,
thumbIDText;

private JTextArea errorText;

private Connection connection;
private Statement statement;
private ResultSet rs;
private ImageIcon icon = null;
private ImageIcon iconThumbnail = null;
JLabel photographLabel;

public IDlook() {
try {
Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception e) {
System.err.println("Unable to find and load driver");
System.exit(1);

}
}

private void loadAccounts() {
Vector v = new Vector();
try {
rs = statement.executeQuery("SELECT * FROM thumbnail");

while(rs.next()) {
v.addElement(rs.getString("acc_id"));

Listing 6.6 Using updatable ResultSets. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s144

}
} catch(SQLException e) {
displaySQLErrors(e);

}
accountNumberList.setListData(v);

}

private void buildGUI() {
Container c = getContentPane();
c.setLayout(new FlowLayout());

accountNumberList = new JList();
loadAccounts();
accountNumberList.setVisibleRowCount(2);
JScrollPane accountNumberListScrollPane =
new JScrollPane(accountNumberList);

//Do Get Account Button
getAccountButton = new JButton("Get Account");
getAccountButton.addActionListener (
new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {
rs.beforeFirst();
while (rs.next()) {
if (rs.getString("acc_id").
equals(accountNumberList.getSelectedValue()))
break;

}
if (!rs.isAfterLast()) {
accountIDText.setText(rs.getString("acc_id"));
thumbIDText.setText(rs.getString("thumb_id"));

icon = new ImageIcon(rs.getBytes("pic"));
createThumbnail();
photographLabel.setIcon(iconThumbnail);

}
} catch(SQLException selectException) {
displaySQLErrors(selectException);

}
}

}
);

//Do Update Account Button
updateAccountButton = new JButton("Update Account");
updateAccountButton.addActionListener (
new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {

Listing 6.6 Using updatable ResultSets. (continues)

Updatable ResultSets 145

byte[] bytes = new byte[50000];
FileInputStream fs =
new FileInputStream(nailFileText.getText());

BufferedInputStream bis =
new BufferedInputStream(fs);

bis.read(bytes);

rs.updateBytes("thumbnail.pic", bytes);
rs.updateRow();
bis.close();

accountNumberList.removeAll();
loadAccounts();

} catch(SQLException insertException) {
displaySQLErrors(insertException);

} catch(Exception generalE) {
generalE.printStackTrace();

}
}

}
);

//Do insert Account Button
insertAccountButton = new JButton("Insert Account");
insertAccountButton.addActionListener (
new ActionListener() {
public void actionPerformed(ActionEvent e) {
try {
File f = new File(nailFileText.getText());
byte[] bytes = new byte[(int)f.length()];
FileInputStream fs =
new FileInputStream(f);

BufferedInputStream bis =
new BufferedInputStream(fs);

bis.read(bytes);

rs.moveToInsertRow();
rs.updateInt("thumb_id",
Integer.parseInt(thumbIDText.getText()));

rs.updateInt("acc_id",
Integer.parseInt(accountIDText.getText()));

rs.updateBytes("pic", bytes);
rs.updateObject("sysobject", null);
rs.updateTimestamp("ts", new Timestamp(0));
rs.updateTimestamp("act_ts", new Timestamp(
new java.util.Date().getTime()));

rs.insertRow();
bis.close();

accountNumberList.removeAll();

Listing 6.6 Using updatable ResultSets. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s146

loadAccounts();
} catch(SQLException insertException) {
displaySQLErrors(insertException);

} catch(Exception generalE) {
generalE.printStackTrace();

}
}

}
);

photographLabel = new JLabel();
photographLabel.setHorizontalAlignment(JLabel.CENTER);
photographLabel.setVerticalAlignment(JLabel.CENTER);
photographLabel.setVerticalTextPosition(JLabel.CENTER);
photographLabel.setHorizontalTextPosition(JLabel.CENTER);

JPanel first = new JPanel(new GridLayout(4,1));
first.add(accountNumberListScrollPane);
first.add(getAccountButton);
first.add(updateAccountButton);
first.add(insertAccountButton);

accountIDText = new JTextField(15);
thumbIDText = new JTextField(15);
errorText = new JTextArea(5, 15);
errorText.setEditable(false);

JPanel second = new JPanel();
second.setLayout(new GridLayout(2,1));
second.add(thumbIDText);
second.add(accountIDText);

JPanel third = new JPanel();
third.add(new JScrollPane(errorText));

nailFileText = new JTextField(25);

c.add(first);
c.add(second);
c.add(third);
c.add(nailFileText);
c.add(photographLabel);

setSize(500,500);
show();

}

public void connectToDB() {
try {

Listing 6.6 Using updatable ResultSets. (continues)

Updatable ResultSets 147

connection = DriverManager.getConnection(
"jdbc:mysql://localhost/Identification");

statement = connection.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

} catch(SQLException connectException) {
System.out.println(connectException.getMessage());
System.out.println(connectException.getSQLState());
System.out.println(connectException.getErrorCode());
System.exit(1);

}
}

private void displaySQLErrors(SQLException e) {
errorText.append("SQLException: " + e.getMessage() + "\n");
errorText.append("SQLState: " + e.getSQLState()+"\n");
errorText.append("VendorError: " + e.getErrorCode()+"\n");

}

private void init() {
connectToDB();

}

private void createThumbnail() {
int maxDim = 350;
try {
Image inImage = icon.getImage();

double scale =
(double)maxDim/(double)inImage.getHeight(null);
If (inImage.getWidth(null) > inImage.getHeight(null)) {
scale = (double)maxDim/(double)inImage.getWidth(null);

}

int scaledW = (int)(scale*inImage.getWidth(null));
int scaledH = (int)(scale*inImage.getHeight(null));

BufferedImage outImage = new BufferedImage(scaledW,
scaledH, BufferedImage.TYPE_INT_RGB);

AffineTransform tx = new AffineTransform();

if (scale < 1.0d) {
tx.scale(scale, scale);

}

Graphics2D g2d = outImage.createGraphics();
g2d.drawImage(inImage, tx, null);
g2d.dispose();

Listing 6.6 Using updatable ResultSets. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s148

iconThumbnail = new ImageIcon(outImage);
} catch (Exception e) {
e.printStackTrace();

}
}

public static void main(String[] args) {
IDlook id = new IDlook();

id.addWindowListener(
new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

}
}

);

id.init();
id.buildGUI();

}
}

Listing 6.6 Using updatable ResultSets. (continued)

Figure 6.6 shows an example of the application we want to build. The user
is able to select an account number in the combo box and click on the
Get Account button. The code pulls information from the thumbnail table
and displays the thumb_id, the acc_id, and the fingerprint image. The user
is able to change the fingerprint image by placing a file path in the text field
above the image and clicking on the Update Account button. To insert a new
row into the table, the user simply enters new thumb_id, acc_id, and fingerprint
image file values into the appropriate text fields and clicks on the Insert
Account button.

The overall makeup of our application is the same as that in the previous chap-
ter, where we created a GUI and used JPanels to hold the various controls. The
real work is found in the code for the buttons. First, though, let’s look at the
code within the loadAccounts() method. The loadAccounts() method pulls all
of the data from the thumbnail table using this query:

rs = statement.executeQuery("SELECT * FROM thumbnail");

The result of the executeQuery() method is a ResultSet object. Since we want
to use updatable ResultSets, we have to build the Statement object in a little dif-
ferent format. Here’s the code:

statement = connection.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Figure 6.6 Our initial account.

By using the ResultSet.CONCUR_UPDATABLE flag, we tell the Statement
object to always return a ResultSet object that we can change on the fly and to
send those changes back to the database. Therefore, when the executeQuery()
method gets executed, the system-wide ResultSet can be updated as needed.
Updates to the ResultSet will occur via the update button or the insert button.

The Update Button Code
When a user clicks on the update button, the system assumes the user wants to
change the fingerprint image kept in the database. Our code inserts the new
image path in the nailFileText JTextField, pulls the image file, opens it, and
places its contents in a byte array. You’ll recall that in our previous applications,
we created an UPDATE query using a PreparedStatement, inserted the new
image bytes into the statement, and updated the database.

However, since we have an updatable ResultSet, we can use a series of methods
called update<type> to place new values into the ResultSet. The update meth-
ods all work on the current row of the ResultSet, so we need to be sure the
internal pointer is sitting on a data row and not before or after a row. The code
used for the fingerprint image is:

rs.updateBytes("thumbnail.pic", bytes);

Updatable ResultSets 149

Once all of the fields in the ResultSet have been updated, our code calls the
updateRow() method. For example:

rs.updateRow();

The Connector/J driver automatically executes the appropriate query to the
database and places the changed data into it. Figure 6.7 shows how the appli-
cation looks when the user wants to update the current record.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s150

Figure 6.7 A second account getting a new picture.

The Insert Button Code
To add a new record to the database, the user enters thumb_id and acc_id val-
ues, as well as the fingerprint image path, into the appropriate text fields. After
the user clicks on the insert button, the system attempts to find the fingerprint
image and begins updating the ResultSet. However, since we are inserting a
new row into the ResultSet, we don’t want to change any of the current rows.
We must let the ResultSet know that we need a new row put into the object so
we can update it and send the information to the database.

We can use the moveToInsertRow() method to insert the new row into the
object. For example:

rs.moveToInsertRow();

This method inserts a row into the ResultSet object and moves the internal
pointer to the new row. Now the code can use the update<type> methods to put
the new values into the row. The methods used are as follows:

rs.updateInt("thumb_id",Interger.parseInt(thumbIDText.getText()));
rs.updateInt("acc_id", Integer.parseInt(accountIDText.getText()));
rs.updateBytes("pic", bytes);
rs.updateObject("sysobject", null);
rs.updateTimestamp("ts", new Timestamp(0));
rs.updateTimestamp("act_ts", new Timestamp(new java.util.Date().get-
Time()));

Notice that we have used the Int, Bytes, Object, and Timestamp update meth-
ods to place the appropriate values into the row. Finally, our code places the
new row in the database with the command

rs.insertRow();

Figure 6.8 shows our application when the user enters new values into the
fields and the record is inserted into the database.

Updatable ResultSets 151

Figure 6.8 A second account with a new picture.

Update Methods
The following methods are available to you when you’re using updatable
ResultSets. We’ve indicated methods that aren’t implemented in Connector/J.

void cancelRowUpdates()—If you make calls to the various
update<type> methods, you can reverse the changes by executing this
method. However, if you call updateRow(), the changes will be made to the
database.

void deleteRow()—Deletes the row in the ResultSet where the internal
pointer is currently pointing.

void insertRow()—Inserts the current row into the database with values
updated in the ResultSet.

void moveToInsertRow()—Moves the internal pointer to a new row,
which can be updated and inserted into the database.

void refreshRow()—Pulls data from the database for the current row in
the ResultSet. The row cannot be a newly created insert row.

boolean rowDeleted()—Not implemented in Connector/J. Determines if
this row has been deleted.

boolean rowInserted()—Not implemented in Connector/J. Determines if
the current row has been inserted.

boolean rowUpdated()—Not implemented in Connector/J. Determines if
the current row has been updated.

void updateAsciiStream(int columnIndex, java.io.InputStream

aStream, int length)— Allows a column in the current row to be updated
using a Stream. Assumes the data is ASCII-based.

void updateAsciiStream(java.lang.String columnName, java.io.Input-

Stream aStream, int length)—Allows a column in the current row to be
updated using a Stream. Assumes the data is ASCII-based.

void updateBigDecimal(int columnIndex, java.math.BigDecimal

aBigDecimal)—Allows a column to be updated with a BigDecimal value.

void updateBigDecimal(java.lang.String columnName,

java.math.BigDecimal aBigDecimal)—Allows a column to be updated
with a BigDecimal value.

void updateBinaryStream(int columnIndex, java.io.InputStream

aStream, int length)—Allows a column to be updated with a Binary
Stream.

void updateBinaryStream(java.lang.String columnName,

java.io.InputStream aStream, int length)—Allows a column to be
updated with a BinaryStream.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s152

void updateBoolean(int columnIndex, Boolean aBoolean)—Allows a
column to be updated with a Boolean.

void updateBoolean(java.lang.String columnName, Boolean

aBoolean)—Allows a column to be updated with a Boolean.

void updateByte(int columnIndex, byte aByte)—Updates a column
with a single byte value.

void updateByte(java.lang.String columnName, byte aByte)—
Updates a column with a single byte value.

void updateBytes(int columnIndex, byte[] aByteArray)—Updates a
column with an array of bytes.

void updateBytes(java.lang.String columnName, byte[]

aByteArray)—Updates a column with an array of bytes.

void updateCharacterStream(int columnIndex, java.io.Reader

aStream, int length)—Allows a column to be updated using a character
stream.

void updateCharacterStream(java.lang.String columnName,

java.io.Reader aStream, int length)—Allows a column to be updated
using a character stream.

void updateDate(int columnIndex, java.sql.Date aDate)—Allows a
column to be updated with a Date value.

void updateDate(java.lang.String columnName, java.sql.Date

aDate)—Allows a column to be updated with a Date value.

void updateDouble(int columnIndex, double aDouble)—Allows a col-
umn to be updated with a double.

void updateDouble(java.lang.String columnName, double

aDouble)—Allows a column to be updated with a double.

void updateFloat(int columnIndex, float aFloat)—Updates a column
using a Float value.

void updateFloat(java.lang.String columnName, float aFloat)—
Updates a column using a Float value.

void updateInt(int columnIndex, int aInt)—Updates a column with an
Int value.

void updateInt(java.lang.String columnName, int aInt)—Updates a
column with an Int value.

void updateLong(int columnIndex, long aLong)—Updates a column
with a long value.

void updateLong(java.lang.String columnName, long aLong)—
Updates a column with a long value.

Updatable ResultSets 153

void updateNull(int columnIndex)—Places a null value in the specified
column.

void updateNull(java.lang.String columnName)—Places a null value in
the specified column.

void updateObject(int columnIndex, java.lang.Object anObject)—
Places a serialized object into the specified column.

void updateObject(int columnIndex, java.lang.Object anObject, int

scale)—Places a serialized object into the specified column.

void updateObject(java.lang.String columnName, java.lang.Object

anObject)—Places a serialized object into the specified column.

void updateObject(java.lang.String columnName, java.lang.Object

anObject, int scale)—Places a serialized object into the specified column.

void updateRow()—Updates the changed values for the correct row into
the database.

void updateShort(int columnIndex, short aShort)—Allows a column
to be updated with a short value.

void updateShort(java.lang.String columnName, short aShort)—
Allows a column to be updated with a short value.

void updateString(int columnIndex, java.lang.String aString)—
Updates a column with a String value.

void updateString(java.lang.String columnName, java.lang.String

aString)—Updates a column with a String value.

void updateTime(int columnIndex, java.sql.Time aTime)—Updates a
column with a Time value.

void updateTime(java.lang.String columnName, java.sql.Time

aTime)—Updates a column with a Time value.

void updateTimestamp(int columnIndex, java.sql.Timestamp aTS)—
Updates a column with a Timestamp value.

void updateTimestamp(java.lang.String columnName, java.sql.Time-

stamp aTS)—Updates a column with a Timestamp value.

Manipulating Date/Time Types

The listing for inserting a new row into the fingerprint database includes code
that inserts a timestamp value into the row. When developers need to access
time, data, and timestamp values in a ResultSet, they can use the getDate(), get-
Time(), and getTimestamp() methods, which we examine next. Most of the
methods perform some level of conversion from the MySQL column type to the
Java data type. We cover these mappings in detail in the next chapter.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s154

Methods for Retrieving a Value as a
Date Type

The getDate() method attempts to pull the specified column from the MySQL
table as a java.sql.Date data type. As shown in the next chapter, the MySQL data
types of Date, Timestamp, and Year will all map to the Date data type. The
following values will result in a null:

Null
0000-00-00

0000-00-00 00:00:00

00000000000000

If the value in the column is fewer than 10 characters and not a type Null, Year,
Date, or Timestamp, an error will be returned. In Connector/J, the getDate(int
columnIndex, Calendar cal) method maps to getDate(int columnIndex).

Date getDate(int columnIndex)

Date getDate(int columnIndex, Calendar cal)

Date getDate(String columnName)

Date getDate(String columnName, Calendar cal)

Methods for Retrieving a Value as a
Time Type

The java.sql.Time data type can be obtained from a column using the getTime()
method. The MySQL data types appropriate for the Time data type are Time-
stamp, DATETIME, and other values that match a length of 5 or 8. The system
attempts to convert the values as best as possible. A null is represented as

Null
0000-00-00

0000-00-00 00:00:00

00000000000000

The methods with a Calendar parameter map to the methods without such
values.

Time getTime(int columnIndex)

Time getTime(int columnIndex, Calendar cal)

Time getTime(String columnName)

Time getTime(String columnName, Calendar cal)

Methods for Retrieving a Value as a
Timestamp Type

The getTimestamp() method converts fields of the type Year, Timestamp, and
Date. A null is represented as

Manipulating Date/Time Types 155

Null

0000-00-00

0000-00-00 00:00:00

00000000000000

The methods with a Calendar parameter map to the methods without such
values.

Timestamp getTimestamp(int columnIndex)

Timestamp getTimestamp(int columnIndex, Calendar cal)

Timestamp getTimestamp(String columnName)

Timestamp getTimestamp(String columnName, Calendar cal)

Handling BLOB and CLOB

In our examples, we have been using an array of bytes to handle the fingerprint
image as it was placed in the database. There is another way to handle the use
of large amounts of binary and character data. The BLOB and CLOB are
SQL-defined data types designed to handle these large data types. As we dis-
cuss in the next chapter, the BLOB type can be used with several MySQL types,
including:

■■ INYBLOB

■■ BLOB

■■ MEDIUMBLOB

■■ LONGBLOB

Likewise, the CLOB type can be used with the following MySQL types:

■■ TINYTEXT

■■ TEXT

■■ MEDIUMTEXT

■■ LONGTEXT

Connector/J and MySQL can work with BLOBs and CLOBs using four different
methods. The methods

Blob getBlob(int i)

Blob getBlob(String colName)

retrieve the value of the designated column in the current row of this ResultSet
object as a BLOB object in the Java programming language. The methods

Clob getClob(int i)

Clob getClob(String colName)

retrieve the value of the designated column in the current row of this ResultSet
object as a CLOB object in the Java programming language.

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s156

Once data has been stored in a BLOB or CLOB field in the database, it can be
removed and manipulated in a CLOB or BLOB object. For example, when the
code in Listing 6.6 pulled the fingerprint image from the database, it used the
getBytes() method. While this is valid, the data could more correctly be
returned as a BLOB object. One reason for doing this is the driver might be writ-
ten to implement streaming of the data from the database to the BLOB object.
This means the system will pull the data in segments as needed rather than
pulling all of the data at once. Currently, the Connector/J driver doesn’t stream
the data but pulls the data all at once. This doesn’t mean that you cannot use the
BLOB object.

Previously, the code to pull the fingerprint image was

accountIDText.setText(rs.getString("acc_id"));

thumbIDText.setText(rs.getString("thumb_id"));

icon = new ImageIcon(b.getBytes(rs.getByte("pic"));

To pull the data as a BLOB or CLOB, we’d use this code:

accountIDText.setText(rs.getString("acc_id"));

thumbIDText.setText(rs.getString("thumb_id"));

Blob b = rs.getBlob("pic");

icon = new ImageIcon(b.getBytes(1L, (int)b.length()));

By pulling the data as a BLOB or CLOB, you can take advantage of several
methods defined in each class. The methods available in the BLOB are

InputStream getBinaryStream()—Returns a stream that can be used to
manipulate the bytes associated with the BLOB.

byte[] getBytes(long pos, int length)—Returns a byte array copied from
the bytes associated with the BLOB starting at a specific position and that
has the specified length.

long length()—Returns the number of bytes in the BLOB value designated
by this BLOB object.

long position(Blob pattern, long start)—Returns the position value
where the specific pattern of bytes is located in the bytes represented by
the BLOB object.

long position(byte[] pattern, long start)—Not implemented in Connec-
tor/J. Returns the position value where the specific pattern of bytes is
located in the bytes represented by the BLOB object.

OutputStream setBinaryStream(long pos)—Not implemented in Con-
nector/J. Returns a BinaryStream used to set the bytes associated with the
BLOB object.

int setBytes(long pos, byte[] bytes)—Not implemented in Connector/J.

Handling BLOB and CLOB 157

int setBytes(long pos, byte[] bytes, int offset, int len)—Not imple-
mented in Connector/J. Writes a series of bytes to the BLOB object using
the specified position with the data bytes, the offset, and total bytes to copy.

void truncate(long len)—Not implemented. Truncates the bytes associ-
ated with the BLOB object to the length specified.

If you have a CLOB object, the methods available are

InputStream getAsciiStream()—Not implemented by Connector/J.
Returns a stream to access the internal String.

Reader getCharacterStream()—Returns a character stream to access
the internal String.

String getSubString(long pos, int length)—Returns a copy of the String
associated with the CLOB starting at the specified position and having the
specified length.

long length()—Returns the total number characters represented by the
CLOB.

long position(Clob searchstr, long start)—Retrieves the character posi-
tion at which the specified substring searchstr appears in the SQL CLOB
value represented by this CLOB object.

long position(String searchstr, long start)—Retrieves the character
position at which the specified substring searchstr appears in the SQL
CLOB value represented by this CLOB object.

OutputStream setAsciiStream(long pos)—Returns a stream that can be
used to get ASCII values for the internal String.

Writer setCharacterStream(long pos)—Not implemented by Connec-
tor/J. Retrieves a stream that can be used to set the internal String.

int setString(long pos, String str)—Not implemented by Connector/J.
Writes the specified String to the internal String represented by the CLOB.

int setString(long pos, String str, int offset, int len)—Not imple-
mented by Connector/J. Writes the specified String to the internal String
represented by the CLOB.

void truncate(long len)—Not implemented. Truncates the bytes associ-
ated with the CLOB object to the length specified.

Using Streams to Pull Data

Just as we can pull large amounts of data from a database using getBytes() or
getBlob(), we can also attach a stream to a ResultSet column. For example, we
can pull the bytes from the table and put them into an output file. Here’s the
code to accomplish that:

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s158

int b;

InputStream bis = rs.getBinaryStream("pic");

FileOutputStream f = new FileOutputStream("pic.jpg");

while ((b = bis.read()) >= 0) {

f.write(b);

}

f.close();

bis.close();

The code starts by creating an InputStream for the pic column found in our
thumbnail table. Next, the code creates a FileOutputStream object and assigns
it to the pic.jpg file on the local hard drive. Next, a loop is created to systemati-
cally read values from the InputStream and write to the FileOutputStream. The
InputStream associated with the ResultSet column can be used anywhere a
Java method allows an InputStream.

The methods available are

InputStream getAsciiStream(int columnIndex)—Associates an Input-
Stream with the specified column. The Connector/J driver calls getBinary
Stream() when this method is called.

InputStream getAsciiStream(String columnName)—Associates an
InputStream with the specified column. The Connector/J driver calls get
BinaryStream() when this method is called.

InputStream getBinaryStream(int columnIndex)—Associates an
InputStream with the specified column.

InputStream getBinaryStream(String columnName)—Associates an
InputStream with the specified column.

Reader getCharacterStream(int columnIndex)—Associates a Reader
object stream with the specified column.

Reader getCharacterStream(String columnName)—Associates a
Reader object stream with the specified column.

Handling ENUM

The MySQL database server allows you to create a database table column using
the ENUM type. For example, we might have table defined and filled with data
as shown in Figure 6.9.

Handling ENUM 159

Figure 6.9 An ENUM table and data.

As you can see in Figure 6.9, the MySQL data type is an ENUM type and not a
String. However, no method is available for pulling an ENUM from the Result-
Set directly. In most cases, the data will be pulled as a String using the get-
String(“status”) method. If your application needs to know all of the possible
values that could be stored in the ENUM but you don’t want to hard-code the
values, you can use the following code to extract the values:

ResultSet rs = statement.executeQuery(

"SHOW COLUMNS FROM enumtest LIKE 'status'");

This code will produce a ResultSet with the following information in it:

+-------+------------------------+----+---+---------+-------+

|Field |Type |Null|Key| Default | Extra |

+-------+------------------------+----+---+---------+-------+

|status |enum('contact', | | | | |

| |'contacted', 'finished')| YES| | NULL | |

+-------+------------------------+----+---+---------+-------+

1 row in set (0.00 sec)

Now we need to pull out the String, parse for the ENUM types, and keep them
in an array. Here’s some example code:

try {

statement = connection.createStatement();

ResultSet rs = statement.executeQuery(

"SHOW COLUMNS FROM enumtest LIKE 'status'");

rs.next();

String enums = rs.getString("Type");

System.out.println(enums);

int position = 0, count = 0;

String[] availableEnums = new String[10];

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s160

while ((position = enums.indexOf("'", position)) > 0) {

int secondPosition = enums.indexOf("'", position+1);

availableEnums[count++] = enums.substring(

position+1, secondPosition);

position = secondPosition+1;

System.out.println(availableEnums[count-1]);

}

rs.close();

statement.close();

connection.close();

} catch(Exception e) {

e.printStackTrace();

}

The code starts by getting the definition of the ENUM column within the table
and pulling out the string for the type. Next, a loop is set up to match the single
quotes of the ENUM values. Each pair of single quotes is found, and the string
within the quotes is placed in a String array.

Using Connector/J with JavaScript

Not everyone is comfortable using servlets for building Web-based applica-
tions. In these cases, a Web developer might turn to JavaScript as a tool for
database access. The code in Listing 6.7 accesses a remote database and dis-
plays the thumb_id, the acc_id, and a thumbnail version of the fingerprint
image stored in the database.

Using Connector/ J with JavaScript 161

<%@ page import='java.sql.*, javax.sql.*, java.io.*' %>
<HTML>
<HEAD>
<TITLE>View Images</TITLE>
</HEAD>
<BODY>
<%

Class.forName("com.mysql.jdbc.Driver").newInstance();

Connection connection = DriverManager.getConnection(
"jdbc:mysql://localhost/identification");

Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("SELECT * FROM thumbnail");

%>

Listing 6.7 JavaScript database access. (continues)

A c h i e v i n g A d v a n c e d C o n n e c t o r / J Fu n c t i o n a l i t y w i t h S e r v l e t s162

<%
while (rs.next()) {

%>

<%
FileOutputStream fo =

new FileOutputStream("./doc/images/nail"
+ rs.getString("acc_id") + ".jpg");

BufferedOutputStream bos = new BufferedOutputStream(fo);
bos.write(rs.getBytes("pic"));
bos.close();

out.println(rs.getString("thumb_id") + " " +
rs.getString("acc_id") + "<img

src='../images/nail" +
rs.getString("acc_id") + ".jpg' width=50

height=100>");
}

%>

</BODY>
</HTML>

Listing 6.7 JavaScript database access. (continued)

Figure 6.10 shows an example of what the client browser displays when it
accesses the JavaScript in Listing 6.7. One of the most important differences
between an applet and a Java application is the use of the <@ tag to pull in the
Java libraries needed for the code. As with all JavaScript code, the server-side
script must be found in the <% %> tags. The code begins with the familiar load-
ing of the Connector/J driver.

You might recall that we did this sort of thing in the applet code in Chapter 5,
but it required the driver to be found on the client. This is not the case with
JavaScript because the JavaScript code executes on the server instead of on the
client.

After the driver is loaded, a connection is made to the MySQL database and the
appropriate SQL is executed to pull all of the data from the identification table.
The code creates a loop to build file-based versions of the fingerprint image
data on the server. Then, HTML code is created to display the values of the
thumb_id and acc_id columns as well as a link to the fingerprint image on the
server.

What’s Next 163

Figure 6.10 Output from our JavaScript.

What’s Next

In this chapter, we provided you with the tools necessary to build servlets that
access the MySQL database server. We explored using PreparedStatements,
joins, updatable ResultSets, and many other advanced topics. In the next chap-
ter, we look at how Connector/J handles the transition of data from the MySQL
database.

In the previous two chapters, we introduced techniques for interacting with
a data source, such as MySQL, using the Java programming language. One
issue that complicates such interaction is that of mapping column types. As

is the case with many data source implementations, MySQL does not strictly
adhere to any particular standard when it comes to the definitions and naming
of SQL column types. Since it is not practical for the JDBC API to directly sup-
port all possible implementation choices with regard to SQL column types, the
API attempts to “abstract away” the differences. This abstraction is centered on
the java.sql.Types class, which defines a set of constants that identify generic
SQL types; these types are referred to as JDBC types.

The JDBC types serve as a sort of middle ground between Java client code and
a MySQL server. On the Java side, each JDBC type is associated with a specific
Java type. On the MySQL side—or more specifically within the Connector/J
implementation—each MySQL type is associated with a specific JDBC type.
Thus, MySQL types can be mapped to Java types, and vice versa, with the help
of the JDBC types. In this chapter, we detail these mappings, providing a type
summary, the associated JDBC type, and the corresponding Java type for each
MySQL column type. We break the column types into three groups for our dis-
cussion: character, date and time, and numeric.

MySQL Type Mapping

C H A P T E R 7

165

Character Column Types

The character column types, summarized in Table 7.1, are characterized by the
fact that each defines values consisting of an arbitrary sequence of characters.
With the exception of SET and ENUM, the types differ primarily in allowable
size and the manner in which they are compared; the SET and ENUM types cor-
respond to groups of character type values (strings) that define the allowable
values for a column.

Table 7.1 Character Column Types

MYSQL TYPE JDBC TYPE JAVA TYPE

CHAR CHAR String

VARCHAR VARCHAR String

TINYTEXT LONGVARCHAR String

TEXT LONGVARCHAR String

MEDIUMTEXT LONGVARCHAR String

LONGTEXT LONGVARCHAR String

TINYBLOB LONGVARBINARY byte[]

BLOB LONGVARBINARY byte[]

MEDIUMBLOB LONGVARBINARY byte[]

LONGBLOB LONGVARBINARY byte[]

SET VARCHAR String

ENUM VARCHAR String

CHAR
The MySQL CHAR column type represents a fixed-length character sequence
container. The length is specified by the column definition and must be in the
range 0 to 255 (a length of 0 is not supported prior to MySQL version 3.23). Col-
umn values are right-padded with spaces where the number of characters is
less than the defined length; trailing spaces are stripped upon retrieval.

The CHAR column type maps to the CHAR JDBC type, which in turn corre-
sponds to a Java String. The recommended ResultSet getter method for retriev-
ing CHAR types is getString().

M y S Q L Ty p e M a p p i n g166

VARCHAR
The MySQL VARCHAR type represents a variable-length character sequence
container. An upper limit on the allowable length is specified by the column def-
inition and must be in the range 0 to 255 (a length of 0 is not supported prior to
MySQL version 4.0.2). All trailing space is stripped from column values before
insertion, which is contrary to the ANSI SQL specification.

The VARCHAR type maps to the VARCHAR JDBC type, which in turn corre-
sponds to a Java String. The recommended ResultSet getter method for retriev-
ing VARCHAR types is getString().

TINYTEXT
The MySQL TINYTEXT type represents a variable-length character sequence
container capable of holding up to 255 characters. Column values of type TINY-
TEXT are stored as is, with no padding, stripping, or character substitution.
Comparison and sorting of TINYTEXT values is performed in a case-insensitive
manner.

The TINYTEXT type maps to a LONGVARCHAR JDBC type, which in turn cor-
responds to a Java String. The recommended ResultSet getter methods for
retrieving TINYTEXT types are getAsciiStream() and getCharacterStream().

TEXT
The MySQL TEXT type represents a variable-length character sequence con-
tainer capable of holding up to 65,535 characters. Column values of type TEXT
are stored as is, with no padding, stripping, or character substitution. Compari-
son and sorting of TEXT values is performed in a case-insensitive manner.

The TEXT type maps to a LONGVARCHAR JDBC type, which in turn corre-
sponds to a Java String. The recommended ResultSet getter methods for re-
trieving TEXT types are getAsciiStream() and getCharacterStream().

MEDIUMTEXT
The MySQL MEDIUMTEXT type represents a variable-length character
sequence container capable of holding up to 16,777,215 characters. Column val-
ues of type MEDIUMTEXT are stored as is, with no padding, stripping, or char-
acter substitution. Comparison and sorting of MEDIUMTEXT values is
performed in a case-insensitive manner.

Character Column Types 167

The MEDIUMTEXT type maps to a LONGVARCHAR JDBC type, which
in turn corresponds to a Java String. The recommended ResultSet
getter methods for retrieving MEDIUMTEXT types are getAsciiStream() and
getCharacterStream().

LONGTEXT
The MySQL LONGTEXT type represents a variable-length character sequence
container capable of holding up to 4,294,967,295 characters. Column values of
type LONGTEXT are stored as is, with no padding, stripping, or character sub-
stitution. Comparison and sorting of LONGTEXT values is performed in a case-
insensitive manner.

The LONGTEXT type maps to a LONGVARCHAR JDBC type, which in turn corre-
sponds to a Java String. The recommended ResultSet getter methods for retriev-
ing MEDIUMTEXT types are getAsciiStream() and getCharacterStream().

TINYBLOB
The MySQL TINYBLOB type represents a variable-length character sequence
container capable of holding up to 255 characters. Column values of type TINY-
BLOB are stored as is, with no padding, stripping, or character substitution.
Comparison and sorting of TINYBLOB values is performed in a case-sensitive
manner.

The TINYBLOB type maps to a LONGVARBINARY JDBC type, which in turn
corresponds to a Java byte array (i.e., byte[]). The recommended ResultSet get-
ter method for retrieving TINYBLOB types is getBinaryStream().

BLOB
The MySQL BLOB type represents a variable-length character sequence con-
tainer capable of holding up to 65,535 characters. Column values of type BLOB
are stored as is, with no padding, stripping, or character substitution. Compari-
son and sorting of BLOB values is performed in a case-sensitive manner.

The BLOB type maps to a LONGVARBINARY JDBC type, which in turn corre-
sponds to a Java byte array (i.e., byte[]). The recommended ResultSet getter
method for retrieving BLOB types is getBinaryStream().

MEDIUMBLOB
The MySQL MEDIUMBLOB type represents a variable-length character
sequence container capable of holding up to 16,777,215 characters. Column
values of type MEDIUMBLOB are stored as-is, with no padding, stripping, or
character substitution. Comparison and sorting of MEDIUMBLOB values is per-
formed in a case-sensitive manner.

M y S Q L Ty p e M a p p i n g168

The MEDIUMBLOB type maps to a LONGVARBINARY JDBC type, which in
turn corresponds to a Java byte array (i.e., byte[]). The recommended ResultSet
getter method for retrieving MEDIUMBLOB types is getBinaryStream().

LONGBLOB
The MySQL LONGBLOB type represents a variable-length character sequence
container capable of holding up to 4,294,967,295 characters. Column values of
type LONGBLOB are stored as is, with no padding, stripping, or character sub-
stitution. Comparison and sorting of LONGBLOB values is performed in a case-
sensitive manner.

The LONGBLOB type maps to a LONGVARBINARY JDBC type, which in turn
corresponds to a Java byte array (i.e., byte[]). The recommended ResultSet get-
ter method for retrieving LONGBLOB types is getBinaryStream().

SET
The MySQL SET type represents a character sequence container capable of
holding a subset of the fixed-character sequences specified by an associated
column definition. Comma delimiters are used for SET values that contain
more than one member. A SET value may consist of at most 64 members.

The SET type maps to a VARCHAR JDBC type, which in turn corresponds to a
Java String. The recommended ResultSet getter method for retrieving SET
types is getString().

ENUM
The MySQL ENUM type represents a character sequence container capable of
holding exactly one character sequence selected from those specified by an as-
sociated column definition. A column of type ENUM may specify up to 65,535
distinct values, any one of which may be taken on by an ENUM value inserted
into the corresponding column.

The ENUM type maps to a VARCHAR JDBC type, which in turn corresponds to
a Java String. The recommended ResultSet getter method for retrieving ENUM
types is getString().

Using Character Types

The code in Listing 7.1 demonstrates the use of character column types. State-
ment and PreparedStatement objects are used to create and populate a table
that stores character types. The table is then queried, the column values ex-
tracted, and the results written to the standard output. Since TINYTEXT, MEDI-

Using Character Types 169

UMTEXT, and LONGTEXT differ from TEXT only in terms of maximum length,
only the TEXT type is presented in the example. Likewise, BLOB serves to
demonstrate the use of TINYBLOB, MEDIUMBLOB, and LONGBLOB.

M y S Q L Ty p e M a p p i n g170

try

{

String createSql = "CREATE TABLE jmCharacter ("

+ "jmChar CHAR(80), jmVarchar VARCHAR(80), "

+ "jmText TEXT, jmBlob BLOB, "

+ "jmSet SET('red','green','blue'), "

+ "jmEnum ENUM('true','false'))";

Statement stmt = conn.createStatement();

stmt.execute(createSql);

String charValue = "This is a CHAR";

String varcharValue = "This is a VARCHAR";

String textValue = "This is a TEXT";

String blobString = "This is a BLOB";

byte[] blobValue = blobString.getBytes();

String setValue = "blue,green";

String enumValue = "true";

String insertSql = "INSERT INTO jmCharacter "

+ "VALUES (?,?,?,?,?,?)";

PreparedStatement pstmt = conn.prepareStatement(insertSql);

pstmt.setString(1, charValue);

pstmt.setString(2, varcharValue);

pstmt.setString(3, textValue);

pstmt.setBytes(4, blobValue);

pstmt.setString(5, setValue);

pstmt.setString(6, enumValue);

pstmt.execute();

ResultSet results = stmt.executeQuery("SELECT * from jmCharacter");

results.next();

// Extract CHAR and VARCHAR values

charValue = results.getString("jmChar");

System.out.println("jmChar : " + charValue);

varcharValue = results.getString("jmVarchar");

System.out.println("jmVarchar: " + varcharValue);

Listing 7.1 Using character columns types. (continues)

Date and Time Column Types 171

// Extract TEXT value from InputStream

InputStream textStream = results.getAsciiStream("jmText");

BufferedReader textReader =

new BufferedReader(new InputStreamReader(textStream));

textValue = textReader.readLine();

while (textValue != null)

{

System.out.println("jmText : " + textValue);

textValue = textReader.readLine();

}

textReader.close();

// Extract BLOB value from InputStream

InputStream blobStream = results.getBinaryStream("jmBlob");

DataInputStream dataStream = new DataInputStream(blobStream);

dataStream.readFully(blobValue);

System.out.println("jmBlob : " + new String(blobValue));

dataStream.close();

// Extract SET and ENUM values

setValue = results.getString("jmSet");

System.out.println("jmSet : " + setValue);

enumValue = results.getString("jmEnum");

System.out.println("jmEnum : " + enumValue);

}

catch(IOException ioX)

{

System.err.println(ioX);

}

catch(SQLException sqlX)

{

System.err.println(sqlX);

}

Listing 7.1 Using character columns types. (continued)

Date and Time Column Types

Not surprisingly, the date and time column types, summarized in Table 7.2, pro-
vide for the handling of information related to dates and times. The important
thing to note about these types is that they place a strict limit on the format

used to represent dates and times, saving MySQL the need to understand the
multitude of formats currently in use throughout the world.

Table 7.2 Date and Time Column Types

MYSQL TYPE JDBC TYPE JAVA TYPE

DATE DATE java.sql.Date

TIME TIME java.sql.Time

DATETIME TIMESTAMP java.sql.Timestamp

YEAR DATE java.sql.Date

TIMESTAMP TIMESTAMP java.sql.Timestamp

DATE
The MySQL DATE type represents a container that holds a calendar date of
form YYYY-MM-DD, where YYYY is a four-digit year, MM is a two-digit month,
and DD is a two-digit day. The supported date range is 1000-01-01 through 9999-
12-31.

The DATE type maps to a DATE JDBC type, which in turn corresponds to
java.sql.Date. The recommended ResultSet getter method for retrieving DATE
types is getDate().

TIME
The MySQL TIME type represents a container that holds an elapsed time of
form (h)hh:mm:ss, where (h)hh is a two- or three-digit hour, mm is a two-digit
minute, and ss is a two-digit second. The supported time range is –838:59:59 to
838:59:59.

The TIME type maps to a TIME JDBC type, which in turn corresponds to
java.sql.Time. The recommended ResultSet getter method for retrieving TIME
types is getTime().

DATETIME
The MySQL DATETIME type represents a container that combines a calendar
date and clock time using the format YYYY-MM-DD hh:mm:ss. The format of
the date portion is the same as that used for the DATE type. The format of the
time portion differs from that of the TIME type in that it is limited to values

M y S Q L Ty p e M a p p i n g172

appropriate to a 24-hour day. The supported range of dates and times is 1000-01-
01 00:00:00 through 9999-12-31 23:59:59.

The DATETIME type maps to a TIMESTAMP JDBC type, which in turn corre-
sponds to java.sql.Timestamp. The recommended ResultSet getter method for
retrieving DATETIME types is getTimestamp().

YEAR
The MySQL YEAR type represents a container that holds a calendar year in one
of two formats, depending on how the associated column is defined. By default,
the format is a four-digit year that may take on values ranging from 1901
through 2155; additionally, the value 0000 is valid. The format may also be spec-
ified as a two-digit year, in which case the values 70 through 69 correspond to
the years 1970 through 2069.

The YEAR type maps to a DATE JDBC type, which in turn corresponds to
java.sql.Date. The recommended ResultSet getter method for retrieving YEAR
types is getDate().

TIMESTAMP
The MySQL TIMESTAMP type represents a container that holds a calendar date
and clock time of form YYYYMMDDhhmmss, where YYYY is a four-digit year,
MM is a two-digit month, DD is a two-digit day, hh is a two-digit hour, mm is a
two-digit minute, and ss is a two-digit second. The supported range is 1970-01-
01 00:00:00 through sometime in the year 2037.

The TIMESTAMP type maps to a TIMESTAMP JDBC type, which in turn corre-
sponds to java.sql.Timestamp. The recommended ResultSet getter method for
retrieving TIMESTAMP types is getTimestamp().

Using Date and Time Types

The code in Listing 7.2 demonstrates the use of date and time column types.
Statement and PreparedStatement objects are used to create and populate a
table that stores date and time types. The table is then queried, the column
values extracted, and the results written to the standard output. Though more
sophisticated processing is certainly possible, this example simply manipu-
lates, or uses directly, the string representations of the java.sql.Time,
java.sql.Date, and java.sql.Timestamp classes in order to generate output in a
standard format.

Using Date and Time Types 173

M y S Q L Ty p e M a p p i n g174

try

{

String createSql = "CREATE TABLE jmDateAndTime ("

+ "jmDate DATE, jmTime TIME, "

+ "jmDatetime DATETIME, jmYear YEAR, "

+ "jmTimestamp TIMESTAMP)";

Statement stmt = conn.createStatement();

stmt.execute(createSql);

java.sql.Date dateValue = java.sql.Date.valueOf("1969-07-20");

java.sql.Time timeValue = java.sql.Time.valueOf("18:37:29");

Timestamp datetimeValue = Timestamp.valueOf("2000-12-31 23:59:59");

java.sql.Date yearValue = java.sql.Date.valueOf("1972-01-01");

Timestamp timestampValue = Timestamp.valueOf("2001-02-03 04:05:06");

String insertSql = "INSERT INTO jmDateAndTime "

+ "VALUES (?,?,?,?,?)";

PreparedStatement pstmt = conn.prepareStatement(insertSql);

pstmt.setDate(1, dateValue);

pstmt.setTime(2, timeValue);

pstmt.setTimestamp(3, datetimeValue);

pstmt.setDate(4, yearValue);

pstmt.setTimestamp(5, timestampValue);

pstmt.execute();

ResultSet results = stmt.executeQuery("SELECT * from jmDateAndTime");

results.next();

// Extract DATE and TIME values

dateValue = results.getDate("jmDate");

System.out.println("jmDate : " + dateValue.toString());

timeValue = results.getTime("jmTime");

System.out.println("jmTime : " + timeValue.toString());

// Extract DATETIME value

datetimeValue = results.getTimestamp("jmDatetime");

String datetimeStr = datetimeValue.toString();

StringTokenizer datetimeTok = new StringTokenizer(datetimeStr, ".");

System.out.println("jmDatetime : " + datetimeTok.nextToken());

// Extract YEAR value

Listing 7.2 Using date and time columns types. (continues)

Numeric Column Types 175

yearValue = results.getDate("jmYear");

String yearStr = yearValue.toString();

StringTokenizer yearTok = new StringTokenizer(yearStr, "-");

System.out.println("jmYear : " + yearTok.nextToken());

// Extract TIMESTAMP value

timestampValue = results.getTimestamp("jmTimestamp");

String timestampStr = timestampValue.toString();

StringTokenizer timestampTok =

new StringTokenizer(timestampStr, "-:. ");

StringBuffer timedateBuf = new StringBuffer(14);

timedateBuf.append(timestampTok.nextToken()); // Year

timedateBuf.append(timestampTok.nextToken()); // Month

timedateBuf.append(timestampTok.nextToken()); // Day

timedateBuf.append(timestampTok.nextToken()); // Hour

timedateBuf.append(timestampTok.nextToken()); // Minute

timedateBuf.append(timestampTok.nextToken()); // Second

System.out.println("jmTimestamp: " + timedateBuf.toString());

}

catch(SQLException sqlX)

{

System.err.println(sqlX);

}

Listing 7.2 Using date and time columns types. (continued)

Numeric Column Types

The numeric column types, summarized in Table 7.3, provide a means for han-
dling integer and floating point values of differing size. It is important to note
that, by default, MySQL integer types are signed. The column type mappings
discussed in the following sections assume this default and are not necessarily
valid where a column type is defined with an unsigned attribute. In such cases,
using the mapping for the next largest type is typically a reasonable approach,
given that the Java language does not support unsigned types.

Table 7.3 Numeric Column Types (continues)

MYSQL TYPE JDBC TYPE JAVA TYPE

TINYINT TINYINT byte

SMALLINT SMALLINT short

MEDIUMINT INTEGER int

INT INTEGER int

BIGINT BIGINT long

FLOAT REAL float

DOUBLE DOUBLE double

DECIMAL DECIMAL java.math.BigDecimal

TINYINT
The MySQL TINYINT type represents the smallest available integer type. Values
of this type require one byte of storage and may take on values in the range –128
to 127 (0 to 255 if unsigned). MySQL aliases for this type include BIT and BOOL.

The TINYINT type maps to a TINYINT JDBC type, which in turn corresponds to
a Java byte. The recommended ResultSet getter method for retrieving TINYINT
types is getByte(). If the column type is modified by the unsigned attribute, con-
sider using the MySQL SMALLINT mapping.

SMALLINT
The MySQL SMALLINT type represents a small integer type. Values of this type
require two bytes of storage and may take on values in the range –32768 to
32767 (0 to 65535 if unsigned).

