Lawa in semall things

AAVA/
MICRO
EDITION

James P White
David A. Hemphill

Java 2
Micro Edition

Java in Small Things

JAMES WHITE
DAVID HEMPHILL

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Lois Patterson
209 Bruce Park Avenue Typesetter: Martine Maguire-Weltecke
Greenwich, CT 06830 Cover designer; Leslie Haimes

ISBN 1-930110-33-2
Printed in the United States of America
12345678910 - VHG - 06 05 04 03 02

To my wife, Kelly
JW.

To my wife, Amy Votava and my daughter, Olivia Hemphill
D.H.

contents

preface xv

acknowledgments xviii

about this book xx

about the cover illustration xxiii

Part1 Developing with J2ME 1

1 Introduction 3

1.1 So what is J2ME anyway? 3
Where is J2ME being applied? 4

1.2 What is a small device? 5
The vast consumer space 5
Consumer electronic and embedded devices 6

1.3 J2ME’s role in wireless and mobile applications 7
IsJ2ME mobile? 7 0 1sJ2ME wireless? 8
Wireless vs. mobile 9

1.4 The Java 2 edition trilogy 9
J2SE 10 0 J2EE 10
J2ME 11 0 Whyweneed 2ME 11

1.5 The case for Java 12
Is Java right for small devices? 12 1 Java’s beneficial features 13

1.6 Origins of 2ME 15
Java's origins 15 (1 The return of Java in small devices 16

1.7 The J2ME community 16
J2ME’s guiding light, the Java Community Process 16

1.8 J2ME products and alternatives 17
1.9 Summary 18

vii

2 J2ME architecture 19

2.1 Goals of the J2ME architecture 19
Support for multiple devices 20
Support for device-specific functionality 20
Maintaining a common architecture 21

2.2 Accommodating opposing needs 21
Configurations and profiles 22 1 A high-level view of 2ME 23

2.3 Configurations: a closer look 24
Connected Limited Device Configuration (CLDC) 25
The Kilobyte Virtual Machine (KVM) 27
Connected Device Configuration (CDC) 28
C-Virtual Machine (CVM) 29

2.4 Profiles: a closer look 29
Two types of profiles 30 © Profiles are modular 30
J2ME profiles extend J2ME configurations 31

2.5 Choosing a J2ME profile 31
Mobile Information Device Profile (MIDP) 32
PDA Profile (PDAP) 32 (1 Foundation Profile 32
Personal Profile 32 RMI Profile 33 1 Personal Basis Profile 33
Multimedia Profile 33 1 Gaming Profile 34
Wireless Telephony Communications APl (WTCA) 34 0 Klava 34

2.6 Write once, run anywhere issues 35
Varied device needs 35 (1 J2ME architecture increases WORA 36

2.7 Runtime environment 36
2.8 Designing J2ME applications 36
2.9 Summary 38

3 Developing a J2ME application 39

3.1 Investment quote application requirements 40
The investment quote application customer 40
Requirements analysis 41

3.2 Designing the investment quote application 42
Application control 42 1 User interface design 43
Persistent storage 45 1 Networking and input/output 46

3.3 Developing J2ME applications 48
Obtaining the development environment 48
Creating the applications 49 1 Runtime environment 49

3.4 Investment quote application tour guide 50
3.5 Summary 51

viii CONTENTS

Part 2 Developing for cellular phones and pagers 53
4 Asimple MIDP application 55

4.1 Questions about the MIDP development environment 56
Can | do this without an actual device? 56
What device do | start with? 56
Do | have to use the command line tools? 56
The example: what are we going to do? 56

4.2 Developing MIDP applications 56
Getting started 57 0 Whatisa MIDlet? 58
Compiling the application 60 1 Preverifying the application 61
Running the application 61 © Troubleshooting 62
JARing MIDlets 63 [Developing MIDlet suites 64
Running MIDlet suites from a web server 67
Installing MIDlet suites locally 67

4.3 Summary 68

5 MIDP user interface 69

5.1 MIDP application control 70

5.2 The investment quote application control in MIDP 71

5.3 Two types of MIDP user interface and event handling 75
High-level APl 76 (1 Low-level APl 76

5.4 The MIDP user interface APl 77
MIDP display control 77 1 MIDP high-level user interface APl 78
MIDP low-level user interface APl 87
The investment quote application’s user interface in MIDP 91

5.5 Handling user interactions in MIDP 105
High-level event handling 107 1 Low-level event handling 110
Handling the events of the Investment Quote Application 114

5.6 MIDlets on other devices 130
5.7 Summary 133

6 MIDP data storage 134

6.1 JDBC parallel 135
6.2 Storage structure 136
Record store 136 (1 Records in the record store 137

6.3 RMS APl 138
Record store construction and access 138 [Record store exceptions
Record store listener 142 1 Comparing records 144
Filtering records 145 [Enumerating through records 146

CONTENTS

141

6.4 Persistent storage in the investment quote application 149
Defining the stock/mutual fund record 149
Storing quotes 150 1 Retrieving quotes 156

6.5 Summary 166

7 Connecting to the Internet 167
7.1 Micro edition package connectivity 168
Using the Connector class to open a channel 168

7.2 Similar but smaller 1/0 package 169
Streams 170 11 Readers/Writers 170

7.3 Implementing the Internet investment quote service 171
Getting a quote service connection 172
Extracting the price quote from the HTML 177
The MIDlet’s handling of quote data 180

7.4 Summary 186

Part 3 Developing for PDAs 187

8 J2ME on a PDA, a KJava introduction 189

8.1 PDA profile alternatives 190
Java PDA development environments 190
What is KJava? 191 0 What is MIDP for Palm OS? 192

8.2 HiSmallWorld in KJava 192
Getting Started 192 1 What is a Spotlet? 193
Compiling HiSmallWorld 194 1 Preverifying KJava applications 197
Creating the Palm OS application 198 1 Running the application 202

8.3 Deploying to the actual device 211

8.4 HiSmallWorld revisited using MIDP for Palm OS 213
MIDP application code 214 1 Converting the JAR file to PRC 215
Deploying the MIDP for Palm OS applications 216

8.5 Summary 217

9 Klava user interface 218

9.1 KJava application control 219
9.2 The investment quote application control in KJava 220

9.3 Klava user interface 225
Drawing to the display with the graphics object 225 1 Components 231
Custom components 239 1 Klava collection classes 239

X CONTENTS

9.4 The investment quote application’s user interface in KJava 240

Creating and displaying components 240 1 Drawing with graphics 244
9.5 Handling user interactions in KJava 248

Spotlet event-processing methods 248 1 Handling beaming events 250
9.6 Handling the events of the investment quote application in KJava 250

Handling key entry events 250 (1 Handling pen taps 252
Handling pen movement 255

9.7 Summary 261

10 Klava data storage 262

10.1 Palm OS databases 263
Different types of Palm OS databases 263
Palm OS record database 263
10.2 Klava database APl 265
Opening and creating databases 265 1 Accessing the database 267
10.3 Implementing the investment quote persistent storage in KJava 268
The stock/mutual fund record 268
Storing investment quotes 269 (1 Retrieving records 273

10.4 Revisiting the connection to the Internet 275
10.5 Accessing Palm OS application databases 285
10.6 Summary 287

Part 4 Developing for the enterprise:
beyond the specifications 289

11 Real-world design 291

11.1 Dealing with stakeholders 292
Get them familiar with the devices early 292 1 Set expectations 293
Gathering requirements 293 1 State of the organization 293

11.2 A development scenario 294
Analysis 295 1 Options 296

11.3 Guidelines for building J2ME applications 298
The user interface 298 (1 The network 304
Data exchange formats 306 Data synchronization 312
Datastorage 317 0 Memory 319
Portability between profiles 320
Security 322 (1 Internationalization 323

CONTENTS Xi

11.4 Architectural tools and techniques 325
Questionnaire: assessing if mobile and wireless is a good fit 325
Mobile application models 326 1 Architect’s checklist 329

11.5 Summary 331

12 Integrating the server 332

12.1 Examining server integration 333
Avoid monolithic applications 333

12.2 What technology to connect to? 334

12.3 Servlet example 334

12.4 XML 347

Using XML 348 (1 Open standards of XML 350
Consequences of XML in J2ME 351 11 Small-footprint parsers 351

12.5 XML using JSPs example 353
How JavaServer Pages work 353 (1 Creating the JSPHelper 355
Creating the JSSP 357 1 Creating the J2ME Client 358

12.6 Summary 364
13 The network connection 365

13.1 About the Generic Connection Framework 366
Where the Generic Connection Framework lives 367
Working with the Connector class 368 1 The Connector is a factory 370
How the Connector finds the correct class 370

13.2 Using the Generic Connection Framework 372
13.3 HTTP-based connections 372

Establishing a connection 372 1 Using the connection 373
Compiling and running the application 376

13.4 Socket-based connections 377
Writing to sockets 378 (1 Reading from sockets 380
When to use sockets 381 1 Client-server socket example 381

13.5 Datagram-based connections 394
Datagram example 397

13.6 Summary 406
14 J2ME runtime environment 407

14.1 The Java runtime environment 408
Lifecycle of the Java Virtual Machine 408
Java Virtual Machine responsibilities 411

14.2 The J2ME runtime environment 415

Xii CONTENTS

14.3 CLDC-compliant virtual machines (the KVM) 415
KVM lifecycle 416 11 Preverification 416
In-device verification 417 1 Security 417
Unsupported Java features 419 1 Multithreading 421
Garbage collection 421 1 Internationalization 422
Application management (JAM) 422 1 Java Code Compact (JCC) 423
Deployed classes 424 11 Debug support 424

14.4 CDC-compliant virtual machines (the CVM) 425
Garbage collection and the CVM 426
Memory references in the CVM 426

14.5 Summary 427

15 Related technologies 428

15.1 J2ME implementations 429
esmertec’s Joed 429
Motorola’s Embedded Reference Implementation (MERI) 430

15.2 The other Sun specifications 430
PersonalJava 430 1 Embeddedlava 434

15.3 Non-J2ME alternatives 435
ChaiVM by Hewlett-Packard 435 1 IBM’s VisualAge Micro Edition 435
Waba by Wabasoft 438

15.4 Related Java technologies 438
Java Card 438 0 Java Native Interface 439
Jini 441 0© JavaPhone and Java TV APls 442

15.5 Non-Java alternatives 442
WAP/WML 443 1 Other languages 443

15.6 Data storage and synchronization 444
Data storage 444 (1 A data synchronization standard, SyncML 445
XML 446

15.7 J2ME supplementary technology 448
GUI, KAWT 448 11 Web browsing, Kbrowser 449
Encryption, Bouncy Castle 449

15.8 Summary 449
A J2ME development tools 451

B J2ME resources 453

CONTENTS Xiii

C Java and J2ME history 456

C.1 Oak and the Green Project 456
C.2 Java and the Internet 457

C.3 Evolution of Java 458
Javal.02 459 0 Javal.l 459
Java2 459 1 SDK 1.3 460
Java 3 coming soon? 460 1 Javatoday 460

C.4 Origins of 2ME 460
Micro-Java rebirth 461 (1 Early access versions of 2ME 461
J2ME’s continuing evolution 462 1 J2ME today 463

D J2ME Wireless Toolkit 464

D.1 Downloading the Wireless Toolkit 464
D.2 Installing the J2ME Wireless Toolkit 465

D.3 Hello World project revisited 466
Starting the toolkit 466 (1 Creating a project 467
Editing the project settings 469 (1 Entering the Java code 470
Building a project 470 (1 Running a project 470
Palm OS Emulator 471 1 Operating from the command line 472

D.4 Summary 472
index 473

Xiv CONTENTS

preface

Fifteen to twenty years ago, anyone familiar with the computer industry did not
guestion the impact personal computers would have on our society. The only ques-
tion was how quickly could PCs be made available at a reasonable price in order to
begin this new age. Today, with personal computers in three of every four United
States households and with the ubiquity of the Internet associated with all those PCs,
the Information Age has arrived. Nearly everyone is connecting to and using infor-
mation resources in ways exceeding the wildest dreams of early PC visionaries.

Our personal computers are on the same path of technical
progression. They are getting smaller while at the same
time doing more for us. This should not surprise us since
small computers and microchips are already assisting and
controlling more of our daily lives. Our cars, home appli-
ances, and entertainment systems probably already have
mini-computers that help their associated products give

RCA 8TS30 (1943) ; L .
Courtesy of you better service. Now, personal digital assistants (PDA),

www.harryposter.com

such as those from Palm Inc. or Compag, allow you to
download your electronic calendar, address book and other personal information from
your PC and take them with you when you are away. Is a Palm a
personal computer? Many PDAs have more memory storage and
processing power than PC’s of a few years ago.

Simultaneously, our communications devices have been get-
ting more powerful. When is the last time you used a rotary-dial
telephone? More likely, you have been using a cellular digital tele-
phone. This little device can not only place your call from virtually
anywhere, but it can also help you remember whom you have to
call and provide their home or office telephone numbers. In fact,
you have probably programmed it so that you no longer have to .
know the telephone numbers any more. You simply tell your little A

phone to ring the person with whom you want to have acon- ———— o
versation. The cell phone contains an electronic address book Sony Watchman
and other personal information just like your PC. Color TV (2001)

Courtesy of Sony Electronics, Inc.

XV

If you are fortunate enough to have a two-way pager, you
may have it set up to receive and send your email messages among
its other duties. In many ways, the numerous communication
and information devices such as cell phones and two-way pag-
ers are taking over for your PC when you are away from it.

So, if you have not been paying attention
lately, you may want to take a closer look at the

o)

Western Electric’s electronic devices around you. Your PC, digital
202 Desk Phone (circa 1927) assistants, and communication devices are
Courtesy of Play Things of Past, Cleveland OH .
starting to look and behave more and more -I
alike, at least in terms of the conveniences they provide. Again, the el

natural progression is for technology to do more with less. What is
interesting is that the technologies are migrating toward each
other. Computers are shrinking and doing more communicating,
while other information and communication devices are grow-
ing more powerful and providing more personal computer-
related services. How soon before everyday appliances like our Motorola’s StarTAC
automobiles, televisions, microwaves, and other appliances start (Cc'gzieisgf)

to become a highly connected and powerful network of comput- Motorola, Inc.

ing devices that help us live our lives?

- L)
UUULUUUEWL
VubUULWLL
GUUUUUULEE
(= el i
ve g G -

The merging of technologies

While the make and type of these systems are still quite diverse, we want the same
conveniences and capabilities that these information devices provide us anywhere and
at anytime. Providing these capabilities and conveniences is at the heart of any com-
puter system, no matter how large or small the software. This is making the software
engineer’s job most difficult. How does one provide many of the same capabilities
like email, calendaring, address tracking and scheduling across a very diverse, and
seemingly growing, set of products? These software capabilities are just the start.

XVi PREFACE

100 7 How soon until we have invoicing and
90 4| —e— #ofcell phone billing capability on our cellular tele-
ol e [phones? How soon will our refrigerator
@ #of households be able to tell our PDAs that we are out
g 70 T i computers i . of milk (the inventory is low) and we get
= 60 a restocking reminder on the way home
S 5 l [from work? Is there a write once, run any-
E where software solution that allows the
E 40 1 software engineer to simply and easily
2 30 provide many of the same capabilities to
© 2)// this diverse set of devices? We contend
// that there is a solution, or at least the
Vi g— makings of a solution, in Java and in
01— particular the Java 2 Micro Edition.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 If you thought the diversity in the

PREFACE

Year number and type of computer systems

Census Bureau statistics and FCC estimates on as Cha“enging’ imagine trying to write

number of h_ouser_mold PCs a_md cellular phone software that operates in the “infor-

subscribers in the United States.! . . .

mation appliance” arena that includes

pagers, cellular phones, PDA’s, television set-top boxes, point-of-sale terminals, and

other consumer electronics. There are over a dozen cell phone manufactures alone.
Each has different characteristics and interfaces.

As we will explore, the Java programming language has generally fulfilled the wish
of software engineers looking for a means to write a single application that runs over
all types of computer systems. Writing a single code base application that works on
an Apple PC, Intel-based PC, Sun Microsystems Workstation, IBM mainframe, etc.
is now possible. As you might imagine, the portability of a Java application across an
even deeper and more diverse set of information appliances has attracted many to the
possibility of running a once-written application on multiple types of systems.

What's more, there are an estimated 100 million cellular telephone users in the
United States, with an estimated 530 million cellular telephone users worldwide by
2002. That compares to an estimated 50 million households with personal computers
today. The exchange of information and ideas across this number of platforms is truly
staggering. Imagine having some of the application capabilities of the Internet and our
personal computers on a platform the size of a small cell phone. Imagine further that
this transfer of capabilities is relatively seamless!

Of course, the challenge is to compact enough of Java’s essentials into a very small
package. This is the world of the Java 2 Micro Edition (J2ME). While it is still in its
infancy, the convergence of the many technologies and resources surrounding these
devices makes the advancement of J2ME as likely as it is necessary.

L http://www.census.gov/population/www/socdemo/computer.html

Xvii

acknowledgments

Books do not write themselves, and, as we have come to understand all that is
involved in putting one on the shelf, we now know that it takes much more than just
the authors.

We would like to extend a special thank you to our publisher, Marjan Bace, and to the
staff at Manning Publications who have contributed to this effort, as well as to the many
people who took time out of their schedules to provide peer reviews, suggestions, and
assistance. The reviewers included Carl Baldys, Mike Chan, Perry Dillard, Jon Eaves,
Boran Gogetap, Lee Miles, Peter Mortier, Bryan Nehl and Tim Panton. Your work has
not gone unnoticed and the final result is a reflection of this combined effort. Thank you.

JAMES WHITE

A lot of energy and time goes into writing a book, and a great number of people have
influence on its outcome. Some are directly responsible for its delivery. To this end, |
would like to first and foremost thank my co-author David Hemphill. His dedication
and loyalty go beyond this single endeavor. He is a quiet yet steady friend that | have
come to rely on for guidance on the roughest of days, not to mention, he’s pretty
darned smart. Thank you David. | would also like to thank the folks who spent hours
reviewing the manuscripts in various stages and forms. In particular, 1 would like to
thank Jan Emter and Carl Baldys for their evaluations and assistance. It's not a fun
job, but they did it very well. We also owe a special thanks to the folks at esmertec
who supported us with the use of their product and the reviews of the material on
their product. A big thanks to Jon Eaves for his meticulous technical review. Finally, |
would like to thank the editors and staff at Manning (Lianna Wlasiuk and Lois
Patterson in particular) for allowing this dream to become a reality.

There are a number of other people who are indirectly responsible for this book’s
delivery. These are the people who have and will continue to shape my life on a daily
basis, sometimes without knowing how much they do so. First, | would like to thank
my parents, Ann and Jim White. Both teachers by profession, they have raised the
eternal student. They have given me three gifts: life, enjoyment and satisfaction in
hard work, and the unquenchable thirst to learn more. Thank you Mom and Dad.
Second, I would like to thank my family, good friends, co-workers and colleagues who

Xviii

supported me in the efforts of this book, and in all else as well. In particular, | would
like to thank Mike (my brother), Angie and Laura (sisters), Jim St. Aubin, Mike Car-
son, Phil and Kelly Davis, Todd Lauinger, and Larry Marchman. | would also like to
thank Scott King. Forever the optimist, Scott would never let me say die, on this project
or in any professional endeavor. Thank you Scott for your friendship and belief in me.
Last, but by all the laws that govern everything that is good and just, not least, |
owe my deepest appreciation and devotion to my wife Kelly. | have never met a person
so giving and caring in all my life. To say that she has carried me through this book,
my career and adult life would be a vast understatement. Without her, this book and
everything | do would hold no meaning. Thank you and | love you Kelly.

DAVID HEMPHILL

When starting out on this project to co-author a book, | was concerned about the
amount of time it would take and what life would be like during the months of writ-
ing the book. Well, as to how much time it takes, the answer is a rather simple one:
all of it. As to what life is like, let’s just say that if I did not have such a loving, sup-
porting, caring and understanding family, this could have been painful. That said, |
owe my deepest appreciation and gratitude to my wife, Amy Votava. Amy, thank you
so much for all of your love and support during this last year. You mean a great deal
to me and this last year has shown me the power and strength of our partnership.
| truly appreciate how you have stood by me and helped me to see this dream to the
end. Thank you. | love you.

I would also like to thank my daughter, Olivia, who, at age two, was unable to assist
with editing and reviewing the book, but provided me with an ample supply of hugs
and kisses as well as necessary distractions such as make-believe tea breaks with fresh
“yellow” pie, spontaneous dancing and daily readings of The Lorax and other non-
technical literature.

A list of acknowledgments would not be complete without a word or two directed
toward the guy who started all of this in the first place. This would be my co-author,
friend, business partner and fellow software engineer Jim White. This project has been
as enjoyable as it has been challenging and | am glad for the opportunity to have
undertaken it with someone | have come to trust and respect more than just about
anyone | have worked with. Jim, thank you for all of your hard work and dedication
to this project.

I would also like to extend a special thank you to my parents Karen Stewart and
Gary Hemphill. Dad, throughout the writing of this book I often heard your voice in
my head saying, “Go the last mile and see it through.” and Mom, thank you for driv-
ing up to Minnesota to help me find more time to write and to allow Amy and me
to get reacquainted from time to time.

In addition, | owe thanks to the rest of my family: my sister, Julia Helbach, my
stepparents John Stewart and Carol Hemphill and my in-laws James and Kathryn
Votava. You have all provided me with love and inspiration during this last year, Amy
and Olivia directly and indirectly many times over.

XiX

about this book

Java 2 Micro Edition was written with the developer in mind. It is meant to be a guide
that will serve as an introduction to J2ME technology, as well as a reference to more
complex issues surrounding mobile/wireless computing. Our intent is to provide a
practical overview of the J2ME programming environment by guiding the reader
through detailed programming examples and tutorials. A basic understanding of Java
programming is all that is required, in addition to a need for or interest in developing
applications for mobile and wireless devices.

INTENDED AUDIENCE

This book is intended, largely, for software engineers interested in writing Java appli-
cations. It turns out that if you know Java, you know enough to start writing applica-
tions for consumer electronics and embedded devices with a little help.

ASSUMPTIONS

Throughout this book, applications will be developed in the Microsoft Windows
environment. This will not affect the outcome of the product. However, if you
choose to develop on another J2ME development platform, such as Solaris, Macin-
tosh, or Linux, you will have to translate all applicable development instructions.

Readers of this text should have a fundamental knowledge of Java. The basic Java
syntax is the same for J2ME as it is for other Java environments, including the familiar
Java 2 Standard Edition (J2SE). However, the API for many Java classes, even those
as basic as String, is diminished relative to the J2SE API. For those familiar with J2SE,
we will explain our use of certain types and methods in code examples where a more
common J2SE type or method would ordinarily be utilized.

We will also use the Unified Modeling Language (UML) to depict some of the
application design. If you are not an object-oriented analyst, you should not be con-
cerned. Our diagrams are pretty simple and merely help provide a picture of some of
the structure in the application and how they relate to the classes and interfaces J2ME
provides.

XX

ORGANIZATION

The book has fifteen chapters organized into four parts, followed by four appendices.
We begin the book with an introduction to J2ME tools and technologies and then
guide the reader through the development of a tutorial application.

PART 1 Developing with J2ME

The first part of this book focuses on introducing the Java 2 Micro Edition.

Chapter 1 describes how J2ME fits into the larger picture of the Java 2 platform.
The case for why J2ME is necessary and useful is discussed as well as the origins from
which J2ME has sprung. Chapter 2 describes how J2ME is put together. This provides
a context for how J2ME might be used to develop applications for consumer electron-
ics and Internet appliances. This chapter provides a comprehensive, yet high-level tour
of J2ME. Finally, before delving into the particulars of developing J2ME applications,
chapter 3 offers a quick introduction to development environments, covering the par-
ticulars of how to obtain various J2ME development tools and technologies, as well
as describing the example application that will be used throughout the book.

PART 2 Developing for cellular phones and pagers

In chapters 4 through 7, we explore the CLDC and MIDP APIs in a tutorial applica-
tion that was initially described in chapter 3. The tutorial application allows a customer
to use a cell phone or two-way pager to obtain and view stock or mutual fund quotes.
The tutorial allows us to see the major aspects of a J2ME application, namely the user
interface, event handling, data storage, input/output, and network connectivity.

PART 3 Developing for PDAs

In chapters 8 through 10, we explore using KJava with the CLDC API. KJava was
originally created as a test and demonstration API by Sun for demonstrating the
CLDC and KVM on Palm OS devices. Lacking a profile for PDA devices, compa-
nies, such as esmertec, have provided commercial implementations with their IDEs
for developing Palm OS applications using KJava. Part 3 explores PDA development
using the now familiar stock quote application. As in part 2, the tutorial application
allows us to examine the major aspects of building a Palm OS application using
Klava. This part of the book covers PDA features such as user interface, event han-
dling, data storage, input/output, and network connectivity.

PART 4 Developing for the enterprise: beyond the specifications

In chapters 11 through 15, we explore the more complex issues of putting together
mobile and wireless applications. Chapter 11 leads off by examining the characteristics
of a mobile and wireless architecture, focusing on using mobile and wireless devices
in conjunction with enterprise technologies. The following chapters explore mobile
and wireless computing for the enterprise, paying special attention to integrating the
ability to communicate with servlets, JSPs and XML data sources. A more thorough

XXI

examination of the network communication protocols is provided along with an in-
depth look at the J2ME virtual machines and how they differ from the J2SE virtual
machine. Finally, we spend some time reviewing related technologies, such as com-
mercial, third-party J2ME solutions as well as non-J2ME solutions.

Appendices

In the back of the book, four appendices offer an overview of J2ME tools, resources,
history, and the J2ME Wireless Toolkit provided by Sun Microsystems.

SOURCE CODE

Source code for all the programming examples in this book, including the exam-
ples in the tutorials, is available for download from the publisher’s web site,
www.manning.com/white.

Code conventions

Couri er typeface is used to denote code, as well as methods, objects, variable names,
and class names. Code annotations accompany many segments of code. Certain annota-
tions are marked with chronologically ordered bullets, such as €. These annotations
have further explanations that follow the code. Code line continuations are indented.

AUTHOR ONLINE

XXii

Purchase of Java 2 Micro Edition includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/white. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

ABOUT THIS BOOK

about the cover tllustration

The figure on the cover of Java 2 Micro Edition is a "Muger Arabe Azanaghi,” an
Azanaghi Arab Woman from a region in the northernmost section of present-day
Mauritania. The illustration is taken from a Spanish compendium of regional dress
customs first published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

Which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing.
The Azanaghi Arab Woman is of course just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress codes of
two regions separated by a few dozen miles identified people uniquely as belonging to
one or the other. The collection brings to life a sense of isolation and distance of that
period—and of every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago, brought back to life by the pictures from this collection.

XXiii

PART

Developing with J2ME

The first part of this book focuses on introducing the Java 2 Micro Edition.
Chapter 1 describes how J2ME fits into the larger picture of the Java 2 platform. The
case for why J2ME is necessary and useful is discussed as well as the origins from
which J2ME has sprung. The second chapter describes how J2ME is put together.
This provides a context for how J2ME might be used to develop applications for con-
sumer electronics and Internet appliances. Chapter 2 also provides a comprehensive,
yet high-level tour of J2ME. Finally, before delving into the particulars of developing
J2ME applications, chapter 3 provides a quick introduction to the development envi-
ronments, covering the particulars of how to obtain various J2ME development tools
and technologies as well as describing the example application that will be used
throughout the book.

1.1

1

Introduction

1.1 Sowhat is 2ME anyway? 3 1.5 The case for Java 12
1.2 What is asmall device? 5 1.6 Origins of 2ME 15
1.3 J2ME’s role in wireless and 1.7 The J2ME community 16
mobile applications 7 1.8 J2ME products and alternatives 17
1.4 The Java 2 edition trilogy 9 1.9 Summary 18

If you are involved in the development of software systems, and in particular software
written in the Java programming language, yet do not know much about J2ME, you
probably have many questions. What is J2ME and where did it come from? How
does it relate to the Java | know and have come to enjoy? On what kinds of small
things does Java run? Why is Java on small devices important? Where is J2ME going?
We attempt to answer these questions and more in this introductory chapter.

SO WHAT IS J2ME ANYWAY?

Java 2 Micro Edition or J2ME is a development and runtime environment designed
to put Java software on consumer electronics and embedded devices. As with many
things in life, one size does not always fit all. Likewise, a single serving size of Java that
fits and runs on every thing from a mainframe to a cellular telephone is impractical.
Java has become one of the most popular programming languages of our time. This
is due, in no small part, to Java’s ability to run on virtually any platform. J2ME is
about making the Java programming language available on an even larger and more
diverse set of platforms. In particular, J2ME brings Java to the world of personal infor-
mation, communication, and computing devices. Usually, these devices are smaller
and less powerful than traditional computing devices. As such, J2ME technology is an
effort to condense and reduce standard Java into as small a footprint as possible.

3

111

The development of J2ME was initiated by Sun Microsystems, but is now sup-
ported by some of the biggest consumer electronics and embedded device manufac-
turers in the world. In particular, many of the world’s mobile and wireless technology
vendors are either exploring or actively participating in J2ME technology, or they are
working on competing products. Those that support J2ME do so under a community
process developed by Sun to standardize and guide the future direction of all aspects
of the Java Platform. This process is called the Java Community Process (JCP) and it
is an important part of the advancement of Java and J2ME, as will be discussed later
in this chapter.

While Java runs on everything from mainframes to laptops, it was not until rela-
tively recently that Sun began to re-entertain the idea of putting Java back into small
devices. We say re-entertain because Java was initially developed to assist Sun devel-
opers in assembling a network of digitally controlled consumer devices (TV, VCR,
video disc players, and so forth).

Java’s rebirth, through J2ME, as a programming language and software platform
for small things is significant in that the sheer number of these devices will far exceed
the number of computer systems in the near future. As a young or reborn technology,
J2ME is still evolving and the base of support for J2ME is still growing. However,
J2ME and other Java-based competing solutions offer a great deal of hope to the soft-
ware engineering community that is faced with the need to support an overwhelming
number of platforms in the future.

Where is J2ME being applied?

J2ME is a technology that has found its way into many consumer electronic and em-
bedded devices, some of which you use on a daily basis. It is a young technology that is
working its way into even more items that we will use daily. In fact, J2ME is a technol-
ogy with which we will likely come in contact more often than standard Java or other
programming language software. This is because J2ME software applications are des-
tined for very personal devices on which we humans have become dependent. How
soon will this occur? A number of cellular telephones already contain J2ME technology.
J2ME software applications will likely control or provide some type of service on
our cellular telephones, pagers, personal digital assistants (PDAs), televisions, VCRs,
wristwatches, home appliances, electronic entertainment systems, and so forth. J2ME
applications will help us make telephone calls and order products. They will help us
communicate with friends and neighbors. They will help us find our favorite television
show or remind us to feed the dog, and it may be a J2ME game that you play when
it comes time to relax. Of course, J2ME applications will also help business too. J2ME
applications are helping to extend corporate enterprise systems (both data and appli-
cations) to wireless and mobile computing devices. Inventory and customer manage-
ment, order entry and tracking, and sales force automation may soon be driven by
J2ME applications literally running from devices in the palms of employees’ hands.

CHAPTER 1 INTRODUCTION

1.2 WHAT IS A SMALL DEVICE?

Up to this point, we have tried to refer generically to the platform running a 2ME or
other competing Java application as a “device.” In fact, we refer to these devices even
more generically in the subtitle of this book as “small things.” In a few instances, we have
used the phrases: information device, consumer electronics, embedded device or our
favorite, small device. It is important that we define the vast array of “small devices”
and make you aware of which devices in this array J2ME targets. As will be discussed
in chapter 2, it is important to know where J2ME is applied since such target devices
often define the various pieces and structure of the J2ME architecture.

1.2.1 The vast consumer space

Exactly what is a device? Sun claims that J2ME is meant to address “the vast consumer
space which covers the range of extremely tiny commaodities, such as smart cards or a
pager, all the way up to the set-top box, an appliance almost as powerful as a computer.”
Let’s define some of these terms: A smart card is a credit card-sized plastic device with an
integrated circuit built inside. A set-top box is a consumer electronic device that produces
output to a conventional television while also connected to a communications channel
to allow the user or, more appropriately, television viewer, to interact in some way.

Internet TV

. _;..‘ LA ﬁ'ﬂ

s
H
Cellular

Internet screen phones
phones

- g ¥
@ Automobile *
* navigational - t

systems

L] .E;m
— N -
Automobile
entertainment

TV set-top boxes systems

Pagers

Personal
organizers

Communicators

Point-of-sale
systems

Figure 1.1 The picture above provides a glimpse of some of the devices encompassing the
vast consumer electronics and embedded device space. While Java, through J2ME, may not be
available on all of these platforms today, it offers the hope of providing a single programming
language to support this vast array of devices in the future. As a programming language
designed to run on any platform, Java has been used for developing software on all of these
devices and J2ME technology has been applied to a predominance of these devices. However,
as we will discuss, J2ME’s applicability at the fringes of this vast space can be confusing based
on additional Java technologies and specifications such as Java Card and EmbeddedJava.

L http:/fjava.sun.com/j2me/

WHAT 1S A SMALL DEVICE? 5

1.2.2

The “vast consumer space” is filled with devices that include:
* pagers
e cellular telephones
- personal digital assistants or organizers
* point of sale systems
e pocket communicators
« Internet screen telephones
 automobile navigation and entertainment systems
« Internet television sets

Figure 1.1 shows many of these devices.

Consumer electronic and embedded devices

While Sun and others associated with the development of J2ME applications still
hold to the statement that J2ME is “targeted at consumer electronics and embedded
devices,”? questions arise as to whether this includes the entire consumer electronics
and embedded device space. Sun’s own web sites offer conflicting information. For
example, many of Sun’s web pages on J2ME indicate that J2ME technology includes
smart card technology, while Java Card web pages claim that Java Card technology is
a complementary technology to J2M ES

Generally, J2ME addresses devices with minimal memory, communications band-
width, power, and user interface capabilities. Therefore, J2ME is usually considered
to address Java programming needs in devices that are larger than smart cards but
smaller than personal computers. A term often used for these sorts of devices is infor-
mation appliance. Information appliances provide less computing power than a personal
computer and are considered to have a special function. In many cases, these devices
are more personal in nature, that is, they are owned and operated by a single individual.
Furthermore, unlike a laptop, these computing devices are almost always carried with
their owner, in a pocket, purse or coat pocket, also making them more personalized.

As a separate technology, Java for smart cards (Java Card technology) has its own
specification. For devices with more memory, power, and capabilities, there is, of
course, the Java 2 Standard Edition (J2SE) specification that dictates Java as it is used
in personal computers.

We disagree with including “embedded” devices in the group of devices supported
by J2ME. While the issue is minor and the distinction will be discussed later in a
review of other technologies with respect to J2ME (chapter 15), the whole space of
embedded devices is also covered by a separate Sun specification and technology called
EmbeddedJava. Therefore, for the purposes of this book, the term “device” will refer

2 http:/fjava.sun.com/products/cldc/fags.html
8 http://java.sun.com/products/javacard/datasheet.html

CHAPTER 1 INTRODUCTION

1.3

13.1

J2ME Devices
CDC

I
I
“Information
Smart appliances” Desktop

Card PC

Figure 1.2 Devices that are specifically supported by J2ME fall between the Smart Card and
the desktop or laptop computer. These devices, often referred to collectively as information
appliances, include, but are not limited to cell phones, pagers, PDAs, set-top boxes, and Internet
phones. CLDC and CDC are specifications that define J2ME at opposite ends of the device
spectrum. More information on these specifications is provided in chapter 2.

to the array of electronic devices and information appliances that range from just
below the personal computer down to, but not including, the smart card.

You can, and will undoubtedly, find individuals who disagree with this demarca-
tion. However, we find it to be the general consensus and will stick to this definition
of a device throughout the remainder of the book.

J2ME’S ROLE IN WIRELESS AND MOBILE APPLICATIONS

J2ME is often referred to as Java for wireless and mobile devices. While J2ME tech-
nology is used in many wireless and mobile devices, J2ME is not used exclusively in
these environments. We do not want to diminish J2ME’s role and importance in
mobile and wireless applications. However, it is important to realize that J2ME is
about more than mobile and wireless applications.

Is I2ME mobile?

Mobile devices are defined as those computing devices that are small enough to be
easily carried and used while in transport. They provide users with a portion of com-
puting capabilities and information that is available from fixed information systems
at home or their place of business. In general, most mobile devices allow themselves
to be synchronized with the fixed systems for software and data updates.

As an example, an office may have a customer management application that can
provide sales force personnel with information on customers. A mobile device would
likely allow a sales person to download a limited amount of customer data for a limited
number of customers to use while on the road. Updates to any data on the mobile
device would need to be reconciled with the office’s customer management system on
the sales person’s return.

Given this kind of definition, the term mobile is subject to change. In fact, there was
a time when we may have called a twenty-pound laptop mobile. Certainly, many, but
not all, of the devices that J2ME targets can be considered mobile. PDAs, cell phones,
and so forth can certainly be considered mobile platforms when they are provided with

J2ME’S ROLE IN WIRELESS AND MOBILE APPLICATIONS 7

13.2

software and data. However, set-top boxes, for example, are not meant to be mobile
devices. While these devices can run J2ME programs, they are not mobile.

Furthermore, many other Java technologies, J2SE and Java Card included, are run-
ning in mobile systems. So while J2ME is an important Java technology for mobile
platforms, it is not the Java technology for mobile platforms. And Java is not the only
solution. There are several technologies that provide mobile applications and data for
mobile devices. In fact, many organizations provide tools for downloading a slice of
corporate data to a personal device for use while not at the office. These are mobile
solutions.

The term “mobile” simply defines the capability or state of the device. So is J2ME
mobile? Because mobile devices are usually smaller and more resource constrained,
J2ME is a viable development solution for these constrained devices. Therefore, J2ME
can and often does play an important role in mobile devices, but the term mobile does
not categorize all 2ME applications.

Is I2ME wireless?

A wireless device is simply a device capable of communicating or networking without
wires or cable. Many J2ME devices are wireless. Cellular telephones, pagers, and pocket
communicators are just some of the wireless communications devices that can use
J2ME technology. The list of such devices is ever expanding. Many of today’s laptops
and PDAs provide wireless communication adapters to allow these devices to work in
a wireless fashion.

Wireless devices are intended to behave as if they were directly connected to the
network with a wire. From a user’s perspective, it should appear that any data or appli-
cation is local to that device or directly connected to the device providing the data or
application. For example, a sales person could use a cell phone to look up information
on a customer from a customer management system back at the office. To the sales
person, it might appear that the data and/or application obtaining and displaying the
information is local to the phone when in reality, the data has merely been wirelessly
transmitted to the sales person’s device.

However, there are several devices that J2ME targets that are not wireless. Again,
set-top boxes, Internet screen telephones and televisions are usually wired. In fact, as
we will see in future discussions, a large portion of J2ME is set aside for systems that
are expected to have a reliable, rich, and high fidelity network connection, which today
usually means having connectivity through a wire or cable. The J2ME technology sup-
ports many wireless devices, but it is not the Java technology for wireless computing.
In fact, other technologies such as the Wireless Access Protocol and the Wireless
Markup Language are meant to provide wireless capabilities to devices without nec-
essarily providing mobile applications (chapter 15).

Wireless defines the type of communications used by the device. J2ME, therefore,
can be and often is an important part of a wireless solution. But while Java and J2ME
may be used in wireless devices and applications, not all 2ME applications are wireless.

CHAPTER 1 INTRODUCTION

1.3.3 Wireless vs. mobile

The terms wireless and mobile are often used congruently. Erroneously, these adjec-
tives are automatically applied to J2ME applications. Because J2ME devices are often
small and can hold a certain amount of data and applications, which are easily trans-
ported, J2ME can be and often is used in mobile systems. Likewise, because J2ME is
often used in applications that communicate information back and forth across a
wireless network, J2ME can be and often is used in wireless systems. Again, however,
this does not mean that J2ME applications are all wireless and mobile.

A PDA device holding a small amount of customer data and an application to view
and update the customer data is mobile, but not necessarily wireless. If the user is required
to connect the device up to a network or other device with some sort of cord in order
to get new data or download updated data, then it remains a mobile but wired device.

Alternatively, a cell phone could be equipped with a small browser that allows the
device to pull down special or mini-web pages. This device is now considered wireless,
but it is not mabile. In order to be mobile, the device must provide some value, in the
form of data or application function, when not connected to other systems.

Much of the confusion between wireless and mobile exists because many J2ME
applications are designed to work in both a mobile and wireless fashion. Say, for example,
the customer information application built for a PDA device is also equipped with a
means to call up and ask for new or updated customers that can then be transmitted
to the device wirelessly and stored on the device for later retrieval. Now the PDA
device is both mobile and wireless.

In this book, we examine J2ME technology that can help make mobile and wireless
applications.

1.4 THE JAVA 2 EDITION TRILOGY

Like all development environments and programming languages, Java has evolved.
Many features and capabilities have been added to Java since its initial release. It has
also been improved in terms of its performance, efficiencies and reliability. Thus, the
“2" in Java 2 refers to its current major version. Sun Microsystems, the creator and
manager of Java, has grouped the Java 2 version into three editions:

- Standard Edition (J2SE)

« Enterprise Edition (J2EE)

= Micro Edition (J2ME)
Each edition addresses the Java needs of a particular set of applications. J2ME is the
third and latest of three editions of the Java 2 version.

One of the most common exclamations on the part of new Java developers is:
“Wow, look at all those packages and classes.” One of Java’s selling points is the fact

that it ships “out of the box” with a rich set of tools, classes, and application program-
ming interfaces (APIs) that provide many common, foundational application compo-

THE JAVA 2 EDITION TRILOGY 9

141

14.2

10

nents. In theory, these classes and APIs provide the basic frameworks that allow
applications to be developed faster. There are over 5,000 classes in the standard down-
load of the Software Development Kit (SDK). Database connectivity, various input/
output mechanisms, exception/error handling, and user interface classes are just a few of
the many basic functions that come with your standard Java development environments.

As the Java development environment has grown and expanded to fulfill numerous
application needs, the number of available Java packages and classes has expanded.
Most notably, Java support has spread to include networking, interoperability, and
distributed components and processing.

Because the needs of the Java community have broadened, and the sheer number
of APIs has grown, Sun established three editions of the Java platform to better address
the needs of each general community of application developers. This split in editions
occurred at the time Sun released Java 2. The editions do not really provide any addi-
tional Java functionality. Instead they are a repackaging of Java technology into logical
groupings based on typical developmental use.

There have been claims that another reason for the split in editions is that Sun has
used this mechanism for generating revenue. The argument goes that the development
environment or JDK (now SDK) and Java Runtime Environment (JRE) have always
been free products. The other editions of Java, which fall under different license agree-
ments, allow Sun to recoup some of the revenue lost on the base, no-cost products.

Whatever the real reason for the separation, Java developers must now be aware of
the three editions of the Java platform and how they can be applied to their particular
development problems. Fundamentally, the three editions are still very similar. The
language syntax and base architecture of each edition is generally the same. However,
as their names suggest, each edition now offers developers unique features applicable
to the size of devices for which the edition was built.

J2SE

The Java 2, Standard Edition (J2SE) is the basic Java environment. Its implementa-
tions provide the core Java classes and APIs that allow for the development and run-
time of standard client and server applications, including applications that run in a
web browser.

J2EE

The Java 2 Enterprise Edition (J2EE) is a grouping of several Java APls and non-Java
technologies. It is generally used for creating multi-tiered and potentially distributed
applications. J2EE technologies can serve as the guts as well as the glue that bring
today’s large multi-tiered, heterogeneous applications together. J2EE is often
described as middleware or server side technologies, but this is a bit limiting. In fact,
J2EE includes technologies that are or can be used in all layers of information sys-
tems. Take JDBC for example. It may be used to access data from a client Java applet,
a middle tier Java servlet or a backend Enterprise JavaBean. Remember that J2EE
includes some technologies that are not controlled by Sun and are not necessarily

CHAPTER 1 INTRODUCTION

directly connected to Java, such as XML and CORBA. J2EE is another Java technol-
ogy that can fill dozens of books. Please see other publications, such as Distributed
Programming with Java by Qusay H. Mahmoud, Server-Based Java Programming by
Ted Neword and Java Servlets by Example by Alan Williamson, Manning Publica-
tions, for information on these and other related J2EE technologies.

143 J2ME

Sun introduced Java 2, Micro Edition (J2ME) in June 1999 at the annual JavaOne
convention. J2ME is designed to address the Java needs of the consumer electronics
and embedded devices community. Initially, J2ME was built for devices with limited
power, network connectivity (often wireless), and graphical user interface capabilities.
Today, as we shall see, J2ME technology has expanded to cover a somewhat wider array
of devices from pagers up to, but not necessarily including, the personal computer.

1.4.4 Why we need J2ME

Since Java was initially intended for consumer electronic devices, a natural question
may be why another edition? Why not just use the standard Java for small devices?
Beyond the issues of needing to separate the multitude of APIs into three distinct
editions for better organization and, possibly, Sun’s need to recapture revenue, there is
another, more compelling, reason for introducing another Java edition: the devices
for which J2ME is targeted have specialized needs.

These devices have different software requirements than larger application software
environments. In general, the software must have a small footprint. In some cases, the
total memory allotted to the device for the Java application, Java classes, and virtual
machine is measured in hundreds of kilobytes. That’s small!

Furthermore, software applications destined for these consumer electronics and
embedded devices usually have unique deployment mechanisms. For example, PDA
devices often have what is known as a device “cradle” that is attached to a desktop
computer for downloading applications and data.

Finally, these devices have user interface, networking and other needs that cannot
be addressed with an all-encompassing (i.e. sizeable footprint) Java API. Java’s Swing
package for user interface development could certainly be enlarged to include com-
ponents for building graphical user interfaces for small screens such as those found on
cellular telephones. But could that package then fit in the memory of a cell phone?

J2ME addresses the fact that a one-size-fits-all Java environment does not really
make sense for all devices. The same principles of platform independence, language
syntax, security, and reliability are adhered to in all editions of Java, including J2ME.
However, the separate edition addresses the specific needs inherent in the range of
small devices that the J2ME edition covers.

It is worth noting, however, that Sun considers upward scalability from J2ME to
another edition of Java (namely the J2SE or J2EE) an important feature of J2ME.
Should your application ever grow beyond the confines of a small device, the transi-

THE JAVA 2 EDITION TRILOGY 11

1.5

151

12

tion up to a larger, more powerful Java environment may be possible depending on
your application’s architecture.

THE CASE FOR JAVA

Before we get too deeply into the benefits of J2ME, perhaps we should step back and
ask an even more fundamental question: specifically, why is the Java programming
language important to software developers for consumer electronics and embedded
devices? If you have already worked with Java, this discussion probably won't cover
any new ground. However, if you are new to Java, it’s worthwhile to review some of
the reasons why Java is a popular programming language and why it is a solid con-
tender in the small device arena.

Is Java right for small devices?

As has already been mentioned, Java was first designed and built as a common plat-
form to support software development for a set of networked consumer electronic
devices. Given Javas initial reason for being, it would seem only natural and appropri-
ate that it return to its roots to be used in a heterogeneous collection of small infor-
mation devices.

The key term here is heterogeneous! If you are targeting a particular information
device, you may find that another programming language or development environ-
ment meets your needs just as well if not better than Java. For example, many of
today’s PDA manufacturers supply programming development kits that produce
applications for their systems. These Kits often take advantage of features for the spe-
cific platform and typically perform better on the target device than programs devel-
oped with more generic programming languages such as Java. Furthermore, Java may
not have as small a footprint in comparison to many proprietary development envi-
ronments or other programming languages. As has been discussed, Java has a rich set
of classes and APIs that come with the base environments. A device manufacturer does
not have to offer such a rich environment. Because many of these programming envi-
ronments and languages produce executable code such as C, unused features are elim-
inated at compile time. In contrast, Java’s runtime environment must be ready to
interpret any and all supported instructions.

So where is your application going to live? Will it run on a variety of small infor-
mation devices such as pagers, PDASs, cellular phones, and maybe even a set-top-box?
If so, you want portability. You are going to want to write the application as few times
as possible. Programs written in manufacturers’ proprietary development environ-
ments or other programming languages will almost certainly not port to such a wide
range of devices.

Choosing your programming language is a relatively straightforward issue. Do you
want to write an application once and run it on a variety of platforms? If so, Java’s
Write Once, Run Anywhere (WORA) platform independence mantra should cer-
tainly make it a candidate programming language for you to consider.

CHAPTER 1 INTRODUCTION

Are there other reasons for using Java in small things? Well, in some cases, Java may
be the only way to deploy an application to a device. For example, some cell phone
manufacturers support only Java.

When considering what programming language to use for applications that run on
small devices, you may also want to consider what programming languages you already
use on the larger devices and systems. If you already have Java applications running
on your servers and desktop systems, putting Java in small devices eliminates the use
of another language in your development environment. Furthermore, it may also lead
to some code reuse opportunities.

1.5.2 Java’s beneficial features

Java has a lot to offer. Beyond Javas platform independence, it has a number of fea-
tures that make it an attractive programming language. These features make Java a likely
candidate for software applications regardless of the size or shape of the target platform.

Secure

Security was a concern to the designers and developers of Java from the beginning.
Even in the development of a programming language initially intended for consumer
electronic devices, the developers knew that these devices were going to be networked
and therefore vulnerable to malicious attacks from other systems on the network. As
Java came to be the programming language of the Web, and because security was
built into Java from the beginning, it is well suited to address the security issues asso-
ciated with the Internet.

Reliable

Javas reliability stems from not having to manage some of the lower-level resources
such as memory and pointers. Developers are then able to manage information as an
object or set of objects, in a manner more akin to how it is done in the real world.
Low-level resources like pointers tend to be the often forgotten, memory-busting pro-
gramming items that cause memory leaks and inadvertent memory access in software
applications. Java places the burden of managing references to memory on a garbage
collection system where these memory references will be more methodically main-
tained than in languages such as C++ where the burden is on the programmer.

Object-oriented

Java is considered a true object-oriented language. Why is being an object-oriented
language important? For starters, object-oriented applications are considered easier to
build and maintain. This is because object-oriented programming structures actively
encourage developers to organize applications into easy-to-understand, manageable
pieces. Large complicated applications are then tackled by assembling many smaller
and more digestible pieces. These pieces or, more appropriately objects, contain both

THE CASE FOR JAVA 13

14

behavior and data. Keeping the data and the behavior in an object helps insure that
only the code responsible for the data can change the data.

Finally, objects, as representations of things in the real world, tend to allow more
people to take part and understand the inner workings of the application. In other
words, objects tend to be self-documenting in nature. A businessperson may not
understand what a two-page function or procedure does, but he or she may have a
pretty good idea of what a Savi ngs_Account object does.

Free

Everyone likes free stuff. Programmers and managers of programmers are no excep-
tion. The basic Java development and runtime environments are free. A reference imple-
mentation of the J2ME and set of development tools are available from Sun’s Java
web site (www.java.sun.com).

This is not to say that all Java development and runtime environments are free. Sun
maintains control of Java. They offer the basic reference implementations, develop-
ment tools, class API, and runtime environment for free. However, should you require
features outside of the basic environment, you may find yourself outside of the free
license agreements. Furthermore, integrated development environments (IDE), server
systems, test tools, and a myriad of other tools and products that a development team
may want to have in order to make themselves more productive and provide a better
quality product are usually not free. The important point, though, is that learning the
language, and developing your first application in Java costs little or nothing.

Simple

Java is simple. This statement always troubles us a bit and bears a little explaining.
Java is simple in that if you are familiar with almost any other object-oriented pro-
gramming language, Java’s syntax will seem relatively straightforward and easy to
learn. Java's syntax is closely aligned with C++ and includes many of the beneficial
features found in other programming languages. The off-hand comment by many
experienced programmers is that Java is C++ done right. For example, Java is statically
typed. This allows the compiler to catch many coding errors. Also, memory and gar-
bage collection are handled by the Java virtual machine. This capability is usually
music to the ears of anyone who has spent many a late night trying to find a memory
leak in a C++ or C program. These features of course come at a price, which includes
the cost of running the application inside of a virtual machine.

What is not so simple about Java are the nuances of object-oriented development,
the multitude of pre-built Java classes that are available with even the most basic of
Java environments, understanding the features and aspects of Java that make it per-
form well or poorly, and many other aspects of Java that make mastering it more of
a lengthy project. So, take the claims of simplicity with a grain of salt and base them
on your own personal background and experience.

CHAPTER 1 INTRODUCTION

1.6

16.1

Other useful features

There are many features that make Java an ideal programming language. Some of the
reasons may or may not apply to your given application needs. Multi-threading,
exception/error handling, dynamic binding, and performance are just some of the
additional reasons why Java is a good programming environment.

Many of the positive features associated with Java originate from the language’s
beginnings. Throughout its history, Java has expanded to more platforms and envi-
ronments. Ironically, as has already been alluded to, Java started as a programming
language for consumer electronic devices.

ORIGINS OF J2ME

There was a time when “Java”’ was known as a nickname for the favorite morning drink.
For anyone else familiar with or engaged in software development, it’s hard to image
that the term “Java” has another meaning that is not inexorably tied to today’s most
popular programming language. Java has become one of the most popular solutions
in the holster of “silver bullets” that many of today’s software developers use in creat-
ing Internet, e-commerce, enterprise-wide and mission critical applications. How did
Java come into being? You might find it interesting that Java did not start out as the
programming language to control the Internet. Java had humble beginnings that
started with small things, namely consumer electronics. In the last few years, Java has
had a rebirth of sorts to address the software needs of a burgeoning set of personal
computing devices coming to the world marketplace.

Java’s origins

Java was born in the early 1990%. It was initially called Oak and it was developed for a
project that was attempting to develop a set of networked consumer electronic devices
that could be programmed from a handheld device similar to a personal digital assistant.
At the time, no single programming language was available to address the software
needs of the various digitally controlled consumer devices such as televisions, video
recorders and disc players, etc. Thus Java had humble beginnings as a means to network
and program home entertainment equipment. In a way, early J2ME was the start of the
whole Java effort.

Oak, renamed Java after it was discovered that another programming language was
already called Oak, saw new life and an expanded role in software development as the
Internet began to emerge in the mid-1990s. The requirement, born of the Internet
age, for reliable and secure software applications that could be written once for an
undetermined number of potential computer systems fit perfectly with Java’s original
design for consumer electronic devices. With a foothold in its use for the Internet and
the World Wide Web and a renewed reason for being, Java expanded to serve in almost
every nook and cranny of current software development. Its versatility, many features,
and, of course, platform independence have made Java a major component of modern
software technology.

ORIGINS OF J2ME 15

16.2

1.7

171

16

The return of Java in small devices

Throughout Java’s history, Sun and other organizations have used Java in many sizes
and shapes of computing devices. However, special attention and focus for using Java
on small and often personal computing devices was not organized (and guided by
specification) until the late 1990s. As more powerful computing and communication
devices have recently been packed into smaller and more personal computing devices,
a renewed interest has been placed in Java for these systems. In June of 1999, at the
1999 JavaOne conference, Sun introduced the three platform editions of Java: the J2SE,
J2EE, and J2ME. As part of its unveiling of J2ME, Sun also introduced the first
J2ME virtual machine, namely a preview version of the KVM or K Virtual Machine.
The official return of Java in small devices was complete.

For a more detailed look at Java’s history and evolution and J2ME’s place in this
history, we encourage the interested reader to visit appendix C.

THE J2ME COMMUNITY

It should come as little surprise that some of the biggest supporters of J2ME technol-
ogy are the manufacturers of small devices like cell phones, pagers, and PDAs such as
Motorola, Ericsson, Nokia, Research In Motion, Palm, Siemens, and others. Sup-
porters also include members of the home, office and automobile electronics manu-
facturers such as Fujitsu, Hitachi, Matsushita (Panasonic), Mitsubishi, Samsung,
Sharp, and SONY. Traditional software vendors like Oracle are also participating.

Many of these organizations have directly participated in one or more of the var-
ious JCP expert groups that developed or revised the numerous J2ME specifications.
Others have endorsed and supported J2ME specifications by adopting J2ME technol-
ogy in many of their product offerings.

J2ME is not the only game in town. Companies such as IBM and Hewlett-Packard
have developed their own Java environments for smaller and embedded devices. While
these companies may be developing competing Java products, it is clear that all of these
organizations see the benefit of bringing Java to the consumer electronic and embed-
ded device platform.

J2ME’s guiding light, the Java Community Process

Supporters of J2ME participate in the improvement and advancement of specifications
through the Java Community Process. We briefly mentioned the Java Community Pro-
cess (JCP) earlier in this chapter. It is a formal process established by Sun Microsystems
to develop and revise Java technology specifications in cooperation with the Java user com-
munity. Each specification developed in the JCP must go through a well-defined process.

The process starts with a request from the Java community at large to develop a
new specification or revise an existing specification. The request can then be accepted
or rejected by Sun’s Process Management Office.

If accepted, the Process Management Office forms an expert group to work on the
specification. This group develops a participant’s draft specification. The expert group

CHAPTER 1 INTRODUCTION

reviews and refines their draft for a period of time and then promotes the draft to that
of public draft. The public draft is then opened to the Java community at large for
public review and comment. On sufficient review and updates to the public draft, the
Process Management Office will promote the draft to that of final release of a speci-
fication, post the release, and disband the expert group. At this time, a specification
enters maintenance. Various portions of J2ME stand in all phases of this process. As
you become more involved in J2ME or Java development, following (or maybe even
participating in) the JCP becomes a professional routine.

1.8 J2ME PRODUCTS AND ALTERNATIVES

While Sun has led many of the developments in Java, it does not have a lock on the
technology. This is perhaps most evident in the world of small consumer electronics
and embedded devices where other organizations have made products available before
J2ME was released.

J2ME is not an implementation but rather a specification (or more precisely a series
of specifications). Sun has implementations of some of the specifications, but so do other
organizations. Why offer another implementation of J2ME? Well, Sun has not always
been the best implementer of the specifications that they have fostered and led. For
example, it is generally considered throughout the Java community that IBM provides
amuch faster and superior Java compiler called Jikes. Likewise, other organizations are
building Java virtual machines and APIs that satisfy the J2ME specifications but which
have smaller footprints and better performance than the SUN implementations.

There are other Java competitors to J2ME that run in the same general environ-
ment, but do not comply with J2ME specifications. Discounting Sun’s early efforts
with Java on consumer electronics, J2ME is a very young technology. It also addresses
a very difficult problem. Namely, this problem is how to write software in a single pro-
gramming language for devices as diverse as a pager and a television set-top box. Other
organizations have decided to focus on providing Java to a less diverse set of target
devices. Still other organizations have taken an approach that allows developers to use
the Java programming language without removing concerns over target device pecu-
liarities. In other words, they are placing more responsibility on the programmer to
insure applications are truly platform-independent.

Of course, another alternative to J2ME is not using Java at all, but instead using
another programming language such as C/C++ or using a device manufacturers pro-
vided in a software development kit. We have already discussed the issues associated
with using and not using Java. In general, Java provides the degree of platform inde-
pendence that is important to software producers for a wide range of devices. Platform
independence may not, however, be important to single-device developers, in which
case using another programming language may not only be a valid choice but may be
preferred. In chapter 15, we examine technologies that compete with J2ME, and tech-
nologies that play a supporting and ancillary role to J2ME.

J2ME PRODUCTS AND ALTERNATIVES 17

1.9

18

SUMMARY

In this chapter, we introduced and defined J2ME. As J2ME is also a part of Sun
Microsystems’s entire Java 2 platform, Sun has positioned J2ME with relation to the
other Java 2 editions, namely J2SE and J2EE. We also looked at why another edition
of Java is necessary and what Java has to offer to developers of software for consumer
electronics and embedded devices. Through an examination of Java and J2ME’s his-
tory, we saw that Java has really come home again to the small device as Java was ini-
tially intended to help bridge common software needs in the consumer electronics
market. The JCP has played an instrumental role in organizing the Java community
in efforts to improve and advance not only J2ME, but all of the various Java technol-
ogies and APIs. In order to help specify where J2ME is actually used, we provided our
definition of the “small device” which roughly ranges noninclusively between the
smart card and a laptop computer. Finally, we closed this chapter with some discus-
sion on J2ME’s relationship to terms such as wireless and mobile as well as to J2ME
products.

Many of the topics mentioned in this chapter will be addressed in more detail
throughout this book. In the next chapter, we look at the organization and structure,
commonly termed the architecture, of J2ME.

CHAPTER 1 INTRODUCTION

2.1

2

J2ZME architecture

2.1 Goals of the J2ME architecture 19 2.6 Write once, run anywhere issues 35
2.2 Accommodating opposing needs 21 2.7 Runtime environment 36

2.3 Configurations: a closer look 24 2.8 Designing J2ME applications 36
2.4 Profiles: a closer look 29 2.9 Summary 38

2.5 Choosing a J2ME profile 31

In this chapter you will be introduced to the fundamental pieces that make up J2ME.
These include configurations, profiles, and virtual machines. However, before delving
into these pieces of the architecture, let us first discuss the goals of the J2ME architecture.

GOALS OF THE J2ME ARCHITECTURE

J2ME has a much different set of goals when compared to J2SE and J2EE, resulting
in a much different architecture. The following is a summary of key goals driving the
J2ME architecture:

* Provide support to a variety of devices with different capabilities. These devices
often vary in the areas of user interface, data storage, network connectivity and
bandwidth, memory budgets, power consumption, security, and deployment
requirements.

 Provide an architecture that can be optimized for small spaces and have a
smaller footprint.

« Focus on devices that can be highly personalized, often used by a single person.

19

211

2.1.2

20

= Provide network connectivity across a varied range of networking capabilities
and services. Network connectivity is often vital to devices in the J2ME space
and their capabilities range from low bandwidth, wireless, and intermittent con-
nections to high-fidelity, high-bandwidth connections.

« Provide an optimized means for delivering applications and data over a network
connection. Often the network is the preferred method of delivering J2ME
applications to devices. Applications must have the ability to be installed on the
device or loaded directly into memory and discarded after execution.

» Maximize cross-platform capabilities of the Java language while taking advan-
tage of each device’s unique capabilities and constraints.

» Maximize flexibility and provide a means to support a rapidly changing market-
place and adapt to existing and unforeseen applications.

« Provide a means for third-party developers to write and deploy applications to J2ME-
supported devices independent of the Original Equipment Manufacturer (OEM).

= Provide a means to scale applications across devices with different capabilities,
features, and processing abilities.

In the sections that follow we take a closer look at a few of these goals.

Support for multiple devices

Support for multiple devices is a goal that has greatly influenced the J2ME architec-
ture. In the J2ME space devices range from cell phones, that may have as little as
160kB of memory and are powered by batteries, all the way up to TV set-top boxes
that are nearly as powerful as a desktop computer and plug into the wall. Unlike the
J2SE and J2EE architectures, which are designed with desktop and server computers
in mind, the J2ME architecture must be flexible and malleable enough to accommo-
date the constraints and unique features of smaller consumer electronics devices while
not imposing unnecessary restrictions on more powerful devices and Internet appliances.

A key goal that comes with supporting multiple device types is allowing for port-
ability between devices. To this end, J2ME identifies core Java features that need to be
available on all platforms. These features include classes fromj ava. | ang,j ava. uti |
and j ava. i o. However, it is important to note that in some cases J2ME supports
only a subset of the classes and methods of these packages as core functionality found
on all J2ME platforms.

Support for device-specific functionality

Flexibility is another goal that significantly influences the J2ME architecture. Con-
sumer electronic devices and Internet appliances often cater to specific uses rather
than serve as a general-purpose computational machine. For example, a cell phone
serves a different purpose than, say a Java-enabled exercise bicycle. An onboard car
navigation system may need to use global satellite positioning technology to perform
its tasks whereas a Java-enabled TV set-top box would make little use of such capabil-

CHAPTER 2 J2ME ARCHITECTURE

ities. In addition to performing more specific roles, the devices themselves tend to be
very personalized. A cell phone is likely to be used by only one person. PDAs tend to
store information specific to the person who owns the device. A TV is typically used
by a family or small group of people for specific activities.

The modularity of the J2ME architecture is a good example of how J2ME accom-
modates flexibility. Unlike J2SE that provides a rich feature set as a single group,
J2ME provides a means for partitioning these capabilities into independent units of
functionality. Let us examine the use of RMI (Remote Method Invocation) as an
example. A cellular phone may be significantly more limited in terms of memory, pro-
cessing power, and so forth than a communicator class PDA such as an iPag. Due to
the cellular phone limitations, it may not be practical or feasible to use RMI within
an application. Furthermore, to reduce the footprint of the J2ME libraries, it is not
desirable to require that RMI features be present in the cellular phone’s installation of
J2ME. However, since a more powerful device would be able to handle the demands
of RMI, should an application choose to use such features, there needs to be a way to
accommodate this situation as well. For reasons such as this, J2ME has partitioned
Java functionality into various groups to allow different devices to require and support
different features of Java as they apply to each device. This helps optimize Java for spe-
cific devices without restricting capabilities.

2.1.3 Maintaining a common architecture

So you may be asking, why maintain a common architecture? Would it not be easier
to build a different Java edition to cater to each of these goals?

The answer to this question brings us back to portability and flexibility. A common
architecture across different devices provides a foundation that allows applications to
be more easily ported, if not directly deployable, across devices. Supporting multiple,
device-specific architectures would make porting applications between even the most
similar devices difficult and expensive to support.

Assingle, flexible architecture is more cost-effective to maintain than multiple, special
purpose architectures that cater to one or a few devices. A common architecture takes
advantage of the similarities between devices and allows reuse across applications. In
the case where different devices require different capabilities to be supported, the com-
mon architecture can be extended or configured to cater to the specific functionality.

In addition to being portable and maintainable, J2ME needs to be extendible.
As new devices come onto the market, J2ME needs to be able to quickly adapt and
support these devices.

2.2 ACCOMMODATING OPPOSING NEEDS

One of the key problems that the J2ME architecture attempts to solve is how to sup-
port a wide range of devices with different constraints, capabilities, features, and
intended uses without introducing limitations on any specific device.

ACCOMMODATING OPPOSING NEEDS 21

221

22

One solution might be to create a large, monolithic architecture that includes
everything any application would ever need on any given device. However, such an
architecture would be too large in terms of memory footprint for some of the smaller
devices J2ME is intended to support, such as a two-way pager or a cell phone.

Another solution might be to identify a common denominator of functionality
that applies to all devices in the J2ME space. The problem with this approach is that
powerful devices then become as limited as the smallest devices. Furthermore, the
unique features of devices cannot be adequately supported. In fact, this approach begs
the question: does a least common denominator exist between devices such as a Java-
enabled dishwasher and a cell phone or between a PDA and an Internet TV set-top
box? To a large extent, this is why the J2ME architecture has come to be; it defines a
common approach that addresses how to support many devices without limiting their
feature sets.

Configurations and profiles

J2ME introduces two architectural concepts: configurations and profiles. Configura-
tions make up the set of low-level APIs that define the runtime characteristics of a
particular J2ME environment. Specifically, configurations are responsible for defin-
ing the following:

» Core Java classes
« Java programming language features
» Virtual machine features

Profiles address the more device-specific and use-specific APIs such as the widgets for
the user interface, the data storage mechanisms and other more device-specific fea-
tures such as the use of IR (infra-red) ports for beaming information between PDAs
or accessing telephony features of a cell phone.

Configurations and profiles provide a separation of concern in the J2ME architec-
ture between the need for portability and the need for supporting a wide range of
devices and capabilities. Configurations serve to increase portability across many dif-
ferent devices while profiles cater to the features of a specific device or a group of sim-
ilar devices. For example, configurations include core Java features such as String,
System, Thread, and Obiject, as well as means for dealing with 1/O streams and net-
work connectivity. Profiles cater to device characteristics such as user interface widgets,
event handling, and data storage. Profiles also provide a means to package specific sets
of functionality such as multimedia capabilities or video game features.

An important characteristic of configurations is that they share a nested relation-
ship. This means that configurations can be small or large but they all must fit within
the largest J2ME configuration. Their relationship must always be a superset-subset
relationship. This concept is illustrated in figure 2.1

CHAPTER 2 J2ME ARCHITECTURE

222

Figure 2.1

Configurations adhere to a nested
Configuration 2 relationship. This means that all
configurations in the J2ME
architecture conform to a superset-
subset arrangement. This increases
portability when moving from a more
constrained configuration to a more
feature-rich configuration.

Configuration 1

The nested relationship of configurations allows for greater portability. Portability is
maximized when moving from the more constrained environments to the larger,
more feature-rich environments. For example, if an application was developed for a
cellular phone using Configuration 1, it may be desirable to make that application
available to devices running Configuration 2 as well.

Device manufacturers must adhere to the configuration specification when imple-
menting or porting J2ME virtual machines and configurations to their platform to be
J2ME-compliant. This compliance allows for portability across different manufac-
turer devices as well as between types of devices. This is an example of the Write Once,
Run Anywhere (WORA) capabilities of the J2ME architecture. For example, a 2ME
cell phone application can be deployed to any J2ME-compliant cell phone with little
or no modification. Attempting this with proprietary C libraries or even proprietary
Java APIs would mean porting the application to each manufacturer’s cell phone since
each cell phone is likely to have a different, often proprietary, operating system. Put
simply, the WORA capabilities of J2ME begin with the Java programming language
and are realized through the J2ME architecture. We’'ll take a closer look at WORA in
section 2.8.

A high-level view of J2ME

A complete J2ME environment is composed of one configuration and one or more
profiles. Since these two architectural concepts can be mixed around and rearranged
given a particular need, the J2ME architecture becomes malleable enough to support
the diverse needs of the J2ME space.

J2ME employs different versions of the Java Virtual Machine based on the needs
of a particular situation. The configuration specifications define the characteristics of
the J2ME virtual machines. In most cases, this involves removing features of the Java
Virtual Machine in order to accommodate the needs of a configuration. The removal
of features generally has to do with reducing the size of the virtual machine, or with
performance and security issues on a particular class of devices.

The virtual machine is the component that sits logically above the host operating
system. The configuration and profile APIs access the host operating system APIs
through the virtual machine. In a nutshell, these are the components that make up the
J2ME architecture. Figure 2.2 illustrates how they fit together.

ACCOMMODATING OPPOSING NEEDS 23

2.3

24

Profile 1 || Profile 2 || Profile n Figure 2.2
The building blocks of J2ME. The J2ME
Configuration environment consists of a virtual machine, a
—F+—+F — L | configuration and one or more profiles. The

Java Virtual Machine virtual machine defines the contract between

the configuration and the native operating
Host Operating System system. Profiles define the contract between

an application and the J2ME environment.

CONFIGURATIONS: A CLOSER LOOK

Configurations are specifications within the J2ME architecture that are defined by an
expert group using the Java Community Process (JCP). Configuration specifications
are created in cooperation with many industry participants.

At present, J2ME defines two configurations:

« Connected Limited Device Configuration (CLDC)
= Connected Device Configuration (CDC)

The CLDC addresses the needs of devices with strict limitations as far as memory,
processing power, power consumption, and network connectivity. The CDC addresses
the needs of more powerful devices. Figure 2.3 illustrates the relationship between the
CDC and the CLDC.

J2ME

Figure 2.3

\ Due to the nested relationship
between configurations, portability
can be greatly enhanced when
moving from a more constrained

/ environment to a more feature-rich
environment. However, it is
important to remember that J22ME

= defines some APIs that are not
Portability present in J2SE.

Configurations define the contract between a profile and the Java Virtual Machine.
Recall that profiles provide device- and use-specific APIs. As we mentioned, both the
CDC and the CLDC configurations have their own virtual machines. The CDC uses
the C-Virtual Machine (CVM) and the CLDC uses what is referred to as the Kilo-
byte Virtual Machine (KVM). The implementation of a J2ME virtual machine must
adhere to the specifications defined by the configuration. In the case of the KVM,
functionality is explicitly removed in order to accommodate the strict memory
requirements of the CLDC. Table 2.1 illustrates the relationship between configura-
tions and virtual machines, and provides examples of candidate devices.

CHAPTER 2 J2ME ARCHITECTURE

Table 2.1 Configurations, Virtual Machines and some example devices

Configuration Virtual Machine Example devices

CDC CVM Pocket PCs
Communicator class devices
TV set-top boxes

CLDC KVM Cellular phones
PDAs
Two-way pagers

The next few sections discuss the details of the configurations and their associated
virtual machines.

2.3.1 Connected Limited Device Configuration (CLDC)

The primary goal of this configuration is to provide a minimum footprint with a low-
est common denominator of functionality available to resource-constrained devices.
The CLDC specification can be found at java.sun.com/products/cldc.

A resource-constrained device in this case has the following characteristics:
» 160kB to 512kB of total memory available for the Java environment.

- Either a 16-bit or 32-bit processor.

» Low power consumption. Often these devices are battery-powered.

= Supports some type of connectivity to a network. Most likely this is an intermit-
tent, low-bandwidth connection of about 9600 bps and often wireless.

The CLDC is based on J2SE but omits some functionality. The CLDC was created
by starting with a clean slate and adding only what is necessary based on the follow-
ing criteria:

« Is the functionality appropriate for these types of devices?

= Does the functionality require a large amount of binary code space or consume
a lot of resources such as memory and CPU cycles?

» Can developers easily recreate the functionality if necessary? This applies to
alternate method signatures as well as whole classes.

Do these devices generally support the functionality?

« Are there security risks regarding the functionality on a constrained device?
To meet the small footprint requirements, the CLDC removes a number of features
that are available in the J2SE environment. The following is a concise listing of fea-
tures that have been removed from or modified for the CLDC environment.

- Java Native Interface (JNI)

 User-defined class loaders

« Reflection

CONFIGURATIONS: A CLOSER LOOK 25

26

Thread groups and daemon threads

Finalization

Weak references

Floating point data types (float and double)

Some security features and APIs

Class file verification (modified for efficiency)

Some error handling limitations (not all exceptions are included)

Reductions in favor of memory and processing power

All of the preceding features fall into this category to some degree since removing
them reduces the overall size of the APl. However, some of these features have been
removed explicitly due to a memory or processing power expense. Floating point data
types are such an example. The expert group that defined the CLDC determined
floating point arithmetic was too expensive in terms of code size and processing
power to implement on the CLDC. This determination is also partly drawn from the
fact that many CLDC devices do not support floating point operations to begin with.
In these situations, floating point support would need to be implemented entirely
within the virtual machine since there are no guarantees that a native API would be
available to handle floating point operations.

Class file verification is another example of how the CLDC has been altered from
the J2SE environment to more effectively support limited devices. The processing
power required to perform class file verification entirely on the device would be sub-
stantial. Supporting this feature in the way J2SE does would substantially increase the
size of the virtual machine as well. As a result, class file verification takes place in two
steps when using the CLDC. The first step is called preverification. This takes place
off of the device, on the server or on the developer’s workstation before deployment.
The second step takes place on the device. Since preverification was performed prior to
the class being loaded onto the device, the on-device verification can be much simpler
and lightweight. CLDC class file verification is discussed in more detail in a moment.

Reductions due to security issues

A number of the reductions in the CLDC specification come from the fact that the
CLDC does not define the full Java security model. In the absence of a full security
model, some features of the J2SE environment become a potential security risk. Secu-
rity issues are mainly behind the removal of JNI, user-defined class loaders and reflec-
tion. However, these features do potentially consume their share of memory and
processing power as well.

For example, without a full security model, a user-defined class loader could alter how
the classpath is traversed. In doing so, an application could theoretically replace pieces of
the core Java libraries and gain access to the device in a way that could harm the device.

CHAPTER 2 J2ME ARCHITECTURE

2.3.2

Reductions of convenience classes and methods

The size of the CLDC is further reduced by eliminating classes that developers, if
needed, could recreate. Thr eadG oup is one such example since it is essentially a col-
lection of Thr eads. Developers could create a crude version of Thr eadG oup using
a Vect or, for example.

Methods were removed in cases where multiple method signatures were introduced
for convenience. For example, in J2SE, the String class defines the methods
equal s(String) andequal sl gnor eCase(Stri ng). This functionality can be
accomplished by executing either the t oLower Case() or toUpper Case() method
(which are both present in the CLDC) on each string before performing
equal s(String).

Furthermore, there are some classes and methods that do not apply to the CLDC.
Thejava. i o. Fi | e class is an example. The CLDC environment does not directly
support the concept of a file system. This is because many of the devices that the
CLDC targets do not have a file system. Instead, the CLDC relies on the storage facil-
ity of the device itself. These storage facilities are highly device-specific and are left for
the profiles to define. Often devices in the CLDC space have nothing more than sim-
ple byte arrays for persistent storage.

Other reductions

Features such as finalization and weak references have been removed from the CLDC
primarily because these features are not fully utilized or necessary.

Finalization is intended to be used to clean up resources used by a particular object
upon garbage collection. In practice, however, relying on finalization to clean up after
objects is unreliable and can become dangerous. Finalization is linked to garbage col-
lection. An object’s fi nal i ze() method runs just prior to the object being freed
from memory. Garbage collection is non-deterministic. We never know when or if it is
going to run. Even when garbage collection is explicitly requested using Syst em gc(),
the garbage collector does not immediately run. The call to Syst em gc() simply
requests garbage collection as soon as possible. This may never occur if other threads
take priority. As a result, a resource such as a database connection or an 1/O stream
will be tied up as the object that used the resource awaits garbage collection. Further-
more, by default in the J2SE environment, finalization does not occur during the vir-
tual machine shutdown process. Thus, object finalization may never occur for an
object. Since this feature is unreliable and should be avoided in the J2SE environment
it did not make sense to include it in the CLDC environment.

The Kilobyte Virtual Machine (KVM)

The KVM adheres to the Java Virtual Machine Specification (Lindholm and Yellin) as
much as possible. However, the capabilities of the K\VM are defined by and large by the
CLDC specification. The KVM differs from the Java Virtual Machine Specification
only when the CLDC requires or allows this to happen for optimization or API support

CONFIGURATIONS: A CLOSER LOOK 27

2.3.3

28

reasons. For example, often float and double are not supported by devices in the CLDC
space. As a result, the creators of the CLDC decided that these data types were too expen-
sive to implement on devices that, for the most part, do not support them. As a result,
float and double are not supported by the CLDC and are not recognized by the KVM.

The KVM requires a small footprint on the device, between 40kB and 80kB
depending on compile options and the target platform. This allows the KVM to run
on devices with as little as 128kB of total memory. The KVM was developed from the
ground up in C and is designed to be as complete and fast as possible, running at 30%
to 80% the speed of the standard JVM, without a JIT (just-in-time compiler).

NOTE The KVM reference implementation that is provided with the CLDC is
just one implementation of a CLDC-compliant virtual machine. Equip-
ment manufacturers have the option to port the KVM to their devices or
to build their own virtual machine that supports the CLDC specification.

Class file verification

The standard Java virtual machines perform a process at runtime called class file veri-
fication. This process occurs before loading any class into memaory in order to ensure
both that the class is a valid Java class file and that it is considered

to be “well-behaved,” in that it does not attempt to access memory outside of its
defined namespace, does not replace any of the core j ava. * and j avax. * packages,
and so forth. Class file verification plays an important role in the Java security model.

In terms of CLDC devices, class file verification tends to be a rather resource-inten-
sive operation and uses a significant amount of processing power, memory, and binary
code space. As a result, the KVM defines class file verification differently than the stan-
dard Java Virtual Machines.

In order to reduce the KVM footprint, much of the class file verification process
takes place outside the KVM and off of the device. Before the class is deployed to a
device the class is modified by a pr everi fy utility. The preveri f y utility mod-
ifies the class file generated by the j avac compiler, adding byte codes that identify
the class as a valid, verified class file. At runtime the KVM checks for these flags. If
the flags are not present or do not contain the correct information, the class loading
process is aborted, which results in an exception being thrown.

Connected Device Configuration (CDC)

The CDC is the second of the two configurations currently defined within J2ME,
and it addresses devices and network appliances with more resources than CLDC
devices. The CDC runs on a C-Virtual Machine (CVM) that is fully compliant with
the Java Virtual Machine Specification. The CDC profile targets devices with as little
as 512kB of memory; however, it is designed for platforms with about 2 MB of avail-
able memory. Typically, the devices in this category have substantial processing
power, they often can be plugged into the wall, and they support rich networking
capabilities such as high-bandwidth connections and high-fidelity Web content.

CHAPTER 2 J2ME ARCHITECTURE

234 C-Virtual Machine (CVM)

Although the CVM adheres to the Java Virtual Machine Specification (Lindholm
and Yellin) completely, its implementation is different than J2SE virtual machines in
that it is optimized for devices and network appliances. The garbage collection algo-
rithms are completely separate from the virtual machine allowing different garbage
collector algorithms to be plugged into the CVM. The reference implementation
employs a generational garbage collector that uses shorter garbage collection periods
that do not tie up the virtual machine for long periods of time. Garbage collection
runs for shorter periods of time more frequently. The garbage collector is more exact,
knowing about all pointers at the time of garbage collecting so there is no need to
consume extra processing cycles with conservative scans of the heap.

To increase portability between platforms, the reference implementation defines
multithreading completely inside of the virtual machine. Threads that are imple-
mented inside of the virtual machine are called “green threads.” Using green threads
allows the VM to be more portable since there are no multithreading operating system
dependencies. However, the option to employ native threads is possible if a manufac-
turer or vender chooses to implement this on their target platform.

Class file verification takes place on the device, just as in the J2SE environment.
There is no preverification step when using the CDC.

2.4 PROFILES: A CLOSER LOOK

Profiles provide APIs that focus on a single device, such as a PDA, or a group of related
devices such as cell phones and pagers. The devices supported by a particular profile
tend to have much in common in terms of how the device is used, what the user
interface capabilities are, how or if the device connects to a network, how the device
stores data, and so forth. Profiles are vertical in nature and are designed to meet the
needs of a particular industry or market segment. Profiles address the most specific
behavior available in the J2ME architecture.

What is a profile, really? Is a profile a conceptual definition defined by a specifi-
cation or is it software? This is a subtle but important point. Profiles are created by
many participants through Sun’s Java Community Process (JCP). The output of the
JCP in this case is not software so much as it is the specification. Although the JCP
expert group often provides reference implementations of the specifications, it is up
to the equipment manufacturer to provide a device-specific implementation of the
profile that adheres to the specification on the device. The device manufacturer can
choose to port the reference implementation provided by Sun or it can create its own
implementation that adheres to the specification.

Just as a configuration defines the contract between the profile and the VM, a pro-
file is what defines the contract between the device and your application. For a device
manufacturer to support a profile, all APIs and features specified by the profile must
be supported completely.

PROFILES: A CLOSER LOOK 29

241

242

30

NOTE Profile specifications, as well as configuration specifications, may have op-
tional requirements. In these cases, vendors have the option to include or
exclude parts of a profile. To ensure maximum portability for a profile it is
important to understand what features are mandatory and what features are
optional. In general, there are relatively few, if any, optional features in
most profile specifications.

Often, profiles are thought to complete a toolkit for development since it is the profile
specifications that name the family of devices. Profiles also name a configuration that
they base themselves on which indicates the runtime environment characteristics.

Defining profiles helps to ensure compatibility between all devices that support the
particular profile. For example, writing a J2ME application using a particular profile
means the application should run, without modification, on any device supporting
that profile.

Two types of profiles

Typically, profiles provide the user interface, input methods, and persistence mecha-
nisms for a given vertical group of devices. These types of profiles are thought to define
a complete development environment for a specific set of devices and therefore can be
considered device profiles. The profiles discussed so far fall into this category since
they support specific device capabilities.

However, profiles can be created to fulfill more specific services or capabilities.
Examples of these types of profiles might include a Remote Method Invocation (RMI)
profile or a multimedia profile. This type profile could also encapsulate services for a
particular market segment, such as uniform bank transactions. These profiles can be
thought of as feature-oriented profiles. The advantage to encapsulating specific ser-
vices and capabilities as profiles is that doing so allows these features to be easily reused
across devices. It also provides modularity and flexibility by allowing device manufac-
turers to choose which features are necessary or most important.

Profiles are modular

A device may support more than one profile depending on the needs and capabilities
of the device and what the manufacturer chooses to support. Profiles bring modular-
ity into the J2ME architecture, addressing specific needs and functionality. For exam-
ple, consider three devices: a cell phone, a PDA, and a set-top box. Assume they all
support the ability to make credit card purchases over the Internet. Most likely the
device-specific APIs would be addressed by three different profiles due to the user
interface needs and other device-specific features. However, all three devices could
support the same secure credit card transaction profile. Due to the specific nature of
profiles and their modularity we can expect to see a large number of profiles created
for specific needs as we move into the future.

So how can profiles be modular and support all the necessary device-specific APIs
without becoming monolithic or introducing redundancies across the class libraries of

CHAPTER 2 J2ME ARCHITECTURE

2.4.3

2.5

different profiles? Quite simply, a single profile or set of profiles does not make a com-
plete J2ME environment. Profiles simply address specific features. Underneath the pro-
files, providing the core Java support, are configurations and the Java Virtual Machine.

J2ME profiles extend J2ME configurations

A configuration is identified in the specification of a profile as this impacts the range
of capabilities or devices that the profile intends to support. Once a profile specifica-
tion names a configuration, the profile implementation must stay within the bounds
of the configuration. In the case of figure 2.4, a profile built on top of Configuration 1
cannot use any APIs or functionality defined outside the Configuration 1 circle.

Figure 2.4

The nested relationship of configu-
rations allow for increased compat-
ibility within the J2ME architecture.
Since configurations are nested,
applications can be moved from

a more limited environment, such
as Configuration 1, to the more
feature-rich environment of Con-
figuration 2 without needing to
alter, change or lose functionality.

Configuration 2

Configuration 1

However, due to the nested architecture of configurations, profiles that run on Con-
figuration 1 will also run on Configuration 2 (provided there is a device that supports
these profile-configuration combinations). In this sense, configurations are upwardly
compatible. Downward compatibility requires more architectural thought and tech-
nique on the part of the application designer.

CHOOSING A J2ME PROFILE

Choosing the correct profile or set of profiles is one of the more important decisions
that is made when creating applications using J2ME. This is because, conceptually,
the profile is the part of the J2ME architecture that is closest to the devices them-
selves. Once you have an understanding of the devices that need to be supported, you
can choose a profile or set of profiles. Choosing a profile depends on what the target
devices support and what you need to do.

There are an increasing number of profiles in development. The Mobile Informa-
tion Device Profile (MIDP) is one of the better known, since it is the first 2ME pro-
file to have been released through the Java Community Process. In addition to the
official J2ME profiles, there is one API that deserves some attention. The API is
known as KJava and was developed by Sun Microsystems to test and demonstrate the
CLDC. Table 2.2 summarizes the compete set of J2ME profiles, both existing and
under development.

CHOOSING A J2ME PROFILE 31

251

2.5.2

2.5.3

254

32

Table 2.2 Profiles currently defined for J2ME
Virtual

Profile Configuration/VM Machine Target Device Examples

MIDP CLDC KVM Cellular phones and two-way pagers

PDAP CLDC KVM PDAs

Foundation CDC CVM Primarily a foundation for Personal Profile
Personal CDC CVM Pocket PCs, tablets, communicator class devices
RMI CDC CVM Any

Personal Basis CDC CVM Any

Multimedia CDC/CLDC CVM/KVM Any

Gaming CDC/CLDC CVM/KVM Any

Telephony (WTCA) CDC/CLDC CVM/KVM Cellular phones

Mobile Information Device Profile (MIDP)

This is the first official profile released by Sun and it targets cellular phones and two-
way pagers. This profile has also been implemented to run on the Palm operating sys-
tem (Palm OS), making it available on devices supporting the Palm operating system.
Devices that implement this profile tend to be very personalized. Often the user of the
device is the only user. These devices also tend to have very constrained resources such
as a small screen for user interface display, limited data entry capability such as a “one-
handed” keypad, and limited data storage capabilities usually implemented as byte arrays.

The next version of MIDP (referred to as MIDP Next Generation) will address fea-
tures such as security and using HTTPS (Hypertext Transfer Protocol over Secure
Socket Layer), formal inclusion of over the air provisioning (OTA), push architecture,
enhanced user interface capabilities, a small and efficient XML parser, and a sound API.

Part 2 of this book discusses MIDP in great detail and provides examples for build-
ing J2ME application using MIDP.

PDA Profile (PDAP)

This profile specifically addresses the capabilities and needs of personal digital assis-
tants, particularly in the areas of data storage and user interface capabilities such as
PDA-style GUI widgets and touch screen event handling.

Foundation Profile

The Foundation Profile serves as a base for additional CDC profiles that provide
graphical user interface, data storage, distributed Java networking, and so forth. In
addition to its duties as a base profile, the Foundation profile provides rich network
support for high-bandwidth, high-fidelity connectivity devices. This profile is in-
tended to be used with other profiles to provide a rich application environment for
devices smaller than personal computers.

Personal Profile

The Personal Profile is the new home for many of the Personallava APIs. The Personal-
Java API, which targets pocket PCs, is being rearchitected so that it fits into the

CHAPTER 2 J2ME ARCHITECTURE

2.55

2.5.6

2.5.7

design of the J2ME architecture. Personallava will be divided into the CDC, the
Foundation Profile and the Personal Profile. Extensions of the Personal Profile
include JavaPhone and JavaTV APIs.

RMI Profile

The RMI Profile provides distributed support to applications in the CDC space. This
profile provides the infrastructure to marshal objects as the parameters and return val-
ues of remote method calls. Dynamic class loading is utilized to make the marshalled
objects available to a particular JVM during a remote call. The wire protocol JRMP
(Java Remote Method Protocol) is required to be supported. Implementations of the
RMI profile are required to support full RMI semantics as defined by the J2SE 1.3
specification with the following exceptions:

e RMI through firewalls

RMI multiplexing protocol
Activation-inactivation model

Support for the JDK 1.1 stub/skeleton protocol
Stub-skeleton compiler

The following packages are not part of the RMI Profile specification:

e java.rm .server.di sableHttp

e java.rm.activation. port

° java. rn .| oader. packagePrefi x

e java.rm .registry. packagePrefi x
° java.rm .server. packagePrefix

The specific exceptions listed cannot be added to a conforming implementation of
the RMI Profile.

Personal Basis Profile

This profile will provide a basic level of graphic capabilities to devices running the
CDC and Foundation Profile. This profile is intended to provide basic graphical user
interface capabilities in environments where the high-fidelity, feature-rich Personal
Profile is not fully utilized or necessary. This profile forms the basis for the Personal
Profile graphical capabilities.

Multimedia Profile

This profile targets the CLDC and CDC configurations to provide basic multimedia
support for sound and other media. Many of the ideas from the Java Media Framework
are included, but this profile is not compatible with the JMF. This API will provide
the means for controlling time-based media such as sound and video along with sam-
pling, streaming and synthetic audio capabilities. The profile is being designed for

CHOOSING A J2ME PROFILE 33

2.5.8

2.5.9

2.5.10

34

scalability, providing a set of basic services for more limited devices with a set of optional
features for more powerful devices.

The multimedia profile is designed as an optional profile to be used in conjunction
with other J2ME profiles.

Gaming Profile

This profile will provide gaming support for J2ME devices. The areas of focus
include 3D modeling and rendering, 3D physics modeling, 3D character animation,
2D rendering and video buffering, game marshalling and networked communication,
streaming media, sound, game controller support, and hardware access. The CDC is
the target environment for this profile; however, efforts are being made to provide
this profile across a wide range of devices. This profile is intended to be available to the
J2SE environments as well.
This is an optional profile designed for use with other J2ME profiles.

Wireless Telephony Communications APl (WTCA)

This specification will provide J2ME applications with a reusable set of components

supporting short message service (SMS), Unstructured Supplementary Service Data

(USSD), and Cell Broadcast Service (CBS). The SMS support will include APIs for

sending and receiving text messages, a method for sending and receiving data, the

ability to push applications to devices and an application trigger. USSD will be used

for exchanging data and CBS will allow applications to receive cell broadcast data.
This is an optional profile designed for use with other J2ME profiles.

KJava

The KJava API is not an official profile. It is a set of APIs originally provided by Sun
as a way of testing the CLDC on the Palm OS. However, some third-party develop-
ment tools have implemented commercial versions of KJava (such as esmertec’s Jbed).
The PDA Profile is the official profile

CLDC CcDC designed to address PDA device needs.
| VT | The J2ME architecture, as currently
ultimedia Protie planned, is illustrated by figure 2.5.

‘ Gaming Profile
T

‘ Wireless Telephony ‘

Personal Basis Profile

RMI Profile

MIDP Next Generation

Personal Profile

PDA Profile

Figure 2.5

Mobile Information This figure illustrates all of the
Device Profile (MIDP) Foundation Profile items currently making up J2ME.

The shaded items indicate

components that are currently
available. The unshaded items

KVM CVM

J2ME are under development.

CHAPTER 2 J2ME ARCHITECTURE

2.6 WRITE ONCE, RUN ANYWHERE ISSUES

At this point you may be wondering why so much attention is being paid to portabil-
ity and compatibility issues when the Java mantra is write once, run anywhere. Why
should there be any compatibility issues? WORA is not automatic when implement-
ing Java applications on devices. Largely, this is why J2ME came into existence. The
J2ME architecture leverages the Java programming language to enhance portability
across a wide range of devices with different capabilities and needs.

It is important to note that the Java language itself is not modified, only the Virtual
Machine characteristics as described by the CDC and CLDC configurations. The
compatibility issues mainly come into play when different device capabilities must be
dealt with. Different device capabilities are handled through different profiles in
J2ME. As a result, devices that support different profiles may incur compatibility
problems. However, WORA problems encountered within the same profile running
on different devices are an issue of how a particular profile has been implemented on
the devices.

2.6.1 Varied device needs

Since device needs vary across device categories it becomes unrealistic to support all
features on all devices. This is especially the case on smaller devices that have limita-
tions on memory, processing capabilities, power consumption, network connectivity,
and data storage. Manufacturers and developers of cellular phones, for example, are
often forced to make difficult decisions on what is essential for developing applica-
tions on these devices. Supporting all J2ME features on all devices would require a
large amount of memory, processing power that would automatically eliminate many
devices from the J2ME picture. Providing the ability to cater to different devices
based on device features and constraints requires the Java platform to be rearranged
and altered so as to be appropriate and practical for a wide range of devices.

For example, some devices, like PDAs, have touch screen interfaces while other
devices, such as two-way pagers, do not. Two-way pagers, on the other hand, often
support a full alphanumeric keypad whereas cellular phones have a “one-handed” key-
pad. Internet screen phones plug into the wall and do not have to be as concerned
about power consumption as a pocket PC. Internet TV set-top boxes support high-
bandwidth, high-fidelity network connections while wireless devices have more band-
width limitations. The degree to which WORA can be achieved is largely due to the
profile-specific capabilities you choose to support in your application.

These differences in capabilities can prevent an application from porting smoothly
across different types of devices where the same profiles are not supported. Therefore,
some thought and design is required if an application must run on two different pro-
files, such as MIDP and PDAP.

WRITE ONCE, RUN ANYWHERE ISSUES 35

2.6.2

2.7

2.8

36

J2ME architecture increases WORA

The J2ME architecture does not break WORA carelessly. Rather, it is designed to bal-
ance compatibility issues between devices and the special needs of each type device. For
this reason, it is important to understand the J2ME architecture when creating applica-
tions for J2ME devices. Understanding how profiles and configurations relate increases
your chances of creating applications that are compatible across many different devices.

RUNTIME ENVIRONMENT

So far, we've focused on some fairly basic, yet crucial, J2ME concepts. In chapter 14,
we'll discuss the J2ME runtime environment in detail, but to round out this intro-
ductory discussion, we'll briefly introduce it here.

There are two basic ways to run J2ME applications on devices. One way is to run
them transiently over the network. In this mode of operation the application is loaded
into memory by downloading it over the network. Once the application finishes run-
ning, the application is discarded. Running applications in this manner requires a net-
work connection. Applications can also be installed onto the device. In this case, an
application is available to run with or without a network connection.

Regardless of the method used to run J2ME applications, some device-specific
management is involved on the part of the J2ME implementation running on the
actual device. The part of the J2ME environment responsible for managing applica-
tions on the device is called the Java Application Manager (JAM). Implementation of
the JAM is something that is implemented by the device manufacturer. The JAM itself
manages activities such as downloading, installing, inspecting, launching, and unin-
stalling Java applications on the device.

Most devices in the J2ME space will be shipped with the Java environment already
on the device. This is good in that the users of the device, and ultimately the appli-
cation, will not have to deal with loading the Java Runtime Environment. However,
this also means there may only be one JRE available on the device. Since different
manufacturers will inevitably release versions of their products at different times with
different JREs, the code may need to be compatible across a number of different 2ME
runtime versions depending on how the device handles this situation.

Chapter 14 discusses concepts such as class file verification, class loading, virtual
machine lifecycles and responsibilities, threading, and garbage collecting.

DESIGNING J2ME APPLICATIONS

As with any system architecture, there are tradeoffs to consider. This is the art of
architecture. Creating an architecture that includes J2ME is no exception. Most
likely, there will be a large number of devices involved, possibly different devices types
and manufacturers, varying network capabilities, and data storage capabilities. Here
are some things to consider when creating J2ME applications. Techniques for
addressing some of these issues are discussed in part 4.

CHAPTER 2 J2ME ARCHITECTURE

The design of J2ME applications should include an understanding of the devices
you intend to support. This understanding allows the appropriate profiles to be
included in the design and implementation of applications. Additionally, you should
have some understanding of the unique capabilities and constraints of each device.
This is a good idea even if only one profile is supported. You must remember that a
single cell phone application could be used on many different manufacturer’s phones.
If you plan to support devices with a mixture of capabilities, such as cell phones, pag-
ers, and PDAs, you may want to provide capabilities specific to each device. For exam-
ple, some pagers have a full keypad where cell phones have a 10-digit keypad. PDAs
usually have wider screens than cell phones and pagers. Some PDAs are even powerful
enough to run a small-footprint relational database.

Another important consideration is how portability factors into your application
requirements, and your organization. As discussed previously, the “write once, run
anywhere” promise does not come automatically with J2ME. Is this a necessary
requirement for your application? Is it practical?

You will also want to consider how the applications will be delivered to the device
and what kind of network capabilities they will need to operate. Different devices may
require different network connectivity infrastructures. For example, does your wireless
service provider allow the device to connect to the Internet or will you be stuck on
their server? How much does it cost per minute to be connected? How much data
must be transferred over the network connection? Is this too much for a 19.6 kbps or
9600 bps connection? Will the application run transiently or will it be installed on the
device? Will there be a combination of installed and transient applications?

The tradeoff between how much data can be downloaded and how much data can
be stored is often a key architectural decision. Some devices must download a fair
amount of their “operational” data simply because they do not have the space to store
the data locally. Some devices may not even have the ability to store data. Of course,
requiring data downloads to operate an application means the device must have a con-
nection. On the other side of the coin, applications that store data locally on the device
may have to deal with data synchronization issues between the device and the server.

You will also want to address usability issues with certain devices. For example,
what happens when someone is using your stock application on a cell phone and he
or she suddenly gets a phone call? Can the user easily suspend the application? Is this
automatically done by the device?

DESIGNING J2ME APPLICATIONS 37

2.9

38

SUMMARY

The J2ME architecture defines configurations to address the horizontal needs of the
J2ME space. The J2ME Virtual Machines are tightly coupled to the configurations
that define them. Profiles fill in the gaps left by configurations and implement spe-
cific capabilities for a family of devices. Profiles tend to address vertical aspects of the
J2ME space, such as specific device capabilities and limitations, or they encapsulate a
set of APIs that address a specific market or technology need. For compatibility between
devices, manufacturers must implement the entire profile specification. This allows
applications that conform to the profile to run on any device that implements the
profile. Finally, it is important to understand that a device may support one or more
profiles on a single configuration.

With a solid understanding of how J2ME is put together and what options exist
for developing applications, you are ready to try out some of this. The next few chap-
ters cover creating and deploying J2ME applications.

CHAPTER 2 J2ME ARCHITECTURE

3

Developing a
J2ME application

3.1 Investment quote application requirements 40
3.2 Designing the investment quote application 42
3.3 Developing J2ME applications 48

3.4 Investment quote application tour guide 50
3.5 Summary 51

Throughout the chapters in the next two parts, we investigate the major aspects of
J2ME programming through a tutorial application. Why a tutorial application? We
find that most people learn by doing. That is why each API introduced in these parts
is reinforced with a piece of a working application to demonstrate what the API has
to offer. In particular, we will explore the J2ME application user interface, event han-
dling, data storage, networking, and input/output.

As was discussed in the last chapter on architecture, J2ME has several configurations
and profiles to address the particular needs of different horizontal and vertical platform
and market segments. In other words, J2ME comes in several flavors depending on
your platform and application needs. In an attempt to give you a real flavor sampling
of J2ME, we examine each of the major application aspects in a couple of devices. We
hope that this will not only allow you to learn the J2ME APIs but also provide you with
some basis of comparing and contrasting the different features and methods of handling
needs across the various environments that make up J2ME. This will not be an exhaus-
tive look at the APIs in any of these areas. Our goal is to cover the basics so that you
have the foundational knowledge from which to build your own applications.

39

3.1

3.1.1

40

The tutorial application will be put together over several chapters. As is good soft-
ware development practice, we examine the major tiers of the system and build each
section so that it is somewhat independent or insulated from the other tiers. We start
by developing the application control, and then add the user interface, event handling,
data persistences and networking service until the application is complete.

Before getting started, we need to provide a word of warning about the design of
the application and code in these next few chapters. To improve instruction, the tuto-
rial focuses on certain aspects and features of J2ME in each chapter. At the end of each
chapter, we will have a running application. Since the code in these applications is
written with the intention of explaining the APIs, there are cases where good design
has been compromised in favor of brevity and/or illustration. In chapter 11, Real-
world design, we look at some design and implementation issues and examine how to
build better applications.

In this short chapter, we describe the tutorial application and establish some formal
requirements. In short, we ask, “What exactly must our application do?” We also do some
design work so that we have at least a minimal set of blueprints as we go forward to
implement the application in the various APIs for the different platforms. Specifically, we:

- Establish the customer for the tutorial application.

« Define the tutorial application requirements.

« Design the major components of the application based on the requirements.
= Examine the major components and discuss how they may be implemented.

INVESTMENT QUOTE APPLICATION REQUIREMENTS

Every project should have a requirement that it is trying to fulfill. Generally, the better
the requirements, the more focused the goal and ultimately the end product developed.

In the case of this tutorial, the application is something of a by-product to the real
requirement. Our real goal is to learn some of the J2ME API. Through this tutorial
application, we hope to give you (the future J2ME guru) examples of Java in small
things and a realistic glimpse at some of the issues and choices associated with devel-
oping software for the consumer electronic and embedded device. Although the
requesting company and its customers may be fictional, many of the requirements and
needs are generic enough to apply to any such application.

The investment quote application customer

In this tutorial, we work for a fictitious dot-com online financial planning adviser and
commodities broker. This organization has a Web site that has enjoyed considerable
success, but they want to expand their client list. The mobile and wireless user base is
growing at an incredible rate and they have targeted this audience for new customers.

In the tutorial application, we are going to develop a J2ME investment price service
that runs on customers’ small and personal devices. This application allows customers

CHAPTER 3 DEVELOPING A J2ME APPLICATION

3.1.2

to get the latest quoted price for their favorite stocks or mutual funds by providing the
stock or mutual fund ticker symbol.

Requirements analysis

After meeting with several business and marketing representatives from the company,
a short list of requirements has been developed. The prototype application must com-
ply with the general requirements of our tutorial application. The application must:

« be easy to use. Users will only be required to enter a stock or mutual fund sym-
bol for a United States investment and get back a price in United States dollars.

« store the investment symbol, price for the investments viewed. The latest price
obtained for one of these commodities can be retrieved out of storage at any
time. In order to show how the investment is “trending,” a maximum of two
prices will be stored for each investment. A current and historical price will
allow the system to depict how the price for the investment is changing.

 run on the most ubiquitous small devices of today, which consists of a two-way
pager, cellular telephone, and personal digital assistant.

« require the users to be “connected” with their device at the time of retrieving
new price quotes.

« store the last quotes retrieved. The user is not required to be “connected” when
looking up already stored quotes. The system will allow the user to store up to
two prices per symbol.

After analyzing the requirements, it is determined that the prototype will consist of
two uses or, more appropriately, use cases. The first use case, ObtainQuote, will pro-
vide the user with the ability to obtain a quote and store the quote price and date on
the device. A second use case, RetrieveQuote, will allow the customer to pull up the
previously retrieved price quotes for any given investment symbol stored in the
device. A use case diagram of the system and its “uses” cases is depicted in figure 3.1.

EasyTrack
ObtainQuote
I
SaveQuote
Small Device \Q)'Q Quoteservice
Owning ExtractQuote

Customer RetrieveQuote

Figure 3.1 The Investment Quote system is determined to have four use cases. The customer
will request to either obtain new investment quotes or retrieve historical quotes. Secondary use
cases help in saving or retrieving data from the database. The ObtainQuote use case will also

require interaction with an outside QuoteService system.

INVESTMENT QUOTE APPLICATION REQUIREMENTS 41

3.2

3.21

42

The ObtainQuote use case will connect to and make use of an outside or third-party
guote service to get investment price information. In this system, the third-party
guote service is referred to as the QuoteService.

Hidden to the user, the ObtainQuote use case will need to save quote information.
The SavePrice use case will be responsible for connecting to the small device’s persis-
tent mechanism and storing the investment quote data. Similarly, RetrieveQuote will
utilize the same persistent storage service to get back data via the RetrievePrice use case.

DESIGNING THE INVESTMENT QUOTE APPLICATION

In the development of the tutorial application, we examine the implementation of
several major components of the system. In particular, we will look at the user inter-
face and event handling, persistent data storage, and networking or input/output
means. We design the application around these major components. However, this
design will be implemented a couple of times throughout the next two parts of the
book. In particular, we will examine the same application implemented under both
the MIDP profile and KJava API on top of the CLDC configuration.

Application control

We have already determined that there are probably two main uses of the system.
One use is to have the customer provide a symbol and have the system obtain a new
investment quote while another use is to have a customer provide a symbol and have
the system retrieve a historical or already retrieved investment quote from a database
that is on the device. To complement the use cases of the system, we decide to set up
two general applications.

WHY TWO APPS? Smaller applications There are several reasons why you may wish to break
apart the required functionality into many smaller applications. Remem-
ber, a J2ME application usually runs in a constrained device. A single large
application may not be able to run inside of the memory-constrained
space of a cell phone or other device. Breaking apart an application allows
the required functionally to be delivered within the constraints of a de-
vice. In many ways, there is a new application paradigm when working
with many of the J2ME devices. The input mechanisms, key pad or stylus
input devices do not easily support navigating through a larger multiple-
window application, especially when the user’s attention is often diverted
while using one of these devices (how often have you used a cellular phone
while driving?). When developing J2ME applications, consider smaller
applications with fewer interactions to get the job done. Finally, there is
the issue of deployment. Smaller applications have always been easier to
deploy. Since many of the J2ME devices are mobile and wireless, replac-
ing an application with limited connectivity is easier when the applica-
tions are smaller.

CHAPTER 3 DEVELOPING A J2ME APPLICATION

One application will provide the ObtainQuote functionality while a second applica-
tion will handle the RetrieveQuote functionality. Each application requires an appli-
cation control object. An application control object is an instance of a class that forms
the contract between the device, and in particular the device’s application manage-
ment software, and the application. The application control object also manages the
general action or workflow, such as calling on the appropriate classes or API to display
the user interface or make a network connection within the application.

Depending on the J2ME configuration/profile, different classes and method APIs
provide application control. For example, an instance of a single type of class handles
application control in the MID profile. The CDC is closer to J2SE, using either an
applet or any class with a main method used as the application entry point and central
class orchestrating actions of other classes (providing general application control).

3.2.2 User interface design

The tutorial applications are going to have three general “displays.” Whether obtain-
ing a new quote or retrieving an existing quote out of the database, the application
must have a way to prompt the customer for an investment type and symbol. The
customer enters the symbol for the investment and selects mutual fund or a stock. We
expect the first display to look something akin to the sketch in figure 3.2,

Sywbol:
TMPE:
Figure 3.2
The Investment Price Request prototype display
@ Stocle anticipates the customer providing an investment
symbol and indicates whether the investment is a
O Mutual {M V\/O{ mutual fund or stqck. This type screen can be ysed
to request a new investment quote or to retrieve
an existing quote from the database on a device.

Except for its size, this display does not look that much different from what one
would expect to see in a J2SE application. In fact, while the paradigm of text entry
fields and radio buttons seems familiar, the actual look and feel of the user interface
elements may be quite different when actually implemented for the platform. The
profile and/or configuration will help define a common API, but the device con-
straints (such as screen size, lack of a keyboard, etc.) may require some interesting
interface adaptations in order to fulfill the API.

As with any application, we also expect the application to help prevent users from
making a mistake. For example, a mutual fund symbol always ends with ‘X’. There-

DESIGNING THE INVESTMENT QUOTE APPLICATION 43

44

fore, the application must check data entry and provide the necessary feedback when
a mistake is made.

Once the application obtains the quote from the database or quote service, the
investment price is displayed to the customer. The application shows the price on a
display that looks something like the sketch in figure 3.3.

The price of MMM Ls:
$110.66

Figure 3.3

Results from a successful request to get a new
price quote or to retrieve the price data from the
database after providing a valid investment
symbol should result in the price data for the
investment being displayed in text form.

Finally, when a previous price for an investment has been obtained, in order to give
the user some visual context on which direction the investment price is heading since
last checking on the price, the application will provide a third and final display to
visually depict the historic and current prices in a graph. This part of the application
forces us to examine the drawing capabilities provided by the various APIs. The proto-
type sketch for this display is provided in figure 3.4.

——

fﬁ;ioo #105 $110 Figure 3.4

If the customer requests price data to be
retrieved from the database and the database
CUyrewmt: ;#;110 66 has at least two prices for the investment

i stored in the database, then a graphical

AS D][2/9 : $112.50 comparison chart should be depicted, as shown

in this Investment Price Comparison prototype.

Depending on the size of the screen and the graphical capabilities of the device, these
displays may be shown on one or multiple screens. User interfaces are defined in pro-
files built on the J2ME configuration. As will be seen in the various tutorial applica-
tion implementations, the APIs and set of visual components can be vastly different
for each type of platform. The user interface APl must adapt to the underlying abili-
ties of the platform.

CHAPTER 3 DEVELOPING A J2ME APPLICATION

3.2.3

While not shown on the mock displays, there must be a way for the user to interact
with the system and navigate from display to display. Usually, this is done with a series
of buttons or similar user interface widgets. Navigating and reacting to user input are
the jobs of the event-handling mechanism. Event handling is often associated with the
user interface since the user interacting with the graphical user interface (GUI) triggers
most events. However, again depending on the configuration and profile, different
mechanisms and APIs are provided for catching and reacting to events In each tuto-
rial section, we examine event handling in combination with the user interface in the
various implementations.

Persistent storage

Persistent storage means the capability to store data beyond the life of the running
application. In other words, persistent storage is a fancy term for a database. In the
tutorial application, we expect investment price data to survive the application’s start
and stop as well as turning the device on and off. Therefore, it is investment data, includ-
ing both current and historical price information, which must be stored in the database.

On Wall Street, each stock or mutual fund is given an investment symbol. For
example, the Janus Growth and Income Fund has a symbol of JAGIX. The tutorial
application will use a symbol such as JAGIX as its handle or index to data in the data-
base. A set of price quotes for funds and stocks might look like table 3.2.

Table 3.1 An example of price data stored in the database is represented in the table below.
For two investments, Janus Growth and Income Fund (JAGIX) and IBM, only a current price is stored.
For 3M (MMM), both a current price and an historical price have been stored in the database.

Symbol Current Price Previous or Historical Price
JAGIX 33.66

MMM 117.02 116.05

IBM 111.21

In this example, we have current prices for the Janus mutual fund as well as 3M and
IBM stock. However, we only have a historical or previous price for 3M. We can sur-
mise from this data that the customer has only checked on the JAGIX and IBM price
once but has checked the price of 3M at least twice.

We hesitate in using the term “row” in describing the price quote data that is saved
in the database. The term row implies that there is some type of tabular or relational
database in effect. Even though we have depicted the data this way in the example
above, this may be misleading. In reality, many of the implementations do not use any
type of relational database structure to make data persistent on the device. Database
engines can be expensive in terms of system resources. So in many cases, a simple data
structure such as a byte array is used to store data on the device’s storage medium.

In the tutorial system, we already have plans for one application to get new price
data and put that data into storage (ObtainQuote) and another application to retrieve

DESIGNING THE INVESTMENT QUOTE APPLICATION 45

3.24

46

and display the data (RetrieveQuote), as shown in figure 3.5. This means that the
applications will have to share the database. While this may not seem to be much of
a hurdle in the design (after all J2SE and J2EE applications share databases all the
time), we will see that applications and the database can be more tightly coupled in
J2ME. In other words, sharing databases can require certain stipulations of J2ME
applications and the deployment of the same.

J2ME Application | |4
(ObtainQuote)

J2ME Application Il

J2ME Persistent Storage)
(RetrieveQuote)

(Price Quote Data)

Figure 3.5 Both the ObtainQuote and RetrieveQuote applications of the tutorial will share the
same “database.” One application (ObtainQuote) will use the database to store investment
price data it obtains from a QuoteService. The other application (RetrieveQuote) will use the
database to retrieve historical price information for display to the customer.

Networking and input/output

One of the more device-dependent aspects of writing software for resource-constrained
devices is in trafficking and communicating information. Indeed, even the availabil-
ity of certain familiar input/output paradigms such as a file may not exist in the realm
of certain J2ME devices. The developers of the J2ME specifications have recognized
this as a potential obstacle to developing highly portable applications across a diverse
set of platforms. We have dedicated an entire chapter (chapter 13) to understanding
how J2ME configurations and profiles attempt to isolate J2ME applications from
device networking and 1/0 implementation details.

In order to shield the rest of the application from having to deal with any possible
network or 1/0 implementation differences, we design the price quote acquiring ser-
vice as a stand-alone component answering stock and mutual fund price information
when asked. We establish a contract for the quote service, but its implementation
details are subject to change based on the changes of the available networking and/or
I/0O API that is determined by the underlying device.

As we will see, the component fulfilling the quote service need is really just a facade
to a financial investment quote service available over the Internet. (Figure 3.6) The
application does not get all the stock and mutual fund quotes being published from
the trading floor. Instead, the quote service inquires on the current price (or as near
to current price as can be obtained through an on-line service) for a stock or mutual
fund price via standard networking protocols. Throughout the book we often refer to
this external service as the secondary actor depicted in the previous use case diagram
(figure 3.1) called the QuoteService.

In the tutorial, the quote service component will connect via the hypertext transfer
protocol (HTTP) to this external service. In the real world, our dot-com employer
probably provides this external service. As a financial institution, it probably has the
price data and merely provides us with a data portal which we can network into in

CHAPTER 3 DEVELOPING A J2ME APPLICATION

order to get needed price information. However, since our company does not really
exist, the application will request price quotes from one of the many popular online
stock and mutual fund information web sites. The task is the same; just the location
of the data would change in a real world situation. Obviously, for the application to
receive price information, it must be able to get connected, in this case to the Web.
We will see how J2ME addresses this issue.

World
Wide
Web i
> On-line
. ; —
ObtainQuote QuoteService Price Service

HTTP

Tutorial Application

Figure 3.6 The QuoteService acts as a facade to the “real” Internet quote providing service. Using
HTTP and talking through the Internet, the QuoteService will query a real world investment web
site for investment quotes and return the resulting prices back to the ObtainQuote application.

If the fictitious dot-com online financial planning firm that we work for supplied the
data, we may have the luxury of getting the price data back in a format we specifically
require. The Extensible Markup Language (XML) is popular for this type data
exchange and we will look at this possibility in chapter 12. Depending on who else
uses the information available through the portal, we may not have this luxury. Fur-
thermore, an unfortunate consequence of dealing with data from a public web site on
the World Wide Web is that when we ask for information and we get the data required,
we also get a lot of other information we do not need. The world of the Web operates
largely in terms of HTML formatted data. We can request a price quote from a third
party, but what comes back is an HTML page containing the stock or mutual fund
price, historical price information, organization information, and all the banner ads
the Web site can sell.

So, the QuoteService will have to locate the actual data amid the mass of HTML
tags, investment information and advertising that is returned from any request to get
price data. (Figure 3.7) A subcomponent of the QuoteService will parse through
HTML provided by the on-line service and extract the price quote.

Figure 3.7
on-line QuoteService Price data returned by the
getPrice (a Symbol) | Price Service ‘,/\\ on-line service must be

extracted from the HTML
before being used by the

Parser
(extracts the

a Price price from application. In a real
the HTML) r~ world application, the
an HTML page server should supply the
containing the client device with only the
price data

. data it requires, which in
.7 this case is the investment
........ price information.

DESIGNING THE INVESTMENT QUOTE APPLICATION 47

3.3

3.3.1

48

In this way, the QuoteService also acts as a filter for the real price information that
the application needs and isolates the rest of the application from having to worry
about non-price related information. This can be especially important if the on-line
price service ever changes the content of its data.

DEVELOPING J2ME APPLICATIONS

So how do we go about building this application we have just documented? As we are
about to explore developing J2ME applications, through the remainder of this book
we shall see that, in many respects, developing a J2ME application does not differ all
that much from developing a J2SE application. The biggest difference associated with
developing applications in J2ME is in having to consider the target device(s). While
Java is write once and run anywhere, even in J2ME, the available Java API can differ
on various target platforms. As we discussed in chapter 2, configurations provide
generic Java functionality across a wide range of devices, whereas profiles provide tar-
get-specific functionality. Thus, unlike other Java environments, we cannot teach you
a single J2ME API and then teach you how to deploy your Java application to many
platforms. Instead, with J2ME, one must learn and apply the available API for a
given targeted platform. In the next parts of this book we look at developing J2ME
applications in two different environments targeted for at least two different devices.
In each part, we will demonstrate how to get your development environment set up,
how to write the application, and how to run and deploy your application.

Obtaining the development environment

Before the first line of code is written, you will need the Java environment required
to develop an application for your targeted platform(s). Along with the J2SE JDK
(version 1.3 or higher), what other items you will need depends on two things:

e The targeted devices
= The tools you want to use to develop your application

The targeted devices will dictate which configuration, profiles and other APIs you
will need in order to create your application. The target device also dictates which
emulation environment is needed.

Today’s market place also offers several products to assist you in developing your
applications. If you are the type that codes with a text editor and the required JDK
and class APIs, you are ready to start developing after downloading the necessary APIs
and emulators. However, as with J2SE application development, there are several Inte-
grated Development Environments (IDEs) and tools available today to help lighten
your load when developing J2ME applications. In some cases, these environments are
offered for free as part of the reference implementation.

As we explore each of our environments, we provide you with information on what
is required to establish your development environment. Additional information on
available IDEs and tools is provided in the appendix of this text.

CHAPTER 3 DEVELOPING A J2ME APPLICATION

3.3.2

3.3.3

Creating the applications

Writing J2ME applications is similar to how most Java applications are written. The
main differences tend to be found in deployment since that is when the actual devices
come into the picture. In general, the pattern for creating J2ME applications that we
will use throughout this book goes something like the steps listed here:

 Write the code
- Compile the application targeting specific profiles
< Run the preverifier utility to add the necessary preverification flags to the class

files. This step may be optional depending on the J2ME environment and ven-
dor implementation of the specifications.

» Package the application. This takes on various forms. For a PDA running
Palm OS this may mean creating a PRC file. For a cell phone this may mean
creating a JAR file.

» Deploy to a Web server or install on the device

Runtime environment

As we shall see in the development of applications throughout the next two parts,
there are two basic ways J2ME applications are run on devices. One way is to run
them transiently over the network. In this mode of operation the application is
loaded into memory by downloading it over the network. Once the application fin-
ishes running it is discarded. Running applications in this manner requires a network
connection. Alternately, if the device allows, applications can be physically installed
onto the device. In this case, the application is available to run with or without a net-
work connection.

In order for J2ME applications to be used on a device some device-specific man-
agement is involved. The part of the J2ME runtime environment that does this is
called the Java Application Manager (JAM). Implementation of the JAM is something
that is done by the device manufacturer. The JAM itself is responsible for activities
such as downloading, installing, inspecting, launching and uninstalling Java applica-
tions on the device.

Another important peculiarity of the J2ME runtime environment is the absence of
a programmer-definable classpath. In J2ME, there is only one class path and it is hid-
den from the developer. Given the many struggles Java developers have with classpath,
this may come as a relief. Of course, there are some hidden issues that come with the
absence of a definable classpath. Note that this means there can be only a single set
of libraries on a device. When your application starts, the context (-classpath) for load-
ing classes cannot be defined to cater specifically to your application nor can you
manipulate the order in which classes are loaded.

Most devices in the J2ME space will be shipped with the Java environment already on
the device. This is good in that the users of the device, and ultimately your application,

DEVELOPING J2ME APPLICATIONS 49

3.4

50

will not have to deal with loading the Java Runtime Environment. However, this also
means there may only be one JRE available on the device. Since different manufac-
turers will inevitably release versions of their products at different times with different
JRES, your code may need to be compatible across a number of different J2ME runt-
ime versions.

INVESTMENT QUOTE APPLICATION TOUR GUIDE

In the next two parts of the book (Parts 2 and 3), the tutorial application explained in
this section will be implemented. Actually, the application will be implemented
twice. Why twice? Again, the targeted platforms dictate the use of various APIs and
development environments. In Part 2, we implement the application in the all-J2ME
MIDP and CLDC APIs. This development effort will produce an application that
runs on a cellular telephone, pager and at least one type of PDA. In the subsequent
part, Part 3, we revisit the same application and use the Klava APl and CLDC to
implement the application for use on Palm OS PDA devices. If you are interested in
one type of development over the other, skip the part that least interests you, as these
have been written as independent sections of the book.
Throughout both parts we take these same steps toward implementation.

1 Through the small and now almost mandatory step in any programming intro-
duction of HelloWorld we examine the basics of the J2ME environment and
API in order to ramp up before building the application.

2 We then examine the application control for each type application. How is the
application started and run?

3 Before developing the graphical user interface, we stop to look at the general
API for building the user interfaces and then we develop the user interface for
the tutorial application.

4 As with almost any user interface, the application must handle the events gener-
ated by the user’s interactions with the interface in order for the application to
do anything. We look at the means by which each environment handles events
and triggers response inside the tutorial applications.

5 Each small device provides a means to store data on the device. We inspect the
API for data storage and implement a solution to store investment prices on
each device using the API.

6 Finally, we will look at what it takes to network these small devices wirelessly
using a J2ME networking framework called the Generic Connection Frame-
work. In the process, we will need to deal with information input/output mech-
anisms available in the environments. We will discover that the networking and
input/output service is the same across all environments, so we will not need to
reinvent this service for both tutorial implementations. Instead, we will reuse
the quote service developed for the MIDP application in the KJava application.

CHAPTER 3 DEVELOPING A J2ME APPLICATION

3.5

SUMMARY

After completing each of the tasks described previously there is a working tutorial
application. Therefore, if you would like to skip ahead and look at a particular section
of interest, each chapter uses the work from the previous chapter, but it can be
worked on and examined as an independent entity without difficulty. The steps of
the tutorial application’s development are covered in the chapters as outlined in table 3.3.

Table 3.2 The next two sections of this book are organized
around teaching and demonstrating the MIDP and KJava APIs.

Part 2 - Developing for cellular phones and pagers

Chapter 4 — A simple MIDP application
Chapter 5 — MIDP user interface
Chapter 6 — MIDP data storage
Chapter 7 — Connecting to the Internet

Part 3 — Developing for PDAs

Chapter 8 — J2ME on a PDA, a KJava introduction
Chapter 9 — KJava user interface
Chapter 10 — KJava data storage

* Note — the networking service is also reused and connected
in the KJava version of the application in chapter 10.

SUMMARY

In this chapter, we examined our hypothetical customer and defined the requirements
for our tutorial application. Based on the requirements, we established a general sys-
tem design outlining the major components of the system. With the major features of
the application laid out, we are ready to implement our application. As we will see,
each APl may require certain changes in implementation based on the capabilities of
the underlying platform. These will be specifically evident in the user interface and
database arenas, as intended by the J2ME configuration/profile architecture. In the
end, however, we will have at least two different devices with the same applications
outlined in this chapter.

51

PART

Developing for cellular
phones and pagers

In this part, we explore the CLDC and MIDP APIs in some detail. As you may
recall from chapter 2, the CLDC and MIDP are guided by J2ME specifications. We
will demonstrate the APIs in a tutorial application which was initially described in
chapter 3. The tutorial application allows a customer to use a cell phone or two-way
pager to get and see stock or mutual fund quotes. This tutorial application will allow
us to see the major aspects of a J2ME application, namely user interface, event han-
dling, data storage, input/output and network connectivity.

4

A simple MIDP
application

4.1 Questions about the MIDP development environment 56
4.2 Developing MIDP applications 56
4.3 Summary 68

This chapter introduces you to the entire process of creating a J2ME application
using the Mobile Information Device Profile (MIDP). In order to illustrate this
example a simple application will be used. In doing this, we introduce a number of
J2ME terms and concepts, and provide a cursory introduction to the J2ME API. It’s
always a good idea to become familiar with some of the terminology and the para-
digm of a new software environment before trying to tackle a big project. This will set
the stage for upcoming chapters where each concept will be covered in more detail
and we look at using J2ME to build our tutorial application. For now, the goal is to
get an application up and running quickly and to introduce you to the MIDP devel-
opment environment.

All of the examples are described using the Windows operating system. We do not
address the particular syntax of other operating system commands, but the general
concepts hold. If you are not running Windows, you will need to translate the com-
mands appropriately.

55

4.1

41.1

4.1.2

4.1.3

41.4

4.2

56

QUESTIONS ABOUT THE MIDP DEVELOPMENT
ENVIRONMENT

When starting out in any new application development environment, most people
usually have a number of general questions about the environment and tools for
doing the job. Let’s see if we can head off a few of these before we get started.

Can | do this without an actual device?

Absolutely! Many emulators are freely available and allow you to run and test J2ME
applications right on your desktop. We will discuss how to obtain and use each type
of emulator when the time is right. But first we will concentrate on the code.

What device do | start with?

The Mobile Information Device Profile has been designed mainly with cellular
phones and pagers in mind. However, MIDP can run on other types of devices, such
as PDAs. Sun currently has an implementation of MIDP that runs on Palm OS
devices. However, the current MIDP user interface capabilities are rather limiting on
a PDA. For this example, a cellular phone will be chosen as the primary target device
for the application. Since we are developing to the MIDP, rather than a specific
device, the application will run on any MIDP-compliant device. So at this point, all
we need to be concerned about is that the desired target devices support MIDP,

Do | have to use the command line tools?

No, there are a number of Integrated Development Environments (IDEs) available
that take care of the dirty work for you. Sun’s Wireless Toolkit is a good example.
However, this chapter is intended to give you a detailed, behind-the-scenes example
of what goes into creating a J2ME application. Therefore we will use the command
line tools provided by Sun’s reference implementations. We hope this will give you a
better understanding of the technology.

The example: what are we going to do?

This chapter uses a variation of the ubiquitous Hello World application. The applica-
tion is rather simple in functionality; it just displays a string of text to the screen.
However, the intent of this chapter is to quickly cover the lifecycle of developing a
complete application and deploying it to a device. More sophisticated applications
will be built in later chapters.

DEVELOPING MIDP APPLICATIONS

As mentioned previously, this example will work for both a cellular phone and a
pager. How does this dual functionality affect the way we write or build the applica-
tion? As we will see, it does not affect how we create the application at all. The only
difference comes at the end when we deploy the application and need to deal with the
specific device itself.

CHAPTER 4 ASIMPLE MIDP APPLICATION

4.2.1

Given the range of devices J2ME is designed to support, cellular phones and pagers
rank at the low end, being two of the most limited devices in the J2ME spectrum.
These limitations are especially noticeable in the areas of the user interface and avail-
able memory. Cellular phones, for example, typically have a one-handed keyboard.
Entering letters becomes tedious quickly since the user is forced to cycle through three
or more alphabetic characters represented on each key. Furthermore, cellular phones
may have as little as 40 KB of memory available for your application once the virtual
machine and runtime libraries are loaded.

As discussed in chapter 2, in order to deal with these limitations, both cellular
phone and pager applications require a configuration and profile combination that
addresses these limitations. This is where the Connected Limited Device Configura-
tion (CLDC) and Mobile Information Device Profile (MIDP) come into the picture.
The CLDC is designed for devices with limited characteristics. Since configurations
address the horizontal needs of a wide variety of devices, an additional architectural
piece is needed to support the more device-specific capabilities, most notably user
interface and data storage. This is how profiles, or in this case MIDP, fits in.

Another piece that we will need is the virtual machine that supports the CLDC.
This is the K virtual machine (KVM), which is also discussed in chapter 2. This is a
specially designed reference implementation virtual machine that has a much smaller
footprint than the standard Java virtual machine. Because of the small footprint, Java
can run on memory-constrained devices such as a cellular phone.

Getting started

First we need to get our hands on the MIDP development environment. We will use
Sun’s reference implementation that is available in a single download from the follow-
ing URL.: http://java.sun.com/products/midp.

pisTriIBUTION As of this writing, the current publicly available version of the MIDP
NOTE from Sun’s web site listed above is version 1.0.3. However, depending on
when you purchase this text and go to Sun’s site, the version of MIDP

may have changed. With the 1.0.3 release and using the default installa-

tion directories, MIDP installs in a directory called midp1.0.3fcs. This

will obviously vary depending on your downloaded version. For this reason,

we refer generically to the MIDP directory throughout this text as midp-fcs.

Download and unpack the distribution into the directory from which you want to
work. Note that the distribution unpacks into a top-level directory named similar to
midp-fcs. For convenience, set up the following system environment variables. These
variables are used in this example for convenience and have no effect on the MIDP
environment.

M DP=\m dp-fcs

M DPCl asses=\m dp-fcs\cl asses
M DPTool s=\m dp-fcs\bin

DEVELOPING MIDP APPLICATIONS 57

4.2.2

58

With the development environment in place, we are ready to begin developing our
first J2ME application. Using MIDP, applications are created by extending the
javax. mcroedition. mdlet. M D et class. This class acts as the interface be-
tween the application management software on the device and MIDP applications. It is
important to understand that each J2ME profile may define different starting points
(classes and methods) for an application. For MIDP the starting point is a MIDlet.

What is a MIDlet?

A MIDlet is an abstract class that is subclassed to form the basis of the application. By
subclassing the M DI et class, we define an interface between our application and the
application management software on the device. A MIDlet is the heart of a MIDP
application and allows the device to start, pause and destroy the application.

The M Dl et class resides in the package j avax. mi croedi tion. m dl et. The
code to declare a MIDlet looks something like this:

i mport javax.mcroedition.mdlet.MD et;

public class H SnmallWrld extends MD et {

}

For this example, we need to add a constructor that creates a Text Box (a GUI wid-
get that allows us to display a message) and a member variable to hold the Text Box
instance since we will need to reference it from a couple of places.

i mport javax.mcroedition.mdlet.MD et;
i mport javax. m croedition.lcdui.*;

public class H Smal I Wrld extends M D et {
private TextBox textbox;
public H Smal I World() {
textbox = new TextBox("", "Hi Small World!", 20, 0);

}
}
Since M DI et is an abstract class, our Hi Smal | Wor | d class needs to implement a
few methods before it will compile. There are three methods that require attention:
start App(), pauseApp() and dest r oyApp(bool ean uncondi tional).
When a device receives a message to start a MIDlet, the MIDlet is instantiated and
the application management service on the device calls st ar t App() . At this point,
our application takes over and does any initialization that may be required. In our
example, we make the textbox the active element. Do not worry about the use of the
Di spl ay class for now, as this will be covered in a subsequent chapter.

WARNING ~ Thest ar t App() method can be called a number of times during the life-
cycle of a MIDlet. Therefore, it should not be used to perform initialization.
For example, a MIDlet can be placed in a paused state as a result of a call to
the pauseApp() method. In order to restart, and release it from the paused
state, the st ar t App() method is invoked. If you have to do some initial-
ization on the MIDlet, it needs to be carried out in conjunction with the
constructor, not the st ar t App() method.

CHAPTER 4 ASIMPLE MIDP APPLICATION

public void startApp() {
Di spl ay. get Di spl ay(thi s).setCurrent (textbox);

}
The pauseApp() method is called by the device when the user, or the device, needs
to suspend our application’s activity to perform some other task. When the device in-
vokes this method, our application is responsible for placing itself into a paused state.

Since we are only displaying a message to the screen, and there is nothing to do to
pause the application, we will implement this as an empty method.

public void pauseApp() {

}

At the point, if the user chooses to close the application, or for some reason the sys-
tem requests that the application be closed, the method dest r oyApp(bool ean
uncondi ti onal) is called. This method is invoked to allow our application to
clean up any resources that it may be using, such as a network or database connec-
tion. This method takes a single, boolean parameter. This parameter indicates how
much say our application has in being destroyed. If the parameter is true, our applica-
tion will have no choice but to clean up its resources and prepare for being destroyed.
If the parameter is false, the application can throw a M Dl et St at eChange-
Except i on exception to prevent the dest r oy method from taking place and to
continue running. Again, this exception can only be thrown if the parameter is false.
Since there are no resources that need to be cleaned up in this application dest r oy App
(bool ean uncondi ti onal) is also implemented as an empty method.

public void destroyApp(bool ean unconditional) {

}
The full source code for our first 2ME application is shown in Listing 4.1.

Listing 4.1 HiSmallWorld.java

import javax.mcroedition.ndlet.MD et;
i mport javax.mcroedition.lcdui.*;

public class H SnmallWrld extends MD et {

private TextBox textbox;
public H SmallWorld() {
textbox = new TextBox("", "Hi Small World!", 20, 0);

}

public void startApp() {
Di spl ay. get Di spl ay(this).setCurrent (textbox);
}

public void pauseApp() {
}

public void destroyApp(bool ean unconditional) ({
}
}

DEVELOPING MIDP APPLICATIONS 59

4.2.3

60

This is all the code required to get our application up and running. The next step is
to compile the application.

WIRELESS ~ Sun Microsystems provides an IDE for developing MIDP applications.

TOOLKIT Called the Wireless Toolkit, it is available from Sun’s web site at:
http://java.sun.com/products/j2mewtoolkit/.We do not use the toolkit
throughout our examples and tutorial application for two reasons:

1 We want you to understand what is actually occurring behind the
scenes when writing J2ME applications. The compiling, preverifying,
jarring and deployment are important parts of the J2ME development
process and should be understood.