The SMALLINT type maps to a SMALLINT JDBC type, which in turn corre-
sponds to a Java short. The recommended ResultSet getter method for retriev-
ing SMALLINT types is getShort(). If the column type is modified by the
unsigned attribute, consider using the MySQL MEDIUMINT or INT mapping.

MEDIUMINT
The MySQL MEDIUMINT type represents an intermediate size integer type. Val-
ues of this type require three bytes of storage and may take on values in the
range –8388608 to 8388607 (0 to 16777215 if unsigned).

The MEDIUMINT type maps to an INTEGER JDBC type, which in turn corre-
sponds to a Java int. The recommended ResultSet getter method for retrieving
MEDIUMINT types is getInt(). Since a Java int is a four-byte type, this mapping

M y S Q L Ty p e M a p p i n g176

Table 7.3 Numeric Column Types (continued)

MYSQL TYPE JDBC TYPE JAVA TYPE

is also appropriate where the column type is modified by the unsigned
attribute.

INT
The MySQL INT type represents the basic integer type. Values of this type re-
quire four bytes of storage and may take on values in the range –2147483648 to
2147483647 (0 to 4294967295 if unsigned). The MySQL INTEGER type is an alias
for this type.

The INT type maps to an INTEGER JDBC type, which in turn corresponds to a
Java int. The recommended ResultSet getter method for retrieving INT types is
getInt(). If the column type is modified by the unsigned attribute, consider
using the MySQL BIGINT mapping.

BIGINT
The MySQL BIGINT type represents the largest integer type. Values of this type
require eight bytes of storage and may take on values in the range
–9223372036854775808 to 9223372036854775807 (0 to 18446744073709551615 if
unsigned).

The BIGINT type maps to a BIGINT JDBC type, which in turn corresponds to a
Java long. The recommended ResultSet getter method for retrieving BIGINT
types is getLong(). Use of unsigned BIGINT column types is not generally rec-
ommended since any arithmetic involving such types is susceptible to overflow
and truncation errors.

FLOAT
The MySQL FLOAT type represents the smaller of two available floating-
point types. Values of this type require four bytes of storage and allow values
of –3.402823466E+38 to –1.175494351E-38, 0, and 1.175494351E-38 to
3.402823466E+38.

The FLOAT type maps to a REAL JDBC type, which in turn corresponds to a
Java float. The recommended ResultSet getter method for retrieving FLOAT
types is getFloat(). Note that the JDBC FLOAT type corresponds to an eight-
byte floating-point value, rather than a four-byte type.

DOUBLE
The MySQL DOUBLE type represents the larger of two available floating-
point types. Values of this type require eight bytes of storage and allow

Numeric Column Types 177

values of –1.7976931348623157E+308 to –2.2250738585072014E-308, 0, and
2.2250738585072014E -308 to 1.7976931348623157E+308. MySQL aliases for this
type include REAL and DOUBLE PRECISION.

The DOUBLE type maps to a DOUBLE JDBC type, which in turn corresponds
to a Java double. The recommended ResultSet getter method for retrieving
DOUBLE types is getDouble().

DECIMAL
The MySQL DECIMAL type represents a general numeric value. It differs from
the other numeric column types in that the value is stored as a sequence of
characters; in a sense, it might be considered a very specialized character col-
umn type. MySQL aliases for this type include DEC and NUMERIC.

The DECIMAL type maps to a DECIMAL JDBC type, which in turn corresponds
to java.math.BigDecimal. The recommended ResultSet getter method for re-
trieving DECIMAL types is getBigDecimal().

Using Numeric Types

The code in Listing 7.3 demonstrates the use of numeric column types. State-
ment and PreparedStatement objects are used to create and populate a table
that stores numeric types. The table is then queried, the column values ex-
tracted, and the results written to the standard output.

M y S Q L Ty p e M a p p i n g178

try

{

String createSql = "CREATE TABLE jmNumeric ("

+ "jmTinyint TINYINT, jmSmallint SMALLINT, "

+ "jmMediumint MEDIUMINT, jmInt INT, "

+ "jmBigint BIGINT, "

+ "jmFloat FLOAT, jmDouble DOUBLE, "

+ "jmDecimal DECIMAL(10,3))";

Statement stmt = conn.createStatement();

stmt.execute(createSql);

byte tinyintValue = 16;

short smallintValue = 4096;

int mediumintValue = 1048576;

int intValue = 268435456;

Listing 7.3 Using numeric column types. (continues)

Using Numeric Types 179

long bigintValue = 8589934592L;

float floatValue = 3.3E+38F;

double doubleValue = 1.7E+308;

BigDecimal decimalValue = new BigDecimal("1234567.890");

String insertSql = "INSERT INTO jmNumeric "

+ "VALUES (?,?,?,?,?,?,?,?)";

PreparedStatement pstmt = conn.prepareStatement(insertSql);

pstmt.setByte(1, tinyintValue);

pstmt.setShort(2, smallintValue);

pstmt.setInt(3, mediumintValue);

pstmt.setInt(4, intValue);

pstmt.setLong(5, bigintValue);

pstmt.setFloat(6, floatValue);

pstmt.setDouble(7, doubleValue);

pstmt.setBigDecimal(8, decimalValue);

pstmt.execute();

ResultSet results = stmt.executeQuery("SELECT * from jmNumeric");

results.next();

// Extract TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT values

tinyintValue = results.getByte("jmTinyint");

System.out.println("jmTinyint : " + tinyintValue);

smallintValue = results.getShort("jmSmallint");

System.out.println("jmSmallint : " + smallintValue);

mediumintValue = results.getInt("jmMediumint");

System.out.println("jmMediumint: " + mediumintValue);

intValue = results.getInt("jmInt");

System.out.println("jmInt : " + intValue);

bigintValue = results.getLong("jmBigint");

System.out.println("jmBigint : " + bigintValue);

// Extract FLOAT and DOUBLE values

floatValue = results.getFloat("jmFloat");

System.out.println("jmFloat : " + floatValue);

doubleValue = results.getDouble("jmDouble");

System.out.println("jmDouble : " + doubleValue);

// Extract DECIMAL value

decimalValue = results.getBigDecimal("jmDecimal");;

System.out.println("jmDecimal : " + decimalValue.toString());

}

Listing 7.3 Using numeric column types. (continues)

M y S Q L Ty p e M a p p i n g180

catch(SQLException sqlX)

{

System.err.println(sqlX);

}

Listing 7.3 Using numeric column types. (continued)

What’s Next

In this chapter, we gave you an overview of the details involved in mapping data
types between Java and MySQL. We discussed mappings that provide the infor-
mation you need to safely insert and extract MySQL column values using Java
client code. In the next chapter, we turn our attention to the important topic of
database transactions.

Data integrity is one of the most important concepts you have to grasp
when writing applications that manipulate a database. It is vital that the
information in the database remain consistent and accurate. While

there may be times when only a single application is reading information from
the database and making updates, more than likely multiple users as well as
multiple applications use the database at the same time. This means that two
people might be updating a customer’s record at the same time, which means
that the data from the updates is mixed. Or one application might be updating a
value in a record at the time that another application is reading the same record
and inserting another row. In these types of situations, the database data can
become “dirty”—in other words, it won’t accurately model the real world. In
this chapter, we look at the concept of transactions and table locking within
MySQL and how you can use Connector/J to support database data integrity.

Understanding the Problem

Before we get into the technical information necessary to support transactions,
let’s look at an example to fully illustrate the problem caused by multiple simul-
taneous database accesses. Consider the acc_acc table, where an account’s
username and password is stored. The most active row is designated by the ts
field with a value of 0. If a user changes his or her password, you don’t update
the row in the database; instead, you inactivate the current row by setting the ts
field equal to the current time. A new row is then inserted into the database
with the same information as the inactive row, except the password is new and

Transactions and Table Locking
with Connector/J

C H A P T E R 8

181

the act_ts field contains the current time. The act_ts of the new row links the
row with the previously changed row. Now, you can easily store the current
time; thus, you can update the old row with ts = current time and simply insert
the new row. It doesn’t seem as if a transaction is necessary.

However, consider that once the current row is updated with ts = current time,
there will be no active rows for the account. If another application tries to
access the account, an empty set is returned. You cannot insert the new row
first because then there would be two rows with a ts field equal to 0. After
updating the current row, you expect the new row to be inserted right away—-
which means there will be a short time when a ts=0 row isn’t available for the
account.

But what happens if the application’s database connection fails or the query is
bad? The account wouldn’t have a ts=0 row available. By using a transaction,
you tell the system that all of the operations within the transaction need to com-
plete successfully; otherwise, the transaction should fail and the system should
roll back all of the changes to the previous values. In our example later in this
chapter, we explore several scenarios where transactions are needed to main-
tain integrity.

Under the covers, the code that implements transactions must lock the appro-
priate database table at some level. The locking keeps other applications from
accessing the data in the table. The most inflexible locking occurs at the table
level. This means if we execute an update like UPDATE acc_acc, the system
will lock the entire acc_acc table and not allow any access to the data. A better
solution is to lock only the row or rows where the update needs to occur. As we
see in the next section, table types are available in MySQL for row-level trans-
action locking.

MySQL's Transaction Table Types

Originally, the MySQL database server didn’t support transaction tables. With
the addition of the BDB table type from sleepycat.com and InnoDB from inn-
odb.com, MySQL allows data to be updated in atomic operations to help elimi-
nate the problems we’ve been discussing. In this section, we provide a brief
overview of the table types and how they are used in MySQL.

The InnoDB Table Type
The InnoDB table type, provided by www.innodb.com, is actually its own data-
base back end glued to MySQL. The system provides full transaction support
along with crash recovery. When a transaction write occurs, InnoDB will set a

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J182

lock at a row level only. It also gives you the ability to perform SELECT queries
that don’t need to lock the table. As a complete system, InnoDB has been opti-
mized for performance and large data support. According to Innobase Oy
(www.innodb.com), InnoDB has worked well in situations with over 1 terabyte
of data stored using the table type.

The InnoDB table type is available in MySQL-Max distributions. If you are using
or have downloaded a source distribution, you must compile in InnoDB sup-
port with the –with-innodb Configure flag. In addition, you should make avail-
able several InnoDB table options in the my.cnf MySQL configuration file. The
example configuration files supplied with the binary distribution include the
following options and values:

innodb_data_file_path = ibdata1:1000M

innodb_data_home_dir = c:\ibdata

innodb_log_group_home_dir = c:\iblogs

innodb_log_arch_dir = c:\iblogs

set-variable = innodb_mirrored_log_groups=1

set-variable = innodb_log_files_in_group=3

set-variable = innodb_log_file_size=5M

set-variable = innodb_log_buffer_size=8M

innodb_flush_log_at_trx_commit=1

innodb_log_archive=0

set-variable = innodb_buffer_pool_size=16M

set-variable = innodb_additional_mem_pool_size=2M

set-variable = innodb_file_io_threads=4

set-variable = innodb_lock_wait_timeout=50

Here’s a description of these variables:

innodb_data_file_path—The path appended to the
innodb_data_home_dir directory where the data files should be placed
along with the minimum/maximum file sizes.

innodb_data_home_dir—The home directory for InnoDB tables. If this
directory is not specified, the data directory defined for MySQL is used.

innodb_log_group_home_dir—The path to InnoDB log files.

innodb_log_arch_dir—The path to archived InnoDB log files if archiving
is used.

innodb_mirrored_log_groups—The total number of mirrored log files.

innodb_log_files_in_group—The total number of log files to use in a
rotation.

innodb_log_file_size—The total size of the log file group.

innodb_log_buffer_size—The size of the buffer used for InnoDB before
writing to the log.

MySQL's Transaction Table Types 183

innodb_flush_log_at_trx_commit—If set to 1, a commit causes the trans-
action information to be flushed to the log.

innodb_log_archive—Set to a value of 0 as archiving occurs within MySQL.

innodb_buffer_pool_size—The size of the various InnoDB caches.

innodb_additional_mem_pool_size—The size of the InnoDB cache for
ancillary information.

innodb_file_io_threads—The total number of threads used to handle I/O.

innodb_lock_wait_timeout—The time (in seconds) that InnoDB waits for
a lock before automatically rolling back a transaction.

As these variables show, MySQL devotes a good deal of attention to the log files.
The reason for this is that the logs are used for transaction and recovery sup-
port and are vital to the operation of the InnoDB table type. For this reason, the
logs should be located on a drive other than the drive where the actual data is
stored.

The BDB Table Type
The BDB table type, supplied by www.sleepycat.com, also provides transaction
and crash recovery support. For the most part, BDB is a less advanced system
than InnoDB, but it still provides full support for transactions. You must make
the appropriate configuration changes on source distributions by using the
–with-bdb Configure option.

Once you’ve installed the BDB table type, make the following values available
in the MySQL configuration file:

bdb-home—The base directory for BDB tables. Typically, this will be the
same as the MySQL data directory.

bdb-logdir—The directory used for log files; it should be different from the
directory used for tables.

bdb_cache_size—The cache size; 384MB is the value provided in sample
configuration files.

bdb_max_lock—The total number of locks allowed in the system; 100000
is the value provided in the sample configuration files.

Converting to Transactional from
Nontransactional

If you have a table that is based on a nontransactional table type and you want
to use transactions, you have to convert the table type to either InnoDB or BDB.
There are several ways to accomplish this task.

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J184

The first is using the ALTER TABLE command. For example, if you have a table
named acc_acc that you want to convert to InnoDB or BDB, use this format:

ALTER TABLE acc_acc TYPE = InnoDB

The system handles the conversion of the table automatically. However, the
InnoDB documentation states that you should not convert a MyISAM table type
in this manner. Here’s a safer method:

1. Create a new destination table with columns identical to the source table
but use a table type of InnoDB or BDB.

2. Copy the records from the source table to the destination table. The com-
mand to do this is

INSERT INTO destinationTable SELECT * FROM sourceTable

3. Rename the source table.

4. Rename the destination table to the source table’s previous name.

Performing Transactions in MySQL

Whether you use InnoDB or BDB, transaction handling in a database adds a
high degree of integrity to the database. In the remainder of this chapter, we
discuss how to activate transactions with the autocommit variable, and we
examine various queries which can take advantage of transactions.

Using the autocommit Variable
The MySQL database server—and just about all database systems that support
transactions—use a variable called autocommit to determine how updates to
the database should be handled. By default, autocommit is set to a value of true
or 1, which indicates that all updates (insert, update, delete, and so forth)
should be automatically committed to the database. In Figure 8.1, we show a
SELECT performed on the acc_acc table looking at acc_id 1034546. Notice the
ts field has a value other than 0. We use an UPDATE query to change the value
of ts to 0, thus activating the row. When we execute the SELECT query again,
we see that the ts field has been successfully changed. The value of 0 has been
permanently written to the database table, and the previous value for the ts
field has been lost and cannot be replaced outside a database restore.

Now we can change the value of autocommit to 0 or false in order to activate
the concept of transactions. Figure 8.2 shows an example of SQL we entered
using the MySQL administration tool. As the figure shows, the autocommit vari-
able is set to 0. The beginning of the transaction is indicated by using either
BEGIN or BEGIN WORK or a SQL command.

Performing Transactions in MySQL 185

Figure 8.1 Here, autocommit is set to true.

Next, we perform a SELECT to show the fields for acc_id = 1034546. Notice the
value of the password field. We perform an UPDATE query to change the value
of the password and perform a SELECT right after the UPDATE to verify that
the password has been changed. However, at this point we notice the password
is wrong, so we execute a rollback SQL command. The rollback cancels the
UPDATE—which we verify by executing another SELECT query to show the
password has been changed back to its original value.

The autocommit variable is valid only against transactional table types. If an
UPDATE query is performed against a nontransactional table, the autocommit
variable value is ignored and the UPDATE is made permanent.

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J186

Figure 8.2 An example of a transaction.

In these examples, we used the MySQL administration tool to show how trans-
actions work. In the next few sections, we illustrate transactions using Java and
Connector/J.

Update Transactions
Earlier, we discussed a scenario where you need to update and insert rows that
rely on each other. For example, suppose you want to change the ts value on
one row and insert a new row with the same value for the act_ts. You aren’t nec-
essarily concerned with the timestamp value, but you must take into account
the lack of a ts=0 row should the update or insert fail. Consider the following
query and row from a test database:

mysql> select * from acc_add where acc_id = 1034055;

+--------+---------+----------+----------------+----------------+

| add_id | acc_id | name | ts | act_ts |

+--------+---------+----------+----------------+----------------+

| 30004 | 1034055 | John Doe | 00000000000000 | 20021015200759 |

+--------+---------+----------+----------------+----------------+

1 row in set (0.00 sec)

In this table row, you find a record with a ts value of 0. Let’s change the address
for this account, 1034055, which means the ts of this row should be non-zero
and a new row inserted with the new address. The code in Listing 8.1 shows
how you might do this from Java.

Performing Transactions in MySQL 187

import java.sql.*;

import java.io.*;

public class Transaction1 {

Connection connection;

public Transaction1() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

connection = DriverManager.getConnection(

"jdbc:mysql://192.168.1.25/accounts?

user=spider&password=spider");

}

catch (Exception e) {

System.err.println("Unable to find and load driver");

System.exit(1);

Listing 8.1 A transaction to update/insert rows. (continues)

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J188

}

}

public void doWork() {

try {

java.util.Date now = new java.util.Date();

connection.setAutoCommit(false);

Statement statement = connection.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = statement.executeQuery(

"SELECT * FROM acc_add WHERE acc_id = 1034055

and ts = 0");

// set old row ts = current time

rs.next();

rs.updateTimestamp("ts", new Timestamp(now.getTime()));

rs.updateRow();

rs.moveToInsertRow();

rs.updateInt("add_id", rs.getInt("add_id"));

rs.updateInt("acc_id", rs.getInt("acc_id"));

rs.updateString("name", rs.getString("name"));

rs.updateString("address1", "555 East South Street");

rs.updateString("address2", "");

rs.updateString("address3", "");

rs.updateString("city", rs.getString("city"));

rs.updateString("state", rs.getString("state"));

rs.updateString("zip", rs.getString("zip"));

rs.updateTimestamp("ts", new Timestamp(0));

rs.updateTimestamp("act_ts", new Timestamp(now.getTime()));

rs.insertRow();

connection.commit();

rs.close();

statement.close();

connection.close();

} catch(Exception e) {

try {

connection.rollback();

} catch (SQLException error) { }

e.printStackTrace();

}

}

public static void main(String[] args) {

Listing 8.1 A transaction to update/insert rows. (continues)

Performing Transactions in MySQL 189

Transaction1 trans = new Transaction1();

trans.doWork();

}

}

Listing 8.1 A transaction to update/insert rows. (continued)

When the code in Listing 8.1 executes, the following rows will be found in the
acc_add table based on an acc_id of 1034055. Notice the original row is now ts
<> 0 and the new row is ts=0.

mysql> select * from acc_add where acc_id = 1034055;

+--------+---------+----------+----------------+----------------+

| add_id | acc_id | name | ts | act_ts |

+--------+---------+----------+----------------+----------------+

| 30004 | 1034055 | John Doe | 20021028221407 | 20021015200759 |

| 30004 | 1034055 | John Doe | 00000000000000 | 20021028221407 |

+--------+---------+----------+----------------+----------------+

2 rows in set (0.00 sec)

In order to accomplish this successfully, we need to perform a transaction via
the doWork() method. Connector/J handles transactions using several methods
found in the Connection object:

■■ setAutoCommit(Boolean)—Sets MySQL’s autocommit variable.

■■ commit()—Commits all updates since the last commit()/rollback() method
call, if any.

■■ rollback()—Rolls back all updates since the last commit()/rollback()
method call, if any.

Our code begins by setting the autocommit variable to false:

connection.setAutoCommit(false);

We get the current time using the java.util.Date class. This time is used to set
the ts field of the current row and the act_ts field of the new row. The code uses
an UpdatableResult so the appropriate parameters are passed to the create-
Statement() method, as shown here:

Statement statement = connection.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Next, we execute a query to pull in a row with an acc_id of 1034055 and the ts
field equal to 0. Using the time value previously created, our code updates the
ts field to the new value and writes back the entire row to the database. Here’s
the relevant code:

rs.next();

rs.updateTimestamp("ts", new Timestamp(now.getTime()));

rs.updateRow();

Since we have set autocommit to false, the update won’t be made permanent
just yet. Now we need to insert the new row with the changed address infor-
mation. Here’s how we do that:

rs.moveToInsertRow();

rs.updateInt("add_id", rs.getInt("add_id"));

rs.updateInt("acc_id", rs.getInt("acc_id"));

rs.updateString("name", rs.getString("name"));

rs.updateString("address1", "555 East South Street");

rs.updateString("address2", "");

rs.updateString("address3", "");

rs.updateString("city", rs.getString("city"));

rs.updateString("state", rs.getString("state"));

rs.updateString("zip", rs.getString("zip"));

rs.updateTimestamp("ts", new Timestamp(0));

rs.updateTimestamp("act_ts", new Timestamp(now.getTime()));

rs.insertRow();

The key part of this code is setting the ts field to 0 and the act_ts field to the cur-
rent time. Now the two different updates must be committed to the database.
We do this with a call to the commit() method:

connection.commit();

But what about a rollback? We place the rollback() method in the catch code
for the try/catch block surrounding all of the code doing the database manipu-
lation. If any of the code throws an exception, the rollback() method fires and
all of the changes are removed from the database table. Our code then displays
an error message to let the user know his or her changes weren’t recorded.

The SELECT/INSERT Transaction
As the complexity of your application and its associated database increases,
you’ll inevitably come across situations in which a transaction is necessary to
create a snapshot of time: in order to grab a total, a momentary price, or some
other changing value. You must identify this changing value in a transaction so
it can be read and recorded without other applications trying to change the
data. For example, consider the following snippet of Java code:

connection.setAutoCommit(false);

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT MAX(acc_id) FROM

acc_acc");

rs.next();

int acc_id = rs.getString("max(acc_id)");

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J190

statement.executeUpdate(

"INSERT INTO acc_acc VALUES(" + acc_id + ", 'name',

'password', 0, " + date);

connection.commit();

In this code snippet, we insert a new account into the acc_acc table and we
want to know the currently largest acc_id value in the database. Since other
applications are trying to add accounts at the same time, we need a way to get
the maximum account value and insert the new row before another application
does its INSERT. When another application attempts to get the maximum
acc_id value and insert a new row, it will have to wait until the current transac-
tion is finished. When it gets a chance to update the database, that application
will receive an error because the maximum acc_id has already been used. All
applications should be able to recover from this type of situation by either
attempting to get the maximum acc_id again or choosing one randomly.

Multiple Table Transactions
If you are entering an entirely new account into the database, you probably
need to handle INSERT queries to acc_acc, acc_add, and the thumbnail tables.
Transactions can work across tables and databases as well, as the following
code shows:

connection.setAutoCommit(false);

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT MAX(acc_id) FROM

acc_acc");

rs.next();

int acc_id = rs.getInt("max(acc_id)") + 1;

statement.executeUpdate(

"INSERT INTO acc_acc VALUES(" + acc_id + ", 'name',

'password', 0, " + date);

rs = statement.executeQuery("SELECT MAX(add_id) FROM acc_add");

rs.next();

int add_id = rs.getInt("max(add_id) ") + 1;

statement.executeUpdate(

"INSERT INTO acc_add VALUES(" + add_id + ", " + acc_id + ",

'name', 'address1', null, null, 'city', 'state', 'zip', 0,

date) ";

rs = statement.executeQuery(

"SELECT MAX(thumb_id) FROM identificaton.thumbnail");

rs.next();

int thumb_id = rs.getInt("max(thumb_id) ") + 1;

statement.executeUpdate(

Performing Transactions in MySQL 191

"INSERT INTO identification.thumbnail VALUES(" + thumb_id +

", " + acc_id + ", null, null, 0, date) ";

connection.commit();

As you can see, we simply repeat the process of finding the maximum primary
key value, incrementing by 1 and INSERTing a new row into the appropriate
table. This code updates three different tables before performing a commit. If
any of the updates fail, a rollback() call is made in the catch code.

Foreign Key Integrity on Deletes
Finally, if you have to delete rows from a database, keep in mind that MySQL
and Connector/J don’t yet support the full concept of a foreign key and auto-
matic deletes. In other words, if you remove a row in acc_acc, you also remove
the corresponding rows in acc_add and identification.thumbnail. By using
transactions, you ensure that the rows are all removed under the umbrella of a
single transaction.

Ending a Transaction
In MySQL, executing a commit() method on the Connection method or commit;
command at the MySQL administrator prompt causes the transaction to be
written to the database permanently. The database server defines other com-
mands that cause a transaction to end in the same manner as a commit. These
commands are

■■ ALTER TABLE

■■ BEGIN

■■ CREATE INDEX

■■ DROP DATABASE

■■ DROP TABLE

■■ RENAME TABLE

■■ TRUNCATE

You can issue any of these commands before an official commit to make the
server commit the transaction—just as if you had used the commit command.

Transaction Isolation

In the chapter introduction, we stated that data integrity is an important
database concept. Transactions are designed to help with this goal, but when

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J192

multiple applications are performing transactions concurrently, several prob-
lems can arise. Three of the most common problems are dirty reads, phantom
reads, and nonrepeatable reads. You can address these issues by setting trans-
action isolation levels. The isolation levels available in MySQL and supported in
Connector/J are as follows:

TRANSACTION_NONE-—Puts no restrictions on the read and updates to
the database.

TRANSACTION_READ_UNCOMMITTED-—Allows uncommitted
changes by one transaction to be readable by other transactions.

TRANSACTION_READ_COMMITTED-—Makes all updates to a table
invisible to all other transactions until a commit is performed.

TRANSACTION_REPEATABLE_READ-—Keeps all SELECTs consistent
in a single transaction.

TRANSACTION_SERIALIZABLE-—Causes all read and updates to oper-
ate in a serialized sequence.

You set the various isolation levels by using the setTransactionLevel() method
associated with the Connection object. Table 8.1 shows how database perfor-
mance will be affected.

Table 8.1 Database Isolation Levels Supported in Connector/J

TRANSACTION DIRTY NON- PHANTOM PER-
LEVEL READS REPEAT- READS FORM-

ABLE ANCE

READS IMPACT

TRANSACTION_NONE N/A N/A N/A FASTEST

TRANSACTION_READ_UNCOMMITED Allows Allows Allows FASTEST

TRANSACTION_READ_COMMITED Prevents Allows Allows FAST

TRANSACTION_REPEATABLE_READ Prevents Prevents Allows MEDIUM

TRANSACTION_SERIALIZABLE Prevents Prevents Prevents SLOW

Dirty Reads
A dirty read occurs when incorrect data is read from a row update. Consider the
following sequence of commands from two transactions:

Step 1: Database row has ACC_ADD = 4510 and STATE = ‘AZ’.

Step 2: Connection1 starts Transaction1 (T1).

Transaction Isolation 193

Step 3: Connection2 starts Transaction2 (T2).

Step 4: T1 updates STATE = ‘IL’ for = ACC_ADD = 4510.

Step 5: Database now has STATE = ‘IL’ for ACC_ADD = 4510.

Step 6: T2 reads STATE = ‘IL’ for ACC_ADD = 4510.

Step 7: T2 commits transaction using STATE = ‘IL’.

Step 8: T1 rolls back the transaction because of some problem.

In this illustration, Transaction2 has read an update in the database that hasn’t
been committed yet. As it turns out, Transaction1 has a problem with the
update and rolls it back—but after Transaction2 has already read and updated
another row using the “bad” STATE value. To solve this problem, you can use
the read_committed, serializable, and repeatable_read isolation levels.

Phantom Reads
In a phantom read, during one transaction new rows are inserted into the data-
base by another transaction. For example:

Step 1: The database has a row ACC_ID = 4510 and ADD_ID = 10.

Step 2: Connection1 starts Transaction1 (T1).

Step 3: Connection2 starts Transaction2 (T2).

Step 4: T1 selects a row with a condition SELECT ACC_ID WHERE
ADD_ID = 10.

Step 5: T2 inserts a row with a condition INSERT ACC_ID=4520 WHERE
ADD_ID = 10.

Step 6: T2 commits the transaction.

Step 7: Database has two rows with that condition.

Step 8: T1 selects again with a condition SELECT ACC_ID WHERE
ADD_ID = 10 and gets two rows instead of one row.

Step 9: T1 commits the transaction.

The problem in this scenario is that Transaction1 will get two rows from the
same query. To keep this from occurring, you can use the serializable isolation
level.

Nonrepeatable Reads
In a nonrepeatable read situation, one transaction reads a database row and
receives two different values because another transaction has updated the row
between the reads. For example:

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J194

Step 1: A database row has ACC_ADD = 4510 and STATE = ‘AZ’.

Step 2: Connection1 starts Transaction1 (T1).

Step 3: Connection2 starts Transaction2 (T2).

Step 4: T1 reads STATE = ‘AZ’ for ACC_ADD = 4510.

Step 5: T2 updates STATE = ‘IL’ for ACC_ADD = 4510.

Step 6: T2 commits the transaction.

Step 7: The database row has ACC_ADD = 4510 and STATE = ‘IL’.

Step 8: T1 reads STATE = ‘IL’ for ACC_ADD = 4510.

Step 9: T1 commits the transaction.

In this example, Transaction1 reads a STATE value AZ initially and then read
the state value IL; however, it should only see a value of AZ when the SELECTs
are performed in the same transaction. To solve this problem, use the repeat-
able_read isolation level.

Table Locking

In our discussion of the SELECT/INSERT transaction, we described a situation
in which a transaction works to keep new duplicate records from being
inserted into the database. Even if two or more applications get the same max-
imum acc_id, they will be unable to complete the INSERT successfully because
the primary key will be violated with the duplicate acc_id values.

What if we could do another trick and block the SELECT so that no other appli-
cation would be able to do the SELECT until after the transaction? Consider
this variation of the SELECT/INSERT code:

connection.setAutoCommit(false);

Statement statement = connection.createStatement();

statement.executeUpdate("LOCK TABLES acc_acc WRITE");

ResultSet rs = statement.executeQuery("SELECT MAX(acc_id) FROM

acc_acc");

rs.next();

int acc_id = rs.getInt("max(acc_id)") + 1;

statement.executeUpdate(

"INSERT INTO acc_acc VALUES(" + acc_id + ", 'name',

'password', 0, " + date);

connection.commit();

statement.executeUpdate("UNLOCK TABLES");

In this new code, we have added two additional queries. The first one is

statement.executeUpdate("LOCK TABLES acc_acc WRITE");

Table Locking 195

This query causes the MySQL database server to lock the acc_acc table for writ-
ing—which also blocks all SELECTs except for the current connection. When
this query executes, the server throws a database lock on the acc_acc table for
all other connections to the server. No other connection will be able to work
with the table until the code executes the following statement:

statement.executeUpdate("UNLOCK TABLES");

This query unlocks the database lock on acc_acc and allows other blocking
applications access to the database table. Clearly the act of locking a database
table can have interesting side effects on the other applications waiting to work
with the table. The worst situation that can occur is that the current application
crashes and the lock isn’t released on the acc_acc table—which causes the sys-
tem to come to a halt.

When using a SELECT/INSERT transaction and the SELECT is vital to the
INSERT, you either have to lock the table where the SELECT occurs or handle
the errors that occur when the application attempts to insert a duplicate pri-
mary key into the database.

What’s Next

Multiple users as well as multiple applications typically use a database at the
same time—which means that updates can occur at the same time other appli-
cations are accessing the same database and tables. Transactions allow an
application to modify data without interference from those other applications.
In extreme cases, the application can lock an entire table and not allow writes
or reads.

In the next chapter, we explain how you can access the additional information
provided by database and ResultSet metadata.

Tr a n s a c t i o n s a n d Ta b l e L o c k i n g w i t h C o n n e c t o r / J196

The information stored in a database table isn’t always everything you
need when developing an application. If you are writing a servlet that will
be used to remotely administer the database, you might like to know

about current database features, what databases are defined, and other infor-
mation. The JDBC specification and Connector/J provide access to several
methods that allow an application to access information about the database as
well as information about a ResultSet object. In this chapter, we cover some of
the more common and useful methods found in the DatabaseMetaData object.
For a complete listing, refer to Appendix C.

Many of the methods allow arguments for determining which databases and
tables the methods should return information from. In these cases, you can use
the full string name of the table, or you can use string patterns in which the %
character is used to match 0 or more characters and the underscore (_) is used
to match one character.

Using Database Metadata

Connector/J provides information about the database server behind a connec-
tion by using the DatabaseMetaData object. This object is designed to provide
information in five major areas:

■■ General Source Information

■■ Feature Support

Using Metadata

C H A P T E R 9

197

■■ Data Source Limits

■■ SQL Objects Available

■■ Transaction Support

The code in Listing 9.1 provides a glimpse at some of the methods in each of
these five areas. The current JDBC specification and Connector/J implement
hundreds of attributes and methods in the DatabaseMetaData object, and we
can’t cover all of them here. See Appendix B to learn about all the attributes and
methods.

U s i n g M e t a d a t a198

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

//import javax.naming.spi.ObjectFactory;

import javax.sql.DataSource;

public class DatabaseInfo extends HttpServlet {

public void doGet(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;

Statement statement;

ResultSet rs;

outResponse.setContentType("text/html");

out = outResponse.getWriter();

try {

Context ctx = new InitialContext();

DataSource ds =

(DataSource)ctx.lookup("java:comp/env/jdbc/AccountsDB");

connection = ds.getConnection();

DatabaseMetaData md = connection.getMetaData();

statement = connection.createStatement();

out.println("<HTML><HEAD><TITLE>

Database Server Information</TITLE></HEAD>");

out.println("<BODY>");

Listing 9.1 A database metadata example. (continues)

Using Database Metadata 199

out.println("<H1>General Source Information</H1>");

out.println("getURL() - " + md.getURL() + "
");

out.println("getUserName() - " + md.getUserName() +

"
");

out.println("getDatabaseProductVersion - "

+ md.getDatabaseProductVersion() + "
");

out.println("getDriverMajorVersion - "

+ md.getDriverMajorVersion() + "
");

out.println("getDriverMinorVersion - "

+ md.getDriverMinorVersion() + "
");

out.println("nullAreSortedHigh - "

+ md.nullsAreSortedHigh() + "
");

out.println("<H1>Feature Support</H1>");

out.println("<H1>Data Source Limits</H1>");

out.println("getMaxRowSize - " + md.getMaxRowSize() + "
");

out.println("getMaxStatementLength - "

+ md.getMaxStatementLength() + "
");

out.println("getMaxTablesInSelect - "

+ md.getMaxTablesInSelect() + "
");

out.println("getMaxConnections - "

+ md.getMaxConnections() + "
");

out.println("getMaxCharLiteralLength - "

+ md.getMaxCharLiteralLength() + "
");

out.println("<H1>SQL Object Available</H1>");

out.println("getTableTypes()
");

rs = md.getTableTypes();

while (rs.next()) {

out.println("" + rs.getString(1));

}

out.println("");

out.println("getTables()
");

rs = md.getTables("accounts", "", "%", new String[0]);

while (rs.next()) {

out.println("" + rs.getString("TABLE_NAME"));

}

out.println("");

out.println("<H1>Transaction Support</H1>");

out.println("getDefaultTransactionIsolation() - "

+ md.getDefaultTransactionIsolation() + "
");

out.println("dataDefinitionIgnoredInTransactions() - "

+ md.dataDefinitionIgnoredInTransactions() + "
");

Listing 9.1 A database metadata example. (continues)

U s i n g M e t a d a t a200

out.println("<H1>General Source Information</H1>");

out.println("getMaxTablesInSelect - "

+ md.getMaxTablesInSelect() + "
");

out.println("getMaxColumnsInTable - "

+ md.getMaxColumnsInTable() + "
");

out.println("getTimeDateFunctions - "

+ md.getTimeDateFunctions() + "
");

out.println("supportsCoreSQLGrammar - "

+ md.supportsCoreSQLGrammar() + "
");

out.println("getTypeInfo()
");

rs = md.getTypeInfo();

while (rs.next()) {

out.println("" + rs.getString(1));

}

out.println("");

out.println("</BODY></HTML>");

} catch (Exception e) {

e.printStackTrace();

}

}

public void doPost(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

doGet(inRequest, outResponse);

}

}

Listing 9.1 A database metadata example. (continued)

When the code in Listing 9.1 executes, it displays five different areas of infor-
mation, as we explained earlier. Figures 9.1, 9.2, and 9.3 show the values dis-
played when the code executes against a test machine running MySQL 4.0.

Getting the Object
As the code in Listing 9.1 shows, the DatabaseMetaData object is obtained
using code like the following:

DatabaseMetaData md = connection.getMetaData();

Since the DatabaseMetaData object isn’t related to a statement or a query, you
can request the object using the getMetaData() method once you’ve established
a connection to a MySQL database.

Figure 9.1 Output from our database metadata example.

Using Database Metadata 201

Figure 9.2 Additional output from the metadata example.

Figure 9.3 The final two areas of output.

General Source Information
The General Source Information methods associated with the DatabaseMeta-
Data object are designed to give information about the MySQL database server
in general and are not specific to one database or table. The code in Listing 9.1
details just six of the many methods that provide information about the server.
Figure 9.1 shows the output generated from the following size methods:

getURL()—Returns a string with the URL used to connect to the database
server.

getUserName()—Returns the current user logged into the system on this
connection.

getDatabaseProductVersion()—Returns the version number of the data-
base server.

getDriverMajorVersion()—Returns the major version number of the
JDBC driver—Connector/J in our case.

getDriverMinorVersion()—Returns the minor version number of the
JDBC driver.

U s i n g M e t a d a t a202

nullsAreSortedHigh()—Returns a true/false value indicating whether
nulls will be sorted before or after the data.

getTimeDateFunctions()—Returns all of the time/data functions
available on the server.

getTypeInfo()—Returns a ResultSet object with all of the possible types
supported by the database server. The code to extract the information is

rs = md.getTypeInfo();

while (rs.next()) {

out.println("" + rs.getString(1));

}

Feature Support
Some of the more useful parts of the DatabaseMetaData object are the methods
associated with features supported on the server. Figure 9.1 shows the output
of the example methods:

supportsAlterTableWithDropColumn()—Returns true/false if the server
supports the ALTER TABLE command with a drop column.

supportsBatchUpdates()—Returns true/false if the driver and server
support batch updates.

supportsTableCorrelationNames()—Returns true/false if the database
server supports correlation names.

supportsPositionedDelete()—Returns true/false if the server supports
positioned DELETE commands.

supportsFullOuterJoins()—Returns true/false if the server supports full
nested outer joins.

supportsStoredProcedures()—Returns true/false if the server supports
stored procedures.

supportsMixedCaseQuotedIdentifiers()—Returns true/false if identi-
fiers can be mixed case when quoted.

supportsANSI92EntryLevelSQL()—Returns true/false if the server
supports the entry-level SQL for ANSI 92.

supportsCoreSQLGrammar()—Returns true/false if the server supports
core ODBC SQL grammar.

What makes these methods useful is the fact that your application can execute
different code based on the support provided by the MySQL and Connector/J.
You could write your application to support older versions of the database as
well as the cutting-edge development version by keeping track of the features
supported.

Using Database Metadata 203

Data Source Limits
Figure 9.2 shows the output generated for the chosen methods under Data
Source Limits. These methods provide information on the total number of spec-
ified elements that will be returned or allowed. The examples methods are

getMaxRowSize()—Returns the maximum number of bytes allowed in a
row.

getMaxStatementLength()—Returns the maximum length of a statement.

getMaxTablesInSelect()—Returns the maximum number of tables that
can appear in a SELECT.

getMaxColumnsInTable()—Returns the maximum number of columns
that can be defined in a table.

getMaxConnections()—Returns the maximum number of concurrent
connections currently defined.

getMaxCharLiteralLength()—Returns the maximum number of charac-
ters allowed in a literal.

SQL Object Available
The SQL Object Available methods are designed to give you information about
table types and other information about the actual SQL objects in the database
server. Figure 9.2 shows an example of the output generated from these methods:

getTableTypes()—Returns a ResultSet object with all of the table types
available on the current server.

getTables(database, schema, table, types)—Returns all of the tables in
a given database, having a specific schema, narrowed by table and type. The
schema parameter is ignored in Connector/J. The code for the call looks
like this:

rs = md.getTables("accounts", "", "%", new String[0]);

while (rs.next()) {

out.println("" + rs.getString("TABLE_NAME"));

}

The result returned by the getTables() method has the following columns
available: TABLE_CAT, TABLE_SCHEM, TABLE_NAME, TABLE_TYPE,
REMARKS, TYPE_CAT, TYPE_SCHEM, TYPE_NAME, SEL_REFERENC-
ING_COL_NAME, and REF_GENERATION.

Transaction Support
Transaction support is new to MySQL and Connector/J, and the DatabaseMeta-
Data object includes a few methods for determining transaction support, as
shown in Figure 9.3. The two methods are:

U s i n g M e t a d a t a204

getDefaultTransactionIsolation()—Returns the default transaction iso-
lation. Possible values are TRANSACTION_NONE,
TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COM-
MITTED, TRANSACTION_REPEATABLE_READ, and
TRANSACTION_SERIALIZABLE.

dataDefinitionIgnoredInTransactions()—Returns true/false indicating
whether data definition changes are ignored in a transaction.

The ResultSet Metadata

The database metadata provides fairly consistent data concerning the server
itself. We can also use the ResultSet metadata. Each time a query is made
against the database, all of the data is stored in the appropriate data structures
within the object. Along with the data, we can also obtain information about the
specific columns returned by the query.

The ResultSet object includes a method with the signature

ResultSetMetaData getMetaData();

This method returns a ResultSetMetaData object containing a dozen or so
methods that return all kinds of information about the columns returned in the
result. Let’s look at two different applications that show the majority of the
available methods.

Getting Column Information
In all of the applications to this point, we have assumed and hard-coded the
columns in the query that we know exist in the database table. If we have an
application that allows the user to enter a query or if the structure of the data-
base changes often, we might want to rely on the database itself to provide
information about the columns. The code in Listing 9.2 uses the ResultSetMeta-
Data object’s methods to determine column information.

The ResultSet Metadata 205

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

import javax.sql.DataSource;

public class SeeAccount extends HttpServlet {

Listing 9.2 A ResultSet metadata example. (continues)

U s i n g M e t a d a t a206

public void doGet(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;

Statement statement = null;

ResultSet rs;

try {

outResponse.setContentType("text/html");

out = outResponse.getWriter();

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup(

"java:comp/env/jdbc/AccountsDB");

connection = ds.getConnection();

statement = connection.createStatement();

rs = statement.executeQuery("SELECT * FROM acc_acc");

ResultSetMetaData md = rs.getMetaData();

out.println("<HTML><HEAD><TITLE>

Thumbnail Identification Record</TITLE></HEAD>");

out.println("<BODY>");

out.println("Account Information:
");

while (rs.next()) {

for (int i=1;i<=md.getColumnCount();i++) {

out.println(md.getColumnName(i) + " : "

+ rs.getString(i) + "
");

}

out.println("<HR>");

}

out.println("</BODY></HTML>");

} catch(Exception e) {

e.printStackTrace();

}

}

public void doPost(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

doGet(inRequest, outResponse);

}

}

Listing 9.2 A ResultSet metadata example. (continued)

Looking at the servlet in Listing 9.2, you can see that it executes a query to pull
back rows from the acc_acc table. Once the query has been executed, we
obtain the metadata from the ResultSet using this code:

ResultSetMetaData md = rs.getMetaData();

To show how to use the metadata, use the following code:

while (rs.next()) {

for (int i=1;i<=md.getColumnCount();i++) {

out.println(md.getColumnName(i) + " : " +

rs.getString(i) + "
");

}

out.println("<HR>");

}

The outer loop is designed to move through each of the rows in the ResultSet
object. In the past, we have displayed the information by pulling each of the
field values using the name of the column or a value. For example:

out.println("acc_id = " + rs.getString("acc_id"));

Instead, let’s use some of the information returned by the DatabaseMetaData
object. First, we create an inner loop that cycles through all of the fields in the
result. Without the metadata, there is no way to obtain this information. How-
ever, with the metadata we can make a call to the getColumnCount() method.
This method returns the total number of columns in the ResultSet. Obviously,
the column count will differ based on the actual query.

We could list all of the columns as long as we always know the query. While this
is going to be the case in most applications, let’s list all of the columns using the
getColumnCount(). Since we are going to display all of the column values, it
would be nice to display the actual column name. We can obtain the column
name from the metadata by using the getColumnName() method. This method
accepts the column number, starting at 1, and returns a string with the column
name.

The column name value will be the string value used in the query. For example,
if the SELECT query uses a * to obtain all of the columns in the specified query,
the getColumnName() method returns the column names defined by the table.
If you change the query and include functions or aliases, those strings are
returned. If you create a query to pull the account number from the acc_acc
table but want the column name to be “Account Number” instead of acc_id, use
this query:

SELECT acc_id "Account Number" FROM acc_acc

The getColumnName() method returns the “Account Number” string. Our code
displays the column name followed by the value in the column. The results of

The ResultSet Metadata 207

the code are shown in Figure 9.4. The DatabaseMetaData object includes a
method called getColumnLabel() that we can also use to display a suggested
column name such as “Account Number”.

U s i n g M e t a d a t a208

Figure 9.4 The ResultSet output.

Other ResultSet Metadata
In addition to determining the total number of columns in a ResultSet object
and the name of the columns, the DatabaseMetaData object includes other
methods for finding out information about each column value. Consider the
code in Listing 9.3.

out.println("<HTML><HEAD><TITLE>
Thumbnail Identification Record</TITLE></HEAD>");

out.println("<BODY>");
out.println("Account Information:
");
out.println("<table>");
out.println("<tr><td>");
for (int i=1;i<=md.getColumnCount();i++) {
out.println("Column #" + i + "
");
out.println("getColumnName : "
+ md.getColumnName(i) + "
");

out.println("getColumnClassName : "
+ md.getColumnClassName(i) + "
");

out.println("getColumnDisplaySize : "
+ md.getColumnDisplaySize(i) + "
");

Listing 9.3 Code for obtaining other metadata information. (continues)

The ResultSet Metadata 209

out.println("getColumnType : "
+ md.getColumnType(i) + "
");

out.println("getTableName : "
+ md.getTableName(i) + "
");

out.println("<HR>");
}

Listing 9.3 Code for obtaining other metadata information. (continued)

Let’s execute this code against the acc_acc and acc_add tables; we show part of
the output in Figure 9.4. Four primary ResultSetMetaData methods are used:

■■ getColumnClassName(int)

■■ getColumnDisplaySize(int)

■■ getColumnType(int)

■■ getTableName(int)

For each of the columns in the ResultSet object, we want to display specific
information about the data held in the column and characteristics of the code.
The first piece of information displayed for each column is the name of the col-
umn. Next, we display the name of the java.sql type the column is capable of
containing by using the getColumnClassName(int) method.

As you can see in Figure 9.5, the values pulled from the method will be in the
form of java.sql.type—such as java.sql.Integer or java.sql.String. If you aren’t
sure how to pull data from a table column, you can use this method:

String dataType = md.getColumnClassName(i);

if (dataType.indexOf(“Integer”) > 0)

int intData = rs.getInt(i);

else if (dataType.indexOf(“Timestamp”) > 0)

Timestamp tsData = rs.getTimestamp(i)

else

String stringData = rs.getString(i);

Our code compares the data type string pulled from the column against various
types. If it finds a match, the code uses a specific getType() method to obtain
the data in the column. After displaying the class name for the column, we dis-
play the maximum size of the data in the column by using the method get-
ColumnDisplaySize(int). The value returned is the maximum size of the data in
the field—not necessarily the real size of the data. Next, we display the column
type by using the getColumnType(int) method. The value returned is related to
the class type of the column and can be used to dictate how the data should be
handled within the application. Finally, we use the getTableName(int) method
to display the name of the table in which the column resides. If the initial query
uses a join, the strings displayed may be different since the columns will be
from different tables.

Figure 9.5 More ResultSet information.

What’s Next

In this chapter, we covered both the DatabaseMetaData and ResultSetMetaData
objects. We showed how you can obtain the information from both the data-
base and the result set, and we examined several ways to use the data. In the
next chapter, we cover how to use connection pooling within your applications
and servlet code.

U s i n g M e t a d a t a210

When an application connects to the database server, it can query for
results, perform transactions, and change the data as needed. When it
finishes all of its work, the application closes the connection. If the

application needs more data, it can make a new connection and perform addi-
tional queries. Each time the application needs data, it opens a connection and
then closes the connection when it finishes. This process is time-consuming
and uses resources.

A savvy developer will notice the connection to the database server is being
constantly opened and closed—so the developer ensures that the connection to
the database server is opened when the application starts and closed when the
application finishes. Such an approach might work for a simple application exe-
cuting on a single client machine, but what if the application is being used by 50
call-center employees? Should the database server have 50 constant connec-
tions to the client applications? Probably not.

The solution is to use a connection pool, which automatically handles connec-
tions to the database and allocates them to applications as needed. The appli-
cation will think it is opening a new connection, but it will actually be reusing
one previously opened. In this chapter, we discuss the concepts behind JDBC’s
implementation of a connection pool. We also examine third-party connection
pool software for use with the DriverManager, and we describe how to use con-
nection pools with an application server.

Connection Pooling with
Connector/J

C H A P T E R10

211

What Is a Connection Pool?

A connection pool is a cache of database connections that can be reused by one
or more applications. The pool creates connections to the database as needed
(until reaching a specified maximum count) and keeps those connections open
for use by any application that needs to obtain data from the database. Figure
10.1 shows how the connection pool looks to the system.

C o n n e c t i o n Po o l i n g w i t h C o n n e c t o r / J212

Connection Pool

Application Application

Figure 10.1 The connection pool.

To see how the connection pool aids in the execution of multiple applications
to the same database, consider the following example. Two servlets are execut-
ing on a server, and they need access to the database. Each of the applications
will (independently of each other) create a connection to the database, execute
their queries, and close the connection. Regardless of whether the two applica-
tions build their connections at the same time or sequentially, two connections
are created and destroyed. If the system uses a connection pool, each of the
applications can ask the pool for a connection to the database instead of creat-
ing their own.

If this is the first time a request is being made to a connection to the database,
the connection pool creates the physical connection and passes it to the
requesting application. When the application closes the connection, the pool
doesn’t physically close the connection to the database but keeps it open in the
event that another application needs it. When a second application needs the
database, it makes its request of the connection pool. The connection pool
returns the same connection it had created for the first application. The second

application doesn’t have to wait for the physical connection to be opened. Over
time, the savings created by using a connection pool can be great.

In the event the first application hasn’t closed its connection to the database
when the second application needs it, the connection pool opens another phys-
ical connection. Typically, the connection pool keeps a specified number of
physical connections open to the database as needed. If there are only a couple
applications making requests of the pool, only a couple of physical connections
are needed.

As you’ll see in the next two sections, connection pools are created in different
ways depending on whether you are using a DataSource object or the Driver-
Manager to connect to the database server.

Pooling with DataSource

When a Java application server is used to handle the execution of code—like a
servlet, for example—the connection to the database is handled through a
DataSource and a JNDI entry. The marriage of an application server and JDBC
allows for the creation of connection pools behind the scene. From the appli-
cation’s standpoint, there isn’t any difference between getting a normal con-
nection to the database and a connection pooled in a cache.

To activate the connection pool functionality, look at the JNDI entry found in
the application server’s configuration file. Here’s the entry we find from Chap-
ter 6 when we first looked at writing servlets that needed database access:

<resource-ref>

<res-ref-name>jdbc/AccountsDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<init-param driver-name="org.gjt.mm.mysql.Driver"/>

<init-param url="jdbc:mysql://localhost:3306/accounts"/>

<init-param user=""/>

<init-param password=""/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

</resource-ref>

For connection pools, the element we want to concentrate on is <res-type>.
This element tells the application server which class should be used to imple-
ment the associated resource. When we weren’t using connection pooling, we
used the DataSource class. The <init-param> max-connections element told the
class how many concurrent connections could be made to the database at any
given time. The JDBC specification for connection pooling uses a different
class, called javax.sql.ConnectionPoolDataSource. The class replaces Data-
Source, as shown in the following <res-type> element:

<res-type>javax.sql.ConnectionPoolDataSource</res-type>

Pooling with DataSource 213

To support the ConnectionPoolDataSource, the specification defines a few new
parameters, as shown in Table 10.1.

Table 10.1 ConnectionPoolDataSrouce Parameters

PROPERTY NAME TYPE DESCRIPTION

maxStatements int The maximum number of statements to pool; 0
means to disable.

initialPoolSize int The initial size of the pool when created.

minPoolSize int The minimum number of physical connections
that should be established on pool creation. 0
means that the system should create pools as
needed.

maxPoolSize int The maximum number of physical connections.
0 means no maximum.

maxIdleTime int The maximum number of seconds a
connection remains in the pool unused. 0
means no limit.

In order to exhibit the maximum control over the connection pool, use all of the
properties in Table 10.1. Note that the application server is allowed to use dif-
ferent property names for those listed, so you should consult your application
server documentation to determine the exact property names. For example, the
following configuration is used in the Resin application server:

<resource-ref>

<res-ref-name>jdbc/AccountsDB</res-ref-name>

<res-type>javax.sql.ConnectionPoolDataSource</res-type>

<init-param driver-name="org.gjt.mm.mysql.Driver"/>

<init-param url="jdbc:mysql://localhost:3306/accounts"/>

<init-param user=""/>

<init-param password=""/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

<init-param max-active-time="1"/>

<init-param max-pool-time="1"/>

<init-param connection-wait-time="1"/>

</resource-ref>

From this <resource-ref> element we see that

■■ The connection pool will have a maximum size of 20 connections.

C o n n e c t i o n Po o l i n g w i t h C o n n e c t o r / J214

■■ A connection can be idle for 30 minutes.

■■ The active time of a connection is one hour.

■■ The maximum time an idle connection can remain in the pool is one hour.

■■ A connection will wait for one minute before timing out.

To show how to use the connection pool from a servlet, consider the code in
Listing 10.1.

Pooling with DataSource 215

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

import javax.sql.DataSource;

public class SeeAccount extends HttpServlet {

public void doGet(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;

Statement statement = null;

ResultSet rs;

outResponse.setContentType("text/html");

out = outResponse.getWriter();

try {

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup(

"java:comp/env/jdbc/AccountsDB");

connection = ds.getConnection();

statement = connection.createStatement();

rs = statement.executeQuery("SELECT acc_id FROM acc_acc");

if (!rs.next()) {

out.println("<HTML>No Account Found</HTML>");

} else {

out.println("<HTML><HEAD><TITLE>

Listing 10.1 Our connection pool servlet. (continues)

C o n n e c t i o n Po o l i n g w i t h C o n n e c t o r / J216

Connection Pool Test</TITLE></HEAD>");

out.println("<BODY>");

out.println(rs.getString("acc_id") + "
");

out.println("</BODY></HTML>");

}

}

catch(Exception e) {

e.printStackTrace();

}

}

public void doPost(HttpServletRequest inRequest,

HttpServletResponse outResponse)

throws ServletException, IOException {

doGet(inRequest, outResponse);

}

}

Listing 10.1 Our connection pool servlet. (continued)

The code in Listing 10.1 outputs a list of all account numbers in the acc_acc
table. This isn’t very interesting on the surface, but it shows that the code itself
doesn’t need to change when you use a connection pool; the application server
handles the details.

To see how the connection pool reacts with multiple connections, let’s create
an HTML page that builds a table of calls to the servlet. Listing 10.2 shows the
HTML code, and Figure 10.2 shows the output from the HTML page. Figure 10.3
shows the process list from MySQL as a result of the HTML.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>

<HEAD><TITLE>Servlet Connection Pooling: A Test</TITLE></HEAD>

<!-- Causes 25 near simultaneous requests for same servlet. -->

<FRAMESET ROWS="*,*,*,*,*" BORDER=0 FRAMEBORDER=0 FRAMESPACING=0>

<FRAMESET COLS="*,*,*,*,*">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

Listing 10.2 Our connection pool test HTML code. (continues)

Pooling with DataSource 217

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

</FRAMESET>

<FRAMESET COLS="*,*,*,*,*">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

</FRAMESET>

<FRAMESET COLS="*,*,*,*,*">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

</FRAMESET>

<FRAMESET COLS="*,*,*,*,*">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

</FRAMESET>

<FRAMESET COLS="*,*,*,*,*">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

<FRAME SRC="/ca/JDBCServlet">

</FRAMESET>

</FRAMESET>

</HTML>

Listing 10.2 Our connection pool test HTML code. (continued)

As Figure 10.3 shows, the connection pool needs to open more than the initial
10 connections. Once the connections have finished executing, they will sit in
the pool for 30 seconds. All of the connections over 10 will be closed, and the
remaining connections will be left open for other applications that need the
database.

Figure 10.2 The output from our connection pool test.

C o n n e c t i o n Po o l i n g w i t h C o n n e c t o r / J218

Figure 10.3 The process list from MySQL.

Pooling with the DriverManager

When you’re using DataSource, using a connection pool is a piece of cake. Just
a change to the application server configuration file, and suddenly all of your
applications that use the database will be part of a connection pool and see
some level of performance increase. But what if you are using a Java applica-
tion that is living outside an application server?

Java applications will use the DriverManager to build connections to the data-
base. By default, the JDBC driver doesn’t support connection pooling. The
JDBC specification provides interfaces that can be implemented by an applica-
tion server to give connection pooling functionality. There are no such inter-
faces for the DriverManager side of things. For applications, you need to
provide your own connection pool. Fortunately, this isn’t a big deal. In fact, we
cover just one of many different libraries already created to handle connection
pools. A simple Web search for JDBC MySQL Connection Pool will reveal many
of them. Here are links to three of them:

■■ http://opensource.devdaily.com/ddConnectionBrokerDocs.shtml

■■ http://homepages.nildram.co.uk/~slink/java/DBPool/

■■ http://developer.java.sun.com/developer/onlineTraining/Programming/JDC-
Book/conpool.html

DDConnectionBroker
The first link is to the DDConnectionBroker package designed to work with
MySQL and an associated JDBC driver like Connector/J. On the page you will
find a link to download a JAR file called DDConnectionBroker.jar. Place this
JAR file in your CLASSPATH.

The JAR file includes code for a ConnectionPool with an API defined as:

DDConnectionBroker DDConnectionBroker(

String driver, // JDBC Driver

String url, // URL Connection String

String username, // username to access the database

String password, // password to access the database

int minConnections, // minimum number of connections

int maxConnections, // maximum number of connections

int timeout, // timeout for idle connections in pool

int leaseTime, // amount of time an application gets

String logFile // place to see the output from the

pool

)

Connection getConnection()

freeConnection(Connection)

That’s it! The key to the DDConnectionBroker connection pool class is the con-
structor. As you can see, we define the number of connections allowed in the pool,
the amount of time an idle connection will remain in the pool (in milliseconds),
and the total time an application may keep the connection (in milliseconds).

Listing 10.3 shows how the DDConnectionBroker pool can be used with our
simple application.

Pooling with the DriverManager 219

C o n n e c t i o n Po o l i n g w i t h C o n n e c t o r / J220

import java.io.*;

import java.sql.*;

public class Pool {

public static void main(String[] args) {

new Pool();

}

public Pool() {

setUp();

try {

broker = new DDConnectionBroker("com.mysql.jdbc.Driver",

"jdbc:mysql://localhost/accounts",

"",

"",

2,

10,

5000,

120000,

"c:\temp");

}

catch (SQLException se) {

System.err.println(se.getMessage());

System.err.println("Could not construct a broker,

quitting.");

System.exit(-1);

}

Connection connection = null;

try {

connection = broker.getConnection();

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT acc_id FROM

acc_acc");

while (rs.next()) {

System.out.println(rs.getString("acc_id"));

}

} catch (SQLException se) {

System.err.println(" an SQLException: "

+ se.getMessage());

} finally {

try {

broker.freeConnection(connection);

Listing 10.3 Using DDConnectionBroker with our application. (continues)

What’s Next 221

} catch (Exception e) {

System.err.println("an exception trying to free

Connection: "

+ e.getMessage());

}

}

}

}

Listing 10.3 Using DDConnectionBroker with our application. (continued)

As you can see from the listing, we create an object of the DDConnectionBro-
ker class with all of the information necessary to access our database. The con-
nection to the database is requested from the DDConnectionBroker object, the
connection is used, and then freed.

In a larger application, the connection pool could be instantiated to be used
throughout the entire code. That way, all connections to the database would
come from the pool and not from code that would create individual connec-
tions to the database.

What’s Next

In this chapter, we discussed how connection pools work. We included exam-
ples for using connection pools in both application server-based code and inde-
pendent Java applications where third-party software is used to build the pool.
In the next chapter, we discuss how to use Connector/J with Enterprise
JavaBeans.

When data is contained in a database, there is always an immediate
need to extract that data and present it to the user. One of the most
powerful aspects of a Web site is the ability to grant clients and cus-

tomers easy and immediate access to your data. This convenience for your cus-
tomers, however, represents a drastic increase in complexity for the database
developer. Now you must be concerned with new levels of database connectiv-
ity, security, and transaction processing. Enterprise Java Beans is one solution
to these issues. In this chapter we look at writing EJBs, under the Resin appli-
cation server, which have the ability to access a database.

Multi-tier Architecture

In the early days of software development, the most common way for a user to
access data was through a terminal connected to a mainframe. When PCs came
into production, they were commonly connected to either the mainframe or a
file server. This interaction is typically called client/server. The client machine
accesses the server when it needs information or has an update to
perform.

With the development of the Web and more intensive applications, a three-layer,
or three-tier, architecture was developed. As Figure 11.1 shows, a three-tier
architecture consists of a presentation tier, a business tier, and a database tier.

EJBs with MySQL

C H A P T E R11

223

Figure 11.1 The three-tier architecture.

The presentation, or client, tier is where the user interacts with the system. The
user enters information to update or perform queries. The client tier sends the
request to the business tier, where rules and logic are applied to the user’s
request. The business tier connects with the database to satisfy the user
requests. The client tier is never allowed to access the database directly;
instead, it must always communicate with the business tier.

As you might expect, the business tier handles the load for the entire system.
The business tier will typically do the following:

■■ Handle requests from the client

■■ Process the requests

■■ Connect with the database and retrieve/update data

■■ Send results back to the client

As the complexity of applications has increased, the business tier has started to
become a bottleneck. To help alleviate some of the processing needed on the
business tier, a fourth tier has been added, as shown in Figure 11.2.

E J B s w i t h M y S Q L224

Client
Tier

Business
Tier

Database
Tier

Server
Tier

Servlets

Application
Tier

EJBs

Client
Tier

HTML

Database
Tier

Figure 11.2 The four-tier architecture.

The four-tier architecture splits the functionality of the business tier into two
separate areas. The first is a service tier where, for instance, a Web server,
application server, and associated servlets are hosted. The servlets are the first
component to respond to a request from the client. The servlet provides code
for handling the business rules and logic necessary for the clients to be pro-
ductive. Now instead of the servlet going directly to the database, it makes calls
to Enterprise JavaBeans (EJBs) executing on a third tier. The EJBs communi-
cate with the fourth tier, the database. In a large enterprise, the tiers are posi-
tioned to handle large volumes of requests.

When the designers of a system want to use the four-tier design with servlets
and EJBs, but the enterprise isn’t large enough for a four-tier system, they can
combine the servlets and EJBs in the middle tier until they need the fourth.

Using Beans

As we mentioned earlier, an EJB is a component, and as such it cannot “live” on
its own and must be part of an application. The bean exposes a defined inter-
face, including methods that can be called, and invokes a particular response
from it. A bean has the option of doing the work behind the exposed methods
itself, or it might instantiate or call other beans to complete the necessary task.

To accomplish all that the bean needs to do, it must live within an environment
called a container. The container is responsible for managing all of the beans,
including such functionality as security and transactions. To take full advantage
of the container, the EJB must be defined using a predefined Sun specification.

EJB Types
The specification for EJBs defines two types: session and entity. When you
read the abundance of information available on beans, you commonly find that
the types are broken down into the active type, or session, and the passive type,
or entity. Let’s look at each type before we start writing EJBs to interact with
MySQL.

Session Beans

A session bean is designed to handle business processes as prescribed by the
logic in the application. If we code in the three-tier architecture, the session
bean contains that part of the servlet that handles all of the functionality
needed to fulfill a client’s request. When the bean is working on behalf of a
request for our new second-tier servlet, it is considered active. The session
bean continues to be active until it finishes with its current request. When the
request is finished, the bean becomes inactive and waits to handle another
request.

All session beans are designed to work on a request from a single client at a
time. There is no multitasking in the beans. If another client needs to obtain
information from the database, it has to either wait for the current bean to fin-
ish its work or the servlet has to instantiate a new session bean.

The session bean derives its name from the idea that the single bean should be
available to handle all of the operations needed by a client during the client’s
session. This might be a single request from the database or it could be a group
of transactions. With this in mind, let’s break down the session bean into two
categories. The stateless session bean is used to handle a single request against
the database; a stateful session bean will “stay around” as long as the client
needs attention.

Using Beans 225

Entity Beans

If you’ve followed us through the book to this chapter, you are well aware that
using Java and MySQL requires you to write SQL. It might be nice to develop
our applications in a manner that doesn’t require as much SQL as we’ve seen.
An entity bean is a component that allows us to model the data in our database
using an object-oriented view.

The object-oriented view of the database is represented as entity beans for each
of the tables. For our examples so far, we’d create entity beans for the acc_acc,
acc_add, and acc_cert tables. Just like session beans, the entity bean lives in a
container. One of the most important jobs the container has in respect to entity
beans is making sure the data in the bean is consistent with the data in the data-
base. This is especially true since the entity bean allows more than one client to
access it at a time.

The EJB Environment
EJBs are designed against a strict specification developed by Sun. This specifi-
cation and its interfaces are defined in the Java 2 Platform Enterprise Edition
(J2EE). J2EE is an extension to the base Java implementation called J2SE, or
Java 2 Platform Standard Edition. Within J2EE are the APIs needed for the
development of EJBs as well as a reference implementation for using beans like
an EJB container.

What an EJB Looks Like

As we start our discussion of using EJB and Connector/J to access data in a
MySQL database, let’s look at the pieces defined in the J2EE specification for
Enterprise JavaBeans.

The Bean

All beans are required to implement the interface

public interface javax.ejb.EnterpriseBean extends

java.io.Serializable {}

Within the implementation is the logic required by the application for this bean.
If the bean is a session, it generally includes the methods and code necessary
for implementing functionality. If the bean is an entity bean, the code models
the data in the database. This commonly consists of the columns of the table
this bean represents.

E J B s w i t h M y S Q L226

The Remote Interface

Insulating the developer from the issues of networking programming as much
as possible was one of the priorities established during the development of the
EJB specification. When you consider the four-tier architecture, you realize that
quite a bit of network programming could be involved since the servlet must
communicate with the beans and the beans with the database.

To keep the network programming isolated, the EJB specification uses the con-
cept of a proxy object, which works as an external interface to the bean. The
proxy object accepts requests from the client and routes them through the con-
tainer to the bean. The proxy object, also called the remote interface, must
include all of the methods exposed by the bean because it is the primary com-
ponent all clients will deal with. Further, the remote interface must implement
EJBObject, defined as

public interface EJBObject extends Remote {

public EJBHome getEJBHome() throws RemoteException;

public Object getPrimaryKey() throws RemoteException;

public void remove() throws RemoteException, RemoveException;

public Handle getHandle() throws RemoteException;

boolean isIdentical(EJBObject obj) throws RemoteException;

}

The container uses the methods defined here to manage the bean. In addition to
these methods, the developer adds ones that will be exposed by the bean to
external clients. Figure 11.3 shows an example of our bean.

Using Beans 227

Remote
Interface obj Bean

Figure 11.3 A sample bean and its external interface.

The Home Interface

With the remote interface in place, the specification defines another object
proxy, called the home interface. The home interface is used to find and create
an EJB. The home interface is a proxy object, just like the remote interface, as
shown in Figure 11.4.

Figure 11.4 The home interface proxy object.

When an application needs access to a particular bean, it uses the home inter-
face to obtain a reference to the object. The home interface acts as a factory
and either returns a previously instantiated bean that is inactive or creates a
new one as needed. The J2EE specification defines the following interface to be
implemented by the bean:

public interface <example>Home extends EJBHome {

<example> create(<parameters>) throws RemoteException,

CreateException;

}

This interface is used for each of the beans in the system, and the <example>
placeholder is replaced by the name of the bean. The developers of the bean
place as many create() methods as necessary using appropriate parameters.

Deployment Information

One of the last parts needed for the successful creation of an EJB is deployment
information. This information typically consists of management, persistence,
execution, and security requirements. In the section “Application Server Con-
figuration,” we provide an example of deployment information.

The JAR/WAR File

Finally, all of the components of the bean are packaged together into a JAR or
Web archive (WAR) file. It should be noted that exactly which components are
added to the JAR/WAR file is specific to the application server used to contain
the bean.

The Application Server

We’ve mentioned a couple times that the bean must live in a container. Connec-
tor/J doesn’t provide this container, and a simple Web server doesn’t either.

E J B s w i t h M y S Q L228

Remote
Interface obj Bean

Local
Interface obj

What you need is a Java application server. The application server is designed
to act as the container for the beans and in many cases provides for the execu-
tion of servlets and traditional HTML files. The examples provided in this chap-
ter are all centered around Resin, available at www.caucho.com.

It is important to understand the environment where a bean will be deployed
because some servers provide helper packages for writing EJBs as well as
determine specifically how to deploy the EJB.

Application Server Configuration

In this chapter, we develop both session and entity beans. The beans have the
ability to access the MySQL database through the Connector/J driver. In order
for the EJBs to access MySQL, we have to create a <resource-ref> just as we did
when building servlets. In Resin, we have the ability to create both global and
localized resource references to the database. Listing 11.1 contains an example
of a <resource-ref> element used for the various beans listed in this chapter.

Application Server Configuration 229

<resource-ref>

<res-ref-name>jdbc/AccountsDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<init-param driver-name="com.mysql.jdbc.Driver"/>

<init-param url="jdbc:mysql://192.168.1.25/accounts"/>

<init-param user="spider"/>

<init-param password="spider"/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

</resource-ref>

Listing 11.1 Our <resource–ref> element.

We named our resource reference AccountsDB to indicate that the reference
will be connecting to the Accounts database. All of the other parameters are
provided as needed for the specific MySQL database. Of particular concern is
the driver name, which must be the Connector/J driver.

Next in Listing 11.2 we create a reference in the local web.xml file associated
with the application being built so that the beans will have access to the database.

<resource-ref>

<res-ref-name>java:comp/env/cmp</res-ref-name>

<class-name>com.caucho.ejb.EJBServer</class-name>

Listing 11.2 The web.xml file. (continues)

E J B s w i t h M y S Q L230

<init-param data-source="java:comp/env/jdbc/ca"/>

</resource-ref>

</web-app>

Listing 11.2 The web.xml file. (continued)

The Role of the Servlet

Before we move into developing beans, we need to say a few words about the
role of the servlet when using EJBs. In the past, the servlet has done all of the
work involved in handling a client’s request. When we use beans, the servlet still
plays an important role—as an intermediary between the client and the beans.

The client still makes requests of the servlet, but now the servlet becomes
responsible for gathering all of the form information passed from the client and
structuring the output generated from the data obtained from the beans.

Entity Beans

Of the session and entity bean types, the entity EJB is where the primary inter-
action occurs between the application and the database. The entity bean is
designed to directly model a database table and allow the Java programmer to
interact with the table using traditional object-oriented principles. In this sec-
tion, we describe how to build an entity bean for one of our example tables.

We are going to model the acc_acc table, which is defined as

acc_id—int

username—varchar

password—varchar

ts—timestamp

act_ts—timestamp

To model this table, we begin by creating the bean.java file. Listing 11.3 con-
tains the required class definition.

import javax.ejb.*;

public abstract class AccountRecordBean

Listing 11.3 AccountRecordBean.java. (continues)

Entity Beans 231

extends com.caucho.ejb.AbstractEntityBean {

public abstract String getUsername();

public abstract String getPassword();

public abstract String getTS();

public abstract String getAct_TS();

public abstract void setUsername(String username);

public abstract void setPassword(String password);

public abstract int getAcc_id();

public abstract void setTS(String time);

public abstract void setAct_TS(String time);

}

Listing 11.3 AccountRecordBean.java. (continued)

One of the first things to notice in the code is the class signature. The name of
the class is AccountRecordBean. You’ll recall from our earlier discussion that
the bean.java file is always preceded with the name of the session or the entity
name. In the case of an entity bean, the table should be referenced. The signa-
ture also extends a Resin-specific interface called AbstractEntityBean. This is a
helper interface that keeps the amount of method-defining necessary to a mini-
mum. Next, all of the columns in the table are defined in terms of both getter
and setter methods. We also define the create() method.

The methods defined in the AccountRecordBean class are both the setter and
getter type. The first five are getter methods. The most important of these is
getAcc_id(). This method is used by the system as well as the developer to
obtain the rows in the table using the primary key, which happens to be acc_id.

The other four getter methods return the username, password, ts, and act_ts
columns values as String objects. When an entity EJB is instantiated, you are
able to access the specific column values using the getter methods. When it’s
time to make changes to the data in the table, setter methods are necessary.
Four methods are listed for all of the columns in the table except the acc_id. We
don’t allow the developer to set the acc_id because this is a primary key and
must be managed by the bean itself.

The bean is instantiated using the create() method, which calls the ejbCreate()
method defined in this class. When the create() method defined in the home
interface is called, a username and a password are supplied as parameters. The
parameters are passed to the ejbCreate() method for use in the creation of the
row in the database table.

When the method is called, the system automatically creates a row in the data-
base using an autogenerated acc_id. The supplied username and password are
set as well as the ts and act_ts columns. Note that none of the getter and setter
methods are defined beyond the signature. The entity bean automatically gen-
erates code to return the column values. With the bean created, we must define
the home interface. Listing 11.4 defines the code for the home interface.

E J B s w i t h M y S Q L232

import javax.ejb.*;

public interface AccountRecordHome extends EJBLocalHome {

AccountRecord findByPrimaryKey(int value)

throws FinderException;

AccountRecord create(String username, String password)

throws CreateException;

}

Listing 11.4 AccountRecordHome.java.

The home interface defines two primary methods for entity beans. The first is
called findByPrimaryKey(). This method is used by the system and developer to
return a table row based on the primary key and the getAcc_id() method
defined within the bean class code. Next, we need to have a create() method, as
mentioned earlier. The ejbCreate() method is used by the system, but the cre-
ate() method defined in the home interface is called by a developer who needs
another row in the database table. Notice that there is no code defined since the
system automatically creates the code to call the appropriate ejbCreate()
method.

With the bean and home interfaces complete, the last interface we need is the
local one. Listing 11.5 shows the interface.

import javax.ejb.*;

public interface AccountRecord extends EJBLocalObject {

String getPassword();

String getUsername();

String getTS();

String getAct_TS();

int getAcc_id();

Listing 11.5 AccountRecord.java. (continues)

Entity Beans 233

void setUsername(String username);

void setPassword(String password);

void setTS(String time);

void setAct_TS(String time);

}

Listing 11.5 AccountRecord.java. (continued)

As you can see, the local interface looks very similar to the home interface. The
interface consists of the getter and setter methods necessary for changing and
obtaining data from the database. Next, we need to let the Resin application
server know about the entity bean. For our purposes, the entity bean allows
only local access because the session beans that access the entity beans are
located on the same server.

The Resin server needs the bean information located in a file with an .ejb exten-
sion. Listing 11.6 shows the entry in an EJB file for the entity bean.

<entity>

<ejb-name>AccountRecordBean</ejb-name>

<local-home>AccountRecordHome</local-home>

<local>AccountRecord</local>

<ejb-class>AccountRecordBean</ejb-class>

<persistence-type>Container</persistence-type>

<reentrant>True</reentrant>

<prim-key-class>int</prim-key-class>

<primkey-field>acc_id</primkey-field>

<abstract-schema-name>accountTable</abstract-schema-name>

<sql-table>acc_acc</sql-table>

<cmp-field><field-name>acc_id</field-name></cmp-field>

<cmp-field><field-name>username</field-name></cmp-field>

<cmp-field><field-name>password</field-name></cmp-field>

<cmp-field><field-name>ts</field-name></cmp-field>

<cmp-field><field-name>act_ts</field-name></cmp-field>

</entity>

Listing 11.6 Our EJB file.

The EJB file is broken up into several sections. The first is the definition of the
interfaces and the classes that make up those interfaces. The second is the
entity bean configuration, which consists of two elements defining the persis-

tence type and specifying whether the bean is re-entrant. The third section con-
tains all of the information about the database table the entity bean is related to.

In this section, the first part is the definition of the primary key in the table and
its type. The acc_acc table uses an int column called acc_id for the primary key.
Next, the code defines the table the entity bean is associated with using an
internal name and the SQL table. Finally, the code defines all of the columns in
the table using the <field-name> element.

Session Beans

To show how the entity bean is used along with MySQL, let’s build a session
bean that will use the entity bean. Listing 11.7 shows the session bean class we
want to use.

E J B s w i t h M y S Q L234

import javax.ejb.*;

import java.rmi.*;

import com.caucho.ejb.*;

import javax.naming.*;

import javax.servlet.*;

public class AccountBean extends AbstractSessionBean {

private AccountRecordHome home;

public void ejbCreate() {

try {

Context cmp = (Context) new InitialContext().lookup(

"java:comp/env/cmp");

home = (AccountRecordHome) cmp.lookup("AccountRecordBean");

} catch (NamingException e) {

e.printStackTrace();

}

}

public boolean createAccount(String username, String password)

{

try {

home.create(username, password);

return true;

} catch (CreateException e) {

return false;

}

}

}

Listing 11.7 AccountBean.java.

The session bean contains the ejbCreate() method called when the session
bean is instantiated, as well as other methods needed by the bean. Let’s start
with the ejbCreate() method, which has the single task of finding the home
interface for the AccountRecordBean entity bean. This is accomplished in a
two-step process. The first step is to locate the system’s bean container using
the lookup() method associated with the Context object. Once the container is
found, a lookup method is used against it to find the “AccountRecordBean”
entry. The system looks in the EJB file for a bean with the passed value. The
home interface is returned and stored in a private attribute for later use.

The primary goal of the Account session bean is to create a new account on the
system. The new account is created in the database by calling the create()
method against our AccountRecordBean’s home interface, passing in the sup-
plied username and password as shown in the createAccount() method.

We’ve defined the remote interface in Listing 11.8.

Session Beans 235

import java.rmi.*;

import javax.ejb.*;

public interface Account extends EJBObject {

boolean createAccount(String username, String password)

throws RemoteException;

}

Listing 11.8 Account.java.

The only method we expose is the createAccount() method. The method
requires two parameters for the username and password. The local interface is
shown in Listing 11.9.

public interface AccountLocal extends javax.ejb.EJBLocalObject {

public boolean createAccount(String username, String password);

}

Listing 11.9 AccountLocal.java.

Since the only exposed method is createAccount(), the local interface has only
a single method. The remote and local home interfaces appear in Listings 11.10
and 11.11, respectively.

import javax.ejb.*;

import java.rmi.*;

Listing 11.10 AccountHome.java. (continues)

E J B s w i t h M y S Q L236

public interface AccountHome extends EJBHome {

Account create() throws RemoteException, CreateException;

}

Listing 11.10 AccountHome.java. (continued)

public interface AccountLocalHome extends javax.ejb.EJBLocalHome

{

AccountLocal create() throws javax.ejb.CreateException;

}

Listing 11.11 AccountLocalHome.java.

Both of the home interfaces simply expose the create() methods, which are
used to instantiate a session bean.

Using the Beans
At this point, we have defined both an entity and a session bean. The session
bean exposes a single method called createAccount(username, password).
This method is designed to create a new account and place the information in
the database. The session bean uses an AccountRecordBean EJB to actually
place the row into the table. Notice, though, that we didn’t write any SQL for
INSERTing the new row into the database. The entity beans are designed
specifically to keep the developer from worrying about SQL and data access.

Listing 11.12 shows the servlet we use to access the session and entity beans.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.naming.*;

import javax.ejb.*;

import test.*;

public class caHandler extends HttpServlet {

private AccountLocalHome accountHome = null;

public void init()

throws ServletException

Listing 11.12 The support servlet. (continues)

Session Beans 237

{

try {

Context cmp = (Context) new InitialContext().lookup(

"java:comp/env/cmp");

accountHome = (AccountLocalHome) cmp.lookup("AccountBean");

} catch (NamingException e) {

e.printStackTrace();

}

}

public void doGet(HttpServletRequest req, HttpServletResponse

res)

throws IOException, ServletException {

PrintWriter out = res.getWriter();

res.setContentType("text/html");

if (req.getParameter("submit").equals("new")) {

out.println("Thank you for requesting a new account with

our site.");

try {

if (accountHome == null) {

out.println("We are sorry but your request failed");

} else {

AccountLocal account = accountHome.create();

if (account.createAccount(

req.getParameter("username"),

req.getParameter("password"))) {

out.println("Your Account was created

successfully
");

} else {

out.println("We are sorry but your request

failed
");

}

}

} catch(Exception e) {

out.println("We are sorry but your request failed
");

}

}

}

public void doPost(HttpServletRequest req, HttpServletResponse

res)

throws IOException, ServletException {

doGet(req, res);

}

}

Listing 11.12 The support servlet. (continued)

When the servlet is called by the HTML shown in Listing 11.13, the init() method
fires if this is the first time the servlet has been used. Within init(), we obtain the
home interface to the Account session bean described earlier. We aren’t instan-
tiating a new bean at this point; we are just getting a reference to the home
interface. The real work occurs in the doGet() method, where the home inter-
face is used to obtain a new Account bean object with this statement:

AccountLocal account = accountHome.create();

Once the Account bean has been created, we can use it to create a new account
on the database. The code to do this is:

account.createAccount(req.getParameter("username"),

req.getParameter("password"))

The code makes a call to createAccount(String, String), which is the one
exposed method for the Account EJB. When the method is called, the cre-
ateAccount() method, as described earlier, creates an AccountRecord bean
using the supplied username and password. This is subsequently inserted into
the database. Throughout this entire process, we didn’t write any SQL because
the EJB did all of the work for us. This is the fundamental goal of container-
managed persistence.

E J B s w i t h M y S Q L238

<HTML>

<BODY>

<TITLE>Certificate Authorization</TITLE>

To create a new account, please enter a desired username/password

combination:

<form action="http://localhost:8080/ca/caHandler" method="post">

Username: <input name="username">

Password: <input name="password" type="password">

<input type="submit" name="submit" value="new">

</form>

</BODY>

</HTML>

Listing 11.13 The HTML for the servlet.

Adding a Query
We can add capability to the entity bean by using the <query> element in the
EJB file and adding a new method to the home interface. Listing 11.14 shows
the addition to the home interface code.

Session Beans 239

import javax.ejb.*;

public interface AccountRecordHome extends EJBLocalHome {

AccountRecord findByPrimaryKey(int value)

throws FinderException;

AccountRecord create(String username, String password)

throws CreateException;

AccountRecord findByUsernamePassword(String username, String

password)

throws FinderException;

}

Listing 11.14 AccountRecordHome.java.

The findByUsernamePassword(String, String) method is a finder method for
use by the developer. The code for the method is located in the EJB file, as
shown in Listing 11.15.

<query>

<query-method>

<method-name>findByUsernamePassword</method-name>

</query-method>

<ejb-ql>SELECT o FROM accountTable o

WHERE o.username=?1 AND o.password=?2</ejb-ql>

</query>

Listing 11.15 Our query code.

In the EJB file, a <method-name> element is used to define a new finder
method. The method uses the EJB-QL language to define a SQL statement that
will be used. The username and password parameters passed to the finder
method are used directly in the query. Using this new query functionality, we
can add code like the following to the servlet and access an account already in
the database:

try {

AccountRecord account = accountHome.findByUsernamePassword(user-

name, password);

If (account != null)

out.println("Your account ID is " +

account.getAcc_id());

} catch (Exception e) {

return "error - not found";

}

This code uses the findByUsernamePassword() query from the home interface.
The result of the query is either a newly created AccountRecord bean popu-
lated with the appropriate row from the database or a null.

Bean-Managed Persistence

The entity bean we created earlier in the chapter is built using container-
managed persistence (CMP). This means that the container does all of the work
of creating the bean, obtaining data for it, finding a row based on the primary
key, and so forth. CMP is the preferred method for designing beans because you
don’t have to deal with the details of SQL. If, however, you want to use an entity
bean that needs to be implemented using an uncommon storage back end or
that has some other oddity, use bean-managed persistence (BMP) instead. In
BMP, the bean is responsible for handling its data.

For BMP, you must write code in four major methods (and one optional):

ejbCreate()—Called when a create() method call is made against the
home interface.

ejbPostCreate()—Called after the bean is created.

ejbLoad()—Loads data from the persistent store into the bean.

ejbStore()—Stores the bean into a persistent store.

ejbPostCreate()—Called after the bean is created.

In addition to these methods, you have to write the code for ejbFind() methods
relating to any find() methods located in the home interface. In our CMP bean,
the findByPrimaryKey() method has to have a corresponding ejbFindByPrima-
ryKey() method that will return the primary key of a bean based on some
criteria.

To write a BMP EJB, we need to change the <persistence-type> element in the
EJB file from container to bean. We must also remove all of the <cmp-field>
entries since we will be managing the fields. Next, we add code for each of the
methods. The skeleton for the BMP bean is

import javax.ejb.*;

public abstract class AccountRecordBean
extends com.caucho.ejb.AbstractEntityBean {
int acc_id;
String username;
String password;
Timestamp ts;
Timestamp act_ts;

E J B s w i t h M y S Q L240

public int ejbCreate(String username, String password)
throws CreateException, RemoteException {

}

public void ejbPostCreate(String course, String instructor) {
}

public int ejbLoad() throws RemoteException {
}

public int ejbStore()throws RemoteException {
}

public int ejbRemove()throws RemoteException {
}

public String findByPrimaryKey() throws RemoteException {
}

}

ejbCreate()
We can use the ejbCreate() method when we want to insert a new row into the
database. To accomplish this, we need to access the database, check to see if
the row already exists, and either insert a row into the table or throw an excep-
tion. The code might look like this:

public int ejbCreate(String username, String password)

throws CreateException, RemoveException {

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("java:comp/env/jdbc/AccountsDB");

Connection conn = ds.getConnection();

PreparedStatement stmt = conn.prepareStatement(

"SELECT * FROM acc_acc WHERE username=? and password=?");

stmt.setString(1, username);

stmt.setString(2, password);

ResultSet rs = stmt.executeQuery();

duplicateKey = rs.next();

rs.close();

stmt.close();

if (! duplicateKey) {

stmt = conn.prepareStatement(

"INSERT INTO acc_acc (null, ?, ?, ? ,?)");

stmt.setString(1, username);

stmt.setString(2, password);

stmt.setTimestamp(null);

stmt.setTimestamp(new Timestamp(new

Date().getDate()));

Bean-Managed Persistence 241

stmt.executeUpdate();

stmt.close();

}

conn.close();

} catch (Exception ex) {

throw new java.rmi.RemoteException("ejbCreate Error", ex);

}

if (duplicateKey)

throw new javax.ejb.DuplicateKeyException();

return null;

}

As the preceding code shows, we are responsible for doing all of the database
work in a bean-managed persistence mode.

ejbLoad()
In the ejbLoad() method, the code has to load all of the fields for the row asso-
ciated with a particular primary key. For example:

public void ejbLoad()

throws java.rmi.RemoteException

{

boolean found = false;

try {

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("java:comp/env/jdbc/AccountsDB");

Connection conn = ds.getConnection();

PreparedStatement stmt = conn.prepareStatement(

"SELECT username FROM acc_acc WHERE acc_id=?");

stmt.setString(1, acc_id);

ResultSet rs = stmt.executeQuery();

if (rs.next()) {

found = true;

username = rs.getString(2);

password = rs.getString(3);

ts = rs.getTimestamp(4);

act_ts = re.getTimestamp(5);

}

rs.close();

stmt.close();

conn.close();

} catch (Exception ex) {

throw new java.rmi.RemoteException("ejbLoad Error", ex);

}

if (! found)

throw new java.rmi.RemoteException("Bean not found");

}

E J B s w i t h M y S Q L242

In this code, the database table is checked for a row with a specific acc_id
value. If a match is found, all of the bean’s attributes are set based on the
returned row; otherwise, an exception is thrown.

ejbStore()
The ejbStore() method is responsible for placing the bean’s information back
into the database table. This isn’t an INSERT into the table, but an UPDATE of
a previously created row. The code might look like this:

public void ejbStore()

throws java.rmi.RemoteException

{

boolean found = false;

try {

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("java:comp/env/jdbc/AccountsDB");

Connection conn = ds.getConnection();

PreparedStatement stmt = conn.prepareStatement(

"UPDATE acc_acc set username=?, password=?,

ts=? act_ts =?WHERE acc_id=?");

stmt.setString(1, username);

stmt.setString(2, password);

stmt.setTimestamp(3, ts);

stmt.setTimestamp 4, act_ts);

stmt.setInt(5, acc_id);

if (stmt.executeUpdate() <= 0) {

throw new java.rmi.RemoteException("Bean not found");

}

stmt.close();

conn.close();

} catch (Exception ex) {

throw new java.rmi.RemoteException("ejbLoad Error", ex);

}

}

This code performs an UPDATE on the database table using the values stored
in the attributes of the bean.

ejbRemove()
The ejbRemove() method is designed to delete the rows from the database for
the table based on the current acc_id of the bean. The code looks like this:

public void ejbRemove()

throws java.rmi.RemoteException

{

Bean-Managed Persistence 243

boolean found = false;

try {

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("java:comp/env/jdbc/AccountsDB");

Connection conn = ds.getConnection();

PreparedStatement stmt = conn.prepareStatement(

"DELETE FROM acc_acc WHERE acc_id=?");

stmt.setInt(1, acc_id);

stmt.close();

conn.close();

} catch (Exception ex) {

throw new java.rmi.RemoteException("ejbLoad Error", ex);

}

}

ejbFindByPrimaryKey()
The ejbFindByPrimaryKey() method returns a String representation of the pri-
mary key for the current bean. The code checks to make sure the row exists in
the table before returning the account id. The code for the method is

public String findByPrimaryKey() throws RemoteException {

try {

InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("java:comp/env/jdbc/AccountsDB");

Connection conn = ds.getConnection();

PreparedStatement stmt = conn.prepareStatement(

"SELECT username FROM acc_acc WHERE acc_id=?");

stmt.setString(1, acc_id);

ResultSet rs = stmt.executeQuery();

if (rs.next()) {

rs.close();

stmt.close();

conn.close();

return ""+acc_id;

} else {

throw new java.rmi.FinderException(

"findByPrimaryKey Error", ex);

}

} catch (Exception ex) {

throw new java.rmi.RemoteException("ejbLoad Error", ex);

}

}

E J B s w i t h M y S Q L244

Setter/Getter Methods
You need to implement all of the setter/getter methods defined in the CMP bean
in the BMP bean, but you have to set/get the attributes of the bean yourself.

Once all of the methods have been placed in the bean, there will be no notice-
able difference between the CMP and the BMP beans.

What’s Next

In this chapter, we presented a simple example of how to build an entity bean
that will access data in a MySQL database using the Connector/J driver. In the
next chapter, we build a MySQL database interface.

What’s Next 245

In previous chapters, we have explored many of the elements involved in
bringing MySQL and Java together to address database-related needs. In
this chapter, we shift our focus to building a general database application.

For the sake of maximizing both generality and potential usefulness, we will
build a graphical interface for MySQL. Such an application offers ample oppor-
tunity to demonstrate a number of Java’s strengths, both in terms of the lan-
guage itself and its ability to work with data sources via the JDBC API.

The application we present in this chapter is built around the notion of data-
base tasks. Over the course of development, we introduce four such tasks. The
first provides information about the underlying JDBC driver and database prod-
uct, including names and version numbers. The second provides an interface
for executing arbitrary SQL queries. The third provides the user with informa-
tion regarding the column definitions for a given table. Finally, we define a task
that allows the user to insert a new row into an existing table. Along the way,
we also develop a number of utility classes that support extensibility by
simplifying input, output, task delegation, exception handling, and session ini-
tiation. Given our focus, the user interface is of course less refined than it might
be for a production application. Furthermore, depending on user needs, the
individual tasks might lack a degree of functionality (e.g., meaningful handling
of binary data); however, the application should convey some of what is
possible and provide a foundation for developing and implementing more
sophisticated tasks.

Building a General Interface
for MySQL

C H A P T E R12

247

Tasks

With the exception of the most generic of interfaces, the range of operations
you might need to carry out on a data source is so diverse that attempting to
capture all of them in a single application is impractical. While generic inter-
faces certainly have their place, they tend to require more knowledge and expe-
rience on the part of the user. By moving away from a generic interface, you
find it becomes easier to tailor operations to specific user tasks.

It is the notion of specific user tasks that drives the design of our MySQL inter-
face. However, if the interface is to remain generally useful, it is important that
the task code not be tied too tightly to framework of the interface. Unless the
addition and removal of tasks is straightforward, an interface that is useful for
one user might very well be useless for another. An obvious approach to
addressing this issue involves viewing tasks as removable modules and building
a framework in support of such modules. While it is not within the scope of this
chapter to build a complete, full-featured framework for such modules, the
example application does provide one possible approach to developing such a
framework.