2 IDEs change or may have bugs. You may switch development tools or
you may find an IDE that has a problem or bug. An IDE can do part
or most of the work for you when it comes to developing applications,
but it is important to understand the work being accomplished by the
IDE just in case the IDE has difficulties or you change IDEs.

In appendix D, we demonstrate the use of the Wireless Toolkit for the
Hello World example. If you download the Wireless Toolkit from Sun,
you should still be able to use the application code in the rest of this text.
However, be aware that compiling, preverifying, jarring, and deploying of
the applications will require different steps and use a different emulator
executable.

Compiling the application

This is done using the standard j avac compiler command. However, since we are
compiling an application for the J2ME environment (rather than J2SE) the
—boot cl asspat h option must be used. This option takes advantage of Java’s cross-
compilation capability. The cross-compilation feature is new in the Java 2 platform
and allows the Java compiler to target the class files for an environment other than
standard Java. Our target environment is 2ME and by using the —boot cl asspat h
option we can instruct the compiler to use the J2ME libraries. Without this we could
accidentally use classes or method signatures not supported by J2ME (such as Dou-
bl e) and as a result, these errors would not be caught until runtime.

Use the following command line to compile the application:
>j avac -g: none -bootcl asspath %V DPCl asses% Hi Smal | Wor | d. j ava

The —g: none option is used to prevent debug information from being included in
the class files. This is an optional flag, but it helps reduce the size of the class files. The
%M DPCl asses%variable is the environment variable we set up earlier. This vari-
able points to the J2ME classes and it is passed as the —boot cl asspat h parameter.

CHAPTER 4 ASIMPLE MIDP APPLICATION

424

4.2.5

Preverifying the application
For security reasons, the standard Java Runtime Environment verifies each class file
before loading it into memory. This is done to ensure that the class file is valid and
does not attempt to access memory outside of its boundaries or access disk. Since J2ME
must cater to devices that are more limited than a desktop computer, some of the
J2ME virtual machines handle class file verification somewhat differently than the
standard Java VMs, namely, verification does not entirely take place on the device.
Instead, as part of the deployment process, each class file must be preverified using a
preveri fy utility provided in the J2ME development environment. This utility
verifies each class file and modifies it to include special flags indicating their validity.
At runtime, the J2ME virtual machine checks these flags. If the flags are present and
indicate a valid class file, the VM assumes the class is OK to run. Without these flags
the VM will throw an exception or abort the class loading process.

Preverification is performed using the preveri fy. exe utility found under the
bin directory. Run the following command to preverify the application:

>9M DPTool s% preverify -classpath %M DPCl asses% . Hi Smal | Worl d

It is important to note that this utility creates new class files. By default, this com-
mand places the output class files in a directory called \ out put off of the current
directory. To change the output directory, use the —d option as with other Java utili-
ties. The following version of the command places the class files in a directory named
“preverified” nested below the current directory:

>0 DPTool s% preverify -classpath %M DPCl asses% .
—d .\preverified H SmallWrld

For each of these commands we specify a cl asspat h of only the J2ME classes, and
our own classes we have created, to ensure that the class files generated are suitable for
the J2ME target environment.

If the preveri fy utility is having trouble loading your class file, which is
reported by the message “Error loading class HiSmallWorld”, make sure cl asspat h
is set properly to find the file Hi Smal | Wr | d. cl ass that was created by j avac.

Running the application

With the classes compiled and preverified, our application is finally ready to run.
This is where we need an emulator. If you downloaded the MIDP reference imple-
mentation, you already have an emulator and are ready to go. The emulator is an exe-
cutable named mi dp and is located in the mi dp- f cs\ bi n directory. We will run
our application by typing the following command:

>0 DPTool s% m dp -cl asspath %V DPCl asses% .\ out put Hi Smal | Worl d

This command runs the mi dp executable, passing the MIDP classes and our applica-
tion’s classes on the —cl asspat h parameter. Note that we must direct the mi dp

DEVELOPING MIDP APPLICATIONS 61

4.2.6

62

utility to look in the . \ out put directory (relative to the cur-
rent directory) for the preverified version of our classes. If we
had just specified the current directory (*.”), m dp would find
the original classes generated by j avac. Since these classes do
not contain the proper preverification flags, the J2ME runtime
environment would not be able to load the classes and a run-
time exception would abort the class loading process.

If the application runs successfully, your emulator will look
like figure 4.1.

Hi Small ¥orld]

Figure 4.1

The HiSmallWorld MIDlet written above is
depicted here running in the MIDP emulator.
While the MIDP specification dictates common
Java functionality across the spectrum of
devices, in this case cellular telephones, each
device may have a slightly different display.
Thus, emulators often provide various “skins” to
test applications running in various displays.

After closing the emulator, the output from the console should look similar to the
following text.

E: \wor k\ H Wor | d>\ mi dp-fcs\bin\m dp -classpath \m dp-fcs\cl asses; .\ out put
Hi Smal | Worl d

Execution conpl eted successfully

8205 byt ecodes executed

7 thread switches

204 cl asses | oaded (149 bytes)

220 objects allocated (9572 bytes)

0 garbage collections

bytes col |l ected

obj ects deferred in GC

(maxi munm) objects deferred at any one tine
rescans of heap because of deferral overflow
poi nter validations requiring heap scans
Current nenory usage 9572 bytes

Heap size 300000 bytes

O O OoOoo

Troubleshooting
If there are problems running the application here are some debugging tips:
= Make sure the application compiled successfully when you ran j avac and make
sure the pr everi f y utility ran successfully without errors.

= Ifan error such as “The name specified is not recognized as an internal or external
command, operable program or batch file.” occurs, this means Windows was unable
to find the m dp executable. Adjust the command path to point to m dp. exe.

CHAPTER 4 ASIMPLE MIDP APPLICATION

4.2.7

e The most notorious runtime problem in the Java environment is getting the
cl asspat h set properly so that the correct versions of classes are loaded, and
loaded in the proper order. The following two problems are related to cl asspat h:

e If an error such as “One or more M DI et class(es) not found: null” was re-
ported, the m dp emulator was not able to find your classes. Make sure
cl asspat h is specified correctly and make certain your class files are where
you think they are. Remember, the cl asspat h must specify both the J2ME
class libraries (\ m dp- f cs\ cl asses) and your application’s classes.

e Ifan error such as “ALERT: Error verifying class HiSmall\World” was reported,
the mi dp executable was unable to load the class. Most likely the emulator
found the unverified version of Hi Smal | Wor | d. cl ass instead of the
preverified version, so make sure cl asspat h includes the preverified ver-
sion of the class. Be certain the unverified version is not included on
cl asspat h or its path is specified after the preverified path. Try deleting
the unverified version of the class file to see if you get a different error or the
correct, preverified version is found.

JARiIng MIDlets

The previous example shows the mi dp emulator directly accessing the class file.
However, in most cases MIDP applications should be deployed as JAR files. This is
done for several reasons. First of all, depending on the network protocol and the cli-
ent-server software involved, JAR files can be more efficient when downloading mul-
tiple applications over protocols such as HTTP since the entire JAR is downloaded
with a single connection (rather than a connection for each class file). Furthermore,
MIDlets can be deployed as part of a MIDlet suite. The details of creating a MIDlet
suite will be covered in a moment, but first we modify the example to use a JAR file for
deployment.

Using the existing class files, we can run the following j ar command to create a
JAR file:

>jar cf hi.jar -C .\output H SnallWrld. cl ass

The “cf ” parameters tell the j ar utility to create a new JAR file named “hi . j ar”.
The —C option is used to change to a specified directory and include a specified file.
In this case, the —C option is used to switch to the \ out put directory to pick up the
Hi Smal | Wor | d.cl ass file without having the \ out put directory appear in the
JAR file as an attribute of the class. (Without using the —C option the runtime envi-
ronment would think our MIDlet resided in a package named out put .)

Now let’s run mi dp using our newly created JAR file. In order to do this, make a
minor adjustment to the cl asspat h setting to include the JAR file that now con-
tains the class file.

>0 DPTool s% m dp -cl asspath %V DPCl asses% .\ hi.jar Hi SmallWrld

DEVELOPING MIDP APPLICATIONS 63

4.2.8

64

This should not change the MIDIet. The only difference is that we are now running
the application from a JAR file. If the emulator cannot find the class, then either the
JAR file is not valid or there may be something wrong with the cl asspat h.

Developing MIDlet suites

Multiple MIDlets can be grouped and deployed as a unit using a MIDlet suite. A
MIDlet suite is composed of a JAR file containing all the MIDlets and supporting
classes and an application descriptor file. The application descriptor file is a text file
containing information about the MIDlet suite, such as the names of the MIDlets,
the location of the JAR file, vendor information, etc. Application descriptor files have
the extension “j ad” and provide the device, and in some cases a server environment,
with information about the MIDlet suite so it can be run over a network or installed
physically on the device.

Deploying MIDlets as part of a suite has some advantages over deploying the
MIDlets individually. The most significant advantage is that MIDlets in a suite can
share resources such as data stored on the device. For example, within an MIDP imple-
mentation, records are stored in a device-dependent area that is not directly accessible
by the Java APIs. This data storage area is controlled at the MIDlet level. Within a
MIDlet suite however, all MIDlets can share record stores and create multiple,
uniquely named, record stores. In addition to the ability to share resources, MIDlet
suites are deployed using JAR files. As mentioned previously this can allow the client
to be more efficient when downloading the application.

To better understand dealing with MIDlet suites, we are going to need more than
one MIDlet. For simplicity, make a copy of Hi Smal | Wor | d, giving it the incredibly
innovative name of Hi Sal | Wor | d2 and change the output string to read “Hi Small
World2”. Once this is done, compile and preverify the new Hi Smal | Wor | d2 class.

>j avac -g:none -bootclasspath %M DPCl asses% Hi Smal | Wor | d2. j ava

>0 DPTool s% preverify -classpath 9%V DPCl asses% . Hi Smal | Worl d2

NOTE Display limitations It is worth pointing out that, on the MIDP cellular
phone emulators, a 15-character St ri ng (give or take a few characters) is
about the longest St ri ng that can be displayed without wrapping. Since
the Connected Limited Device Configuration (which is the configuration
for MIDP) addresses limited device implementations, care should be taken
to understand the different limitations of the target devices for which you
are writing applications. Different devices have different display limitations
even though they all may support MIDP. Pagers, and other cellular phones,
for example, may have a wider and narrower screen.

Now we are ready to create our MIDlet suite. There is no real significance to this suite
in terms of functionality. The goal is to walk through how MIDIet suites are created.

CHAPTER 4 ASIMPLE MIDP APPLICATION

The MIDlet suite descriptor file

The first step is to create a descriptor file for the MIDlet suite. A descriptor file is a
text file with a j ad extension. The attribute names are case-sensitive. A list of the
attribute names and their purposes is provided in table 4.1. The Java Application
Manager (JAM) on the device uses the descriptor to manage the application lifecycle.
The JAM is responsible or participates in activities such as downloading, installing,
inspecting, executing and uninstalling applications.

Table 4.1 The Java Application Descriptor is used by the JAM to manage a MIDlet suite’s appli-
cations on the device. As this table shows, it contains a wealth of information about the suite.

Attribute Name Description
MiDlet-Name Name of the MIDlet suite.
MiIDlet-Version Version of the MIDlet suite. The format must follow the convention

Major.Minor.Micro (X.X[.X]) where the micro version is optional (defaults
to zero if omitted). Each version number is allowed two digits (0-99).

If this tag is missing, the version is assumed to be 0.0.0. Any nonzero
version is considered a newer version than 0.0.0.

MiDlet-Vendor Vendor that supplies this MIDlet suite.

MIDlet-Description Text description of the MIDlet suite. (Optional)

MiIDlet-Info-URL Location where more information can be found about the suite. (Optional)

MIDlet-Jar-Size Size of the JAR file specified by this descriptor.

MIDlet-Jar-URL The URL indicating from where the JAR can be loaded.

MIDlet-Data-Size The minimum number of bytes of persistent data required by the MIDlet
suite. The default is zero. (Optional)

MiIDlet-Icon The name of a portable network graphic file (PNG) within the JAR file
representing the MIDlet suite. (Optional)

Micro Edition-Profile Profiles used by the application.

Micro Edition-Configuration Configuration used by the application.

MiDlet-1 The first MIDlet in the list of available MIDlets (if this is a MIDlet suite).

For each MIDlet specified, the following syntax is observed:
Description, icon name, MIDlet class name.

The description appears in the menu when the list of MIDlets is displayed.
MIDlet-n Nth MIDlet in the suite

For our example we define a JAD (Java Application Descriptor) file with the follow-
ing properties. We do not specify an icon for any of our MIDlets at this point. Create
this file in the current directory. If you have been following the examples, this is the
same directory where the Java source files you are working with are located.

M Dl et - Nanme: Smal | Wor | dsuite

M Dl et-Version: 1.0.0

M Dl et - Vendor: Catapult Technol ogi es, Inc.

M Dl et - Description: Sanple suite of Small Wrld MDiets
M Dl et-1nfo-URL: http://ww.ctim.conl

M Dl et-Jar-URL: http://local host/hi.jar

M Dl et - Jar- Si ze: 3000

M croEdition-Profile: MDP-1.0

DEVELOPING MIDP APPLICATIONS 65

66

M croEdi ti on-Configuration: CLDC-1.0
MDl et-1: Hellol, , H SmallWrld
M Dl et-2: Hello2, , H SmallWrld2

JARIng the MIDlet suite

The JAR file for a MIDlIet suite must contain a manifest. A manifest provides the
runtime environment information about how the JAR file is configured, any security
information and what the JAR contains. The J2ME runtime environment compares the
manifest to the application descriptor as a precaution before loading a MIDlet suite.

The values of M DI et - Nanme, M Dl et - Ver si on and M Dl et - Vendor must
be the same in both the manifest and the descriptor file. If these values do not match,
the MIDlet suite is considered invalid. Developers may define descriptor attributes not
beginning with M Dl et - to provide property information to the application.

To create a manifest, simply provide the JAD file as input to the j ar command.
Modify the j ar command used previously to create the JAR for our MIDlet suite.

>jar -cfmhi.jar HMD etsuite.jad -C ./output Hi SmallWrld.class -C
./ output Hi Smal | Worl d2. cl ass

The j ar command now contains an “nY option instructing the JAR utility to create
a manifest using Hi M Dl et sui t e. j ad. Note that the - C option must be repeated
for each class specified in the j ar operation. If a wildcard is used (e.g., *. cl ass)
the - C option is applied only to the first class file and is ignored for the remaining
class files. In this scenario, unverified classes can accidentally be added to the JAR file,
causing problems at runtime.

Now we are ready to run our MIDlet suite. Use the —descr i pt or option with
the mi dp emulator to run the suite directly.

9 DP% bi n\ mi dp -cl asspath 9% DPA asses% .\hi.jar -descriptor HMD etsuite.jad

The first screen that appears is a list of our MIDlets that make up the MIDlet suite.
This list is composed of the MIDIet description specified for each MIDlet in the JAD
file. At this point, we do not have an Exit button defined that allows the user to exit
the application gracefully. This requires a user interface component and the use of
event handling that is beyond the scope of this exercise. Both user interface compo-
nents and event handling are covered in the next chapter. For now, we have to live
with running one MIDlIet at a time and exiting the emulator. Figure 4.2 shows the
Hello2 MIDlet running.

So now we have managed to build and run MIDlets and MIDlet suites. How are
MIDlets intended to be used in the real world? So far we have been running MIDlets
directly from the computer on which we develop them, using the m dp emulator.
However, running MIDlets on an actual device is slightly different. First of all, the
application must somehow get onto the device. There are basically two ways that
MIDlets can find their way onto a device. They can be installed physically to the
device or they can be temporarily loaded into memory over a network connection.

CHAPTER 4 ASIMPLE MIDP APPLICATION

4.2.9

4.2.10

Figure 4.2 HiSmallWorld2 joins HiSmallWorld as
part of the HiMIDletsuite running in the MIDP
emulator. As the picture on the left shows, when

a MiIDlet suite is deployed to a device, the device
knows to provide an application kick-off screen that
allows the user to select MIDlets for execution.

Fortunately, the mi dp emulator supports the ability to run MIDIets in both of these
ways in addition to running them directly, as we have done so far. To begin, we dis-
cuss simulating MIDlet deployment using the mi dp emulator. This allows us to
explore these deployment techniques and get our environment set up correctly. Once
these concepts are familiar to us, we will deal with the actual devices.

Accessing MIDlets over the Internet is a very likely scenario so we will begin by
accessing our MIDlet suite using a Web server. In this scenario the application is
dynamically downloaded to the device each time we run the emulator.

Running MIDlet suites from a web server
In order to access a MIDlet using a Web server, you need a Web server that the mi dp
emulator can access. This example uses the Apache web server, which is available at the
following URL: http://httpd.apache.org

Once the Web server is installed, the MIME type configuration needs to be modified
to handle the j ad extension. MIME stands for Multipurpose Internet Mail Extension
and allows the Web server to know what types of content the client supports.

For Apache, adding the following line to the mime.types file specifies the JAD
MIME type.

text/vnd. sun.j 2nme. app- descri pt or jad

Deploying a MIDlet suite to a web environment is simply a matter of placing the
JAR and JAD files in an area visible to the Web server. For Apache, this is the
ht docs directory. Copy the files hi . jar and H M Dl et Sui t e. j ad into this
directory and start the web server. Make sure the Web server starts without errors.
Then invoke midp.exe using the —t r ansi ent option.

>0M DP% bi n\mi dp -transient http://local host/H M D etSuite.jad

There should not be any differences in the application itself. The only difference is
that we are now accessing the application over http.

Installing MIDlet suites locally

The mi dp emulator supports the ability to emulate installing a MIDlet suite from a
location, either a file or URL, so we can run it locally on the “device.” The following
command simulates installing a MIDlet suite locally on a device via a Web server.

DEVELOPING MIDP APPLICATIONS 67

4.3

68

This command assumes the Web server is up and running and the application has
been deployed to an area visible to the Web server. (See the previous example to
understand how to set this up.)

>0M DP% bin\mdp -install http://localhost/H MD etSuite.jad

Before we run the installed suite, let us make sure our application is installed. This
can be done using the -1 i st option:

>9M DP% bi n\ mi dp —I i st

The output should be something like the following:

E: \ _book\ wor k\ H Wor | d>\ _book\ m dp-fcs\bin\mdp -1ist
JamMbde = LI ST
Smal | Wor | dSui t e
Hel | ol
Hel | 02
Once a MIDlet suite is installed, the Web server is no longer necessary. The applica-

tion can run as if physically installed on the device using the —r un option:

>%M DP% bi n\midp -run Smal | Wr | dSuite

Note that the —r un option requires the name of the suite specified in the JAD file,
not the name of the JAD file.

To remove an installed MIDIet suite use the —r enove option followed by the
name of the suite to remove:

>%M DP% bi n\ mi dp -renove Smal | Wr | dSuite

To obtain profile and configuration information for an installed suite, use the
—ver si on option followed by the name of the suite:

>%M DP% bi n\ mi dp -version Snal | Worl dSuite

SUMMARY

In this chapter, we have looked at setting up a J2ME development environment, spe-
cifically a MIDP environment. We also examined a little of the CLDC and MIDP
API while developing the simplest of applications. With the development environment
in place and a fundamental understanding of how J2ME applications are built and
deployed using MIDP, you are ready to get into some of the more powerful capabili-
ties of this J2ME environment.

CHAPTER 4 ASIMPLE MIDP APPLICATION

5

MIDP user interface

5.1 MIDP application control 70

5.2 The investment quote application control in MIDP 71
5.3 Two types of MIDP user interface and event handling 75
5.4 The MIDP user interface APl 77

5.5 Handling user interactions in MIDP 105

5.6 MIDlets on other devices 130

5.7 Summary 133

We start our exploration of the J2ME API with a look at the Mobile Information
Device Profile on the Connected Limited Device Configuration. The CLDC was
designed for very resource-constrained devices (those with less than 512 KB of mem-
ory). On top of that, the MIDP was designed for devices on the lowest end of this
low-range configuration. Specifically, the MIDP was designed primarily for cellular
telephones and pagers. These devices have restrictive memory, screen real estate and
input devices, which are just some of the qualities that make building applications at
this end of the spectrum more challenging.

In this chapter, we look primarily at the graphical user interface of the MIDP.
Because most of the events that must be handled are generated from the interactions
with the user interface, we also examine MIDP’s event handling. Although touched
on in the Hello World example of chapter 4, the MIDP’s application control is unique
and requires additional explanation. Therefore, we also take a more in-depth look at
the MIDP’s M DI et class. As is the case in all the tutorial chapters, we will bring to
life the API reviewed in this chapter by implementing the appropriate piece of the
tutorial application with what was learned in the chapter.

69

5.1

70

In summary, we will:

« revisit the MIDP Application Control

« assess the general state and constraints of Ul development for MIDP devices
 examine the MIDP graphical user interface high-level and low-level APIs

« look at general event handling in MIDP

 examine the high-level and low-level event models and event handling APl in
the MIDP

 implement the tutorial application control and user interface in the MIDP by:
« developing the tutorial application control using MIDP MIDlets

 implementing the tutorial application’s user interface displays using the
MIDP high-level and low-level APIs

« developing the tutorial application’s MIDP event handling mechanism

MIDP APPLICATION CONTROL

Before we examine the user interface APl in MIDP, we will take a closer look at appli-
cation control and infrastructure. As we discussed in chapter 4, application control is
provided by extending the j avax. mi croedi ti on. nidl et. M Dl et class. There-
fore, the application controllers on cell phone and pager applications will extend the
MIDP abstract j avax. mi croedi ti on. midl et. M D et class. As we also saw in
the last chapter, MIDlets must implement three abstract, protected methods specified
by M DI et . Namely, our applications will have to override dest r oyApp(bool ean
uncondi tional), startApp() and pauseApp() . MIDIets can exist in one of three
states: Active, Paused and Destroyed. These abstract methods allow the application to
conduct work in the transition between the states (figure 5.1).

s

Figure 5.1

MiIDlets exist in one of three states as depicted
in this state diagram. When started, the MIDlet
is in the Active state. Once active, the MIDlet

@ can be destroyed or paused. From the paused

state, the application can be reactivated.
When a MIDlet is started with a call to st art App() , the MIDlet enters the Active
state. In an Active state, a MIDlet can utilize any resources it has available. In the
Paused state, a MIDlet must release all resources and become inactive. A MIDlet
enters the paused state through a call to the pauseApp() method. A MIDlet appli-
cation can go back and forth between the Active and Paused state. From either the

Active or Paused state, the MIDlet can enter the Destroyed state by invoking the
dest r oyApp(bool ean uncondi ti onal) method. Once in the Destroyed state,

CHAPTER 5 MIDP USER INTERFACE

5.2

a MIDlet cannot return to either the Active or Paused state. All resources must be
released and persistent data must be saved. Any failure to enter a desired state is met
with a M Dl et St at eChangeExcept i on. This exception is only valid during a call
to dest r oyApp(bool ean uncondi ti onal) when the unconditional flag is set
to false. Otherwise, the MIDlIet will still enter the Destroyed state no matter what is
returned from a dest r oyApp(t rue) call.

THE INVESTMENT QUOTE
APPLICATION CONTROL IN MIDP

As a first step in implementing the tutorial application in the MIDP, two application
control classes are created. The Qot ai nQuot eM DI et will handle the ObtainQuote
features from our use case requirements while the Retri eveQuot eM DI et will
manage the other identified use, namely RetrieveQuote. The structure for the con-
trollers looks like the class diagram depicted in figure 5.2.

jJjavax.microedition.midlet.MIDlet

#startApp()
#pauseApp() Figure 5.2
#destroyApp(in unconditional : bool) ObtainQuoteMiIDlet and
RetrieveQuoteMIDlet serve as
? application controllers for the
Investment Quote system.
| ObtainQuoteMIDlet | | RetrieveQuoteMIDlet | Both classes extend MIDlet as

depicted in this class diagram.

Given the required three MIDlet abstract methods, the general construct to implement
Obt ai nQuot eM Dl et starts off looking something like the code in listing 5.1.

Listing 5.1 ObtainQuoteMIDlet.java

i mport javax.mcroedition. mdlet.*;
public class Obtai nQuoteM Dl et extends M Dl et {
public ObtainQuoteM D et () {

}

protected void startApp() { The required

} MIDlet methods
protected void pauseApp() {

}

protected void destroyApp(bool ean unconditional) {

}
}

THE INVESTMENT QUOTE APPLICATION CONTROL 71

72

Along with the required methods, we have also provided the MIDlet with a single
constructor method. At this time, these methods do nothing. We will fill in the
details as we need them. Likewise, the code to implement Ret ri eveQuot eM Dl et
begins with that in listing 5.2.

Listing 5.2 RetrieveQuoteMIDlet.java

i nport javax.mcroedition.mdlet.*;
public class RetrieveQuoteM Dl et extends M D et{

public RetrieveQuoteMDi et () {
}

protected void startApp() { .

} @ Again, the
required MIDlet

protected void pauseApp() { methods

}

protected void destroyApp(bool ean unconditional) {

}

}
|

We will want to JAR the two MIDlets and create a MIDIlet suite called
QuoteMIDletSuite. To do this, we need a Java Application Descriptor (JAD) file. For
our tutorial application we define a JAD file as shown in listing 5.3. We will not spec-
ify an icon for any of our MIDlets at this point. Create this JAD file in the directory
containing the MIDlet Java files.

Listing 5.3 QuoteMIDletSuite.jad

M Dl et - Nane: QuoteM Dl et Suite

M Diet-Version: 1.0

M Dl et - Vendor: Catapult Technol ogi es, Inc.

M Dl et - Description: Cbtain and Retrieve Quote Tutorial MDlets
M Dl et-1nfo-URL: http://ww.ctim.com

M Dl et-Jar-URL: http://local host/quote.jar

M Dl et - Jar- Si ze: 3000

M croEdition-Profile: MDP-1.0

M croEdi ti on-Configuration: CLDC- 1.0

M Dl et-1: Cbtai nQuote, , Obtai nQuoteM Dl et

M Dl et-2: RetrieveQuote, , RetrieveQuoteM D et

|

WHY A MIDLET SUITE? Nothing in the requirements of the tutorial application necessitates
the creation of a MIDlet suite here. However, the need for a suite will
become more evident in the next chapter when we look at persistent
storage for the application. Given the fact that the two applications
are related to each other and are likely to share common classes at
some point in the future, having a suite is a good idea.

CHAPTER 5 MIDP USER INTERFACE

To compile, preverify, JAR, and run our MIDlets, invoke the commands listed below.
As we did in chapter 4, we assume that environment variables have been conveniently
set up to help in the compile, preverify and execute commands. The M DP environ-
ment variable should be set to the location of your MIDP directory (\midp-fcs in our
case), the M DPCl asses environment variable should be set to the location of your
MIDP classes (\midp-fcs\classes in our case), and finally, the M DPTool s variable
should be set to the location of the MIDP tool set (\midp-fcs\bin on our system).

Compile

>j avac -g:none -bootcl asspath %V DPCl asses% Obt ai nQuoteM Dl et . j ava
>j avac -g:none -bootcl asspath %V DPCl asses% Retri eveQuoteM Dl et. j ava

Preverify

>9M DPTool s% preverify -classpath %M DPCl asses% . Obtai nQuoteM Dl et
>0 DPTool s% preverify -classpath %M DPCl asses% . RetrieveQuoteM Dl et

JAR

>jar -cfmquote.jar QuoteM D etSuite.jad -C .
/out put ObtainQuoteM Dl et.class -C ./output RetrieveQuoteM D et.cl ass

Run

>0 DPTool s% m dp -cl asspath 9%V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite.jad

Congratulations! If you were successful in implementing the first phase of the tuto-
rial application in MIDP, then the results of executing this last line should look some-
thing like the picture in figure 5.3.

Figure 5.3

Even though the two MIDlets of the Investment Quote
system do little at this point, the MIDlet selection
menu provides the ObtainQuote and RetrieveQuote
after successfully writing, compiling, preverifying and
deploying the MIDlets. The names displayed in the
selection menu are obtained from the JAD file.

Pressing either selection in the MIDlIet suite choice list will activate that MIDlet.
However, since neither MIDlet currently performs any action, nothing will occur and
the customer must exit the system (the emulator) to leave the application. We now
have the basic structure for the MIDP applications, and while the applications are not
very exciting yet, we will begin to hang functionality off of this basic structure. We
will start with a simple means to interact with the user.

THE INVESTMENT QUOTE APPLICATION CONTROL 73

74

OPERATING
A KEYPAD

If you have been programming desktops and servers for years but never pro-
grammed a device that does not have a keyboard, you may be surprised to
find out that operating the input mechanism associated with a cell phone
is unique. In the previous example, you may have executed the run com-
mand without knowing how to select any menu option or operate the em-
ulator on the screen.

Operating a keypad on a device such as a cellular telephone can vary
from device to device. However, each device has at least one button on the
keypad associated with “selection.” Pushing this button on the keypad is
analogous to hitting the Enter key on a desktop computer with a keyboard.
On the default emulator provided with the J2ME reference implementa-
tions, the Select button is the button at the center of the directional buttons
(see figure 5.4). Again, while the Select button must exist, its implementa-
tion is device-specific.

SO @
Figure 5.4 q o—bf Select

The keypad select button on the MIDP
emulator and several cell phones is @ u @

located at the center of the arrow keys.

Each device must also provide some means of navigating the different
menu choices and text displayed on a screen. In the default phone emula-
tor, menu navigation, character entry, and other user interface widgets that
are displayed on the screen are accessed using the arrow keys. In the exam-
ple provided, only the up and down arrow keys are needed to navigate be-
tween the MIDlet application choices. (figure 5.5)

e

Figure 5.5 Q Q

The up and down arrow keys on the

keypad allow the users to navigate q o Navigate

through menu choices such as the

menu choice for choosing which G a

MiIDlet to run in a suite.

The power button on a cell phone will end execution of an application. In
the emulator, pressing the simulated power button will also cause the em-
ulator to close. (figure 5.6)

Figure 5.6
You can also exit an application by
pushing the power off button.

CHAPTER 5 MIDP USER INTERFACE

"Typing” with the keypad in a text entry field can be a cumbersome activity.
The keys of a keypad each represent up to four characters. For example, the
number ‘9’ key on the keypad also represents the characters ‘W’, *X’, ‘Y and
‘Z’. In user interface widgets where text entry is required, in order to type a
‘W', hit the ‘9" key once. To generate an ‘X', the ‘9’ key must be pressed
twice. However, do not take too long when pushing the keys on the keypad
to get the desired character. Pausing between pushes of the key indicates that
you wish to enter a second ‘W', not an ‘X’. To get the integer character as-
sociated with each key in the keypad, you must press the key once for each
associated character and then press the key once again to get the integer. For
example, to type the character ‘9’, one must press the number ‘9’ key five
times without pause. On the emulator, the ‘0" key provides the ‘Space’. This is,
however, a non-standard implementation across various cellular phone keypads.

In the emulator, the ‘# and “*" keys also provide some additional func-
tionality. Again, functionality on these keys does not represent standard
practice across all devices. Each vendor is provided some latitude in the
mapping of functionality to the keypad keys. On the emulator, the ‘#’ key
can be used as a backspace key when editing text. The “*’ key provides a
kind of shift key. It toggles the rest of the keys between the upper case char-
acter set, lower case character set and numbers (allowing a user to be able to
circumnavigate the problem of having to hit the ‘9’ key five times to geta ‘9’).

Some keys on the device can be programmed to represent certain actions
on the part of the user. These are known as soft buttons. These will be dis-
cussed in the event handling portion of this chapter.

Take some time to play with the emulator and the target device and dis-
cover the mappings and functionality they offer. Unlike the now fairly stan-
dard keyboards that come with desktop computers, not all emulators and
devices have the same keypad or the same keypad functionality.

53 TwoO TYPES OF MIDP USER INTERFACE AND EVENT HANDLING

Developing user interfaces for J2ME devices can be quite challenging. A J2ME device
is not even required to have a user interface and the size, shape and interactive capa-
bilities of the device’s interface can vary quite a bit. The unique display characteristics
for devices are a large part of what J2ME profiles address. Recall that J2ME profiles
provide focused support for devices and thus, specifically address user interface
characteristics.

Developing user interfaces for small devices such as cell phones, pagers, PDAs, and
so forth presents much more of a challenge. These devices have an even more restric-
tive user interface. The display capabilities of these devices may be restricted to a screen
that is only an inch or two wide. Often, these devices are utilized with one hand and
without the full attention of the user. Therefore, even simple pointing devices may not
be available for user input.

Two TYPES OF MIDP USER INTERFACE AND EVENT HANDLING 75

5.3.1

5.3.2

76

Those familiar with J2SE are probably well acquainted with the Abstract Window-
ing Toolkit (AWT) and Java Foundation Classes (JFC). These packages provide the
rich graphical user interface API for larger Java systems. However, the features of the
AWT were considered to be too much for many of the J2ME resource-constrained
environments, including the MIDP. Specifically, the AWT’s event model is too big
and expensive in its memory usage for constrained devices. Secondly, the screen size
of a MIDP device is too small to support multiple and possibly overlapping windows,
which the AWT provides. Finally, the AWT assumes a pointer (mouse or pen) input
device that the MIDP is not required to have. For this reason, the MIDP has its own
unique GUI API.

The MID Profile assumes only a 96x54 pixel, one-bit depth display and input
from either a keypad or a touch screen. While the MIDP specification allows for user
input via a one or two-handed keyboard or touch screen, most of the devices in the
MIDP space operate with a simple keypad.

There are actually two types of GUI APIs provided for in the MIDP. A high-level
API is intended for business applications and provides abstraction from low-level
graphics management and placement of graphical elements. The high-level API allows
the application to be highly portable from one MIDP device to the other, but at the
cost of giving up fine-grained control of the application’s look and feel.

High-level API

The high-level API provides a series of widgets or predefined graphical elements that
can be added to and used on a display. With the high-level GUI API, the device, and
not the application, handles the layout, scrolling, navigation, and visual characteris-
tics such as color, shape, font and painting of the elements on the display. Along with
the high-level GUI API, the MIDP has a high-level input event model, which will be
covered later in this chapter.

Low-level API

Alternatively, in the low-level GUI API, the application has much more control over
the display. This API was developed for applications such as games where the precise
control and placement of graphical elements is required. In the low-level GUI API, a
series of drawing methods allow the applications to create the display, shape by shape,
if necessary, and paint it to the screen. This API also has a corresponding low-level
event handling mechanism that will also be covered later in this chapter.

Applications that use the non-abstracted low-level APl may not be portable to
another platform since the application may be allowed to access system resources that
may not be available on all devices. For example, an application could be written to
draw in a pixel range that is outside of the display size of another device. To keep an
application portable, the low-level API provides convenience methods for checking on
the availability of non-portable resources. For instance, the application should check
on the available display size before drawing to unavailable pixel ranges.

CHAPTER 5 MIDP USER INTERFACE

In the tutorial application, we take advantage of the high-level API to capture the
customer’s investment request information and display the results. However, in order
to display the comparison chart depicting the price change in a bar graph, we utilize
the low-level API.

54 THE MIDP USER INTERFACE API

The MIDP GUI API, from user interface widgets to event handling mechanisms, is
wholly contained in the j avax. ni cr oedi ti on. | cdui package. Again, the user
interface is broken out into two API levels: high and low. We will first explore the
high-level API that provides a set of predefined user interface elements used in build-
ing more business-oriented applications. Afterwards, we will examine the low-level
API that provides the application developer with a great deal of freedom to draw
shapes on the screen but at a cost of more acutely managing the display.

5.4.1 MIDP display control

Before the display of any widgets or shapes, we need access to the device screen. In
MIDP, the device display is accessed through a manager called the Di spl ay object.

The Display object

You may recall the use of the Di spl ay object in the st art App() method of our
simple HelloWorld MIDIet in chapter 4.

Di spl ay. get Di spl ay(this).setCurrent(textbox);

In the MIDP, the Di spl ay object represents the manager of the device’s screen or
display. We see later that it also manages the system input devices. There is only one
Di spl ay object for every MIDlet. The Di spl ay object provides methods to draw
and display graphical user interface elements on the screen (if the device has a screen),
regardless of whether the high-level or low-level GUI API is used. The Di spl ay instance
also provides methods to get properties from the display device such as whether the
device supports color and what object is currently displayed on the device.

We obtain the instance of Di spl ay by calling the static get Di spl ay(M Dl et)
method on the Di spl ay class. A valid Di spl ay instance can be obtained any time
after the beginning of the st ar t App() method and until the dest r oy App(bool -
ean uncondi ti onal) call returns.

Displayable objects

We now have the capability through the Di spl ay manager instance to put some-
thing on the cell phone or pager’s screen, yet we have nothing to display. We want to
start adding graphical elements to the display. However, we cannot add graphical ele-
ments, whether high or low-level graphical elements, directly to the display. Instead,
all user interface objects that are to be shown on a device screen must be contained
inside of a Di spl ayabl e object. Di spl ayabl e is an abstract class from which all

THE MIDP USER INTERFACE API 77

5.4.2

78

Displayable

Figure 5.7
This UML class diagram shows the
hierarchical relationship among the

’ Canvas ‘ ’ Screen ‘ available Di spl ayabl e classes in
? MIDP. Screen and its descendents
are used to develop high-level user

l l |
’ Alert ‘ ’ Form ‘ ’ List ‘ ’ TextBox ‘

interfaces. whereas Canvas is used
to create low-level user interfaces.

of the Ul display classes derive (see figure 5.7). Scr een, and its many subclasses, are
the display classes for high-level GUIs. Alternatively, Canvas is used as the Di s-
pl ayabl e class for all low-level GUIs.

NOTE Screen versus screen The MIDP specification refers to the central abstrac-
tion of the MIDP Ul as a “screen” (with a lowercase ‘s’). The abstract class
of Di spl ayabl e represents the implementation of this “screen” abstrac-
tion. We find this naming convention to be rather confusing since there is
a Di spl ayabl e subclass “Screen” (with an uppercase ‘S’). In order to
avoid confusion, we do not refer to the abstract idea of a MIDP display as
a screen, but be aware of this terminology when reading MIDP documen-
tation. Instead, we choose to use the class Di spl ayabl e or the more ge-
neric “display” term to refer the abstract idea of an MIDP device screen.

Only one Di spl ayabl e object can be shown at a time. The Di spl ayabl e object
that is shown is called the current Di spl ayabl e. The Di spl ay object allows for
getting and setting the current Di spl ayabl e object with two complementary
methods: get Current () and set Current (Di spl ayabl e next Di spl ayabl e).

Why have an abstract class encapsulating all display objects? The Di spl ayabl e
object helps to isolate MIDP applications from having to deal with component layout,
screen scrolling, widget focus, and so forth. For those familiar with either AWT or
Swing in J2SE, the Di spl ayabl e object does the job of the Layout Manager and
then some. Given the diversity among MIDP devices, an application would be over-
whelmed in trying to handle these tasks for all devices. The single, simple display also
helps to keep the GUI easy to use and learn.

MIDP high-level user interface API

Scr een is the superclass for all high-level GUI Di spl ayabl e objects. The Scr een
provides subclasses with an optional title that can be displayed at the top of the dis-
play area. The high-level MIDP GUI has two kinds of Scr een subclasses that can be
used to display graphical elements. The first type completely encapsulates the user
interface components and has a predefined structure for displaying information to
the user. Most Scr een components do not allow the application to add or remove
other user interface components. Li st, Text Box, and Al ert are subclasses of
Scr een that fall under this type.

CHAPTER 5 MIDP USER INTERFACE

The second kind of Scr een allows for the applications to add and remove other
graphical elements from the display. This second type is handled by the For msubclass
of Scr een. Constrained only by the limits of the display size and memory, a For mallows
developers to create arbitrary displays of specific graphical user elements called items.
Thus, forms do not completely encapsulate their elements as other Scr een subclasses.

Form

A form can be thought of as a data entry page. It contains an arbitrary mixture of images,
text fields, data fields, choice selections, and other common graphical user interface
widgets called items. Items are graphical elements that subclass from |t em Item
classes include: | magel t em Stringltem Text Fi el d, Dat eFi el d, Choi ce-
G oup, and Gauge (see the “Items” section on page 80).

As with all high-level Di spl ayabl e objects, the system handles layout, traversal
or focus, and scrolling. Scrolling may occur if all the graphical components do not fit on
the display. Depending on the implementation for a given device, some components
may either pop up into a new display screen or expand only when the user edits the item.

Changes made to a form while it is displayed take effect immediately without the
need for refresh action on the part of the application. However, it is recommended
that applications change the contents of a Di spl ayabl e object only while it is not
visible. In other words, changes should be made to the Di spl ayabl e object while
it is not considered the current displayable object by the Di spl ay object. Depending
on the device, changing the contents of a Di spl ayabl e object when it is visible can
result in poor performance. Also, the way in which the device may handle the refresh
of the display may cause the user to get confused while interacting with the device.

The following MIDlet code in listing 5.4 creates and displays a simple For mobject
without any items. Using the Di spl ay object for the MIDlet, the form is also made
the current Di spl ayabl e for the MIDlet.

Listing 5.4 FormDemo MIDlet

import javax.mcroedition.mdlet.*;
i mport javax. mcroedition.lcdui.*;

public class FornDenp extends M Dl et{

Di splay d;
Form aForm

public FormDeno () {

aForm = new Forn("Dermo Forni); @ Creates Form object with title
} “Demo Form” and no items
protected void startApp() { . . .

d = Display. getDi spl ay(this): Uhsm,alg}e Dlsplayhobject for

d. set Qurrent (aForm) the et, sets the current
} displayable to the new Form

THE MIDP USER INTERFACE API 79

protected void pauseApp() {

}

protected void destroyApp(bool ean unconditional) {

}
}

Items

I t emis the superclass for the interactive graphical elements that can be added to a
For mobject. Methods are provided on the form to add, append, delete, insert, or set
items. An item can only be placed on one Scr een object. Attempts to place the same
I t emobject on the same or another Scr een object will cause an I I | egal St at e-
Excepti on to be thrown.

Table 5.1 Items serve as the principal means for users of an MIDP application to enter data.
This list outlines the item subclasses and how and when to use the item in a high-level GUI.

Item Subclass

Description

ChoiceGroup

DateField

Gauge

Imageltem

Stringltem
TextField

A ChoiceGroup object is a group of selectable choices or elements similar to the
List discussed later in this section. The ChoiceGroup must implement the Choice
interface (see Choice interface in the description that follows). The group can
require a single choice or multiple choices. While the system is responsible for
graphically displaying an instance of ChoiceGroup, the device is required to
provide some visual differences in the way single versus multiple select choices
are displayed. A single choice group is usually depicted as a set of radio buttons,
whereas a multiple choice group is depicted as a set of check boxes.

A DateField instance provides the means to get and display calendar date and
time information in a Form object.

A Gauge object is a slide bar graph depicting a range of possible small integer
values and a current value. A gauge may be interactive (allowing the user to modify
the current value) or non-interactive (prohibiting the user from setting the current
value). The system may change the appearance of a Gauge instance based on
whether it is interactive or non-interactive. A non-interactive gauge will likely be
used for progress indicators whereas interactive gauges can be used for visual
data entry.

An Imageltem is an Item instance wrapper for images (see page 89).

Each Imageltem object contains a reference to an immutable Image object.
The Imageltem provides layout control over the Image when added to a Form.
If the Image instance’s size is larger than can be displayed, alternative text can
be specified and displayed in the image’s place.

A display-only item that shows textual information to the user.

A TextField is a text editor for Form objects. Like TextBox (see page 83), the
amount of text and the type of text (for example, only nhumeric text or text in the
format of a telephone number) that can be entered into a text field by a user can
be specified by the application. The device determines the number of characters
displayed and their arrangement into rows and columns.

80

CHAPTER 5 MIDP USER INTERFACE

I t eminstances have a text string label field that is displayed near the element when
displayed on the Scr een. The system will usually display the label on the same hori-
zontal row or just above the item, and will attempt to keep the item and label visible
at the same time during any necessary scrolling of the Scr een object.

Again, depending on the implementation for a given device, some items may force
a system-generated popup into a new display or expand the current display when the
user interacts with the component. In these cases, the label should be displayed with
the popup or expanded view in order to allow the user to continually identify the
graphical element. Table 5.1 is a list of the subclasses of I t emand their usage.

Each item in Listing 5.5 is created and added to the form inside of the For mDeno
constructor. The following code extends the simple form example a little farther by
creating a single instance of each of these items:

Listing 5.5 FormDemo Constructor

Di spl ay d;

For m aFor m

Choi ceGroup aChoi ceG oup;
Dat eFi el d aDat eFi el d;
CGauge aCGauge;
StringltemaStringltem
Text Field aTextFiel d;

| magel t em anl magel tem

| mage anl mage;

public FormDenmp () {

aForm = new Forn("Denmo Form');

String choices[] = {"This", "That"};

aStringltem = new Stringltem(null,"Denp Itens");

aChoi ceG oup = new Choi ceG oup(" Choose", Choi ce. EXCLUSI VE, choi ces, nul |);

aDat eFi el d = new Dat eFi el d(nul |, Dat eFi el d. TI ME) ;

aGauge = new Gauge("Score",true, 10, 1);

aText Field = new Text Fi el d(" Comment s", " Your comments here", 20, 0);

try i @
anl mage = | mage. creat el mage("/star.png"); Creating single

} catch (java.io.|OException ioE) { m_stances of
System out. println("Problemreadi ng i nage"); various ltems

}

anl magel tem = new | magel tem(" Denp | mage",
anl mage, | nagel t em LAYOUT_CENTER, "No i nage"); 0

aForm append(aStringlten);

aFor m append(aChoi ceG oup) ;

aFor m append(aDat eFi el d) ; 0 Add the items

aFor m append(aGauge) ; to the form
aForm append(aText Fi el d) ;
aFor m append(anl nagel t en) ;

THE MIDP USER INTERFACE API 81

82

Diemo Form

Figure 5.8 Demo tems Stringltem

Example Stringltem, ChoiceGroup and ChoiceGroup
DateField items displayed as part of the
~ormDemo MIDlet. The Stringltem is static,
non-editable text. The <time> label serves DateField

as a marker for bringing up the DateField
display (see figure 5.9) for time entry.

Because the display size of the MIDP device, in this case our MIDP cell phone emu-
lator, is so small, the form automatically provides a scroll mechanism to allow the user
to be able to see all the items on the form. When the MIDlet executes and displays
the form, it should look something like the picture in figure 5.8.

Notice that the time in the Dat eFi el d instance does not actually display a time.
Instead, when selected, another display is shown on the device to allow the user to
enter the time. In this case, when used with the emulator, interaction with the date
field in time input mode (versus date input or both date and time input mode) causes
the display to switch to the display shown in figure 5.9.

Figure 5.9

Upon entering the DateField component
when in time input mode, this nice
display tool allows users to easily enter a
time in hours and minutes. Alternate
displays are used for entering dates or
both date and time.

As was mentioned previously, when interacting with the various items in a display, the
system may force the user into system-generated displays such as this one in order to
allow the user to interact with the component. The additional items of the form are
displayed by scrolling down. (figure 5.10)

Faull
Cremo Form
Figure 5.10
Gauge, TextField and Imageltem displayed
as part of the FormDemo MIDlet. Selecting
the TextField for editing the text in the field
will likely cause the field to expand into a
full screen text editor that must be
dismissed to return to the MIDlet Form.

Gauge

CHAPTER 5 MIDP USER INTERFACE

List

As its name implies, a list displays a set of choices to the user and allows the user to
select from the choices. The choices are called elements. An element consists of a text
string and, optionally, an image. The Li st and Choi ceG oup (see Items above)
must implement the Choi ce interface (see Choice Interface in the description that
follows). A list allows the user to traverse or scroll through the elements before finally
making a selection. A list can allow for multiple or single (called exclusive) selection
of elements.

How an element is selected is device-dependent. Soft-buttons are application pro-
grammable buttons on the device and, in some cases, these may be used to register
selection. However, selection functionality is usually not done by soft-button and is
instead accomplished by a key that is not programmably labeled. For example, in the
emulator, the selection button is the non-programmable key at the center of the nav-
igation keys. (figure 5.11)

S oy @
Figure 5.11
On the emulator, the List selection key is q W Emulator

at the center of the navigational buttons. selection key

However, the location of this non- G u @

programmable key is device-dependent.

While we will not explicitly build a list in our tutorial application, the device applica-
tion manager will build one for us to allow our customers to choose which application
to run. Once we have deployed our MIDlets to the device, the device will show us a
choice to run either the ObtainQuote or RetrieveQuote applications (see figure 5.3
earlier in the chapter).

TextBox

A Text Box object provides a means for the user to enter and edit text. Along with
the text field item (see page 80), the amount of text that can be entered and the type
of text entered by a user (for example only numeric text or text in the format of a tele-
phone number) can be set and constrained by the application.

The device determines the number of text rows and columns displayed for a text
box at any one time. Furthermore, the device must also provide a means to scroll when
the amount of text to be displayed is larger than the number of characters that can be
displayed at any one time.

In chapter 4, The HiSmallWorld MIDlet utilized Text Box for its Scr een object.

text box = new TextBox("", "H Small World!", 20, 0);

In the example, the text box was given an empty string title (the first parameter) and
initial contents of “Hi Small World!”. The third parameter specified the maximum
number of characters that can be contained in the text box. The final parameter

THE MIDP USER INTERFACE API 83

84

allows for input constraints on Text Box objects. An application can use constraints
to restrict user inputs in a text box or text field (see Text Fi el d item under Items
above). For example, a constraint can be set up to allow only numbers to be entered.
In our example, no constraints on the text box were set. In other words, this text box
allows for any characters to be entered by the user. Other text box constraints could
include allowing only an email address, an integer value, a phone number, or a URL.
Additionally, a constraint is available to hide the true characters typed by showing a
mask character such as " instead of the actual character. This is important when
entering specific data or passwords.

Alert

Al ert is akind of message Scr een that shows text and images to the user. It is used
to inform users of errors or exceptional conditions. An alert’s single image is set with
acall toset I mage(| mage i mg) (see the “Images” section in 5.4.3), while an alert’s
text is set with a call to set Stri ng(String str). Like a For m changes made to
an alert while it is displayed take effect immediately without the need for refresh
action on the part of the application. Again, as a Di spl ayabl e object, changes to
the Al ert object should only be made while it is not visible to avoid potential per-
formance or user confusion issues.

By default, an alert is displayed for a period of time that is determined by the
device, or can be set in milliseconds by the application. In fact, the application can set
the display time to be indefinite with a call to the set Ti meout (Al ert. FOREVER)
method. In this case, the alert becomes a modal Di spl ayabl e object meaning that
the user must dismiss it before something else is displayed. The system must provide
a feature that allows the user to dismiss the alert. An Al er t instance may also become
modal if the application provides too much text and/or images to be displayed forcing
the display to provide automatic scrolling.

An instance of the Al ert Type class is usually associated with the alert to indicate
the nature of the alert and provide more information to the user of the device. This
is done by calling an alert’s set Type(Al ert Type t ype) method with the appro-
priate Al er t Type. When the device has the capability of playing sound, the Al ert -
Type object can be used to provide audible information. The predefined types of
alerts are listed in table 5.2.

Table 5.2 Alert Types, listed in this table, help provide visual and sometime audible context to
alerts presented to the user.

Alert Type Description

ALARM Alerts the user about some event based on a prearranged condition.
CONFIRMATION Prompts the user to confirm a user action.

ERROR Indicates an erroneous operation has occurred.
INFO Provides non-threatening information to the user.
WARNING Warns the user of potentially harmful or dangerous operations.

CHAPTER 5 MIDP USER INTERFACE

Demonstrating the use of an alert type, the following code snippet creates a modal
I NFOAI ert object:
Alert testAlert = new Alert("News Flash", "Man bites dog.", null,

Al ert Type. | NFO) ;
testAlert.setTineout (Al ert. FOREVER);

In order to display this, the display manager is used to set the current display to the
alert. Unlike forms and lists, however, the next Di spl ayabl e object must be specified
so that when the alert is dismissed, the display manager knows what to display next.
Therefore, the set Current (Al ert al ert, Di spl ayabl e next Di spl ayabl e)
method is used with the display manager object as opposed to the set Cur r ent (Di s-
pl ayabl e next Di spl ayabl e) method used with other Di spl ayabl e objects.
The Al ert object created in the preceding code should look like the picture in
figure 5.12. When executed inside the emulator, it is likely that you will also hear a
sound based on the alert type used.

IF .l 1)
ey Flash

Figure 5.12

An alert works as a kind of message box

in MIDP. Alerts can be used to provide
warnings, information, error messages, etc.

The “Done” text shown on the alert is the label associated with a key on the keypad,
which allows the user to dismiss this alert display. Recall that the alert was created as a
modal display with the set Ti meout (Al ert. FOREVER) method call. When the
user presses the key associated with the Done label, the display manager shows the
next displayable.

Ticker

Along with the title string associated with each Scr een object, a Ti cker object can
be associated with Scr een subclass objects. A Ti cker instance mimics a ticker tape.
In a ticker tape, a text string repeatedly runs in an animated fashion across the display.
The speed and direction of the Ti cker are set by the system, and the application
cannot start or stop the ticker. The system may pause the scrolling to reduce power
consumption when the user has not interacted with the system for some time. A single
simple constructor method is provided to create a Ti cker object. A Scr een method,
set Ti cker (Ti cker ticker), allows the Ti cker instance to be associated with
the Scr een instance. After being associated with a Scr een object, the ticker dis-
plays with the Screen object when displayed. For example, the following code
builds a Ti cker object and associates it to the form built previously in this section.

THE MIDP USER INTERFACE API 85

86

Eluy' s Go Ticker
Figure 5.13
Like the ticker tape machines of old Wall Street, Lema tems

a Ti cker instance displays a message atop the
MIDP emulator. A ticker can be shared by many
Scr een instances thus providing the illusion
that the ticker is part of the device display

as opposed to the application.

Ti cker aTicker = new Ticker ("Buy U S. Governnment Savings Bonds today!");
aForm set Ti cker (aTi cker);

Figure 5.13 depicts the results of the display manager setting the current displayable
to aForm

Unlike other display items, multiple Scr een objects may share a Ti cker in-
stance. Each Scr een object can use the set Ti cker (Ti cker ti cker) method to
set its display ticker. In order to promote an illusion that the Ti cker instance is really
part of the display instead of each Scr een, the Ti cker is supposed to be displayed
in the same position and continue scrolling its last displayed characters when moving
between screens that share it.

Choice interface

An interface has been provided as part of the MIDP’s high-level user interface API for
components that provide selection from a set of predefined choices. This includes the
Li st (Screen subclass) and Choi ceG oup (I t emsubclass) classes.

A text string, and, optionally, an image represent a Choi ce. The image will be dis-
played next to the text string unless it exceeds the size limits allowed by the device. In
this case, the image will be ignored. A choice’s text string will wrap onto multiple lines
if its length is too wide for the display.

There are three different choice types supported by the Choi ce interface. An
EXCLUSI VE choice represents a selection of elements where only one element can be
selected. A MULTI PLE choice represents a selection of elements where more than one
element can be selected. Finally, an | MPLI CI T choice is a selection of the element that has
focus when a Commrand object is initiated. We will explore commands later in this chapter.

Screen layout

Screen layout is handled by the device and is not something the application controls.
Nevertheless, there is a layout policy by which the device does abide: items that are
appended or inserted to a form or an Alert are placed on the same line as the previous
item unless the item does not fit on the line. In this case, a new line is started with the
new item. A new line will also be started with a new item if the previous item was a
string ending with a newl i ne character or a layout directive (such as those available
to items of the | magel t emclass), which indicates a non-default layout is desired.

CHAPTER 5 MIDP USER INTERFACE

5.4.3 MIDP low-level user interface API

While there are fewer classes and instances to deal with in MIDP’s low-level graphical
user interface API, the developer must deal with many low-level details such as pixel
coordinate systems, fonts, geometric shapes for drawing and screen refresh.

Canvas

Unlike the high-level API, there is only one Di spl ayabl e subclass to use when cre-
ating low-level graphical user interfaces. It is the Canvas class. However, the Can-
vas class is abstract and requires applications to subclass it in order to use it. Two-
dimensional geometric shapes and/or text are displayed on a Canvas object through
a drawing mechanism called a G aphi cs object. An instance of a Canvas subclass
is passed a Gr aphi cs object through the device’s call to the pai nt (Gr aphi cs g)
method of a canvas. Each Canvas subclass must implement this abstracted method,
and only during the duration of the pai nt (G aphi cs g) method can applications
draw low-level graphics to the display. However, the application never invokes the
pai nt (G aphi cs g) method directly. This job is left up to the device.

Repainting of the display is done automatically for all Scr een objects in the high-
level API. Instances of the Canvas subclasses, however, are responsible for their own
repainting. An application requests the display to be repainted by calling the Canvas’
repai nt () method, which eventually calls on the pai nt (G aphi cs g) method
provided by the Canvas superclass. Repainting of a canvas is an asynchronous event,
so several calls to the r epai nt () method can be made before the actual pai nt
(Graphi cs g) takes place. This allows the display to be optimally refreshed, which
is very important for applications such as games. Repaint requests can be forced by
calling the ser vi ceRepai nt s() method. For further optimization, the application
can request to repaint only a portion of the display using the r epai nt (i nt x, int
y, i nt wi dth, i nt hei ght) method, which targets a specific region of the display
to be repainted.

Graphics

An instance of the Gr aphi cs object does all of the drawing for MIDP’s low-level
GUI API. It provides several draw methods to display characters or strings, images,
lines rectangles, rounded-corner rectangles, and arcs. Rectangles, rounded-corner
rectangles and arcs can be either filled or unfilled. The Gr aphi cs object does not
have to be created. Rather, a new instance of a Gr aphi cs object is created and
passed to a Canvas object through the Canvas object’s pai nt (G aphics g)
method. This allows graphics to be displayed directly the next time the Canvas
object’s pai nt (G aphi cs g) method is invoked by the system. Alternatively, a
Graphi cs object can be obtained from an off-screen buffered image by making a
call to get Graphi cs() on the preferred | mage instance. This allows draw com-
mands to be issued to the off-screen image for later display.

THE MIDP USER INTERFACE API 87

88

All drawing operations do a pixel replacement. In other words, any drawing oper-
ation specified in the Gr aphi cs object that sets a pixel value replaces the previous
value. There is no capability for combining or blending pixel values as is provided in
more sophisticated drawing systems.

The Gr aphi cs object does support 24-bit color. The red, green and blue color
components are each allotted 8 bits. However, not all devices support 24-bit color. In
these cases, the system will attempt to map available colors as close as possible to the
colors requested by the application. The Di spl ay class provides methods for obtain-
ing device capabilities, such as the support for color, which can be used by the appli-
cation to provide better looking displays that are not washed out by automatic color
mapping. This also helps the application to remain portable and not dependent on the
features of a specific device.

All geometric drawing methods in the Gr aphi cs object make use of a coordinate
system. The default coordinate system assumes that the upper left-hand corner of the
device’s display is the coordinate (0, 0). The coordinate system actually represents the
location between each pixel. For example, the following coordinates bound the first pixel
in the upper left-hand side of the display: (0,0), (1,0), (0,1), (1,1). Each increment of
the X and Y coordinates represents moving one pixel in the display. The X coordinate
moves in a positive direction to the right and the Y coordinate moves in a positive
direction downward or toward the bottom of the display. Applications are allowed to
assume that pixels are square. In other words, the horizontal and vertical distances in
the coordinate system represent equal distances. Drawing operations performed by the
G aphi cs object are done with a one-pixel wide pen that fills the pixel immediately
below and to the right of the specified coordinate and includes both endpoints.

Text drawing makes use of an “anchor point” to minimize the computation
required when placing text on the display. When drawing a string or character, the
application must specify both an (x, y) anchor point coordinate and a horizontal and
vertical constant for positioning the string on the display. A horizontal constant
(LEFT, HCENTER, RI GHT) is combined with a vertical constant (TOP, BASELI NE,
BOTTOM in a logical OR operation. This provides the direction from the (x, y) anchor
that the string is drawn. For example, a method call of dr awSt ri ng(“Hi t here”,
15, 20, TOP| LEFT) has the effect of drawing a “Hi there” string below and to the
right of the (15,20) coordinate, as shown in figure 5.14.

Figure 5.14

Text must be anchored to the display via a combination
- : o of horizontal (LEFT, HCENTER, RIGHT) and vertical

B T . constants (TOP, BASELINE, BOTTOM). In this example,
2 iy the “Hi there” text is anchored in the MIDP’s graphical
coordinate system by a TOP and LEFT anchor point.

(15,20)

1314 15 1617,

o]
(44

The horizontal and vertical values are static constants provided by the G- aphi cs class.
Both a horizontal and vertical constant must be supplied or unpredictable conse-
guences (such as application failure) can result.

CHAPTER 5 MIDP USER INTERFACE

As discussed earlier in this section, recall that the Canvas class is abstract and so
must be subclassed in order to develop a low-level graphical user interface displayable.
A simple example of a Canvas class is shown in listing 5.6.

Listing 5.6 CanvasDemo

i mport javax.mcroedition.lcdui.?*; . . .
Displaying a string
cl ass CanvasDenp extends Canvas { at position 1,1

protected void paint(G aphics g){
g. drawstri ng(" Canvas Denmp", 1, 1, G- aphi cs. TOP| Gr aphi cs. LEFT) ;

g.fill Rect (20,30, 30, 20); @ Drawing afilled rectangle
g. drawLi ne(50, 50, 75, 50) ;
g. drawLi ne(75, 50, 75, 75) ;
g. drawLi ne(75, 75, 50, 75) ; .
g. drawLi ne(50, 75, 50, 50) ; Drawing a rectangle
} using four lines

In the preceding code, pai nt () method should never be called directly by the applica-
tion. Instead, the system calls on pai nt (G aphi cs g) to render the display as needed.
In this method, a string is drawn at coordinate position 1,1, and a filled rectangle is
drawn starting a coordinate position 20,30 with a width of 30 and height of 20. Finally,
a second rectangle is drawn, but this rectangle is created by drawing four separate lines.

Notice that the only method that must be implemented is the pai nt (G aphi cs g)
method. Inside of the paint method, specific draw commands are issued to display
strings and shapes. However, the device will control when this method gets called.
Inside of the MIDlet, as shown below, all that is required in an application is to create
the Canvas object and set it to the current Di spl ayabl e object, much as we did
for the For mobject in the high-level user interface. The results of running the MIDlet
in listing 5.7 with the code in listing 5.6 appear in figure 5.15.

Images

An | mage instance holds graphical image data. This data exists in off-screen memory
and is independent of any display device. An | mage object can only be painted on
the display when explicitly instructed by the application. An application instructs an
image to display in one of two fashions. In the high-level API, the application can
add an image directly to an alert, choice, form, or image item. Alternatively, in the
low-level API, an | mage object can be displayed to a canvas using the dr aw
I mage(l mageing, int x, i nt y, i nt anchor) method on a G aphi cs object.
In the low-level API, images can also be created in off-screen memory using a
G aphi cs object. A Graphi cs object is created and then the application paints to
the | mage where it can later be displayed (see the previous Graphics section).

There are two types of images. The type image is dependent on how it was created.
Immutable images are usually created by loading image data from a resource such as a file.

THE MIDP USER INTERFACE API 89

Listing 5.7 CanvasMidlet using CanvasDemo from above

i mport javax.mcroedition. mdlet.*;
i mport javax.mcroedition.lcdui.?*;

public class CanvasM dl et extends M D et {

Di splay d;
Canvas c;
protected void startApp() { Creating an instance
d = Display.getDisplay(this); of the Canvas object
¢ = new CanvasDeno();
d.setCurrent(c);
}
) Setting the current
protected void pauseApp() { Displayable to the
} Canvas object

protected void destroyApp(bool ean unconditional) {

}
|

As the name implies, these types of images cannot be changed. Only immutable
images can be used with the high-level API. That is, only immutable | mage objects
can be placed within an Al ert, Choi ce, For mor | magel t emobject. Because the
high-level graphical display’s refresh is determined by the system, having only immu-
table images associated with these components allows the system to update the dis-
play without notifying the application. Mutable | mage objects are created in off-
screen memory and are generally used in low-level GUI applications.

There are several static cr eat el mage() methods on the | mage class that can
create immutable images from mutable images and vice-versa.

Figure 5.15

The CanvasDenp class and CanvasMIDlet
produce this image when successfully
deployed and run on a device or emulator.
The size of the device’s screen may cause
clipping of the shapes drawn if they extend
beyond the dimensions of the screen.

Fonts

A Font is used in the low-level API to set the font of any text that is drawn to the
screen. The application does not have control of the font when using the high-level API.
Unlike in larger systems, fonts cannot be created by the application. The application

CHAPTER 5 MIDP USER INTERFACE

can only query for a font based on a set of predefined attributes. Fonts have attributes
dealing with style, face and size with symbolic static constants provided to represent
the choices for each attribute. Table 5.3 lists examples of attribute constants from
which the application can choose.

Table 5.3 These static fields, defined in the Font class, are used to specify the font when
drawing text to the screen in an MIDP application.

STYLE FACE SIZE
STYLE_BOLD FACE_MONOSPACED SIZE_LARGE
STYLE_ITALIC FACE_PROPORTIONAL SIZE_SMALL
STYLE_UNDERLINED FACE_SYSTEM SIZE_MEDIUM
STYLE_PLAIN

Some attribute constants such as STYLE _BOLD and STYLE_| TALI C can be com-
bined and used on the same string. Other attribute constants like SI ZE_SMALL and
SI ZE_LARGE are contradictory and thus cannot be used simultaneously. By default,
the font for any string is STYLE_PLAI N, SI ZE_MEDI UM and FACE_SYSTEM

The system will attempt to provide a font that matches the requested attributes,
but this is not guaranteed. The system may only have a small subset of fonts that an
application can use. A Font instance is obtained through a call to the static get -
Font (i nt face, int style, int size) method on the Font class. A G aph-
i cs object then uses the Font object to set the current font for all subsequent
drawings of strings or individual characters. The set Font (Font font) method is
used on a G aphi cs instance to set the current font.

5.4.4 The investment quote application’s user interface in MIDP
Given an understanding of both the high-level and low-level graphical user interface,
we can now develop the user interface for the tutorial application. Earlier in this
chapter, we developed the application control for the tutorial application by imple-
menting two MIDlets. The next step in our development effort is to implement the
user interface for our application.