Accepting that our interface is to be built around task modules, the obvious
question becomes one of what constitutes a task. From the user’s perspective,
a task is some useful unit of work; whether that corresponds to retrieving a triv-
ial piece of information from the database or carrying out a complex transac-
tion depends on the needs of a particular user. From the perspective of our
interface design, a task is an entity that has a name, a delegate class, and a flag
indicating whether it is currently enabled. The name is a simple task identifier
used by interface components that must deal with task identity. The delegate
class represents the type of the object to which task completion is delegated.
The enabled flag provides a technique for specifying whether the task is to be
considered active by the interface. This task definition is captured and encap-
sulated by the TaskDefinition class shown in Listing 12.1.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L248

package mysqljava;

public class TaskDefinition

{

public TaskDefinition(String name,

Class delegate, boolean enabled)

{

Listing 12.1 The class representing task modules. (continues)

Tasks 249

this.name = name;

this.delegate = delegate;

this.enabled = enabled;

}

public String getName()

{

return (name);

}

public Class getDelegate()

{

return (delegate);

}

public boolean isEnabled()

{

return (enabled);

}

private String name;

private Class delegate;

private boolean enabled;

}

Listing 12.1 The class representing task modules. (continued)

Holding to the goal of simple task addition and removal, defined tasks are pro-
vided through a configuration file containing entries like the following:

mysqljava.DbInfo:enabled:Database Info

mysqljava.ShowColumns:disabled:Show Columns

mysqljava.SqlQuery:disabled:SQL Query

mysqljava.InsertRow:disabled:Insert Row

Each entry consists of three colon-delimited fields. The first field specifies the
fully qualified name of the delegate class. The second field is the flag indicating
whether the task should be considered active. The final field is the name asso-
ciated with the task. These are simply textual representations of the fields
encapsulated by our TaskDefinition class. How these fields are used to support
pluggable modules should become clear in later sections. For now, take a look
at Listing 12.2 to see how the configuration file is processed to generate a task
list. Given an InputStreamReader representing a configuration file, an object of
type Tasks parses the task definition entries, converts the fields to appropriate
types, creates corresponding TaskDefinition objects, and makes the task list
available via an Enumeration.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L250

package mysqljava;

import java.io.*;

import java.util.*;

public class Tasks

{

public Tasks(InputStreamReader taskS)

{

readTasks(taskS);

}

public int getTaskCount()

{

return (taskDefs.size());

}

public Enumeration getTasks()

{

return (taskDefs.elements());

}

private void readTasks(InputStreamReader taskS)

{

try

{

BufferedReader reader = new BufferedReader(taskS);

String taskLine;

while ((taskLine = reader.readLine()) != null)

{

addTaskDefinition(taskLine);

}

}

catch(IOException ioX)

{

System.err.println("Failed to fully parse task file: "

+ ioX);

}

}

private void addTaskDefinition(String taskLine)

{

StringTokenizer taskTok = new StringTokenizer(taskLine,

Listing 12.2 The class representing the list of defined tasks modules. (continues)

Tasks 251

DELIM);

if (taskTok.countTokens() != TOKEN_NUM)

{

System.err.println("Invalid task definition: "

+ taskLine);

return;

}

Class taskClass = null;

String taskClassName = taskTok.nextToken();

try

{

taskClass = Class.forName(taskClassName);

}

catch(ClassNotFoundException cnfX)

{

System.err.println("Class '" + taskClassName

+ "' not found: " + cnfX);

return;

}

boolean taskEnabled = false;

if (taskTok.nextToken().equalsIgnoreCase("enabled"))

{

taskEnabled = true;

}

String taskName = taskTok.nextToken();

TaskDefinition def = new TaskDefinition(taskName,

taskClass,

taskEnabled);

taskDefs.add(def);

}

private Vector taskDefs = new Vector();

final static int TOKEN_NUM = 3;

final static String DELIM = ":";

}

Listing 12.2 The class representing the list of defined tasks modules. (continued)

SQL Exceptions

One common feature shared by most of the JDBC API methods is that they
make use of the SQLException class, either directly or indirectly, through
derived exception classes. As such, it is worth a little upfront effort to provide
some generalized SQLException processing. For the purposes of our sample
application, we limit ourselves to a single message-processing method. This
method, defined in our SqlExceptionReader class, is shown in Listing 12.3.

In addition to the functionality inherited from the java.lang.Exception, SQLEx-
ception provides a SQLState code, a vendor-specific exception code, and the
ability to chain additional SQLException objects. The readException() method
of SqlExceptionReader extracts the additional fields, stepping through the
exception chain if necessary, and builds an exception message containing the
available information.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L252

package mysqljava;

import java.sql.*;

public class SqlExceptionReader

{

public static String readException(SQLException sqlX)

{

StringBuffer msg = new StringBuffer(1024);

SQLException nextX;

int exceptionNumber = 0;

do

{

++exceptionNumber;

msg.append("Exception " + exceptionNumber + ": \n");

msg.append(" Message: " + sqlX.getMessage() + "\n");

msg.append(" State : " + sqlX.getSQLState() + "\n");

msg.append(" Code : " + sqlX.getErrorCode() + "\n");

}

while ((nextX = sqlX.getNextException()) != null);

return (msg.toString());

}

}

Listing 12.3 A class for reading SQLExceptions.

MySQL Connections

Since a data source connection is a prerequisite for any task involving commu-
nication with a database, it makes sense to capture the required connection
data in a common class. We do this with the ConnectionData class shown in
Listing 12.4. This class represents a host name and port, a database name, and
a username and password. Accessors for username and password are provided,
along with an accessor that returns a MySQL-compatible URL of the form

jdbc:mysql://hostname:port/database_name

Perhaps more useful is the class’s buildConnection() method, which uses the
contained URL data, username, and password to obtain and return a Connec-
tion object. As is seen in the listing, we opted to use the DriverManager
approach to obtaining a Connection object. Depending on your environment, it
might make more sense to obtain Connection objects from a source imple-
menting the DataSource or ConnectionPoolDataSource interfaces specified in
the javax.sql package.

MySQL Connections 253

package mysqljava;

import java.sql.*;

public class ConnectionData

{

public ConnectionData(String hostName,

String dbName,

String port,

String username,

String password)

{

this.hostName = hostName;

this.dbName = dbName;

this.port = port;

this.username = username;

this.password = password;

}

public String getUsername()

{

return (username);

}

public String getPassword()

Listing 12.4 The class used for establishing database connections. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L254

{

return (password);

}

public String getUrl()

{

String url = "jdbc:mysql://" + hostName

+ ":" + port + "/" + dbName;

return (url);

}

public Connection buildConnection()

{

try

{

Class.forName("com.mysql.jdbc.Driver");

}

catch(ClassNotFoundException cnfX)

{

cnfX.printStackTrace(System.err);

return (null);

}

try

{

Connection conn = DriverManager.getConnection(

getUrl(),

getUsername(),

getPassword());

return (conn);

}

catch(SQLException sqlX)

{

System.out.println(

SqlExceptionReader.readException(sqlX));

return (null);

}

}

private String hostName;

private String dbName;

private String port;

private String username;

private String password;

}

Listing 12.4 The class used for establishing database connections. (continued)

The Task Delegate

In defining the interface’s view of a task, we introduced the notion of a task

delegate. As implied by the name, this is an entity to which the interface dele-
gates responsibility for task execution, whatever that might involve. The dele-
gate might in turn hand over responsibility for portions of the task to other
entities; however, a major design goal is that our interface need not be con-
cerned with what happens after it has dispatched the task. In working toward
this goal, we introduce the TaskDelegate Java interface shown in Listing 12.5.
This is a Java language interface that must be implemented by any class that is
to serve as a task delegate. When a delegate’s execute() method is invoked, the
caller is responsible for providing an appropriate session object. The method’s
return value indicates only whether the task is successfully dispatched; this
does not necessarily correspond to successful task execution.

While TaskDelegate is trivial in appearance, it is an important piece of our
design. In addition to explicitly stating the method(s) that delegates must
support, it allows the interface to treat all task delegate objects as instances of
type TaskDelegate, regardless of the underlying object type. This allows our
interface to rely on polymorphism for proper dispatch and simplifies the
process of obtaining delegate instances via Java’s reflection facilities. The net
result is that our interface is capable of dispatching tasks in a straightforward
manner without any knowledge of the task’s implementation, aside from the
name of its delegate class.

The Task Manager 255

package mysqljava;

import java.sql.*;

public interface TaskDelegate

{

public boolean execute(Connection conn);

}

Listing 12.5 The task delegate interface.

The Task Manager

Access to defined tasks begins with the task manager. This is a graphical inter-
face that supports task selection and input of database connection parameters.
Figure 12.1 shows a task manager with four defined tasks. Our task manager
consists of two primary pieces. The first, and more interesting of the two, is the

TaskPanel class shown in Listing 12.6. The second is the TaskManager class
shown in Listing 12.7.

The TaskPanel class, with the help of its three inner classes, provides the bulk
of the task management interface. The inner classes include ConnectionPane,
TaskPane, and TaskHandler, which are responsible for connection parameter
input, task selection, and task dispatch, respectively. The ConnectionPane sim-
ply provides for input of the information required by our ConnectionData class,
namely a host name and port, a database name, and a username and password.
The TaskPane provides a set of buttons for task selection. The number of but-
tons, and the manner in which they are named, is based on the task list that is
loaded when the application is launched; in other words, the buttons corre-
spond to the enabled tasks specified in the configuration file. The TaskHandler
class is an ActionListener responsible for handling ActionEvents associated
with the buttons on the TaskPane.

When a user clicks on a task button, the TaskHandler requests the Connec-
tionData object associated with the ConnectionPane and attempts to build a
connection with the specified database. If it obtains a valid Connection
object, it then requests the task list and iterates through the list looking for a
TaskDefinition object with a name that matches that provided by the task but-
ton. If a matching TaskDefinition is located, reflection is used to obtain an
instance of the corresponding delegate class. The delegate object is then cast
to a TaskDelegate since that is known to be a least common denominator for
all delegate classes. Finally, the TaskDelegate execute() method is used to
dispatch the task.

The second piece of our task manager, the TaskManager class, is the applica-
tion driver. It parses the configuration file, builds the task list, and provides the
main application frame and menu bar. By default, it expects to find a configu-
ration file named tasks.conf; however, an alternate configuration file may be
provided via the command line.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L256

Figure 12.1 The task manager.

The Task Manager 257

package mysqljava;

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

import java.util.*;

import javax.swing.*;

import javax.swing.border.*;

public class TaskPanel extends JPanel

{

public TaskPanel(Tasks taskList)

{

this.taskList = taskList;

setLayout(new BorderLayout());

connPane = new ConnectionPane();

connPane.setBorder(new TitledBorder("Connection Data"));

taskPane = new TaskPane();

taskPane.setBorder(new TitledBorder("Tasks"));

add(connPane, BorderLayout.NORTH);

add(taskPane, BorderLayout.SOUTH);

}

private Tasks taskList;

private ConnectionPane connPane;

private TaskPane taskPane;

class ConnectionPane extends JPanel

{

ConnectionPane()

{

setLayout(new GridLayout(5, 2));

add(hostNameLabel);

add(hostNameField);

add(dbNameLabel);

add(dbNameField);

add(portNumberLabel);

add(portNumberField);

add(usernameLabel);

add(usernameField);

add(passwordLabel);

Listing 12.6 The task manager's TaskPanel component. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L258

add(passwordField);

}

ConnectionData getConnectionData()

{

String password =

new String(passwordField.getPassword());

ConnectionData data = new ConnectionData(

hostNameField.getText(),

dbNameField.getText(),

portNumberField.getText(),

usernameField.getText(),

password);

return (data);

}

private JLabel hostNameLabel = new JLabel("Host Name:");

private JLabel dbNameLabel= new JLabel("Database Name:");

private JLabel portNumberLabel =

new JLabel("Port Number:");

private JLabel usernameLabel = new JLabel("Username:");

private JLabel passwordLabel = new JLabel("Password:");

private JTextField hostNameField = new JTextField(20);

private JTextField dbNameField = new JTextField(20);

private JTextField portNumberField =

new JTextField("3306", 6);

private JTextField usernameField = new JTextField(20);

private JPasswordField passwordField =

new JPasswordField(20);

}

class TaskPane extends JPanel

{

TaskPane()

{

int taskCount = TaskPanel.this.taskList.getTaskCount();

int rows = ((taskCount % COLS) == 0)

? (taskCount / COLS)

: ((taskCount / COLS) + 1);

setLayout(new GridLayout(rows, COLS));

Listing 12.6 The task manager's TaskPanel component. (continues)

The Task Manager 259

taskButtons = new JButton[taskCount];

TaskHandler handler = new TaskHandler();

Enumeration tasks = taskList.getTasks();

int task = 0;

while (tasks.hasMoreElements())

{

TaskDefinition taskDef =

(TaskDefinition)(tasks.nextElement());

if (! taskDef.isEnabled())

{

continue;

}

String taskName = taskDef.getName();

taskButtons[task] = new JButton(taskName);

taskButtons[task].addActionListener(handler);

add(taskButtons[task++]);

}

}

private JButton[] taskButtons;

final static int COLS = 2;

}

class TaskHandler implements ActionListener

{

public void actionPerformed(ActionEvent ae)

{

ConnectionData connData = connPane.getConnectionData();

Connection conn = connData.buildConnection();

if (conn == null)

{

String msg = "Could not build connection. Check\n"

+ "provided connection data and verify\n"

+ "server availability.";

JOptionPane.showMessageDialog(

TaskPanel.this, msg,

"Connection Failure",

Listing 12.6 The task manager's TaskPanel component. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L260

JOptionPane.ERROR_MESSAGE);

return;

}

String taskName = ae.getActionCommand();

Enumeration tasks = taskList.getTasks();

boolean dispatched = false;

while (tasks.hasMoreElements())

{

TaskDefinition taskDef =

(TaskDefinition)(tasks.nextElement());

if (! taskDef.isEnabled())

{

continue;

}

if (taskName.equals(taskDef.getName()))

{

try

{

Class delegateClass = taskDef.getDelegate();

Object delegateObject = delegateClass.newInstance();

TaskDelegate delegate = (TaskDelegate)delegateObject;

dispatched = delegate.execute(conn);

if (! dispatched)

{

String msg = "Could not execute task: "

+ taskDef.getName();

JOptionPane.showMessageDialog(

TaskPanel.this, msg,

"Task Failure",

JOptionPane.ERROR_MESSAGE);

}

}

catch(InstantiationException iX)

{

String msg = "Failed to instantiate "

+ "delegate for task: "

+ taskDef.getName();

Listing 12.6 The task manager's TaskPanel component. (continues)

The Task Manager 261

JOptionPane.showMessageDialog(

TaskPanel.this, msg,

"Task Failure",

JOptionPane.ERROR_MESSAGE);

}

catch(IllegalAccessException iaX)

{

String msg = "Cound not access delegate for task: "

+ taskDef.getName();

JOptionPane.showMessageDialog(

TaskPanel.this, msg,

"Task Failure",

JOptionPane.ERROR_MESSAGE);

}

break;

}

}

if (! dispatched)

{

try

{

conn.close();

}

catch(SQLException sqlX) {}

}

}

}

}

Listing 12.6 The task manager's TaskPanel component. (continued)

package mysqljava;

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

Listing 12.7 The task manager's TaskManager component. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L262

public class TaskManager extends JFrame

{

TaskManager(Tasks taskList)

{

super("MySQL-Java Task Manager");

this.taskList = taskList;

buildGui();

pack();

setVisible(true);

}

private void buildGui()

{

fileMenu.add(fileExit);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

frameContainer.setLayout(new BorderLayout());

frameContainer.add(new TaskPanel(taskList));

setContentPane(frameContainer);

addWindowListener(new WindowHandler());

fileExit.addActionListener(new MenuHandler());

}

private JPanel frameContainer = new JPanel();

private JMenuBar menuBar = new JMenuBar();

private JMenu fileMenu = new JMenu("File");

private JMenuItem fileExit = new JMenuItem("Exit");

private Tasks taskList;

class WindowHandler extends WindowAdapter

{

public void windowClosing(WindowEvent we)

{

System.exit(0);

}

}

class MenuHandler implements ActionListener

{

Listing 12.7 The task manager's TaskManager component. (continues)

The Task Manager 263

public void actionPerformed(ActionEvent ae)

{

if (ae.getActionCommand().equals("Exit"))

{

System.exit(0);

}

}

}

public static void main(String[] args)

{

String configFileName = "tasks.conf";

if (args.length == 1)

{

configFileName = args[0];

}

File configFile = new File(configFileName);

if (! configFile.exists() || ! configFile.canRead())

{

System.err.println("Can't read config file '"

+ configFileName + "'");

System.exit(1);

}

FileReader configReader = null;

try

{

configReader = new FileReader(configFile);

}

catch(FileNotFoundException fnfX) {}

Tasks taskList = new Tasks(configReader);

try

{

configReader.close();

}

catch(IOException ioX) {}

TaskManager ex = new TaskManager(taskList);

}

}

Listing 12.7 The task manager's TaskManager component. (continued)

Task Results

Since an application concerned with database-related tasks is almost certain to
generate at least some results that are best displayed in table format, we now
turn to addressing that need. Through its Swing package, Java provides elegant
support for rendering tables, and we take advantage of that fact here. We start
by extending Java’s AbstractTableModel class, as shown in Listing 12.8. Our
derived class, ResultsTableModel, assumes a Vector representation of table
data. The constructor expects that each element of a supplied Vector is an array
of Strings, with the first containing the column names and each subsequent ele-
ment representing one row of data. Responsibility for ensuring appropriate
String representations for each data element rests with the entity instantiating
the ResultsTableModel object.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L264

package mysqljava;

import java.util.*;

import javax.swing.table.*;

public class ResultsTableModel extends AbstractTableModel

{

ResultsTableModel(Vector results)

{

columnNames = (String[])(results.get(0));

results.remove(0);

int rowCount = results.size();

tableData = new String [rowCount][];

for (int i = 0; i < rowCount; ++i)

{

tableData[i] = (String[])(results.get(i));

}

}

public String getColumnName(int colIndex)

{

return (columnNames[colIndex]);

}

public int getColumnCount()

{

return (columnNames.length);

}

Listing 12.8 The model used for displaying results in table format. (continues)

Task Results 265

public int getRowCount()

{

return (tableData.length);

}

public Object getValueAt(int rowIndex, int colIndex)

{

return (tableData[rowIndex][colIndex]);

}

private String[] columnNames;

private String[][] tableData;

}

Listing 12.8 The model used for displaying results in table format. (continued)

With a model in place for our table data, we next turn to displaying that data.
Responsibility for constructing and populating the table rests with our Results-
TablePanel class, which is shown in Listing 12.9. Although somewhat limited in
functionality, it gets the job done. Columns are sized based on the anticipated
display length of their respective column names, and the resulting table is
placed in a scroll pane. A great deal more can be done with Java tables; how-
ever, plumbing the depths of table support is beyond the scope of this book.

package mysqljava;

import java.util.*;

import java.awt.*;

import javax.swing.*;

import javax.swing.table.*;

public class ResultsTablePanel extends JPanel

{

public ResultsTablePanel(Vector results)

{

ResultsTableModel model = new ResultsTableModel(results);

JTable resultsTable = new JTable(model);

resultsTable.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

setColumnWidths(resultsTable);

Listing 12.9 The results table panel. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L266

JScrollPane resultsPane = new JScrollPane(resultsTable);

Dimension viewPortSize =

new Dimension(PORT_WIDTH, PORT_HEIGHT);

resultsTable.setPreferredScrollableViewportSize(

viewPortSize);

add(resultsPane);

}

private void setColumnWidths(JTable table)

{

TableCellRenderer renderer =

table.getTableHeader().getDefaultRenderer();

for (int i = 0; i < table.getColumnCount(); ++i)

{

TableColumn column = table.getColumnModel().getColumn(i);

Object headerValueObj = column.getHeaderValue();

Component headerComp =

renderer.getTableCellRendererComponent(table,

headerValueObj,

false, false,

-1, i);

column.setPreferredWidth(

headerComp.getPreferredSize().width);

}

}

final static private int PORT_WIDTH = 600;

final static private int PORT_HEIGHT = 400;

}

Listing 12.9 The results table panel. (continued)

The final component provided for displaying task results is the ResultsFrame
class shown in Listing 12.10. As the name implies, this class provides a frame
into which a results panel can be inserted. There is no requirement that the
panel contain a table; anything that extends Java’s JPanel is acceptable. In addi-
tion to the provided panel, the class adds a generic button for closing the results
frame.

Task Results 267

package mysqljava;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ResultsFrame extends JFrame
{
public ResultsFrame(String title, JPanel resultsPanel)
{
super(title);

buildGui(resultsPanel);

pack();
setVisible(true);

}

private void buildGui(JPanel resultsPanel)
{
frameContainer.setLayout(new BorderLayout());

frameContainer.add(resultsPanel, BorderLayout.NORTH);

closeButton.addActionListener(new CloseHandler());
frameContainer.add(closeButton, BorderLayout.SOUTH);
setContentPane(frameContainer);

}

private JPanel frameContainer = new JPanel();

private JButton closeButton = new JButton("Close");

class WindowHandler extends WindowAdapter
{
public void windowClosing(WindowEvent we)
{
we.getWindow().dispose();

}
}

class CloseHandler implements ActionListener
{
public void actionPerformed(ActionEvent ae)
{
ResultsFrame.this.dispose();

}
}

}

Listing 12.10 A general-purpose results frame.

The Database Information Task

We now have the requisite components in place for support of a simple data-
base task, so let’s turn our attention to the creation of such a task. As with most
applications, access to version information is often useful when determining
feature support or reporting problems. Providing a version string for our inter-
face would be a trivial addition, but what about accessing version data for an
underlying MySQL server? Or for the JDBC driver that is communicating with
the server? This sounds like a task waiting to happen.

The DbInfo class shown in Listing 12.11 serves as the task delegate for our data-
base information task. As required, it implements the TaskDelegate interface
and provides a definition of that interface’s execute() method. The findDbInfo()
method, which does the real database-related work, uses the provided Connec-
tion object to obtain a DatabaseMetaData object. The DatabaseMetaData
object is in turn used to obtain the information we are after. In particular, the
metadata object is used to acquire name and version strings for the database
product and the JDBC driver; as a bonus, we also throw in the individual major
and minor version numbers for the JDBC driver.

After acquiring the database information, our code combines that information
with the appropriate column names, and packages everything up in a Vector.
The Vector is used to instantiate a ResultsTablePanel, which is then inserted
into a ResultsFrame and displayed for the user. An example of the results frame
is shown in Figure 12.2.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L268

package mysqljava;

import java.util.*;

import java.sql.*;

public class DbInfo implements TaskDelegate

{

public DbInfo() {}

public boolean execute(Connection conn)

{

if (findDbInfo(conn))

{

ResultsTablePanel results =

new ResultsTablePanel(resultsTable);

new ResultsFrame("Database Information", results);

Listing 12.11 The database information task delegate. (continues)

The Database Information Task 269

return (true);

}

return (false);

}

private boolean findDbInfo(Connection conn)

{

String[] columnNames = new String [COLS];

columnNames[0] = "DB Product Name";

columnNames[1] = "DB Product Version";

columnNames[2] = "Driver Name";

columnNames[3] = "Driver Version String";

columnNames[4] = "Driver Major Version";

columnNames[5] = "Driver Minor Version";

resultsTable.add(columnNames);

try

{

DatabaseMetaData metaData = conn.getMetaData();

String[] values = new String [COLS];

values [0] = metaData.getDatabaseProductName();

values [1] = metaData.getDatabaseProductVersion();

values [2] = metaData.getDriverName();

values [3] = metaData.getDriverVersion();

values [4] = String.valueOf(

metaData.getDriverMajorVersion());

values [5] = String.valueOf(

metaData.getDriverMinorVersion());

resultsTable.add(values);

}

catch(SQLException sqlX)

{

System.out.println(

SqlExceptionReader.readException(sqlX));

return (false);

}

return (true);

}

Listing 12.11 The database information task delegate. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L270

private Vector resultsTable = new Vector();

private final static int COLS = 6;

}

Listing 12.11 The database information task delegate. (continued)

Figure 12.2 The database information task results frame.

User Input for Tasks

Without providing the user with the opportunity to supply additional input para-
meters, we limit the number of useful tasks that can be supported by our inter-
face. As such, we take this opportunity to add the PromptFrame class shown in
Listing 12.12. This class is much like our ResultsFrame class, with the main dis-
tinguishing feature being additional flexibility with regard to frame’s button. In
the case of the PromptFrame, the instantiating object specifies the button’s
name and associated action handler. This provides support for both custom
prompts and cases where the required information necessitates multiple
prompts.

package mysqljava;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class PromptFrame extends JFrame

Listing 12.12 A general frame class for user input panels. (continues)

User Input for Tasks 271

{

public PromptFrame(String title,

String promptLabel,

JPanel promptPanel,

ActionListener promptHandler)

{

super(title);

buildGui(promptLabel, promptPanel, promptHandler);

pack();

setVisible(true);

}

private void buildGui(String promptLabel,

JPanel promptPanel,

ActionListener promptHandler)

{

frameContainer.setLayout(new BorderLayout());

frameContainer.add(promptPanel, BorderLayout.NORTH);

JButton promptButton = new JButton(promptLabel);

promptButton.addActionListener(promptHandler);

promptButton.addActionListener(new CloseHandler());

frameContainer.add(promptButton, BorderLayout.SOUTH);

setContentPane(frameContainer);

}

private JPanel frameContainer = new JPanel();

class WindowHandler extends WindowAdapter

{

public void windowClosing(WindowEvent we)

{

we.getWindow().dispose();

}

}

class CloseHandler implements ActionListener

{

public void actionPerformed(ActionEvent ae)

{

PromptFrame.this.dispose();

}

}

}

Listing 12.12 A general frame class for user input panels. (continued)

The SQL Query Task

Returning to the issue of task definitions, we pick up with a task that supports
freeform SQL queries. Again the task delegate, named SqlQuery and shown in
Listing 12.13, implements the TaskDelegate interface and provides the required
definition of execute(). In this case the delegate also implements the ActionLis-
tener interface so that it can pass itself to a PromptFrame and serve as the
event handler for the prompt’s button. Figure 12.3 shows our first use of the
PromptFrame class, where the user is being prompted for a SQL query.

Once the query is submitted, the delegate’s action event handler passes the real
work off to the handleQuery() method. This method begins by creating a State-
ment object using the provided Connection object. The Statement object is then
used to execute the specified SQL query, returning the query results as a Result-
Set object. The column names associated with the return rows are obtained by
requesting the ResultSetMetaData object associated with the ResultSet. Finally,
we step through the ResultSet, extracting the column values for each row.

Since the goal is simply to display the results, we use the ResultSet getString()
method to extract all column values, regardless of their defined type. Since get-
String() is defined for and does the right thing with all JDBC types supported by
MySQL, this is a valid approach. If it were necessary to actually manipulate the
retrieved values, the recommended accessors, as defined in Chapter 7, would
be more appropriate.

As with the database information task, the results are placed in a Vector, that
Vector is used to instantiate a ResultsTablePanel, and the results are finally dis-
played in a ResultsFrame. Figure 12.4 shows sample results from the SQL query
task.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L272

package mysqljava;

import java.sql.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SqlQuery implements TaskDelegate, ActionListener

{

public SqlQuery() {}

Listing 12.13 The SQL query task delegate. (continues)

The SQL Query Task 273

public boolean execute(Connection conn)

{

this.conn = conn;

new PromptFrame("SQL Query Input",

QUERY_CMD, queryPanel, this);

return (true);

}

public void actionPerformed(ActionEvent ae)

{

if (ae.getActionCommand().equals(QUERY_CMD))

{

Vector results = handleQuery(queryPanel.getQuery());

if (results != null)

{

ResultsTablePanel table =

new ResultsTablePanel(results);

new ResultsFrame("SQL Query Results", table);

}

}

}

private Vector handleQuery(String query)

{

Vector results = new Vector();

try

{

Statement stmt = conn.createStatement();

ResultSet rows = stmt.executeQuery(query);

ResultSetMetaData metaData = rows.getMetaData();

int columnCount = metaData.getColumnCount();

String[] columnNames = new String [columnCount];

for (int i = 0; i < columnCount; ++i)

{

columnNames[i] = metaData.getColumnName((i + 1));

}

results.add(columnNames);

Listing 12.13 The SQL query task delegate. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L274

while (rows.next())

{

String[] values = new String [columnCount];

for (int i = 0; i < columnCount; ++i)

{

values[i] = rows.getString((i + 1));

}

results.add(values);

}

}

catch(SQLException sqlX)

{

results = null;

String msg = "Failed to execute query.\n"

+ SqlExceptionReader.readException(sqlX);

JOptionPane.showMessageDialog(queryPanel, msg,

"Query Failure",

JOptionPane.ERROR_MESSAGE);

}

return (results);

}

private Connection conn = null;

private QueryPanel queryPanel = new QueryPanel();

private final static int ROWS = 10;

private final static int COLS = 50;

private final static String QUERY_CMD = "Run Query";

class QueryPanel extends JPanel

{

QueryPanel()

{

setLayout(new BorderLayout());

add(new JLabel("SQL Query:"), BorderLayout.NORTH);

sqlArea.setRows(ROWS);

sqlArea.setColumns(COLS);

sqlArea.setLineWrap(true);

add(sqlArea, BorderLayout.SOUTH);

Listing 12.13 The SQL query task delegate. (continues)

The Show Columns Task 275

}

String getQuery()

{

return (sqlArea.getText());

}

private JTextArea sqlArea = new JTextArea();

}

}

Listing 12.13 The SQL query task delegate. (continued)

Figure 12.3 A prompt frame used by the SQL query task.

Figure 12.4 The SQL task results frame.

The Show Columns Task

For administrative and development purposes, access to a table’s column defi-
nitions is often useful. It is just this type of access that our next task supports.
As you can see in Listing 12.14, the implementation of the ShowColumns dele-
gate follows the same pattern used for the SQL query task. The TaskDelegate
and ActionListener interfaces are implemented, the execute() method is
defined, and a PromptFrame is used to obtain additional input from the user—
a table name in this case. The database-related work is handed off to the han-
dleLookup() method, and the results are displayed as a table.

As with the database information task, the information we are after is available
through a DatabaseMetaData object. In this case, we invoke the Database-

MetaData getColumns() method, which returns a ResultSet object whose rows
define each column in the corresponding table; the “%” pattern provided as the
fourth parameter to getColumns() matches any column name. For each column,
we obtain the name, MySQL type, column size, and JDBC type code; in addition,
we extract a value that indicates whether a column accepts a NULL value.

Since the JDBC type is provided as integer code, its readability leaves some-
thing to be desired. To address this issue, the JDBC type code is mapped to a
corresponding type name using the JdbcTypes class shown in Listing 12.15.
This class is just a thin wrapper around a HashMap that provides a mapping
between the names and codes defined by the java.sql.Types class. Figure 12.5
shows a sample of the results generated by this task.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L276

package mysqljava;

import java.sql.*;

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ShowColumns implements TaskDelegate, ActionListener

{

public ShowColumns() {}

public boolean execute(Connection conn)

{

this.conn = conn;

new PromptFrame("Table Name", SHOW_CMD, tablePanel, this);

return (true);

}

public void actionPerformed(ActionEvent ae)

{

if (ae.getActionCommand().equals(SHOW_CMD))

{

Vector results = handleLookup(tablePanel.getTableName());

if (results != null)

{

ResultsTablePanel table =

new ResultsTablePanel(results);

Listing 12.14 The show columns task delegate. (continues)

The Show Columns Task 277

new ResultsFrame("Table Columns", table);

}

}

}

private Vector handleLookup(String tableName)

{

Vector results = new Vector();

try

{

DatabaseMetaData metaData = conn.getMetaData();

String[] columnNames = new String [TABLE_COLS];

columnNames[0] = "Name";

columnNames[1] = "MySQL Type";

columnNames[2] = "Size";

columnNames[3] = "Is Nullable";

columnNames[4] = "JDBC Type Code";

columnNames[5] = "JDBC Type Name";

results.add(columnNames);

ResultSet colData = metaData.getColumns(null, null,

tableName, "%");

while (colData.next())

{

String[] values = new String [TABLE_COLS];

values[0] = colData.getString("COLUMN_NAME");

values[1] = colData.getString("TYPE_NAME");

values[2] = String.valueOf(

colData.getInt("COLUMN_SIZE"));

values[3] = colData.getString("IS_NULLABLE");

int jdbcTypeCode = colData.getShort("DATA_TYPE");

values[4] = String.valueOf(jdbcTypeCode);

values[5] = JdbcTypes.getName(jdbcTypeCode);

results.add(values);

}

}

catch(SQLException sqlX)

{

results = null;

String msg = "Failed to lookup columns.\n"

+ SqlExceptionReader.readException(sqlX);

Listing 12.14 The show columns task delegate. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L278

JOptionPane.showMessageDialog(tablePanel, msg,

"Show Columns Failure",

JOptionPane.ERROR_MESSAGE);

}

return (results);

}

private Connection conn = null;

private TablePanel tablePanel = new TablePanel();

private final static int TABLE_COLS = 6;

private final static String SHOW_CMD = "Show Columns";

class TablePanel extends JPanel

{

TablePanel()

{

setLayout(new BorderLayout());

add(new JLabel("Table Name: "), BorderLayout.WEST);

tableNameField.setColumns(FIELD_COLS);

add(tableNameField, BorderLayout.EAST);

}

String getTableName()

{

return (tableNameField.getText());

}

private JTextField tableNameField = new JTextField();

private final static int FIELD_COLS = 20;

}

}

Listing 12.14 The show columns task delegate. (continued)

package mysqljava;

import java.util.*;
import java.sql.*;

public class JdbcTypes

Listing 12.15 The JDBC type map. (continues)

The Show Columns Task 279

{
private final static int CAPACITY = 41;

private static HashMap codeToName;

static
{
codeToName = new HashMap(CAPACITY);

codeToName.put(new Integer(Types.ARRAY), "ARRAY");
codeToName.put(new Integer(Types.BIGINT), "BIGINT");
codeToName.put(new Integer(Types.BINARY), "BINARY");
codeToName.put(new Integer(Types.BIT), "BIT");
codeToName.put(new Integer(Types.BLOB), "BLOB");
codeToName.put(new Integer(Types.CHAR), "CHAR");
codeToName.put(new Integer(Types.CLOB), "CLOB");
codeToName.put(new Integer(Types.DATE), "DATE");
codeToName.put(new Integer(Types.DECIMAL), "DECIMAL");
codeToName.put(new Integer(Types.DISTINCT), "DISTINCT");
codeToName.put(new Integer(Types.DOUBLE), "DOUBLE");
codeToName.put(new Integer(Types.FLOAT), "FLOAT");
codeToName.put(new Integer(Types.INTEGER), "INTEGER");
codeToName.put(new Integer(Types.JAVA_OBJECT),

"JAVA_OBJECT");
codeToName.put(new Integer(Types.LONGVARBINARY),

"LONGVARBINARY");
codeToName.put(new Integer(Types.LONGVARCHAR),

"LONGVARCHAR");
codeToName.put(new Integer(Types.NULL), "NULL");
codeToName.put(new Integer(Types.NUMERIC), "NUMERIC");
codeToName.put(new Integer(Types.OTHER), "OTHER");
codeToName.put(new Integer(Types.REAL), "REAL");
codeToName.put(new Integer(Types.REF), "REF");
codeToName.put(new Integer(Types.SMALLINT), "SMALLINT");
codeToName.put(new Integer(Types.STRUCT), "STRUCT");
codeToName.put(new Integer(Types.TIME), "TIME");
codeToName.put(new Integer(Types.TIMESTAMP),

"TIMESTAMP");
codeToName.put(new Integer(Types.TINYINT), "TINYINT");
codeToName.put(new Integer(Types.VARBINARY),

"VARBINARY");
codeToName.put(new Integer(Types.VARCHAR), "VARCHAR");

}

static public String getName(int jdbcType)
{
return ((String)(codeToName.get(new Integer(jdbcType))));

}
}

Listing 12.15 The JDBC type map. (continued)

Figure 12.5 The show columns task results frame.

The Insert Row Task

For our last example, we take a look at a task that modifies a database rather
than simply retrieving information. The approach taken in implementing the
delegate for this task, as shown in Listing 12.16, differs in a couple of ways from
that used for previous tasks. First, the user is prompted for input twice, once to
obtain the table name and once to obtain the row values. Second, since an
insert doesn’t generate output appropriate for display in a table, simple dialog
boxes are used to present the result.

When the task is initiated, a PromptFrame is used to request the name of the
table into which a row is to be inserted. With the table name in hand, the dele-
gate uses the same technique presented for the show columns task to obtain the
column names associated with the table. This step is handled by the get-
ColumnNames() method. The column names are then used as labels for a sec-
ond PromptFrame that requests the values to be entered in the new row; an
example of this frame is shown in Figure 12.6.

Once the user submits the row values, the getValuesAsSql() method is invoked
to generate the relevant portion of the SQL insert statement. Construction of
the insert statement is then completed and passed to the insertRow() method.
This method creates a Statement object from the provided Connection object
and invokes the Statement’s executeUpdate() method, passing the SQL insert
statement generated from the user’s input. Finally, a dialog box indicating the
result of the attempted insert operation is presented to the user.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L280

package mysqljava;

import java.sql.*;

Listing 12.16 The insert row task delegate. (continues)

The Insert Row Task 281

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class InsertRow implements TaskDelegate, ActionListener

{

public InsertRow() {}

public boolean execute(Connection conn)

{

this.conn = conn;

new PromptFrame("Table Name", SELECT_CMD,

tablePanel, this);

return (true);

}

public void actionPerformed(ActionEvent ae)

{

String cmd = ae.getActionCommand();

if (cmd.equals(SELECT_CMD))

{

tableName = tablePanel.getTableName();

String[] columnNames = getColumnNames();

if (columnNames != null)

{

valuePanel = new ValuePanel(columnNames);

new PromptFrame("Row Value Input",

INSERT_CMD, valuePanel, this);

}

}

else

if (cmd.equals(INSERT_CMD))

{

String insertSql = "INSERT INTO " + tableName

+ " " + valuePanel.getValuesAsSql();

insertRow(insertSql);

}

}

private String[] getColumnNames()

{

Listing 12.16 The insert row task delegate. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L282

String xMsg = "";

Vector columnNames = new Vector();

try

{

DatabaseMetaData metaData = conn.getMetaData();

ResultSet colData = metaData.getColumns(null, null,

tableName, "%");

while (colData.next())

{

columnNames.add(colData.getString("COLUMN_NAME"));

}

if (columnNames.size() == 0)

{

columnNames = null;

}

}

catch(SQLException sqlX)

{

columnNames = null;

xMsg = SqlExceptionReader.readException(sqlX);

}

if (columnNames == null)

{

String msg = "Failed to access table ("

+ tableName + ")\n" + xMsg;

JOptionPane.showMessageDialog(tablePanel, msg,

"Insert Row Failure",

JOptionPane.ERROR_MESSAGE);

return (null);

}

else

{

return ((String[])(columnNames.toArray(new String [0])));

}

}

private void insertRow(String insertSql)

{

try

{

Listing 12.16 The insert row task delegate. (continues)

The Insert Row Task 283

Statement stmt = conn.createStatement();

int count = stmt.executeUpdate(insertSql);

if (count != 1)

{

String msg = "Row insert failed. Returned "

+ count + ".";

JOptionPane.showMessageDialog(

null, msg,

"Insert Failure",

JOptionPane.ERROR_MESSAGE);

}

else

{

String msg = "Row insert successful.";

JOptionPane.showMessageDialog(

null, msg,

"Insert Success",

JOptionPane.INFORMATION_MESSAGE);

}

}

catch(SQLException sqlX)

{

String msg = "Failed to insert row.\n"

+ SqlExceptionReader.readException(sqlX);

JOptionPane.showMessageDialog(null, msg,

"Insert Failure",

JOptionPane.ERROR_MESSAGE);

}

}

private String tableName = null;

private Connection conn = null;

private ValuePanel valuePanel = null;

private TablePanel tablePanel = new TablePanel();

private final static String SELECT_CMD = "Select Table";

private final static String INSERT_CMD = "Insert Row";

class TablePanel extends JPanel

{

Listing 12.16 The insert row task delegate. (continues)

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L284

TablePanel()

{

setLayout(new BorderLayout());

add(new JLabel("Table Name: "), BorderLayout.WEST);

tableNameField.setColumns(FIELD_COLS);

add(tableNameField, BorderLayout.EAST);

}

String getTableName()

{

return (tableNameField.getText());

}

private JTextField tableNameField = new JTextField();

private final static int FIELD_COLS = 20;

}

class ValuePanel extends JPanel

{

ValuePanel(String[] columnNames)

{

int columnCount = columnNames.length;

setLayout(new GridLayout(columnCount, 2));

valueFields = new JTextField [columnCount];

for (int i = 0; i < columnCount; ++i)

{

add(new JLabel(columnNames[i] + ":"));

valueFields[i] = new JTextField(FIELD_COLS);

add(valueFields[i]);

}

this.columnNames = columnNames;

}

String getValuesAsSql()

{

StringBuffer cols = new StringBuffer("(");

StringBuffer vals = new StringBuffer("VALUES(");

boolean isFirst = true;

for (int i = 0; i < columnNames.length; ++i)

Listing 12.16 The insert row task delegate. (continues)

The Insert Row Task 285

{

String value = valueFields[i].getText();

if (value.length() == 0)

{

continue;

}

if (! isFirst)

{

cols.append(",");

vals.append(",");

}

else

{

isFirst = false;

}

cols.append(columnNames[i]);

vals.append("\"").append(value).append("\"");

}

cols.append(")");

vals.append(")");

return (cols.toString() + " " + vals.toString());

}

private String[] columnNames;

private JTextField[] valueFields;

private final static int FIELD_COLS = 20;

}

}

Listing 12.16 The insert row task delegate. (continued)

Figure 12.6 The insert row task prompt frame.

What’s Next

In this chapter, we detailed the development of a real-world application for
accessing MySQL databases using the Java programming language. Okay,
maybe calling it a real-world application is going a bit far. There is a distinct
lack of bells and whistles, error checking is minimal, and we have taken a few
shortcuts. However, the example does provide some insight into ways in which
Java and MySQL can combine to address real-world problems. In the next chap-
ter, we turn our attention to the topic of database administration.

B u i l d i n g a G e n e r a l I n t e r f a c e f o r M y S Q L286

MySQL is a comprehensive relational database management system and
must be managed to achieve optimal functionality. Some of the issues
that you need to understand include how to add users and set up per-

missions, how to import large amounts of data into various tables, when and
how to make backups, and how to replicate data, among other functions. This
chapter provides you with a guide to database administration in a development
or staging environment. For a production-level system, we recommend that you
use a professional database administrator.

Using the mysql Administration Application

One of the most important tools available to the developer is the command-line
interface called simply mysql, which is located in the /bin directory of both the
Unix and Windows systems. mysql is both an interactive and noninteractive
application that gives you complete control over the MySQL database server
and its related tables.

You start the application in interactive mode by issuing the following command
within a terminal window or command prompt:

mysql --user=<username> --password=<password> database

Replace <username> and <password> with either a previously defined user in
the database or the root user. If you’re executing the mysql application as the

Database Administration

C H A P T E R13

287

root user under Unix or as Administrator under Windows, you need only the
mysql application name. You append the database name to the command line,
which has the same effect as executing the use <database> command. If the
application is in the path of the current user or the system, the output shown in
Figure 13.1 will be generated.

D a t a b a s e A d m i n i s t r a t i o n288

Figure 13.1 The mysql application output.

The application allows any type of SQL to be entered at the command line. All
SQL must end with the ; character to indicate the end of a statement. For exam-
ple, we can query all of the rows in our acc_acc database and display the results
in the application. Figure 13.2 shows an example of this query and the resulting
output.

To quit the application, enter the exit command. We use the mysql application
in most of the sections remaining in this chapter.

Figure 13.2 Using mysql to query our database.

Managing Users and Permissions

Once the MySQL server has been installed, you must immediately change the
password for the root user as well as add new users to the server. Adding a new
user involves adding an access configuration to the server as well as assigning
permissions that allow the user access to specific databases, tables, and
columns.

The MySQL database server automatically creates a database called mysql
when you install the server. Within this database are four primary tables for
holding user and permission information:

■■ columns_priv—Defines column-level privileges.

■■ db—Defines database-level privileges.

■■ tables_priv—Defines table-level privileges.

■■ user—Defines the users that can connect to the server.

The MySQL server defines a combination of commands that you can use to add
users and privileges to the server, as we discuss later in this chapter.

Changing Root
Once you’ve installed MySQL, changing the root password to the database
application should be one of your next steps. The root user has complete
authority over the system, just like the root user in Unix or the Administrator in
Windows. The database installs the root user but does not set the password. We
can see this by using a simple SELECT, as shown here:

mysql> use mysql;

Database changed

mysql> select user, password, host from user where user =

'root';

+------+----------+-----------+

| user | password | host |

+------+----------+-----------+

| root | | localhost |

| root | | % |

+------+----------+-----------+

2 rows in set (0.00 sec)

As you can see, the password is blank for the root user, and it creates a big secu-
rity hole. To solve this problem, we need to assign a password. The following
SQL entered into the mysql application will do the trick:

mysql> UPDATE user SET password=PASSWORD('<password>') WHERE

user = 'root';

Managing Users and Permissions 289

This code updates the user table and sets the password field equal to an
encrypted password specified by the <password> placeholder in those rows
where the user field is equal to root. Once the field has been updated, it’s a good
idea to flush the change by using the command

mysql> FLUSH PRIVILEGES;

Adding Users
Adding users to a MySQL database can be accomplished in two ways. The first
involves using the SQL command INSERT to place rows into one or more of the
database tables we discussed earlier. Because the process of giving privileges
can span all of the tables, except host, the MySQL database server provides a
command called GRANT that allows you to easily add users and give them priv-
ileges. Here’s the format of the GRANT command:

GRANT <privileges> (columns)

ON <db>

TO <user>

IDENTIFIED BY <password>

WITH GRANT OPTION

You replace the <privileges> placeholder with a comma-delimited string con-
sisting of the following specifiers as needed:

ALTER—Allows the user to alter tables

CREATE—Allows the user to create databases and tables

DELETE—Allows the user to delete table rows

DROP—Allows the user to drop databases

INDEX—Allows the user to create/drop indexes

INSERT—Allows the user to insert rows

SELECT—Allows the user to select rows

UPDATE—Allows the user to update rows

FILE—Allows the user access to files on a local server

PROCESS—Allows the user to view process information or kill threads

RELOAD—Allows the user to flush logs, privileges, and caches

SHUTDOWN—Allows the user to shut down the database server

ALL—Gives the user all privileges

USAGE—Gives the user no privileges

D a t a b a s e A d m i n i s t r a t i o n290

You replace the (columns) placeholder with a comma-delimited list of columns
in the database that will affected by the privileges. This option allows you to
limit a user to specified columns in a database.