Using the Display class

The Di spl ay class, along with the other user interface classes that we use, resides in
the j avax. i croedi tion. | cdui package. Therefore, MIDlets with a user inter-
face must include this package in the import statement at the top of the .java files.

i mport javax.mcroedition.lcdui.*;

Because we are going to utilize the Di spl ay object often in the tutorial application,
we set up a local variable to hold onto the instance throughout our application’s life-
cycle. Thus, in both the Obt ai nQuot eM Dl et and Retri eveQuot eM Dl et , we
add the following variable declaration.

private Display displayvgr = null;

THE MIDP USER INTERFACE API 91

92

Since our application will be straightforward, we immediately get the Di spl ay
instance and put its reference into the di spl ayMhgr variable from inside of the
st art App() method.

protected void startApp() {

di spl ayMhgr = Di spl ay. get Di spl ay(this);
}

Data entry using forms

Given an understanding of forms and their associated items, we are ready to build the
investment price request display (see figure 3.2 in section 3.2.2). In this display, the
customer is requested to enter an investment symbol and investment type in order for
the system to obtain investment price information. To begin, we create a new class
called Ent r yFor mthat extends the current For mclass. We did not have to create a
new subclass of For min order to create a For mobject. However, this will help us in
two ways. First of all, the new Ent r yFor mclass can be used by both our Obtain-
Quote and RetrieveQuote MIDlets to get the symbol of concern from the customer.
Secondly, this class will also help keep our MIDlet code tidy. Our new form subclass
extends For mso we must import the j avax. mi cr oedi ti on. | cdui package. The
For mclass also provides two constructor methods. At least one of the constructor
methods must be overridden in the new class. This is all we need to start our new
Ent r yFor mclass.

i mport javax.mcroedition.lcdui.*;
public class EntryForm extends Form {

public EntryForm(String title) {
super(title);

}
}
Next we want to add some items to the new For mobject to make it look similar to
our design sketch (again, see figure 3.2 in section 3.2.2). In particular, we want to add
a text field to allow the customer to enter the investment symbol and we want to add
a choice group to allow the user to indicate what type investment has been specified
by the symbol. Two variables are defined for the class to retain references on the two
items we create.

private TextField synbolField = null;
private Choi ceGroup investment Choice = null;

In order to allow the application that uses this form to get access to the items, two
getter methods are provided to return these items.

CHAPTER 5 MIDP USER INTERFACE

public TextField getSynbol Field() {
return synbol Fi el d;
}

publ i c Choi ceGroup getlnvest ment Choice() {
return investnent Choi ce;

}

On construction of the form, the various items must also be created and added to the
new For mobject. Therefore, inside of the Ent r yFor mclass constructor, we create
each of the items, set the appropriate reference variable to the item and add the item
to the form.

public EntryForm(String title) {
super(title);
synbol Field = new TextFi el d("Investment Symbol", "", 5, TextField.ANY);
String choices[] = {"Stock", "Fund"};
i nvest ment Choi ce = new Choi ce@ oup(" Type", Choice. EXCLUSI VE, choices, null);
append(synbol Fi el d);
append(i nvest ment Choi ce) ;

}

Using the Text Fi el d constructor, Text Fi el d(String | abel, Stringtext,
i nt maxSi ze, i nt constraints), we create a Text Fi el d object to capture the
investment symbol. The field has a label but no initial text contents. We have limited
the maximum number of characters that the customer can enter to 5 (this should be
sufficient for common stock and mutual fund exchanges), but we do not put any input
constraints on the entry. Similarly, we create a new Choi ceG oup object to allow
the customer to specify the type investment to be researched. It can be either a stock
or mutual fund. There are two Choi ceG oup constructors from which to choose. We
use the Choi ceG oup(String | abel, i nt choi ceType, String[] string-
El enent s, | mage[] i mageEl enent s) constructor. The Choi ceG oup is given
a label and choice strings. We do not assign any icons for the choices at this time. The
choice type is set to EXCLUSI VE indicating that exactly one selection can be selected
at any given time. Exactly one choice must be selected, but since we just created the
choice group, no item has been physically selected. In other words, there is no default
selection. In this case, the choice of which element is selected is left to the device. A
condition where the choice group may not have a selected item could also occur if an
element is added to an empty list or if the selected choice is deleted. Whenever the se-
lected item cannot be determined, the system is left to select an element. In order to
avoid having the system make an arbitrary selection on any choice, use set Sel ect ed-
I ndex (i nt el enent N\um bool ean sel ect ed) . Finally, the text field and choice
group items are appended to the instance of Ent r yFor mand automatically display
when their associated form is displayed.

In its own EntryForm.java file, the code for the new For mclass should appear sim-
ilar to listing 5.8.

THE MIDP USER INTERFACE API 93

94

Listing 5.8 EntryForm

i mport javax. m croedition.lcdui.*;

public class EntryForm extends Form { @ The class defining the
investment request form
private TextField synbolField = null;
private ChoiceG oup investnentChoice = null;

public EntryForm(String title) {
super(title);
synbol Field = new Text Fi el d("Il nvest ment Symnbol ",
"", 5, TextField. ANY); @ TextField for entering a symbol
String choices[] {"Stock", "Fund"};
i nvest ment Choi ce new Choi ceGroup(" Type", Choi ce. EXCLUSI VE,
choices, null);
append(synbol Fi el d);

append(i nvest nent Choi ce) ; é) ChoiceGroup for
} selecting Stock

or Fund type

public TextField getSynbol Field() {
return synbol Fi el d;

}

publ i c Choi ceG oup getlnvest ment Choice() {
return investnent Choi ce;

}
}

[
To establish an instance of the newly created Ent r yFor mclass, we first add a variable and
a method to the MIDlets. The variable keeps a reference to an instance of the form.

private EntryFormentryForm = null;

The method checks to see if an instance of the entry form has already been created. If
not, a new instance of the form will be created and its reference will be stored in the
variable. With the reference to the entry form (whether existing or newly created), the
application makes the form visible by invoking the Di spl ay class’s method set -
Current (Di spl ayabl e next Di spl ayabl e).
private void displayEntryForm () {

if (entryForm== null) {

entryForm = new EntryForn{" Cbtai nQuote");

}
di spl ayMhgr . set Current (entryForm;

}
Finally, a line is added to the st ar t App() method of the ObtainQuoteMIDlet that
calls our di spl ayEnt r yFor () method.
protected void startApp() {
di spl ayMngr = Displ ay. getDisplay(this);

di spl ayEntryForm();
}

CHAPTER 5 MIDP USER INTERFACE

The results of running the ObtainQuoteMIDlet application, after successfully com-
piling, preverifying, and JARing the MIDIet suite with the following commands,
should resemble those shown in figure 5.16.

Compile

>j avac -g:none -bootclasspath %M DPCl asses% . EntryForm java
>j avac -g:none -bootclasspath %M DPCl asses% . Obtai nQuoteM Dl et.java
>j avac -g:none -bootcl asspath % DPCl asses% . RetrieveQuoteM D et.java

Preverify

>9M DPTool s% preverify -classpath %M DPCl asses% . Obtai nQuoteM Dl et
>9M DPTool s% preverify -classpath %M DPCl asses% . RetrieveQuoteM Dl et
>0 DPTool s% preverify -classpath %M DPCl asses% . EntryForm

JAR

>jar -cfmquote.jar QuoteM D etSuite.jad -C ./output Obtai nQuoteM Dl et.cl ass
-C ./output RetrieveQuoteM Dl et.class —C ./output EntryForm cl ass

Run

>%M DPTool s% mi dp -cl asspath %V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite. jad

The JAD file (QuoteMIDletSuite.jad) for this application will look something like

the following:
M Dl et-1: Obtai nQuote, , Cbt ai nQuot eM Dl et
M Dl et-2: RetrieveQuote, , RetrieveQuoteM Dl et

M Dl et - Nane: EasyTrack

M Dl et - Vendor: Catapult Technol ogi es
M Dl et-Version: 1.0

M croEdi ti on-Configuration: CLDC- 1.0
M croEdition-Profile: MDP-1.0

[F ol)
Cbtaincucte
nvestment Symbol

Figure 5.16

This form fulfills the prototype screen design for capturing
the customer’s investment symbol of interest. It provides
the means to enter an investment symbol and investment
type in the Investment Quote EntryForm. The form utilizes
a Text Fi el d and Choi ceG oup object.

Notice that the entry form’s display is too large for the device. However, as is expected
in the high-level GUI APl of MIDP, the customer is automatically presented with a
scroll option in order to be able to view the entire form. This gives us a good oppor-
tunity to advocate some restraint in user interface design. While the resources of the

THE MIDP USER INTERFACE API 95

96

device limit the number of items that can be added to a form, it is highly recom-
mended that a form contain as small a number of items as possible. Only those items
that are important and closely related to the given interaction should be displayed on
a single form. Remember that these devices will be operated by one hand and can be
used by people while busy doing other activities. The more a user must scroll, the
more they must fully concentrate solely on the device.

When text is entered into the Text Fi el d, you will also notice that the display
changes and opens up an entire new data entry area (figure 5.17). Did we ask for this
in our user interface development? In a way, we did. Remember, the device may switch
to a system-generated display when user input or interaction takes place. In this case,
the device implemented a new display for text entry.

Fannll AEC EEEED
nvestment Symbol

helhdtd

Figure 5.17

For user convenience, when text fields are selected or “entered”
by the user, the device may offer a system-generated display for
easier text entry. In the emulator, entering the symbol in the text
field results in a system-generated display for capturing the
symbol as shown here.

Messages, using alerts

In the tutorial application, we are going to use an alert for showing the price of the
investment. The price may either have been obtained from the quote service or retrieved
from the system’s data storage. To do this, we must first set up a reference variable
that keeps a reference to an Al er t object.

private Alert resultsAlert = null;

Next, we create a method to display the quote via the alert whenever it is called. We
call this method di spl ayPri ce and pass in a text string providing the customer
with the investment price information found. When this method is called, it first
determines whether an Al ert instance has ever been created. If not, it first creates a
new Al ert object and puts its reference in the alert reference.

private void displayPrice(String quoteString) {

if (resultsAlert == null) {
resultsAlert = new Alert("Quote Price", null, null, A ertType. CONFI RVATI ON);
resul tsAlert.setTi meout (Al ert. FOREVER) ; Creating an oJ
} Alert instance

resul tsAlert.setString(quoteString);
di spl ayMgr.setCurrent (resultsAlert, entryForm); 0 Displaying
} the alert on
the device

CHAPTER 5 MIDP USER INTERFACE

To create the Al ert object, we use the Alert (Stringtitle, Stringalert-
Text, I mage al ert 1 mage, Al ert Type al ert Type) constructor. In creation,
we set its alert type to CONFI RVATI ON and provide it the title of “Quote Price.” The
marketing department of the company we work for should also be happy since we
have provided an advertising marquee ticker to be displayed with the quoted price on
the alert display (see the subsequent “Using tickers” section).

In creating our alert, we did not set either the string or image. We left the alert text
to be set later in the method with a set Stri ng(String str) method call. This
allows the price string to be displayed to an existing alert that has already been set up
and referenced via the r esul t sAl ert variable. In this particular example, we did
not need an image to be displayed.

After ensuring that the Al er t object is properly created and its string text set, we
need to have it displayed. To do this, we call on the Di spl ay manager object, whose
reference was previously stored in the di spl ayMnhgr variable to set the current Di s-
pl ayabl e object to the alert. Remember, a Di spl ayabl e object must be shown
after an alert is dismissed. In this case, we make sure that the Di spl ayabl e object
shown after the price quote alert is the investment price request entry form created ear-
lier. This allows the user to enter another symbol and get another quote. We put the ref-
erence of this Di spl ayabl e object into the ent r yFor mvariable. Thus, in order to
display the Alert, we simply call on the Di spl ay manager's set Current (Al ert
al ert, Di spl ayabl e next Di spl ayabl e) method with our resul t sAl ert
and ent r yFor mvariables.

Notice that we have set up our alert to be modal by setting the timeout to
Al ert . FOREVER. This forces the customer to dismiss the alert before changing the
display. Again, the dismissal of an alert is dependent on the system implementation.
In the MIDP emulator, dismissal is accomplished by pressing a soft button, which has
been labeled “Done” by the system. This dismisses the Al er t object and returns dis-
play to the entry form Di spl ayabl e object.

Right now, we don’t have a means to launch the alert. Later in this chapter, we add
events that allow the system to do something based on the user’s actions. To test the alert
display for now, add a single line to the ObtainQuoteMIDlet’s st ar t App() method.
protected void startApp() {

di spl ayMhgr = Display.getDisplay(this);

di spl ayEntryForm();

di spl ayPrice("The price of MM is 111.19");
}

The code shown here displays the entry form and immediately calls to display the
alert. When we learn how to handle events, this last line can and will be removed.
Then the alert display will be shown after the user has requested a price for a given
investment symbol.

To recompile, preverify, re-JAR, and run the MIDlet suite issue via the following
commands:

THE MIDP USER INTERFACE API 97

Compile

>j avac -g:none -bootclasspath %M DPCl asses% . EntryForm java
>j avac -g:none -bootclasspath %M DPCl asses% . Obtai nQuoteM Dl et.java
>j avac -g:none -bootcl asspath % DPCl asses% . RetrieveQuoteM D et.java

or

>j avac -g:none -bootcl asspath %M DPCl asses% . *.java

Preverify

>0 DPTool s% preverify -classpath %MV DPCl asses% . Obtai nQuoteM Dl et
>9M DPTool s% preverify -classpath %M DPCl asses% . RetrieveQuoteM Dl et
>0 DPTool s% preverify -classpath 9% DPCl asses% . EntryForm

or
>0 DPTool s% preverify -classpath %M DPCl asses% . “.”

JAR

>jar -cfmquote.jar QuoteMDietSuite.jad -C ./output Ootai nQuoteM Dl et. cl ass
-C ./output RetrieveQuoteMDl et.class —C ./output EntryForm cl ass

or
>jar -cfmquote.jar QuoteM Dl etSuite.jad -C ./output
Run

>%M DPTool s% mi dp -cl asspath %V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite.jad

This time, when the MIDlet suite’s ObtainQuote choice is selected, the alert should
display itself and look something like the picture in figure 5.18.

Famil B
auote Price

Figure 5.18

Alerts can be used in a variety of ways. They can be
used to display an error or warning message. In the
ObtainQuoteMIDlet, an alert is used to inform the
customer of the price for an investment of interest.

Using tickers

While we are at it, let’s add a little promotional advertising to our application. To do this,
we use a ticker. We create an advertisement Ti cker instance and assign it to a reference
variable. The declaration for this object would look something like the following:

private Ticker adTicker = new Ticker("Track your investnments with " +
"Easy Track");

CHAPTER 5 MIDP USER INTERFACE

Later, we can use the reference variable and set the ticker for any Scr een object. For
now, we simply set the ticker for the alert we just created. To do this, we add a line to
set the ticker of the Al ert object created in the di spl ayPri ce() method:

private void displayPrice(String quoteString) {

if (resultsAlert == null) {
resultsAlert = new Alert("Quote Price", null, null,
Al ert Type. CONFI RVATI ON) ;
resul t sAl ert. set Ti cker (adTi cker); o Setting the ticker
resul tsAlert. set Ti neout (Al ert. FOREVER) ; on the results alert
}

resul tsAlert.setString(quoteString);
di spl ayMhgr.setCurrent (resultsAlert, entryForm;

}

Now if we rerun the same compile, preverify, JAR, and execution steps, the alert not
only displays the price quote, but also the advertisement inside of the ticker at the top
of the display, as shown in figure 5.19.

Drawing, using Canvas

We are now ready to develop the third and final user interface display in the MIDP
version of the tutorial application. Given an investment, like a stock or mutual fund,
we want to provide the customers with a picture of how the investment is doing on
the market. Remember, users of MIDP devices may not be able to give their full
attention to the device. Therefore, we want to give them a picture of how the stock
has done recently. Per the requirements, the application tracks the last two prices
(current and historical) for each investment requested by the user. If a quote for an
investment has been retrieved before, we want to provide a bar graph depicting the
current and previous prices in relationship to each other (see figure 3.4 in chapter 3).
To do this, we draw geometric shapes directly to the screen. This is done using the
low-level graphical user interface API.

The only Di spl ayabl e class available to encapsulate graphical elements in the
low-level APl is Canvas. Unlike the Di spl ayabl e class counterparts (For m Al ert,
Li st, or Text Box) in the high-level API, the Canvas class is abstract requiring the
developer to create his or her own concrete Canvas subclass. We name our Canvas
subclass Char t Canvas and put it in its own ChartCanvas.java file. The Canvas class
has one abstract method, pai nt (Gr aphi cs), which requires implementation.

Track your investm

Figure 5.19

The addition of a ticker can spice up any
application. Here, a ticker located at the top of
the display is used with the ObtainQuoteMIDlet
to display advertisements to the customers.

THE MIDP USER INTERFACE API 99

100

Therefore, our Char t Canvas class begins with:
i mport javax. m croedition.lcdui.*;
cl ass Chart Canvas extends Canvas {

protected void paint (G aphics g){

}
}
Notice that the low-level Ul API also comes from the javax. m croedi-
tion. | cdui package and therefore we must also import this package. Next, we want
to draw the bar graphs and investment information to the Char t Canvas. Inside of
the pai nt (Graphi cs g) method, we paint shapes and strings to the display. Draw
operations on the Gr aphi cs object allow for displaying text, images, lines, rectangles,
and arcs. However, it is important to note that drawing to the display using the G- aph-
i cs object can only occur during the duration of the canvas pai nt () method.

WARNING A sometimes frustrating aspect of using the Gr aphi cs and Canvas object
is forgetting that the drawing using a G aphi cs object can only occur during
the pai nt (@G aphi cs g) method of an instance of a Canvas subclass. Neither
the compiler nor the runtime environment informs you when you attempt to
draw outside of this method. Instead, you are left wondering why perfectly com-
piled and running code is not displaying all of your draw commands.

The draw commands issued to the Gr aphi cs object are straightforward and require
use of the pixel coordinate system to specify the location and size of many of the
shapes drawn on the display. Drawing strings to the display requires sending the text
to be displayed, the x and y pixel anchor point position, and a Gr aphi cs static inte-
ger value to indicate the positioning of the text around the anchor point to the
drawString(Stringstr, int x, inty, int anchor) method. In the exam-
ple, all of our text is anchored from the top, left-hand point of the text string. A cor-
responding dr awChar (char character, int x, int y, i nt anchor) method is
available for drawing single characters to the screen if desired.

g.drawstring(symbol + " Perfornance”, 1,1, G aphi cs. TOP| G aphi cs. LEFT) ;
g.drawString("current vs. historic ", 1, 12, G aphics. TOP| G aphics. LEFT);

g.drawString("$" + currentPrice, 1, 24, Graphics. TOP| Graphics. LEFT);
g.drawString("$" + historicPrice, 1, 36, G aphics. TOP| G aphics. LEFT);

In the tutorial application, we display the title of the display that includes the invest-
ment symbol obtained through a variable symbol that will be set before we start
drawing. We also display the current and historical prices. The graphical bars depict-
ing the price for an investment are displayed by drawing filled rectangles on the
screen. A starting (X, y) pixel coordinate and width and height of the rectangle are
required to draw a rectangle. Separate Gr aphi cs object methods exist for drawing
filled versus unfilled rectangles as well as rounded-corner versus nonrounded-corner
rectangles. Before drawing our bar chart, the tutorial application will need some
information in order to draw the rectangles.

CHAPTER 5 MIDP USER INTERFACE

private final static int MAX BAR SIZE = 65;
private final static int START_X PGCSI TION = 30;
private final static int START_Y_CURRENT = 27;
private final static int START_Y H STORI C = 39;
private final static int BAR HEI GHT = 10;
private int currentPrice;

private int historicPrice;

In the tutorial, the prices will be displayed as horizontal bars drawn starting from the
left of the display to a position on the right that is dependent on the price of the
investment. The START_X_POSI Tl ONis the unchanging x pixel position coordinate
for each rectangle or bar in the graph. Correspondingly, the START_Y_CURRENT and
START_Y_HI STORI C values provide the static starting y pixel locations for our two
rectangles depicting the current and historical price bars. The BAR_W DTH variable
provides the static height of all bars. The actual investment prices will be sent to the
Chart Canvas object and stored in the two integer variables labeled current -
Pri ce and hi st ori cPri ce. Notice that the prices are integers. In reality, invest-
ment prices are floating-point numbers such as $110.55. The floating point type is
not supported in the CLDC. However, given the size of most MIDP device displays
(not more than 96 pixels in width), it is unlikely that the cents could accurately be
displayed in the bar graph. Therefore, in this part of the tutorial application, the
comparison chart will show current and historical prices to the nearest whole dollar.
To display the current price depicted as a rectangle or bar over the historical price
depicted by a second rectangle or bar, two separate fi I | Rect (int x,int y,int
wi dt h, i nt hei ght) method calls are made.
int[] prices = {currentPrice, historicPrice};
int[] I engths = determ neLengt hs(prices);

g.fillRect (START_X_PCSITION, START_Y_CURRENT, |engths[0], BAR_HEI GHT);
g.fillRect (START X POSITION, START_Y HI STORIC, lengths[1], BAR HEl GHT);

The det er mi neLengt hs(int[] pri ces) method is developed, as we show sub-
sequently, to determine the length of the rectangle bars depicting the price of each in-
vestment. This method returns an integer array containing two widths. The first
element in the array will contain the width of the rectangle depicting the current
price and the second element in the array will contain the width of the rectangle de-
picting the historical price. Static variables declared above provide the remaining rect-
angle dimensions.

To give the bar graph some dimension in order to assist the customer in comparing
the prices, we add three “tick” lines to our display that are drawn at even positions
across the screen. Lines are drawn by simply providing the starting and ending (x, y)
coordinates of the line.

g. drawLi ne(30, 26, 30, 50);
g. drawLi ne(50, 26, 50, 50) ;

g. drawLi ne(70, 26, 70, 50) ;
g. drawLi ne(90, 26, 90, 50) ;

THE MIDP USER INTERFACE API 101

102

The only thing left to implement the simple graphical display of the investment
prices is a method for kicking of the low-level API display and a method for deter-
mining the length of each price bar. The method to kick off the display, called dis-
playChart is passed the investment symbol and two investment prices (current and
historic).
public void displayChart(String sym int antCur, int antHist) {

synbol = sym

currentPrice = antCur;

hi storicPrice = antHi st;
} servi ceRepai nts(); @ Force a call to repaint the canvas
There are many ways to depict the price of an investment. The det er i ne-
Lengt hs(int[] prices) method as coded in listing 5.9 is provided as an exam-
ple. In this listing, the length of a bar is determined by finding the higher of the two
prices and using a ratio of the two to find a proportional length for each price that
accurately depicts the difference in price and will fit on the maximum display. Other
length calculating formulas could easily replace this method.

Listing 5.9 The ChartCanvas’ determineLengths method

private int[] determi neLengths (int[] prices) {

int ratio, higherPrice, |owerPrice;
bool ean current Hi gher;

if (prices[0] < prices[1]) {

hi gherPrice = prices[1]; Determine the
| owerPrice = prices[0]; highest price
current H gher =f al se;

} else {

hi gherPrice = prices[0];
| omerPrice = prices[1];
current H gher=true;

}
rati o = higherPrice/ MAX_BAR SI ZE + 1;
while (ratio > 1) { Calculate the bar length
hi gher Price = higherPricel/ratio; based on the highest price
| owerPrice = lowerPrice/ratio;
rati o = hi gherPrice/ MAX_BAR SI ZE + 1;
}

i f (currentHigher) {
int[] ends = {higherPrice, |owerPrice};
return ends;

} else {
int [] ends = {lowerPrice, higherPrice};
return ends;

CHAPTER 5 MIDP USER INTERFACE

All the pieces of the Char t Canvas class are assembled in one file in listing 5.10.

Listing 5.10 ChartCanvas

i mport javax.mcroedition.lcdui.?*;
import java.util.*;

cl ass Chart Canvas extends Canvas {

static final int MAX_BAR SIZE = 65; Static constants to
static final int START_X POSITION = 30; create bars of graph
static final int START_Y_CURRENT = 27;

static final int START_Y_H STORI C = 39;

static final int BAR _HElI GHT = 10;

private int currentPrice;
private int historicPrice;

private String synbol = null;

public ChartCanvas() {

}

protected voi d pai nt (G aphics g){
int currentColor = g.getColor(); Display title
g. set Col or (255, 255, 255) ; current price next
g.fill Rect(0, 0, getWdth(), getHeight()); to price bars

g. set Col or(current Col or);

g. drawstring(synbol + " Perfornmance", 1,1, G aphics. TOP| G aphi cs. LEFT);
g.drawstring(“current vs. historic ", 1, 12, G aphics. TOP| G aphi cs. LEFT);
g.drawString("$" + currentPrice, 1, 24, G aphics. TOP| G aphi cs. LEFT);
g.drawString("$" + historicPrice, 1, 36, G aphics. TCP| G aphics. LEFT);
int[] prices = {currentPrice, historicPrice};

int[] lengths = determ neLengths(prices);

g.fill Rect (START_X PCSITION, START_Y_CURRENT, |engths[0], BAR HEl GHT);

g.fill Rect (START_X PCSITION, START_Y H STORIC, |engths[1], BAR HEI GHT);
g. dr awLi ne(30, 26, 30, 50) ;

g. dr awLi ne(50, 26, 50, 50) ; Draw bars

g. drawti ne(70, 26, 70, 50) ; Draw graph grid depicting prices

g

. drawLi ne(90, 26, 90, 50) ; or “tick” lines
}

public void displayChart(String sym int anmtCur, int antHist) {
synbol = sym
currentPrice = antCur;
hi storicPrice = anmtHi st;
servi ceRepai nts(); © Force canvas to paint

}

private int[] determineLengths (int[] prices) {
int ratio, higherPrice, |owerPrice;
bool ean current Hi gher;

if (prices[0] < prices[1]) {
hi gherPrice = prices[1];
| owerPrice = prices[0];
current Hi gher =f al se;

} else {

@ WMethod to determine
length of price bar

THE MIDP USER INTERFACE API 103

104

hi gherPrice = prices[0]; A)
| owerPrice = prices[1]; /o Method to determine
current H gher =t rue; length of price bar

}

rati o = higherPrice/ MAX_ BAR SI ZE + 1;
while (ratio > 1) {

hi gherPrice = higherPrice/ratio;

| owerPrice = lowerPrice/ratio;

rati o = higherPrice/ MAX_BAR_SI ZE + 1;
}

if (currentHigher) {
int[] ends = {higherPrice, |owerPrice};
return ends;

} else {
int [] ends = {lowerPrice, higherPrice};
return ends;

}

}
}

As a test, we used the ObtainQuoteMIDlet to kick of the high-level API displays.
Here, we take advantage of the RetrieveQuoteMIDlIet to initiate and test the low-
level API display. Just as in the ObtainQuoteMIDlet, a variable is added to the
RetrieveQuoteMIDlet in order to keep a reference to an instance of the Char t Can-
vas that is created.

private ChartCanvas chartCanvas = null;

Next, a method is added to the MIDlet to create a new Char t Canvas object when
it has not yet been instantiated, or use the existing object when it has already been
created. This method will also kick off the test of the canvas display by setting the
current display to the new Canvas object and then calling the di spl ayChart
(Stringsynbol, int current, int historic) method that was created earlier.

private void di splayChart Canvas() {
if (chartCanvas == null) {
chart Canvas = new Chart Canvas();

}
di spl ayMhgr . set Current (chart Canvas) ;
chart Canvas. di spl ayChart ("MW', 75, 110) ;

}
Finally, the st ar t App() method to the RetrieveQuoteMIDlet is modified to call on
the display manager with a call to the di spl ayChart Canvas() method.
protected void startApp() {

di spl ayMngr = Displ ay. getDisplay(this);

di spl ayChart Canvas();
}

After successfully compiling, preverifying, JARing and running of the application,
the low-level API display should reflect that depicted in figure 5.20.

CHAPTER 5 MIDP USER INTERFACE

Figure 5.20

Investment prices depicted as bars in a bar graph are made
possible with the low-level APl and canvas. Each bar in the
graph is just a filled rectangle drawn to the canvas. Unlike
the Stringltem used in the high-level API, even the text for
the title and prices must be drawn to the canvas.

Compile

>j avac -g:none -bootclasspath %M DPCl asses% . EntryForm java

>j avac -g:none -bootclasspath %M DPCl asses% . Chart Canvas.java

>j avac -g:none -bootclasspath % DPCl asses% . Obtai nQuoteM Dl et.java
>j avac -g:none -bootcl asspath % DPCl asses% . RetrieveQuoteM D et.java

or

>j avac -g:none -bootclasspath %M DPCl asses% . *.java

Preverify

>9M DPTool s% preverify -classpath %M DPCl asses% . (bt ai nQuoteM Dl et
>9M DPTool s% preverify -classpath %M DPCl asses% . RetrieveQuoteM Dl et
>0 DPTool s% preverify -classpath 9%V DPCl asses% . EntryForm

>9M DPTool s% preverify -classpath %M DPCl asses% . Chart Canvas

or
>9M DPTool s% preverify -classpath %M DPCl asses% .

JAR

>jar -cfmquote.jar QuoteM D etSuite.jad -C ./output Obtai nQuoteM Dl et. cl ass
-C ./output RetrieveQuoteM D et.class —C ./output EntryFormclass —C ./out-
put Chart Canvas. cl ass

or
>jar -cfmquote.jar QuoteM Dl etSuite.jad -C ./output

Run

>%M DPTool s% mi dp -cl asspath %V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite. jad

55 HANDLING USER INTERACTIONS IN MIDP

When a user interacts with an application, we expect the application to respond and
take appropriate action. A user interaction, such as the push of a button, selection from
a list of choices, or entry of data into a field, is known as an event. An event is a notice
generated at runtime each time the user interacts with the device. In response, an appli-
cation is constructed to wait or “listen” for the events and take action depending on the
particular event. For example, entry of data in a field may require the application to

HANDLING USER INTERACTIONS IN MIDP 105

106

listen for text entry and then validate the data entered. An application is constructed to
listen for events by implementing a listener interface and realizing methods known as
callbacks. Callback methods are special methods that are not usually invoked by the
application code directly, but are invoked by the system for a specified event. In the
case of the MIDP user interface, a device automatically invokes callback methods each
time the user has triggered a particular event for which an application listens.

As part of the tutorial application in this chapter, we developed a user interface
without reacting to any user interactions other than the selection and starting of the
application. In fact, the user interface did not even let the users exit the application
gracefully. Users had to turn the device off in order to leave the application. This is
probably not the type of functionality customers enjoy. In this section, we correct this
problem and provide a more graceful means to exit the application as well as handle
other customer interactions with the application.

Under the MID profile there are two means of event handling. Corresponding to
the MIDP’s high-level and low-level user interface, there is both a high-level and low-
level event API. The high-level events and event handling mechanisms are more
abstract and are meant to address the general needs of more traditional business appli-
cations. Low-level events and event handling, on the other hand, are provided to cap-
ture and handle primitive events from specific keys being pressed and released or from
a pointer being pressed or dragged (provided the device has a pointer). As with the
high-level and low-level Ul APIs, the high-level events are considered more portable
to different devices running the MID profile. Alternately, the low-level event API
allows for capturing and handling of very specific events, which makes activity in gam-
ing applications possible, but these events may be more specific to a particular device
and thus less portable.

Using the term “low-level” in describing the MIDP’s alternate event handling
mechanism is also a little misleading. In fact, the MIDP Ul is relatively abstract in that
it does not allow applications to have access to very low-level user interactions such as
traversing a form from item to item or form scrolling.

% Device
Button Lem»
triggered
Figure 5.21
Each time the user pushes a button or key
register | D on the keypad of the device, the potential
for event @ W 5| exists for an event to be triggered inside
Application SOD of the application. The user’s push of a
Lo L eyer Lewes) button causes an application method,
7w Lovov | v} termed a callback, to be invoked based

w@ on an earlier application registration of
on event the event to that method.

CHAPTER 5 MIDP USER INTERFACE

5.5.1

The user interface events handled via callbacks are serialized, which means that han-
dling of events never occurs in parallel. A user interface callback is invoked as soon as
an earlier callback returns. Timer events are not user interface events and so their call-
back methods do not adhere to the same serialized rule. A Ti mer object, in MIDP, is
a means for scheduling tasks for future execution in a background thread. Timer call-
back methods can run concurrently with Ul event callbacks.

High-level event handling

In the high-level API, events come from two types of user interactions. A user can ini-
tiate a high-level event by changing the value or internal state of an item within a
For minstance or a user can initiate a Command. Commands are a kind of user inter-
face selector and event launcher construct rolled into one object. Correspondingly,
handling high-level events requires two types of listeners. There are listeners for com-
mand events and listeners for item state change events.

[temStateListener

The user initiates an item state change event when he performs any of the following
actions on an | t emobject contained in a form:

« adjusts the value of an interactive Gauge

« enters or modifies the value of a Text Fi el d

« enters a new date or time in a Dat eFi el d

« changes (sets or unsets) the selected values in a Choi ceG oup

GAUGE A Gauge item can be created in a noninteractive mode. In this case the

STATE Gauge item serves as a progress bar or indicator and any change to the value

CHANGE js made by the application through a call to the set Val ue(i nt val ue)
method. Calls by the application to set Val ue(i nt set Val ue) should
not then trigger an item state change.

To capture and handle item state events, an object in the application must implement
the I t entt at eLi st ener interface and it must notify the form that it is listening
for item state events. The | t enSt at eLi st ener interface comes from the j avax.
mi croedi tion. | cdui package and it has only one method that must be imple-
mented by implementing classes. The i t enst at eChanged(1temitenm method
is the callback method invoked by the device when the state of an item has changed.

A form is notified that a listener’s i t enSt at eChanged(|temiten) method
should be invoked on item state changes by calling on the form’s set I t enfst at e-
Li stener (It entt at eLi st ener i Li st ener) method with the listener object.
This act of tying a specific I t enSt at eLi st ener implementer object to a specific
For mobject is called registration. An | t ent at eLi st ener is registered for events
coming from a form. A For m object can have only one It entt at eLi st ener
and subsequent calls to the set|tenttatelLi stener(Itenttatelistener
i Li stener) method will cause the previous listener to be replaced.

HANDLING USER INTERACTIONS IN MIDP 107

108

Per the MIDP specification,1 it has been left up to the device implementation to
determine exactly what constitutes a change and when the change occurs in the value
of an item. For example, a text field could be considered changed after the entry or
modification of a character in the field. The specification only requires that the | t em
St at eLi st ener implementer be called before it is called for a change on another
I t em and before a command is delivered to the For mobject’s CommandLi st ener
(see the CommandLi st ener section on page 109). If a device provides for the con-
cept of input focus, the specification suggests that the It enSt at eLi st ener
i t entt at eChanged(|t emit en) method be called no later than when an affected
item that has been changed loses focus. It further suggests that the listener should only
be invoked if an item’s value has actually been changed.

Commands

In the previous examples both in this chapter and chapter 4, the user interface was
built lacking a critical component. Namely, there was no way for the customer to ini-
tiate any action, not even the action to leave the application. In most desktop applica-
tions, basic actions are provided through the push of a “button” or selection of an
option from a menu. In MIDP, the equivalent user interface object is called a Conrmand.

Due to the diversity of MIDP devices, a command may be implemented as a soft
button, menu selection, or other appropriate mechanism that activates a single action. Re-
member, a 2ME, MIDP device is not even required to have a user interface. Therefore,
a command could be implemented as a voice tag in a non-graphical speech interface.

The Command class, like all user interface classes, is defined in the j avax. mi cr o-
edi tion. | cdui package. Acommand encapsulates the meaning or purpose of a user’s
action; however it does not handle the actual action. That is, a Command object encapsu-
lates the semantic information of an action but not its behavior. Another event listener,
a CommandLi st ener, which is described later in this chapter, provides the behavior.

A Command object is displayed or more precisely “presented” in the user interface
based on the information contained within the object, the device presenting the Com
mand, as well as the number of commands being displayed. For example, a device may
choose to display a string next to a device button on the device screen.

Alternatively, if the number of commands to be displayed exceeds the number of phys-
ical buttons a device has, then the device may display the commands in a menu. Again, the
implementation and presentation of commands is left up to the device implementer.

A command has three parts: a label, type, and priority. A command’s label is the
string used by the device to represent the command in the user interface. The device
may override the label of a command with a device-assigned label if the command’s
type is other than SCREEN. This allows devices to specify a consistent and appropriate
label for common functions. Each Conmand object also has a priority value that the

1 Mobile Information Device Profile Specification, Version 1.0, Final Candidate for Shipment, September 15,
2000, Sun Microsystems, Inc.

CHAPTER 5 MIDP USER INTERFACE

Get Exit

“ Figure 5.22
qo b Commands, such as Get and Exi t here, can be

associated with keys (buttons) on the device. The

;._“, u (@ type and priority of a command determine how and

where the command is presented to the user.

application uses to determine the importance of one command relative to another
command on the same user interface. Priority values must be integers and a lower
number indicates greater importance. A command type specifies the intent of a com-
mand. There are several statically available types already defined for Command objects.
These include BACK, CANCEL, HELP, OK, SCREEN, and STOP types.

A device’s implementation will utilize type and priority to help determine the pre-
sentation of commands on the user interface. The implementation will first use type in
determining the placement of a command and then it will place similar commands in
order of priority. This allows, for example, a device to establish a standard placement
of operations such as “help” on the appropriate soft-button. Usually, higher priority
commands are placed so that they can be directly initiated by the push of a soft button
while lower priority commands are arranged in a menu. It is legal to have several com-
mands on the same screen with the same type and priority. In this case, the device will
choose how commands are displayed and adjust the type and/or priority accordingly.

The Command class provides a single constructor, Cormand(Stri ng | abel ,
i nt conmandType, i nt priority),forcreatinga Cormand object. The developer
must supply the label, type and priority at the time of creation. The Conmand object
has get methods to retrieve the label, type and priority information, but has no meth-
ods to set these values after the object has been created.

Like other user interface objects, Command objects cannot be displayed on a screen
by themselves. They must be added to an encapsulating Di spl ayabl e object. Unlike
other graphical elements, Conmands can be added to any Di spl ayabl e object,
which includes both Screen and Canvas objects. The Di spl ayabl e methods
addCommand(Command cnd) and r enoveConmmand(Command cnd) allow for
adding and removing commands from these display objects.

We indicated that commands are a kind of user interface selector or button and
event-launcher construct rolled into one object. Each command triggers a command
event. Like item state changes, these events must be captured and acted on by another
object. This is done through another high-level event listener.

CommandListener

To capture and handle command events, an object in the application must implement
the CommandLi st ener interface and it must notify the Di spl ayabl e object that it
is listening for command events. Customarily, a nested or an inner class is created in an

HANDLING USER INTERACTIONS IN MIDP 109

5.5.2

110

application to implement the listener. The CommandLi st ener interface comes from
the j avax. microedition.lcdui package and, like the other high-level event
| t enBt at eLi st ener interface, it has only one method, commandAct i on(Conmand
c, Di spl ayabl e d) that must be implemented by the implementing listener class.

How does the commandAct i on() method get called? Like with the I t ent at e-
Li st ener, a CommandLi st ener must first register with the Di spl ayabl e object
(either Scr een or Canvas) holding the Conmand object whose event is of interest. A
command listener is registered by utilizing the set CommandLi st ener (Com
mandLi st ener cndl i st) method on the Di spl ayabl e object. A Di spl ayabl e
object can have only one command listener at any one time. Therefore, subsequent calls
to the set ConmandLi st ener (ConmandLi st ener cndl i st) method on the same
Di spl ayabl e object can cause any previous listener to be replaced. After registering, the
conmandAct i on(Command ¢, Di spl ayabl e d) method will be triggered by the
device each time a command event is initiated by the user on the Di spl ayabl e object.

The two parameters provided the commandAct i on(Command ¢, Di spl ay-
abl e d) callback specify the Command object selected by the user, and the possessing
or owning Di spl ayabl e object. This allows the commandAct i on(Conmmand c,
Di spl ayabl e d) method to handle many command events from various Scr een
and Canvas objects. However, typically, a nested class or inner class inside of a canvas
or screen is set up to receive the high-level events for that single Di spl ayabl e object.

Itis important to note again that event handling callbacks are serialized. The device
does not create threads for event delivery. If a listener’s event handling method does
not return or takes a long time to return, the entire system may be blocked. Therefore,
the listener methods should return as quickly as possible.

Low-level event handling

The high-level event API is meant to abstract as much of the event and event han-
dling detail away from the application as possible. However, if your application uses
an object instantiated from a subclass of Canvas (recall that the Canvas class is
abstract in nature) to draw low-level graphical elements, you may want or need to
handle low-level events. Game applications are the proverbial example of where low-
level graphics are likely used to provide more precise and fine-grained drawings. Like-
wise, the low-level event API is used in gaming applications to provide the user with
more game control through handling of specific game action, key and pointer events.

The Canvas class, which is abstract and must be extended by the implementing
application, provides methods to handle the low-level events. The Canvas class also
provides a number of convenience methods to help developers discover the device’s
event capabilities and event-to-keyboard mappings.

Key codes and low-level API Events

In the low-level event API, key pressed or released events that emanate from the appli-
cation are reported with respect to a key code. Key codes are static variables assigned

CHAPTER 5 MIDP USER INTERFACE

to constant integer values that represent the concrete keys of the device. A key code is
assigned to every key that reports events to an MIDP application. The key code value
is unique to each device key unless two keys are synonyms for each other. The key
code values are equal to the Unicode encoding of the keypad character they represent.
In the Canvas class, the following key codes are defined:

- KEY_NUMO - KEY_NUM6
« KEY_NUML1 « KEY_NUM7
- KEY_NUM2 - KEY_NUMS
« KEY_NUM3 « KEY_NUM9
- KEY_NUM4 - KEY_STAR

« KEY_NUMS5 -+ KEY_POUND

The MIDP low-level event API requires that standard key codes be assigned to the
ITU-T keypad. This keypad includes the ‘0’ through ‘9’ keys as well as the “** and ‘#’
keys that are on cellular telephones. Device implementers are allowed to assign addi-
tional key codes to additional device keys, but these are considered non-standard key
code mappings. Applications that utilize non-standard key codes are considered not
portable to other devices.

A method on the Canvas object, get KeyNane(i nt keyCode) will provide the key
string or name for any key code passed as the parameter. This string should resemble the
text physically printed on the key on the device. If the key code given to the get KeyNane
(i nt keyCode) method is not valid an I I | egal Ar gunent Except i on is thrown.

Game actions

Game actions are static final variables assigned to constant integer values that repre-
sent arrow key and gaming action key events. In order to keep an application porta-
ble, an application that uses arrow key or gaming related events should use game
actions over key codes since the key codes associated with the event representing an
arrow key or game action key press may be nonstandard. The Canvas class defines
the following game actions:

e UP * GAME A
* DOWN * GAMEB
e LEFT * GAMEC
* RIGHT * GAMED
* FIRE

Key codes can be mapped to at most one game action, but game actions may be asso-
ciated to more than one key code. For example, all of the key codes associated with keys
usually found on the left side of a key pad (KEY_NUML, KEY_NUM4, KEY_NUM?)
could be mapped to the LEFT game action, but no other game actions could then be

HANDLING USER INTERACTIONS IN MIDP 111

112

up
Doy @
LEFT qo b RIGHT Figure 5.23

Game actions are typically assigned

kY v ,’a to the directional or navigational
DOWN (arrow) keys, if these are available.

mapped to these key codes. The get KeyCode(i nt ganeActi on) and get Gane-
Action(int keyCode) methods on the Canvas class offer translation between
key codes and game actions.

Devices differ greatly on how game actions are mapped to the physical keys. Some
devices have navigational arrow keys. In these devices, it is apt for the LEFT, Rl GHT,
UP, and DOWN game actions to be mapped to these physical keys.

In other devices where navigational arrow keys do not exist, the 2', ‘4’, ‘6" and ‘8’ keys
on the key pad may be used for LEFT, RI GHT, URP, and DOAN game actions. (Figure 5.24)

RIGHT

Figure 5.24
If the key pad does not have arrow keys,
number keys must be used instead.

Key codes could be used to determine if a key event came from a navigational arrow
key. However, this would require checking for a non-standard key code on the part of
the application. In order to keep an application portable across devices, key events
should be translated to a game action with the get GaneAct i on(i nt keyCode)
method. In this way, whether the key assigned to the game action has a standard key
code (as with the 2 key) or nonstandard key code (as with the up arrow key), the
application is portable to either type of device.

Event delivery methods

Key codes and game actions represent the events in the low-level API, but how are
these events handled? In the high-level API, a listener object is created to handle events
generated from the high-level user interface objects (either items or commands). The
listener’s callback method is called whenever the event is triggered. In the low-level
API, there are no listener objects. Instead, the event callback methods are contained
within the Canvas object. The device calls the following canvas methods when a
low-level event occurs:

keyPressed(int keyCode)
keyRel eased(i nt keyCode)
keyRepeat ed(i nt keyCode)

CHAPTER 5 MIDP USER INTERFACE

poi nterPressed(int x, int y)

poi nt er Dragged(int x, int y)

poi nter Rel eased(int x, int y)

The Canvas class is abstract and so it requires the application to subclass it in order
to use these methods. The default implementation for the callback methods or event
delivery methods, as they are called in the MIDP API documentation, is empty. This
means that the application, by default, takes no action when the low-level key events
fire and these methods are called. The application must override these methods in the
implementation subclass of Canvas in order for the application to handle the low-
level events.

You probably noticed the pointer methods at the bottom of the event handling
methods above. A pointing device or input mechanism is considered optional for
MIDP devices. Some devices do not support a pointer input device. In this case, the
pointer methods will never be called. The Canvas class does have two methods,
hasPoi nt er Event s() and hasPoi nt er Mot i onEvent s(), for checking whether
a pointer is available. Likewise, not all devices allow for repeated key presses. A has-
Repeat Event s() method isavailable to check for this option’s availability on the device.

The Canvas class also has other event delivery methods that are not associated

with the key or pointer related events. These include:
showNot i fy()
hi deNot i fy()
pai nt (G aphi cs g)
The showNot i fy() method is called prior to a canvas actually being displayed.
Alternately, the hi deNoti f y() method is called after a canvas has been removed
from display. The key and pointer event handling, paint and command callback
methods can only be called if the Canvas object is actually being displayed.

Like the high-level event callback methods, the event delivery methods are also
called serially. Therefore, the device will never call any two event delivery methods in
parallel. An event delivery method is invoked only after an earlier event delivery
method returns.

Commands with the Canvas

A Canvas object is also a Di spl ayabl e object and so can have Conmand objects
attached to it. Therefore, a Canvas object can participate in high-level and low-level
event handling. Commands are particularly useful for navigating to and from the dif-
ferent displays. However, the Canvas object was meant to provide an encapsulating
drawing object for low-level user interfaces such as those required in games and geo-
graphical display systems. Some devices may not provide high-level command events
when the Canvas and low-level user interface graphical elements are displayed. In
this case, the device may provide a means to switch in and out of the command mode
with the use of a hot key on the device. The Canvas object’s showNot i fy() and
hi deNot i f y() methods are called during these transitions.

HANDLING USER INTERACTIONS IN MIDP 113

5.5.3

114

Handling the events of the Investment Quote Application

In the first part of this chapter, we were able to draw some very nice user interfaces
with both high-level and low-level user interface APIs. The problem with these inter-
faces, as already indicated, is that there is no way for the user to indicate what he
wants done on any display. Once the user has entered the symbol for the investment,
he cannot tell the system to retrieve the quote. Once he has seen the prices for an
investment, he cannot tell the system to stop and leave the application. In this por-
tion of the tutorial, we will add Commands to the user interface and allow the appli-
cation to react to user interactions causing events triggered by commands as well as
other items shown on the display.

Using ItemStateListener

In the tutorial application, the customer is requested to enter the symbol for an
investment for which they would like price information. Except for unusual circum-
stances, common stocks are given three, four or five letter symbols. Thus, the text
field in our entry form was given a maximum size of 5 characters. Mutual funds are
also up to five letters in length, but a mutual fund symbol ends in the letter X. To
help insure that the customers have entered an appropriate string of characters when
requesting a price quote for a mutual fund, the tutorial application is retrofitted to
check the customer’s input on the entry form's synbol Fi el d when the “Fund”
choice is selected from the form’s choice group. This is accomplished by outfitting the
MIDlets with an |t entt at eLi st ener to listen for item state changes to the
choice group item called i nvest nent Choi ce (see chapter 3 for a review of the tuto-
rial application user interface). A single method is added to our MIDlet that estab-
lishes the | t enSt at eLi st ener and registers it with the Ent r yFor m

Listing 5.11 Adding ItemStateListeners to the MIDlets

private void initListener () {
Itentt ateLi stener itenlistener = new ItenStatelistener () { 0
public void itensStateChanged (Itemitenm {
if ((item== entryForm getlnvestnent Choice()) &&
(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I (entryForm get Synmbol Fiel d().getString().
t oUpper Case().endsWth("X"))) {
Al ert synbol Alert = new Alert("Check Synbol ",
"Mutual Funds end in 'X ",null, AlertType. WARNI NG ; Q
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn);
}
}
I
entryForm set|tenttat eLi stener(itenListener); 0
}

CHAPTER 5 MIDP USER INTERFACE

@ ItemState Listener defined by inner class
@ Use an alert to indicate to the user a discrepancy with the symbol and the investment type
© Assign or register listener with the entry form

In this example, an anonymous inner class is used to implement the | t ent at e-
Li st ener. If the customer makes any change in state to any item on the entry form,
the listener checks to see if the item changed is the i nvest ment Choi ce item. If it
is, the listener also makes certain that the choice selected was the “Fund” choice (the
“Fund” choice has an index of 1 in the list of choices) and that the symbol entered does
not end in ‘X’. When these conditions have been met, the customer is prompted with
awarning alert displayed over the entry form indicating the symbol for a mutual fund
may not be correct since it should end in ‘X’. All that is left to do is to initialize the
listener when the entry form is created inside of the di spl ayEnt r yFor n() method.

private void displayEntryForm () {
if (entryForm== null) {
entryForm = new Ent ryForn(" Cbt ai nQuote");
}

initListener();

di spl ayMhgr . set Current (entryForm;
}
After compiling, preverifying, and JARing the MIDlet suite in the usual manner, the
application should look like the display captured in figure 5.25.

Compile

>j avac -g:none -bootclasspath %M DPCl asses% . EntryForm java

>j avac -g:none -bootcl asspath % DPCl asses% . Chart Canvas. | ava

>j avac -g:none -bootclasspath %M DPCl asses% . Obtai nQuoteM Dl et.java
>j avac -g:none -bootclasspath %M DPCl asses% . RetrieveQuoteM Dl et.java

or

>j avac -g: none -bootcl asspath %M DPCl asses% . *.java

Preverify

>0 DPTool s% preverify -classpath %MV DPCl asses% . Obtai nQuoteM Dl et
>0 DPTool s% preverify -classpath %V DPCl asses% . RetrieveQuoteM Dl et
>9M DPTool s% preverify -classpath M DPCl asses% . EntryForm

>0 DPTool s% preverify -classpath %V DPCl asses% . Chart Canvas

>0 DPTool s% preverify -classpath %MV DPCl asses% . Obtai nQuoteM Dl et $1

or
>9M DPTool s% preverify -classpath %M DPCl asses% .

JAR

>jar -cfmquote.jar QuoteM D etSuite.jad -C ./output Obtai nQuoteM Dl et. cl ass
-C ./output RetrieveQuoteM Dl et.class —C ./output EntryForm cl ass
—C ./output ChartCanvas.class -C ./output Obtai nQuoteM Dl et $1. cl ass

HANDLING USER INTERACTIONS IN MIDP 115

116

or
>jar -cfmquote.jar QuoteM D etSuite.jad -C ./output .

Run

>0 DPTool s% m dp -cl asspath 9%V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite.jad

If the symbol entered in the synbol Fi el d does not end in an “X”, then the item state
listener triggers an alert whenever the InvestmentChoice experiences a state change.

Figure 5.25

Mutual fund symbols end in ‘X’. If the invest-
ment type signified by the last character in the
symbol does not match the type selected in the
Choi ceGr oup, then the customer needs to be
warned. Appropriately, our application uses an
Al ert, as shown here, to indicate text entry
errors as triggered via an | t enSt at eChange.

Using Commands and CommandListeners

There are several places in the tutorial application that require use of a Command,
not the least of which is the tutorial application’s MIDlets, which require a means to
exit the application gracefully—that is, without turning off the device. Secondly, each
MIDlet in the tutorial application requires the customer to enter a symbol. Presumably
the customer indicates when the symbol has been entered with some action and the
ObtainQuoteMIDlet then requests the price from the quote service. Similarly, the
RetrieveQuoteMIDlet, when provided a symbol, attempts to retrieve the historical
price from the persistent storage on the device. The problem is, the MIDlets cur-
rently have no way for the customer to indicate when the symbol has been entered.
Instead, the MIDlets are simulating the customer’s entry of a symbol in the first form
and simply calling on the subsequent Di spl ayabl e object to show the new or
retrieved price. Commands provide the perfect solution for allowing the user to signal
when a symbol has been entered and for the MIDlet to take over and complete some
action. Let’s fix the MIDlets to provide real customer interaction and behavior more
appropriately to those actions.

First, we modify the Ent r yFor mand Chart Canvas Di spl ayabl e classes to
contain exit commands. This will allow these displays, and in some cases the entire
application, to be exited gracefully. In both Di spl ayabl e objects, a private variable
is added to contain the exit command.

private Comand exit Command; = nul | ;

CHAPTER 5 MIDP USER INTERFACE

Next, two lines are added to the constructor of each of the Di spl ayabl e objects to
create the exit command object and add it to the display.

exi t Command = new Command("Exit", Command. EXIT, 1);
addConmand(exi t Command) ;

The exit command has been given an “Exit” label. More importantly, it has been
given the EXI T type and a high priority value of 1. This serves to give the command
a prominent place in the display. In the cell phone emulator, the high priority of the
exit command serves to get it assigned to upper-left soft button. Finally, in order for
the MIDlet applications to have access to the exit Conmand objects, a getter method
is added to both the Ent r yFor mand Char t Canvas objects.

public Conmand get Exi t Command() {

return exitCommand;

}

Now, when either the Ent r yFor mor Chart Canvas are displayed, the new exit
commands are displayed. Based on the command type and priority, and depending
on how the device presents commands, the Di spl ayabl e objects should look simi-
lar to the emulator depiction in figure 5.26.

Faull ED Fanil [z Exit commands
Oitain@uote fitdbd Petfarmance

current ws. histaric
nvestinent Symiol |

Figure 5.26

In earlier demonstrations, the only way to
exit the application was to push the power
button. Now, Exit Commands on the
EntryForm and ChartCanvas allow the
customer to gracefully leave the application.

An exit Conmand on the chart canvas is all that is needed to allow the customer to
leave the price graph when he or she is done viewing it. On the entry form, however,
we need a mechanism to allow the customer to signify when the investment symbol
has been entered. To provide for this user interaction, an additional “Get” Conmand
is added to the entry form. Similar to the exit commands, a private variable is added
to contain the get Command.

private Command get Conmand = nul | ;

Lines are added to the Ent r yFor mclass constructor to create and add the new com-
mand to the For mobject.

get Conmand = new Command(" CGet", Conmand. SCREEN, 2);
addConmmand(get Cormmand) ;

HANDLING USER INTERACTIONS IN MIDP 117

118

The second command is given a lower priority and SCREEN type that results in a pre-
sumably less predominant spot on the user interface than the exit command was given.
Additionally a getter method is provided for public access to the get Command object.
publ i c Command get Get Command() {

return get Conmand;

}
Now the entry form should have two commands when displayed.

Fail i35]
OhtainGuote

nvestment Symbol

Exit and Get commands

Figure 5.27 Additional commands, such as Get
in the tutorial application, can be assigned to
other keys depending on priority and type.

This work puts commands on the displays, but it does not allow the application to
handle the events generated when the customer initiates other actions. To handle
other events, other listeners must be established and registered with the appropriate
Di spl ayabl e object.

What actions should occur when the customer triggers the various events associ-
ated with each command? Earlier in this chapter, we simply put together the various
user interfaces but did not provide customer triggered navigation. Now that we have
the ability to allow the user to trigger actions through commands, we will want to
reconfigure our user interface displays. Figure 5.28 depicts what navigation we expect
to occur when the user presses the various commands.

Both the ObtainQuote and RetrieveQuote MIDlets can make use of the Ent r y-
For mclass to get the investment symbol from the user. In the case of the ObtainQuote
MIDlet, we expect the application to use the symbol to obtain a new quote from the
guote service and display the results in the results alert we developed earlier. In the case
of the RetrieveQuote MIDlet, the symbol will be used to obtain the last prices from
persistent storage to be displayed graphically in the Char t Canvas display. The exit
command on the entry form used by either the ObtainQuote or RetrieveQuote
MIDlets, should close down the MIDlet gracefully, allowing the customer to return
to the application menu. The exit command on the chart canvas returns application
control back to the Ent r yFor mobject of the RetrieveQuote MIDIet. This allows the
customer to retrieve other historical quotes.

CHAPTER 5 MIDP USER INTERFACE

ObtainQuote resultsAlert
Midlet showing
EntryForm quote price
L]
Graceful exit Exit Get Done
of the Midle‘t—/ ~_ "
RetrieveQuote ChartCanvas
Midlet graphically
EntryForm depicting
historical prices Figure 5.28
N This diagram shows how the
various commands and event
handling of those commands on the
. . ObtainQuote and RetrieveQuote
. Exit Get Exit . .
Graceful exit MIDlets invoke displays.

of the Midlit_/ N

To handle the event launched by the exit and get commands on either MIDlet’s
Ent r yFor mobject, we take advantage of the i ni t Li st ener () method set up ear-
lier for handling changes to the choice group item. Inside of the i ni t Li st ener ()
method, another anonymous inner class is used to implement the ConmandLi s-
t ener and handle the exit and get command events. The code for both listeners is
shown in listing 5.12.

Listing 5.12 The complete initListener method for the ObtainQuoteMIDlet

private void initListener () {
ItentSt at eLi stener itenli stener = new ItenttatelListener () {
public void itenftstateChanged (ltemiten) {
if ((item== entryForm getlnvestnentChoice()) &&
(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I'(entryForm get Synbol Fiel d().getString().
t oUpper Case() . endsWth("X"))) { 0
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in "X ",null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr . set Current (synbol Alert, entryForn);
}
}
b

HANDLING USER INTERACTIONS IN MIDP 119

ConmmandLi st ener conmandLi stener = new ConmandLi stener () { 0
public void conmandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command()) { 9
destroyApp(true);
} else if (¢ == entryForm get Get Conmand()) {
if ((entryForm getlnvestment Choi ce(). get Sel ectedl ndex() == 1) &&
I'(entryForm get Synbol Fiel d().getString().
t oUpper Case().endsWth("X"))){ o\
Alert synbol Alert = new Alert("Check Synbol ",
"Miutual Funds end in "X ", null, Al ertType. WARNI NG) ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn);
} else {
if (entryForm getSynbol Field().getString().length() > 0) {
String sym = entryForm get Syrmbol Fi el d().getString();
di spl ayPrice("The price of " + sym+ " is $111.19");
}
}
}
}
b

entryForm set | tentt at eLi stener (i tenli stener); }/9

entryFor m set CommandLi st ener (conmandLi st ener) ;

}

@ The anonymous inner class defining the item state listener
@ An anonymous inner class defining the command listener
© “Exit” command event, destroy the MIDlet

O “Get” command event, display the price

© Assign or register the listeners with the form

In this code, two anonymous inner classes are used. The first inner class defines the pre-
viously mentioned item state listener and how the MIDlet will react to item events.
The second anonymous inner class defines the command listener and how the MIDlet
will react to command events. The new command listener must react to two com-
mands. On an Exit command, the listener requests to destroy the MIDlet. On a Get com-
mand, the listener either displays the price for the investment or launches an alert if
there is a type or symbol discrepancy. Along with defining the listeners, the i ni t -
Li st ener () method also registers the item and command listeners with the EntryForm.
Both MIDlets handle the exit command in the same way, namely, they call on the
dest royApp(true) method in the MIDlet to force the MIDlIet into the destroyed
state. Both MIDlets also handle the get command events, but each handles the event
a little differently. The ObtainQuote MIDlIet calls on the alert to display the new price
for the investment symbol provided by the customer. As shown in listing 5.13, the
RetrieveQuote MIDlet, on the other hand, calls to display the canvas to show the his-
torical price information for the investment symbol provided by the customer.

120 CHAPTER 5 MIDP USER INTERFACE

Listing 5.13 The initListener method for the RetrieveQuoteMIDlet

private void initListener () {
I tentt ateLi stener itenlistener = new ItentStatelListener () {
public void itenStateChanged (Itemitem {
if ((item== entryForm getlnvestnent Choice()) &&

(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&

I (entryForm get Synbol Fiel d().getString().

t oUpper Case().endsWth("X"))) {
Alert synbol Alert = new Alert("Check Synbol ",

"Mutual Funds end in 'X ", null, AlertType. WARNI NG ;

synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryFornj;

}
}
b
CommandLi st ener conmandLi st ener = new ConmmandLi st ener () {
public voi d comandActi on(Conmand c, Displayable d) {
if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (c == entryForm get Get Command()) { {
if ((entryForm getlnvestment Choi ce(). get Sel ectedl ndex() == 1) &&
I (entryForm get Synbol Fiel d().getString().
t oUpper Case().endsWth("X"))){ {
Al ert synbol Alert = new Alert("Check Synbol ",
"Mutual Funds end in 'X' ", null, AlertType. WARNING ; {
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryFornj;
} else
if (entryForm getSynbol Field().getString().length() > 0)
di spl ayChart Canvas() ;
}
}
b
entryForm set|tenttateLi stener(itenlistener);
ent ryFor m set ConmandLi st ener (conmandLi st ener);

}
|

@ On a “Get” command event, display the chart canvas depicting the current and his-
torical prices or alert on error

Notice that the listeners (listings 5.12 and 5.13) are all registered with the Entry-
For mobject at the end of the method. These are important lines in the code that
should not be forgotten. Without registration, the events would fire and code would be
ready to handle the responses, but no part of the application would actually catch and
handle the events.

The RetrieveQuote MIDlet must also be set up as a listener for the exit command
event on the Char t Canvas class. For this, a second CommandLi st ener class is cre-
ated. Like the listener for the exit and get commands originating from the entry form,
this listener is established through an anonymous inner class in an initialization
method within the RetrieveQuote MIDlet.

HANDLING USER INTERACTIONS IN MIDP 121

122

private void initCanvasListener() {
CommandLi st ener conmandLi st ener = new ComrandLi stener () {
public void conmandActi on(Command c, Displayable d) {
if (c == chart Canvas. get Exi t Command())
di spl ayMngr. set Current (entryFornj;

}
b
chart Canvas. set ConmandLi st ener (commandLi st ener) ;

}

Notice, again, that the listener is registered with the canvas object at the end of the
method. When the exit command on the canvas is triggered, this commandAct i on()
method in this listener calls on the display manager to set the current Di spl ayabl e
back to the Ent r yFor mobject. The di spl ayChart Canvas() method in the
RetrieveQuote MIDlet must be modified to call this initialization method when a
Char t Canvas object is displayed.

private void di splayChart Canvas() {

if (chartCanvas == null) {
chart Canvas = new Chart Canvas();

}

i nit CanvasLi stener();

di spl ayMngr . set Current (chart Canvas) ;

String current Synbol = entryForm get Synbol Fi el d().getString();
chart Canvas. di spl ayChart (current Synbol , 75, 110) ;

}

The user interface and event handling on our MIDIlets are now complete.
Listings 5.14-5.17 show the four completed .java files. The code over the last few
pages replaces or augments much of the code from previous listings. Some example
code that was introduced earlier to explore features has been replaced with code that
gets us closer to our completed application. Check your code against the following
listings, especially if you have difficulties in compiling, preverifying or running your
applications.