The <db> placeholder indicates the level to which the privileges affect the data-
bases in the server. As our examples in this section show, the value can be all
databases, or you can specify certain databases or a single database with lim-
ited columns.

The <user> and <password> placeholders indicate the username/password
combination the new user will use to connect. The <user> placeholder is a
username@host combination that allows connections to be limited to specific
domain or IP addresses. You can substitute a wildcard using the character % in
place of the host to give wider access to the system. A "" value can be used in
place of the username to give any user from a host access to the database.

The WITH GRANT OPTION gives the new user the ability to grant privileges to
new and existing users within the server. Use this option sparingly.

Consider a user john, who needs to access the MySQL server from his office PC,
which has an IP address of 192.168.1.45. You don’t want to give john adminis-
trative access to the system but want to allow him to insert, delete, and so forth
on all of the various tables. To do this, use the following GRANT command:

mysql> GRANT SELECT, INSERT, UPDATE

ON *.*

TO john@192.168.1.45

IDENTIFIED BY "rudy"

This grant gives john basic access to all of the databases in the system. You
could limit him to one database:

mysql> GRANT SELECT, INSERT, UPDATE

ON accounts.*

TO john@192.168.1.45

IDENTIFIED BY "rudy"

By using accounts.* in the ON clause, you ensure that john has access only to
the tables in the accounts database. We could further restrict him to specific
columns:

mysql> GRANT SELECT, INSERT, UPDATE (acc_id, username)

ON accounts.acc_acc

TO john@192.168.1.45

IDENTIFIED BY "rudy"

Here, john will be allowed to see only the acc_id and username columns of the
accounts.acc_acc table. Suppose you must add another user, jim, who will have
more privileges as well as require access from many machines:

mysql> GRANT ALL ON *.* TO jim@"%" IDENTIFIED BY "jimmy"

Managing Users and Permissions 291

The user jim will have access to the server from any host and will be allowed
full privileges. Obviously, there are many different combinations that you can
create using the GRANT command.

There may be times when you have to remove a privilege from a user. In this
case, you use the REVOKE command, which has this format:

REVOKE privileges (columns)

ON <database>

FROM <user >

For example, let’s revoke UPDATE privileges from john:

mysql> REVOKE UPDATE ON *.* FROM john@192.168.1.45

If john will be going on vacation for two weeks and you don’t want to leave his
account open, but you don’t want to delete him from the server, you can revoke
all privileges:

mysql> REVOKE ALL ON *.* FROM john@192.168.1.45

If during those two weeks, John decides to leave the company, you need to
remove him from the database. That way, even if john doesn’t have privileges he
can still connect to the database. The command to remove john from the data-
base is as follows:

mysql> DELETE FROM user WHERE User="john" and Host = "192.168.1.45";

mysql> flush privileges;

This command deletes the row defined for john in the user table, and MySQL no
longer permits him to connect.

Limiting Resources
If you have chosen to use MySQL 4.0.2 or greater, you have the ability to limit
users and processes to the amount of resources they are capable of using. The
resources that can be limited include

■■ Queries per hour

■■ Updates per hour

■■ Connections per hour

You limit resources by specifying user/host values in a user table. These
resources are not limited by default. You can define each of the limits by either
an integer indicating per-hour rates or by a value such as 5 (which would allow
five 5 connections per hour).

You apply limits by using the GRANT command or remove them using
REVOKE. For example, suppose you have a user named smith who connects

D a t a b a s e A d m i n i s t r a t i o n292

from host 192.168.1.4. You can limit smith to 30 queries per hour with this
command:

mysql> GRANT ('smith', '192.168.1.4') WITH MAX_QUERIES_PER_HOUR 30;

Notice that here the GRANT command is a little different than when used to
grant privileges to a user. To limit all of the available resources, use the com-
mand

mysql> GRANT ('smith', '192.168.1.4') WITH

MAX_QUERIES_PER_HOUR 30

MAX_UPDATES_PER_HOUR 60

MAX_CONNECTIONS_PER_HOUR 10;

Several things should be noted:

■■ If any of the limits are reached, the user’s connection is terminated and fur-
ther connections are refused.

■■ The system keeps track of the user’s usage of the three resources. To flush
the values for an individual user, issue the GRANT command with one or
all of the MAX_ clauses. To flush all users, use the commands FLUSH
PRIVILEGES, FLUSH USER_RESOURCES, or mysqladmin reload.

■■ The resource limits are activated when the first GRANT command is used
that assigns limits to any one user.

Configuring the Query Cache

The MySQL server includes a query cache that keeps track of recent queries by
users in the system. The cache is kept in memory and is regulated based on the
number and size of the queries hitting the database. By default, the query cache
isn’t activated when the MySQL server is first executed. The best way to con-
figure the query cache is to enter appropriate values in the MySQL configura-
tion file, my.cnf. The arguments available are as follows:

■■ query_cache_limit—Specifies the limit for cached results; the default is
1MB.

■■ query_cache_size—Specifies the memory for the query cache; the default
is 0, which means the cache is disabled.

■■ query_cache_type—Specifies the cache type:

0—Cache is off.

1—Cache is on; no SELECT SQL_NO_CACHE queries are cached.

2—Cache is on; only cache SELECT SQL_CACHE queries are cached.

Configuring the Query Cache 293

To see the current status of the cache, execute the command SHOW STATUS to
display a result like the following in the mysql application:

mysql> SHOW STATUS LIKE "Qcache%";

+-------------------------+-------+

| Variable_name | Value |

+-------------------------+-------+

| Qcache_queries_in_cache | 30 |

| Qcache_inserts | 5 |

| Qcache_hits | 8 |

| Qcache_not_cached | 57 |

| Qcache_free_memory | 5434 |

| Qcache_free_blocks | 254 |

| Qcache_total_blocks | 6532 |

+-------------------------+-------+

7 rows in set (0.00 sec)

Because the query cache is based in memory, it can become fragmented. Even-
tually the cache may not allow a query to be changed because a slot big enough
for the query is not available. You can defragment the cache by issuing the com-
mand FLUSH QUERY CACHE. This command consolidates the queries in the
cache and frees up larger blocks of space for future queries. The FLUSH
TABLES command also defragments the query cache. To remove all queries in
the query cache, issue the RESET QUERY CACHE command.

Forcing a Cache
When you execute a query, MySQL evaluates whether or not the query should
be cached. Some of the criteria for a query include its size and the current state
of the cache; also the MySQL manual defines several functions that aren’t
cached. If you want to be sure that one of your queries is cached, add the
SQL_CACHE clause to the SELECT command. For example:

SELECT SQL_CACHE * from acc_acc;

If you have another query that you want to make sure isn’t cached, use the
SQL_NO_CACHE clause:

SELECT SQL_NO_CACHE * from acc_cert;

The cache determines whether a new query is in the cache by performing a
byte-by-byte comparison. In other words, the cache is case-sensitive since the
system will compare the byte values of the query versus the cache.

Understanding Log Files

The MySQL server automatically generates several log files, including

D a t a b a s e A d m i n i s t r a t i o n294

■■ An error log

■■ A general log

■■ A binary log

■■ A slow query log

Error Logs
All of the logs for the MySQL database server are located in the defined data
directory such as /mysql/data. The server writes any errors that it finds during
boot into an error log file called <hostname>.err on Unix and mysql.err on Win-
dows. The contents of the file look something like this:

[jxta@localhost mysql]$ cat localhost.localdomain.err

020602 16:26:04 mysqld started

020602 16:26:09 InnoDB: Started

/usr/sbin/mysqld: ready for connections

020604 0:00:55 /usr/sbin/mysqld: Normal shutdown

020604 0:00:55 InnoDB: Starting shutdown...

020604 0:00:59 InnoDB: Shutdown completed

020604 0:00:59 /usr/sbin/mysqld: Shutdown Complete

020604 00:00:59 mysqld ended

020630 21:39:38 mysqld started

InnoDB: Database was not shut down normally.

InnoDB: Starting recovery from log files...

InnoDB: Starting log scan based on checkpoint at

InnoDB: log sequence number 0 43902

020630 21:39:42 InnoDB: Started

/usr/sbin/mysqld: ready for connections

020702 20:10:37 mysqld started

It is a good idea to examine the contents of the error file, even when users
haven’t reported problems. The error file is the first place the server starts to
record errors.

General Logs
If you are having difficulties with a client connecting with the database, you can
activate a general log when the mysql executable starts. You activate the gen-
eral log by using the command-line option –log. For example:

mysqld –log[=filename]

When the server executes, it will by default log all connections and queries to a
file called <hostname>.log.

Understanding Log Files 295

Binary Logs
The binary log is used by the MySQL server to record all updates made to the
database. Since this is a binary log, it isn’t designed for troubleshooting, but
instead provides a simple mechanism for master/slave replication. The slave
database can read the binary log to determine what updates have occurred on
the master. You activate the log by using the –log-bin command-line prompt or
through the configuration file.

Slow Query Logs
If you start the server with the command-line option –log-slow-queries, the sys-
tem creates a log file that holds all queries that take longer than
long_query_time to execute. If you suspect that queries are taking a long time
to execute, examine this log.

Maintaining Your Tables

To keep your tables in the best condition possible, it’s a good idea to run
through a check periodically. The CHECK TABLE command works on both
MyISAM and InnoDB tables. The format of the command is

CHECK TABLE tbl_name[,tbl_name...] [option [option...]]

Options include the following:

■■ QUICK—Doesn’t check for bad links.

■■ FAST—Checks only improperly closed tables.

■■ MEDIUM—Checks deleted links.

■■ EXTENDED—Performs a full key lookup for 100-percent consistency.

■■ CHANGED—Checks only tables that have changed since the last check.

Figure 13.3 shows an example of executing CHECK TABLE on the acc_acc
table.

In this example, an extended check is made against the acc_acc table. Any
errors in the table are listed as rows in the result set shown. The last row is
always the final diagnostic report. The goal is for the Msg_text column to have
a value of OK. If the value isn’t OK, that means you have to execute the REPAIR
TABLE command.

To check the table outside the mysql application tool, use the myisamchk util-
ity. For example:

myisamchk acc_acc.myi

D a t a b a s e A d m i n i s t r a t i o n296

Figure 13.3 Executing a check on a table.

Figure 13.4 shows the output generated by myisamchk when executed against
the acc_acc table.

Maintaining Your Tables 297

Figure 13.4 An example using myisamchk.

The utility performs the same basic check as the CHECK TABLE command, but
from a command-line starting point. There are numerous options for the utility,
which you can find in the MySQL manual.

Repairing Tables
If either of the table-checking mechanisms suggest that there is a problem with
one of your MyISAM tables, you must use the REPAIR TABLE to bring the table
into consistency. If the repairs need to be made from the command line or in a
batch situation, you can use the myisamchk application. Figure 13.5 shows an
example of running the application using the –r flag.

Figure 13.5 Using myisamchk to repair a table.

It is also possible to repair the table using the REPAIR TABLE command. Fig-
ure 13.6 shows an example of using the command along with the EXTENDED
options. There is a QUICK repair option as well.

D a t a b a s e A d m i n i s t r a t i o n298

Figure 13.6 Using the REPAIR TABLE command.

Backing Up and Restoring Your Database

Once a database has been put into use, it is always a good idea to make back-
ups on a prepared schedule. The MySQL database server holds all of the data in
a series of files located on a local or network driver. Figure 13.7 shows the files
used to contain the acc_acc, acc_add, and acc_cert tables we’ve used through-
out the book.

Figure 13.7 The acc_* table data files.

As you can see in the figure, the data files are located in the data directory
under a subdirectory called accounts, which is the database where the tables
are defined. All three of these tables are MyISAM tables, and as such, three files
are defined per table. Other table types store data in other directories and files,
as we discuss briefly in a later section.

From what we see in the figure and know about MySQL, the easiest way to back
up a database that uses MyISAM tables is to follow these steps:

1. Stop the server.

2. Copy the files to another medium.

3. Restart the database.

If you don’t have the luxury of stopping the database, you have to do a couple
of extra steps. The most important thing is to make sure that no writes occur to
the database tables you are backing up. Here are the steps to follow when you
cannot shut down the database:

1. Lock the tables with a read lock using the command

mysql>LOCK TABLES <tables to backup> READ.

2. Flush any pending updates using the command

mysql> FLUSH TABLES.

3. Back up the table using only one of the following methods:

Copy the files manually.

Use the command mysql> SELECT * INTO OUTFILE “filename”
FROM <table>.

Backing Up and Restoring Your Database 299

Use the command mysql> BACKUP TABLE <table> TO <path>.

Use the command mysqldump --opt <database> > <file>.

Use the command mysqlhotcopy <database> <path>.

Release the table locks using the command – mysql>UNLOCK TABLES;.

Let’s look at what these steps are accomplishing. First, we need to keep in mind
that our database server is still executing and that both reads and updates could
be occurring. We need to make sure that no write occurs to the tables once we
start to copy the data. We accomplish this by issuing the LOCK TABLES com-
mand. For example, let’s lock the acc_acc table using the following command,
which won’t allow any updates to occur:

mysql> LOCK TABLES acc_acc READ;

Next, we need to flush all of the caches associated with the table so that any
pending actions are taken care of:

mysql> FLUSH TABLES acc_acc;

The select table is now ready to be backed up, and as shown in step 3, there are
quite a few options available. Let’s discuss each of them in order.

The first backup option is to copy the files manually, which is the easiest of the
options. With this option and MyISAM files, you just copy all of the files associ-
ated with the table. The second option is to issue the command SELECT * INTO
OUTFILE “filename” FROM <table>. With this option, you create a file with all
of the data from the table arranged in a grid format. Typically, you use this
option when transferring table data from the database to another application
like Microsoft Excel; it isn’t the best backup option.

The third choice, the BACKUP TABLE command, works only with MyISAM
tables. The command copies the .frm and .myd files to the specified path. The
index file(s) won’t be copied since you can recover them from the data files.
The command is designed to move the least amount of data necessary to ensure
complete backup of data.

The fourth option, the command mysqldump --opt <database> > <file>, backs
up an entire database to a specified file. The file will not only include data, but
also the SQL commands necessary to reproduce the data on another MySQL
server or even another database system entirely. Figure 13.8 shows an example
of using mysqldump.

The last option is to use the command mysqlhotcopy <database> <path>. The
mysqlhotcopy command makes a very quick backup of the specified database
using a Perl script, and you must execute it from the same machine as the
database.

D a t a b a s e A d m i n i s t r a t i o n300

Figure 13.8 Using mysqldump.

Restoring Data
We hope you never need to use a database backup, but there may be times
when data is corrupted. In these cases, you have to restore your data. We have
seen several ways to back up a MySQL database. There are basically three ways
to recover the backed-up data:

1. Copy the files.

2. Use the mysql application.

3. Use the RESTORE TABLE command.

If you used one of the backup options where the database files were just copied
to another location, you can restore your data by stopping the database, copy-
ing the files into the correct data directory, and restarting the server.

If you saved your data using the mysqldump command, you can “replay” the
SQL commands in the backup files into the current mysql server with the
command

mysql database < <file>

Backing Up and Restoring Your Database 301

Before using this command, though, rename the current database to a backup
name and then import the old data into the server.

You can use the RESTORE TABLE command if you used the BACKUP TABLE
command to back up your data. The format of the command is

RESTORE TABLE <database> FROM <path>

If you don’t rename the database table to be written, you’ll get an error.

InnoDB Table Types
Although the MyISAM table type is the most commonly used type in MySQL, we
need to cover two others in our backup discussion: InnoDB and BDB. First, let’s
look at the InnoDB table type. There are two possible ways to back up the Inn-
oDB tables: performing a binary backup or using a tool called InnoDB Hot
Backup.

In the binary backup, it is assumed you can shut down the database server. Fol-
low these steps:

1. Shut down MySQL.

2. Copy the InnoDB files to an appropriate backup medium.

All data files are located in the /idbata directory.

Log files are typically located in /mysql/data – ib_logfile_x.

3. Copy the current my.cnf file to the backup medium.

4. Use mysqldump to periodically create readable versions of the database
data.

If you don’t have the option of shutting down your database server to make the
backups of the InnoDB tables, you can use a tool called InnoDB Hot Backup to
do the work. The tool is available at www.innodb.com/hotbackup.html.

The Hot Backup tool is designed to make a copy of your InnoDB tables without
locking the database or causing any other type of interrupt to its normal opera-
tion. In other words, you get a snapshot of the data in your tables at a moment
in time. Of course, any additional updates to the table after the snapshot won’t
be part of the backup. You can request a 30-day evaluation of InnoDB Hot
Backup at the URL we’ve provided or purchase a license.

BDB Table Types
The other transaction table type used in MySQL is BDB, and it provides an alter-
native to InnoDB. The best way to make a backup of BDB tables is to use a
binary process:

D a t a b a s e A d m i n i s t r a t i o n302

1. Stop the MySQL database server.

2. Copy all files with the <table>.db name.

3. Copy all log files with the name log.dddddd located in the data directory of
MySQL—typically <install dir>/mysql/data.

What’s Next

This chapter has provided a glimpse into some of the functions that a developer
might need to accomplish while using a MySQL database as a back-end storage
device for Java. In the next chapter, we look at some of the most popular
optimization techniques to get the most from your MySQL database as well as
Connector/J and Java.

What’s Next 303

During the development of an application that spends a good part of its
execution accessing a database, you must create a balance to achieve
the optimal working environment. In this chapter, we look at some of

the performance numbers associated with using Connector/J versions 3.0 and
2.1, how to tune MySQL for performance, and hints for getting the most out of
JDBC.

Connector/J 3.0 Performance

From an overall performance perspective, we want to determine how well the
driver (both 3.0 and 2.1) can insert new rows into the database, select those
same rows, and update one of the columns in each row. The code in Listing 14.1
does the performance work. The test is against a table defined using the fol-
lowing create table command:

mysql> create table product(id int auto_increment primary key,

string varchar(32),

test double,

supplier varchar(128),

ts timestamp,

value int);

Performance and Tuning

C H A P T E R14

305

Pe r f o r m a n c e a n d Tu n i n g306

import java.sql.*;

import java.util.Date;

import java.text.DateFormat;

public class Performance{

Connection connection;

public Performance() {

try {

Class.forName("com.mysql.jdbc.Driver").newInstance();

} catch (Exception e) {

System.err.println("unable to load driver");

}

try {

connection = DriverManager.getConnection(

"jdbc:mysql://192.168.1.25/products?user=spider&password=spider");

}

catch(SQLException e) {

System.out.println("SQLException: " + e.getMessage());

System.out.println("SQLState: " + e.getSQLState());

System.out.println("VendorError: " +

e.getErrorCode());

}

}

public void run() {

long startTime;

try {

PreparedStatement ps = connection.prepareStatement(

"INSERT INTO product VALUES(null, 'title', 5.54,

'supplier', null, ?)");

startTime = new Date().getTime();

for (int i=0;i<1000;i++) {

ps.setInt(1, i);

ps.executeUpdate();

}

System.out.println("INSERT = " + ((new Date().getTime())

- startTime));

Statement statement = connection.createStatement();

startTime = new Date().getTime();

ResultSet rs = statement.executeQuery("SELECT * FROM product");

while (rs.next()) {

}

rs.close();

statement.close();

System.out.println("SELECT = " + ((new Date().getTime())

Listing 14.1 Performance example code. (continues)

Connector/ J 3.0 Performance 307

- startTime));

ps = connection.prepareStatement(

"UPDATE product SET inventory=10 WHERE inventory = ?");

startTime = new Date().getTime();

for (int i=0;i<1000;i++) {

ps.setInt(1, i);

ps.executeUpdate();

}

System.out.println("UPDATE = " + ((new Date().getTime())

- startTime));

connection.close();

} catch(SQLException e) { }

}

public static void main(String[] args) {

Performance test = new Performance();

test.run();

}

}

Listing 14.1 Performance example code. (continued)

We executed the code in Listing 14.1 against a MySQL 3.23-52-NT database run-
ning on a 1.4GHz Pentium 4 with 512MB of RAM. We executed the client code
on the same machine to eliminate any substantial network traffic. When we
used the Connector/J 3.01 beta, it took

■■ 734 milliseconds to insert 1000 rows

■■ 20 milliseconds to retrieve 1000 rows

■■ 13,063 milliseconds (13.063 seconds) to update 1000 rows

When we ran MySQL 4.0.4 on a P166 with 256MB of RAM with the client running
on a separate machine over a 100MB LAN, it took

■■ 741 milliseconds to insert 1000 rows

■■ 50 milliseconds to retrieve 1000 rows

■■ 12,358 milliseconds (12.358 seconds) to update 1000 rows

Switching to Connector/J 2.1 doesn’t change the numbers too much. When we
used the 1.4GHz machine, it took

■■ 726 milliseconds to insert 1000 rows

■■ 22 milliseconds to retrieve 1000 rows

■■ 12,645 milliseconds (12.645 seconds) to update 1000 rows

On the P166, the numbers are

■■ 761 milliseconds to insert 1000 rows

■■ 40 milliseconds to retrieve 1000 rows

■■ 12,448 milliseconds (12.448 seconds) to update 1000 rows

Database Tuning

If a system appears to be running slow, the performance of the database should
be checked to ensure it is running at an optimal level for the machine it is exe-
cuting on. In this section we discuss various server options for tuning the data-
base, using RAID, adding indexes, and examining the options from the MySQL
Query Optimizer.

Server Options
When installing MySQL for the first time, you can turn to several configuration
file examples supplied in the base directory of the install on a Windows
machine. One of these configurations is supposed to be copied to the root
directory. Although the Unix version does not supply example configuration
files, it’s worth looking at some of the server parameters set up in these files to
see how a small system is configured versus a large system. Table 14.1 shows
the various parameters and their values based on intended server size.

Table 14.1 Server Configuration Options

SERVER KEY_ MAX_ THREAD_ TABLE_ SORT_ NET_ THREAD_

SIZE BUFFER_ ALLOWED_ STACK CACHE BUFFER BUFFER_ CACHE_

SIZE PACKET LENGTH SIZE

Small 16K 1MB 64K 4 64K 2K NA

Medium 16MB 1MB NA 64 512K 8MB

Large 256MB 1MB 256 NA 1MB 64MB 8

Huge 384MB 1MB 512 NA 2MB 128MB 8

As you can see, some of the server parameters change quite drastically. Here
are the explanations for each of the parameters:

key_buffer_size—The total memory used for index blocks. This is a
shared amount and should be roughly one-fourth of the total memory in the
system.

max_allowed_packet—The total size of a message from a client. Packets
bigger than this value throw an exception. The value should be as big as the

Pe r f o r m a n c e a n d Tu n i n g308

largest amount of data to be passed to the server. This is important if you
are using BLOBs since their data can be quite large.

thread_stack—The size of the stack associated with each server thread.

table_cache—The total number of opened tables allowed on the system.

sort_buffer—The size of the sort buffer opened by a thread when the user
uses the ORDER BY or GROUP BY clause.

net_buffer_length—The initial length of the buffer where queries will be
initially received. This value will grow to max_allowed_packet as needed.

thread_cache_size—The size of the thread cache when server threads are
removed to handle a client’s request.

Another server parameter that you might want to consider increasing is
read_buffer_size. This parameter indicates the size of a buffer opened by a
server thread when a query requires a table scan to be performed instead of
using an index.

Using RAID
While the server needs memory to perform its various operations and you can
configure the server parameters to balance the machine’s memory against the
needs of the application, the system disks play a vital role in performance.

At a minimum, the disk hardware used to store the database’s data should be
the fastest possible. This means a high RPM value and a low disk seek. The dif-
ference between an 8-millisecond seek and a 10-millisecond seek can be enor-
mous when multiplied over thousands of queries. To further help with the seek
issue, we can take advantage of disk stripping and gain some data redundancy
at the same time.

Using RAID level 1, we can instruct the server machine’s hardware to spread a
disk volume across N number of drives. When we do this, seeks to the drive to
obtain the data saved in MySQL’s table files won’t always have to be done
against a single drive—which means waiting on the read head to seek to the
proper disk location. Instead, data will be read from multiple drives, which
results in a greater average seek time across all drives.

Optimizing Tables
When you delete rows from a database table, the database server doesn’t actu-
ally remove the rows, but instead keeps a running list of rows that are currently
marked as deleted. As new records are inserted into the table, the deleted rows
are reused. If you delete rows that have BLOBs or variable-length data in
them, it is a good idea to execute the OPTIMIZE TABLE <table> command

Database Tuning 309

occasionally to reclaim deleted space and defragment the table. You can use the
command on both MyISAM and BDB tables. Note that the table being optimized
is locked for the entire execution of the command.

If you need to execute the OPTIMIZE TABLE command from a batch or com-
mand line, use the myisamchk application and use the flags

myisamchk --quick --check-only-changed --sort-index --analyze

<table>

The MySQL Query Optimizer
When performing simple or complex queries with or without joins, the MySQL
server invokes a process called the Query Optimizer. This process attempts to
formulate the best possible internal query to use when retrieving your data. In
most cases, this means that the optimizer will analyze the intended query and
attempt to match appropriate indexes against the tables to be accessed. If there
are joins in the SQL, the optimizer might change the order to achieve the best
performance from the database.

To learn what the Query Optimizer suggests when executing a query, use the
EXPLAIN <SQL> command. For example:

mysql> explain select * from acc_acc;

+---------+------+---------------+------+---------+------+------+-------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+---------+------+---------------+------+---------+------+------+-------+
| acc_acc | ALL | NULL | NULL | NULL | NULL | 12 | |
+---------+------+---------------+------+---------+------+------+-------+

In this example, we are attempting to determine how the server will handle a
request to pull all of the rows from a table. In response to the EXPLAIN com-
mand, a result set is returned with a number of columns. The columns are

■■ table—The table being accessed.

■■ type—The join to be used for the query. The possible values are:
• ALL—Indicates a table scan.

• Index—Indicates a scan of an index.

• Range—Specifies that a range of rows will be selected from an
index.

• Ref—Used in a join when the key isn’t a primary key. The selected
key is matched to all rows having the same value.

• Eq_ref—Indicates that one row should be read based on multiple
previous rows.

Pe r f o r m a n c e a n d Tu n i n g310

• Const—Indicates that one matching row will be examined.

• System—Indicates that only one matching row in a system table
will be examined.

■■ possible_keys—Specifies the indexes MySQL may use to obtain the data.
Some of the indexes might not be used due to the order in which multiple
tables are accessed in a join situation.

■■ key—The key MySQL used for the query. If null, then no key was used.

■■ key_len—The length of the key chosen.

■■ ref—Specifies that additional columns were used with the key to select
rows.

■■ rows—Specifies the total rows to be examined for the query.

■■ Extra—Contains additional information from the optimizer.

We can get a better idea of values placed in the columns with the following
example:

mysql> explain select acc_id, username from acc_acc;

+---------+-------+----------+---------+---------+------+------+-------+

| table | type | possible | | | | | |

| | keys | key | key_len | ref | rows | Extra |

+---------+-------+----------+---------+---------+------+------+-------+

| acc_acc | index | NULL | PRIMARY | 72 | NULL | 12 | Using |

| | | | | | | | index |

+---------+-------+----------+---------+---------+------+------+-------+

In this example, we have asked for only the acc_id and username rows in the
table. MySQL will use an index against the primary key to return the rows. Con-
sider another example:

mysql> explain select password, username from acc_acc where username

like 'j%';

+---------+------+---------------+------+---------+------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+---------+------+---------------+------+---------+------+------+-------+

| acc_acc | ALL | NULL | NULL | NULL | NULL | 12 | where |

| | | | | | | | used |

+---------+------+---------------+------+---------+------+------+-------+

In this example, we added a WHERE clause. Note that the optimizer suggests
that it will have to examine all 12 rows of the table primarily because of the like
parameter. Now let’s see what a join looks like:

mysql> explain

select acc_acc.acc_id, password, username, state, zip

Database Tuning 311

from acc_acc

left join acc_add on acc_acc.acc_id = acc_add.acc_id

where acc_acc.ts = 0;

+---------+------+---------------+------+---------+------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+---------+------+---------------+------+---------+------+------+-------+

| acc_acc | ALL | NULL | NULL | NULL | NULL | 12 | where |

| | | | | | | | used |

| acc_add | ALL | NULL | NULL | NULL | NULL | 3 | |

+---------+------+---------------+------+---------+------+------+-------+

Here we are asking for data from two different tables, so the EXPLAIN com-
mand displays how it expects to obtain data from each of them. Note that the
optimizer expects to perform a table scan on both tables. Since our tables are
small, this isn’t too big a deal, but if the tables were larger, we might want to
have additional indexes available. If we were to expand the previous query to
place a condition on the acc_id of the acc_acc table, the system would be able
to pull in the primary index and reduce the number of rows to be examined.

Table Indexes
If you have queries against a large table that aren’t tied to the primary key of the
table, you can improve system performance by using additional indexes. The
index is just a data structure stored in the server alongside the database table
to allow fast lookups using one or more columns of the table. To create an
index, use the command

CREATE INDEX <name> on <table>(columns)

For example, we might create an index on our acc_add table based on the zip-
code column:

mysql> CREATE INDEX zipcode ON acc_add(zip)

The database server will run through the current table specified and build an
index on the current values. As additional rows are added or deleted, the index
will adjust accordingly.

It is possible to create indexes based on multiple columns as well. For example:

mysql> CREATE INDEX acc_acc_index ON acc_acc(acc_id, ts);

The key to building an index is to determine how the data will be queried.
Indexes aren’t without a cost—they require CPU cycles for maintenance and
disk space for storage.

Pe r f o r m a n c e a n d Tu n i n g312

JDBC Tuning

Without getting into the code used to write MySQL’s Connector/J driver, we’d
like to point out some simple techniques that you can use to obtain data from
the database more efficiently. In this section, we describe techniques broken
down into these sections:

■■ Minimizing data requests

■■ Keeping consistent connections

■■ Handling statements

■■ Batching

■■ Using transactions and locks

■■ Defining the architecture

■■ Getting data

Minimizing Data Requests
The use of a database in an application suggests that a relatively large amount
of data is needed to provide a certain level of functionality. Just because a data-
base is available doesn’t mean the application should always be requesting a
large percentage of it. Therefore, it’s fair to say that 99 percent of all SQL
SELECT statements should pull all of the fields of a table—in other words,
there should be no SELECT * clauses.

Of equal importance is how the application uses the data obtained from the
database. Let’s look at two different situations. The first involves obtaining
application configuration data from the database. This data is considered static
in relation to other data. In many cases, the data is used to populate drop-down
boxes on a GUI or placed in a combo box. The application should be written so
that the data is pulled once and reused when the GUI control is needed a
second time. If the data isn’t available in the application, the application has to
execute a query against the data to retrieve the information. This is costly and
can be avoided by taking advantage of the memory available in the machine to
cache data. In our second situation, the data obtained from the data is volatile,
meaning it can be changed frequently in the database. When this is the case, the
application cannot cache the data but can certainly limit the data pulled.

Take a moment and think about performing a search on Yahoo! for the text car.
At the time of this writing, Yahoo! tells us that there are 49,000,000 matches, but
more than likely there are even more matches and Yahoo! has just capped the

JDBC Tuning 313

results. Now when you go to Yahoo!, you will see the first 20 matches on the
returned page with the option of moving to the next 20 matches. How do you
think this application was pulling the matching information back from the data-
base? Do you think all 49,000,000 rows were pulled at once? How about one mil-
lion or even one thousand? More than likely, only a few hundred matches are
pulled from the database. Obviously, the first 20 are pulled, but the system
anticipates the user will click through a few pages of results. If the user wants
to view matches 2020 through 2040, the application makes a call to the data-
base. The moral here is the application should return only the rows needed by
the application (and maybe a small cushion). A large amount of resources are
needed to retrieve thousands and millions of rows, and more than likely the
application doesn’t need all of those rows at the same time.

Keeping Consistent Connections
In order to get data from a MySQL database, the application software must open
a connection through Connector/J to the server. With the current 3.0 driver, it
takes 280 milliseconds to open that connection. To see the effect that opening the
connection has on the client application, consider this snippet of code:

startTime = new Date().getTime();

for (int i=0;i<500;i++) {

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/products");

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT * FROM product");

rs.close();

statement.close();

connection.close();

}

System.out.println("SELECT = " + ((new Date().getTime()) - start-

Time));

startTime = new Date().getTime();

connection = DriverManager.getConnection(

"jdbc:mysql://localhost/products");

for (int i=0;i<500;i++) {

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery("SELECT * FROM product");

rs.close();

statement.close();

}

connection.close();

System.out.println("SELECT = " + ((new Date().getTime()) -

startTime));

Pe r f o r m a n c e a n d Tu n i n g314

This code attempts to select all of the rows in a test database 500 times. The
first test loop opens a new connection for each attempt at the query. The sec-
ond test loop opens a single connection and executes the 500 queries against
the single connection. The results are

■■ 281 milliseconds to open a single connection

■■ 9092 milliseconds to open a single connection and execute 500 queries

■■ 14,028 milliseconds to open a connection with each individual query

The results are very clear. An application should open a single connection to
the database server through which all queries can pass. There is one caveat
here, though. If the application isn’t active in its queries, the database server
may close the connection itself. A prudent administrator won’t allow applica-
tions to hang on to connections for an indefinite period of time. For this reason,
our code might have to check for an open connection before executing a query
against it.

Fortunately, there is a good solution to the whole connection problem—using a
connection pool. With a connection pool, we can “open” a new connection for
each query (if we know they won’t be executed in fairly quick succession) with-
out the penalty of actually opening the connection—the pool keeps the con-
nections open and provides us with one when needed.

Handling Statements
In the previous section, we looked at the performance effect of repetitive open-
ing and closing of the database connection. As you saw, the effect can be con-
siderable. If your application still needs a boost, you should analyze all updates
to the database to see if the Statement object is being used effectively.

Let’s consider use of the Statement object versus the PreparedStatement
object. As you’ll recall, the PreparedStatement object is designed to be kept by
the server and allows the client to substitute values in the statement instead of
building a new Statement object each time an update to the database is needed.
However, PreparedStatement gets its edge when multiple updates are needed
using the same query statement. Consider the following code snippet:

ps = connection.prepareStatement(

"UPDATE product SET value=10 WHERE value = ?");

startTime = new Date().getTime();

for (int i=0;i<1000;i++) {

ps.setInt(1, i);

ps.executeUpdate();

}

System.out.println("UPDATE = " + ((new Date().getTime())

- startTime));

JDBC Tuning 315

startTime = new Date().getTime();

for (int i=0;i<1000;i++) {

Statement statement = connection.createStatement();

statement.executeUpdate("UPDATE product SET value = " + i + "

where value = " + i);

}

System.out.println("UPDATE = " + ((new Date().getTime())

- startTime));

This code is designed to update 1000 rows in the database. Each code segment
is executed independently to perform the appropriate updates. The first snippet
of code creates a PreparedStatement object and uses the setInt() method to
place an integer value into it before the server executes the query. The object is
created only once, and the setInt() method executes 1000 times.

The second loop executes 1000 times, and it creates a new Statement object for
each UPDATE of the database. After all of the code is executed and timed, using
a PreparedStatement object in the manner shown here the application will see
a performance gain of 2 or 3 percent.

Batching
Another insert performance increase can be gained by using the batch features
provided in JDBC 3.0 and Connector/J 3.0. Batching eliminates a good deal of
the overhead involved in going back and forth between the application, Con-
nector/J, and the database. The batch updates are handled by the driver, and
you can expect a performance gain of 3 or 4 percent on average.

Using Transactions and Locking
In the development of your SQL, there will be times when you need transac-
tions to make sure that all of the data is updated in the database correctly. Asso-
ciated with transactions is the transaction isolation level. Unfortunately, as
more extensive isolation levels are used, the cost increases.

At the low end of the scale is the default setting for MySQL and Connector/J,
which is TRANSACTION_NONE and autocommit equal to true. Next is TRANS-
ACTION_READ_UNCOMMITTED, which gives a little more control to the
application by allowing specific commit and rollback calls.

Next we have TRANSACTION_READ_COMMITTED. This isolation level
begins to affect performance because a lock is placed on each row involved in
the transaction. The locks remain on the changed rows until the transaction is
either committed or rolled back.

Pe r f o r m a n c e a n d Tu n i n g316

Even more expensive is TRANSACTION_REPEATABLE_READ, in which a
lock is placed on all rows being read until the transaction is either committed
or rolled back.

Finally, the isolation level TRANSACTION_SERIALIZABLE places a lock on the
tables being accessed in the transaction, which causes all other server threads
that need to access the table to block. It is important to consider all of the iso-
lation levels and what effect they will have on your application’s performance.

Defining the Architecture
When an application is under development, it is acceptable and sometimes even
desirable to allow each of the developers to have their own database server
running on their local machine. As the application begins to be integrated and
tested, it is best to move it to an application server and move the database to its
own machine. As we discussed earlier, you should tune the MySQL database
server to the environment on which it is executing. If additional applications
are competing for memory and CPU cycles, the tuning can be difficult.

Getting Data
After a connection is made to a database and the results returned to the appli-
cation, the values need to be pulled from the ResultSet object. Fortunately, the
JDBC specification defined an extensive number of accessor methods of the
get<type>() variety to pull values from the object.

The methods are all defined in pairs, like this:

getString(int)

getString(String)

The current Connector/J implementation of these and all other pairs is to imple-
ment the code to pull the column value in the getString(int) method and to
force the getString(String) method to call the int parameter version. Unfortu-
nately, it isn’t that simple. Each call to the String parameter version makes an
additional call to a method called findColumn(String). This method determines
which column number the passed String represents. Thus, a single call to get-
String() could make an additional two calls. This is expensive, and you should
use the getString(int) version as much as possible. Will you achieve a 20 percent
performance increase? No, but 1 to 2 percent is always important.

Another performance increase can be realized when you use the proper
get<type>() method to retrieve values from the ResultSet object. If you use a
getString() to retrieve an integer values from an int column, Connector/J will

JDBC Tuning 317

need to do a cast from the Int to the String. The same is true for any of the
columns and for using the “wrong” get method to pull the value. It is always bet-
ter to retrieve the value from the object as its native value if possible.

Conclusion

In this chapter, we looked at different ways to achieve the best performance
from MySQL, Connector/J, and your application.

Pe r f o r m a n c e a n d Tu n i n g318

We developed and tested all of the code in this book on several different
test architectures in order to provide some representative reference.
This appendix briefly describes those environments and lists

the installed software. In addition, we offer some notes for reproducing the
configuration.

Test Architecture #1

For many of the examples in the book, we used a single test machine to handle
both the database and applications. Figure A.1 shows an example of the archi-
tecture we used. This architecture is based on the following software:

■■ Windows XP Professional

■■ IIS Web Server

■■ MySQL 3.23.52-NT

■■ Java SDK 1.4.0

■■ Connector/J 3.0.1 beta

■■ Connector/J 2.1.4

No out-of-the-ordinary configuration was needed for any of the software. The
MySQL database is executing a configuration file based on the my-large exam-
ple from the installation.

MySQL Development and Test
Environments

A P P E N D I X A

319

Figure A.1 A diagram of our test architecture #1.

Test Architecture #2

To show the cross-platform capabilities of the software and database, we cre-
ated a two-tier architecture, as shown in Figure A.2. The application machine
ran the following software:

■■ Windows 2000

■■ Java SDK 1.4.0

■■ Connector/J 3.0.1 beta

■■ Connector/J 2.1.4

The database machine ran the following software:

■■ Mandrake 8.2 Linux

■■ Java SDK 1.4.0 from Sun

■■ MySQL 4.0.4 beta

The machines were connected to each other over a 100MB LAN.

M y S Q L D e v e l o p m e n t a n d Te s t E n v i r o n m e n t s320

Server

Java
Application

MySQL

IIS

Connector/J

8
0

3
3
0
6

Figure A.2 A diagram of our test architecture #2.

Servlet Architecture

The environment we used to execute the servlet examples had a single machine
that acted as both the application and database tier, as shown in Figure A.3.

Servlet Architecture 321

Server

Java
Application

IIS

Connector/J

8
0

Server

MySQL

3
3
0
6

Server

Resin EE
2.1.4

Connector/J

3
3
0
6

8
0
8
0

MySQL

Figure A.3 Our servlet architecture.

The software we used for this environment included

■■ Windows XP Professional

■■ MySQL 3.23.52-NT

■■ Resin Enterprise Edition 2.1.4

■■ Java SDK 1.4.0

■■ Connector/J 3.0.1 beta

We installed MySQL (www.mysql.com) in c:\mysql, and copied the my-medium
example configuration file to the C: root drive and used it as is. The accounts
database, shown in Appendix B, holds all of the information needed by the
servlet applications.

We installed Resin EE 2.1.4 (www.caucho.com) in a directory called servers.
We made several configuration changes to execute servlets:

1. We downloaded Connector/J (www.mysql.com) and placed the JAR file
from the zip file into the resin-ee-2.1.4/lib directory.

2. We added a <resource-ref> element to the resin.conf file located in the
resin-ee-2.1.4/conf directory. The element we used is

<resource-ref>

<res-ref-name>jdbc/ca</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<init-param driver-name="org.gjt.mm.mysql.Driver"/>

<init-param url="jdbc:mysql://localhost:3306/accountsDB"/>

<init-param user=""/>

<init-param password=""/>

<init-param max-connections="20"/>

<init-param max-idle-time="30"/>

</resource-ref>

3. We added a <web-app> entry to the configuration file for Resin. The entry,
which appears here, allows servlets to be executed from the accounts
directory path:

<web-app id='/accounts'/>

4. We created a directory structure within /resin-ee-2.1.4/doc to handle
requests:

/resin-ee-2.1.4/doc/accounts/WEB-INF

/resin-ee-2.1.4/doc/accounts/WEB-INF/classes

5. We added a web.xml file to the /resin-ee-2.1.4/doc/accounts/WEB-INF
directory with the following entry:

<web-app>

<servlet-mapping>

M y S Q L D e v e l o p m e n t a n d Te s t E n v i r o n m e n t s322

<url-pattern id="/*"/>

<servlet-name id="invoker"/>

</servlet-mapping>

</web-app>

We placed the servlets described in this book in the WEB-INF/classes directory.
We placed the HTML files that use the servlets in the /resin-ee-2.1.4/doc
directory.

Since Resin uses port 8080 in a development setting and by default, we used the
following URL to execute the HTML and servlets:

http://localhost:8080/accounts.html

The EJB Architecture

We based all of the code for handling Enterprise JavaBeans on the same archi-
tecture described for the servlets. We expanded the web.xml file to include the
following declaration to relate the beans to the proper JNDI source:

<resource-ref>

<res-ref-name>java:comp/env/cmp</res-ref-name>

<class-name>com.caucho.ejb.EJBServer</class-name>

<init-param data-source="java:comp/env/jdbc/ca"/>

</resource-ref>

We placed all of the bean source files in the /doc/WEB-INF/classes directory.

The EJB Architecture 323

This appendix provides a comprehensive listing of all databases and tables
used in all of the examples throughout this book. You can find the SQL
we used to create these databases and tables at the book’s Web site:

www.wiley.com/compbooks/matthews.

The accounts Database and Tables

The accounts database consists of the following tables:

■■ acc_acc—Holds primary accounts information and defines acc_id as the
key to other tables.

■■ acc_add—Holds multiple addresses for accounts; acc_id is the foreign key.

The acc_acc table is described as

mysql> describe acc_acc;

+----------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| acc_id | int(11) | | PRI | 0 | |

| username | varchar(64) | YES | | NULL | |

| password | varchar(64) | YES | | NULL | |

| ts | timestamp(14) | YES | | NULL | |

| access | varchar(15) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

Databases and Tables

A P P E N D I XB

325

The SQL to build the table is

create table acc_acc(

acc_id int not null primary key,

username varchar(64),

password varchar(64),

ts timestamp,

access varchar(15));

The acc_add table is described as

mysql> describe acc_add;

+----------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| add_id | int(11) | | PRI | 0 | |

| acc_id | int(11) | | PRI | 0 | |

| address1 | varchar(64) | YES | | NULL | |

| address2 | varchar(64) | YES | | NULL | |

| address3 | varchar(64) | YES | | NULL | |

| address4 | varchar(64) | YES | | NULL | |

| city | varchar(32) | YES | | NULL | |

| state | char(2) | YES | | NULL | |

| zip | varchar(10) | YES | | NULL | |

| ts | timestamp(14) | YES | PRI | NULL | |

| act_ts | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

The identification Database and Tables

The identification database consists of a single table, named thumbnail, which
holds fingerprint information for accounts. The table’s foreign key is
acc_acc.acc_id.

The SQL to build the identification table is

create table thumbnail(thumb_id int not null,

acc_id int not null,

pic blob,

ts timestamp,

act_ts timestamp,

primary key(thumb_id, acc_id, ts));

The thumbnail table is described as

D a t a b a s e s a n d Ta b l e s326

mysql> describe thumbnail;

+----------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| thumb_id | int(11) | | PRI | 0 | |

| acc_id | int(11) | | PRI | 0 | |

| pic | blob | YES | | NULL | |

| ts | timestamp(14) | YES | PRI | NULL | |

| act_ts | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

Test Databases

We used two database tables for testing purposes in this book.

Database Products
We executed the performance tests against a product table found in the prod-
ucts database.

The SQL used to create the table is

create table product(id int auto_increment primary key,

string varchar(32),

test double,

supplier varchar(128),

ts timestamp,

value int);

The product table is described as

mysql> describe product;

+----------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+----------------+

| id | int(11) | | PRI | NULL | auto_increment |

| string | varchar(128) | YES | | NULL | |

| test | decimal(6,2) | YES | | NULL | |

| supplier | varchar(128) | YES | | NULL | |

| ts | timestamp | YES | | NULL | |

| value | int(11) | YES | | NULL | |

+----------+--------------+------+-----+---------+----------------+

6 rows in set (0.00 sec)

The Database Test
In the code that demonstrates how ENUMs are used, we used a table called
enumtest within a database test in Chapter 6.

Test Databases 327

The SQL to create the table is

Create table enumtest(

ID int,

Status enum('contact', 'contacted', 'finished');

The enumtest table is described as:

mysql> describe enumtest;

+--------+---------------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+---------------------------+------+-----+---------+-------+

| ID | int(11) | YES | | NULL | |

| status | enum('contact', | | | | |

| | 'contacted','finished') | YES | | NULL | |

+--------+---------------------------+------+-----+---------+-------+

2 rows in set (0.00 sec)

D a t a b a s e s a n d Ta b l e s328

At the core of Java’s support for data sources such as the MySQL
relational database server is the JDBC API. This API provides a wide
range of support for establishing database sessions, obtaining meta-

information associated with a database, executing SQL statements, and
processing data returned from a database. The API is split between two java
packages, java.sql and javax.sql. The former provides the core JDBC API, while
the latter adds a number of server-side extensions. As of version 1.4 of the Java
2 Platform, Standard Edition, both packages are included in the standard
release and adhere to the JDBC 3.0 specification. It is version 3.0 of the specifi-
cation that this appendix addresses.

While the JDBC API provides a number of predefined classes, the bulk of the
API consists of interfaces that the JDBC driver is responsible for implementing.
The official JDBC driver for MySQL is known as Connector/J. As of this writing,
there are two versions of the driver available. The first is version 2.0.14, which
is considered the stable release. The second is version 3.0.2 Beta, which is con-
sidered a development release. Since Connector/J 3 appears to be well on its
way to becoming a stable release, that is the version this appendix focuses on.
Tables C.2 and C.4 summarize the extent to which Connector/J 3 implements
the JDBC interfaces. Where an interface is partially implemented, the section
dedicated to that interface groups the method signatures according to whether
or not they are implemented. Note that much of the currently unimplemented
functionality is due to a lack of corresponding support from MySQL.

The JDBC API and Connector/J

A P P E N D I X C

329

The java.sql Package

The java.sql package represents the core of the JDBC API. It provides 11 classes
and 18 interfaces focused on connecting to and communicating with a data
source. The classes, listed in Table C.1, are all implemented and delivered as
part of the package. On the other hand, classes implementing the package in-
terfaces are the responsibility of the JDBC driver developer. Implementation of
all 18 interfaces is not a requirement for a useful driver. In fact, depending on
the nature of the underlying data source, attempting to implement all of the in-
terfaces may not even be practical. Table C.2 summarizes the java.sql package
interfaces, including the level of implementation provided by the Connector/J
driver.

Table C.1 java.sql Classes

NAME DESCRIPTION

BatchUpdateException Exception indicating a failed batch update

DataTruncation Exception indicating unexpected data truncation

Date Representation of a SQL DATE

DriverManager Management service for JDBC drivers

DriverPropertyInfo Representation of a JDBC driver connection property

SQLException Base JDBC exception type

SQLPermission Permission used by applet SecurityManager

SQLWarning Representation of a database warning

Time Representation of a SQL TIME

Timestamp Representation of a SQL TIMESTAMP

Types JDBC types

Table C.2 java.sql Interfaces (continues)

NAME DESCRIPTION IMPLEMENTED

Array Representation of SQL ARRAY type No

Blob Representation of SQL BLOB type Partially

CallableStatement SQL stored procedure support No

Clob Representation of SQL CLOB type Partially

Th e J D B C A P I a n d C o n n e c t o r / J330

Connection Representation of database session Partially

DatabaseMetaData Information about database and driver Yes

Driver Interface implemented by all JDBC drivers Yes

ParameterMetaData PreparedStatement parameter metadata No
accessor

PreparedStatement Precompiled SQL statement Partially

Ref Representation of SQL REF type No

ResultSet Data table abstraction for query results Partially

ResultSetMetaData ResultSet metadata accessor Yes

Savepoint Transaction savepoint No

SQLData Mapping from SQL UDT to Java class No

SQLInput UDT input stream No

SQLOutput UDT output stream No

Statement Static SQL Statement Yes

Struct Representation of a SQL structured type No

Array
The Array interface represents the Java language mapping of the SQL ARRAY
type defined by the SQL99 standard. Classes implementing this interface pro-
vide methods for accessing values from the underlying SQL ARRAY in the form
of either Java arrays or JDBC ResultSet objects. Methods are also provided for
accessing type information associated with the SQL ARRAY elements. MySQL
does not currently support the SQL ARRAY type, and as such, Connector/J does
not implement this interface.

Methods
Object getArray()

Object getArray(long index, int count)

Object getArray(long index, int count, Map map)

Object getArray(Map map)

int getBaseType()

String getBaseTypeName()

ResultSet getResultSet()

The java.sql Package 331

Table C.2 java.sql Interfaces (continued)

NAME DESCRIPTION IMPLEMENTED

ResultSet getResultSet(long index, int count)

ResultSet getResultSet(long index, int count, Map map)

ResultSet getResultSet(Map map)

BatchUpdateException
The BatchUpdateException class is a Java exception class derived from
SQLException. Instances of BatchUpdateException are thrown by the exe-
cuteBatch() method specified in the Statement interface when one or more
commands in a batch update fail. Exceptions of this type provide update counts
for each successful update command. If an update command fails, the driver is
allowed to either throw an exception immediately or continue processing the
remaining commands, setting the respective update count to Statement.EXE-
CUTE_FAILED for each failed command. The Connector/J implementation, as
of this writing, takes the latter approach.

Constructors
BatchUpdateException()

BatchUpdateException(int[] updateCounts)

BatchUpdateException(String reason, int[] updateCounts)

BatchUpdateException(String reason,

String SQLState, int[] updateCounts)

BatchUpdateException(String reason, String SQLState,

int vendorCode, int[] updateCounts)

Method
int[] getUpdateCounts()

Blob
The Blob interface represents the Java language mapping of the SQL BLOB (Bi-
nary Large Object) type. Classes implementing this interface provide methods
for accessing and updating BLOB values. In the context of Connector/J, an ob-
ject implementing the Blob interface is capable of holding any column type that
maps to a Java byte array. The Blob interface is only partially implemented by
Connector/J.

Methods (Implemented)
InputStream getBinaryStream()

byte[] getBytes(long pos, int length)

long length()

long position(Blob pattern, long start)

long position(byte[] pattern, long start)

Th e J D B C A P I a n d C o n n e c t o r / J332

Methods (Not Currently Implemented)
OutputStream setBinaryStream(long pos)

int setBytes(long pos, byte[] bytes)

int setBytes(long pos, byte[] bytes, int offset, int len)

void truncate(long len)

CallableStatement
The CallableStatement interface extends the PreparedStatement interface,
adding support for execution of SQL stored procedures. Classes implementing
this interface provide methods for preparing, executing, and processing the re-
sults of SQL stored procedures. As of this writing, MySQL does not support SQL
stored procedures, and as such, Connector/J does not provide such support.
Currently, Connector/J does provide a class that implements the CallableState-
ment interface; however, it is intended only as an UltraDev-related workaround
and is in truth simply a PreparedStatement implementation masquerading as a
CallableStatement.

Methods
Array getArray(int i)

Array getArray(String parameterName)

BigDecimal getBigDecimal(int parameterIndex)

BigDecimal getBigDecimal(String parameterName)

Blob getBlob(int i)

Blob getBlob(String parameterName)

boolean getBoolean(int parameterIndex)

boolean getBoolean(String parameterName)

byte getByte(int parameterIndex)

byte getByte(String parameterName)

byte[] getBytes(int parameterIndex)

byte[] getBytes(String parameterName)

Clob getClob(int i)

Clob getClob(String parameterName)

Date getDate(int parameterIndex)

Date getDate(int parameterIndex, Calendar cal)

Date getDate(String parameterName)

Date getDate(String parameterName, Calendar cal)

double getDouble(int parameterIndex)

double getDouble(String parameterName)

float getFloat(int parameterIndex)

float getFloat(String parameterName)

int getInt(int parameterIndex)

int getInt(String parameterName)

long getLong(int parameterIndex)

long getLong(String parameterName)

Object getObject(int parameterIndex)

The java.sql Package 333

Object getObject(int i, Map map)

Object getObject(String parameterName)

Object getObject(String parameterName, Map map)

Ref getRef(int i)

Ref getRef(String parameterName)

short getShort(int parameterIndex)

short getShort(String parameterName)

String getString(int parameterIndex)

String getString(String parameterName)

Time getTime(int parameterIndex)

Time getTime(int parameterIndex, Calendar cal)

Time getTime(String parameterName)

Time getTime(String parameterName, Calendar cal)

Timestamp getTimestamp(int parameterIndex)

Timestamp getTimestamp(int parameterIndex, Calendar cal)

Timestamp getTimestamp(String parameterName)

Timestamp getTimestamp(String parameterName, Calendar cal)

URL getURL(int parameterIndex)

URL getURL(String parameterName)

void registerOutParameter(int parameterIndex, int sqlType)

void registerOutParameter(int parameterIndex,

int sqlType, int scale)

void registerOutParameter(int paramIndex,

int sqlType, String typeName)

void registerOutParameter(String parameterName, int sqlType)

void registerOutParameter(String parameterName,

int sqlType, int scale)

void registerOutParameter(String parameterName,

int sqlType, String typeName)

void setAsciiStream(String parameterName,

InputStream x, int length)

void setBigDecimal(String parameterName, BigDecimal x)

void setBinaryStream(String parameterName,

InputStream x, int length)

void setBoolean(String parameterName, boolean x)

void setByte(String parameterName, byte x)

void setBytes(String parameterName, byte[] x)

void setCharacterStream(String parameterName,

Reader reader, int length)

void setDate(String parameterName, Date x)

void setDate(String parameterName, Date x, Calendar cal)

void setDouble(String parameterName, double x)

void setFloat(String parameterName, float x)

void setInt(String parameterName, int x)

void setLong(String parameterName, long x)

void setNull(String parameterName, int sqlType)

void setNull(String parameterName,

int sqlType, String typeName)

void setObject(String parameterName, Object x)

void setObject(String parameterName,

Object x, int targetSqlType)

Th e J D B C A P I a n d C o n n e c t o r / J334

void setObject(String parameterName,

Object x, int targetSqlType, int scale)

void setShort(String parameterName, short x)

void setString(String parameterName, String x)

void setTime(String parameterName, Time x)

void setTime(String parameterName, Time x, Calendar cal)

void setTimestamp(String parameterName, Timestamp x)

void setTimestamp(String parameterName,

Timestamp x, Calendar cal)

void setURL(String parameterName, URL val)

boolean wasNull()

Clob
The Clob interface represents the Java language mapping of the SQL CLOB
(Character Large Object) type. Classes implementing this interface provide
methods for accessing and updating CLOB values. In the context of Connec-
tor/J, an object implementing the Clob interface is capable of holding any col-
umn type that maps to a Java String. The Clob interface is only partially
implemented by Connector/J.

Methods (Implemented)
InputStream getAsciiStream()

Reader getCharacterStream()

String getSubString(long pos, int length)

long length()

long position(Clob searchstr, long start)

long position(String searchstr, long start)

Methods (Not Currently Implemented)
OutputStream setAsciiStream(long pos)

Writer setCharacterStream(long pos)

int setString(long pos, String str)

int setString(long pos, String str, int offset, int len)

void truncate(long len)

Connection
The Connection interface represents a session with a particular database.
Classes implementing this interface provide a variety of methods for managing
the session and interacting with the database. Common uses of this interface in-
clude management of transaction and commit properties, creation and prepa-
ration of statements, definition of type maps, and access to comprehensive
database metadata. Connector/J currently implements most of the Connection

The java.sql Package 335

interface; several methods involving savepoints, type maps, and stored proce-
dures remain unimplemented due to a lack of corresponding support at the
MySQL level.

Methods (Implemented)
void clearWarnings()

void close()

void commit()

Statement createStatement()

Statement createStatement(int resultSetType,

int resultSetConcurrency)

Statement createStatement(int resultSetType,

int resultSetConcurrency,

int resultSetHoldability)

boolean getAutoCommit()

String getCatalog()

int getHoldability()

DatabaseMetaData getMetaData()

int getTransactionIsolation()

SQLWarning getWarnings()

boolean isClosed()

boolean isReadOnly()

String nativeSQL(String sql)

PreparedStatement prepareStatement(String sql)

PreparedStatement prepareStatement(String sql,

int autoGeneratedKeys)

PreparedStatement prepareStatement(String sql,

int[] columnIndexes)

PreparedStatement prepareStatement(String sql,

int resultSetType,

int resultSetConcurrency)

PreparedStatement prepareStatement(String sql,

int resultSetType,

int resultSetConcurrency,

int resultSetHoldability)

PreparedStatement prepareStatement(String sql,

String[] columnNames)

void rollback()

void setAutoCommit(boolean autoCommit)

void setCatalog(String catalog)

void setHoldability(int holdability)

void setReadOnly(boolean readOnly)

void setTransactionIsolation(int level)

Methods (Not Currently Implemented)
Map getTypeMap()

CallableStatement prepareCall(String sql)

Th e J D B C A P I a n d C o n n e c t o r / J336

CallableStatement prepareCall(String sql, int resultSetType,

int resultSetConcurrency)

CallableStatement prepareCall(String sql, int resultSetType,

int resultSetConcurrency,

int resultSetHoldability)

void releaseSavepoint(Savepoint savepoint)

void rollback(Savepoint savepoint)

Savepoint setSavepoint()

Savepoint setSavepoint(String name)

void setTypeMap(Map map)

Fields
static int TRANSACTION_NONE

static int TRANSACTION_READ_COMMITTED

static int TRANSACTION_READ_UNCOMMITTED

static int TRANSACTION_REPEATABLE_READ

static int TRANSACTION_SERIALIZABLE

DataTruncation
The DataTruncation class is a Java exception class derived from SQLWarning.
Instances of DataTruncation are thrown when a JDBC operation unexpectedly
truncates data on a read or write. Methods of this class provide access to addi-
tional information regarding the nature of the data truncation.

Constructors
DataTruncation(int index, boolean parameter,

boolean read, int dataSize, int transferSize)

Methods
int getDataSize()

int getIndex()

boolean getParameter()

boolean getRead()

int getTransferSize()

DatabaseMetaData
The DatabaseMetaData interface represents a collection of information that
provides a comprehensive characterization of a particular database and associ-
ated JDBC driver implementation. The interface consists of over 200 methods
and fields spanning the full range of useful database metadata. A number of

The java.sql Package 337

methods defined by this interface include parameters that accept pattern
strings. In such cases, a ‘_’ matches any one character, and a ‘%’ matches any
substring of 0 or more characters. This interface is fully implemented by Con-
nector/J, though not all of the methods necessarily make sense in the context of
MySQL. Where a method requests information that is not applicable to MySQL,
Connector/J tries to respond in a reasonable and nondisruptive manner (e.g., by
returning an empty ResultSet).

Methods
boolean allProceduresAreCallable()

boolean allTablesAreSelectable()

boolean dataDefinitionCausesTransactionCommit()

boolean dataDefinitionIgnoredInTransactions()

boolean deletesAreDetected(int type)

boolean doesMaxRowSizeIncludeBlobs()

ResultSet getAttributes(String catalog, String schemaPattern,

String typeNamePattern,

String attributeNamePattern)

ResultSet getBestRowIdentifier(String catalog, String schema,

String table,

int scope, boolean nullable)

ResultSet getCatalogs()

String getCatalogSeparator()

String getCatalogTerm()

ResultSet getColumnPrivileges(String catalog, String schema,

String table,

String columnNamePattern)

ResultSet getColumns(String catalog, String schemaPattern,

String tableNamePattern,

String columnNamePattern)

Connection getConnection()

ResultSet getCrossReference(String primaryCatalog,

String primarySchema,

String primaryTable,

String foreignCatalog,

String foreignSchema,

String foreignTable)

int getDatabaseMajorVersion()

int getDatabaseMinorVersion()

String getDatabaseProductName()

String getDatabaseProductVersion()

int getDefaultTransactionIsolation()

int getDriverMajorVersion()

int getDriverMinorVersion()

String getDriverName()

String getDriverVersion()

ResultSet getExportedKeys(String catalog,

String schema, String table)

Th e J D B C A P I a n d C o n n e c t o r / J338

String getExtraNameCharacters()

String getIdentifierQuoteString()

ResultSet getImportedKeys(String catalog,

String schema, String table)

ResultSet getIndexInfo(String catalog, String schema,

String table, boolean unique,

boolean approximate)

int getJDBCMajorVersion()

int getJDBCMinorVersion()

int getMaxBinaryLiteralLength()

int getMaxCatalogNameLength()

int getMaxCharLiteralLength()

int getMaxColumnNameLength()

int getMaxColumnsInGroupBy()

int getMaxColumnsInIndex()

int getMaxColumnsInOrderBy()

int getMaxColumnsInSelect()

int getMaxColumnsInTable()

int getMaxConnections()

int getMaxCursorNameLength()

int getMaxIndexLength()

int getMaxProcedureNameLength()

int getMaxRowSize()

int getMaxSchemaNameLength()

int getMaxStatementLength()

int getMaxStatements()

int getMaxTableNameLength()

int getMaxTablesInSelect()

int getMaxUserNameLength()

String getNumericFunctions()

ResultSet getPrimaryKeys(String catalog,

String schema, String table)

ResultSet getProcedureColumns(String catalog,

String schemaPattern,

String procedureNamePattern,

String columnNamePattern)

ResultSet getProcedures(String catalog, String schemaPattern,

String procedureNamePattern)

String getProcedureTerm()

int getResultSetHoldability()

ResultSet getSchemas()

String getSchemaTerm()

String getSearchStringEscape()

String getSQLKeywords()

int getSQLStateType()

String getStringFunctions()

ResultSet getSuperTables(String catalog, String schemaPattern,

String tableNamePattern)

ResultSet getSuperTypes(String catalog, String schemaPattern,

String typeNamePattern)

The java.sql Package 339

String getSystemFunctions()

ResultSet getTablePrivileges(String catalog,

String schemaPattern,

String tableNamePattern)

ResultSet getTables(String catalog, String schemaPattern,

String tableNamePattern, String[] types)

ResultSet getTableTypes()

String getTimeDateFunctions()

ResultSet getTypeInfo()

ResultSet getUDTs(String catalog, String schemaPattern,

String typeNamePattern, int[] types)

String getURL()

String getUserName()

ResultSet getVersionColumns(String catalog, String schema,

String table)

boolean insertsAreDetected(int type)

boolean isCatalogAtStart()

boolean isReadOnly()

boolean locatorsUpdateCopy()

boolean nullPlusNonNullIsNull()

boolean nullsAreSortedAtEnd()

boolean nullsAreSortedAtStart()

boolean nullsAreSortedHigh()

boolean nullsAreSortedLow()

boolean othersDeletesAreVisible(int type)

boolean othersInsertsAreVisible(int type)

boolean othersUpdatesAreVisible(int type)

boolean ownDeletesAreVisible(int type)

boolean ownInsertsAreVisible(int type)

boolean ownUpdatesAreVisible(int type)

boolean storesLowerCaseIdentifiers()

boolean storesLowerCaseQuotedIdentifiers()

boolean storesMixedCaseIdentifiers()

boolean storesMixedCaseQuotedIdentifiers()

boolean storesUpperCaseIdentifiers()

boolean storesUpperCaseQuotedIdentifiers()

boolean supportsAlterTableWithAddColumn()

boolean supportsAlterTableWithDropColumn()

boolean supportsANSI92EntryLevelSQL()

boolean supportsANSI92FullSQL()

boolean supportsANSI92IntermediateSQL()

boolean supportsBatchUpdates()

boolean supportsCatalogsInDataManipulation()

boolean supportsCatalogsInIndexDefinitions()

boolean supportsCatalogsInPrivilegeDefinitions()

boolean supportsCatalogsInProcedureCalls()

boolean supportsCatalogsInTableDefinitions()

boolean supportsColumnAliasing()

boolean supportsConvert()

boolean supportsConvert(int fromType, int toType)

boolean supportsCoreSQLGrammar()

Th e J D B C A P I a n d C o n n e c t o r / J340

boolean supportsCorrelatedSubqueries()

boolean supportsDataDefinitionAndDataManipulationTransactions()

boolean supportsDataManipulationTransactionsOnly()

boolean supportsDifferentTableCorrelationNames()

boolean supportsExpressionsInOrderBy()

boolean supportsExtendedSQLGrammar()

boolean supportsFullOuterJoins()

boolean supportsGetGeneratedKeys()

boolean supportsGroupBy()

boolean supportsGroupByBeyondSelect()

boolean supportsGroupByUnrelated()

boolean supportsIntegrityEnhancementFacility()

boolean supportsLikeEscapeClause()

boolean supportsLimitedOuterJoins()

boolean supportsMinimumSQLGrammar()

boolean supportsMixedCaseIdentifiers()

boolean supportsMixedCaseQuotedIdentifiers()

boolean supportsMultipleOpenResults()

boolean supportsMultipleResultSets()

boolean supportsMultipleTransactions()

boolean supportsNamedParameters()

boolean supportsNonNullableColumns()

boolean supportsOpenCursorsAcrossCommit()

boolean supportsOpenCursorsAcrossRollback()

boolean supportsOpenStatementsAcrossCommit()

boolean supportsOpenStatementsAcrossRollback()

boolean supportsOrderByUnrelated()

boolean supportsOuterJoins()

boolean supportsPositionedDelete()

boolean supportsPositionedUpdate()

boolean supportsResultSetConcurrency(int type,

int concurrency)

boolean supportsResultSetHoldability(int holdability)

boolean supportsResultSetType(int type)

boolean supportsSavepoints()

boolean supportsSchemasInDataManipulation()

boolean supportsSchemasInIndexDefinitions()

boolean supportsSchemasInPrivilegeDefinitions()

boolean supportsSchemasInProcedureCalls()

boolean supportsSchemasInTableDefinitions()

boolean supportsSelectForUpdate()

boolean supportsStatementPooling()

boolean supportsStoredProcedures()

boolean supportsSubqueriesInComparisons()

boolean supportsSubqueriesInExists()

boolean supportsSubqueriesInIns()

boolean supportsSubqueriesInQuantifieds()

boolean supportsTableCorrelationNames()

boolean supportsTransactionIsolationLevel(int level)

boolean supportsTransactions()

boolean supportsUnion()

The java.sql Package 341

boolean supportsUnionAll()

boolean updatesAreDetected(int type)

boolean usesLocalFilePerTable()

boolean usesLocalFiles()

Fields
static short attributeNoNulls

static short attributeNullable

static short attributeNullableUnknown

static int bestRowNotPseudo

static int bestRowPseudo

static int bestRowSession

static int bestRowTemporary

static int bestRowTransaction

static int bestRowUnknown

static int columnNoNulls

static int columnNullable

static int columnNullableUnknown

static int importedKeyCascade

static int importedKeyInitiallyDeferred

static int importedKeyInitiallyImmediate

static int importedKeyNoAction

static int importedKeyNotDeferrable

static int importedKeyRestrict

static int importedKeySetDefault

static int importedKeySetNull

static int procedureColumnIn

static int procedureColumnInOut

static int procedureColumnOut

static int procedureColumnResult

static int procedureColumnReturn

static int procedureColumnUnknown

static int procedureNoNulls

static int procedureNoResult

static int procedureNullable

static int procedureNullableUnknown

static int procedureResultUnknown

static int procedureReturnsResult

static int sqlStateSQL99

static int sqlStateXOpen

static short tableIndexClustered

static short tableIndexHashed

static short tableIndexOther

static short tableIndexStatistic

static int typeNoNulls

static int typeNullable

static int typeNullableUnknown

static int typePredBasic

static int typePredChar

Th e J D B C A P I a n d C o n n e c t o r / J342

static int typePredNone

static int typeSearchable

static int versionColumnNotPseudo

static int versionColumnPseudo

static int versionColumnUnknown

Date
The Date class extends the java.util.Date class in a manner providing a repre-
sentation of the SQL DATE type. Essentially, Date serves as an adaptor that al-
lows a java.util.Date object to be treated as only consisting of the date part (i.e.,
year, month, and day).

Constructor
Date(long date)

Methods
void setTime(long date)

String toString()

static Date valueOf(String s)

Driver
The Driver interface represents the interface to which all JDBC database driv-
ers must adhere. Classes implementing this interface provide methods for ac-
cessing information about the driver and building session connections. This
interface is fully implemented by Connector/J.

Methods
boolean acceptsURL(String url)

Connection connect(String url, Properties info)

int getMajorVersion()

int getMinorVersion()

DriverPropertyInfo[] getPropertyInfo(String url,

Properties info)

boolean jdbcCompliant()

DriverManager
The DriverManager class provides a management service for JDBC drivers. In
addition to loading and registering drivers specified by the jdbc.drivers system
property, the class provides methods for manually registering and deregistering

The java.sql Package 343

JDBC drivers. When a connection is requested, the DriverManager assumes re-
sponsibility for locating the proper driver and using it to establish a new ses-
sion. The class also provides methods for handling logging and timeouts
associated with session setup.

Methods
static void deregisterDriver(Driver driver)

static Connection getConnection(String url)

static Connection getConnection(String url, Properties info)

static Connection getConnection(String url,

String user, String password)

static Driver getDriver(String url)

static Enumeration getDrivers()

static int getLoginTimeout()

static PrintWriter getLogWriter()

static void println(String message)

static void registerDriver(Driver driver)

static void setLoginTimeout(int seconds)

static void setLogWriter(PrintWriter out)

DriverPropertyInfo
The DriverPropertyInfo class encapsulates a single driver-related property.
Each property consists of a name-value pair, and optionally, supplemental in-
formation describing the name-value pair and providing associated constraints.
Objects of this type are returned by the getPropertyInfo() method specified by
the Driver interface. They are useful primarily for dynamic discovery of a par-
ticular JDBC driver’s supported connection properties.

Constructor
DriverPropertyInfo(String name, String value)

Fields
String[] choices

String description

String name

boolean required

String value

ParameterMetaData
The ParameterMetaData interface represents a parameter metadata accessor.
Classes implementing this interface provide methods for accessing the proper-

Th e J D B C A P I a n d C o n n e c t o r / J344

ties and type information associated with a parameter contained by a Pre-
paredStatement object. Connector/J does not currently implement the Parame-
terMetaData interface.

Methods
String getParameterClassName(int param)

int getParameterCount()

int getParameterMode(int param)

int getParameterType(int param)

String getParameterTypeName(int param)

int getPrecision(int param)

int getScale(int param)

int isNullable(int param)

boolean isSigned(int param)

Fields
static int parameterModeIn

static int parameterModeInOut

static int parameterModeOut

static int parameterModeUnknown

static int parameterNoNulls

static int parameterNullable

static int parameterNullableUnknown

PreparedStatement
The PreparedStatement interface extends the Statement interface, adding sup-
port for precompiled SQL statements. Classes implementing this interface pro-
vide methods for setting parameters, executing statements, and accessing
parameter and result set metadata. PreparedStatement objects are created by
objects implementing the Connection interface. Connector/J currently imple-
ments most of the PreparedStatement interface; only the metadata accessors
and setters for Array and Ref types remain unimplemented.

Methods (Implemented)
void addBatch()

void clearParameters()

boolean execute()

ResultSet executeQuery()

int executeUpdate()

void setAsciiStream(int parameterIndex,

InputStream x, int length)

void setBigDecimal(int parameterIndex, BigDecimal x)

void setBinaryStream(int parameterIndex,

The java.sql Package 345

InputStream x, int length)

void setBlob(int i, Blob x)

void setBoolean(int parameterIndex, boolean x)

void setByte(int parameterIndex, byte x)

void setBytes(int parameterIndex, byte[] x)

void setCharacterStream(int parameterIndex,

Reader reader, int length)

void setClob(int i, Clob x)

void setDate(int parameterIndex, Date x)

void setDate(int parameterIndex, Date x, Calendar cal)

void setDouble(int parameterIndex, double x)

void setFloat(int parameterIndex, float x)

void setInt(int parameterIndex, int x)

void setLong(int parameterIndex, long x)

void setNull(int parameterIndex, int sqlType)

void setNull(int paramIndex, int sqlType, String typeName)

void setObject(int parameterIndex, Object x)

void setObject(int parameterIndex, Object x, int targetSqlType

)

void setObject(int parameterIndex,

Object x, int targetSqlType, int scale)

void setShort(int parameterIndex, short x)

void setString(int parameterIndex, String x)

void setTime(int parameterIndex, Time x)

void setTime(int parameterIndex, Time x, Calendar cal)

void setTimestamp(int parameterIndex, Timestamp x)

void setTimestamp(int parameterIndex,

Timestamp x, Calendar cal)

void setURL(int parameterIndex, URL x)

Methods (Not Currently Implemented)
ResultSetMetaData getMetaData()

ParameterMetaData getParameterMetaData()

void setArray(int i, Array x)

void setRef(int i, Ref x)

Ref
The Ref interface represents the Java language mapping of the SQL REF type
defined by the SQL99 standard. Classes implementing this interface provide
methods for setting and retrieving the instance objects referenced by the cor-
responding SQL REF. MySQL does not currently support the SQL REF type, and
as such, Connector/J does not implement this interface.

Methods
String getBaseTypeName()

Object getObject()

Th e J D B C A P I a n d C o n n e c t o r / J346

Object getObject(Map map)

void setObject(Object value)

ResultSet
The ResultSet interface represents a query result that is best expressed as a
table of data. Although intended primarily for capturing the results of SQL
query execution, the ResultSet interface is used to good advantage throughout
the JDBC API. Viewed as a table, a ResultSet consists of columns that may be
referenced either by column name or column number; column numbering be-
gins with 1 and increases left to right. Unlike columns, rows are referenced via
a cursor that must be moved to the row of interest. Initially, a ResultSet cursor
is placed immediately before the first row.

While the most common scenario probably involves using next() to step
through the rows of a result set, it is also possible to move the cursor by a num-
ber of rows relative to the current position and jump to an absolute position, as-
suming the ResultSet is scrollable. For the purpose of specifying an absolute
position, the first row is row number 1, the second row is row number 2, etc;
row number 0 corresponds to the position immediately preceding the first row.
For the most part, the methods provided by classes implementing this interface
fall into four categories: result set metadata access, cursor manipulation, col-
umn value access, and column value update. Connector/J currently implements
most of the ResultSet interface.

Methods (Implemented)
boolean absolute(int row)

void afterLast()

void beforeFirst()

void cancelRowUpdates()

void clearWarnings()

void close()

void deleteRow()

int findColumn(String columnName)

boolean first()

InputStream getAsciiStream(int columnIndex)

InputStream getAsciiStream(String columnName)

BigDecimal getBigDecimal(int columnIndex)

BigDecimal getBigDecimal(String columnName)

InputStream getBinaryStream(int columnIndex)

InputStream getBinaryStream(String columnName)

Blob getBlob(int i)

Blob getBlob(String colName)

boolean getBoolean(int columnIndex)

boolean getBoolean(String columnName)

byte getByte(int columnIndex)

The java.sql Package 347

byte getByte(String columnName)

byte[] getBytes(int columnIndex)

byte[] getBytes(String columnName)

Clob getClob(int i)

Clob getClob(String colName)

int getConcurrency()

String getCursorName()

Date getDate(int columnIndex)

Date getDate(int columnIndex, Calendar cal)

Date getDate(String columnName)

Date getDate(String columnName, Calendar cal)

double getDouble(int columnIndex)

double getDouble(String columnName)

int getFetchDirection()

int getFetchSize()

float getFloat(int columnIndex)

float getFloat(String columnName)

int getInt(int columnIndex)

int getInt(String columnName)

long getLong(int columnIndex)

long getLong(String columnName)

ResultSetMetaData getMetaData()

Object getObject(int columnIndex)

Object getObject(String columnName)

int getRow()

short getShort(int columnIndex)

short getShort(String columnName)

Statement getStatement()

String getString(int columnIndex)

String getString(String columnName)

Time getTime(int columnIndex)

Time getTime(int columnIndex, Calendar cal)

Time getTime(String columnName)

Time getTime(String columnName, Calendar cal)

Timestamp getTimestamp(int columnIndex)

Timestamp getTimestamp(int columnIndex, Calendar cal)

Timestamp getTimestamp(String columnName)

Timestamp getTimestamp(String columnName, Calendar cal)

int getType()

URL getURL(int columnIndex)

URL getURL(String columnName)

SQLWarning getWarnings()

void insertRow()

boolean isAfterLast()

boolean isBeforeFirst()

boolean isFirst()

boolean isLast()

boolean last()

void moveToCurrentRow()

void moveToInsertRow()

boolean next()

Th e J D B C A P I a n d C o n n e c t o r / J348

boolean previous()

void refreshRow()

boolean relative(int rows)

void setFetchDirection(int direction)

void setFetchSize(int rows)

void updateAsciiStream(int columnIndex,

InputStream x, int length)

void updateAsciiStream(String columnName,

InputStream x, int length)

void updateBigDecimal(int columnIndex, BigDecimal x)

void updateBigDecimal(String columnName, BigDecimal x)

void updateBinaryStream(int columnIndex,

InputStream x, int length)

void updateBinaryStream(String columnName,

InputStream x, int length)

void updateBoolean(int columnIndex, boolean x)

void updateBoolean(String columnName, boolean x)

void updateByte(int columnIndex, byte x)

void updateByte(String columnName, byte x)

void updateBytes(int columnIndex, byte[] x)

void updateBytes(String columnName, byte[] x)

void updateCharacterStream(int columnIndex,

Reader x, int length)

void updateCharacterStream(String columnName,

Reader reader, int length)

void updateDate(int columnIndex, Date x)

void updateDate(String columnName, Date x)

void updateDouble(int columnIndex, double x)

void updateDouble(String columnName, double x)

void updateFloat(int columnIndex, float x)

void updateFloat(String columnName, float x)

void updateInt(int columnIndex, int x)

void updateInt(String columnName, int x)

void updateLong(int columnIndex, long x)

void updateLong(String columnName, long x)

void updateNull(int columnIndex)

void updateNull(String columnName)

void updateObject(int columnIndex, Object x)

void updateObject(int columnIndex, Object x, int scale)

void updateObject(String columnName, Object x)

void updateObject(String columnName, Object x, int scale)

void updateRow()

void updateShort(int columnIndex, short x)

void updateShort(String columnName, short x)

void updateString(int columnIndex, String x)

void updateString(String columnName, String x)

void updateTime(int columnIndex, Time x)

void updateTime(String columnName, Time x)

void updateTimestamp(int columnIndex, Timestamp x)

void updateTimestamp(String columnName, Timestamp x)

boolean wasNull()

The java.sql Package 349

Methods (Not Currently Implemented)
Array getArray(int i)

Array getArray(String colName)

Reader getCharacterStream(int columnIndex)

Reader getCharacterStream(String columnName)

Object getObject(int i, Map map)

Object getObject(String colName, Map map)

Ref getRef(int i)

Ref getRef(String colName)

boolean rowDeleted()

boolean rowInserted()

boolean rowUpdated()

void updateArray(int columnIndex, Array x)

void updateArray(String columnName, Array x)

void updateBlob(int columnIndex, Blob x)

void updateBlob(String columnName, Blob x)

void updateClob(int columnIndex, Clob x)

void updateClob(String columnName, Clob x)

void updateRef(int columnIndex, Ref x)

void updateRef(String columnName, Ref x)

Fields
static int CLOSE_CURSORS_AT_COMMIT

static int CONCUR_READ_ONLY

static int CONCUR_UPDATABLE

static int FETCH_FORWARD

static int FETCH_REVERSE

static int FETCH_UNKNOWN

static int HOLD_CURSORS_OVER_COMMIT

static int TYPE_FORWARD_ONLY

static int TYPE_SCROLL_INSENSITIVE

static int TYPE_SCROLL_SENSITIVE

ResultSetMetaData
The ResultSetMetaData interface represents a result set metadata accessor.
Classes implementing this interface provide methods for accessing the types
and properties associated with a ResultSet object. This interface is fully imple-
mented by Connector/J.

Methods
String getCatalogName(int column)

String getColumnClassName(int column)

int getColumnCount()

int getColumnDisplaySize(int column)

String getColumnLabel(int column)

String getColumnName(int column)

Th e J D B C A P I a n d C o n n e c t o r / J350

int getColumnType(int column)

String getColumnTypeName(int column)

int getPrecision(int column)

int getScale(int column)

String getSchemaName(int column)

String getTableName(int column)

boolean isAutoIncrement(int column)

boolean isCaseSensitive(int column)

boolean isCurrency(int column)

boolean isDefinitelyWritable(int column)

int isNullable(int column)

boolean isReadOnly(int column)

boolean isSearchable(int column)

boolean isSigned(int column)

boolean isWritable(int column)

Fields
static int columnNoNulls

static int columnNullable

static int columnNullableUnknown

Savepoint
The Savepoint interface represents a specific point in a transaction to which
the overall transaction can be rolled back if necessary. Savepoints are estab-
lished and used for rollback by objects implementing the Connection interface.
Connector/J does not currently implement the Savepoint interface.

Methods
int getSavepointId()

String getSavepointName()

SQLData
The SQLData interface represents a custom mapping between a SQL user-
defined type (UDT) and a Java language class. Instances of classes implement-
ing this interface are placed in a Connection object’s type map and used to read
UDTs from and write UDTs to the database associated with the session. MySQL
does not currently support UDTs, and as such, Connector/J does not implement
this interface.

Methods
String getSQLTypeName()

void readSQL(SQLInput stream, String typeName)

void writeSQL(SQLOutput stream)

The java.sql Package 351

SQLException
The SQLException class extends java.lang.Exception and serves as the base
JDBC exception type; all other JDBC exceptions are derived from SQLExcep-
tion. Information contained by objects of this type include a description of the
exception, a SQL state that is to follow either X/Open or SQL99 conventions, a
vendor-specific error code, and a hook from which additional SQLException
objects can be chained.

Constructors
SQLException()

SQLException(String reason)

SQLException(String reason, String SQLState)

SQLException(String reason, String SQLState, int vendorCode)

Methods
int getErrorCode()

SQLException getNextException()

String getSQLState()

void setNextException(SQLException ex)

SQLInput
The SQLInput interface represents an input stream for reading SQL user-
defined types (UDTs) from a database. Classes implementing this interface pro-
vide a variety of methods for extracting values from the underlying stream.
MySQL does not currently support UDTs, and as such, Connector/J does not im-
plement this interface.

Methods
Array readArray()

InputStream readAsciiStream()

BigDecimal readBigDecimal()

InputStream readBinaryStream()

Blob readBlob()

boolean readBoolean()

byte readByte()

byte[] readBytes()

Reader readCharacterStream()

Clob readClob()

Date readDate()

double readDouble()

float readFloat()

int readInt()

Th e J D B C A P I a n d C o n n e c t o r / J352

long readLong()

Object readObject()

Ref readRef()

short readShort()

String readString()

Time readTime()

Timestamp readTimestamp()

URL readURL()

boolean wasNull()

SQLOutput
The SQLOutput interface represents an output stream for writing SQL user-
defined types (UDTs) to a database. Classes implementing this interface pro-
vide a variety of methods for inserting values into the underlying stream.
MySQL does not currently support UDTs, and as such, Connector/J does not im-
plement this interface.

Methods
void writeArray(Array x)

void writeAsciiStream(InputStream x)

void writeBigDecimal(BigDecimal x)

void writeBinaryStream(InputStream x)

void writeBlob(Blob x)

void writeBoolean(boolean x)

void writeByte(byte x)

void writeBytes(byte[] x)

void writeCharacterStream(Reader x)

void writeClob(Clob x)

void writeDate(Date x)

void writeDouble(double x)

void writeFloat(float x)

void writeInt(int x)

void writeLong(long x)

void writeObject(SQLData x)

void writeRef(Ref x)

void writeShort(short x)

void writeString(String x)

void writeStruct(Struct x)

void writeTime(Time x)

void writeTimestamp(Timestamp x)

void writeURL(URL x)

SQLPermission
The SQLPermission class is a Java permission class that extends java.secu-
rity.BasicPermission. This permission is checked by the SecurityManager when

The java.sql Package 353

an applet invokes DriverManager.setLogWriter(). Unless a permission value of
setLog is defined, a SecurityException is thrown. At this time, setLog is the only
permission supported by the SQLPermission class.

Constructors
SQLPermission(String name)

SQLPermission(String name, String actions)

SQLWarning
The SQLWarning class extends SQLException and provides for tracking data-
base access warnings. As with SQLException, it is possible to chain multiple
SQLWarning objects. Classes implementing the Connection, ResultSet, and
Statement interfaces use such SQLWarning chains. Each database warning en-
countered is added to the chain, with the chain made accessible through the
getWarnings() method. The SQLWarning class provides support for stepping
through warning chains.

Constructors
SQLWarning()

SQLWarning(String reason)

SQLWarning(String reason, String SQLstate)

SQLWarning(String reason, String SQLstate, int vendorCode)

Methods
SQLWarning getNextWarning()

void setNextWarning(SQLWarning warning)

Statement
The Statement interface represents a static SQL statement. Classes implement-
ing this interface provide methods for executing SQL statements, as well as
managing properties associated with the results of execution. The statement
execution methods automatically close any ResultSet object previously associ-
ated with the Statement object. Objects implementing the Connection interface
are responsible for creating statements. The Statement interface is fully imple-
mented by Connector/J.

Methods
void addBatch(String sql)

void cancel()

void clearBatch()

Th e J D B C A P I a n d C o n n e c t o r / J354

void clearWarnings()

void close()

boolean execute(String sql)

boolean execute(String sql, int autoGeneratedKeys)

boolean execute(String sql, int[] columnIndexes)

boolean execute(String sql, String[] columnNames)

int[] executeBatch()

ResultSet executeQuery(String sql)

int executeUpdate(String sql)

int executeUpdate(String sql, int autoGeneratedKeys)

int executeUpdate(String sql, int[] columnIndexes)

int executeUpdate(String sql, String[] columnNames)

Connection getConnection()

int getFetchDirection()

int getFetchSize()

ResultSet getGeneratedKeys()

int getMaxFieldSize()

int getMaxRows()

boolean getMoreResults()

boolean getMoreResults(int current)

int getQueryTimeout()

ResultSet getResultSet()

int getResultSetConcurrency()

int getResultSetHoldability()

int getResultSetType()

int getUpdateCount()

SQLWarning getWarnings()

void setCursorName(String name)

void setEscapeProcessing(boolean enable)

void setFetchDirection(int direction)

void setFetchSize(int rows)

void setMaxFieldSize(int max)

void setMaxRows(int max)

void setQueryTimeout(int seconds)

Fields
static int CLOSE_ALL_RESULTS

static int CLOSE_CURRENT_RESULT

static int EXECUTE_FAILED

static int KEEP_CURRENT_RESULT

static int NO_GENERATED_KEYS

static int RETURN_GENERATED_KEYS

static int SUCCESS_NO_INFO

Struct
The Struct interface represents the Java language mapping of a SQL structured
type, which is a kind of user-defined type (UDT). Classes implementing this

The java.sql Package 355

interface are responsible for storage of and access to attribute values associ-
ated with the represented SQL structured type. MySQL does not currently sup-
port UDTs, and as such, Connector/J does not implement this interface.

Methods
Object[] getAttributes()

Object[] getAttributes(Map map)

String getSQLTypeName()

Time
The Time class extends the java.util.Date class in a manner providing a repre-
sentation of the SQL TIME type. Essentially, Time serves as an adaptor that al-
lows a java.util.Date object to be treated as only consisting of the time part (i.e.,
hours, minutes, and seconds).

Constructor
Time(long time)

Methods
void setTime(long time)

String toString()

static Time valueOf(String s)

Timestamp
The Timestamp class extends the java.util.Date class in a manner providing a
representation of the SQL TIMESTAMP type. In addition to extending Date, this
class adds a nanosecond field. Given this addition and its effect on the behavior
of the interface, it is recommended that Timestamp objects not be mixed with
regular Date objects. The Timestamp class provides a number of methods
specifically for accessing, setting, and comparing Timestamp values.

Constructor
Timestamp(long time)

Methods
boolean after(Timestamp ts)

boolean before(Timestamp ts)

int compareTo(Object o)

int compareTo(Timestamp ts)

Th e J D B C A P I a n d C o n n e c t o r / J356

boolean equals(Object ts)

boolean equals(Timestamp ts)

int getNanos()

long getTime()

void setNanos(int n)

void setTime(long time)

String toString()

static Timestamp valueOf(String s)

Types
The Types class defines a set of constants representing the SQL types. These
constants are referred to as the JDBC types and are used throughout the API to
assist with type mapping issues. The numeric values of the constants follow the
X/Open conventions. This class has no methods, other than those inherited
from java.lang.Object.

Fields
static int ARRAY

static int BIGINT

static int BINARY

static int BIT

static int BLOB

static int BOOLEAN

static int CHAR

static int CLOB

static int DATALINK

static int DATE

static int DECIMAL

static int DISTINCT

static int DOUBLE

static int FLOAT

static int INTEGER

static int JAVA_OBJECT

static int LONGVARBINARY

static int LONGVARCHAR

static int NULL

static int NUMERIC

static int OTHER

static int REAL

static int REF

static int SMALLINT

static int STRUCT

static int TIME

static int TIMESTAMP

static int TINYINT

static int VARBINARY

static int VARCHAR

The java.sql Package 357

The javax.sql Package

The javax.sql package extends the core JDBC API. It provides 2 classes and 12
interfaces focused primarily on providing database services. As with the core
API, the classes, listed in Table C.3, are provided by the package, but responsi-
bility for classes implementing the interfaces lies outside the package. Unlike
the core API, delegation of interface responsibility is not so clear-cut. The in-
terfaces include event listeners that might be implemented by any party inter-
ested in events of corresponding types. There are also interfaces for custom
readers and writers that need be implemented only under special circum-
stances. Current Connector/J support is limited to implementation of the inter-
faces associated with basic and pooled data source connections. Table C.4
summarizes the interfaces and level of support.

Table C.3 javax.sql Classes

NAME DESCRIPTION

ConnectionEvent Connection pool event

RowSetEvent RowSet change event

Table C.4 javax.sql Interfaces

NAME DESCRIPTION IMPLEMENTED

ConnectionEventListener Connection pool event listener No

ConnectionPoolDataSource PooledConnection factory Yes

DataSource Basic connection factor Yes

PooledConnection Connection managed by a connection pool Yes

RowSet JavaBeans-compatible data source interface No

RowSetInternal Internal view of a RowSet object No

RowSetListener RowSet change event listener No

RowSetMetaData Column type metadata for a RowSet No

RowSetReader Custom reader used by a RowSet object No

RowSetWriter Custom writer used by a RowSet object No

XAConnection Connection for distributed transactions No

XADataSource XAConnection factory No

Th e J D B C A P I a n d C o n n e c t o r / J358

ConnectionEvent
The ConnectionEvent class represents a Java event used for signaling events
associated with connection pools. Instances of this class are generated both
when an error occurs and when a connection is closed. The methods defined
for this class provide access to the associated ConnectionPool object and, in
the case of an error, the corresponding SQLException object.

Constructors
ConnectionEvent(PooledConnection con)

ConnectionEvent(PooledConnection con, SQLException ex)

Method
SQLException getSQLException()

ConnectionEventListener
The ConnectionEventListener interface represents a Java event listener that re-
ceives notification of connection pool events. Classes implementing this inter-
face provide methods for responding to connection closures and connection
pool errors. Parties interested in connection pool events are responsible for im-
plementing this interface.