Listing 5.14 EntryForm.java

i mport javax. m croedition.lcdui.*;
public class EntryForm extends Form {

private TextField synbolField = null;

private Command exitCommand = nul | ; Reference variable
private Command get Command = nul | ; declaration for the exit
private Choi ceGroup i nvestnent Choice = null; and get commands

public EntryFornm(String title) {
super(title);
synbol Fiel d = new TextField("Investment Symbol", "", 6, TextField.ANY);
String choices[] = {"Stock", "Fund"};
i nvest ment Choi ce = new Choi ceG oup(" Type", Choi ce. EXCLUSI VE,
choices, null);

CHAPTER 5 MIDP USER INTERFACE

exi t Command = new Conmand("Exit", Conmand. EXIT, 1); W Creating the

get Conmand = new Command("Get", Command. SCREEN, 2); exit and get
append(synbol Fi el d) ; commands,
append(i nvest ment Choi ce) ; giving the exit
addConmand(exi t Command) ; Add commands to form command
addCommand(get Conmand) ; W highest

} priority

public TextField getSynbol Field() {
return synbol Fi el d;
}

publ i ¢ Choi ceGroup getlnvestment Choi ce() {
return investnent Choi ce;

}

public Command get Exi t Conmand() {
return exitConmand;

}

public Conmand get Get Conmand() { Provide getter methods
return get Command; to access commands for

} use by the MIDlets

}

Listing 5.15 ChartCanvas.java

inport javax.mcroedition.|lcdui.?*;
inport java.util.*;

cl ass Chart Canvas extends Canvas {

static final int MAX BAR S| ZE = 65;
static final int START_X POSITION = 30;
static final int START_Y_CURRENT = 27;
static final int START_Y_HI STORI C = 39;
static final int BAR _HElI GHT = 10;

private int currentPrice;

private int historicPrice; Reference variable
private String symbol = null; declaration for the
private Conmand exit Conmand; 0 exit command

public void displayChart(String sym int antCur, int antHist) {
synbol = sym
currentPrice = ant Cur;
hi storicPrice = antHist;
servi ceRepai nts();

}

public ChartCanvas() {
exit Command = new Command("Exit", Command. EXIT, 1); 0 Create exit

addCommand(exi t Command); @) Addcommands command
} to Canvas

HANDLING USER INTERACTIONS IN MIDP 123

public Command get Exi t Command() { Provide getter methods
return exitCommand; to access commands for
}

use by the MIDlets

protected void paint(G aphics g){

int currentColor = g.getColor();

g. set Col or (255, 255, 255);
.fill Rect(0,0,getWdth(), getHeight());
.set Col or(current Col or);
.drawstring(synbol + " Performance", 1, 1, G aphi cs. TOP| G aphi cs. LEFT) ;
.drawstring("current vs. historic ", 1, 12, G aphics. TOP| G aphi cs. LEFT);
.drawstring("$" + currentPrice, 1, 24, G aphics. TOP| G aphi cs. LEFT);
g.drawstring("$" + historicPrice, 1, 36, G aphics. TOP| Gaphi cs. LEFT);

QQaaQ

int[] prices = {currentPrice, historicPrice};

int[] lengths = determ neLengths(prices);

.fill Rect (START_X PCSITIQN, START_Y_CURRENT, |engths[0], BAR HElI GHT);
.fill Rect (START_X PCSITION, START_Y_H STORIC, |engths[1], BAR HEI GHT);

«

.drawLi ne(30, 26, 30, 50) ;
.drawLi ne(50, 26, 50, 50) ;
. drawLi ne(70, 26, 70, 50) ;
.drawLi ne(90, 26, 90, 50) ;

Q Q@ «Q

}
private int[] determi neLengths (int[] prices) {

int ratio, higherPrice, |owerPrice;
bool ean current Hi gher;

if (prices[0] < prices[1]) {
hi gherPrice = prices[1];
| omerPrice = prices[0];
current H gher =f al se;

} else {
hi gherPrice = prices[0];
| owerPrice = prices[1];
current H gher=true;

}

rati o = higherPrice/ MAX_BAR_SI ZE + 1;
while (ratio > 1) {

hi gherPrice = higherPrice/ratio;

| owerPrice = lowerPricel/ratio;

rati o = hi gherPrice/ MAX_ BAR SI ZE + 1;
}

if (currentHigher) {
int[] ends = {higherPrice, |owerPrice};
return ends;

} else {
int [] ends = {lowerPrice, higherPrice};
return ends;

124 CHAPTER 5 MIDP USER INTERFACE

Listing 5.16 ObtainQuoteMIDlet.java

i mport javax.mcroedition. mdlet.*;
i mport javax.mcroedition.lcdui.?*;

public class Obtai nQuoteM Dl et extends M Dl et {

private Display displaywgr = null;
private EntryFormentryForm = null;
private Alert resultsAlert = null;
private Ticker adTicker =
new Ti cker ("Track your investnents with Investnment Tracker");

public Ootai nQuoteM Dl et () {
}

private void initListener () {
ItentStat eLi stener itenli stener = new |ItenfttatelListener () {
public void itentStateChanged (ltemiten) {
if ((item== entryForm getlnvestnent Choice()) &&
(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I (entryForm get Synmbol Fiel d().getString().
t oUpper Case().endsWth("X"))) {
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti neout (Al ert. FOREVER) ;
di spl ayWngr . set Current (synbol Alert, entryForn;
}
}
I
CommandLi st ener conmandLi st ener = new CommandLi st ener () {
public void commandActi on(Comand c, Displayable d) {
if (c == entryForm get Exi t Conmand()) {
destroyApp(true);
} else if (c == entryForm get Get Command()) {
if ((entryForm getlnvestnent Choi ce().get Sel ectedlndex() == 1) &&
I (entryForm get Synmbol Fiel d().getString().
t oUpper Case().endsWth("X"))){
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (synbol Alert, entryForm;
} else {
if (entryForm getSynbol Field().getString().length() > 0) {
String sym = entryForm get Synbol Fi el d().getString();
di spl ayPrice("The price of " + sym+ " is $111.19");

}
} Inner class used to listen 0/
} and react to command event
}
I
entryForm set|tenttat eLi stener(itenListener);
entryFor m set CommandLi st ener (conmandLi st ener) ; }\o Registering the event
} listener with the Form

HANDLING USER INTERACTIONS IN MIDP 125

126

private void displayEntryForm () {
if (entryForm == null) {
entryForm = new EntryForn{" Cbtai nQuote");
}
initListener();
di spl ayMngr. set Current (entryFornj;

}
private void displayPrice(String quoteString) {
if (resultsAlert == null) {
resultsAlert = new Alert("Quote Price", null, null,

Al ert Type. CONFI RVATI ON) ;
resul tsAl ert. setTicker(adTicker);
resul tsAl ert. set Ti meout (Al ert. FOREVER) ;

}
resul tsAlert.setString(quoteString);

di spl ayMnhgr.setCurrent(resultsAlert, entryForm;
}

protected void startApp() {
di spl ayMngr = Displ ay. getDisplay(this);
di spl ayEntryForn();

}

protected void pauseApp() {
}

protected void destroyApp(bool ean unconditional) {
noti fyDestroyed();

}

public void commandActi on(Conmand c, Displayable s) {

}

Listing 5.17 RetrieveQuoteMIDlet.java

i nport javax.mcroedition.mdlet.*;
i nport javax.mcroedition.|lcdui.?*;

public class RetrieveQuoteM D et extends MDl et {

private Display displayvhgr = null;
private EntryFormentryForm = null;
private ChartCanvas chartCanvas = null;

public RetrieveQuoteM D et () {
}

private void initListener () {
| tenft at eLi stener itenListener = new | tenStateListener () {
public void itentStateChanged (ltemitemnm) {
if ((item== entryForm getlnvestnment Choice()) &&

CHAPTER 5 MIDP USER INTERFACE

(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I (entryForm get Synmbol Fiel d().getString().
t oUpper Case().endsWth("X"))) {
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (synbol Alert, entryForm;
}
}
I
CommandLi st ener conmandLi st ener = new ConmmandLi st ener () { D
public void conmandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (¢ == entryForm get Get Conmand()) {
if ((entryForm getlnvestnent Choi ce(). get Sel ectedl ndex() == 1) &&
I (entryForm get Synbol Fiel d().getString().
t oUpper Case().endsWth("X"))){
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (synbol Alert, entryForm; o
} else
if (entryForm getSynbol Field().getString().length() > 0) |
di spl ayChart Canvas();

}
}
I
entryForm set|tenttat eLi stener(itenListener);
ent r yFor m set ConmandLi st ener (conmandLi st ener) ;

}

private void initCanvasListener() {
CommandLi st ener conmandLi st ener = new ConmmandLi st ener () {
public void conmandActi on(Command c, Displayable d) {
if (c == chartCanvas. get Exi t Command())
di spl ayWngr. set Current (entryFornj;

}

I

chart Canvas. set ConmandLi st ener (commandLi st ener) ; 0

}

private void displayEntryForm () {
if (entryForm == null) {
entryForm = new EntryForn("RetrieveQuote");
}
initListener();
di spl ayMhgr. set Current (entryForm;

}
private void di splayChart Canvas() {
if (chartCanvas == null) {
chart Canvas = new Chart Canvas();
}

i ni t CanvasLi stener();
di spl ayMngr. set Current (chart Canvas) ;

HANDLING USER INTERACTIONS IN MIDP 127

128

2
©

String current Synbol = entryForm get Synbol Fiel d().getString();
chart Canvas. di spl ayChart (current Synbol , 75, 110) ;

}

protected void startApp() {
di spl ayMngr = Display. getDisplay(this);
di spl ayEntryForm() ;

}

protected void pauseApp() {
}

protected void destroyApp(bool ean unconditional) {
noti fyDestroyed();
}

}
|

Anonymous event listener inner class used to listen and react to command events
coming from the EntryForm

Registering the event listener with the Form

Anonymous event listener inner class used to listen and react to command events
coming from the ChartCanvas

Registering the event listener with the Canvas

After compiling, preverifying, and JARing these files of the MIDlet suite with the fol-
lowing commands, the tutorial application should look and behave as the pictures
depicted in the series of displays in figure 5.29.

Compile

>j avac -g:none -bootclasspath %M DPCl asses% . EntryForm java

>j avac -g:none -bootcl asspath % DPCl asses% . Chart Canvas. | ava

>j avac -g:none -bootcl asspath % DPCl asses% . Obtai nQuoteM Dl et.java

>j avac -g:none -bootclasspath %M DPCl asses% . RetrieveQuoteM Dl et.java
or

>j avac -g:none -bootclasspath %M DPCl asses% . *.java

Preverify

>0 DPTool s% preverify -classpath
>0 DPTool s% preverify -classpath
>9M DPTool s% preverify -classpath
>9M DPTool s% preverify -classpath
>0 DPTool s% preverify -classpath
>9M DPTool s% preverify -classpath
>9M DPTool s% preverify -classpath
>0 DPTool s% preverify -classpath
>9M DPTool s% preverify -classpath

or
>%M DPTool s% preverify -classpath

%MVl DPCl asses% .
9%Vl DPCl asses% .
%WV DPCl asses% .
%MW1 DPCl asses% .
%MW1 DPCl asses% .
%WV DPCl asses% .
%WV DPCl asses% .
%MVl DPCl asses% .
%WV DPCl asses% .

Cbt ai nQuot eM Dl et
Retri eveQuot eM Dl et
EntryForm

Chart Canvas

bt ai nQuot eM Dl et $1
ot ai nQuot eM Dl et $2
Retri eveQuot eM Dl et $1
Retri eveQuot eM Dl et $2
Retri eveQuot eM Dl et $3

%WV DPCl asses% .

CHAPTER 5 MIDP USER INTERFACE

JAR

>jar -cfmquote.jar QuoteM D etSuite.jad -C./output btainQuoteM Dl et.class -C
./output RetrieveQuoteM D et.class —C ./output EntryForm class —-C

./output ChartCanvas.class -C ./output btainQuoteM D et$1.class -C

./output CbtainQuoteM D et$2.class -C ./output RetrieveQuoteMD et$1.class -C
./output RetrieveQuoteM D et$2.class -C ./output RetrieveQuoteM D et $3. cl ass

or
>jar -cfmaquote.jar QuoteM D etSuite.jad -C ./output

Run

>0 DPTool s% m dp -cl asspath 9%V DPCl asses% .\ quote.jar -descriptor
QuoteM Dl et Suite.jad

Funl B Funl B
hoose Cne: Chtaintuote

Fanll REC)
nvestment Symial Track

ObtainGuote mvestment Symbol
Retrievecuote

Figure 5.29 Having completed the implementation of event handling in the MIDlets, the
many faces of the ObtainQuoteMIDlet are shown above. The customer enters a symbol
in the TextField of the EntryForm and the investment price is displayed in an alert.

A question might arise as to why we do not have to add a Command object (and asso-
ciated listeners) to the alert displays in the tutorial application. In fact, when an
Al er t object is displayed in a FOREVER mode, the Al er t objects have built com-
mands (usually labeled “Done”), which are displayed on the alert. When the default
command is triggered, the resulting action is to return control of the application to
the next Di spl ayabl e setup when the set Current (Al ert al ert, Di spl ay-
abl e next Di spl ayabl e) method was invoked to show the alert.

Faml 3] Foml 3] F il AEC [

hoose Cne: Oktain@uote nvestment Symial Track

Ohtainuote nvestment Symbol ot bid

Retrievetudte he price of MMM is

Figure 5.30 Similar in appearance to the ObtainQuoteMIDlet, the implementation of the
RetrieveQuoteMIDlet is shown in the set of screen shots above. The same EntryForm is
used in the RetrieveQuoteMIDlet to get the investment symbol, but the current and
historical price data is displayed on a canvas.

HANDLING USER INTERACTIONS IN MIDP 129

5.6

130

Using the low-level event API

Since our tutorial application is not a game or similar application requiring a lot of
user key pad interaction, we will demonstrate how the low-level event handling works
with the Chart Canvas object through simple output stream print lines
(Syst em out . pri ntl n). This will not add any real customer functionality to our
application, but it should give you a feel for how the low-level event handling is
accomplished. All we need to do to see low-level key events in action is to add a single
method to the Char t Canvas class.

protected void keyRel eased(int keyCode) {
Systemout.println("Key released is ->" + get KeyNane(keyCode));
i f (keyCode == KEY_NUML) ({
System out. println("#1 Key rel eased.");
}
}

This method simply sends a message indicating what key has been released to the sys-
tem’s output stream. It checks for when the ‘1’ key has been released and prints a spe-
cial message to the same stream. Notice that no code is required to register anything
with the Canvas object. In fact, these are callback methods that come with the Can-
vas class. The preceding code overrides the default and empty implementation call-
back methods in the Canvas class. When the Canvas object is displayed and keys
are pressed while it is displayed, the output in the designated system output stream
should look like the following:

Key rel eased is ->:
Key released is ->:
Key released is ->:
Key released is ->:
Key released is ->:
Key released is ->:
#1 Key rel eased.

Key released is ->7
Key released is ->:8
Key released is ->:9

P NWO O D

While our application does not really require that we react specially to these keys
when the chart is displayed in the canvas, they most certainly could be used to pro-
vide a more dynamic display. For example, certain actions such as zoom in and zoom
out, or requesting to see the next stored quote in the database could all be assigned to
different keys on the key pad. Then the application would simply have to provide the
appropriate event handling if one of these keys gets pressed.

MIDLETS ON OTHER DEVICES

So our MIDP application works on a cell phone. But what happened to our require-
ment that said it must also work on a two-way pager? In our design of the applications,
we said that our MIDlets should work on the cell phone, two-way pager, and some

CHAPTER 5 MIDP USER INTERFACE

PDAs. How much work is left to get this application working for a pager? The answer is
zero! By using MIDP, we have simultaneously developed an application that will also
run on any MIDP-compliant two-way pager or other device. Because of the device’s lat-
itude in MIDP implementation, the user interface may look and behave a little differ-
ently. Otherwise, the MIDlets should operate identically as they do in our cell phone.
After successfully deploying our MIDlets to the two-way pager, we should see
results that look similar to the pictures running in our pager emulator in figure 5.31.

B Pager

Figure 5.31

The same ObtainQuoteMIDlet
as seen on a pager emulator.
Because the screen is of
different dimensions, the
layout of the various high-level
user interface elements may
be a little different. However
these elements still behave as
they did on the cell phone.

“Great!” you say, but what about the PDA? There is a profile, namely the PDA Profile,
dedicated to providing user interface and persistent storage to PDAs much in the way
MIDP has brought this functionality to the cell phones and pagers. This profile is not
yet available. In chapters 8-10, we look at the KJava API for delivering Java applications
in the CLDC and special API built for the Palm OS. However, Sun has also taken the
MIDP and extended it for use in certain PDA devices. Currently, there is an implemen-
tation available for devices running the Palm OS. This extension is called MIDP for
Palm OS and it is available from Sun at: http://java.sun.com/products/midp4palm.

This implementation includes a J2ME virtual machine for the Palm OS device in
a single Palm PRC files, namely MIDP.prc. The PRC file can be loaded to the device
with a synchronization program (see chapter 8). With the PRC VM loaded on the
device running Palm OS, the device is ready to run MIDP applications.

In the release of MIDP for Palm devices, Sun has provided a desktop tool to con-
verta MIDlet .jar file associated with the MIDP development into a PRC file that runs
on a Palm device. The tool is called the PRC Converter Tool and it is a Java applica-
tion. A batch file, converter.bat, has been provided to start the converter tool with
Java. The tool should look similar to the picture in figure 5.31. The Converter Tool
Jar file and converter.bat are installed in a \Converter directory off of the directory
where the MIDP for Palm OS download was installed.

MIDLETS ON OTHER DEVICES 131

132

The tool makes use of the current MIDlet JAD file. To convert a MIDlet suite into
aPalm OS PRC, simply open the QuoteMIDIetSuite.jad file and request that the tool
convert the application (see figure 5.32).

Eg_;g PRC Converter Tool [H[=] E3

i

Figure 5.32
Click on the = icon to find Running converter.bat starts Sun’s MIDP for the
the JAD/IAR. file pair to Palm OS Converter Tool. This tool allows a
convert to a PRC. MIDlet suite to be converted to a PRC file which

can be executed on a Palm OS device.

The tool should indicate if there was success or a problem during the conversion. The
MIDlet suite PRC must also be loaded onto the device with a synchronization pro-
gram. You will learn more about where to get an emulator and how to deploy PRCs
to a Palm OS device in chapters 8 and 9. When the MIDlet suite PRC is moved to
the device, an icon representing the application should appear on the device as
depicted in figure 5.33. The JavaHQ is the virtual machine PRC.

E.g’i Choose your JAD files

Lookin: | CTbin ~| (@] [&] [[22]E

[QuoteMIDletSuite jad rJAD info.:

Figure 5.33

In order to generate a
Palm OS PRC file, the
QuoteMIDletSuite’s jad file
must be found and chosen
in this screen. This JAD

File name: |QuoteM\DIetSuitejad | Convert chooser is dtliplayEd W?Ien
you request to open a tile

Files of type: |Ja\ra Application Descriptor files (*jad) V| | Cancel | from the PRC Converter
Tool as shown.

When the QuoteMIDlet icon is selected (or tapped as is the term used when selecting
a user interface item with the device pointer), the familiar ObtainQuote and
RetrieveQuote options are presented, albeit in a different format. While the arrange-
ment and presentation of the displays and items may look a little different, all the
pieces and functionality from the original MIDlets are there, right down to the adver-
tising ticker in our alert.

CHAPTER 5 MIDP USER INTERFACE

5.7

SUMMARY

Palm OS” Emulator

Figure 5.34

The MIDP Investment Quote MIDlet suite
is represented by the QuoteMID... icon
displayed on the Palm after completing
conversion and deploying. The JavaHQ
icon displayed in this screen is the virtual
machine PRC on the Palm OS device.

As we see, the goal of write once, run anywhere applies to these devices. However, as
we look at other APIs, we are not as lucky when moving across profiles.

e

m ObtainQuote
[&3] ObtainQuote
) RetrieveQuote L1
Type:
w Stock
@ The price of MMM is

$111.19

(&) [_Done)| Track yourinw

Figure 5.35 Running the ObtainQuote MIDlet in the Palm OS looks similar to running the
MiIDlet on the phone emulator. After selecting the QuoteMID... icon as seen in figure 5.34, a
selection list allows the customer to select which MIDlet in the suite to run. The other two
screens depict the EntryForm for entering the investment symbol and type and the Alert for

displaying the investment price.

SUMMARY

In this chapter, we examined MIDP’s graphical user interface and event handling
mechanisms. We also looked deeper at MIDP’s application control object, namely
the MIDlet. We found the Ul and event handling mechanisms are divided into high-
level and low-level APIs. The high-level API is more portable and is provided for tra-
ditional business applications. The low-level APl provides more control over the
interface and reaction to events, but is less portable. The low-level APl was designed
for games and similar graphically intensive applications. Finally, through some simple
examples and the tutorial application, we demonstrated many of the common user

interface elements.

133

g
&

CHAPTENR 6

MIDP data storage

6.1 JDBC parallel 135

6.2 Storage structure 136

6.3 RMSAPI 138

6.4 Persistent storage in the investment quote application 149
6.5 Summary 166

There was a time when a large mainframe platform was required to accommodate a
database. However, all the data in the world bottled up on a mainframe cannot help a
mobile and/or disconnected user out in the field on business. The need for transport-
able data at remote locations has encouraged the development of smaller and more
mobile database systems. Today, relatively extensive databases can be found on a lap-
top. If for no other reason, these databases exist to transport a subset of a much larger
database.

J2ME platforms, and the MID profile in particular, are the next step in a natural
progression to even smaller and more mobile devices. It is fitting, therefore, that these
devices also be outfitted with some type of persistent data storage. The databases that
now fit on a laptop can be fairly sophisticated. These databases even rival the relational
database management systems (RDBMS) of thirty or even twenty years ago. While the
current physical limits of the MIDP platform make employing a full RDBMS diffi-
cult, the MIDP API has at least provided for some limited data storage in very mobile
devices. Now, literally, small subsets of a database can be put into the pockets of their users.

134

6.1

In this chapter, we look at the persistent data storage mechanism in MIDP, which
is called the Record Management System (RMS). In particular, we examine:

* the implementation of the RMS
« features of an RMS
- the API for accessing and storing data

Lastly, in this chapter, we retrofit our tutorial application to allow quotes received by
the system to be stored in a local RMS for later use. Storing this quote data is impor-
tant because the data can be retrieved later to provide the customer with a historical
or trend perspective to any new quote received.

JDBC PARALLEL

In applications written with the other Java editions, namely J2SE and J2EE, third
party vendors usually provide the data storage mechanisms. In these editions, a Java
APl is provided to allow common access and processing of data across various vendor
provided databases. Typically the API provides access to an RDBMS. This API is
called JDBC. In many ways, the MIDP RMS API provides the standard means to
access and process data on MIDP devices such as JDBC does in other Java edition
applications. (figure 6.1)

Whereas the JDBC API provides a common access means to various vendors’ data-
bases, the MIDP RMS API provides a common access protocol to the platform imple-
menter’s simple byte array storage mechanisms.

Java
e >
Application JIDBC API A RDMBS

os

T
—
—
T

RS Figure 6.1
MIDP As JDBC allows Java
= Application A Record applications to access
oD MIDP data from data systems
Q;g RMS API such as an RDBMS, the
DDD MIDP RMS API allows
i) access to MIDP device

record stores.

JDBC PARALLEL 135

6.2

6.2.1

136

STORAGE STRUCTURE

The wonderful thing about Java APlIs is that the API establishes the contract to which
both sides, the user and the provider, abide without telling either side how to imple-
ment their part of the application. Like JDBC, the MIDP RMS API provides an
instruction set, in this case for cellular telephone and pager applications to store data,
albeit for small amounts of data. At the same time, RMS allows the cell phone and
pager manufacturers some freedom on how and where to store this data. Because the
platform implementer is instrumentally involved in providing the persistent data
mechanism, there is no database driver or other third party software required to allow
applications to access data. Furthermore, given the simplicity of these databases and
the lack of query languages, heavy-duty concurrency provisions, result set handling,
and so forth, present in higher-end database systems, RMS requires only one main
class, Recor dSt or e, to store or retrieve data on an MIDP platform.

Record store

At the heart of the Record Management System is a record store. A record store is a
collection of records, and a record is an array of bytes. The platform implementer,
and thus RMS implementer, determines the location of a record store on a device.
However, no matter where a record store is physically located on the device, it is not
directly accessible to a MIDlet. MIDP applications access the RMS only through the
provided API as depicted in figure 6.2.

A MIDlet

ARecord | =

Store RMS

API

Figure 6.2

A MIDlet cannot gain direct access to a
device’s record store. It must use the
MIDP RMS API in order to access or
modify data in the record store.

It is also the platform provider’s job to make sure the record store survives “normal”
operations of the device. This includes operations such as shutdowns, reboots and
battery changes.

Record stores are associated with a MIDlet suite. That is, the data in a record store
may be shared and utilized by any number of MIDlIets in a suite. In fact, when two
different MIDlets request access to the same record store, each is given an object ref-
erence to the same record store on the system. When the MIDlet suite is removed from
the device, all record stores associated with the suite must also be removed from the
device. Each record store must have a unique name as it pertains to the MIDlet suite.

CHAPTER 6 MIDP DATA STORAGE

6.2.2

Record store names can be up to 32 characters (Unicode characters) long and are case-
sensitive. Record stores that are not part of the same MIDIet suite may have the same
name. If a MIDlet is not part of a suite, in essence it is a virtual suite containing that
single MIDlet. In this case, the MIDlet owns the record store. When the MIDlet is
removed from the platform, so too should the record store be removed.

Each time the record store is modified, the platform stamps the database with a
date and time stamp in the form of a long integer. Specifically, the record store is
stamped with a long integer returned from a call to System current Ti me-
M I lis(). This method call returns the number of milliseconds since January 1,
1970 at 12:00 a.m. The platform is also required to stamp the record store with a ver-
sion number each time the database is modified. The version number gets incre-
mented with each modification. The RMS implementer determines the initial version
number, but it must be greater than 0. Both the date/time and version stamps assist
the platform in synchronizing the database, as discussed subsequently, but they can
also be accessed and used by the application.

As with most implementation aspects of the RMS, the platform implementer must
provide atomic, synchronous, and serialized access to the record store, guaranteeing no
corruption of the database even across multiple accesses. The MIDP applications are
not provided a means to lock individual records or the entire record store through the
RMS API. And while the platform implementer ensures the integrity of the data, an
MIDP application that uses multiple threads must take special care when updating the
record store to avoid overwriting data provided by a previous thread. For example, if
two threads, A and B, are processing data and both attempt to update record X, the record
store implementation guarantees that both A and B safely be allowed to update X
without data corruption or system failure. In fact, calls to the record store are serialized
to avoid simultaneous access. In this example, A is allowed to update record X and
then B is allowed to update record X. However, the MIDP application has the respon-
sibility to prevent or resolve issues surrounding the fact that thread B has overwritten
thread A’s update. With no locking of the record or record store, undesired conse-
quences can result. In this example, thread A may behave incorrectly if it continues
to operate on the assumption that data in the record store is data it updated. An MIDP
application updating a record store with multiple threads can and should make use of
the record store timestamp and version number to check on previous updates.

Records in the record store

Again, a record is a simple byte array. Each record within the record store has a
unique integer identifier called a recordld. The first record created in a record store
has a recordld of 1. The recordld is incremented for each record added to the record
store. Using the analogy of a spreadsheet to represent a record store, a byte is repre-
sented by a cell and each byte array can be thought of as a series of cells within the
record store that is identified by the recordld, as shown in figure 6.3.

STORAGE STRUCTURE 137

6.3

6.3.1

138

Record ID
1|byte O byte 1 byte 2 byte n
2 |byte O byte 1 byte 2 byte n
3| byte 0 byte 1 byte 2 byte n
n|byte O byte 1 byte 2 byte n

Figure 6.3 The record store, as shown here, comprises a number of indexed byte arrays.
The index or the “recordld” of the first byte array is 1. Within the resource limits of the device,
each record store can have any number of arrays and each array can have any number of bytes.

It is tempting to view the recordld as a kind of index to the various byte arrays in the
record store. However, recordlds are not reused when a record is deleted from the
record store. Therefore, it is neither safe nor appropriate to view the recordld as an
actual index.

The recordld is used to access or get a handle on a particular record within the record
store. However, as we will examine in section 6.3, the recordld is not the only way to
get a handle on records. We can develop an enumerator that provides a means to bidi-
rectionally access records within the record store without using the recordld directly.

RMS API

Given an understanding of the record store and its general structure, we can now
explore the API that controls the record store. Most importantly, we can explore the
API that allows MIDlet applications to store and retrieve data on the devices.

Thej avax. m croedi ti on. r ms package contains the entire API for the MIDP
Record Management System. Because a record is just a byte array, there is only one
concrete class in the entire package, namely, Recor dSt or e is the class that imple-
ments the RMS record store.

Record store construction and access

The API for the Recor dSt or e is very straightforward. It contains a single static
method for creating a record store and instance methods for adding, removing and
updating records in the store. Other than methods for destroying the record store and
obtaining ancillary information out of the record store, such as the number of records
contained within the record store, there is not a lot to the API.

Record store lifecycle

A record store is created or opened with the same method, namely the open-
RecordStore(String recordSt oreNane, bool ean creat el f Necessary)
static Recor dSt or e method attempts to open an existing record store in the MIDlet

CHAPTER 6 MIDP DATA STORAGE

suite associated with the running MIDIet. The system creates a new record store if a
store by the same name is determined not to already exist in the suite and if the cr e-
at el f Necessary boolean is set to true. So, for example, to open an existing record
store named “Customers” and to create the new database if it does not exist, the fol-
lowing lines of code would be executed.

try {
RecordStore anRMS = Recor dSt ore. openRecor dSt ore(" Cust omers" , true);
} catch (RecordStoreFul | Exception full Store) {
//handle a full record store problem
} catch (RecordStoreNot FoundExcepti on not FoundException) {
/1 handl e store not found which should not happen with the
/lcreatel fNecessary tag set to true
} catch (RecordStoreException recordStoreException) {
/1 handling record store problens

}

The method cl oseRecor dSt or e() is used to close an instance of the record store.
Interestingly, the record store does not actually close until the close method is called
as many times as the open method was called. The number of MIDlIet calls to open
and close the record store is tracked over an entire suite and the number of closes
must match the number of opens before the record store is really closed. Again, the
reason for this is that the record store is shared by MIDlets within a suite. Before the
record store is considered closed, it must be closed with regard to every single MIDlet
application that has access to it. When finally closed, all listeners to the record store
are removed. We discuss record store listeners below. Figure 6.4 depicts the various
states of the record store’s life and how they are achieved.

openRecordStore("name", true) Record
¢ | Store

A created

Figure 6.4
The lifecycle of a record
store begins with its creation
using the openRecor dSt or e
(String, Bool ean) method.
It is automatically opened after
creation. Once created, it can be
opened and closed any number of
times. In order to close the record
store, however, an equal number
of cl oseRecordStore() to
openRecor dSt or e() methods
must be called. Finally, when
no longer needed, the life of a
record store ends with a call The createlfNecessary flag could

to del et eRecor dSt ore() . be true with the same results

Automatically
opened after

|
|
|
|
The number of close calls must equal : created
|
|

the number of open calls in order for
the record store to close.

deleteRecordStore("'name™)

closeRecordStore()

\.a
Record [T
Store
closed

openRecordStore(*name"”, false)

RMS API 139

140

A list of the available record stores can be obtained for a MIDlet suite. From inside a
MIDlet application, a static method call to | i st Recor dSt or es() returns an array of
Strings. This array contains a list of record store names for the suite to which the MIDlet
is associated. If the MIDlet suite has no record stores, the method returns null.

A static method on the Recor dSt or e class also allows a record store to be
destroyed. The del et eRecor dSt ore(St ri ng recor dSt or eNane) method deletes
the record store of the given name for the suite, provided the record store exists and
it is not currently open by any MIDIet within the suite. These last two conditions, if
false, cause a Recor dSt or eExcept i on to be thrown by the delete method.

Record access

A record store instance must be opened before record operations can be performed on
it. Otherwise, a Recor dSt or eNot Open exception gets thrown when trying to
access a closed record store. To retrieve an existing record, or byte array, from the
database one needs a recordld. With a recordld and the get Recor d(i nt recordi d)
method, the byte array stored under the provided id is returned. For example, to get
the record at recordld 2, the following method would be called on the open record
store referenced by anRIVS.

byte[] b = anRMS. get Record(2);

In the event that a record does not exist with the provided recordld, then an
I nval i dRecor dl DExcepti on exception is thrown. An alternate get Record
method allows a record to be read directly into an existing byte array at an offset spec-
ified. The get Record(int recordld, byte[] buffer, int of fset) method
reads the contents of the record at the specified r ecor dI d into the byte array passed
in as the buf f er at the offset specified. Additionally, this method can throw one
more type of exception, namely the Ar r ayl ndexQut Of BoundsExcept i on, if the
byte array pulled from the record is larger than the buffer can accept.

A record store has several methods for inserting, removing, and updating individual
records within the store. Each of these methods requires the recordld of the record
being managed. To add a record to a record store instance, the method addRecor d
(byte[] data, int of fset, i nt nunByt es) isused. The byte array passed as the
first parameter is the data to be inserted in the record store. An offset index and num-
ber of bytes count can be used to insert just part of the byte array. For example, exe-
cuting the following lines of code results in storing the string “a test” in a new record
in the referenced record store.

String test = "This is a test";

byte[] b = test.getBytes();

anRMS. addRecord(b, 8, 6);
On successful completion, the addRecord(byte [] data, int offset, int
nunmByt es) method returns the recordld of the newly inserted record.

CHAPTER 6 MIDP DATA STORAGE

6.3.2

RMS API

Deleting a record from the record store is done by calling on del et eRecor d
(i nt i d) withthe recordld of the to-be-removed record. Again, the removed record’s
identifier is retired and not reused with subsequent inserts into the record store.

Updating is accomplished through the set Record(int id, byte [] data,
int offset, int nunBytes) method. Updating a record in a record store
amounts to replacing the entire byte array stored at the particular recordld. Therefore,
the same arguments used in insert are used. The offset index and number of bytes can
be used on the new byte array to replace the existing record with all or part of the new
byte array.

There are several convenient methods for pulling additional information from the
record store. Table 6.1 lists them.

Table 6.1 Convenience methods on a record store instance provide ancillary information
about the record store such as its name, size, capacity, next recordld, version, etc. These methods
can be especially useful when performing maintenance on the stores.

Method Purpose

getLastModified() Returns the last time the record store was modified.

getName() Returns the name of the record store instance.

getNextRecordld() Returns the integer value of the next record identifier used for the next

add record operation.
getNumRecords() Returns the number of records in the record store instance.
getRecordSize(int recordld) Returns the size, in bytes, of the record specified by the recordID.

getSize() Returns the size of the record store, in bytes.
getSizeAvailable() Returns the maximum number of bytes the record store is allowed to grow.
getVersion() Returns the last version stamp for the record store.

Again, the API used to create and remove record stores or to manipulate the data
inside of a record store is straightforward. As we shall see, there is also a set of helper
classes to help locate and compare data in this very simple database as well as means
to react to changes in the record store.

Record store exceptions

Use of the Recor dSt or e class and manipulation of the data in a record store can
result in certain exceptions. The general exception thrown for any unknown problem
that occurs when dealing with the Recor dSt or e class or instance of the same is
Recor dSt or eExcepti on.

More specific subclasses that are descendents of Recor dSt or eExcepti on are
listed in table 6.2 along with a description of the circumstances on when they are
thrown.

All of these exceptions are checked exceptions requiring the developer to either
catch and handle the exception or rethrow the exception to calling methods.

141

6.3.3

142

Table 6.2 These are the exceptions defined in the j avax. m croedi ti on. r ns package that can be
encountered when dealing with a record store. All descend from the generic Recor dSt or e-
Excepti on.

Exception Description
InvalidRecordIDException Thrown any time a referenced recordld does not exist.
RecordStoreFullException Encountered only when attempting to insert a new or update

an existing record when the store is already at capacity. This
exception can also be thrown when trying to open an already
full record store.

RecordStoreNotFoundException Occurs when trying to open or remove a record store that
does not exist.

RecordStoreNotOpenException Thrown anytime information is sought from a record store
instance without its being open. This can also be thrown if an
attempt is made to close a non-open record store instance.

Record store listener

Remember, a record store can be accessed by any MIDlet within the same suite. In
order to allow applications to coordinate and react to changes in record store data, a
set of record store event handling interfaces have been provided. Any object can be set
up as a listener for modifications made to any record store in a MIDlet suite (see fig-
ure 6.5). The object only has to implement the Recor dLi st ener interface and be
registered with a record store instance as a listener for modification events.

...trigger corresponding calls
to the listener

a Record
Store

a RecordListener

Figure 6.5

An object, set up as a record
MiDlet suite listener to a record store, is

notified of any record addition,
aMiDlet modification or deletion made
from any MIDlet in the suite.

a MIDlet
add, update,

delete method calls...

To establish the object as a valid listener for modifications taking place on a record
store, it must first be registered with the record store. Two methods are provided for
registering and unregistering a listener.

- addRecordListener(RecordListener listener)
= removeRecordListener(RecordListener listener)

Registering a listener with a record store has no effect on the store and when a record
store is closed, all listeners are removed.

CHAPTER 6 MIDP DATA STORAGE

The RecordListener interface requires that the event handling object have three
methods, namely:

« recordAdded (RecordStore recordStore, int recordld),
« recordChanged (RecordStore recordStore, int recordld) and
« recordDeleted (RecordStore recordStore, int recordld).

Each callback method is called with the specific record store that was modified and
the recordld of the record that was changed, added or removed. These methods are
called after a new record is inserted into the record store (r ecor dAdd), an existing
record is modified (r ecor dChanged), or a record is removed from the store
(recor dDel et ed).

A simple example listener that merely reports when records in a record store have
been added, changed or removed is shown in listing 6.1.

Listing 6.1 Example RecordListener

import javax.mcroedition.rns.*;

public class TestListener inplenments RecordLi stener {

public void recordAdded(RecordStore rs, int id) {
try {
Systemout.println(rs.getNane() + " added record " + id);
} catch (RecordStoreNot OpenException e) {
/ / exception handling procedures
} Triggered when a MIDlet adds ﬂ/
} a record to the record store

public void recordChanged(RecordStore rs, int id) {
try {
System out.println(rs.getNane() + " changed record " + id);
} catch (RecordStoreNot OpenException e) {
/'l exception handling procedures
} Triggered when a MIDlet changes Q/
} a record in the record store

public void recordDel eted(RecordStore rs, int id) {
try {
Systemout.println(rs.getNanme() + " renpved record " + id);
} catch (RecordStoreNot OpenException e) {
/ / exception handling procedures
} .
} Triggered when a MIDlet removes 6/
} a record from the record store

In order to register this listener with an instance of record store, programming code
like the following would be required.

RecordSt ore anRMS = Recor dSt ore. openRecordStore(" Test RVS" , true);
anRMS. addRecor dLi st ener (new Test Li stener());

143

6.3.4

144

The first line opens the record store named TestRMS. Given the true boolean passed
as createlfNecessary parameter to the method, the record store is created and then
opened if it does not already exist. The second line registers an instance of Test Li s-
t ener, (code provided in Listing 6.1), to react to any record changes from any
MIDlet within the MIDlet suite.

Given the simplistic nature of RMS record stores, record listeners allow MIDlets
to more easily implement data validation mechanisms, trigger warnings such as out of
space messages, and other data related activities that are usually automatically handled
by more sophisticated databases.

Comparing records

In J2SE, the Conpar abl e interface provides a means to define a comparison opera-
tor that allows any two like objects to be evaluated or compared. The result of a com-
parison operation results in finding one object is equal to, greater than or less than
the other object. This interface allows developers to establish order on objects even
when the order is less than obvious. So, for example, ordering customer numbers
could be by last name or social security number.

While the Conpar abl e interface is not available in J2ME, inside the Record
Management System an equivalent interface has been provided to allow records of a
record store to be compared. The Recor dConpar at or interface allows any object
to be established as a comparing facility for any two RMS records given to it. Actually,
a Recor dConpar at or implementer compares two byte arrays. Because it has been
built generically to accept and compare two byte arrays, it could be set up for use out-
side of comparing record store records. In general, however, a record comparator is
useful for sorting or sequencing the record store records for enumeration purposes.

The Recor dConpar at or interface requires the implementation of a single com
pare(byte[] recl, byte[] rec2) method that examines the two passed-in
records and evaluates to either 0, 1 or —1. The value O indicates that the records are
equivalent or equal in terms of search or sort order. 1 indicates that the first record
follows the second record in search or sort order. Finally, a conpar e() return value
of =1 indicates that the first supplied record precedes the second in search or sort
order. Table 6.3 lists the static fields that have been established on the interface to pro-
vide meaningful names to the compare results.

Table 6.3 These static fields have been provided to name integer return values for comparison
operation. When used, these fields make code using the comparator easier to read and understand.

Static Field Assigned Value
RecordComparator.EQUIVALENT 0
RecordComparator.FOLLOWS 1
RecordComparator.PRECEDES -1

For example, suppose records added to a record store contained simple strings and a
record comparator implementation looked like the following code.

CHAPTER 6 MIDP DATA STORAGE

i mport javax.mcroedition.rms.*;
public class TestConparator inplenents RecordConparator {

public int conpare(byte[] recl, byte[] rec2) {

String rl = new String(recl);
String r2 = new String(rec2); %

if (rl.conpareTo(r2) > 0)
return (RecordConparator. FOLLOAS) ; P
else if (rl.conpareTo(r2) < 0)

return (RecordConpar at or. PRECEDES) ;

el se return (RecordConpar at or. EQUI VALENT) ;

}
}

@ Extract simple Strings from records
@ Use the standard String compareTo operator

In that case, executing the lines below in an MIDP application should produce results
that read: “Comparator found —> -1" since the comparator would be comparing the
String “a test” to “is”. Indeed “a test” does precede “is” in a string comparison.

anRMS = Recor dSt ore. openRecordStore(" Test RMS" |, true);

String test = "This is a test";
byte[] b = test.getBytes(); o

anRMS. addRecord(b, 8, 6);
anRMS. addRecord(b, 5, 2);
Recor dConparator rc = new Test Conparator(); 0

byte[] rl = anRMS. get Record(1);
byte[] r2 = anRVS. get Record(2); M
System out. println("Conparator found --> " + rc.conpare(rl,r2)); o

@ Open/create the record store and store string records

@ Create an instance of the record comparator

© Get the records from the record store

@ Use the comparator to compare the two records retrieved

While the comparator may be useful by itself in comparing records in a record store,
it becomes an even more powerful tool when combined with a record filter and
record enumeration as described in the next section. Obijects that implement these
three RMS interfaces can be utilized on a record store to intelligently access and work
on specific data in a record store.

6.3.5 Filtering records

In a similar fashion to the Recor dConpar at or, the RMS API provides a record fil-
tering interface that allows any object to serve as a strainer for records in a record
store. The Recor dFi | t er interface requires its implementing object to implement

RMS API 145

6.3.6

146

a single method. This method, mat ches(byt e[] candi dat e) , checks the passed
byte array to determine if its data meets the filtering criteria. This method returns a
simple boolean indicating whether the passed-in record meets the filter criteria. A
record filter could, for instance, be set up to determine if a record in a record store
begins with the letter ‘A’ (either small or capital). The code for such a filter would
resemble the following:

i mport javax.mcroedition.rns.*;
public class TestFilter inplenments RecordFilter {

public bool ean matches(byte[] rec) {
String r = new String(rec);
return ((r.charAt(0) =="'a') || (r.charAt(0) == "A));
}
}

The filter could then be used, as shown below, to determine if a record does match
the criteria. Using this filter, as below, would produce the system output “The first
record starts with ‘A’.”

anRMS = Recor dStore. openRecordStore("Test RMB" , true); o
String test = "A test"; o
byte[] b = test.getBytes();

anRMS. addRecord(b, 0, b.length);
RecordFilter rf = new TestFilter(); 9
if (rf.matches(anRMS. get Record(1)))
Systemout.println("The first record starts with "A'");
el se
Systemout.println("The first record does not start with "A'");

@ Open/create the record store

@ Store a record containing a string

© Create an instance of the record filter above
@ Use the filter to get all matching records

Enumerating through records

Both record filtering and comparing are two features of RMS that assist in intelligently
enumerating through record store records. Enumerations are used throughout Java to
cycle through all sorts of data structure objects, such as vectors, in order to perform a set
of operations on each element in the structure. An enumeration prepares a sequence of
the data elements and provides a series of access methods to retrieve elements from the
sequence. Likewise, MIDP’s RMS has provided a Recor dEnuner at i on interface that
allows for enumerating through the records in a record store. Even better, a record com-
parator and/or record filter can be used in conjunction with the record enumeration to
loop through the various records in some sort order and act on only certain filtered records.
A record enumeration can be obtained for any record store instance by calling the
enuner at eRecor ds(RecordFilter filter, RecordConparator conpar at or,

CHAPTER 6 MIDP DATA STORAGE

RMS API

bool ean keepUpdat ed) method on the instance. The filter supplied, if not null,
determines what subset of records to include in the enumeration. The filter or com-
parator could be null.

« If the record filter is null, all records in the record store are included in the enu-
meration.

« If the record comparator is not null, the records in the enumeration are sorted
per the comparator.

e If the comparator is null, the records in the enumeration are not sorted and
records included in the enumeration are traversed in an undetermined way.
The recordld does not serve as any kind of default order.

The last parameter to the record store’s enuner at Recor ds() method is a boolean
indicating whether to keep the enumeration up to date with regard to changes being
made to the record store. In other words, the enumeration’s sequence of records can
be automatically synchronized with underlying changes being made to the record
store from other threads on the device. Consider possible performance penalties when
setting this parameter to true. Alternatively, a record listener could be used to re-
establish the enumeration when a change in the record store is discovered. Both of
these options have the potential of creating a performance problem since every modi-
fication would cause the enumeration index to be rebuilt. If the keepUpdat ed
parameter is not set to true, then the enumeration may reference records that are no
longer valid. This can occur, for example, when another thread deletes a record on the
underlying database that happens to also be a record in an enumeration’s sequence.
Furthermore, inserts or changes to the data in the underlying records may cause the
sort order to be inaccurate with regard to the new data. These risks must be weighed
against the possible performance effects when looking at means to keep the enumera-
tion accurate with regard to underlying database changes.

A record enumeration comes with a set of access methods that get records (i.e. byte
arrays) or recordlds from the enumeration. An enumeration has a kind of cursor or
pointer that references a particular record or element in the sequence. Unlike other
Java enumeration APIs that are usually forward only, the RMS Recor dEnuner a-
ti on is bi-directional, meaning elements can be obtained in either direction from the
current record. A call to the next Recor d() method returns the next element or record
in the sequence from wherever the element pointer is located. Likewise, a call to the
previ ousRecor d() method gets the previous byte array in the sequence. Where a
MIDlet is only interested in getting the recordld instead of the actual record or byte array,
next Recordl d() and previ ousRecordl d() methods are also available. Two
methods, hasNext El enent () and hasPr evi ousEl ement (), both returna boolean
indicating whether there are next records in either a forward or backward direction in
the sequence. A call to nunRecor ds() returns the total number of records in the
enumeration’s sequence set.

147

148

Again, the enumeration may be set to keep updated with the updated contents of
the record store. The r ebui | d() method allows for the enumeration to be rebuilt
or constructed based on the new record store contents. Alternately, the r eset ()
method resets the enumeration to the state right after its initial creation. Finally, an
enumeration uses a fair number of resources to accomplish its job. The MIDlet appli-
cation is required to trigger the dest r oy() method when finished with any record
enumeration in order to release the resources it uses.

To demonstrate the use of Recor dEnuner at i on, we make use of the Recor d-
Conpar at or and Recor dFi | t er from our previous examples. Listing 6.2 shows
code that populates a small record store with several names. Then it calls on a
Recor dEnurer at i on instance to iterate through the records and display the list of
names beginning with the letter ‘A’ in alphabetical order.

Listing 6.2 Finding specific records using RMS interfaces

anRMS = Recor dStore. openRecordStore("Test RMB" , true); o
byte[] george = "George".getBytes();
byte[] bob = "Bob".getBytes();
byte[] andy = "Andy".getBytes();
byte[] harry = "Harry". getBytes();
byte[] adam = "Adani. getBytes();
byte[] anos " Anps". get Byt es(); o
byte[] fred = "Fred". getBytes();
anRMS. addRecor d(george, 0, george.length);
anRMS. addRecor d(bob, 0, bob.length);
anRMS. addRecord(andy, 0, andy.length);
anRMS. addRecord(harry, 0, harry.length);
anRMS. addRecord(adam 0, adam | ength);
anRMS. addRecor d(anmos, 0, anos.|ength);
anRMS. addRecord(fred, 0, fred.length);
Recor dConparator rc = new Test Conparator(); 0
RecordFilter rf = new TestFilter();
Recor dEnunerati on r Enum = anRMS. enuner at eRecords(rf, rc, fal se);
whi |l e (rEnum hasNext El enent ()) { 9
byte[] nextRec = r Enum next Record(); 4
String nextName = new String(nextRec);
System out. printl n(next Nane);

}
r Enum destroy(); (6]

@ Open/create the record store

@ Create several records containing first names

© Using the comparator from above

@ Using the filter from above

© Use comparator and filter to create an enumeration to find select records
@ Close the enumeration to free resources

CHAPTER 6 MIDP DATA STORAGE

6.4

6.4.1

After running this code as part of a MIDlet application, the system output should
produce the following results:

Adam
Amos
Andy

As seen through this last example, the RecordComparator, RecordFilter and Record-
Enumeration RMS interfaces combined to provide a powerful mechanism to reach
inside a record store, filter, sort and extract specific data for use in an MIDP applica-
tion. While this type of search, sorting and extracting could be done without the use
of these interfaces, these interfaces help reduce the time and effort it takes to do this
common work and they provide a consistent pattern which helps in later mainte-
nance of the code.

PERSISTENT STORAGE IN THE
INVESTMENT QUOTE APPLICATION

With an understanding of the MIDP Record Management System, we can apply that
knowledge to the tutorial application. In the previous chapter, we created the basic
MIDP application structure (the MIDlIet), the user interface and event handling
mechanisms for a stock and mutual fund quote system. Remember, the purpose of
this system was to get current stock and mutual fund prices and store them for later
retrieval. Up to this point, no data has actually been stored or retrieved by the appli-
cation. Instead, we stubbed out the user interface to respond as if data were being
retrieved when, in reality, it was just phony data remanufactured for each user inter-
face request.

In the design of the application, recall that ObtainQuote and RetrieveQuote use cases
made use of two other use cases, namely SavePrice and RetrievePrice. These use cases
stored and fetched investment price information in and out of the persistent mecha-
nism. We create the code that implements these use cases in sections 6.4.2 and 6.4.3.

Defining the stock/mutual fund record

In this section, we retrofit our application to actually store and retrieve investment
guote data in a record store. As was learned in this chapter, a record is nothing more
than a byte array. In this tutorial, a record consists of a converted string containing
the stock or mutual fund symbol along with the current and historical price.

As mentioned previously, the CLDC on which MIDP relies, does not support
floating-point numbers. Therefore the use of Java’s double or float base types cannot
be used to represent dollar/cent prices of most stock and mutual fund quotes. Instead,
we use two integers to represent one price. For example, if the stock price was $120.55,
then the price must be stored as two integers, 120 and 55. One integer represents the
dollars associated with the price, while the second represents the cents of the price.

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 149

6.4.2

150

Remember that the application must be able to store a current and a historical price
for each stock or mutual fund. Therefore, along with a symbol to identify the stock
or mutual fund, two sets of dollar and cent integer values must be stored.

In order to store all this data in a single string, a marker or delimiter is needed to
indicate where one value stops and the next data value begins. For this tutorial, we
choose the semicolon as a data delimiter.

So, the string representing a current price of $120.55 and a historical price of
$113.45 for 3M (a Fortune 500 manufacturing company based in St. Paul, Minnesota
with a symbol of MMM) would look like the following:

Current price $120.55

3M Stock Symbol Historic price $113.45
\ \

\ | I |
MW 120; 55; 113; 45
|

Data delimiter — the semi-colon

Figure 6.6 Each investment price quote (both current and historical) can be represented by a single
string. In this example, the current price and historical per share of 3M are $120.55 and $113.45.

In the case where only one price has been obtained for the stock or mutual fund, the
last two trailing integers are omitted. So, using our previous example, when the first
price of $113.45 was obtained for 3M, the original record string would have been
represented as:

MMM;113;45

The string record that contains the stock or mutual fund price quotes and investment
symbol needs to be converted to a byte array before being stored as a record in the
record store. Recall that the record store contains byte array records. This can easily
be accomplished using the method get Byt es() on any string object.

Storing quotes

The ObtainQuoteMIDlet controls all aspects of getting and storing stock or mutual
fund quotes. Since this class will now be using RMS, it must import the RMS package.
Therefore, the RMS import statement must be included at the top of this class file.

i mport javax.mcroedition.rns.*;

In the previous chapter, a command listener was created in the i ni t Li st ener ()
method in ObtainQuoteMIDlet to wait for the user to push the “Get” command.
When the user triggers this command, the command listener would determine what
command button was pushed and then trigger the right system response. From the
previous chapter, when the “Get” command was pressed, the command listener first
checked to insure that symbol was valid. In other words, it checked to see that some
symbol was entered and that if the symbol entered was for a mutual fund symbol, the

CHAPTER 6 MIDP DATA STORAGE

symbol was checked to insure that it ended in ‘X’. Otherwise, the listener simply
called to display a fake price for the given investment symbol. The old command lis-
tener from the previous chapter is provided in listing 6.3.

Listing 6.3 ObtainQuoteMIDlet’s Old Get Command Listener

CommandLi st ener conmandLi st ener = new ComrandLi st ener () {
public void commandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command())
destroyApp(true);
else if (c == entryForm get Get Command()) {
if ((entryForm getlnvestment Choi ce(). get Sel ectedl ndex() == 1) &&
I (entryForm get Synmbol Fiel d().getString().
t oUpper Case().endsWth("X"))){
Al ert synbol Alert = new Alert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn);
} else
if (entryForm getSynbol Field().getString().length() > 0)
di spl ayPrice("The price of " +

entryForm get Synbol Fiel d().getString() + " is $111.19");
}
} From previous work, the price OJ

I found was always $!11.19
||

In fact, the same fake price of $111.19 was always returned for each symbol. The
price was not really retrieved from an investment or quote service and the data was
never stored in a database for later retrieval. In the next chapter, we will see how the
real price can be obtained from an investment service using standard communica-
tions protocols and a connection framework. However, given the RMS, now we can
at least store and retrieve price quotes in a record store. To improve upon the idea of a
quote service and in order to demonstrate that new data is really being added to the
record store, we will also improve on the fake quote service to at least provide a ran-
dom price to the MIDlet as opposed to the same fake price.

Retrofitting the command listener

Since the command listener responds to the customer’s push of the “Get” command,
the listener must be updated to allow it to capture quote data and send the data off to
be stored in the record store. Thus, to store quotes for any symbol, we replace the last
part of the ObtainQuoteMIDlet’s command listener as depicted in listing 6.4.

Now, when a proper investment symbol is entered, the MIDlet calls on a quote ser-
vice class to obtain a price. This service is implemented in temporary form in the code
shown here. In the next chapter, we rebuild the service to capture real investment
information. Provided the string passed to this service is a valid investment symbol,
it returns an integer array containing two integers. The first int represents the current
dollars for the stock or mutual fund and the second int represents the current cents

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 151

152

Listing 6.4 ObtainQuoteMIDlet’s New Get Command Listener

ConmmandLi st ener conmandLi stener = new ConmandLi stener () { o
public void conmandActi on(Command c, Displayable d) {

if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (¢ == entryForm get Get Conmand()) {

if ((entryForm getlnvestent Choi ce(). get Sel ectedl ndex() == 1) &&

!'(entryForm get Synbol Fi el d().getString
t oUpper Case().endsWth("X"))){

0.

Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in "X ", null, Al ertType. WARNI NG) ;

synbol Al ert. set Ti meout (Al ert. FOREVER) ;

di spl ayMhgr. set Current (synbol Alert, entryForm;
} else if (entryForm get Synbol Field().getString().length() > 0) {
String sym = entryForm get Synmbol Fi el d().getString();
int type = entryForm get | nvest ment Choi ce(). get Sel ect edl ndex();
int[] price = QuoteService.getPrice(sym type);

storePrice(sym price);
di splayPrice("The price of " + sym+ "

"+ oprice[1]): @

@ The command listener replacement
@ A call to store the price obtained in a record store
© Now display the symbol and prices obtained via the quote service

is $"

+ price[0] +

for the same investment. Thus, if 3M has a price of $115.45 a share, the array returned
fromQuot eServi ce. get Pri ce(“ MW, 0) would be {115, 45}.

Given that our MIDlets still have no connection to the outside world, the quote
service must still return a fake price. However, to provide data that starts to look a little
more like that which would actually be received by a quote service, the CLDC’s Ran-
domclass is used in a new Quot eSer vi ce class to help generate two integer values

between 0 and 99.

i nport java.util.Random @ Import the Random
class from the CLDC

public class QuoteService {

public static int[] getPrice(String synbol, int type) {

Random generat or = new Randon{);

Random generat or = new Randon{);

int dollars = Math.abs(generator.nextlint())
int cents = Math. abs(generator.nextlnt()) %
int[] priceParts = {dollars, cents};

%4.00;
00;

return priceParts; © Return the new dollar/cent

} price for the investment

CHAPTER 6

@ Randomly generate
two numbers
between 0 and 99

MIDP DATA STORAGE

Now the MIDlet and its command listener are properly outfitted to shuffle data
between a temporary quote service and the display. Next we look at implementing
the means to store quotes obtained from the service for later retrieval.

Creating and saving investment price data

While the QuoteService returns the dollars and cents price, in the integer array, the
MIDlet calling on the Quot eSer vi ce still needs to store the price and associated
symbol in a record store. This is accomplished in an ObtainQuoteMIDIlet method
called st orePri ce(sym price) asshown in listing 6.5.

Listing 6.5 The storePrice method of ObtainQuoteMiIDlet

private void storePrice(String synbol, int[] price) {
String newRecord = synbol + ";" + price[0] + ";" + price[l]; o
byte[] byteRec;
try {
RecordSt ore anRVS = Recor dSt or e. openRecor dSt ore(" Quot es" , true); o

RecordFilter rf = new QuoteFilter(synbol);
Recor dEnuner ati on r Enum = anRMS. enuner at eRecords(rf, nul |, fal se);
if (rEnum hasNextEl ement()) {
int recld = rEnum next Recordl d();
newRecord += ';' + getlLastPrice(anRVS. getRecord(recld));
byt eRec = newRecord. get Byt es(); 0
anRMS. set Record(recld, byt eRec, 0, byt eRec. | engt h) ;
} else {
byt eRec = newRecord. get Byt es();
anRMS. addRecor d(byt eRec, 0, byt eRec. | engt h) ;
}
r Enum destroy();
anRMS. cl oseRecordStore();
} catch (RecordStoreFul | Exception full Store) {
//'handle a full record store problem
} catch (RecordStoreNot FoundExcepti on not FoundException) {
//handl e store not found which should not happen with the
/lcreatel fNecessary tag set to true
} catch (RecordStoreException recordStoreException) {
//handling record store problens

@ Prepare the record string

@ Open the record store named “Quotes”

© Locate and update an existing record, or add a new record
@ Destroy the enumerator and close the record store

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 153

154

This method is the i nsert and updat e method for the investment quote database,
basically implementing the SavePri ce use case in our tutorial application design.
Its first job is to open the RMS record store on the device named “Quotes.” Then,
using a record filter called Quot eFi | t er and a record enumeration, the st or e-
Pri ce() method attempts to locate the record for the investment with the symbol
provided. As suggested previously, a common use of both filters and comparators is
demonstrated here as it is used in conjunction with an enumerator. If the record is
found via the enumerator, then a previous price has been obtained for the investment.
In this case, the record must be updated to have a new current price and the old price
stored in the record is made to be the investment’s historical price. To update the
investment’s record in the record store, simply create the record’s new data string and
use set Record(int recordld, byte[] newbData, int offset, int num
Byt es) to overwrite the existing record. When updating an existing record, the last
current price becomes the new historical price, as shown in figure 6.7.

Current price Historical price

120.55;
45; 113,45;

~_

Figure 6.7 When the st or ePri ce() method gets called, the record store is checked for an
existing price for the symbol provided. If an there is an existing price, then the existing or
current price becomes the historical price and the new price becomes the current price.

MMM

In the case where no investment record is found for the symbol provided, a new
record is added to the record store. This is accomplished using the addRecord
(byte[] data, int offset, i nt nunByt es) method and passing this method
the symbol and price information stored in a byte array.

To assist in getting price data from the byte array record, another method is used
to convert the byte array back to a string and to extract the last price from the string.

private String getLastPrice(byte[] rec) {
String recString = new String(rec);

int dollarPos = recString.indexOri(';"); Get the position
int centPos = recString.indexOhi(';", dollarPos+1); w of the last price
int centEnd = recString.indexOH(';", centPos + 1); within the string

if (centEnd > 0) //had a historical price

return recString. substring(doll arPos+1, cent End); 0
el se /I no previous historical price
return recString. substring(dollarPos+1); @ Return the current price
} string, regardless of a

historical price

CHAPTER 6 MIDP DATA STORAGE

The get Last Pri ce() method is a byte array to string converter with some string
manipulation to find the appropriate dollar and cent values stored in between the
appropriate ‘;’ character delimiters.

The record filter used with the enumerator helps extract the right investment
record for any given symbol provided by the user. Only one record for each symbol
requested will ever exist in the database. As seen in the following code, the filter’s con-
structor can be used to provide filter information, such as the symbol string in our
example.

i mport javax.mcroedition.rns.*;
public class QuoteFilter inplenments RecordFilter {
private String synbol;

public QuoteFilter(String sym { 0 Method to specify the

} synbol = sym investment symbol

public bool ean matches(byte[] rec) {
String r = new String(rec);

return (r.startsWth(symbol + ';")); @ Match records based on the
} symbol and delimiter mark

}
When called upon by the enumerator, only those records matching the symbol string
will be included in the enumerator’s sequence.

As seen in figure 6.7, when compiled, preverified and executed, the Obtain-
QuoteMIDlet will look no different than it did in the previous chapters. However,
now all data being obtained for each investment is stored in the record store. In
section 6.4.3 we see how this information can be retrieved from the persistent storage
provided by the platform.

“F il [i:3]) F ol AEC [i::a])
ObtainGucte rvestment Symbol

nvestment Symiaal Pl bl

Figure 6.8 The user interface does not change after adding persistent storage to the
ObtainQuoteMIDlet. The screens to get the investment symbol and display the price are the
same. Now, however, behind the screens of this MIDlet, quote service data is stored in the
record store on the device.

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 155

6.4.3

156

Retrieving quotes

Having the data stored in a database does no good unless it is saved for later retrieval.
In this part of the tutorial, the stock and mutual fund quotes are retrieved to display
the current and historical prices of a given investment. Recall that in the exploration
of the MIDP user interface (in chapter 5), we even developed a means to graphically
depict the current and historical prices in a comparison bar chart using the low level
MIDP user interface API.

As with the ObtainQuoteMIDlet, the RetrieveQuoteMIDlet was written in chapter 5
to demonstrate the user interface capabilities and so the actual investment symbol and
quote were simply passed as fake parameters to the display methods. From earlier in
our tutorial, the di spl ayChart Canvas() method of RetrieveQuoteMIDlIet called
on a Chart Canvas object to display the quote chart with the same “MMM?” symbol
and current and historical prices ($75 and $110) respectively.
private void displayChartCanvas() {

if (chartCanvas == null) {
chart Canvas = new Chart Canvas();

}
di spl ayMhgr .setCurrent(chart Canvas);

chart Canvas. di spl ayChart (" MW", 75, 110) ; @ Fake $75 and $110 price
} quotes for 3M

Based on work earlier in this chapter, the ObtainQuoteMIDlet now stores price
quotes for investment symbols and with the ability to extract information from the
record store, our application does not have to pass phony data to the display anymore.
Because ObtainQuoteMIDlet and RetrieveQuoteMIDlet are part of the same MIDlet
suite, the “Quotes” record store can be shared and utilized by both applications.

Extracting price data

Getting investment price quote data back out of the record store is even easier than
saving it. First, like in the ObtainQuoteMIDlet, the RetrieveQuoteMIDIlet must
import the RMS package.

import javax.mcroedition.rns.*;

Then, because we do not want the chart canvas to continually receive the same two
prices ($75 and $110), but rather the stored price quotes, the initial di spl ay-
Chart Canvas() method needs some updating. The method is altered to call first
on the record store to retrieve price information for the given user-entered symbol.

private void di splayChart Canvas() {
if (chartCanvas == null) {
chart Canvas = new Chart Canvas();

}
String current Synbol = entryForm get Synbol Fiel d().getString();

int[] prices = retrievePrices(currentSynbol); o call to retrieve the current
and historical prices

CHAPTER 6 MIDP DATA STORAGE

At first glance, the retri evePrices(current Synbol) method (listing 6.6)
looks a lot like the st or ePri ce() method from the ObtainQuoteMIDlet. In fact,
they both use the same record enumeration and record filter to locate a record. How-
ever this time, instead of updating or adding the record, the retri evePri ces()
method simply extracts the current and historical dollar prices from any matching
record found. This method serves as the implementation of the RetrievePrice use case
in our tutorial application design.

Listing 6.6 RetrieveQuoteMIDlet’s retrievePrices method

private int[] retrievePrices(String synbol) {
int[] dollars = null;

try {
RecordStore anRMS = RecordSt ore. openRecordStore(" Quotes" , true);

RecordFilter rf = new QuoteFilter(synbol);
Recor dEnunerati on r Enum = anRMS. enuner at eRecords(rf, nul |, fal se);
i f (rEnum hasNextEl enent()) {
byte[] rec = r Enum next Record();
dol lars = parsePrices(rec); 0
} else
dollars = null;
r Enum destroy();
anRMS. cl oseRecordStore();
} catch (RecordStoreFul | Exception full Store) {
//handle a full record store problem
} catch (RecordStoreNot FoundExcepti on not FoundException) {
/I handl e store not found which should not happen with the
/'l createl fNecessary tag set to true
} catch (RecordStoreException recordStoreException) {
/' /' handling record store probl ens

}
return dollars; o

@ Open the “Quotes” record store
@ Parse out the current and historical prices from the record.
© Return null signifying no prices and no record
@ Return array containing the prices
Extracting the dollar prices from a record is again a matter of string manipulation and

character matching. It is handled by the par sePri ces(byt e[] quot eRec) method
which is shown in listing 6.7.

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 157

158

Listing 6.7 The parsePrices method in ObtainQuoteMIDlet

and RetrieveQuoteMIDlet

private int[] parsePrices(byte[] quoteRec) {
String rec = new String(quoteRec);
int dollarlPos = rec.indexOf("';");
int centlPos = rec.indexOf(';", dollarlPos+1);
int dollar2Pos = rec.indexOr(';',centlPos + 1);

if (dollar2Pos > 0) { //had a historical price

int cent2Pos = rec.indexOf(';"',dollar2Pos + 1);

int currentDollars = Integer.parselnt(rec.substring(dollarlPos + 1,
cent 1Pos)) ;

int currentCents = Integer.parselnt(rec.substring(centlPos + 1,
dol | ar 2Pos)) ;

int historical Dollars = Integer.parselnt(rec.substring(dollar2Pos + 1,
cent 2Pos)) ;

int historical Cents = Integer.parselnt(rec.substring(cent2Pos + 1));

int[] returnPrices = {currentDollars, currentCents, historicalDollars,
hi st ori cal Cent s};
return returnPrices;
} else { //no previous historical price

int currentDollars = Integer.parselnt(rec.substring(dollarlPos + 1,
cent 1Pos)) ;
int currentCents = Integer.parselnt(rec.substring(centlPos + 1));

int[] returnPrices = {currentDol | ars, currentCents};
return returnPrices;

Each record contains the symbol for the investment and up to two sets of integers for
the dollars and cents of each price quote (current and possibly historical price). The
current and historical prices are extracted from the record and returned in an integer
array. If the investment has only one price stored for it, then the array returned con-
tains two integers; the dollar and cents of the currently known price for the invest-
ment. If a historical price is also known for the investment, the integer array will have
four numbers representing the current dollars and cents price as well as the historical
dollars and cents price respectively.

Retrofitting the canvas display

The RetrieveQuoteMIDlet and its canvas display object currently only depict the
dollar value portion of the investment prices. So after the prices are retrieved, the
array is checked for two (indicating only a current investment price is available) or
four integers have been obtained from the record store. While the retri eve-
Pri ces() method returns dollars and cents, the size of the graphical user interface is
limited and so only the dollar parts of the price are depicted in the comparison bar
charts. Both current and historical dollar prices are required in order to display the

CHAPTER 6 MIDP DATA STORAGE

graphical bar chart showing the price changes. With only a current price and no his-
torical price available, the user is given the current price via an informational alert
window. This is also true if no record for the requested symbol exists in the record
store. Theretri evePri ces() method would have returned null. In this case, an
alert is used to inform the user that no data exists for the symbol provided. The
updated di spl ayChart Canvas() method, shown in listing 6.8, performs the check
for available price information and calls to display the appropriate information to
the customer.

Listing 6.8 The new displayChartCanvas of RetrieveQuoteMIDlet

private void displayChartCanvas() {
if (chartCanvas == null) {
chart Canvas = new Chart Canvas();
}
String current Synbol = entryForm get Synbol Fiel d().getString();
int[] prices = retrievePrices(currentSynbol);
if (prices !'=null) {
if (prices.length > 2) { (1]
i ni t CanvaslLi stener();
di spl ayMhgr . set Current (chart Canvas) ;
chart Canvas. di spl ayChart (current Synbol , prices[0], prices[2]);

} else {
Al ert noDataAlert = new Alert("Recorded Price","Recorded price for "
+ currentSynbol + " is: $" + prices[0] + "." + prices[1l] +

". No historical data exists.", null, AlertType.|NFO;
noDat aAl ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (noDat aAl ert, entryForm;
}
} else {
Al ert noDataAlert = new Alert("No prices", "No price data exists
for " + currentSynbol, null, Al ertType.|NFO;
noDat aAl ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (noDat aAl ert, entryForm;
}
s}

If current and historical price exists, display the comparison bar charts
If current price exists, display price in an Alert

I~

If no price information exists, use Alert to indicate no price

As with the ObtainQuoteMIDIet, most of the RetrieveQuoteMIDIet will not look
different when running. As shown in figure 6.8, after compiling, preverifying and exe-
cuting, the only change seen on the part of the user comes when there is only a current
price stored in the database. In this case, the new Information alert will provide the
user with the current, but no historical, price information. But the information dis-
played in the RetrieveQuoteMIDIet now comes directly from the record store as a re-
sult of quotes obtained by the other MIDlet in the suite, namely ObtainQuoteMIDlet.

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 159

160

Figure 6.9 Like the ObtainQuoteMIDlet, no change is seen in the RetrieveQuoteMIDlet user
interface after adding an RMS. The screens to get the investment symbol and display the price
for saved price quotes are the same. Again, behind the screens of this MIDlet, quote service data
is retrieved from the record store on the device.

Before we depart this chapter, we want to give you a complete listing of the code for
our MIDlet applications. Listings 6.9 and 6.10 are the Java files for our MIDP appli-
cations. The EntryForm and ChartCanvas.java files from chapter 5 are unchanged so
please refer to the code listing at the end of that chapter if you need those class files.
Full source code for QuoteService.java and QuoteFilter.java were provided earlier in
this chapter.