Methods
void connectionClosed(ConnectionEvent event)

void connectionErrorOccurred(ConnectionEvent event)

ConnectionPoolDataSource
The ConnectionPoolDataSource interface represents a ConnectionPool object
factory. Classes implementing this interface provide methods for building and
distributing connections associated with a particular data source; these con-
nections are suitable for inclusion in a connection pool. Methods are also avail-
able for managing timeouts and logging. Connector/J fully implements this
interface.

Methods
int getLoginTimeout()

PrintWriter getLogWriter()

PooledConnection getPooledConnection()

PooledConnection getPooledConnection(String user,

The javax.sql Package 359

String password)

void setLoginTimeout(int seconds)

void setLogWriter(PrintWriter out)

DataSource
The DataSource interface represents a Connection object factory. Classes im-
plementing this interface provide methods for building and distributing con-
nections associated with a particular data source. Methods are also available
for managing timeouts and logging. The Connection objects provided by a Data-
Source are equivalent to those provided through the java.sql.DriverManager
service. Connector/J fully implements this interface.

Methods
Connection getConnection()

Connection getConnection(String username, String password)

int getLoginTimeout()

PrintWriter getLogWriter()

void setLoginTimeout(int seconds)

void setLogWriter(PrintWriter out)

PooledConnection
The PooledConnection interface represents a data source connection associ-
ated with a connection pool. Classes implementing this interface provide meth-
ods for accessing and managing an associated pooled connection. Connector/J
fully implements this interface.

Methods
void addConnectionEventListener(

ConnectionEventListener listener)

void close()

Connection getConnection()

void removeConnectionEventListener(

ConnectionEventListener listener)

RowSet
The RowSet interface extends the ResultSet interface, adding support for the
JavaBeans component model. In addition to ResultSet handling, classes imple-
menting this interface provide methods for session management, SQL state-
ment execution, and event listener registration. In a sense, a RowSet class can
be viewed as something that wraps the rest of the JDBC API, providing an

Th e J D B C A P I a n d C o n n e c t o r / J360

alternative, but familiar, way to interact with a data source. Connector/J does
not currently implement the RowSet interface.

Methods
void addRowSetListener(RowSetListener listener)

void clearParameters()

void execute()

String getCommand()

String getDataSourceName()

boolean getEscapeProcessing()

int getMaxFieldSize()

int getMaxRows()

String getPassword()

int getQueryTimeout()

int getTransactionIsolation()

Map getTypeMap()

String getUrl()

String getUsername()

boolean isReadOnly()

void removeRowSetListener(RowSetListener listener)

void setArray(int i, Array x)

void setAsciiStream(int parameterIndex,

InputStream x, int length)

void setBigDecimal(int parameterIndex, BigDecimal x)

void setBinaryStream(int parameterIndex,

InputStream x, int length)

void setBlob(int i, Blob x)

void setBoolean(int parameterIndex, boolean x)

void setByte(int parameterIndex, byte x)

void setBytes(int parameterIndex, byte[] x)

void setCharacterStream(int parameterIndex,

Reader reader, int length)

void setClob(int i, Clob x)

void setCommand(String cmd)

void setConcurrency(int concurrency)

void setDataSourceName(String name)

void setDate(int parameterIndex, Date x)

void setDate(int parameterIndex, Date x, Calendar cal)

void setDouble(int parameterIndex, double x)

void setEscapeProcessing(boolean enable)

void setFloat(int parameterIndex, float x)

void setInt(int parameterIndex, int x)

void setLong(int parameterIndex, long x)

void setMaxFieldSize(int max)

void setMaxRows(int max)

void setNull(int parameterIndex, int sqlType)

void setNull(int paramIndex, int sqlType, String typeName)

void setObject(int parameterIndex, Object x)

void setObject(int parameterIndex,

The javax.sql Package 361

Object x, int targetSqlType)

void setObject(int parameterIndex, Object x,

int targetSqlType, int scale)

void setPassword(String password)

void setQueryTimeout(int seconds)

void setReadOnly(boolean value)

void setRef(int i, Ref x)

void setShort(int parameterIndex, short x)

void setString(int parameterIndex, String x)

void setTime(int parameterIndex, Time x)

void setTime(int parameterIndex, Time x, Calendar cal)

void setTimestamp(int parameterIndex, Timestamp x)

void setTimestamp(int parameterIndex,

Timestamp x, Calendar cal)

void setTransactionIsolation(int level)

void setType(int type)

void setTypeMap(Map map)

void setUrl(String url)

void setUsername(String name)

RowSetEvent
The RowSetEvent class represents a Java event used for signaling events asso-
ciated with RowSet objects. Instances of this class are generated both by cur-
sor movement and changes in the contents of a RowSet object. Instances of this
class provide access to the associated RowSet object.

Constructor
RowSetEvent(RowSet source)

RowSetInternal
The RowSetInternal interface represents an internal view of a RowSet. Classes
implementing the RowSetReader and RowSetWriter interfaces rely on this view
for interaction with RowSetInternal objects. Connector/J does not currently im-
plement the RowSetInternal interface.

Methods
Connection getConnection()

ResultSet getOriginal()

ResultSet getOriginalRow()

Object[] getParams()

void setMetaData(RowSetMetaData md)

Th e J D B C A P I a n d C o n n e c t o r / J362

RowSetListener
The RowSetListener interface represents a Java event listener that receives no-
tification of RowSet change events. Classes implementing this interface pro-
vide methods for responding to cursor movement, row modifications, and
complete RowSet modifications. Parties interested in RowSet change events
are responsible for implementing this interface.

Methods
void cursorMoved(RowSetEvent event)

void rowChanged(RowSetEvent event)

void rowSetChanged(RowSetEvent event)

RowSetMetaData
The RowSetMetaData interface extends the ResultSetMetaData interface,
adding methods for setting values associated with the RowSet column types.
Classes implementing this interface are intended primarily for use with RowSet-
Reader objects, which are responsible for reading data into RowSet objects.
Connector/J does not currently implement the RowSetMetaData interface.

Methods
void setAutoIncrement(int columnIndex, boolean property)

void setCaseSensitive(int columnIndex, boolean property)

void setCatalogName(int columnIndex, String catalogName)

void setColumnCount(int columnCount)

void setColumnDisplaySize(int columnIndex, int size)

void setColumnLabel(int columnIndex, String label)

void setColumnName(int columnIndex, String columnName)

void setColumnType(int columnIndex, int SQLType)

void setColumnTypeName(int columnIndex, String typeName)

void setCurrency(int columnIndex, boolean property)

void setNullable(int columnIndex, int property)

void setPrecision(int columnIndex, int precision)

void setScale(int columnIndex, int scale)

void setSchemaName(int columnIndex, String schemaName)

void setSearchable(int columnIndex, boolean property)

void setSigned(int columnIndex, boolean property)

void setTableName(int columnIndex, String tableName)

RowSetReader
The RowSetReader interface represents a custom data source reader for
RowSet objects that support the reader/writer paradigm and do not maintain a

The javax.sql Package 363

continuous data source connection. A RowSetReader object replies on the
RowSetInternal interface for access to the RowSet object. Connector/J
does not implement the RowSetReader interface; it is intended primarily
for application programmers who must customize the behavior of a RowSet
implementation.

Method
void readData(RowSetInternal caller)

RowSetWriter
The RowSetWriter interface represents a custom data source writer for RowSet
objects that support the reader/writer paradigm and do not maintain a continu-
ous data source connection. A RowSetWriter object relies on the RowSetInter-
nal interface for access to the RowSet object. Connector/J does not implement
the RowSetWriter interface; it is intended primarily for application program-
mers who must customize the behavior of a RowSet implementation.

Method
boolean writeData(RowSetInternal caller)

XAConnection
The XAConnection interface extends the PooledConnection interface, provid-
ing a data source connection interface suitable for working with distributed
transactions. Classes implementing this interface are capable of providing an
appropriate javax.transaction.xa.XAResource object to the transaction man-
ager. Connector/J does not currently implement the XAConnection interface.

Method
XAResource getXAResource()

XADataSource
The XADataSource interface represents an XAConnection object factory.
Classes implementing this interface provide methods for building and
distributing connections associated with a particular data source; these con-
nections are suitable for distributed transactions. Methods are also available
for managing timeouts and logging. Connector/J does not currently implement
this interface.

Th e J D B C A P I a n d C o n n e c t o r / J364

Methods
int getLoginTimeout()

PrintWriter getLogWriter()

XAConnection getXAConnection()

XAConnection getXAConnection(String user, String password)

void setLoginTimeout(int seconds)

void setLogWriter(PrintWriter out)

The javax.sql Package 365

One of your responsibilities as a developer is to determine when the data-
base should handle computations versus the application. To aid in this
analysis, this appendix provides all of the functions and operators

defined within MySQL. Each of them has been described with a short query to
show their operation. Before you perform an operation in Java with the data,
check to see if the operation could be handled at the database server.

Following is a list of all the functions and operators discussed in this appendix:

MySQL Functions and Operators

A P P E N D I XD

367

+, -, *, /, unary

ABS

CEILING

DEGREES

EXP

FLOOR

GREATEST

LEAST

LOG

MOD

PI

POW, POWER

RADIANS

RAND

ROUND

SIGN

SQRT

Trig functions

COS, SIN, TAN, ACOS, ASIN, ATAN,
ATAN2, COT

TRUNCATE

=

!=, <>

<, <=, >, >=

<=>

BETWEEN x AND Y

MySQL Functions and Operators368

COALESCE

IN, NOT IN

INTERVAL

IS NULL

IS NOT NULL

ISNULL

!, NOT

||, OR

&&, AND

CASE f WHEN c1 THEN t1 WHEN c2…
ELSE f1 END

IF(x1,x2,x3)

IFNULL(x1,x2)

NULLIF(x1,x2)

ASCII

BIN

CHAR

CONCAT, CONCAT_WS

CONV

ELT

FIELD

FIND_IN_SET

HEX

INSERT

LCASE, LOWER

LEFT

LENGTH, OCT_LENGTH,
CHAR_LENGTH, CHARACTER_LENGTH

LIKE pattern [ESCAPE ’char’], NOT LIKE
pattern [ESCAPE ‘char’]

LOCATE, POSITION, INSTR

LOCATE

LPAD

LTRIM

MATCH (c1, c2) AGAINST

MID

OCT

ORD

REGEXP pattern, RLIKE pattern, NOT
REGEXP pattern, NOT RLIKE pattern

REPLACE

REPEAT

REVERSE

RIGHT

RTRIM

STRCMP

SUBSTRING

SOUNDEX

TRIM([both | leading | trailing] remove
FROM string)

UCASE, UPPER

AVG

COUNT

MIN

MAX

SUM

STD

STDDEV

CURDATE, CURRENT_DATE

CURTIME, CURRENT_TIME

DATE_FORMAT, TIME_FORMAT

DAYNAME

DAYOFMONTH

DAYOFWEEK

DAYOFYEAR

FROM_DAYS

FROM_UNIXTIME

HOUR

MINUTE

MONTH

MONTHNAME

NOW, SYSDATE, CURRENT_TIME-
STAMP

PERIOD_DIFF

QUARTER

SECOND

SEC_TO_TIME

TIME_TO_SEC

TO_DAYS

UNIX_TIMESTAMP

WEEK

WEEKDAY

YEAR

YEARWEEK

BINARY

CONNECTION_ID

DATABASE

DECODE

ENCRYPT

ENCODE

FORMAT

LAST_INSERT_ID

MD5

PASSWORD

USER, SYSTEM_USER, SESSION_USER

VERSION

Arithmetic Functions/Operators 369

Arithmetic Functions/Operators

MySQL offers a wide variety of operations/functions to handle both compar-
isons and limit the results of an expression. Most of the operators are self-
explanatory, so no examples are provided.

+

Performs mathematical addition.

-

Performs mathematical subtraction.

*

Performs mathematical multiplication.

/

Performs mathematical division.

unary –

Returns complement of argument.

ABS(number)

Returns the absolute value of the provided number parameter.

CEILING(number)

CEILING returns an integer value representing the integer round-up of number.
Defined as min(z: z integer, z >= number).

DEGREES(number)

DEGREES() returns a float value representing degrees after converting from
number in radians.

EXP(number)

EXP will return a float value based on the equation enumber.

FLOOR(number)

FLOOR returns an integer value representing the integer round-down of num-

ber. Defined as max(z: z integer, z <= number).

GREATEST(x, y, …)

The GREATEST() function offers the same functionality as LEAST(), but
returns the greatest value.

LEAST(x, y, …)

The LEAST() function can be used to return all values or a value that is the least of
the set. For example, LEAST(1, 5, 6) will return 1. Can be used in a query with col-
umn field names. When used in a query, all values over y will be displayed as y.
Example:

mysql> SELECT login, LEAST(salary, 100000)

FROM login;

+---------+-----------------------+

| login | LEAST(salary, 100000) |

+---------+-----------------------+

| johnd | 100000 |

| janed | 91000 |

| timd | 100000 |

| jamesr | 100000 |

| jaysong | 42000 |

| Mattm | 46000 |

| bobs | 24000 |

+---------+-----------------------+

7 rows in set (0.06 sec)

MySQL Functions and Operators370

LOG(number)

LOG returns a float value based on the natural log of number.

LOG10(number)

LOG10 returns a float value based on the equation log10(number). If the result
cannot be calculated, NULL is returned.

MOD(n,m)

The MOD function returns an integer representing the remainder for the equa-
tion n / m.

PI()

The function PI returns a value of 3.141593.

POW(x,y),POWER(x,y)

Both the POW and POWER functions return a float value based on the equation
xy.

RADIANS(number)

RADIANS() returns a float value representing radians after converting from
number in degrees.

RAND(),RAND(seed)

The RAND function returns a float value between the range of 0 to 1. If the
RAND(seed) function is used, the seed will be used as a seed value.

ROUND(number)

The ROUND function returns an integer rounded up the next larger whole num-
ber.

ROUND(number,d)

The 2 parameter ROUND function returns a float value where number is
rounded to d decimal places. A whole number will be returned.

SIGN(number)

Returns:

-1 if number < 0

0 if number = 0

1 if number > 0

Arithmetic Functions/Operators 371

SQRT(number)

The SQRT function returns a float value based on the square root of number. If
the value cannot be calculated, a NULL is returned.

Trigonometric Functions

COS(number),

SIN(number),

TAN(number),

ACOS(number),

ASIN(number),

ATAN(nubmer),

ATAN2(x,y),

COT(number)

The trigonometric functions return a float value.

TRUNCATE(number, d)

The TRUNCATE function returns a float value representing number truncated
to the dth decimal place.

Comparison Functions/Operators

When SELECT queries are created, comparison functions and operators are
used to limit or narrow the results as needed by the application. In this section,
we examine all of the comparison functions and operators available in MySQL.
For those that are obvious, examples won’t be given. It should be noted that
comparison functions and operators work left to right and ignore case. How-
ever, if a binary column type is used in the definition of the database table or the
BINARY operator is used, the comparison will consider case.

=

The equality operator is used to compare two values and return true or false
based on the result. The operator does not work on NULL values, and <=>
should be used.

<>, !=

MySQL allows the use of either syntax for testing inequality. A value of true is
returned if the operands are not equal.

MySQL Functions and Operators372

<=, <, >=, >

The less than and greater than operators work on both numeric and alphanu-
meric operands; they return true or false based on their obvious function.

<=>

When using the equality operator on column fields, a NULL value will play havoc
with queries. If column values might be NULL, use this operator. For example:

mysql> select login from login where closedate = null;

Empty set (0.00 sec)

mysql> SELECT login

FROM login

WHERE closedate <=> null;

+-------+

| login |

+-------+

| johnd |

| bobs |

+-------+

2 rows in set (0.00 sec)

BETWEEN min AND max

Many queries will require an expression to bring back results in a range of val-
ues. For example, WHERE salary > 10000 and salary < 100000. The operator
BETWEEN min AND max is a convenience operator for this range type query.

Example:

mysql> SELECT login, salary

FROM login

WHERE salary BETWEEN 10000 AND 100000;

+---------+--------+

| login | salary |

+---------+--------+

| janed | 91000 |

| jaysong | 42000 |

| Mattm | 46000 |

| bobs | 24000 |

+---------+--------+

4 rows in set (0.00 sec)

COALESCE(list, text)

If you want to retrieve a list of the row in a database where a NULL exists in a
column, but you would like to have a more pleasing message appear than the
string null, then COALESCE can be used. The string text will be displayed for
all NULL values in list; otherwise, the current column value is displayed.

Comparison Functions/Operators 373

The COALESCE function returns either NULL or <value> when a NULL is
found in list. Example:

mysql> SELECT login, opendate, COALESCE(closedate, 'Closedate

is NULL') as 'WARNING'

FROM login;

+---------+---------------------+---------------------+

| login | opendate | WARNING |

+---------+---------------------+---------------------+

| johnd | 2002-10-10 00:00:00 | Closedate is NULL |

| janed | 0000-00-00 00:00:00 | 0000-00-00 00:00:00 |

| timd | 0000-00-00 00:00:00 | 0000-00-00 00:00:00 |

| jamesr | 0000-00-00 00:00:00 | 0000-00-00 00:00:00 |

| jaysong | 0000-00-00 00:00:00 | 0000-00-00 00:00:00 |

| Mattm | 0000-00-00 00:00:00 | 0000-00-00 00:00:00 |

| bobs | 2003-01-10 09:51:27 | Closedate is NULL |

+---------+---------------------+---------------------+

7 rows in set (0.00 sec)

Expr IN (value, …)
Expr NOT IN (value, …)

In the previous BETWEEN operator, a range of values will be selected. If the
expression needs only to match a set of values, the IN operator can be used. If
the expression needs to not match a set of values, the NOT IN expression can
be used. Example:

mysql> SELECT login, opendate

FROM login

WHERE role IN ('SE', 'CS');

+---------+---------------------+

| login | opendate |

+---------+---------------------+

| jaysong | 0000-00-00 00:00:00 |

| Mattm | 0000-00-00 00:00:00 |

| bobs | 2003-01-10 09:51:27 |

+---------+---------------------+

3 rows in set (0.00 sec)

INTERVAL(n, n1, n2, n3)

If the values supplied to the INTERVAL function can pass the test defined as n
< n1 < n2 < n3.

IS NULL

The IS NULL operator is functionality equivalent to <=>.

MySQL Functions and Operators374

IS NOT NULL

The IS NOT NULL allows a column value to be tested against NULL and return
true if the value is not equal to NULL.

ISNULL(expression)

MySQL includes the ISNULL() function for limiting rows based on the value of
an expression begin NULL.

Example:

mysql> SELECT login, opendate

FROM login

WHERE ISNULL(closedate);

+-------+---------------------+

| login | opendate |

+-------+---------------------+

| johnd | 2002-10-10 00:00:00 |

| bobs | 2003-01-10 09:51:27 |

+-------+---------------------+

2 rows in set (0.02 sec)

Logical Operators

In many of the comparison and other functions defined in this appendix, using
the logical operators provides the ability to further limit and narrow results
returned from the database. Again, many of these are self-explanatory and thus
do not contain examples.

NOT, !

The NOT and ! operators are used to invoke logical negation.

OR, ||

The OR and || operators handle logical OR. One or more operands are required
to be TRUE for a TRUE result.

In the following examples, we see two separate queries, and then one with them
combined, to illustrate how the correct result is returned.

mysql> SELECT login, role

FROM login

WHERE salary < 100000;

Logical Operators 375

+---------+------+

| login | role |

+---------+------+

| janed | CFO |

| jaysong | SE |

| Mattm | SE |

| bobs | CS |

+---------+------+

4 rows in set (0.00 sec)

mysql> SELECT login, role

FROM login

WHERE ISNULL(closedate);

+-------+-------+

| login | role |

+-------+-------+

| johnd | owner |

| bobs | CS |

+-------+-------+

2 rows in set (0.00 sec)

mysql> SELECT login, role

FROM login

WHERE salary < 100000 OR ISNULL(closedate);

+---------+-------+

| login | role |

+---------+-------+

| johnd | owner |

| janed | CFO |

| jaysong | SE |

| Mattm | SE |

| bobs | CS |

+---------+-------+

5 rows in set (0.00 sec)

AND
&&

For the AND and && operators, both of the operands must be TRUE to return a
true result. Building off the previous, we can return the rows where both crite-
ria are satisfied.

mysql> SELECT login, role

FROM login

WHERE salary < 100000 AND ISNULL(closedate);

+-------+------+

| login | role |

+-------+------+

| bobs | CS |

+-------+------+

1 row in set (0.00 sec)

MySQL Functions and Operators376

Control Functions

The output from a query can be displayed based on a condition supplied in the
query.

CASE f
WHEN c1 THEN t1
WHEN c2…
ELSE f1
END

Convenience syntax for using multiple conditions. Commonly used to return
values from the database yet hiding the true values. Example:

mysql>

SELECT login,

CASE

WHEN salary > 249000 THEN 'No Bonus'

WHEN salary < 95000 THEN 'Full Bonus'

ELSE '1/2 Bonus'

END AS 'Bonus'

FROM login;

+---------+------------+

| login | Bonus |

+---------+------------+

| johnd | No Bonus |

| janed | Full Bonus |

| timd | 1/2 Bonus |

| jamesr | No Bonus |

| jaysong | Full Bonus |

| Mattm | Full Bonus |

+---------+------------+

6 rows in set (0.00 sec)

IF(x1,x2,x3)

The IF expression works like the statement IF THEN ELSE. If x1 is true, then
return the value of x2; otherwise x3. Example:

mysql>

SELECT login, opendate,

IF (description like "Chief%", "Executive Team",

"Development Staff") AS "Group"

FROM login;

+---------+---------------------+-------------------+

| login | opendate | Group |

+---------+---------------------+-------------------+

Control Functions 377

| johnd | 2002-10-10 00:00:00 | Development Staff |

| janed | 0000-00-00 00:00:00 | Executive Team |

| timd | 0000-00-00 00:00:00 | Executive Team |

| jamesr | 0000-00-00 00:00:00 | Executive Team |

| jaysong | 0000-00-00 00:00:00 | Development Staff |

| Mattm | 0000-00-00 00:00:00 | Development Staff |

+---------+---------------------+-------------------+

6 rows in set (0.00 sec)

IFNULL(x1,x2)

If you are performing database cleanup or maintenance, you can have the data-
base inform you of row fields that are currently NULL and need a value.
IFNULL, will display the value in the column if it is not NULL; if it is NULL, the
value in x2 will be displayed. Example:

mysql> SELECT login, IFNULL(role, 'Must Have Role')

FROM login;

+---------+--------------------------------+

| login | IFNULL(role, 'Must Have Role') |

+---------+--------------------------------+

| johnd | owner |

| janed | CFO |

| timd | CTO |

| jamesr | CEO |

| jaysong | SE |

| Mattm | SE |

| bobs | Must Have Role |

+---------+--------------------------------+

7 rows in set (0.03 sec)

NULLIF(x1,x2)

NULLIF is another function to handle NULL values in the database. If x1 is
equal to x2, a NULL is returned in the result. Example:

mysql> SELECT login, NULLIF(role,"CEO") as "Role" FROM login;

+---------+-------+

| login | Role |

+---------+-------+

| johnd | owner |

| janed | CFO |

| timd | CTO |

| jamesr | NULL |

| jaysong | SE |

| Mattm | SE |

| bobs | CS |

+---------+-------+

7 rows in set (0.01 sec)

MySQL Functions and Operators378

String Functions/Operators

The MySQL database includes a large number of functions and operators for
dealing with text strings found in the column data.

ASCII(string)

The ASCII function returns the ASCII value of the first character in string.

BIN(number)

The BIN function converts number to its binary equivalent.

CHAR(N, N1, N2, …)

The CHAR function converts all numbers provided as parameters to ASCII
characters, concatenate them, and return as a string.

CONCAT(s1, s2, …)

The CONCAT function appends all string parameters and returns the resulting
string. Example:

mysql> SELECT CONCAT("current login = ", login) AS 'login'

FROM login;

+-------------------------+

| login |

+-------------------------+

| current login = bobs |

| current login = jamesr |

| current login = janed |

| current login = jaysong |

| current login = johnd |

| current login = Mattm |

| current login = timd |

+-------------------------+

7 rows in set (0.00 sec)

CONCAT_WS(delimiter, s1, s2, …)

The CONCAT_WS function concatenates all supplied string parameters sepa-
rating all of the string by the delimiter character.

CONV(number, frombase, tobase)

The CONV() converts number from base frombase to base tobase. The accept-
able values range from 2 to 36 for the frombase and tobase parameters.

String Functions/Operators 379

ELT(number, s1, s2, …)

The ELT function returns string S1 if number = 1, string s2 if number = 2, and
so on.

FIELD(string, s1, s2, …)

The FIELD function returns a value starting at 1 if string equals s1, 2 if string

equals s2, and so on.

FIND_IN_SET(string, strlist)

The FIND_IN_SET function attempts to find string within the set strlist where
strlist is a comma-delimited list of values. The function returns 1 if string is the
first element in strlist set.

HEX(number)

The HEX function converts number to its hexadecimal equivalent.

INSERT(string, position, length, newstring)

The INSERT function inserts newstring into string starting at position and
returns the result.

LCASE(string)
LOWER(string)

These functions return string after converting to lowercase.

LEFT(string, length)

The LEFT function returns length characters from the left part of string.

LENGTH(string)
OCT_LENGTH(string)
CHAR_LENGTH(string)
CHARACTER_LENGTH(string)

All of these functions return the length of the supplied string parameter.

LIKE pattern [ESCAPE ’char’]
NOT LIKE pattern [ESCAPE ’char’]

When attempting to match against columns containing character strings, miss-
ing a single character will kept the row from being matched. The LIKE operator
can be used to search through character string columns to find a match. The
LIKE operator uses two wildcards: _ character matches a single characters,
and % matches any number of characters. Example:

MySQL Functions and Operators380

mysql> SELECT login, description
FROM login
WHERE description LIKE "CHIEF%";
+--------+-------------------------+
| login | description |
+--------+-------------------------+
janed	Chief Financial Officer
timd	Chief Technical Officer
jamesr	Chief Executive Officer
+--------+-------------------------+
3 rows in set (0.00 sec)

LOCATE(substring, string)
POSITION(substring IN string)
INSTR(s, sub)

If you need to find the location of a string with another string, the LOCATE and
POSITION functions can be used. Both functions will return the numerical posi-
tion of substring within string. If the substring is not found, a value of 0 is
returned.

LOCATE(substring, string, position)

Additional substrings can be found by supplying a position value in this
LOCATE method. The database will start looking for the match at the specified
position.

LPAD(string, len, pads)

The LPAD and RPAD methods will return string with len number of pads char-
acters to the left (LPAD) or right (RPAD) of the string.

LTRIM(string)

The LTRIM function removes all spaces from the front of string and returns the
result.

MATCH (c1, c2) AGAINST (expression)

If you’ve defined a table column type using MySQL’s full text-searching capabil-
ities, the MATCH function can be used to locate appropriate text. Example:

mysql> SELECT *

FROM documents

MATCH(bibliography) AGAINST ('distributed');

MID(string, position, length)

Specific parts of a string can be returned using these functions. The functions
will return a string length characters in size from string starting at character
position.

String Functions/Operators 381

OCT(number)

The OCT function converts number to its octal equivalent.

ORD(string)

The ORD function will return the ASCII value of the first character in string

using Unicode.

REGEXP pattern
RLIKE pattern
NOT REGEXP pattern
NOT RLIKE pattern

If you are familiar with regular expressions, you will like to use the RLIKE or
REGEXP operators. These operators will allow you to search in character
columns for patterns. Example:

mysql> SELECT login, description

FROM login

WHERE login RLIKE "^ja[a-z]*";

+---------+-------------------------+

| login | description |

+---------+-------------------------+

| janed | Chief Financial Officer |

| jamesr | Chief Executive Officer |

| jaysong | Software Engineer |

+---------+-------------------------+

3 rows in set (0.02 sec)

REPLACE(string, from, to)

The characters in a string can be converted before being returned to the applica-
tion with the REPLACE function. The function will return a string where all from

occurrences are converted to to characters before being returned. Example:

mysql> SELECT login, REPLACE(description, 'Engineer', 'Coder')

AS description

FROM login;

+---------+-------------------------+

| login | description |

+---------+-------------------------+

| johnd | owner john doe |

| janed | Chief Financial Officer |

| timd | Chief Technical Officer |

| jamesr | Chief Executive Officer |

| jaysong | Software Coder |

| Mattm | Software Coder |

| bobs | Client Services |

+---------+-------------------------+

7 rows in set (0.00 sec)

MySQL Functions and Operators382

REPEAT(string, count)

The REPEAT function returns a string where string is repeated count times.

REVERSE(string)

The REVERSE function returns string with all characters presented in reverse
order.

RIGHT(string, length)

The RIGHT function returns length characters from the right part of string.

RTRIM(string)

The RTRIM function removes all spaces from the end of string and returns the
results.

STRCMP(e1, e2)

The STRCMP function is designed to match string e1 to string e2. The results of
the match are

0 if identical

-1 is e1 < e2

1 if e1 > e2

The function does not consider case.

SUBSTRING(string, position, length)
SUBSTRING(string FROM position FOR length)
SUBSTRING(string, position)
SUBSTRING(string FROM position)

The SUBSTRING function will return a part of string starting at character posi-

tion until the end of string is found.

SUBSTRING_INDEX(string, delimiter, count)

The SUBSTRING_INDEX function is designed to read count-1 delimiter char-
acters from string and return all characters left until the end of the string.

SOUNDEX(string)

If you are interested in using the SoundEx encoding in your application, the
MySQL data can create the value for you using the SOUNDEX function.

TRIM([both | leading | trailing] remove FROM string)

The TRIM method can be used to remove characters remove from string in a
variety of situations including both the front and back, front, or back of string,
and return the results.

String Functions/Operators 383

UCASE(string)
UPPER(string)

These functions return string after converting to uppercase.

Grouping Functions

In addition to the GROUP BY clause found in the SELECT command, MySQL
provides several other functions defined to help pull together the right rows.

AVG(expression)

The AVG function is used to provide an average based on the expression and
the rows pulled using the query. The query must have a GROUP BY clause.
Example:

mysql> SELECT login, AVG(salary) as 'Average Salary'
FROM login
GROUP BY current group;
+-------+----------------+
| login | Average Salary |
+-------+----------------+
| johnd | 137000 |
| janed | 182400 |
+-------+----------------+
2 rows in set (0.01 sec)

COUNT(expression)

The COUNT function will return the total number of rows based on the current
query of the database. Example:

mysql> SELECT COUNT(*)
FROM login;
+----------+
| COUNT(*) |
+----------+
| 7 |
+----------+
1 row in set (0.05 sec)

COUNT(DISTINCT expression, …)

This version of the COUNT function will count only distinct rows based on one
or more expressions. Example:

mysql> SELECT COUNT(DISTINCT role)

FROM login;

+----------------------+

| COUNT(DISTINCT role) |

+----------------------+

MySQL Functions and Operators384

| 6 |

+----------------------+

1 row in set (0.02 sec)

MAX(expression)

The MAX function returns the maximum value for the supplied expression. The
GROUP BY clause must be in the query.

MIN(expression)

The MIN function returns the minimum value for the supplied expression. The
GROUP BY clause must be in the query. Example:

mysql> SELECT login, MIN(salary) as 'Minimum Salary'

FROM login

GROUP BY currentgroup;

+-------+----------------+

| login | Minimum Salary |

+-------+----------------+

| johnd | 24000 |

| janed | 42000 |

+-------+----------------+

2 rows in set (0.00 sec)

STD(expression)
STDDEV(expression)

The STD and STDEV functions return the standard deviation for the supplied
expression. The GROUP BY clause must be part of the query.

SUM(expression)

The SUM function will calculate the sum of all selected rows. The GROUP BY
clause must be part of the query. Example:

mysql> SELECT login, SUM(salary) as 'Sum of Salaries'

FROM login

GROUP BY currentgroup;

+-------+-----------------+

| login | Sum of Salaries |

+-------+-----------------+

| johnd | 274000 |

| janed | 912000 |

+-------+-----------------+

2 rows in set (0.01 sec)

Grouping Functions 385

Date and Time Functions

MySQL allows for extensive date and time manipulation.

CURDATE()
CURRENT_DATE

These functions will return the current date in YYYY-MM-DD format. Example:

mysql> SELECT CURDATE(), CURRENT_DATE;

+------------+--------------+

| CURDATE() | CURRENT_DATE |

+------------+--------------+

| 2003-01-10 | 2003-01-10 |

+------------+--------------+

1 row in set (0.00 sec)

CURTIME()
CURRENT_TIME

These functions return the current time. Example:

mysql> SELECT CURTIME(), CURRENT_TIME;

+-----------+--------------+

| CURTIME() | CURRENT_TIME |

+-----------+--------------+

| 15:55:08 | 15:55:08 |

+-----------+--------------+

1 row in set (0.00 sec)

DATE_FORMAT(date, format)
TIME_FORMAT(time, format)

The DATE_FORMAT function is a very powerful formatter of a date parameter.
The format parameter can be built to display a specific date/time string using
the following placeholders:

TAG DESCRIPTION

%M Month name (January)

%W Weekday name (Sunday)

%D Day with English suffix (1st, 2nd,)

%Y 4-digit year

%y 2-digit year

MySQL Functions and Operators386

%X 4-digit year for the week, where Sunday is the first day of the
week combined with '%V'

%x 4-digit year for the week, where Monday is the first day of the
week combined with '%v'

%a Abbreviated weekday name (Sun)

%d Day of the month

%e Day of the month

%m Month (01)

%c Month (1)

%b Abbreviated month name (Jan)

%j Day of the year (001)

%H Hour (00..23)

%k Hour (0..23)

%h Hour (01..12)

%I Hour (01..12)

%l Hour (1..12)

%i Minutes, numeric (00..59)

%r Time, 12-hour (hh:mm:ss [AP]M)

%T Time, 24-hour (hh:mm:ss)

%S Seconds (00..59)

%s Seconds (00..59)

%p AM or PM

%w Day of the week (0=Sunday)

%U Week (0..53), where Sunday is the first day of the week

%u Week (0..53), where Monday is the first day of the week

%V Week (1..53), where Sunday is the first day of the week
combined with '%X'

%v Week (1..53), where Monday is the first day of the week
combined with '%x'

Date and Time Functions 387

TAG DESCRIPTION

Example:

mysql>

SELECT login, opendate, DATE_FORMAT(opendate, "%W %M %D")

FROM login

WHERE opendate <> 0;

+-------+---------------------+-----------------------------------+

| login | opendate | DATE_FORMAT(opendate, "%W %M %D") |

+-------+---------------------+-----------------------------------+

| johnd | 2002-10-10 00:00:00 | Thursday October 10th |

| bobs | 2003-01-10 09:51:27 | Friday January 10th |

+-------+---------------------+-----------------------------------+

2 rows in set (0.00 sec)

DAYNAME(date)

The DAYNAME function returns the name of the day on which the supplied
date occurred. Example:

mysql> SELECT login, opendate, DAYNAME(opendate)

FROM login

WHERE opendate <> 0;

+-------+---------------------+-------------------+

| login | opendate | DAYNAME(opendate) |

+-------+---------------------+-------------------+

| johnd | 2002-10-10 00:00:00 | Thursday |

| bobs | 2003-01-10 09:51:27 | Friday |

+-------+---------------------+-------------------+

2 rows in set (0.00 sec)

DAYOFMONTH(date)

The DAYOFMONTH function returns the day of the month the supplied date

occurred. Example:

mysql> SELECT login, opendate, DAYOFMONTH(opendate)

FROM login

WHERE opendate <> 0;

+-------+---------------------+----------------------+

| login | opendate | DAYOFMONTH(opendate) |

+-------+---------------------+----------------------+

| johnd | 2002-10-10 00:00:00 | 10 |

| bobs | 2003-01-10 09:51:27 | 10 |

+-------+---------------------+----------------------+

2 rows in set (0.00 sec)

DAYOFWEEK(date)

The DAYOFWEEK function will return an integer based on a value of 1 for Sun-
day for date. Example:

MySQL Functions and Operators388

mysql> SELECT login, opendate, DAYOFWEEK(opendate) AS 'Day of week'

FROM login

WHERE opendate <> 0;

+-------+---------------------+-------------+

| login | opendate | Day of week |

+-------+---------------------+-------------+

| johnd | 2002-10-10 00:00:00 | 5 |

| bobs | 2003-01-10 09:51:27 | 6 |

+-------+---------------------+-------------+

2 rows in set (0.00 sec)

DAYOFYEAR(date)

The DAYOFYEAR function returns the day of the year the supplied date

occurred. Example:

mysql> SELECT login, opendate, DAYOFYEAR(opendate)

FROM login WHERE opendate <> 0;

+-------+---------------------+---------------------+

| login | opendate | DAYOFYEAR(opendate) |

+-------+---------------------+---------------------+

| johnd | 2002-10-10 00:00:00 | 283 |

| bobs | 2003-01-10 09:51:27 | 10 |

+-------+---------------------+---------------------+

2 rows in set (0.00 sec)

FROM_DAYS(days)

The FROM_DAYS function calculates the date represented by days.

FROM_UNIXTIME(unix_timestamp)
FROM_UNIXTIME(unix_timestamp, format)

These functions take a Unix timestamp and return a date/time value.

HOUR(time)

The HOUR function returns the hour the supplied time occurred. Example:

mysql> SELECT login, opendate, HOUR(opendate)

FROM login

WHERE opendate <> 0;

+-------+---------------------+----------------+

| login | opendate | HOUR(opendate) |

+-------+---------------------+----------------+

| johnd | 2002-10-10 00:00:00 | 0 |

| bobs | 2003-01-10 09:51:27 | 9 |

+-------+---------------------+----------------+

2 rows in set (0.00 sec)

Date and Time Functions 389

MINUTE(time)

The MINUTE function returns the minute the supplied time occurred. Example:

mysql> SELECT login, opendate, MINUTE(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+------------------+
| login | opendate | MINUTE(opendate) |
+-------+---------------------+------------------+
| johnd | 2002-10-10 00:00:00 | 0 |
| bobs | 2003-01-10 09:51:27 | 51 |
+-------+---------------------+------------------+
2 rows in set (0.00 sec)

MONTH(date)

The MONTH function returns the month the supplied date occurred. Example:

mysql> SELECT login, opendate, MONTH(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+-----------------+
| login | opendate | MONTH(opendate) |
+-------+---------------------+-----------------+
| johnd | 2002-10-10 00:00:00 | 10 |
| bobs | 2003-01-10 09:51:27 | 1 |
+-------+---------------------+-----------------+
2 rows in set (0.00 sec)

MONTHNAME(date)

The MONTHNAME function returns the name of the month the supplied date
occurred. Example:

mysql> SELECT login, opendate, MONTHNAME(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+---------------------+
| login | opendate | MONTHNAME(opendate) |
+-------+---------------------+---------------------+
| johnd | 2002-10-10 00:00:00 | October |
| bobs | 2003-01-10 09:51:27 | January |
+-------+---------------------+---------------------+
2 rows in set (0.00 sec)

NOW()
SYSDATE()
CURRENT_TIMESTAMP

These functions will return the current date and time in the format YYYY-MM-
DD HH:MM:SS. Example:

MySQL Functions and Operators390

mysql> SELECT NOW(), SYSDATE(), CURRENT_TIMESTAMP;
+---------------------+---------------------+---------------------+
| NOW() | SYSDATE() | CURRENT_TIMESTAMP |
+---------------------+---------------------+---------------------+
| 2003-01-10 15:56:18 | 2003-01-10 15:56:18 | 2003-01-10 15:56:18 |
+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)

PERIOD_DIFF(date1, date2)

The PERIOD_DIFF function returns the difference in number of months
between date1 and date2. Example:

mysql> SELECT login, opendate, PERIOD_DIFF(ts, opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+---------------------------+
| login | opendate | PERIOD_DIFF(ts, opendate) |
+-------+---------------------+---------------------------+
| bobs | 2003-01-10 09:51:27 | 67 |
+-------+---------------------+---------------------------+
1 rows in set (0.00 sec)

QUARTER(date)

The QUARTER function returns an integer representing the quarter the sup-
plied date occurred. The values will be in the range 1 to 4. Example:

mysql> SELECT login, opendate, QUARTER(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+-------------------+
| login | opendate | QUARTER(opendate) |
+-------+---------------------+-------------------+
| johnd | 2002-10-10 00:00:00 | 4 |
| bobs | 2003-01-10 09:51:27 | 1 |
+-------+---------------------+-------------------+
2 rows in set (0.02 sec)

SECOND(time)

The SECOND function returns the second the supplied time occurred.
Example:

mysql> SELECT login, opendate, SECOND(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+------------------+
| login | opendate | SECOND(opendate) |
+-------+---------------------+------------------+
| johnd | 2002-10-10 00:00:00 | 0 |
| bobs | 2003-01-10 09:51:27 | 27 |
+-------+---------------------+------------------+
2 rows in set (0.00 sec)

Date and Time Functions 391

SEC_TO_TIME(seconds)

The SEC_TO_TIME function converts seconds into a time value with the format
HH:MM:SS.

TIME_TO_SEC(time)

The TIME_TO_SEC function converts the supplied time to its equivalent in sec-
onds.

TO_DAYS(date)

The TO_DAYS function returns the total days starting at 0 to date.

UNIX_TIMESTAMP()
UNIX_TIMESTAMP(date)

These functions return a Unix timestamp based on the total number of seconds
since 1970-01-01 00:00:00 GMT. The optionally supplied date parameter will
cause the total number of seconds from 1970 to date instead of the current
time.

Example:

mysql> SELECT UNIX_TIMESTAMP();

+------------------+

| UNIX_TIMESTAMP() |

+------------------+

| 1042239404 |

+------------------+

1 row in set (0.00 sec)

mysql> SELECT UNIX_TIMESTAMP('2001-12-10');

+------------------------------+

| UNIX_TIMESTAMP('2001-12-10') |

+------------------------------+

| 1007967600 |

+------------------------------+

1 row in set (0.00 sec)

WEEK(date)

The WEEK function returns an integer representing the week the supplied date
occurred. The value returned will be in the range 0 to 53. All weeks are started
on Sunday. Example:

mysql> SELECT login, opendate, WEEK(opendate)

FROM login

WHERE opendate <> 0;

MySQL Functions and Operators392

+-------+---------------------+----------------+
| login | opendate | WEEK(opendate) |
+-------+---------------------+----------------+
| johnd | 2002-10-10 00:00:00 | 41 |
| bobs | 2003-01-10 09:51:27 | 2 |
+-------+---------------------+----------------+
2 rows in set (0.02 sec)

WEEK(date, start)

This WEEK function returns an integer representing the week the supplied date
occurred. The value returned will be in the range 0 to 53. A start value of 0 indi-
cates the week should begin on Sunday, and a value of 1 indicates the week
should begin on Monday.

WEEKDAY(date)

The WEEKDAY function returns an integer using 0 for Monday for the supplied
date. Example:

mysql> SELECT login, opendate, WEEKDAY(opendate) AS 'Day of week'
FROM login
WHERE opendate <> 0;
+-------+---------------------+-------------+
| login | opendate | Day of week |
+-------+---------------------+-------------+
| johnd | 2002-10-10 00:00:00 | 3 |
| bobs | 2003-01-10 09:51:27 | 4 |
+-------+---------------------+-------------+
2 rows in set (0.00 sec)

YEAR(date)

The MONTHNAME function returns the year the supplied date occurred.
Example:

mysql> SELECT login, opendate, YEAR(opendate)
FROM login
WHERE opendate <> 0;
+-------+---------------------+----------------+
| login | opendate | YEAR(opendate) |
+-------+---------------------+----------------+
| johnd | 2002-10-10 00:00:00 | 2002 |
| bobs | 2003-01-10 09:51:27 | 2003 |
+-------+---------------------+----------------+
2 rows in set (0.00 sec)

YEARWEEK(date)

The YEARWEEK function returns the year and month the supplied date
occurred in the format YYYYMM. Example:

mysql> SELECT login, opendate, YEARWEEK(opendate)

FROM login

Date and Time Functions 393

WHERE opendate <> 0;
+-------+---------------------+--------------------+
| login | opendate | YEARWEEK(opendate) |
+-------+---------------------+--------------------+
| johnd | 2002-10-10 00:00:00 | 200241 |
| bobs | 2003-01-10 09:51:27 | 200302 |
+-------+---------------------+--------------------+
2 rows in set (0.00 sec)

YEARWEEK(date, start)

The YEARWEEK function returns the year and month the supplied date
occurred in the format YYYYMM. A start value of 0 indicates the week should
begin on Sunday, and a value of 1 indicates the week should begin on Monday.

Other Functions

The server includes a number of miscellaneous functions.

BINARY

If you have an ASCII or character column in a table, and you want the various
comparison functions and operators to handle case sensitivity, use the BINARY
operator to convert the column value to binary.

CONNECTION_ID()

The CONNECTION_ID function returns an integer representing the thread_id
for the database server connection. Example:

mysql> SELECT connection_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 23 |
+-----------------+
1 row in set (0.15 sec)

DATABASE()

The DATABASE function returns the name of the current database being used.
Example:

mysql> SELECT DATABASE();
+--------------+
| DATABASE() |
+--------------+
| entitlements |
+--------------+
1 row in set (0.00 sec)

MySQL Functions and Operators394

DECODE(string, string2)

The DECODE function decrypts string1 based on string2. It is assumed that
ENCODE was used to encrypt string1 using string2. Example:

mysql> SELECT DECODE('?Å≈L_', 'password');
+-----------------------------+
| DECODE('?Å≈L_', 'password') |
+-----------------------------+
| johnd |
+-----------------------------+
1 row in set (0.00 sec)

ENCRYPT(string[,seed])

The ENCRYPT function is a wrapper with MySQL to the Unix crypt() system call.
The function will encrypt the supplied string based on the optional seed value. If
MySQL cannot find the crypt() system call, the function will return NULL.

ENCODE(string, string2)

The ENCODE function will encrypt string based on the supplied string2.