Listing 6.9 The full ObtainQuoteMIDlet

i nport javax.mcroedition.mdlet.*;
i nport javax.mcroedition.lcdui.*;
import javax.mcroedition.rns.*;

public class Obtai nQuoteM Dl et extends M D et {
private Display displaywhgr nul | ;
private EntryFormentryForm = nul|;
private Alert resultsAlert = null;
private Ticker adTicker =
new Ti cker ("Track your investnments with |Investnent Tracker");

public ObtainQuoteM D et () {
}

private void initListener () {
| tenft at eLi stener itenListener = new | tenStateListener () {
public void itenfStateChanged (Itemitem {
if ((item== entryForm getlnvestnentChoice()) &&
(entryForm get | nvest nent Choi ce() . get Sel ect edl ndex() ==1) &&
! (entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))) {
Alert synbol Alert = new Al ert("Check Symbol ",
"Mitual Funds end in 'X ", null, AlertType. WARNI NG);
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWhgr. set Current (synbol Alert, entryFornmn;
}
}
h

CHAPTER 6 MIDP DATA STORAGE

ConmmandLi st ener conmandLi stener = new ConmandLi stener () {
public void conmandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (¢ == entryForm get Get Conmand()) {
if ((entryForm getlnvestment Choi ce(). get Sel ectedl ndex() == 1) &&
I'(entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))){
Alert synbol Alert = new Alert("Check Synbol ",
"Miutual Funds end in "X ", null, Al ertType. WARNI NG) ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn;
} else if (entryForm getSynbol Field().getString().length() > 0) {
String sym = entryForm get Synmbol Fi el d().getString();
int type = entryForm getl nvest ment Choi ce(). get Sel ect edl ndex();
int[] price = QuoteService.getPrice(sym type);
storePrice(sym price);
di spl ayPrice("The price of " + sym+ " is $" + price[0] +
+ price[1]);
}
}
}
b
entryForm set|tentt at eLi stener(itenListener);
ent ryFor m set ConmmandLi st ener (conmandLi st ener);

}

private void displayEntryForm () {
if (entryForm == null) {
entryForm = new EntryForn{" Cbtai nQuote");
}
initListener();
di spl ayMngr. set Current (entryFornj;

}
private void displayPrice(String quoteString) {
if (resultsAlert == null) {
resultsAlert = new Alert("Quote Price", null, null,

Al ert Type. CONFI RVATI ON) ;
resul tsAlert.setTicker(adTi cker);
resul tsAlert.set Tinmeout (Al ert. FOREVER) ;
}
resultsAlert.setString(quoteString);
di spl ayMnhgr.setCurrent(resultsAlert, entryForm;

}

private void storePrice(String synbol, int[] price) {
String newRecord = synbol + ";" + price[0] + ";" + price[l];
byte[] byteRec;
try {

RecordSt ore anRMS = Recor dSt ore. openRecordStore(" Quotes" , true);
RecordFilter rf = new QuoteFilter(synbol);

Recor dEnuner ati on r Enum = anRMS. enuner at eRecords(rf, nul |, fal se);
i f (rEnum hasNextEl enent()) {

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 161

162

}

int recld = r Enum next Recordl d();
newRecord += ';' + getlLastPrice(anRVS. getRecord(recld));
byt eRec = newRecord. getBytes();
anRMS. set Record(recl d, byt eRec, 0, byt eRec. | engt h);
} else {
byt eRec = newRecord. getBytes();
anRMS. addRecor d(byt eRec, 0, byt eRec. | engt h);
}
r Enum destroy();
anRMS. cl oseRecordStore();
catch (RecordStoreFul | Exception full Store) {
//handle a full record store problem
catch (RecordStoreNot FoundExcepti on not FoundException) {
//handl e store not found which should not happen with the
catch (RecordSt oreException recordStoreException) {
/1 handling record store problens

private int[] parsePrices(byte[] quoteRec) {
String rec = new String(quoteRec);

int dollarlPos = rec.indexOf(";");

int centlPos = rec.indexOf(';"', dollarlPos+1);
int dollar2Pos = rec.indexOr(';',centlPos + 1);

}

i f (dollar2Pos

}

0) { //had a historical price

v i

i nt cent 2Pos rec.indexOf(';"',dollar2Pos + 1);

int currentDollars = Integer.parselnt(rec.substring(dollarlPos +
1, cent 1Pos));

int currentCents = Integer.parselnt(rec.substring(centlPos +
1, dol I ar 2Pos)) ;

int historicalDollars = Integer.parselnt(rec.substring(dollar2Pos +
1, cent 2Pos)) ;

int historical Cents = Integer.parselnt(rec.substring(cent2Pos + 1));

nt[] returnPrices = {currentDol | ars, currentCents, historical Dollars,
hi st ori cal Cent s};

return returnPrices;

else { //no previous historical price

int currentDollars = Integer.parselnt(rec.substring(dollarlPos + 1,
cent 1Pos)) ;
int currentCents = Integer.parselnt(rec.substring(centlPos + 1));

int[] returnPrices = {currentDollars, currentCents};
return returnPrices;

private String getlLastPrice(byte[] rec) {

String recString = new String(rec);

int dollarPos = recString.indexCi(";");

int centPos = recString.indexOf(";"',dollarPos+1);
int centEnd = recString.indexOf(';", centPos + 1);
if (centEnd > 0) //had a historical price

return recString. substring(dollarPos+1, cent End);

el se //no previous historical price

return recString. substring(doll arPos+1);

CHAPTER 6 MIDP DATA STORAGE

protected void startApp() {
di spl ayMhgr = Displ ay. getDi splay(this);
di spl ayEntryForm();

}

protected void pauseApp() {
}

protected void destroyApp(bool ean unconditional) {
noti fyDestroyed();
}

public void commandActi on(Command c, Displayable s) {
}
}

Listing 6.10 The full RetrieveQuoteMIDlet

i mport javax.mcroedition. mdlet.*;
i mport javax.mcroedition.lcdui.*;
import javax.mcroedition.rns.*;

public class RetrieveQuoteM D et extends M D et {
private Display displaywgr = null;
private EntryFormentryForm = null;
private ChartCanvas chartCanvas = null;

public RetrieveQuoteM D et () {
}

private void initListener () {
I tentt ateLi stener itenlistener = new ItenStatelListener () {
public void itensStateChanged (Itemitenm {
if ((item== entryForm getlnvestnent Choice()) &&
(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I (entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))) {
Alert synbol Alert = new Alert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn;
}
}
b
CommandLi st ener conmandLi st ener = new CommandLi st ener () {
public void comrandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (c == entryForm get Get Conmand()) {
if ((entryForm getlnvestment Choi ce(). get Sel ectedl ndex() == 1) &&
I (entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))){
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 163

164

synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn);
} else
if (entryForm getSynbol Field().getString().length() > 0)
di spl ayChart Canvas();
}

}
b
entryForm set|tenttat eLi stener(itenListener);
ent ryFor m set ConmandLi st ener (conmandLi st ener) ;

}

private void initCanvasListener() {

CommandLi st ener conmandLi st ener = new CommandLi st ener () {

public void conmandActi on(Command c, Displayable d) {
if (c == chart Canvas. get Exi t Command())
di spl ayWngr. set Current (entryFornj;

}

I

chart Canvas. set ConmandLi st ener (commandLi st ener) ;

}

private void displayEntryForm () {
if (entryForm == null) {
entryForm = new EntryForn("Retri eveQuote");

}
initListener();
di spl ayMhgr . set Current (entryForm;

}
private void di splayChart Canvas() {
if (chartCanvas == null) {
chart Canvas = new Chart Canvas();

}
String current Synbol = entryForm get Synbol Fiel d().getString();
int[] prices = retrievePrices(currentSynbol);
if (prices !'=null) {
if (prices.length > 2) {

i ni t CanvaslLi stener();

di spl ayMhgr. set Current (chart Canvas) ;

chart Canvas. di spl ayChart (current Synbol , prices[0], prices[2]);

} else {
Alert noDataAlert = new Al ert("Recorded Price","Recorded price for " +
current Synbol + " is: $" + prices[0] + "." + prices[1l] +

No historical data exists.", null, AlertType.|INFO;
noDat aAl ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr . set Current (noDat aAl ert, entryForn);
}
} else {
Alert noDataAlert = new Alert("No prices", "No price exists data for "
+ current Synbol, null, AlertType.|NFO;
noDat aAl ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMWngr . set Current (noDat aAl ert, entryForn);
}
}

CHAPTER 6 MIDP DATA STORAGE

private int[] retrievePrices(String synbol) {
int[] dollars = null;
try {
RecordSt ore anRMS = Recor dSt or e. openRecor dSt ore(" Quotes" , true);
RecordFilter rf = new QuoteFilter(synbol);
Recor dEnuner ati on r Enum = anRMS. enuner at eRecords(rf, nul |, fal se);
if (rEnum hasNextEl ement()) {
byte[] rec = rEnum next Record();
dol l ars = parsePrices(rec);
} else
dollars = null;
r Enum destroy();
anRMS. cl oseRecordStore();
} catch (RecordStoreFul | Exception full Store) {
//handle a full record store problem
} catch (RecordStoreNot FoundExcepti on not FoundException) {
//handl e store not found which should not happen with the
//createl fNecessary
} catch (RecordStoreException recordStoreException) {
//handling record store problens

}

return dollars;

}

private int[] parsePrices(byte[] quoteRec) {
String rec = new String(quoteRec);
int dollarlPos = rec.indexOr(';");

int centlPos = rec.indexO(';", dollarlPos+1);
int dollar2Pos = rec.indexOr(';',centlPos + 1);
if (dollar2Pos > 0) { //had a historical price
int cent2Pos = rec.indexO(';",dollar2Pos + 1);
int currentDollars = Integer.parselnt(rec.substring(dollarlPos +
1, cent 1Pos));
int currentCents = Integer.parselnt(rec.substring(cent1lPos +
1, dol I ar 2Pos)) ;
int historical Dollars = Integer.parselnt(rec.substring(dollar2Pos +
1, cent 2Pos)) ;
int historical Cents = Integer.parselnt(rec.substring(cent2Pos + 1));

int[] returnPrices = {currentDollars, currentCents, historical Dollars,
hi st ori cal Cent s};
return returnPrices;

} else { //no previous historical price

int currentDollars = Integer.parselnt(rec.substring(dollarlPos +
1, cent 1Pos));
int currentCents = Integer.parselnt(rec.substring(centlPos + 1));

int[] returnPrices = {currentDollars, currentCents};
return returnPrices;
}
}

protected void startApp() {
di spl ayMhgr = Di spl ay. get Di spl ay(this);
di spl ayEntryForm();

}

PERSISTENT STORAGE IN THE INVESTMENT QUOTE APPLICATION 165

6.5

166

protected void pauseApp() {
}

protected void destroyApp(bool ean unconditional) {
noti fyDestroyed();
}
}

SUMMARY

In this chapter, we explored the MIDP Record Management System. Specifically, we
examined the MDIP RMS API and what device manufacturers are required to sup-
port. At the center of data storage on an MIDP device is the record store. A record
store can be utilized and shared by many MIDlet applications that are part of the same
MIDlet suite. Through examples and the tutorial application, we examined how to
store, update, and retrieve information in the record store.

The tutorial application is already behaving as expected. We have a user interface
that allows customers to specify investment symbols and the application can store and
retrieve price quote data for those investments. The only thing our application lacks
is connectivity to the outside world and real price quote data. We explore how to add
this connectivity in the next chapter.

CHAPTER 6 MIDP DATA STORAGE

e

Connecting to the Internet

7.1 Micro edition package connectivity 168

7.2 Similar but smaller 1/0 package 169

7.3 Implementing the Internet investment quote service 171
7.4 Summary 186

Our first tutorial application implementation is almost complete. We have a user inter-
face that interacts with the customer to get an investment symbol and type. We also have
a means to store and retrieve data on an investment in a database on the device. What is
missing is the application’s communication with the outside world to get the investment data.

In essence, we now have a mobile application, but it is not wireless. To make our
MIDP application wireless, it is going to need to communicate with the World Wide
Web or other source of electronically available investment data for stock and fund
prices. In this tutorial, we use the hypertext transfer protocol (HT TP) to request quote
data from a popular financial Internet web site to pull back a hypertext markup lan-
guage (HTML) page containing an investment price. We then parse the page to
extract the price for storage in our MIDP RMS database.

In J2ME, connecting to the Internet, a socket, a file, or any other networked data
resource occurs via a standard framework called the Generic Connection Framework
(GCF). In chapter 13, we are going to cover the GCF in detail. The Generic Con-
nection Framework provides the foundation for all network communications within
the J2ME architecture. The Generic Connection Framework interface is defined
within the configuration layer (in this case the CLDC) yet it provides no protocol
implementations. The profiles themselves, or more specifically, the vendors supplying
the devices or profile implementations must support the necessary Generic Connec-
tion Framework interface implementations.

167

7.1

7.1.1

168

In this chapter, we will look at MIDP’s support of the GCF, and we examine its
use in connecting our tutorial application to a source of investment price information.
We will also look at the j ava. i o package in light of J2ME and connecting to the
outside world.

MICRO EDITION PACKAGE CONNECTIVITY

The Generic Connection Framework resides in the j avax. microedition.io
package and consists of one class called Connect or, one exception called Connec-
t i onNot FoundExcept i on, and many “Connection” interfaces, depending on the
profile’s implementation. In the case of the MIDP, there are currently nine defined
interfaces.

The Connect or class is used to create instances of a connection protocol using
one of the Connect or class’s static methods. The object returned from the static con-
nection methods is either a stream or an implementation supporting the generic Con-
nect i on interface (or one of its descendents). In chapter 13, we cover the various
connection interfaces in more detail. For the purposes of this chapter, we are con-
cerned with obtaining a simple input stream from the Internet via HTTP. To do this,
we will use the generic Connect or class provided in the GCF in combination with
an | nput St r eanReader object available from the j ava. i o package.

Using the Connector class to open a channel

The Connect or class is not designed to be instantiated. It is used to create instances
of a connection through various protocols and connection types such as a socket,
HTTP file, datagram, and so forth. All of the methods Connect or defines are static
and serve this purpose. The Connect or defines three variations of open() that
each return a Connect i on instance. The Connect or class also defines methods
that return input and output streams.

The stream methods, openl nput Strean(String nanme), openQut put -
St rean(Stri ng nane), openDat al nput St rean(St ri ng nane), and open-
Dat aQut put Strean(Stri ng name) are convenient methods for creating differ-
ent types of input and output streams at the same time the connection is established.
In most cases, applications are not concerned with the Connect i on instance itself,
but rather the stream that can be read from or written to. By using one of these four
methods, the application can obtain the stream directly, without needing to be con-
cerned about the connection instance. The following example illustrates how to get a
stream using the Connector class.

try {
I nput Streamis = Connector. openl nput Strean("socket://127.0.0.1: 8888");
is.close();
} catch (1OException x) {
/I Handl e Exception
}

CHAPTER 7 CONNECTING TO THE INTERNET

The string provided to the open stream methods is a Uniform Resource ldentifier
(URI). It is composed of three parts: a scheme, an address, and a parameter list. The
general form of the name parameter is as follows:

<schenme>: <addr ess>; <par anet er s>

The scheme identifies how the connection is made (socket, HT TP, file, datagram, etc.).
The address identifies what to connect to (for example, www.ctimn.com, myfile.txt,
and so forth) and the parameters identify other information that is required by the pro-
tocol to establish a connection such as a connection speed. The parameters, when needed,
are specified as name=value pairs. Some examples of URIs are listed in table 7.1. Note
that in some cases the parameter is not necessary and thus the “;” is not always present.

Table 7.1 These example strings specify how an application should connect to various infor-
mation sources. They specify various protocols, addresses, and parameter data. All are Uniform
Resource Identifier formatted.

Example URI

http://www.ctimn.com:8080
socket://localhost:8080
file:c:/myfile.txt (Windows only)
file:/myfile.txt (Unix)
datagram://127.0.0.1:8099
comm:0;baudrate=9600

There is a lot more to the Connect or class and the entire GCF that we will leave for
later (see chapter 13). For now, this is enough to get connected wirelessly to our
financial quote source.

7.2 SIMILAR BUT SMALLER I/O PACKAGE

The j ava. i o package in J2ME is, for the most part, a subset of the j ava. i o pack-
age in J2SE. In general, the j ava. i o package has been reduced to a few input and
output stream subclasses and a single concrete reader and writer class to work with
the streams. Because of the much-reduced size of the j ava. i o package, J2SE users
familiar with the standard package probably recognize that some methods seem out
of place and are not associated with the normal J2SE classes. This is because some of
the subclasses in the J2SE j ava. i o hierarchy are missing.

Take the Dat al nput St r eamclass, for example. In the standard j ava. i o pack-
age, this class descends from Fil t er edl nput Stream In J2ME, Filtered-
I nput St r eamdoes not exist. Instead, Dat al nput St r eamdescends directly from
the abstract | nput St r eam In standard j ava. i o, the Fi | t er edl nput St r eands
cl ose() method closes the input stream and releases any system resources associated
with the stream. With the J2SE Fi | t er edl nput St r eamclass not available, this
method is housed in the Dat al nput St r eamclass.

SIMILAR BUT SMALLER I/O PACKAGE 169

7.2.1

71.2.2

170

Streams

I nput St r eamand Qut put St r eamare the abstract superclasses of all byte streams
in J2ME, just as in J2SE. J2ME has only three subclasses of streams, unlike the rich
set of input and output stream subclasses in J2SE that allow for handling stream data
in a multitude of fashions. The subclasses of InputStream and OutputStream in J2ME
are listed in table 7.2.

Table 7.2 J2ME has only a limited number of stream classes, unlike the rich set of stream subclasses
available in J2SE. In J2ME, developers must use ByteArray, Data, or Print streams for input/output.

Stream Class Description

ByteArraylnput/OutputStream Contains an internal buffer that holds bytes that may be read/writ-
ten to and from the stream.

Datalnput/OutputStream Provides applications with the means to read/write primitive Java
data types from an underlying input/output stream in a machine-
independent fashion.

PrintStream Extends OutputStream and provides convenience methods for
printing or displaying various objects and data values.

To demonstrate the use of streams in conjunction with the Connect or class we
expand on the earlier example. This code reads characters from the opened stream
obtained with the help of the GCF Connect or.

try {
Input Streamis = Connector.openl nput Stream("socket://127.0.0. 1: 8888");

int ch;
while ((ch = in.read()) > 0) {
//do sonething with the data read

}
is.close();
} catch (1OException x) {
/I Handl e Exception
}
The stream serves to capture the information coming from the open connection, in this

case a socket connection, so that the application can read characters from it as need be.

Readers/Writers

The Reader and Wit er abstract super classes for reading and writing character
streams are the same as they are in J2SE. However, as with streams, the number of
concrete subclasses is severely reduced. In the case of readers and writers, there is only
one concrete subclass of each, namely | nput St r eanReader and Qut put St ream
W it er. Instances of these classes are used in conjunction with streams and serve as
translators from bytes to characters (I nput St r eanReader) and from characters to
bytes (Qut put St reamW i t er) just as their J2SE counterparts.

We will return to look at the java.io classes again in a later chapter. For now, this
is enough to allow us to get a real QuoteService up and running.

CHAPTER 7 CONNECTING TO THE INTERNET

7.3

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE

In the last chapter, we implemented a fake quote service that handed out phony price
quotes from a random number generator. In this chapter, we implement the Quote-
Service described in the tutorial application design. You may recall from our tutorial
application design discussion in chapter 3, that the price quote acquiring service
should be developed as a stand-alone component. As a service, it simply answers stock
and mutual fund price information when provided the symbol and type of the invest-
ment. This allows it to be reused by several platform implementations in the future.
In particular, the service is used later when we rebuild our tutorial application for a
PDA device in KJava (chapters 8-10). A separate service also makes for good design
since this can also isolate the application from changes required in the service, and
transversely isolate the application from changes in the service.

In this tutorial example, we keep our connection and communications very simple,
opting to use simple streams to get data. In fact, through the MIDP implementation
of the GCF, we could use more specific Connect i on interfaces such as the Ht t p-
Connect i on (discussed in chapter 13). The Ht t pConnect i on provides a conve-
nient HTTP protocol connection to MIDP applications without having to worry
about how the communication/networking details.

There are two reasons why this is not done in the tutorial. First, the Ht t pCon-
necti on is an MIDP implementation interface of the GCF. While it is mandatory
for all MIDP vendor implementations, other profiles, or applications that do not use
a profile may not have this type of interface availability. In order to maximize the port-
ability of our QuoteService, we want to shy away from using a profile-specific imple-
mentation. Secondly, we are going to communicate with the Internet and ask for
standard web pages. The great part about the World Wide Web is that it freely pro-
vides so much information to its users. Unfortunately, this information is not always
free from the standpoint that many web pages today contain a deluge of advertise-
ments and uninteresting data. If we were to use something like the Ht t pConnec-
ti on and pull off an entire investment web page into the device at one time, it could
overflow the device’s available memory. For example, we found a typical investment
center web page like those available from Yahoo or NASDAQ to contain as much as
35K of text. Therefore, the tutorial application must weed out the portions of the page
needed as it reads the HTML in from a stream while ignoring the extra data in the
page. In a real world implementation, quote data might be made available over a cor-
porate server and served up as convenient XML data or, at least, very streamlined price
data. Without this luxury, we want to be careful not to choke our small device with
the amount of data coming from a single web page.

WARNING The code in this portion of the chapter is meant to demonstrate how to connect
to and get information from a network resource (like the Internet) in a wireless
fashion using the GCF and MIDP/CLDC API. In a real world situation, a com-
pany building an application like the tutorial application we are about to dem-
onstrate would likely have data available on its own Internet or intranet site.

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 171

7.3.1

172

Getting a quote service connection

From the last chapter, recall that the QuoteService was provided by the Quot e-
Ser vi ce class. We retain the same class and signature in order to avoid any significant
changes to our application. However, the contents of the class will change significantly.

Preparing for a connection

To begin, the new implementation of the class uses both the GCF, located in the
j avax. mi croedi ti on. i o package, and the 2ME, CLDC j ava. i o package. There-
fore, both of these packages should be imported at the top of our QuoteService.java file.

i mport javax.mcroedition.io.*;
i mport java.io.*;
Per our tutorial application design, the all-important service that this class provides is
that of getting and returning stock and mutual fund price quotes. Quot eSer vi ce
offers this service through a single public method, get Pri ce(String synbol -
String, int type). Because this class exists only to provide a service, creating
instances of this class is not necessary. Therefore, the get Pri ce() method remains a
static method returning an array of integers. When the service is successful in finding a
quote for a given investment, the array will contain two integers representing the price.
One integer is for price dollars, and the other is for the price cents. Remember, floating-
point numbers are not available in many J2ME environments such as the CLDC/MIDP,
The get Pri ce() must be passed two parameters. The first, the investment sym-
bol, is the symbol representing the stock or mutual fund in which the customer has
expressed interest. This parameter must be a string. Given the customer could have
mistyped the symbol or not know the exact characters used in the symbol, the string
may not be a valid symbol for a stock or mutual fund. Regardless, the service attempts
to find a price for a stock or mutual fund using this string and assuming that it is valid.
As will be seen, the get Pri ce() method must handle the possible condition that the
symbol is not valid and return appropriate results. The second parameter passed to the
get Pri ce() method is an integer representing the investment type. The value O (the
index of the Stock radio button in the choice group) will signify that the customer
desires a quote on a stock. Alternately, a value of 1 sent as the t ype parameter signifies
asearch for amutual fund is desired. In our implementation, this is an important piece
of information to the QuoteService because we may need to use a different Internet
site, or more precisely a different URI, to get stock prices versus mutual fund prices.
An implementation of the get Pri ce() method is provided as follows:

public static int[] getPrice(String synbol String, int type) {
String quot ePage = get Quot ePage(synbol String, type);

i f (quotePage.length() > 0)

return parseQuot e(quot ePage, type);
el se

return null;

CHAPTER 7 CONNECTING TO THE INTERNET

The get Quot ePage() method is covered below, but its duty is to return to get -
Price() an HTML page, or portion of an HTML page, containing the investment
price in String format. If the Internet quote service is not available or the symbol provided
by the application to the QuoteService is not a valid investment symbol for the type of in-
vestment specified, then the get Quot ePage() method simply returns an empty string.
No matter what the problem, if a page containing the price is not available, the get -
Pri ce() method and the QuoteService then returns null to the calling application.

IMPROVING THE In @ more robust service, the application may want to know more about

QUOTE SERVICE ~ why a price is not available. Is the service down? Is the symbol not valid?
A lot can go wrong when dealing with external agencies over a network,
wired or wireless. Feel free to augment this implementation to provide
different responses depending on the circumstances of a failure.

If a page or portion of a page containing the price quote is found, then the price must
be extracted from the page and returned to the application in the form of the int
array discussed before. This task is performed by the parseQuote(String
quot ePage, i nt type) method.

The really interesting part of Quot eSer vi ce, then, occurs in the get Quot e-
Page() method. This method takes the same two symbol and investment type argu-
ments passed to get Pri ce() . Itsjob is to open an HTTP connection to the Internet,
contact a financial quote web site, pass the web site information on the desired invest-
ment, and capture the sites response.

Before we charge off and construct this page fetching method, let’s think a little
about where this method is going to be running and what it might encounter. When
successfully built and deployed, this method is going to be operating in a small 2ME
device. These devices have very limited resources to include available memory.
Today’s web sites, especially like those that provide stock and mutual fund quotes are
very “electric” and filled with a lot of information (figure 7.1).

While informative to us, the charts, additional information, advertisements, links
to other web sites, and so forth mean nothing to the application or device. This is all
clutter around the information the application is really going after on behalf of the cus-
tomer. Unfortunately, there is a lot of clutter. A typical financial quote web page may
contain nearly 35,000 characters. Of this, the application needs around six or seven
characters. If the QuoteService attempts to read in and hold all 35,000 characters
(35K), a lot of the very finite resources on the device will have just been taken up by
clutter. Therefore, the get Quot ePage() method must be a little wise and memory
miserly as it talks to the Internet and pulls down data. Instead of getting the entire web
page, the get Quot ePage() method finds and retains the portion of the page contain-
ing the price and drops the rest of the document avoiding potential memory problems.

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 173

174

4 Yahoo! Finance - IBM - Microsoft Internet Explorer

Fie Edt View Favortes Tools Help ‘

oI S I R T | B- 5 m El

Back. Fonard| Stop Refresh Home Search Favorites History ail Print Edi Discuss
| Adress [&] hitp.Ainance. pahoo.com/ g o=l BM =] =] @t
| Links &) Customize Links & Free Hotmail @] Windows #] RealPlayer

y : I
!F’NANCE Finance Home - Yahoo! - Helg
Get Quotes Basic T | symbol lookup

Tuesday, September 4 2001 12:17am ET - U5 Matkets open in 9 hours and 13 minutes
Welcome MetWaorth (Yahoo! ID required) - Customize - Sign In
Premium: Real-Time Packare MEW! |Free: Pay bills - Transfer funds - View bank, brokerage accounts - Track stocks! [Register/Sion In |

5] warertoUsE extcard' iz e
‘Upen anaccount | =
9% O ==45100) 3

Views: Basic [edit] - DayWatch - P¢
Synhol| Lasi Trade C|

7§ FlashQuotes - Stocks - Microsoft Intemet Explorer

File Edt Wew Favortes Took Help

I s RE A

How muc Back. Fonard Stop Refiesh Home

—F

MBI |Aug3l ‘99.95 F041 @

Seaich Fawoites History

E- 5 o

Mail Print Edit
ok bol

Add to Iy Portfiolio - St Alet | | Addhess [] hitp.//quotes nasdag.com/Huste. difmode=stockeymbol-hih
| Links @] Custorize Links &1 Free Hotmail - &]'windows & RealPlaper

We'll give you $100 [
to open an account. ..

| Holdings/ | Extended | Portfolio | Investor | Personal
Insiders | Trading | Tracking | Tools | Finance

Select a Symbol for a detailed quote. Quotes del
Don't delay. Get real

_ Market

Home | Quotes | Ticker | News | pgyiyipy |
Mon Sep 3 IBM BEuropean &d Takeover Craze May Hit US. - Rey A N

Mon Sep 3 IBM [exernal] [BM Semiconductor Executive King Le 3172001 Market Closed | Masdag 1805 43 13.754 +0.77% | DJIA 994975 30174 +0.3% | S&P 1133 58|

S S 3 TEN Fotoen 11 Tt e Dot T cdeetion Soon T aGucis Quotes for Nasdag, AMEX, NYSE & OTCBE
|&] Dpening page http: //finance.pahoo. com/g?s=|BMad=v1 Ry & *7 TRADES

Enter symbols for 10 delayed guotes

Symbol Look-Up
Delayed FlashQuotes ® siooks, © htual Funds, or © Options

DaATEK » NV [| [

ONLINE

Chart These Securities Clear Symbals

FlashQuotes for: Nasdag-100 Masdag Financial-100 DJIA
Share

Symbol Market Last Sale Met Change % Change Yolume

MMM NYSE $104.10 0.10¥ 0.1% 1,176 600

Click on the security's symbol for a Full Duote. s of 82112001

Haorne | About Masdad | Feedback | Help & Reference | Equity & Index Options
Site Map, Index, Search | Advertize YWith Us | Link To Us

Figure 7.1 Finance.Yahoo.com and Quotes.NASDAQ.com are two popular investment quote
web sites shown here. As can be seen, there is a lot of exciting material on your typical financial
quote web site, but not all of it is useful or desired by the J2ME application.

The portion of the web page that does contain the price quote is assembled and
stored in a St ri ngBuf f er. A new instance is defined at the top of the method. The
string buffer is returned at the end of the method.

StringBuffer quotePage = new StringBuffer();

Opening an HTTP connection

Next we want to open a connection to the Internet. Some web sites offer mutual
fund quotes while other sites offer stock quotes. In this example, we call on two
different URLs (both owned by the same popular organization) in order to demon-
strate how to open an HT TP connection using the GCF. However, implement your

CHAPTER 7 CONNECTING TO THE INTERNET

get Quot ePage() method by choosing your favorite financial quote web site and
substituting its URL in the following code. In a real world situation, the company
developing the application would likely have its own web site. Furthermore, it is likely
that data from this site would be available in a format more amenable to the applica-
tion we are developing and we would not have to parse the data out of a public web
page. To open a connection, the GCF’s Connect or class from the j avax. mi cr o-
edi tion.io package and an | nput St r eanReader from the j ava. i o package
are used.

String protocol
String stockURL

“http://1";

“quot es. nasdaq. conf Quote. dl | ?* +
“page=nul ti &age=++&mde=st ock&synbol =";
String fundURL = “ww\. nasdag. com asp/ quot es_nut ual . asp?” +
“ page=++&rode=f und&synbol =";

I nput Streamin;
if (type == 0) {

in = Connector. openl nput Stream(protocol + stockURL + synbol String);
} else {

in = Connector.openl nput Streanm(protocol + fundURL + synbol String);
}

String protocol
String stockURL

"http://";
"quot es. nasdag. conf Quote.dl | ?" +
"page=mul ti &page=++&node=st ock&synbol =";
String fundURL = "ww\. nasdag. com asp/ quot es_nut ual . asp?" +
" page=++&mde=f und&synbol =";

| nput St r eanReader in;
if (type == 0) {

in = new | nput St r eanReader (Connect or. openl nput St r ean{ pr ot ocol +
stockURL + synbol String));

} else {
in = new | nput St r eanReader (Connect or. openl nput St r ean{ pr ot ocol +
fundURL + synbol String));
}

Having an open connection to a web site server and an input stream on an invest-
ment quote HTML page, we can read the page and extract the price data.

Reading HTML data

The openl nput St ream() method call makes an | nput St r eamavailable, but no
data has come across the line yet. The r ead() method is used to read data from the
input stream, and it returns a byte of data in the form of an i nt . If the end of the
stream has been reached, it will return —1. Therefore, all that is required to read the
HTML page all the way to the end is a while loop checking on the return value of the
read() call.

int ch;

while ((ch = in.read()) >0) {

}

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 175

176

Inside this loop, the method must find and extract the portion of the HTML con-
taining the price. It so happens that the web sites we have chosen to get price quotes
from provide a very natural marker for indicating the price among all the data in their
web pages. The price is placed on the web page preceded by a ‘$’ character. Luckily
for us, when a valid symbol has been used to get the page, it also happens to be the
first ‘$’ character used on the page. Therefore, inside of the read loop, in this imple-
mentation of get Quot ePage(), we simply read until the character ‘$’ is encoun-
tered. Depending on the price and extra information around the price, we extract
about 20 characters and return this portion of the HTML page to the get Pri ce()
method for parsing. Again, individual results may vary depending on choice of quote
service supplier, but an implementation of the get Quot ePri ce() read loop might
look something like the following code.:
while ((ch = in.read()) >0) {
if (((char) ch) == nmarker) {
char[] end = new char[readLength];
i n.read(end, O, readLengt h) ;

guot ePage. append(new String(end));
br eak;

} }

On completion of the read, the input stream must be closed. Furthermore, when
dealing with most any class and operation from the j ava. i o or j avax. ni cr o-
edi tion.io packages, | OExcepti ons must be caught and handled. Finally, at
the end of the method, the portion of the page containing the quote is returned. Of
course, if no price is found in the page (possibly because the symbol was not valid)
then the St ri ngBuf f er used to capture the page would be empty and a null string
is returned. The complete get Quot ePage() method is shown in listing 7.1.

Listing 7.1 The getQuotePage() method in QuoteService

private static String get QuotePage(String symbol String, int type) {
char marker ='$';
int readLength = 20;

StringBuf fer quotePage = new StringBuffer(); o
try {
String protocol
String stockURL

“http://1";

“quot es. nasdag. conf Quote.dl | ?“ +

“page=mul ti &page=++&node=st ock&synbol =";

String fundURL = “www. nasdag. com asp/ quot es_nut ual . asp?” + o
“ page=++&mde=f und&synbol =";

I nput Stream in;
if (type == 0) {
in = new | nput St r eanReader (Connect or. openl nput St r ean{ pr ot ocol +
stockURL + synbol String));
} else {
in = new | nput St r eanReader (Connect or. openl nput St r ean{ pr ot ocol +
fundURL + synbol String));

CHAPTER 7 CONNECTING TO THE INTERNET

int ch;
while ((ch =in.read()) >0) { B
if (((char) ch) == narker) {
char[] end = new char[readLength];
in.read(end, O, readLength);
guot ePage. append(new String(end));
br eak;

} }
in.close(); o
} catch (I OException ex) {
System out. println("Exception reading quote from HTTP Connection "
+ ex. get Message());

}

return quotePage.toString();

}

@ Create a StringBuffer to hold part of the page
@ Open a stream to the appropriate Web site

© Read characters until the price has been found
@ Dont forget to close the input stream

Again, because there is no real need for an instance of Quot eServi ce, the get -
Quot ePage() method is declared static. It is also private since its only caller is
get Pri ce() from within the class.

7.3.2 Extracting the price quote from the HTML

In the section above, we opened an HTTP connection and pulled down an HTML
document. We do not know the contents of the page or even if it contains the price
quote in which we are interested. If a price quote is found in the string of the portion
of the HTML page, the actual price must be extracted from the string. The contents
of a price extracting method vary greatly depending on the content of the HTML
page used to get the quote. An implementation has been provided here in listing 7.2
as an example for completeness.

Listing 7.2 The parseQuote() method in QuoteService

private static int[] parseQuote(String aQuotePage, int type){

String skip;

String doll arsEnd;

String quoteEnd,

String quoteDollars = null;
String quoteCents = null;

int[] dollarsCents = new int[2];

if (type == 0) {
skip = "$ ";
dol larsénd = ".";
quot eEnd = "</ b>";

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 177

178

}

el se {

skip = "$";
dollarsénd = ".";
guot eEnd = "</ b>";

}
try {
i nt general Pos = aQuot ePage. i ndexOf (ski p);
int dollarStop = aQuot ePage. i ndexXf (dol | ar send, general Pos);
int quoteStop = aQuot ePage. i ndexOf (quot eEnd, dol | ar St op) ;
guot eDol | ars = aQuot ePage. substri ng(general Pos + (skip.length()),
dol I ar St op) ;
dol l arsCents[0] = Integer. parselnt(quoteDollars);
quot eCent s = aQuot ePage. substring(dollarStop + 1, quoteStop);
dol larsCents[1] = Integer. parselnt(quoteCents);
return dollarsCents;
} catch (Exception e){
Systemout.println("Error attenpting to parse quote from" +
"source page. |nproper Synbol ?");
return null;
}
}

The par seQuot e() method returns the int array containing the dollars and cents
of the price parsed from the HTML or null if no price was found or could not be
extracted. An implementation of the full and complete Quot eSer vi ce class is pro-
vided in listing 7.3. Modify the URLSs, read loop in get Quot ePage(), and parse
methods to allow your MIDlets to incorporate investment price quotes from your

favorite web site.

Listing 7.3 The complete QuoteService.java

i mport javax.mcroedition.io.*;
i mport java.io.*;

public class QuoteService {

public static int[] getPrice(String synbol String, int type) {

}

String quotePage = get Quot ePage(synbol String, type);

i f (quotePage.length() > 0)

return parseQuot e(quotePage, type);
el se

return null;

private static int[] parseQuote(String aQuotePage, int type){

String skip;

String doll arsEnd;

String quoteEnd;

String quoteDollars = null;
String quoteCents = null;

int[] dollarsCents = new int[2];

CHAPTER 7 CONNECTING TO THE INTERNET

if (type == 0) {

skip = "$ ";

dollarsénd = "
quot eEnd = "</ b>";

} else {
skip = "$";
dol larsénd = ".";
guot eEnd = "</ b>";
}
try {
int general Pos = aQuot ePage. i ndexOr (ski p);
int dollarStop = aQuot ePage. i ndexXf (dol | ar send, general Pos);
int quoteStop = aQuot ePage. i ndexOf (quot eEnd, dol | ar St op) ;
guot eDol | ars = aQuot ePage. substri ng(general Pos + (skip.length()),
dol | ar St op) ;
dol arsCents[0] = Integer.parselnt(quoteDollars);
guot eCents = aQuot ePage. substring(dollarStop + 1, quoteStop);
dol l arsCents[1] = Integer. parselnt(quoteCents);
return dollarsCents;
} catch (Exception e){
Systemout.printin("Error attenpting to parse quote from" +
"source page. |nmproper Synbol ?");
return null;
}

private static String get QotePage(String synbol String, int type) {

char marker ="'$';
int readLength = 20;

StringBuf fer quotePage = new StringBuffer();
try {

String protocol “http://";
String stockURL = “quotes. nasdaq. com Quote. dl | ?* +
“page=nul ti &age=++&mde=st ock&synbol =";
String fundURL = “ww. nasdaq. conf asp/ quot es_nut ual . asp?” +
“ page=++&mde=f und&synbol =";
I nput Stream i n;
if (type == 0) {
in = Connector.openl nput Strean(protocol + stockURL +
synbol String);
} else {
in = Connector.openl nput Strean(protocol + fundURL +
synbol String);
}
int ch;
while ((ch =in.read()) >0) {

if (((char) ch) == nmarker) {
int cnt = 0;
while (cnt < readLength) {
ch = in.read();
guot ePage. append((char)ch);

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 179

7.3.3

180

cnt ++;
}
br eak;
}
}

in.close();
} catch (I OException ex) {
System out. println("Exception reading quote from HTTP Connection " +
ex. get Message());
}
return quotePage.toString();
}

}
|

The QuoteService now provides real investment price data via an integer array, back
to the calling application. In our case, this application is our ObtainQuoteMIDlet.

The MIDlet’s handling of quote data

No additional work should be needed to hook the QuoteService into the tutorial
application since the QuoteService API did not change with this new implementa-
tion. Namely, the ObtainQuoteMIDlet’s CommandLi st ener continues to call on
get Pri ce(synbol String, type).However, since the service may not find a price
and would return null in this instance, a little error handling and an appropriate mes-
sage to the customer are in order. Listing 7.4 shows the new CommandLi st ener.

Listing 7.4 Modified ObtainQuoteMIDlet’'s CommandListener

CommandLi st ener conmandLi st ener = new ComrandLi stener () {
public void commandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Command()) {
destroyApp(true);
} else if (c == entryForm get Get Command()) {
if ((entryForm getlnvestment Choi ce().get Sel ect edl ndex() == 1)
&& ! (entryForm get Synmbol Fi el d().getString()
.toUpper Case().endsWth("X"))){
Alert synbol Alert = new Alert("Check Synbol ",
"Mutual Funds end in 'X' ", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn;
} else if (entryForm get Synbol Field().getString().length() > 0) {
String sym = entryForm get Synbol Fi el d().getString();
int type = entryForm getl nvest ment Choi ce(). get Sel ect edl ndex();
int[] price = QuoteService.getPrice(sym type);
if (price !'=null) {
storePrice(sym price);
di spl ayPrice("The price of " + sym+ " is $" + price[0] + "."
+ price[1]);

CHAPTER 7 CONNECTING TO THE INTERNET

} else {
Al ert synbol Alert = new Al ert("Check Symbol /Type",
"No quote found.", null, AlertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr. set Current (synbol Alert, entryForn);

New error check added
Alert added if no data is available

©e

From a user interface perspective, the Cbt ai nQuot eM Dl et will not appear any
differently than it did after the last chapter, with a single exception. When the cus-
tomer now enters characters in the symbol entry field that do not represent a valid
stock or mutual fund, an Alert will display suggesting the customer should check the
symbol and type.

Figure 7.2

What happens if the customer makes a
Fanll [Fol B mistake in entering the investment symbol,
ObtainGucts heck SymbolType or enters a symbol that does not exist?

. The MIDlet requesting the QuoteService to
provide a price quote for the investment will
get back an HTML page containing some sort
of error but no price data. Therefore a new
Alert display, shown above, is added to the
MiDlet to inform the customer of the error
when attempting to gain the price of an
invalid or non-existent investment symbol.

The first implementation of the tutorial application in MIDP is complete! Having
developed a complete mobile and wireless Java application running in the cellular
telephone or pager, the boss is probably happy, but there is still work left to do. In the
next section, we port this same application to a personal digital assistant.

The complete ObtainQuoteMIDlet.java and QuoteService.java files are provided
in Listings 7.5 and 7.6. The RetrieveQuoteMIDlet and QuoteFilter did not change.
The Java code for these classes can be found in chapter 6. Also, the code in Entry-
Form.java and CanvasChart.java did not change and the complete listing for these files
can be found in chapter 5.

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 181

Listing 7.5 ObtainQuoteMIDlet.java

i mport javax.mcroedition. mdlet.*;
i mport javax. m croedition.lcdui.*;
i mport javax.mcroedition.rns.*;

public class ObtainQuoteM Dl et extends M Dl et {
private Display displayMgr nul | ;
private EntryFormentryForm = null;
private Alert resultsAlert = null;
private Ticker adTicker =
new Ti cker ("Track your investnments with Investnment Tracker");

public ObtainQuoteM D et () {
}

private void initListener () {
ItentSt at eLi stener itenli stener = new ItenttatelListener () {
public void itenfttateChanged (ltemiten) {
if ((item== entryForm getlnvestnentChoice()) &&
(entryForm get | nvest ment Choi ce() . get Sel ect edl ndex() == 1) &&
I'(entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))) {
Al ert synmbol Alert = new Al ert("Check Synbol ",
"Miutual Funds end in "X ", null, Al ertType. WARNI NG) ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayWngr . set Current (synbol Alert, entryFornj;
}
}
I
ConmmandLi st ener conmandLi st ener = new ConmandLi stener () {
public void conmandActi on(Command c, Displayable d) {
if (c == entryForm get Exi t Conmand()) {
destroyApp(true);
} else if (c == entryForm get Get Conmand()) {
if ((entryForm getlnvestnent Choi ce(). get Sel ectedl ndex() == 1) &&
!'(entryForm get Synbol Fi el d().getString().toUpperCase().
endsWth("X"))){
Alert synmbol Alert = new Al ert("Check Synbol ",
"Mutual Funds end in "X ", null, AlertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;
di spl ayMhgr. set Current (synbol Alert, entryForm;
} else if (entryForm getSynbol Field().getString().length() > 0) {
String sym = entryForm get Synmbol Fiel d().getString();
int type = entryForm getl nvest ment Choi ce(). get Sel ect edl ndex();
int[] price = QuoteService.getPrice(sym type);
if (price !'=null) {
storePrice(sym price);
di spl ayPrice("The price of " + sym+ " is $" + price[0] +
"." + price[1]);
} else {
Al ert synbol Alert = new Al ert("Check Synbol/Type",
"No quote found.", null, Al ertType. WARNI NG ;
synbol Al ert. set Ti meout (Al ert. FOREVER) ;

182 CHAPTER 7 CONNECTING TO THE INTERNET

di spl ayMhgr. set Current (synbol Alert, entryForm;

}
}
}
}
b
entryForm set | tentt at eLi st ener (i tenli stener);
entryFor m set CommandLi st ener (conmandLi st ener) ;

}

private void displayEntryForm () {
if (entryForm == null) {
entryForm = new Ent ryForn(" Cbt ai nQuote");
}
initListener();
di spl ayMhgr. set Current (entryForm;

}
private void displayPrice(String quoteString) {
if (resultsAlert == null) {
resultsAlert = new Alert("Quote Price", null, null,

Al ert Type. CONFI RVATI ON) ;
resul tsAl ert. setTi cker (adTicker);
resul tsAlert.setTinmeout (Al ert. FOREVER) ;
}
resul tsAlert.setString(quoteString);
di spl ayMnhgr.setCurrent(resultsAlert, entryForm;

private void storePrice(String synbol, int[] price) {

String newRecord = synbol + ";" + price[0] + ";" + price[l];
byte[] byteRec;
try {
RecordSt ore anRMS = RecordSt ore. openRecordStore(" Quotes" , true);

RecordFilter rf = new QuoteFilter(synbol);
Recor dEnunerati on r Enum = anRMS. enuner at eRecords(rf, nul |, fal se);
i f (rEnum hasNextEl enent()) {
int recld = rEnum next Recordl d();
newRecord += ';' + getlastPrice(anRVS. get Record(recld));
byt eRec = newRecord. getBytes();
anRMS. set Record(recld, byt eRec, 0, byt eRec. | engt h) ;
} else {
byt eRec = newRecord. getBytes();
anRMS. addRecor d(byt eRec, 0, byt eRec. | engt h) ;

r Enum destroy();
anRMS. cl oseRecordStore();
} catch (RecordStoreFul | Exception full Store) {
//handle a full record store problem
} catch (RecordStoreNot FoundExcepti on not FoundException) {
/1 handl e store not found which should not happen with the
} catch (RecordStoreException recordStoreException) {
//handling record store problens

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 183

184

}
}

private int[] parsePrices(byte[] quoteRec) {
String rec = new String(quoteRec);
int dollarlPos = rec.indexOr(';");

int centlPos = rec.indexO(';", dollarlPos+1);
int dollar2Pos = rec.indexOr(';',centlPos + 1);
if (dollar2Pos > 0) { //had a historical price
int cent2Pos = rec.indexO(';",dollar2Pos + 1);
int currentDollars = Integer.parselnt(rec.substring(dollarlPos +
1, cent 1Pos));
int currentCents = Integer.parselnt(rec.substring(cent1lPos +

1, dol I ar 2Pos)) ;

int historical Dollars = Integer.parselnt(rec.substring(dollar2Pos +

1, cent 2Pos)) ;

int historical Cents = |Integer.parselnt(rec.substring(cent2Pos + 1));
int[] returnPrices = {currentDollars, currentCents, historical Dollars,

hi st ori cal Cent s};
return returnPrices;
} else { //no previous historical price

int currentDollars = Integer.parselnt(rec.substring(dollarlPos + 1,

cent 1Pos)) ;
int currentCents = Integer.parselnt(rec.substring(centlPos + 1));
int[] returnPrices = {currentDollars, currentCents};
return returnPrices;
}
}
private String getlLastPrice(byte[] rec) {
String recString = new String(rec);
int dollarPos = recString.indexOr(';");
int centPos = recString.indexOf(';",dollarPos+1);
int centEnd = recString.indexOf(';", centPos + 1);
if (centEnd > 0) //had a historical price
return recString. substring(dol | arPos+1, cent End);
el se //no previous historical price
return recString. substring(dollarPos+1);

}

protected void startApp() {
di spl ayMmhgr = Displ ay. getDi splay(this);
di spl ayEntryForm();

}

protected void pauseApp() {
}

protected void destroyApp(bool ean unconditional) {
noti fyDestroyed();
}

public void commandActi on(Command c, Displayable s) {

}

CHAPTER 7 CONNECTING TO THE INTERNET

Listing 7.6 QuoteService.java

i nport javax.mcroedition.io.*;
i nport java.io.*;

public class QuoteService {
public static int[] getPrice(String synbol String, int type) {
String quotePage = get Quot ePage(synbol String, type);
i f (quotePage.length() > 0)
return parseQuot e(quot ePage, type);
el se
return nul | ;

}

private static int[] parseQuote(String aQuotePage, int type){
String skip;
String dollarsEnd;
String quot eEnd;
String quoteDollars = null;
String quoteCents = null;
int[] dollarsCents = new int[2];

if (type == 0) {
skip = "$ ";
dollarsEnd = ".";
guot eEnd = "</ b>";

} else {
skip = "$";
dollarskEnd = ".";
quot eEnd = "</ b>";

ry {
i nt general Pos aQuot ePage. i ndexOf (ski p);
int dollarStop = aQuot ePage. i ndexCf (dol | ar send, general Pos);
int quoteStop = aQuot ePage. i ndexCf (quot eEnd, dol I ar St op) ;
quot eDol | ars = aQuot ePage. substri ng(general Pos + (skip.length()),

dol | ar St op) ;

dol | arsCents[0] = Integer. parselnt(quoteDollars);

quot eCents = aQuot ePage. substring(dollarStop + 1, quoteStop);
dol | arsCents[1] = Integer. parselnt(quoteCents);

return dol | arsCents;
} catch (Exception e){
Systemout.printin("Error attenpting to parse quote from" +
"source page. |nproper Synbol ?");
return nul | ;
}
}

private static String get QuotePage(String synbol String, int type) {
char marker ='$';
int readLength = 20;
StringBuffer quotePage = new StringBuffer();

try {
String protocol = "http://";

IMPLEMENTING THE INTERNET INVESTMENT QUOTE SERVICE 185

7.4

186

String stockURL = "quotes. nasdaq. conf Quote.dl | ?" +
"page=nul ti &age=++&nmode=st ock&synbol =";
String fundURL = "www. nasdag. com asp/ quot es_nut ual . asp?" +
" page=++&rode=f und&synbol =";
I nput St reanReader in;
if (type == 0) {
in = new | nput StreanReader (Connect or . openl nput St r ean(pr ot ocol +
stockURL + symbol String));
} else {
in = new | nput StreanReader (Connect or . openl nput St r ean(pr ot ocol +
fundURL + synbol String));
}
int ch;
while ((ch =in.read()) >0) {
if (((char) ch) == nmarker) {
char[] end = new char[readLength];
in.read(end, O, readLength);
guot ePage. append(new String(end));
br eak;
}
}
in.close();
} catch (1OException ex) {
System out. println("Exception reading quote from HTTP Connection " +
ex. get Message());
}
return quot ePage.toString();
}
}

SUMMARY

In this chapter, we have taken a short glance at the Generic Connection Framework
and networking with the j avax. mi croedi ti on. i o APl. More details on GCF
and networking are forthcoming in chapter 13. We also examine the greatly reduced
but still recognizable version of j ava. i o in J2ME. Together, we used the tools avail-
able in these two J2ME packages to connect our MIDP application to the Internet,
completing our MIDP tutorial application.

CHAPTER 7 CONNECTING TO THE INTERNET

PART

Developing for PDAS

I n this part, we explore the CLDC API in use with the KJava API. Klava is a test

and demonstration API initially developed by Sun for demonstrating the CLDC and
KVM on Palm OS devices. Lacking a profile for PDA devices, companies such as
esmertec have provided IDEs for developing Palm OS applications with this API.
Having implemented the tutorial application once in the CLDC and MIDP APIs,
this part will allow us to reimplement the tutorial application in KJava so that we can
deploy the application to a Palm OS PDA device. Again, the tutorial application will
allow us to see the major aspects of a building a KJava application; namely user inter-
face, event handling, data storage, input/output and network connectivity.

8

J2ZME on a PDA,
a KJava introduction

8.1 PDA profile alternatives 190

8.2 HiSmallWorld in KJava 192

8.3 Deploying to the actual device 211

8.4 HiSmallWorld revisited using MIDP for Palm OS 213
8.5 Summary 217

J2ME was first demonstrated at JavaOne in 1999. At that time, the most ubiquitous
personal digital assistant (PDA) platform was the Palm device. It seemed logical to
show the power and future of Java on all sizes and shapes of platforms by targeting
this small but very popular platform. To demonstrate the lightweight virtual machine,
already called the KVM, at that conference Sun developed a minimal set of Java pack-
ages along with a set of classes that provided user interface and database classes for the
Palm. This last set of classes was bundled into a package named com.sun.kjava. Thus,
it came to be known as the KJava API.

In this chapter, we focus on how to build and deploy a simple J2ME application for
Palm OS devices using KJava. In addition, Sun has provided a way to allow MIDP appli-
cations to run on Palm OS devices as well. Thus we also show you how an MIDP appli-
cation can be moved to the Palm OS PDA using something known as MIDP for Palm OS.

189

8.1

8.1.1

190

PDA PROFILE ALTERNATIVES

If a set of classes that provide user interface, persistent storage and other features for a
specific device or set of devices sounds familiar to you, then you have been paying
attention in earlier chapters. It should sound like the start of a profile! In fact, in
1999, the idea of Java throughout the enterprise, from server to small device, was
being sold and was starting to explode. The concept of three Java editions was just
getting started. Likewise, J2ME was still evolving. The idea of profiles and configura-
tions was not formalized until after the 1999 conference.

Sun and others involved in J2ME evolution recognized that the programming
needs across the wide spectrum of devices were going to be enormous and diverse.
Each device, or set of devices, was going to require some of its own APIs. From this
realization sprang profiles (as well as configurations to address more general needs).

Today, while a request for the specification for a PDA profile exists (as discussed
in chapter 2), the actual specification, let alone an implementation, is still forthcoming
from within the JCP. Without a valid J2ME profile to address the development of Java
applications on PDAs, you will need to find an alternative development environment.
KJava is one of the alternatives. One of the benefits of the KJava alternative is that it
allows the developer to use a J2ME configuration, namely the CLDC, as the basis for the
application.

Java PDA development environments

As the Romans said, “natura adhorret vacuum”—nature abhors a vacuum, and so luck-
ily there are options. Palm and other PDA providers have always provided non-Java
development kits and tools for building applications, but there are Java PDA develop-
ment environments as well. In fact, some third-party vendors are attempting to live
and abide by the CLDC configuration already in place and hope to implement the
PDA profile after it is specified. So what are the alternatives in building Java applica-
tions for PDA devices today? Current Java PDA development environments include:

» Klava Some vendors provide a supported version of the KJava API for use with
their implementation of CLDC and the KVM.

* Proprietary solutions Still other vendors are providing non-J2ME Java develop-
ment environments. IBM, for example, provides the Visual Age Micro Edition
and its J9 virtual machine that runs on a host of PDA processors.

 Personallava A whole host of companies provide Java virtual machines and
Java for slightly larger PDAs like Compag’s iPag. These fall under the realm of
PersonalJava discussed in chapter 2 (we present some of the Personallava envi-
ronments in chapter 15).

« MIDP for Palm OS Finally, Sun has also produced a reference implementation
of the MID Profile for use with the Palm device. This profile provides a mini-
mal user interface and database interface to Palm OS systems.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.1.2

In this chapter, we explore the KJava API used in combination with the CLDC pro-
vided by a third party IDE vendor. We will also take another brief look at MIDP for
Palm OS, as this is the only Sun-supported and fully J2ME implementation for PDA
devices (and specifically only Palm OS PDA devices) available as of this writing.

What is KJava?
KJava is a package containing classes and interfaces that provide four functions:

1 Application Control

2 Graphical User Interface

3 Persistent Storage, specifically an interface to the Palm OS Data Manager
4 Additional collections.

It was initially distributed with the CLDC reference implementation available from
Sun. The “K” in KJava corresponds to the “K” in Sun’s KVM and unofficially stands
for “kilobyte.” Today, Sun considers KJava an add-on package and provides it only for
backward compatibility. In fact, getting a copy of this package can be tricky. Sun no
longer supplies it with part of the CLDC download as of release 1.0.2. Instead, some
vendors provide an implementation of Klava API through their IDE products. In
looking at the KJava, we show you one such IDE.

Like profiles, the KJava classes and interface do not stand alone. They must be used
on top of a configuration and virtual machine. The KJava API was designed to extend
the generic functionality provided via the CLDC for applications living in a KVM that
run on Palm OS devices (most notably Palm, Handspring, and SONY handheld
devices). Because it was used as a proof-of-concept API for CLDC and the KVM run-
ning exclusively on a Palm OS device, it is also called the “CLDC Palm Overlay.”

Some of the API is completely transportable to other Java environments. The addi-
tional collections are simply wrappered arrays, for example. Other classes, such as the
database and user interface classes in the KJava API provide Palm OS specific func-
tionality.

KJava API
CLDC
K Virtual Machine J2ME
Figure 8.1
The KJava environment adds user
interface and database classes to the Palm OS

CLDC environment for the Palm OS.

PDA PROFILE ALTERNATIVES 191

8.1.3

8.2

8.2.1

192

What is MIDP for Palm OS?

While the Palm device has lost some market share to other PDA devices, it is still the
leading PDA on the market. Without a PDA specification in sight, and with only the
Klava “demonstration only” API, Sun had a bit of a support problem. So, in the
spring of 2001, they produced a reference implementation of the MID Profile for use
on Palm OS devices. “But...,” you may be thinking, “...the MIDP was for cellular
phones and pagers!?” Yes, and for the time, it can also be used with at least one type of
PDA device, namely a PDA running the Palm OS.

The API for the MIDP for Palm OS is the same as the MIDP for cell phones and
pagers (the focus of Part 2 of this book). Therefore, MIDP for Palm OS is a runtime
environment for MIDP on Palm OS devices. Essentially, MIDP for Palm OS has two
items in addition to the standard reference implementation:

» a custom virtual machine for use on the Palm OS

- atool to convert a MIDlet Suite into an application that can run on the MIDP
Palm OS virtual machine.

We will explore MIDP for Palm OS at the end of this chapter.

HISMALLWORLD IN KJAVA

As we did with the MIDP development environment, we explore the KJava environ-
ment with a simple application to look at the development tools as well as an intro-
duction to the basic API. We do this by revisiting the ubiquitous “Hello World” in
KJava and CLDC.

Getting Started
To develop applications in the CLDC and KJava classes, an implementation of the
CLDC and KVM for the Palm device is needed. The reference implementation of the
CLDC is available from Sun at the following URL: http://java.sun.com/products/cldc.
As mentioned previously, KJava and the required Palm deployment tools formerly
came with the CLDC provided by Sun. However, this environment is no longer
available directly from Sun. Copies exist throughout the J2ME community, but
obtaining one requires some research and cooperation from your fellow developers.
For this exercise we will use an implementation provided by a third party. Joed Micro
Edition CLDC is produced by esmertec (no typo here, the company’s name starts
with a lowercase “e”) in Switzerland and provides one of the fastest virtual machines
for resource constrained devices on the market today. Information and downloads on
Jbed are available at: http://www.esmertec.com

The Jbed environment provides the CLDC, KJava API and the complete means
to develop applications that can be deployed to the Palm OS devices. This will also
provide the opportunity to demonstrate one of the various micro Java IDEs available
on the market today (see figure 8.2).

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

[[_[O]x]

File Edt Aftibutes Text Projcts Jbed Debug Java Window Help

5 BE[& ToorTent BEE|E
Joeid 1310 3‘ by Samptes: 3‘

first demn to run
com jbed examples helloWorld HelloWorld

¥ Shaws Jbed Logo
com jbed.examplss josdl ogo JbedLogo

Interactiv Derio
com jbed examples fife Life

 Fulf dhed with dynamic foader & application starter.

oroile Cletui detines profile usable by dynamically foaded cods
output "JecM; Joed v # prc Tenarme; application name; creator type

com joed paim DetahaseLoader 4 dynamic oader

com joed paim.Shel application starter 2s main class

& Missiles example oM SUN'S Ieterance implementation”
output "MMissiles; IMissiles” 4 pec filenamme; appiication name; creatar tye
missles GameFisce +

migsies Bormb +

missles GameBitmap +

migsies Launcher +

missies Shiplg +

migsies.Shinhd +

missies ShipSm +

missiles ShiphL +

missles Missile +

missies Missies

 sample program with direct access to the Paim 05
com jbed examples paimOs PalmOs

Figure 8.2 Jbed, by esmertec Inc., provides an integrated development environment (IDE) for
CLDC and KJava application development. Jbed has been integrated into use with the Palm OS
Emulator (POSE) to test applications before deploying them to a Palm OS device.

8.2.2 What is a Spotlet?

The base or central component of a Klava application is a Spotlet. Spot | et is the
KJava class that provides application control and handles application events through
a set of callback methods. While an application can be made up of several Spotlets,
only one Spotlet can have “focus” at any one time. In other words, at any given
instance in the K virtual machine, only one Spotlet can receive events that trigger its
callback methods (see figure 8.3). This Spotlet is said to have the current focus. There
will be more on this in the next chapter.

In order to create a simple KJava application, extend the Spot | et class and pro-
vide a static mai n method that serves as the application’s startup method when

Palm OS" Emulator

Focus
Spotlet
Spotlet A
Spotlet B — Figure 8.3
P <« A Spotlet is a KJava application.
Only one Spotlet can have
“focus” at any given time. When
Spotlet C Spotlet has focus, as Spotlet B
does in this picture, it is the only

Spotlet getting and handling
events from the Palm OS device.

HISMALLWORLD IN KJAVA 193

8.2.3

194

invoked by the virtual machine. Therefore, the simplest of all KJava applications
might resemble the following program.
i mport com sun. kj ava. *;
public class VerySi npl eApp extends Spotlet {

public static void nmain(String[] args) {

Systemout.printin("Hello very small world");

}
}
To do something a little more exciting with the Spotlet, we need access to what is
known as the graphics context. In KJava, and the corresponding KVM there is a sin-
gle global Gr aphi cs context object. This object manages the display of all items on
the screen, including text, geometric shapes, and user interface widgets. To get the
G aphi cs context object, call the get Gr aphi cs() method on the Klava Gr aph-
i cs class. This is a static method and will always return the single global instance of the
G aphi cs object. To draw anything to the display, use the various draw methods
provided on the Graphi cs object. Actually, all the graphics methods are static
methods on Graphi cs so we could draw to the display by just calling the draw
methods on the Gr aphi cs class directly. So, to spice up our HiSmallWorld applica-
tion a little bit, we call on the Gr aphi cs object to draw some text on the display.

Listing 8.1 HiSmallWorld.java

i mport com sun. kj ava. *;
public class H Smal |l Wrld extends Spotlet {
private Graphics g = G aphics. get Gaphics();

public static void main(String[] args) {
Hi Smal | Worl d app = new Hi Smal | Wor | d();
}

public H SmallWorld() {
g. cl earScreen();
g.drawString("H Small World!", 45, 80);

This is all the code we need for our first Spotlet. The next step is to compile the application.

Compiling HiSmallWorld

Compiling the HiSmallWorld application requires having access to the appropriate
classes. Specifically, compiling requires both the CLDC and the KJava classes to be
accessible to the Java development environment. If you have access to the Klava
classes, then you can use the command line to compile the HiSmallWorld applica-
tion. If KJava is part of your IDE, then you will need to compile through that IDE.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

Command line

Compiling the Klava application can be done with the standard j avac compiler
that comes with the J2SE environment. When using j avac, remember to include
the right base J2ME classes appropriate for J2ME development and to not use the
base J2SE classes. As with MIDP development, this can be done by using the appro-
priate -boot cl asspat h option with j avac to inform the compiler where J2ME
classes can be found. The command line entry to compile the HiSmallWorld applica-
tion would look like the following:

>javac -g:none -d . -bootclasspath %CLDCC asses% *. j ava

In this command line, it is assumed that the CLDCCl asses environment variable
has been set up to point to the CLDC and KJava classes and that the command is
executed from inside the directory containing the HiSmallWorld.java file.

Via IDE

Alternatively, most IDEs provide the means to compile the application. With an
IDE, compiling is usually menu or button-triggered. However, depending on the
IDE, some assistance is also required to indicate where the various classes and possibly
the standard Java SDK (and compiler in particular) can be found. In Jbed, for exam-
ple, a project is defined and the various classpath and bootclasspath property options
must be established in the project’s file. First, in order to quickly and simply create a
project in Joed and to edit its associated properties, a Projects menu with project
action options is provided from the main menu bar of the IDE window (see figure 8.4).

To create the HiSmallWorld project, copy an existing Jbed example project and
then edit the properties file to suit the new projects needs. Joed comes with a set
of example projects. We recommend copying the Palm Hello World project. This is
accomplished by selecting the Copy Project option from the Projects menu of Jbed.

File Edit Attributes Text JS Jbed Debug Ja
£t P
———— CopyProject

Jhed 1.3.10 Delete Project

FlashRpt

Palm Hella \woarld
Palm Jbed WM
Palm JbedLogo

Pl JMissiles Figure 8.4
Paim Life Applications are organized by Project in Jbed. In this
Palm 05 Callz

picture the HiSmallWorld project is currently active.

Palm with Deb
a1 i Debaget Set up a new HiSmallWorld project in Jbed by

Palm

Setup copying an existing project such as Palm Hello

SwitchFig World. Select the Palm Hello World project in the

S\fEEF‘HD‘t Projects menu and then select Copy Project from
ful

the same Projects menu.

HISMALLWORLD IN KJAVA 195

196

Select Palm Hello World from the project list and then select the Copy Project menu
option. An editor should appear that allows you to create and modify the new project.
In the Name field on the editor, enter the name of the new project to HiSmallWorld.
Figure 8.5 depicts the project file in the editor with its various settings for the HiS-
mallWorld application.

HiSmallworld
Mame: IHiS mallforld

IMKER: -
chu Palm
reserved 40000
stacksize 2045
notrace

coin jhed runtime Collector

HismalhAorid
CLASSPATH
"JavaiPalm"
"JavaiCldc”
e 2me_cldcbiniapiclasses” I [pleaze change to your setting]
SOURCERPATH
"JavaPalm"
"JavaiCldc”
COCUPATH .
"Docuilgi’ Figure 8.5 _ _
ekl Fdocsiapi® if [please change to vour setting] After creating the HiSmallWorld
"gli2me_cldcidocsWlava Pl project, add the application
To0LS classes to the Linker section and
“ecljdkd Fbin® A [please change to your setting] update the various paths in Jbed
- OMPILERGPTIONS P!’OJeCt editor, (_:ls depicted in this
"grnone target 1.1 -hoctolasspath e lbediavaPalm; e WbeduavaiClde" picture. In particular, make sure
the required classes and source
ks = code directories are listed in the
i | Cancel | o | CLASSPATH and SOURCEPATH
sections.

We will discuss the project file editor in more detail later and in the next chapter. For
now, there are just a few changes that we need to make. In the LINKER section of the
editor are a number of properties as well as classes that are used to create the applica-
tion. At the bottom of the list should be the HiSmallWorld class as depicted in
figure 8.5.

Notice the area for making CLASSPATH and TOOLS settings. The Joed IDE makes
use of the installed Java SDK and J2ME CLDC on the development machine. The com-
piler is associated with the IDE through the TOOLS option. The local CLDC is referred
to in the CLASSPATH option. Make sure settings in these parts of the properties file
point appropriately to the J2ME CLDC and Java paths in your environment. After
adjusting the settings, press the OK button to close the properties file editor.

With a project established, we can now enter the HiSmallWorld code as described
above into a .java file through the Jbed’s IDE file editor. Inside of Joed, select the File
menu and the New menu option, or press Ctrl+N (see figure 8.6).

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.24

Edit Attributes Test Projects Jbed
Ctrl+M

DOpen... Ctr+0
Save [Eirl+5
Save bz
Cloze
Page Setup... Figure 8.6
FErint.... Ctri+P .
As a full IDE, Jbed provides a
:9”3 %DCU'“E”‘--- means to create and edit Java
fE... . y e

sneee files. Use Jbed’s File menu to

Eat create and save a new Java file.

In the new file editor provided (probably labeled untitledl if it is your first newly
opened file), type in the HiSmallWorld code shown previously. Save the code in a file
named HiSmallWorld.java. Save the code by selecting the Save or Save As... options
in the File menu. By default installation, Jbed locates the code in the \Java\Palm direc-
tory within Jbed’s directory structure. However, source code can be located anywhere
by adding the project folder to the SOURCEPATH section of the Jbed project file.

After establishing the project with the appropriate settings and creating the Hi-
SmallWorld.java file in the editor, compiling a .java file in Jbed is as easy as selecting
the Compile option from the IDE’s Java menu (see figure 8.7) with the target source
code file open.

File Edt Atibutes Tewt Piojects Jbed Debug [EREY window Help

F Oper Elass st (i)

Joed 1310 Suntax Coloring
H import com.sun kjsva ¥, Syntax Emphasizing Maono
public class Hismalworld extends Spo O H
private Graphics g = Graphics.ge Lompile Flg ure 8 7
public static void main(String[] ar - Copple Flass L St Once you have entered your Java

sl e = new HIT Bopis Packeg= (i code in the file editor, you can use

i
public HiSmallord) { Documentation

sciarSoreen; Srowse Class e Jbed’s bth-Irl Java C(_)mpller.
et Jbed’s Java file compiler can be
! ListPckage found under the Java option in

[Vecode El5ss

the menu bar.

This triggers the IDE to kick off j avac with the appropriate parameters. With the
right properties settings, the compile is able to accomplish the same task as when
called upon directly by the developer via the command line, namely to create the byte
code .class files. Instead, results of the compile operation will be displayed in the
Log file.

Preverifying KJava applications

As with compiling, preverifying your KJava application will depend on the development
environment. In fact, preverification may not be a required step in the development
process with some IDEs and virtual machine environments.

HISMALLWORLD IN KJAVA 197

8.2.5

198

Preverify utility

As was discussed in development of MIDP applications, verification of class files is a
standard part of the Java runtime environment. Again, verification is too much of a
task for the limited resources of the target devices, namely a Palm OS or similar PDA
device. Therefore, verification takes place both on and off the device. The part of the
verification that occurs off the device is called preverification.

If you find or have a copy of an early CLDC release (prior to 1.0.2) that includes
the KJava API along with the KVM virtual machine for the Palm OS, all class files are
required to be preverified before they can be packaged and used by the virtual machine
on the Palm device. Not unlike the preverifying that was demonstrated with the
MIDP applications, this was accomplished with a preverify utility. The preverify util-
ity verifies each class file and modifies it to include special flags indicating their valid-
ity. At runtime, the J2ME virtual machine checks these flags. If the flags were present
and indicate a valid class file, the K\VM assumes the class is OK to run. Without these
flags the VM throws an exception and aborts the class loading process.

No preverification required

As we will see in the next section, the application and virtual machine functionality
may be in one or multiple application files. In some cases, the vendor assumes that
application file(s) need no verification. For example, Joed assumes the source is con-
sidered trusted and no verification is done.

Thus, while preverification is a step provided for in many J2ME development envi-
ronments, some vendors do not make this a required step in application development.

Creating the Palm OS application

Java class files, as byte code files, are not deployed as they exist to be used by the
KVM on a Palm OS system. Instead, to run an application on the Palm OS, the class
files must be converted to a file form the Palm OS can utilize.

What's a PRC (Palm Resource File)?

With the compiled application classes, we must perform one more step before our
code is ready to deliver to the Palm OS device. Applications for Palm OS devices
must be specially formatted. Any application for a Palm OS device is packed into
something known as a Palm resource file. To get a Java application and the Java vir-
tual machine (remember, the virtual machine is an application too) into this required
form, they must be converted and loaded into a file that has a .PRC file extension.
Depending on the virtual machine implementation, parts of an application may also
reside in a Palm database file. Palm database files have a .PDB file extension. Along
with general application data, PDB files may contain certain classes that can be
loaded by the virtual machine.

There are two general means to converting the application and virtual machine
into PRC and PDB files. The first involves having a virtual machine in PRC format

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

and then converting our application into PRC and/or PDB files to be used by the vir-
tual machine. The other is to compile the virtual machine functionality and the appli-
cation to native machine code in a single PRC.

Single PRC approach

Java programmers have become accustomed to writing applications that become byte
codes, which then get deployed and run on a virtual machine. The benefits of this
technology, that is to be able to write an application once and then run it anywhere,
have become the anthem of the industry. However, this strategy does not produce the
best performing application nor does it make the job of deployment easy given the
number of files that must be loaded on the device. This last item can be especially
important when the target platform is mobile and with only limited connectivity.

Jbed provides the means to deploy an application in a couple of different fashions.
Along with the more traditional deployment of a virtual machine in one (or more)
PRCs and classes loaded via other PDB or PRC files, they also provide the means to
create a single PRC that contains both the virtual machine and the application’s byte
codes. In Jbed, the process of building the PRC file is called linking. Linking to a single
file makes for a very convenient delivery mechanism, as only one PRC file is created
and thus only one PRC file needs to be deployed onto the device.

Generating the PRC file

To generate, or more appropriately “link,” the application class files and virtual
machine functionality into a PRC file, Jbed provides a menu driven utility that again
uses the project properties file to do its job. From the IDE, the developer simply
requests the tool to generate the PRC by selecting the appropriate project and then
selecting to Link the project from the IDE’s Java menu (see figure 8.8). Barring any
errors in the link process, the IDE notifies the developer via the IDE Log that the
PRC was successfully written to disk along with the size of the new PRC.

Multiple PRC approach

When all is said and done, we have produced a HiSmallWorld PRC file ready for
deployment to the Palm OS device that is approximately 32K in size. To contrast this

File Edit Attibutes Text Eroiectsgebug Java ‘Window Hel

Log LClazz Loader ...
: . Cirl+03
Hismalhdiorld pro weritten (31536 byte Eox s Figure 8.8

Lirike % Bnnt CH+E Java class files and the virtual machine

Load functionality are combined into a PRC

Feset B file using Jbed’s Linker. To link the class

EallT e files and virtual machine functionality
— into a Jbed application, select Link from

dnission]ics 8 the Jbed menu options.

HISMALLWORLD IN KJAVA 199

200

approach, we develop a similar application using MIDP for Palm OS a little later in
this chapter. In that example, creating the MIDP-over-Palm OS version of the
HiSmallWorld application produces a single 4K PRC file containing just the applica-
tion class files. Remember, however, class files need a virtual machine. The accompa-
nying virtual machine, MIDP.PRC, required to run this version of the HiSmallWorld
application is a whopping 586K. By linking the virtual machine and the application,
only the bytes codes required are linked into the PRC. This has the effect of reducing
the entire footprint of the application on the Palm device to over 1/10th of the multi-
ple PRC application + virtual machine.

Of course, with a single PRC, if a future bug fix or enhancement is isolated to a
single class file, we cannot send out a minute PRC file containing the new class and
leave the virtual machine unchanged. In this case, we must replace the entire PRC.
Furthermore, if we have more than one Java application running on the same device,
we need to replicate some parts of the virtual machine functionality in each PRC.

Application icon and name

Each application (PRC to be exact) that is deployed and run on a Palm OS device has
an associated set of icons and application name. These are displayed on the PDA
device screen and serve as the activating elements much like an icon is used to start an
application on a Windows desktop system. In most cases, the icons and name associ-
ated with the Java application PRC are associated to the PRC at the time the applica-
tion is converted to a PRC file.

There can be two icons associated with each application. Small and large icons rep-
resent the application when displayed in different application views that the Palm OS
provides. The user of the device can either see the applications in a list view or in an
iconic view. In an iconic view, the large icon and a short application name are displayed
to represent each application. In a list view, the small icon and the full application
name are displayed. For example, using Joed’s default icons, the HiSmallWorld appli-
cation available on a Palm OS device would look similar to the pictures in figure 8.9.

Figure 8.9

Applications, such as the HiSmall-
World, can be displayed in either an
application list or as a set of icons in
the Palm OS. An application list is
displayed on the device on the left.
Applications listed by Icon are
displayed on the device on the right.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

Jbed provides a means to set both the displayed name and large icon. In order to set
the icon of the application, first create an icon using your favorite drawing tool. The
icon must be in Windows bitmap form and should not exceed 22x22 pixels in size.
Icons up to 32x32 pixels will work, but the name of the application will display over
the top of the bottom portion of the icon. Additionally, the icons are restricted to a
one-bit color depth. In other words, the icons have only two colors: black and white.
In some development environments, the developer can also provide the small icon. In
these cases, the small icon must not exceed 9 pixels high and 15 pixels wide.

After creating a bitmap to be used as the large icon for an application, place the
bitmap in the appropriate icon directory. For Jbed version 1.3, the icon is to be placed
in either the Jbed home directory or Palm subdirectory within Jbed’s home directory.
Name the bitmap file the same as the anticipated PRC file but with a .bmp file exten-
sion. Now, when the application is linked, Joed adds the bitmap to the PRC and asso-
ciates the new bitmap with the application for display on the Palm device.

The name of the application can also be set through Jbed. As can be seen from fig-
ure 8.9, the name of our application, HiSmallWorld, is a bit too big for display in the
icon list. The operating system truncates the name for display purposes and lists it as
“HiSmallWo...”. Therefore, to have an application that displays better in this listing,
we shorten the displayed name of our HiSmallWorld application to “HiWorld.” We
set the name of the application by providing a setting in the LINKER section of the
project properties file. Next to the output tag in the LINKER section, put the desired
name of the application, in this case “HiWorld,” as shown in figure 8.10.

HiSmallworld [%]

Name: |HiS malf/orld

LINKER s
Ccpu Palm

reserved 40000

stacksize 2045
notrace

cam jbed runtime . Collector
HiSmalhiviorlcl

CLASSPATH
"JavaPalm"
"JavatClc”
"ei2me_cldcibinapiiclasses” M [please change to your setting]

SOURCEPATH
"JavaPalm"
"JavatClc”

COCUPATH
"Docui gt
"edidkl Sdocsap N [pleaze change to your setting] R
"eslj2me_cldcidocsWavasPI" Flgure 8.10)))
The default name of an application is the

name of the Spotlet class. To change
the name of the application as it is

TOOLS
etk 3kin” I [please change to your setting]

(COMPILEROPTIONS

"_grone target 1.1 -bootclasspath & WbedlavaPalim, e b avaiside” displayed on th_e device, (_:hange the)
o =l “output” name in the project properties
,—I editor as shown above. The new name
Ok Cancel | Apply |

of the HiSmallWorld Spotlet is HiwWorld.

HISMALLWORLD IN KJAVA 201

8.2.6

202

Now when the application is linked, the new name and new large icon display (see
figure 8.11) when the application is finally deployed to the device. If you get the error
“wrong format in HiWorld.bmp” displayed in the Jbed Log when linking the applica-
tion, check your bitmap image and make sure that it is no larger than 32x32 bits and
that it has only 1 bit of color depth (i.e. black and white).

Palm OS™ Emulator

Figure 8.11

The same HiSmallWorld application
shown earlier is displayed here with
new application name and icon.

Running the application

Whew! So we have a Java application in the form of a PRC file ready to load onto our
Palm OS device. Not so fast. Just as with the MIDP application developed in
chapter 4, it is probably a good idea to test the application on an emulator first before
we accidentally toast any device with our application. After successfully running the
new application on the Palm Emulator, then it is safe to try to run the application on
the actual device.

Palm Emulator

The Palm OS Emulator, known as the POSE, is available from Palm’s Developer Site
at the following address: http://www.palmos.com/dev.

The emulator and associated files come in ZIP file format. Simply unzip the con-
tents of this file into a directory on your system. However, the emulator alone is not
enough to test the application. The POSE emulates the Palm device hardware, but it
requires something known as a ROM image to emulate the entire device environment.
The ROM (“read only memory”) image contains the Palm OS. A ROM image can
be obtained either by downloading it from Palm’s web site, or extracting it from a
Palm OS device.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

ROM from the Palm web site

Obtaining a ROM image from Palm requires joining Palm’s Alliance Program. To join
this program, go to the Palm’s Resource Pavilion at: http://www.palmos.com/alliance/
resources.

Getting established as a member of the Alliance Program usually takes about a day.
Once a member of this program, and if you are a developer located in the United
States, you can obtain a ROM image directly from the Palm web site. Developers from
outside the US are required to sign and return a license agreement before they are
allowed to download ROM images.

The site has ROM images for the different types of devices and device features,
such as color screens, as well as images that support debugging. Furthermore, there are
ROM images for each of the various major and minor Palm OS releases. When down-
loading a ROM from the Palm site, be sure to obtain the ROM image for your target
platform. Jbed supports Palm OS version 3.3 or greater operating on the Dragonball
EZ and VZ processors. Palm V, Vx, and 11Ix devices usually have this “EZ” processor.

After downloading the ROM image, save it in the POSE directory for the sake of
convenience. When you launch the emulator for the first time, you are presented with
several choice buttons (see figure 8.12). To start the emulator with the downloaded
ROM image, select New to signify that you want to start a new emulator session.

Palm 05 Emulator Figure 8.12
When starting the Palm OS Emulator (POSE)
Start & new emulator session on the development system for the first
Open | Load a previous emulator session from disk time, this window is d_lsplaye_d. The POSI-E
remembers the ROM file, device type, skin,
Download | Download a ROM image from a Palm 05 device and RAM size of the last session. However,
- on the first invocation of the POSE, without
Ll Leave the Palm D3 Emulator a prior session, the user is left to press New
and select the new session information.

When starting a new emulator session, you are asked to pick the ROM image, device,
skin, and RAM size for the device you are emulating as displayed in figure 8.13. Pick
your recently downloaded ROM image and set the settings appropriate for your tar-
get device, and the emulator should display.

Mew Session E

ROk File [empty]

Device Palm Il

Figure 8.13

On a new session, the ROM file and target
device settings must be selected. Select the
BAM Size 10248 v| ROM file, device, skin and RAM size for the
targeted device.

Skin Generic - |

If the emulator does not start or if an error message is displayed, check the new ses-
sion settings to make sure that the settings are compatible with the actual device.

HISMALLWORLD IN KJAVA 203

204

ROM from your Palm

As an alternate approach (and recommended approach from esmertec) to downloading
an image from Palm, if you have the target Palm OS device, you can extract its ROM
image to your development computer. When you downloaded the POSE, a ROM trans-
fer application came in the zip file. If you go into the directory where the POSE zip
file contents were extracted, you will find a ROM Transfer.prc file. When run on the
Palm OS device, this application allows the device to deliver the device’s ROM image
while it is cradled and connected to a computer. “Cradled” is the term used with many
PDA devices to indicate when the device is physically connected to another computer
usually by a cup or “cradlelike” looking attachment.

First, to transfer the “ROM Transfer.prc” to the Palm OS device, launch the Palm
Desktop Software’s Install tool that came with the device. Pick the correct user of the
device and then push the Add... button on the tool (see figure 8.14).

:_ Install Tool [x|
User:
Filefs] listed below will be installed on your handheld the next
time you perform a HotSync operation:
File Mame [File Size | Add.. |
Eemave.. | Figure 8.14
The Palm Desktop Software Install
Tool is used to select files, both
applications and data, to add or
Tips remove from the Palm OS device.
Find ather applications to install on your handheld at The applications and data listed in the
hitp:/ /v handspring.com center section of the Install Tool are
The 'cd button laoks fist in the \ADD-ON folder transferred to the device on the next
inzide vour E:\PALM folder. This folder iz a H H
convenient place to store downloaded handheld HotSync operation. USEI this tool to
fles. move or “deploy” PRC files to the Paim
OS device.

From the file selection window that opens like that displayed in figure 8.15, browse
to the directory containing the transfer PRC file, select the file and then press the
Open button.

Lok jr: Iapuse j gl
Docs
Popular ROM Downloads
Seripting Figure 8.15
PatientData. pdb A S
%Hiﬁn;,;::f;m This window is displayed when the
Add... button is pressed on the Palm
OS Desktop Install Tool (figure 8.14).
Move the ROM Transfer.prc located in
Filename: | Open | the POSE directory to the device by
Files of type: [l Paim File Types =l Cancel selecting the ROM Transfer.prc file
and pressing the Open button.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

This act prepares the PRC file for delivery to the Palm OS device the next time the
HotSync operation is performed (see figure 8.16). Exit the Install tool.

9, Install Tool

Uszer:

File(z] lizted below will be inztalled on wour handheld the nest
time you perform a HotSpnc operation:

File Name [File Sizs | Add.
ROM Transfer.prc Ak
Eemeve.. |
Done |
— Tipz:

Find other applizations ta install an your handheld at
hittp: /A handzpring. com

The 'add' button looks first in the $AD0-0M folder Figure 8.16
inzide your E:\PALM folder. This folder iz a .

canvenient place ta store downlaaded handheld The ROM Transfer.prc is shown
files. here ready to be installed to the

device via the Install Tool.

To HotSync the device and install the transfer application to the device, place the
device in the cradle and push the HotSync button. The HotSync button is the only
button on the cradle for Palm devices. When the hot sync has finished and the PRC
file has transferred successfully to the Palm OS device, run the ROM Transfer appli-
cation on the device, with the device still cradled. On your computer, run the Emula-
tor.exe and pick the Download option as depicted on figure 8.17 in order to receive
the ROM.

Palm 05 Emulator
Figure 8.17

After successfully deploying the ROM
Transfer PRC to the Palm OS, run the

Open | Load a previous emulator session from disk application on the device with the

Start & new emulator session

device still cradled. This will cause the
Dowrlaad | Dawnload a BOM image from a Palm 05 device window above to be displayed on the
; desktop. Select Download on this
$| Leave the Palm O3 Emulator window to receive the ROM image

from the Palm OS device.

A window appears providing instructions on how to transfer the ROM from the Palm
OS device that is cradled. Make sure the emulator is listening to the appropriate
COM port (the COM port to which the cradle for the device is attached) in the
Transfer ROM window that is provided and then press the Begin button (see
figure 8.18).

HISMALLWORLD IN KJAVA 205

206

Transfer ROM
Instructions:

1. *rou should find a file named "ROM Transfer. pre' included =
with the Palm 0S5 Emulator. Thiz iz a Palm 05 application Cancel |
you should inzstall on your Palm 05 device befare continuing.

3

o

. Choose an appropriate serial port and speed from the menus
belows. Faster zpeeds do nat always work conectly. Chooze
a slower speed if you experience problems.

[

. Place your Palm 05 device in its cradle and run the "RO M
Transfer' application.

— Figure 8.18

The Palm OS device has a

cradle that is attached to a

particular desktop COM port.

Make sure the appropriate

& COM portand speed are setin
this window before attempt-

Port: |COMA vl ing to transfer the device’s
Speed: |115,200 bps v[ROM during execution of the

ROM Transfer.prc application.

=

. Select the zame speed from the menw in "ROM Transfer'' az
you chose below.

o

. Disable HotSyne ar any other application that may be using
the zelected zerial port.

m

. Click the "Begin" button in thiz dialog. The Palm 05
Ernulatar will wait far your Palm device ta rezpond.

On the actual Palm OS device, after selecting the ROM Transfer icon, push the Begin
Transfer button to begin the process of transferring the ROM image to your com-
puter (see figure 8.19). It takes about five minutes to transfer the file.

When the transfer is complete, save your ROM image under the POSE directory.
Now the emulator environment is set up and we are ready to deploy the HiSmall-
World application to the emulator for testing.

Palm OS" Emulator

ROM Transfer is provided as a
cornpanion utility to the Palm O35
Ernulator. To use this utility, select
"Download ROM..." from the File
rrenu in the erulator and follow the
instructions provided.

Transfer Speed: w 115200 bps
Status: ldle

Begin Transfer

Figure 8.19

When the desktop has been set up appropriately
to receive the ROM image from the device via the
cradle, push the Begin Transfer button, as seen in
this picture, to send the ROM image of the device
to the emulator on the computer.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

Deploying and running HiSmallWorld on the POSE

Assuming the emulator already has a working ROM, deploying a PRC file to the
emulator is very easy. First of all, you need to configure the emulator to work with
PRC files generated by Joed. The default emulator configuration settings cause the
emulator to generate many warning messages when running Joed PRCs. To disable
these warning messages, find the Palm OS Emulator.ini file on your desktop. The file
is most likely located in the Windows directory for Windows 98/2000 systems or in
the Winnt director for WindowsNT systems. Open the Palm OS Emulator.ini in any
text editor and change the following parameters to the values listed:

Report Har dwar eRegi st er Access=0
Repor t Lowivenor yAccess=0

Report St ackAl nost Over f | ow=0
Report St ackOver f1 ow=0

The details of configuring the emulator for Jbed files are available in the documenta-
tion from esmertec. You can also visit their web site at www.esmertec.com/pose for
more information. After saving the configuration file with the modifications made,
start the emulator and right click on the POSE screen. This displays a menu to
appear over the emulator as depicted in figure 8.20.

POSE 1SSUE According to esmertec, an unresolved issue with Palm OS Emulator
versions 3.2 and 3.3 does not allow Jbed-produced PRC files to run on it.
Version 3.0a7 of the POSE will run these files without incident. As an
alternative to running the old version of the emulator, esmertec provides a
modified POSE on their web site at www.esmertec.com/POSE.

Palm OS™ Emulator

1:38 pn

Figure 8.20

Right-click anywhere on
the emulator application
to get the emulator’s
menu. This menu provides
the options to load appli-
cations and databases
among other options.

HISMALLWORLD IN KJAVA 207

208

Select the Install Application/Database menu option and pick the Other... option from
the pursuing menu. Then simply pick the PRC file created by the development tool. In
this case, browse to and select the HiWorld.prc file generated by Jbed and press the
Open button as depicted in figure 8.25 to load the application to the Palm OS emulator.

paLM 0s Palm device’s applications are organized into a series of “Categories.” A cate-
CATEGORIES gory is analogous to a folder in a Windows system. The categories for any giv-
en Palm OS device are listed in the dropdown list located in the upper right-
hand corner of the display (see figure 8.21). Tapping on this list displays all

the categories.

Palm OS” Emulator

Figure 8.21

A Palm device’s applications are organized into a
series of categories. The list of categories on a Palm
OS device or emulator can be found by tapping on
the arrow icon and current category name in the
upper right-hand corner of the display. As seen in
this picture, tapping on the icon/category name
produces the Palm OS Categories List.

When a category is selected, just the applications associated with that category have
their icon and application name displayed on the screen. This serves as a convenient
way to organize applications. There is also an “All” category that includes all the
applications on the device.

To add a category to the set of categories on the device, select the Edit Categories...
option at the bottom of the categories list. Categories can be added, renamed, or
removed from this screen.

Palm OS” Emulator

Edit Categories.

() () (o) ()

o e

Figure 8.22

Selecting the “Edit Categories...” option in the
Categories List displays the Category Editor shown
here. This display allows the user to add or remove
a category or to rename an existing category.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

By default, when an application is first loaded onto the emulator or the actual device,
it is associated with the “Unfiled” category. It can be assigned to a Palm OS or user
defined category. An application that is not assigned a category will only display
under the “Unfiled” and “All” category. To move the HiSmallWorld application to a
different category, push the Menu button on the device and select the Category...
menu option (see figure 8.23).

Palm OS” Emulator

Menu button

Figure 8.23

Push the Menu button, labeled in this picture, to activate
the Application Menu in the Palm OS. This menu offers
options to get information about an application or
database, delete an application or database as well as an
option to view/modify the applications assigned to any
category through the Category editor. The Category...
option opens the Category editor as seen in figure 8.24.

From the Category screen that follows, the HiSmallWorld application (recall we
changed the display name of the application to HiWorld which is what displays in the
application listing) can be associated with a new category by finding the application
and selecting its associated category from the dropdown list provided (figure 8.24).

Palm OS” Emulator

Figure 8.24

The category of any application, like HiSmallWorld,
can be changed in the Category editor. Each
application or database loaded on the device (or
emulator) is displayed in a scrollable list. Next to
each application is a dropdown list of categories.
To change the category of an application, simply
select another category from the dropdown list.

HISMALLWORLD IN KJAVA 209

210

Now whenever the category assigned to the application is selected from the Palm OS
category list, the HiSmallWorld application icon is included in the display.

Lookjn: | 53 Jbed =l =1
old code 2 [5pstem @ Hiwforldpre
COle [Test @ ObtainuoteS potle .
Falm B Countéddress. pro B FRetrieveluoteSpol Flgure 8.25 .
Profiles B DisgnosisData.pdb @ Setup.prc After SEIeCtlng the Install
Projects (3] FlashRit pre (9] SwitchRg pre Application/Database option from
Sid (3] Hismalwaid pre (3] sonchiptpre the emulator menu (right-click on
0 |] the emulator screen to display this
menu), the Open dialog box shown
File hame: I Dpen I) . p 9 .
here is displayed. In the Open dialog
Fies of type:|Paim 05 Files [* pre. pob. " paa) = Cancel | box, browse to the correct directory
™ Dpen as read-orly and select the PRC application to
load onto the emulator.

With the application successfully loaded to the emulator, find the HiWorld icon on
the Palm desktop and tap on it. If the application has been compiled, converted
(linked), and loaded correctly, the emulator’s screen should look like the image shown
in figure 8.26:

Palm OS” Emulator

Figure 8.26

The HiSmallWorld application running on the emulator
after successfully compiling, linking and deploying the
HiSmallWorld.prc file to the emulator and tapping on
the HiSmallWorld application icon.

In our Jbed example application, the virtual machine functionality and application
are all in one PRC file. Don't forget to also load the virtual machine PRC(s) or other
class files in a case where the application, auxiliary classes or virtual machine are
located in multiple PRCs.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.3

Troubleshooting
If you have difficulty in getting your application running, here are a few items to check:

« If using Jbed or other IDE, make certain that the application compiled and
linked successfully. Errors will be displayed in the Log window.

« If not using an IDE, make sure the application compiled successfully when you
ran j avac and certify that the preverify utility ran successfully without errors.

e The most notorious runtime problem in the Java environment is getting the
cl asspat h set properly so that the correct versions of classes are loaded, and
loaded in the proper order. If you are using Jbed and classes cannot be found
when compiling your application, check the CLASSPATH and CLASSPATH-
OPTIONS setting in the Jbed Project properties editor.

» When using Jbed, if you attempt to link the application and get the following
error: “no ‘void main (String[])’ present in com.jbed.runtime.Collector,” check
to ensure your application’s classes are listed in the LINKER section of the
project properties and that the class containing the main method (in this case
HiSmallWorld Spotlet) is listed at the bottom of that list of classes.

« If you are able to successfully compile and deploy your application, but get a
Palm OS Emulator error like “'Setup’ (unknown version) has just written
directly to low memory” when running the application in the Emulator, check
the Palm OS Emulator settings in the Palm OS Emulator.ini file as specified in
this section. This error will not manifest itself in the actual device, as the error
results from certain emulator-only execution settings.

DEPLOYING TO THE ACTUAL DEVICE

With the application successfully tested on the POSE, we can deploy it to an actual
Palm OS device with the relative assurance that it runs correctly and without adverse
affects to the device. Deploying a Java application to the device is not unlike deploy-
ing any application to the device.

First, locate the Install Tool that came with the Palm Desktop Software. Start this
application and select the user whose device is to receive the new HiSmallWorld appli-
cation. Alternatively, you can start the Palm Desktop application and then press the
Install button (see figure 8.27) located on the main window. This has the same effect
as starting the Install Tool. Again, don't forget to select the appropriate user. If the
Palm Desktop has never been used, you will have to set up a user or hot sync your Palm
device with the desktop before proceeding to the next steps. See your Palm OS manual
for guidelines on these operations.

Push the Add... button on the Install Tool and pick the application PRCs to load
onto the Palm OS device. In this case, locate the HiSmallWorld application
(HiWorld.prc) that should be located in the Jbed root directory. Remember to load all
the application PRCs as well as the virtual machine PRCs depending on the structure

DEPLOYING TO THE ACTUAL DEVICE 211

{2 Palm Desktop

File Edit “iew Toolz HotSwnc Help
ul@l ﬂl EI EI User. |JlmWh|te
@ [Sunday, August 05, 2001 A 2001 i
Date +* I Jan [Feb [Mar | Apr | May | Jun
- Jul Sep | Oct | Nov | Dec
S:00a -I _I
Address || Install Tool [x]| | S M T W T F §
— a0 23 3 7 1 2 3 4
User: [Jimwhie =l | |EEm s 7 8 3 10 1
ToDo X o 12 13 14 15 18 17 18
10:0 Eilefs] listed below will be installed on your handheld the nest 9w 7 2 23w 25
@ tirme: pou perfarm a HotSyne operation: [| .]
Mema 11:0 File Name I File Size I Add... |] 3 1 5 3 7 7
o ||| e 5
@ — — Te ndspring... M
Expense 10
| 20 o]
Inztall ~Tips: |
30 Find other applications to install on your handheld at
hittp:/ vy, handspring. com
20 The 'Add’ buttan looks first in the WADD-0ON folder
inzide wour E:\PALM folder. This folder is a
convenient place to store downloaded handheld]
50 files.
E:00 -
T.00
an = LI

Today Edit:.. Look up: I

|Fieady la/5/01

Figure 8.27 The Palm Desktop, along with the Install Tool, help coordinate and synchronize appli-
cations and data between the device and the desktop.

and organization of the application. Also check that the VM functionality and appli-
cation have been linked together. Press the Done button when finished adding the
appropriate files (see figure 8.28).

4 Install Tool E
User | jim wihite =l

Filels] listed below wil be installed on wour handheld the next
lime you perform a HatSyne operation:

File Marne | Filz Size
32k

Bemaove...

| Add... |
_Benore.. |

Done |

Figure 8.28
The Install tool allows users to

-~ Tips:

Find ather applications to install on your handheld at
hittp: £ A, handspring. com

The ‘Add' button looks first in the SADD-0M folder
inside pour E:A\PALM falder. This folder iz a
convenient place to store downloaded handheld
files.

designate files to load onto the Palm
OS devices during the next sync
operation. To load a Java application
created by Jbed onto the device,
push the Add... button and select
the PRC file to be installed.

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.4

On the next HotSync operation, those PRCs, PDBs and other associated files will be
loaded onto the device. HotSync is the operation of physically moving files from the
desktop to the device and vice versa (the Palm OS device can be set up to be backed
up with each HotSync operation). A HotSync occurs when the device is cradled and
the HotSync button is pushed on the device cradle.

To run the application once deployed, simply tap on the HiWorld icon on the
device. The results should be the same as when the application ran on the emulator.
The application can also be placed in a category, as describe earlier, for more conve-
nient locating on the device.

HISMALLWORLD REVISITED USING MIDP FOR PALM OS

As indicated earlier in this chapter, there are several options for developing Java appli-
cations for PDAs, and specifically Palm OS devices. Many of these solutions are not
guided by J2ME specifications. Even KJava, which was born out of a need to demon-
strate and test J2ME applications, is not a profile and is not guided by any part of the
J2ME specification set.

Today, there is only one all-J2ME environment for developing and deploying a
J2ME application for Palm OS PDA devices. This entails using the MIDP for
Palm OS development environment. The MIDP Palm OS J2ME environment is the
standard MIDP environment with the addition of an extra conversion tool and
another implementation of the KVM that runs of the Palm OS device.

Is an all-J2ME application better than one that is not guided by the J2ME specifi-
cations? The advantage of having a set of specifications is in the isolation the specifica-
tion gives to the developer. The developer of a J2ME application should be able to port
his or her application to a variety of specification implementations without the need to
rewrite the application. Remember, however, that MIDP was created for cell phones
and pagers. The user interface of these types of devices is far more restrictive than the
user interface on a device such as Palm OS device. Therefore, while guided by a spec-
ification, the MIDP for Palm OS may offer a rather limited GUI in comparison to
other non-J2ME environments. The specification allows for potential implementation by
several vendors. Thus, you, the developer, need to weigh portability against functionality.

To obtain the reference implementation of MIDP for Palm OS runtime environ-
ment, go to Sun’s MIDP for the Palm OS web page at: http://java.sun.com/products
/midp4palm.

The download provided from this site will not include either the base MIDP or
CLDC environments required to build MIDP for Palm OS applications. These must
be installed and available per instructions already covered in this and previous chap-
ters. Download and unpack the MIDP for Palm OS files into a directory of your
choice. Note that the distribution unpacks into a top-level directory named
midp4palm1.0. It should be noted that esmertec, and a number of other tool and vir-
tual machine providers also support MIDP and provide tools to build MIDP for
Palm OS applications.

HISMALLWORLD REVISITED USING MIDP FOR PALM OS 213

8.4.1

214

MIDP application code

In chapter 4, you were introduced to the MIDP through the HiSmallWorld Midlet.
We are going to reuse the same MIDlet code here to demonstrate MIDP for Palm OS.
Recall also, that for convenience, the following variables were set up to more easily
compile and preverify the application.

M DP=\m dp-fcs

M DPCl asses=\m dp-fcs\cl asses

M DPTool s=\m dp-fcs\bin

Listing 8.2 once again lists the code for the MIDlet from chapter 4.

Listing 8.2 HiSmallWorld MIDlet

import javax.mcroedition.ndlet.MD et;
i mport javax. m croedition.lcdui.*;

public class H Smal I World extends M Dl et {

private Text Box textbox;
public Hi SmallWrld() {

textbox = new TextBox("", “H Small World!", 20, 0);
}

public void startApp() {

Di spl ay. get Di spl ay(this).setCurrent(textbox);
}

public void pauseApp() {
}

public void destroyApp(bool ean unconditional) {

}

}
|

As a refresher, to compile, preverify and JAR the application, run the following
commands:

Compile

>j avac -g:none -bootclasspath %M DPCl asses% Hi Smal | Wrl d. j ava

Preverify

>9M DPTool s% preverify -classpath %M DPCl asses% . Hi Smal | Worl d
JAR

>jar cf hi.jar -C .\output H SmallWrl d.cl ass

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.4.2

We will also need the descriptor (JAD) file similar to the file created in chapter 3.
The contents of the HiSmallWorld.jad file should resemble the following:
M Dl et - Name: Hi Smal | Worl dSuite

M Dl et-Version: 1.0.0

M Dl et - Vendor: Catapult Technol ogi es, Inc.

M Dl et - Description: Sample Suite of Small World MDl ets

M Dl et-1nfo-URL: http://ww.ctim.conl

M Dl et-Jar-URL: hi.jar

M Dl et - Jar- Si ze: 3000

M croEdition-Profile: MDP-1.0

M croEdi ti on-Configuration: CLDC- 1.0

MDl et-1: Hello, , Hi SmallWrld

Notice that in MIDP for Palm OS, we are required to preverify once again. Up to this
point, not one line of code or development action differs from the development of
the initial MIDP HiSmallWorld application developed in chapter 4.

Converting the JAR file to PRC

Recall in the development of the KJava HiSmallWorld application that it was neces-
sary to convert the various byte code class files and the virtual machine into a form
that could be used by the Palm OS device. The same step must occur here to convert
the MIDP class or jar file into a PRC file that can be used by the device. The virtual
machine would also need to be converted, but Sun, in its reference implementation,
has already taken care of this step for us. The downloaded and unpacked files con-
tained a MIDPprec file. This is the virtual machine used by the Palm OS device to run
the applications we develop. We will see how this and our MIDP for Palm OS
HiSmallWorld application gets loaded to the device in a bit.

In order to convert the HiSmallWorld jar file into something the device can use,
the MIDP for Palm OS reference implementation provides a converter tool. The con-
verter tool is itself a Java application and requires the use of the Java Runtime Envi-
ronment on your desktop to run. An environment variable, JAVA PATH, is also
required to be set in order for the converter tool to run. Set this appropriately to the
Java SDK in your environment.

With the Java path set, the converter tool can now be
run. You will find the converter tool, converter.bat, inthe g
/Converter subdirectory off the /midp4palm1.0 direc-
tory. When you execute converter.bat, the converter
tool user interface should display as shown in figure 8.29.

le Help

EENz

Figure 8.29
The MIDP for Palm OS PRC Converter tool allows) = .
MIDP JAD/JAR files to be converted to Palm OS PRC Click on the == icon to find
files. Running converter.bat starts Sun’s MIDP for the the JADAAR file pair to
Palm OS Converter Tool. Use the File menu to locate convert to a PRC.
and open a MIDlet Suite JAD file for conversion.

HISMALLWORLD REVISITED USING MIDP FOR PALM OS 215

8.4.3

216

From the File menu, select the Convert menu option and then select the JAD file
describing the HiSmallWorld Midlet Suite, HiSmallWorld.jad. If everything is suc-
cessful, results of the conversion should look similar to those pictured in figure 8.30.
Then, the HiSmallWorld.prc is ready for deployment to the emulator and the
Palm OS device.

Ega PRC Converter Tool =] 3
File Help

File: EAHIW orld'HiSmallWorld jad
Result:
Destination: EXNHWorl dHiSmallWorld. pro

Figure 8.30

Results of attempting to convert
a MIDP JAR/JAD file to a PRC file
are displayed in the text area of
the Convert Tool window.

Deploying the MIDP for Palm OS applications

Deploying the Midlet in HiSmallWorld.prc to either the POSE or the actual device is
accomplished in the same manner as deploying any PRC file to the emulator or
device. However, it is important to remember that the MIDP for the Palm OS PRC
file will not run without the corresponding virtual machine. Therefore, remember to
load both the application PRC as well as the MIDPprc file if it is not already on the
device. Because the MIDP virtual machine is a shared virtual machine, only the one
VM (MIDPprc) is required on each device to run any MIDP for Palm OS application.
The MIDP.prc file can be found in the /PRCfiles subdirectory off the /midp4palm1.0
directory.

When successfully deployed, the MIDP virtual machine and HiSmallwWorld
MIDlet suite should look similar to the picture in figure 8.31. The MIDP for Palm OS
virtual machine shows up under the name JavaHQ on the Palm OS device.

. Figure 8.31
Palm OS™ Emulator Unlike the Jbed applications, MIDP for Palm
OS applications requires an underlying
m — virtual machine. The virtual machine is in a

PRC file and can be loaded independently of
the MIDlet Suite PRCs. In this picture, the
HiSmallWorld MIDlet Suite and MIDP for
Palm OS VM are depicted on the device.

And does the application look and behave the same way as the HiSmallWorld Midlet
on the cell phone or pager in chapter 4? As can be seen from figure 8.32, the behavior
is the same, while the display is slightly different based on the implementation of
TextBox for Palm devices. Consider too that the MIDP was initially designed for cell

CHAPTER 8 J2ME ON A PDA, A KJAVA INTRODUCTION

8.5

SUMMARY

phones and pagers. This then is considered one of the shortcomings of the MIDP,
that its capabilities are limited to the lowest common denominator, which in terms of
display, are cell phones and pagers.

Palm OS” Emulator =y | Palm OS” Emulator

Figure 8.32 Running the HiSmallWorld MIDlet on the Palm OS device results in similar
behavior as seen in the HiSmallWorld Spotlet developed with Jbed earlier. However,
the user interface does have a little different look (see figure 8.26 for comparison).

SUMMARY

In this chapter, we explored some of the options available to Java and J2ME develop-
ers targeting PDA devices. Specifically, we have looked at two means to develop and
deploy J2ME applications for the most popular PDA devices, those running Palm
OS. KlJava is a user interface and database API designed initially by Sun as a means to
demonstrate and test the first CLDC and KVM implementations. The KJava API is
not a J2ME Profile, but some vendors provide a supported implementation of this
API for developing applications targeted for the Palm OS device. Klava offers a rich
set of user interface and database capabilities to the CLDC for applications destined
for Palm OS devices. In the next few chapters, we will explore the details of KJava in
more detail. Specifically, we will examine KJavas user interface and the KJava Data-
base class which wrappers the Palm OS database.

An alternate approach must be sought if one is looking for an all J2ME environ-
ment. Therefore, we felt it important to at least introduce you to the MIDP for Palm
OS. MIDP for Palm OS is a fully supported J2ME environment, although somewhat
limited, for developing and deploying J2ME applications to the Palm OS. While both
of these environments might suffice for application development in the short term, the
J2ME community awaits a fully supported and rich environment, namely the PDA
Profile, for developing PDA applications.

217

9

KJava user interface

9.1 Klava application control 219

9.2 The investment quote application control in Kjava 220

9.3 Klava user interface 225

9.4 The investment quote application’s user interface in Klava 240

9.5 Handling user interactions in Klava 248

9.6 Handling the events of the investment quote application in Klava 250
9.7 Summary 261

In the last chapter we introduced the KJava API. Because there is not yet a PDA Pro-
file to be used with PDA devices, J2ME developers today are left with the choice of
using MIDP for Palm OS or the Klava API. In this chapter, the KJava user interface
and event handling mechanisms are covered in more depth. While not a valid J2ME
profile, this API does at least extend the J2ME’s CLDC and offers a basic set of user
interface components and graphical drawing tools that allow for custom widgets to be
developed if required. One thing to consider is that both KJava and MIDP for Palm
OS only address one type of PDA device, those handhelds running the Palm OS.

If you are already familiar with Java’s Swing classes for developing stylish user inter-
faces in J2SE, you will probably not complain that KJava or any J2ME user interface
API is too thorough an API. As you will see, KJava offers a very basic set of user inter-
face components and a simple event handling mechanism. Nonetheless, it does offer
a means to develop fairly sophisticated applications for the Palm OS device in Java.
In particular, we hope to demonstrate some of its capabilities as we look to re-imple-
ment the tutorial application in KJava, starting with the user interface and event han-
dling in this chapter.

218

So, in this chapter we will

* revisit Spotlet application control

- explore the user interface widget set

« look at Spotlet event handling

 implement the tutorial application control and user interface in KJava by:
- developing the tutorial application control using KJava Spotlets.

e implementing the tutorial application’s user interface displays using the
Graphics object and KJava widget set

« developing the tutorial application’s KJava event handling mechanism.

As we did in chapter 8, we use Jbed to develop the KJava applications demonstrated
in this chapter.

9.1 KJAVA APPLICATION CONTROL

A Spotlet serves as the central, controlling object in a KJava application. Its main pur-
pose is to listen to events and provide relevant event processing methods. In most
applications, the Spot | et class is extended and this extending class usually houses the
static mai n method that serves as the entry or startup point for a KJava application.

An application, however, can have multiple Spotlets, but only one Spotlet can have
control to listen and react to events via event-handling methods at any given time.
When a Spotlet is actively responding to events, it is said to have “focus.” Focus is
obtained and released by a Spotlet through the methods r egi st er (i nt event Qp-
tions) and unr egi st er () . When a Spotlet is to gain focus, the r egi st er (i nt
event Qpt i ons) method is called. The eventOptions parameter can be one of two
Spotlet static int values; NO_EVENT_OPTI ONS or WANT_SYSTEM KEYS. WANT_-
SYSTEM KEYSssignifies that the Spotlet should be notified and intends to handle sys-
tem key selections. System keys on a Palm OS device include the four hard buttons
at the bottom of the device which trigger the Calendar, Address Book, To Do List and
Memo applications, as well as the Home, Menu, Calculator and Find soft keys around
the Graffiti area of the device (see figure 9.1). System keys also include the device’s
power button as well as the HotSync button (which is located on the device’s cradle).
When registered with NO_EVENT_KEYS, the application only captures and reacts to
page up and down keys as well as Graffiti input.

Figure 9.1

The Soft and Hard Keys on a Palm OS device
allow for a user to quickly launch a Palm OS
application such as the Calculator or Address
Book. A Spotlet can be set up to be notified
when one of these system keys is pushed.

Hard keys

KJAVA APPLICATION CONTROL 219

9.2

220

Because only one Spotlet is allowed to have focus at any one time, this method has
the consequence of unregistering any Spotlet that currently has focus. Unregistering
can be done explicitly with a call to unr egi ster ().

A Spotlet has one non-event-related method, the get Fl ashl D() method. This
method, when called on an instance of a Spotlet, returns the Flash 1D of the device.
The Flash ID is the serial number of the device followed by a hyphen followed by the
serial number checksum.

THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA

As with the MIDP application, we will implement the investment quote application
in KJava and the CLDC with two major application control elements in the form of
Spotlets. Fulfilling the needs of the ObtainQuote use case from our tutorial design
will be ObtainQuoteSpotlet. In general, this Spotlet controls the getting of invest-
ment price information from an outside source and storing it persistently in a Palm
database. The other Spotlet, RetrieveQuoteSpotlet, guides a user through the process
of retrieving and displaying historical prices.

Unlike MIDlets, Spotlets have no lifecycle methods or other abstract methods that
must be overridden. However, since these Spotlets serve as the entry point for our
applications on the device, they both require a static mai n method. We cover the user
interface and event handling mechanisms of Spotlets a little later, so for now, in order
to establish application control, our two applications are very simple.

Before we write the code, we need to set up our two Jbed projects, each of which
will contain one of the two Spotlets. Just as was done in chapter 8, copy an existing
project and edit the project’s property file for the new project. To do this, select the
Copy Project option in the Projects menu of Jbed. When installed, Jbed comes with
some example projects and programs. You may want to take one of these existing sim-
ple projects, such as esmertec’s Palm Hello World project to use as the template for
your project. Select Palm Hello World from the project list and then select the Copy
Project menu option (figure 9.2).

File Edit Atrbutes Text BEEERCE Jbed Debug Java
Jhed 1390 e

FlashRpt
HiSmalworld

v Palm Hello world
Palm Jbed i -
Palm JbedLogo Flgure 92
Falm JMissiles In this chapter, we create two new
Eé:m E‘f;E . applications; namely KJava Spotlet
alm alls . . .
it D applications. To create a new project
Palm in Jbed, select an existing project,
gf::fhﬂg such as Palm Hello World from the
SpncRipt Projects menu and then execute Copy

T — Project in the same Projects menu.

CHAPTER 9 KJAVA USER INTERFACE

Mew Project [%]

Mame:

LINKER s
cpu Palm

[comjbed palm Screenlog Iwrites to PDA Screen
com jhed runtime. Log A writes to debugger log window
com jbed runtime BOMAgent & wsed to debug individual threads
com jbed runtime Collector
com jbed examples hellovWaorld HelloWorld & -= * prc

[CLASSPATH
"JavaPalm"
"JavaiCldc"
"erlj2me_cldcbintapiclasses" i [pleaze change to your setting]

SOURCEPATH
"JavaiPalm"
"JavaiCldc"
"JavalPalmicomijbedexamplesiheloworld"

DOCUPATH
"Docuipi
"okl Sdocsiap” I [plesse change to your setting]
e j2me_cldcdocsWlavasPl!

TOOLS

ek Fbin" Ji [plea=e change to your setting] Figure 9.3
COMPILEROPTIOHS After cqpylng a project file, upda_te
g the project name and LINKER options
s x| to include the project’s classes. This
I—IUK Cancel | ol | is accomplished in the New Project

editor shown here.

On copying the project, the New Project editor displays as in figure 9.3.

Put the name of the project in the Name entry field at the top of the window. In
the example shown in figure 9.4, the project is named ObtainQuote. Edit the LINKER,
CLASSPATH, SOURCEPATH, TOOLS, COMPILEROPTIONS and LINKS options as
required based on your installation and setup of Jbed, CLDC, and your application.
However, we found it minimally necessary to do the following:

« add the classes of your project to the list of classes in LINKER section.
< modify the CLASSPATH section to find your J2ME CLDC API classes.

« modify the DOCUPATH section to refer to the JDK and J2ME docs as required.
This is an optional step depending on your need for the help documents.

= modify the TOOLS section to point to the location of the binaries for the tools
on your system. In particular, Jbed needs access to the JDK bin directory.

The last class in the LINKER class list must contain a mai n() method. As both the
ObtainQuote and RetrieveQuote examples have only one class at this time, they nec-
essarily must be at the bottom of this list. Your project should look something like the
project depicted in figure 9.4 before you press the OK or Apply button and save the
new project.

Use the copy process again to create the second project RetrieveQuote. At the bot-
tom of the LINKER options, instead of putting the ObtainQuoteSpotlet, put
the RetrieveQuoteSpotlet.

THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA 221

222

ﬂ Mew Project [%]

MName: IDbtainQuote

LIHKER.
cpu Palm

§ com jhed.palm Screenlog
com jbed. runtime. Log
com jbed runtime BOMAgent
com jbed.runtime Collector
ObtainGuoteSpothet

CLASSPATH
"JarvaiPalm"
"JavaiClde"
"elj2me_cldoibintapiiclasses”

SOURCEPATH
"JawaPalm"
"JareaClcc"

DOCUPATH

"Docuispit

"etjodk1 Fwlocsap”
"etj2me_cldohdocsWlava AP

TOOLS
ekl Fkin”

COMPILEROPTIOHS
g

[o 1]

"avaiPalimicomijbedicampleshelloworid”

-
fiwerites to PDA Screen

A writes to debugger log window
A used to debug individual threads

i [please change ta your setting]

N [please change to your setting]

N [please change to your setting]

|

Cancel | Apply |

Figure 9.4

The ObtainQuote Project should
look similar to the project
depicted here. The paths in the
CLASSPATH, SOURCEPATH,
TOOLS, and DOCUPATH areas
may be different based on the
location of files used by the
application.

With the projects created, we can now write the code that creates our two Spotlets. In
the ObtainQuote project, open a new file. Inside of Jbed, select the File menu and
then the New menu option. If you prefer to use short-cut key combinations, press

Ctrl+N. (figure 9.5)

Edit Atrbutez Text Projects Jbed

Cirl+h

Open... Chrl+0
Saye [Etrl+s

Page Setup...

Frint... Chrl+F

Send Document. ..
Send Mate...

Exit

Figure 9.5

To open a new Java file in Jbed,
utilize the File menu. Opening a
New (Ctrl+N) file will open a new
file editor in the Jbed IDE.

CHAPTER 9 KJAVA USER INTERFACE

impart com.sun kjava ®,
public final class OhtainQuoteSpotlet extends Spotiet |
Figure 9.6

Upon opening a New Java file, an
“untitled1” editing window will open in the
Jbed IDE. Enter the ObtainQuoteSpotlet
code in the editor provided.

public: static void main (String args(]) {
new OhtainGuoteSpotlet(),

'

'

In the new file editor provided (probably labeled untitledl if it is your first new file
— see figure 9.6), type the following code.

i mport com sun. kj ava. *;
public class Obtai nQuoteSpotlet extends Spotlet {

public static void main (String args[]) {
new bt ai nQuot eSpotl et ();

}
}
Save the code in a file named ObtainQuoteSpotlet.java. Save the code by selecting the
Save or Save As... options in the File menu. By default installation, Jbed locates the
code in the \Java\Palm directory within Jbed’s directory structure. However, source code
can be located anywhere by adding the project folder to the SOURCEPATH section
of the Jbed project properties file. So for example, if we had created a package, say
com cti m. exanpl e for our Spotlet code, then the ObtainQuoteSpotlet.java will
be stored in the directory \Java\Palm\com\ctimn\example\ObtainQuoteSpotlet.java.

To compile the program ObtainQuoteSpotlet.java and insure the code was entered

correctly, either select the Java menu and pick the Compile option or press Ctrl+L.

File Edit Attributes Text Projects Jbed Debug Java Window Help

NBLog O[]

compiling "E\WJbedWava'PalmOktainQuoteSpotlet java"

ERROR:

E WbeduayvaPalmiObtainQuoteSpotlet java & ' expected private TesdField symbolField = null
“EdbedulavaiPalmiObtaincucteSpotlet java:16: cannot resolve symbolsymbal

vatiable stockButton location: class ObtainGuoteSpotiet stockButton = nesw

RadioButton(50,45 "Stock™); “EbediavaiPalmiObtainGuoteSpotlet java: 19 cannot resolve

symbalsymbal @ variable stockButton location: class ObtainQuateSpotiet

investmentChoice addstockButton);

B Wkediava PalmioktaincuoteSpotlet java 21; cannot resolve symbolsymbal - variskble

stockButton location: class ObtainQuateSpotlet investmentChoice et Selected(stockButton);
B WbediavaPalmiObtainGuoteSpotlet java: 38 cannot resolve symbolsymbol -

vatiable stockButton locstion: class OktainQuoteSpotiet stockButton paint(); A5 EFrOrS

Figure 9.7 After entering and saving the Java program in the text editor, compile the appli-
cation by selecting the Compile option from the Java menu of the IDE. Compiler errors, if you
have any in your Java files associated with the project, are displayed in Jbed’s Log window.

THE INVESTMENT QUOTE APPLICATION CONTROL IN KJAVA 223

224

If you have errors in your code, they will be depicted in the log window. (figure 9.7)
When you have successfully compiled, Jbed prints “ok” in the lower left-hand corner
of the IDE’s window.

At this time, there is no other code or files to our application, so we can link it.
To link the ObtainQuote project, select the Jbed menu option from the Jbed menu
bar and select the Link option (or press Ctrl+Q). When finished with either a compile
or link operation, it’s a good idea to check the Log window. If this is not displayed
in Jbed, open it by selecting the Open Log option in the Java menu. If successful in
compiling and linking the ObtainQuoteSpotlet file and project respectively, the
results in the Jbed log should look similar to those depicted in figure 9.8.

Eile Edit Attributes Test Projects Jbed Debug Jawa Window

dbecd 1310
compiling "EWJkedWavaPalmiObtainGuoteSpotlet java®
ObtainGucteSpotlet pro weritten [63650 bytes)

Figure 9.8 Use the Link menu option in the Jbed menu to create the PRC that can be deployed
to Palm OS devices. Results of compiling and linking activity also get displayed in the Log
window. On a successful link operation, the size of the PRC file is displayed with the indication
that the link is complete and the file was written.

After completing the development of the ObtainQuoteSpotlet, take similar actions to
create the RetrieveQuote application. To start, open the RetrieveQuote project and
open another new file. In this file, enter the RetrieveQuoteSpotlet code.

i mport com sun. kj ava. *;
public class RetrieveQuoteSpotlet extends Spotlet {

public static void main (String args[]) {
new RetrieveQuoteSpotlet();
}
}
Save and compile the RetrieveQuoteSpotlet and then link the RetrieveQuote project
as was done for the ObtainQuote case.

Having completed the successful compiling and linking of the projects, take a peek
at the Jbed directory on your system. You should see two new .PRC files in this direc-
tory structure (depending on how you have Jbed configured, the PRC files may be
deposited elsewhere on your hard drive. See the Jbed documentation for more infor-
mation). The PRC files are the application files destined for our device.

Ordinarily, we would get ready to test, deploy and run these PRC files on the emu-
lator and subsequently on the actual application. However, with no interface or action
occurring in our Spotlets to this point, we will save this exercise for a little later.

CHAPTER 9 KJAVA USER INTERFACE

9.3

9.3.1

KJAVA USER INTERFACE

As Dickens wrote in A Tale of Two Cities, “it was the best of times, it was the worst of
times.” This line could be used to describe developing user interfaces on resource-
constrained platforms. The good news is that the API is usually small compared to
other GUI APIs and so it is easy to learn. The bad news is that developers are constantly
challenged as to how to put together an aesthetically pleasing and user-friendly appli-
cation with such a small set of user interface components.

The screen size and capabilities of many PDA platforms is very limited. The Palm
device is limited to 160 pixels in height and width. While PDAs with color screens are
showing up on the market, the predominant display is still only 1-bit color.

Those familiar with the Java Swing set or its predecessor, the Abstract Windows
Toolkit (AWT), should prepare to be disappointed and left wanting for a richer set
of GUI components when looking at 2ME application development, and KJava is no
exception. In the next sections, we explore the user interface environment and widget
set provided by KJava. It is limited and in many cases you may need to extend the GUI
to meet your application needs. In chapter 11, we explore some design ideas and issues
to think about when developing your applications. Furthermore, third party vendors
are starting to provide add-in components to augment the CLDC and other J2ME
environments. These are discussed in chapter 15. One such group, the KAWT Project,
has developed a lightweight GUI environment that runs on top of the CLDC that is
similar to the AWT called the KAWT.

Drawing to the display with the graphics object

While there are no explicit low-level and high-level GUI APIs in KJava as there are in
MIDP, the Gr aphi cs class can be thought of as the means to provide the low-level
drawing to the screen. The Gr aphi cs class has a host of static methods to draw geo-
graphical shapes and bitmaps to the screen, but it also has a method to play sound if
the device hosting the application is equipped with audio capability.

While the methods on the Graphi cs class are static, there is in fact, a single
G aphi cs object in the system at any one time. This single object can be obtained
with a get Gr aphi cs() method call on the Gr aphi cs class. Calls to display to the
screen can then be made either of the instance or the class in general.

Interestingly, the Gr aphi cs object controls drawing not only to the screen, but
can also draw to a virtual “off screen” area. This is a convenient feature for storing bit-
maps temporarily, especially in graphically intensive applications such as games.

All geometric drawing methods in the Gr aphi cs object make use of a coordinate
system. The coordinate system starts in the upper left-hand corner of the device’s dis-
play as the coordinate (0, 0) with x/y values increasing from left to right and top to bottom.

The first graphical user interface operation usually performed in most applications
is clearing the screen. This operation rids the display of any splash screen or leftover
application image and is performed with a call to the cl ear Scr een() method on
the Gr aphi cs object.

KJAVA USER INTERFACE 225

226

Drawing

Several drawing methods are provided to put geographical shapes on the display. The
drawLi ne(int srcX, int srcY, int dstX, int dstY, int node) and
drawRect angl e(int left, int top, int width, int height, int node, int
cor ner Di an) methods provide the means to draw a line or rectangle based on the
given coordinate starting point. In the case of dr awLi ne() , the method is also passed
the coordinate of the end point, whereas the dr awRect angl e() method is passed
the width and height (in pixels) of the rectangle. The mode in both methods refers to
one of four drawing modes provided through the Gr aphi cs class. The public static
drawing mode options are PLAI N, GRAY, ERASE or | NVERT. The display modes may
manifest themselves slightly differently based on implementation as well as by what is
being displayed. For example, the code snippet below results in the image displayed in
figure 9.9. Finally, the last argument passed to dr awRect angl e() is the diameter.
This parameter specifies the diameter, in pixels, of the imaginary circles used to form
the rounded corners on each of the four corners of a rectangle. If rounded cor-
ners are not desired, simply pass zero into the method in the cornerDiam position.
Graphics g = G aphics. get G aphics();

.drawst ri ng("PLAIN', 75, 10, G aphi cs. PLAIN) ;

. drawRect angl e(10, 10, 50, 30, G- aphi cs. PLAI N, 0) ;

. drawRect angl e(0, 45, 160, 40, G aphi cs. PLAI N, 0) ;

.drawst ri ng("ERASE", 75, 50, Graphi cs. ERASE) ;

. drawRect angl e(10, 50, 50, 30, Gr aphi cs. ERASE, 0) ;

.drawst ri ng(" GRAY", 75, 90, Graphi cs. GRAY) ;

. drawRect angl e(10, 90, 50, 30, Gr aphi cs. GRAY, 0) ;

.drawString("I NVERT", 75, 130, Graphi cs. | NVERT) ;
. drawRect angl e(10, 130, 50, 30, G aphi cs. | NVERT, 0) ;

Figure 9.9
This display shows the various PLAIN, ERASE,
GRAY and INVERT Graphics modes for shapes

EEEEEEEEEEEE GRAY and text. The top rectangle and text are done in

PLAIN mode. The second rectangle and “Erase”
MVERT] PLAIN rectangle to provide the contrast. The
final two rectangle/text combinations are drawn

text were drawn in ERASE mode on top of a
in GRAY and INVERT modes respectively.

«Q

Qe

=

Along with methods to draw rectangles and lines, as can be seen from the code in the
last example, text can also be drawn to the screen. Two dr awSt ri ng() methods
allow for text strings to be displayed on the screen. Both require the string to be dis-
played along with coordinates of the top left bound of the first character in the string.
The methods differ in that the drawStri ng(j ava.l ang. String text, int

CHAPTER 9 KJAVA USER INTERFACE

left, int top, int node) method allows the developer to specify the mode
parameter, which again refers to a choice in Gr aphi cs mode (PLAI N, GRAY, ERASE
or | NVERT). Both drawst ri ng() methods also return the same integer value,
which is the x coordinate of the right bound of last character drawn. This can be helpful
in determining where additional items can safely be placed on the screen display
without appearing to be drawn over the top of the text. Two graphics helper methods
are also provided to assist in displaying strings on the screen. The get Hei ght
(java.lang. Strings) and get Wdt h(j ava. | ang. Stri ng s) methods can
be used to determine the height and width, in pixels, for any given string displayed.

The graphic’sdr awBor der (i nt 1 eft, i nt top, i nt wi dth, int hei ght,
i nt node, int frameType) method works similar to dr awRect angl e(), but
the developer must specify the frame type rather than the diameter for rounding the
corners. The Gr aphi cs class provides two “out-of-the-box” frame types, namely
S| MPLE and RAI SED. However, a frame type can also be constructed with a call to
the bor der Type() method on the Gr aphi cs object. The bor der Type() method
builds new borders or frames given three pieces of information:

= the corner diameter (such as that specified on a rectangle)

« the width of the border shadow

« the width of the border itself.
The maximum corner diameter for a new borderType is 38, and the width of both
the shadow and border can be no more than 3 pixels. Examples of borders drawn

using standard and custom border types are displayed in figure 9.10, and the drawing
code is shown below.

g.drawstring("SlI MPLE", 75, 10, Gr aphi cs. PLAIN);
g. drawBor der (10, 10, 50, 30, G- aphi cs. PLAI N, Graphi cs. SI MPLE) ;
g.drawstri ng("RAlI SED', 75, 50, G aphics. PLAIN);
g. drawBor der (10, 50, 50, 30, G- aphi cs. PLAI N, Graphi cs. RAI SED) ;
g.drawstring("Custonl', 75, 90, G aphi cs. GRAY) ;
g. drawBor der (10, 90, 50, 30, G- aphi cs. PLAI N, G aphi cs. bor der Type(2, 3,3));
r
SIMFLE
Figure 9.10
RAISEC: Various borders can be displayed using available or
newly constructed frame types. In the examples

— provided here, the top rectangle is drawn using
Custanm drawBorder and the SIMPLE frame type, and the second
rectangle is drawn with a RAISED frame type. The final
border drawn is done with a custom border type using
a 2-pixel diameter for the rounded corners, a 3-pixel

wide border and 3 pixels for the shading on the lower
and right side

KJAVA USER INTERFACE 227

228

Bitmaps

Bitmaps are drawn on the screen with the help of the dr awBi t map(int left,
int top, Bitmap bitmap) method sent to the Graphi cs object. Putting bit-
maps on the display with KJava is a little trickier than displaying images or bitmaps in
other Java environments. It requires a position or point on the screen to which to
anchor the bitmap and it requires the bitmap itself. The first parameters to this
method make up the upper left-hand coordinate or anchor point for where the bit-
map is to be placed on the screen. The bitmap parameter is an instance of a wrapper-
ing class that represents the image to be displayed.

Unlike standard Java systems, the idea of a file system from which an image file can
be grabbed and used by an application on a J2ME device may or may not exist. There-
fore, the tricky part to using images, like bitmaps, in many of the consumer electronic
and embedded devices is to first get the image into a format that can be used by the
application. In Klava, bitmap data must be in the format of an array. Specifically,
KJava provides a Bi t map class that is a byte array wrapper representing a bitmap in
the Palm OS. Each byte of a bitmap’s byte array represents 8 bits of the monochrome
bitmap image (0 bit indicating that the pixel for that bit is on, 1 bit indicating the pixel
is off). One provision stipulated on bitmaps is that the width (specified in bytes) of
the bitmap must be even, and in the case where it is not, the bitmap is padded when
displayed.

To create a Bi t map object, the width and bitmap’s byte array must be passed to
the constructor. The following code creates a small bitmap representing the states of
California and Nevada. The image is displayed on the Palm OS screen in figure 9.11.
An alternate bitmap constructor is available that allows the developer to create a Bi t map
object using an array of shorts.

Bi tmap caNV = new Bitmap((short)4, new byte[] {
/1 File canv.bnp; size: 32x32

0, 0, 0, 0, 31, -1, 1 - 16,
16, 4, 0, 16, 16, 4, 0 16,
16, 4, 0, 16, 16, 4, 0, 16,
16, 4, 0, 16, 24, 4, 0, 16,

8, 4, 0, 16, 8, 4, 0 16,

8, 6, 0, 16, 12, 7, 0, 16,

6, 3, -128, 16, 3, -64, -64, 16,

3, -128, 96, 16, 1, -128, 48, 16,

1, -128, 24, 16, 0, -64, 12, 16,

0, -64, 6, 48, 0, -64, 1, -80,

0, 32, 1, 96, 0, 48, 0, -32,

0, 16, 0, 32, 0, 16, 0, 32,

0, 30, 0, 48, 0, 15, -128, 32,

0, 4, 96, 32, 0, 0, -48, 96,

0, 0, -112, 96, 0, 0, 95, -32,

0, 0, 0, 0, 0, 0, 0, 0

3

CHAPTER 9 KJAVA USER INTERFACE

E Figure 9.11

In KJava, bitmaps are stored in byte arrays.
This example shows the outline borders of
Nevada and California depicted in a 32x32
Exit Bitmap image converted to a byte array
displayed on a Palm device.

To draw the Bitmap object on the screen, simply call on the dr awBi t map() method
with the desired anchor coordinate position for the bitmap (the coordinate location
for the upper left-hand corner of the bitmap) and the bitmap, which in this case is
referenced by the caNV variable.

Graphi cs. drawBi t map(64, 64, caNV) ;

Other than constructors, the only bitmap methods are to get a Bi t map object’s
width (in bytes) and number of rows. In the example provided previously, both the
width and number of rows is 32.

Region drawing

The Gr aphi cs object not only contains methods for drawing strings, shapes, bitmaps,
and so forth to the screen, but it also has methods to define regions of the screen which
can be copied or established as “no-draw zones” on the screen. In fact, there are actually
two screens that the Gr aphi cs object controls. Up to this point, we have discussed
methods for drawing “on screen.” That is, all the display has occurred on the user-visi-
ble screen. The Gr aphi cs object is also in control of a virtual screen, the “off screen”
area that is as big as the “on screen” area. Defined areas or regions of the “on screen” dis-
play can be copied to the “off screen” display for temporary storage. This allows image
information to be quickly shuffled on and off the visible display.