Example:

mysql> SELECT ENCODE('johnd', 'password');
+-----------------------------+
| ENCODE('johnd', 'password') |
+-----------------------------+
| ?Å≈L_ |
+-----------------------------+
1 row in set (0.00 sec)

FORMAT(value, d)

The FORMAT function will add commas for number formatting to the value

parameter as well round the value to d decimal places. Example:

mysql> SELECT FORMAT(0824098394.334, 2);
+---------------------------+
| FORMAT(0824098394.334, 2) |
+---------------------------+
| 824,098,394.33 |
+---------------------------+
1 row in set (0.01 sec)

LAST_INSERT_ID()

When a database table has a column defined to automatically increment using
the auto_increment clause, the LAST_INSERT_ID function can be used to
obtain the incremented value. Example:

mysql> SELECT LAST_INSERT_ID();

Other Functions 395

MD5(string)

The MD5 function will calculate and return a checksum value for the supplied
string. The MD5 returns a checksum for string s. Example:

mysql> SELECT MD5('This is a string');
+----------------------------------+
| MD5('This is a string') |
+----------------------------------+
| 41fb5b5ae4d57c5ee528adb00e5e8e74 |
+----------------------------------+
1 row in set (0.00 sec)

PASSWORD(string)

The PASSWORD function will convert the supplied string into a proprietary-
based encrypted string. Example:

mysql> SELECT PASSWORD('johnd');
+-------------------+
| PASSWORD('johnd') |
+-------------------+
| 0c4e736925ab7792 |
+-------------------+
1 row in set (0.00 sec)

USER()
SYSTEM_USER()
SESSION_USER()

All of these functions will return the current user logged in the MySQL database
server. Example:

mysql> SELECT USER();
+----------------+
| USER() |
+----------------+
| ODBC@localhost |
+----------------+
1 row in set (0.00 sec)

VERSION()

The VERSION function will return a string representing the current MySQL
server version. Example:

mysql> SELECT version();
+------------+
| version() |
+------------+
| 3.23.52-nt |
+------------+
1 row in set (0.00 sec)

MySQL Functions and Operators396

Updating the Connector/J driver is difficult enough; simultaneously writ-
ing a book and timing it to release with the driver is that much more dif-
ficult! After the final copyedit of the pages of this book, a gamma

version of Connector/J 3.0 was released. This appendix provides information
on the most important additions. Any future changes not listed in this appendix
can be found on the change page at http://www.mysql.com/downloads/api-jdbc-
dev.html. The vast majority are minor bug fixes, but some enhancements were
important enough to mention here.

Failover Support

One of the most important considerations when developing a database-
oriented system is availability. MySQL handles availability by supporting repli-
cation. A master database server writes updates to the database both to a table
and a log file. Slave servers access the log file and duplicate the updates.
Updates to the system are allowed on the master server and read on both the
master and slave servers. There can be any number of slaves to the primary
master.

If you are writing an application that accesses the master database server, you
normally have to write code to handle a failure on the master and switch to a
slave machine for all reads. Updates are postponed until the master server is
put back online.

Connector/J Late-Breaking
Additions

A P P E N D I XE

397

The Connector/J 3.0.4 Gamma supports automatic fail-over support at the
JDBC level. By setting various options in the database URL, the driver will sup-
port automatic read-only queries across any number of slave hosts. The format
for the new URL is

jdbc:mysql://[hostname][,failoverhost1,

failoverhost2...][:port]/[dbname]….

For example:

jdbc:mysql://192.168.120, 192.168.1.24/test

One requirement for the use of JDBC fail-over is that the autocommit variable
must be set to true for the current connection because fail-over support isn’t
appropriate across a transaction. Two other URL connection variables affect
the fail-over. The first is queriesBeforeRetryMaster, which has a default value
of 50. When a fail-over occurs, this variable will be used to determine how
many queries to perform on a fail-over server before trying the master server.

The second parameter is autoReconnect. If this variable is false, the driver will
fail-over to a slave database only during a connection attempt on the master
server. If the master server isn’t available, the driver will fail to a slave. If this
variable is true, the system will check the connection upon every query and fail-
over to a slave if the master is no longer available.

Windows Named Pipes

If you are executing MySQL and an application on Windows NT/2000/XP, you
can use Named Pipes to connect to the database. Support for Named Pipes is
through a new socket factory plugin added to Connector/J. To use a named pipe
between the JDBC driver and a local MySQL database, add the following
parameter to the URL connection string:

SocketFactory=com.mysql.jdbc.NamedPipeSocketFactory

A specific pipe path can be used by specifying the namedPipePath and a pipe
string, or the default pipe of \\.\pipe\MySQL will be used. Note that if the
NamedPipeSocketFactory is used in a URL, the hostname, failover hosts, and
port number will naturally be ignored. An application using named pipes
instead of TCP/IP will execute faster due to the reduction in overhead.

Batch Processing Error Continuation

Connector/J 3.0 supports batch processing in which multiple queries are sent to
the database in a batch to reduce overhead involved in creating statement and

Connector/ J Late-Breaking Additions398

connections to the database. You can set up a URL parameter called continue-
BatchOnError, which tells the system whether an error in one query should
cause the batch to fail or not. The default value of the variable is true. To
change the value, use a string like this one:

continueBatchOnError=true

Strict Updates

When using updatable ResultSet objects, changes to the object are automati-
cally sent to the database without writing an insert query. The parameter strict-
Updates can be used to tell the server whether or not an update should be
allowed when all of the primary keys for the table have not been included in the
result set.

In other words, if we have a table with two primary keys, prim_id and
prim_id_two, a ResultSet object would need to have both of the columns in it in
order to allow the rows of the ResultSet object to be updated. The default for
this parameter is true. To change the value, use a string like this one:

strictUpdates=true

Profile SQL

If you are interested in profiling queries to the database including the queries
generated from Container Managed Persistent Enterprise Java Beans, use the
profilesSql parameter. This parameter, which defaults to false, will dump all
queries as well as execution times to STDERR. To change the value, use a string
like this one:

profilesSql=true

SSL

The MySQL database server supports client connections using Secure Socket
Layer (SSL). Connector/J 3.0.4 Gamma supports creating a SSL connection as
well. In order for the driver to build such a connection, several criteria must be
met:

■■ MySQL version 4.0.4 or later

■■ JDK 1.4 (which includes Java Secure Sockets Extension) or JDK 1.2/1.3
with the extensions added

SSL 399

■■ A MySQL certificate included with the current 4.0.4 or greater server

■■ A client certificate

It should be noted that using SSL will affect the performance of the system due
to the added overhead of encrypting and decrypting all communication
between the JDBC and the database. Since this feature is still in the gamma
phase, we refer you to the instructions provided in the Readme file of the latest
Connector/J 3.0 download.

Connector/ J Late-Breaking Additions400

Index

401

Symbols
+ (addition) operator, 369
/ (division) operator, 369
= (equality) operator, 372
<=> (equality) operator, 373
> (greater than) operator, 373
>= (greater than or equal to)

operator, 373
!= (inequality) operator, 372
<> (inequality) operator, 372
< (less than) operator, 373
<= (less than or equal to)

operator, 373
&& (logical and) operator, 376
! (logical negation) operator,

375
|| (logical or) operator, 375–376
* (multiplication) operator, 369
- (subtraction) operator, 369

A
ABS() function, 370
absolute() method, 79
AbstractTableModel class, 264
AccountRecordBean example,

230–234
Accounts database. See GUI

application example
accounts database example,

325–326
ACID test, 3–4
ACOS() function, 372
active timestamps, 48–49
addBatch() method, 115
adding users, 290–292
addition operator (+), 369
ad hoc queries, 5

administration
adding users, 290–292
backing up databases,

298–301
BDB tables, 302–303
InnoDB tables, 302

changing root password,
289–290

configuring query cache,
293–294

limiting resources, 292–293
log files, 294–296
mysql database, 289
mysql tool, 287–288
restoring data, 301–302
table maintenance, 296–298

afterLast() method, 80
ALTER TABLE command, 39,

185, 192
altering column definitions,

53–54
deleting tables, 55
placing tables on drives,

54–55
renaming, 53

analyzing data (RDBMSs), 4
AND operator, 376
application servers, 228–230
arithmetic functions/operators,

369–372
Array interface, 16, 331–332
ASCII() function, 379
ASIN() function, 372
ATAN() function, 372
ATAN2() function, 372
atomicity (ACID test), 3
autocommit variable, 185–187
autoReconnect property

(DriverManager), 73

AVG() function, 384
Axmark, David, 5

B
backing up databases, 298–301

BDB tables, 302–303
InnoDB tables, 302

BACKUP TABLE command, 300
batches, 115–116
batching, 316
batch processing error

continuation, 398–399
BatchUpdateException class,

16, 332
bdb_cache_size variable, 184
bdb_max_lock variable, 184
bdb-home variable, 184
bdb-logdir variable, 184
BDB tables, 35, 184. See also

transactions
backing up, 302–303

beans
application servers, 228–230
bean-managed persistence,

240–241
ejbCreate() method,

241–242
ejbFindByPrimaryKey(),

244
ejbLoad() method,

242–243
ejbRemove() method,

243–244
ejbStore() method, 243
setter/getter methods, 245

deployment information, 228
entity beans, 226

adding queries to,
238–240

example, 230–234
support servlet example,

236–238
home interface, 227–228
interface implementation,

226
J2EE, 226
JAR/WAR files, 228
remote interface, 227
servlets and, 230
session beans, 225

example, 234–236
support servlet example,

236–238
test architecture, 323

beforeFirst() method, 80
BEGIN command, 192
BETWEEN min AND max

operator, 373
BIGINT data type, 36, 177
BIN() function, 379
binary data storage, 138
binary logs, 296
BINARY operator, 394
BLOB data type, 29, 36, 168

methods, 156–158
thumbnail table example,

139–141
Blob interface, 16, 332–333
buildGUI() method (GUI

application example), 89–91

C
CallableStatement interface, 16,

333–335
cancelRowUpdates() method,

152
capitalizeTypeNames property

(DriverManager), 74
CASE function, 377
CEILING() function, 370
changing root password,

289–290
CHAR() function, 379
CHAR_LENGTH() function, 380
CHARACTER_LENGTH()

function, 380
character data types, mapping,

166–171
characterEncoding property

(DriverManager), 74

CHAR data type, 29, 36, 166
clearBatch() method, 115
CLOB data type, 156–158
Clob interface, 16, 335
close() method, 103
closing objects, 85
CMP (container-managed

persistence), 240
COALESCE() function, 373–374
columns, 27

altering definitions, 53–54
type mapping, 165

character types, 166–171
date and time types,

171–175
numeric types, 175–180

commit() method, 189–190, 192
comparison functions/operators,

372–375
CONCAT() function, 379
CONCAT_WS() function, 379
CONNECTION_ID() function,

394
ConnectionEvent class, 359
ConnectionEvent interface, 19
ConnectionEventListener

interface, 19, 359
Connection interface, 16,

335–337
connection management

methods, 71–72
ConnectionPoolDataSource

interface, 19, 213–218,
359–360

connection pools, 212–213
with DataSource, 213–218
with DriverManager, 218–221

Connector/J
3.0 version changes, 397–400
history, 7–8
installing, 65–66
JDBC adherence, 21
JDBC classes not supported,

22
JDBC methods not

supported, 22–23
loading, 69
versions, 21

consistency (ACID test), 3
consistent connections, 314–315
container-managed persistence

(CMP), 240

control functions, 377–378
CONV() function, 379
COS() function, 372
COT() function, 372
COUNT() function, 384–385
count(*) option, 47
CREATE DATABASE command,

34
CREATE INDEX command, 192
createStatement() method,

76–77
CREATE TABLE command, 38,

101
CURDATE() function, 386
CURRENT_DATE function, 386
CURRENT_TIME function, 386
CURRENT_TIMESTAMP

function, 390–391
cursors

determining position, 79
moving, 79–80

CURTIME() function, 386

D
DATABASE() function, 394
database administration

adding users, 290–292
backing up databases,

298–301
BDB tables, 302–303
InnoDB tables, 302

changing root password,
289–290

configuring query cache,
293–294

limiting resources, 292–293
log files, 294–296
mysql database, 289
mysql tool, 287–288
restoring data, 301–302
table maintenance, 296–298

database administrators, 25–26
database design, 29–30

First Normal Form, 30–31
Second Normal Form, 31–32
Third Normal Form, 32

DatabaseMetaData interface,
16, 197–200, 337–343
Data Source Limits methods,

204
feature support methods,

203

I n d e x402

General Source Information
methods, 202–203

getting the DatabaseMeta-
Data object, 200–202

SQL Object Available
methods, 204

transaction support
methods, 204–205

DatabaseMetaData object, 268
database models, 27–29
databases, 25–26

backing up, 298–301
BDB tables, 302–303
InnoDB tables, 302

connecting to, 69–70.
See also connection pools
connection properties,

73–75
consistent connections,

314–315
DriverManager class,

70–72
error handling, 75
URL options, 72–74

creating, 33–35
disconnecting from, 103
joins, 56–59
metadata

DatabaseMetaData
object, 197–205

ResultSet object, 205–210
storing binary data in, 138

database servers, 25
dataDefinitionIgnoredInTrans-

action() method, 205
DataSource interface, 19, 360

connection pools, 213–218
JNDI connections, 122–123

DataTruncation class, 16, 337
data types, 29, 35–38

date, manipulating, 154–156
JDBC types, 165
mapping, 165

character types, 166–171
date and time types,

171–175
numeric types, 175–180

standardization, 14
time, manipulating, 154–156

DATE_FORMAT() function,
386–388

date and time functions,
386–394

Date class, 16, 343
DATE data type, 36, 172
date data types

manipulating, 154–156
mapping, 171–175

DATETIME data type, 36,
172–173

DAYNAME() function, 388
DAYOFMONTH() function, 388
DAYOFWEEK() function,

388–389
DAYOFYEAR() function, 389
DDConnectionBroker class,

219–221
DECIMAL data type, 36, 178
DECODE() function, 395
DEGREES() function, 370
Delete Account button (GUI

application example), 97–99
DELETE command, 50
delete query statements (GUI

application example), 97–99
deleteRow() method, 152
deployment models, 11–12
DESCRIBE command, 38
dirty reads, 193–194
division operator (/), 369
doGet() method, 121
doPost() method, 121
DOUBLE data type, 36, 177–178
Driver interface, 16, 343
driver management methods, 71
DriverManager class, 16, 70–72,

343–344
connection pools, 218–221
connection properties, 73–75
URL options, 72–74

DriverPropertyInfo class, 17,
344

driver types, 13–14. See also

Connector/J
DROP DATABASE command,

192
DROP TABLE command,

101–103, 192
durability (ACID test), 4

E
ejbCreate() method, 241–242
ejbFindByPrimaryKey(), 244

ejbLoad() method, 242–243
ejbRemove() method, 243–244
EJBs (Enterprise Java Beans)

application servers, 228–229
configuring, 229–230

bean-managed persistence,
240–241
ejbCreate() method,

241–242
ejbFindByPrimaryKey(),

244
ejbLoad() method,

242–243
ejbRemove() method,

243–244
ejbStore() method, 243
setter/getter methods, 245

deployment information, 228
entity beans, 226

adding queries to,
238–240

example, 230–234
support servlet example,

236–238
home interface, 227–228
interface implementation,

226
J2EE, 226
JAR/WAR files, 228
remote interface, 227
servlets and, 230
session beans, 225

example, 234–236
support servlet example,

236–238
test architecture, 323

ejbStore() method, 243
ELSE function, 377
ELT() function, 380
ENCODE() function, 395
ENCRYPT() function, 395
END function, 377
Enterprise Java Beans. See EJBs
entity beans, 226

adding queries to, 238–240
example, 230–234
support servlet example,

236–238
ENUM data type, 36, 159–161,

169
equality operators, 372, 373
equi-joins, 58

Index 403

error handling
connections, 75
exceptions, 117–118, 252
warnings, 117–118

error logs, 295
exceptions, 117–118

SQLException class, 17, 252
executeBatch() method, 115
executeQuery() method, 77–78
executeUpdate() method, 91
EXP() function, 370
EXPLAIN command, 310–311

F
failover support, 397–398
FIELD() function, 380
FIND_IN_SET() function, 380
first() method, 80
First Normal Form, 30–31
flat files, 2
FLOAT data type, 36, 177
FLOOR() function, 370
forcing a cache, 294
foreign key integrity, 192
FORMAT() function, 395
four-tier architecture, 224
FROM_DAYS() function, 389
FROM_UNIXTIME() function,

389
functions

arithmetic, 369–372
comparison, 372–375
control, 377–378
date and time, 386–394
grouping, 384–385
MySQL, 56
string, 379–384

G
general interface example

connections, 253–254
database information task,

268–270
insert row task, 280–285
show columns task, 275–280
SQL exceptions, 252
SQL query task, 272–275
task delegates, 255
task manager, 255–263
task results, 264–267
tasks, 248–251
user input, 270–271

general logs, 295
Get Account button (GUI appli-

cation example), 90
getAsciiStream() method, 158,

159
getBinaryStream() method, 157,

159
getBlob() method, 156
getBoolean() method, 82–83
getByte() method, 83–84
getBytes() method, 83–84, 157
getCharacterStream() method,

158, 159
getClob() method, 156
getColumnClassName() method,

209
getColumnCount() method, 207
getColumnDisplaySize()

method, 209
getColumnLabel() method, 208
getColumnName() method, 207
getColumnType() method, 209
getConnection() method, 70
getDatabaseProductVersion()

method, 202
getDate() method, 155
getDefaultTransactionIsola-

tion() method, 205
getDouble() method, 84
getDriver() method, 71
getDriverMajorVersion()

method, 202
getDriverMinorVersion()

method, 202
getDrivers() method, 71
getFloat() method, 84
getint() method, 84
getLoginTimeout() method, 71
getLong() method, 84–85
getMaxCharLiteralLength()

method, 204
getMaxColumnsInTable()

method, 204
getMaxConnections() method,

204
getMaxRowSize() method, 204
getMaxStatementLength()

method, 204
getMaxTablesInSelect() method,

204
getMetaData() method, 200
getRow() method, 79

getShort() method, 85
getString() method, 81–82
getSubString() method, 158
getTableName() method, 209
getTables() method, 204
getTableTypes() method, 204
getter methods (ResultSet

object), 80–82
getTime() method, 155
getTimeDateFunctions()

method, 203
getTimestamp() method,

155–156
getTypeInfo() method, 203
getURL() method, 202
getUserName() method, 202
granting privileges, 290–292
greater than operators, 373
GREATEST() function, 370
GROUP BY clause, 45–46
grouping functions, 384–385
GUI application example. See

also interface example
buildGUI() method, 89–91
deleting rows, 97–99
disconnecting from data-

base, 103
dropping tables, 101–103
error notification, 97
init() method, 89
inserting rows, 92–97
main function, 88–89
navigatable ResultSet

Execute Query button,
115

fast-forward to the end
button, 114

goto record button,
114–115

one step back button, 114
one step forward button,

113–114
rewind to the beginning

button, 114
source code, 104–112

source code, 86–88
updating records, 99–101

H
handling errors

connections, 75
exceptions, 117–118, 252
warnings, 117–118

I n d e x404

HEAP tables, 35
Hello World application, 67–69
HEX() function, 380
hierarchy model, 27–28
home interface, 227–228
HOUR() function, 389

I
identification database

example, 326–327
IF() function, 377–378
IFNULL() function, 378
indexes, 4
indexes (tables), 312
inequality operators, 372
init() method (GUI application

example), 89
initialPoolSize parameter, 214
initialTimeout property

(DriverManager), 73
inner joins, 58
innodb_additional_mem_pool_

size variable, 184
innodb_buffer_pool_size

variable, 184
innodb_data_file_path variable,

183
innodb_data_home_dir variable,

183
innodb_file_io_threads variable,

184
innodb_flush_log_at_trx_

commit variable, 184
innodb_lock_wait_timeout

variable, 184
innodb_log_arch_dir variable,

183
innodb_log_archive variable,

184
innodb_log_buffer_size

variable, 183
innodb_log_file_size variable,

183
innodb_log_files_in_group

variable, 183
innodb_log_group_home_dir

variable, 183
innodb_mirrored_log_groups

variable, 183
InnoDB tables, 35, 182–184. See

also transactions
backing up, 302

IN operator, 374
INSERT() function, 380
Insert Account button (GUI

application example), 96–97
INSERT command, 39–40

transactions, 190–191
insert query statements (GUI

application example), 92–96
insertRow() method, 152
installing

Connector/J, 65–66
Java, 64–65
MySQL

downloading, 61–62
Linux version, 62
testing installation, 63–64
Windows version, 63

INSTR() function, 381
INT data type, 29, 35, 177
INTEGER data type, 35
interface example

connections, 253–254
database information task,

268–270
insert row task, 280–285
show columns task, 275–280
SQL exceptions, 252
SQL query task, 272–275
task delegates, 255
task manager, 255–263
task results, 264–267
tasks, 248–251
user input, 270–271

INTERVAL() function, 374
INTO clause, 46–47
isAfterLast() method, 79
ISAM tables, 35
isBeforeFirst() method, 79
isFirst() method, 79
isLast() method, 79
IS NOT NULL operator, 375
ISNULL() function, 375
IS NULL operator, 374
isolation

ACID test, 3–4
transactions, 192–193

dirty reads, 193–194
nonrepeatable reads,

194–195
phantom reads, 194
TRANSACTION_NONE

isolation level, 193

TRANSACTION_READ_
COMMITTED isolation
level, 193

TRANSACTION_READ_
UNCOMMITTED
isolation level, 193

TRANSACTION_
REPEATABLE_READ
isolation level, 193

TRANSACTION_
SERIALIZABLE
isolation level, 193

J
J2EE (Java 2 Platform Enter-

prise Edition), 226
Java, installing, 64–65
java.sql package, 15–18, 330–331
Java 2 Platform Enterprise

Edition. See J2EE
Java Naming and Directory

Interface. See JNDI
JavaScript, accessing databases

with, 161–163
javax.sql package, 18–21, 358
JDBC. See also Connector/J

API structure, 15
classes not supported, 22
deployment models, 11–12
drivers, 24
driver types, 13–14
methods not supported,

22–23
overview, 9–10
performance tuning

batching, 316
consistent connections,

314–315
defining architecture, 317
getting data, 317–318
handling statements,

315–316
locking, 316–317
minimizing data requests,

313–314
transactions, 316–317

versions, 13
JDBC-ODBC Bridge, 11
JList component (GUI

application example), 89–90
JNDI (Java Naming and

Directory Interface), 122–123

Index 405

joins, 56–59, 141–142
JTextField controls (GUI

application example), 90–91

L
last() method, 80
LAST_INSERT_ID() function,

395
LCASE() function, 380
LEAST() function, 370
LEFT() function, 380
left joins, 59
LENGTH() function, 380
length() method, 157, 158
less than operators (<), 373
LIKE clause, 44–45
LIKE operator, 380–381
LIMIT clause, 46, 117
limiting resources, 292–293
limiting results, 116–117
LOAD DATA command, 39–40
loading Connector/J, 69
LOCATE() function, 381
locking tables, 195–196, 316–317
LOCK TABLES command, 300
LOG() function, 371
LOG10() function, 371
log files, 294–296
logical operators, 375–376
LONGBLOB data type, 36, 169
LONGTEXT data type, 36, 168
loops, placeholders in, 133–134
LOWER() function, 380
LPAD() function, 381
LTRIM() function, 381

M
mapping types, 165

character types, 166–171
date and time types, 171–175
numeric types, 175–180

MATCH() function, 381
max() function, 56
MAX() function, 385
maxIdleTime parameter, 214
maxPoolSize parameter, 214
maxReconnects property

(DriverManager), 73
maxRows property (Driver-

Manager), 74
maxStatements parameter, 214

MD5() function, 396
MEDIUMBLOB data type, 36,

168–169
MEDIUMINT data type, 35,

176–177
MEDIUMTEXT data type, 36,

167–168
MERGE tables, 35
metadata

DatabaseMetaData object,
197–200
Data Source Limits

methods, 204
feature support methods,

203
General Source Informa-

tion methods, 202–203
getting, 200–202
SQL Object Available

methods, 204
transaction support

methods, 204–205
ResultSet object, 205

column information,
205–208

other information,
208–210

MID() function, 381
MIN() function, 385
minPoolSize parameter, 214
MINUTE() function, 390
MM.MySQL. See Connector/J
MOD() function, 371
modifying data (RDBMSs), 4
MONTH() function, 390
MONTHNAME() function, 390
moveToInsertRow() method,

152
MSQL, 5
multiple table transactions,

191–192
multiplication operator (*), 369
multi-tier architecture, 223–224
multiuser access (RDBMSs), 2
MYISAM tables, 35
MySQL

features, 6–7
history, 5
installing

downloading, 61–62
Linux version, 62

testing installation, 63–64
Windows version, 63

overview, 33
mysql database, 289
mysql tool, 34, 287–288

N
Named Pipes support, 398
network model, 27–28
next() method, 80
nonrepeatable reads, 194–195
no-results queries, 91
Normal Forms, 30–32
NOT IN operator, 374
NOT LIKE operator, 380–381
NOT operator, 375
NOT REGEXP operator, 382
NOT RLIKE operator, 382
NOW() function, 390–391
NULLIF() function, 378
nullsAreSortedHigh() method,

203
NULL values, 59
numeric data types, mapping,

175–180

O
object model, 28–29
objects, closing, 85
OCT() function, 382
OCT_LENGTH() function, 380
ODBC (Open Database

Connectivity), 10–11
Open Database Connectivity

(ODBC), 10–11
operators

arithmetic, 369–372
comparison, 372–375
logical, 375–376
string, 379–384

OPTIMIZE TABLE command,
309–310

ORD() function, 382
ORDER BY clause, 42–44
OR operator, 375–376
outer joins, 59

P
packages

java.sql, 15–18
javax.sql, 18–21

I n d e x406

ParameterMetaData interface,
17, 344–345

PASSWORD() function, 396
password property (Driver-

Manager), 73
performance tuning

Connector/J, 305–308
JDBC

batching, 316
consistent connections,

314–315
defining architecture, 317
getting data, 317–318
handling statements,

315–316
locking, 316–317
minimizing data requests,

313–314
transactions, 316–317

optimizing tables, 309–310
Query Optimizer, 310–312
server options, 308–309
table indexes, 312
using RAID, 309

PERIOD_DIFF() function, 391
persistence

bean-managed, 240–241
ejbCreate() method,

241–242
ejbFindByPrimaryKey(),

244
ejbLoad() method,

242–243
ejbRemove() method,

243–244
ejbStore() method, 243

container-managed, 240
phantom reads, 194
PI() function, 371
placeholders, 130–131, 132

in loops, 133–134
methods, 134–136

PooledConnection interface, 19,
360

POSITION() function, 381
position() method, 157, 158
POW() function, 371
POWER() function, 371
PreparedStatement interface,

17, 345–346
getter methods example,

136–139

PreparedStatements example
creating the PreparedState-

ment, 130–131
database connection, 129
displaying data, 130–132
HTML page, 124
identification database, 123
loops, 133–134
placeholders, 134–136
running, 128
source code, 125–127
submit type, 129–130
updating data, 132–133

prev() method, 80
previous() method, 80
primary keys, 38
PrintWriter object, 131
privileges, granting, 290–292
profileSql property (Driver-

Manager), 74
profilesSql parameter, 399

Q
QUARTER() function, 391
queries

ad hoc, 5
executing, 75–78
limiting results, 116–117
no-results queries, 91
ResultSet object, 78

closing, 85
determining cursor

position, 79
getter methods, 80–82
moving cursor, 79–80
primitive getter methods,

82–85
query cache, configuring,

293–294
Query Optimizer, 310–312

R
RADIANS() function, 371
RAID (performance tuning), 309
RAND() function, 371
RDBMSs (relational database

management systems), 1,
25–26
ad hoc queries, 5
analyzing data, 4
database models, 27–29
indexes, 4

modifying data, 4
multiuser access, 2
searching data, 4
storage transparency, 2–3
transactions, 3–4

Ref interface, 17, 346–347
refreshRow() method, 152
REGEXP operator, 382
relational database manage-

ment systems. See RDBMSs
relational model, 28
relative() method, 79–80
relaxAutoCommit property

(DriverManager), 74
remote access example

(PreparedStatements)
database connection, 129
displaying data, 130–132
HTML page, 124
identification database, 123
loops, 133–134
placeholders, 134–136
running, 128
source code, 125–127
submit type, 129–130
updating data, 132–133

remote interface, 227
RENAME TABLE command,

192
renaming tables, 53
repairing tables, 297–298
REPEAT() function, 383
REPLACE() function, 382
resources, limiting, 292–293
RESTORE TABLE command,

301
restoring data, 301–302
results, limiting, 116–117
ResultSet interface, 17, 347–350
ResultSetMetaData interface,

17, 350–351
ResultSet object, 78

closing, 85
cursor

determining position, 79
moving, 79–80

getter methods, 80–82
metadata, 205

column information,
205–208

other information,
208–210

Index 407

navigatable ResultSet
example
Execute Query button,

115
fast-forward to the end

button, 114
goto record button,

114–115
one step back button, 114
one step forward button,

113–114
rewind to the beginning

button, 114
source code, 104–112

primitive getter methods,
82–85

updatable ResultSets
defined, 142
example application

code, 143–149
Insert button (example

application), 150–151
strict updates, 399
Update button (example

application), 149–150
update methods, 152–154

REVERSE() function, 383
RIGHT() function, 383
right joins, 59
RLIKE operator, 382
rollback() method, 189–190
root password, changing,

289–290
ROUND() function, 371
rowDeleted() method, 152
rowInserted() method, 152
rows, 27

deleting, 50, 192
inserting, 49–50

GUI application example,
92–97

with transactions,
187–190

RowSet class, 19
RowSetEvent class, 19, 362
RowSet interface, 360–362
RowSetInternal interface, 19,

362
RowSetListener interface, 19,

363
RowSetMetaData interface, 19,

363

RowSetReader interface, 19,
363–364

RowSetWriter interface, 19, 364
rowUpdated() method, 152
RTRIM() function, 383

S
Savepoint interface, 17, 351
searching data (RDBMSs), 4
SEC_TO_TIME() function, 392
SECOND() function, 391
Second Normal Form, 31–32
Secure Socket Layer (SSL),

399–400
SELECT command, 40–41

changing column names, 44
INTO clause, 46–47
count(*) option, 47
GROUP BY clause, 45–46
LIKE clause, 44–45
LIMIT clause, 46
ORDER BY clause, 42–44
transactions, 190–191
WHERE clause, 41

server options (performance
tuning), 308–309

servlets, 119
building, 120–122
EJBs and, 230

support servlet example,
236–238

execution environment, 123
PreparedStatements example

database connection, 129
displaying data, 130–132
HTML page, 124
identification database,

123
loops, 133–134
placeholders, 134–136
running, 128
source code, 125–127
submit type, 129–130
updating data, 132–133

test architecture, 321–323
SESSION_USER() function, 396
session beans, 225

example, 234–236
support servlet example,

236–238
setArray() method, 134

setAsciiStream() method, 135,
158

setAutoCommit() method,
189–190

setBigDecimal() method, 135
setBinaryStream() method, 135,

157
setBlob() method, 134
setBoolean() method, 135
setByte() method, 135
setBytes() method, 135-139,

157–158
setCharacterStream() method,

134, 158
setClob() method, 134
SET data type, 36, 169
setDate() method, 134, 135
setDouble() method, 135
setFetchSize() method, 116–117
setFloat() method, 135
setInt() method, 135
setLoginTimeout() method, 71
setLong() method, 135
setMaxRows() method, 116–117
setNull() method, 134, 135
setObject() method, 135-139
setRef() method, 134
setShort() method, 135
setString() method, 135, 158
setTime() method, 134, 136
setTimestamp() method, 136
setUnicodeStream() method,

136
SHOW COLUMNS command, 52
SHOW DATABASES command,

34, 51
SHOW PROCESSLIST com-

mand, 52–53
SHOW STATUS command, 52
SHOW TABLES command, 38,

51
SIGN() function, 371
SIN() function, 372
slow query logs, 296
SMALLINT data type, 35, 176
socketTimeout property

(DriverManager), 74
SOUNDEX() function, 383
SQL (Structured Query Lan-

guage), standards, 14–15
SQLData interface, 17, 351

I n d e x408

SQLException class, 17, 252,
352

SQLInput interface, 17, 352–353
SQLOutput interface, 17, 353
SQLPermission class, 17,

353–354
SQLWarning class, 17, 354
SQRT() function, 372
SSL (Secure Socket Layer),

399–400
standardization (of database

access), 14–15
stateful session beans, 225
stateless session beans, 225
Statement interface, 18, 354–355
Statement objects, 75–77
STD() function, 385
STDEV() function, 385
storage transparency

(RDBMSs), 2–3
STRCMP() function, 383
streams, 158–159
StrictFloatingPoint property

(DriverManager), 74
strict updates, 399
string functions/operators,

379–384
Struct interface, 18, 355–356
Structured Query Language. See

SQL
SUBSTRING() function, 383
SUBSTRING_INDEX() function,

383
subtraction operator (-), 369
SUM() function, 385
supportsAlterTableWithDrop-

Column() method, 203
supportsANSI92EntryLevel-

SQL() method, 203
supportsBatchUpdates()

method, 203
supportsCoreSQLGrammar()

method, 203
supportsFullOuterJoins()

method, 203
supportsMixedCaseQuotedIden-

tifiers() method, 203
supportsPositionedDelete()

method, 203
supportsStoredProcedures()

method, 203

supportsTableCorrelation-
Names() method, 203

SYSDATE() function, 390–391
SYSTEM_USER() function, 396

T
tables, 26–27

creating, 35–39
deleting, 55
dropping, 101–103
indexes, 312
locking, 195–196, 316–317
maintenance, 296–298
optimizing, 309–310
placing on drives, 54–55
populating with data, 39–40
renaming, 53
transactional

BDB, 184
converting to, 184–185
InnoDB, 182–184

types, 35
TAN() function, 372
TaskDelegate interface, 255
task delegates, 255
task manager (interface

example), 255–263
tasks, 248
test architectures, 319–321
test databases, 327–328
TEXT data type, 36, 167
Third Normal Form, 32
three-tier architecture, 223–224
three-tier deployment models,

12
thumbnail table example

getter methods, 136–139
getting BLOBs, 139–141

TIME_FORMAT() function,
386–388

TIME_TO_SEC() function, 392
time and date functions,

386–394
Time class, 18, 356
TIME data type, 36, 172
time data types

manipulating, 154–156
mapping, 171–175

timeout management methods,
71–72

Timestamp class, 18, 356–357
TIMESTAMP data type, 36, 173

timestamps, 48–49
TINYBLOB data type, 36, 168
TINYINT data type, 35, 176
TINYTEXT data type, 36, 167
TO_DAYS() function, 392
TRANSACTION_NONE isola-

tion level, 193
TRANSACTION_READ_

COMMITTED isolation level,
193

TRANSACTION_READ_
UNCOMMITTED isolation
level, 193

TRANSACTION_REPEAT-
ABLE_READ isolation level,
193

TRANSACTION_SERIALIZ-
ABLE isolation level, 193

transactions, 3–4, 55–56
autocommit variable,

185–187
converting nontransactional

tables, 184–185
DatabaseMetaData interface,

204–205
ending, 192
foreign key integrity, 192
isolation, 192–193

dirty reads, 193–194
nonrepeatable reads,

194–195
phantom reads, 194
TRANSACTION_NONE

isolation level, 193
TRANSACTION_READ_

COMMITTED isolation
level, 193

TRANSACTION_READ_
UNCOMMITTED isola-
tion level, 193

TRANSACTION_
REPEATABLE_READ
isolation level, 193

TRANSACTION_SERIAL-
IZABLE isolation level,
193

multiple tables, 191–192
necessity of, 181–182
performance tuning, 316–317
SELECT/INSERT transac-

tions, 190–191

Index 409

table types
BDB, 184
InnoDB, 182–184

update transactions, 187–190
trigonometric functions, 372
TRIM() function, 383
TRUNCATE() function, 372
truncate() method, 158
TRUNCATE command, 192
tuning performance

JDBC
batching, 316
consistent connections,

314–315
defining architecture, 317
getting data, 317–318
handling statements,

315–316
locking, 316–317
minimizing data requests,

313–314
transactions, 316–317

optimizing tables, 309–310
Query Optimizer, 310–312
server options, 308–309
table indexes, 312
using RAID, 309

two-tier deployment models,
11–12

Type 1 drivers (JDBC), 14
Type 2 drivers (JDBC), 14
Type 3 drivers (JDBC), 14
Type 4 drivers (JDBC), 14
type mapping, 165

character types, 166–171
date and time types, 171–175
numeric types, 175–180

Types class, 18, 357

U
UCASE() function, 384
unary – operator, 370
UNIX_TIMESTAMP() function,

392
UNLOCK TABLES command,

300
updatable ResultSets

defined, 142
example application

Insert button, 150–151
source code, 143–149
Update button, 149–150

strict updates, 399
update methods, 152–154

updateAsciiStream() method,
152

updateBigDecimal() method,
152

updateBinaryStream() method,
152

updateBoolean() method, 153
Update button (GUI application

example), 99–101
updateByte() method, 153
updateBytes() method, 153
updateCharacterStream()

method, 153
UPDATE command, 47–50,

99–101
updateDate() method, 153
updateDouble() method, 153
updateFloat() method, 153
updateInt() method, 153
updateLong() method, 153
updateNull() method, 154
updateObject() method, 154
updateRow() method, 154

updateShort() method, 154
updateString() method, 154
updateTime() method, 154
updateTimestamp() method,

154
update transactions, 187–190
UPPER() function, 384
URL options (DriverManager),

72–74
USE command, 34
USER() function, 396
user property (DriverManager),

73
users, adding, 290–292
user tasks, 248
useUnicode property

(DriverManager), 74

V
VARCHAR data type, 29, 36, 167
VERSION() function, 396

W
warnings, 117–118
WEEK() function, 392–393
WEEKDAY() function, 393
WHEN...THEN... function, 377
WHEN function, 377
WHERE clause, 41
Widenius, Monty, 5

X
XAConnection interface, 19, 364
XADataSource interface, 20,

364–365

Y
YEAR() function, 393
YEAR data type, 36, 173
YEARWEEK() function,

393–394

I n d e x410

	@TeamLiB
	MySQL and Java Developer's Guide
	Contents
	Acknowledgments
	ABOUT THE AUTHORS
	Introduction
	What¡¯s in This Book
	Who Should Read This Book
	The Technology Used
	Book Organization
	Chapter 1: An Overview of MySQL
	Chapter 2: JDBC and Connector/J
	Chapter 3: Working with MySQL SQL
	Chapter 4: Installing MySQL, Java, and Connector/J
	Chapter 5: Using JDBC with Java Applications and Applets
	Chapter 6: Achieving Advanced Connector/J Functionality with Servlets
	Chapter 7: MySQL Type Mapping
	Chapter 8: Transactions and Table Locking with Connector/J
	Chapter 9: Using Metadata
	Chapter 10: Connection Pooling with Connector/ J
	Chapter 11: EJBs with MySQL
	Chapter 12: Building a General Interface for MySQL
	Chapter 13: Database Administration
	Chapter 14: Performance and Tuning
	Appendix A: MySQL Development and Test Environments
	Appendix B: Databases and Tables
	Appendix C: The JDBC API and Connector/ J
	Appendix D: MySQL Functions and Operators
	Appendix E: Connector/J Late- Breaking Additions

	Chapter 1 - An Overview of MySQL
	Why Use an RDBMS?
	Multiuser Access
	Storage Transparency
	Transactions
	Searching, Modifying, and Analyzing Data
	Ad Hoc Queries

	Why Choose MySQL?
	MySQL and JDBC
	What¡¯s Next

	Chapter 2 - JDBC and Connector/J
	What Is JDBC?
	What about ODBC?
	Modeling Database Applications with JDBC

	JDBC Versions
	JDBC Driver Types
	SQL Standards
	Examining the JDBC Interface
	The java.sql Package
	The javax.sql Package

	Understanding Connector/ J
	JDBC Support within 3.0.1

	Obtaining JDBC Drivers
	What¡¯s Next

	Chapter 3 - Working with MySQL SQL
	What Is a Database?
	Database Models
	Data Types
	Designing a Database

	Introducing MySQL SQL
	Overview of MySQL
	Creating Databases
	Creating Tables
	Inserts
	Selects
	SELECT Statement Extensions
	Updates
	Deletes
	Using SHOW
	More on Tables
	Transactions
	Functions/ Operators
	Joins
	NULL

	What¡¯s Next

	Chapter 4 - Installing MySQL, Java, and Connector/ J
	Installing MySQL
	Linux Installation
	Windows Installation
	All Other Installations

	Installing Java
	Testing the Java Installation

	Installing Connector/ J
	Testing the Connector/ J Installation

	What¡¯s Next

	Chapter 5 - Using JDBC with Java Applications and Applets
	Hello World
	Loading the Connector/J Driver
	Using DriverManager to Connect to a Database
	Executing Queries Through Statement Objects

	Using the ResultSet Object
	Determining the Cursor Position
	Moving the Cursor
	Getter Methods
	Primitive Getters
	Closing the Objects

	Making It Real
	Our Main Function
	The init() Method
	The buildGUI() Method

	Executing a Query with No Results
	Deleting Database Rows
	Updating Database Rows
	CREATE TABLE
	DROP TABLE
	Disconnecting from the Database

	Advanced ResultSet Manipulation
	One Step Forward
	One Step Back
	Fast-Forward to the End
	Rewind to the Beginning
	Goto Record
	Freehand Query

	Batches
	Limiting Results
	Database Warnings and Exceptions
	What¡¯s Next

	Chapter 6 - Achieving Advanced Connector/J Functionality with Servlets
	Servlets
	DataSource Connections
	Execution Environment

	Databases
	PreparedStatements
	Connecting to the Database
	Determining the Submit Type
	Displaying Data
	Updating Data
	Using Placeholders in a Loop
	Using Placeholders in
	PreparedStatement

	Using setObject/setBytes
	Getting BLOBs
	Joins
	Updatable ResultSets
	The Update Button Code
	The Insert Button Code
	Update Methods

	Manipulating Date/ Time Types
	Methods for Retrieving a Value as a Date Type
	Methods for Retrieving a Value as a Time Type
	Methods for Retrieving a Value as a Timestamp Type

	Handling BLOB and CLOB
	Using Streams to Pull Data
	Handling ENUM
	Using Connector/ J with JavaScript
	What¡¯s Next

	Chapter 7 - MySQL Type Mapping
	Character Column Types
	CHAR
	VARCHAR
	TINYTEXT
	TEXT
	MEDIUMTEXT
	LONGTEXT
	TINYBLOB
	BLOB
	MEDIUMBLOB
	LONGBLOB
	SET
	ENUM

	Using Character Types
	Date and Time Column Types
	DATE
	TIME
	DATETIME
	YEAR
	TIMESTAMP

	Using Date and Time Types
	Numeric Column Types
	TINYINT
	SMALLINT
	MEDIUMINT
	INT
	BIGINT
	FLOAT
	DOUBLE
	DECIMAL

	Using Numeric Types
	What¡¯s Next

	Chapter 8 - Transactions and Table Locking with Connector/ J
	Understanding the Problem
	MySQL's Transaction Table Types
	The InnoDB Table Type
	The BDB Table Type
	Converting to Transactional from Nontransactional

	Performing Transactions in MySQL
	Using the autocommit Variable
	Update Transactions
	The SELECT/ INSERT Transaction
	Multiple Table Transactions
	Foreign Key Integrity on Deletes
	Ending a Transaction

	Transaction Isolation
	Dirty Reads
	Phantom Reads
	Nonrepeatable Reads

	Table Locking
	What¡¯s Next

	Chapter 9 - Using Metadata
	Using Database Metadata
	Getting the Object
	General Source Information
	Feature Support
	Data Source Limits
	SQL Object Available
	Transaction Support

	The ResultSet Metadata
	Getting Column Information
	Other ResultSet Metadata

	What¡¯s Next

	Chapter 10 - Connection Pooling with Connector/ J
	What Is a Connection Pool?
	Pooling with DataSource
	Pooling with the DriverManager
	DDConnectionBroker

	What¡¯s Next

	Chapter 11 - EJBs with MySQL
	Multi-tier Architecture
	Using Beans
	EJB Types
	The EJB Environment

	Application Server Configuration
	The Role of the Servlet
	Entity Beans
	Session Beans
	Using the Beans
	Adding a Query

	Bean-Managed Persistence
	ejbCreate()
	ejbLoad()
	ejbStore()
	ejbRemove()
	ejbFindByPrimaryKey()
	Setter/ Getter Methods

	What¡¯s Next

	Chapter 12 - Building a General Interface for MySQL
	Tasks
	SQL Exceptions
	MySQL Connections
	The Task Delegate
	The Task Manager
	Task Results
	The Database Information Task
	User Input for Tasks
	The SQL Query Task
	The Show Columns Task
	The Insert Row Task
	What¡¯s Next

	Chapter 13 - Database Administration
	Using the mysql Administration Application
	Managing Users and Permissions
	Changing Root
	Adding Users
	Limiting Resources

	Configuring the Query Cache
	Forcing a Cache

	Understanding Log Files
	Error Logs
	General Logs
	Binary Logs
	Slow Query Logs

	Maintaining Your Tables
	Repairing Tables

	Backing Up and Restoring Your Database
	Restoring Data
	InnoDB Table Types
	BDB Table Types

	What¡¯s Next

	Chapter 14 - Performance and Tuning
	Connector/J 3.0 Performance
	Database Tuning
	Server Options
	Using RAID
	Optimizing Tables
	The MySQL Query Optimizer
	Table Indexes

	JDBC Tuning
	Minimizing Data Requests
	Keeping Consistent Connections
	Handling Statements
	Batching
	Using Transactions and Locking
	Defining the Architecture
	Getting Data

	Conclusion

	Appendix A - MySQL Development and Test Environments
	Test Architecture # 1
	Test Architecture # 2
	Servlet Architecture
	The EJB Architecture

	Appendix B - Databases and Tables
	The accounts Database and Tables
	The identification Database and Tables
	Test Databases
	Database Products
	The Database Test

	Appendix C - The JDBC API and Connector/J
	The java.sql Package
	Array
	BatchUpdateException
	Blob
	CallableStatement
	Clob
	Connection
	DataTruncation
	DatabaseMetaData
	Date
	Driver
	DriverManager
	DriverPropertyInfo
	ParameterMetaData
	PreparedStatement
	Ref
	ResultSet
	ResultSetMetaData
	Savepoint
	SQLData
	SQLException
	SQLInput
	SQLOutput
	SQLPermission
	SQLWarning
	Statement
	Struct
	Time
	Timestamp
	Types

	The javax.sql Package
	ConnectionEvent
	ConnectionEventListener
	ConnectionPoolDataSource
	DataSource
	PooledConnection
	RowSet
	RowSetEvent
	RowSetInternal
	RowSetListener
	RowSetMetaData
	RowSetReader
	RowSetWriter
	XAConnection
	XADataSource

	Appendix D - MySQL Functions and Operators
	Arithmetic Functions/ Operators
	Comparison Functions/ Operators
	Logical Operators
	Control Functions
	String Functions/ Operators
	Grouping Functions
	Date and Time Functions
	Other Functions

	Appendix E - Connector/J Late- Breaking Additions
	Failover Support
	Windows Named Pipes
	Batch Processing Error Continuation
	Strict Updates
	Profile SQL
	SSL