A region is simply defined as a rectangular area of a screen; whether virtual—i.e.
“off screen”, or real—that is, “on screen.” It can be used to copy a portion of the dis-
play from one area to another. In the case of the real display, it can be used to prevent
drawing outside of that region. To define a region of the screen for drawing (and thus
at the same time define an area prohibiting display outside of that region), use the
set DrawRegi on(int left, int top, i nt width, i nt hei ght) method. While
this method is called on the Gr aphi cs object, it has a global effect and prohibits other
controls from displaying outside of the draw region. For example, the code section
immediately following establishes a drawing region around the bitmap and exit button
from the previous example. Notice how both the bitmap and exit button have been
clipped in figure 9.12.

KJAVA USER INTERFACE 229

230

exitButton = new Button("Exit", 135, 135);
g. set DrawRegi on(72, 68, 80, 80);
g. drawBi t map(64, 64, caNV) ;

The draw region can be removed and the entire screen used as the drawing region by
calling the r eset Dr awRegi on() method.

Two methods are provided for copying regions of the display. The copyRegi on
(intleft, inttop, intwdth, intheight, intdstX intdstY, intnode)
method copies one visible “on screen” region of the display to another “on screen”
region of the display. The I eft, t op, wi dt h and hei ght parameters define the
anchor coordinate, width, and height of the copied region. The dst X/dst Y param-
eters define the destination anchor point on the screen where the copied region is to
be drawn. Along with copied region and destination point of the copied region, a copy
mode can be specified, which allows one to specify how the region is copied to its des-
tination point. The copy modes are defined as static integers on the Gr aphi cs class
and include OVERWRI TE, AND, AND _NOT, XOR, OR, | NVERT.

A region can simply overwrite whatever material was displayed previously, or log-
ical bit operations can be used to create a display made up of bits of both the new
region and existing region. Passing Gr aphi cs. AND as the mode, for example, causes
the display bits from the copy-from region to be logically AND’ed with the display
bits from the copy-to region. Alternately, the mode can be set to | NVERT, in which
case the copied region overwrites the display in the destination area, but in an inverted
or reverse display fashion.

The second region copying method, copyOf f Scr eenRegi on(i nt | eft, int
top, int width, i nt height, int dstX int dstY, i nt mode, i nt srcW nd,
i nt dst W nd) , provides the capability to copy a region of the display to or from the
“off screen” area. The on and off screen areas are designated through two G- aphi cs
static integers, ON_SCREEN_W NDOWand OFF_SCREEN_W NDOW Either of these
two integers can be passed as the last argument to the copyOf f Scr eenRegi on()
method where they can designate either the origination and/or the destination of the
region of the screen to be copied. Otherwise, the copying of regions is performed as
with the copyRegi on() method.

7

Figure 9.12

Establishing a draw region can serve to clip the
N display. In this example, the same California/Nevada
bitmap and Exit button are displayed from figure 9.11,
but within a draw region. Notice that both the bitmap
and button are clipped because the draw region’s size
Exit is smaller than the total screen area covered by the
bitmap and button items.

CHAPTER 9 KJAVA USER INTERFACE

9.3.2

Components

Unlike in many other Java user interface packages such as j avax. Swi ng,
java. awt, or even in the MIDP’s j avax. m croedi tion. | cdui, there is no
common user interface descendent from which Klava user interface widgets derive.
However, many of the widgets do share similar methods. Those familiar with the
standard Java user interface APIs will also find that KJava's user interface is pretty lim-
ited. However, with some work, some Klava widgets can be used in combination
with each other or can be wrappered by your own code to provide more interesting
and useful widgets, ultimately producing more useful interfaces.

In KJava user interface development, it is important to remember that there is no
layout manager or other sophisticated display manager. Control of the location and
display of widgets (or any item displayed to the screen such as a rectangle, line, or border
shown throughout section 9.3.1) is at the discretion of the programmer. Therefore,
if two user interface widgets are painted in too close proximity to each other, or on
top of one another, the virtual machine and underlying operating system will do its
best to display the items, which often times results in one widget overwriting the other.

[rerno button 1)
: Figure 9.13
Exit . .
Ugly overwrites of graphical elements and com-
Lemno button 2 ponents can result without careful Ul planning/

design as is demonstrated in this display where
buttons and drawn shapes overlap.

The following is a list of the interactive graphical elements available in the KJava user
interface API:

e Button alabeled button that can be used to trigger action when pressed. The
label for the button can either be textual or a bitmap.

e Caret the marker, designated by a blinking bar (“|”) to indicate to the user
the current insertion point in a text entry field. Namely, in Klava, a Car et
object indicates the insertion point for text being entered in a Text Fi el d.

e CheckBox a graphical component that signifies one of two states: either checked
which is on/true, or unchecked which is off/false. A CheckBox can also be
labeled.

° Radi oButton a two-state component such as the CheckBox except that a
Radi oBut t on object is part of a group of radio buttons, of which only one of
the buttons can be in the on state at any one time. Like CheckBoxes, Radi o-
But t ons can be labeled.

* Radi oButt onGroup a collection of Radi oButtons where exactly one
Radi oBut t on in the group can be in the “on” state at any given time. Pushing
any Radi oBut t on within the group has the effect of setting its state to “on” as
well as setting the states of the other buttons to “off.”

KJAVA USER INTERFACE 231

232

Sel ect Scrol | Text Box this extension of the Scr ol | Text Box and Text -
Box allows non-editable but selectable text to be shown on the display.

Sli der a graphical user interface component that allows a user to select a
value by moving a virtual lever on the component inside of a certain interval.

Scrol | Text Box a means to display non-editable text on the screen. The
Scr ol | Text Box is a subclass of Text Box and it provides for a scroll bar so
that if the text to be displayed is larger than the visible text box, the user can
scroll to see the remaining text displayed within the box.

Text Box a means to display non-editable text on the screen. A Text Box
displays without a scroll bar. When too much text is displayed in a Text Box,
the text is simply not displayed or available. In this case, it is often better to use
the Scr ol | Text Box.

Text Fi el d the means for users to enter text in a single line entry field. An
instance of the Car et class must be used in conjunction with the Text Fi el d
in order to have an input marker provided while the user is inputting text into
the Text Fi el d. TextFields can also be labeled.

TEXT ENTRY Most PDA devices do not come equipped with a physical keyboard or keypad
ONPDAS like that on cell phones. Some manufactures are starting to provide these in-

put devices as add-on products. Without a keyboard, most PDA devices are
equipped with either a virtual keyboard or a device that interprets input from
a stylus moving across a sensitive surface.

Avirtual keyboard is a graphical user interface display component that al-
lows users to type out text by pushing buttons on the user interface. The com-
ponent is made to look like a real keyboard so that users are comfortable with
the paradigm. A virtual keyboard is displayed when a text entry field is en-
tered. Virtual keyboards are used in Windows CE.

Palm OS devices, however, use the alternative stylus/motion detection
type device. These devices have something known as Graffiti. Moving the Palm
device’s stylus across the pad (known as the Graffiti writing area) located on the
bottom of the device’s screen triggers characters or numbers to be generated
and sent to the corresponding application. Graffiti is used to enter text in a text
field. Certain motions of the stylus across the Graffiti area generate certain
characters. If you are unfamiliar with what Graffiti is and how to use it, we
would encourage you to see the Palm OS web site (www.palmos.com) for more
information before developing your application targeted for these devices.

(Figure 9.14)
Figure 9.14 =
The Graffiti Area is located at the bottom of the Palm ,o @
OS screen. The left side of the Graffiti Area is used ‘cm@g S
for entering characters. The right side is for entering
numbers. In either case, one must be familiar with '5% _,?f’
the Graffiti shorthand in order to enter information. Senis = Pwo

CHAPTER 9 KJAVA USER INTERFACE

Graffiti text entry can be a little tough to use at first because one has to learn
the Graffiti shorthand for characters. If you need help when entering text and
you want to see the Graffiti shorthand, place the device stylus on the bottom
of the screen and slide it up the entire length of the Palm device screen, keep-
ing the stylus in contact with the screen during the motion. This will cause
the Graffiti help to be displayed. When done with the help, simply press the
Done button and return to your application. (figure 9.15)

ARICDIETE RT
JRMNOPOR| .
|S | "|| UFIU'J_|L"'J|:}{|!‘EJ’|Z| Graffiti help like this is displayed when the

stylus is dragged from bottom to top on the
device screen. The help shows how to enter

O T 2 3 ?_ S 6 .—l 8 q the various characters and numbers by

providing an indication of where the stylus

% must be started and how to drag it across

the Graffiti Area to get the desired input.

The typical Palm OS device also offers virtual keyboards for entering alpha-
numeric characters. The virtual keyboards are available by touching the small
“abcde” and “12345” areas in the Graffiti area of the device. However, this fea-
ture is not yet supported in KJava.

Val ueSel ect or unique to Klava, the Val ueSel ect or allows users to
specify an integer value with the use of increment and decrement buttons (see

figure

9.16). The increment and decrement buttons are labeled with “+” and

“—" labels respectively. A third button is also provided, labeled with a “?”,

which

generates a random value between the minimum and maximum values

allowed for the selector.

Figure 9.16

A ValueSelector allows for integer value entry.
In the figure displayed above, the Value
Selector has a label of Score and a current
value of 1. The “-* and “+” buttons will

increment and decrement the value
Sl:l:ll"e 1 - respectively. The “?” button, when pushed,

sets the value to a randomly assigned value.

In order to demonstrate how these components appear and behave within a device, a
small Spotlet example has been provided in listing 9.1. While simple in nature, this
mock employee information form demonstrates how to create and set up many of the
widgets listed previously. The results of successfully compiling and linking this appli-
cation are depicted in figure 9.17 on page 236.

KJAVA USER INTERFACE

233

234

Listing 9.1 Widgets.java

i nport com sun. kj ava. *;

public class Wdgets extends Spotlet {
Graphics g = Graphics. get Graphics();

private Button exitButton; p
private CheckBox enpl oyedBox;

private bool ean cbState = fal se;
private Radi oG oup gender G oup;
private Radi oButton nButton;

private Radi oButton fButton;

private Scroll Text Box perfornmanceBox;
private TextField ageField;

private Slider sal Slider;

private Val ueSel ector kidsVal Sel ect;

public static void main (String args[]) {
new W dget s().draww dgets();

}

private void draww dgets() {
regi st er (NO_EVENT_OPTI ONS) ;
g.clearScreen();
g.drawstring(" Sinple Wdgets Exanple ", 5, 10, g.|NVERT);
/I exanpl e check box
enpl oyedBox = new CheckBox(10, 25, "Enployed"); 0
enpl oyedBox. pai nt ();
/l exanpl e radio button and radio button group
nButton = new Radi oButton(10, 40, "Male");
fButton = new Radi oButton(50, 40, "Female"); Q
gender Group = new Radi oG oup(2);
gender Group. add(mBut t on) ;
gender Group. add(f Button);
gender Group. set Sel ect ed(nButton);
nmBut t on. pai nt () ;
fButton. paint();
!l exanpl e scroll text box
per f ormanceBox = new Scrol | Text Box("No record of missed work.
Meets or exceeds on all perfornmance reviews.", 10, 55, 140, 25);
per f or manceBox. pai nt () ;
/lexanple text field
ageFi el d = new Text Fi el d("Age", 10, 85, 50, 20); }/e

ageFi el d. paint();

/I exanpl e slider

g.drawsString("Sal ary Level: ", 10, 105);

sal Slider = new Slider(90, 105, 50, 1, 5, 1); Q

sal Slider.paint(); ‘

/I exanpl e val ue sel ector

ki dsVal Sel ect = new Val ueSel ector("Kids: ", 1, 5, 1, 10, 125); o
ki dsVal Sel ect . pai nt(); ’/
exitButton = new Button("Exit", 10, 140); 0

exi tButton. paint(); ‘

CHAPTER 9 KJAVA USER INTERFACE

public void penDown(int x, int y){
if (exitButton. pressed(x,y)){ »
System exit(0);
} else if (enployedBox.pressed(x,y)) {
enpl oyedBox. handl ePenDown(x, y) ;
} else if (nmButton.pressed(x, y)) {
gender Group. set Sel ect ed(nButton);
} else if (fButton.pressed(x, y)) {
gender Group. set Sel ect ed(fButton);
} else if (performanceBox.contains(x,y)) {
per f or manceBox. handl ePenDown(x, y) ;
} else if (ageField.pressed(x,y)) {
ageFi el d. set Focus();
} else if (salSlider.contains(x,y)) {
sal Sl i der. handl ePenDown(X, y) ;
} else if (kidsVal Sel ect.pressed(x,y)) {

}

public void keyDown(int keyCode) ({
i f (ageFi el d. hasFocus()) {
ageFi el d. handl eKeyDown(keyCode) ;
}

@ Declaring the various graphical user interface elements

@ Creating and displaying a CheckBox

© Creating and displaying a set of RadioButtons and RadioGroup
@ Creating and displaying a Scroll TextBox

© Creating and displaying a TextField

@ Creating and displaying a Slider

@ Creating and displaying a ValueSelector

© Creating and displaying a Button

© Handling user interface events (covered later in this chapter)

Notice that with most graphical user interface components, the component must be
created and then “painted” to the display. A common error when creating a user
interface in KJava is to create a user interface object, but then forget to have it dis-
played with a call to the pai nt () method. You may also notice that KJava does not
provide any type of display or layout management. This is reflected in how a pixel
coordinate location must be provided to each component, usually through its con-
structor, before it can be displayed. Most of the components also are equipped with a
set Location(int x, int y) method for relocating the items. Again, you the

KJAVA USER INTERFACE 235

236

Sirnple Widgets Exarmple
[Emnployed
@ Male CIFemale

Mo record of missed work, 1
Meets or exceeds onall l
Age:44 Figure 9.17

""""""""" KJava offers a variety of user interface components/
Falary Level = widgets, many of which are shown in this display.
Kids: 3 [- [+ 7] el More sophisticated user interface components can
Exit often be created out of combining these items into
your own new component.

developer, must manage the display and make sure that widgets or other graphical
drawing are not displayed on top of each other.

Most components or widgets have only a few operations. All of the components
have a method for displaying themselves. Usually this is the pai nt () method. This
method is important since a Spotlet does not have a means to refresh or redraw its dis-
play. Instead, the developer must explicitly call this method each time a component
needs to be seen.

Besides the pai nt () method, most graphical user interface components (or con-
trols) carry methods to get/set representative data values as well as a way to locate or
move the component on the display. Finally, actions and reactions to the user inter-
actions with various components on the display give rise to a set of event-handling
methods that are covered later in this chapter.

CARET CARE It is worth mentioning that Car et objects are runnable threads. That is,
the Car et class extends java.lang. Thread. When an instance of the Text -
Fi el d is created and given focus with a call to the set Focus() method,
the method starts a caret thread to get the caret to blink. Subsequently, when
the Text Fi el d loses focus, which can be done manually with a call to
| oseFocus() on the text field, the caret stops blinking. A call to ki | | -
Car et () actually stops and kills the associated caret thread.

In most cases, the management of TextFields and their associated Caret
instances do not require any extra work on the part of the developer. How-
ever, because of the threaded nature of carets, care should be taken when
working with the Text Fi el d components, especially with regard to get-
ting and setting focus, so as to avoid conditions where Caret instances are
not properly stopped and garbage collected. Improper use of the compo-
nent can lead to the slow yet steady leak of memory resulting in eventual
application failure. When working with an application that is going to con-
tain a lot of TextFields, it is a good idea to display the return value of
Runti me. get Runti nme() . get FreeMenor y() method calls in your
application while testing to ensure caret instances are not being inadvert-
ently held onto when they are no longer required.

CHAPTER 9 KJAVA USER INTERFACE

Dialogs
There is only one Spotlet with focus at any given time and this Spotlet controls the
display of components and drawing to the screen. Unlike many other user interface
systems with multiple windows on which to display graphical components, a Spotlet
has only one window, namely the full screen. There are only two minor deviations to
this display mechanism in KJava.

A Di al og component acts as a modal pop-up message box or window to display
a string of text shown in a scrolling text box. It can be used to provide error or warning
messages or to display text that may be too long to display nicely in a screen sur-
rounded by other components. The text in the display is non-editable.

There is a single constructor, Di al og(Di al ogOmner o,Stringt,Stringstr,
St ring buttonText) for dialogs. The first and second string parameters passed to
the constructor are the title of the dialog and message text to be displayed. The title
string is not displayed on the screen; it is just used to label the dialog. When created,
a dialog is automatically outfitted with a single dismiss button labeled via the but t on-
Text string parameter used in the constructor.

A dialog box must have an owner. The owner is an object that is notified when the
Di al og object is dismissed by pressing the dismiss button. The owning object is spec-
ified during the construction of a Di al og and it must implement the Di al ogOaner
interface. This simple interface consists of a single di al ogDi snmi ssed(String
title) method that is the method called when the Di al og is dismissed. The string
title parameter of the di al ogDi smi ssed(Stringtitle) isthetitle of the Dialog
that was dismissed. If an object is the owner of multiple Di al og boxes, this parameter
allows the object to discern which dialog was dismissed. The owner can then respond
appropriately and possibly uniquely to each Di al og object dismissal. Again, remem-
ber that a Spotlet has no refresh or any similar concept, so after a dialog is dismissed,
the Spotlets components will have to be redisplayed in order to show up on the screen.
This often involves invoking the pai nt () method on all the contained components.

Thiz is an exarnple Cialog.

Button: a zimple button uzer
interface object. Mote that this
button causes actions to aocur
when it it prezsed, not when it iz
released. Therefore it iz
currently irnpossible for a uzer
to cancel a button zelection once
it has started! Bitrap buttons Figure 9.18

: A Dialog can be used to display informational
textin ascrollable area. The dismissal button
(the “OK” button) is automatically provided
and is used to close the Dialog.

KJAVA USER INTERFACE 237

238

In many cases, a Spotlet is made the owner of the dialog. Here is a small bit of code that
displays and reacts to an example dialog, the result of which can be seen in figure 9.18.

public class Dial ogeExanpl e extends Spotlet inplements Di al ogOwmer {

public void showbDi al og() {

Dialog info = new Dialog(this,"Info","This is an exanple Dialog.\n\n" +
"Button: a sinple button user interface object. Note that this button "+
"causes actions to occur when it is pressed, not when it is released. " +
"Therefore it is currently inmpossible for a user to cancel a button " +
"selection once it has started! Bitmap buttons do not have a border " +

"drawn around them I|f you want your bitmap button to have a border, " +
"include the border in the bitmp.", "OK");
i nf 0. showDi al og();

}

public void dial oghi sm ssed(java.lang.String title) {
if (title.equals("Info")) {
//...do something
}
}

Similar to the Di al og window, the Hel pDi spl ay window displays text in a
Scr ol | Text Box before an application begins. As its name implies, a Hel pDi s-
pl ay is intended to display application user help. A Hel pDi spl ay object does not
have an owner like the Di al og. Instead the class name of the Spotlet is passed into
the constructor, so that an instance of the Spotlet can be created and run when the
Hel pDi spl ay is dismissed.

Scrolling

KJava also provides vertical scrolling capability. Given the device’s usually limiting
display size, this can come in handy. The Ver ti cal Scrol | Bar is another compo-
nent just like the components listed previously. However, a scroll bar differs in that it
must have an owner. The owner of a scroll bar is another component that implements
the Scr ol | Oawner interface. The owner component is notified whenever the scroll
bar is used.

The constructor provided to createaVerti cal Scrol | Bar i s Vertical Scrol | -
Bar (Scrol | Omer so, int x, inty, inth, intmn, int max, intinitVal).
Like most other GUI components, the size and coordinate location of the Ver ti cal -
Scr ol | Bar are specified when the object is constructed. However, it is also necessary
to provide the owner of the scroll bar. The mi n, max and i ni t Val parameters specify
the minimum, maximum, and initial values or scroll locations. A Verti cal -
Scrol | Bar hasa pai nt () method like other components that also causes the wid-
get to display on the screen.

The Scrol | Oamner interface is very simple. It has only one event-handling
method, set Scr ol | Val ue(i nt val ue), which must be implemented by a com-
ponent serving as the owner of the scroll bar. This method is called in the event the
user presses or moves the scroll bar.

CHAPTER 9 KJAVA USER INTERFACE

9.3.3

9.3.4

Custom components

The Klava user interface does the job, but is not exactly the world’s most luxurious
APIL. If your application is left wanting for more, you can explore third party alterna-
tives, or you can also grow your own widgets and components. This usually entails
using a combination of the drawing features surrounding the Graphics class and pre-
existing components. As an example, we had the need in one of our applications for a
scrolling list of items that could be checked off. Using a set of CheckBoxes, Ver -
tical Scrol | Bar, and the Graphi cs object we were able to create the rather
sophisticated component displayed in figure 9.19.

Figure 9.19

O Endornetrial Stomal Sarcorna The richness of the user interface in a KJava

O Endomnetriosis application can be enhanced by creating your own
O Enterocele . custom components, either from scratch or by
O Enterocutaneous Fistula using a combination of existing Ul components.
O FP"'Z'F'":'F' Fube ':':""':E_r Here, a custom KJava User Interface component
O Fibrocystic Breast Diseaze was developed using the KJava’'s CheckBox,

[0 Gastroenteritis - Vertical Scroll Bar and Graphics.

When building your own components, consider two valuable resources: memory
and performance/application speed. User interfaces can take up a considerable
amount of precious memory. It does not matter how pretty the GUI is if it cannot fit
on the device. Furthermore, the virtual machine on many small devices may operate
at one third or less of the speed of the standard Java runtime environment. Depend-
ing on the sophistication of the homegrown component, the virtual machine may be
stressed when trying to display it. This can lead to some real performance issues when
running your application.

In some cases, a KJava component attribute or method may be protected. “Pro-
tected,” in Java, implies that the method or field is available for use by subclasses and
classes within the same package. This means that there are methods or fields that your
application may want or need, but to which it may not have direct access. In this case,
you may want to consider developing a wrapping class that subclasses the KJava com-
ponent and grants access to the desired method or field to the outside world. Care
should be taken when exposing protected material. There was a reason it was deemed
protected in the first place and you should learn why it was protected before allowing
your application free access to it.

KJava collection classes

There are a couple of miscellaneous collection classes unique to KJava. Although not
user interface components, these classes can be handy when developing Spotlet appli-
cations and we wanted to make sure to mention them. Care should be taken when
using these classes with code that has a high probability of being ported to another
device and Java API since they will not be available in other environments.

KJAVA USER INTERFACE 239

9.4

94.1

240

IntVector

An | nt Vect or is a simple expandable vector containing integers. Unlike standard
Java vectors (j ava. uti | . Vect or) in J2SE or other Java environments, these vec-
tors contain the base type integer elements and not objects (j ava. | ang. Obj ect).
Unfortunately, there are no enumerators or iterators that can be obtained directly
from instances of this class, so there is no convenient means to loop through the integers
contained in an I nt Vect or. Adding integers to the I nt Vect or is accomplished
with the append(i nt i) method while getting an integer out of the vector is done
by calling on the val ueAt (i nt i ndex) method. The si ze() method provides a
count of the number of integers stored in the vector.

List

The Li st class is a smaller and simplified version of the j ava. uti | . Vect or class.
Obijects can be added to a Li st collection using the append(j ava. | ang. Obj ect
obj) orset El ement At (j ava. | ang. Qbj ect o, i nt pos) methods. Objects are
extracted from a Li st i nst ance using el enent At (i nt i ndex) . Again, the si ze()
method returns the number of elements inaLi st instance.

THE INVESTMENT QUOTE APPLICATION’S
USER INTERFACE IN KJAVA

Time now to put the KJava user interface API to use. We are going to build the user
interface of the investment tracking tutorial application using Klava and CLDC.
When developing the user interface for MIDP devices, as was seen in chapter 5, the
screen was so small that several screens had to be implemented in order to interact
with the customer and display the investment quote prices. The screen size of a Palm
OS device is huge in comparison to the 96x54 pixel limit on MIDP devices. There-
fore, we can actually have the entire user interface displayed on a single screen, as
opposed to several screens with MIDP.

As with our MIDP implementation, we will have two separate applications. One
application, the ObtainQuoteSpotlet, will obtain an investment symbol from a cus-
tomer and wirelessly seek the price of the investment represented by the symbol
entered by the customer. This price will then be stored to a database and displayed to
the customer. A second application, RetrieveQuoteSpotlet, will retrieve historical prices
for a given investment symbol from the database and graphically display the historical
prices for the investment to the customer.

Creating and displaying components

The first step in building our Ul in KJava will be to import the required classes. All of
the KJava user interface components are located in the com sun. kj ava package. In
fact, all of the classes of KJava are located in this single package. Therefore, at the top
of the ObtainQuoteSpotlet.java file, we have the required import statement

i mport com sun. kj ava. *;

CHAPTER 9 KJAVA USER INTERFACE

Having already created the ObtainQuoteSpotlet application in section 9.3, we begin
building the user interface by first declaring the reference variables required to hold
all the necessary GUI components.

private TextField synbolField = null;
private Radi oButton stockButton = null;
private Radi oButton fundButton = null;
private Radi oG oup investnentChoice = null;
private Scroll Text Box resultsBox = null;
private Button exitButton = null;

private Button getButton = null;

These components will serve in a fashion similar to the high-level user interface compo-
nents in the MIDP tutorial. The Text Fi el d will allow the customer to enter an
investment symbol. The st ockBut t on and f undBut t on radio buttons allows the
customer to signify whether the investment of concern is a stock or mutual fund. These
radio buttons will be made part of the i nvest ment Choi ce radio button group, thereby
allowing only one option to be selected at any given time. After obtaining the quote for
the investment symbol entered by the customer, the price (or other information if an
error occurred) can be displayed in the Scr ol | Text Box called r esul t sBox. Finally,
two buttons are provided on the Spotlet screen to allow the customer to signal when it
is time for the application to go “get” the price or when to leave the application.

PALM OS An exit button on a Palm OS application is not entirely necessary. The
APPLICATIONS paradigm of Palm OS applications is to simply move to another applica-
tion or the application selection screens rather than actually requesting to
leave an application. Pressing the Applications soft key is an indication in

the Palm OS that it is time to leave the current app.

Inside the Obt ai nQuot eSpot | et constructor, the components described above are
created and initialized. Notice the use of the Graphics object to get the width of
strings to be displayed. Remember, as a J2ME developer, you are the layout manager,
so this method can come in handy when attempting to space things on the screen
appropriately. Also notice how instances of Radi oBut t on are created and then added
to an instance of a Radi oG oup.

publ i c Obtai nQuot eSpotlet() {

String tfLabel = "Synbol";

synbol Fi eld = new Text Fi el d(tfLabel, 5, 25, G aphi cs. getWdth(tfLabel) + 40,
G aphi cs. get Hei ght (t f Label)); (1]

st ockButton = new Radi oButton(50, 45, " St ock"); o

fundButton = new Radi oButton(100, 45, "Fund");

i nvest ment Choi ce = new Radi oG oup(2);

i nvest nent Choi ce. add(st ockButton); 0

i nvest ment Choi ce. add(fundButton); %

i nvest ment Choi ce. set Sel ect ed(st ockButton);

resul t sBox = new Scrol | Text Box("", 8, 65, 137, 45) ; o
exitButton = new Button("Exit",5, 140);
getButton = new Button("Get Quote", 105, 140); %

THE INVESTMENT QUOTE APPLICATIONS USER INTERFACE IN KJAVA 241

242

@ Using the Graphics object to determine width of the field
@ Creating the radio buttons

© Associating radio buttons to a group

@ Creating the scrolling text box

© Creating the exit and get quote buttons

To kick off an instance of the Obt ai nQuot eSpot | et and create all of these marvel-
ous components, we need a main method. Unlike MIDP application control, the
Spotlet’s mai n method is what gets called and started from the virtual machine. Our
example mai n method, provided earlier in this chapter, creates a new instance of
Obt ai nQuot eSpot | et . However, if we were to use the mai n method as it stands,
none of our new components would be displayed. Why? We need to invoke the
paint method on the components in order for them to display. Therefore, improving
on the main method for Cbt ai nQuot eSpot | et , we simply create an instance of
Obt ai nQuot eSpot | et and then call on a new private method, di spl ayFor n()
that will display the components.

public static void main (String args[]) {

Obt ai nQuot eSpot | et quoteSpotl et = new Obt ai nQuot eSpotl et ();

quot eSpot | et . di spl ayForm() ;
}

While displaying the components would provide the user interface with the means to
get a symbol from the customer and display price information, a screen without some
supplementary text and shapes would probably just confuse the customer. Therefore,
in the di spl ayFor n() method, appropriate text and other geographical shapes will
be displayed to make the application more user-friendly. We use the G aphi cs
object to conduct this work.

private void displayForm() ({

@ aphi cs. cl ear Screen() ;
QG aphi cs.drawstri ng("Cbtain I nvestnent Quote", 5, 10, G aphi cs. | NVERT) ; 4

sGyﬁgg: (é;s.eld(rjap/:it :1; ?)g(Type: ", 5,45, G aphics. PLAN); Dlsplgy thg appli- o
e ! cation title and

stockButton. pai nt () ; Paint the components radio button label

fundButton. paint(); to the screen

resul t sBox. pai nt () ;

exi tButton. paint(); Display a border around

get But t on. pai nt () ; the results ScrollTextBox

G aphi cs. dr awBor der (5, 60, 150, 55, G aphics.PLAIN, G aphics. S| MPLE);

}

Why put all of the paint and drawing methods in a separate method like di spl ay-
For m() ? As we shall see, the di spl ayFor n{) method contains all the calls to dis-
play and redisplay the screen. Again, remember that Spotlets and Klava have no
refresh mechanism. Therefore, as the developer, you must provoke refreshes of the

CHAPTER 9 KJAVA USER INTERFACE

screen at appropriate times. Thus, we need methods such as di spl ayFor n() that
exist outside of the Spotlet instance creation so that appropriate screen refreshes can
occur without creating a whole new instance of the application.

That is about all there is to do at this time, save a little work in preparation for
future activity with regard to our Spotlet. You may recall in the development of the
MIDlets, the application checked to insure a symbol name ended in “X” if the cus-
tomer selected the investment type of “fund.” Mutual fund symbols are up to five let-
tersin length, and a mutual fund symbol ends in the letter ‘X’. In MIDP, we produced
an Al er t if the customer inappropriately provided a symbol without an X’ at the end
of the name but also pushed the Fund radio button. In KJava, an instance of Di al og
will do the work of the Al ert in the MIDP version of the application.

Touse Di al og boxes you need an owner. The Spotlets are going to serve as the owner
for all Dialogs in the tutorial application. Therefore the bt ai nQuot eSpot | et and
Ret ri eveQuot eSpot | et must implement the Di al ogOaner interface. The new
class declaration for bt ai nQuot eSpot | et resembles the line below.

public class Obtai nQuoteSpotlet extends Spotlet inplements Dial ogOwmer {

The Spotlet must also implement the Di al ogOaner’s one method, di al og-
Di smi ssed() . In every instance, since the Dialog is serving to describe an error or
other warning to the customer, the only thing that the Spotlet need do when a Di a-
| og is dismissed is repaint the screen. Ah hah! The need for our di spl ayFor n()
method becomes a little clearer.

public void dial oghi sm ssed(java.lang.String title) {
this.displayForm));
}

To check the customer-entered investment symbol against the customer-selected
investment type, a simple test method is provided to examine the data obtained from
the components. In the checkSynbol () method, notice how the text value and radio
button value are obtained directly from the corresponding components. A Di al og
instance is created and shown if the mutual fund name error condition exists.

private bool ean checkSynbol () {

i f ((investnent Choice. get Sel ected().equal s(fundButton)) &&
I (synbol Fi el d. get Text ().t oUpper Case().endsWth("X"))){
G aphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ;
Di al og synbol Alert = new Di alog(this,"Alert",

"Check Symbol\n\nMitual Funds end in 'X ", "OK");

synbol Al ert. showDi al og() ;
return false;

}

return true;

}

This code, and the di al ogDi sni ssed() method code, is not used yet, but it will
be used once user interactions with the various GUI components are handled.

THE INVESTMENT QUOTE APPLICATIONS USER INTERFACE IN KJAVA 243

9.4.2

244

To see ObtainQuoteSpotlet’s user interface, we use Jbed to build our application.
First make sure the ObtainQuote project is in use. Go to the Projects menu bar option
and make sure the ObtainQuote project is checked. Next, open the ObtainQuote-
Spotlet.java file by selecting the File menu bar option and selecting the Open... menu
item. After finding and selecting the ObtainQuoteSpotlet.java in the Open dialog
box, add the code discussed above to the Java program in the text editor. To compile
the application, select Java from the menu bar and select the Compile item. Finally,
to link the application, select Jbed from the menu bar and select the Link item. This
will result in the creation of an ObtainQuoteSpotlet.prc that is about 95K in size.

Test out your application by loading the newly-linked PRC file into the emulator.
Success in these steps should result in an application that looks similar to the image
in figure 9.20.

Cbtain Investrent Quote

Twpe: (®@Stock (CIFund

e,

Figure 9.20

The user interface of the ObtainQuote Spotlet is
il shown. Unlike in MIDP, the user interface of the

ObtainQuote Spotlet can all be displayed on one
screen. A request is made to get an investment

quote and the results get displayed in the

ScrollTextBox located in the middle of the display.

You may try to operate the application and find that none of the buttons or text fields
work. Do not panic. We address handling events at the end of this chapter. Proper
event handling will bring the application to life. For now, to exit the application,
simply tap on the Applications soft key button on the emulator (to the left of the
Graffiti area).

Drawing with graphics

Much of the Spotlet used to retrieve already-obtained quotes and to display historical
quotes in a graph for the customer is similar to the ObtainQuoteSpotlet. The cus-
tomer is required to provide the investment quote symbol and investment type. The
only difference in this application is that the price for the investment will be retrieved
from a database rather than from a service over the wire. Since the information
required to retrieve a quote from the database is the same, we can copy and use much
of the same code developed for ObtainQuoteSpotlet. A code listing for the new
RetrieveQuoteSpotlet is provided in listing 9.2.

CHAPTER 9 KJAVA USER INTERFACE

Listing 9.2 RetrieveQuoteSpotlet.java

i mport com sun. kj ava. *;
public class RetrieveQuoteSpotlet extends Spotlet inplenments D al ogOmer{

private TextField synbolField = null;
private Radi oButton stockButton = null;
private Radi oButton fundButton = null;
private Radi oG oup investnentChoice = null;
private Button exitButton = null;

private Button getButton = null;

public RetrieveQuoteSpotlet() {

String tflLabel = "Synbol";

synbol Fi el d = new Text Fi el d(tfLabel, 5, 25, Graphi cs. get Wdt h(tfLabel)
+ 40, Graphics. getHeight(tfLabel));

st ockButton = new Radi oButton(50, 45, " St ock");

fundButton = new Radi oButton(100, 45, "Fund");

i nvest nent Choi ce = new Radi oG oup(2);

i nvest ment Choi ce. add(st ockButton);

i nvest nent Choi ce. add(fundButton);

i nvest nent Choi ce. set Sel ect ed(st ockButton);

exitButton = new Button("Exit", 5, 140);

getButton = new Button("Get Quote", 105, 140);

public static void nmain (String args[]) {
Retri eveQuot eSpot | et quoteSpotlet = new RetrieveQuoteSpotlet();
quot eSpot | et . di spl ayForm() ;

}

private void displayForm() {

regi st er (NO_EVENT_OPTI ONS) ;

G aphi cs. cl ear Screen();

Graphics.drawString("Retrieve I nvestnent Quote",5, 10,
G aphi cs. | NVERT) ;

Graphi cs. drawstri ng(" Type: ", 5,45, G aphics. PLAIN);

synbol Fi el d. paint();

st ockBut ton. paint ();

fundButton. paint();

exi tButton. paint();

get Button. paint();

}

private bool ean checkSynbol () {

if ((investment Choice. getSel ected().equal s(fundButton)) &&
I (synbol Fi el d. get Text ().t oUpper Case().endsWth("X"))){
Gr aphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ;
Di al og synmbol Alert = new Dial og(this,"Alert",

"Check Symbol\n\ nMutual Funds end in 'X ", "OK");

synbol Al ert. showbi al og();
return false;

}

return true;

}

public void dial oghi sm ssed(java.lang.String title) {
t his. displayForm);

y !

THE INVESTMENT QUOTE APPLICATIONS USER INTERFACE IN KJAVA 245

246

Because we are not going to display a single price, but rather a graph of the prices for
the investment, the only change in the code in listing 9.2 is the removal of the Text -
Box called resul t sBox. In place of this component on the screen, we want to
graphically display the prices of the current and historical quote. In the MIDP tuto-
rial application, we made use of the low-level user interface API to draw to the screen.
Although Klava does not have an explicit and distinguishable low-level user interface
API, we will make use of some of the code developed for MIDP application.

In order to draw the bar charts for the retrieved quotes, the application will need
some information about where to position the chart. This information is defined in
some static integer variables at the top of the application.

static final int MAX _BAR Sl ZE = 150;
static final int START_X POSITION = 5;
static final int START_Y_CURRENT = 97;

static final int START_Y_H STORI C = 122;
static final int BAR_HElIGHT = 5;

The prices will be displayed as horizontal bars drawn starting from the left of the dis-
play to a position on the right that is dependent on the price of the investment. The
START_X_POSI Tl ONis the unchanging x pixel position coordinate for each rectangle.
Correspondingly, the START_Y_CURRENT and START_Y_HI STORI C values pro-
vide the static starting y pixel locations for our two rectangles depicting the current
and historical prices. The BAR_W DTH variable provides the static height of all bars.

In order to actually draw the price bars on the display, we borrow two methods
from the MIDP tutorial application implementation. The first, pai nt Chart (), is
a modified version of the Canvas pai nt () method in the MIDP application. This
method is supplied with the investment symbol and price data. With this data, it uti-
lizes the G- aphi cs object to draw strings, rectangles and lines to display the price
graph. (listing 9.3)

Listing 9.3 The paintChart method in RetrieveQuoteSpotlet

public void paintChart(String sym int currentPrice, int historicPrice) {

Graphi cs. dr awRect angl e(5, 60, 155, 70, Gr aphi cs. ERASE, 0) ;
G aphi cs.drawstring(sym + " Perfornmance", 5, 60, G aphi cs. PLAIN) ;
Graphi cs.drawString("current vs. historic",5,73, Gaphics. PLAIN);
Graphics.drawString("$" + currentPrice, 5, 85, Graphics.PLAIN);
Graphics.drawString("$" + historicPrice, 5, 110, Graphics.PLAIN);
int[] prices = {currentPrice, historicPrice};
int[] lengths = determ neLengths(prices);
G aphi cs. drawRect angl e (START_X POSI TI ON, START_Y_CURRENT,

| engt hs[0], BAR_HEI GHT, Graphi cs. PLAIN, 0);
Graphi cs. drawRect angl e (START_X_POSI TI ON, START_Y_HI STORI C,

| engt hs[1], BAR_HEI GHT, Graphics. PLAIN, 0);

for (int i =30; i < MXBARSIZE i =i + 30) { o

G aphi cs.drawLine (i, START_Y_CURRENT - 2, i,
START_Y_HI STORI C + BAR_HEI GHT + 2, Graphics. PLAIN);

CHAPTER 9 KJAVA USER INTERFACE

@ Clearing the region of the screen

@ Drawing text to display the current and historical prices
© Drawing the bars representing each price

O Adding “tick” marks to graph

The pai nt Chart () method reuses the det er mi nesLengt hs() method, without
change, developed in chapter 5 to help determine the pixel length of each bar in the
graph. A copy of this code is provided in listing 9.4.

Listing 9.4 The determineLengths method in RetrieveQuoteSpotlet

private int[] determi neLengths (int[] prices) {

int ratio, higherPrice, |owerPrice;
bool ean current Hi gher;

if (prices[0] < prices[1]) {
hi gherPrice = prices[1];
| owerPrice = prices[0];
current Hi gher =f al se;

} else {
hi gherPrice = prices[0];
| owerPrice = prices[1];
current Hi gher=true;

}

rati o = higherPrice/ MAX_ BAR SI ZE + 1;
while (ratio > 1) {

hi gherPrice = higherPrice/ratio;

| owerPrice = lowerPrice/ratio;

rati o = higherPrice/ MAX_BAR_SI ZE + 1;
}

if (currentHigher) {
int[] ends = {higherPrice, |owerPrice};
return ends;

} else {
int [] ends = {lowerPrice, higherPrice};
return ends;

At this time, the components and drawing methods are not hooked up to customer
actions. We will look at how to do this in KJava in the next section of this chapter.
However, to see the bar graph drawing methods do their work, simply add a call to
the pai nt Char t () method, such as the one immediately following, to the bottom
of the di spl ayFor m() method:

pai nt Chart ("MW', 75, 110) ;

THE INVESTMENT QUOTE APPLICATIONS USER INTERFACE IN KJAVA 247

9.5

95.1

248

With this code entered into the RetrieveQuoteSpotlet.java file, use Jbed to compile
and link the application just as you did with the ObtainQuoteSpotlet. If you have
been following the directions throughout this chapter, do not forget that the
RetrieveQuoteSpotlet is a separate project; namely the RetrieveQuote project. Suc-
cessfully compiling, linking and deploying the application to an emulator should
result in a display that looks similar to that in figure 9.21.

Twpe: mstock ()Fund

PR Perforrmance
current vz hiztoric
T Figure 9.21
The RetrieveQuote Spotlet user interface depicts
$110 = or o
the current and historical prices in a bar graph.

Based on screen size, the MIDlet RetrieveQuote

Exit application required several displays to handle

the same needs.

Again, the application will not react to any attempted interaction. We look at KJava
event handling next.

HANDLING USER INTERACTIONS IN KJAVA

Handling events in KJava is a very simple affair. All event handling is done through
the Spotlet. As we mentioned in the beginning of this chapter, while an application
can be made up of more than one Spotlet (which is often the case), one and only one
Spotlet can have “focus” at any given time. All events are sent to the Spotlet with
focus (called the current Spotlet) via a set of methods. These event-handling methods
are similar to the type of event-handling methods provided in the original Java AWT.

In KJava, there are no listener or command objects such as in MIDP. Instead, the
Spotlet is registered for events. Each Spotlet subclass must also override the event-han-
dling methods that process the events in which it has interest.

Spotlet event-processing methods

A Spotlet becomes the Spotlet with focus and is registered for events with a call to the
regi ster () method. Once registered, the Spotlet then handles and reacts to an
event by implementing one or more of the following methods:

e keyDown(i nt keyCode) Called to handle and process a user pressing any
of the hard or soft keys or entering a character in the Graffiti editor. When
using the emulator, this method is also triggered with standard keyboard input.
The keyCode is the ASCII value of the character entered or button pressed.

CHAPTER 9 KJAVA USER INTERFACE

e penDown(int x, int y) Invoked whenever the user places the pen on the
display screen. The x and y parameters specify where the user touched the screen.

e penMove(int, int) Invoked whenever the user moves the pen across the
display screen. In this case, the x and y coordinates indicate the final or destina-
tion point in the movement.

e penUp(int x, inty) Called when the user has removed the pen from the dis-
play. The x and y coordinates specify the last position held as the pen was removed.

e unknownEvent (i nt event, java.io.Datalnput in) The catchall pro-
cessing method for unknown events.

You may have noticed that no events are ever triggered directly on user interface com-
ponents. Components, such as the Text Fi el d and Radi oBut t on do have event-
handling or processing methods; they simply have to be forwarded news of the event
by the Spotlet. Therefore, the Spotlet serves as the central processing facility for
events, and forwards or triggers reaction to events onto other components by calling
on their event-handling methods.

Not all components are interested in or react to all the events. For example, a
CheckBox component has no interest in whether the pen moved on it, in it or near
it. Spotlets must be programmed to trigger or call on the appropriate event-handling
method of each type component. This is made somewhat easier in that the component
event-handling methods have the same name as the Spotlet event processing method
except they are preceded by the word “handle.” Below is a list of the various user inter-
face components and their available event-handling methods.

Table 9.1 User interface component event-handling methods.

KJava User Interface Component Available Event-Handling Methods

Button
CheckBox
RadioButton
ScrollTextBox

SelectScrollTextBox

None
handlePenDown
handlePenDown

handlePenDown
handlePenMove
handleKeyDown

same as ScrollTextBox through inheritance

Slider handlePenDown
handlePenMove

TextBox None

TextField handleKeyDown

ValueSelector
VerticalScrollBar

None

handleKeyDown
handlePenDown
handlePenMove

HANDLING USER INTERACTIONS IN KJAVA

249

9.5.2

0.6

9.6.1

250

Since there are no listeners, how does the Spotlet know which components to forward
an event call to? Widgets with concern for actions have methods that help the Spotlet
determine whether an action, such as a penDown action, occurred over a particular
component’s part of the display. For example, the Radi oBut t on component has a
pressed(int x, int y) method that the Spotlet can use to determine if the user
in fact pressed inside of the Radi oBut t on instance spot on the screen. If so, the
Spotlet can trigger the RadioButton’s handl ePenDown(i nt x, i nt y) method.

Table 9.2 User interface component event-handling helper methods.

KJava User Interface Component Event Helper methods
Button pressed(x,y)
CheckBox pressed(x,y)
RadioButton pressed(x,y)
ScrollTextBox contains(x,y)
SelectScrollTextBox contains(x,y)
Slider contains(x,y)
TextBox None
TextField pressed(x,y)
hasFocus()

ValueSelector pressed(x,y)
VerticalScrollBar contains(x,y)

Handling beaming events

Most Palm OS devices are equipped with infrared ports. A special processing method
on the Spotlet class is provided to allow Spotlets to receive data via this port. The
beanRecei ve(byt e[] data) method is called on the Spotlet whenever the Spotlet
has focus and the device is receiving beamed data. Spotlets can also beam data to another
device using the infrared port by calling on the beanBend(byt e[] dat a) method.

HANDLING THE EVENTS OF THE INVESTMENT QUOTE
APPLICATION IN KJAVA

In the first part of this chapter, we were able to display some very nice user interfaces
using the Klava user interface API. However, the displays did not allow for any user
interaction. We could not even enter text in the Text Fi el d. In this portion of the
tutorial, we add methods to override the event-handling methods in the Obt ai n-
Quot eSpot | et and Retri eveQuot eSpot | et classes, which allow for customer
interaction with the application.

Handling key entry events
In both the ObtainQuoteSpotlet and RetrieveQuoteSpotlet we have a text field for
accepting the user’s desired investment symbol. As a first step toward full interaction,

CHAPTER 9 KJAVA USER INTERFACE

we will implement the necessary keyDown() overriding method implementations in
our Spotlets to handle Graffiti input or button presses on the device.

From table 9.1, we see that there are two components in ObtainQuoteSpotlet that
we are using that might be interested in keyDown activity, namely the text field and
scroll text box components. In the RetrieveQuoteSpotlet, only the text field is
concerned with keyDown. In the case of the text fields, it is obvious that we want to
capture the keyCode, or in other words, character being entered, and pass that to the
component for display. Why would the text box be concerned with the activities han-
dled in the keyDown event-handling method? When developing your application,
don’t forget about the buttons, both soft and hard, on the device. In the case of the
scroll text box, we will want to move the text displayed in the box if the customer
presses the directional keys at the bottom of the device.

Scroll up

Figure 9.22

Buttons at the bottom of the device allow for
easier navigation through elements in a scrollable
component. However, in order to use these
buttons in combination with a Spotlet application,
the Spotlet must be programmed to handle the
Scroll down keyDown event generated by these buttons.

Pushing the top key is an indication from the user that the display should be scrolled
up. Pushing the bottom key is an indication from the user that the display should be
scrolled down. We use conditionals inside of the keyDown() method to check
which area of the display and/or which key has been pressed in order to respond
appropriately.
public void keyDown (int keyCode) {
if ((keyCode == 11) || (keyCode == 12)){
resul t sBox. handl eKeyDown(keyCode) ;
} else if (symnbol Field.hasFocus()) {
synbol Fi el d. handl eKeyDown(keyCode) ;

}
}

In the case when the scroll-up (key code equals 11) or scroll-down (key code equals
12) key is pushed, we forward the event onto the r esul t sBox’s handl eKey-
Down() method. Otherwise, when the synbol Fi el d Text Fi el d has focus, we
want the key input to be sent to the synbol Fi el d’s handl eKeyDown() method.
In this application, we are not concerned with other hard or soft key presses, but your
application might be. Put conditions and handling in the keyDown event-handling
method if your application wants or needs to react to the Applications, Menu, Cal-
culator, or Find soft keys or to the Calendar, Address Book, To Do List and Memo
hard keys.

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 251

9.6.2

252

The keyDown() method in the RetrieveQuoteSpotlet is even easier since there is
no scrolling text box. Instead, we just need to handle key entry for input of the invest-
ment symbol.

public void keyDown (int keyCode) {
i f (synbol Fi el d. hasFocus()) {
synbol Fi el d. handl eKeyDown(keyCode) ;

}
}

Handling pen taps

Our application is looking better. Now, at least, the customer can enter the invest-
ment symbol into the text field. With PDA devices, however, most interactions with
the device do not occur with the Graffiti editor or by pushing the devices buttons.
Most interactions occur with PDA devices by using the stylus or pen instrument in
contact with the display screen. This is often referred to as “tapping” on the screen and
it is usually the preferred interaction with the device because it is quick and easy.
Handling interactions via the pen is the job of the Spotlet’s penDown() , penMove()
and penUp() methods. An example of the penDown method is provided in listing 9.5.

In our application, we have all sorts of reactions to pen actions and motion,
depending on which component is being interacted with. Two important interactions
are when the user taps or presses one of the two buttons (Exit, Get Quote) on the dis-
play. We can tell if a tap has fallen on one of these buttons by checking to see if the
X, ¥ coordinate passed into the penDown() method is inside the button space. If a
button is tapped, the component does not have any handling methods. We, as the
developers, must determine what action is going to occur any time a Butt on is
pressed. In this case, if the exi t But t on is pressed, we simply exit the application. If
the “Get Quote” button is pressed, then things get a little more interesting.

Listing 9.5 The penDown method in ObtainQuoteSpotlet

public void penDown(int x, int y) {
if (exitButton. pressed(x,y)){ D
@ aphi cs. pl aySound(& aphi cs. SOUND_CONFI RVMATION) ;. @)
System exit (0);
} else if (getButton.pressed(x,y)) { 0\
synbol Fi el d. | oseFocus();
if ((synbol Field.getText().length() > 0) && (checkSynbol ())) {
G aphi cs. pl aySound(Gr aphi cs. SOUND_STARTUP) ;
String sym = synbol Fi el d. get Text ().t oUpper Case();
//later on, get the price froma quote service here
int[] price = {75, 55};
//later on, store the price in the database here
resul t sBox. set Text ("The price of " + sym+ " is $"
+ price[0] + "." + price[l]);
resul t sBox. pai nt();

CHAPTER 9 KJAVA USER INTERFACE

} else if (synbol Field. pressed(x,y)) { 0
synbol Fi el d. set Focus(); k

} else if (stockButton.pressed(x,y)) {
synbol Fi el d. | oseFocus(); /o
st ockBut t on. handl ePenDown(x, y) ;

} else if (fundButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
f undBut t on. handl ePenDown(x, y) ;

} else if (resultsBox.contains(x,y)) {
resul t sBox. handl ePenDown(X, y) ; /o

@ Check if a button has been pressed

@ Sound to indicate action confirmation

© Handling a Get Quote command request
@ When the TextField is pressed, give it focus
© Handling radio button presses

@ |If the scroll bar is tapped, scroll the text box

When get But t on has been pressed, we first check to see that the customer has pro-
vided a symbol and that the symbol is valid (checking that a symbol ending in ‘X’ is
for a mutual fund). If the symbol were valid, we would ordinarily get the price from
our quote service. Since this part of our application is not yet available, we mock up
getting the price by assigning a price ($75.55) to our investment and passing this on
to the r esul t sBox to be displayed. We would also store the price in a database. The
topic, obtaining a price and storing it in a database, will be discussed in chapter 10.
Notice that whenever a button is pressed we have the device provide an audible sig-
nal. The Graphics object performs this task.

The penDown() method on RetrieveQuoteSpotlet is similar. On the user’s press
of the Get Quote button in this Spotlet, however, a little more work needs to occur.
When Get Quote is pressed, the application must attempt to retrieve the existing
guote. If a historical quote exists, then the application will display the bar graph
depicting the historical and current quote. If a historical quote does not exist, then the
application simply prints the current price. Finally, the customer may have asked for
a quote for which the system does not yet have any quote. In this case, an appropriate
error message must be displayed to the screen. All of this activity is handled by the
di spl ayChart () method (shown in listing 9.6) if the user pushes the Get Quote
button and the symbol is valid.

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 253

Listing 9.6 The displayChart method in RetrieveQuoteSpotlet

private void displayChart(String currentSynbol) {
//later on, get prices froma database here
int[] prices = {75,55,110,45}; @
if (prices !'=null) {
if (prices.length > 2) {
pai nt Chart (current Synbol , prices[0], prices[2]); 0
} else {
Graphi cs. dr awRect angl e(5, 60, 155, 70, Gr aphi cs. ERASE, 0) ;
QG aphi cs. drawstring("Recorded price for " + currentSynbol + "
is: $" + prices[0] +"." + prices[1], 5, 65 Gaphics.PLAN);
Graphics.drawString("No historical data exists.", 5, 80,
Graphi cs. | NVERT) ;

}
}
el se {
Graphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ; Q
Di al og noDat aAl ert = new Di al og(this,"Alert",
"No price exists for " + currentSynbol,"OK");
noDat aAl ert. showDi al og();
}

@ The same fake prices for all investments for now

@ With both a historical and current price, display the bar graph
© With only asingle current price, display the price and a message
@ With no prices, tell the customer that no prices exist

Again, because the application is not yet hooked up to a database or quote service, we
provide a set of phony current and historical prices for every symbol of $75.55 and
$110.45. This will be changed later so as to get the prices from a database on the device.

With the di spl ayChart () method handling most of the details surrounding
what and how to display price quotes, the Spotlet’s penDown() method must orches-
trate calls to the appropriate handling mechanisms as shown in listing 9.7.

Listing 9.7 The penDown method in RetrieveQuoteSpotlet

public void penDown(int x, int y) {
if (exitButton.pressed(x,y)){
G aphi cs. pl aySound(G- aphi cs. SOUND_CONFI RVATI ON) ;
System exi t (0);
} else if (getButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
if ((synbol Field.getText().length() > 0) & (checkSynbol ())) {
Gr aphi cs. pl aySound(Gr aphi cs. SOUND_STARTUP) ;
String sym = synbol Fi el d. get Text ().t oUpper Case();
di spl ayChart (sym;

254 CHAPTER 9 KJAVA USER INTERFACE

9.6.3

} else if (synbol Field. pressed(x,y)) {
synbol Fi el d. set Focus();

} else if (stockButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
st ockBut t on. handl ePenDown(x, y) ;

} else if (fundButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
f undBut t on. handl ePenDown(x, y) ;

In the case of our two applications, we are not concerned with the penUp events.
However, if we were, we would simply override the penUp(i nt x, int y) method
and react to the events as necessary.

Handling pen movement

We need to handle one final event that our ObtainQuoteSpotlet may see. We have
handled the customer’s desire to scroll the price quote results scroll text box by either
pushing the scroll-up or scroll-down buttons at the bottom of the device through the
keyDown() implementation. We have also handled the customer’s desire to scroll
the same scroll text box by tapping the scroll bar on the component. But what if the
user attempts to drag the position indicator of the scroll bar up or down? In order to
handle this last event, we must implement the penMove() method. Since a scroll text
box already knows how to handle this event, we need to check that any movement
with the pen occurs within the instance of the Scr ol | Text Box and if it does, for-
ward the event on to the component’s handling method.

public void penMve (int x, int y) {

if (resultsBox.contains(x,y)) {
resul t sBox. handl ePenMove(X, y);

}
}
This method is absent from the RetrieveQuoteSpotlet since the Spotlet has no scroll
text box and therefore no need to react to pen movement.
Our applications’ user interfaces have been completed. The full code for our two
Spotlets is displayed in listings 9.8 and 9.9 as follows.

Listing 9.8 The complete ObtainQuoteSpotlet.java

i mport com sun. kj ava. *;
public class Obtai nQuoteSpotl et extends Spotlet inplements D al ogOmer {

private TextField synbolField = null;
private Radi oButton stockButton = null;
private Radi oButton fundButton = null;
private Radi oG oup investnentChoice = null;
private Scroll Text Box resultsBox = null;

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 255

private Button exitButton = null;
private Button getButton = null;

public Ootai nQuoteSpotlet() {
String tflLabel = "Synbol";
synbol Fi el d = new Text Fi el d(t f Label , 5, 25, Graphi cs. get Wdt h(tf Label)
+ 40, Graphics. getHeight(tfLabel));
st ockButton = new Radi oButton(50, 45, " St ock");
fundButton = new Radi oButton(100, 45, "Fund");
i nvest nent Choi ce = new Radi oG oup(2);
i nvest nent Choi ce. add(st ockButton);
i nvest nent Choi ce. add(fundButton);
i nvest nent Choi ce. set Sel ect ed(st ockButton);
resul tsBox = new Scrol | Text Box("", 8, 65, 137, 45) ;
exitButton = new Button("Exit",5, 140);
getButton = new Button("Get Quote", 105, 140);

public static void main (String args[]) {
Obt ai nQuot eSpot | et quoteSpotl et = new Obt ai nQuot eSpotl et ();
guot eSpot | et . di spl ayForn();

}

private void displayForm() ({
regi st er (NO_EVENT_OPTI ONS) ;
G aphi cs. cl ear Screen();
Graphi cs.drawString("Obtain | nvestnent Quote", 5,10, G aphi cs. | NVERT) ;
Graphi cs. drawstring(" Type: ", 5,45, G aphics. PLAIN);
synbol Fi el d. paint();
st ockBut ton. pai nt ();
fundBut t on. pai nt ();
resul t sBox. pai nt();
Graphi cs. drawBor der (5, 60, 150, 55, Graphics.PLAIN, G aphics. S| MPLE);
exi tButton. paint();
get Button. paint();
}

private bool ean checkSynbol () {

i f ((investnentChoice. getSel ected().equal s(fundButton)) &&
I (synbol Fi el d. get Text ().t oUpper Case().endsWth("X"))){
Gr aphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ;
Di al og synbol Alert = new Di al og(this,"Alert",

"Check Synbol\n\nMitual Funds end in 'X","OK");

synbol Al ert. showDi al og();
return false;

}

return true;

}

public void penDown(int x, int y) {
if (exitButton. pressed(x,y)){
G aphi cs. pl aySound(Gr aphi cs. SOUND_CONFI RVATI ON) ;
System exi t (0);
} else if (getButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();

256 CHAPTER 9 KJAVA USER INTERFACE

if ((synmbol Field.getText().length() > 0) && (checkSynbol ())) {
Graphi cs. pl aySound(Gr aphi cs. SOUND_STARTUP) ;
String sym = synbol Fi el d. get Text ().t oUpper Case();
/llater on, get the price froma quote service here
int[] price = {75, 55};
//1ater on, store the price in the database here
resul t sBox. set Text ("The price of " + sym+ " is $" +
price[0] + "." + price[1]);
resul t sBox. pai nt();
}
} else if (symbol Field.pressed(x,y)) {
synbol Fi el d. set Focus();
} else if (stockButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
st ockBut t on. handl ePenDown(x, y) ;
} else if (fundButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
f undBut t on. handl ePenDown(x, y) ;
} else if (resultsBox.contains(x,y)) {
resul t sBox. handl ePenDown(X, y) ;

}

public void keyDown (int keyCode) {
if ((keyCode == 11) || (keyCode == 12)){
resul t sBox. handl eKeyDown(keyCode) ;
} else if (synbol Field.hasFocus()) {
synbol Fi el d. handl eKeyDown(keyCode) ;
}
}

public void penMwve (int x, int y) {
i f (resultsBox.contains(x,y)) {
resul t sBox. handl ePenMove(X, y);
}
}

public void dial oghi sm ssed(java.lang.String title) {
t his. displayForm();
}

Listing 9.9 The complete RetrieveQuoteSpotlet.java

i mport com sun. kj ava. *;
public class RetrieveQuoteSpotlet extends Spotlet inplenments D al ogOmer{

static final int MAX_BAR SIZE = 150;
static final int START_X PCSITION = 5;
static final int START_Y_CURRENT = 97;
static final int START_Y_H STORI C = 122;
static final int BAR _HEIGHT = 5;

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 257

private TextField synbolField = null;
private Radi oButton stockButton = null;
private Radi oButton fundButton = null;
private Radi oG oup investnentChoice = null;
private Button exitButton = null;

private Button getButton = null;

public RetrieveQuoteSpotlet() {

String tflLabel = "Synbol";

synbol Fiel d = new Text Fi el d(tfLabel, 5, 25, Graphi cs. get Wdt h(tfLabel)
+ 40, Graphics. get Hei ght (tfLabel));

st ockButton = new Radi oButton(50, 45, " St ock");

fundButton = new Radi oButton(100, 45, "Fund");

i nvest nent Choi ce = new Radi oG oup(2);

i nvest nent Choi ce. add(st ockButton);

i nvest nent Choi ce. add(fundButton);

i nvest nent Choi ce. set Sel ect ed(st ockButton);

exitButton = new Button("Exit",5, 140);

getButton = new Button("Get Quote", 105, 140);

public static void main (String args[]) {
Retri eveQuot eSpot |l et quoteSpotlet = new Retri eveQuoteSpotlet();
guot eSpot | et . di spl ayForn();

}

private void displayForm() {

regi ster (NO_EVENT_OPTI ONS) ;

Graphi cs. cl ear Screen() ;

Graphics.drawString("Retrieve I nvestnent Quote", 5, 10,
G aphi cs. | NVERT) ;

Graphi cs. drawstring(" Type: ", 5,45, Gaphics. PLAIN);

synbol Fi el d. pai nt ();

st ockButton. paint();

fundBut t on. pai nt () ;

exi tButton. paint();

get Button. paint();

}

private bool ean checkSynbol () {

i f ((investment Choice. getSel ected(). equal s(fundButton)) &&
I (synbol Fi el d. get Text ().t oUpper Case().endsWth("X"))){
G aphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ;
Di al og synmbol Alert = new Dial og(this,"Alert",

"Check Synbol\n\nMitual Funds end in 'X","OK");

synbol Al ert. showDi al og();
return fal se;

}

return true,

}

private void displayChart(String currentSynbol) {
//later on, get prices froma database here
int[] prices = {75,55, 110, 45};

258 CHAPTER 9 KJAVA USER INTERFACE

if (prices !'=null) {
if (prices.length > 2) {
pai nt Chart (current Synbol , prices[0], prices[2]);
} else {
Gr aphi cs. dr awRect angl e(5, 60, 155, 70, Gr aphi cs. ERASE, 0) ;
Graphi cs. drawStri ng(" Recorded price for
+ currentSynbol + " is: $" + prices[0] + "
+ prices[1], 5, 65, Graphics.PLAIN);
Graphics.drawString("No historical data exists.", 5, 80,
Gr aphi cs. | NVERT) ;

}
}
el se {
Gr aphi cs. pl aySound(Gr aphi cs. SOUND_ERROR) ;
Di al og noDataAl ert = new Dialog(this,"Alert",
"No price exists for " + current Synbol,"OK");
noDat aAl ert. showDi al og();
}

public void paintChart(String sym int currentPrice, int historicPrice)

{
Graphi cs. dr awRect angl e(5, 60, 155, 70, Gr aphi cs. ERASE, 0) ;
Graphi cs.drawstring(sym + " Perfornmance", 5, 60, G aphi cs. PLAIN) ;
Graphics.drawString("current vs. historic",5,73, Gaphics. PLAIN);
Graphics.drawString("$" + currentPrice, 5, 85, Graphics.PLAIN);
Graphics.drawString("$" + historicPrice, 5, 110, Graphics. PLAIN);
int[] prices = {currentPrice, historicPrice};
int[] lengths = determ neLengths(prices);
G aphi cs. drawRect angl e (START_X_POSI TI ON, START_Y_CURRENT,
| engt hs[0], BAR _HEI GHT, G aphics. PLAIN, 0);
Graphi cs. drawRect angl e (START_X_POSI TI ON, START_Y_HI STORI C,
| engths[1], BAR_HEIGHT, G aphics.PLAIN, 0);
for (int i =30; i < MMXBARSIZE;, i =i + 30) {
Graphi cs. drawLine (i, START_Y_CURRENT - 2, i, START_Y_HI STORIC +
BAR _HEI GHT + 2, Graphics. PLAIN);
}
}

private int[] determi neLengths (int[] prices) {

int ratio, higherPrice, |owerPrice;
bool ean current Hi gher;

if (prices[0] < prices[1]) {
hi gherPrice = prices[1];
| ower Price = prices[0];
current Hi gher =f al se;

} else {
hi gherPrice = prices[0];
|l owerPrice = prices[1];
current Hi gher=true;

HANDLING THE EVENTS OF THE INVESTMENT QUOTE APPLICATION IN KJAVA 259

rati o = higherPrice/ MAX_BAR_SI ZE + 1;
while (ratio > 1) {

hi gherPrice = higherPrice/ratio;

|l owerPrice = lowerPricel/ratio;

rati o = hi gherPrice/ MAX_ BAR SI ZE + 1;
}

if (currentHigher) {
int[] ends = {higherPrice, |owerPrice};
return ends;

} else {
int [] ends = {lowerPrice, higherPrice};
return ends;

}

public void penDown(int x, int y) {
if (exitButton. pressed(x,y)){
Graphi cs. pl aySound(Gr aphi cs. SOUND_CONFI RVATI ON) ;
System exi t (0);
} else if (getButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
if ((synbol Field.getText().length() > 0) && (checkSynbol ())) {
G aphi cs. pl aySound(Gr aphi cs. SOUND_STARTUP) ;
String sym = synbol Fi el d. get Text ().t oUpper Case();
di spl ayChart (sym;

}

} else if (synbol Field.pressed(x,y)) {
synbol Fi el d. set Focus();

} else if (stockButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
st ockBut t on. handl ePenDown(x, y) ;

} else if (fundButton.pressed(x,y)) {
synbol Fi el d. | oseFocus();
f undBut t on. handl ePenDown(x, y) ;

}

public void keyDown (int keyCode) {
i f (synbol Fi el d. hasFocus()) {
synbol Fi el d. handl eKeyDown(keyCode) ;
}
}

public void dial oghi sm ssed(java.lang.String title) {
this. displayForm);
}

As was done earlier in this chapter, use Jbed to compile and link the applications pro-
ducing two PRC files. These PRC files can then be deployed to the emulator and
finally to the actual devices. However, our application is not yet complete. We still

260 CHAPTER 9 KJAVA USER INTERFACE

9.7

SUMMARY

need to hook up our applications to a persistent storage mechanism on the PDA
device for storing and retrieving the investment quote information. Furthermore, we
will utilize the QuoteService developed in the MIDP section to obtain live invest-
ment quotes wirelessly.

SUMMARY

In this chapter, we examined the KJavas graphical user interface and event handling
mechanisms. Unlike the MIDP APIs, the KJava API has no high-level or low-level
user interface or event handling mechanisms and is often considered a fairly simplis-
tic API. Again, remember that KJava was designed and developed to be a demonstra-
tion API. Therefore, its sophistication and capabilities must be viewed in that light
when comparing it to a full 2ME profile. This chapter also provided us an opportu-
nity to see and use a